87-333-15896 06/88

SOIL GEOCHEMISTRY REPORT OF THE BAR CLAIM GROUP

Cottonwood, B. C. Cariboo Mining Division NTS 93G/1E Latitude 53° 06' North Longitude 122° 12' West

FILMED

- 3

6

Pundata Gold Corporation In trust for Trio Gold Corporation 201 - 141 Victoria Street Kamloops, B. C. V2C 1Z5 (604) 372 - 1636

Wayne Hewgill

June 1, 1987

GEOLOGICAL BRANCH ASSESSMENT REPORT

39

TABLE OF CONTENTS

		Page
1.0	Introduction. 1.1 Claim Status. 1.2 Location and Access. 1.3 Physiography. 1.4 Vegetation and Climate.	1 2 2 4 5
2.0	Regional Geology 2.1 Property Geology 2.2 Previous Work	6 7 7
3.0	<pre>1987 Soil Sampling Programme</pre>	9 10
4.0	Conclusions	11
5.0	Recommendations	13
6.0	References	14
7.0	Cost Statements	15
8.0	Statement of Qualifications	16

LIST OF FIGURES

Page

Figure 1	ocation Map		
Figure 2	oil Sample Location Ma	p(in pocket	t)
Figure 3	oil Geochemistry (Au,	Ag)(in pocket	t)
Figure 4	Soil Geochemistry (As,	V)(in pocket	t)
Figure 5	Soil Geochemistry (Co,	Mo)(in pocket	t)

APPENDICES

Appendix A

Į - po

Geochemical Analytical Procedures

Appendix B

Certificate of Analysis

1.0 INTRODUCTION

-1-

liber

The Bar Claim Group is located 28 kilometres northeast of Quesnel, B. C. on Highway 26 and is situated within the Cariboo Mining District (NTS - 93G/1E). The properties are 100% owned and operated by Pundata Gold Corporation.

The property is situated near the eastern edge of the Intermontane Belt on a northwesterly-trending assemblage of Upper Triassic-Lower Jurassic volcanic rocks referred to as the Quesnel trough. A till sampling programme was carried out between April 9, and May 4, 1987 to evaluate the potential for a hidden deposit similar to the Quesnel River gold deposit fifty kilometres to the southwest. 1.1 CLAIM STATUS

The Bar Claim Group includes Bar 1, Bar 2, Bar 5 and Bar 6 M.G.S mineral claims totalling eighty units and are 100% owned by Pundata Gold Corporation, and optioned to Trio Gold Corporation. The following table summarizes the pertinent mineral claim data.

Claim N	ame Record N	lumber <u>Number of</u>	Units Expiry Date	Š
Bar 1	7040	20	6 June/1987	7
Bar 2	7042	20	6 June/1987	7
Bar 5	7045	20	6 June/1987	7
Bar 6	7046	20	6 June/1987	7

The Bar 1, Bar 2, Bar 5 and Bar 6 M.G.S. mineral claims were grouped as the Bar group on May 21, 1985.

1.2 LOCATION AND ACCESS

The Bar Claim Group is located approximately 28 kilometres northeast of Quesnel along Highway 26. The property is within the Cariboo Mining Division (NTS - 93G/1E) and the geographic coordinates are 53 06' North latitude and 122 12' West longitude.

The Bar Claims are accessible from three directions. A road on the east side of the Cottonwood River connects the southern part of

-2-

the property with Highway 26. This road heads north just to the east of the bridge over the Cottonwood River. Logging trails penetrate to Umiti Creek Valley via this access.

Access for the 1987 field programme was gained from the 6B logging road branching west off the 600 road at the 9 kilometre mark. The 600 road leads to the town of Cottonwood on Highway 26.

The western part of the property can be reached via the Abhau Lake road. This road runs eastward from Highway 97 a few kilometres north of the bridge over the Cottonwood River. It is approximately 20 kilometres to the property along this road.

1.3 PHYSIOGRAPHY

1

This part of the Quesnel Highlands is characterized by broad drift mantled rolling plains that have been partly drumlinized and deeply dissected by glaciofluvial streams. Umiti Valley is the most prominent feature. It is a wide meltwater channel with steep sides whereas Umiti Creek itself is comparatively small. The Cottonwood River is the largest stream and has developed an extensive meander cut-off in the south west part of the property. John Boyd Creek is a steep narrow valley and the stream is comparatively small. The stream cuts through Upper Triassic mudstone and glacial deposits and has carved a steep narrow bedrock canyon 600 metres long just before it enters the Cottonwood River.

-4-

Uplands are well drained but contain patches of organic material and poorly drained linear depressions along glacial grooves. Several prominent meandering meltwater channels occur and contain organic terrain composed of peat often in excess of 3 meters thick.

1.4 VEGETATION AND CLIMATE

Vegetation on the property consists of timber grade fir, spruce, balsam and hemlock. The eastern portion has been extensively logged. willow, aspen and blueberry occur along streams and in clear-logged localities. Windfall in the forest is common.

The climate of the area is typical of central British Columbia with moderate temperatures and precipitation. Winter snowpack is gone by early April in all but shaded north facing slopes.

2.0 REGIONAL GEOLOGIC SETTING

The general geology of the Cottonwood River area is outlined on G.S.C. map 1424 A (Tipper, 1974). The Bar Claim Group lies within the northwesterly trending Quesnel trough which is underlain by Upper Triassic-Lower Jurassic volcanics and related rocks.

In the Quesnel region the belt has a central axis of felsic volcanic rocks with mafic volcanics and flyschoid sediments extending laterally to the east and west. The western margin is in fault contact with the Cache Creek Group (Monger, 1984), and the eastern margin is locally highly deformed due to thrusting over the Omineca Crystalline Belt to the east (Rees, 1981).

The Quesnel terrane is characterized by mafic rocks of shoshontic composition with total alkalies > 5%, titanium oxide < 1%, moderate silica undersaturation with up to 5% normative nepheline (Fox, 1987).

Intruding into the volcanic piles are comagmative alkalic intrusive stocks composed of diorite, monzonite and syenite. The stocks are associated with several gold bearing copper porphyry style deposits, such as Copper Mountain, Afton and Cariboo-Bell. A strongly differentiated dioritic stock is believed to be genetically associated with the mineralization of the Quesnel River volcanic hosted gold deposit (Fox, 1987).

The west dipping Eureka thrust fault separates the Quesnel

-6-

terrane from the Paleozoic Barkerville terrane. The Barkerville terrane is predominatly metamorphosed pelitic and carbonate sediments with one intrusive member, the Quesnel orthogneiss (Campell, 1978). The significant gold deposits of the Barkerville terrane are mainly replacement deposits of calcareous units within the Paleozoic Snowshoe Group.

2.1 PROPERTY GEOLOGY

The geology of the Bar claim Group is almost completely masked by a thick layer of glacial till and can only be inferred from outcrops adjacent to the claim group. Outcrop exposure of thinly bedded mudstone in John Boyd Creek on the southern edge of the property would indicate the Bar Claim is probably near the base of the Quesnel terrane. Near the southern claim boundry is an outcrop of medium grained hornblende feldspar porphyry intrusive. This type of intrusion could provide the neccessary heat source for mineralization within the sedimentary package.

2.2 PREVIOUS WORK

Previous geologic work on the property has been hindered by the lack of outcrop due to the heavy till layer. Geologic inferences have been made from outcrops adjacent to the property and from airborne geophysical data.

-7-

An airborne magnetometer and VLF- electromagnetometer survey, totalling 168 kilometres was flown in August 1986 by Western Geophysical Aero Data Ltd. The survey lines were flown in an east-west direction with 200 metres spacing and data recorded every second, providing an average station spacing of 20-30 metres. The sensors maintained a 60 metre terrain clearance during the course of the survey (Pezzot, 1986).

Three total field magnetic highs were observed on the Bar Claims that appear to reflect the northwest-southeast trend of the Quesnel trough. The magnetic highs are interpreted by Pezzot (1986) to be a reflection of a dioritic phase of the Takla Group which has intruded the volcanic and sedimentary units.

The VLF-EM response for both Seattle and Annapolis are very quiet which indicates a relatively thick overburden layer. Small variations in response were detected and are probably related to conductive clay layers or swamps and streams rather than reflecting bedrock geology.

-8-

3.0 1987 TILL SAMPLING PROGRAMME

A total of 867 soil and till samples were collected on the Bar property on a grid surveyed with hipchain and compass. The grid baseline was established using the legal corner post as a base and oriented parallel to the inferred direction of glacial movement. Lines are separated by 150 metres with samples taken at 100 metre intervals.

Where possible B horizon soils were collected at an average depth of twenty centimetres. However the property is blanketed with a thick till layer with very poor soil development and many of the samples obtained were a greyish till sample. Samples were collected using a soil mattock and placed in kraft wet strength gussetted soil bags, with the samples then shipped to Eco-Tech Laboratories Ltd. in Kamloops, B. C. and analysed for Au, Ag, As, Co, Mo and V as outlined in Appendix A.

A till sampling programme such as the one performed on the Bar Claim Group has led to the discovery of the Quesnel River volcanic hosted gold deposit which is buried under a till layer. Glacially transported gold and trace element anomalies proved very effective in outlining gold bearing zones.

-9-

3.1 DISCUSSION OF RESULTS

The results of the till and soil sampling program failed to outline significant areas of gold or trace element enrichment. Approximately one half of the sample results are above the detection limit of a 5 ppb gold but none could be considered significantly anomolous.

The highest value of 65 ppb occurs in the northwest corner of Bar 5. This sample along with others in the area above the detection limit were collected in highly organic soils collected in swampy ground. Examination of airphotos seems to indicate these swampy depressions are probably glacial which could account for the higher than background gold values.

-10-

4.0 CONCLUSIONS

The Bar property is overlain by a thick layer of glacial till obscuring outcrop exposure. Inferences based on outcrop on the southern edge of the property in John Boyd Creek indicates the property is likely underlain by flyschoid sediments on the eastern flank of the northwest trending Upper Triassic-Lower Jurassic Quesnel Trough.

Airborne magnetic geographical data flown in 1986 oulines three magnetic highs parallel to the regional trend of the Quesnel trough and are interpreted as a dioritic phase of the Takla Group intruding the volcanic and sedimentary package.

The Quesnel River volcanic hosted gold deposit, used as a target model, is believed to be genetically related to strongly differentiated alkalic hornblende pophyry dykes and sills related to a large dioritic stock. The rising gold bearing magnetic fluids precipitated gold when encountering a carbonate rich volcanic horizon.

The dioritic intrusive on the Bar presents the possibility of a similar situation if a favorable carbonaceous horizon was encountered within the volcanic-sedimentary package adjacent to the dioritic stocks. Low grade gold mineralization (200 ppb) has been reported by Roed (1986) in the sediments along John Boyd Creek. This low grade region may indicate that a suitable host was not encountered within the package and the system has become more diffuse or that this low grade zone represents a position higher within the convection system.

-11-

Till and soil sampling failed to outline areas of significant gold or trace element enrichment. The depth of overburden on the property may be too great for glacially transported till to reflect possible mineralization in bedrock as has proven useful on the Quesnel River Deposit where the average till depth is only 10-20 metres.

5.0 RECOMMENDATIONS

硼钠

Due to the heavy till cover and the resulting lack of geologic data, the Bar property presents a difficult exploration problem. The thick till layer precludes EM geophysical methods but a ground magnetometer survey could be used to deliniate the outline of the diorite intrusive on the southern edge of the property. More detailed examination of the sedimentary rocks in John Boyd Creek with respect to carbonate content may be useful in predicting where a favourable horizon for gold deposition would occur adjacent to the intrusion.

Further exploration in the form of overburden drilling would be contigent on favorable results of the first phase of geophysics and geology. A decision on further exploration expenses could wait for evaluation of programme developement on adjacent properties as they relate to the Bar property.

It is therefore recommended that no further work be done on the Bar property at this time contingent on further developements on adjacent properties.

-13-

6.0 REFERENCES

- FOX, P. E., CAMERON, R. S. AND HOFFMAN, S. J., 1987, Geology and Soil Geochemistry of the Quesnel River Gold Deposit, British Columbia, unpublished report.
- PEZZOT, TRENT E, 1986, Geophysical Report on an Airborne VLF-Electromagnetometer and Magnetometer Survey, Cariboo Mining Division, Bar 1, 2, 5, 6, and Handy II, III and IV Claims for Foxview Management Ltd., unpublished consulants report.
- REES, C. J., 1981, Western margin of the Omineca Belt at Quesnel Lake, British Columbia, Geological Survey of Canada, Paper 81-1A pp 223-226.
- ROED, MURRAY A, 1986, Economic Geology of the Bar Claim Group, Cottonwood Gold Camp. Unpublished report, Foxview Management Limited.
- ROUSE, G. E. AND W. H. MATHEWS, 1979, Tertiary Geology and Palynology of the Quesnel Area, British Columbia. Bulletin of Canadian Petroleum Geology, Vo. 27, No. 4 (Dec. 1979), pp. 418-445
- STRUIK, L. C., 1982, Geological Survey Canada Open File, No. 858, Cariboo Lakes, Spectacle Lakes, Swift River and Wells map areas, British Columbia.
- STRUIK, L. C., 1986, Imbricated Terranes of the Cariboo Gold Belt With Correlations and Implications for tectonics in southeastern British Columbia, Canadian Journal of Earth Sciences, Vol 23, Number 8, p 1047-1061.
- TIPPER, H. W., 1971, Glacial Geomorphology and Pleistocene History of Central British Columbia. Geological Survey Canada Bulletin 196. 89pp.
- TIPPER, H. W., 1974, Geology of the Parsnip River Area, G.S.C. Map 1424 A.

-14-

7.0 COST STATEMENT

Field Personnel	6 34	Days project supervisor Man Days geologists (3)	0 0	\$ \$	270.00/day 150.50/day	= =	\$	1,620.00 5,120.55
	17	Days field assistant	0	\$	114.75/day	=	-	1,950.75

Food and Accomodation

1000	and	Accomodation	Accomodation Meals	2,263.80 745.73 3,009.53

Mobilization / Demobilization

Truck Rentals 4 X 4 Tru S-10 Pick 4 X 4 Tru Fuel Freight o	uck @ \$ 25.00/day x 23 + exce cup @ \$ 0.30/Km x 1,736 Kms c uck (small) costs	ess mileage charge of \$ 0.12 x 416 km	625.00 156.30 299.82 203.40 1,805.32
Equipment & Su	oplies		1,013.00
Laboratory Ana	lysis		14,628.95
Report Prepara	tion 6 Days report writin Drafting costs Typing, copying, 1	ng @ 151.20 binding	907.20 688.50 <u>325.80</u>
			1,921.50
Management	<pre>2 Days project preparation (supervisor)</pre>	@ \$ 270.00/day =	675.00
	2 Days project preparation (geologist) Administration costs	@ \$ 151.20/day =	302.40 297.50
		TOTAL	\$ <u>32,344.50</u>

-15-

8.0 STATEMENT OF QUALIFICATIONS

I, Wayne Hewgill graduated in 1985 from the University of British Columbia with B Sc degree in geology. I have been employed in the mineral exploration industry since 1983 in British Columbia and Quebec and am presently employed by Pundata Gold Corporation.

hagn + (m ···)

Wayne Hewgill

APPENDIX I

ANALYTICAL PROCEDURES

ENVIRONMENTAL TESTING GEOCHEMISTRY ANALYTICAL CHEMISTRY ASSAYING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Telex: 048-8393

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION

- 1. Soil or sediment samples are dried at 60° C, the lumps of soil are broken up on a bucking board and the entire sample is seived through an 80 mesh screen.
- 2. Rock samples are crushed and pulverized to -100 mesh.

GEOCHEMICAL ANALYSIS FOR Cu, Pb, Zn, Ag, Sb, Ni, Co, Cd

1.0 gram of sample is leached in 3 ml HNO3 overnight at room temperature. The sample is brought up to 90°C in a water bath, 1.5 ml HCl is added, and the leaching is continued for a further 90 minutes. The sample is then cooled, diluted to 10 ml with distilled water and the above elements are determined by Atomic Absorption. However, and the above elements are sourcessed for the same and the above elements are

Minimum Reportable Concentrations

Element	ppm
Cu Pb	1.
Zn	1.
Ag Sd	0.2
Ni	2.
Co	2.
Mo	1.
V	2.

GEOCHEMICAL ANALYSIS FOR Au

The gold is collected in a silver bead through inquartation and conventional fire assaying of 10 grams of material. The bead is digested in aqua regia in a water bath at 90°C, the gold is then extracted into MIBK and determined by Atomic Absorption.

Minimum Reportable Concentration 5 ppb

KAMLOOPS - CALGARY - EURNABA

GEOCHEMICAL ANALYSIS FOR As

0.25 gram of sample are taken to dryness in a mixture of HNO3 and HClO4. Excess HNO3 is expelled with HCl and the arsenic is scrubbed into a solution of pyridine and SDDC to be determined colorimetrically on a spectrophotometer.

Minimum Reportable Concentration 1

l ppm

APPENDIX II

CERTIFICATE ON ANALYSIS

abiate

制简

镧

. İdî

1

1

N

10041 E. Trans Canada Hwy., R.R. #2. Kamloops. B.C. V2C 2J3 Phone (604) 573-5700 Telex: 048-8393

May 5, 1987

CERTIFICATE OF ANALYSIS ETK 87-63

<u>CLIENT:</u> Pundata Gold Corporation 201, 141 Victoria Street KAMLDOPS, B.C. V2C 125

ATTENTION: Scott Bending

RE: TRIO GOLD CORP. - BAR PROJECT

SAMPLE IDENTIFICATION: 210 soil samples received April 20, 1987

				Au	Ag	Mo	As	Co	V
ET#		<u>Descri</u>	ption	<u>(ppb)</u>	<u>(ppm)</u>	<u>(mag)</u>	<u>(maa)</u>	<u>(ppm)</u>	(ppm)
63 -	- 1	GD7B5	1	<5	<.1		7	7	34
63 -	- 2	GD7B5	2	<5	<.1	1	6	9	43
63 -	- 3	GD785	3	<5	<.1	<1	9	12	59
63 -	- 4	GD7B5	4	<5	<.1	<1	7	9	46
63 -	- 5	GD7B5	5 (<5	<.1	<1	5	8	39
									-
63 -	· 6	GD7B5	6	<5	<.1	<1	8	ę	43
63 -	- 7	GD7B5	7	<5	<.1	<1	5	10	44
63 -	8	GD7B5	8	5	<.1	<1	8	11	54
63 -	. 9	GD785	9	<5	<.1	<1	4	11	42
63 -	- 10	GD7B5	10	<5	<.1	<1	4	12	59
63 -	- 11	GD7B5	11	<5	. 1	<1	Ģ	12	63
63 -	12	GD7B5	12	<5		<1	5	10	6.C
63 -	· 13	6D785	13	<5	<.t	<1	Ā	9	40
63 -	14	GD785	14	<5	<.1	1	10	12	55
63 -	15	GD785	15	<5	< 1	<1	4	11	20 20
				• •		••	0	1 1	
63 -	16	GD785	16	10	<.1	4	10	12	41
- 63	17	GD785	17		< 1	<1	- C	10	01 //0
63 -	18	60785	18	् २	< 1	4	10	10	70 50
63 -	19	GD785	10	\∪ ∕5	ו• 2 1	 / 1		10	പ്റ് ആദ
42 -	Ρń	60785	2n	15	ו∔ ∕ ٩	1	7 L	10	/1
9 99 (1997 (<u> </u>	ليوجيد واعدات	EV.	لب <u>ل</u> ا -	N • 1	i	0	10	6/

and the second

Thomas J. Fletcher, Certified Assayer

,

Page 1 of 7

May 5, 1987

<u>ET#</u>	Description	Au (ppb)	Ag (ppm)	Mo (mag)	As <u>(pom)</u>	Co (ppm)	V (ppm)
63 - 21	GD7B5 21	5	<.1	<1	6	12	64
63 - 22	GD7B5 22	<5	<.1	<1	8	10	49
63 - 23	GD7B5 23	5	<.1	<1	5	9	68
63 - 24	GD7B5 24	<5	.1	1	2	16	52
63 - 25	GD7B5 25	5	<.1	2	4	15	65
63 - 26	GD7B5 26	<5	<.1	2	4	9	42
63 - 27	GD7B5 27	<5	<.1	2	5	17	69
63 - 28	GD7B5 28	5	<.1	<1	5	11	53
63 - 29	GD7B5 29	5	<.1	<1	4	9	51
63 - 30	GD7B5 30	5	<.1	1	5	10	55
63 - 31 63 - 32 63 - 33 63 - 34 63 - 35	GD795 31 GD785 32 GD785 33 GD785 34 GD785 35	<5 5 <5 <5 <5	<.1 <.1 <.1 .8 <.1	<1 <1 3 1	53556	11 12 10 24 14	65 63 70 101 82
63 - 36 63 - 37 63 - 38 63 - 39 63 - 40	GD7B5 36 GD7B5 37 GD7B5 38 GD7B5 39 GD7B5 40	<5 <5 <5 <5 <5	<.1 <.1 .4 .4 <.1	2 1 <1 <1 <1	543 53 53	13 11 10 12 8	76 72 64 68 43
63 - 41	GD7B5 41	<5	.1	<1	53474	9	57
63 - 42	GD7B5 42	<5	<.1	<1		11	56
63 - 43	GD7B5 43	<5	<.1	2		10	68
63 - 44	GD7B5 44	<5	.1	2		13	61
63 - 45	GD7B5 45	<5	.1	<1		12	59
63 - 46 63 - 47 63 - 48 63 - 49 63 - 50	GD7E5 46 GD7E5 47 GD7E5 48 GD7E5 49 GD7E5 50	<5 <5 <5 <5 <5	<.1 <.1 <.1 <.1 <.1	<1 <1 <1 <1 <1 <1 <1	5 13 5 4 6	8 5 14 7 7	48 39 48 48 43
63 - 51	GD785 51	<5	<.1	1	១១១៩	7	51
63 - 52	GD785 52	<5	<.1	<1		11	64
63 - 53	GD785 53	<5	<.1	<1		7	37
63 - 54	GD785 54	<5	<.1	<1		22	46
63 - 55	GD785 55	<5	<.1	<1		9	43

Thomas J. Fletcher, Certified Assayer

Page 2 of 7

U

أعزرا

Ì

1,016

i

1

i Priñ

```
May 5, 1987
```

<u>ET#</u>	Description	Au (ppb)	Ag (ppm)	Mo <u>(ppm)</u>	As <u>(ppm)</u>	Co <u>(ppm)</u>	V (maa)
43 - 56 43 - 57 43 - 59 43 - 59 43 - 60	GD7B5 56 GD7B5 57 GD7B5 58 GD7B5 59 GD7B5 60	<5 <5 <5 <5 <5	.2 .1 <.1 <.1 <.1	<1 <1 <1 <1 <1 <1	64543	18 14 9 13 10	59 48 47 51 47
63 - 61 63 - 62 63 - 63 63 - 63 63 - 64 63 - 65	GD7B5 61 GD7B5 62 GD7B5 63 GD7B5 64 GD7B5 65	<5 <5 10 <5	<.1 <.1 <.1 <.1 <.1	<1 <1 <1 1 <1	22325	12 9 13 12 10	48 32 54 72 52
63 - 66 63 - 67 63 - 68 63 - 69 63 - 70	GD7B5 66 GD7B5 67 GD7B5 68 GD7B5 69 GD7B5 70	<5 <5 <5 <5	<.1 <.1 <.1 <.1 .1	<1 <1 <1 <1 2	3 3 4 3 2	8 10 9 10 12	38 48 38 44 89
63 - 71 63 - 72 63 - 73 63 - 74 63 - 75	GD7B5 71 GD7B5 72 GD7B5 73 GD7B5 74 GD7B5 75	<5 <5 <5 <5 <5	<.1 <.1 <.1 <.1 <.1	1 <1 <1 <1 <1 <1	45403	9 10 13 5 8	62 53 76 42 40
63 - 76 63 - 77 63 - 78 63 - 79 63 - 80	GD785 76 GD785 77 TK785 1 TK785 2 TK785 3	<5 5 5 5 5 5	<.1 .2 .1 .3 .4	2 <1 <1 <1 <1	4 A A A A	15 11 9 14 9	85 51 63 58 51
63 - 81 63 - 82 63 - 83 63 - 84 63 - 85	TK7B5 4 TK7B5 5 TK7B5 6 TK7B5 7 TK7B5 8	<5 <5 <5 <5 <5	.1 .5 <.1 .2 .1	2 1 1 <1 <1	2 1 2 2	14 13 10 17 10	73 61 61 57 61
63 - 86 63 - 87 63 - 88 63 - 89 63 - 90	TK7B5 9 TK7B5 10 TK7B5 11 TK7B5 12 TK7B5 13	<5 <5 <5 <5	<.1 .3 .4 .3	<1 1 2 <1	2 12 2 10 2	9 15 14 12 19	59 101 50 88 56

Thomas J. Fletcher, Certified Assayer

1. 2-

e. ----

Page 3 of 7

EDD TEST LABORATORIES LTD.

) (inter

لتشر

i di ni

May 5, 1987

<u>ET#</u>	Description	Au (ppb)	Ag (ppm)	Mo (ppm)	As (pom)	Co (ppm)	V <u>(ppm)</u>
63 - 91 63 - 92 63 - 93 63 - 93 63 - 94	TK785 14 TK785 15 TK785 16 TK785 17 TK785 18	<5 <5 <5 <5 <5	<.1 .2 1.1 .1 .2	<1 <1 <1 <1 <1 <1	1 1 <1 <1 1	10 12 16 12 12	42 45 28 34 38
63 - 96 63 - 97 63 - 98 63 - 99 63 - 100	TK7B5 19 TK7B5 20 TK7B5 21 TK7B5 22 TK7B5 23	<5 <5 <5 5 5	.4 .1 .2 .1	<1 <1 <1 <1 <1	2 1 <1 2 1	11 89 8 9 5	56 46 28 40 25
63 - 101 63 - 102 63 - 103 63 - 103 63 - 104 63 - 105	TK785 24 TK785 25 TK785 26 TK785 27 TK785 29	5 <5 5 10		<1 <1 <1 <1 <1 <1	6 4 5 8 2	14 16 13 15 9	56 57 59 65 53
63 - 106 63 - 107 63 - 108 63 - 108 63 - 109	TK7B5 29 TK7B5 30 TK7B5 31 TK7B5 32 TK7B5 33	5 <5 <5 <5	.3 .1 .5 .4	<1 <1 <1 <1 <1	2 3 1 2	15 12 9 11 10	63 66 55 58 53
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TK785 34 TK785 35 TK785 36 TK785 37 TK785 38	<5 5 <5 <5 <5	.2 1.1 .2 .2	<1 <1 <1 <1 3	2 3 2 1 4	10 20 10 8 8	61 66 50 37 50
63 - 116 63 - 117 63 - 119 63 - 119 63 - 119 63 - 120	TK7B5 39 TK7B5 40 TK7B5 41 TK7B5 42 TK7B5 43	<5 5 <5 <5 <5	.3 .4 .1 .1 <.1	6 5 (1 1	2 2 2 2 2	6 7 11 12 8	12 12 45 37 37
63 - 121 63 - 122 63 - 123 63 - 124 63 - 125	TK785 44 TK785 45 TK785 46 TK785 47 TK785 48	<5 <5 <5 10 <5	<.1 .6 <.1 .6 .1	<1 <1 <1 <1 <1	1 2 1 <1 1	6 24 9 19 10	26 67 41 44 42

Thomas J. Fletcher, Certified Assayer

Page 4 of 7

May 5, 1987

<u>ET# Descri</u>	ption	Au (ppb)	Ag (ppm)	Mo (ppm)	As (ppm)	Co (ppm)	∨ <u>(ppm)</u>
63 - 126 TK7B5 63 - 127 TK7B5 63 - 129 WH7B5 63 - 129 WH7B5 63 - 130 WH7B5	49 50 1 2 3	<5 <5 10 <5 <5	<.1 .2 <.1 <.1 <.1	<1 1 1 <1	1 3 4 <1	9 15 15 14 12	43 74 46 56 34
63 - 131 WH785 63 - 132 WH785 63 - 133 WH785 63 - 134 WH785 63 - 135 WH785	4 5 7 8	<5 <5 <5 50	.1 .4 <.1 <.1	1 <1 3 <1 1	i <1 4 2 1	15 9 13 11 5	48 29 67 46 29
63 - 136 WH785 63 - 137 WH785 63 - 138 WH785 63 - 139 WH785 63 - 140 WH785	9 10 11 12 13	<5 <5 <5 <5 <5	<.1 <.1 <.1 <.1 <.1	<1 <1 <1 <1 <1	3 2 C I I	10 9 9 13 7	52 45 50 52 36
63 - 141 WH7B5 63 - 142 WH7B5 63 - 143 WH7B5 63 - 144 WH7B5 63 - 145 WH7B5	14 15 16 17 18	<5 <5 <5 <5 5	<.1 <.1 <.1 <.1 <.1	1 2 1 <1	3211	13 13 9 12 11	56 55 44 48 45
63 - 146 WH7B5 63 - 147 WH7B5 63 - 148 WH7B5 63 - 149 WH7B5 63 - 150 WH7B5	19 20 21 22 23	<5 <5 <5 <5 <5	<.1 .1 <.1 <.1 <.1	<1 2 <1 1 <1	2 2 2 2 2 2 2 2	13 9 13 8 10	56 73 56 56 69
63 - 151 WH7B5 63 - 152 WH7B5 63 - 153 WH7B5 63 - 154 WH7B5 63 - 155 WH7B5	24 25 26 27 28	<5 <5 10 5 5	<.1 <.1 .2 .2	1 <1 <1 <1 <1	3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 12 11 10 8	62 50 63 66 44
43 - 156 WH7B5 43 - 157 WH7B5 43 - 158 WH7B5 43 - 159 WH7B5 43 - 159 WH7B5	29 30 31 32 33	<5 <5 <5 <5 <5	.1 .1 <.1 <.1 <.1	<1 <1 <1 1 <1	2 3 3 3 3 3 3 3 3 3	9 12 9 14 11	48 59 47 53 54

Thomas J. Fletcher, Certified Assayer

,

Page 5 of 7

May 5, 1987

ET# Des	<u>ription</u>	Au (pob)	Ag (ppm)	Mo (ppm)	As <u>(pom)</u>	Co (ppm)	۷ (<u>maq)</u>
63 - 161 WH7 63 - 162 WH7 63 - 163 WH7 63 - 163 WH7 63 - 164 WH7 63 - 165 WH7	85 34 35 35 35 36 35 37 35 38	<5 <5 <5 <5 10	<.1 <.1 <.1 <.1 <.1	<1 <1 <1 <1 <1 1	2 3 <1 <1	8 11 6 9 10	43 63 34 40 45
63 - 166 WH71 63 - 167 WH71 63 - 168 WH71 63 - 169 WH71 63 - 170 WH71	35 39 35 40 35 41 35 42 35 43	5 10 5 <5 <5	<.1 <.1 <.1 <.1 <.1	<1 2 1 <1 <1	2 5 4 3 4	10 14 12 11 9	45 74 61 60 43
63 - 171 WH71 63 - 172 WH71 63 - 173 WH71 63 - 174 WH71 63 - 175 WH71	35 44 35 45 35 46 35 47 35 48	<5 5 <5 5 5	<.1 .2 .1 <.1 <.1	1 <1 <1 <1 <1	ា ភ្លេ 4 2 4	11 18 11 10 11	50 51 71 58 61
63 - 176 WH7E 63 - 177 WH7E 63 - 179 WH7E 63 - 179 WH7E 63 - 180 WH7E	85 49 85 50 85 51 85 52 85 53	10 5 5 5 5	<.1 <.1 <.1 <.1 <.1	<1 1 <1 <1 <1	3 2 1 4 3	8 15 8 11 12	44 53 39 54 54
63 - 181 WH7E 63 - 182 WH7E 63 - 183 WH7E 63 - 184 WH7E 63 - 185 WH7E	95 54 95 55 95 56 95 57 95 58	<5 <5 <5 <5 5	<.1 <.1 .3 .3	1 2 1 1	ନ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ	9 8 9 10 11	51 40 62 68 55
63 - 186 WH7E 63 - 187 WH7E 63 - 188 WH7E 63 - 189 WH7E 63 - 190 WH7E	15 59 15 60 15 61 15 62 15 63	5 <5 <5 <5 <5	<.1 <.1 .7 <.1 <.1	<1 1 <1 ≤1 1	1 1 2 1	7 10 15 9 8	31 48 76 36 48
63 - 191 WH7E 63 - 192 WH7E 63 - 193 WH7E 63 - 194 WH7E 63 - 195 WH7E	5 64 5 65 5 66 5 67 5 68	10 <5 <5 <5 <5	.1 .1 .1 .3	<1 1 2 <1 <1	1 <1 2 <1 1	8 13 10 4 8	44 60 55 24 33

Thomas J. Fletcher, Certified Assayer

Page 6 of 7

distant

May 5, 1987

		Au	Ag	Mo	As	Co	Ŷ
ET# Descr	<u>iption</u>	<u>(ppb)</u>	(<u>maa)</u>	(ppm)	<u>(ppm)</u>	<u>(ppm)</u>	<u>(ppm)</u>
63 - 196 WH785	69	<5	.a	<1	1	9	40
63 - 197 WH7B5	70	5	.2	<1	2	9	54
63 - 198 WH785	71	5	.2	<1	2	14	56
63 - 199 WH7B5	73	<5	.1	2	12	15	98
63 - 200 WH785	74	<5	<.1	1	20	10	54
63 - 201 WH7B5	75	<5	.1	1	2	8	43
63 - 202 WH785	76	10	.3	5	З	13	66
63 - 203 WH785	77	<5	<.1	<1	2	8	53
63 - 204 WH7B5	78	<5	·<.1	1	2	9	52
63 - 205 WH7B5	79	<5	. 1	2	1	14	68
63 - 206 WH785	80	<5	<.1	1	2	12	63
63 - 207 WH7B5	81	<5	<.1	<1	1	9	56
63 - 208 WH785	82	<5	.7	1	3	27	107
63 - 209 WH785	83	10	<.1	<1	3	17	61
63 - 210 WH785	84	<5	.1	1	2	13	47

<u>NOTE:</u> \langle = less than

ECO-TECH LABORATORIES LTD.

Thomas J. Pletcher, B.Sc. B.C. Certified Assayer

TJF/FJP/JK/jmb

Page 7 of 7

ENVIRONMENTAL TESTING GEOCHEMISTRY ANALYTICAL CHEMISTRY ASSAYING

10041 E. Trans Canada Hwy., R.R. #2. Kamioops. B.C. V2C 2J3 Phone (604) 573-5700 Telex: 048-8393

May 5, 1987

CERTIFICATE OF ANALYSIS ETK 87-66

CLIENT: Pundata Gold Corporation 201, 141 Victoria Street KAMLDOPS, B.C. V2C 125

ATTENTION: J. Scott Bending

RE: TRIO GOLD CORP. - BAR PROJECT

SAMPLE IDENTIFICATION: 172 soil samples received April 23, 1987

<u>ET#</u>	Description	Au <u>(ppb)</u>	Ag <u>(pom)</u>	Mo (ppm)	As <u>(ppm)</u>	Со (ррм)	V (ppm)
66 - 1 66 - 2 66 - 3 66 - 4 66 - 5	GD785 72 GD785 78 GD785 79 GD785 80 GD785 81	<5 <5 <5 <5 <5	.1 .1 .2 .1 .1	<1 1 <1 <1 <1 1	6 7 3 8 4	10 15 9 9	67 82 45 48 40
65 - 5 56 - 7 66 - 8 66 - 9 66 - 10	GD7B5 82 GD7B5 83 GD7B5 84 GD7B5 95 GD7B5 86	<5 <5 <5 <5 <5	.1 .1 <.1 .2 .2	2 1 3 4 2	5 8 4 7 6	10 12 10 17 11	51 69 48 119 59
66 - 11 66 - 12 66 - 13 66 - 14 66 - 15	GD7B5 87 GD7B5 88 GD7B5 99 GD7B5 91 GD7B5 92	<5 ∢5 <5 5 <5	.1 .3 .2 <.1 .3	<1 <1 1 <1 1	6 7 6 6	13 15 10 13 17	66 68 67 66 90
66 - 16 66 - 17 66 - 18 66 - 19 66 - 20	GD7B5 93 GD7B5 94 GD7B5 95 GD7B5 96 GD7B5 96 GD7B5 97	<5 <5 <5 <5 <5	<.1 .2 <.1 <.1 .1	<1 1 <1 <1 1	5 6 6 5	14 16 12 15 11	84 91 62 59 60

Thomas J. Fletcher, Certified Assayer

Page 1 of 6

ET# Desci	-iption	Au (ppb)	Ag (ppm)	Mo (ppm)	As (ppm)	Co (ppm)	ע (mag)
66 - 21 GD785 66 - 22 GD785 66 - 23 GD785 66 - 23 GD785 66 - 24 GD785 66 - 25 GD785	98 99 100 101 102	<5 <5 <5 <5	<.1 <.1 <.1 <.1 <.1	<1 2 1 1 <1	7 7 5 4 6	11 14 10 10 9	56 60 82 73 69
66 - 26 GD7B5 66 - 27 GD7B5 66 - 28 GD7B5 66 - 29 GD7B5 66 - 30 GD7B5	103 104 105 106 107	<5 <5 <5 5 5	<.1 .1 <.1 .3 .1	2 2 <1 1 2	63675	15 11 10 9 8	53 78 46 73 64
66 - 31 GD7B5 66 - 32 GD7B5 66 - 33 GD7B5 66 - 34 GD7B5 66 - 35 GD7B5	108 109 110 111 112	<5 <5 <5 <5	.1 .1 .1 .1 <.1	2 1 3 2 <1	50 0 0 5	9 9 9 8 7	48 48 59 60 44
66 - 36 GD7B5 66 - 37 GD7B5 66 - 38 GD7B5 66 - 39 GD7B5 66 - 40 GD7B5	113 114 115 116 117	<5 <5 <5 <5 <5	<.1 .2 .6 .2	1 3 4 1 <1	ស ហី ស ញ ស	12 7 16 7 8	76 48 65 44 54
66 - 41 GD785 66 - 42 GD785 66 - 43 GD785 66 - 44 GD785 66 - 45 GD785	118 119 120 121 122	<5 5 5 5 5 5	.4 .2 .3 .3	<1 <1 <1 1 <1	4 4 5 4	9 3 11 11 9	55 48 65 69 63
66 - 46 GD7B5 66 - 47 GD7B5 66 - 48 GD7B5 66 - 49 GD7B5 66 - 50 GD7B5	123 124 125 126 127	សូង សូង សូង	.1 .2 .1 .1 .1	<1 1 <1 1 <1	4 4 4 8	9 11 8 10 16	59 59 54 59 70
66 - 51 GD7B5 66 - 52 GD7B5 66 - 53 GD7B5 66 - 54 GD7B5 66 - 55 GD7B5	128 129 130 131 132	5 10 <5 <5 <5	<.1 <.1 .5 .4 .3	<1 <1 <1 <1 <1 <1	5755 582	11 14 13 8 7	56 75 61 45 47

Thomas J. Fletcher, Certified Assayer

Page 2 of 6

EDE TECH LABORATORIES LTD.

<u>ET#</u>	Descr	iption	Au (ppb)	Ag (pom)	Mo (ppm)	As (ppm)	Co (ppm)	V (ppm)
66 - 56 .65 - 57 65 - 58 66 - 59 66 - 60	GD785 GD785 GD785 GD785 GD785 GD785	133 134 135 136 137	່ <5 5 <5 5 5	.1 .2 .1 .2 .2	<1 <1 <1 <1 <1	2 3 3 4 4	8 9 11 11	52 62 51 57 58
66 - 61 66 - 62 66 - 63 66 - 64 66 - 65	GD7B5 GD7B5 GD7B5 GD7B5 GD7B5 GD7B5	138 139 140 141 142	<5 5 <5 <5 <5	.2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	<1 <1 <1 2 <1	4 2 4 3 5	8 7 8 9 10	61 48 51 90 94
65 - 66 65 - 67 66 - 58 66 - 69 65 - 70	GD785 GD785 GD785 GD785 GD785 GD785	143 144 145 146 147	5 5 5 5 5	.2 .1 <.1 <.1 <.1	<1 3 <1 <1 2	4 4 2 5	9 9 8 13	90 86 62 58 70
66 - 71 66 - 72 66 - 73 65 - 74 66 - 75	GD785 GD785 GD785 GD785 GD785 GD785	148 149 150 151 152	<5 <5 <5 <5 5	.2 .3 <.1 <.1 .2	<1 <1 <1 <1 <1	4 4 3 4	7 8 11 8 11	50 47 50 49 64
66 - 76 66 - 77 66 - 78 66 - 79 66 - 80	GD785 GD785 GD785 GD785 GD785 GD785	153 154 155 156 157	<5 <5 5 10	.1 <.1 <.1 <.1 .1	1 <1 <1 <1 <1	4 7 10 6 6	9 10 11 7 9	46 38 43 34 40
66 - 81 66 - 32 66 - 83 66 - 84 66 - 85	GD785 GD785 GD785 GD785 GD785 GD785	158 159 160 161 162	<5 <5 <5 <5 <5	- 4 - 4 - 1 - 1	2 <1 <1 <1 <1	85537 7	13 10 13 5 12	56 76 41 23 56
66 - 86 66 - 87 66 - 88 66 - 89 66 - 90	GD785 GD785 GD785 GD785 GD785 GD785	163 164 165 166 167	5 <5 <5 5 <5	.2 .1 .2 .5 <.1	<1 2 <1 <1 <1	4 3 4 4 2	13 11 9 9 8	51 61 50 29 32

Thomas J. Fletcher, Certified Assayer

•.-

Page 3 of 6

ECC. TECH LABORATORIES LTD.

<u>ET#</u>	Descr	iption	Au (ppb)	Ag (ppm)	Mc (ppm)	As (ppm)	Co (ppm)	V (pom)
66 - 91 66 - 92 66 - 93 66 - 94 66 - 95	GD7B5 GD7B5 GD7B5 GD7B5 GD7B5 TK7B5	168 169 170 171 51	5 5 5 5 5	.2 .1 <.1 <.1	<1 <1 <1 <1 <1	5 22 4 3 4	16 14 13 9 7	34 41 35 36 38
66 - 96 66 - 97 66 - 98 66 - 99 66 - 100	TK785 TK785 TK785 TK785 TK785	52 53 54 55 56	<5 5 5 5 5 5	<.1 <.1 <.1 <.1 <.1	<1 <1 <1 <1 2	3 6 2 6 5	10 7 8 5 21	47 45 47 3 65
66 - 101 66 - 102 66 - 103 66 - 104 66 - 105	TK785 TK785 TK785 TK785 TK785 TK785	57 58 59 60 61	<5 10 <5 <5	<.1 <.1 <.1 <.1 <.1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33 36 7 4	3 10 10 4 7	35 54 46 34 47
66 - 106 65 - 107 66 - 108 66 - 109 66 - 109	TK785 TK785 TK785 TK785 TK785	62 63 64 65 66	<5 5 10 <5 5	.1 .2 .2 .3	2 1 <1 2 2	3 3 9 4 5	11 6 8 6 8	49 41 49 41 34
66 - 111 66 - 112 1 66 - 113 66 - 113 66 - 114 1 66 - 115 1	TK785 TK785 TK785 TK785 TK785	67 68 69 70 71	10 5 5 10 5	<.1 .2 .1 .3 .3	3 2 <1 <1	4 3 7 4 2	10 12 15 11 4	58 74 95 64 42
66 - 116 1 66 - 117 1 66 - 118 1 66 - 119 1 66 - 120 1	TK785 TK785 TK785 TK785 TK785	72 73 74 75 76	<5 <5 5 <5 <5	.4 .3 .8 .4 .3	<1 3 2 <1 <1	4 4 2 3 4	10 10 8 8 9	71 59 13 53 51
66 - 121 1 66 - 122 T 66 - 123 T 66 - 124 T 66 - 125 T	FK7B5 FK7B5 FK7B5 FK7B5 FK7B5	77 78 79 80 81	ភេទ ភេស ភ្លេស	.3 .2 .4 .2	<1 <1 <1 <1 <1 <1	55575	15 17 20 19 14 -	67 68 75 74 61

Page 4 of 6

Thomas J. Fletcher, Certified Assayor

•..

.

May 5, 1987

<u>ET# Descr</u>	iption	Au (ppb)	Ag (ppm)	Mo (ppm)	As (ppm)	Co (ppm)	∨ (ppm)
66 - 126 TK7B5 66 - 127 TK7B5 66 - 128 TK7B5 66 - 129 TK7B5 66 - 130 TK7B5	82 83 94 85 84	5 5 <5 10	.3 .2 .3 1.2 .2	<1 <1 <1 1 <1	4 ସ ମ ଅ	14 15 12 18 6	63 60 84 54
66 - 131 TK7B5 66 - 132 TK7B5 66 - 133 TK7B5 66 - 134 TK7B5 66 - 135 TK7B5	87 88 89 90 91	<5 <5 <5 <5 5	.3 .3 .3 .3	<1 <1 <1 <1 2	5 2 4 7	13 8 13 8 13	78 53 79 56 74
66 - 136 TK7B5 66 - 137 TK7B5 66 - 138 TK7B5 66 - 139 TK7B5 66 - 140 TK7B5	92 93 94 95 96	10 5 <5 5 <5	.4 .4 .3 .3	<1 <1 <1 <1 <1 <1	6 6 2 4	11 9 6 9 13	63 58 36 59
66 - 141 TK7B5 66 - 142 TK7B5 66 - 143 TK7B5 66 - 144 TK7B5 66 - 145 TK7B5	97 98 99 100 101	ភេស្ ភ្ភេស ភ្	.3 .2 .1 .2 10.6	<1 <1 <1 <1 <1	9 6 3 5 5	8 11 8 12 14	75 59 47 53 40
66 - 146 TK785 66 - 147 TK785 66 - 148 TK785 66 - 149 TK785 66 - 150 TK785	102 103 104 105 106	<5 <5 <5 5 <5	.2 .2 .3 .1	1 <1 <1 <1 <1	8 4 7 6 3	10 15 9 14 5	56 60 65 81 35
66 - 151 TK7B5 66 - 152 TK7B5 66 - 153 TK7B5 66 - 154 TK7B5 66 - 155 TK7B5	107 108 109 110 111	5 5 5 5 5 5 5	.3 .2 .8 .4 .3	<1 2 <1 <1 <1	2 9 8 6 6 6	5 8 14 9 10	34 45 65 68
66 - 156 TK7B5 66 - 157 TK7B5 66 - 158 TK7B5 66 - 159 TK7B5 66 - 160 TK7B5	112 113 114 115 116	<5 5 <5 5 <5	.3 .4 .3 .2 .4	<1 <1 <1 <1 <1 <1	4 3 4 5	9 10 8 10 10	61 58 56 65 64

Thomas J. Fletcher, Certified Assayer

Page 5 of 6

<u>ET# Descr</u>	iption	Au (ppb)	Ag (maa)	Mo (ppm)	As (<u>pom)</u>	Co (ppm)	V (ppm)
66 - 161 TK7B5 66 - 162 TK7B5 66 - 163 TK7B5 66 - 164 TK7B5 66 - 165 TK7B5	117 118 119 120 121	5 5 5 5 5 5	.3 .1 .3 <.1	<1 <1 <1 <1 <1	5 3 7 5 9	7 7 10 10 14	55 49 70 56 60
66 - 166 TK7B5 66 - 167 TK7B5 66 - 168 TK7B5 66 - 169 TK7B5 66 - 170 TK7B5	122 123 124 125 126	<5 <5 <5 5 5	.5 .1 <.1 .2 <.1	<1 <1 <1 <1 <1	3 3 4 6	16 3 3 11 13	49 35 30 59 72
65 - 171 TK7B3 66 - 172 TK7B5 66 - 173 TK7B5 66 - 174 TK7B5 66 - 175 TK7B5	127 128 129 130 131	<5 5 5 5 <5	<.1 .2 .2 .2 .2	<1 <1 <1 <1 <1 <1	6 6 3 5 5	10 10 4 14 9	55 46 38 79 64
66 - 176 TK7B5 66 - 177 TK7B5 66 - 178 TK7B5 66 - 179 TK7B5 66 - 180 TK7B5	132 133 134 135 136	<5 5 10 5	.3 .1 .2 .3	2 1 <1 <1 <1	3 4 8 3 5	13 6 12 12 9	69 53 85 78 75
66 - 181 TK7B5 66 - 182 TK7B5 66 - 183 TK7B5 66 - 184 TK7B5 66 - 185 TK7B5	137 138 139 140 141	10 5 <5 <5	1.3 .2 .3 .1 .3	<1 <1 <1 1 <1	25 2 5 7 5	7 5 8 11 9	33 39 68 71 55
66 - 186 TK7B5 66 - 187 TK7B5 66 - 188 TK7B5 66 - 189 TK7B5 66 - 190 TK7B5	142 143 144 145 146	5 <5 30 5 <5	.3 .2 .4 <.1 .4	<1 <1 <1 1 <1	7 8 2 10 8	11 15 9 15	57 62 18 40 52
66 - 191 TK785 66 - 192 TK785	147 148	5 10	.5 .5	1 <1	10 12	15 18	41 42

<u>NOTE:</u> < = less than

1.6 ten on

ECO-TECH LABORATORIES LTD. Thomas J. Fletcher, B.Sc. B.C. Certified Assayer

TJF/FJP/JK/jmb

EDE TECH LABORATORIES LTD.

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Telex: 048-8393

May 22, 1987

CERTIFICATE OF ANALYSIS ETK 87-77

<u>CLIENT:</u> Pundata Gold Corporation 201, 141 Victoria Street KAMLOOPS, B.C. V2C 1Z5

ATTENTION: Scott Bending

RE: TRIO GOLD CORP. - BAR PROJECT

SAMPLE IDENTIFICATION: 342 soil samples received May 4, 1987

		Au	Ag	Co	Mo	V	As
ET#	Description	<u>(ppb)</u>	(<u>ppm</u>)	<u>(ppm)</u>	(ppm)	<u>(maa)</u>	<u>(ppm)</u>
 77 - 1	GD7B5 210	<5	<.1	6	4	33	1
77 - 2	eD7B5 211	<5	<.1	2	1	15	1
77 - 3	GD7B5 212	10	.2	7	7	38	1
77 - 4	GD7B5 213	<5	<.1	6	6	36	1
77 - 5	GD785 214	<5	<.1	4	1	50	1
77 - 6	GD7R5 215	10	<.1	8	i	37	1
77 - 7	60785 216	<5	<.1	5	а	33	<1
77 - 8	BD785 217	10	<.1	8	2	36.	1
77 - 9	GD785 218	<5	<.1	6	З	37	1
77 - 10	GD7B5 219	<5	<.1	9	8	43	<1
77 - 11	GD785 220	<5	<.1	4	З	32	<1
77 - 12	GD785 221	<5	<.1	4	iO	26	1
77 - 13	GD785 222	<5	<.1	6	4	27	1
77 - 14	GD785 223	<5	<.1	11	2	42	1
77 - 15	GD7B5 224	<5	<.1	4	1	13	1
77 - 16	GD7B5 225	5	.1	5	1	31	ł.
77 - 17	GD785 226	<5	<.1	6	2	33	<1
77 - 18	GD785 227	<5	<.1	7	9	39	1
77 - 19	GD785 228	15	<.1	6	7	42	2
77 - 20	GD7B5 229	10	<.1	2	З	19	1

Thomas J. Fletcher, Certified Assayer

Page 1 of 11

÷

2

<u>ET#</u>		Descrij	stion	Au (ppb)	Ag (ppm)	Co (opm)	Mo (mog)	۷ (<u>موم)</u>	As <u>(ppm)</u>
77 - 77 - 77 - 77 - 77 - 77 -	21 22 23 24 25	GD785 GD785 GD785 GD785 GD785 GD785	230 231 232 233 234	10 <5 <5 <5 15	.2 <.1 <.1 .1 .2	5 5 5 7 8	4 3 10 1 7	24 35 79 20 59	1 2 1
77 - 77 - 77 - 77 - 77 - 77 -	26 27 28 29 30	GD785 GD785 GD785 GD785 GD785 GD785	235 236 237 238 239	<5 <5 20 20	<.1 .1 <.1 <.1	7 4 2 9 2	5 1 2 1 2	42 32 32 31 46	1 1 2 2
77 - 77 - 77 - 77 - 77 - 77 -	31 32 34 35	GD785 GD785 GD785 GD785 GD785 GD785	240 241 242 243 244	<5 <5 15 5	<.1 <.1 .6 .3 .7	6 5 11 11 10	5 1 4 5	41 12 44 46 43	1 1 2 2
77 - 77 - 77 - 77 - 77 - 77 -	36 37 38 39 40	6D785 6D785 6D785 6D785 6D785	245 246 247 248 249	5 (5 (5 (5) (5) (5) (5) (5) (5) (5) (5)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 2 13 13 10	2 2 2 2	47 18 40 42 44	(1) 11 4: 1-1 1-1
77 - 77 - 77 - 77 - 77 - 77 -	41 42 43 44 45	GD785 GD785 GD785 GD785 GD785 GD785	250 251 252 253 254	<5 <5 <5 <5	5 .1 5 <.1 5 .1 5 .1 5 .1	6 7 10 9	8 2 3 4 4	40 36 48 52 43	
77 - 77 - 77 - 77 - 77 - 77 -	46 47 48 49 50	6D785 GD785 GD785 GD785 GD785 GD785	255 256 257 258 259	<5 <5 <5 <5 <5	$\begin{array}{cccc} & .1 \\ 5 & 2.0 \\ 5 & <.1 \\ 5 & <.1 \\ 5 & <.1 \\ 5 & <.1 \end{array}$	6 10 12 13 18	2 4 1 <1 <1	30 51 49 49 57	1 1 2 2
77 - 77 - 77 - 77 - 77 - 77 -	51 52 53 54 55	GD785 GD785 GD785 GD785 GD785	260 261 262 263 264	< <5 <5 <5 <5 <5	5 < .1 5 < .1 5 < .1 5 < .1 5 < .1 5 < .1	14 18 8 6 9	1 6 1 3 2	48 45 24 33 30	12211

Thomas J. Fletcher, Certified Assayer

Page 2 of 11

May 22, 1987

				Au	Ag	Co	Mo	V	As	÷
ET#		Descri	ption	(ppb)	<u>(pom)</u>	(ppm)	<u>(mad)</u>	<u>(ppm)</u>	<u>(ppm)</u>	-
~~	- ,		o/ =	·	· •	~ ~		~~		
//	25	69780 ODODO	200 044		<.1 / 4	20	o ,	28	1	
	2/	60785	200	<0 	<.1 	7	5		1	
77 -	58	GD7B5	267	<5	<.1	10	4	30	1	
77 -	59	GD7B5	268	10	<.1	7	1	27	1	
77 -	60	GD785	269	<5	<.1	8	3	35	1	
77 -	ć1	GD725	270	5	<.1	6	<1	25	1	
77 -	62	GD7B5	271	<5	<.1	7	3	36	1	
77 -	4.9	6D7R5	272	(5	<.1	8	4	31	1	
77 -	A4	97785	272	5	<.1		3	29	- 1	
777 -	2	00705	274	15	< 1	, 4	21 21	20	1	
// -	00		C / 4	10	N # 1	بر	14 de		1	
77 -	66	GD785	275	<5	<.1	3	8	27	<1	
77 -	57	GD7B5	276	<5	<.1	8	1	30	1	
77 -	68	GD785	277	<5	.1	11	10	41	1	
77 -	69	WH785	85	<5	<.1	4	1	24	1	
77 -	70	WH785	86	<5	.2	10	6	53	2	
77 -	71	WH7B5	87	<5	.3	14	18	56	1	
77 -	72	WH7R5	88	10	<.1	10	18	5	P	
77 -	73	111785	20	2.0 (5	1	12	2	49	1	
77 -	74	WH785	90 90	10	1	10	14	54	ŝ	
77 _	75		01		· · · · · · · · · · · · · · · · · · ·	19	17 E	70 7	5	
// -	ت /	WELDO	71	U.	1.07	15	с С	-1 <u>-</u>		
77 -	76	WH7B5	92	5	<.1	12	3	39	2	
77 -	77	WH7B5	93	10	1.1	10	2	40	1	
77 -	78	WH785	94	<5	. 1	Ģ	1	33	1	
77 -	70	WH785	95		=;	Å	- -	21	1	
77 -	én	111705	70 07	(U) /E		5	 /1	34	â	
// -	ov	WH/DJ	70	∿.u	N # \$	U.	×1	30	c	
77 -	81	WH785	97	<5	<.1	11	1	36	2	
77 -	85	WH785	98	10	<.1	8	5	40	2	
77 -	83	WH7B5	99	<5	<.i	6	2	38	З	
77	84	WH785	100	5	.7	10	1	34	i	
77 -	85	WH785	101	<5	.3	9	1	31	P	
	1						-	 .		
77 -	86	WH785	102	<5	.1	11	5	37	З	
77 -	87	WH785	103	<5	3	7	2	56	1	
77 -	88	WH7B5	104	<5	<.1	6	1	19	1	
77 -	89	WH785	105	<5	<.1	2	3	55	2	
77 -	90	. WH785	106	5	.2	7	4	33	Э	
									· · · · · ·	
					Inomas	J. F10	etcher,	uert:	TIEd	нзвауег

Page 3 of 11

.

.

May 22, 1987

<u>ET# Des</u>	cription	Au (ppb)	Ag <u>(ppm)</u>	Cə (ppm)	Mo (ppm)	ں (<u>mga)</u>	As (ppm)	
77 - 91 WH7 77 - 92 WH7 77 - 93 WH7 77 - 93 WH7 77 - 94 WH7 77 - 95 WH7	795 107 785 108 785 109 785 110 785 111	<5 5 20 <5 <5	.1 .2 .1	4 9 6 10 4	1 1 2 2	32 39 39 41 38	3 1 3 3 3	
77 - 96 WH7 77 - 97 WH7 77 - 98 WH7 77 - 98 WH7 77 - 99 WH7 77 - 100 WH7	785 112 785 113 785 114 785 115 785 116	<5 <5 <5 5	.1 .1 <.1 <.1 <.1	7 639 5	1 3 4 1	43 29 10 34 32	2) 21 2 21 22	
77 - 101 WH7 77 - 102 WH7 77 - 103 WH7 77 - 103 WH7 77 - 104 WH7 77 - 105 WH7	785 117 785 118 785 119 785 120 785 121	10 <5 5 10 5	<.1 <.1 <.1 <.1 <.1	844 84 48 4	2 1 3 1 5	34 34 31 15 24	23112	
77 - 106 WH7 77 - 107 WH7 77 - 108 WH7 77 - 109 WH7 77 - 109 WH7 77 - 109 WH7	785 122 785 123 785 124 785 125 785 126	<5 <5 10 5	<.1 <.1 .6 .3	12 7 8 5	2 1 <1 5 3	39 29 38 30 29	2 1 1 1	
77 - 111 WH1 77 - 112 WH1 77 - 113 WH1 77 - 113 WH1 77 - 114 WH1 77 - 115 WH1	785 127 785 128 785 129 785 130 785 131	10 <5 <5 15 5	.2 .1 <.1 <.1 <.1	5 8 4 7	0 ID ~ 0 ~	30 30 35 18 26	1 <1 1	
77 - 116 WH7 77 - 117 WH7 77 - 118 WH7 77 - 119 WH7 77 - 119 WH7 77 - 120 WH7	785 132 785 133 785 134 785 135 785 135 785 136	<5 <5 15 <5 <5	.1 .1 <.1 .1	12 9 6 13	1 2 2 1 1	44 25 31 25 46	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
77 - 121 WH 77 - 122 WH 77 - 123 WH 77 - 124 WH 77 - 124 WH 77 - 125 WH	735 137 785 138 785 139 785 140 785 141	<5 15 <5 <5 <5	.1 <.1 <.1 .3 .2	4 9 6 4	1 3 2 2 1	20 37 37 25 24	1 1 1	

Thomas J. Fletcher, Certified Assayer

Page 4 of 11

(Min

Pundata Gold Corporation

.

May 22, 1987

<u>ET#</u>	Descripti	ion	Au (ppb)	Ag (ppm)	Co (maa)	Mo (ppm)	۷ (ppm)	As (<u>com)</u>	
77 -	124 14725	142	<5	<.1	6	З	28	1	
77	100 WH750	1/10	10	< 1	Ā	5	20	2	
// -	12/ WR/DU	140	10	× +	4	1	27	1	
77 -	158 MH/80	144	10	×	0	1	ы/ С-	4	
77 -	129 WH785	145	<0	<.1	3	1	<u>c</u> i	ية. د	
77 -	130 WH785	146	10	<.1	10	5	36	L	
77 -	131 WH785	147	5	.2	10	2	32	1	
77 -	132 WH785	148	<5	. 1	5	3	15	1	
77 -	133 WH785	149	15	<.1	7	1	21	<1	
· ·	104 UU705	150	<5 (5	. 1	4	1	16	1	
// -	134 MA700	100	\U /E	· •	0	2	27	-	
77 -	130 MH/80	101	<.u	• 드	7	ت ت	han /	÷	
77 -	135 WH785	152	<5	. 4	5	а	18	1	
77 -	137 WH785	153	<5	<.1	6	2	21	1	
77 -	130 LH785	154	<5	6.1	14	2	42	1	
77 -	100 00700	107	10	2.1	- 7	1	20	4	
77 -	137 WM 60	100 .	10	N # 4 -7	10	- +	<u>~</u> 0+	- +	
77 -	140 WH785	156	. D	•/	10	ŗ	31	I	
77 -	141 WH785	157	<5	.3	12	1	40	i	
· · ·	149 14795	159	5	<.1	Ģ	З	34	1	
//	140 0000	150	15	ц.	11	1	20	1	
//	140 WH/DU	475	10			÷	27	÷ 1	
77 -	144 89/50	160	60 /=	, 3			67 88	يد ب	
7.7	145 WH7B5	161	<5	• Z	10	20	చిసి	1	
77 -	146 WH785	162	15	.3	10	1	29	1	
77 -	147 WH785	163	15	.9	8	2	18	$\langle \underline{1} \rangle$	
77 -	169 64725	144	10	_ 4	9	3	20	1	
77 ···		145	/5	2.3	ġ	, S	19	1	
// -	197 VA/DJ	100	 < 0 	×++ 2 4	+0	5	ΞΛ	-	
77 -	100 MH/80	100	10	N. B. L	16	U.	<u> </u>	7	
77 -	151 WH785	167	<5	, i	5	2	29	1	
77 -	152 WH785	168	<5	. 1	12	4	38	1	
77 -	153 WH785	169	<5	<.1	6	З	5 9	1	
777	154 14785	170	5	<.1	7	2	34	1	
	155 UU705	171	~5	< 1	Ģ	4	27	1	
// -	100 WH/D0	1. / i			,	•		-	
77 -	156 WH735	172	<5	<.1	4	9	21	1	
77 -	157 WH7B5	173	15	<.1	6	5	40	2	
77 -	153 WH785	174	20	.2	9	3	12	1	
77 -	159 WH785	175	<5	<.1	8	3	37	1	
77	140 WH785	176	5	<.1	7	4	37	1	
• 7	a tariyi 17932 davilari	a, e 160	.	- 	·				
					• • • • • • • • • • • • • • • • • • • •	-			
				Thomas	J. F1	etcher	, Cert	ified As	sayer

Page 5 of 11

۷.

in

May 22, 1937

	Descript	ion	Au (opb)	Ag <u>(ppm)</u>	Co (opm)	Mo <u>(موم)</u>	۷ (شوم)	As (com)
77 - 16 77 - 16 77 - 16 77 - 16 77 - 16 77 - 16 77 - 16	i WH785 i 2 WH785 i 3 WH785 i 4 WH785 i 5 WH785 i	77 78 179 180 181	10 10 15 15 <5	<.1 <.1 <.1 <.1 <.1	7 9 7 13 3	២០4២០	40 39 49 62 20	1721 yrd ard 1721
77 - 16 77 - 16 77 - 16 77 - 16 77 - 17	5 WH7B5 1 7 WH7D5 1 9 WH7B5 1 9 WH7B5 1 0 WH7B5 1	182 183 184 185 186	15 10 <5 5 10	<.1 <.1 <.1 <.1 <.1	12 3 2 4 5	8 B	44 22 17 27 24	14 14 14 14 14 14 14 14 14 14 14 14 14 1
77 - 17 77 - 17 77 - 17 77 - 17 77 - 17 77 - 17 77 - 17	71 UH785 : 2 WH785 : 73 WH785 : 74 WH785 : 75 WH785 :	187 188 189 190 191	10 5 <5 5 15	<.1 <.1 <.1 <.1	8 4 10 5 4	1 2 2 1	29 27 43 28 33	معط وردا بعم ومع
77 - 17 77 - 17 77 - 17 77 - 17 77 - 17 77 - 18	76 WH7B5 : 77 WH7B5 : 79 WH7B5 : 79 WH7B5 : 80 WH7B5 :	192 193 194 195 196	15 5 10 <5	<.1 <.1 <.1 <.1 .2	8 9 7 9 10	0 H H H 0	37 36 39 35	المعا المعام المعام المعام
77 - 19 77 - 19 77 - 19 77 - 19 77 - 19 77 - 19	81 GD785 82 GD785 83 GD785 84 GD785 85 GD785	172 173 174 175 175	10 <5 <5 10 <5	<.1 .1 <.1 <.1	4 9 4 11 13	222	31 54 29 42 43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
77 - 19 77 - 19 77 - 19 77 - 19 77 - 19 77 - 19	36 6D785 37 6D785 38 6D785 39 6D785 39 6D785	177 178 179 180 181	<5 <5 <5 <5 10	<.1 <.1 .1 .1	7 4 12 10 15	4 2 2 7 1	40 28 36 35	امين و.دو امعاد امين
77 - 19 77 - 19 77 - 19 77 - 19 77 - 19 77 - 19 77 - 19	71 GD785 72 GD785 73 GD785 74 GD785 75 GD785	182 183 184 185 196	5 5 10 5 <5	<.1 <.1 <.1 <.1 1.1	10 5 17 11 15	2 2 2 4 1 1	41 29 55 51 38	1 1 2 1 2

Page a of 11

Thomas J. Fletcher, Certified Assayer

(iiii)

May 22, 1787

ET#		Descrip	tion	Au (ppb)	Ag <u>(ppm)</u>	Co (<u>opm)</u>	Mə <u>(ppm)</u>	(<u>mqq)</u>	45 (<u>pom)</u>	
lage : 25					+	10	t	44	ł	
77 -	175	ED785	187	0 /m	• •	17	2	20	1	
77 -	197	GD7P5	188	<0 /F	.ű	с л	-	20 40	1	
77 -	199	GD7B5	189	< > /=	. 2	7	3 +		1	
77 -	199	GD7B5	190	<5	< . 1	8	4		4	
77 -	500	60785	191	5	<.1	5	ł	30	T	
77 -	201	GD7B5	192	<5	<.1	14	1	33	1	
77 -	505	GD785	193	<5	<.1	3	DI DI	34	1	
77 -	203	GD755	194	5	<.1	10	1	42	2	
77 -	204	GD785	195	20	<.i	7	1	33	1	
77 -	205	GD7 B5	196	<5	<.i	10	2	39	2	
- 7 .	204	60785	197	<5	<.1	13	2	40	2	
	207	GD725	198	15	<.1	11	1	43	2	
· · · · · · · · · · · · · · · · · · ·	000	20725	100	<5	<.1	8	1	31	2	
	000	00700	200	10	<.1	10	i	36	2	
// -	207 54 A	CD/DU CR7DE	201	ية. م	<.t	14	3	49	2	
// -	610	00/60	201		\ ₽ ₩	÷ .				
77 -	211	GD735	202	<5	<.1	26	1	59	1	
77 -	515	GD785	203	<5	<.1	9	1	41	1	
77 -	213	GE7B5	204	<5	•4	9	1	42	2	
77 -	214	ep735	205	<5	,1	8	1	34	1	
77 -	215	GD785	2 0é	<5	<.1	U .	2	35	4	
7 7 -	214	60785	207	10	<.1	12	5	58	1	
	217	GD785	208	(5	<.1	7	1	Зć	1	
777 -	 	60725	209	<5	<.1	6	2	52	1	
·····	010	00700 TV705	232	<5	<_1	7	3	31	j	
// = ·	E17 000	TUTOR	 	्य २९	< 1	Ŕ	4	49	1	
// -	660	IN/DU	693	10			·			
77 -	221	ТК785	234	<5	<.1	8	1	30	1	
77 -	555	TK7B5	235	<5	<.1	15	1	53	1	
77 -	553	TK785	236	(5	.2	13	3	54	2	
77 -	224	TK785	237	<5	.2	10	2	43	2	
77 -	225	TK755	238	<5	5 Å	7	1	43	1	
<u> (ترت</u>	224	TK7B5	239	(5	.1	8	1	38	1	
77 -	227	TK785	240	<5	<.1	8	8	53	1	
	200	TK725	241	<5	i <.1	6	1	47	1	
777 _	220	TK725	242	<5	<.1	8	1	40	1	
// -	- 557 - 354	TK725	243	(E	1.1	7	2	31	1	
2 2 	ليه الله بلية	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· •						

Thomas J. Fletcher, Certifield Assayer

Page 7 of 11

EGD. TEG'T LABORATORIES LTD.

1

May 22, 1987

<u>E1#</u>	Description	Au (ppb)	Ag (ppm)	Co (ppm)	Mo (<u>nga)</u>	۷ (همور)	As (ppm)	
77 - 2 77 - 2 77 - 2 77 - 2 77 - 2 77 - 2	31 TK7B5 244 32 TK7B5 245 33 TK735 246 34 TK7B5 247 35 TK7B5 248	<5 <5 <5 <5 <5	.2	7 10 6 8 7	3 5 1 2 2	42 48 57 38 39	(1)	
77 - 20 77 - 20 77 - 20 77 - 20 77 - 20 77 - 20	36 TK725 249 37 TK725 250 38 TK785 251 39 TK785 252 50 TK785 253	<5 <5 <5 5 5	.4 .a. a. a.	9 7 5 10	ា 4 1 2 2	56 63 46 64 55	0 0 -	
77 - 24 77 - 24 77 - 24 77 - 24 77 - 24 77 - 24	41 TK785 254 42 TK785 255 43 TK785 256 44 TK785 257 45 TK785 258	<5 5 5 5 5 5 5	.1 <.1 .4 .1 .2	8 11 10 5 13	2 1 2 1	59 54 49 38 47	2 2 <1 1	
77 - 24 77 - 24 77 - 24 77 - 24 77 - 24 77 - 25	46 TK7B5 259 47 TK7B5 260 48 TK7B5 261 49 TK7B5 262 50 TK7B5 263	<5 <5 5 5 25	.2 .1 <.1 .1	18 8 12 12 14	1 2 3 1	52 52 59 65 61	1 2 3 1 2	
77 - 25 77 - 25 77 - 25 77 - 25 77 - 25 77 - 25	51 TK785 264 52 TK785 265 53 TK785 266 54 TK785 267 55 TK785 268	10 \5 \5 \5 \5	.1 <.1 .2 .1 <.1	15 13 10 13 13	1 2 1 1	59 53 51 53 53	0 8	
77 - 25 77 - 25 77 - 25 77 - 25 77 - 25 77 - 26	56 TK7B5 269 57 TK7B5 270 58 TK7B5 271 59 TK7B5 272 50 TK7B5 192	<5 <5 10 <5	<.1 <.1 .3 <.1	7 14 10 11 9	ณ ณ ม ม ณ ม	38 57 52 52 44	22212	
77 - 24 77 - 24 77 - 24 77 - 24 77 - 24 77 - 24	51 TK7B5 193 52 TK7E5 194 53 TK7E5 195 54 TK7E5 196 55 TK7E5 197	ទទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	<.1 <.1 <.1 .1 .2	6 12 8 15 13	си ю са са	38 62 40 54 69	n n + n n	

· · · · · · · · · ·

.

Thomas J. Fletcher, Certified Assayer

Page 8 of 11

EGE · TEC' LABORATORIES LTD.

May 22, 1987

	Description	Au (ppb)	Ag (pom)	Co (ppm)	Mo <u>(ppm)</u>	(<u>apa)</u> (mq <u>a)</u>	As <u>(ppm)</u>
77 - 26 77 - 26 77 - 26 77 - 26 77 - 26 77 - 26	65 TK785 198 57 TK785 199 68 TK785 200 59 TK785 201 70 TK785 202	<5 10 <5 <5 <5	.1 <.1 .2 <.1	5 13 13 14	2 2 1 2	34 60 54 66 49	1 1 1 1
77 - 25 77 - 2 77 - 2 77 - 2 77 - 2 77 - 2	71 TK7B5 203 72 TK7B5 204 73 TK7B5 205 74 TK7B5 206 75 TK7B5 207	<5 <5 <5 <5 <5	<.1 <.1 <.1 <.1 <.1	14 16 16 7 9	3 5 4 1	49 47 50 31 43	1 136 100 1 1
77 - 2' 77 - 2' 77 - 2' 77 - 2' 77 - 2'	76 TK7B5 208 77 TK7B5 209 78 TK7B5 210 79 TK7B5 211 80 TK7B5 212	5 <5 <5 <5 <5	<.1 .1 .1 .1 .1	11 11 13 12 12	37 A 45 14	42 43 39 39 46	2 1 1 2 1 1 2 1
77 - 20 77 - 20 77 - 20 77 - 20 77 - 20 77 - 20	81 TK7B5 213 82 TK7B5 214 83 TK7E5 215 84 TK7E5 216 85 TK7E5 217	<5 <5 10 <5 <5	.2 .1 .2 <.1 <.1	15 4 7 6 8	00 4 Q Q	47 24 40 33 40	2 1 1 1 1 1
77 - 20 77 - 20 77 - 20 77 - 20 77 - 20 77 - 20	86 TK7B5 218 87 TK7B5 219 88 TK7B5 220 89 TK7B5 221 90 TK7B5 222	5 <5 15 <5 5	<.1 <.1 <.1 <.1 <.1	9 3 4 4	0 - 0 U	45 14 25 26	1 1 1
77 - 2 77 - 2 77 - 2 77 - 2 77 - 2	91 TK785 223 92 TK785 224 93 TK785 225 94 TK785 226 95 TK785 227	<5 <5 <5 <5 15	.6 <.1 <.1 <.1	26 6 5	4 2 1 2	47 30 33 29 24	<1 1 1 1
77 - 2 77 - 2 77 - 2 77 - 2 77 - 3	96 TK785 228 97 TK785 229 98 TK785 230 99 TK785 231 00 TK785 149	<5 <5 <5 <5 <5	<.1 .1 <.1 .1	9 5 11 8 7	3 3 1 1	29 32 38 33 39	1 1 1 2

Ŀ

Thomas J. Fletcher, Certified Assayer

Page 9 of 11

EGE TEC' LABORATORIES LTD.

.

1

100

1

1000

-jpund

-

inni

·

May 22, 1987

				Au	Ag	Co	Mo	V	As	
<u>ET#</u>		Descri	otion	<u>(dad)</u>	<u>(ppm)</u>	<u>(ppm)</u>	<u>(ppm)</u>	<u>(ppm)</u>	<u>(ppm)</u>	
	 .						-	~	~	
77 -	301	TK785	150	<5	.1	10	E	34	5	
77 -	305	TK785	151	<5	<.1	10	2	34	1	
77 -	303	TK785	152	<5	.1	11	3	49	e .	
77 -	304	TK7B5	153	5	<.1	8	1	49	1	
77 -	305	ТК785	154	<5	<.1	13	1	44	1	
77 -	306	TK785	155	10	.2	13	1	39	1	
77 -	307	TK785	156	5	<.1	6	2	34	1	
77 -	308	TK785	157	5	<.1	9	3	38	1	
77 -	309	TK785	158	<5	<.1	10	5	49	1	
77 -	310	TK785	159	<5	. 1	29	1	50	<1	
		t s ", t' ann han"	~~~		• •	-	-	1		
77 -	311	TK785	160	<5	.9	26	a	42	1	
77 -	312	TK785	161	<5	<.1	14	1	45	1	
77 -	313	TK785	162	<5	.1	9	1	36	1	
77 -	314	ТК7В5	163	<5	.1	3	З	36	1	
77 -	315	TK785	164	<5	.2	9	5	30	1	
77 -	316	TK7B5	165	5	1.2	9	1	31	1	
77 -	317	TK785	166	<5	.4	8	1	31	1	
77 -	318	TK785	167	<5	.1	6	2	27	1	
77 -	319	TK735	168	<5	<.1	9	3	30	1	
77 -	350	TK7B5	169	5	.3	8	i	41	2	
				,						
77 -	321	TK7B5	170	<5	.1	14	1	43	2	
77 -	322	TK7B5	171	10	<.1	3	2	24	1	
77 -	323	TK:785	172	5	<.1	7	1	44	1	
77 -	324	TK785	173	<5	.2	8	З	61	1	
77 -	325	TK785	174	15	.1	9	1	35	2	
								-	-	
77 -	326	TK7B5	175	<5	.5	З	7	17	1	
77 -	327	TK785	176	<5	.2	8	4	54	1	
77 -	328	TK7B5	177	<5	.3	З	1	20	. 1	
77 -	329	TK7B5	178	15	.1	3	1	22	1	
77 -	330	ТК785	179	5	.2	6	3	23	1	
							-	-		
77 -	331	TK785	180	10	.7	4	4	50	1	
77 -	332	TK785	181	<5	.1	6	1	35	1	
77 -	333	TK785	182	15	2.7	10	1	47	2	
77 -	334	TK7B5	183	10	.3	10	1	44	3	
77 -	335	TK785	184	<5	.2	5	2	29	1	
• •	147					-			-	
						میں بیاد ہے۔ 	<i>i</i>			
					Thomas	J. F1	etcher	. Cert:	ified As	sayer

Page 10 of 11

EDD. TECH LABORATORIES LTD.

2.1

ET#	Description	Au (ppb)	Ag <u>(ppm)</u>	Co (ppm)	Mo (<u>ppm)</u>	۷ (<u>موم)</u>	As <u>(ppm)</u>
77 - 77 - 77 - 77 - 77 - 77 -	336 TK785 185 337 TK785 186 338 TK785 197 339 TK785 188 340 TK785 189	<5 10 5 <5 <5	.1 .3 <.1 <.1 .1	10 1 16 5 13	3 15 1 1 2	32 17 33 23 45	2 1 2 1 3
77 - 77 -	341 TK785 190 342 TK785 191	15 <5	<.1 .2	10 12	2 2	35 35	2 1

NOTE: < = less than

h c

ECO-TECH LABORATORIES LTD. Thomas J. Fletcher, B.Sc. B.C. Certified Assayer

TJF∕jmb

Page 11 of 11

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Telex: 048-8393

May 25, 1987

CERTIFICATE OF ANALYSIS ETK 87-79

<u>CLIENT:</u> Pundata Gold Corporation 201, 141 Victoria Street KAMLEOPS, B.C. V2C 125

ATTENTION: Scott Bending

RE: TRIO GOLD CORP. - BAR PROJECT

SAMPLE IDENTIFICATION: Received May 5, 1987 - 124 soil samples - 1 rock sample

<u>ET#</u>	Descript	ion	Au (ppb)	Ag <u>(ppm)</u>	Co (ppm)	Mo (ppm)	(<u>pom)</u>	As <u>(ppm)</u>
79 - 1 79 - 2 79 - 3 79 - 4 79 - 5	WH785 WH785 WH785 WH785 WH785	197 198 199 200 201	<5 5 10 <5 <5	.6 1.0 .8 .4 .5	15 11 12 7 9	1 2 1 1 1	48 150 22 38 42	1 4 2 1 2
79 - 5 79 - 7 79 - 8 79 - 9 79 - 9 79 - 10	WH785 WH785 WH785 WH785 WH785	202 203 204 205 206	<5 <5 <5 5 5	.6 1.3 .6 .5 .3	8 9 8 10 9	<1 <1 <1 1 1	48 40 42 48 33	1111
79 - 11 79 - 12 79 - 13 79 - 14 79 - 15	WH785 WH785 WH785 WH785 WH785	207 208 209 210 211	<5 <5 30 10 10	.4 .4 .5 .5	8 14 8 15 11	1 <1 <1 <1 <1 <1	46 47 36 53 46	1111
79 - 16 77 - 17 79 - 18 79 - 19 79 - 20	WH785 WH785 WH785 WH785 WH785	212 213 213 214 215	<5 <5 <5 5 5	.7 .5 .5 .9	13 10 11 6 8	<1 <1 <1 1 2	51 40 42 27 30	1 1 1 1

Thomas J. Fletcher, Cortified Assayer

Page 1 of 4

May 25, 1987

<u>ET#</u>	Descri	otion	Au (ppb)	Ag (ppm)	Co (ppm)	Mo (pom)	V (ppm)	As <u>(pom</u>)
79 - 21 79 - 22 79 - 23 79 - 24 79 - 25	WH785 WH785 WH785 WH785 WH785	216 217 218 219 220	<5 <5 <5 <5 <5 <5	.9 .8 .3 .4	9 5 11 5 11	1 1 2 1	38 21 65 20 31	
77 - 26 79 - 27 79 - 28 79 - 29 79 - 29 79 - 30	WH785 WH785 WH785 WH785 WH785	221 223 223 224 225	5 5 <5 10	.6 4,4 .5 .4 .5	8 5 10 11 10	1 2 1 1	28 52 47 46 50	
79 - 31 79 - 32 79 - 33 79 - 34 79 - 35	WH7B5 WH7B5 WH7B5 WH7B5 WH7B5 WH7B5	225 227 228 229 230	5 <5 <5 <5 <5	.4 .4 .5 .7 .5	16 14 13 8 13	<1 <1 <1 <1 1	53 47 51 40 43	0 - 0 - n
79 - 36 79 - 37 79 - 39 79 - 39 79 - 39 79 - 40	WH795 WH785 WH785 WH785 WH785	291 232 233 234 235	<5 <5 <5 <5	.4 .7 .8 .4 .3	12 8 12 14	1112	55 41 39 49 48	2. 12. 12 12. 12 13. 12
79 - 41 79 - 42 79 - 43 79 - 44 79 - 45	WH725 WH725 TK785 TK785 TK785 TK785	236 237 273 274 275	5 <5 <5 . <5	.3 .4 .3 .4	12 10 6 8 7	1 <1 <1 1 1	40 28 26 27	14 11 11 11 11
79 - 46 79 - 47 79 - 48 79 - 49 79 - 50.	TK785 TK785 TK785 TK785 TK785	276 277 278 279 280	<5 <5 <5 <5 <5	.7 .9 .5 .4 .4	ල ය ස ය ර	<1 <1 <1 <1 <1 <1	30 20 42 19 19	1 1 1 1
79 - 51 79 - 52 79 - 33 79 - 34 79 - 35	TK785 TK785 TK785 TK785 TK785 TK785	281 282 283 284 285	୍ଟ 5 5 5 5 5	.4 .5 .4 .3 .5	6 8 14 10 9	1 1 2 2	23 25 76 30 40	<1 1 2 2 2

Thomas J. Fletcher, Certified Assayer

<u>.</u>

Fage 2 of 9

أسرا

May 25, 1987

	<u> Descri</u>	<u>ption</u>	Au <u>(opb)</u>	Ag (ppm)	Co (maa)	Mc (ppm)	ب (<u>maq)</u>	As <u>(ppm)</u>
79 - 56 79 - 57 79 - 38 79 - 59 79 - 60	TK785 TK785 TK785 TK785 TK785 TK785	266 287 238 289 290	<5 <5 <5 <5 <5	.7 .6 .3 .3	2 11 10 9 6	<1 <1 <1 <1 1	39 31 40 32 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
79 - 41 79 - 62 79 - 63 79 - 63 79 - 65	TK785 TK785 TK785 TK785 TK785	291 292 293 294 295	<5 <5 <5 5 10	.3 .4 .3 .4 .8	12 10 9 10 24	1 <1 1 <1	46 35 17 39 39	3 1 4 4 4
79 - 66 79 - 67 79 - 68 79 - 69 79 - 70	TK785 TK785 TK785 TK785 TK785 TK785	296 297 293 299 300	5 5 5 5 5 5 5 5	.5 .3 .5 .5	12 11 7 7 9	<1 1 1 <1 2	31 39 25 24 24	2 3 2 1
79 - 71 79 - 72 79 - 73 79 - 74 79 - 75	TK785 TK785 TK785 TK785 TK785 TK795	301 302 303 304 305	5 5 10 <5 <5	.5 .4 .3 .7 .6	9 5 9 9	1 2 1 1	35 29 14 19 33	3 2 2 1 1
79 - 75 79 - 77 79 - 78 79 - 79 79 - 80	TK785 TK785 TK785 TK785 TK785 TK785	306 307 308 309 310	<5 <5 <5 5 <5	.6 .5 1.1 .7	11 9 10 12 10	2 1 1 1	42 40 39 34 29	1 1 1 0
79 - 81 79 - 82 79 - 83 79 - 84 79 - 85	GD785 GD785 GD785 GD785 GD785 GD785	278 277 280 281 282	<5 5 (5 10 5	.6 .3 .3 .3 .3	12 9 11 10	1 2 1 1	49 38 32 42 27	0 0
79 - 36 79 - 87 79 - 83 79 - 89 79 - 90	GD785 GD785 GD785 GD785 GD785 GD785	283 284 285 286 287	5 5 5 5 5 5	.7 .3 .7 .1 .5	6 7 9 11 14	1 1 2 2	28 27 25 35 48	1 1 1 2

ECC. TEC' LABORATORIES LTD.

Page 3 of 4

Thomas J. Fletcher, Certified Assayer

İlmi

May 25, 1987

<u>ET#</u>	Descript	ion	Au (pob)	Ag (ppm)	Co <u>(ppm)</u>	Mo (opm)	۷ (<u>موم)</u>	As (ppm)
79 - 91 79 - 92 79 - 93 79 - 94 79 - 95	GD7B5 GD7B5 GD7B5 GD7B5 GD7B5	288 289 290 291 292	୍ତ ୍ତ ୍ତ ୍ତ ୍ତ	.7 .7 .4 .5 .3	12 11 13 9 12	1 1 1 1 <1	42 36 40 27 56	2 1 1 2
79 - 96 79 - 97 79 - 98 79 - 99 79 - 99 79 - 100	GD785 GD785 GD785 GD785 GD785 GD785	293 294 295 296 296	ម ភូមិទ្	.4 .7 .5 .3 .4	13 8 10 12 16	<1 <1 2 <1 <1	57 39 55 58 63	9 1 8 1 8 1 9
77 - 101 77 - 102 77 - 103 79 - 104 79 - 105	GD785 GD785 GD785 GD785 GD785 GD785	298 299 300 301 302	10 5 <5 <5 <5	.4 .5 .9 .5 .9	15 12 15 15 13	<1 2 1 1	62 57 46 50 30	2 2 2 2 2 2 2 2
79 - 106 79 - 107 79 - 108 79 - 109 79 - 110	GD785 GD785 GD785 GD785 GD785 GD785	303 304 305 305 305	<5 <5 <5 5 5	.6 .3 .9 .9	14 9 10 13 11	2 2 <1 <1 2	54 40 50 53 54	21 22 22 1
79 - 111 79 - 112 79 - 113 79 - 114 79 - 115	GD785 GD725 GD785 GD785 GD785 GD785	308 309 310 311 312	5 10 5 <5 5	.7 .6 .1 .1	13 12 8 12 11	1 3 1 2	75 57 29 38 39	2 1 2 2 2
77 - 116 79 - 117 79 - 118 79 - 119 79 - 120	GD785 GD785 GD785 GD785 GD785 GD785	313 314 315 316 317	<5 10 5 <5 5	• .2 .5 .4 .4	7 11 10 8 10	1 1 2 3	31 25 26 30	1 1 2 1
79 - 121 79 - 122 79 - 123 79 - 123 79 - 124 79 - 125	GD785 GD785 GD785 GD785 WH786	318 319 320 321 72	<5 <5 5 5 5 5	.1 <.1 .3 .7 .8	9 4 9 7 19	1 1 <1 <1	34 19 24 39 82	1 1 1 1

NOTE: < = less than

<u>____</u>

ECO-TECH LABORATORIES LTD. Thomas J. Fletcher, B.Sc. B.C. Certified Assayer

TJF/jπb

Page 4 of 4

•

•

GRID

DWG. NO GEOLOGY DRAWN

G.D.

SCALE

DATE

GEOLOGICAL BRANCH ASSESSMENT REPORT

•

15-QO

LEGEND

SOIL SAMPLE LINE SOIL SAMPLE LOCATION INDICATES LESS THEN GOLD VALUE PPB SILVER VALUE PPM

300 m

PUNDATA GOLD

BAR 125&6 CLAIMS ROCK & SOIL

GEOCHEMISTRY

Au & Ag

FIG.3					
SCALE	1:10,000				
DATE	02/06/87				
DWG. NO.					
GEOLOGY					
DRAWN	G.D.				

