87-88 - 15-849

DIAMOND DRILL REPORT

ON THE

RED GROUP

Cariboo Mining Division 93 B (Latitude 52° 30.7, Longitude 122° 17.4)

OWNER AND OPERATOR

GIBRALTAR MINES LIMITED

FILMED

MCLEESE LAKE, B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT

Submitted: February 25, 1987

Author: G. D. Bysouth

1	INTRODUCTION		1							
2	MINERAL CLAIMS	5	1							
3	DRILL PROGRAM		3							
	3.1 Objective	es	3							
	3.2 Results		3							
	3.3 Interpret	cation	7							
4	STATEMENT OF E	EXPENDITURES	8							
5	CONCLUSIONS .		10							
FI	GURES									
	Figure 1. A	Area Location Map(In Tex	t)							
	Figure 2. Red Group Claim Map(In Pocket)									
	Figure 3. D	orill Hole Location Map(In Pocke	et)							
AP	PENDICES									
	APPENDIX I. St	atement of Qualifications								
	APPENDIX II. L	ist of Abbreviations								
	Drill Logs									
	86-33	86-40								
	86-34	86-41								
	86-35	86-42								
	86-36	86-43								
	86-37	86-44								
	86-38	86-45								
	86-39	86-46								

1 INTRODUCTION

The Red Group of mineral claims is part of the Gibraltar Mines Limited permanent property. It is accessed via the mine access road and mine haul roads. It lies due south of the plant site and extends in a southerly direction. The general location is shown in Figure 1.

1

The 1986 drilling on this group covered in this report took place south of the Gibraltar East pit . Holes were drilled to test for ore systems parallel to the Gibraltar East structures. Drill locations are shown in Figure 3.

Drilling was carried out by Frontier Drilling Limited of Kelowna, B. C. during the period August 15 to September 9, 1986. Fourteen vertical N.Q. wireline diamond drill holes were completed for a total of 7,098 feet (2,163.5 m.). Core was not split. The whole core was sent to the assay lab for analysis. The ground core is stored at the Gibraltar Mines plant site for a period of one year.

2 MINERAL CLAIMS

The Red Claim Group has mineral leases grouped with mineral claims. Particulars of each claim are listed below. All claims are part of the Gibraltar Mines Limited permanent property. Mineral claim locations are shown in Figure 2 (in pocket).

RED	GROUP MINE	ERAL CLAIMS	
NAME	RECORDED DDMMYY	RECORD NUMBER UNIT	S
AL # 5 AL # 7	020764 020764	28451 1 28453 1	
AL # 8 AL # 9	020764 020764	28454 1 28455 1	
AL #10 Al #11	020764	28456 1 28457 1	
AL #12	020764	28459 1	
	191055	21)63 1	
EV #12	191065	31065 1	
EV #13 EV #14	191065	31067 1	
EV #15 EV #16	1701oo 1701oc	31739 1 31740 1	
EV #18 EV #20	17015e 170156	51742 1 51744 1	
FLO #2 F	R 030267	43175 1	
FLC #4 FI	$\frac{290207}{8 - 290207}$	43260 1	
STU #1 FI STU #2 FI	$\begin{array}{c} R & 180759 \\ R & 180759 \\ \end{array}$	52929 1	
STU #3 FI STU #4 FI	R 180769 R 180769	52931 1 52931 1	
STU #6 FI	R 120359	53211 1	

NAME	RECORDED DDMMYY	RECORD NUMBER	UNITS	MINERAL LEASE	
VAL #35 VAL #37 VAL #37 VAL #37 VAL #442 VAL #442 VAL #445 VAL #445	120078699 120078699 12007878699 12007878699 120078699 120078699 120078699 128007869 128007860 12800000000000000000000000000000000000	55555555555555555555555555555555555555			
VAL #43 VAL #49 VAL #50	120869 120769 120869	532 1 9 52923 53220	1		
VAL NO 5 VAL NO 5 VAL NO 5 VAL NO 5 VAL NO 5 VAL NO 9 VAL NO 9 VAL NO 10 VAL NO 11 VAL NO 12	12000000000000000000000000000000000000				
VAL NO14 Z #2FR Z EPHYR # 2 Z EPHYR # 4 Z EPHYR # 6 Z EPHYR # 8 Z EPHYR # 9 7 FPHYP # 10	180366 030366 090162 090162 090162 090162 090162 090162	33862 34969 25577 25577 25581 25582 25583		3601 M39 3601 M39 3601 M39 3601 M39 3601 M39 3601 M39 3602 M40	
ZEPHYR #11 ZEPHYR #12 ZEPHYR #13 ZEPHYR 5FR GG #9 GG #10 GG #17	090162 090162 090162 030366 281054 281054 281054 281054	25584 25585 25585 34974 29242 29242 29242 29240		36022 M40 36022 M40 36022 M40 36022 M40 36023 M41 36033 M41 36033 M41	
GGG #129 GGG #250 GGG #551 GGG #52 GGG 19 GGIB 19 GIB 19 GIB 19	20810054 20810054 22810054 281054 281054 2810657 2810657 2800571	299262 299262 299264 29926 29976 2000 20000000000000000000000000000000		M441 M441 M441 M441 M441 M441 M441 M441	
ZEPHYR #15 AL #15 AL #17 AL #17 AL #18 AL #20 AL #20	090162 020764 020764 020764 020764 020764	425583 28463 28465 28465 28465 28465 28465		3705 M41 3705 M43 3711 M49 3711 M49 3711 M49 3711 M49 3711 M49	
EST NO1 FR EST NO2 FR EST NO2 FR ZEPHYR #14 ZEPHYR #14 AL #13 AL #14	200571 200571 200571 090162 090162 020764 020764	262 4390 2522 4402 2522 4402 2528 4402 2558 555 555 555 555 555 555 555 555 5		3711 M49 3711 M49 3711 M49 3711 M49 3711 M49 3711 M49 3711 M49 4147 M62	
AL #16 AL #22 FR EV # 5 EV # 6	020754 020754 191065 191065	28463 31058 31059		4147 M62 4147 M62 4147 M62 4147 M62 4147 M62	
EV # 3 MIRE #1 PAN NO2	191065 230762 230762 040562	31060 31061 26005 26005 25792		4147 M62 4147 M62 4148 M63 4148 M63 4149 M64	

3 DRILL PROGRAM

3.1 Objectives

Drilling was done south the the Gibraltar East pit and on strike with ore from the Gib-West pit in an attempt to prove up parallel ore systems. The volume and grade for an economic system were not found with this drill program. Ore systems appear to be too narrow and very steep.

3.2 Results

The drill hole locations are shown in Figure 3. The locations were surveyed with an E.D.M. AGA survey instrument. Drill logs are included in the pocket of this report. All copper values reported here are for total copper. The logs report total copper and, in some cases, oxide copper (included malachite and azurite), and chalcocite. All molybdenum reported is MoS₂.

The normal Mine Phase rock continued immediately south of the Gibraltar East pit with some holes showing variation in grain size and quartz content. Normal "Mine Phase Quartz Diorite" is comprised of about 30% to 35% quartz, 45% to 50% light green, saussuritized feldspar, and about 20% green chloritized mafics. This rock often shows some degree of segregation and alteration ranging from lighter zones of weaker saussurite alteration and darker zones of higher chloritic concentration to sericitic and chloritic shearing. Grain size is normally medium grained.

About 1500 feet south of the pit rim a new rock type with remnant hornblende crystals appears to dip quite steeply to the south. This rock type is extremely barren.

A tabulation of ore zones intersected in this drill program is listed below. Oxidized mineralization has been ignored, as well as ore systems less than 30-feet thick.

Hole No.	Collar Elev.	Depth	Casing	Ore Inte From	rsection To	Width	%TCu	%MoS2
86-33	3591′	502′	115′	210 320	280 360	70 40	.31 .38	.016 .008
86-34	3606′	493′	97′	290	340	50	.24	.006
86-35	3603′	508′	142′	-	-	-	-	-
86-36	3623′	5081	80′	-	-	-	-	
86-37	3640′	495 <i>'</i>	84′	220	300	80	.35	.007
				330	400	70	.25	.010
86-38	36161	5081	1031	_	_	_	_	

86-39	3605′	508′	80′	380	410	30	.45	.004
86-40	3603′	498′	92′		-	-	-	-
86-41	36201	447′	84′	-	-	-	-	-
86-42	3478′	603′	80′	530	603	73	.25	.014
86-43	3448′	505′	100′	230	340	110	.28	.006
86-44	3459′	508′	100′	260	350	90	.37	.007
86-45	3465′	507′	128′	230 480	260 507	30 30	.51 .38	.002 .007
86-46	3382′	505′	50′	300	330	30	.30	.008

Hole 86-33 intersected an atypical Mine Phase quartz diorite rock down to 350-feet. This rock had less quartz than normal, 20-25%, and was finer grained. Below 350-feet, rock about composition and grain size was back to normal. A highly oxidized zone of copper mineralization at the top of the hole has not been The recoverable copper (sulphide included in the chart above. zone is not sufficient to include it as an copper) in this The mineralized zone from 210- to economic ore intersection. contains chalcopyrite and minor chalcocite in narrow 280-feet shears and chloritic veins. A large quartz vein from 267-to 275-feet contains minor chalcopyrite and accounts for some of the grade here. A second ore zone from 320- to 360-feet contains chalcopyrite in chloritic veins and in sericitic shears. Pyrite content is high in the sericitic shears and some zones display associated chalcocite mineralization. Chalcocite is also seen concentrated along several vertical fractures indicating that this is not part of the supergene zone, only chalcocite transported down the fractures. A weak chalcocite blanket extends down to about 260-feet.

86-34 displays variable amounts of saussuritic and Hole chloritic alteration in a normal Mine Phase Quartz Diorite. This gives way to Quartz-Chlorite-Sericite-Magnetite shear zones from 416-feet to the end of the hole. A highly oxidized zone occurs at the top of the hole, down to 220-feet and mineralization is no longer economic. A weak supergene zone below this does not produce sufficient grade either. An ore zone does exist from 290- to 340-feet with chalcopyrite in guartz-chlorite veins and in quartz veins being responsible for most of the grade here. Grade increases in narrow quartz porphyry zones. One notation of bornite was made. Pyrite concentration is low throughout the hole.

The Mine Phase Quartz Diorite intersected in drill hole 86-35 is atypical in the same manner as in 86-33 - it is lower in quartz content, higher in chlorite content, and finer grained than normal. A major fault zone occurs from 255- to 292-feet. No rock change occurs across it. The zone from 378- to 448-feet is highly sheared and altered. Chlorite, sericite and saussurite are "molded" around rounded, almost augen-like quartz grains. Quartz content is high, around 60%. Carbonate is present with quartz and chlorite in small gash-like veinlets. Pyrite concentration was quite variable, generally showing an increase with increased sericite. No economic ore zones were intersected in this hole.

Hole 86-36 also intersected an atypical Mine Phase quartz diorite down to 400-feet. This rock however is not like that intersected in 86-33 and 86-35. It was finer grained, but quartz was very obvious as grain aggregates up to 3/4" in diameter (similar to Granite Mountain Phase quartz diorite). A typical Mine Phase Quartz Diorite continued from 400-feet to the end of the hole. A quartz-feldspar porphyry dyke was intersected from 467- to 473-feet showing sharp contacts and containing rounded inclusions of Mine Phase rocks. Pyrite content again fluctuated with the amount of sericite, but was generally low. No copper ore zones were intersected.

Hole 86-37 is drilled into normal Mine Phase Quartz Diorite with its normal variations in saussurite or chlorite alteration. Narrow zones show a fragmental nature and a few narrow zones of seriate textured Leucocratic rocks have been noted. A weakly mineralized zone of oxidation occurs down to 140-feet. No adjacent supergene zone is noted. Chalcocite that is noted deeper in the hole appears to be associated with a narrow steep fault zone at 200-feet. An ore zone from 220- to 300-feet is enhanced quartz vein mineralization. substantially by Chalcopyrite also occurs in chloritic veins. A second weaker ore zone extends from 330- to 400-feet and contains similar mineralizing structures. Pyrite is generally weak throughout the hole. A few higher grade intersections of pyrite correspond with increased sericite.

Hole 86-38 is drilled into normal Mine Phase Quartz Diorite with broad zones of shearing throughout varying between predominant chlorite and predominant sericite. Leach cap extends to 129-feet and oxidized mineralization extends to 150-feet. Only minor chalcocite has been noted below this and does not constitute a supergene "blanket". No economic zones of copper mineralization were intersected. Pyrite was weak throughout.

Hole 86-39 was collared in a possible different rock type, characterized by 20-25% subhedral to euhedral black hornblende crystals and 35-40% quartz as anhedral grains averaging 1/20" -1/8" in diameter, and 30-40% weakly saussuritized plagioclase. This rock type is extremely barren. It grades into a normal Mine Phase Quartz Diorite at 185-feet at which point also begins mineralized veins, in this case, though, only containing minor pyrite. A zone of carbonate alteration interrupts the Mine Phase It is not a typical shear zone but rock from 248- to 413-feet. is characterized by the partial replacement of plagioclase by a pale brown weathering carbonate. Quartz content amounts to about and chlorite and magnetite account for 5-10%. This rock is 45% in fault contact at its base with a normal Mine Phase rock. Α narrow ore zone is contained at the base of this unit contained partially within the fault zone. Chalcopyrite is contained in guartz-carbonate veins and in sericitic shears. Pvrite concentration is low throughout the hole.

Hole 86-40 intersected a rock type similar to that in 86-39 with the characteristic hornblende crystals. Here, however, some zones show chloritization of the hornblende crystals. Quartz content appears quite variable, ranging from 30% to 45%. Some narrow shear zones were intersected. Both pyrite and chalcopyrite content were very low throughout the hole.

Hole 86-41 is similar to 86-40 with variable amounts of fresh hornblende crystals and chloritized crystals. Faulting is abundant with zones at 168- to 191-feet, 237- to 260-feet, and 321- to 324-feet. Pyrite and chalcopyrite content again, are extremely low.

Hole 86-42, near the edge of the Gibraltar East pit, was drilled in normal Mine Phase Quartz Diorite. Numerous narrow, steep faults were intersected as well as a major fault from 328to 358-feet. A mineralized system from 530-feet to the end of the hole at 603-feet included zones of guartz-chlorite-carbonate Chalcopyrite was found within the shear zones as well shearing. as in chloritic veins and quartz veins. Pyrite content was generally low except in sheared areas and in zones of quartz-pyrite veins.

Hole 86-43 was drilled in a Mine Phase Quartz Diorite higher in chlorite and lower in quartz than normal. Faulting occurred at 328- to 340-feet, 410- to 420-feet, and possibly from 460- to 480-feet. An ore zone occurred from 230- to 340-feet with chalcopyrite noted in chloritic veins and narrow sericitic zones. Assays were generally higher than estimates indicating a possible fine grained background mineralization. Pyrite concentration was generally low with higher zones associated with sericitic shears.

Hole 86-44 was drilled in normal Mine Phase rocks. Leach extended to 110-feet and oxide to 120-feet. cap No supergene blanket was intersected. Numerous narrow shear zones were Faulting occurred at 195- to 205-feet. A rather intersected. sporadic ore zone was intersected from 260- to 350-feet with chalcopyrite and minor chalcocite occurring in narrow sericitic Mineralized quartz veins also and sericite-chlorite shears. contribute to the grade. Grades within the zone range from 0.06% total copper to 1.10% total copper over 10-feet. Pyrite content is generally higher in sheared areas.

Hole 86-45 was drilled in typical Mine Phase rocks. No oxide or supergene zones were intersected. Narrow shear zones were common. A small fault was intersected from 200- to 210-feet and a series of small faults from 300- to 370-feet may be part of a large fault system. Two 30-foot ore zones were intersected. The grade from 230- to 260-feet was mainly due to a strongly mineralized shear zone of quartz-sericite-chlorite-carbonate composition. The second zone, from 480-feet to the end of the hole, had chalcopyrite present in chloritic veins and a few narrow sericitic shears. Higher concentrations of pyrite in the hole were associated with zones of stronger shearing.

Hole 86-46 was drilled in Mine Phase Quartz Diorite. Leach cap extended to 117-feet and oxide continued to 160-feet. No supergene zone occurred. A 30-foot mineralized zone occurred from 300- to 330-feet with chalcopyrite present in shear zones, chloritic veins and Quartz veins. Minor native copper was noted in places in this hole. Pyrite concentration was weak throughout the hole.

3.3 Interpretation

The narrow, sometimes sporadic mineralized zones intersected in this drill program appear to be quite steep and therefore are not economic. A barren rock type to the south cuts off any possible economic systems in that direction.

4 STATEMENT OF EXPENDITURES

August-September, 1986 Diamond Drilling, Red Group.

(a) Drilling Costs

Direct	Footage	Charges	:
			_

Direct Foolage Charges	
86-33 502' @ \$13.00/foot = \$ 6,526.00	
86-34 $493'$ @ \$13.00/foot = \$ 6,409.00	
86-35 508' @ \$13.00/foot = \$ 6,604.00	
86-36 508' @ \$13.00/foot = \$ 6,604.00	
86-37 $495'$ @ \$13.00/foot = \$ 6,435.00	
86-38 508' @ \$13.00/foot = \$ 6,604.00	
86-39 508' @ \$13.00/foot = \$ 6,604.00	
86-40 $498'$ @ \$13.00/foot = \$ 6,4/4.00	
86-41 $447'$ @ \$13.00/foot = \$ 5,811.00	
86-42 603' @ \$13.00/foot = \$ 7,839.00	
86-43 508' @ \$13.00/foot = \$ 6,604.00	
86-44 508' @ \$13.00/foot = \$ 6,604.00	
86-45 507' @ \$13.00/foot = \$ 6,591.00	
$86-46 505' 0 \$13.00 \\ foot = \$6,565.00$	
7098' \$92,274.00	
Man and Machine Hours	
59 man hrs. $@$ \$20./hr. = \$ 1,180.00	
10 drill hrs. $($30./hr. = 300.00)$	
21 tractor hrs. $@$ \$40./hr. = 840.00	
\$ 2,320.00	
Lost Equipment	
2 - 10' NW casing @ \$136.64= 273.28	
2 - NQ core bits @ \$481.50 = <u>963.00</u>	
\$ 1,236.28	
Mud Charges	
11 pails Alcomer mud @ \$119.50 1,314.50	
6 pails Gel @ $$10.50 = \frac{63.00}{1000}$	
\$ 1,377.50	
Water Lines	
1200' @ \$0.40/ft. = \$ 480.00	
	607 607 70
Total Drilling Charges	\$97,087.78

Total Drilling Charges

- Vehicle Costs (b) 1986 Rental 4x4 Pickup Aug. 26-29 8 days @ \$35.40 283.20 \$
- (C) Assay Costs \$ 2,543.20 578 Cu - MoS2 assays @ \$4.40/assay

(d) Supplies Core boxes: 289 boxes @ \$6.00/box = \$1,734.00 Tags, bags, etc. = 173.40 \$ 1,907.40 (e) Personnel Costs Core Logging G. D. Bysouth Aug. 19-208 hrs. Oct. 14-17 Oct. 20-24 24 hrs. 40 hrs. 16 hrs. Nov. 05-07 88 hrs. @ \$31.00/hr. = \$2,728.00 M. R. Thon Oct. 02-03 12 hrs. Oct. 22-28 16 hrs. Oct 31-Nov 6 12 hrs. Nov. 07-10 10 hrs. Nov. 12 7 hrs. 57 hrs. @ \$22.02/hr. = \$1,255.14 Field Work and Sampling E. M. Oliver Aug. 13-14 9 hrs. Aug. 20-22 10 hrs. 12 hrs. Aug. 26-29 31 hrs. @ \$19.64/hr. = \$ 608.84 G. Warren Aug. 18-22 23 hrs. Aug. 25-29 8 hrs. 31 hrs. @ \$14.29/hr. = \$ 442.99 B. Locke Aug. 25-29 40 hrs. Oct. 14 Oct. 16-17 8 hrs. 16 hrs. Oct. 20-24 40 hrs. Nov. 03 8 hrs. 16 hrs. Nov. 06-07 Nov. 10-12 <u>16 hrs.</u> 144 hrs. 0 \$14.29/hr. = \$2,057.76Total Personnel Charges \$ 7,092.73 TOTAL COST \$109,514.31

5 CONCLUSIONS

Since volume and grade of the mineralization intersected in this program was low and considered uneconomic, it is recommended that no further work be done in this area.

Saug d. Bysouth Submitted by:___

Garry D. Bysouth Senior Geologist

APPENDIX I. Statement of Qualifications

I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree in Geology in 1966.
- 3. From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I personally logged the core and assessed the results of this drill program.

being Q. Supronthy Garry D. Bysouth

I, Madeline R. Thon, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree in Geological Science in 1978.
- 3. From 1978 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I personally logged some of the core and assessed the results of this drill program.

Madelin R. Show

Madeline R. Thon

APPENDIX II. List of Abbreviations

ankankerite
bobornite
calcalcite
carbcarbonate
chlchlorite
cpchalcopyrite
dissemdisseminated
epepidote
folnfoliation
gggouge
grngrained
limlimonite
malmalachite
magmagnetite
pypyrite
qtzquartz
rxrock
sersericite
strstrong
stkwkstockwork
wkweak
Wt. Q.D Diorite Quartz Diorite = Leucocratic Phase

))))		
		GRID		-			GIB	RALT	AR MINES	LTD			HOLE SHEET	No8	<u>6-33</u> of	7			
100		GIERALTAR EAST				······	· · · · · · · · · · · · · · · · · · ·	LATITUDE	47604.9	6 N	CORE SUE	. O 1				0000 00	G.D.	13	
0477		MED 15 - Aug - 86			-	502'	· · · · ·		47293.	17E	SCALE OF LOG	1	= 10'		A	472 (Dct. 20	0,1986	
DATE	c cours	17 - Aug - 86			Q1P	- 90°	•	ELEVATIO		5	REWARKS	e loe	1	-					
				100.						·····									
ROCK	TYPE	S & ALTERATION		GRA	PHIC DG				FRACTURE	0 0	BOTTOM DEPTHS	-				AS	SAY RE	SULTS	
			13 4		. 1 23:				ANGLE TO	R.17	LIM ZONE	-	C	ROD	Somple	1%	1%	I	
				E		2.2			-EREQUENCY	12 2	SUPERGENE 350'	135	A		Number			1	Conda
			14.	E.		-	ž		TREQUENCY=	2 ×	AEMARKS		7.			, Cu	mo		
		Casing To							0		Note Supergene put in .	Γ	1		T	1		1	
		<u> </u>							20		ce with block this.							1	}
		<u></u>	1						40			115	1	1		·			<u> </u>
		NUL PUACE	1	111-					60 70	-	this hole has numerous	1			1	T			
		COMARTZ	1	110					80		barren gtz veins - 1/4-		80		[1			
			N.		1.1		1		0		dissem. op Throughout	121			1	1	1		
		DIORITE (116-502	1		4				20		its length - This min.				1	1.0	1	1	
		not a typical Mine	60		13		I Chicoly brai	en	30 40	< n =	shloritic slips, shears		90	7	11001	1.11	.002	l	15
		they wanted and	·wik		[]		(rusty core	· į	50 60	0.9	and irregular zones	126				1.4~		.19	,0×
		Arn size ~ Yeo"		11.	4) + (mai) (as.)(PY)	70 60		voine - This may represent	t	85			1		,14 90	
 		gtz not conspicuour-	$\left - \right $	1130			atz-shi (mel)		90 0		a more complete	131			<u> </u>	<u> </u>	+	3455	
		ch) a 200/0			113	hle	lim-az		20		and chi-cp Than is								
		saus. plag - 55 ./.			70 × 4	hlex+	lim. Muoz x+	L L L	30		found in most gtz-ch		80			1.37			
		qt3 - 20-25 %	WK	11	40+50	hiexz	lim-az x2		50	¢ 0.5	Veins	136		10	11002		.004		15
				11	40 + 4	hlexa	lim-maj x 4	2	0		the concordant shear		80			·270X			
 		a strong cu oxide	<u> </u>	1140	A60 . 30	1/3+1/8	q+3 (cp)(mal)		0		sone mineralization	140							
		to ~200' - This also			30+60	1/2 /10 + 1/4	galm (mal) = 7	- 4	0		(ie qt3-ser-py (cp) 30nes		<u>a</u>						
		appears to have			14 10	31	agalim (mathet	2	0		and veins cross cutting		75	·				1	
		zone before leaching-	Wr					1	0	20.5	The normal folm.	145	{	13	11003	.45	. 008		12
		J			45	6.	qq-lim-Mroz.bx	2	0		- in short, this hole	·	90			.34 ox		1	
			[]	150	45×3	hlex 3	lin - 93 x 3	9 5	2		has intersected strom	150							
	·			1	60 1-++0	hie x3	cp-lim-mal x3		;	T	porphyry-type structor	ie.	Γ	T			1		
					440	1/4	qt3-ser-mai		<u>}</u>	1			90				1		
			40 WF		60× 5+45+30	hexy	ats-chl-cp	440	<u>.</u>	(0.5	ب	55		13	11004	• 24.	.002	1	20
	. I						1111 - Mai - 4327	670	3		-	* . L	. 1			200%		in a l	ox
		and the second		160	4 998	124	gtz-chl zone	8			· · · · · · · · · · · · · · · · · · ·		85					Sec.	•
					and the second second											388 G			
			i Syria Syria		A. A. A. M. M. M. M.		and the second second	N. S. S.	a to so the sol	-16, 64, 4		S. 4			and the second		No. No.		. Sector
	25.1		2.5					12.2	A CONTRACTOR OF	1.1		Sec. 10	C. S. LANGE			1.1.1.1		and the second	

))	<u>)</u>
GRID	GIBRALTAR MINES LTD.	HOLE No. <u>86-33</u> SHEET No. <u>2</u>	of
ROCK TYPES & ALTERATION	FRACTURE	BOTTOM DEPTHS	ASSAY RESULTS
	ANGLE TO	LEACH CAP Core ROD So	imple % %
	-FREQUENCY-	SUPERGENE Recovery	mber Cu Mo Coste
		AEMARAS	
6 30 3'	gtz.ser-gg.bx-lim-az.mal 10:	163	
· · · 60 45450x2+7014 43+45x5	9 ^t 3×7 40 40.5		005 42 002 .20
Mod #**3 /10-Y8 * 3	gg-lim-mal-a3 x3 60	168	310% .
170 10. 18	9t3.ser-ch]-mal 80		
· 10 × 2 Y20 × 2		. 173 18	• 37
60 33× 3 V(x x 3	33 - 11 (33) / 2 30 30 30 40		133 002 34/0 15
.WK 45-30x10 Hex10 1	13- Chief mais 50	95 13 110	,26 ox
1 180 / 3°0 / X4 / 9	ta-lim 101	178	
	[†] 3×3 0	90	
	t3-chl (vug) 200	183	
40 A014 Youn 4	10 1 10 10 10 10 10 10 10 10 10 10 10 10	95 20 110	10 10 10 10
	4 ⁷ 3 ((cρ)) ¹ / ₂₀	188	.080%
	ta-chl-py-lim 90	90	
	7- cu 20	193	
60 1 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-py 401 40.5	23 1100	08 13 1.002 12
	t-q3 60	40	.100X
Zoo / 30 Yio qt	3- chi-az 90		
	3 - CNILPYI	203	
ND 55 2' dt	ski so		.21 .002
50 6" 41	s-chl-mag-(cp)(mal)	90 43 1100	9 .09
210 80 6" qt	3-(lim) x 2	90	
	$\begin{array}{c} -\lim_{\epsilon \to \infty} -(mal) & 0 \\ -cp - cc & 100 \\ -cp - cc & 100 \\ -cp - lim (cc) & 20 \\ -$	211	
to as the second	30 30	85	21 018 26
пр. 11 20х4 10х4 193- 13 11 11 11 11 10х4 10х4 193- 13 11 11 11 11 11 11 11 11 11 11 11 11 1	2.0 > 2.0 >	216 33 11010) 101 · · · · · · · · · · · · · · · · · ·
220 45 x2 2"x2 of 2	-chl-cp		1050% 3365
	a the second		and the second

•)					Ì))		
	GRID_		-			GIBRAL	_TA	R MINES	LTD.			HOLE SHEET	No. <u>.86</u> No	<u>-33</u> 3 of .	7			
ROCK TYPES	8 ALTERATION	Ι.	GRA				Τ	FRACTURE	2 4	BOTTOM DEPTHS	7	c			AS	SAY RE	SULTS	
	•	1 0.0						ANGLE TO CORE AXIS	Preis	LIM. ZONE		C	ROD	Sample	1%-	%		Estimeted
· · ·		12			ž			-FREQUENCY-	5 ×	SUPERGENE AEMARKS	- 3	7.		Number	Cu	Mo		crete
		GD WK		60 20 30+40+60 70+45+30 45 60+50 * 53 30	6' y4+3 y10 y4+2+y3 16" 16" 15" y2+3/4 y2	qt3-chi (ry(cc) qt3-(N-p) qt3-x3 qt3-x3 qt3-chi-cpx 2+qt3-mag qt3-chi-(rp) qt3-chi-cpx 3 chi-co	<u>())))))))))))))))))))))))))))))))))))</u>		0.5		226	95	30	11011	, 40 .010¥	.012	3	.20
<u> </u>	225-260 darks		230	1 33 1 45×2	1/4+2 1/4+2	qt3-maqx2 qt3-chi(co) qt3-maqx2	90					95						
	good parp. structure			70	Ya	dt3-chl=cp dt3-chl-cp	202				234							4
		.wx	240	35 60 50 60 x 4	10 /4 1 /8 × 4	atz-chi-cp (Mo) atz-chi-cp (Mo) atz-chi-cp (Mo)	888888) } 	0.5	·	238	98	37	11012	· 55 L.010¥	,028		.73
		50 WK		44 40 5 60 52 70 × 60 45 - 55 × 3 60 × 5	16" 10" 10" 10x3 10x3 10x3 10x3 10x3	473-ch1-(cp) (cc) 473-ch1-(cp) 473-ch1-cp 473-ch1-cp 473-ch1-cp 473-ch1-cp	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.5		248	90	33	11013	.38 (.010)	,034		.35
		70 WK	250	60+5 60+5 60+5 60+5 60+3 60+45 60-7015 60-7015	2" 4 4 4 4 4 4 4 4 4 4 4 4 4	413-ch1-cp zone 413-ch1-py(cp)(cc) 413-cs	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0,5		258	90	43	11014	.41 <,010x	.008		:30
		10	270	60 50 60450x2 60 60 60	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	112-Ch1-Crp 113-Ch1-Crp 113-Ch1-Crp 113-Ch1-Crp 113-Ch1-Crp 113-Ch1-Crp 113-Ser-Py 113-Ser-Py 113-Ser-Py 113-Ser-Py 113-Ser-Py	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.0		265	80 90	33	11015	, /Z ,010X	,004	.35 3320	.15
	R		180 L80	? { 50 x 2 50 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x	o x 2 ot 1 x 2 ot 1 yx 2 ot 1 qt 3	qts ((cp)) ;, ch)(cp)*2 ;(ch))(cp)*2 ;chl>cp x2	0 2 2 3 9 3 9 2 3 7 2 3 9	<	0.5		278	95	fo	1016	.25 . (.0/0)	008		_14

)		<u>}</u>
GRID	GIBRALTAR MINES LTD.	HOLE No. <u>86-33.</u> SHEET No. <u>4</u> of <u>7</u>
BOCK TYPES & ALTERATION GRAPHIC	FRACTURE Q BOTTOM DEPTHS	ASSAY RESULTS
	ANGLE TO	core ROD sample 7. %
	CORE AXIS	Recovery Number C Ma Coste
	FREQUENCY-	
	dtg.(u)-(cp) dtg.Sec.vy	
	at 3. chl-cp 20	
· · · · · · · · · · · · · · · · · · ·	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 1017 114,010 .15
50 X4	qt3-chi-(cp) 60 288	29 2,0108
	$\begin{array}{ccc} q_{13} - c_{N1-c_{p}} & 70 \\ q_{13} - c_{N1-c_{p}} & 80 \\ \hline \end{array}$	
5x2 /8x2	93.chi-carbx2	
45 Y3	a_{13}	95
ND 60+15 Y10+	2 CN (Sp) 2 40 40.5	50 11018 .11 .004 .14
30+45 Yiax	2 chl(co) x 2 60	xolox
	4 [†] 3 901	
60×3 3"x 3	973-chl·((cp))×3 20	90
	473 - 410	43 11019 .16 .018 .12
	(13-CK)-(p) (ch(-cp)	Kolox II
1 1 1	at 3- Ser-py 101	3275
	973- may + 1 973-scr envel. 100	
		98
	atsx 2 atsx chi. sone 401	23 11020 11 .010 . 10
× 1/10	9t3-ch1-cp 60	
	20 J	4,010
	90 973-ser - py - cc	
+5+50×2 Y10+Y3	0x2 qt3-ch)-cp x 3 20	95
ND 80+45+35 21/2+1+	-34 atox3 40 1.0	33 11021 128 1006 .25
1 60 × 3 1/10+42	0×2 973 chl-cp x 3 50 60	1021
30 570	1/2 Chief 70 mag chief 80	.01•X
	913-chl-cpx2	
40 2" S 1/4	973-ser-cp 20	90
	dty. str. gran to the s	33 11022 .43 .009 .30
	93-ser-py-ce 60	
24 A 24 X 2 1/4 X 2	6 10 - 50 - 10 - 10 - 10 - 10 - 10 - 10 -	
and the second secon		an and the second s
1 Contraction of the second		

.)))						}		
GRI	iD	<u> </u>	-			GIBRALT	FAR MINES	LTD.			HOLE SHEET	No. <u>86-</u> T No	<u>33</u> 5 of		. •		
ROCK TYPES & ALTERATION	1	<u>, </u>	GRA/	PHIC		:	FRACTURE		BOTTOM DEPTHS		T	T	T	AS	SAY RE	SULTS	,
		: :	1.5				ANGLE TO	ATE ATE	LEACH CAP	┦.	C+++	1200	Somple	1%.	%	′	fatineted
	=	13					- FREDUENCY.	NI I	SUPERGENE .	-		·	Number	C.u	Mo	1 '	Coste
	_ <u> </u> ~	<u> </u>	<u>i</u> ii:	·. =		<u>i</u> .		= ~	AEMARAS		7.		<u> </u>		1	 '	 '
grn size of hos	st	1	Π^{+}				0 10				60				ļ,	3'	1 1
rock has incr. 1	10 10	0- 45	$\left\ \right\ $	10-43	q'	atz-ser-py ((cc)) (cp)	20 30	<u>ا</u> _	ce is cone along	344		-+ 17		.43	,004	1 7	1 18
(ie Yzo- Yio" dia a	tens) st	fr	11	相		3one *1	50		several vert frae's	1	1		11023	NOT	, <u> </u>	'	1
, and the rx how		- }		4			70 80	-1 7	cutting The zone .	1	90			101-1	-	1 1	1 1
Mine Phace Q.J		+	1350	<u></u>		otz-co(W=) * 2	90	1'	# a blk powder occur!	. 	- '⁼	· ['		+	+	+	[·
11- 1 - 1 - 1	Ì	- '	.[]	s	1/2	93-chi- carb-cp	10	<u>-</u> '	2 in this vein in a			'	1.	1	1	. 32	1 1
	/ N	. ľ	.[]	50 + 45	1/2+120	qt3-chl-cp x2	30	1<0.5	pochet - it doesn't	357	<u>+</u>	- 30	11024	.38	1 16	3230	1-25 1
	1	· ['	.11	45	1/10	ats-carb+++	50 60	1 1	1		[1	11027		1.010		i 1
	11	- 1'	112	. 8 ?	3'	Echi-carb hies & irreg.	701 001	1 1	1	1	90	1 1	1	1.0102	1. '		,!
gen. dark vuggy	+	++	1	1.	1/4	Chi-cp	901 v	1+	[1	1 '	}+	í		· · · · · ·		, <u> </u>
chl-carb-rich	, [$-\mu$	1	H 60-80x 6	1/10-1/4 ×6	chi-carb (cp) x 6	20	1 1	1 '	1	1 '	1	1	1 '	1 '	1 1	,)
core with num-	ND	,	d '	45+2	1/4+2	qt3-chi-carb-cp t	00	1 < 0.5	i · · · · · · · · · · · · · · · · · · ·	369 1	·'	1 13	111025	.08 '	1.002	. 1	, 14 - 1
	$\langle $		1. '	50	3.	q (3 (mag(cp)) qt3-chi (vog)		1 1	i	1 1	$1 \sim l$	100 J	۲ ۲	Liolog	f !	1 1	H
		_]]'	1/310	Hooxa	75 X4.x2	gti-chi-carb (co)	20	1	,	1 1	195 1		·!	1/	L'		
	1	T	ر : `` ا،	fi:	Y5	qt3		1	,	[]	, F		, <u> </u>	· ۲	Γ'	Ē	. 1
	45-	. '	17	10×2	14 14+10	atz-chl-mag-(cp)xz	20:	1		1224	, I	1 _]	. , , ,	1 1	1 1	1 1	1
	60	-11'	1 1	130	1/2 1	qt3-cnl-(cp)		1 40.5	, Ť	1		33	11026	1.091	1.002	1	.12
	Moq	'	11	1 20	1 ys	ala le	501 701	,		,	, I	1	1	4,010%	, I	1	
	<u> </u>	Ψ'	1380 V	4 .	21/2	. et 3	40 40	·			95	L		<u> </u>	,l	·	
		/	1 1	35×2 /	1/8×2 1/a+/4	qt3-chl-carb	2	.]	1	. 1	.	ł
	70		ı K	A 10 1	YIOX2	913-ch1-(cp) x2		_	4	384						1 F	.12
	WK-		, P	Box2 1	11.2	913(6P) 913×2		< 0.5	1		·	60 /	11027	.07	.002	, .	· . 1
	1 '	$\parallel \mid$		145 1	1/2	9 3×2 9 3- chi(sp)				1	n=		ľ	2.01 0 1		 .]
	+	Ηť	10 F	120	11/2	90 ch1-ep	2				⁴⁵ F		+	+			
	1		P	130 1 60×3	I VILYS	ats chi-coxa	•	1			.		1		· 1	1	
	70.	$\ $	Þ	100	3"	9t3 (cp)	<u></u>	<0.5	t -	*		42 .	11070	10	008	1	14
a well of the second of the	1	$\ $	D	130+60+45	Niex 3 X+Yaxa	chi-cox3	<u>.</u>				90		1010	1.0104		.12	- 14 J
	\mathbb{C}^{1}	ll.	100 0	40×3	14 ×2 Ne. ×2	47372 ch1-cpx+			and the second			<u> 18 18 19</u>		<u> (1997)</u>	<u> 2555</u>	3185 1.	ليبيت
													<u> - </u>				

Contract in the

		·))		
		GRIE)		-			GIBRAL	.TA	AR MINES	LTD.			HOLE SHEET	No. <u>86</u> No	- <u>33</u> 6 of	7			
BOCK	TYPE	S & ALTERATION	T		GRA	ніс				FRACTURE	1.	BOTTOM DEPTHS			1		AS	SAY RE	SULTS	
		<u></u>		/ •11•11•		2 11 Core	WIGIN of Vola	Jin.contents		ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATE " Prrite	LERCH CAP LIM. ZONE SU PERGENE		C	, , ,) Sample Number	7. Cu	% Mo		Estinoted Grade
+					$\overline{\Pi}$	1 80 42	Y10 +2	9+3-50-PY-6P × 2		01:	- <u> </u>	REMARKS					+	1		
	•	grn size of nost rx appears to b increasing	ie Me	ia >d	410	40 10 + 90 15 + 60 45 + 60 45 45 45 40 45 40 45 40 45 40 45 40 45 45 40 45 45 45 45 45 45 45 45 45 45	1/2 1/4 x2 2/1 x2 1/4 1/4 1/4 1/4 1/4 1/4 1/4	۲۲ ۲۵ ۲۶ ۲۰ ۲۶ ۲۰ ۲۶ ۲۰۰۲ - ۲۰ ۲۶ ۲۰۰۲ - ۲۰ ۲۶ - ۲۰۰۲ - ۲۰ ۲۰ - ۲۰	661-1011111-1-1-1-	10 20 30 40 50 50 50 50 50 50 50 50 50 5	1.0		.404	95	40	11029	.09 K.018X	.002		3
			- 71 .w1	× ×		7. 7. 7. 7. 7. 7. 7. 80×2 7.	6" 2n Y4×2 Y4 2" n:e×2 7"	d ts.chi-(cp) sone qts(CpX) qtsv2 qts qts.Mb chi-cp v2 chi-cf v2 chi-cf v2	25121214121212121		< 0.5		414	18	40	11030	. 09 Kiulop	.016		_14
			76 WK		430	45 15+30+40 60 60 7 80 7 7 70 7	/8 /4 × 3 /4 /7 /4 6" /4×2 2' 8"+ 3"×2	q_{13} q_{13} $q_{13-c,1-c,arb}$ q_{1	<u> </u>		< 0.5		424	95	37	1103)	,09 2.010x	,010		.12
			70 WK		440	70 + 66 76 60 60	Узх2 2** Ув 4' Уд	973×2 973-58-pp 973-5er-cp 973-chi (carb) (cp) 30ne 973-ser-cp	0 2 2 9 9 9 9 9 9 9 9		0.5		434	95	27	11032	,19 4.010X	. 012		.20
			50 str,		450	50	q' 2 ¹ /2'	qt3-chl - ser - py (cp) 3 · ne. ata- (Ma) (cp)	022998889288		2.0	· · · · · · · · · · · · · · · · · · ·	144	90	27	11033	· 25 <,010¥	.070	.1 3 3140	.18
			5 80 5tr + Cren.				8 ' 	qt3.chl.(ser) ank.* ((cp)) 3.one	0 2 2 3 2 3 2 8 9			* brown weathering carb.	454	95	43	1034	13	006		.12
			Né n											Artes						

A Date

.)		
GRID	GIBRALTAR MINES LTD.	HOLE NO. <u>86-33</u> SHEET NO. <u>7</u> of <u>7</u>
ROCK TYPES & ALTERATION GRAPHIC	FRACTURE	
	CORE AXIS	Corro ROD Somple 70 70 Costinuted
12間11 1 1	-FREQUENCY- 3 × SUPERGENE	
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 23 11035 .14 .009 .14 168
host ru har now a mea-coarse grn size (to-Ya dia grn) and resembles normal pit ru.	413.501-5P1 90 473.501-5P1 90 473.501-5P1 10 473.501-5P1 10 40 30 40 50 50 60 60 60 60 60 60 70	478 80 43 11036 .12 .002 18
480 # 20+70+2 1/4 + 1/6+2 480 # 20+70+2 1/4 + 1/6+2 480 # 20+70+2 1/4 + 1/6+2 480 # 20+70+2 1/4 + 1/6+2 450 # 20+70+2 1/4 + 1/6+2 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 5 70 7 70 5 70 7 70 7 70 7 70 7 70 7 70 7 70 7 70 7 70 7 7 7 7 7 7	qtsx3 90 qtsx3 90 qtsx4 0 qtsx4 0 qtsx5 0 qtsx5 0 to 0	488 75 40 11037 .06 .002 .10 488
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	496 57 11038 .08 .002 .08
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95
\$ Q.B.	20 30 40 50 60 70 70 70 70 70 70 70 70 70 7	
	20 10 20 30 40 50 50 50 50 50 50 50 50 50 5	

ŧ

E

))))
GRID	GIBRALTAR MINES LTD.	HOLE NO. <u>86</u> SHEET NO.	<u>-34</u> 1 01
LOCATION GIBRALTAR EAST (SOUTH) SEATING	LATITUDE <u>17, 190, 98 N</u> Demature <u>47, 468, 21 E</u>	CORE SUE NI, Q.W.	LOCCED 17 G.D.B. Y M.R.T.
DATE CONSETTO 18 - Aug - 86 01 - 90°	ELEVATION 3,606.01	REWARKS	
ROCK TYPES & ALTERATION GRAPHIC	FRACTURE	BOTTOM DEPTHS	ASSAY RESULTS
	ANGLE TO TREAT	IM. ZONE 220'	Sample % % Estimated
	FREQUENCY- 5 8	AEMARKS	Number Cu Mo Code
<u>Casing To</u> <u>97'</u> 97.	0 10 20 30		
MINE PHASE	$\begin{array}{c} 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\$	"no suifides noted but strong Cu Carbo Min - part	11151 11907 (an)
(95'-350	qt3.chl.qq.lim x3 20 20 30 4 4 4 30 4 50 50 50 50 50 50 50 50 50 50	10w cy one zone 108	11152 .12 .002 .19 .15 .1105 .002 .115
15 % chl. mea grn but sl. Finer grn a than normal with a cl corride tax.	• 973-11m-mal 90 973-11m-mal 90 473-mal 11m-mal-03ur. 120 100 100 100 100 100 100 100	95	
Nod 10 120 1002 1002	s lim x3 k Mnoz-malxz 20 gg-lim-MnOz-azur. x2 80 	43	11153 114 (.002 (01)
60 60-43 1/6 × 2 50 × 3 × 1/6 × 2 60 × 5 × 6 60 × 5 × 6 60 × 7 × 6 60 × 7 × 6 60 × 7 5 × 7 60 × 2 5 × 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125	1.54 .28 1.002 20
Mod 50 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1	lim - azur. 1/m -	98	126 ox (O.R.)
Co Hod Hod Hod Hod Hod Hod Hod Hod Hod Ho	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	132 90 ³⁰ 11	1155 .24 .002 25 .220x (02)
			· · · · · · · · · · · · · · · · · · ·

		.) 1. t. y. e	an a) * *	at for the)			. 91.	24	÷ .			
		GRĮD.		GRAPH	d	1	GIBRALT	AR, MINES	LTD.	BOTTOM DEPTHS	S N	HEET	No	of	7	-	C.111 T.C	
ROCI	C TYPE	S & ALTERATION	- 5 =	LOG				FRACTURE ANGLE TO	ATE D	LEACH CAP		E	ROD	Sample	7.	%		- Cation
:			L 10 rollar		Sirvei's V 1 V 1 V			-FREQUENCY-	41123 MI 123	SUPERGENE REMARKS	7 Bieres	Rocovery %		Nomber	Cu	Mo		Crofe
			70 Mæd		5 + 80 60 70×3 5×3 40 70×3 40 70×3	hlex2 /4 /10·/8 *3 /4+ /8x2 /0×3 2° 2°	Mn Oz Emai) qq - Ser - Im-rnai qt - chi (co)x 3 qt - chi (co)(mai) x 3 qt - chi (pu)x3 qt - chi (pu)x3 qt - chi (pu)x3 qt - chi (pu)x3 qt - chi (pu)x3	0 10 20 30 50 50 50 50 50 50 50 50 50 50 50	0		148	90	<u>60</u>	11156	.13 .120x	. 00Z	· 19 3455	2.0 (ox)
			70 Mod		40 53 × 3 5 70 40 40 × 2 30	12" Y8x3 1 2" 2* Y4x2 Y10	gts-chi-lim-mal gts-chi-lim x 2 gts-chi-lim x 2 gts-kun02-(mal) gts-ser-chi-lim-mal-cp gts-ser-mal gts-z ga-Nu02-mal	0 0 10 20 30 40 50 60 70 70 70	0		158	98	33	11157	.41 .230¥	. 002		,15 (0x)
			60 Mod		30×2+60×2. ; 30 2 60 2 60×3 7 40 80 60 1	len 4 " 6 n3 2"	lin - Who 2 - mal gg. sev. lim gg. sev. lim gj. chi- lim - mal = 3 gj. chi- gi. gj. chi-py - lim gt. lim of - chi-sev or (co)-lim - and	90 0 10 20 20 20 20 20 20 20 20 20 2	0 .		168	98	27	11158	-25 .16cg	.004		./5 (or)
			eo Noq	180	3.0 (3.0 +4 5) / 7.0 2 2 45 x 2 + 6) / 7.0 1 2 7.0 1 2 7.	10+2 10-1 3 14 16 17	9t3-chl-lin (nal) 9t3-chl-lin py (nal) 9t3-ser- py (Ep) lin-mal 9t3-chl-py-lin-mal 9t3 1im-mal 9ty-chl zone		.¢		178	95	53	111 59	, 36 , 220¥	.002		20 (0x)
					10 x3 10	10×3 10×3 1×2 2 2 2 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4	t3-ch1-lim-py-cp-malx3 f3-ch1-py-cp-malx3 f3-ch1-py-cc f3-ch1-py-cc f3-ch1-py-lim x6 f3-ch1-py-lim x6		.s	first cc	188	90	60 1	1160	.30 • 11 oy	,002		15
						e Yana Ya	η οδη - mail [13-1]m [3-2]		•	1	98	.00	87 1	(1.61)	.20 05 %	•02	.52 <u>+170×</u> 34/0	.20

ALC: NO

(

	10 - 12 V				GRAPI	-iid			ERACTURE		BOTTOM DEPTHS	1	L	T	1	ASS	AY RES	ULTS	
ROCK	TYPE	S & ALTERATION			LOC		-		ANGLE TO	ATE	LERCH CAP	4	Cere	ROD	Sample	7.	%		Estinete
:	. •		2 ! č	/ olloff		Vela 2 10 C		11	CORE AXIS -FREQUENCY-	4 % PY	SUPERGENE REMARKS	F	Rocovery %		Number	Cu	Mo		Crefe
	-		70 WK			50 40725x2 40 60 15 70	7" /4 × 3 1/2" 1/2 1" 18" 2"	9t3-Ch1 ((cp)) 30*C 9t3-MnO2 0t3-Ch1-(cp) ch1(mal) 9t3 9t3 4t3 ch1(cp) 30*Pe	0 10 20 30 30 50 50 50 50 50 50 50 50 50 5	1.5		208	100	83	11162	.10 10203	4,002		,20
· ·					210	60.3 50 51 51 51 51 51 51 51 51 51 51 51 51 51	2" 1%2 hlex 2 hlex 2 klex 2	13-ser-pylicy(nai.cu)(lim) 15-ep(cc). 1im x 3 1jm x 1 1im x 3	90 0 10 20 30 40			215	90	30	11163	.29	.006		• 18
					220	70 70×2 + 50 745+50 46 735	/823 /20 /8+/1022 /052 80 /10	chi.ser-pyu3 qt3-chi-cp qt3+3 qt3-chi-cp>3 qt3-chi(Cp)3	50 60 70 80 90				95			.01 m			
	1 1 1 1 1 1 1 1 1		70			7 76 x2 745 +40 30 +43 40 60 80 30 30 3572 45 45	54 5"+ Y2 74 76512 5%522 74		0 0 20 30 40 50 40 10 80 50 50 50 50 50 50 50 50 50 5	- <.s		<u>225 ½</u>		70	11164	.10 .01 m	.002		,12
			70 W#		230	45 70+80 + 4072 46 + 4092 46 70	12 YA Yaxt Yax3 2* YA	413 (cp) 413 (cp) 413-cni (cp) 413-x+ 913 913 913 (1) (cp) 413- (cp) (cp) 413- (cp)	20 0 20 20 30 40 50 50 50 50	<.5		235X	100	67	11165	•1/ x.010¥	.002	.16	.13
			-		240	40 70 2 80 2 50 1 15	1/20 x2 1/2 2"	9t3-cp 9t3-cp 9t3(uvg) 9taa	80 50 0 10 70			<u></u>	95					3365	
			٩W		25.0	45 80 80 60 +43+8033 454 3+70	× × ×- ×- ×- ×- ×- ×- ×- ×- ×-	913 913-chl-cp 913-chl (Cp) x5 913-x a 113-chl-cp - mag((cp))	20 40 50 60 70 80	<i><</i> .5		246		60	11166	. 08 4.0/wy	· 002		
		1				4 • • • • • • • • • • • • • • • • • • •	14 24 3	qtj-mag qt ((rp)) qtj-chl-ep 3one					98	53	11.47	41	,004		•15

ſ

					GRAPI	uq	1	•	FRACTURE	a	BOTTOM DEPTHS	7		T		AS	SAY RES	ULTS	
ROCK	ITPE	S & ALIERAI			LOG				ANGLE TO	ATE VATE	LEACH CAP	┥.	C	ROD	Sample	7.	%		Estinet
:	. •			L to C	Failaria Faalage	Struct's 		110rce	-FREQUENCY-	41123	SUPERGENE REMARKS		R.c		Number	Cu	Mo		Croie
•				ND		80 80 76 4 45 x 2	2 8 1/4 1/4	9t3-chi-py (cc) 9t3-chi-py 9t3-(cp)(fug) 9t3-mag	0 10 20 30 40 50 60 70	.5		266	48	25	11168	. 29. . 01 0x	.∞2		,12
·,.					270	5 + 45 7 0 × 3 80 × 2 70	1/4+1 1/8+1/4+1/10 1/4+1/5 1/4	9t3-21 9t3-2 9t3-2 9t3-20-20-20	80 70 0 10 20 30 30 40	- - - 		27%	f8	70	11169	,10	1002	. <u></u>	. 15
		· · · · ·			280	60 60 45 + 50 x 2 60+70+ 45150	," Yo Yox 2 Xy 24	qt3 qt3-ch1(cp) qt3-mag r qt3x2*) qt3x+	50 60 70 60 90 90		* the barron gtz clearly x-cuts the gtz-mag.		90		<	• 0 log		.20	
	- 140-4 1	ing a start of the		ND	*	5 45 45 70 × 6 70 70 70 70	14 15-14×8 114 14 14 14 14 14 14 14 14 14 14 14 14	qtj-mag qtjs x 8 qtjs mag qtjs x 4 qtjs cp qtjs cp qtjs cp qtjs cp qtjs x 4 qtjs cp qtjs x 4 qtjs x 8 qtjs x 8 x 8 qtjs x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8 x 8	10 20 30 40 50 60 70 80 50	<.F		286		57	11170	.07 4.010x	. 002	<u>3320</u>	,08
				NB	290	34 8. 7. 4. 8. 8.	Y4 Y. H Y4 X	en- ap-bo qts-chl-(cp) qts qts dts dts-cb	0 0 20 20 30 40 50 60	1.5		296	18	33	11(7)	, 37 <,010¥	.004		.12
					300	80 50 80 70 X 8 70	и" 4" 12" Даха Ха Ца	1's -ser-chl- py 9t3-ser- py 9t3-ser- py 9t3-se 9t3x3 chl-cp bh-ca bh-ca	20 20 20 20 20 20 20 20 20 20	4.5			98	47		. 29	, <i>0</i> 02		.20
					310	Box 4 90 63170 Box2 + 5 76	Xar 4 X f [*] +2 ⁴ X X X	13-54 13-64 13	50 60 70 90 90 90 90			306	95		10172	2.010¥			•
		12" Q	, {,	70 44		10 4 2 71 72 80 10 #2 + 70	Y2 × 2 Y2 13" 2" Y4 × 3	ets + 973.(6) 973.64)(4) 973.641.30ne 973.581.9(6)(Mo) 973.83.	20 30 40 50 60	<.5		316		57	1173	.13 (alm	.006		, 10 .

		GRID_					GIBRAL 17	AR MINES	LTD.	BOTTOM . DEPTHS		HEEI	NO	0'	ASS	AY RES	ULTS	
ROCI	TYPE	B ALTERATION		GRAPHI	9	· · · · · ·	e e la compañía de la	FRACTURE ANGLE TO	17E 0	LEACH CAP	1	Estimetes Care	RQD	Somple	7.	%		Estin
			Z lietter	in the second se	Vela Vela	widin . Vein	1	CORE AXIS -FREQUENCY-	411 X	LIM. ZONE SUPERGENE REMARKS	f 1	Rocovery %		Number	Cu	Mo		c~-
		qt3-porp. 3one	ND		70_45+ 70×2 70 40 70 42 65+70	1/5 + 1/4 x 3 1/2 1/2 1/20+1/10 1/5 x 2	qt3 × t qt3.cp.p/ qt3.cp qt3.cp qt3.cp qt3.cp	0 10 20 50 50 50 60 50 50 50 50 50 50 50 50 50 5	2.5	CP-PY min.	326.5	98	63	11174	.22 Kiol 03	,00Z	3275	. 15
		otz-poro. zone	- - .wk	330	50 1043 15 75 80	2" /4+/5+/2 /4 2"	etz-cp etz-cp etz-ser.py(cp) etz-ser.py(cp)	% 0 10 20 30 40 50 50 50 50	<,5	these qts-porp. zones consist of ovoid Xee Xio" dia qts pheno" in a	336.5	48	60	1(175	. 2.1 4.010%	•014		.15
	11 × 24	qt3.porp. {		340	70 70 x 3 60 x 3 x 50 x 50 45	1/4 /10+1/20+2 2" 2" 2" 2" 2" 2" 2"	9t3 9t3- cp × 3 9ta 9t3	20 0 10 20 20 30 40 50 50 50 50 50 50 50 50 50 5	<.5	swinted or aneorea pare green options that matrix plus Xio Xi clots of chi overall color is a medium greenish grey	346.5	100	80	11176 ?	.15 4.011	. 002 - 1		.12
		350-373 Mine Phase QD. Intermired zones of -sus Alt'd QD34 gtz-anhadial guin	2 HD	350	5 10 70 60 70* XL 60 XZ 60 XZ	73 hle ys 114 + Yz Yz + Y4 yz + Y4	9t3 f3-ch1-set-arb-ccp) gt2 ch1-set-ccp) gt2-ch1-set-cq> gt2 ch1-set-cq> gt2 ch1-set-cn>>> gt2 ch1-cet2-cn>>>> gt2 ch1-cet2-cn>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	90 0 20 20 30 40 50 50 50 50 50 50 50 50 50 5	0%		357	95	63	085 	.13	,003		. 1
		Saus Alt & aD wy Seriate texture OK. Alt Atz. Cal- Sur Shorts	ND.	360	60 x - 10 60 10° 10° 10° 10 x - 10° 10 x - 10°	2 18 1/4 3, += 11	ata Vh - Kchl - ser - chl - 507 gta-chl - carb - 200> gta - chl - say - ccarb - 400 gta - chl - say - ccarb - mag-cop gta-chl - say Shaw - 200 XZ gta - chl - can Shaw - 24	% 0 0 2 30 30 50 50 60 50 50 50 50 50 50 50 50 50 5	.26	+ A black mineral - black chl?	367	98	67	10852	.06	.007		۰ ، ربير
		378-382 DK Alt + At. M- Ser Slog	uk uk	370	10 65 K2 10 71 15 16	12 172 172 174 174 174 176	212-CAL-CP-100 CD-VA-CAL-CP-CP VI-VA-CAL-CP VI-SAT-CAL-CP. VI-SAT-CAL-CP. VI-CAL-CP. VI-CAL-TY SAT-CALST SAL W Gts Vasuer.	80 r.4.1 9 r.4.1	.32		377	98	53	10853	.17	,007	3230	2

ſ

)

E

j

-	•		GRID_		i San Sir		e C. Sec	GIBRALTA		LTD.		ł	OLE N	10. <u>86-</u> No. <u> </u>	<u>34</u> of	7			
-	_			1	GRAPHI	d		· · ·	FRACTURE	0	BOTTOM DEPTHS	-				A55	AY RES	ULTS	
[L	ROCX	TYPE:	S & ALIERATION	: .	LOG		-		ANGLE TO	11	LEACH CAP	4	Cere	ROD	Sample	7.	%		Catinated
		· •		5		Valni Valni Valni Valni	Vila		CORE AXIS	WI 13	LIM. ZONE SUPERGENE		Rocovery		Number	Cu	Mo		Croie
	•	•		1	22	취 기	Ę	Ĩ	,	2.00	AEMARKS	1.0						ł	<u> </u>
- I-					TI	70	10	qta. Ser Cha. She water - cp. co		}			1		1				
			282-390		ł	70"	1/8 1/4.	to clo mag - Carb +4	20	1			94						6192
	. 1		with Sour Alt dQD	~ 70	11 1	180	45	at Vincental- Les	90 40	112	· ·			57	10854	1.1	.014		
-			w/ zones of Auco.	WA	11.	450	1/10	an carbe Un.	50 60		Le dukes? have	387		-			1.17		(15%)
			Ph. + gtz de ante	sh.		70	1/T Y 10	gtz- gen- icht > carb - cp	70		4 40 >>]		a.				.	1 .2
	1		+ DX Alt	I	390	20.44	12024	strehl - sur - py-cpy 4	×										·
			390 - 395 AL+M	.	11. Ł	70	% <u>-</u> 9	ateria- all rarb-mag Carn	10 7				98				1		1.2
		1	mainly DK HIT.		11 Y	195	8	Str. Un - chl. carb - mag	30							-7			101
			-few narrow and	ND		145	5.3	of a set of a	ю 	11		207	•	83	10855	.01			1.00
4	.		396- 400		11 Y	1000	Y	gtz chi - P/ S	<i></i>			1							(22)
			Mainly Same Alt CQD		[150	/4	Gtz Vy - scarbs	8										
L			30-35% 172.		400	60	<u>/</u>	to service w LCD S					90						1
			400-404]		30	y 20	gra-cal-call - pr - print	0										
		1	Fault Zone: Broken KX			60	V4	GtzVa-mag-carte	0	.0	1	404		2	,				.056
			(WK Sous Alt), FRBURE	700		80	he	Aclay-care 397	o o	21%			100	3	10856	.04	.001		
		1	Caro ag / TUT 10	UWK.		30	120	12 all si car py	0			408							(05)
			WK, Saus HIT W/	1		1	8	grave- Couby	0								′		
L		ŀ	harrow some q	<u></u>]]	110 0	60	le f	conlegate 9	o				ľ						
2 - E		k i	gto-che- an Shear	·		5.	10	rubble - 2 al - car by gg	e										- 0
		ľ		10	ИИ	150	110	record-del (cp-mag)	0	/		· • •	48	=		07	.003		570
		1		"uK	11 H	76*	V4 P	ghin-carb. chl-cptmag 3	0 0	%				50	10857	•			
		k	16-437	14	ΙH	70	Ve v	tz-che-ep Cart - epsilie 6		1.		418							(.05%
1			atz - alf - sen shew	sn []	L. II		162 + 1/2	ata-che co-imen X2	o 									3185	
! -					1740	6073	116 x3	tz.chl-cp + mby x = 5	; 				Г	T					
	·	· · [(Looks like a migmolik	· .	IN	30	1/2 1	rubble. gg. cont chl. 2		1			98			1			-1
			in places. has lanse	10	1 1	2805	1/16/2 9	the de- ber py x 2 3	?	1.12				22	1.958	,10	.003		.9%
			of 'same , Rx in places)	168		for 1	in the second	The h. Least >> x /		D''O				05	108-00		-		
.		ļ.	t i i i i i i i i i i i i i i i i i i i	10		6		te dl. on - May - 4. P7 1				728			ł			- 1	
		<u> </u>	6 min Front	*r	430		4	to de-mag-all	1				ŀ			†)
					1 16	5×3	120 73 6	tz-sw-chell may - ip TOTE2 10						1					1
			i i i i i i i i i i i i i i i i i i i	·	l H	rox5 h	e ks f	tache-mag-sev-supplies					98					1	. 15%
		- 54 T		0		10 1 1 1	in G	to may ser - py y	·	.256			1	90	10859	.20	,009		- ,
		1 E	e				- B	a.onl. my will be			aliya 🚺	438	<u> </u>		. 1			1.	1(27)
5 - C			87- A11		13		11 8		ľ				6. A.		i gir		- 10 - 11 - 11 - 11 - 11 - 11 - 11 - 11		
L			Gtz-Ser- (CNP)- MA	<u></u>	1940 6	σ <u> </u> 2	<u>as an 0</u>	172 VA - Sea. Carl - PJ-110 192	New Arts			e		1999 - 1999 -	al the state				
		de Server			a star			is a state of an and the	Sector Sectors			100	Sec.			Constant at	all said	1.19	

)

)`

(

ì

))			:)		
	GRID.		i in survi	Gestande de la	an ei theise	GIBRALT	ARMINES	LTD.		ł	IOLE N	No. <u>86-3</u> No. <u>7</u>	<u>4</u> of	7			
			IGRAPH	ud		1	ERACTURE	1.	BOTTOM DEPTHS	1	T.			AS!	JAY RES	JULTS	
ROCK TYPE	S & ALTERATION		LOG		-		ANGLE TO	ATE (LEACH CAP	4	Core	ROD	Sample	7.	%		
		Z 10 C		LEVELYLI Volu 2 10 C.	width	Harreli	CORE AXIS -FREQUENCY-	. Pr.	LIM. ZONE SUPERGENE		Rocovery %		Number	Cu	Mo		cr
	441- 18/ atz-che. Ser She	~ ~70°		- 700 110° - 60 145	 y10 20 1	gre-chl.cab-mag-py gre-chl-sm (cab-p) fre-chl-sm (cab-p) fre-chl.cand-sev-cp fre-chl.cand-sev-cp	0 10 20 30 40 ((py >)	K.1%	ALMANA		98	80	10860	.41	.010		,25
		Ś4r	450	BU BOXZ	1/20	hank-gtocht-cp	70 80 90			448	 					 	(.z.
				6- 80 X 3	¥ 1/1 x 3	gtz. de-carb-caps	0 10 20 30		cut of.		100			.17	102		
		80 \$4.		30	1/8	the che - che - cp - py	40 50 60 70 80	2.1%		458	· ·	77	10861		0		
		++	460-6	10°	1/8	Ate an colorpy px 10	90 0 10						[]				
		6° -8°		40- 700 1300 150	V/F 1116 C V 8 6	te Me sev-cp - cht-ser te meg-cato-cht-ser heut-cht-gte-cp-upin	20 30 40 50 60	1%		468	100	77	10862	· 12_	.006	3110	62
			470	45°	1/20	gte de un contacp;	70 20 30							'	<u> </u>		┢
		70'	F	76 78	1/10 1/4	1/2-chl-carb.cp. fre-chl-sen-carb.mg-p fre-chl-sen-carb.mg-p	0 20 30 50	11			100	80	10863	. 14	.006		.,
		Str	180	700	1/2 1/4 1/4"	fre sou che and go fre cale and go frout cabo py kp gash street	10 10 10 10 10	10		478]			 			
	481-488		F	8.	118 1720 17272	pts-contract-py-mag. gts-chl-swient-ep	0 0 0 0 0 0 0 0 0 0 0	.1			98	0.2			005		.:
		R .		30	1/20% 5 Z" 1/8	the che ser - cp × 5		16		488		03	10864	, 16			li.
	Atz- Che. Sur Shen		490	70° 60 Y Z 50 X Z	1/8 1/8 + 2 0 1/2 × 2	gton the son - may - py const gton the son - may - py const gto the - comb & comes> 3	0 2 0 0	.1%	;	493	100	/	,	1			
	100					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			m.R. Show		in the second			n in Sean			
		<u> </u>		<u></u>			2				and the second		Anto Sta	. Alta	a phái (b). Bha leo achta	and the second	an an

		GRID_					GIBF	RALT	AR MINES	LTD.			HOLE	No8	<u>6-35</u> of	7			
600		MID 19-A 84		- •	LAGTH C	0.8'		LATITUDE	46,855.	32 N	CORE 3425	N.Q.	<u></u>			.00000 m	G.D	.в.	
DATE	con				- 90			ELEVATIO	* <u>3603.</u>	15'	SCALE OF LOG	ec he	<u>= 10</u>	· · ·	······································	urz(Dct 21	1986	
OCK	TYPE	S & ALTERATION]	GRAP	lic		:		FRACTURE	0	BOTTOM DEPTHS	_	1	Ť.	1		SAY RE	5111 TS	
			5						ANGLE TO	ATE	LEACH CAP 180	-	C+r+	ROD	Samale	1%	1 %	1	T
:			2 14 1 7	Foliori Allere Foteq	Slever L 14	191 M.	110.00		-FREQUENCY-	MI 153	SUPERGENE		R.c		Number	Cu	Mo	1	E31i G
		<u>Casing To</u> 142' 142							0 10 20 30 40						+				
		MINE PHASE		150	2	- Xe	5 95'	4 ken	60 70 30	٥		148				1	·		
		(146-192') not a typical Mine			60	11/2	gts-ser-lim zone	Core			lim: zone is a brownish-red, not the typical lim color		85						
		Phase but not as fine graid as 86-33 - aug. gra size ~ Y10"	60 Mod	с	60×2	1/2+1 1/2×2	gg-lim xz		0 20 0	٥		158		3	10951	05	.001		.0
		but Grades in places to X20-V10" - Chl ~250/0 - save. pbg. 550/0 - chl. 200/0	60 Noa	140	5 60×4 60	Yz Yax 3+Ya 6*	qt3-liin qt3-ser-liin x + qt3-ser-liin	নাৰ নালা নালা নাল নালা নালা নালা নাল নালা নালা		0	This hale has shown strong alth and structur - much of the alth is diffuse and grodes into normal re with aragual boundary - good	e	90	23	10952	.03	2,001		,0
+		-in place: chl.grade to 30.6 with a loss in both plag		170	55	3*	9tz-ser-lim 9tz-ser-lim	20140			well-defined qtz-chl. verise are uncommon - much of the structure reported	168				· • 2 of			
		+ ats. .: in short, this rock tends to hove a lower ats, higher	50- 60 Mad		60 + 50 10	+" Y3+Y4 2"	qt3-chi-lim qt3-lin >2 qq	22399999		0	as giz-chl is actually dark alth zones with Faint incr. in gtz at the center_larger Structures are clearly	178	90	1 0	10953	102 1020X	K.00		D
+		gen size than normal		180	5 +2 .	2 Y2 × 2	9 13- 11m - chi 99 ×2	38088			achtified as <u>sones</u> but they are they cance as most of the		\mathbf{F}			-/			
			60 Nod	ì	45	•" ,	t3-chl-py-cp 3one	0000			Q1W : +		40	10	10954	.03	2,001		,05

))	ł
GRID	GIBRALTAR MINES LTD.	HOLE No. <u>86-35</u> SHEET No. <u>200</u> of <u>7</u>	
ROCK TYPES & ALTERATION GRAPHIC	FRACTURE	BOTTOM DEPTHS ASSAY RESULTS	T
	ANGLE TO	LEACH CAP	
	-FREQUENCY-	SUPERGENE Number Cu Mo Cod	ie
		AEMAAAS CO	
5 12 30x2 Y3x2 70 6	di 3-chi- pyxa di 3-chi- pyxa di 2-chi- pyxa di 2-chi- pyxa		
70 40? 12	99-hem hem 50 0.5	20 10955 .02 .00/ .05	
40 Y ₂ 60 3"	qq stained 60 ots-chl- core 80	193	
2.00 × 25×2. /4×2.	90 hem (1)		
· 50 1	973-chi((cp)) / 10 973-chi((cp)) / 20	. 80	
60 60 4½°	9t3-carb ((cp)) 30 to 0.5	2051/2 37 10956 102 1001 .05	
. "nod 2 3"	9t3-chi (vug) 50	1000	
210 60x2 1/4x2	qt3-chix2 001		_
30+40 Yex2	q [†] 3x ² 0	95	
	4 ⁷ 3 20 at 2		
60 Mod 640-45x3 X0-Y8x3	qt 3x 3 50 <0.5	216 37 10957 .02 .001	
60×2 Y2+Y4	q+3×2 701	1010)	
	913×2 90:		-11
	20	70	
60 30+2 Yiox2	qtz-chl == 1.0	226 33 10958 .05 .001 .05	
Mod 43 1/4	9t3-cul 60	4.0104	
230 45 3"	9t3-ser-py 50		-
15+60 Korz	073-Chi-Fy (Cp) * 2.	90	
60 60 60×4 720-hlex4	413-CAL-PY (G) # 30 912-CAL-PY KA	.06	
WK 10+76 1"+2*	9D21 60	236 47 10454	
240 70 2'	9t3-chi-ep-py 80	1, 6/2/	11
60 ×2 6"+ 8" 60×2 1/2×2	9t3-chi-py-cp x2 0	80	
60- 60- 70×2 75+1 70×2 74+1/2	atso Ser-py x 2 30		
ter and the second s	413 50 2.0	246 30 10960 1/2 100/	
250 Texa	973-ch-scr-py(cp) x 3		
		ilan ferdini sa kata ka	
			S

)))		
GRID								GIBRALTAR MINES LTD.					HOLE SHEET	No. <u>8</u> No	<u>-35</u> _01	_7			
ROCK TYPES & ALTERATION				· <u>1</u>		FRACTURE		BOTTOM DEPTHS				T	A	SSAY R	ESULTS	[
	. •								ANGLE TO CORE AXIS	AATE	LIM. ZONE	-1.		RO	D Somple	. %	%		
:	•		1		· · · · · ·	4	11 I I I I I I I I I I I I I I I I I I		-FREQUENCY	- 2. %	SUPERGENE		, R.c 7.	'	Number	Cu	Mo		crote
· .		253			5 70 5 80+50 60×3	6 1 2*x2 1/2*2+	9t3 · CHI-PY at3 * 2 qt3-chi(Py) * 3		0 · 20 50			1	85			1.10		3	
		MAJOR FAULT	?	2	2 6 0	2 ¹	99 '	1997	50 50 70 10 10			256	60	- 20	10161				. 0 8
		- This appears to be , a series of steep Paults separated by zones of broken rock and gouge slips	5					<u> </u>					55	0	10962	. 15	,000	5	2
:	· .	- poss the major dislocation occurs		27	5	12*	99	2 8 3				268		1			1.		
		@ 255-260'	2					<u> </u>				272	80	υ	10963	.04	,002		?
			:	280		3	41	200		-		278							
						10*	41	0 20 30 40 50 60		7		286	95	3	10964	.15	,002		7
		Nr		290		- 1'	99	70 80 90			·								
		292 11NE PHASE 70 QUARTZ M.			10×3 60×2 60 70×2	1/4+ /3x2 1/2+ 1/4+ /2 1/8 1/4×2	9+3-chl-carb-py(cp)×3 9+3×3 9+3-chl-py(cp) 9+3-chl-py(cp) 9+3-scr-py(cp)	222 20 00 00 00		2.0		298	80	53	10965	· 21	.007		.08
		<u>DIORITE</u> (292-)	-	300	1	3/2'	- 4t3 - Porp	80 90 90						-+					
	no	same as above- o rock change .cross fault.			? 70	3'	atz-chi-carb (py) zone	2 3 9 5 3 7 8		1.0		308	80	47	0966	109	.003		.05

))
GRID		GIBRALTAR MINES L	ΓD.	HOLE No. <u>3</u> 2 SHEET No	-35 4 of7	· · ·
ROCK TYPES B ALTERATION	GRAPHIC	: FRACTURE	BOTTOM DEPTHS		ASSA	Y RESULTS
		ANGLE TO	LEACH CAP	C R O D	Sample %	%
		-FREQUENCY-	SUPERGENE	. A.c	Number Cu	Mo Croie
- · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c cccc} & & & & & & \\ & & & & & & \\ & & & & & $	91322 011 101 101 101 101 101 101 101	.5	95 33	10967 .10	ai2 08
	320	9+3-chi-py 90	318			
57. 6. 51 Me	70 3' 70 2' 7. 2' 7. 6. 6' 7. 6' 7. 6'	9t3.chl-carb -(py)(cp)) 3016 20 20 4t3.chl-carb 3016 40 9t3.chl-sone 40	0 <u>328</u>	90 37	10968 ./3	, co Z .08
70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90 15-ser-chl-py zarc 0 tz-chl (carb) zarc 0 tz-chl (carb) zarc 0 tz-scr. (pr) 00 tz-ser-py-cp 00	338	⁹⁵ 50	10969 114	.003 .12
55 Nod	60 Yie C 60 Yie C 60 Yie C 76 Yie C 70 Yie Yie C 60 Yie C 78 C	173-ser-pi-cr 0 173-ser-pi-cr 0 173-ser-pi-cr 0 173-ser-pi-cr 0 173-ser-pi-cr 10	348	90 47	10970 .10 10	,10
strongly sheared and alt'd section. grading to a qts-scr-chi-carb-py	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	412-chi-bi 30 12-ser-py x + 0 13-ser-py (Cp) 30 13-chi-carb -py (Ccp) 30	358	90 80	10971 .19 .0	13 10
50°C (60- 70 51-	11360 20x4 Yox4 13 7.0 Yo 13 10.0 70 Yo 13 10.0 70 Yo 13 10.0 70 Yo 14 10.0 70 Yo 14 11.0 70 Yo 14	$\begin{array}{c c c c c c c c c c c c c c c c c c c $.268	95 50 1	0972 .1/ .00	25

)							j ·														
GRID								GIBRALTAR MINES LTD.					HOLE No. <u>86-35</u> SHEET No. <u>5</u> of <u>7</u>								
ROCK TYPES & ALTERATION GRAPHIC						·	FRACTURE Q BOTT					1 DEPTHS			1	ASSAY RESULTS					
	r	1	1:					Ť		ANGLE TO	ESTIMATE % PYRITE	LEACH CAP		C+++	ROD	Sample	1%	%	1		
· .	· ·		=				:		CORE AXIS	LIM. ZONE		R		Number				1	Crafe		
		•	14		12 2.3 7		,	· .	"FREQUENCY-	AEMAAAS		7.					1				
			•	Π	1	70 70 × 5	1/10 VA 15	qt3-chl-py	4		}		1	1					3		
						A.			23	0	1			95	1						
·	•		45			45	3	9 3. Chi. Carb Some	শাস	0	0.5				57	10973	1.17	1.004	1	,05	
			Str	11		60 + 70 12	YA +/8 *2	913×3	670	0			378		.]			1 ·	[
		from 378-448		Щ	380	45	2'	qtz-chl-carb zone	80 90	o o					L			 	· · · ·	 	
		all plutonic tex.	ŀ				1		19	0					Í						
		by shearing and	40-			40	8'	gt3-ser-py sone	20	2				90			1		1	08	
		alteration - although	45 stc						818	2	2.0				57	10974	.07	1001	1		
		has a high attention			1				2 5			4 - 1	388	ļ							
;	·	(260.1) with chi-ser	ļ	Ш	390		2	qt3-ser-chi 3one	90			· · · · · · · · · · · · · · · · · · ·					 				
		around rounded,							00												
		almost augen-litec	45-	$\left \right \right $,		20					95						.10	
		- the carb is gen.	60			60	10'	973-sev-cn1-py 30ne (+ some carb)	50		3.0				50	10415	.09	002			
	• •	in small gash-like	211.					C' TOME CARDY	20				398								
		Veinlets with 9134 chi.		Шŀ	100				90			·····		ļ							
								1	10		1										
			70						30					95	37					20	
			str.			10	10	(913) Chi-(ser) carb-((cp)) Jone	50		0.5		1		31	10476	.18	.003	1		
1								(ie dark vuggy chl.	70				408						1		
				<u></u> ∦†	٧Ē			Carb -rich core)	80					H							
·				11	目				10				·	a -					[
			80	11		80	10'	ata-chl-carb (ca) zone	20					45	22	0077	10			.30	
			st+					415 0.100.0 (07)5-	50								·// [000	1		
				47	、目	·			70 80			ŀ	+18						1		
				14	Ē				20					F			†		î		
		· · · · · · · · · · · · · · · · · · ·			A				20					90		1					
			10-		目	10-80	10'	qtz-chl-carbber) (cp)	10		o.s				33 1	0978	15 1.	006	1	.20	
.		5	tr	1	Ī			Zone	60				28					1	1		
		Longe Course the	<u></u>	430		<u>.</u>	Ser.	and a state of the second	20							en la					
	Cardena	아직과 주말했는 것 것								1 - N - A - A - A		den e state en			• • • • • • • • • • • • • • • • • • •	2 G 3 2 7 .	in a suite and an a' suite The suite and the suite and				
)										1								
-----------------	-----	---	------------	-----------	------	-----------	---------------	-----------------------------	--------------------------------------	----------------	-----------------------	----------	---------------------------------------	-----	---------------	----------------------	--	------	----------	-------	-----------
			GRIL	D					GIBRA	LTA	AR MINES	LTD.			HOLE	No. <u>86-</u> No	35_ 6 of .	7			
ROCK	TYP	ES 8	ALTERATION	1	·	GRAPH	uc		:		FRACTURE	a	BOTTOM DEPTHS				1	AS	SAY RE	SULTS	
<u> </u>		<u> </u>			E		1	1			ANGLE TO CORE AXIS	TRIT	LEACH CAP		C+++	205	Sample	7.	%		Estimited
:				- 4			211.VC	× ×			-FREQUENCY-	1	SUPERGENE REMARKS		~.		Number	Cu	Mo		crote
+		1		-		<u> </u>	6				0			1	1	1	1		;	3	
.	•			7	。		70	10'	ata.chi-(ser)(carb)-c	ρ	20 30 40	- 1.0			90	50	10979	.12	.004		. 25
				57	٢				3one	101	50 60 70			138							
 					-	440		28.1	gtz-chl-carb zone		0	<u> </u>			-				<u> </u>	· · ·	
				70			70	Y3	973	1412	0 20 10	1			90						
				WK-			70 5+2 +80	2" 1/2 + 1/3 + 2	913 913×3	4 19 1	0	2.0				50	10980	.11	.006		.12
						450.	40	3/4 .8 "	qt3-ser-py	100	0			448	<u> </u>			1			
				1		K	5	Y8	chl-carb		,				1						
				55		L L	70+35	72+2	973 *2	21213					90	10			act		,10
		1	A	str.	·	ALC: NO.	55	6'	qt3-chl-ser (py)((cp)) 3	014 50		1.5		458		42	10481	. 14	. 1000		
		ļ			Щ	460 2				20			· · · · · · · · · · · · · · · · · · ·								
						TTEN I	60	A'	9t3-chl-ser ((cp)) 30ne	0 2 2					85						
				60 WK-			70 ?	•* •*	qt3-carb-py (Wo)	30 40 50	1 	3.0				27	10982	,17	.008		.14
	į			riod			80+3 76	Y3×2	973-ser-py-cp atax2 ata-ser-py	60 70 80				468							
			<u></u>		Ħť	410 0	30	<u>Υ</u> _R z"	gtz-chl-carb gtz-sn-py (cp)	90 10					ł						
						Į.	10 + 60+70	13 1/4 × 3	973 973 × 3	20					90						.15
				WK			80	14" 5"	qt3-ser-chl-py qt3-py-cp (who)	50				478		50	10983	.15	.012		
					4	00	10	Y10	qtaxs chl-cp	10 90 50						·					<u> </u>
				·			70	4' ·	9t3-ch1-carb sone	200					95						
	-			70 Mod			+	4×2	te x 3	200		0.5			¹³	27	0984	.05	.004		.10
а. Да								6	ts-chl-cp	60 70 80			· •	488	<u> </u>						
- _		na se			1144	0.07	·14	•	112- Korb	ান্থা			_		<u> </u>		in di seguri di secondo Secondo secondo		<u>.</u>		

														1							Ĵ		
			GRI	D		-				GIBRAL	ΤА	R MINES	LTD.			۲ S	IOLE I	<u>ــــــــــــــــــــــــــــــــــــ</u>	35_ Z of	_7			
ROCK	TYPE	ES I	B ALTERATION			GRAP	нісі			<u>.</u>	Τ	FRACTURE	0	BOTTOM DEPT	THS			Ι		ASS	SAY RES	ULTS	
		Ţ.					11	44				ANGLE TO CORE AXIS	MAL	LIM. ZONE		22	C+++	RQD	Somple	7.	%		Colimoted
•					7		7	, , , , , , , , , , , , , , , , , , ,				-FREQUENCY-	22.2	SUPERGENE AEMAAAS			7.		Number	Cu	Mo		crole
					70		50 + 60 + 4 50 43 80 50+60 × 2	S 1"+ V3+2 2" V3 Y4 V4 V4 V4 V2	9+3×3 at3 (chi) (c 9+3 at3-carb-	p) chl		0 i 0 · 0 ·	20.>				95	13	10985	.05	.004	3	,12
					wĸ	500	70X2 80	Y10 X4	qt3.ch/- c1 qt3	p x2	567899	0 0 0 0			ŀ	498			10100				
			5011		70 WK		60 80×2+40 60 45×2 70×2+60	z" y4+2+1' y3 y3+y4 y2-y1x3	qt3-cp qt3×3 qt3-ch1-cc qt3 (cp) ×2 qt3×3	arb-cp	<u> </u>	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 0,5				80		10986	108	,008		. 14
			b.Q.B.	08			·	1		·····	20					08							
											002000						ſ						
			· · ·								1000												
											201												
											50 60 70 80												
				\uparrow							20222											-	
											40 50 60 70											.	.
+				 -							2002					1	F		<u> </u>		†		
										1 Mai 2 Mai 2	2009000												
																, , ,			 				

E

))))		
		GRID_					GIE	BRALT	AR MINES	LTD.			HOLE SHEET	No8	<u>6-36</u> 01	_8			
0	CATION	GIBRALTAR EAST		- •	(AAW8	-		LATITUDE	47419.	411	CORE SIZE	N.Q.	w.			00000	G.D.S	3	
	TE COLLA	10 21 - Aug - 86		_ L	исти <u>: 50</u>	81		DEMITUR	47733	.83E	SCALE OF LOG_		1 = 10	,		ATE(Oct 23.	1986	·····
04	n com	10 23 - Aug - 86		_ 04	-90	>		ELEVATION	3622	. 95	REWARKS + SEE	bel	ىدە	•					
		J		CRAP	<i></i>	· · · · ·	T		r	<u>, </u>	Destain Destaus	· · · · ·							
ROCK	TYPES	B ALTERATION		LOG		-	1		FRACTURE	20	LEACH CAP 120	-	e	.		<u> </u>	SAY RE	SULTS	
						64	į		CORE AXIS	Y.E.	LIM. ZONE 200'	1.	C	ROI	Sample	%	%		Estimate
:					7	3.2			-FREQUENCY-	5 .	SUPERDENE		R.c		Number	Cu	Mo		Croie
				<u> </u>	<u> </u>				~		AEMARKS	2.5	ļ	4					
		Con T							10							1			
		Casing to				· ·		ļ	30				[1			1
1		83 80		11				Į	50								1		
		- 1						F L	70			.		1					1
				80	<u> </u>	 			20			80	1	ļ					. <u> </u>
		A 2	ŀ		11				0			ant		1	1				
····-			1	-	A 10+60+45	Y20×3	lim x3		30 10		· · · · · · · · · · · · · · · · · · ·	-00	}			1		1	1
		MINE PHASE							0 50	_	- Strong oxidation and		90	1					.05
		QUARTZ DIORITE	WK		4.0	Z'	atz chi(uva)	10	0 0	0	leaching down to	87		ł	10101	1.05	.005	1	
		(83-508')		90	45-40 + 6	410-Yoza	atz-chi-limx6		0		120					<u> </u>			
ł		not a typical Mine			20×++40	Y4x4 + Y3	qt3-chl-lim ×4 +	9 ⁺ 3	0				<u>م</u>			1			1
	.	Phase and grn size			6• × 4	10 + 4	9t3-chl-lim x +	2	0				00						
		1/20-Yie which is	60		45	7	473	415	0	0	- The leach and oride			17	10702	.07	1001	1	.05
		- 30-35 0/0 ata				y2+2"	9t3x2		<u></u>		somes in this have	97							
		- 15-200/0 Chl		100		2	q T3	2			-this poss. was a								
		-~ 50 savs plag			45-55×7	1-2 * x7	913-1imx7	0	; 		strongly min. 30ne.		ſ				1		
		this rx is not like			60	1/2	gt3-Cil zone	20	2		- This hole has intersected		95						
		that of 86-33, howeve	· 10		50	1/2	ats-cn	14	3	•	strong barren gtap			33	10703	.02	,001		.05
1	0	it's which occurs as	WK	K	20+30	12042	limes	44			up to 40 % of the	108							
		orn aggregates up to		110	60 × 5	Y10-YAXS	qts-chi-lim as	60			section (at 2. flooding) and	Τ							
. 1	1	1/4" dia (like Granite		E	60×2))	4+18	9+3-chl-lim x2	9/0			coarse stock works.		90 t						
1		too' the rx arades			30+20	10+2	99-11m × 2	20			- also common are								
1	+	o a typical Mine	60	Ľ,	60 + 30)	18+Y10 12×2	gg-lim x 2 atexa	10		.	qT3-mag vens	15		23	10704		1.101		. 05
	P	hase (pitrx.)	WK		50		atz-chi-lim	60		l,	is inis the low suitcher	.		~~		.03		.03	
100	antes la	and a start of the	<u> </u>	120	. 25 ,jo - 1	hall I	9t3- chi-ser-lim	69			ore system?	- 34 h-	7. 5	1.00	all and	I	a* >	3500	·
			1.54				en a se a				مريوز پېښې مېمېنې د د د د د د د د د د د د د د د د د د		- 100) vaji						

)

-			GRID						GIBRALT	AR MINES	LTD.			HOLE SHEET	No. <u>-86</u> No	<u>-36</u> 2 of		مەير (، ،		
ROC	K TYP	ES 8	ALTERATION	Z to Core reliance	G	LOG		width of Voln	Ular elization	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATED % Praise	BOTTOM DEPTHS LEACH CAP LIM. ZONE SUPERGENE REMARS	[[] [] [] [] [] [] [] [] [] [C+++++ C+++ A+<+++++ 7,	ROD	Sample Number	AS % Cu	SAY RE	SULTS	Estimated Grade
•			-	50 WK			35 60 60+70 60+2	12" 3" 10" Yio+Ye Yio+2	qt3-chl-ser lim qt3(py) qt3 qt3chl-limxs qt3-chl-Mn02-malxz	Q / 10 20 30 30 50 60 70 80 80 80 80 80 80 80 80 80 8	· · ·		122	80	27	10705	.05	¥ 4.001	3	,05
				. 60 .wK			40 30+ 40 5 30 80×2 40+2	Y 10 Y8 = hie Y2 Y1 2"+1" Y4 + Y3	ats.cni(mal) ats.gg.mal + mal ats atsx2	2 10 10 30 30 40 50 50 50 50 50 50 50 50 50 5	0		134	95	17	10706	.11	2,001		.10
				ND.		40	60 3012 70 30 2 30 65	78 1" hlexr ½ 1½ 1½ 1° 2° 30"	ats ats ats-mal-lim ats-py ats(p) mal-lim ats(p) mal-lim ats-ser-py-lim	90 0 10 20 20 30 40 50 40 10 10 20	2.0		144	95 86	17	10707	. /3	.,004		10
				ND	16		10 23 45 55×2 }	1/20 1/4 1/2 1/2 1/2 1/2	lim - MnOz qt3- chl (mal) qt3- (cp)(mal) qt3-lim x2	0	o		157	80	20	10708	. 09	L.00		,12
	÷			ND	170		70 0+40 0+35 0	2* ("+2" (4	9t3-str-py-lim 9t3 (lin) x2 9t3 (lin) x2 9t3-mas (mal) 9t3-ses-py		2.0		163	80	17	10709	, 20	.004	•11 <u>3455</u>	10
				35- 50 Str	180	14 2 3 4 5	0+60x2 0+5 6 10 14 14 0 12 12	lext y *+ yzo n D	Mn O2-mal x2 At3-chl im + lim - mal at3-chl 30ne at3-chl - carb (mal) 30ne at3- chl - carb (mal) 30ne at3- chl - lim at3-chl - lim	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.5		178	95	30	10710	,12.	o• 2		.12

GRID	GIBRALTAR MINES LTD.	HOLE No. <u>86-36</u>
ROCK TYPES & ALTERATION GRAPHIC	FRACTURE 9	ASSAY RESULTS
Z I I I Con Z I I I Con Z I I I I Con Z I I I I I I I Z I I I I I I I Z I I I I	ANGLE TO CORE AXIS -FREQUENCY-	Corre ROD Sample 7. 76 Estimated Recovery 7. Rome Cu Mo Corde
Со Ко Wik 15 Уз 19 19 19 19 19 19 19 19 19 19	No.b Mal a t Ol $q^{1}s \cdot mag \cdot l.m$ 20 $q^{1}s \cdot mag \cdot l.m$ 20 $q^{1}s \cdot mag$ 40 $q^{1}s \cdot mag$ 60 $q^{1}s \cdot mag$ 60 $q^{1}s \cdot mag$ 60 $q^{2}s \cdot mag$ 60 $q^{2}s \cdot mag$ 70 $q^{2}s \cdot mag$ 70	40 186 27 10711 ,13 .002 .14
70 70 WK 20 1" 70 WK 20 1" 70 1" 70 Vio 74 5 74 5 74 5 70 Vio 74 7 7 7 7 7 7 7 7 7 7 7 7 7	qt3-lim 0 qt3-chl-cp 20 qt3-chl-lim 30 qt3-chl-lim 50 Chl.cp xz 70	195 17 10712 .24 .009 .12
To 4" 3". WK 2" 4" 10 5 yz 1" VK 3". 1" 210 4* 3". 210 4* 5 yz	173 (co) 0 173 (co) 0 173 (co) - Ch) - Fy - CP 0 173 (co) - Ch) - Fy - CP 0 173 (co) - Ch - Fy - CP 0 100	lost 95 block? 20 208 .12 .16 .17
ND ND $\frac{50}{120}$ $\frac{50}{14^{2}}$ $\frac{14^{2}}{14^{2}}$ $\frac{14^{2}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90 27 10714 . 16 . 00 2 .10
ND ND 230-60 XA 1/3 XA 9 50 x XA 1/3 XA 9 50 x XA 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95 <u>225</u> <u>13</u> 10715 16 .023 .12 70
NB YS YIO Q 195450 1°4 YA Q 150 2° Q 150 30+40 Ys+Y4 150 30+40 Ys+Y3 120 8 Yso	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	233

			})						1		
			GR	ID		-					GIBRAL	TA	R MINES	LTD.			HOL SHE	E No. L	<u>4</u> of	- 9			
ROC	X TYP	າເຮັສ	ALTERATION		-	GR	APHIC				•	Т	FRACTURE	۰	BOTTOM DEPTH	5			1	A	SAY RE	SULTS	
						-			£ 1				ANGLE TO CORE AXIS	AATE YEL	LEACH CAP	┤.		. 20	D Somple	7.	%		
:		·					3114	, ,	21 X			ŀ	-FREQUENCY-	1133	SUPERGENE REMARKS		A.c.		Number	Cu	Mo		croix
				N	D			5+60×4 50+45<2 30	1+ 1/3 × 4 1/2 × 2 1/8 2"× 2	qt3x 5 qt3x3 chi-cp qt3x2	gts , Flooding	(ଟାଟାଟାଟାଟାଟାଟ)	0 4 0 5 0 <td>20.5</td> <td></td> <td>24</td> <td>4 9 c 8</td> <td>30</td> <td>10717</td> <td>,05</td> <td>1002</td> <td></td> <td>(0</td>	20.5		24	4 9 c 8	30	10717	,05	1002		(0
				7	0 Y.	26		40 *2 70 5 + 90 × 3	3*+4" 6' 1/3+ 1/4×3	qt3-ser-py x qt3-ser-py qt3 x 3	2	8 9 9 8 8 8 8 9 9 9		2.0		258	95	40	10718	, 15	.003	•15 3365	.08
			hem staned Lorc	NU {		210		+30x2 +45	3/4 + 1/2 x 3 1 ⁴ 1 /2 1 /4 x 4	२ ⁺ 3≭ 1 २१ २१ २१ × ↑		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		< 0.5		266	95	10	10719	. 19	.006		.06
				ИР			4 70 40	+10	Y4 3* 12* Y3 + Y4	qts-ser-py-c, qts qts(ser)py qts-maxxz qts		20:30:40:50:40:70:80		0.5		271	90	- 17	10720	./2	.006		.05
		<u>.</u>		мр		260	40 15 40 25 40 50-6		8 × 7 L * · · · · · · · · · · · · · · · · · ·	91327 913-chl 913-chl-cp 913-chl-ser-py (913-chl (cp)(py) 913-chl (cp)(py) 913-chl (cp)(py)	(cp). 30ne 3	\$0 \$2 \$2 \$0 \$0 \$0 \$2 \$2 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$		1.5		282	98	23	10721	.16	,0057	 .	,12
				ND	30		10×1 15×1 5 70+5 ? 20 50×3 20 60+45	4 Y. 1+70 A3 Y. 1+70 A3 Y. Y. 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	4x3 4y2 + Y3x3 1+ + Y8 + Y8 x4	cn[x 3 qt3x 2 qt3-ch1-carb - qt3-ch1-ser- qt3-x- qt3-ser-ch1 3. qt3-4	200 201 201 201 201 201 201 201 201 201	200000000000000000000000000000000000000		0.5		296	80	40	10722	.12	.004	. 15 3320 .	. 04

Sec. 3

and the second states of the

.....

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·)
GRID	GIBRALTAR MINES LTD.	HOLE No. <u>36-36</u> SHEET No. <u>5</u> of	
ROCK TYPES & ALTERATION	FRACTURE O BOTTOM DEPT	<u>*S</u> (+	ASSAY RESULTS
	CORE ANIS	Core ROD Sample	7. 70 Estimated
	-FREQUENCY- SUPCROENE	Number	Cu Mo Croie
ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	303 33 10723 95	.12 046 14
. 50-60 × 10 /10- /3	410 9T3×10 0 10 10 20	312	
ND 30 1/3 20 1/2 25 1/	ata 20 0.5	90 20 10724	,15 ,006 .12
320 1/ 2013 Vion3	qt3-ch1(pr)+2 30 qt3-ch1-cp 0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	qq 10 qt3.str-cp 30nd 20 qt3.str-cp 30nd 20 qt3.cth-cp 30nd 20 qt3.cth-ser-(cp) 30ne 20	98 324% 13 10725	.44
330 40 12	$\begin{array}{c} q Ts \\ q Ts - ch - cp \\ q Ts - ch - carb - mag(co) \\ q Ts - ch - ca$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	qt3-chl-ser(cp) 30ne qt3 v2 qt3.chl-ser- 30ne col co	95 27 10726	.12 .002 .1+
340 80 24	1 [†] 3 80		
ND ND Y3012 Y43	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	95 33 10727	16 .002 32.75 .12
dark sort . core grading	973-ch1(cp) x2 70 973-ch1(carb (mag) 80 90		
to a cul-carb 30ne 80 10 1/6 1/6 WK 60 10 1/6 1/6 WK 60 10 1/6 1/6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	98 353X 17 10728 .;	29 .002 .18
1 360 × 40+80 ×2+2"	qts-cnl.mag x 3		

$GRD _ GIBRALTAR MINES LTD.$ $HOLE No. $6436 SHEET No. b of s} HOLE No. $6436 SHEET No. b of s} \frac{GRAPHIC}{SHEET No. b} of s} \frac{GRAPHIC}{SHEET No. b} of s} \frac{GRAPHIC}{SHEET No. b} of s} \frac{GRAPHIC}{SHEET No. s} GRA$)						1		
ROCK TYPES B ALTERATIONGRAPHIC LOCImage: Colspan="2" Constrained by the second se		GRID		GIBRALT	AR MINES	LTD.		ł	HOLE / SHEET	No. <u>86</u> No. <u>6</u>	<u>-36</u>	8			
$ \frac{1}{12} \frac{1}{12}$	BOCK TYPES & ALT	TERATION GR	RAPHIC		ERACTURE		BOTTOM DEPTHS	1	1	Γ	1	ASS	AY RES	ULTS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			LOG		ANGLE TO	315	LEACH CAP	4	C	800	Samele	1%	1%	1	<u> </u>
$\frac{1}{2} = \frac{1}{2} = \frac{1}$				Ĩ	CORE AXIS	Y Z	LIM. ZONE	- ::	A		di mber		1		Catinoted
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· .				-FREQUENCY-	2 ×	SUPERGENE BEMARK	13	7.			Cu	. Mo		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		In	40	973	011	<u> </u>	· AEMARAS	+				1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			• • • · · · · · · · · · · · · · · · · ·	ats-mag *2	20			363			1		7	3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		80	+• Ye	qts-mag (cp)	30 40					3	10729	ا ا			,12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		WK			50	0.5			45	2	10,01		.a		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				(Jane + lost care	70 80										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- Smail F	Fault some 113	376 90. 2	99) (~3/2)	90			370							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		¥ []]		broken any core	10				90						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				<pre></pre>	30			375	Ĩ			10	000		.10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		60 []]	50+80 Y2+Y4 50x2+45 Y2x2+1"	q13-ser-ch1 (cp) x 2	40 50	<0.5				37	10730		.00 -		<i>n</i> -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mod	10 1/2	qt3-chl-mag (m)	60 701	- 1									
$1 30+5+70+60 / 5 \times 3 + 1/4 = 0$;	3	380 Y2	gts-mag	90 j	· ·			90				·		
			30+15+70+60 1/3×3+1/4	9t3 × 4	0					1					
dia			Final And	qt3-mag											
60 10x 3 98x3 9t3-maga3 100		60	Y8x3	qt3-magx3	0	20.5		385		50	10731	.05			. 05
Nod		Mod			0	1					ч .			.15	
$\frac{1}{3230}$		20	H 60 Y2	qt3-chl·(mag)						i				3230	
			Y	atz (CHI) x 10	2				⁹⁵					1	1
			60-78 x 10 / 10 / 1 10	22	»:								1		
$\frac{30}{40}$		60	60+70 1/4+2	97322	21			395		33	10732	03	002		.05
		Nod		1 60	2 2	-0.5							,00		
$\frac{7r}{100}$				173 200 100 100 100 100 100 100 100 100 100					40			1			
			0 V 25 6	13-chi-curo sone 90	,				¹³ –						
				20		1						ŀ			
60 11 9t3- porp 20 11 10 1 53 11702 02 1002 05		60	50 14" q	13- porp 40	·		F	104		ca .	.707	221	002		.05
WK // B +6072 +30 // /2 ×4 dt3×4		WK	H 3 +60+2+30 1/4-1/3 ×4 9	3 4 60	\ `	.0.5				³³	0135	03 1		·	
70+50+30+20 1/2+1/2 × 4 1/2 × 4			70+50+30+20 1/4-1/3 *+ 9	3 × 4					6a	1		·		1	.
$\frac{1140}{140}$			A to 1/3 4	30 - chl - Mp (ca)					" -	<u> </u>					
1 30 2° qt3 20			1 30 2° q	13 20											ł
$\frac{10}{10} \frac{10}{10} \frac{1}{10} \frac{1}{10}$			80+70 +2 +10 YAX 4	13 x 3 13 x 4 40			4	14	.		-124				os
10/154 .12 .016	a de la companya de la company		60×3 1/4×3 9	13×3 50		2.0	and the second			- T	1.2	121.	016	- I-	·
$\frac{70}{90}$			35+30 Vien 9	3-507-00 X2 80					10	. I .		- 31	. .		
		I_II420 P	P1 1/4 4	ts-cnikepi Sol				<u> </u>	<u>نما نہ</u>		k	بنا چند.	- الحج يرتب		

		. · · · ·))		
	5.	GRID)					GIBRAL	ΤA	AR MINES	LTD.		1	HOLE SHEET	No86-	<u>-36</u> [of .	8			
ROC	X TYP	ES & ALTERATION	T	-10	RAPI	110		. :		FRACTURE	a	BOTTOM DEPTHS		1.	1	1	AS	SAY RE	SULTS	T
	Τ.			:						ANGLE TO	ATE ATE	LEACH CAP	_	C.r.	ROD	Sample	1%	1%	T	
l · .	1		1 =				23			CORE AXIS	WI LA	LIM. ZONE	-1 ::	A		Number		1	1	Conte
· ·			14		ā 2,	17 7		171 .		-FREQUENCY-	12 ×	AEMAAKS	13	7.			Lu	mo		
•			64		150	5+80 + 4 5 10 35 7 18+5+665 40 70x2	14-13×5 14-13×5 21 21 21 21 21 21 21 21 21 21 21 21 21	qt3x5 qt3 chl-ep qtx2 qtx2 qt5x5 qt5x5 qt5x2	08 4 10 10 10 10 10 10	0 / 10 20 20 20 20 20 20 20 20 20 2	<0.5		424	95	٩٥	10735	.08	.008	3	.°5
			1.	11		45	36"	9t3-ser-py (Mo)(cp)	Ś				1				1	1	1	
1						45	2.	9+3(mo)	212	0			434						.06	
			NO			45	1/3	chl ata-chl	A H	0	4.D		12.		23	10736	.05	,010	2/31	.14
			1.			\$60-70x3+4	1 14-13 x 4	qt3x 4	5	2			1 1							
:					440		2/2	9+3×3 9+2(Mo)	000					95						
				Ш	Ē	6012	Y4 x2	atoxz	10					Γ				1		
						70	3/2'	atz-chl-ser-py (cp) (40) zone	20				444					1		
			60			80 + 50+=+70	1/4-1/2 * 4	ataxt	70 50		2.0				20	10737	.21	.006		.13
					Ĩ	5460 23 + 50	V. V. v.	atour	10											
		<u></u>	 	119	50 4	5 - 00 - 5 + 50	14-13 X S	41372	30					95				<u> </u>	<u> </u>	
					Ĥ	10 70+60	1/2 - 1/3	9t3 at3×3	0											
					17	20	Y4-¥8 ∀4	atz-chl-carb-cn	30				454							
			ND			30	2'	qt3-chl-carb (cp)(py)	50		6.5				33	10738	.07	.006		,00
1					×	60	2"	9 +3 (((p))x2 1/3-chi(v=g)	70					85						
				++44		40 70 × 2 + 80×2	1" 3"+1"+ Y2x2	973 9tz-chi (vuc) + 4	80					-			+			
					F	60×2	2"+3"	qts-cni (vug)x z	10				443					1		
			NO	11		0 + 6 2	27	qtz-ch(vog)	20		0.5				42 L.			1000		.19
		1		11	1	10 X 2	18 + 10	qtg-chlomag + chlo Mo	50				433	50	20 11	6734	95	0		
		ata-seor para		47	∘H⁺	5	14	ats-chl-cw	80			ĺ			1		1			
	. 1	typical GPP dyre)		T	H.	OKL !	4.x2	97322	0					F	<u> </u>					
		has sharp country			13	5	4	atz-carb-chl-cx	20 30					80					1	
		Phase the island	60 WX		15	243	4.3	qtsxa	40 50	<	5,5			1	0 10	0740	07	000		. 08
		(roorded)			13	+ 400 Y	1+48	973	60 70				478				- / [.09	
				480	150	1=		gta s	80										3140 -	

)			•		:					!)		
		GRID		-				GIBRA	LTA	AR MINES	LTD.		ł	HOLE	No. <u>_8</u> ie: No9	- <u>36</u> 3 of _	8		• •	
ROCI	C TYPE	S & ALTERATION	1.	LOG	q	-	Ι	:		FRACTURE ANGLE TO	16 D	BOTTOM DEPTHS	-	E			ASS	SAY RES	ULTS	
		•	4 10 C	Viller V	1117 1117 1117	WILLIN Vela		Ula.c.li		CORE AXIS -FREQUENCY-	ESTIMA % Pre	LIM. ZONE SUPERGENE REMARKS		C R.c, 7.	ROD	Sample Number	Cu	. Mo		Estimoted Crode
					60 75 4- 30 55 55 60 x2	7" 1" 14 1" 3" 1" 74x2 3"	913 913 913 913 913 913 913 13 13 13 13 13 13 13 13 13 13 13 13 1	ler		0 1 10 20 20	<0.5		485	90	37	10741	,10	.002	47F	. 05
			си	TIO IN IN	50 + 80 60 + 70 70 X 2 + 5 70 X 3 70 + 45 60 = 7	Y3 × 2 Y4 × 2 Y4 × 3 Y4 × 3 Y4 × 3 Y2 × Y4 X × 2	972. 973×2 973×2 973×2 973×3 973×3		10121616141616		< 0.5		438	85	33	10742	.03	.004		.05
		E.O.H. 508'		300	60 + 2 60 × 4 60 10 + 70 + 40 + 70 7 7	1242 YB X A YA Y2 Y2 Y2 Y2 X3-Y4 X 4 /4 X2 2 ⁴	qt3×4 qt3×4 qt3×4 qt3×4 qt3		9 9 9 2 X 9 5 6 20	2	<.0.5		50B	95		10743	,02	,004	.05	,05
		<u>b.0.3</u>						<u></u>	2 2 2 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
									R Q 2 2 9 9 9 9 9 9 9 8 9											
									02229232280											

	- ^{4*}	· · · · ·				·)					_				ž		
		GRID		-			GIBRAL	TAR MINES	LTD.			HOLE SHEET	No. 86-	37 1 of	8			
م) مر		GIBE - SWA	el 26	•	(AAW9	4951	CATITUS	е <u>46,84</u> лас <u>47,75</u>	2.80	<u>N</u> corre sure <u>E</u> scale of la	N Q 	Wire =10'	line.	LO	xcco m_	M.RT 28 0	ct - 86	
04	17E COMPL	m <u> 25 Aug 19</u>	86	e	······································	- 90 .	ELEVAT	ю. <u>3,64</u>	0.00	REWARKS			•					
ROCK	TYPES	S & ALTERATION		LOC			e e la	FRACTURE	20 22	BOTTOM DEPTHS LEACH CAP O'		E			ASS	AY RES	ULTS	
	•		to C.	101101 1.01101	- Velia - Velia - Arts	WIELN	••••	CORE AXIS	TIMA PYRI	LIM. ZONE 130' SUPERGENE -		C	ROD	Sample Number	%	% Mo		Estimeted Grode
				27 2	- 				12 %	AEMARAS	128	7.	ļ	 				
		Cocina to						10 20	1									
		84'						40	1							Į		
								60 70 80	1									
			· 	┟┼┟──				90 0	<u> </u>			-						
				84				20 30			84							
		Mine Phase QD. 89-91	600	T	160° × 10	hle x 10 420	lim + MnO2 ×10 Chl-gtz- Kmal-cpy -lim.	40 50		Mod to Str Lim to 130' WK Lim continues to	27	20%	~~/		15	00.2		(.08)
		g +2 - chi- ser Shear	Str.	Ign.	1300	hie	lim. Mnoz-mal	70 00	0%	164 . mainly in fra	(t.)		8/0	10826	.13	.002	-	(15) 0X
			1-1	11	1 St 10	hlex2	lim - Mnoz XZ	90 0 10					40		<u>, 'ax</u>		<u> </u>	
		24	60 54-		, 48	16	lerry - mel - Min By	30		Lots of limiton		66%						1
		DK Alt Phase	ι.κ.		1950	hle	lim-mel- MinOz_	50 60	0%	fract			10%	10821	.26	1004		.0018
		- no saus alt		100	1300	Lee.	gtz-chl-mal	70 80							12/01			×e
		- wk to mo d fol-			600	hle	to the MAD2 - mal- lim	0 N				ł						
			600	ł	Box 4	Lex2	lim- MnO; XY lim Mnoz - mal x2	20 30	17			68%						. 68%
			Y.		20	Lie	t2- che-cp -11m.	50 60	10				107.	0823	123	004		'ev
			W.L.	110	80 X 2	1/RX2	Atz Vh. 1'm	70 80 90			109		· .		. 19.0			
					80.	Vzo	stario-lep-lin-mal)	e 10				ŀ						
			80		80x3 45	1/16	te chil- kmat -1177	6 0	07			90%	28%					,357
			+		800	7" \$	12- senshow - limsteins	50	~ (0		111		/	0829	18 .	112		
			5.1	1205	80 2	here g	the Un-limit we have the	0							12.08		[OX I

۰.		GRID_		1			GIBRAL 1	AR MINES		BOTTOM DEPTHS	<u>s</u>	1661	NO	01	AS5	AY RES	ULTS	
ROCK	TYPE	S & ALTERATION		LOG				FRACTURE ANGLE TO	176	LEACH CAP		Cara	ROP	Sample	1%	%		[
:	. •		L to Car reliation	Anterna.	Sirrefyle Volna Z to Co	width vala	11 A C C C C C C C C C C C C C C C C C C	CORE AXIS -FREQUENCY-	687 IM	LIM. ZONE SUPERDENE REMARKS	f	R.c		Number	Cu	Mo		Gred
		122 - 1441 ? - less chloute - no saus	ND		45 45 16-36 138	14 118 hle \$ 7 14	gt= - che - lim. mel - MARZ sta - che - lim. mel - fig. lim (str) X T gt= che - & mel - Lim) dia - che - & mel - Lim)	Q 10 20 30 50	07,	Ĺ	27	68%	12%	108 30	. 18 - 130 X	.002		• 0 9 04
· .		- arrow - II - Few narrow, gtz-see the shew 2000	- 	<u>/30</u>	173 60° 145° 70° 125°	hle hle 1/10 1/3 1/8	ftm MnO 2- ot see lin Holes nel of chl-mal- Lepr lim. It-chl-lin - gr mel gt=-cab-chl-lim	80 0 10 20 30 40 50 50 50 50 50 50	0%	- Fink Lem Stain	134	42% 82%	20%	10831	,09 .05cx	.002	,20 ,150 x 350 x	.09 •×
		169-184 Nwk Saus Altm. arading towards a	64 × 10	140.	16 70×2- 15° 70×2- 80° 80 10°	1/8×2 Ne V8¥2 3″ V9 Z	gt - ch - ser lin - magin lin - MnOz gt - ch - cer lin - magin gt - ch - cen lin - cp py 12 gt - ch - p-py 120 gt - ch - p-py 120 gt - ch - p-py 120 gt - ch - co - py 120 gt - ch - py 120 gt - py 12	90 0 10 20 50 40 50 60 70 80 80 80 80 80 80 80 80 80 8	.15%		142	91%	22%	10832	.13 1020X	<i>0</i> 02		.09
		for the pr Levely Shear . - a gryish as	Str. 80° Mod.	150	30x2 16° 60 x2 45° 70° 70 x2 70 x2	¥6×2 hee 1+11/2 ¥4 ¥6 ×2 1/20	Ann . CHI VAS - //m - CHI-CCP3397 gh. (La - Carb - cp gh. (La - Carb - cp gh. (La - Sar - py - cp) Gt. (L - Cus - Carb - py - p)72 gt. (L - Cus - carb - py - p)72 gt. (L - cus - py - cp)	90 0 10 20 20 20 20 20 20 50 50 50 50 50 50 50 50 50 5	.)?		152	96%	30%	10833	.22 .6/14	.012	-	.12
			60 + 709 Mod to Sto.	163	70 Y 5 45 Y 1 460° 150° 160° 160° 170 170	1/16×5 1/20×1 hle 1/16 Y/6 Y/6 Y/16 hie tz	and the and a provide the second seco	40 0 20 20 20 20 20 20 20 20 20 20 20 20	. 15%		162	100 %	69 %	10839	. 17 . oloy	.008		
			70° 1 ad		65° Box 2 Box 2 Box 2 Box 2 Hox 4	V# V16x2 116x2 114 V#	12-16. 00 - 600 - 17 40 gts - chl - 16 - 16 - 100 - 37 12 gts - chl - 20 - 20 - 27 gts - chl - 20 - 27 - 27 gts - chl - 20 - 29 - 27 gts - chl - 20 - 29 - 29 gts - chl - 20 - 29 - 24	0 10 20 30 50	.10%.	<u></u>	<u>רי</u>	97%	76%	1:355	. it:	. 004	.¥ 3155	.02 (12)

			GRID						<u> </u>	1	BOTTOM DEPTHS	1	1		с.,	ASS	AYERES	ULTS	
сх	TYPE	S & AL	TERATION		LOG		-		ANGLE TO	976 D	LERCH CAP	4	Core Core	R 0 0	Sample	7.	%		Eatin
:				L 10 Cor Fellation	All scalles	Sirvefyre Volni .2 to Co Auli	width Vela	111n	CORE AXIS -FREQUENCY-	MI 153	LIM. ZONE SUPERGENE REMARKS		R+c++++y 7,		Number	Cu	Mo		5
-	-	184 - 2 WK S	2) auc (11 ~~	70° Mod		45 70 70 60 45	14 18 8 11 14 14 14 12 10	Atz Vo- carb (cht-1P) otz che op - ccarb) otz che op - ccarb) otz che op - ccarb) otz che op - ccarb) otz - su che op - cchinge otz - su che op - cchinge otz - su su - py - cchinge	0 10 20 50 40 50 60 60 80	3%	ep blotcher.	182	91%	50 %. 190	10836	.10	.002		.09
_	· .	-and Bolia	dral . weatly	├ ──- ├	190	1 30°	110 110	gtz de - Lpy	90 0 10 20			<u>M2</u>	 						
				70° WK		1 50 1200	48 74 1/8	gta-de-sau-py-cc gta-de-sau-py-cc gta-de-sau-catepy-cpress gta-che-cate gta-sau-che-gy	30 32	.2%	concollagyy		96%	40% 200	10837	.08	.002		.,
_	```			┝╼─┼	1203	4 4 0 A 1 20°	15 "	small fault zone - rubblegg	90 92 76			201	 						
				70° W.K.		50°	1/16 1/12 4/2 1/4	ota-sur-chl-py to-chl-py-lup>>. pla-chl-sur-Learb7-cp. Boudinged an Vn-cht-cab-cp	20 30 40 50 50	.3%		207_	99%	67%	10838	.10	.002		. 0
			. <u> </u>		210	1450 130°	1/16	the che au py	80 90 0				75%	210			·		
				70" WK.		70 130 870 7031	1/2 " 1/200 1" 1/6 × 1	pt= an and charp f pt= - chl - carb = Py Ote Vn. chl - ser-carb = P pt=dd-aco = P × A	10 20 30 40 50 60	.25%		218		35%	10839	./3	.004		
					220	60 135×2 60	1/20 × 2 1/2"	ate de lim & Z	70 80 50					220				./2	
		221-225 alt - ep str 226-228	Zone of no saws DE Alton The read	N0 +- 60*		130° X 2 70° 60°	18 × 2- 1/20×2 1/4 1/2	gro-chi-can-py y # Band. Che K-san. du-py-pac fra. mag-sur the gta-mag-sur the gta-sur-mag-chi-cp-py	10 20 30 40 50 60	. 4%		178	88°/	45%	10840	. 30	.008	12	. •
		972 Chi- - 051 X - 220 - 23	Ser-shear 5	217	230	070° 125	6 " // L	atz Vo - Lan. White combod - cp-ce	70 80 30				26.1	230					
		2000 W Sogre go Bands 0 23 5 - 2	the strong the of matico v. dk chill of vit gra-di- pt come	10 1 10 10		1 20° 1 20° 1 5 1 5 1 5	V=+×4 3/4 4/9 4/15 1/4	of sude py tops - him of sude py tops - him of a che - anto - su p. py of a che - anto - su p. py of a che - che - py of a che - py	10 20 30 50 50 50 50	.z],		238	607,	45%	10841	.20	.±06		

)

)))		
		GRID_				N. LA	GIBRALT	AR MINES	LTD.	an a	۱ ۲	IOLE	No. <u>86</u>	-37 4 of	8			و تو و به در
من ذرق رسینی محمد محمد محمد محمد محمد محمد محمد محمد			T	GRAPH	ud		Γ.	CRACTURE	0	BOTTOM DEPTHS	1			1	ASS	AY" RES	ULTS	
ROCX	TYPE	S & ALTERATION		LOG	:	-		ANGLE TO	are ure	LEACH CAP	4	Cara	ROD	Sample	1%	%		
			L 1. C. Fellatio	Autorion. Footoor	Sirvelives Volu	widin Vala	il a state of the	CORE AXIS -FREQUENCY-	141 %	LIM. ZONE SUPERDENE REMARKS	Feetes. Block	Rocovery %		Number	Cu	Mo		Grede
			to" Mod		100 145X3 120145 145X2 30	1/4 414 × 3 1/20 × = 1/16 × 2 1/16 1/2	Ph. ser-chi-cp b-da - PV Pr-chi - chi - pr-chi - chi - pr-chi - cp f	0 10 20 30 40 50 50 60	18.		245	83%	56%	108 42	,23	.018		. 45%
· · .		249-255	to 54,	250	10°	6 " 312" + 1/2"	gt ser . ichl py-ep> ot vh - ber-cp-in-mo)	70 80 90			<u> </u>		250	ļ				
		9, +2- ser the Spen 2mg	50- - 60 84-		60° 30 720 7 10°	7 ¥="	Optim. chl-ser. carb. go-spy) gf = - and - gr-gpy gt = chl carb - gr-gpy gt = chl carb - ar - cp gt = chl carb - ar - cp	0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	.7%			1770	6s%	10813	1.08	.006		.702
		V.WK to No Saws At ~ - no incu , in de .	65° WK	260	68 30 X Z 1 10°	142° 1812 14	On Vn. ser-chl-carb - cp-(p) pto-chl-mat-py-p. pto-chl-mat-cp-mag pto-chl-ser-cp-py.	90 0	 	the state	259	96%	260					
	-		~ 60 N/K t-		/ 30 / 30 / 20 / 20	1/2 1/4 1/2 1/2 1/3	gra-11-20- 40-94 gra-11-20- 40-20-497 gra-12- (arb 20-20- 40-497 gra-14	0 20 30 40 50 40 70	.37	> Juy uni to fait	268	100 %	74%	10844	, 25	,006	.42	30?
		Sturger Saul	Mod.	270	60×6 130×2 160×40*	1/2456 Blex 2 1/242	g to.chl-cer-py-cp \$ 6 g to.chl-ser-py x 22 G to Un-cerb-mag-26107 x 2 G to Un-cerb-mag-26107 x 2	ęо 90 0 Ю				92 %	270				33.65	
			60° Mind		60° 10° 60°	12" 1/6 12" Y4	Leworkhicknes. H. top (1) - sor (1) pt - che carb. on - py-cp. p-sor - 11:13) Shar - py-cp. to Va - L sar - carb of to 7-py)	20 30 40 50 60 70	19.		278		70%	10845	,31	.004		.36%
				280	30" 75× 2. 6• × 3	1/2 1/842 1/4	gtz ch3. carb. cp.py. 449. 13-ch1. carb - cp.py. 449. gtz.ch1. car py - 18 + 3 tz.ch1. car - carb - cp.	30 30 0 10				1.0.0%	280					
			Lo. Mod.		50 30 13 30 13 30 13	r2 1/20×3 18×3 Au	to dirac - carbo - p> tach, so - py - p × 3 tach, so - carbo + 3 tach, so - carbo + 4 tach, so - carbo + 4 tach -	30 60 70 50 70	. 7 %		288	(**);	יירר //-	10846	,21	.004		. 30 /
				290 /	60° 20	1 /4 1 /4 1/4	Gt. L Cash				-+	ŀ	210		{			
		None h Saus Alton	60° Mil		5° 60 45°	$\frac{1}{3}$	the chi- and - copy m chi- carbo de - copy to Va- chi- and - vap - copy to Va- chi- and - vap - copy 7		. 20%		298	95%	60 %	10 847	. 21	.006		· 16%
	,	Ser ale textured GD		300 /	35°	1/20 9	tacht-ser-py 3	0			[2	300			1		

E

-no dear. in chi.

		,								`))		
		GRID_					GIBRALT	AR MINES	LTD.		1	HOLE	No. <u>86</u> No. <u></u>	- <u>37</u> 5 of	8	and Na santa		
**			1	GRAPH	id	T		FRACTURE	0	BOTTOM DEPTHS	<u>-</u>		.[ASS	AY RES	ULTS	
ROCK	TYPES	8 ALTERATION	L to Core Follotton	LOG	litutive Velne L 10 core Aele	width of Vola	1	ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATE % PYRITE	LEACH CAP LIM. ZONE SUPERGENE REMARS	7.00101 7.00101 8100101	Cara Recovery %	ROP	Sample Number	%. Cu	% мо		Estimeted Grade
		- fever zones et mora: normal terhuid sous. all d 2D	6.** U.NJK N 0-		70 ×4 60 × 2 1 5° 3 = 2 ³ 7 40 7 20×1	1/10 ×4 y 4 + */10 ¥8 1/16 × 3 1/4 1/20 × 4	ofter cal an - co XY for all an - co X = ofter all and - (co b) Loy - co X ofter all - (co b) Loy - co X	0 10 20 20 30 40 50 60 70 80	.01%		<u>308</u>	98%	37%	10848	.13	.006		-16%
		·	60 10K	3/0	120 120 120 120 130 X 3 15° 15°	14 1 4 1 4 12 14 14 11 11 11 11 11 11 11 11	at i de que e con con con so	90 0 10 20 30 40 50 9 9 9 9 9 9 9 9 9 9 9 9 9	.10%	· · ·	315-5	\$8°/a	65%	10849	. 23	.014	,22 5,520	. 28,7
			Mod	320	60 X1 95.2 50 80°	410×4 1/2×2 3 1/8	pta chi ser-ep louby XI the chi ser-ep louby XI ta chi sen Sh - 40p7 starchi can op	20 20 20 20			322	69%	320					3
			800 WK		45 45 70 × 2 70 × 3	10 1/3 3'' + 11 4 11+ 410+'/4	1	30 40 50 60 70 80	0%		328	100%	177. 330	10850	. 18	004 1		. 332
	3	en-346 DK. Chior, ^J ic Alt. Zne	20- 70- V/K H	330	2•12 30 50 70 60 5043 0	<u>V/4×2</u> ¥20 3" 1" 12" 1/2" 1/4	12 - 201 - ch - p + 2 ft- ch - pt - ft- f ft- ch - per - cart - p- py ft- ch - per - cart - (p- m) ft- ch - per - cart - (p- m) ft- ch - per - cart - p ft- ch - per - cart - p ft- ch - per - cart - p	90 0 10 20 20 30 40 50 50 50 50 50 50 50 50 50 5	.2%.		338	90%	47%	10651	.24	.008		. 305
		42-265'	Var. UK	310	60x2 30 70* 60 30 45	1/3 × 2 1/2 1/2 1/2 1/2 1/2 1/2 2	otante en cove de roba cai su popy fra costa actos po gra de arra- po gra de car - po	20 20 20 20 20 20 20 20 20 20	. 2%		346	84%	23%	10652	.26	,		
		912- CAI.Son + 912- Ser-Chi Stours.	11 2017 11 5	350 8 /	5 0 6 ~ 30 1/40 45° 45° 15•3	2" 12" 13 14 y 3	to an other and the set of the se		.05%		<i>\$59</i>	81%	350	10653	,/9			.2:7
	31	55-360 Nighly Alferd - Recemented Is mantal rillion's commit	40° 547	3/0	16×92.	Ya	the own in the child of the		• "		358	120%	360				·22 3275	

V

-

))))		
-		GRID					GIBRALT	AR MINES	LTD.		ł	HOLE I SHEET	No. <u>_86</u>	<u>37</u> 6 of	8			·.
			1	GRAPH	uc	1		FRACTURE		BOTTOM DEPTHS	T		Τ		AS	SAY RE	SULTS	
ROCK	TYPE	S & ALTERATION	: :	LOG		-		ANGLE TO	ATE	LEACH CAP	 .	Core	ROD	Sample	%	%		- Estimated
	• .		L 10 C		Stretiv	width Volt	111	-FREQUENCY-	M1123	SUPERGENE AEMARKS	footes Blocce	Rocavery 7.		Number	Cu	Mo	ļ	Crade
		340 - 371 Gtz.Ser- Chl Shear.	60 - 45° Str.		60 51. 70° 51. 70° 51. 70° 70° 70° 70° 70° 70° 70° 70° 70° 70°	41 2'2-2 4 1 1 1 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2 2	gtz its - and - of iss. gtz and - of gtz and - of gtz and - of gtz all - an - of mo gtz all - an - co + 2 is all - an - co + 2 is all - an - co + 2	0 10 20 30 40 50 50 60 70 80	3%		368	100%	35%	10654	.40	. 0 14		.40% H:MSz
	• . •	Some to contract taxid 371-304 Amistace of the Some CH Show as ebseve -Some dr. alt a -Some dr. alt alt a -Some dr. alt	70 Mad	370	/ 20 / 20 / 50 ¥ Z- / 30 / 70 / 30	1/2 0 1/2 + 1/0 1/8 1/0 1/0 1/0 4 m	1/2 - ch/- ser. cerb - cp c/2 Vh. cerb. cen. ch/- cp y - ser che. cp × 2 g 12 per - ch - cp + 2 g 12 per - ch - cp + 2 g 12 - ch - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - cerb - p + 2 g 12 - cerb - c	00 00 00 00 00 00 00 00 00 00 00 00	.4%		378	967.	10%.	10655	.28	.006		.37%
		WK,5aus. 47.D.	To Moh to ND	330	60 60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	14 1/8 311 1/10 1/2 0 311 1 1 4(+ + 3	At va-che-cap. (me) At va-ceb cht op 4 per sou py Shear (mo) 6 to the cab che of 6 to the cab che of 6 to the cab che and 9 the to cab che and 9 the to cab che com cach X3	90 0 10 10 10 10 10 10 10 10 10	. 6%		385	917. 807.	20%	10656	. 16	.006 1		: 17 2 4: M.S.
		1941 - 415 - Bainly a Dtr. Cht - Saw Stree Zone	UD to To	390	4 20 1 5 • 20 20 20 20 20 20 20 20 20 20 20 20 20	1" V 8 V Z V 10 V 2 V 4 V 4 V 4 V 6 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10	(At the call de long	90 0 20 20 30 40 50 60 50 60 50 60 50 60 50 50 50 50 50 50 50 50 50 5	0%		<u>391</u> 3 <u>98</u>	912	16% 100	10657	,23	.024		22.7 Hi Mo§
		-greace into DX AHI in places & para fragmental? . hota QD- weakly sauso	4:; 5: WK 591	100	80 76 80 80 70K 1 60	18 12 12 12 12 12 12 12 12 12 12 12 12 12	12-cl- and and control con 12-cl- cart meg allo 12-cl- cart meg allo 12-ch- meg allo 12-ch- cart - cart 12-ch- cart - cart 24-ch- cart - mag 24-ch- cart - mag 20-cl- cart - the rich	%2 0 10 20 30 40 50 50 60 70 60	67		408	867.	28%. 110	10658	.19	, 008	• 26 323.0	.127
		115 - Ald Logicoconfilia Phace - Social	75° 54v 40	410	80 10 1 2 70 60 15 80 30	12	<u>gto-ser-ch-co-cw2</u> (7+z V.s. (my and) grod-groz 17-z V.s. ser-ch1-cp-m2 17-z V.s. ser-ch1-cp-m2 17-z V.ser-ch1-carb py gr 17-z V.s.	30 0 10 20 20 50 50 60 70 60 70 60	s.f.	late of x-catting for	418	887.	18%	10 65 9	.10	.004	an terret	.10]
		<u>12 - Ave</u>	<u></u>	1420) 1420	30	evi 🖂 E	Anici tin gg											

ROC	X TYPE	S & ALTERATION	1	GRAF	нц	1		SPACTURE	1.	BOTTOM DEPTHS	<u>) (</u>	SHEET	No	of	<u> </u>	SAY RE	TC TC	
:			L to Core		Sirveirre Veine L ie Core	width et	Ula cesta ette	ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATEI " PYRITE	LERCH CAP LIM. ZONE SUPERGENE REMARS	Foolege Blocer	Care Recevery 76	RQD	Sample Number	7. Cu	% Mo		- Estimate Grade
		Ate. Chi-Se, Sion, wy horrow zones of Unshared +y-wksees olt.	υÐ		6014 37.	1/20 X 9 31 V/6 12'' C	Brokencore - 126/2 - alon x4 Brokencore - 126/2 - aulo. 1 - a - ap Rubble - cais hom stain.	0 10 20 30 40 50 60 80 80	07.		42.8	65%	9%	10660	<i>.</i> јЗ	.004		.107
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4.40	45° 145° 145° 145° 130 145° 15 150° 150°	41. 311 42 1/4 1/3 1/20 1/10 2 2 4	an direction and - lep 2 for all an - deposition mas give the deposition give the call of them? give the call of them? All par pay phrase	20 0 10 20 30 40 50 50 50 50 50 50 50 50 50 50 50	1%		<i>438</i>	9%	430 9%	10661	.16	.æz		. 15 2
			60° 5/4.	450	30 30 80 80 70 X Z- 10	120 3" 12 12 12 12 12 12 12 12 12 12 12 12 12	(1) in align py - (spm) g/2 df - cp. fa- ca. call - py mo g/r, /r - clo - m. call < gp g/r, /r - clo - m. call < gp g/r, /r - mo - (sp) + 2 g/r, /r - mo - call × tp g/r, /r - mo - call × tp g/r, /r - cho - m - call × tp	20 0 20 20 20 20 20 20 20 20 2	1.		14.8	80%	43%	10662	:32	.014 1	.18 3185	. 20% #: MS2
			7° Str	-140	15° 70 70 + 2 90 60 60	1/8 2 1/8 2 1/8 2 3	ates, pj-p-kellonbo ate-che la-co ate-che la-co ate-cond x=3 ates-cond x=3 ates-cond ates-con	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.11%	-	153	89%	23 %	10663	,25	.014		. 117
-		12. Bukant toi. 162-495 Maria Riwollan Stear M/ MMAN Zone J St. Hol	10 10 70 70 10 10 10 10 10 10 10	1.1 20	20 70 70 KV 1 513 6 0 1 2	12 1 1/4 1/8/2 1/4/3 1/4/2 2	Productor and a service of the servi	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 /	1.15 of Alto Sning 4 Recetting 4	16 3-	70%	43 [,]	0664	,15	. 5-4		·13]
		QD en cuity	Lo VX L		70 60 60 70 X2	1/2 2 1/4 2 1/4 1/4 2 1/4 2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	the last of provide the second		:/.	where of app in the Super-	75	105/	60%	. كەنچار	,, .	004		3.21

 TYPE	S & ALTERATION	1.	GRAPH	q		:	FRACTURE	۹ "	BOTTOM DEPTHS	_	E			ASS	AY RES	ULTS	-
		L to Core Follottos	LOG	Sirveivee Volni .Z to Core . Aiti	Width of	ularralizati	ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATE % PYRITU	LEACH CAP LIM. ZONE SUPERBENE REMARKS		Coro Rocovery 7 0	ROD	Sample Number	% Cu	% Mo		Cation Cro
		700 WK 40		70 70 X 2 96 70 80 X 2	12 6"+7" 1/10 10" 344 ×2	At- Un - nog - a on ep gl + le cp Eliser × 2 gt = chl - cp at all - se ip Shear Ote Un - cavt- mag- p × 2	0 10 20 30 40 50 60 70 80	0%	2	185		56%	10666	.20	.004		- 31
 · · ·	<u>.</u>	80° 51.	490	80°	18" 5'	atz-del- an mag- rate	90 0 10 20 30 40	. L.I.P.		195	63%	490 36Z 195	10667	,20	.010	02. 140 <u>-</u>	. 20
	E. p. H. & 195						50 60 70 90 0	 	m.R. Show								
							10 20 30 40 50 60										
 							10 90 90 0 										
						6 7 7 9 9 9					ŀ						
						100 100 100 100 100 100 100 100 100 100											

)))		
		GRID_		-			GIBRA	LTA	R MINES	LTD.				HOLE SHEET	No. 8	<u>6-38</u>	8			
	OCATION	618E - South MO 25-Aug - 86 LTTD 26-Aug-86		\$EM LENG PIP	ти <u>50</u> °	8°	۵۲۱ ۵۶۳ ٤۱٤۲	TUDE	46624.1 47525.2 3616.0	5 N		CORE SUE	N. Q. Y.	01. relix =10'	· P .	c	occco m wre <u>3/</u> -	MR.	7	
ROCI	K TYPE	S & ALTERATION		GRAPHIC					FRACTURE ANGLE TO	ATED .	BOTTOM LEACH CA	DEPTHS P 129'		Lotimeto Core	ROI	Sample	AS	SAY RE	SULTS	1
1			4 4 4 4	Anitani Anitani Strve	7 7	i i i	13 January		FREQUENCY-	41123 (4 %	SUPEROEN AE	E -		Rocover, %		Number	Cu	Mo		- Estimated Crade
		Cosea : 0 103.						<u> </u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											
	· · ·	4 24 20		103				80 90 10 20					103		10.3				· · ·	
		Mine Plase CAD 103-123 DK. Alt - iner. in	60. 70° 54.	10	15 15 15	hte hte 5 M hte 1/2	17 41- mal-lim lim frankel) hin Sher gtackf. mal ate ha - 443 - limstain	999932838		0%	kim. str. mal wK	to 141' to 152' to 175		82%	21%	95951	.18 ,130¥	.002		.03% 4.
		mine phose - no sous alf.	60° M.J	13	5°	1/4 1 1 Via	(Jte Va. lin - M. O. Ote Va. lim - Mala Ate Va- 1m-Mala (40 - ofter Mala - te Al-coup-Maan	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0%	e officet i	, chlositic	<u>1/3.5</u>		53%	<i>15</i> 952	.08 1275 x	.001	,15 ,107 3500	.02%
				120 1 20 1 26	5° 17/5- 5	NR 18:2 1/20 14	grade Made mal. terche suger Made X3 Made grade 6	2 90					122	78%	20					0K.
		123 - 170 Oh-Sur. Lethiy Short	70" 51:	130 130	, z	18 1/20 1/642	the der viers lim frade viers lim frade 200 by how the set te lim +2 Atrace del him 200	30000000		(.01%				100%	22%	<i>9874</i> 5	,20 .120x	.002		. 01 7
		7.	o*	145 60 130	0 4 4	la p	Alt Vn. 1im 12-Ch9- ains-incel	0222000		35%		· · · · · · · · · · · · · · · · · · ·	.22	< <i>? °</i> ,	8%	95754	. 39	, out		.06%
				110 000	13 1/	lox3	x ser - py lim x 3	70 80 90				·	138	/-	10		24 * 1			. °V .

and the second secon

i.

				• •															
)				•)			$\sum_{i=1}^{n}$)		
			GR	ND				GIBRAL	TAR MINES	LTD.			HOLE SHEET	No. 86	<u>-38</u> 2 of	8			
	ROC	K TYPE	S'S ALTERATIO	N	GRAPHIC			<u>.</u>	FRACTURE	0	BOTTOM DEPTHS				<u> </u>	AS	SAY RE	SULTS	
•	-	. •				A11 4	÷ .		ANGLE TO CORE AXIS	MATI	LIM. ZONE	\dashv	Cor.	RQI	Somple	7.	%	<u> </u>	Estineter
				4	A1100	л <u>х</u>			-FREQUENCY-	1.23	SUPERGENE REMARKS		7.	'	Number	Cu	Mo		croie
					701	2 110 + ;	120 Ste 11	-blact cha? - py kips - lims	2 0 10 20					1	+		1	<u>†</u>	+
	•			60 70	+60	¥ 6 1/10 X	6 stz.	per-che-pt X6	30	34			52-16	20%	95955	.40	.006		. 087
		алан 14-2		st.	-80	. 1/4	di	tala cp-lin -py	60 70	10		147		-	/5/02	.100×			
	·	· ·			150 60	1/5	Arz	mag	80 90				4	150		<u> </u>	ļ	ļ	ļ
					45	• z	ph.	Va - may - scp= - lim.	10 20 70				9/9						
				Str.	170	he	the stand	su - Lehel) - (ang - P-PY)	30 40 50	25%				10%	95956	.05	1003	.24	.105
					1300	hle	\$ 1.	mag-ac reps	60 70 00			158		- /				~ ·110×	
ł					100 100			sor may - py - Cp	90 0					160				3455	
				60	160	7	e tar	Le isp-lim-py-keps	20 20				95%						
				st.	11 -	1/10	tr.	ser- mag	40 50 60	.2				56%	95957	.05	1002		.097
					7.	11/10	sta-	arche - py - Lepers	70 20			168							v
1		1	Ate Sor Chi to Ote-Chi	.5.	19.12	Yio ke	der-	sa. angs-py x2	0 10			+		170				†	
			shear Zone.		- Tox 2	1 + 1/4	gte.	mag Lepix 2	20 30				95%						37
				70° Str.	160	420	aty a	herser qp	50	3/				68%	9595 8	,20	.005		. 126
Ļ					180 70	2'	12-1.	1 + Seis - made 10 pt Smar	70 80 90			118		0-					
-	·				15.	Y.g	pta .es	bl-rail.	0		• • • • • • • • • • • • • • • • • • •		ļ						
				100	15	1/8	Branch	Al-se- Py Greater In:	90 10	.3%			103%	977	0.10.59		_		05?
				Ste	50	1/8	pt-se	- chil-conb-py-				158		116	75757	, 06	.007		• • •
┝					190 160° x :	2 1/10 X Z	tet-	al-merent-py-cp						90				<u>ŀ</u>	
				50-	65	10	stert.	ser. M	o								1		
				ti.	160°	1/2	12 -0 19 12 -0	fit. an - op.					0) 10	07%	15960	03	003		054
					100x3	7"	12. pl	ucht py cop) 77	o o o	"		198		016	10100				
L		ł			1200 12 12 Z	Wiexz	191:- 3	he-py Be	<u>, , , , , , , , , , , , , , , , , , , </u>	l			20	a]

(

الي . الي . در المحاصر معين أن <mark>مينان المحاصر المحصر معرف معرف معرف الم</mark>اريخ . a de la companya de l

							、 、											
-)))		•)		
		GRID		_			GIBRALT	AR MINES	LTD.			HOLE	No. <u>- 8</u> No	<u>6-38</u> 3 of	8			
RC	CK TYPE	ES & ALTERATION	_ا.	GRAPH			1	FRACTURE	0	BOTTOM DEPTHS				T	AS	SAY RE	SULTS	
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		ANGLE TO CORE AXIS	MAT	LIM. ZONE	\neg	C	ROI	D Sample	%	%		Californi
	•		12	VIII V	7.	×	v I I	-FREQUENCY-	1.2	SUPERGENE		7.	"	Number	Cu	Mo		crose
					700	1/10	pta. chil-se - carb - py	0		ACM0403						+		+
			60 -		600	1/8	ets-chil- pu-curb-pr	20	. 34			93%					.08	1.5
			Stv		70	120	Sheche-see- Pl She Vencert - folder + facelbd	50					53%	95961	1.08	,003	3410	06/
				2/0	75° × 2	1116x2	gtzchl · vugo pyx2	70 80		Note: Estimates	208	3	4	1				
	1	Smettlic Zone	<u>ч</u> .		80×3	410 ×3-	9tr-chl- som py x3	0		10w - cp a long chlori	lic	-	210	+			+	+
	1		6.	F	80	1/24	Ot In-pyper-chity	20 30		slips does not show on surface of core	19	93%						
			-70	III [70	1	gtrought - py-cp.	50 50	. 30%				80%	9596Z	1.32	.002		· 13-7
			811	22 4	700	,,,	gtz-sen-che - wageti	701 801			218			1				
				1 P	50°	118 0	gtz. chl- m. pt	90 				1	220					
				II H	70×9	12019	g /s. dr. sa -cpx4	10 20 30				100%						
			5 fr.	11 H	75 °	2" (gha-ser eppy . eehD. ((a?))	40 50	15%				824	95963	1.17	.005		.267
					70*	1/8	stz.carb-chl-py	60 70 : 20			228							
	+	230 - 24/	+ - +	230	30 70	1 1/ A	Chl. gtz- Lpys-LLCpsz,	80			- i		230				<u></u>	
		Loss sheared zone		II F	0	1/4	giz che mag	20				14						
		Zones of v. wk Sous	Red		50	12 1	stz-chl. aub-may. 34	0	.29%			104%	921	95964	.09	,004		.15/
		grading ento	str.		5 12	116 x 2	Hy-che-Hy Lippin 17	0			238		12%	, ,				
	╂┈┯╌┨			240	· · · ·	(a)	12. li in cp	0					240					
	P	V. WK Sour All AD		1 1	• []	14	the children to sompy-with	o										
			86	1 100	/	l s	taddie b- co-py		-1			96 %	20%	95965	.,	1107		242
			~~~~	1 100	×2 y	4,2	terstor-chl-py To		2011		218		10 10	/-/-	-//	1002	.16	2.5
	┢╼╼╌┝			250/14	<u>se y</u>	8	state filial - cp	2					50				3365	
				70	ve j	16 V Z	4. 21. py ra 20						ſ					
			10- 49 ⁰	1601	2 11	2" 8X2 8.	te ser all-rait py - 4 py - 4 py - 4 py - 4 py - 1		51			100%			15	mal		. 7 .7
		El ano de la companya	Mod	10	12 41	12 8	t2 dil. cp x2 60		~ /		1990		8/% 9	5966	') ('	$\omega T$		م
L		ring granes 51		260 - 60	1/2	, E	1 sh an and a com			ł								.

		)					)			1			N. 91.	. 20				
		GRID					GIBRALT	TAR MINES	LTD.			SHEET	No No	<u>20.</u> 2	8			
ROCK	TYPE	S & ALTERATION		GR	OG		1	FRACTURE	0	BOTTOM DEPTHS		C			AS	SAY RE	SULTS	
	. •						•111 •	ANGLE TO CORE AXIS	MAT	LIM. ZONE		C+++	ROD	Sample	7.	%	- <b> </b>	Eatie
:				NIL O		. <u>*</u> *	- I I I	-FREQUENCY-		SUPERGENE REMARKS	f 014	7.		Number	Cu	Mo		5
		· ·			- 80"	"z 18	pte-out cost mog-le op2	0										
			10-		70 × 6	1/8	otzow.copy.	30 40				105%	120/	95967				. 20-
			Mad		250	2"	12 del. Sev top-py Shear	50 60	•36		1.0		60%		18	,006		
					70 650	14	ste-che-car (mag-cp)	90 90	1	]	268		270	-				
		271-279	-1.	Ш	60	1/4	ate Un-cht-corp.sor.py-ep	0				1		[				
		Jaus Alt AQD - MCH IN gtz_ 35-40%	700		50	1/2-	to sor chi- earb- py-cop	30	1			100%						
		-has dK fracture envel	PB WKh		160	1/2	fitz-ep-chl.	50 50	.110				8Z%	95968	1.15	.006		.210
		4 Shear tons.			55×2	1/8/2	1/2-cil-carb-cpxz	70 20			278				1			
		1279-295' March materia	1	$\prod^{n}$	165	1/2	gta-cht- carb -py	90 0					280			<u> </u>	<u> </u>	
	i	wy some remnanto			16.0	18	gten sen ch/-py-ceps	10 20 10				97%						
		of the above rock	4.		70 10	44 1/20 x 2	the de carb py x +	40 50	51				100/	95969	.12	1005		.17%
			Mid		TOX2	1/2 × 2	Apta-ser-Env-chtearb-pytop.	60 70	.36		288		60 /0	,				1.6
				29	14	V8	totall cubip	90 90					290					
					5.	12"	te. on Show Liche 2- of the)	0 10 20				2-0/	1				. 15	
			60'		80 12	3" + 1/2"	Gie la ser-py-cp-momog X2	30				937.					3320	
	ľ	9 3 43 Q12 - Sa. Lehg. Shows MAg.	Str.		ake Dat	4	pte-an-ry (chi) pte-in-chi-ser-carb-py-up)	50 60	12				58%	95970	,20	.012		.24
	1	to ah de su then		1200	60	1/2	offeren - like center - py	80 90			248		300					
				Π	500	1/2	Die Va. caro- per. r.W. co-mo. py	0		······································		ſ						
			60		-80	1/10	tra. de-Py	20 30				105%				_		2.5
			Stil		70 × 2	1 - 1/9	Ita. su-che carb. py-(cp)x2	50	. 67,				78%	9577/	516	1005		-~
				. 	6015	12- +5	gtrode ou sail-py-p-ilim	70 80 1_5			308							
-+-			†		80	1/11	Alte chil. chilo - op				+		510					
					100	1/8	ptam-cht. 100 b. py	No		11		991						
			6		60 1 10	Here in 1	the de en-PYY2	0	.5%	op. or caronine		11/	83%	95972	. 10	.004		·277
		·	5tr.	1	17512	1. ot 1/5	Din militax2	0		- ipo	318		0010					

and the state of the second second

an han an an an an tao an an tao a

)	)	)	)
GRID	GIBRALTAR MIN	ES LTD. HOLD	No. <u>86-33</u> T No. <u>5</u> of <u>8</u>
ROCK TYPES & ALTERATION GRAPHIC	FRACTUR	E G BOTTOM DEPTHS	ASSAY RESULTS
	ANGLE TO CORE AX	IS S LIM ZONE	re ROD Sample % % Cationstal
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-FREQUE	VCY-	" Number Cu Mo Crote
7	20         21/4         71/2         1/2         1/2         0           10         He         10         10         10           70         He         9         20         20           70 x He         9         20         20         20           70 x He         9         20         40         30           70 x He         9         20         40         50           70 x He         10         10         10         10           70 x He         10         10         10         10         10           70 x He         10         10         10         10         10         10           70 x He         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	.12 .328	¹⁷ 88% 95973 .07 .002 .06 Z
5- 5- 54 54	60 44 gt - 20 - 1446 - 194 - 6 - 1446 - 144 50 - 140 - 120 - 100 - 100 - 100 30 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	12/1 992 338	1 73% 95974 ,16 .003 .13.
342.352 60- An-extension from Som St. Ens intermined St. Key 20160 of We Some	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· 2%	601 95975 105 .002 .17 /
Jact ". ] 350 to 352-135 . Btr chl. Der Synd	2. 1 Band, Oh the the magness 2 20 0. 18 grades act - Go Py 2 0. 18 grades act - Go Py 2 0. 18 grades ill py 20 0. 10 grades provided by 20 10 grades a bay 30 10 grades a bay 30 1	.4?. 350 100°	· 350 · 70% 95976 · 09 · 002 · 237 ×00
54 37 5 60	2×3 12×7 (Parcale Vary) 20 13 12×7 (Parcale Vary) 20 14 12 12 12 12 12 12 12 12 12 12 12 12 12	.10 ² , 363	80 % 95977 106 1002 .26 3 370 .
70° 547. 280 170 280 170	x3 1/843 1/843 x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2x6 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	. 20% 102% 378	87% 95978 · 09 ·202 ·31%

		) GR	ID					) GIBRALT	AR MINES	LTD.	)		HOLE SHEET	No. <u>8</u>	<u>-38</u> 6 01 .	8	)		
RO	CK TYP	ES & ALTERATION		GRAP	ніс			¢	FRACTURE	۵. w	BOTTOM DEPTHS	1			T	AS	SAY RE	SULTS	
		T					- I -		ANGLE TO CORE AXIS	MATE	LIM. ZONE		Core	ROD	Sample	1.	%	<u> </u>	Estiant
			4	Ailler Y et	, , , , , , , , , , , , , , , , , , ,	, P			-FREQUENCY-		SUPERGENE REMARKS	1.010 Diece	7.	"	Number	Cu	Mo		Croie
					15	1/2 V a	9/2	Vn. Lmag>	0	1			85%	;				-07	
-			4		25	18	23-1	voble-carb-PY	30 40	1.5%		385		34%	95979	lina	1000	3230	. 03%
			Str.		65 60 ×2	y16 14 x 2	gtz.	h1-py-cp sen- che-centery-upsx2	60 70	1							1.02		
				3%	60 % 3	V10 x3	- AL	the serverts - py vz	90 90	<b> </b>			82%	390	ļ				
			ſ		700	1/16 4 4	3+2-	che-pen-my-4	10 20 30	]		393		4					
			60- 80*		-80×3	1/10 X 3	gtz.	de py	40 50	.15%			90%	58%	95980	1.03	.002		· 11/2
			STF.	1 Ann	120		st2.	al-ser-py	60 701 80			398		-					
+		1			70	1/8	87	che carb. py	90 0					400					
			74 .	:	55.	11/10	12/2 12/2	-chi- per. go	20				92%	. 0/					1
			80° 51.		45.	1/2	gtz.	- chl- sev-py-cp	50 60	5%		1.0		70%	95981	.11	X,002		.20
		Fre Saus 20	_	410	70	1/20	etz-	nay-carb.	10 20 90			108		410					
					10.	11/4	Agtz-	an-and-py	0				1						
			76	11 1	80 x2	Yio xZ	atz-	che-py x 2 che-ser.cp-byxa	30 1 40	2%			105%	031		a ch	1002		. 10 /
		Few Saus 200	5 S.		80	hle	3/2-	dit-ep	60 70			118		101.	95982	.07			4
	<u> </u>			1920	700	V16	172.	cho-py	90 90 9			{		420					
					60	12	gtan	he ser py	10 20			ł	13%						<b>C</b> 4
			70° 5/4	Ł	60° -70°	14	1 Of 20	n-carb-Lal-ap)	0	.5%			100 10	78%	5983	,08	,004	.07	• 17/
				430	70° 18	14	ate s	Der- pj- (1)pj	0			128	{	4.30				3/85	
					50° 5°	1/20 1/20	late at	1- ply L-mog-cp	2					/00	+	†			
			70-		45 70° × 7	18	gtz.	chil. carb. cp.	0 0	.1		1	103%	acid					.199
		135 - 445 -Saur All'd QD. ~3514	80°		Be	1/10	gtz - se	will - py- Lep 6	0	.2/0	4	37		88%	5984	07	,002		10
	1	Entradeal fyp.		1101	50°	1/16	gtz- 4	u. cht. py			<u> </u>		4	40				<u> </u>	
							-	1											

			)	. ì			ł	· · ·	· · · · · · · · · · · · · · · · · · ·										
			GRID.	us dir o				GIBRALT	AR. MINES	LTD.	l Second and the second	1	HOLE	No	-38 70f	8		n Marialia	
<u> </u>		TVOCE	A ALTERATION	2.7	GRAPH	ucl		. :	FRACTURE	0	BOTTOM : DEPTHS	-	E	£		ASS	AY RES	ULTS	
		ITPES	ALICANION		LOG				ANGLE TO	IN IS	LIM. ZONE	<b></b> .	C+++	ROP	Sample	%.	%	· · · ·	Estimited
	:	•		2 to 6 Follall	Autorita Pool of	11. V.11	UPIN.	19	-FREQUENCY-	41 15 J	SUPERGENE REMARKS		7.		Nomber	Cu	Mo		Große
	-+-		· · ·			100 12	Ya x 2	3 t2-au-ch0 py. 1993 12	0				1004						1
				76"		4600	y	of de av may.	20 30				100%	50%	96985	4	1 102		169
1 ·	ŀ		445-447	Str.		150	1/16	Shart dit-ser py-up	40 50	. 2%		447			15/05				
			Leucocratic Dyte	ND.		176.	1/8	Stache ser py cp	70 80					100					
			147-962 Munily a 50115. Mark		150	70		strand py	90 0				70%	730	<u> </u>				
			wy dkalt menulops			160	420	atecht. PY	10 20		· ·	453	ļ						
			alound where in all	70		70	1/2	Otz-de- Str- GO-4017	30 40	1	· · ·		<b>.</b>	42%	95986	.05	,004		.23%
1			suite that they	≮. .≁.		120	1/2	2/2- phi-ser - carb cp- 7%	80 60 70	1000									
			brome chloritic	ND	140	Toxz	1/20 12	gtr-cht- men -py-cp +2	90				94%	460					
	·		N pericile c press		1760	80	12	Atz-ser-cht-cp	U 10										
		ļ	162-168 .		11	1 5x2	the "	carb + 2	20			463	<u> </u>						1851
			Bto che- ser Shandone			45.12	1×2	At the mac sut- 107	40 50	. 2%				30%	95987	16	,006		. 1%.
			up a few reminant	50 Str.		110	116	At May Vit - carb	60 70	·			85%				,		1
		F	168 - 47 2 St. s/sa	.	470	50	6	at men- 10/1 rentes price	20 32			1		470	·				
			wK sans. all & ap.			- 750	2	itz-cen-cent. ch - Pf-cip	0 10			471.5						.09	
		ſ	472-476 Lemocratic Dyka (1/2) currounded	70		70° 130	1/9 Na 4	te chi-avo-cp		1.1			00%	,	0.000	10	~2	3/40	.287
			by ata-sent ata-Chilsten	1		4 70 70	1/ #0 12"	ote-ser	0	1%			87/0	Z7%	95780	.78	.0.12		-
		[	Saus Altid Q.D. N/dk.	WF 17		45 X3	1 10×3	piz-chl-au-py-cp x3	10 30			478		480					
			alt envelopes around	<i></i>	180	16	4 "	aiz- cen-chi-pu-cp	0					100					
	· [		- Dick backs reworked	.		70"	78 //s	gte che servest lep 1	<u>ko</u>				80%						
		1	in places - slishing	70.		8	V4 9	Bond timbre carbe app	<u>o</u>	<.1				40%	95789	,17	. 002		1202
			1	ulk			,,,	aterne al-py-sp 7	0			488		10					
		1		red	190	80.12	Yy12	2/2. Alt. 11 21 - art (p) 12 9	0			╞───┤		190		{			
						800	1/20	ot- al- op	0									1	
1			-	n ²	1 1	800	Ve'	Di B. and di Lorig-corta	<u></u>	1			42%		00000	a			249
		[	6	,k	ļŀ	80.	11	Help-cade the sectops	0	%		400		50%	99710	.07	.002		4
						70	14	At 2. B. Car mar - 1. 5) 7.	0	ĺ		774		500					·

C

en en ser en la secta de la companya de la companya

in.

GRID	HOLE	No. <u>86</u>	- <u>38</u> 8 01		e Sector		1. C
				-		1. 3,55	
FRACTURE 9 BOTTOM DEPTHS	C+++++++++++++++++++++++++++++++++++++	시 31 15%3. 4	$-\frac{1}{2}$	AS	SAY RE	SULTS	9.18
ROCK ITPES & ALICATION	C+*+	ROD	Sample	1%	- %	· · · · ·	Estimited
-FREQUENCY-	7.	1	Number	Cu	Mo		Crole
505-508' - Qia-Chf-See model - 200 - 10 - 10 - 10 - 10 - 10 - 10 - 1	95%	45% 508	95991	.06	.004		. 15%
Carb Shear. Str 1082 1012 100							<b></b>
<u> </u>							<b>.</b>
							l
						•12	į .
TIL R. Lhon					ļ	3095	<b> </b>
	]						Į
							1 ·
			1		ŀ		
70 80					1		
	1						
70				ļ			
	1			1			ĺ
20							Į I
70							·
	1						
20							
							<u>.                                    </u>

		· )					)										)		
		GRID_		-			GIB	IRALT	AR MINES	LTD.			HOLE SHEET	No8	<u>6-39</u> 01	8			
	OCATION_G	TIBRALTAR EAST 10 27- Aug - 86 100 28- Aug - 86 100 28- Aug - 86	<u></u>	BEAU LEME 	ыне .тн	508' 90°		LATITUDE DEMATUR ELEVATX	<u>46,260,8</u> <u>47,250.3</u> <u>3604.8</u>	9 N. 8 E	CORE SUE	N, Q - 1 	W. "=10' 13 Some	2 07.05	ual roc	00000 m 478 10 Type	G.B. Nov. 6	B. 1986 altero	tion
800	K TYPES	A ALTERATION		GRAPHIC	1	1			FRACTURE	1.	BOTTOM DEPTHS		1	1	1		SAY RE	SINTS	ases.
	<u> </u>		3 1	LOG	334		1.1.4.1.0		ANGLE TO	ATE (	LEACH CAP	$\neg$	Estimeted Care	ROD	Sample	1%	%		
:			4 19 7 110	Felleri Allere Feetes Struct	× 4 × 7	191 W.			-FREQUENCY-	41 15 3 14 %	SUPEROENE -		. A.c.,		Number	Cu	Mo		Crede
		<u>Casing To</u> <u>80'</u> MINE PUASE QUARTZ DIORITE ?		80.					0 10 20 30 40 50 60 60 70 80 70 80 70 20 70 80 70 80 70 70 80 70 70 80 70 70 80 70 70 70 70 70 70 70 70 70 7		no limonite	80	100	87	96101				
		definitely not a typical Mine Phase - Possia different rx type-this rx. is also exposed	· wK	90					50 60 70 80 90							.01			0
	4	along the south side of Grante L. pit. Chief characteristic is a 20-25 % subhertal ro cuhedral block nb. xtls and 35-406 gts is annetist grassap	70 WK	100			no structur	re e	20 20 30 30 30 30 30 30 30 30 30 3	ø		98	100	81	96102	.01	6.002		٥
		$2_{2-1}R^2$ and . They appears usaking since and forms to $3_{2-1}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2-2}a_{2$	80 WK	uo			no minera	1302.00 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14		¢		<u>108</u>	4 S	÷2	96103	.01	£1002	. 01 2500	٥
		omplicity consector as in the hornal line Place (80 - 248) but see nate @ 180'	70 NK	120				পিয়, প্রত্যার দেশে যে হ বির্থানি বির্ধানি বির্		U		118	43	90	96104	01	2100.2		0

a series and the series of the s

.

		)							)				)						<u>}</u>		
-		GRID							GIBRAI	LTA	AR MINES	LTD.			HOLE	No. 20	<u>2</u> 01	8			
ROCK	TYPES	& ALTERATION		GI	LOG		•	Т	<u>i</u>		FRACTURE	0	BOTTOM DEPT	MS			1	A	SSAY R	SULTS	
	. •		10		••		1		1911		ANGLE TO CORE AXIS	MATI	LIM. ZONE	<u> </u>	C	RO	DSample	1.	%		Estimated
;			4	Celler Vile	71 2 Icys	۲	× ×		1111.1		-FREQUENCY-		SUPERGENE REMARKS			'	Number	Cu	Mo		crede
			7.	×	3.0						0 10 20 30 40 50 60 70 80	°		12.5	45	83	96105	.01	4.00;	2	o
		·	- 76 .wx							2 - 12 W 14 4 19 6 7 19	20 20 20 20 20 20 20 20 20 20	υ		138	40	87	96106	.01	(1002		o
		2½ leucocratic { 3one	80 WK	15	0				barren core no structure	5 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4		υ		148	98	80	96107	.01	2,002	101	0
			70 WK- Mod	1.6	45	:	۲.	93-p	04	2 2 2 3 2 0 3 2 3 2 3 4 5 3 2 3 2 3 2 3 4 5 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2		σ		158	વંદ	67	96108	.01	2.002		Þ
		smalı fault.	70 Mod	סדי	***		2'	39-1	bx + 1.51 lost core,	022329000000000000000000000000000000000		0		16B	50	23	96109	.01	1.002		υ.
			70 Mad	180	45		5.	ep-qt	.7	0223995007085		o		175	<del>ბ</del> 5	40	96110	.01	4.002		0

and the state of the state of the state

· · ·			) GRID					) GIBRALT	AR MINES		)	ł	HOLE	No. <u>. 86</u>	-39				
				1-	GRAPI	lici		T		1 1	BOTTOM DEPTHS		SHEET	No. <u>3</u>	of .				
ŀ	ROCK	ITPE	S & ALIERATION	1::	LOC		:		FRACTURE ANGLE TO	11E 0	LEACH CAP	<u> </u>	2	200		AS	SAY RE		T
	:	. •				V 11	x ldth Vola		CORE AXIS	PYR	LIM. ZONE	- 5:	R . c	ROD	Number	10	10		Estimeted
				14-	22 2			Ē	-FREQUENCY-	2 %	REMARKS	1::	7.			.Cu	mo		
			From 185-190' the rx grades to a typical <u>Mine Phase</u> with the ioss of the bik hb. and a reduct in 973.	60 WK		60 4 4 33 x2 2 20+40+15	6" 120 10+720 10-70×3	9+3-ch1-px 9+3-ch1-px 9+3-ch1-pxx3	Q 10 20 30 40 50 60 70 80 90	20.5		186	98 85	23	96111	,0'1	L.0 0 Z		. ⁰⁵
			250% Chi. as ragged green frags. 50% savs plag 25% qts.	60 . WK		4) 4) 60 x 2:	γ10 12x2 2	qt3. chl-py 8p-qt3. 30ne qqbx	70 0 10 20 30 40 50 50 60	<0.5		191	90	40	96112	101	<.00Z	.01 34/0	.05
			·: it should be		200	à 4			90 j				0.0						
to Manaharan Arra			noted. also min- and veix structure also begins with the change in tx. type.	60 WK		30 ×2	Y10 x2	dz-chityxz		20.5		203	95	7	96113	.01	. 2,002		05
.  -					210	6 [ 16	YID	otz-cni-py.	0			211	· -					}	
				80 WK	220	15 5x 3 5a 5	¥10 ¥20¥3 ¥2 ¥10	9 - chi-py 3 99 x 3 99 x 3 99 ct3-chi-py 8 99 ct3-chi-py 8		<0.5		71.5	90	28	96114	.01	,002		. ⁰⁵
;			dx altin zone + min zoru.	80 114- May	230	50 30-40 5	72 74 72 3'	9t3 (2 9t5-carbxz (2 9t5-carb (2 9t5-carb (3 9t3-carb (3 9t3-carb (3 9t3-carb (3 9t3-carb (3 9t3-carb (3 9t3-carb (3 9t3 (3		< 0.5		228	100	23	96115	101	,002		.05
			strong carb alt'n		240 1	3+40+70	4-Y==3 12" 12" 54	ty-carb p bx. 20 p bx. 30 tr-qty-carb zone 4 80 80 90 90 90 90 90 90 90 90 90 9		0.5	a the service of pulse blue - the word	238	80	24	96116	01.	002	.01 365 .	, ə S

and the second secon

and the second second

	) grid_		_			GIBRALT	AR MINES	LTD.	)	1	HOLE SHEET	No. <u>86</u>	- <u>39</u>	8	7		
L DOCK TY		1.	GRAF	нісі	•		ERACTURE		BOTTOM DEPTHS		T	T	<u>_</u>	AS	SAY RE	SULTS	· ·
XUCK III	PES & ALIENATION						ANGLE TO	RIFE	LEACH CAP	-	Core	ROC	Sample	1%	%		
	•	2 10 C	All state	Sirvetiy . V 11	wien. Vel	110.1.1	CORE AXIS -FREQUENCY-	657 IM MI 72	SUPERGENE REMARKS	f 001030	R.c, %		Number	Cu	Mo		Crofe
				1 1 1 1	12'	qq + 3'lost core	0 10 20				17						
• •		60 str		60-10.	2.1/2	9t3-ser-chl-carb zone	40 50 60	<0.5	all co. arade is in the	244		27	96117	.40	.002		.40
	CARB. ALTERATION		250	?	3'	qt3-cp	70 80 90		qt3 vein (ie >1" solid cp)		94					· · · ·	
	ZONE (248-113)	•		60	Y4	qt3(vog)	0 10 20										
	some alt'n but nather	35 Str		70 X2	14 12	qtz(carb)xz	30 40 50	205		239		20	96118	.06	.002	ļ	.05
	the partial replacement of plag. by brown(pale)						60 70 00				100						
	plus an increase in		1 200	50 45	3/4	9t3 children by zone (series of	90 0 10							1			
	-also present is n	50 Wod		H		45° veinlets of vuggy carb. plosintervening by wall rx	30 40	40.5		264		- 50	96119	. 10	002		ەم.
	cnl.+mag - gen. plutonic tex-of	mou		50	Yıo	healed with chl.) ats-chl-py	60 70 20										
	the rx is perserved.	<u> </u>	270	70+96 80	<u>x</u> -x.	qt3 dt3	90 0 10				100						
	shows weak dissem. Py-cp generatly assoc.	40		-10	13	9+3	20 30 40			274		84	9/0120	.05	1.007		.08
	- the mag may form	Mod		L.	3 "	gts (finialy	50 60 70	20.5				57	1	Ũ	2,000		
	00 10 5 00 01 00	{	280				90 90 9			{	100						
		70			. "	along slips + hile	20 30 40			284		90	9/101	-7		.19 3320	0.8
		Nod			3.	brokin (t) (cp) Shears	50 60 70	20.5		239	25	10	ι ⁽ ει Ζ)	.01	(.00°Z		
			290	46 1 2	a" + Y"	q+3-2010	90 30 0				ŀ						<u> </u>
				+ 0 }	3	ata 2	10 70 10				100		1				
		70 *\6A		15  / 15 //	2	qt3-chi-mag (cp)		<.05		208		53	96122	.04	002		80 .
			300				e			-10							·]
	.3																

			)						)			)						)		
	-		GRIL	)					GIBRALT	AR MINES	LTD.			HOLE SHEET	No. <u>_86-</u> No	<u>. 39</u> z of .				
	ROC	K TYPE	S & ALTERATION		Gr	RAPHIC LOG	q		· <u>i</u>	FRACTURE	0	BOTTOM DEPTHS				1	A 5	SAY RE	SULTS	
				3		•		<b>4</b>		ANGLE TO CORE AXIS	TRIT	LIM. ZONE		C+++	ROD	Sample	%	%	T	California
	:			4	7 ell 7 ell 101		· · ·	2 2	ula.r	-FREQUENCY-	1153	SUPERGENE REMARKS				Number	Cu	Mo		crose
			with stronger	43 60 Mac Stu		310	40×2	hlexa 1/10	mag xz st.chlou(maa)	0 10 20 30 30 40 50 60 70 80 80 80 80 80 80 80 80 80 8	< 0.5		308	95	65	96123	<i>.o</i> 4	,002		.08
			becoming this is becoming a QTZ-CARB-MAG. Shear 3000	35 45 51- 51- 51-			3+ +5 44 35	уло У2 1 У2 У 4	mas (co) qts:chi-cato-py (co) qts:mag-cp chi-py (co)	70 0 10 20 20 30 40 50 50 50 70 70	<0.5		318	83	33	96124	. 10	.002		.10
			in an State State State State	35- bo str. Cren.			3+ \$0-40×1. 3+×1	74 73+1" 72+1	qt3-chi.carb-mag qt3-msg(cb)xz qt3-carb-cp-py hie shear	90 20 20 20 20 20 20 20 20 20 2	0.5		328	85	60	96125	.16	.004	.08	,14
			fault zone {	?	33		60 0	1° 6″ 14° 20° 2′''	qts.caris     64       brikin qts.cppi     12       brikin qts.caris     12       gts.caris     12       gts.chi.caris     14       qts.chi.caris.pr (cp)     16       qts.chi.caris.pr (cp)     16		1.5		338	20	0	96126	. z9	.002	<u>3275</u>	,15
1				70 Str.	3=1	- 70 - 70	*\$0 } >>> } >>2 } }	11 15 12 10 12 10	913. cate py-cp 913. cate py-cp 913. cate py-cp 913. chi-py *2 913. chi-py *2 913. chi-py *2 60 60 60 70 60 80 80 80 80 80 80 80 80 80 8		0.5		342	100	92	96127	.14	. 00 in		_15 •
				70 Nod	360	45+	+60+80 (' Y2	(6 10 (x ₂ + 1) ^x ₂ (10	atzman atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atzense atze		o. 5		352	(00	65 9	6128 .	12	/ 24 <b>2</b>		.12

. )	1	) )
GRID	GIBRALTAR MINES LTD.	HOLE No. <u>86-39</u> SHEET No. <u>6</u> of <u>8</u>
ROCK TYPES & ALTERATION GRAPHIC	FRACTURE	ASSAY RESULTS
	ANGLE TO CORE AXIS	1. ZONE Core ROD Somple % % Estimated
	-FREQUENCY-	PERGENE 7. Number Cu Mo Croie
70         76         78           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10         10           100         10         10<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88 59 96129 . 24 .020 .20
Au         From         Ya           70         3'         70         3'           80         70         10         14'           80         70         15'         10           1004- 15t-         10         120+10         12	direction         res	95 73 96130 .14 .002 <u>3230</u> .12
	97322 <u>80</u>	
$\begin{array}{c} c_{0} \\ c_{0} \\$	973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.carb.py 973.c	92 78 96131 .29 .002 .30
390 70 1" 23 70 1" 23 70 70 1" 23 70 70 1" 23 70 70 1" 23 70 70 1" 23 70 70 1" 23 70 70 70 70 70 70 70 70 70 70 70 70 70	413     3.04     0       913     3.04     0       913-carb-ep     41     0       113-carb-ep     41     0       115     10     10       115     10     10	98 98 40 96132 .86 .0.2 .50
fault tone ( 1400 to 6'	80	60
70 Nind 7 3*	33-23 20 30 40 50 50 0.5	401 54 12 96133 , 20 14 - 7 -10
	11 <u>100</u> 11 <u>100</u>	
413 7 3' MINE PAASE 70 45 1'	33-br (+ some ztg.cp. fings) 20 4t3 20 4t3 20 20 20 20 20 20 20 20 20 20	413 94 28 96134 .13 4.002 .12
(413-508) 420 45+60 1812	ats.chi.mag.s	<u>416</u> 3185

C

ente la companya de la contra en la contra entra entra en la contra de la contra de la contra de la contra de l

)	) )		)
GRID	GIBRALTAR MINES L	TD. SHEET NO.	o7 of _8
ROCK TYPES & ALTERATION GRAPHIC	FRACTURE	BOTTOM DEPTHS	ASSAY RESULTS
	ANGLE TO	LIM. ZONE	Q D Sample % % Simeted
	-FREQUENCY-	SUPERGENE REMARKS	Number Cu Mo Croie
- typical Mine Phase - typical Mine Phase - this is good porp. type mineralization - NB dark core, fine cp back ground, many K-cutting call venus, unary K-	A     ats_ccp?     Q       /s     ats_mag     10       /s     ats_mag     20       /s     ats_mag     30       /s     ats_cch?-mag     30       /s     ats_cch?-mag     30       /s     ats_cch?-mag     30       /s     ats_cch?-p_cc(Wo)     30       Go     50     50       brsken     gay core     80	<0.5 428	1 <b>4</b> 96135 <b>, 19</b> .006 .12
Similar ta Peliyanna t 450 B Granite L. 10 1/2 10 202	carb-ch) 0	433 95	
NO NO 20 1/4 30 +50 1/8 30? 2%	<pre>chi-carb-cp chi-carb-cp c</pre>	<0.5 90 2 436	26 96136 , 24 ,022 ,16
fault Zone 2 440 2 44	' 90 		
ND 15 10+50 14 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5	4 96137 .17 .004 .14
450 40.455 /4×	172         qts.mag.rz         10           x3         qts.ra         00           x4         qts.ra         00		
ND ND ND VIC	42° (b) 20 42° (b) 20 42° (b) 20 42° (b) 40 40 40 40 40 40 40 40 40 40	o.5 456 6	0 96138 .16 4,002 .14
170×12 V2×	1         2         60           52         93         70           93         70         90		
ND ND 120 120 120 120 120 120 120 120 120 120	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s 466 56	5 96139 .11 .004 <u>3140</u> .10
$\begin{array}{c ccccc} & 1 & 5 & 7 & 5 \\ & 2 & 2 & 5 & 3 \\ & 4 & 7 & 5 \\ & 4 & 7 & 5 \\ \end{array} \begin{array}{c} & 1 & 5 \\ & 3 & 5 \\ & 7 & 8 \end{array} \begin{array}{c} & 7 & 5 \\ & 7 & 7 \\ & 7 & 7 \\ & 7 & 7 \\ & 7 & 7$	4]3- wag x z         60           9[3- wa (cp) ((ba)) x z         70           chi-cp         90		
но но но но но но но но но но	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	.5 476 60	94140 ,0% ,000
480 6 6 3 16.3	13·3 80		



				··· · ·															
			)					)			)		•				)		
•			GRI	D	-		•	GIBRALT	AR MINES	LTD.	· · · · · · · · · · · · · · · · · · ·		HOLE SHEET	No. <u>86</u> No	<u>- 39</u> 8 of _	8			
	ROCK	TYPE	S & ALTERATION		LOC		-	• • • •	FRACTURE ANGLE TO	7E 0	BOTTOM DEPTHS	-	E		ļ	AS	SAY RE	SULTS	γ
		. •		2 i c	Allerton	Vala Vala Vala Vala	.Widin Voin	610	CORE AXIS -FREQUENCY-	1 PYR.	LIM. ZONE SUPERGENE		Coro Rocovery 70	ROD	Sample Number	7. Cu	- 76 Mo		Estimated Grade
				NO.	490	70+40+70 4++652+76+72 35x3 4; 55 70440 11 35 30+135 40+35	1/323 1/325 1/423 27 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	9t3-mag-(Cp)x3 qt3-mag-(Cp)x3 qt3-mag(Cp)x3 qt3-cp qt3-cp qt3-cp qt3-cp qt3-cp qt3-x- qt4-cp qt3-x- qt4-cp qt4-cp qt4-cp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- chi-tp qt5-mag.x- qt5-mag.x- chi-tp qt5-mag.x- qt5-mag.x- chi-tp qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5-x- qt5	0 10 20 30 40 50 60 70 80 90	< 0.5	AEMARAS	488_	78	60	96141	,13	.002		.16
				607 70 Mod- Str.	500	2 80 80 5 10-15 35 70 40	3* 15* 12" 2" 14"	qts qts-carb-chl-cp qts-carb-chl-cp qts-chl-pg(cp)sone qts-chl-pg(cp)sone qts-chl-mag-cp 3bnc	2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0		491	99 90	30	96142	.14	,002		,۱8
-			E.a.H. 508	60 Mod - Str		80 60-70 60 60 70 70 45 45	12 3' 1/10 1/2¥2 4"	9[3-mag 9[3-(maj) 30n0 chl-cp 9[3-mag x= 1(3-mag) P(Cp) 9[3-(mag) P(Cp)	0 10 20 30 40 50 60 10 60	0.5		502	86	70	96143	. 12	.ocb	.12	.12
			<b>D</b> .( <b>D</b> , <b>I&gt;</b> ,						30           0           0           0           20           20           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30           30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3095.</td><td></td></t<>									3095.	
								2 3 4 5 6 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9											

	)		)		)
GRID	GIB	BRALTAR MINES LTD.	н( SF	DLE NO. <u>8640</u> HEET NO <u>1</u> 0	1
LOCATION <u>5. of Subcast</u> BEANNO <u>5. of Subcast</u> BEANNO <u>1. 00000000000000000000000000000000000</u>		latitude <u>45,988.98 N</u> demature <u>46,964.13 E</u> elevation <u>3603.20</u>	CORE SIZE	Vireline	LOGEED M. M.R.T. DATE 07-10-110V-86
ROCK TYPES & ALTERATION	Ath of At	FRACTURE ANGLE TO CORE AXIS	BOTTOM DEPTHS	core ROD Sample	ASSAY RESULTS
7.2题 77	й,	-FREQUENCY-	AEMARRS	7. Nomber	Cu Mo Crode
Eased to 92'		10           20           30           40           50           60           70           80           90	V. Wk. Lim. 1-98		
22 1/2	in contract out	0		92	
7 This role has some ND fairly frich hbl-xlsx (15-2) in it I sub haisely (15-2) whether I ar you "10" (100)	1 972-ср 11 972-ср 112 972-ср Учала, 972-ср х 3	20 40 50 50 70 70 90 90	Ep. Vns. 98	53% 38% 96151	.01 <.001 07
- ~ 35-18% gtz - 10:50% wk sousalt. Is this Sharidan ND: Phose? 120	V16 8/2-ep V4 9/2-ep	2 2 2 30 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5	108	992 96/52	(.01 L.001 07
" " " " " " " " " " " " " " " " " " "	V20×6 gtz-q) V8 gtz-q) V8 gtz-def * gtz-def. = ge.	20 20 30 40 50 50 50 50 50 50 50 50 50 5	115	28% 78% 96153	K.01 (.001 T.
120-128 Trainol.rock(as Dione) is mermina With narrow sizer zonas + zones of Leanocrafic material 120-138 are Chi ser 130 130 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x2 15x	400 x 6 yt 2 - op 400 x 6 yt 2 - op 400 x 6 yt 2 - op	20 10 10 10 10 10 10 10 10 10 1	ana 3 - A 103 101	1% 93% 9%/54	6.01 6.001 75

	)						• • •		)	ц	01 F - M	10 86-4	10		)	<i>.</i>	
	GRID_	Literaria integrationale Richard and Antonio				GIBRALT	AR MINES	LTD.	an an an an an an an	S	HEET	No		8	· · · · · · · · · · · · · · · · · · · ·	<u></u>	
CK TYPE	S & ALTERATION		RAPHI	q		<b>1</b>	FRACTURE	 	LEACH CAP	-	C	2		A5:	AT RESULTS	Т	
		L to Core Follotto		Volni Volni L 10 Corr	width of Vola	11 in the fight	CORE AXIS	ESTIMAT " PYRI	LIM. ZONE SUPERGENE REMARKS	F	Coro Rocovery %		Sample Number	Cu	Mo	- Estine Cred	
	131 - 187 ? - Mofics are compl. chloritized now . It is for from a typical Mice	то° U. WK,		60° 20° X 2- 60°	1/16 1/16 X.2 he	At= mnoz?? gte-ep x 2 gh-164-lim. (oy) (minoscopie)	0 10 20 30 40 50 60 70 80	608		138	80%	74%	96155	, öl	4.001	08	
<u>,                                     </u>	Prace though the faith faith mino 1/0 this who had faith w/ v. wk to she saw. side by side. Some programmed of a tronge Source. VX sean (S	- 20° - 20°	140	5¥2 30°	48 X Z Yr	Ab- Chl Jas 12 ghadl. by .	%           Q           10           20           30           40           50           50           50           50           50           50           50           50           50           50           50           50           50           50           50           50	-2		148	68%	31%	96156	.01	.001		
	147' Brades into zones of V. W.K. Saus	70"	150	20 70 3d	1 1 1/16 1/16	gh. che esp plivin-che and - 1im gh. on che > a tadt. on x2	20 30 0 20 20 20 30 40 50 50 50 50 50 50 50 50 50 5	0%		158	96 <i>%</i>	150 95%	96157	K,01	4,001	07.	
		wr.	160 I	5*x2	7.00. 7. 2 ["]	starchte va- Ale-Va che-carb-hisa where che-carb-him Va	70 go 90 0 20 30				98%	160				0%	
		J. J. WK	170-	45 30 80°	¥16	gle che - 1im	40 50 60 70 80 90 90	07.		168		75%. 170	96158	<,01	(,00)	10	
	V. H colored in places Variably medge + f. gr.	7° V WK.		60 69 ° 80	1 14z 3/1 4	Che Bts Va - car & - lim Dyke of f.gu. 3. d? Gtsche Vn - rach - lim Atsche - car b - up)	10 20 30 40 50 60 70 60 70 80	L01%		178	97%	98 <del>[</del> . 180	96159	K.01	K.a.t		
	~ ^q 4/4 gfz bre 3	70 [°] V W K		10 25 70 20 X 2 30	NU Y 8 3 Y 8 X 2 Y 2	and the cal- her 1/2 chl - cal- her 1/2 chl - op slow gt. canb - cho Var 12 gt. Vu - chl -	20 20 20 20 20 20 20 20 20 20	07		188	100%	82%	96160	.01	2.001	07.	
									·								
------	-----------	---------------------------------------------------------------------------------	------------------------	-------	--------------------------	---------------------------------	-------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------	-------	-----------------------------------	------------	---------------	-----------------	-------------------	----------	------------	------------------------------------------
		)					)			)						)	
	بروندر از	Same Second	ارداند ا				GIBRALT	AR MINES	LTD.		ł	IOLE	No. <u>86 -</u>	<u>40</u> 3 of	<u> </u>		an a
100				GRAPH	ud	CC ANY COMPLEX		CRACTURE		BOTTOM DEPTHS	T			1	ASS	SAY RESUL	.TS
ROCK	TYPE	S & ALTERATION		LOG		-		ANGLE TO	ATE .	LEACH CAP	4	C	ROD	Sample	7.	%	Estimated
	. •		L to Co Fellatio		Volm Volm	width	11 Aor	CORE AXIS -FREQUENCY-	M123	LIM. ZONE SUPERGENE REMARKS	f	Rocovery %		Number	Cu	Mo	Crode
		Str. Saus alt ~ ~ 35% str. - L mine remnart ADD mainly chlourtized	50° -70° 541		70° 70° 542 30°	1/4 1/6 1/20 x 2 1/ 10	cart-gtz Va gta cht- car b- lim-lop-go gta cht- car b- lim-lop-go gtz-ep-cht. gtz-ep-cht.	0 10 20 30 40 50 60 70 80	2014		198	99%	99%	96161	.01	4.001	<
		202-208 Weeken Suns Alta	15 511		70	1/10 3/4 1/20	gte-chl- carb the Gtz- chl- carb. gt- chl- carb.	90 0 10 30 30 40 50 50	07.		208	102%	95%	96162	.01	1.001	07
		- J. miler HM. hbl. 208-211 - Str. Sausit ch. act	to To mad	210	80	2	of all an contrate	70 80 90 0 10	 				210				
		No. Som all " Looks Swi at a - Cart Unlets in all 215 - 222 Facet Zome	45 004 10 10 WK.		70* /20*	178 1/4	gt-cab lim gt-cab lim (190% h.h. 0 \$ 23)	20 30 40 50 60 70 60	01.		218	78%	367/	96163	5,01	(2001 1	0%.
		Aims bron core again	30	220	50° A 45°	, , Y4	Atz Va - cal tim. Atz va - cal tim. Atz - che - carb - him	90 0 20 20 30 40 50 50 50 50 50 50 50 50 50 5	0%		222 226	32% 75%	13%	96/69	1.01	6.001	0%
		Cren 230 - 257	ətr 	230	120	N8 V8	gts-chl- carb-lim.	30 30 0 0			232	95%	230				
		Variofic v. WK. tost. Sour. alt Timer. ~ 2431) Straff. with	70° M.d.		10°  5°	hu hle	corb cab	50 50 50 50 50 70 70	0%		227	80%	46%	96/65	<.21	4.9=1	
			700	240	475 10°	/w 1/16 1/20	gtz-ch1-lim. gtz-ch1-lim. gtz. Chin carb.		5/			101%	84%	16166	. 02	2.001	.05%
		ľ	WK	250	45 7	rle 1	Gt Un - dep-carloting		v		248		250				1.94

-			)					)			)	н	101 F	No 86-	40		)		
			GRID		-			GIBRALT	AR MINES	LTD.		S	HEET	No1	of	8			
Ľ	ROCK	TYPE	S & ALTERATION	1.	GRAPH			· <u>-</u>	FRACTURE	E D	BOTTOM DEPTHS		Colometes			AS	SAY RES	ULTS	r
	:	. •		L 10 Con Vollotlor	Follation Allocation	Slevelyee Valna Valna Vala	. Midih . Veľa	H last e lite	ANGLE TO CORE AXIS -FREQUENCY-	ESTIMAT % PYRI	LIM. ZONE SUPERGENE REMARKS	F	Coro Rocontry 70	RQD	Sample Number	% Cu	% Mo	·	Estinated Grade
		- 	267 - 310' Inverses in 942	æ° w≮	-760	1 30° 70 x 10 720 74 5	116 Nb X 10 Nb	of the and - him carb (hem) × to carb them) Che Vn- chl. lim_ cp-mal	0 10 20 30 30 50 50 60 70 80 70 90 90	07		256	85%	52 <b>%</b> 260	96167	. 50	.001		.09% ×.
			(35-40% - Again variably with 54. saus. trons of 0" All" to gridt - p. siv- comb she are - In sh Saus griss - Sips are subledful to	70° V. WX	270	45 × 4 45 55 50	hle x 4 1/8 1/9 1/4	gtz-kin xy gtz-ep.chl. cabgg gtz-ep.chl. cabgg gtz. carb-cabe>	0 10 20 30 50 50 50 50 50 50 50 50 50 5	0%.		266	987	78%	96168	. 0/	4001		0%
			cahedral. - V. minor remnant hol temens	60 WK to Mod	280	45 A6° 30°	1/ 5 1/ 8 1/ 11	gte-ep-del. gte-ep ote-chl-en	0     10       10     10       20     30       30     40       50     50       60     60       60     60       60     60       90     90	o*/.	Å	276	100%	97%	96/69	.01	2.001		67
				B' Mod Stu:	290	30 36" 70" 61" 50 X 4	 2"  /8  /8  /8  /8  /8  /8  /8  /8	gg, -carb de. tz-ep. chl. tz.chl.ep. chl. gtz.chl.ep. tz.chl.ep. 4	\$\$\mathcal{P}\$       \$\$\mathcal= \mathcal \mathcal \mal	01.		81	76%	60%. 270	96170	·0Z	.001	-	œ٠/.
				80° 541	300 1	30° YZ 30° YZ 45 ⁻ 5° XZ	12 4 14 × 2 6 15 11 16 × 2 6	arby 2		07.	Ę	91	2:1/2 =	95% g	6171	(.01	6,001		070
				6- 70' WL	1	15° y 50 y 6° k	18 8 10 9 14 7 a 16 8	te-ser- carb (1) tz-ly (1) tz-ep (1) tz-e		5%	3	<u>0</u> 9 8	5% 2	15% 9	6172	01	<		2.

)	)	)	)
GRID	GIBRALTAR	MINES LTD.	10LE NO. <u>20-70</u> SHEET NO. <u>5</u> of <u>8</u>
ROCK TYPES & ALTERATION GRAPHIC	FRA	ACTURE	ASSAY RESULTS
	ANG.	E AXIS S LIM. ZONE	Core ROD Sample % % Catineted
Zalania Zalania Zalania	-FRE	EQUENCY-	Y. Number Cu Mo Croie
310-331 A folioted wt.saua. 45°	1/16 gtanep 10		
all is rx wi remnant $80^{\circ}$ hbl (some che. all ") wk $-G/2 - 4^{0-4} 5\%$ med 120	1/16 1/2-ep 30 10/2-ep 50 10/2-ep 50 10/2-ep 50		96% 88% 96173 ,01 4.001 0%
320			320
80° NM +• Str. 3308 70°	1/2 gtz-ep-dl-on 100 1/2 gtz-ep-dl-on 100 1/2 gtz-ep-dl-on 100 1/2 00-budge and on 100 12" 00-budge and on 100 00	0%	101% 77% 96174 .01 (.00)
Alter and the source of the so	V 26 9 +2 chl 10 Pto 9 +2 chl 10 1/20 9 +2 - ap-chl 20 1/20 carbo hame line 40 50 60 94 Carb g/2 him 20 10 10 10 10 10 10 10 10 10 1	-// 338	104% 80% 96175 4.01 4.001 0%
-16/00 line d mofilo 80° 818 - 367 350	1/20 carb from > 20 1/20 carb from > 20 1/2 Atz Vn - (chp.carb) = 50 1/2 gtz - from - chl. 90 1/2 gtz - from - chl. 90 1/2 gtz - from - chl. 90 1/2 gtz - from - chl. 90	27/ 348	1021. 86% 96176 Ki01 Ki01 0%
Some as 310-331 70° 15° X 2 Shr. 360	2 gtzep-chl. 20 10 10 10 10 10 10 10 10 10 1	<i>c?.</i>	97% 73% 96177 ·01 Line) 0%
70- 80 367-382- WK Sana - homen 370 - 80 × 3	1/20 x3 gt 2. gy x3 30 1/20 x3 gt 2. gy x3 30 1/2 gt 2. gy chl 50 1/2 x3 gt 2. gy chl 50 1/2 y chl 50 1		97%. 48%. 96178 · 01 Kinol 6%.

hol- ad chenit

	,		a.						• •								
5		· •				)			)						)		
	GRID					GIBRALT	AR MINES	LTD.			HOLE SHEET	No86 No	<u>6 -40</u> 6 o1 .	8			
ROCK TY	PES & ALTERATION	L la Cora Fallation	GRAPHIC	Volao 4 10 Coro Auti	WILL	ulha ee aita atta.	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATED % PYRITE	BOTTOM DEPTHS LEACH CAP LIM. ZONE SUPERGENE REMARS	f 111-1	C C A.c, 7.	ROD	Sample Number	AS:	SAY RES		Estinutud Crode
	well foliated grading into chier zones in place.	60 202 54	20×	1 <b>2</b> 1/20 1/2	×2.	gte raib x 2- carb gte-carb.	0 i 10 20 30 40 50 60 70 80 80 80 80 80 80 80 80 80 8	0%		377	87%	30%	96179	, IŻ	<002	57T	10
	382-390 Some as above any the hold is back		380 / 20 38 70 70 45 ⁴	92- 416 1/8 1/8 1/8 1/8	12	otr. carb - dl gta - arb y 2 gta - abl carb - gp - p1 - p y 2 - op - chl gta - carb - chl. gta - chl. py - cp>	20 20 10 20 30 40 50 60 10 10 10 10 10 10 10 10 10 1	.07%	]Falt-rubble 5997.	388	100 ]	380 13%	96 180	. 02	K.001		.03%
	570-295 Foulton Btacker ep Shear. 595-418 Variably Modro WK Saus- some DKAtm	7° 54	370 N 	6" hle 1"kz 420 hk	r 000 9.90	+ubblo < 4.9> + +	90 10 20 20 20 20 20 20 20 20 20 2	01.	· · ·	395	74%	18%	96181	.02	<	2	o1.
		yo" Str.	150 150 25 v2 60 x2 1/0 30	3 Lle 2 1/20X h/exa		carb × 3 12-ep w, he stringer w/ py 1-ep 22 12-cont - herry × 2 2-cont - herry × 2		. o flo		405	80%	32%	96182	101	(.00)		0]
	118 - 426	4" s.tr	15 15 120 36	1/2 ×2 1/6 1/8 1/10		2-ep-ch1 y 2 1 2 2-ch1 - carb 2 2-ch1 - carb 3 2-ch1 - carb 3 2-ch1 - carb 7 2-ch1 - carb 7 3 3 3 3 3 3 3 3 3 3 3 3 3		0/		<u>919</u> <u>918</u>	11/2 60%	30% 20	96183	.01	•0.7		%
	An chr. Sir, Carb Shoar Zoo Aze-131 DK Alta DK Alta	70° 5tr -    4	200 60 50 30/50	1/20 1/20 1/2 1/8×2 1/10	3 7 9 7 9 1 8 1 8 1	2- per chil - py - 449 ) (1) 2- all - pu - py - cp. 20 2- all - pu - py - cp. 20 4- pu - mag. 50 2- pu - chi - (black 168) 70 (1. dir. cal - 50		097.		425	100%	30% 9	6184	03.	001		c6%

)		)		)		)
GRID_		GIBRALT.	AR MINES LTD.		HOLE No. 26-	<u>40</u> 7 01
ROCK TYPES & ALTERATION	Le con	Width of Vota of Universitation	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	BOTTOM DEPTHS LEACH CAP LIM. ZONE SUPERGENE AEMARAS	Eolimotos Caro Recevery 7.	ASSAT RESULTS Sample 76 - 76 Number Cu Mo
+31- +40" WK to Mod Saus all - fine gr; well folders	~ 60 Mod .ter .fer .fer .fer .fer .fer .fer .fer .fer .fer	Nee cent - (nu billy zono here 1/20 x 2 lista all auto x2 110 gtz-gp	0 0 0 0 0 0 0 0 0 0 0 0 0 0	438	82% 20%	96185 101 5.001
-few narrow zeros Dr. Alt 110 - 168 Mainily a gts. en (Ell) tock w/ ep Diotches + John gen	170 5 10 60 ×4 70° 11-0 70°	he gtz-chi-pf /2024 gtz-chi-pf /2024 gtz-chi-ep-Py Ag Na gtz-chi-anb-pj-2cp y6 gtz-ep.	90       0       10       20       30       40       50       50       50       60	148	94% 60%	96186 .01 (.00)
Zones of sous d + x With tempant hb/ X/s.	511. 950 90 A C 300 60 60 51. 100 51. 100	120 pt carb. 120 pt carb. 120 pt chl-carb.	90 0 10 10 10 10 10 10 10 10 10	458	931. 76%	96187 101 4.001
Gro dis unlo mainty source, rack w/ minus hol x/s. fini gr. Str.folm	60 45 X10	120 912. (n. p) 120 912. (n. p) 120 912. (n. p) 1/20×10 912. (n. p) × 2 1/20×10 912. (n. p) × 10 1/20 410 912. (n. p) × 10 1/20 (n. chl. p) - copp	20 40 20 20 30 40 40 50 50 50 70	968	100% 82%	96188 101 Lizzof
Dk Alt ~ w/ ep str: no last platches w/a	0 HT. 470 H5 460 Y3 45° Y2 45° Y2 45° 45° 45° 45° 45° 45° 45° 45°	1/20 9+2-66.00 py 45000 1/20×3 9t - an - py x 5 1/20×2 9t - an - py x 5 1/20×2 9t2-046-cato-py 1/20×2 9t2-cu.cle.py x 2 1/20×2 9t2-cu.cle.py x 2 1/20×2 9t2-cu.cle.py x 2	go     go       30	178	103% 80%	96189 102 ,442
lightened area	480 115° 130 x 2 145	115 ote-ep 110 Carb-gt= vr nle t=chl-py,	20 0 0 20 20 20 20 20 20 20 20		162% 72%	961911 (01 .004

	)	)	)
GRID	GIBRALTAR MINES	LTD. HOLE SHEET	No. <u>86-40</u> No. <u>8</u> of <u>8</u>
ROCK TYPES & ALTERATION	TI T	BOTTOM DEPTHS LERCH CAP LERCH CAP LIM. ZONE SUPERGENE	ASSAY RESULTS ROD Semple % % Estimate Number Cu Mo Conde
H= 498 Anod Sama-Fign. well 70° fulid. F (AH, (2) 498' F (AH, (2) 498'	0 10 10 10 10 10 10 10 10 10 1	- REMARKS	63% 96191 4.01 .005 07
	0 0 10 10 10 10 10 10 10 10 10	moll	
	90 0 10 20 30 40 50 40 70 70 20	- III IC. Alory	
	90 0 10 20 30 40 50 60 70 80		
	90 0 10 10 10 10 10 10 10 10 10		
	30       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10		
		I	

		C				
)	)		}			)
GRID		GIBRALTAR MINES	LTD.	HOLE NO SHEET NO.	<u>85-41</u> 	
DECATION 5 of Gibe	ослания . Lengtm447' . Сир90°	LATITUDE 45, 180-17 DEMATURE 47, 301-51 ELEVATION 36 20-00	N COAE SUE E SCALE OF LOG > REMARKSHo	N. G. Wirelin 1'-10' le lest @ 447	1 COCCCO	п_м.R.T_ 12- Ngv · 26.
ROCK TYPES & ALTERATION		FRACTURE ANGLE TO	BOTTOM DEPTHS			ASSAY RESULTS
2 + 1-5 C	Aliverita Feature A the Criterita A the Vela	CORE AXIS -FREQUENCY-	LIM. ZONE -	- 2 - 7.	D Sample 14 Number Cu	Mo Estimated
		0 10 20 30 40 30 50				
		70 80 90 0 10 10				
of-100 Sheridan Phase?? 70° -9+2 Diorite Mod	81 10 hle 11m 10 hle 11m 20 hle 11m	90 40 50 60 70 70 80 80	v. wk im - natan avide zone-Follows fractores down	84 84 35 90	1. 96201 2.0	1 6002 07.
- 30% gt= -fsps.akv.westiy saws.id-ewhedral pird	Poor	Rec.,	0%	80% 20%	/ 9620Z K.01	<,002 0%
Altered VISION OF State WK	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ec. 90 90 90 90 90 90 90 90 90 90 90 90 90	Some laver gins wy hol shape alt d to che.	- 6:7,	96203 101	K,m 2 0%
-approaches a DK 1. Alt in phease with phild. stringers. Zones with luge remnent hht sie	10 115 116 arts in 10 115 116 116 arts in 130 118 gtz-cp 15° hie lim	20 30 30 40 40 20 20 20 20 20 20 20 20 20 2	0% + fragment d. Diarite	115 41%		·
Same as \$1100 Hid		60 70	" Ichiloritic)"	118 70%	90204 .02	

		)					)			)						)		
		GRID		-			GIBRALT	TAR MINES	LTD.	BOTTOM DEPTHS	+ 5 	HOLE I	No. <u>86-</u> No. <u>2</u>	<u>-4/</u> of	_7			
ROCK	TYPE	S & ALTERATION		LC	G .			FRACTURE	16.0	LEACH CAP	-	2.1		ļ	ASS	SAY RES		<u></u>
	. •			-		<u> </u>		CORE AXIS	N AI	LIM. ZONE	]::	C+++	ROD	Somple	7.	10	(1	stineter
:			4	Fellor All 4/4	21 v	×.	71916	-FREQUENCY-		SUPERGENE REMARKS	7 eele Diece	7.		Number	Cu	Mo		Grade
	•		80° Str		26 • -70 - 80   20*	l Z He hle	Ste-chlVb. Gte-chl- <b>ep</b> Ium carb-lim.	0 10 20 30 40 50 60 70 80	0%	same him staining.	128	92%	33 <b>%</b>	96205	.01	6.00 <b>2</b>	0	» ?
· ·			70° 54	//30	70	на 1 1 1	lim g tz-ep gtz <ep></ep>	90       Q       70       20       30       40       50       60	01.			88%	83%	96206	.01	<.002	c	5)
		139-143 to altered 1015 of the above ry - 1055		140	70	410 11/2	otz-ep	70 00 90 0			/38		(40					
		remnant hold chilor 1920 - ep. stringers - serie tradie 189-145 & while Ota- 189-191 145-191 Altered rock - matics	70- 80: UK		1013 20" 20" 80" 80"	1 1 1/4 1/4	prz-(H-CPY>>> A Un of the white gtz fsp FX- gtz-chi-cp-py gtz-chi-cp-py	10 20 50 40 50 10 20 10 20 10 20 10 20 20 20 20 20 20 20 20 20 2	;08%		148	95%	77%	96207	.01	4.00 <b>2</b>	0)	×
		-fips are clustered d concentrated in some error storned wy lim	ND +- B0*		A 30 A 2 - 80 - 45 - 70	ни Уго Це ! Ху	carbiz pt2-ep pt2-ep pt-th-che-curb-climy Gtabh-che-climy	0 0 20 20 30 40 50 60 70	01.		155	72%	17?	98208	.01	4.002	0]	/.
		(119-19)	ND 10	160	70 70 730 45°	1/2 nla 1/2 1/2 1/4	972-ер-сю урания 2977 Gta Un-chil gtz-ор gtz-ер	0     0       0     0       10     0       20     0       30     0       40     0       50     0       50     0       70     0       80     0	<ar \$<="" td=""><td></td><td>162</td><td>91%</td><td>28%</td><td>96209</td><td>.01</td><td>(UC 2</td><td></td><td>2</td></ar>		162	91%	28%	96209	.01	(UC 2		2
		brth con + gg	80° 10 K	170	95° 10°	У16 У16 Уто	gtz-ep-hum, Broken 199 (2000)		67.		174	35%. 75%	0%. 9	6210 ·	.01 (	,00 Z	0%	10

		)					)			)						)	
-		GRID_					GIBRALT	TAR MINES	LTD.		1	HOLE SHEET	No86 No3	<u>-41</u> 3 of _	_7		
ROC	X TYPE	S & ALTERATION		GRAPH	IC		:	FRACTURE	2	BOTTOM DEPTHS		E			AS	SAY RESU	ILTS
					Lite Atla		• livet	ANGLE TO CORE AXIS	PYRIT	LIM. ZONE		C+++	ROD	Somple	%	%	Estimoted
			7		31tvo	¥.	1110.	-FREQUENCY-	153 X	SUPERGENE REMARKS	1.010	7.		Number	Cu	Mo	Greie
			מי	180	2 2 3 0 *	her . 1/14	cerb - lum, gtz-ep	0 10 20 30 40 50 60 50 60 50 60 50 50 50 50 50 50 50 50 50 5	67.		188	45%	4%	96 211	.ol	4,002	0%
		141 - 224 Ept Sous-vich QD -chlor - 20 matis, When episteringuis are common - Saus is gond	80° Madi		5.0 160 130 60	1/20 1/20 1/20 h/e	gtz- ep. gtz- ep. (44) gtz- chl. ep (44) gtz- chl. ep (44) gtz- chl co12	0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	£3{∕0		197	90%	67%	96212	.01	2,002	0%
	-		80° Mad	200	70 AL 80°	4/6 Veo x z hla z 2 ''	gtz-cht-py z z	90 0 10 20 30 40 50 50 60 10 10 10 10 10 10 10 10 10 1	.03%	?chloitic fragment	208	96%	80 %	962/3	01	4,002	07
			80°	220	70 70 15 70	1/ 10 1/ 10 1/20 1/2	at - carbin Un	90 0 20 20 30 40 50 60 70 80 80 90 90 90 90 90 90 90 90 90 9	.1%		218	100%	80%	9621 <b>9</b>	.05	<.00 <b>2</b>	0)
		224-251 Less Saus act monite more a Donis - ep String and common 1	8)* wk	230	30 } 80 Y 80 X 6 L 80° 4	116 7. 8 99 19 × 6 9 8	12-sen-ep-py 12. Al-man py 12. chl. pyr6 12-gr-dd. py 12-gr-dd. py	0     10       10     10       20     30       30     40       50     60       60     70       80     30	1%	28-230 Fault	228	91%	65%	96215	.01	4.002	0/3
		237-260 Fault Ine	ко <b>°</b> о.К.	240 2	200 VI. 200 51 215° 14	6 03 • 57 • 77 • 77 • 77	n di se pol te cong te grada te cop te cop te conce e 199	e	DI. 1/		236	68% 407. 2	26% g	06216	01 2	002	0%

B-Kn core Lgg.

		)					)				)						s 1	
-		GRID		_			GIBRA	LTAR	MINES L	.TD.			HOLE SHEET	No86	-41 1 of _	7		
ROC	X TYPE	S'8 ALTERATION		GRA	PHIC IG		<u>i</u>	F	RACTURE		BOTTOM DEPTHS	$\neg$			T	AS	SAY RESU	LTS
	. ·		10		1			A. Co	NGLE TO DRE AXIS	PYRIT	LIM. ZONE		C	ROD	Sample	%	%	Cations
			42	N.	7	ž	17 ·	- F	REQUENCY-	~	SUPERGENE REMARKS	F.01.	7.		Number	Cu	Mo	Croie
								0				242		1	† ··	1		
·			800			re.	ate un-che-lim ways	30		.4%		244	50%	0%	96217	1.03	1.02	00
						19. A	B.K. C.	60 70 80					1	1				6
		261-2-2	<b>_</b>	1 250		<u> </u>	CITAL COR. 99				· · · · · · · · · · · · · · · · · · ·		}	250			┟───┼─	
		More altend rock.					(1	20 30			· ·		37%					
		- some wk. lim.	?		100	he	carb - hem	40 50 69		07		253		0%	962.18	.02	<.002	27
		- zones i as gre gation		260			~~~~~	70				Pesi-	339	10				
		Gtz. surep. eches		1	1 30 X2	64.12	det - coris-hear + 2	0.				260	5- M	260				
			ND.		FI			20 30 40				264	<i>~~</i> ?					
					150	he	gte. cho. py	50 60 70		026				Z4%	96219	,0/	5.00Z	0%
			┝┵╍╌┥	270	1 100		Atz In set cub ling	90					000	270				
			40			18	gtz- carb - him .	0 10 20					776					
			10		45.	5	GtaVn- che - carb. lim-p	40 40 7 50				274		301	21220		1007	
			70° Mid,				1.	60 70 80		1/2				6	6220	.02		· · · 3%
				280	80.	- 1/8	ptz-chl-cp. cnat.cu?	80			·····		99%	280				
				t			12. open a - colo	20 30				284						
			80		30-	1/8	Ste-carb - ling	50	0	1.				72% 9	6221	.01 x	602	0%
	2	88-341		2901	20	1/2	strap strain	70 60 90						a.				
		35% ytz med			25	hle	carb -lim	20					°°% [2	² i ²				
		sous alt	50°		70*	142	ots-er-Loin	20		1		294	{					107
	-	- come of starge I	1.1	H	80° ¥ 1	1/219 .	gtz-epx4	60 70						15% 9	62=2 <	.01 K.	002	10
	···			300		1	P ' '	121			1	1	1.0/ 12.	-	1	1	1	1. 1

and a second second

	)	-				e N			)	٢	101.E 1	No. <u>86</u>	- 4		)	
	GRI	D	-			GIBRALT	AR MINES	LTD.	BOTTOM DEPTHS	5	HEET	No	5 01 ]	7	SAY RESULT	
ROCK T	TYPES & ALTERATION		LOC		-		FRACTURE ANGLE TO	17E D	LEACH CAP	]	Core	ROP	Samele	1%	%	
		L to Co Later	Footore		Albiw.	ula - r - ili	CORE AXIS -FREQUENCY-	6 51 IM	LIM. ZONE SUPERGENE REMARKS	Footage Blocer.	R.c, %		Number	Cu	Mo	Grote
· .		80° WK		-80° ×3 -70° /25 ×2	1 x3 14 120 x 2	gtz.ep gtz.ep gtz.ep	0 10 20 30 30 50 60 70 80 50 50 50 50 50 50 50 50 50 5	0%	» Diorite fragment	305		85%	96223	<.01	4.002	07
		, 70° WK		25 80 130°	hle. 10" 114	chl-carb. gtz. chl-cp. gtz. carb-lim	Ω       10       20       30       40       50       50       50       0       0	0].		313	95%	63%	96224	K101	K.002	07.
	321-324 - Fax Brkn cone + ( 326-330 Fault Brkn core - 9	170- 19 80° 19 W.K	320	1/5° 6° *3	V/16 x 3 Y20	gte. ep x 3 gte. lim	90 0 10 20 30 40 50 50 50 50 50 50 50 50 50 5	09.		32 <b>4</b> 329	100% 88?	32%	96225	101	2.002	0%
	- Weaker Sour -gruger tot	70- 80 V. W.K.	330	30 160 120	       120	gtz-ep gtz-ep gtz-che-canb	90     0       0	0%		337	91%	70%	96226	, 51	(.00 Z	05
	311-394 311-394 More attend version of the above	Е. 76° W,¢	340	1 20° 1 15° 68 1 2042	1/20 hb 1/4 he 1/2	tarte carbo lim	90       92       10       24       30       90       90       90       90       90       90       90       90       90       90       90       90       90       90	02		345	100%	3.40 639	96227	4.51	<. ***Z	65
		70' WK Mod.	350	160 120 45° 80 11 2 130° 11 2 130° 11 2	1/4 1/4 2'+1" 1/20×2	(3+2-11) (3+2-061-carb-lim) (3+2-carb-lim) (3+2-cp) (3+2-cp) (3+2-cp) (3+2-cp) (3+2-cp) (3+2-cp) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2-carb-lim) (3+2	20 0 10 20 30 30 40 50 60 70 80 90	01%		355	97%	70%	9622B	10،	6.002	

								N.			)						)		
-			GRID_		-			GIBRALT	AR MINES	LTD.		1	HOLE SHEET	No. <u>86</u> No	<u>-41</u> 6 01 _	1			
Γ	ROCK	TYPES	B ALTERATION		GRAP	ніс	· .		FRACTURE		BOTTOM DEPTHS	$\neg$	e			AS	SAY RES	ULTS	
				13 2	:	1 101	1 4 4		ANGLE TO CORE AXIS	TRIT	LIM. ZONE	- <u>.</u>	Core	ROD	Sample	%	%		Estimated
	:	•		7	Ailler Y a l	11718 1778 1777	PIM:	Lines	-FREQUENCY-	4 %	SUPERDENE REMARKS	F	7.		Number	Cu	Mo		crose
			finer grained	70° WK to M.J.		70° 15 Y 2 12°	V8 hle hle 1/1	gtz-gp carb - how chil - ro b. gtz-go- 2chil-carb hom	0 10 20 30 40 50 60 70	0%		<u>368</u>	96%	76%	96229	<.01	4,00 <b>2</b>		0%
			hb1, 7/5.	70		1 5° - 80 60 4 •	1 1/8	Carde-lim. Carde-lim. Otz-ep. gtz-ep. surechl-days Atuable	90 0 10 20 30 40	,01%		375	80%	5201					09
				WK to Mod	380	60 60	1/10 11/2 "	gtz-ep.					d	380	962.30	K.01	K.002		e
				700		- 80	1/16 1/4	carl-gtz gtz-ep		%		385	102.7.	82%	96231	.01	4,002		0%
				M+d-	390	45	1/20 hu	strop lin 9					92%	390					
		3	94 - tog Mainly D.K. Alt * W/ ep stringus +	80 wk	-	45- 10°	2 1½″	99- rubble		•%	i	393	001	50%	96232	.02	.004		07.
			- miner wk saws all's aD in places	70° uK	100	75 80 40•	4 2 1/20 1/0	12-4p-2642 * 13-cp * 12-chl-cp * 12-chl-cp *		.c#"/		403	10%	400			.0.7		.03%
-		- 7	19: 127 . Mirtu e of stand	to niod	910	80 + 60 70°	¥20×-2	gtz-chl-py ×2 rep					90%	110	962 33				
		s A h	+ mea King shind of 2D 4,1 some remain 51 x15. -saw who mid = some NX. Alt ~ 2005	30° we to M.I.	120	70¥ 4 80	/ 4 x 4 57 75 91	Fz-op K4 30 is-carb-b το το θο θο θο		0%		413	1007	97% 9	6234 .	01			0%

w/ ep. uns.

		)					)			)	,	HOLE I	No. <u>86</u>	-4 <u>1</u>		)		
		GRID		CRAPH	ci	· · · · · · · · · · · · · · · · · · ·	GIBRAL	IAR MINES	LID.	BOTTOM DEPTHS	<u>-</u>	SHEET	No	7 of	7			
ROC :	K TYPES	S & ALTERATION	L to Core Follotion	LOG		WIGIN of Vola	Harreli sette e	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATED % PYRITE	LEACH CAP LIM. ZONE SUPERGENE REMARKS	Footoge Bloccos	Eutometee Core Rocovery %	RQD	Sample Number	45 7. Cu	Mo	<u>درام</u>	stimetr Crade
			80° WK 40 Mal		80 × 6	1/20 × 6	gtz-ep ×6	0 10 20 30 50 50 50 50 50 50 50 50 50 5	67.		428	105%	97%	962 35	5.01	<.002		07
			80° WK 4.	. 7-9	80 60 70	ую 1/10 1/2	gtz-ер gtz-ер gtz-өр	20 10 20 30 40 50 50 50 70 70 70 70 70	0%		138	1058	80%	96236	, 0]	2,002	-	2
			70 -80 Mod	440	80 70 80°	5	972-ep-Lals gte - ep-Kihls gte fig injepshist	90 0 10 20 30 40 50 60 10	0%		447	105%	90% 447	96237	.01	<	c	»?.
		Hole 105+@ 441						Po     Po       φ		mel								
							,	%										
								0 10 20 30 40 50 60 70										

)	<u>۱</u>	)		. )	••
GRID	GIBRALTAR M	NES LTD.	HOLE NO. <u>86</u> SHEET NO	<u>-42</u> <u></u>	· .
LOCATION GIBRALTAR EAST BLANNS		236.87 N CORE SUL 200-15 E SCALE OF LO 77.77 REMARKS	N. Q. W. 61"= 10'	LOGGED DT. G.D.B. DUTEOCT_22,1986	
OCK TYPES & ALTERATION	FRACTU	RE 9 BOTTOM DEPTHS		ASSAY RESULTS	
	ANGLE CORE A	TO E LEACH CAP -	Cere ROD	Somple % %	Estiante
Z Total	-FREQU	ENCY-	7.	Number Cu Mo	Crede
Casing To	0 10 20				
<u></u>	40 40 30				
MINE PHASE		lim zone is			
QUARTZ DIORITE NO	/B 973-1im 30 /4 973-Py 40	weak - 1 in is confined mainly	80 7	10901 .08 6.00Z	12
(80-328)	1/24x3 lim x3 (broken 60)	to gg-bx zones	87	.040X	–
typical Mine Phase 90.4 5=	1/2 gt3-ch-lim and lost 50	- post-minina oxidatio			
~150' it is finer		······································	93		
(ie similar to 86-38) ND (60	Y ₂ 1 ⁺ 3 <del>40</del>	<0.5	85 17	10902 .06 4002	,12
- arn size /200 100 / 60 - 45	1/3 + 1/4 qt3 (mal) x 2 1/0 hiexa mal-WINO2 x 4 10	appenrs weakly min.	98	.057	
	· /4x2 gtx-chi 90	structure-in contrast	95		
- 20 0% CAI NO 50-60 x	5 1/2" gg-bx 20 5 1/2-5 11-2-64 (pr)+5 40	hole; (ie 84-33)	105 13		
30 % /2 1973 45-52 % Saus plag	$\frac{1}{2}$ $\frac{1}$			10903	.1+
110 25	V3 973 30		10		
40-45× 60±40	4 11-13.41 (PY).4 10 10 20		20	.09	
70 WK 40	1" 43-cni-cp (mail) 1" 45 (mail) 50	<0.5	11/2 27	10904 15 K.002 3365	.12
	12" (q-ba mal 70				

a second a second and a second a second

C

	)						)				)						)	)	
	GRIC	)					GIBRA	LTA	AR MINES	LTD.			HOLE	No8	<u>6-42</u>	1 10			
ROCK TY	PES B ALTERATION	1:	G	LOG	. 2	-	-		FRACTURE	0.0	BOTTOM DEPTHS			<u> </u>	<u> </u>	A	SSAY R	ESULTS	
	·		11	1	Y 114				CORE AXIS	PYEN	LIM. ZONE	⊒.	C	RO	D Sampli	e <u> %</u>	%		Cations
				Ë.5	 	×	· ·		-FREQUENCY-	5 %	SUPERGENE AEMARAS	-13	7.		Number	- Cu	Mo		Croie
					ŗ	3'	qq-bx-lim-mal		0 1 10 : 20	1	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	123	85	1	T	1	1		3
•		dN .			ĩ	2'	gg-bx-hem	(alk)	80 10 10	20.5				0	10905	.18.	.001	F i	01,
				130 X +	+6013	YBXA	at 3 = 4	1812	0				90			1104			
		·	Ш	80	02 x4+25	2" Yzox4+ Y4	gtz-ser-py					130	+	<b> </b>		- <u> </u>	+	- <del> </del> -	
		ND		1 3 .	*3	Y0×3 Y10×2	qt3x3 qt3-chl-cp x2	শসম	0 0 0	0.5			95			.14	.004	9	
		ľ		135	+81	/3 × 2 /4 /4	qt3 x2 qt3-ser-py qt3-ser-py	2814				137		20	10906	K.010	,	′ <b> </b>	1,13
		┼──	₩ŕ	10 1/ 20		γ <u>μ</u> 74	4 ⁺ 3	00 00		·			95		ļ	ļ	<u> </u>		
				4		γıs	9t3-chl-py-cp	200				1				1			
		Mod		- 90		10 1/4	ats-chi-py ats-cr	70 50		0.5		173	80	23	10907	.13	.006	2	, 14
			115	0	· · ·	"	qt3-cnl-cp qt3-ser-cp	20				148			ļ	4.010%			
			11	40	3	•	9t3-ser-py-cp	20					f					1	11
		55 WK		1 300		10*1	973-ch1-py 12	101		1.0			85	30	10968	.40	2006		
			11	60	1/4	. ].	ats-chi-py	60 70 80				158			10100	4.010X		.2/	
			100	1 5.0	1/2	<u> </u>	1:3-may	90					-					3320	
		40	1	45+60	5+15 /3 .14	HKS   -	1ts-chl-cp x 3 9ts-chl-ser.ep	20 30					80				:		
				1 70	<i>Y</i> 5	9	t-chi-cp	50 60 70		···		167		37  1	.09.09		.004		,15
			170	7 0 +3	· //··	x2 04	1-3- 564 - 64 × 2	80				]						<b> </b>	<u> </u>
				25	42	. 9	13-CHI (Cp)	10 20 30				174	15						
	F	Ĩ	ł	1 60 × 3 +	9) Xxx? V4	3+1 a	tan a tanser-cp	40 50 60	0.:	5	-			0 11	0910	.20 .	002		12
	l_	_Ш	1801	150 70×2	10	2 9	s-chl-cp z-chl-ser-cp	70 80 50					35	İ	k	,01+	-1		

ne teachtacht die and the beith an traction and the second and the best and the best and the best and the second

		)					)				)						)		
		GRID.					GIBR	ALTA	AR MINES	LTD.			HOLE SHEET	الملك . No	<u>42</u> 3 of				
ROCK	TYPE	S & ALTERATION	1	GR	APHIC				FRACTURE		BOTTOM DEPTHS			Τ	T	AS	SAY RE	SULTS	
			4 10 600	/ entre la v	7.0100 311461/01 2.10	Atta Width of Vela	 Intrinstant	•	ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATE " Praite	LEACH CAP LIM. ZONE SUPERGENE REMARKS		C+++ R+++++++++++++++++++++++++++++++++	ROD	Sample	7. Cu	% 		Estimoled Crafe
	•		нр		15+60 Box2 70 B0+30 7 5 80 x 4	14×1 1*+ Y3×3 2**+ Y3 12* 2* Y4×4	qt3.chi-cp x2 qt3.x4 qt3. qt3 qt3 qt3 qt3 qt3 qt3 qt3 stock	wkr 8	Q   - 	<i>&lt;</i> 0.5		182	90	43	10911	. 09 K,olo	.004	3	08
		(			Z 80+2+11 A 30	y3x3	9tsx 3 ) 99-bx	1				194	95						
:		smail sterp fault ) ;	04J	20	40 40 0 45 + 40	12" 13 15" 2×2	qq-bx qts qg-bx	<u> য</u> ়ালালালালালালালালালালালালালালালালালালাল		<0.5		199	90	10	10912	,06	.002		,05
		(	40		10 20 20	3' Yı	gg-bx (gg is +5"-55 + cover 2. of con qt3-ch1(cp)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		< 0.5		205	<u>۶</u> 2	1-7	10913	.26	005	.13 3275	.12
			Wed.	210	Box 3 6 80 + 20	1/2 × 3 1/2 = 2	qt3-mag qt3-carb x2 qt3-mag(cp)x2	202 202 202 202 202 202 202 202 202 202			······································		95						
			60		60-75	5'	qtz-chl-ser-carb-py ((ch (chl zor	2 20 20 30 0 p) 30 0 me.* + 0	    	1.0	* 2½ qt3-ser-py Center with 1 qt3-ch - carb. edges.	215		33	10914	28	. 74		.14
			str.	220	80 8 8	12	99 qt3.ser(cp) zone	50 60 70 80		4.0		2.18	90		10.11	. 20	,027		
					60+80+20 3092 60+70+65× 5 60-70×3	Y3+3 Y2+2 Y3+2+Y4+2 Y3 Y2+2	qt3×3 qt3-ch1(cp)x2 qt3×4 ch1 ct2×5	02200		0.5		225	75	33	15915	.15	.002		.12
				230	45	Y= Y= Y3	ata ata <u>ata-ser-py-sp</u>	60 70 80					80						· 
					45 45 86 1 70	1/2	qt3((ip)) qt3-cn1 qt3 x2	2 2 2 9				234							
				240	80+70+6, 20×2 50+60 68	1/8 + 3 1/8 × 2 1/8 1/8	9 13 × 3 9 + 3 × 2 9 + 3 × 2 9 + 3 × 2	50 60 70 80 50	<	.0.5		2.37	70		0416	.00			. 10

		Ì						)				$\overline{)}$						)		
	• •	GRID.						GI	BRALT	AR MINES	LTD.		1	HOLE I SHEET	No. <u>86-</u> No. <u>4</u>	42 of	10		• .	
			1	-16	RAPH	d	1				1_	BOTTOM DEPTHS	1	T	Γ		ASS	AY RES	ULTS	
ROCK	TYPES	S & ALTERATION	-	1	LOG	:	-			ANGLE TO	22	LEACH CAP	4	Cara	800	Samele	1%	%		
			5				£ =			CORE AXIS	W	LIM. ZONE	- ::	A.c		Number				Croie
			1		Į.	2112		Ultre	•	-FREQUENCY-	5 ×	SUPERGENE AEMARAS	- 33	7.			. Cu			
<b></b> +				╈	1	70 + 60	1/2+1/3	9 13-mag x2		011									3	
					1	4 80	/3	973		20	1			80			.		i 1	20
· ·			70			1				40	<0.5				43	10917	.09	.002		,03
			WK			70-60-50	1/4×3	1 973×3		60 70			247						. / 0	
				11.		80+70+40+35	YA * 4	97324		80				1					3230	
				-++-	250	90	YA	973-ch1-cp-py		0			1	90				Į.		
			ľ		ΙĔ	80+10+40	Y4 x 3	at3 x=		20			1							
			ND			40	112-72	ato-ser- (cp)		30 40	< 0,5		255		30	10918	,13	کەہ,		.05
	1					60 × 2	1/2+1	q 73×2		50 60								j j		
			·			60	/+	ats		701				80				[		
			ļ	Щ	260	60	1	973		90		· · · · · · · · · · · · · · · · · · ·		00						
					2	40+ 90 70+ 5	18+14	913×2		0										
	1				P	60x3	YLOX3	qt3.chl-epx3		30			264		20	10919	09	002	1	.08
			ND		1/	1012	1/22	9922		50	20.3			98	10	10 11 1	.00			
					Ľ	50	Y3 Y: 12	at 3- chi- cp at 3 x 2		701			268		1					
				.	272 0	44	Ye .	atz-chi		90									+	{
├ <u>├</u>			<u> </u>				13			0				90						
	1				H	45+50	Y10 +2	qts-ch1×2	ţ	20:										
			ы		1		."			0	<0.5		276		37	10920	.15	.005		.05
					11	15	2	99		0									1	1
						-		-1. (.)		30				95						
				$  ^{2}$	80 11	<u>&gt;</u>	14	ata-chillen		0			282	F	1		1	1		
					1		-	-1-2		0 0									1	
						? 45 ?	4	9:3-spar - porp.		0	< 0,5			85	13	0921	.10	.005		.05
			~ 0		9	45	•	qtz- cxi (vug)	5	0			286		-				ľ	
				$\ $	. 4				7	0				~		1				<u> </u>
	<u> </u>			129	<u>92   </u>				§	2	+			» F						
1				11	F	:	+'	9.5 - 10 x	2	2 0			293				1	1	./2	-
1			1			80	.	at all and all	A 2010	o 					1	-00-2	12	.003	5/85	.08
			140		1	00	2	413-LNI-SER LPY)S	10 2010 15		0.5	·		90	11	0422		-		
					問	:	\'	qq-bx	7	2			298				· [		!·	·
			[]	30	$\sim \Pi$				×	,	l_	L			(					

. ) · · ·	)	)		)
GRID	GIBRAL	TAR MINES LTD.	HOLE No. 86 SHEET NO.	<u>-42</u> 5 of <u>10</u>
ROCK ITPES & ALTERATION	LOG	FRACTURE O BOTTOM DEPTHS		ASSAY RESULTS
		ANGLE TO	- C ROD	Semple 1/2 1/2
	L 1	-FREQUENCY-	<b>x</b>	Number Cu Mo Code
40 WK	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0     .       10     .       20     .       30     .       40     .       50     .       60     .       80     .       50     .	95 10	10923 .07 ,001 .05
Nb	to 1/10 df3-chi-pt	20 20 20 20 20 20 20 20 20 20	312 95 40	10924 .06 .003 .05
	20. $1^{\circ}$ $1^{\circ}$ $q^{\dagger}_{3} \cdot ch!$	b0:	318	
328	70 70 73 73 73 73 73 73 73 73	20 30 40 50 50 10 10 10 10 10 10 10 10 10 1	95 27	10925 .07 .003 .05
MAJOR FAULT 33	0 10 99	20: 90:		
ZONE (328-358) a 30' some of 50ft blacking highly broken rock and as. zones - most re frag. are less than 340	? 3' qq	0	60 333 337 70 0	10926 .13 .009 .09 ?
appent to be crushed in situ. Without men dispisement or rotation 7 -this is prob. a series of small foulte (see as spred) 350	6 ^{°°} 99 ^{°°} 12 ^{°°} 99	0     0       0     0       20     0       30     0       50     0       50     0       50     0       70     0	76 344 343 85 0 1	0427 .11 1025 ?
sevarated by zones of broken rock - tite pale color of the rock and softness (H 1-4) suggest some Supergene atta, 358	7 4' q 7 5 mag		70 10 10	1928 .1Z .004 ?

n her standalalari hallari eta izarilari gilisteri di senderi artekizi erriate fizikale er kandalari eta eta e

	·				ана (тр. 1997) Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историј Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историја Историј И Историја ИС Историј И Историј Историј И Историј Историј И Историј ИС И ИС И И И И И И И И И И И И И И И									)		
	GRID	<u> </u>			GIBRAL	TAR MINES	LTD.		1	HOLE	No. <u>86</u> . No	<u>42</u> 6 01.	10	.•	• •	
ROCK TYP	PES B ALTERATION	G	RAPHIC	· · ·	:	FRACTURE		BOTTOM DEPTHS			Γ	T	AS	SAY RE	ULTS	1.4.4
	- <u></u>					ANGLE TO	ATE	LEACH CAP	-1.	C	ROD	Sample	1%.	%	I	Cationtal
		1 1 7				-FREQUENCY-	11133	SUPERGENE AEMARAS		******* **		Number	Cu	Mo		Crole
	MINE PHASE QUARTZ DIORITE (358'- 603')	Ko Mod	35 30 45 40 70 K3 40 70 K3 7 40 7 2	γ6 γ4 γ2 6" hle-γ ₆₀ ×3 γ8 2"	9t3-6k1-(6p) at3_ch1-mag at3_mag at3_ser-cp ch1-cp x3 qt3.ck1-mag qt3.ck1-mag qt3.(cp)	Q / 10 20 30 40 50 60 60 70 80 80	<0.5		364	95	13	10929	·39	,016	*1	,14
	change across fault.	<del> .    </del>	310	12." 4'	9t3 { broken tr	90 0 10 20 30			374	10				0.00		12
- · ·		60 WK	60 ×2 60 60 ×2 7 60 7 60 × 2 7 60 7 80 7 80	1/4 1/4 1/3 x z	) qt3x2 qt3.ch.cp qt3x2 at=maa(sp)	40       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50	<0.5		380	90	7	10930	.79	.009		
		55 Mod- Str.	Bo 60 XZ 80 X3 45 30 X3 55 X2	12 1"+ 1/2 hlex3 1" 1/3×3 1/4×2	qt3-ch1-cp qt3-mag(cp) x 2 ch1-cp x 3 qt3, ccp) qt3 x 3 qt3 x 3 qt3 x 3	20 20 20 20 20 20 20 20 20 20	60.5		388	95	63	10931	.13	.005	.19 3095	.08
	small fault	70 Mod	90 4 80 80 81 81 81 81 81 81 81 81 81 81 81 81 81	12* 10" 12" 2" 4'	<u>qq-bx (+ 3' iostcare)</u> qt3-carb-py-cp qt3-chl-carb 30ne qq qq-bx	20       30       0       0       20       30       40       50       50       50       50       50       50       50       50       50	< 0.5		398		01	10932	·24	,005		, <b>6</b> 8
			20 6 60 60 + 45 60 + 50 50 - 50 50 50 - 50 50 50 50 50 50 50 50 50 50	z" q z" q y z q q y z q q y z q q y z q q q y z q q q y z q q q q q q q q q q q q q q q q q q	2-hen; t3- porp t3×3 t3×c3 t3-chl-ep ×3 t3-chl-ep	20 20 20 20 20 20 20 20 20 20	60.5		108	98	40 1	0933	16	.010		,12
		420	Box1 11 60x2 11 50 2 60x2 12 60x2 12 40x2 12 14 15 10 10 10 10 10 10 10 10 10 10	10×2 qt 10×2 qt 10×	3 - Spar- porp * 13 - chl (cp) * 2 13 - chl - cp. Py - cp × 2 13 - chl (cp) * 2 13 - chl (cp) * 2	20     0       10     0       20     0       30     0       50     0       60     0       70     0       60     0	6 0.5	* a true dyke with snaro_cnitico borders	418	90	2τ   14	0934 /	11	.~5		10

الجريعة أرتدكني دراسق

1

and the second secon 

		)						)				)						)		
		GRID						GIBRAL	_T4	AR MINES	LTD.		1	HOLE	No. <u>86</u>	- <u>42.</u> 7 of .	10	.`•	• •	
ROCI	K TYPE	S B ALTERATION	Τ.	GR	LOG	9				FRACTURE	£ 0 7e	BOTTOM DEPTHS LEACH CAP		c			AS	SAY RES	ULTS	
	· ·	· ·	100		-	114				CORE AXIS	Prei	LIM. ZONE		C	ROD	Sample	1.	<u>/o</u>		Estimited
			4		Ē	11	¥			-FREQUENCY-	2 ×	AEMARAS	- ::	7.	ļ		Lu Lu			
	-	from 420'to 500' cp accurs in hle- Yio" veins spaced at wide intervals (155') with little ar na significant	70 WK		430	40,224 35 50 x2 45 80 50 35 40	1/10x2 + 1/2 1/10x2 1/10 1/2 1/10 1/2 1/2 1/4	4t3-ch1-cp + 4t3 9t3-ch1-cp x2 9t3-ch1-cp (No) 9t3-ch1-cp 9t3-ch1-cp 9t3-ch1-carb(cp)		Q i 10 20 50 50 50 50 50 50 50 50 50 50	<0.5		428	95	33	10935	,23	.010	ي 18 18 18	, 1 8
		background & values being apparent - hence, the low est grades.	- 70 Wk- Мрф			35 + 60 60 7 5 • 5 60 7072	Y3+2 3' 2" Y3 Y4 Y052 Y.0	973-64-6942 973-64-69 973-64-69-64 973-64-69-64 973-64-69-64 973-64-69-82 973-64-69	0 > PINITIAN		0,5		438	95	33	10936	.18	.005		, 1 \$
			60 WK- Mod		40 -	10×2 60 45	110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 110×2 10	<u>qt3-chi-cpx</u> qt3-chi-cp qt3-chi-cp qt3-chi-cp qt3-chi-cp	9 9 2 2 3 Y 4 5 6 2		< 0.5		448	१६	80	10937	.09	,002		,i 2
			<b>6</b> 0 WK	4:	50/	30 60×2 30	410 48×2 110 48	9t3-chl-cp 9t3-chl-cp 645-chl-cp 6476-cp-cp	01 9 0 8 2 3 0 0 0 2 8 0 2 3 0 0 0 0 2 8		۷۵.۲		458	90	57	10938	. 14	.025		, 0 8
	- <u>-</u>		60 NK	46		0 ± 75 5 x 1 0 0	Y10×2 Y10×2 Y10 Y10 Y10 Y10	9t3-chi (cp)+z qt3-chi (cp)+z qt3-chi (cp) qt3-chi (cp) qt3-chi (cp)	800000000000000000000000000000000000000		20.5		+68	95	33	10939	,08	004		. 10
		ر ريا ريا	od	480	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		/10 x 2 1 1 1 1 1 20 (10 10	qtz-chl(cp)++ qtz-ce+er-py qtz-ce ep-ce qtz-chl(cp) qtz-cs chl(cp) chl(cp)	202229222		5.5		178	90	17 1	٥٩ ٩٥	.16	, 018-	#13 3005	10

a se construir en fait de la fait de la construir de la construir de la construir de la construir de la constru alla an saile a baar a baala dha an sana an an an an an an an bhallail a bhalla shallashir an baalan an ar an a

	)	)	)
GRID	GIBRALTAR MINES LT	D. HOLE No. 2 SHEET NO.	<u>36-42</u> _ <u>8</u> of <u>_10</u>
ROCK TYPES & ALTERATION	FRACTURE	BOTTOM DEPTHS	ASSAY RESULTS
	ANGLE TO CORE ANIS	LIM. ZONE	D Sample 7. % Catinated
	FREQUENCY-	N AEMARAS	Number Cu Mo Croie
40 40 WK 40+30 40+30 40+30	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	488 45 53	10941 . <b>16 .008</b> .08
dk ait's zone (1400 - 10+ 50 38 50 138 50 138 50 138 50 138 50 138 50 1400 138 50 138 50 1400 138 50 1400 1400 138 50 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1	10-1 10-1 10-1   Y10x2- $q_{13}$ -cn1-py 0   Y3 $q_{13}$ -carb-ch1-cp 10   hle $q_{13}$ -cp-cp 30   Y10x2- $q_{13}$ -carb-ch1-cp 20   Y10x2- $q_{13}$ -carb-ch1-cp 30   Y10 $q_{13}$ -ch1-cp 50   Y8 $q_{12}$ -ch1-cp 70	498	10942 , 16 .002 .20
( 500 10	Yie atz-en1-py 90		
60 Mod 45	2" qts 20 1" qts 20 1" qts 20 40 40 50 50 60 6.5	505 27	10943 ,08 ,004 .12
510 60? 2 Sto	8" 99 Yio x2 973-chl-py x2 90:		
dk alt'n zone {	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	515 53	10944 1/5 .003 .14 .10
86 Noy. 510 1	$0' \qquad \begin{array}{c} 3 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ $	90 525 80	10945 .17 .041 .08
540 . 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	533 75 7	10944 . 27 . 061 . 10

en en de la constance de

`)					ï			)						)		
GRID.					GIBRAL	TAR MINES	ITO		1	HOLE	No. 86	- 42	10			
	1	GRAF	энісі		T		1	BOTTOM DEPTHS		T	NO	1 01 T		SAY RE	SULTS	T
AOCK TYPES & ALTERATION	1::	LO		-		FRACTURE ANGLE TO	11E 0	LEACH CAP	$\square$	C	800	- sumale	1%	1%		
	1	1111	1111 1111 1111	WLATA VALA	4.1.4	CORE AXIS -FREQUENCY-	M113	LIM. ZONE SUPERGENE		A.c		Number	Cu	Mo		Estimoted Crode
				16"	= · ·	01		AEMARAS	541		<u> </u>	+		- <del> </del>	<u> </u>	
	60 Nos		40 - 50 -	¥4 2."	qt3-cnl-carb-cp qt3-ser-chl-py-cp	10 20 30 40 50 60 40 50 60 50	1.5	· ,	548	85	10	10947	.40	.011		.12
		55	50	2	qt3-ser-py	80 90	-			:				ļ	<u> </u>	
	·		5	Y4 14"	chl-carb (cp) otz-chl (vua)	0 10 20	1	· .		80						
dk alth ie chl-carb enriched Jone	60 WK Str	560	· · · ·	12	qtz qtz-corb-chl	30 40 50 60 70 00 90	1.0		554	90	20	10948	.23	,004		. 10
	50-			7'	qt3-carb-chi-(py)((mi) zone	6 10 20 20			563				_	_	· 26	
	str crex.	570	2221111	}	qt3-chl-carb ((cp))	40 50 40 70 20 90	2.0			95	33	10949	.22	.007	2/3	
dk alth 3 me			60 - 20 70	2 /2 * /4	9t3-87 9t3-87-69	0 10			573		İ					
	ND	580	5 7 5 60 + 40 60 + 70	2" 1" 1/20+1/13 1/20+2	9/3-60 973 973 (Moj) 973-64(60) X2 973-64(60) X2	20 30 40 50 60 70 10 10 10 10 10 10 10 10 10 1	275			95	40	10950	·22	,005		.12
			70*2 - 60	Yiox 2	qt3-CNI (Cp) x 3				50.2	Γ						
	د ب	5904	50×3 70 30 80 + 50 × 2	11+ × 3 1/2 1/10 1/10 1/10×3	qt3-chl-cp x 2 qt3-chl-cp x 2 qt3-chl (ср) 7 qt3-chl -cp x 3 qt3-chl-cp x 3		0.5			95	47	10876	.20	.006		.20
N	υ		47 + 60 50 70 50 - 60 < 5	Y1983 Y2- Y10 Y10 K S	973-CN-CP+2 5 973-Ser-CP 7 973-Ser-CP 7 973-CN-CP 7 973-CN-CP 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0-S		593		43 1	0877	.21	006		,25
		500	45 + 35 )	10 (+ + Y = )	ars-chl-(cp) for chl-carb-cp x 2 for for	2				15					<u> </u>	

en en de service de la contra de la contra de la contra de la contra de la contra de la contra de la contra de

an an the The second state of the State of the State of the State of the State of the State of the State of the

		)					)			)						)		
		GRID					GIBRALT	AR MINES	LTD.		ł	HOLE H	No. <u>86-</u> No. <u>1</u> 0	42. > of	10			
r		S & ALTERATION	1.	GRAPH	uc	1	:	FRACTURE	۰	BOTTOM DEPTHS	-	C	T		ASS	AY RES		
AOC	<u> </u>	<u>.</u>		LOG	1 1 1		i i i i i i i i i i i i i i i i i i i	ANGLE TO CORE AXIS	MATE	LIM. ZONE		C	ROD	Sample	7.	%		Estimited
· .			7 11	X III V	3114C			-FREQUENCY-	10.2	SUPERGENE REMARKS		7.		Number	Cu	Mo		
					5022	Y . + Y 10	qt3-chi-py+2 at3-chi-co	0 1			603						5	
		E.O.H. 603	1		ff	//8		20 50 40							·			
		1						50 60 70								·	.21	
		\$.0.B.	<b> </b>	╢	<u> </u>		<u> </u>	90 90				-	<u>`</u>					
			ŀ					10 20 30		-				:				
								40 50 60										
								701 001 90									<u>+</u>	
								0 10 20										
							:	50 40 50										
								60: 70:										
				┼╌┼				90: 0				ľ	†					
								20:										
			[]									ł			+			
							12	0 0										
								0 0 0										
						}	201 201 201	o 5 2				L					<u> </u>	
							प्र स र	> 7 >	T						ł			
							N N N N N N N N N N N N N N N N N N N								ĺ			
							रू १२ ४४						İ					

The ball on a construction of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set o

		)					)				)						)		
		GRID					GIE	RALT	AR MINES	LTD.			HOLE SHEET	No. 84	<u>-43</u> of	_8			
	CATION	GIBRALTAR FAR	57					LATITUDE	47710.5	53 N	CORE SUE	N·Ø	. w			00000	G.D	.B	
-	TE COLLA	ALD 03- Sep- 86			LENGTH	505'	·····	DEMATUR	46 362.	85 E		1	"= 10'		A	ATE_O	ct 16.	1986	
0.4	7 00-	cros 04 - Sep - 86			DIP	10		<b>CLEVATION</b>	3448.1	9				•					
			<del></del>	1600	- Duici					<del>.</del>	1								
ĸ	TYPE:	S & ALTERATION	1.	L		-	1		FRACTURE	2 2	LEACH CAP D	-	C			AS	SAY RE	SULTS	
T			13 2	1		÷ =	e i i	j	ANGLE TO CORE AXIS	YRU	LIM. ZONE D	┥╻.	C+/+	ROD	Somple	%	%		Estint
1				1		2.2			-FREQUENCY-	12 .	SUPERGENE O	18	A.c		Number	C.	Mo		croie
			17.	23	2.7		Ξ			2 ~	REMARKS	25	7.	L					<u> </u>
Τ			1					ł	0										
1		Casing To						F	20					1			1		
I		100			11				NO						1	· ·			
I			1						50 10			1		1			1 .	1	
1				111			1		0				]			1			
t				111-		·			0			101	l		+	1	1		
T			ľ		4070+5	1/4×3	973*3	4	0 20		no limonite zone				1	1			1
l		MINE PHASE					1		0		•	1	80			1	1.001	1	1
		QUARTZ DIORITE	10		80+70 ×2	1/20 * 3	qtz-chi-py x z			۲۰۶				37	11476		1.00	1	. 03
I		(101-505)			•			12	0			108				2.0104			
				111	2				0							ļ	ļ		
ł		20-25 % qtz			50	1"	atacki-carb/p/	1	2							1			
l		20 0/0 chi			80	6"	q tr (cp)	2	0				90				1		Í
l		50 % save plag	чD		45	1/4	ata	4	o 	0.5			1	43	11477	.16	.009		os
		med gra (~ Yio"dia)		11	fl i		1.2	6	2			118	1			10104			ĺ
	1	this re appears		1120	\$ 50	10	qt3-chi (vug)	20											i
t		lower in it; thank		1	10 × 2	1/8 2 2	ch1-Cp x 2	e					ł					10	
		normal.			1 70	6"	atz-chi-carb	20					95					.10	
		12 Are concluded to 5	20		70 12	Yax2	atro	30						77	11478		003	3320	.08
		hole strain in the	~		4.0	2"	ch1-1+3	50	2				1	22	11410	10 %			
		alan and the contraction			45	14"	9ts-tourmaline (scille	1				128			1	<.≥'3¥			
		described in the		1130	70	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	the children in the company	90	.	ł			F						
	.	boundaries a rit of			H70	Y4	973-62	10					f			1			
		ne core is this.	80 1		H 10	2"	gts-chi.py	191					98						~*
	1	moch of it is loggy	wik-					20	°	.5				50	11479	."	• ' · h		.00
	Ę	Fire's Assons by dep	Mad					60 70				138			.	Coint	1	İ	
i	14	LEE COMMON		140				80		.		1				. '			•

		)						ì				)						)		
	۰.	GRID						GIBRAL	_T4	AR MINES	LTD.			HOLE SHEET	No8	<u>6-43</u> 201	8			
ROC	K TYP	ES & ALTERATION	T	-10	GRAP	ніс	· .	:		FRACTURE	a	BOTTOM DEPTHS		1		1	AS	SAY RE	SULTS	
F	Γ.	Τ.	13			1 15		- <u>-</u>		ANGLE TO	1112	LEACH CAP	-	c	20	D Somple	7.	%	I	Cationstad
· .	ľ		1 1			311 vel:				-FREQUENCY-	1153	SUPERGENE AEMAAAS			7	Number	Cu	Mo		crote
	•		80 Str.		150	80 70 70 x 2 70 40 70 70 70	6° 74 78+710 74 1+° 6°	qq qt3-cp qt3-chl-carb-py qt3-chl-carb 3one qt3-chl-ep(py) 3one qt3-scr-py-cp		0 / / 10 · 20 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 ·	1.5		148	95	50	11480	.16 (.010x	.005	÷,	.10
		The core is variosity sheared and arushed usith dislocations "heated by qts-chl-ep - dk alth halos are common and pervisive	80 Mot			80×2 ? 70×2 80 80	Y=+Y= Y=" hiexz Y10 Y.0	qts.n 2 qts-ap chi-cp+2 qts-cni-cp.py qts-cni-cp.py	0 2 RIVITED		0.5	· · ·	157	90	40	11481	.1Z 4.6/27	.001		_•8
		with no clearly defined boondaries	80 WK- Mod		160	40 40 76 7042	1/10 1/2 1/3 1/10×2	qt3-chl-ep (py) qt3-chl-ep (py) qt3-chl-earb-cp chl-cpy)== qt3-chl-ep-carb sone	2012 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.5	· .	<u>163</u> 168	90 95	40	11482	.10 2.0104	.:02	,1Z 3275	,10
			80 אוע			70	40 1/3	qt3-chl-py qt3-cnl-carb-cp	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.5		178	85	<b>4</b> 3	11483	.16 10107	.005		.10
			95 NK	19	C R M EL LA C	80 80 80 50 50 7	y2     4       3*     3       30*     3       50*     3       24*     4	ата t3-сы- жү(ру) t3- ротр. t3- ser- су(ср) 19-6х	022999500789		:.5	-	188	98	33	11484	. 23 4.04y	.003		.08
		ć,	3.0 No.d	2.00	1. 1. 1.	60 5 7	2" q 6 q 1 qt	ts-ser-py ts 3-chl-corb-py 3 (Cep))	0 2 2 9 9 5 8 7 8 5		1.0		195	95	+7	11485	· 20) <.016¥	.007		. og

and have been and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the

		)						)					)						)		
•	۰.	GRIL	>						GIBRAL	.TA	AR MINES	LTD.			HOLE	No	<u>3</u> 0	1_8			
ROCK	TYPE	S & ALTERATION	1.		LOG				-		FRACTURE	50	BOTTOM DEPTHS		c	]		. A	SSAY R	ESULTS	
	. •		7 10 60	/ ellette		114132116- 1414 1414 1414	MILLA Vela		1/1 i i a		ANGLE TO CORE AXIS -FREQUENCY-	ESTIMAT " PYEN	LIM. ZONE SUPERGENE REMARS		C • • •	, R O	D Somp	e %.	% 		Estimoted Crole
					210	8. 1. 1.	10 1" Y3 Y6	qtz-chl 30 qtz qtz-carb chl-pv	gg'y brok core	5 20101-101-	0	4.5		205	90 85	13	11484	.13	.007	2	.05
			- .Mod		20	90+70 40 30 2+ 80 80	1/10 = 1/3 1/4 1/2 1/2 1/3 1/4	9 ¹ 3x z 9 ¹ 3 9 ¹ 3-ch1 (09) (1 9 ¹ 3-ch1 (09) 9 ¹ 3-ch1 (09) 9 ¹ 7-carb 9 ¹ 7-carb 9 ¹ 7-carb	(9) dk vuggy Core	28 28 28 28 28 28 28 28 28 28 28 28 28 2		0.5		218	98	33	11487	.14	.00;	-18 3230	,08
			КÞ	2		70 + 90 80 + 20 + 90 80	1++18 1++2+1 1/2 2/2	9t3 x2 9t3x2 9tz 9tz	(c.p)	0 2 2 2 2 2 2 2 2 2 2 0		40.5	·	228	98	60	11489	.16 6.0104	.003		.05
			70 Mod		- 70 - 70	0 6 9	Y8 Y4 1% \$" 1" Y2	9t3-er-py 9t3-er-py 9t3-er-py 9t3-er-py 9t3-er-py 9t3-carb-cp		10 0 20 30 00 10 10 00 10 00 10 00 10 00 10 00 00		3.0		238	95	10	11489	, 44 L.0104	,009		.15
			пр	250	4 7 . 4 0 4 0 4 0 4 0 4 1 5 5		γα+γ⊾ 4" γ8 4"	qt3+ 2 qt3-ep-chi qt3-chi-py qt3-chi-py qt3-chi-(p) qt3-chi-(p)		000000000000000000000000000000000000000		1-0	1	248	95	23	11490	.27 Liolox	,511		.12
			70	240		2 ; 9 7 7 7 7 7	/ 2032 . 9 . 1 . 1 "42	1-3. ell-pyxx ++-ser-pl-ep th-op t3. ellx 3 +3. xz	1111111111111111111111111111111111111	000000000000000000000000000000000000000	].	.0		258	10	50	11491	,31 <,019j	,003	.28 3/85	,1+

en er en standeligt alle er an er er er hande stande i het belande ander bestande ander ander ander ander ander 



					)			)						)		
GRID					GIBRAL	TAR MINES	LTD.			HOLE SHEET	No86	<u>-43</u> £ of	8			
ROCK TYPES B ALTERATION	T	GR	APHIC		:	FRACTURE		BOTTOM DEPTHS	<u> </u>	T	T	T	AS	SAY RE	SULTS	
	73					ANGLE TO	ATE .	LEACH CAP	-	C+++	1200	Sample	1.	%	1	
	7 11	Veller	1111	1		-FREQUENCY-	11133	SUPERGENE REMARKS		.   A, 		Number	Cu	Mo		Croie
		$\Pi$	35	1/ <del>4</del> 1/8	9+3-ch1(cp) 9+3-(相)	0 i 10 · 20					1	1	1	-	3	
· .	60		6012	1/3 + 1/4	9+322	30 40 50	0,5			95	47	11492	,15	1003		. 08
	NR NR		40	z."	9+3	60 70 80			268		-		2,0100	·	-	
	1		70 70 22	Y2 Y20	9+3- chi+ ser - p-1 (cp) chi-pyx2	0 10		1	-	1			1		1	
	60.		7.0 + 60	1/4 1/4 + 1/8	9+3×2 9+3-661-0-1 ×2	20 30 40	)+0			95			, 29	,005	{	14
	1.5 <u>†</u> 7		10	12"	atz-chi-(py) atz-chi-co	50 60 701			278		د ب	11410	4.0104			
·	<u> </u>	28	70	× ×	at 3 + 14- ep (140)	<u>90</u>										
			55	14". 2"	atz (ser). py(cn)	10 20				90						
	60 WK		50	2" 1/8+2	gts-sor-py (cp)	30 30 50	1.10		286	]	70	1\494	,18	.009		.12
			4.0	1/2	913*2 913-ser-co(01)	601 701 201			28%	60			<,0) 04			
		1120	4.0 70	Yo	qt3.enl.cp 1					f						
	NO			2	- gg'y broken see (loss core	20; 30 ; 40 ]	2.0			60	20		.39	006		14
	1		10 x 3 60 70	/107 3 /3 1	173 973	50 60 70			298		20	11495	1,0104			
		300	45	7/10	gtz-ser-cp gtz-chl-cp	80 90		······								
	[]		- So 21 3 3	14 12*	973-267-66 973 973-661-567	10				95					.25	
	60 Mad		•5	X	qt3-5+r- cp	20 40 50	Z-0				57	11496	,22	.004	3140	L <b>+</b>
		3.0	70	Ya Ya-Ya	973- PN 973- Chl-01 (cp) + 2	60 70 80			308			·	5.0104			
			6012	1/2 1/1022	13- CP 913- Ch1- Cp- Pyx 2				[		1		†		1	
			70 30	z." /3	9+3-505-04-6p		.			90	50	1447	. 7/	005	1	
P4	10d				ata-porp	50 50 70					'		4,014			
		320 1		/4	q17 (1	0									Ŀ	

)

## a sector de la constance en la constance de la constance de la constance de la constance de la constance de la

an ar had

)				.)			)					)		
GRID				GIBRAL	TAR MINES	LTD.		H S	OLE NO. HEET NO	<u>86-43</u>	<u> </u>		• .	
ROCK TYPES & ALTERATION	1.1	GRAPHIC LOG		<u><u></u></u>	FRACTURE	0	BOTTOM DEPTHS	1 1		1	AS:	SAY RE	SULTS	T
	3			l i	ANGLE TO CORE AXIS	TATE	LEACH CAP	1.1	c R	Q D Sompl	. 7.	%		California
÷ .	1				-FREQUENCY-	2 %	SUPERGENE REMARKS		7.	~~~+e	Cu	Mo		croie
	70 Mod	60×3 70×3	y3 y3 y2+y3+2" ,"+2"	ata ata-pu ataxa ataxa	Q : . 10 : 20 : 50 : 50 : 60 : 50 : 60 : 70 : 80 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 : 90 :	0.5		328	85 2	3 11498	, 23 <1014	.003	*1	. o 5
small strong fault zonc	- ?		۹ '	99 tb x)-hem (~ 5 'of "solid" 90)	0 10 10 10 10 10 10 10 10 10 1	7		336	60 3	11499	.37 Latry	.003		₹
	70 WK	90 90 80 7	74 3"	9+3-51-91 9+3-51-91	90 0 10 20 20 50 40 50	6.0		345	10 33	11500	.19	.010		.12
		350 70		qt3-ser-py (cp)	40 70 20 90								.25 3055	
	at	- 70 80 60 260-70 x - 70	2+ 1/3 1/15 1/20-1/10+3 1/10	qt3-scv-py-cp qt3-cul-cp(Ma) qt3-cul-cp qt3-cul-pyx3 cul-ep		1.5	3	9	5 40	11501:	.17	,008		.14
	3	80-3	1/10 x 3	at3-chl-carb (Py)x3									<u>.</u>	
8 51	o *     37	70 70 80×3	3* 4" 1/5×3 2/4×2	qtz_ser-conb [2] qtz_ser_chl- carb [2] qtz_ser_chl- carb [3] qtz_ser_cnl-cp [3] qtz_corb x3 [7] qtz_corb.py x3 [8]		.5	<u>36</u>	.5	33	11302.	.22 . Killing	.007		, ı <del>5</del>
80 31	- 380	30 + 70 y L 50 80 80	$\frac{1}{2}$ + $\frac{1}{2}$ + 1 $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ + 1 $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ + 1 $\frac{1}{2}$ + $\frac{1}{2}$	4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) 4 ¹ 3 × 1 (φ) (φ) (φ) (φ) (φ) (φ) (φ) (φ)		5	37	95 5	57	11503	. 18 . C K.ulog	***6		00

)



1

		)					)				)						)		
		Gł			CRADUIC			GIBRALT	AR MINES	LTD.		ł	HOLE I SHEET	No. <u>86</u> No	-43 601	8		. •	· ·
ROCI	K TYPE:	S & ALTERATIO		!	LOG	-	-	1	FRACTURE	0 10	BOTTOM DEPTHS	_	I		1	AS	SAY RE	SULTS	
	ļ. •				111 111 111 111 111 111 111 111 111 11	1			ANGLE TO CORE AXIS	TRIT	LEACH CAP	-	Care.	ROD	Sample	1%	%		T
				1 =		ž			-FREQUENCY-	1153	SUPERGENE REMARKS		*•••••• 7.		Number	Cu	Mo		Crole
			8	od .	10-30 × 4 50	Y4×4 Y3	99x * 972-81	( 93.4 broken Core due to a 025° small fault.	0 . 10 . 20 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 . 5	0.5		385	90	13	.11504	.12	.003	3	, o s
					45 60 85+43 65 400 5 76	1/3 1/2 1/4 × 2 3' 1*	9t3-carb 9t3 99x 2 99-bx 9t3-ser-py-o	с <u>р</u>	70 0 10 20 20 20 50 50 50 50 50 50 50 50 50 5	1.0		395	90	17	11565	.13	.001	.17 360	.12
			70 Str		410. 10 10 10 10 10 10 10 10 10 10	4++2 4++2 4+2 4+3 2+ 4+0 4+0 4+0 4+0 4+0 4+0 4+0 4+	973. cNI- CP 973. x 2 973. cNI 973 CNI- PA 973 CNI- PA 973 CNI (CP)			0.5	· .	405	<u>9</u> 5	67	11506	.16 <.010¥	.002	-	. 10
		small fault (	70 100 100 100 100 100 100 100 100 100 10	4	30-60 K	10'	99-px	21 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14		?		414		D	11507	.06 1,0104	,002		ż
			70 Mod	434	30 40 5 60+10+40 70 2	K 9 10" 9 1+X+2 9 2 1	q13 t3-54v-py(ep t3-ch1(uuy) t3-2 t3-ch1(ep)	0 2 20 30 50 50 50 50 50 50 50 50 50 50 50 50 50	3	. 0		24	3	.0 11	1508	.11 .0107	60 <b>3</b>		.10
			<u>60</u>	140	20 20 30 50 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 31 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 20 20 20 20 20 20 20 20 2	-+ 73 (4+ 24- 24- 24- 24- 24- 24- 24- 24- 24- 24-	3 bx 3- cp (No) 3 (cp) chl-ep	0 12 20 20 20 20 20 20 20 20 20 20 20 20 20	I, (	5	4	95	47	115	509 .0	08	002	-11 3ap5 -	12

~

31. A. M.

		. )					Ì			)								
		GRID_		_			GIBRALT	AR MINES	LTD.		1	HOLE SHEET	No. <u>86-</u> No. <u>7</u>	<u>13</u> of			· .	
ROCK	TYP	ES & ALTERATION	1	GR	APHIC	•		FRACTURE	0	BOTTOM DEPTHS	_		Ι	1	AS	SAY RE	οίτε	
								ANGLE TO	ATE	LEACH CAP	-	C	ROD	Sample	7.	%		Calionard
· .	•		=					CORE AXIS	WI L	SUPERGENE	11	A.c		Number	Cu	Mo	1	crose
			1.	122			<u><u></u></u>	-FACQUERC)=	2 %	· REMARKS		7.						
					80	31	qt3.ser-carb.p1(co) 3000	¢ 10	1								3	
			80					20			444				.15	.012		17
			WE-		F 50+40+20	14" 1/3 x 3	99	50	1.0				43	11510	K.01 M	<b> </b> .		, -
			517		40		ata-chi-py-cp dta-chi-cp	70 80	·						1			
· ·		ļ	<u> </u>	<del>1] </del> +	50 1 60+20.	Y3+Y2	qt3 x 2	20 0	]	· · · · · · · · · · · · · · · · · · ·		95						
			ŀ		<b>*</b> ¢0	3″	9 t3 ((cp))	10 20										
			45-		10 +2	hox2	qtz-chl-pj-cp xz	30 40	0.5		129		33	11511	.12	1.0.4		80,
			WK-		1			50 60							Kistof			
			Mod		20	1/2	99	201 001				90						
		1		$\prod$	10	Y3	972-cp	20 0			11					ł		
		······································					973	20			464		ĺ			sal		
.		no well defined	70 WK		0 70	30	qq-nem-Dx	10	0.5			75	10	11512	.20			, °8
		Fautt - poss. this				,+	973-30+(00)	60 70 i			467				< ,01 m			
1		hole lies near a		47	50+45	Y2 x 2	qt3x2	20   70				Ļ			ļ			
		Vert. or steep			4 60	3"	qtz (cp) (pr)	0 10				65						
		subsiduary fract		11	<b>T</b>	,'	an-b-	30							23	014	1	
		systems .	80 Wx			·	יייון	50	0.5		477		3	11513	, 2-	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					70+50	2"+4"	qt3(cp) ×2	70 ; 70 ;							K DIOX			
			<u> </u>	482	1 30	8" "	ag-hem-b.	80 0				-						
					45 42	1/2×2	q [†] 3×2 2	20			·	15					251	
			ND GN		60	19	qt3-chl-cp	0	~ e		486		40 1	1514	. 14	.601	O	12
							6	0	0.5	-	100				2.011			
-				410	60	1/2	ats-carb (chi)-cp	2										·
					10	1." 1.	the and a construction of the action	2				१६	E E	71				
			-		50	1/2	qts-chi-py (ch)									pul		12
			"		2 2	, 1		0	.5		196		27   1	1515	30 1			
			- 11			6	99-6× 70	,				60		<b> </b>	(,0 loz		.	.
				500	1			1										

..

		)	•••				)					)						)		
	1 -	GRID		-				GIBRAL	LTA	R MINES	LTD.		ł	IOLE I SHEET	No86-	. <u>43</u> of	8		• •	· .
ROC	K TYPE	S B ALTERATION		GRAPH	q			•		FRACTURE	2.	BOTTOM DEPTHS	$\overline{1}$	20.0000			ASS	SAY RE	SULTS	
		Ţ		-				1		ANGLE TO CORE AXIS	MAT .	LIM. ZONE	1.	c+++	200	Sample	7.	%		(stineted
			1		· · ·	×.				-FREQUENCY-	2 7	SUPERGENE REMARKS		7.		Number	Cu	Mo		croix
					2		aa-bx		01212							11515		. • 7	3	
·	·	EOH 505	70 Str.		·		99-0	· · · · · · · · · · · · · · · · · · ·					505				ļ	·		
		A.O.B.							6 2 8 2	>	, ,									
			ŀ						0					ľ						
									22											
									8 8											
:									10 90										l.	
									0											
			1						20											
				!					50 60 70								ľ			
									901											
									20								1			
									30 40 50											
									60											
+									40					-						
									20											
									50										.	
									70										<u> </u> .	
									0.0				-1							
									289											
									50 60 70											
									80								1		<u> </u>	

the second

GRID LOCATION GIBRALTAR EAST DATE COLLINED 5- 500-86 DATE COULTED 06-510-86		CNSTH	- 08' 90	GIBRAL Latitu Denir ELEVA	TAR MINES 17399- 1708- <u>16061-</u> 1708- <u>3159</u>	LTD. 37 N 58 E 33 '	CORE 342	N.Q.)	HOLE SHEET	No8( No	<u>6-4</u> 4 	8 xcco m htcO (	G.D.	9.B	
ROCK TYPES & ALTERATION	GRAPI LOC VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Structure OH	is kibiw.	Worrelisetten	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATED % PYRITE	BOTTOM DEPTHS LEACH CAP ILO LIM. ZONE IZO SUPERCENE 340 × AEMARS	7.01431	Esti-otie Core Rocovery 70	ROP	Sample Number	AS: % Cu	SAY RE	SULTS	- Estimeted Crose
<u>Casing Ta</u> 					0 10 20 30 40 50 60 70 80 90 90		* Not a superge plantot.	100							
402- MINE PHASE QUARTZ 	80 WK	60 86×2	YB Ysx2	qt3- 11m qt3- 11m x2 core	0 10 20 30 30 40 50 50 50 50 50 50 50 50 50 5	0	lim gen. wk.	108	95?		11526	.03	.002		05
med grn- el. finer grnid than normal qt3- 35 e/e ch1 - 15-202/o saus. plag 45-50 e/e	70 Str	60	Y2 2' 5 X2'	qtz-lim-py qtz-ser-lim qtz-carb-chl_cer(py)zon;	Q     Q       Q     Q       ZO     Q	1.0		_118_	90	23	11527	.07	.002		. 03
- typical mine phase	80 Str		10'	qt3-carb-chl-ser(py) sone	30       0       0       20       30       40       50       50       60       70       70       70	1.0 + 1.0=fo Mag.	this zone appears as a hard med- pale gray altid and	126	60	40	11528	.09	,0=4		08
80 Sti	0 17	80	10	9tz-carb-chl-mag (py) zone	20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20	1.0 Dalo Mag)	over grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand grand g	136	95	63 1	1529	04	. 009		<b>U</b> 8
										<u></u> 1				2220° 12	

			)		·				)				.)						)		
			GŔI	o					GIBRAL	TAR	MINES	LTD.			HOLE SHEET	No80 No	<u>-44</u> 2 of	8	. •	• •	
ROC	K TYP	ES 8	ALTERATION			GRAP	нісі	•	. 1	FR	ACTURE		BOTTOM DEPTHS		1			AS	SAY RE	<b>SULTS</b>	
	1	1.		3				1 4 4 1 4 4		AN Col	GLE TO RE AXIS	TAT	LIM. ZONE	-	c+++	RO	D Sample	. %	%	ļ	- Estimoted
: I				-	2			25		-FA	EQUENCY-	1.	SUPERGENE AEMARAS		7.		Number	Cu	Mo		crote
	1					II [.]				01		1		1		1	1		;		ž,
.				7	。		70	۹,	chl-carb ((a)) (a) and	20		<u> </u> ,_			92	50			0.0		1 12
				M.	od			1	(net a strong zone	50		]		146			115 30	12			
						150	1		grades to a typics dx. alth zone ;	1 80		1									
				ŀ			70	Y2	chi(qt3	0		1			98						
				60			[]			20		1									0.9
		1		w.	-					50 60		.5		156		63	11531	.05	.00Z		.08
:				100	٩.	160	20	.20"	qt3-ep-chl-py some	001										1	
		1					70 × 8	Yes-Yex 8	qt3	2				1-1	95		1	1			
				60-			].			20											
				70		F	8072	Y8×2	9+5+2	501		[.0		166		57	11532	.01	,004		
				1			70 ×2	Y10×2	ats-chl-pyx2	20											
				1	-+++		70 K4	1/10-Y8 x 4	qt3-chi-py x4	0				+	98	i	 				
		· ·				-	60	2*	qt3-chi (vug)	20:											
				VIK VIK		f	70	Y3	qtz	40		0.5		176		57	11533	.04	1002		. 05
				[		_ H	70	Y3	ati	70   80											
				†	<del>   '</del>	80	40	10"	anh.	90 Q		+		{	95						
						F	<b>4</b> 0		44.00	20											
				wić~ Diađ		:	e.	v.	ata .	50		0.5	1	186		13	11534	-12	.002	3215	. 05
				, 10a		. [],		/3 /4	ata ta	70											
					ff'	μ	70	Y2	qtg-chl-o; (ep)	0					80 -	+					
						Ě.	?	.	q+2- bx 3	8											
			d			2		2	q [†] 3	0		0.5	ŀ	195	{	10	11535	,11	002		.05
		sma fa	Il strong		201			+'	99-6x	0						ĺ					

		)						)				)						)		
		GRID						GIBRA	LT	AR MINES	LTD.			HOLE SHEET	No. <u>86</u> No. <u>3</u>	<u>-44</u> of .	8	. •	•	
L ROCI	TYP	S & ALTERATION	1	GR	APHIC			tin e Ayers	: : :	FRACTURE	۵. 	BOTTOM DEPTHS			Τ	T	AS	SAY RE	SULTS	
	<u>г</u>	1	1:	1	06					ANGLE TO	ALE	LEACH CAP	-	C	ROD	Somple	7.	%	I	Cationed
· ·	, •		1 7			۲. ۲.				-FREQUENCY-	M111	SUPERGENE		. R.c		Number	Cu	Mo		Croie
			1	$\Pi$	-		30'	qq-b*		0 1 10			201		1	1	1		31	
		(	7.		:				1	20 30 40				70	3	11536	13	.004		,10
			WE				с" 'У4	qt3-ser-py-qq	·	50 60 70			208					·		
		dark alth		2	10 2 8	o	<u>+"</u>	gta-carb-chi-co	_	80 90			· .							
		zone + carb.	ŀ		1 50	*2	1/10×2 1/10	qt3-ch1-px x2 qt3-ch1-px		20				95						
			70		- 11				· 181	20 10 20	1.0				47	11537	.09	.002	+	.05
					1.		Yip	ats-chi-py	1				218				l			
			+	11 2	201		z "	qt3-chl-ser-py-cp	9	2		· · · · · · · · · · · · · · · · · · ·								
					1 80	180+95	¥10 Ke+¥3+¥4	qt3-chl-py qt3-carbx3	201	0				95				_		
			Mod						1515	0 0 0	1.0		0.0		70	11538	.07	.002		
				22	Hr.	+70 Y	10 1 2	qtz-chl-py-cp =2	2014				240		1				3,230	]
						2	u .	qt3-chi (cp)	20			<u></u>								
			60		E ]		312	humerous hies of	30					45	60	11539	.04	.002		.10
			Nod		70 +	80 X	+ Y4	atz-carbaz atz-carb	-1160	21 21 21	1.0		238			•				
				1240	70	Y3	A X 7	9 +3-carb	80 90				┦──┤	+						
					H80	/3		973	10 20					95						
			60		70 ×2	2 /10 2 /2	+ 1/10	9+3-ch1-py x2	100		2.0				63	1 5 40	· 31	.008		,15
			WK		50 +4 70	** //2   /2	+/4	913×2	60 70 80				248							
				1250	70	2"		ats-ser-oy	80					F	<u> </u>			1	T	
					10	/3		qt3-ser-py (ep)	29					90			10	0.02		,10
			Mod		80	1/3 V	~	4t3	50		,5		258		55 11	1541	IV .			
				260	80-70	· · · · · · · · · · · · · · · · · · ·	/4×10	diz-caro (cui) x 10											!·	

and the second states of the second second second second second second second second second second second second

	• •	)					)			)						)		
•	•. •	GRIL	D				GIBRAL	TAR MINES	LTD.		1	HOLE	No86	<u>. 44</u> • of .	8			
ROCK	TYPES	8 ALTERATION		GRA				FRACTURE	0. 0	BOTTOM DEPTHS		E	Ι		AS	SAY RE	SULTS	
· :			4 1 Cu	VIIIIV	2114514	MILL ALLA	Hinarrelita	ANGLE TO CORE AXIS -FREQUENCY-	1 12 MATI 12 PYRIT	LIM. ZONE SUPERGENE		C+++ R+c++++y %	ROD	sample Number	7. Cu	Mo		Estimated Crole
•			70 WK- Mod		60×2 60 70 40	1"~2 6" ½ 12" 20"	qt3-ser-py-cp x2 qt3-ser-py-cp qt3-chl-cp qt3-chl-ser-py-cp qt3-chl-ser-py-cp	Q ( 10 20 30 40 50 60 70 80 80	2.5		268	98	67	11542	. 10	.014	**	,45 <u>.</u>
			70 		50 65 70 + 80 50 56 50	2" 1" 2"+ 74 2" 5" 4"	qtz-ser-chi-py qtz-chi-py qtz-chi-py qtz-chi-py qtz-ser-chi-py-cp qtz-ser-chi-py(rp)	70       0       10       20       30       40       50       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60	3.0		278	98	67	11543	. 21	.004	• 21 3/85	.20
			45- 70 Str.	260	45-70	7½'	qt3-ser-chi-py (cp) 3one	90 0 10 20 20 20 20 20 20 20 20 20 2	7.0		.288	98	53	11544	· 2.]			. 25
			75 Vix	300	60 5 × 3 40 × 2 45 × 3 60 60	Y3,+Y2 Y20-Y10 ×3 Y10×2 Y10×2 G" T"	qt3-ch1-py x2 qt3-ch1-carb x3 qt3-ch1-ep x2 qt3-ch1-py -(eβ) 2 qt3-ch1-py qt3-ch1-py qt3-ch1-py	20 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0		2.98	90	40	11545	.13	.004		.15
			40 WK	310	40 60 50×2 60 60 60 76 60	14 14 14 14 14 14 14 14 14 10	43-50-54 43-50-54 43-50-54 43-50-54 43-50-54 43-50-54 54-50-54 45-50-54 54-50-54 54-50-54 54-50-54 54-50-54 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 54-50 5	20 10 20 30 30 40 50 50 50 50 50 50 50 50 50 5	5.0		308	95	57 1	1546	.34	.054		. 25
				32.0	45 80 45 45-60 x 4 60? 45 60	14" Y= 2Y= Y10-Y8 x+ Y44 2" 4 "	973-ser-p4-cp (cc) 973-ch1 (vog) 973-ch1 (vog) 973-ch1 (vog) 973-ch1 (vo)(py) x + 973-ch1-cp 973-ser-p4-cc 973-ser-p4-cc 973-ser-p4-cc	Ø       Ø       No       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø       Ø	3.2		31.8	95	to II	.547 ,	1.10	. 010	.42	50

		)						)				)						)		
•			GRID_		-			GIBR,	ALT.	AR MINES	LTD.			HOLE SHEE	No8	<u>6-44</u> 5 of	8		<u>.</u> •	
ROCI	K TYP	ES & ALTERA	TION	1.		OG .		<u>i</u>	÷.	FRACTURE	0 6	BOTTOM DEPTHS	_				٨	SSAY R	ESULTS	
<b>.</b>				3				-		ANGLE TO	IN IS	LEACH CAP	-1	c.,	. 20	D Sample	. %	%		
:						100			•	-FREQUENCY-	1151	SUPERGENE		-   ⁿ 7.	•••	Number	- Cu	Mo		Crose
	•			60 WK		80 15 15 15 10 15 10 15 10 15 10 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15	yz y4 * 2 Yz + 2 Xz * 2 6 Y2	(nl qt3-chl- chl-py qt3x3 qt3x3 qt3xa qt3-nch section qt3-nch section		0   / 0   / 20 30 30 50 50 50 50 50 50 50 50 50 5		REMARS	321	40	57	11548	.0'	6 .002	2	<b>3</b> 05
				60 WK		40 40 555 3 35 70 70 66	2." /2 /10×3 /2 6" 2" 3"	973-641 ch-62-97 973-641-87-62 x 3 973-641-87-62 973-64-77 973-64-77 13-54-77 973-64-77 10-62 13-54-77 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 10-62 1	1	70 0 10 20 20 20 20 20 20 20 20 20 2	3.0		.338	95	40	11549	, 53	.010	>	.30
				60 W4	34	70 80 74 70 70 70 70 70 70 70	4 74 76 70 74 74 74 74 74 74 74 74 74 74	dt3-ch1-(cp) dt3-ch1-carb-py(cp) dt3-ch1-carb-py(cp) dt3-ch1-cp ch1-cp ch1-cp ch1-cp ch1-cp-cp ch1-cp-ty-3 dt3-ch1-ep-ty-3			3.5	· · · · · · · · · · · · · · · · · · ·	346	95	47	11550	.32			.25
			7	ro od	360	40 70 5+20 70 60 70 60 45	1/2  /4   y'z + \"   z"   y ₄   y ₄   y ₈   y ₄   y ₆	Py-carb (cp) ch1-py (cp) q13 x2 q15 ch1-cp q13-ser-py q13-ch1-py q13-ch1-py	0 8 2 9 9 9 9 9 9 9 8 2 8 9 9 9 9 9 9 9 9		3.0		356	95	40	11551	./3	.004		.15
			70 WK		370	70 55 96 60 X Z 70	/2 /10 2 " /4 * 2 30 "	ch1-py=cp ch1-cp qt3 carb-py(cp)x2 dt-ch1-carb-(cp)(ma)	02229000000		2.0		366	95	50	155z	.16	.002	.25 3095	,18
			70 WK		380	80 70 90 45+5 30 40	Y:0 2" 2% Xx 2 Xx 2 Xx 1 Xx 1 Xx 1 Xx 1 Xx 1 Xx 1 Xx 1 Xx 1	chi-cp 3f3 · ser -py-cp gf3 qf3-carb (sp)+2 chi-carb cp chi (sp)	20220200				376	۹٥ 	40	1/553	, 2 Z	.054		,16

.

<mark>e se de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la desta La desta de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la desta de la d</mark>
		-	)								)					)						)			
- 				GRID	·						GIBRA	AL T	AR MINES	LTD	).	~		HOLE	No&	<u>6-44</u>	. 8				
ROCI	к түр Т	ES I	ALTERAT	ION						-	1		FRACTURE	0.0	. [	BOTTOM DEPTHS		1	<u></u>	<u> </u>	<u> </u>	ASSAY	RESULT		
•	· ·	ľ			=			11/11 11/11	Ŧ				CORE AXIS	PYRIT		IM. ZONE	<u> </u>	C	RO	D Some	1. 7	. 7	<u>,                                    </u>	- Cati	
										÷			-FREQUENCY-	2 ×	: 5	AEMARAS		7.		Numbe	~ C	4 . Mo		6	•1 ~
							ſ	5	12."		99-2×		0 · 10 · 20	1				98	1	1		-		3	
					70 W1	:		60 x 2	1/4		chl-pyx2 gtz-cp		50 50	1.5		•	384		30	11554	.13	5 100	6	.12	
		1					390	70 × 2	Y10 ×	3	qt3-ch1-p+(cp)		60 70 80	1								· ·			
					ŀ			\$0×2	Y2 +1 Y2		9tsxz atz-ser-py		0 10		╧			1 15		+					
					70			76	1"		gtz-ser-py(cg) gtz-ser-ep		20 30 Ю	1.5		·	394								
					1 14 64		· · F	10	1/2022	.	chi-cp x2	1911	50 .0 .0	1.2					71	11555	1.22	2.00	2	,30	
┟╼╾┼				· · ·		$\mathbb{H}$	400	70+20	Y4×2		9 t3 (c4)- py (cp) x2		0					98		<u> </u>					$\square$
					70			60	2 *		qtz (cp)	2 2 X													
					str.			70	5'		ota-sociation (- )/(c))	202		1.5		•	404		53	11556	.21		6	. 15	
					_	+	10				3000	200						0-					,20		
							B	60 60×2	2012	00	p1-(cp) 13-p1-cp 13-ch1-p1 (cp)x2	000					11			<u>.</u>	1		1.2036	1	-
					70 Mod		E	60x2	Y10 * 2	91	3-ch1-ca+b-cp 13-ch1-cp x2 13-cp ×3	10	1	1.0			414		50				1	30	
						11.		0 +B0 +2	¥3 ×3=1/2 ×2	9	t3.ch1-carb-py (cp) t3x3	60 70 80					418	100	30	11557		1.004			
						144		0 0-70 x 4	1/2 1/2 1/2 +	9	t3-chl-py t3	80			····						ļ	<b> </b>			_
					70			6 6	10"	9   9	ts-chl-py-cp	20 20						95							
				7	xod		11				3	50	3	.0						11558	• 1/	. 00 6		. 12	
			<u> </u>			430	1 10		/10 6"	1 91	T3-chl-cp	80					428						L		
							H"		Y10 -	9	s-chl-py(ep)	10 20 30													
				w w	0 14		140	-70×5	120 * 5 18	qt3.	- chi - py-cp + 4	10 50	1.9	;				6	,	1559	.09	002		, 14	
		,	····			<del>1</del> 40	45	ľ	1/10	qts	schl-py-cp	70 80				4	38								

and the second second second second second second second second second second second second second second second

	)	)	_		)
GRID	GIBRALTAR	MINES LTD.	HOLE N SHEET	No. <u>86-44</u> No. <u>7</u> of	8
ROCK TYPES & ALTERATION GRAPHIC	: FRA	CTURE O BOTTOM DEPTHS			ASSAY RESULTS
		AXIS		ROD Somple	% % Colinated
7	-FRE	QUENCY-		Number	Cu Mo Croie
45 68	Y2 9t3- chi (vug) 01. 7- 9t3- chi (vug) 10				* *
· · · · · · · · · · · · · · · · · · ·	10" qty-ser-py 50	4.0	98	47 11560	.07 .002 .10
Hod			445		
450	12 913-30-71 80 80 90				
· · · · · · · · · · · · · · · · · · ·	1 9t3-chi-py 0				
	2" qt3-ser-py 30 Ys to		10	30 11541	.10 .004 3005 .08
Mad- WK	13 50 13 Chi-carb 60	(13	459	//53/	
440 - 80	/4 \$\$(cp)				<u>.</u>
	3" 973-547-94 Q. 7" 973-547-94 10				
45	3" (qt3-ser-py) 201		62	_	-6 - 67.7
ND 60 × 3	/20- YIO X3 9t3- chl- ty X3 501	4.0		70 11562	
5012	710 973-chi-PV 101 201		468		
410 410 k 2	1++ Yio qt3-ser-ep x2		+1  -	İ	
- 7b - 55	$Y_{10}$ $qt_3-chl-cp$ $Z_0$		98		
N0 160+50		2.0		53 1.563	.08 .002 .10
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		418		
			╂──┨ ┠╸		
₿6 × 3	X4+2 9+3-ch1 (py)+3 20		95		
CH CH	40 50	1.5		10 5 54	16 .009
1 50	24" qt 3-(h1- P) (10)(man) (10)		43B		
	y. 173-CP		┟───┤ ┠─		
	y3+14 qt3.12 20 y4 atricht co 20		48		
ND 70	1. 4 4 4 3 - Carb- (cp) = 2 50		e e	50 11565.	09 .00 4 .12
1012	73 qt3-ch1 carb py 70 1"+ A" qt3-ch1 (vus) 80		498		2960 .

1.1

Contraction and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and

		. ()	•• •				)				)						)		
-	2	GRID		-			G	BRALT	AR MINES	LTD.		ł	HOLE	No. <u>86-</u> No. <u>8</u>	44 of _1	2	<i>,</i> .		
ROC	X TYPE	ES & ALTERATION		GRAPHIC				₩±	FRACTURE	2	BOTTOM DEPTHS		e	Ι		ASS	AY RES	ULTS	
			L to Con Fallation	Ailania Footori Streeting	V 141	. WIEEN	11 h		ANGLE TO CORE AXIS -FREQUENCY-	ESTIMAT % PYRU	LIM. ZONE SUPERGENE REMARKS		C+++ R+++++++++++++++++++++++++++++++++	ROD	somple number	7. Cu	% . Mo		Estimated Grade
		F.O.H. SoB	70 WK		•-ð• • •	8" 1" ¥+ ¥:• 4"	9 ¹ 3-chl-py (cp) 913-chl-ser-py 913 913-chl-(cp) 913-ser-py		0 / 10 20 30 50 50 50 60 70 80 80	1.5		T ( P. S.	95		11566	.21	. as 2	***	14
								29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	0       10       10       10       10       10       10       10       10       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       12       13       14       14       15       16       17       18       19       11       11       12       13       14       14       15       16       17       18       19       11       11       12       13       14       15       16       17       18       19								:		
						· .		ବିଅନ୍ତର ଅନ୍ତର ାହାର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତର ଅନ୍ତ											

		GRID_					GIE	BRALT	AR MINES	LTD.			HOLE	No8(	<u>6- 45</u> of				
ی م ۵۸	CATION	GIBRALTAR EAST 10 <u>06-5ep-86</u> 10007-5ep-86		_ ВСА _ Сем _ ^{рир} _	лике5 сти5 90°		· · · · · · · · · · · · · · · · · · ·	LATITUDE DEMATUR ELEVATIO	47224. • <u>45883</u> . • <u>34</u> 65.	93 N 06 E 45'	CORE SUE	N.Q. 61″	W. = 10'			000060 BT.	G.D.1	3. , 1986	
ROCK	TYPES	8 ALTERATION		GRAPHIC	7		:		FRACTURE		BOTTOM DEPTHS		1.	T	1	AS	SAY RE	ULTS	·····
	.		13 21	<u>.</u>	1 15-		101		ANGLE TO	RITE	LEACH CAP D	-1	Cere	ROD	Sample	%	1%	1	
:	1				, z 4	iPiw.	uln		-FREQUENCY-	41123 MI 723	SUPERDENE AEMARKS		A.c.,		Number	Cu	Mo		Crede
		Casing To							0 10 20 30 40 50 60 70			128				-			
				130 F	60 +70	1/4+2	9+3- chil (cp) x 2		80 90			130	70		1		1		
		MINE PHASE QUARIZ DIORITE (128-507')	80 Mod	140	75 40	1"	9+3-ser-py 9+3		0 0 20 30 40 50 50 50 50 50 50 50 50 50 5	1.0	no limonite - core appears h <u>an</u> d and fresh.	138	90	60	11426	.08 2.010x	.002		05
	-	- typical Mine Phase ~ 300/0 gtz ~ 200/0 cnl. 450/0 saus piag.	80 WK		5×3 45 60	120K3 1" 3"	hem.gg, 2 qt3-ehl (vug) qt3-ser-chl (py)((ros)			0.5		148	<del>1</del> 5	30	11427	. 12. <,01 cy	.002	. 10	. 12
	1 1 0 0 0	med. <u>gra - dug.</u> gra size yio- X." Unis core deceal uppear as vervosibly Atid , orisined and memory as \$6-43 ad 86-44.	BD WK- Mad	100 -	90 80 84 2 90 8 2 90 8 2	у Уг Угохг Угхг Угхг Уго Уго	q13-ser-py-cp hem-gg *2 q13-ser-py-cp hem-gg *2 q1-hem chl-py *2	9. 4 2. 3. 3. 4 4 5. 4 5. 4 5. 4 5. 4 5. 4 5.		0.5		158	98	33	11428	-18 4	.002	3520	. 12
			80 1/14	70 P	0/3 0 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/8- Yio x 3 1/8- Xio x 3 1/8- 1/10 1/8- 1/10 1/8- 1/10 1/8- 1/10 1/8- 1/10 1/8- 1/10 1/8- 1/10 1/8- 1/10 1/8- 1/10 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8- 1/8	q + 3-ch: - py + 2 q + 3-ch - py + 2 q + 3-ch - py + 3 q + 3-ch - py - ch q + 3-ch - py - ch q + 3-ch - py - ch q + 3-ch - py + 2 q + 3-ch - py - ch q + 3-ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - 2 q + 3-ch - py - 2 q + 3-ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - ch - py - 2 q + 3-ch - py - qu - py - 2 q + 3-ch - py - qu - py - 2 q + 3-ch - py - qu - py - qu - qu - qu - qu - qu - qu - qu - q	8381481818181818181818181818181818181818		2.0		168	95	60	11429	.14 K.0191	,004		_1 <del>1</del>

)

		•	)							) )				)						)		
	۰.		GRI	0						GIBRAL	_T/	R MINES	LTD.			HOLE SHEET	No86	- <u>45</u> 2 of	7			
ROCK	TY	PES 8	ALTERATION			GRA	PHIC			<u>:</u>		FRACTURE	·	BOTTOM DEPTHS	7	1	T	1	A	SSAY R	ESULTS	T
	. •					-	19			10 til		ANGLE TO CORE AXIS	VAL	LEACH CAP	-.		ROI	Somple	7.	%		California
:				-					*	. 111		-FREQUENCY-	2 %	SUPERGENE REMARAS		7.	'	Number	Cu Cu	. Mo		croie
					Bo yur.		4 15 + 80 80 90 80	) Y 2	/4 × 1 /3 /2 2 ^{.4}	9t3-chi-py-cp 9t3 9t3-ser-py(cp) 9t3-ep-chi-carb(py)	101010		1.0	-	177	95	73	11430	.11	.002	2	.10
·					_	180	<u>                                     </u>	<u> </u>			8	0	<u> </u>									
				8 51 . M	० ४- स्र		80 80 80	2 1 1	х У	qts.chi-py qts-ser-chi-(py) sone qts-chi (ser)(pr)((cp)) sone	18 14 14 14 14		Į.D		187	95	63	11431	,10 501 M	.004		.10
					_	190	<u> </u>				000	>i								<u> </u>		
				to Str WK			170	6*		qts qts-ser-py (cp)	002220202		1.5		196_	90	67	11432	.10	.004	.13 <u>3275</u>	,08
						200	70	6"		qt3-chl-py qt3-ser-pl-co	20 00								2.0109			
		Sn	nall fault	7		4	5	6" 3"		99-hen-bx 99	0 0 0 0 0 0 0		7		296	95	13	11433	. 15	006		.05
			l			10	20	10"	a	19-hem-be	70 80 90								20101			
				80 Mod			70 5 10 70	2" Y2" Y10 Y10 Y3	9 9 9 9	9 q-hem 9 3	0 10 20 30 00 00 00 00 00 00 00 00 00 00 00 00		< 0.5		215	90	30	11434	· 06 (10) 11	.00Z		.05
		Fine type grns ~20 ~20 and ~2	- grad re Neo - Yis" dia % caus plag % cill w % interstitual	60- 70 str. Mod	23		50 30 3	2* 2" 3" 3"	943 943 943 943 943	3-26- 02- 04 3-26- 02- 04 3-26- 02 3-26- 02 3-26- 02 3-26- 02 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X Q 2 2 3 9 5 2 0 2 0			2	25	95	67 1	1435	.10 .0114	00 <b>2</b>		80,

)

a station has been were been all the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of 

									17 APR 1										
		)						)			)						)		
-		GRIL	)					GIBRALT	AR MINES	LTD.		1	HOLE I	No. <u>86-</u> No. <u>3</u>	<u>45</u> of	7		• •	
RO	CK TYP	ES & ALTERATION	].	- 0	RAPHIC	1	· ·	. <u>i</u>	FRACTURE	0	BOTTOM DEPTHS	-	c			ASS	AY RES	ULTS	
			11 1 1	Telletten	Fool 96	Valua . L le cer Aula	WIELN +	Ula.celita.	ANGLE TO CORE AXIS -FREQUENCY-	ESTIMAT % Preis	LIM. ZONE SUPERGENE AEMARKS		C A, 7.	ROD	Sample Number	7. Cu	70 Mo		Estimited Crole
·	  . 		70 str- Mod			80 95 90 × 3 80 80	2" 4" YID X 3 X4 EX2	9 t3-ser-py-cp 9 t3 1 t3-ch-py x 3 1 t3 9 t3 9 t3	0 1 10 20 30 40 50 60 70	1.0	· · ·	.235	98	57	11436	,21. (.0104	.002	, 13.	.10
	· <u> </u>				240	70	2'	etz-ser-(p)-(cp)	80 90 0 10 20				90				7	3230	
			5- 80 str			5-80	10'	gts.sen chl-carb-py-cp zone	20 40 50 50 50 50 50 50 50 50 50 5	2.0		245		30	11437	1.1Z 4.0104	.002		.50
			70 - Str			30-80 80 3013 )	3' 6' 4 × 3 10'	9t3-ch1(517)-py (cp) 30ne 9t3-687-py-cp 9t3-887-py-cp 9t3-587 (py)(cp)	20 20 20 20 20 20 20 20 20 20	9.0		255	95	77	11438	. 20 6. olox	.002		
			70 Str	2		6 3 0x3+40 %	4 × 3 + 1/2	973-56(- ру 973-5 973-сы-ер 973-сы-ер 27 27	30       0       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	0.5		265	90	80	11439	.07 	.002		.08
			60- 70 Str		10 10 10 10 10 10 10 10 10 10	0 8 143 1/1 1/1 1/8 1/2	4 0x3 10 43	9 9 9 9 9 9 9 9 9 9 9 9 9 9		3.0		275	98	60 1	1440	.15 .019	.008		<u>12</u>
			70. 20 Str	28:	10 5 0 ? 10 Y	30 14 2' 72 12 ¹ 2		213-38(-5H-py(CR) 2,000. 8 9-bx 2 t3.5(1-8p-py(Cp) 3,0ne 2 t3.5(1-8p-py(Cp) 3,0ne 4 t3.5(1-8p-py(Cp) 3,0ne 4 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.5 t3.		2.5		283	15	37	(44) .	10 el ex	002 3	35 185	_10

hte set helen seels waarde de Marine . Het de de die de de de see welde state de see weers de latere de seelse

		. )					) j			)								
		GRID					GIBRALT	AR MINES	LTD.			HOLE SHEET	No. <u>86</u>	<u>- 15</u>	7			
RC	CK TY	PES & ALTERATION	1.	GI				FRACTURE	a	BOTTOM DEPTHS		1	Τ	T	AS	SAY RE	SULTS	
			3					ANGLE TO CORE AXIS	YAL	LIM. ZONE	1.	C+**	ROD	somple	1%.	%		Estimeted
	:		4			, i		-FREQUENCY-	1.	SUPERGENE REMARAS		7.		Number	Cu	Mo		crose
		Note: the small faul and broken core from 300 to 370' may represent a single fault system	60 Mod		45 45 45 45 45 45 45	2" 18 1/3 1/2 1/2	9t3-ch-py 9t3 9t3 9t3 9t3	0 / 10 · 20 · 30 · 40 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 50 · 5	1-0		298	90	47	11442	. 11- K.olat	.0=2	3	08
		small strong fault	30- 60 Mod		**************************************	,2"	gg-bx (+ 1'core lost) qt3-ch1-ep-(py)	0 10 20 30 40 50 60 70 70 80 90 90 90 90 90 90 90 90 90 9	0.5		367	30	10	11443	,12 (.010)	. 008		.05
			45. 78 Nod	32	1 9 8 8 7 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	<pre>/4 2" 3" 2" 20" 10ⁿ</pre>	9ts 9ts-ser(9+) 9t3-chl-cp 9t3-ch 9t3-bx 9t3-bx 9t3-bx		0.5		314	85	10	\\444	.11 L.ola	.002		.14
		small fault	45 Mod	330	1 1 50 7 1 8 45	5" 12" 78 30"	99-ba 22 943-ser 33 943-ser 33 943-cp 22 943-ser-chi (Cpy) 3000 300		0,5		326	95	40 1	1445	.10 Ciolas	. 00 Z	•11 3140	. 10
		,	50 404	340	50×3 7 80 55	1/20 ×3 *" ** 3"	9t3-chl-py x3 (0) 9t3-99 (0) 9t3-99 (0) 9t3-chl-cp 70 9t3-chl-fy 80		1.0		336	90 85	17	1446	. M . 01 sy	002		.08
		smali fault.		350	4 • • • •	8'	9g -bx -sand 30 60 70 80 80 80 80 80 80			3	50	0	0 11	4:7	07. 	102		2

Contractions and a second and a second and a second and a second and a second and a second address of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second descendence of the second d

		)						)					)						,		
		GRIL	)		-				GIBRA	ALTA	AR MINES	LTD.			HOLE SHEET	No86	- <u>45</u> 50	1_7			
ROCK	TYP	ES & ALTERATION	T		GRAF	ніс	· ] ·		:		FRACTURE	0	BOTTOM DEPTHS		T	1	1	A	SAY RE	SULTS	
		1.		1							ANGLE TO	ATE	LEACH CAP		C	1201	Semel	e %.	1%	1	
	•		1 =				1				-FREQUENCY	NI L	SUPERGENE			·	Nombe	- [	Mo	1	Colimitat
		·	_ <u> </u> -		22 2				ž ·		Theodewer =	1: ×	AEMAAAS		<u> </u>						
						70	Y10×3	qtz-chl-py x qtz (cp)	³ ) dk v	10354	0 /	1								3	
						45160	Yex3	qt3.chi-carb	bi ( coi	۰ ۲	30				95			-1	1		08
				nod		70	14	9t3 (cp)	)		50	0.7				33	11448	.04	,002		
				- 1	11.	1 20	Y4	913			70 80	]		358		1	1	1 21010	×		
		_	1.	-1	11300	[					0	<u> </u>			ł		+			11	·
:						H.				141	20	1	· ·		50				1		
1		Small tault.	3 :			11 7	9	99-bx (+	6' of core	(ost) 4	0	?				7	11449	.08	.004		?
										2	0			367				2,010	×		
					370		1 "	105000		9	o 0			_			<u> </u>		<u> </u>		
						80 + 70	14 -14	1 1322		9 19	>		*		85					-18	
			1:	5-			1200-	1.5		2 X Z		< 4.5	ak.			4.5		08		3095	.05
			Mo	4				1 1 11		50			AP/C defor	me 377		70	11450	100	. 00 Z	-	
						40	+	9 13- CNI-Ser	30ne"	20			Verm					12.010)	9		
			1		3 80	60	78	qt3.chl-cp		90				-+				+		t	
						70	2"	2 ⁴ 2		20					95						
			Mod		Ľ	an l				10		20.5				27	11451	.05	,002		. 08
							-			60				283				2.010x			
					390	80 + 70	1/2+ 2"	9+3-2		80 90											
					Ā	60 X2	Y10 Y2 Y10	9+2-chl-p1 9+3-ch-p4		10											
1			60			60 49	é " Vez	9+3-ser. (9) (6) 30	5 M E	20		1.5			د ۹			. //	.001		J10
			str.		H	•0	N/L	qt3-cht carb-p	4-(1P)	50						21	11722	1000		.	
				_	Do H	60 X 1	10+2	qtz-chl-py-cp	X 2	70				303							
				ПŤ,	H	45	30."	ata.ser.chl.au	(50)	0					F	[		tť			
			¥.			4	1"	1	N-67	20					85						
			50		1	10	4	973-COND-EN1 ) 113	dk carb-	50		2.0				40	1453	.19	006		-10
			str	11	1				core	70				408		İ		6.01 .x			
				1.4	10 19 8	0	6	13- chi (wg)	)	50										<u>·</u>	I

(

C

and a second water and and a second and and the second second and the second second and a second a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

		)						)				)						)		
		) GRID	)					GIBRAI	LTA	AR MINES	LTD.	./	F	HOLE SHEET	No. <u>86-</u> No. <u>6</u>	<u>45</u> of	7			
				- GI	RAPH	a		1	_	CRAATURC	1_	BOTTOM DEPTHS		T	T	T	ASS	AY RES	טנדג	
ROCX	TYPE	S & ALIENATION			LOG		-			ANGLE TO	116	LEACH CAP	_	C	800	1 su male	1%	%		[
· .	•	·					<b>1</b>			CORE AXIS	E Z	LIM. ZONE	-1 :::	A				1		Colimeted
:			1	3		7.	×	· • • • •		-FREQUENCY-	2 ×	SUPERGENE REMARKS		7.			Cu			
				П		8013	1/20-1/043	9+3-carb-cini-py (Co)×3		0 1	1						1	7	2	
ļ			70-	.						20				95	42		.14	002		٥Ś
•			- BO			- F*	Z"	latz-chl		50	20.5		4.7		13	11454				
			}			60 ×2	X4 × 2	973×2	51.15	70					1		1019		.12	
					420	60 <u>.</u>	7	1913-ser		0						<u> </u>			2050	
			ŀ		Ľ	60	1 "	93		0				90			{			
			70			30	8"	qtz-chi(vug)		0 0					43	11455	,36	.001		,25
1			- WK		P	80 + 30 +90	X + Y3×2	9+3+3	5	io 0	1.0						1 alm		[	
						50	30"	<b>.</b>	20	01			428				2 101 1		1	
				╢┦	430.0			giz-ser-cp-pi		o		······································	$\vdash$							
					Ħ	8042	Your	9t3-chl-carb-cp x2	10					90						
			60-		H	<b>60</b>	Yio	qt3-chl-cp	×	2	7.0				33	11456	. 22	,002		.25
•			70 5tr		И	30	1/4	qtz-carb-chl-cp	50				431				1.0100		1	
					2	50 x 2	13 - 1/10	13-ser- pj 13-ser- cp x2	20					1						
			-{	┼┼┼ŧ	42   ]				90 10	>	+			40			1			
			1			50	3'	qtz-ser-chi-py (cp)	10					10						
	- 1		50-		P				30		1.0				47	11457	. 10	.001	1	.10
			str		F	4 0 V	10"	9+3-chl-carb	60				776.				ININ	ĺ		
						40	16"	ata para	80							ſ	( DIGA			
				1133	- <b>F</b>			1 - Yor P.	0	<u> </u>  -				95	Ť				1	
				11	Ho	•	1/10	qt3-chl-py	20									. 1		
ļ			40		1	•	2"	9 [†] 3	50		20.5		456		60 1	1458	.07	001		.05
			~~	11	μ,	۵   <u>۱</u>	1.	9 ⁺ 3	60 70			ſ					(,elay)		ľ	
				46	off	<u> </u>	4	9t3. caric -ch	90 50								<u></u>			
			T		150		1/2 //10	4+3 atz-chi-ce	10					95					. 18	
					4	}	8	gtz-carb-cri-py	20								12		mE	05
					1 3	Y	10	a a	50		:03		166		47   1	1459		007		, = .
					40	3	ه" (	1t3- cp-chl	70						Ì	K	,0104		.	
			- 11	470	160	-7×5 14	. * 5	atisvs	50						<u> </u>					I

le ne han e hande wellen i de like al an en de lande en en en de bester in de lande kereken de bester de state

· · ·

		; ;					)				)						)		
•	•	GRID		_			GIBI	RALT	AR MINES	LTD.		}	HOLE I SHEET	No. <u>86</u> No. <u>7</u>	<u>-45</u> of	7	.•		
RO	CK TYP	ES & ALTERATION	1	GRAP	ніс	1	:		FRACTURE		BOTTOM DEPTHS	-	c	T		ASS	AY RES	ULTS	
<u> </u>	1.	1.		1					ANGLE TO CORE AXIS	MAL	LIM. ZONE	;	C	200	Sample	1.	%		Estianted
						*	HIAL	-	-FREQUENCY-	21.2	SUPERGENE REMARKS		7.		Number	Cu	Mo		Crite
	+			TT-	40 +5	Yz + Ys	9t3 x2		0 i 10 · 20				95					3	
			NO		45	10	qtz-ep-ser-chl		30 40 50	۲۵۰۶ ک		476		40	11460	.08	.002		, <i>o</i> s
					50	24	gt3-carb		60 70							2.010%	-		
ļ			<b> </b>	480	30	Y3	9+3 9+3-ser-py		90 90				99					· · ·	
}			ľ		43	1/2 1/8 + 1/4	qt3-chl-py (cp) qt3-ser-py + qt3-ch	1-cp )	10 20										
			50 Mod		40	2"	at 3-chl-carb-(pr)		50 40 50	2.0		486		30	11461	,2,1	.002		.17
			ľ		20	/3 /+	ats S	dĸ	60 70 00							2.0104			
				490	60 6 30	2 Y2"	973-ser-chi-py (cp)	CHI-	90 0			†	90						
					30 + 2	YIDX2	qt3-chi-pyxz	CATE.	20							24	0,0		18
			str		10+2	Y10 x 2	qt3-cnl-cpx2	core is		1.5		497		27	11462	1.51	.010		
				Eag			/	12						i		2,0,00			
				1500	60	1/2	qt3-corb-py	4	0				85						
			30- 60		50 × 3	10 * 3	qt3-chl-cp x 3	2	0	2.0					11463	,59	.002	•	,50
		507	2		5 - 30	2.	gt3-ser-py-cp	5	0			507				2,018¥		. 28	
		b.D.B.						80	2 2									2960	
								10											
								200											
								60 70	·										
	┣			┞──┼┼	<u> </u>			00 00 00				{	-					†	
								288											1
								100											
								108											I

and the set of the formation of the set of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the

		)					)				)						)		
		GRID.		-			GIE	BRALT	TAR MINES	LTD.			HOLE SHEET	No. 8	<u>6-46</u> 0				
ص سم ۵۰		<u>Gib-Базt беше</u> мю <u>7-5ср-86</u> ито <u>9-5-р-86</u>		 	( AAW9	то <b>5</b> ' 90 [°]		LATITUDE DE MATUR ELEVATX	4 <u>78009.7</u> AC <u>45860</u> 5 OH <u>3382.3</u>	1 N 8 E 6	CORE SIZE	N. Q.	Wlive   "=10"	ine_		LOGGED #1	<u>MRT</u> 2- 03 c	7ct 86	· · · · · · · · · · · · · · · · · · ·
ROCK	TYPE	S & ALTERATION		GRAP	110		1		FRACTURE	a "	BOTTOM DEPTHS		1	T	1	AS	SAY RE	SULTS	
ī	•		L to Con Foliation	Alluration	Slevether Vethe L to Cir Auto	Width of Vela	Ulnecation		ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATE % PYRIT	LEACH CAP 111 LIM. ZONE 160 SUPERDENE - AEMARKS	Toologe	Coro Rocovory 76	RO	D Sample Number	%. Cu	% Mo		- Estind Cred
	•	cosed te <u>5e</u> '					o.B,		C           10           20           30           50           50           60           70           80										
		Mine. Plase 91 50- 93 - WKY. Mod Saus HHM - f. to med. grd - subhedral to euhedyal	· 60 • wr f+ Mud		/30° 60 × 3 60 × 4 30° 80 × 3 /40 × 2	4 16 416 x 3 1/8 X 4 1/10 hie x 3 1/20 X 2	gtz-chl-lim gtz-chl-lim gtz-chl-X3 gtz-ep-chl X4 gtz-chl-lim-mac lim-mnoz X3 gtz-ep-chl-lim X2	).	20 0 10 20 20 30 40 50 50 50 50	0%	No strong limonite. Zone Lim. on tractul Ontinues clown to acco but hol a real zon - The most abu. i.d. fret	50 50 58	90%	92%	1/676	,04 1020y	. 001		.01%
		- wk to mod fel.	Ч5° ик к Mrd	60.	165 15 1/2 16 16 30 10	1/10 V4 1/6 1/20 Chlax 3 1/1	At-Voslin- mag gtz-chl-lim-Mko lim x 10 gtz-chl-go-lim gtz-chl-lim Lim-Nhog x 3 gtz-chl	2	20 20 20 20 20 20 20 20 20 20	0%	cylin is about to got - Then is a wik malcolord Stain in places but it apprars to be coming from some blue paint in the core boxes, not from the rock fabrics	68	81%	45%	116.77	. 08 .03 ox			.01%
		75-79 Appoactusa) DK. Alto. Zone)	45. 6. w.K. M.d.	80	30 11" 40" 70" 45" 60" 60" 60"	4 414 1/4 1/8 1/8 1/0 1/0 1/0 1/0	the skill and lim ste skill all and gtz skill sin - lim Cot Var rke. gtz ep - chil gtz - che Maoz gtz - che Maoz	9 1111113 11100 11100		0%		78	92%	67%	11678	.04 .03 ox	.001		.01%
	ET WY	and a second second second	50 K VK 1. d.	9	10° 60×* 30° 110° 10° 10° 10° 10° 10° 10°	120 le x Z (1) (1) (20 (20) (20) (20) (20) (20) (20) (20)	Hackl. lin, lim x 2 Grath. chl. lim.uup /2. chl. ep lim tz. chl.lim>	4 12 12 12 12 12 12 12 12 12 12 12 12 12		2%		88	110%	73%	11679	.04 .0201	,001	2	.0/

			)					)			)						)	
-			CPIN			- 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m - 1.2 m		GIBRALT	AR MINES	LT.D.	1947 and an and a state of the second second	ł	IOLE I HEET	No. <u>86-</u>	<u>46</u> of	8	· · _ ·	
	•		ONID	1-66-54	60.00					1	BOTTOM DEPTHS	17			T	ASS	AY RESU	ILTS
Γ	ROCK	TYPE	S & ALTERATION		LOG		-		ANGLE TO	TE D	LEACH CAP	4	Cara	ROD	Sample	1%	%	faliastri
	:			L 1. Car	Alleration Follogi	Sitvetyte Volni L 10 Co	width Vola	Uta	CORE AXIS -FREQUENCY-	ESTIMI % Pre	LIM. ZONE SUPERGENE REMARKS		R.c		Number	Cu	Мо	Crole
		-	93 - 144 Core is still the same composition bet	15° Mu to WK.		3013 5 x 3 45° x 2 5°	hlex 3 hlex 3 1/4 XZ 6/e 1/20	Btz-chl ep x3 stz-chl ep x3 ghacker sex x2 Mang-lim: gtz-chl vhag.	0 10 20 30 40 50 50 60 50 50 50 50 50 50 50 50 50 5	0%		98	90%	78%	11680	·02	1.001	.01%
			appears consulting 	- 45 - 60 LOK	100	145° 145° 160 155 186	1/8 hle x5 1/2 1/4 Y4 Y4	Mn Do. X S. prache - ser. Ma D. ptz. cht - ep ptz. cht - ep ptz. cht - cht - im - Ma D. ptz. cht - cht - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the - the	0	07	* Holdr	108	<i>999.</i>	100 72°[	11 8 8 1	.02 ,0207	<b>L</b> .001	.017
	- +			Var.	110	120 130 130 130 160	1/2.0 1/2.0 1/2 1/2 1/4 3	$\begin{array}{c} g_{f_{1}}^{\prime} & g_{\ell}^{\prime} = f_{\mu} g_{\mu}^{\prime} \\ g_{f_{2}}^{\prime} = g_{\ell}^{\prime} = f_{\ell}^{\prime} \\ g_{\mu}^{\prime} = f_{\mu}^{\prime} \\ Genulasted g_{\mu}^{\prime} = Chl - g_{\mu}^{\prime} \\ g_{q}^{\prime} = f_{\mu}^{\prime} \\ h_{\ell}^{\prime} = g_{\mu}^{\prime} - c_{q}^{\prime} \\ c_{\ell}^{\prime} = g_{\mu}^{\prime} \\ c_{\ell}^{\prime} = g_{\mu}^{\prime} - c_{q}^{\prime} \\ \end{array}$	70 90 90 0 20 20 30 40 50	.2%	-1st Sulphidos @		102%	110 75%	1/682	.12		
_				- 60 Mod	12.0	30×3 185 150 120 140	hiex3 78 1/10 1/10	ots-chi py = 1 m ots-chi py = 1 m gts-chi - go lim gts-chi - lim Mals-py lim gts-chi - 1 m;	60 70 80 90 0 0 80 20 20		<i>μ</i> , <i>τ</i> '	_//8	101%	/20		1040X	,	
				6.• WK	130	60 130 1450 5 60	Y 2- 1/10 1/ 6 1/ 6 1/ 20 V 10	9/12 Vn. Vugo atz-de-lim - Dy- Lep-ces 9/12 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2 - Dy-chd a/2	50 50 60 70 80 80 90	.5%	· · · · · · · · · · · · · · · · · · ·	128		73% 130	11683	,02 of		. • 3/
				~3* WK		196 + 2 130° 130 X 3 130 + 2 126 • 80*	V/6 X2 1/2 1/6 X3 1/6 X2 1/8 V/0	The chile withing gho chile withing gho chile an X3 gho chile an X3 the chile an X3 ato Va - interim 7	10 10 10 10 10 10 10 10 10 10 10 10 10 1	.3%		/38	103%	72%	1624	, 03 ,02 %	1.001	
			114-152 Stronger Sans Mit" Coatser greenid	~ ^{45°} UK	140	200 30 30 430 430 460 200 450 80	1/8 1/16 1/16 1/20 1/20 1/1 1/1 1/1 1/1	otz cht - 100 gtz cht - 200 - 97 gtz cht - 200 - 97 gtz cht - 200 - 97 gtz cht - 97 - 200 - 100 gtz cht - 97 gtz cht - 97 gtz cht - 97 gtz cht - 97 gtz cht - 97 - 200 -	0.%		198	95%	71%	17685	, 04 .030x	.001		

. The second second bear and the second descent the second second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

in the

)						)			)				)						
	.t	ana statimo - o GRIDL		ta da sa		and the second second	GIBRAL T.	AR-MINES	LTD.	In align after all and	ł	IOLE	No. 86-	<u>46</u> ol	8		t i stati		
es i strestiki			1	CRAPH	id			CRAATURE		BOTTOM DEPTHS					ASS	AY RES	JLTS		
ROCK	TYPE	S & ALTERATION		LOG				ANGLE TO	116	LEACH CAP	4	Cere	ROD	Somple	1%	%		I stimsted	
			0	4.	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	414		CORE AXIS	W I	LIM. ZONE		Recovery		Nomber	Cu	Mo		croie	
			125		- T	Ŧ	5	-FREQUENCY-	5 %	AEMARAS	1.5	7.							
			<u>├</u>	Π	130	48	g to che - Ain - py lip up	0				90%							
		162-178	+		10	1/2 . "	fracht-sen-py	20 30	هر				35%	11/51	.07			.047	
	-	Some as 93.144,	45-60	11	20	1/2 ·	Samilie astlim	40	.66		156			110000		.00/		4	
			N/od-	<u>  </u>	120 IV	14	de.	70 70 80			1				.0304				
	• • •	a		160	B	11	Broken -gover ( me - hem_	90				80%	/60						
				11 -	80	hle	hem	20		· ·									
			150.	Η.	60X3	416	Aubble-gg Rubble + 22	30 40	01		165		18%	11687	.04	.001		.0/2	
			μκ 			ľ	Aussie (1)	so	10		·			1007	alor		[		
			Mod		/30°	1/20	gtz-dl-vup	80				750/	170						
			┠──┤	170	10	1/2	Atz-ch1-ep	e				100					{		
					1 20'	ble	to del - lim	20	0		174		1774		.10	101	{	.037	
		a four zones of			300	16 j z"	1 z-chl Landyk - dioritic	40	0%				51%	11688	da	.00		6	
		Cse gr. core i some	WF In		30 12	1/2042	3/2- chl-49×2.	60 70				05.1				,	1		
		178-182	st.	180	60×4	1/20 1 4 1	ptz-chl-epx7 ptz-chl-L(Cp)]	<u>eo</u> 90	<u> </u>	·		8-4	180						
		Zone.	(45°		45.	hle. 9	gte-chl-Lep)	0 10			182								
		182-			60	2"	99 Far Otz rich dyke.	30	1					11689	.04	.001		A	
		Same as 93-144	450		45	hle	of 2. chl-ser-py	50	.31.	Priller's Note .		90%	54%	,,,	,0101			.,-	
		~ 30-35% 172	Mid	ł	350	1/2	trecho-ep-lim (py-ce-(cp))	70 80		Had to may up to	190		100						
·			[]	190	30	γ <u>z</u> γ <u>μ</u>	29-lim	90 9		stabilize hole.	//		/10						
	·			11	20 X2	1/4 XZ	3r2 Vn	10 20											
			15-	1 1	45	1/20	ots-chi-lim-py	30 40	27			80%	70%	1. 20	.05	.001		.0.12	
			.1		300	1/20 ×2	the all ep-lini	60	1.3		198			1.010	.0104				
			114		5.	1114	12 chl-Rep>>	80				ļ	200		<u> </u>				
<b>├</b> ─── <b>┦</b>	{			1 t	10	1 A	the Al-ep	0					[						
	1		5.0-		00'	1″ e	at the chi-py op - cc	20 30	1			98%			09			. 4.97	
			60.		800	10 %	1/2- chi ser 99-174-20	50	.3%	the states of			71%	1.691		, or 2		1.	
			mod		500	/20	te-gtz-py-op	70		there whome brikestand	208		2/0		2.017			·	
1	1	1	Sh- 11	210	450	112	2+2-ch)-epx2					t	-/v						

. The second second second states and the second second second second second second second second second second 

								).			)						)	
-	ية درقر		GRID	Miran S	Š. S. J. J.			GIBRALT	AR MINES	LTD.	Real of the state of the second state of the second state of the second state of the second state of the second	ا د رژ	IOLE I	No. <u>86-4</u>	16 of	7	er er	
i.	1.1			د بینوی از میرود. مراجع	ICOADH	id .	1		-		BOTTOM DEPTHS		2			ASS	AY RESU	LTS
Ĩ	ROCK	TYPES	ALTERATION		LOG	۲ <b>.</b>	-		ANGLE TO	115	LERCH CAP	-	Cere	ROD	Sample	7.	%	Caliested
		•		L to Cor Follation		1126121 Avin 2. 10. C. Avin	width Vela		CORE AXIS -FREQUENCY-	6 5T IMI	LIM. ZONE SUPERGENE REMARKS	Footoge Blocor.	Rocovery %		Number	₍	Mo	Crote
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• •			60- 70° WK.		9 45 30 y <u>2</u> 80 4 s ⁺ 80 [°] + 60 [°] 4 s ⁻ 7 20 [°]	176 43 1/20 + 1/8 1/3 hle x3 y 16	OteVn. Grevn. chl. su. cp-mo gredt. vup - 44 mal >7 Grevn should boudinage str. Lin - smal > X.3 gremen - chl - py	0 10 20 30 40 50 50 50 50 50 50 50 50 50 5	. 3%		218	987	88%	11692	,08 .02.0X	.001	.08%. oxhi.
	· .		<u> </u>	   	220	15×3 70° 195° 10×2 10 10 10 10 10 10	1/16.x-3 1/10 1/11 1/2-×2 6" 1/20 1/8	Ha. chl- gub-cp +3 france - for cp - carb) Harder - for cp - carb) Harder - for - cp - carb) Harder - chr & yr Harder - carb - lim - py - p Harder - carb - lim - py - p	\$20           \$20           \$20           \$20           \$30           \$40           \$50           \$60           \$60           \$60           \$70	,3%	-Native cu rotal When one broken open.	228	100%	75%	11693	.08 .020¥	.003	,11%
			224-2-2. - Nike in carbs hern.	- 7~ WK.	230	15×2 30 80 6011 100 100 100 100	17/6 y 2 1/20 1916 1920 X 4 1920 X 4 1920 X 4 1920 X 2 1920	At - chi- cp y 2 gt. chi- cg- hen gt. chi- cg- hen gt. chi- cg- hen gt. chi- cg- hen gt. chi- cw py y 2 of - chi- cw - py y 2 of - chi- cp.	60         90           90         0           0         0           10         0           20         30           40         0           50         0           60         0	·3/0		238	997	230 66%	1:694	, 10 .03 ox	.004 r	. 0 5% H: 0X
				ЧD	240	80 x 2 60 x 2 60 x 2 70 x 4 10 80 80	10 14 14 120 × 2 120 × 2 116 × 3 116 110 110 110	Him + - At- che p 1 + + At- che p 1 + + At- che p 1 + + At- che p 1 + + (1 Che - F)+ (	90 0 10 20 20 30 40 50 60 20 20 20 20 20 20 20 20 20 2	.1/	or could it be paint stain from the next row	2.48	107%	60%	11695	.09 .020x	.002	. 09 %
				ND	250	70 50 30 70 x 2 1/5 50 x 2 80 x 2 80 x 2	1/4 1/20 1/16 x 2 1/2 1/2 1/4 x 2 1/2 1/4 x 2 1/2 1/4 x 2 1/2 1/2 2 2	12. ch - ach - ach pt. ch - ach pt. ch - ach pt. ch - by YZ pt. ch - py YZ pt. ch - py YZ pt. ch - py + cp pt. ch - py + cp pt. ch - py - cp pt. ch - py - cp pt. ch - py - cp pt. ch - py - cp pt. ch - ch - py - cp pt. ch - ch - py - cp pt. ch - ch - ch - ch - cp pt. ch - ch - ch - cp pt. ch - ch - ch - cp pt. ch - ch - ch - cp pt. ch - ch - ch - cp pt. ch - ch - ch - cp pt. ch - ch - ch - ch - cp pt. ch - ch - ch - ch - ch - ch - ch - ch	90 Strat Yure	.8/	Lots of chloritic vns.	253	106%	80% 260	11676	,1Z <.01.y	,002	-/36
			265-267- A Lourana Phase - Same inchet Ham name - into	70 d mot sort. ter.	270	45 x 7 45 60° 70 30 x 7 80° 70 x 6	1/10 8" 1/p 1/2012 1/2012 1/16 1/4 × 6	13- 1. 3- 1. 3- 1. 13- 1. 13- 1. 13- 1. 13- 1. 13- 1. 13- 1. 13- 1. 13- 1. 13- 1. 13- 1. 13- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1. 14- 1.	2	.1%	E Fam h = of carb. Driller's note: 2.48-128': Vibard ground.	268	1034	61% 270	ji [37	.10 2.015 <b>4</b>	.00 -	. <i>11%</i>

and the second second second second second second second second second second second second second second second

(

		GRID_			n in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		GIBRALT	AR MINES	LTD.	×	н S	OLE HEET	No. <u>86-</u>	<u>46</u> 5 01 _	8		•	
	TYOFE	A ATTERATION		GRAPH	q		. :	FRACTURE	<u>م</u> ب	BOTTOM DEPTHS		201-0100			A55	AY RES	ULTS	
	11723			LOG				ANGLE TO	ALE	LEACH CAP	• .	C+**	ROD	Sample	7.	%	<b>  </b>	Estimited
•			2 10 0 7 0  0		312VCI V	UPIN.	21 here	-FREQUENCY-	4 %	SUPERGENE REMARKS	Feeteg Bloce	Rocovery %		Number	Cu	Mo		Grode
		267-322- WK Sous Lite QD w/ lots of chi slip mplaces - grodes m force of a gt-	70- 86 WE		80 45 80 7642 70	Хес 1/2 У 4 Угх 2 6	9 12 - ch2 - cp 12 carb - ch1 11 - ch1 - carb - cp 1 + ch1 - carb - carb - Lep1 V2 2 g - 10 = the	0 10 20 30 40 50 40 50 40 50 40 50 40 50 50 50 50 50 50 50 50 50 5	. 4%		276	100%	41.	11698	.15 (0104	.005		.10]
		. in place		280	80	1/16	gta-de-py-up7	80 90 0		chl		1067	280				╞───┼	
			•		80 x3 80 70 x s	10×5 2 420×5	the sa shew - cab - py	७ २२ २२			284		001	11699		.002		14%
			mod.		30 80 x 2	3/4 4/6 x 2	bt Vn- boadinessa is of 2- t all-sa- for re	50 Le - C AL & VIN. 60	- 6's	Ì			616	1.077	e ol of			, , , , , , , , , , , , , , , , , , ,
				290	8013 60 80 ×2	1/4	Ata Va scarben - bendines.	0 0				97%	290					
			95" 10K		80 60° 45° 45'4	¥4 ¥≠ ¹/3 ¥≠• ×9	At-de crib-mag-op f= dl-acb-mag-op f=-chl-cub-by-cp sta-chl-py-cpxp	20 30 40 50	1%		296		78 %	11700	,10 . elm	. 1002		.162
			to M.d	300	40° 75° 80°	hie. 1. 11/2-11	The hacards	70 80 90			]		300			/	╞╼╼╼╋	
			70° Mad		60. 70. 22.	1/10 1/8 hee XZ 1/2-	Gty-dl- P Cte-chl-cont isp ate-dl-op-op x Gte-dl-op-op x Gte-dl-db-op- te-chl cont-lip 7	0 0 20 30 40 50 50	. 2/.		307	96%	62%	11701	.21 <010x	.014		•17 7
			[]	310	30°	1/16 1/2 1/2	to ser chil-cp	70 30 80					3/0				<u> </u>	
			60° N 1		70 70 70 70 70 70 70 70 70 70	12 1242 2 20×10	sh our of - an - GP sh our of - (41, L, LCP) × 2- gn- arb ser-py-G. she chl - CP×10		.26	isthis of the state	317	103%	68%	11702	,37 (.010X	.007		.228
				320	30×2 1	4 12×2 14	ptz-M-chl-LCp>x2	0 0		Epochasts have sheared	-1	020/	320				<b></b>	
	31	2-330'			16* 80	Y2    Y2	At Carb Vn - cp	0 0 0		around them 3.	24	44						3/4
		Glz. Chl. Sa. carb Shear Inc.	85° = Str =		8 7 2 1	+1/4	gtz an cerb. dd - q Y2		. 2/.	This care has a good strong backgroand 3	28	98%	52%	11703	· 21 2.000	,002		-6/.
				33017	Carlor 1	10	n cu ng g	0  2		in the cht. grans t			330		178	<u>an an a</u> n an an an an an an an an an an an an an		
	120							1.10.00710		for some notice is		an mere			te dana			

)

)

)

		01100		s internet		- June 1995 - Anna -	GIBRALT	ARMINES	LTD.		ł	IOLE	No. 86-4	16	8		tar yang
			- 54 - 1-7 1-0	GRAPH	id		· · ·	FRACTURE		BOTTOM . DEPTHS	1		T		ASS	AY RESUL	TS
NOCX	TYPES	& ALTERATION	-	LOG		-	-	ANGLE TO	RITE	LERCH CAP	-	C+++	ROD	Sample	7.	%	Estimet
:	• •	· · · ·	2 to 6	All and	11.41 11.41 11.4 11.4 11.4		la la la la la la la la la la la la la l	-FREQUENCY-	N1123 14 %	SUPERGENE REMARKS	5111	R.c		Number	Cu	Mo	Grede
-+					XB5	6" 41, x 20	GHz Vn - Lehl-carb - Lepy) Chl - Cp. X Zu	0 10 20		cp on some chloritic slip	5	93%					
	.		85*		1012	1/412	gty on the py repsys	30 40	.7%				33%	11704	.14	.003	.30%
			54,		75.	1/4	to the same op	60 70	10.	•	338				2.010×		
		338-346		340	/30	hla Ya	ote-cht-carb-sp-py	90 90		<u></u>		-	340				
	·	Same Alt to WK	ŀ,		15x3	1 14 y 3	Carby 3	10 20		carb. in Fractures		92%					-01
		- a disrupted altered	w.K		80 115	110 x2 116 0	gtz-chi-sav- 293-1241.5414	30 40 50	. 44	There is some backgr.			56%	11705	,05	.002	.20%
	ŀ	- 00 ctringers	ŀ		50 30"	V8 V8	at un - chi - cp to the ep 100 as	60 70		here	318				2.01 of		
		Saus Alt'd QD		350	40	1/20	gto all ships - (pz. and gg	90 0					3 <i>50</i>				
		Medto coarse go			60 42	1+11/2 9	gtz. che. an - cp X2	10 20		- Doesn't appear to be		110%					
	ľ	25 1012	ND		45	YZO (	stricht-op.	40 50	. 1%.	min ^{zn} is restricted			77%	11706	.09	.001	. 2- 7
					45	1/12	stacht-sar-eps	60 70 40		to uns tshears. U	358				5.010×	,	
			·	360	450		Str Ve- 108 - carb)	90			<u> </u>		360				
					30	18	Ofz-ep lopen-sport in my	10				94%					.17
			NU L		90 80		Hicks. ser - Even py-cp	40 50	2%		2/7		701	11707	.18	.001	1.6
	ł		80		54 80	1	he she - carb - her gg	60 70			367				(.010X		
		69-375	<i></i> к.	370	60	1/4	+ c-q-	90 90					370		{		
		F. gr. G. Digu-Daus Altid - Ensignal			45	1/20	at 1 - che-cp	10 20		This are secondary to		100%				.	
		- sys -	ND		30	4	tay, - cht-roch-pt	0	. 21	wy gtz-ep-echt-caibility)	277		81%	11708	.05	.001	.12
	3	5-405			45 30×3	20 x3	tz-ep-cp×3	20 70		- a sais dept sovel	31/		.		6.010X		.
+		Some all parts		3 <i>80  </i>	20	1/2	trep-out			surfounds this up.	{	, F	180		†		
		Shaw			80° X 2	uxz P	tz. chl. q x Z	0			ľ	00%					
		- a four zones & sk	ND		45 12 1	20 × 2 0	1. chi - q is - qo x2	0	013		787		62%	11709		005	
		ait - haits a	11	1 1	60 -	i do	to see the card.	0		ļ	1.261			1.	1 ml m	1	1

## a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l

		T	10000	ucl.	<u>. 1[°] 2</u>			T	BOTTOM DEPTHS	<del></del>			<u>_</u>		AY RESU	LTS
ROCK TY	PES & ALTERATION	L to Core	LO	Value Value L lo Coro Aali	width at Vala	ulu	FRACTURE ANGLE TO CORE AXIS -FREQUENCY-	ESTIMATED % PYRITE	LEACH CAP LIM. ZONE SUPERGENE REMARKS	Footogo Blocco.	E-1 Cora Rocoory <del>7</del> 0	ROD	Sample Number	<b>%</b> Cu	% Mo	
		ND		1 95° 60×1 145 	1/ 10 V16 x 4 · 1/2 45 6"	1 te chen pp 1p) te che py 1p tr che car soo Cp. tr che car op 2000 te che an op 2000	0 10 20 30 40 30 50 50 50 50 50 50 50 50 50 5	.87		392 397	96%	47%	1110	,1.7 <.olox	.006	
	405-407. E. gr. Lucocrasic Rx - Crz. S Kidy	чр	400	10 70	1/20 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/1	Ata the ser app Ata the ser app Ata cht up Ata cht up Ata cht en to Ata cht en the Ata cht en the Ata cht ser app - 407 Ata cht ser app	0	5 <b>]</b>		409	867. 98%	<u>400</u> 12%	1071/	, 0 7 5,0 lox	.001	
	WK. Some OHA All-423 BHZ-Chil. Son. Loth Zone Sorewhat Obeard.	State nid	410	1 30 8015 15+60 -80 80 -80 -80	Va V/2 V2 V/2 V2 V/2 V2 V2	got = cl - go × 5 fr - cl + go × 2 got - cl + go × 2 got - cl - m - cup - back got - cl - can b - go got - cl - can b - go got - cl - can b - go got - cl - can cup - go got - cl - can cup	60 90 0 10 10 10 10 50 50 50 60 10 10 20 50 50 60 10 10 10 10 10 10 10 10 10 1	. 2%	- ette plante mitter? Lits of ap backgird, in the clarker rd,	412	100%	410 67%	j1712_	,08 (,010x	.003 ;	
	423 - 448 Mainty a Saw Alt dad -atom 20 ms of dk ad m	Str SD U W/K	120	80X2 70 85 80 70X2 75 89 75 89 7 75	2"4 1" 5" 48 44 9" 44 420 X2 48 48 48 48 48 48	Pith chickl: GayXZ Stavh - conbodil gtavh - conbodil from - Conbodil from - Conbodil from - concert from	90 0 20 20 20 30 40 50 50 50 50 50 50 50 50 50 5	12		<u>422</u> 428	90%	50% 730	1/773	.13 4.01 @X	.004	
		80 U UK 70	720	20 20 20 20 20 20 20 20 20 20 20 20 20 2	120 177 178 178 178 178 178 178 178 178	12.0015.01-602 12.0015.01-602 12.0015.01-602 12.015.02-602 12.015.02-602 12.015.02-602 12.015.02-602 13.015.02 14.015.02 14.015.02 14.015.02 14.015.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02		24	Ep Strangers	438	£9.4	67%	11774	.06 <.c1.x	,001	

 		1.1			 1. 1.	
 	a series and the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the	٤.	And a	1.		
 10 S 1 S 14						
			and the second second			

		( )																
		)					)			:						J		
-	· · . · .	GRID		_	یکی درجہ کارشیف ریکھ کار		GIBRALT	AR MINES	LTD.		ا د جهارت	HOLE	No. 86-	46 8 of	8			
ROC	K TYPE	S & ALTERATION		GRA	PHIC		6	FRACTURE	a'	BOTTOM DEPTHS	$\overline{-}$	2			ASS	AY RES	ULTS	
	ŀ		L to Corr	Alleration	21145141	WIAIN of Vola	12 in a constant of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	ANGLE TO CORE AXIS -FREQUENCY-	E ST IMATE "/ PYRIT	LEACH CAP LIM. ZONE SUPERGENE REMARKS		Coro Rocover %	ROD	Sample Number	<i>%</i> Cu	% Mo		Estimated Grade
			8 5° 5†+		- 80 x 3 85° 85° 55° 80° x 2 45°	1/16 X 3 2." 2'' 1/4 1/20 X2 1/10	Hz. chi. caro-cp X3 Hz. chi-ser cp - 2(hi) Hz. chi-ser py - 2 Hz. chi-ser cp Hz. chi-ser py - 2 Hz. c	0 10 20 30 40 50 50 60 70 70	. 7%		458	80%	38%,	11716	.11 (0)0X	.00Z		. 23%
		- Sous Alt'd ap. - Sous Alt'd ap. - WK Sous Alt." - DK Alt." - Leware the fig	ND. 80° Str to	7.	2 70 70 85 60 60 60	hie 1/10 × Z 5 1 1/2	stacke - orth - op - py - op - op - op - op - op - op	20 0 0 20 20 20 30 30 50 50 50 50 50 50 50 50 50 5	19.		467.	1102	<del>16</del> 9,	1711	. 15 <.olox	.003		. 337
		972-564 KX.	80' WK.	470	60 60x1 130x3 70x4 500	1/10 4/2 1/20×4 1/20 × 3 1/20 × 4 6" 1/8	6tz-ep-c) 1912-ser-chi-cp 1912-chi-ep×4 1912-chi-g2×3 12-chi-g2×3 12-chi-g2×6 (Y2-g)-chi-cab (Y2-g)-chi-cab (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-chi-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2-g)-g2×6 (Y2	90 0 10 20 20 50 40 50 60 10 10 20 50 50 50 50 50 50 50 50 50 5	-67		477	477	470 70/	1718	./3 <.010x	.003 1		-257
			४०* ик	480	60 60 65 72 60 30 85 60	1/16x3 1/4 1/8 × 2 1/6 K& x3 KJe. 1/2	Gracke by y 3. Grach - CP-AL Grach - CP-AL Grach - CP-X2 Grach - CP-AL Grach - CP-AL Grach - CP-AL Grach - CP-AL Grach - CP-AL Grach - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-AL - CP-	90 0 10 10 20 30 40 50 60 70 80 80	.3%		487	92%	70%	( 719	. 05 2,0101	.001		.172
		194-505 Gto-Chi-Sex-Carb Shear Zone.	En id	- 10 	150 50×8 45 73 80 80×5 80×5	1/4 1/20 × 3 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20	172-001-012 g tachi- cp x 3 g tachi- cp x 3 g tachi- carb-op gtachi- gu gtachi- gu stachi- gy x 5 	%0	0%		498	82%	-16%	//720	·13 <.010x	. 00 2		.279
			si str	505	80 x 3 85 x 6	18×5 1 18×5 1	112-01-0-1928 5 11-11-0-1928 5 21-121-19-1928 6		.8%		505	67%	0 /, 505	11721	.26 	006		+ 20 [%]
		E.O,H @ 505					5 / 5 6 7	0										

and a stand of the state of the second second and the second second second second second second second second s

and the second of the state of the second second second second second second second second second second second





