GEOLOGICAL

GEOCHEMICAL

AND

GEOPHYSICAL SURVEYS

ON THE

NGM GROUP (Titanic - 1578, Captain Hook - 1455)

> Alberni Mining Division British Columbia

> > FOR

NATIONWIDE GOLD MINES CORPORATION

NTS Sheet : 92F 3 W Latitude : 49 10' Longitude : 125 25'

> GEOLOGICAL BRANCH ASSESSMENT REPORT

15,935

SUB-RECORDER RECEIVED

AUG 12 1987

M.R. # \$ VANCOUVER, B.C.

FILMED

R.Tim Henneberry, FGAC August 10, 1987

A detailed exploration program is presently underway on the Titanic and Captain Hook mineral claims of Nationwide Gold Mines Corporation. The claims are situated in the Kennedy River District of the Alberni Mining Division of Vancouver Island. The phases of this exploration program completed by July 12, 1987 have been documented primarily for assessment purposes.

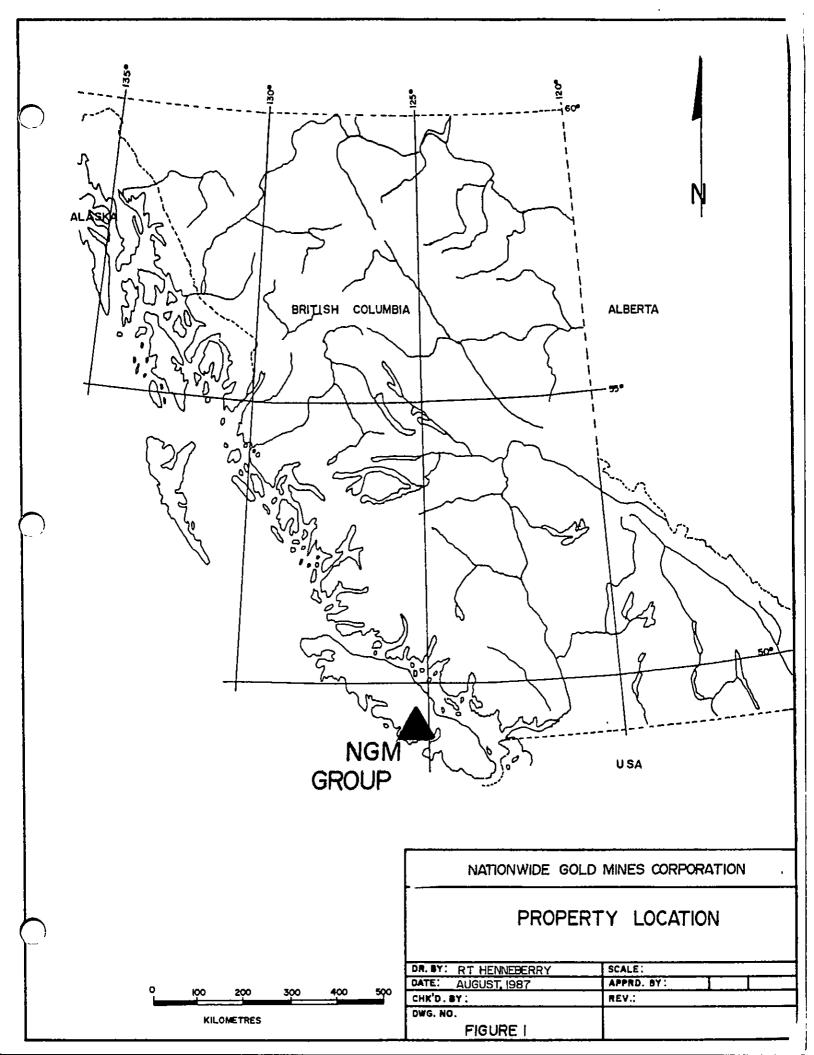
Exploration on the Titanic property consisted of geochemical soil and silt sampling, combined with a presently incomplete geophysical survey. Preliminary inspection of the showing areas was also completed, though detailed sampling of these showings was not completed prior to the cut-off date.

Exploration on the Captain Hook property consisted of geochemical soil sampling and geophysics. Preliminary sampling of the showing areas was also completed, though detailed sampling and mapping was not completed by the cut-off date.

The target on both properties is auriferous quartz veins hosted within regional shear/fault zones of suspected Tertiary age. The Bear Crown Grants host such a zone of mineralization within the Bear Shear Zone, within one kilometre of its junction point with the 45 kilometre long Mine Fault.

Exploration results to date have been favorable. Soil and silt gold anomalies have been identified. Geophysics has also traced the strike projections of the major shear zones. Significant gold mineralization has also been located along the structures. Based on the results of the program to date, further exploration is definitely warranted.

TABLE OF CONTENTS

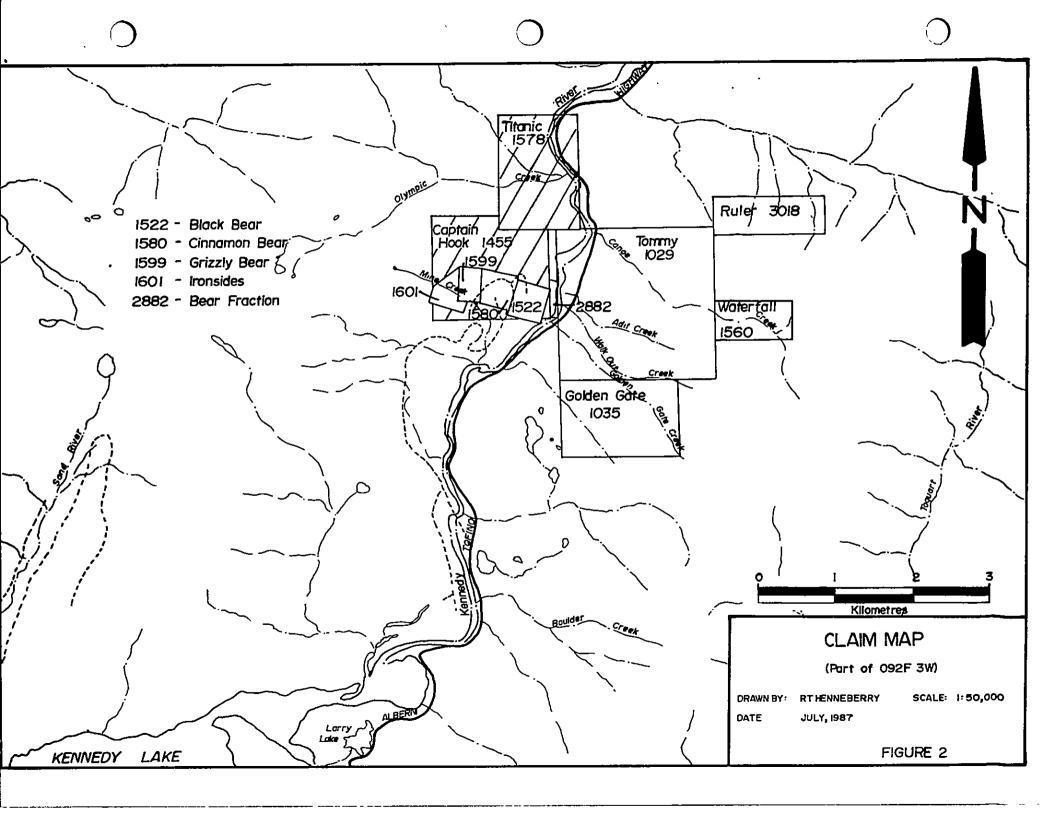

INTRODUCTION 3 /
LOCATION, ACCESS 5 /
CLAIM OWNERSHIP 7
PREVIOUS EXPLORATION 8 /
REGIONAL GEOLOGY
PROPERTY GEOLOGY12 /
1987 PROGRAM
Titanic Soil Geochemistry
Titanic Silt Geochemistry
Titanic Geophysics
Titanic Geological Mapping and Sampling
Captain Hook Soil Geochemistry
Captain Hook Geophysics
Captain Hook Geological Mapping and Sampling23 /
DISCUSSION25 /
CONCLUSIONS AND RECOMMENDATIONS
REFERENCES
STATEMENT OF COSTS28 /
STATEMENT OF QUALIFICATIONS29 /
APPENDIX A. Assay Resultsrear /
Sample Descriptionsrear
Jampio Dobolipelono IIII III III III III III III III III
LIST OF FIGURES
<u>. </u>
Figure 1. Property Location
Figure 2. Claim Map 6 /
Figure 3. Regional Geology 9 /
Figure 4. Surface Features11/reow
Figure 5a. Titanic Gold Soil Geochemistry

INTRODUCTION

The NGM Group, consisting of the 6 unit Titanic mineral claim and the 9 unit Captain Hook mineral claim, lies within the Kennedy River District of Vancouver Island. The Kennedy River District has been intermittently active since the initial discovery of gold at the turn of the century. Exploration activity hit a peak in the early 1980's and rapidly declined.

International Coast Minerals Corporation and Kerr Addison Mines are presently active in the district. International Coast is actively exploring the Bear Property for vein-hosted gold mineralization in a regional shear zone on a proposed budget of 1.43 million dollars. Kerr Addison Mines Limited, in a 60% -40% joint venture with International Coast, is exploring for sheeted veinlet hosted gold mineralization in a fracture zone associated with divergent shear zones on a proposed budget of 1.75 million dollars. Multinational Resources, in a joint venture with Teck has recently been exploring the Au claims 3 kilometres southeast of the NGM Group. Lesser groups and individuals hold much of the remaining property.

The purpose of this report is to document the presently completed exploration for assessment purposes.



LOCATION, ACCESS

The Captain Hook and Titanic mineral claims (the NGM Group) lie within the Alberni Mining Division of Vancouver Island. The property is located 55 road kilometres west of Port Alberni and 30 road kilometres northeast of Ucluelet (Figure 1). A new logging road extends from the Alberni-Tofino Highway to the southern part of the Captain Hook claim. Access to the Titanic claim is by boat across Kennedy River. Topography ranges from 40 to 440 metres above sea level. Precipitous cliffs are found on the western and northern sections of the claims. The Kennedy River Valley receives very little show at lower elevations, allowing work to continue year round.

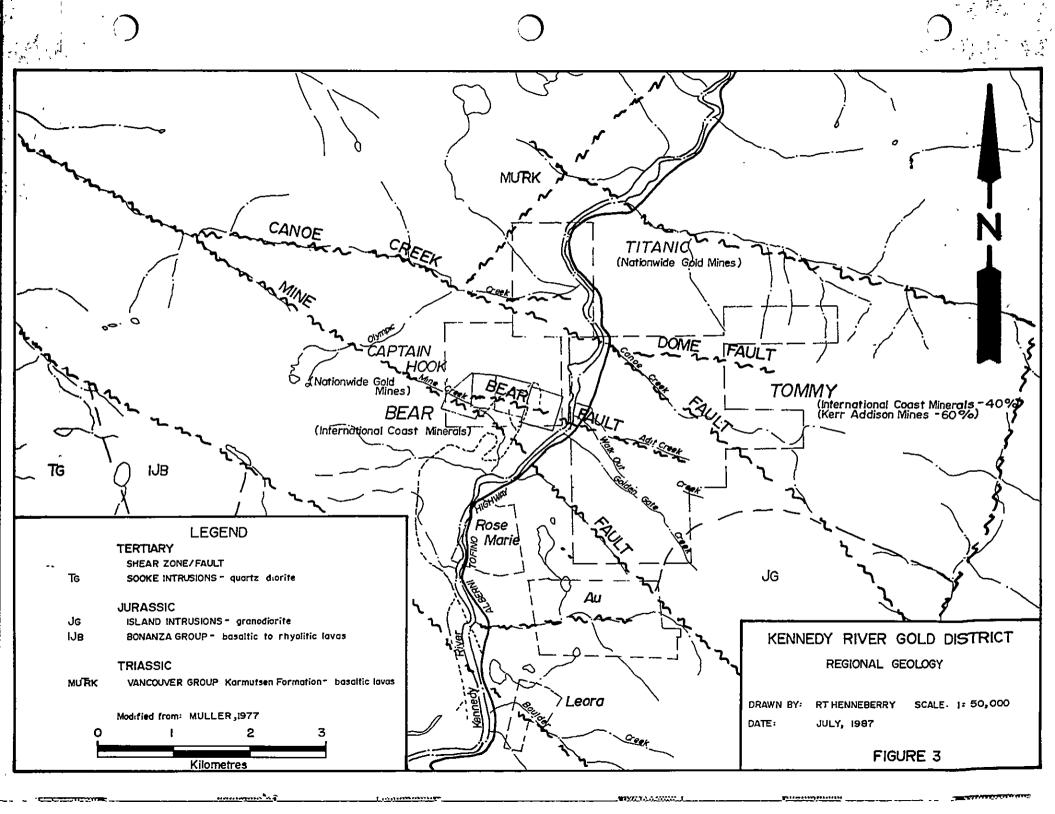
The lower (southern) section of the Captain Hook claim was logged during the last year. A large part of the northern section of this claim is in an active timber lease, due to be logged later this year. New logging roads will provide access to the remainder of the claim group.

Mature first generation growth characterizes the claim group. Typical west coast rain forest vegetation abounds, except for the areas recently logged. The dense vegetation, combined with the precipitous slopes make traverse quite difficult over the northern half of the claim group.

CLAIM OWNERSHIP

The Titanic and Captain Hook Mineral Claims are located in the Alberni Mining Division of Vancouver Island. They are plotted on claim sheet 092F 3W (Figure 2).

Name	Record Number	No.of Units	Anniversary Date
Titanic	1578	6	December 14,1988
Captain H	ook 1455	9	July 12, 1987


The Titanic Mineral Claim is owned by Nationwide Gold Mines Corporation of Vancouver. The Captain Hook Mineral Claim, presently under option to Nationwide Gold Mines Corporation, is owned by J.S. Lampman of Vancouver.

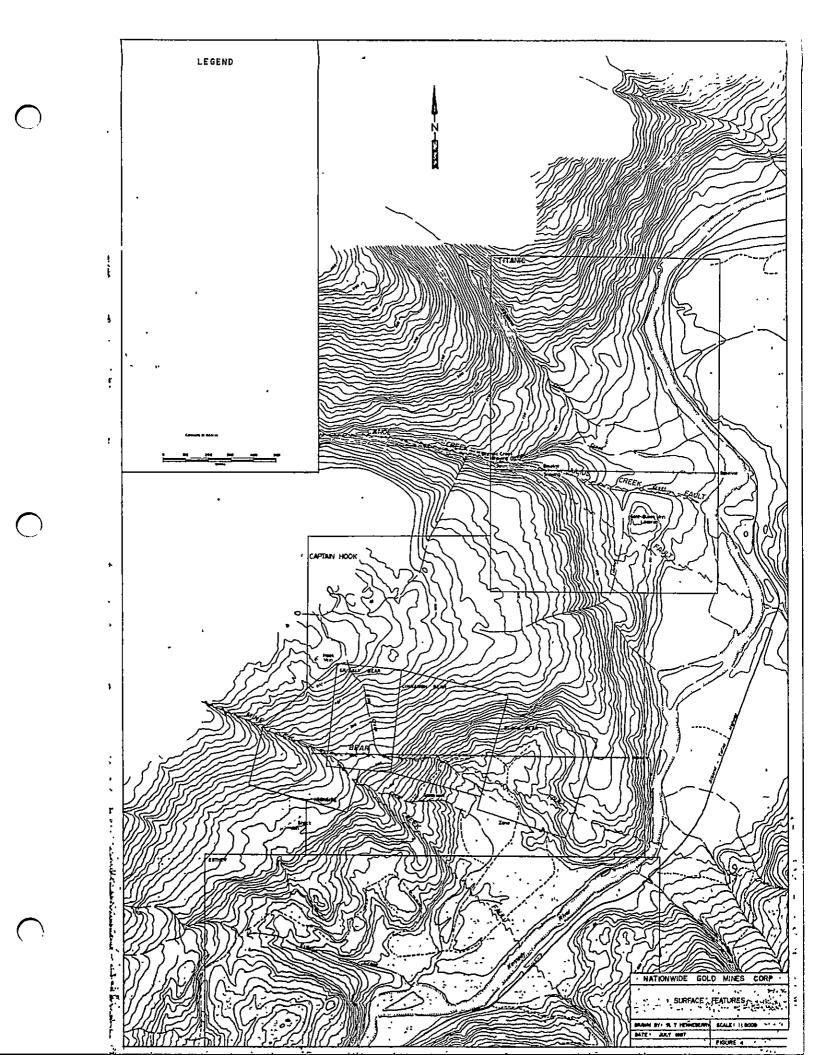
PREVIOUS EXPLORATION

Gold was initially discovered in the Kennedy River District at the turn of the century. By 1920 mining activity had been undertaken on the Leora, Rose Marie, Tommy and Bear properties. Mining and exploration activity was concentrated on auriferous quartz veins throughout the district.

Previous exploration on the Titanic mineral claim has been sporadic. The initial discovery zone in Olympic Creek was documented in the early 1913. This showing consisted of quartz veins and veinlets carrying values to 0.03 ounces per ton gold over narrow widths (MMAR, 1913). Exploration was also conducted on a structure located to the south of Julius Creek (referred to as the Golden Queen in the 1927 MMAR). According to claim maps from this period, the location is incorrectly described in this summary. This structure was traced for 300 metres, averaging 1 metre in width. The only value reported was 1.4 ounces per ton gold. During the 1980's, trenching and blasting has been carried out on the quartz veins and veinlets of the Olympic Creek showing.

Very little previous exploration has been conducted on the Captain Hook Property. This property was staked to cover the strike extensions of mineralized structures on the Bear Crown Grants. Bear mineralization consists of east-west striking auriferous quartz veins localized at the contacts of the 30 metre wide Bear Shear Zone. Values to 3.00 ounces per ton gold have been obtained.

REGIONAL GEOLOGY


The Kennedy River District lies within a structurally active section of Vancouver Island (Figure 3). Rocks of the Vancouver and Bonanza Groups are intruded by Island and Sooke intrusions. Gold mineralization is predominantly localized by west-northwest trending fault/shear zones, active during Tertiary time. (Muller and Carson, 1968).

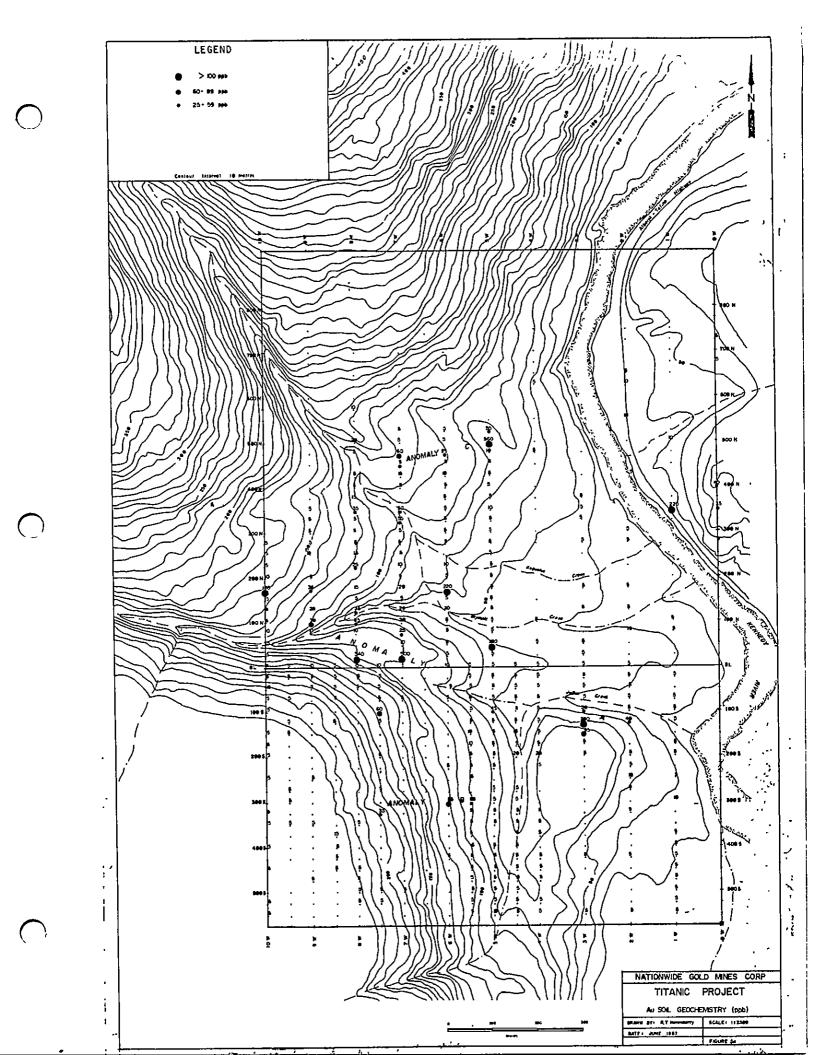
The Karmutsen and Quatsino Formations comprise the Triassic Vancouver Group outcroppings in the district. Andesitic to basaltic flows, tuffs and volcaniclastics of the Karmutsen Formation are overlain by massive limestone of the Quatsino Formation. Alteration is generally greenschist facies, though the limestone can be marbled near intrusive contacts. Jurassic Bonanza Group andesitic to latitic flows, tuffs and breccias overlie the Vancouver Group rocks.

Two periods of intrusive activity have been documented in the district. The Jurassic Island Intrusions are mainly of granodioritic to quartz dioritic composition. Contacts with Karmutsen rocks are generally sharp and well-defined. Tertiary Sooke Intrusions of predominantly quartz diorite composition consist of small stocks (less than 2 kilometres), dykes and sills outcropping throughout the district. Contacts with older rocks can be either sharp or sheared. Muller and Carson (1968) speculate that several smaller Tertiary stocks are present within the Kennedy River District.

West-northwesterly to westerly trending faults of Tertiary age cut the rock units in the district, indicating a period of intense structural activity. Gold mineralization is predominantly localized within these structures, suggesting a Tertiary age for the mineralization. Muller's (1977) map of Vancouver Island indicates several divergent and cross faults within the Kennedy River District. This structural setting is similar to the setting of the important epithermal gold districts of the southwestern United States (Buchanan, 1981).

Several showings have definite shear zone associations in the Kennedy River District including: Tommy, Leora, Rose Marie, Au, Bear and Titanic. The Bear and Tommy properties are of particular interest because ongoing exploration programs in the order of 1.5 million dollars are planned. Exploration is ongoing on most of these projects and the reader is referred to Annual Government Reports and Assessment Reports for further information.

PROPERTY GEOLOGY


The dominant geological features on the NGM Group are the regional faults, including the Mine Fault traceable for approximately 45 kilometres from Alberni Inlet through to Tofino Inlet (Figure 4). The Bear Shear Zone and the Canoe Creek Fault are hanging wall splay faults, traceable for 4 and 12 kilometres respectively. The Julius Creek Shear Zone appears to be a hanging wall splay of the Canoe Creek Fault. Initial indications suggest all faults host auriferous quartz veins.

The Titanic claim is underlain by andesitic to basaltic flows and tuffs of the Karmutsen Formation. Alteration consists predominantly of chlorite, with lesser fracture limonite proximal to surface. Karmutsen rocks exhibit varying degrees of brecciation, the most intense being proximal to the regional shear zones. Pyrite content ranges from 0 to 2 percent. Higher percentages are noted proximal to the shear zones suggesting the sulfide is an alteration product.

The suspected trace of the Canoe Creek Fault does not exhibit a surface expression on the Titanic claim. Julius Creek flows down the strike of the Julius Creek Fault. This fault is also exposed at an acute angle in Olympic Creek. Quartz veins, veinlets and stringers have been mapped in the Julius Creek Fault. Widths range from 2 to 50 centimetres; strike lengths to 30 metres have been identified.

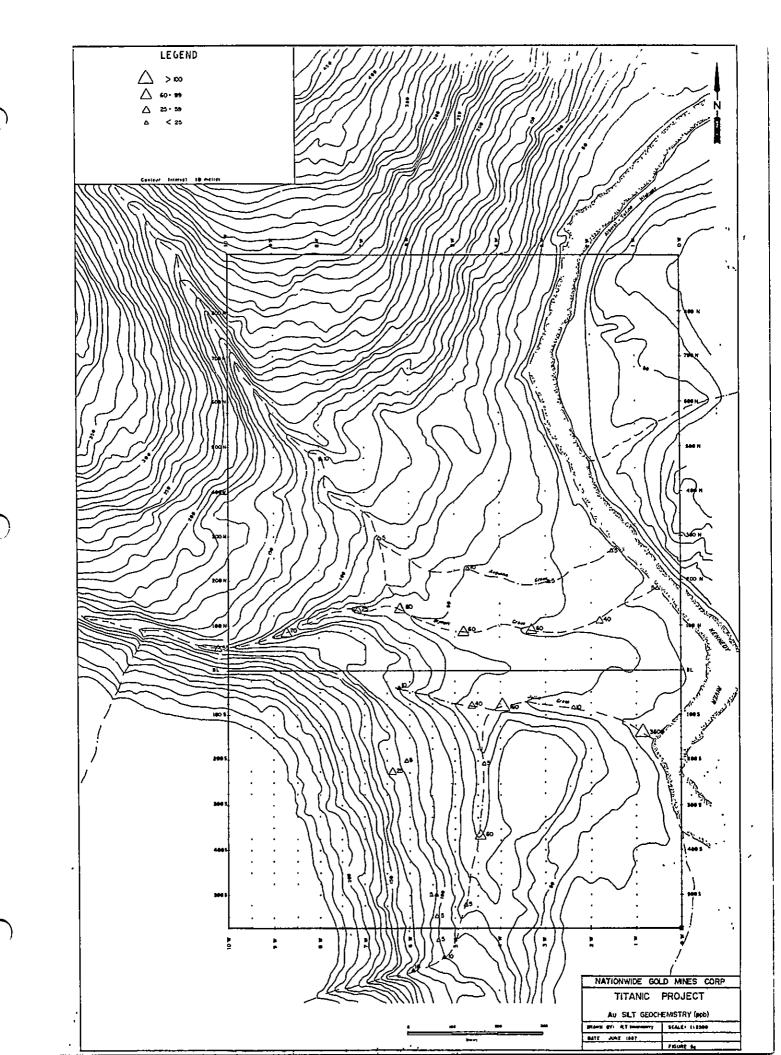
The Captain Hook claim is underlain by a quartz diorite intruding Karmutsen andesitic volcanics and Quatsino limestone. Karmutsen rocks underlie much of the northern half of the claim. Alteration consists predominantly of chlorite in weakly to strongly brecciated flows and tuffs. Quatsino limestones are also well precciated, resulting in a stippled appearance on surface. Small skarn envelopes to 100 centimetres have been noted associated with small dykes, likely related to the quartz diorite intrusive. The quartz diorite, of suspected Tertiary age, is generally massive in appearance except proximal to the shear zones. Alteration consists of fracture chlorite, except proximal shear zones where an assemblage of chlorite, the silicification and minor argillization is noted. Traces to 2 percent pyrite have been noted in the volcanics and intrusive.

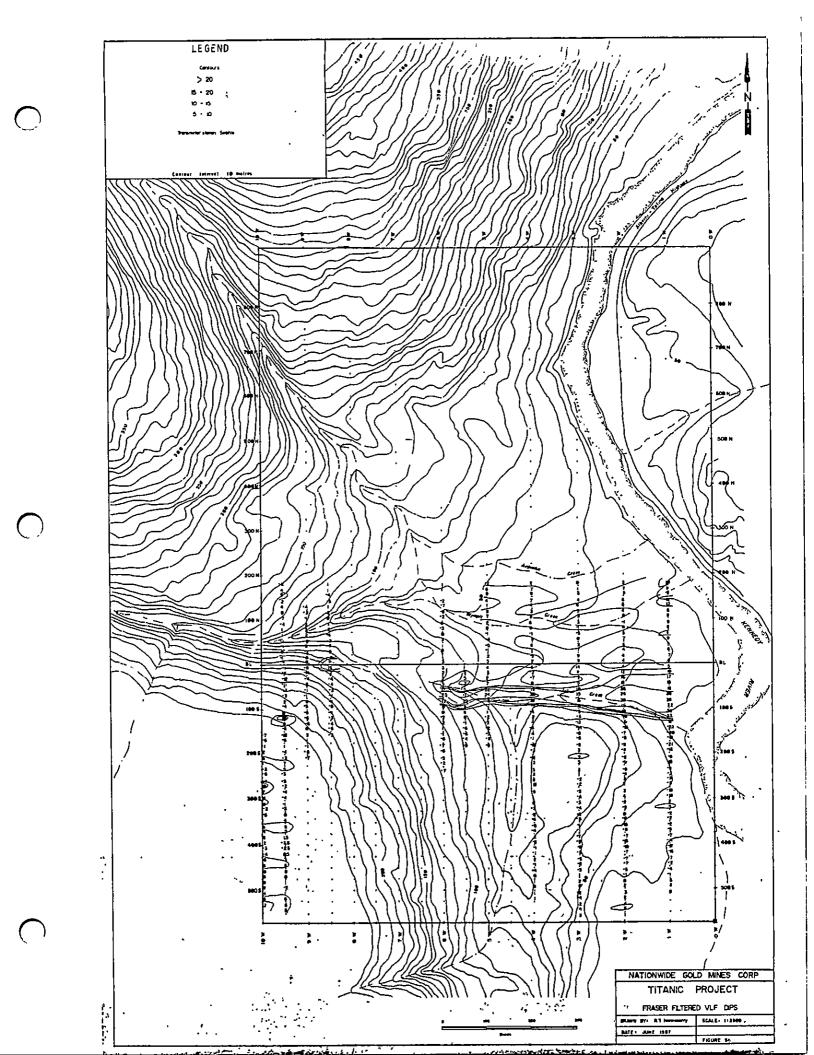
Auriferous quartz veins have been developed on the Bear Crown Grants, within the Bear Shear Zone. The eastern strike extension of this shear zone lies on the Captain Hook claim. A stockwork zone has been noted within the footwall of the Bear Shear Zone. A significant portion of this stockwork lies on Captain Hook ground. Initial prospecting has located additional quartz veins requiring detailed examination.

Detailed exploration programs were undertaken from April to early July, 1987. These programs consisted of establishing grids over each claim, followed by geochemical sampling, geophysical surveying and geological mapping and sampling. Soil samples were analyzed for Au, Ag, As, Cu, Zn and Fe. Delta Geophysics Limited was contracted to carry out a VLF-EM and a proton magnetometer survey over each of the grids. Time constraints did not allow completion of the Titanic geophysical surveys. (Using the Scinter

Titanic Soil Geochemistry

A baseline of 1000 metres was cut and picketed at 270 degrees. Flagged cross-lines were spaced at 100 metre intervals along the baseline. Sample sites were flagged at 25 metre intervals along the cross-lines. Additional cross-lines were flagged at 50 metre intervals between lines 4+00W and 10+00W. All samples were taken with a mattock from the "B" horizon and placed in kraft soil bags. Bondar Clegg performed geochemical analyses for Au, Ag, As, Cu, Zn and Fe. Analysis methodology is appended with the actual results.


A total of 721 sample sites were established. Due to the precipitous nature of the property only 328 samples were taken. Additionally, silt samples were taken along all major drainages at 100 to 150 metre intervals along the creeks.


Results were generally quite favorable, with the gold soil and silt geochemistry identifying several anomalous areas worthy of follow-up.

Gold (Figure 5a): Gold values ranged from 5 parts per billion (ppb) to 560 ppb, with a mean of 9.3 ppb. Values above 25 ppb were considered anomalous. Several linear anomalies were identified. Anomaly A runs discontinuously from line 8+00W to 2+00W along the south side of Julius Creek, suggesting the footwall of the Julius Creek Fault is anomalous in gold. Anomaly B lies between lines 5+50W and 7+50W centred at 300S. Anomaly C lies between lines 5+00W and 7+00W centred at 4+75N. Both anomalies suggest linear structures. A cluster of anomalous values are located north of the baseline between lines 7+00W and 10+00W. An explanation for this anomaly is not readily apparent. Several spot anomalies have also been identified as a result of the Au soil geochemistry.

Silver (Figure 5b): Silver values ranged from 0.1 to 0.5 parts per million (ppm), with a mean of 0.1. Only one value was considered anomalous, a 0.5 ppm value located on the baseline at 2+00W. In general, silver did not exceed background. Silver is a poor indicator element for gold on the Titanic claim.

Arsenic (Figure 5c): Arsenic values ranged from 2 to 125 ppm, with a mean of 4.4 ppm. Values above 20 ppm were considered anomalous. Two anomalous values were located, with neither value correlatable with the gold geochemistry. As with silver, arsenic appears to be a poor indicator element for gold on this property.

Copper (Figure 5d): Copper values ranged from 1 to 163 ppm, with values in excess of 100 ppm considered anomalous. A loosely defined cluster of anomalous copper values is centred 200 metres north of the baseline between lines 5+00W and 8+00W. This anomalous zone does not show a positive correlation with gold, suggesting copper is a poor indicator element for gold on this property.

Zinc (Figure 5e): Zinc values ranged from 2 to 142 ppm, with a mean of 30.2. Values greater than 100 ppm were considered anomalous. The loosely defined copper cluster anomaly is also defined by the zinc geochemistry. The anomalous zinc values correlate positively with some of the anomalous gold values, suggesting zinc may be of limited use as an indicator element. All anomalous zinc locations are also anomalous in gold, though most of the anomalous gold values do not have corresponding anomalous zinc values.

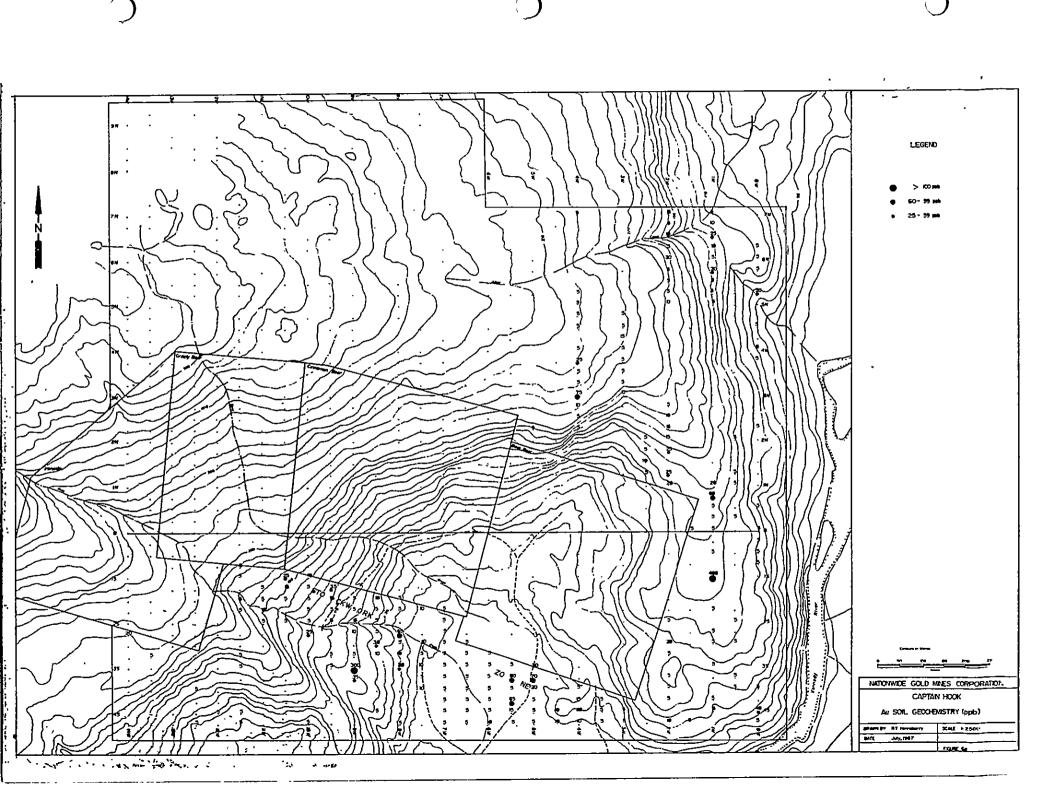
<u>Iron</u> (Figure 5f): Iron values ranged from the lower detection limit of 0.5% to the upper detection limit of 10.0%. Values in excess of 7% were considered anomalous. Considerable scatter is evident from the Fe results, suggesting iron is a poor indicator element on the Titanic property.

Titanic Silt Geochemistry

All of the major drainages on the Titanic claim were silt sampled at 150 metre intervals. Fine silt was located and placed directly in a kraft soil bag at each sample location and sent to Bondar Clegg for analysis. The analysis methodology is appended with the results.

Silt values ranged from 5 to 3600 ppb gold. Values above 25 ppb were considered anomalous. The silt results are extremely encouraging, with both Olympic Creek and Julius Creek consistently anomalous in gold (Figure 5g).

Titanic Geophysics


VLF-EM and proton magnetometer surveys were conducted over the established soil grid by Delta Geophysics. Time constraints did not allow completion of the survey, with lines 4+50W to 9+00W remaining to be completed. An attempt has been made to contour the Fraser Filtered Dips, of the completed sections of the grid (Figure 5h).

The Julius Creek Fault appears to be readily traceable by VLF. Much of the surveyed section appears to be strongly conductive, suggesting the presence of sulfides or other conductive material within the fault. Initial indications suggest the presence of additional conductors to the south of the Julius Creek Fault. Detailed examinations of the geophysical data will be made once the surveys are completed in mid-August.

Titanic Geological Mapping and Sampling

Initial mapping and sampling consisted primarily of examination of the two showing areas along the Julius Creek Fault. A traverse was also made up Olympic Creek examining the considerable quartz float within the creek.

		0	, ,	,	
	95O		850 050	. 80	750
OLYMPIC CRE SHOWING	EK .	Olympic	OLYMPIC CREEK QUARTZ FLOAT GRABS TI-1 0.006 TI-5 0.016 TI-3 0.050 TI-6 0.010 TI-4 0.581 TI-7 0.112	*	,
50 N		JULIUS CREEK VEIN			N Son
BL		FW VEIN			BASELINE SHOWING BL
		-			
50 <i>S</i>					650W-50S I.096/0.IO
				88 ₹ NATIONWIDE GOI	D MINES CORP
		Ounces per ton Au/width metre	<u> </u>	JULIUS CREE SAMP	EK VEIN
MOJ	1~	900 ¥	09 55 100S €	DR BY: RT HENNEBERRY DATE: AUGUST, 1987	SCALE: 1: 1000 FIGURE 5i
	<u> </u>			<u> </u>	

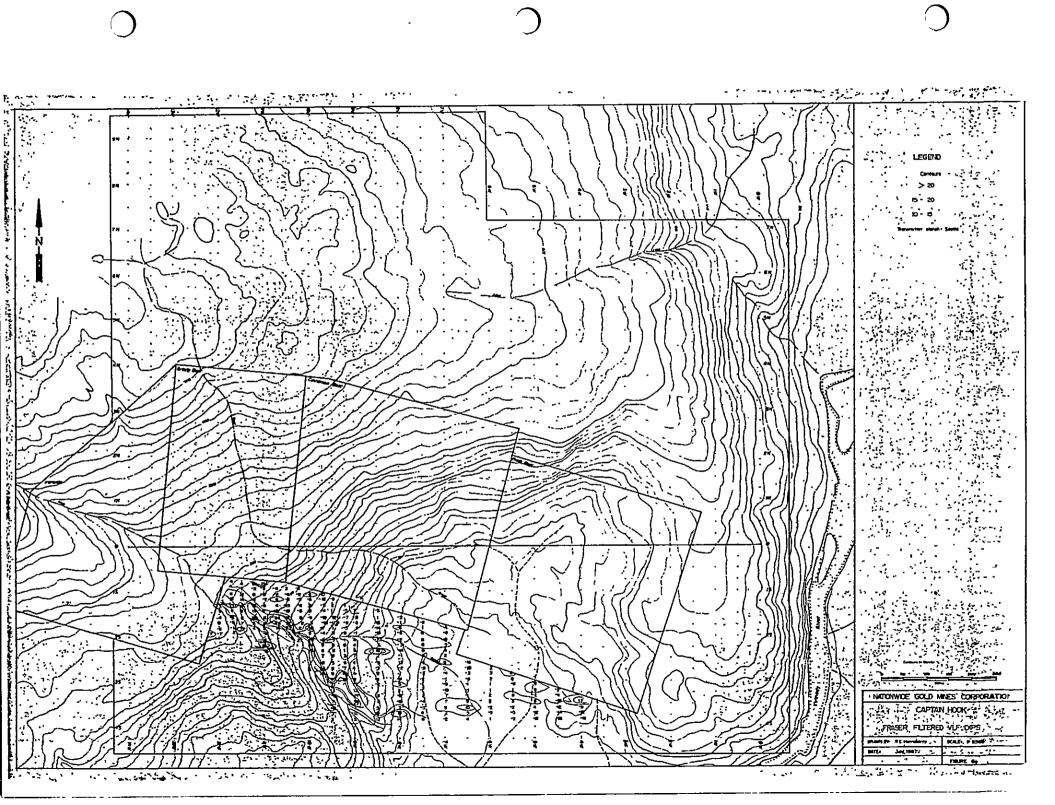
Two showings exist along the Julius Creek Shear Zone (Figure 5i). The "Baseline showing" is centred at 7+60W on the baseline. A locally well mineralized quartz vein ranging in width from 10 to 50 centimetres outcrops sporadically for a strike length of 30 metres. Mineralization consists of 0% to 5% pyrite and 0% to 2% chalcopyrite. Chlorite, limonite and silicification are the wall rock alteration products.

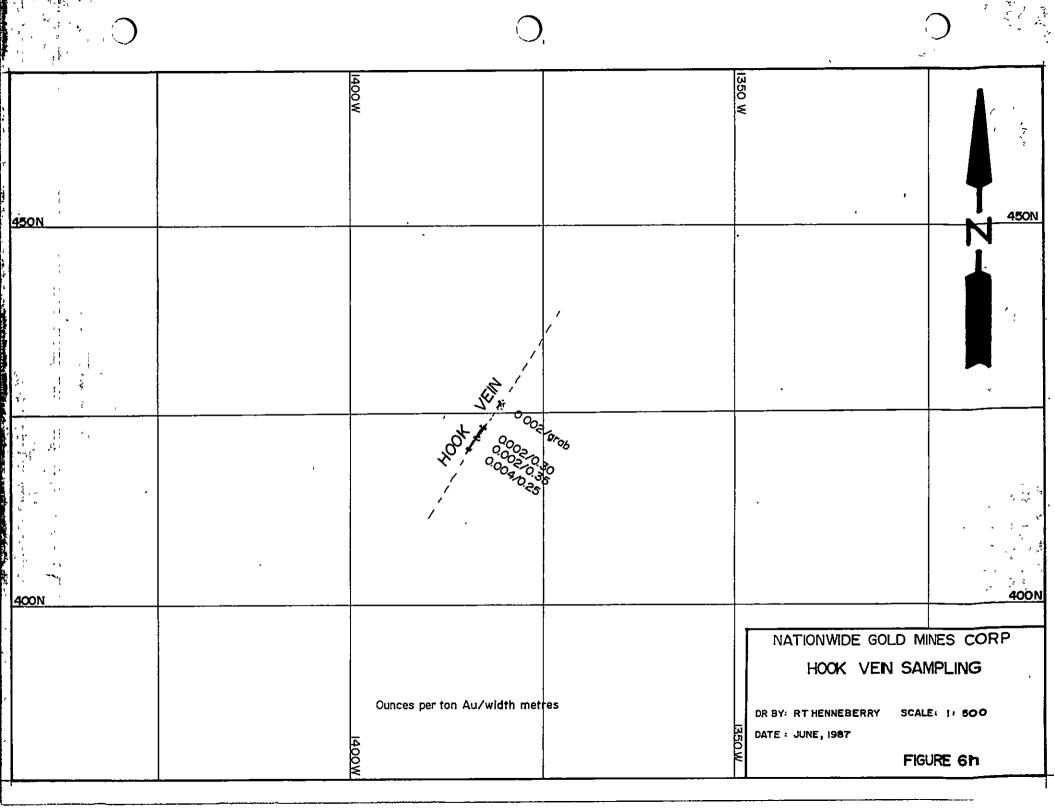
The "Olympic Creek showing" appears to be the strike extension of the "Baseline Showing". A locally well-mineralized quartz vein (107/75N) ranges in width from 5 to 40 centimetres. Mineralization consists of 3% to 5% pyrite, with 0% to 2% chalcopyrite. Wall-rock alteration of the Karmutsen andesites consists of chlorite, limonite and silicification. One grab sample taken from this showing ran 0.098 ounces per ton gold. A grab sample from a small quartz vein on the south side of

A grab sample from a small quartz vein on the south side of Julius Creek yielded 1.096 ounces per ton gold, indicating significant gold mineralization is associated with the footwall of the Julius Creek Shear Zone.

Six samples of quartz float were taken during the traverse up Olympic Creek. Two of the samples assayed in excess of 0.1 ounces per ton gold. Source was not located though indications suggest the "Olympic Creek Showing" is the likely host.

Captain Hook Soil Geochemistry


A baseline of 1400 metres was cut and picketed at 270 degrees. Flagged cross-lines were spaced at 50 metre intervals along the baseline. Sample sites were flagged at 25 metre intervals along the cross-lines. The baseline runs through the centre of the Bear Crown Grants resulting in a large portion of the resulting grid lying on the Bear ground.


As with the Titanic claim, the Captain Hook claim is also quite precipitous, resulting in the collection of 207 samples from 825 established sample sites. All samples were taken with a mattock from the "B" horizon and placed in kraft soil bags. Bondar Clegg performed geochemical analyses for Au, Ag, As, Cu, Zn and Fe. Analysis methodology is appended with the actual results.

Results were generally quite favorable, with a large Au soil anomaly associated with a known zone of stockwork mineralization.

Gold (Figure 6a): Gold values ranged from 5 to 480 ppb, with a mean of 7.2 ppb. Values in excess of 25 ppb were considered anomalous. The extension of the known zone of stockwork mineralization on the Bear Crown Grants was successfully highlighted by the gold geochemistry (Anomaly A). Additionally, spot anomalies were located over the extreme eastern section of the claim.

Silver (Figure 6b): Silver values ranged from 0.1 to 0.6 ppm, with a mean of 0.1 ppm. For the most part, silver values did not exceed background, indicating silver is a poor indicator element for gold on the Captain Hook claim.

Arsenic (Figure 6c): Arsenic values ranged from 2 to 70 ppm, with a mean of 5.5 ppm. Values exceeding 30 ppm were considered anomalous. Four isolated stations recorded anomalous arsenic values, apparently of only local extent, that failed to correlate with anomalous gold values. Arsenic appears to be a poor indicator element for gold.

Copper (Figure 6d): Copper values ranged from 2 to 152 ppm, with a mean of 31 ppm. Values in excess of 100 ppm were considered anomalous. A loosely defined cluster anomaly lies, between lines 2+00W and 4+00W centred at 2+50N. This anomaly does not correlate with the gold geochemistry, suggesting copper is not a good indicator element for gold.

Zinc (Figure 6e): Zinc values ranged from 3 to 132 ppm, with a mean of 38.3 ppm. Values excessing 100 ppm were considered anomalous. Two isolated spot anomalies were located by the survey, with neither sample correlating with gold.

<u>Iron (Figure 6f):</u> Iron values ranged from 1% to the upper detection limit of 10%. Iron exhibits considerable scatter over the grid and does not appear to correlate with any of the other elements.

Captain Hook Geophysics

Delta Geoscience Limited was contracted to carry out VLF and proton magnetometer surveys over the grid. For the most part the geophysical surveys were directed at the auriferous structures lying on the Bear Crown Grants. The southern extensions of several lines crossed onto Captain Hook ground. These Fraser Filtered VLF-EM Dips are plotted on Figure 6g.

The southern section of the survey successfully traced the strike extension of the Mine Fault. Extremely strong readings were obtained from sections of the fault, suggesting the presence of a significant conductor. The "stockwork zone appears to exhibit weak responses but anomalous responses.

Captain Hook Mapping and Sampling

Very little mapping and sampling has been done to date on the Captain Hook. Sampling and mapping was primarily concentrated on the auriferous structures on the Bear Crown Grants.

One quartz vein (033/85E) was noted and sampled at 13+85W, 4+20N. The Hook Vein (Figure 6h), ranging in width from 25 to 40 centimetres, is locally vuggy with euhedral quartz crystals, though very little mineralization was noted in the outcrop exposure. Thin seams of pyrite/pyrrhotite mineralization was noted at both contacts. The granodiorite host exhibits a 20 centimetre alteration halo of argillic alteration. Four samples were taken with the best sample returning 0.004 ounces per ton gold.

Exploration at the western periphery located a significant structure (the Shack Vein) lying within 10 metres of the western boundary of the Captain Hook claim. Locating the strike projection of this structure on the Captain Hook claim should be a high priority, as the four samples taken yielded results of 0.196, 0.656, 1.800 and 0.216 ounces per ton gold over widths in the order of 30 centimetres.

Mapping and sampling has not yet been undertaken from the stockwork zone, as a suitable sampling method for the surface exposure has yet to be decided upon. The gold soil geochemistry suggest the zone has considerable gold potential.

DISCUSSION

Results to date from the ongoing exploration program on the Captain Hook and Titanic mineral claims are encouraging. The geophysics has successfully traced the major fault/shear structures. Geochemistry has indicated these zones are anomalous in gold. Sampling has located significant gold mineralization in place with one of the structures. Continued exploration is recommended.

VLF-EM surveys have been impressively successful at tracing the Julius Creek and Mine Creek Faults along strike. Sections within both faults are highly conductive, suggesting the presence of sulfide mineralization within them. The VLF-EM survey completed over the Bear Crown Grants shows similar responses over the zones of known gold mineralization within the Bear Fault. (Henneberry, 1987).

Gold soil geochemistry has identified linear anomalies within the Julius Creek Fault. The geochemistry has also identified and extended the zone ofknown stockwork mineralization on the Captain Hook claim. Geochemistry completed over the known zone of gold mineralization on the Bear Crown Grants has given similar responses to those obtained from the Julius Creek Fault (Henneberry, 1987). The gold silt geochemistry has identified Julius and Olympic Creek as being anomalous in gold. The soil geochemical surveys have shown that gold is the only consistent element for tracing structure.

The geological sampling has located significant gold mineralization within the Julius Creek Fault. Initial results from the two showings have been lower than expected. A similar problem was encountered on the Bear Crown Grants, Blasting of the leached surface to a depth of 50 to 100 centimetres yielded considerable improvement in gold content.

CONCLUSIONS AND RECOMMENDATIONS

Continued exploration on the NGM Group is warranted. The initial grassroots exploration has been completed. The exploration effort should now be directed at locating economic gold mineralization within the known structures.

Prospecting and mapping should be initiated to evaluate the gold silt anomalies from Olympic Creek and Julius Creek. The entire length of Julius Creek should be prospected as it flows down the strike of the Julius Creek Fault. Prospecting should also attempt to explain the anomalous values within Olympic Creek, to see if source of these values is the Olympic Creek showing. Anomalous values above the showing suggest the source, or an additional source is above the known showing.

Prospecting and mapping should also be initiated to evaluate the soil anomalies on both grids. Several linear anomalies have been identified, suggesting possible structure. The stockwork anomaly should also be evaluated. A sampling program should be initiated to attempt to accurately evaluate the potential of this zone.

Detailed sampling is required for the two Titanic showing and the Hook Vein. Initial results suggests that blasting of the leached surface exposures is required to properly evaluate these zones. Prospecting should also be initiated to locate the strike projection of the Shack Vein on the Captain Hook claim. Finally, an attempt should be made to locate the vein referred to in the 1927 Ministry of Mines Annual Report. The location is speculated to be on the knoll south of Julius Creek.

REFERENCES

British Columbia Ministry of Mines Annual Reports.

1913 - Olympic p 279

1927 - Gold Queen p 344

Buchanan, L.J. (1981). Precious Metal Deposits Associated with Volcanic Environments in the Southwest. Arizona Geological Society Digest Volume XIV. pp237-262.

Goldsmith, L.B. (1987). Inspection Trip, Titanic Mineral Claim, Kennedy River Area, Vancouver Island, B.C. Nationwide Gold Mines Corporation Private Report.

Henneberry, R.T. (1987). Geology and Economic Potential of the Bear Project, Alberni Mining Division, British Columbia. International Coast Minerals Corporation Private report.

Muller, J.E. and Carson, D.J.T. (1968). Geology and Mineral Deposits of Alberni Map-Area (092F). Geological Survey of Canada Paper 68-50. 52p.

Muller, J.E. (1977). Geology of Vancouver Island. Geological Survey of Canada Open File 463.

STATEMENT OF COSTS

Titanic Cutting and blazing 18 kilometres of line Soil sampling wages and expenses Analysis costs Geologist wages and expenses Contracted geophysical survey Drafting of basemap	6750.00 5289.38 3507.96 675.00 3750.00 77.02
TITANIC SUBTOTAL	20049.36
Captain Hook Cutting and blazing 21 kilometres of line Soil sampling wages and expenses Analysis costs Geologist wages and expenses	7875.00 1723.10 4000.59 1207.96
CAPTAIN HOOK SUBTOTAL	14806.65
TOTAL COSTS TO DATE	34.856.01

STATEMENT OF QUALIFICATIONS

I, R.Tim Henneberry, am a consulting geologist residing at 4054 Dundas Street, Burnaby, British Columbia.

I earned a Bachelor of Science Degree majoring in geology from Dalhousie University, graduating in May, 1980.

I have practiced my profession continuously since graduation.

I am a Fellow of the Geological Association of Canada.

I have not received directly or indirectly, nor do I expect to receive any interest, direct or indirect, in the NGM claim Group, nor do I beneficially own, directly or indirectly any securities in Nationwide Gold Mines Corporation, nor do I expect to receive any such interest.

This report is based on an ongoing exploration program, supervised by the author, running from early May to July 12, 1987. Although the program is continuing only work completed to this date has been described in this report, and filed for assessment purposes.

I consent to the use of this report in a prospectus, in a statement of material facts, or for any other purpose normal to the business of Nationwide Gold Mines Corporation.

Dated this \frac{\int \setminus \lambda \setminus \lambda \setminus \lambda \lambda \rightarrow \lambda \text{day of Vancouver, British Columbia.}

in the City of

FELLOW

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 965-0681 ; 04-352667

Geochemical Lab Report

REPORT: 127-3510 (COMPLETE)

REFERENCE INFO:

CLIENT: INP EXPLORATION AND DEVELOPMENT

PROJECT: TITANTIC:

SUBMITTED BY: R.T. HENNEBERRY DATE PRINTED: 30-JUN-87

- 1	ORDER	E	LEMENT	NUMBER OF ANALYSES	LOWER DETECTION_LIMIT	EXTRACTION	METHOD	
	2	Cu Zn	Copper Zînc	186 186	1 PPK . 1 PPK	HN03-HCL HOT EXTR HN03-HCL HOT EXTR	Atomic Absorption Atomic Absorption	
ken y	-3	Ag	Silver	186	0.1 PPM	HN03-HCL HOT EXTR	Atomic Absorption	
-	~ 4	Fe	Iron	186	0.05 PCT	HN03-HCL HOT EXTR	Atomic Absorption	
	5	As	Arsenic ,	186	2 PPM	NITRIC PERCHLOR DIG	Colourimetric	
2 K1	6	Au	Gold - Fire Assay	186	5 PPB	FIRE-ASSAY	Fire Assay AA	
	7	Au/ut	Sample weight/grams	66	0.1 G		•	1
	, 8	Au/Ht	-20 Au Sample Weight	30	0.1 G			

_	S SOTES	86	1 -80	186	DRY. SEIVE -80	186
	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER

REPORT COPIES TO: MR. R. T. HENNEBERRY

INVOICE TO: HR. R. T. HENNEBERRY

Bonder-Clegg & Company Ltd., 130 Pemberton Ave. North Vancouver, B C. Cenada V7P 2R5 Phone: (604) 983-0681 ex: 04-352667

REPORT: 127-3510						PR	ROJECT: TI	TANTIC		PAGE 1	, , , , , , , , , , , , , , , , , , ,
SANGLE ELEMENT UNITS		Zn PPM	Ag PPM	Fe PCT .	Às PPN	Au PPB	Au/яt G	Áυ/κt G		·	,
\$1.11+00H 0+25S	10	12	<0.1	5.00	3	· <5	6.0				
\$17.11.00W 0+75S	ੁ [*] 13	19	0.1	10.00	<u>, 5</u>	<5			,		,
\$1 L1+004 1+008	12	18	0.1	6.60	3 4	< 5	. 0				
\$1,L1+00H 1+25S \$1 C1+00H 1+75S	~~~28 23	51 30	0.1 0.2	6.00 6.80	· 5	<5 5	5.0				
	20	20	0 0	7 40	5	<5					
"S1 L1+00W 2+00S "S1 L1+00W 2+50S	28 19	29 26	0.2 0.1	7.80 8.00	4	< 5					
51 L1+00H 3+00S	15	26	<0.1	6.60	5	10					
\$1.L1+DOW 3+75\$	42	· 4D	. 0.1	7.80	3	< 5					
\$1 L1+00H 4+00S	47	40	0.1	7.80	4	5					
\$1 L1+00W 4+25S	30	28	0.1	7.60	5	<5					
\$1 L1+80W 4+50S	23	15	0.1	6.60	6	5					_
\$1 L1+00H 4+75S	46	5 0	<0.1	6.20	5	< 5					-`
S1 L1+00H 5+00S	.66	57	<0.1	6.60	6	< 5					
S1 L1+00W 5+25S	51	50	<0.1	6.40	6	<5					
ද්ධල් දු ණ 1.1+00W 5+50S	45	50	0.2	5.60	6	<5					
S1 L2+00H O+00S	50	3D	0.5	8.20	5	< 5	8.0				
\$1 L2+00H 0+25\$	55	30 24	0.2	8.40	6	< 5	7.0				
\$1 L2+00H 0+50S \$1 L2+00H 0+75S	28 23	21 27	0.2 0.2	8.60 8.40	6 6	<5 <5	/.u				
191 LZ+UUH U+/35											
S1 L2+00H 1+DOS	29	30	0.2	8.60	8	<5 (8					•
\$1 12+00H 1+25S	20	18	0.1 0.1	5.40 3.70	4 2	40 < 5					
\$1 L2+00W 2+00S \$1' L2+00W 2+25S	2 2	13 10	<0.1	3,00	<2	<5					
S1 L2+00W 2+50S	26	20	0.2	6.40	7	10					0
\$1 L2+00H 2+75S	23	20	0.2	6.20	· ,5	<5					
\$1 L2+00H 2+75S \$1 L2+00H 3+25S	40	30	0.1	7.80	· 5	< 5					
	28	29	0.1	>10.00	. 5	<5	7.0	3.0			
\$1 L2+00W 5+50S	38	38	0.1		<u>,</u> 5	<5					
ST L3+QQH O+OOS	्री दे 27	30	<0.1	>10.00	' 5	<5		·			
\$ 1 L3+00H 0+258		43	0.1	18.60	5 ^{' 7}	, ∢5		•	η.		
\$1:13+00H 0+50S	1, 26	20	0.1	>10.00	5	***<5			1.27		,
\$1, L3+00W 0+75S	` `5	10	0.1	3.70	5	∵ 5	•		••		•
81 L3+00N 1+00S	~~ `3 ·	.: 10	0.1	3.20	76 3	30	- •			•	
S1 13+00W 1+25S	14	11	0.2	5.40	6	200					
S1 13+00H 1+50S	17	10	0.1	5.80	. 4	95 45			,		
\$1 L3+DON 1+758	25	·20 ·		2 0 05	. 9	<5					-
\$1 L3+DON 2+OOS \$1 L3+DON 4+25\$	2 5	8 9	0.1 0.1	2.05 2.05	.5	<5 < 5					
\$1,43+00H 4+255 \$1,13+00H 5+58S	11	45	0.1	7.60	3	< 5					Ĭ.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											

Bonder-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B.C. Canada V7P 2R5 Phone. (604) 983-0681

				_							····	
	REPORT: 127-3510]			Pí	ROJECT: T	ITANTIC	P/	IGE 2	
,	SAMPLE	ELEMENT Cu	Zn	Ag -	Fe	As ,	Au	Áu/Ht	Au/wt			
,	.c. Nunger	rqq, ctinu^	PPM	PPH	PCT	PPM	PPB	6	G			
š .	\$1 L4+00H 0+00S	. ,23	3B	0.1	9.40	.8	< 5	5.0	5.0	*		····
۰ پر ۰ سا	\$1 L4+00H 0+25S	47	28	B.1	9.40	- 6	< 5	5.0	5.0			
, ,	\$1 L4+DDH 0+50S	_{7,63}	41	0.1	7.00	ī 7 6	<5 ≺5	5.0	5.0			
e Kaling	\$1 L4+00H 0+758 \$1 L4+00H 1+008	50 12	30 15	0.2 <0.1	6.60 5.60	9	\3 \5	8.D	2.0	•		•
. *	~ \$1, L4+00W 1+258	35	41	0.1	6.40	12 10	<5 <5	5.0				
· 	\$1 L4+00H 1+50S \$1 L4+00H 1+75S	48 41	30 52	0.1 0.1	7.80 5.80	10 10	< 5	2.0				
. ,5	S1 L4+00H 2+00S	69	21	0.1	6.80	12	20					
	S1. L4+00H 2+25S	66	25	<8.1	6.00	10	<5			·		·
3.7	S1 L4+00W 3+25S	23	25	0.1	7.60	8	<5				······································	
á é	S1 L4+DON 3+508	17	12	0.1	7.60	5	< 5					
a ,	' S1 L4+00H 3+75S	9	12	<0.1	6.40	5	< 5					
- العرو	51 L4+DBW 4+258		6 16	0.1 <0.1	1.50 5.80	3 4	<5 <5	5.0				
	S1 L4+0QK 4+50S	12	16	\U.1	3.00	٦		J. U				
5	(å\$1 L4+ 00₩ 4+75\$		10	<0.1	5.00	4	<5	7.0				,
*	\$1, L4+00H 5+25S		55	<0.1	9.80	5	< 5	5.0				
(). ().	S1 L4+00W 5+50S S1 L4+50W 0+00S		39 29	0.1 0.1	8. 40 6.80	2	<5 <5	6.0 6.0				
ė, į	\$1 L4+50H 0+25S		13	0.1	5.80	4	< 5	8.0				
	Sì L4+50N 0+50S	51	48	<0.1	6.20	3	< 5					
	\$1 L4+50H 0+75S		42	0.1	7.80	11	< 5	5.0				•
- y .	\$1 L4+50W 1+00S	55	48	0.1	7.20	6	<5					
	S1 L4+50H 1+25S		26	0.1	8.00	5	< 5					
-19 6.	S1 L4+50H 1+50S	12	12	0.1	6.00	5	15					
, تلا	\$1 14+50H 1+75S	. 15	42	0.1	7.20	4	5					
	\$1.1,4+50N 2+00S		22	0.1	3.18		20 <5	2.0 7.0	7.0 3,0			
	\$1 L4+50H 2+758 \$1 L4+50H 3+00S		· 22 12	<0.1 <0.1	8.20 3.30	. 3	< 5	7.13	3,0			
	\$1 L4+50H 3+258	58	30	0.3	7.40	. 3	< 5			0		, ,
	\$1 L4+50N 3+50S	39	42	<0.1	4.20	6	- <5	3.0	7.0	······································		
(K. 12, 3,	\$1 L4+50N 3+75S		23	<0.1	8.20	3	· . °<5	0.0				,
HI VI E	\$1,14+50H 4+00S	· 11	, 30	0.1.	7.00		<5	4.0	6.0	e		
	\$1 14+50H 4+25S		2B	B.1	3.30	^ _4	√ 5 √ 5	8.0	2.0	" * \"		
, A	\$ S1 L4+50H 4+50S	2	10	<0.1	1.55	2	(2	0.U	4.0			
	** \$1 L4+50H 4+759		26	<0.1	5.40	3.	, < 5	5.0	•			
	\$1, L4+50H 5+00\$ \$2,531 L4+50H 5+258		- 1 9 - 1 21	0.1 0.2	2.25 9.40	2.	(5 (5	· 5.0·	•		,	
	ายังจังธ์ 14+50ห 5+250 รู้เรื่องรัฐ 14+50ห 5+50ง		21 31.		6.40	. 2	(. 5′			√^_	• _ "	
	\$1 L5+00N 0+00S	3	·- 22	″ <0.1	9.20	10	· < 5	1	•	• .	•	J
تار مور	_B_1 = 14			- 15				· · · · · · · · · · · · · · · · · · ·				

Bonder-Clegg & Company Ltd, 130 Pemberton Ave, North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Tales: 04-352667

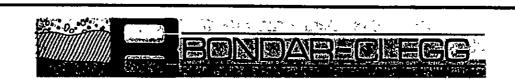
	-REPORT: 127-35	LO .					, P	ROJECT: T	ITANTIC	PAGE 3	
	SAMPLE NUMBER	ELEMENT CU UNITS PPM	Zn PPN	Ag PPM	Fe PCT	As PPM	Au PPB	Au/яt G	Аи/яt G	,	
	\$1 (L5+DON D+25		19	0.1	6.80	7 -	. <5		··	,	
	\$1 :L5+00H .0+508		43	0.1	7.00	9	<5	2.0	8.0		
·//(\$1 L5+00W 0+75 \$1 L5+00W 1+00	S 13 S v 25	18 12	0.2	5.60	4	-<5 - 45		6.0	e	
	S1 L5+00W 1+25		12	<0.1 0.1	4.20 3.85	6 4	45 (5	2.0	8.0		
	Si 15+00H 1+50	3 14	35	<0.1	1.00	5	< 5	1.0	9.0		
	Sì L5+00H 1+75		30	0.2	8.6D	6	<5	2.0	8.D		
de M	S1 L5+00N 2+00S		28	0.2	7.60	4	<5		5.0		
	√\$1,15+00H 2+25 √\$1 15+00H 2+75		3B '31	. 0.2 0.1	>10.00 7.60	3 5	ح5 5	7.0			
	•										·
	*\$1,15+00W 3+00		68	0.2	>10.00	6	<5				
	\$1 L5+DON 3+255 \$1 L5+DON 3+50		40 49	0.1 0.1	6.80 7.40	2	<5 <5				
	\$1 L5+00H 4+00		47 68	<0.1	8.20	2 3	(5				
	- S1 L5+00H 4+25		38	0.1	5.00	3	< 5				
	S1 L5+00N 4+50	S 15	30	<0.1	6,40	3	5	7.0		· · · · · · · · · · · · · · · · · · ·	
	S1 L5+00W 4+75		12	0.1	8.40	3	< 5			•	
· g _ 2	__ S1 L5+00N 5+00		18	0.1	7.20	5	<5				
	S1 L5+00H 5+25		19	0.1	7.00	3	< 5				
	S1 L5+00W 5+50	S 5	46	0.1	2.90	3	15	6.0			
lag.	\$1 L5+50W 0+00		25	0.1	8.20	5	<5				· · · · · · · · · · · · · · · · · · ·
9 - / ·	~ \$1, L5+50# 0+25		22	0.1	9.20	5	<5 45				•
	``\$1^L5+50H 0+50 -\$1 L5+50H 0+75		20 22	0.1 0.1	6.40 5.60	5 5	<5 <5				
	S1 L5+50H 1+00		42	0.1	6.80	4	< 5	7.0			
	\$1 L5+50N 1+25	S 13	10	0.1	6.40	4	< 5				
	\$1 L5+50W 1+50	\$ 7 \$ 2	27	<0.1		5	10				
Milds	\$1.L5+50H 1+75	- ~	10	0.1	2.00	s <2	10				•
	, \$1 L5+50H 2+80		10	· 0.2	5.80	ຼີ 3	<5				
	\$1 L5+50H 2+25	S - 4	8	0.1	4.40		<5		·····	· · · · · · · · · · · · · · · · · · ·	
er.	\$1 L5+50H 2+50	S4	9	0.1	2.85		² 15				
ne est. Neterior	\$51 L5+504 3+00		9	0.1	2.00	3	f , 65			٠ يعير	,
	िंड्री 1.5+50N 3+25 -{S1-1.5+50N 3+50		20 29	0.1 0.1	5.00 - 6.80	4 .	· - 5			, ,	
	ัฐธน⊶เอ+วนห 3+3น ัฐธ1 L5+50H 3+75		123	0.2	>10.00	. 4 8	<5 <5		•	, * (
<u>سَّ</u>	ु`S1 L5+50H 4+00	S 2	12	0.1	2.15	2	<5	·····			
ie (. S1 L5+50H 4+25		10	D.1	1.65	2	< 5				
	S1 L5+50H 4+50	8	26	<0.1	7.40	3	₹5	5.0			
Marian Santa	\$1"L5+50H 4+75		20	0.1	- 4.4 0	2	5				
ξυ α Λ [*] α# - 1ς - γ - 8/4 - γ	.√81,15+50H 5+00	S 25	72	0.2	8.00	4	Č <5	5.0			

Bondar Clege & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone. (604) 945-0681 v: 04-352667

with the second	REPORT: 12	27-351	0 ,						·F	ROJECT: 1	ITANTIC		PAGE 4	i
	SAMPLE NUMBER		ELEMENT UNITS	Cu PPM	Zn PPH	Ag PPH	Fe PCT	As PPN	Au PPB	Au/нt G	Au∕⊬t G			
3,4	S1 L5+50H.			20	42	0.1	5.80	2	₹ <5					,
	\$1. L5+50N			17	₫ 90	0.1	8.80	, 3	<5					
	S1 L6+DDH			38	31	0.1	6.60	- 4	< 5					,
	\$1 L6+00H \$1 L6+00H		· · · · · · · · · · · · · · · · · · ·	. 18 17	- 15 32	0,1 , 0.1	6.40 9.20	5 5	<5 <5	5.0			-	
,	S1 'L6+0DH	2+25S	-	- 12	42	0.1	4.80	2	<5		5.D			
	S1 L6+00H			7	26	0.2	2.85	2	95	5.0	3,0	*		
ļ (S1 L6+00W	4+25\$		11	62	<0.1	>10.00	4	₹5					
ا مار	S1 L7+00W			2	- 22	.0.1	3.90	2	<5	8.0	2.0			
, ja - V	S1 L7+00H	5+00S	···=····	11	49	0.1	5.00	3	< 5	5.0				
	S1 L7+50H			18	20	0.1	6.80	5	10		~			. ^
	'S1 L7+50N			28	42	0.1	6.00	3	< 5	5.0				
- Tale -	S1 L7+50N			6	27	0.1	5.20	3	< 5					
ar Silli	, S1 1.7+50H , S1 1.7+50H			2 1	10 12	0.1 0.1	1.9B 2.65	2 2	<5 60	5.0				•
						017	2.05		08					r
	\$1 L7+50H			2	9	0.1	1.70	2	<5					, ^
	\$1 L7+50W			1	3	0.2	2.50	8	<5					
	S1 L7+50H S1 L7+50H			6	19	0.1	1.90	3	<5	F 0				
	:51,67+50W			3	28 12	<0.1 <0.1	2.90 1.15	2 2	35 ∢ 5	5.0				
	04 17.500	F. ACO	- ····		***									······································
74	\$1, L7+504 - '\$1, L8+004			7 17	30 22	0.1 <0.1	3.85 10.00	4 5	<5 < 5	2.0	5.0			
	- S1 L8+00W		•	20	21	0.1	9.60		15	2.0	4.D 5.0			
	S1 L8+00W			33	59	0.1	7.80	3	<5	2.0	5.0			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S1 L8+00H			2	10	0.1	0.70	2	< 5	5.0	0.0			
17th 3 th 1	S1 L8+00W	4+50S		3	8	<0.1	D.85	3	<5					
	\$1 L8+00H	4+758	-	12	31	<0.1	7.00	5	<5	2.0	3.0			
	\$1 L8+Q0H			21	41	<0.1	9.00	4	<5	5.0				
	\$1. L8+00H	5+25\$,	. 7	22	<0.1	9.80	. 8	<5					
,	\$1 L8+50H	U+UDS	,	* 8	30	0.1	6.60	<u> </u>	< 5				·	
e de la companya de l	/§1 L8+50N			- 7	- 28	<0.1	4.80	3	5	2.0	8.0		•	
7.	\$1 L8+50H		¥.	~ 2	13	0.1	2.95	2	~ <5 -					
	SI L8+50H			3	, 19	<0.1	3.50	2	<5 	5.0				
The state of	S1 L8+50N S1 L8+50N			11 3	18 10	0.2 <0.1	6.00 3.65	-3 4	<5 15			*		
4 " E	OF FRANK	21120		3	10	\U.1	3.63	4	12					
	S1 L8+50N		· ,	9	21	0.2	7.00	5	< 5	6.0	***************************************			· · · · · · · · · · · · · · · · · · ·
.÷27	S1 L8+50H S1 L8+50H	4+255	'	. 5	19	0.1	3.20	4	₹ 5	. .				
34 6 74 37 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 51 L8+30H \$1 L9+00H			5 16	10 32	0.1 0.1	2.6D 7.80	3 3	<5 <5	5.0				
		0+508		22	32 22	0.1	6.20	3	<5	~				
- 1 P. P. P.	52, 27 OUR						4150							

Bonder-Clegg & Company Ltd. 130 Femberson Ave. North Vancouver, B.C. Canada VTP 2RS Phone: (604) 985-0681 04-352667

REPORT: 127-3510]			PF	ROJECT: T	ITANTIC '	PAGE 5	1
	MENT Cu Nits PPN	Zn PPH	⊶ Ag ; PPH	Fe . PCT	As PPN	, Au PPB	Au/nt G	Au/Ht G		
\$121.9+00H 2+50S \$171.9+00H 3+50S	10	12 12	<0.1 0.1	.5.40 3.80	3	رخ د5 د5	9.0 8.0		-	
\$1 L9+00H 4+758 \$1 L9+50H 0+008 \$1 L9+50H 0+258	20 5	9 30 13	0.1 0.2 0.2	3.60 4.80 4.00	3 3 3	<5 <5 <5	5.0 4.8 5.0			
\$1, L9+50H 0+758 \$1 L9+50H 1+258	5 3	8	<0.1 <0.1	2.05 2.30	,3 · 3	<5 <5	5.0			
\$1 L9+50H 1+50S \$1 L9+50H 2+75S \$1 L9+50H 3+00S	15 . 5 12	10 · 11 · 42	0.2 · 0.2 0.2	9.00 4.40 >10.00	3 3 4	<5 <5 <5	4.0		·	
\$1 L9+50W 3+50S \$1 L10+00W 0+00S \$1 L10+00W 0+25S	2 13 14	2 30 50	0.2 0.2 0.2	3.35 9.40 >10.00	2 3 3	<5 <5 <5	5.0			,
\$1 L10+00W 0+50S \$1 L10+00W 0+75S	6 5	12 5	0.1 0.2	4.40 0.90	2 2	10 <5	6.0 6.0			
S1 L10+00W 1+00S S1 L10+00W 1+50S S1 L10+00W 1+75S S1 L10+00W 2+00S	5 11 6 5	10 19 12 9	0.1 <0.1 <0.1 <0.1	1.15 5.00 3.65 4.40	<2 3 3 3	<5 <5 <5 <5	2.0 3.0 2.0	8.0 7.0 8.0		•
\$1 L10+00W 2+50S	6	18	0.2	2.90	4	5	2.0	0.8		
S1 L10+00W 3+25S S1 L10+00W 3+50S S1 L10+00W 4+00S	2 2 1	10 12 10	0.1 0.1 0.1	1.70 2.10 2.25	3 3 3	<5 <5 <5	8.0 8.0	2.0 2.0		•
S1 L10+00W 4+50S S1 L10+00W 5+25S	1 6	2 20	0.1 0.1	0.50 5.00	3	<5 <5		3.0		
\$1 L10+00W 5+50S	2	. 10	0.1	1.45	2	< 5				


Bonder-Clegg & Company Ltd.

130 Pemberton Ave, North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 TO 4-352667

Ř. RI	EPORT: 1	27-400	7						2 PF	ROJECT: T	ITANTIC	PAGE	1	· · · · · · · · · · · · · · · · · · ·
	AMPLE UMBER	\$ ·	ELEMENT UNITS	Cu PPN	Zn PPH	Ag PPH	Fe PCT	, As PPN	Au Péb	Au/нt G	Au/wt G			
ŝ	1*0+00H	1+75N		18	30 .	<0.1	7.60	2 ,	√5	10.6		,		
	, NOO+O. Î			ુકુ [*] ક્ ્26	32	≺8.1	>10.00	13	< 5	18.0				
	1 10+00H			, 52	80	<0.i	>10,00	. 8	- 5	10.0				
	ÇîD+D0H			⊙ · <u>7</u>	11	<0.1	1.80	· 2	35	10.0				
ું (ત્ર. ૧ <mark>.૧૬</mark>	1 D+DOH	4+00N		17	13	<0.1	7.40	2	40	9.0				-
Š	ì D+ODÁ	4+50N	•	11	13	<0.1	2.20	2	< 5		10.0			
	1 0+00X		•	129	53	<d.1< td=""><td>5:00</td><td>4</td><td><5</td><td>10.0</td><td></td><td></td><td></td><td></td></d.1<>	5:00	4	< 5	10.0				
	1 O+DOH			19	32	<0.1	4.40	4	< 5	4.0	6.0			
	1 1+00H			4	12	<0.1	2.95	3	< 5	8.0				,
T. S	1 1+00W	1+00N		4	20	<0.1	2.65	2	<5	8.0	<u></u>			
	1 1+00W	3+50N		14	13	<0.1	7.60	3	220	10.0				············
	1 1+00H			10	30	<0.1	4.40	3	10	8.0				
₹ S	1 2+00N	0+75N		7	18	<0.1	3.50	2	10	10.0			•	
•	1 2+00W			17	50	<0.1	7.20	4	<5	10.0				. ~
	1 2+00W	1+75N		7	18	<0.1	4.40	3	< 5	10.0		· · · · · · · · · · · · · · · · · · ·		
\	1 2+00W	2+75N		9	30	<0.1	3.30	3	<5	2.0	8.0		,	· .
	1 2+00K			5	12	⟨0.1	3.30	3	<5	10.0				
/m / ~	1 2+00W			5	13	<0.1	1.60	2	20	5.0				
Tacar 🗢 🔍	31 2+001			8	11	<0.1	3.10	2	< 5	10.0				
-22 (2)	1 2+001			6	20	<0.1	4.00	2	10	7.0				<u> </u>
و در در در	31 2+00k	6+25N	·	2	5	<0.1	0.80	<2	10	10.8				· · ·
	1 2+001			2	7	<0.1	1.90	<2	<5	4.0	6.0			•
	31 3+001			39	51	<0.1	7.80	2	<5	10.0				
	31 3+00¥	0450N		9	12	<0.1	7.8D	2	<5	10.0				
	S1 3+001	1+25N		6	14	<0.1	4.20	2	₹ 5	10.6	·····			<u></u>
	ŝi a+nnı	1+75N	• .	9	10	<0.1	. 4.20	3	<5	3.0	7.0			
K will	31,3+001	2+75N	, ,	31	38	<0.1	7.20	4	₹5	7.0	_			
	31 3+001		`.	8	16	<0.1	5.20	- 5	<5	5.0				
	Si 3+001		• •	. 8	22	<0.1	5.40	. ,6	<5	8.0		_		
	si 3+001			8	≥20	<0.1	5.60	² 5	<5	10.0				
المدار المعالم	si 3+001) (+¢mi		· · · · 3	18	<0.1	2.80	<2	⟨5	6.0				
	51 4+001			< 4√ 34	55	<0.1	7.00	2	· <5	1.0	9.0	-		
	Sį 4+00!			- 11	22	<0.1	5.60	´ 3	< 5	10.0		•		
	S1 4+00			5	. 15	<0.1	4.20	· 2	· · · <5	10.0				
	S1 4+00			9	22	<0.1	-4.80	<u>,</u> 5	<5	3.0	7.0			
	S1 4+00) (13EN		17	50	<0.1	8.60	. 3	< 5		10.0			
	S1 5+00			52	42	<0.1	>10.00	5	(5	5.0				
	S1 5+00			59	21	<0.1	7.40	. 5	< 5	8.0				
	\$1 5+80			72	^ 14D	<0.1	7.40	` 1 20	280	10.0	•			~
	S1 5+00			126	91	<0.1	7.20	5	\ <5	10.0			,	
- ^ *-, *									·				<u>.</u>	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 983-0681 7: 04-352667

-REPORT: 127-40	007					P	ROJECT: 1	ITANTIC	PAGE 2	·
SAHPLE	ELEMENT Cu UNITS OPPH	. Zn PPN	Ag PPH	Fe PCT	As PPH	Au PPB	Au/Ht G	Au/nt .G		
S1 5+00H 1+25N		80	<0.1	9.80	- 5	< 5	10.0		· •	
\$1.5+00H 1+50H	· · · · · · · · · · · · · · · · · ·	- 84	<0.i	7.60		< 5	10.0			
\$1,5+00H 1+75N \$1,5+00H 2+00N		88 50	<0.1 <0.1	6.80 8.20	5 3	<5 .<5	10.0 10.0		-	
\$1.5+00N 2+25N		20	<0.1	9.60	4	,\5 <5	4.0	6.0		•
\$1 5+00W 2+50W	1 24	14	⟨0.1	8.80	3	< 5	3.0	7.0		
\$1.5+00H 2+75N		26	<0.1	8.20	3	< 5	5.0			
\$1 5+00W 3+00W		58	<0.1	6.60	3	<5	2.0	8.0		
\$1-5+00K 3+25N		39	<0.1	>10.00	4	<5	10.0			
S1 5+00H 3+50N	25	29	<0.1	9.80	4	< 5	5.0			
S1 5+00W 3+75N		20	<0.1	9.80	3	10		10.0		•
\$1 5+00N 4+00N		42	<0.1	7.80	2	< 5	* 8. 0	40.0		
\$1 5+00H 4+25N \$1 5+00H 4+50N		42	<0.1	8.00 7.00	3	<5	7.0	10.0		
\$1 5+00H 4+75H		33 45	<0.1 0.3	7.80 8.00	3	∢ 5 ∢ 5	7.0 8.0			
32 3700R 4775I	. 01		U.J	V.86			0.0			
\$1.5+00H 5+00H		31	<0.1	9.8D	4	10	5.0			
S1 5+00W 5+25M		29	<0.1	10.00	2	560	10.0			
S1 5+00H 5+50		24	<0.1	>10.00	4	55	6.0			
\$1 6+00H 0+00N		47	0.1	7.00	5	10	5.0	о п		
\$1,6+BON D+25N	1 63	32	<0.1	8.00	5	<5	2.0	8,0		
S1 6+00N 0+50N		22	<0.1	7.60	5	< 5	4.0	6.B		
\$1 6+00H 0+75H		25	<0.1	6.40	4	< 5	2.0	8.8		
\$1 6+00H 1+00H \$1 6+00H 1+25H		28 92	<0.1 <0.1	8.0D 6.0O	5 125	<5 20	10.0 3.0	7.0		
S1 6+00H 1+50N		52	<0.1	8.4D	123 8	∠5	3.0	7.0		
								·		
\$1,6+00H 1+75 \$1,6+00H 2+00H		68 60	<0.1	8.00 e an	9	220 5	8.D 7.D			
\$1 6+00H 2+25H		82	<0.1 <0.1	8.20 7.00,	. 7	10	18.0		4	
\$1,6+DOH 2+75N		55	<0.1	8.20	. 3	< 5	7.0			
\$1 6+00H 3+00H		42	<0.1	8.20	4	< 5	7.0			
S1 6+00H 3+25H		25	<0.1	10.00	2	1. ₹5		5.0		
S1 6+00H 3+50H		. 22	<0.1	>10.00	3	₹₹5	4.0	6.D	•	
\$1.6+DDN 3+751	۲ - °33	28	<0.1	9.00	2	< 5	6.0		-	
\$1 6+00H 4+00H	N -82	40	<0.1	*8.20	· 3 .	< 5	3.0	7.0	-	
\$1 6+00H 4+25H	· 33	28	<0.1	8.20	3	10	4.0	6.0		
S1 6+80H 4+50		40	<0.1	8.40	3	< 5	9.0			
\$1 6+00H 4+75H		22	<0.1	9.00	2	25	3.0	7.0		
S1 6+00H 5+00H		22	<0.1	7.80	2	< 5	4.0	6.D		
\$1 6+00W 5+25W \$1 7+00W 0+00W	21	20	<0.1	8.00	2	< 5	10.0	7 0		
21 /+UUH U+UU	· 41	62	<0.1	>10.00	5	<5	3.0	7.0	·	

Ronder-Clegg & Company Ltd.

130 Pemberion Ave. North Vancouver, B C. Canada V7P 2R5 Phone: (604) 985-0681

REPORT: 127-4007									PAG	E 3	
SAMPLE E NÜMBER	LEHENT Cu UNITS 2 PPM	Zn PPM	Ag PPN	Fe ,	As PPM	Au PPB	· Au/иt G	Au/Ht G	,		
\$1,7+00H 8+25N \$1,7+00H 0+50N	14 15	13 - 18	<0.1 0.1,	5.60 6.00 6.40	3 2 3	500 10 25	10.0 10.0 7.0				
\$1 7+00H 0+75N \$1 7+00H 1+00N \$1 7+00H 1+25N	17 45 33	28 46 54	<0.1 0.2 <0.1	10.0p 🎺	7 5	20 20	10.0 8.0		, ,, , , - , -	 ,	
\$1 7+00W 1+50N \$1 7+00W 1+75N	34 20	39 26	<0.1 <0.1	7.80 6.60	· 6	<5 20	10.0		,	•	. ·
\$1 7+00W 2+00N \$1 7+00W 2+25N \$1 7+00W 2+50N	83 82 75	29 113 40	<0.1 <0.1 <0.1	5.00 7.00 9.00	2 3 2	<5 10 <5	10.0 5.0 10.0	•			
S1+7+00H 2+75N S1 7+00H 3+00N	51 89	130 55	0.1 0.1	7.80 10.60	2	<5 <5	6.D - 5.0				e* , , , ,
\$1 7+00H 3+25N \$1 7+00H 3+50N \$1 7+00H 4+00N	94 114 18	58 - 8 2 13	0.1 <0.1 <0.1	9.00 6.20 5.40	5 4 4	55 50 5	5.0 2.0 5.0	8.0			•
\$1 7+00H 4+25H \$1 7+00H 4+50H	28 8D	30 102	<0.1 <0.1	>10.00 7.00	5 5	15 25	7.0	3.0			
\$1. 7+80H 4+75N \$1. 7+80H 5+80N \$1. 7+80H 5+25N	17 18 17	19 20 13	<0.1 <0.1 <0.1	4.00 4.20 3.80	·3 2 3	60 <5 <5	7.0 10.0 3.0	7.0			× × ×
\$1 8+00H 0+00N \$1 8+00H 0+25N	34 55	30 50	<0.1 <0.1	9.00 8.00	4	15 340	2.8	8.8 3.0			2 .
S1 8+00W 0+75N S1 8+00W 1+00N	17 44 26	19 39 23	<0.1 <0.1 <0.1	5.80 7.00 8.00	6 3 8	10 35 35	6.0	6.0 10.0			
\$1 8+00H 1+25N	13	· 11	<0.1	5.60	5	5 15	10.0 10.0				
\$1.8+00H 1+75N \$1.8+00H 2+25N \$1.8+00H 2+50N \$1.8+00H 2+75N	39 163 116 25	22 40 34 20	<0.1 <0.1 <0.1 0.1	7.00 5.80 7.20 7.20	10 2 4 2	25 15 10	6.0 3.0	7.0 4.0			
\$1.8+00H 3+00N \$1.8+00H 3+25N	4 24 ♣ 4 31	67 .40	₹0.1 <0.1	7,80 6.80	2 3	75 75 75	6.0	10.6	a de	<u> </u>	
\$1.8+00H 3+50N \$1.8+00H 3+75N \$1.8+00H 4+00N	95 44 87	108 29 20	0.1 (0.1 <0.1	7.20 8.00 3.00	3 2	35 15 <5	10,0	3.0	મુક મુક્		
\$1 8+00H 4+25N \$1 8+00H 4+75N	35 82	22 40	<0.1 <0.1	7,00 10,00	2 3	<5 .<5	10.0 5.0				
\$1 8+00H 5+00H \$1 8+00H 5+75H \$1 9+00H 0+00N	15 32 10	13 .19 .19	₹0.1 - - ₹0.1 ₹ 0.1	3.80 7.00 4.20	2 2	20 , 1 0 15	10.0 10.0 2.0	8,0	,		

Honder-Clege & Company Ltd., 130 Pemberton Ave. North Vancouver, B.C. Canada V7F 2R5 Phone: (604) 985-0681

REPORT: 127-400	7 -				Į P.	ROJECT: T	ITANTIC	PAGE 5		
SAMPLE NUMBER	ELEMENT Cu UNITS > PPM	Zn PPH	Ag .PPM	Fe PCT	As PPM	Au PPB	Au/wt G	Au/#t G		',
\$1_12+00N 3+50N	- 5	73	<0.1	4.00	<2	< 5	5.0			
\$1 12+00H 0+00S		12	<0.1	4.00	.<2	5		5.0		
. `\$1±12+00₩ 1+00S	17	41	, <0.1	4.20	` 6	<5	10.0			
		. 13	<0.1	2.60	. 2	<5	3.0	7.0		
\$1.44+00N 0+25N	- 22	47	<0.1	3.70	4	4 5		3.0		
S1 14+00H 0+50N	- 18	22	<0.1	5.20	4	. < 5	10.0			
S1 14+00H 2+25N	2	6	<0.1	1.80	2	<5	10.0			

 REPORT: 127-21	77						P	ROJECT: HON	E GIVEN	PAG	E 1 .
 SANPLE MUNDER	ELEMENT UNITS	Cu PPH	Zn PPH	eA` Mqq	Fe PCI	Au PPB	Au/ut G	Au/ut G		·	
T1 T-A 1 T1 T-A 2 T1 T-A 3 T1 T-A 4 T1 T-A 5		128 149 124 100 110	116 100 102 105 94	0.1 0.1 0.1 <0.1 0.1	6.40 6.40 6.60 6.60 6.00	5 <5 10 5	4.0 5.0 5.0 4.0 10.0	6.0			
T1 T-B 1 T1 T-B 2 T1 T-B 3 T1 T-B 4 T1 T-B 5		100 . 69 81 68 62	95 108 102 102 103	0.1 0.4 0.2 0.4 0.4	5.80 5.00 5.80 5.60 5.00	<5 40 60 60 80	5.0 5.0 10.0 5.0 5.0				,
T1 T-B 6 T1 T-B 7 T1 T-B 8 T1 T-C 1 T1 T-C 2		67 59 53 37 36	114 110 85 ; 88 89	0.9 0.6 0.4 <0.1 <0.1	5.40 5.00 5.00 5.60 5.80	25 70 55 3600 10	2.0 5.0 10.0 5.0 5.0		ireak è	Kenneka	River :
T1 T-C 3 T1 T-C 4 T1 T-C 5 T1 T-C 6 T1 T-C 08		51 56 44 15 18	94 - 48 - 48 - 65 - 90	0.1 0.1 0.1 0.1 0.1	5.40 6.00 8.00 7.80 9.00	160 <5 60 <5 10	6.0 10.0 10.0 7.0 10.0			2	
		15 17 15 13	70 79 74 41 58	0.2 <0.1 0.2 0.2 <0.1	6.40 4.00 5.20 5.80 5.20	10 <5 <5 <5 <5	10.0 10.0 5.0 10.0				
T1 T-F 2 T1 T-G T1 T-G 2		13 44 75	68 68 122	(0.1 0.1 0.8	7.80 8.80 4.40	25 10 10	10.0 10.0 5.0				
428 Jan	des B				China Charles						

Bondar-Clegg & Company Ltd.

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 v: 04-352667

REPORT: 127-3509			` J			PF	ROJECT: BI	EAR	PAGE 1
SAMPLE ELEMENT NUMBER UNITS	Cu PPH	Zn PPN	Ag PPM	Fe PCT	As PPN	Au PPB	Au/Ht G	Au/wt G	
S1 L4+00H D+00S	16	30	0.1	7.80	3	<5		10.0	
S1 L4+00W 0+50S	1	5	0.1	1.10	2	<5	10.0		i
S1 L4+00W 0+75S	1	5	<0.1	1.15	2	< 5	10.0		
S1 L4+80W 1+00S	11	35	<0.1	>10.00	5	<5	10.0		ĺ
S1 L4+00W 1+25\$	10	29	<0.1	8.00	4	< 5	10.0	 	
S1 L4+DBW 1+50S	9	20	0.1	6.20	3	< 5	10.0		
S1 L4+00W 2+25S	40	41	<0.1	>10.00	3	<5	10.0		
S1 L4+00W 2+50S	11	20	<0.1	>10.00	4	<5	10.0		
S1 L4+00W 2+75S	30	35	<0.1	7.00	2	<5	10.0		
S1 L4+00W 3+00S	40	32	0.1	6.20	3 	20	10.0		
S1 L4+00W 3+25S	5	10	<0.1	5.60	5	20	10.0		
S1 L4+00W 3+50S	52	40	0.1	7.20	5	5	10.0		
S1 L4+00W 3+75S	8	11	0.1	7.40	4	15	10.0		
S1 L4+00H 4+00S	22	22	<0.1	9.00	5	20	10.0		
S1 L4+90H 4+25S	72	70	<0.1	6.80	6 	10	10.0	····	
S1 L4+50H 0+25S	28	52	<0.1	9.80	4	<5	5.0		
\$1 L4+50H D+50\$	15	30	<0.1	7.40	2	<5	7.0		
S1 L4+50W 0+75S	32	26	<0.1	7.60	5	5	10.0		
S1 L4+50# 1+00\$	6	12	<0.1	7.00	3	5	10.0		
S1 L4+50W 1+25S	13	20	<0.1	8,00	3	15	. 10.0		
S1 L4+50N 2+008	49	80	<0.1	8.00	4	< 5	10.0		
S1 L4+50W 2+25S	30	40	0.1	9.20	5	<5	10.0		
S1 L4+50W 2+50S	51	60	0.1	8.20	5	<5	10.0		
S1 L4+50W 2+75S	50	30	0.1	8.40	4	180	10.0		
S1 L4+50V 4+00S	30	41	0.1	4.60	<u> </u>	10	2.0	J.O	
S1 L4+50N 4+25S	80	50	<0.1	6,60	5	10	2.0	8.0	······································
S1 L5+00H 0+00S	11	60	<0.1		3	<5		2.0	
\$1 L5+00H 0+25\$	49	42	<0.1	7.00	8	<5		10.0	
\$1 L5+00H 0+50\$	11	20	0.1	8.20	4	5	4.0	6.0	
\$1 L5+00W 0+75\$	52	32	<0.1	7.00	4	<5	10.0		
S1 L5+00H 1+00S	2	9	0.2	5.80	3	10	10.0		
S1 L5+00W 1+25S	2	9	<0.1	3.80	3	20	6.0		
S1 L5+00W 1+50S	18	15	<0.1	8.20	3	30	10.0		
S1 L5+00W 1+75S	12	22	0.1	8.60	3	70	5.0		
\$1 L5+00V 2+00\$	98	80	<0.1	7.80	4	15 	10.0		
S1 L5+DOW 2+258	48	29	<0.1	8.20	6	10	10.0		
- ' S1 L5+00W 2+50S	23	79	0.2	2.35	5	180	2.0	8.0	•
S1 L5+00W 2+75S	26	110	0.2	2.95	7	150		10.0	
S1 L5+00W 3+98S	23	100	0.1	3.40	6	20		10.0	
S1 L5+00W 3+25S	28	63	<0.1	3,30	5	70	3.0	7.0	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B.C. Canada V7P 2R5 Phone (604) 935-0681 (04-352667

REPORT: 1	REPORT: 127-3509 SAMPLE ELEMENT CU]			P	ROJECT: B	EVK	PAGE 2
SAMPLE Number	ELEMENT UNITS	Cu PPH	Zn PPM	Ag PPM	Fe PCT	As PPM	Au PPB	Au∕∺t G	Au∕xt G	
S1 L5+00X S1 L5+00X		49 63	65 90	<0.1 0.2	6.60 6.60	5	20 <5	10.0 10.0		
S1 L5+00W		38	40	<0.1	6.80	6	< 5	8.9		
\$1 L5+00H	4+25\$	60	42	<0.1	6.80	5	<5		10.0	
81 L5+50W	0+00\$	20	50	0.1	>10.00	5	<5 	10.0		
S1 L5+50W		52	42	<0.1	7.00	6	<5	10.0	······································	
\$1 1.5+50H		32	23	<0.1	8.40	4	<5	10.0		
\$1 L5+50U		30	26	0.1	8.20	4	<5	10.8		
\$1 L5+50W \$1 L5+50W		50 12	42 20	0.1 <0.1	6.60 7.20	<i>ላ</i> 3	<5 <5	10.0 10.0		
40C+CJ 16	1+239	17	2 U	70.1	7.20	<u>.</u>		10.0		
\$1 L5+50W		42	40	<0.1	7.00	3	<5	10.0		
S1 L5+50H		42	42	0.1	6.20	2	<5	10.0		
\$1 L5+50W		30	110	<0.1	4.60	9	25	10.0		
\$1 L5+50#		30 40	120	<0.1	4.20	6 10	130 <5	10.0 10.0		
S1 L5+50	1 2+508	40	79	0.1	4.20	10	· ·	10,0		
\$1 L5+50H	1 2+75\$	28	69	0.1	4.00	9	640	5.0		
S1 L5+58k		20	50	0.2	4.60	10	<5	10.0		
\$1 L5+50k		31	80	<0.1	3.90	8	60	7.0		
\$1 L5+501		21	75	<0.1	4.20	8	< 5	10.0		
S1 L5+50k	1 3+75\$	30	95	<0.1	3,40	5	65	. 10.0		
S1 L5+50l	1 4+00S	49	40	<0.1	6.40	5	15	10.0		
S1 L5+58k		49	51	<0.1	6.60	5	< 5	10.0		
S1 L6+801		60	33	<0.1	5.00	3	< 5	2.0	8.0	•
S1 L6+001		7	10	0.1	9.20	3	<5 -5	6.0		
S1 L6+D01	1 0+50S 	20	29	0.1	7.80	2	<5	10.0	 	····
S1 L6+00L		12	20	0.1	9.00	2	< 5	8.0		
S1 L6+001		31	38	<0.1	8.00	3	<5	10.0		
\$1 L6+00\		2D	22	<0.1	8.20	4	5 c 5	10.0		
S1 L6+001 S1 L6+001		10 42	19 158	0.1 0.4	4.40 3.10	· 2 5	190	10.0 3.0	7.0	,
31 [6+00)	1 1 7 3 0	42	130	0.4	3,10		1/0	J.U	7,0	i
S1 L6+001		38	138	0.2	3.60	7	100	6.0		1
\$1 L6+001		39	62	<0.1	4.40	9	50	10.0		4
\$1 L6+001		32	70	<0.1	4.60	9	<5	8.0		
S1 L6+081		22 20	58 75	<0.1	4.40 4.40	8	<5 <5	8.0 10.0		1
S1 L6+00	4 2+902	30	75 	0.2	4.60	8		10.0		1
\$1 L6+001		12	45	0.1	4.80	10	<5	6.0		,
' ' S1 L6+001		40	100	<0.1	5.60	10	<5	10.0		
\$1 L6+001		21	63	<0.1	6.00	9	< 5	10.0		
S1 L6+001		32	70	9.2	4.20	6	<5	10.0		
\$1 L6+00	4+25\$	30	98	0.1	4.40	6	10	10.0		······

REPORT: 127	-3509			1			P	ROJECT: B	EAR	PASE 3
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Zn PPM	Ag PPM	Fe PCT	As PPM	Au PPB	Au/Ht G	Au∕wl G	,
S1 L6+50W 0	+00\$	30	40	0.1	6.40	4	10	4.0	6.0	
S1 L6+50N 0	+508	52	38	<0.1	4.40	4	<5	10.0		•
Si L6+50µ O	+75\$	13	19	0.1	9.40	5	<5	5.0		
\$1 L6+50W 1		28	20	0.1	6.00	4	<5	8.0		1
S1 L6+5DW 2	+00\$	12	40	<0.1	4.20	6	<5	2.0	8.0	
S1 1.6+50W 2	+50\$	19	31	<0.1	4.40	4	<5	5.0		
S1 L6+50H 2	+758	30	79	0.1	4.60	7	<5	4.0	6.0	
S1 L6+50W 3	+00\$	28	75	<0.1	5.40	6	<5	10.0		
S1 L6+50W 3	+25S	30	70	<0.1	5.00	5	<5	10.0		
\$1 L6+50W 3	+5D\$	11	21	<0.1	5.80	4	<5 	10.0		
S1 L6+50H 3	+75\$	30	70	0.1	4.40	5	<5	10.0	 	
S1 L6+50W 4	+00S	35	70	0.1	4.40	6	<5	5.0		
S1 L6_5DH 4	+25\$	47	82	0.1	5.20	6	<5	10.0		
\$1 L7+00H 0	+00\$	41	61	0.2	6.80	4	10	10.0		
S1 L7+80# 0	+25\$	12	31	0.1	6.40	3	5	4.0	6.0	
S1 L7+00W 0	- E00	32	90	0.2	5.80	2	300	10.0		
S1 L7+00W 0		30 30	62	0.2	6.6D	3	15	3.0	7.0	
S1 L7+00W 0		50 50	55	<0.1	5.00	3	<5	7.0	7.0	
S1 17+00# 1		20	24		6.20	4	20	10.0		
S1 L7+00# 1 S1 L7+00# 1		32	24 40	0.1 0.2	6.80	5	40	. 7.0		•
31 C/+UUW 1	*JU0		4U	0.2	0.00	·· ·······		. 7.0		
S1 1.7+00W 1		19	18	0.1	5.00	5	<5	7.0		
S1 L7+00H 2		20	40	0.1	4.80	6	<5	7.0		
S1 17+00W 2		23	40	<0.1	5.40	6	< 5	10.0		
S1 1.7+00W 2	+503	22	60	0.1	4.40	8	<5	2.0	8.0	
S1 L7+D0W 2	+75\$	22	60	0.1	4.00	9	<5	6.0		
S1 L7+00W 3	+D0S	30	59	0.1	4.80	8	<5	10.0		
S1 L7+00H 3	+25\$	20	45	<0.1	5,00	8	<5	10.0		
S1 L7+00W 3	+50S	20	50	0.2	4.80	8	<5	10.0		
S1 L7+00W 3	3+758	32	80	<0.1	4.00	9	<5	2.0	8.0	
S1 L7+00N 4	+00\$	26	62	<0.1	3.25	10	<5	5.0		ŗ
S1 L7+00H 4	+25\$	25	47	<0.1	3.75	8	<5	10.0		
T1 L1+77N 5		10	22	<0.1	8,60	2	10	5.0		
T1 L2+89N 5		13	50	0.1	6.00	2	₹5	1.0	9.0	
T1 L7+15H 1		30	50	<0.1	3.80	<2	< 5	8.0		
T1 L7+55H 1		65	59	0.4	3.00	<2	<5	8.0		
T1 L8+50H 1	+50N	13	10	0.3	1.00	<2	<5	4.0	6.0	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Talex: 04-352667

	REPORT: :127-4	005	-					PF	OJECT: BI	EAR	PAGE	1	
	, SAMPLE	ELEMENT UNITS	Cu PPH	, Zn PPN	Ag PPM	Fe PCT	As PPH	Au PPB	Au/нt G	Au/nt G			
*** *********************************	\$1,00+00H 0+50	N , a	3	12	<0.1	1.60	2.,	< 5	10.8				,
	\$1-0+004 2+25		4	5	<0.1	1.20	2	< 5	5.0		•		
	\$1_0+00H 3+75		. 15	35	<0.1	7.00	. 3	<5		10.0			
	\$1 \p+DOH 4+00		. 8	33	<0.1	5.40	4	₹5		10.0	*		
*:.	\$1_0+00H_4+50	N -	~ 3	11	<0.1	1.50	2	≺5 ′	2.0	8.0			
	S1*0+00W 5+25	N	19	31	<0.1	5.20	7	30	10.0				
(U)	S1 0+00H 5+75		2	. 9	<0.1	1.00	<2	<5		9.0			,
13/4.3 The	`§1 Q+DOW 6+00		22	83	<0.1	>10.00	3	< 5		.10.0			,
	\$1: 0+00H 6+25		8	18	<0.1	4.20	2	< 5		10.0			
	, \$1 ,D+00H 0+00	S 	36	48	<0.1	6.40	8	≺ 5		10.0			
. ^ ·	S1 0+00W 0+25		30	28	<0.1	5.00	7	< 5		8.0	···	·····	-
	-S1 0+00W, 0+50		38	48	<0.1	6.00	7	<5	5.0				
S. C.	\$1_0+00K 0+75		8	20	<0.1	4.80	2	< 5		8.0			
679	\$1. 0+00W^3+50		10	28	<0.1	6.00	2	5	40.0	10.0			
	\$1 0+00H 4+00	S .	99	80	<0.1	6.00	6	40	10.0		·····	······································	
	,S1, 0+00H 4+25	S .	95	80	0.2	6.00	7	5	10.0	· · · · · · · · · · · · · · · · · · ·			1
ight.	`\$1-0+00H 5+00		104	82	<0.1	6.60	8	₹5	7.0				
	`\$1 0+50H 0+25		7	8	<0.1	1.35	2	< 5		5.0			
	,S1 0+50N 1+00		23	30	<0.1	7.00	2	< 5		10.0			
· -	S1_0+50W 1+25	N 	8	12	<0.1	2.90	2	<5		7.0			
	\$1 0+50H 2+00		20	20	0.2	9.20	2	<5	2.0	8.0			
in.	S1'-0+50H 2+00		5	3	<0.1	1.45	<2	<5	5.0				•
	`\$1 0+50H 2+50		25	42	<0.1	10.00	4	< 5		10.0			
	\$1 0+50H 3+25		18	38	<0.1	>10.00	4	< 5		10.0			
10 m	S1:0+50H.3+50	IS	45	43	<0.1	7.40	6	< 5		3.0	 		
(7\$1, 1+00N .0+00	N	. 15	, 13	∴<0.1	5.00	5	<5 ·		4.0			
Ý	`\$1 1+00H 0+29	in	15	18	<0.1	6.30	7	< 5		4.0			
2,	"\$1;1;00H 0+50		.127	20	<0.1	>10.00	. 5	< 5	1.0	9.0	щ		
	S1 1+001 0+7	in j	**************************************	6Ó	<0.1	6.20	60	60	6.0		_		
	÷§131+00¥ 1+00	in ————————————————————————————————————	ું ³ ુ 39	42	<0.1	6.80	`27	20	2.0	8.0			
	\$1,1+00N 5+0	N - 7	37	23	<0.1	8.20	4-4	<u>.</u> 5		10.0	-,		57
in Marie Second	4\$1 1+00H 5+29	N 1 - E		- 22	<0.1	8.00	5	∢ 5	٠.	7.0	, .:		•
	-61. 1+00N 5+5I	IN	24	30	<0.1	9.80		∵ <5	2.0	. ~8.0	-	,	
2. E	: \$1-1+00H 5+79			69.	<0.1	. 7.00	5 .	30	8.0		• -		Ţ
	'\$1 1+00H 6+0	DN	39	28	₹ 0.1	7.80	5	, <u>(2</u>	2.0	8. 0	. 		
	" \$1 1+DON 6+2!	in -	, 40	29	<0.1	6.00	· 3	10	4.0	6.0			,
	S1 1+00H 6+5		. 28	-20	<0.1	5.80	, 4	,25	10.0				•
The same	251-1+00N-6+7!		31	~33	<0.1	7.00	3	10	6.0			,	
数数性	S1 1+00H 7+0	DN	~ 29	. 30	X0.1	6.00	4	· ^ < 5	4.0	6.0	•		
گ تا سران	\$1, 1+00H 7+2	. v	8	. 10`	<0.1	2.70	´ 2 `	<5	4.0	6.0			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 983-0681

]			P	ROJECT: B	EAR	PAGE 2	
SAMPLE É NUMBER	LEMENT Cu Units PPH	Zn PPH	Ag - PPM	Fe PCT	'As PPH	PPB	Au/Ht G	Au/Ht G		
\$1 1+00H 0+50S	11 9	67	<0.1 ;	4.20	4	< 5		4.0	. ,	· · · · · · · · · · · · · · · · · · ·
	9	23	<0.1	5,00	., 2	480	7.0			٠,
\$1,3+00H 1+75S.	14 8	40	0.2	8.00	4	< 5	•	10.0		
\$1.4+00H 2+25S \$1.1+00H 2+50S	21	42 . 53	<0.1 <0.1	5,00 7.60	3	<5 . <5		2.0 4.0		•
· - 1,5	, , , , , , , , , , , , , , , , , , ,		/0.1	7.00	<u> </u>	10	`	710		
\$1 1+00N 3+00S	- 4	32	<0.1	2.50	2	· < 5		4.0		
\$1 1+DON 3+758	5	30	30.1	2.30	<2	<5		5.0		•
\$1 1+00H 4+00S	5	23	<0.1	5.00	3	< 5		6.D		
S1 1+50W 0+00N	8	-11	<0.1	3.95	3	5	2.0	10.0		
Tage S1 1+50N 4+25S	5	10	<0.1	2.40	<2	< 5	2.0	6.0	·-··	
\$ \$1 2+00H 0+00N	11	10	<0.1	5.40	4	25	5.0			
\$1 2+00H D+25N	90	40	<0.1	8.80	8	5	18.0			
\$1 2+00H 0+50N	79	39	0.2	9.20	7	50	3.0	7.0		
\$1 .2+DON G+75N	. 130	80	0.2	6.00	40	20	5.0			`
\$1 2+00H 1+00N	68	78	<0.1	5.00	70	20	10.0			
전경기 S1, 2+00H 1+25N	29	40	<0.1	5,00	7	25		10.0	<u></u>	
- \$1, 2+00H 1+75N	112	78	<0.1	6.40	44	25	8. 0	2010		
\$1 2+00H 2+00H	152	82	<0.1	6.20	10	15		10.0		
\$1 2+00H 2+25N	137	80	<0.1	6.60	7	15	10.0			
\$1.2+00H 2+50N	112	76	<0.1	6.00	8	10	7.0			
\$ 4 61 2+00H 2+75N	109	80	<0.1	6.20	10	5	······································	10.0		
S1 2+00H 5+00N	88	50	<0.1	6.40	7	10	10.0	2010		
S1 2+DDN 5+25N	44	29	<0.1	5.20	3	< 5	6.0			
\$1 2+00H 5+50H	38	30	0.2	6.40	5	5	2.0	8.0		
, S1 2+00H 5+75N	35	30	<0.1	7.20	5	< 5	3.0	7.0		
MULTY MULTY ASSESSED AND VALUE AND V	/0	20	0.2	7 00		on.		10.0		
151 2+00N 6+00N 251 2+00N 6+25N	- 68 - 19	30 28	.0.2 <0.1	. 7.00 5.40 ~	5 _. 5	20 <5	9.0	70.0	<i>5</i> ,	
\$1.2+00W 6+50N	. 39 42	26 35	<0.1 <0.1	5.80	, 4	10	2.0	8.0	,	
\$1 2+00H 6+75N	42 36	26	<0.1	8.00	.4	<5	6.0	,	•	
\$1 2+00H 7+00N	103	42	<0.1	6.00	7	_ 15	4.0	, 6. 0		,
2			45.4				7.0			
2400K 7+25N	87	48	<0.1	4.6D	4	, 5	7.0 6.0		, '	•
\$1 2+00¥ 7+50N \$1 2+00¥ 0+00S	62 -19	42 19	<0.1 <0.1	6.00 7.20	8 5	10 5	2.0	8.0	• • <u>•</u>	
\$1-2+00H 0+25S	12	17 20	<0.1 	7.20 7.00	5	· . <5	2.0 2.0	- 8.0	- (*
S1 2+00H 0+75S	6	20	<0.1	2.60	2	5		6.D		,
y v										
\$1 2+00H 2+00S	5	5	₹0.1	2.20	2	< 5	4.0	6.0		, ,
\$1, 2+00H, 2+50S	4	10	<b.1< td=""><td>1.60</td><td>3</td><td>20</td><td>5.0</td><td></td><td></td><td></td></b.1<>	1.60	3	20	5.0			
\$1-2+00H 2+758	7	· 20	<0.1	2.20	2	· <5	~ ~	9.0		**
\$1 2+00H 3+25S	13 16	,19	<0.1	3.45	~2 <2	. 5	3.0	7.0 6.0		· · · · · ·
\$1 2+00W 3+50S	. 16	20	<0.1	.3.95	<i>۲۵</i> 	5		U.0		

*(;	REPORT:)5	•					F	PROJECT: B	EAR	Pr	GE 3	
	SAHPLE NUMBER		ELEMENT UNITS	Cu _{yy} PPM	Zn PPN	Ag PPN	Fe PCT	As PPN	- Au PPB	. Au/nt G	Au/#t G			
	\$1 2+00W	3+75N		<u>. 3</u>	8	<0.1	1.15	. 2	5	10.0	, ,	5,		
الم الم	\$1-2+00N			. 9	· 12	<0.1	3.30	2	` 10	7.0		,	45	
	\$1\$2+50H \$1\$2+50H	U+UUS D.OEC		28 32	22 21	* <0.1	7:00	. ≠ 3	₹ 5	6.0				
<u> </u>	\$1,2+50H			37	82	<0.1 <0.1	7.00 >10.00	6 <2	15 <5	8.0 1.0	9.0		-	~
	\$1 2+50H			43	91	<0.1	>10.00	4	<5		6.0		,	,
ا سال کیسی براوی ماه ماه	S1 2+50W			46	94	<0.1	>10.00	3	<5		. 8.D			
ž , , , , , , , , , , , , , , , , , , ,	. S1, 3+00H			72	38	<0.1	>10.00	10	10	10.0	40.0			
أرع ا	. S1 3+00N S1°3+0ÓN			40 89	28 40	0.2 <0.1	9.20 >10.00	9 8	10 15	3.0	10.0 7.8			
34,10			~~~~								7.0			
	. 51 3+DOW	0+75N		: 84	41	<0.1	>10.90	9	35	5.0				-
e Si	\$1 3+00H \$1 3+00H			98 29	40 32	<0.1 0.6	8.20 9.20	4 5	10 <5	3 . D	10.0			
1815年	S1 3+00W			84	40	(0.1	8.00	6	< 5	3.0	7.0 7.0			·
	\$1 3+00H			69	38	<0.1	8.46	5	(5	6.0	7.0			
	S1 3+00H	4+00N		52	35	<0.1	>10.00	4	< 5	5.0				
	ે. કોર્1્3+00N			24	50	<0.1	>10.00	5	15	6.0				
en.	* S1 3+00W			64	46	<0.1	>10.00	5	<5	5.0				•
الْمُ يَدُّ	\$1 3+00H \$1 3+00H			69 27	43 22	<0.1	>10.00	4	< 5	5.0	0.0			
	21 2+DUN	U+3U8		24	- 22	<0.1	8.80	3	<5	2.0	8.0			-
, w	"\$1,3+00K			6	17	<0.i	2.60	3	<5	7.0				, .
***	\$1.3+00W			_ 12	26	<0.1	7.00	2	10	2.0	8.0			•
121	' \$1 3+00H S1, 3+00H			8 18	12 42	<0.1 <0.1	2.35 8.2 0	2 5	<5 <5	10.0	10.0			,
	~ 51,3,00₩ ~ 51,3+00₩			10	23	<0.1	3.45	2	(5	5.0	70.0			•
- 35	\$1 3+00W	2+255		- 4	5	<0.1	1.25	2	< 5	2.0	8.0		·····	
	. S1.3+00H			19	29	<0.1		3	< 5	8.B	0,4			
	\$1,3+00H		ر دوست	29	5 1	<0.1	>10.00	5	(5	10.0		-		
	_ \$1,3+00W		`	🔆 60	70	<0.1	7.00	` 5	< 5	5.0				
4,7 44	, st. 3+ook	3+50S	. · . · . · . · . · . · . · . · . · . ·	<u>''</u> '88	63	<0.1	7.00	, 5	<5	10.0				
	\$1,23+00H			- <u>∵</u> 33	40	<0.1	7.00	4	.*; √ 5		3.0	٥, ,	· · · · · · ·	
1.3°	**\$1.3+00N		- ·	· ~ 52	61	<0.1	4.80	3	· · · < 5	10.0				'
	~ \$1,3+50H			14	41	0.2	·4.2D	IS	< 5	3.1		74.2 1		
~, ., \\ . ~ \	`~\S1∕3+50N S1`3+50N			9 4	12 11	<0.1 <0.1	5.80	. 2 <2	<5 15	3.0 5.0	7.0			* 1
				4	11	/U.I	2.80	<u> </u>	15	5.0	·		····	<u> </u>
	\$1 3+50N			19	, 23	<0.1	>10.00	2	< 5		6.0			p
·				3	⁻ 5	<0.1	3.00	<2	< 5		5.0			
	S1 3+50W			6	10	<0.1	3.30	2 -		7.0	40.0			
A Marie Const	\$1~3+50H \$1~3+50H		,	- 12 10	. 19 22	<0.1 <0.1	7.40 8.20	3	<5 <5	, 4n n	10.0	*	•	Ā
<u>; "/ .</u>	HUCLC TO	£+000		10		ZU-1	0.20		ری ِ	10.0	·····			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681

REPORT: 127-4005	-]			P	ROJECT: B	EAR	PAGE 4	, 4
SAIPLE E	LEMENT Cu UNITS PPH	Zn PPM	Ag PPM	Fe PCT	AS PPN	Au RPB	Au/nt G	Au/Ht G	,	
\$1,3+50H, 2+758 \$1,3+50H, 3+258 \$1,8+50H, 3+758	7 68 110	7 59 79	<0.1 <0.1 <0.1	2.40 8.80 5.60	<2 .5 .5	<5 15 <5	8.0 10.0 10.0	^		•
\$1 3+50N 4+00S \$1 3+50N 4+25S	65 43	48 40	<0.1 0.2	6.20 6.80	6	<5 <5	10.0 4.0	6.0		
\$1 4+00H 0+00N \$1 4+00H 0+25N \$1 4+00H 0+50N	14 77 122	18 50 68	<0.1 <0.1 0.3	6.40 5.60 8.80	5 10 30	110 <5 <5	4.0 2.0 6.0	6.0 8.0	,	
\$1*4+DDH 1+DDN \$1*4+DDH 1+5DN	63 159	78 92	<0.1 <0.1	7.80 7.60	6 5	25 <5	9.0 10.0	·		
S1 4+00H 2+25N S1 4+00H 2+50N S1 4+00H 2+75N S1 4+00H 3+00N	69 35 17 84	42 20 20 46	<0.1 0.2 <0.1 0.6	9.00 8.00 8.46 7.20	6 3 4 5	<5 <5 10 75	6.0 3.0 8.0 8.0	7.0		
S1 4+00N 3+25N S1 4+00N 3+50N	110	60 30	D.1	7.80	5 _.	<5 <5	10.0		· · · · · · · · · · · · · · · · · · ·	**
S1 4+00H 3+75N -S1 4+00H 4+00N S1 4+00H 4+50N S1 4+00H 4+75N	20 49 45 37	28 32 50 30	0.2 0.2 0.1 <0.1	10.00 9.00 9.00 >10.00	5 5 5 5	25 <5 <5	10.0 5.0 5.0 10.0			·
\$1 4+00H 5+00N \$1 4+00H 5+25N \$1 4+00H 7+00N	105 58 26	36 40 30	<0.1 <0.1 0.2	9,00 >10.00 8,20	3 5 4	<5 5 <5	10.0 3.0 7.0	7.0		
S1 12+50N 0+DON S1 12+50N 1+00N	8	7	<0.1 <0.1	2.90 1.40	3 2	<5 <5	10.0 10.0		·····	,
\$1 12+50H 1+25N \$1 12+50H 1+50N \$1 12+50H 1+75N \$1 12+50H 0+50S \$1 12+50H 1+00S	5 5 10 13 13	5 5 5 30 12	<0.1 0.2 <0.1 <0.1 <0.1	0.80 0.95 0.85 3.65 3.20	2 <2 2 7 2	80 15 30 .5 <5	3.0 10.0 10.0 7.0 10.0	7.0		
\$1.12+50H 1+50S \$1.12+50H 2+00S \$1.12+50H 2+25S \$1.12+50H 3+50S \$1.12+50H 4+25S	33 14 41 9	132 41 115 11 64	<0.1 <0.1 - 0.9 <<0.1 <<0.1	5.00 5.00 4.80 3.75 9.00	10 13 38 3	<5 20 65 <5 <5	6.0 10.0 7.0 10.0	*^ -	at a second	
\$1 13+00H 0+00N \$1 13+00H 0+25N \$1 13+00H 0+75N \$1 13+00H 1+50N \$1 13+00H 1+75N	17 11 21 2 5	29 10 42 3 11	<0.1 <0.1 <0.1 <0.1 <0.1	5.00 2.65 6.00 0.95 5.20	5 3 2 2 2	5 <5 <5, 5	6.0 10.0 3.0 5.0 10.0	7.0		, ,

Bondar-Clegg & Company Ltd.

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 : 04-352667

REPORT: 127-4005	-]			Р	ROJECT: B	EAR	PAGE 5	· ·	
SAMPLE ELEME NUMBER UND	ENT Cu Its : Pph	Zn PPN	Ag PPM	Fe PCT	As PPH	Au PPB	Au/ņt G	Au/Ht G		
\$1 13+00H 2+00N \$1 13+00H 0+50S \$1 13+00H 0+75\$ \$1 13+00H 1+00S \$1 13+50H 0+50N	22 20 23 15	18 71 49 30 13	<0.1 <0.1 <0.1 <0.1 <0.1	5.40 5.20 5.20 6.00 4.00	3 - 11 12 6 4	,15 <5 <5 <5	40.0 9.0 6.0 8.0			
S1 13+50H 1+25N S1 13+50H 1+00S S1 13+50H 1+25S S1 13+50H 1+50S S1 13+50H 2+25S	8 13 7 23 10	10 30 150 70 54	<0.1 <0.1 <0.1 <0.1	3,45 3,75 4,00 4,00 3,70	<2 30 11 5 16	<5 <5 <5 <5	9.0 10.0 5.0 5.0 10.0			
\$1 13+50N 2+758 \$1 14+00N 0+00S \$1 14+00N 0+50S \$1 14+00N 1+50S \$1 14+00N 1+75S	6 6 5 17 11	10 15 8 21 21	<0.1 <0.1 <0.1 <0.1 <0.1	3.65 2.20 2.70 4.00 3.40	2 2 3 8 17	<5 <5 <5 <5 <60	10.0 10.0 10.0 10.0 10.0	,		
S1 14+00W 2+00S S1 14+00W 2+25S	550 82	270 132	<0.1 <0.1	6.20 6.80	51 53	<5 20	9.0 10.0			

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Delex: 04-352667

REPORT: 12	27-4251						p	PGJECT: E	Εγž	P43E 1
Sample Number	element Units	С. РР#	Zr PPt	Ag Meq	Fe PCI	as PPM	6'- PPB	Ac/wt G	Aن ټ. ق	
\$1 2+50°, (\$1 2+50°)		12 19	29 23	0.1 0.1	>10.00 B.40	5 5	(5 5	4.0 10.0	6.0	
S1 2+50k S1 2+50k	1+00K 1+25N	20 17	29 5€	<0.1 0.2	9.00 7.40	2 2	15 <5	16.6 1.6	2.8	ļ
\$1 2450W		20 	49	0.1	6.00	2	10		6.0	
S1 2*50w : S1 2*50w : S1 4*50w :	2+03N	15 70	20 111 33	<0.1 0.1 <0.1	4.20 10.00 5.00	2 7 3	₹5 ₹5 15	4.5 7.0 10.0	5.5	i
81 4+50a (81 4+50a (0+25%	:5	42 31	<0.1 <0.1	7.40 6.40	3	(5)	8.0 3.6	715	;
51 4+50a (6,	44	0.2	10.00	2	76		3.0	,
\$1 5+004 (\$1 5+004 (\$1 5+004 (D-05N	19 17 11	55 88 65	<0.1 <0.1 0.2	9.00 10.00 9.00	2 2 2	10 5 . E	5.0 3.8 1.5	6.5 8.5	; }
91 5+05W	,+%(·	5	13	<0.1	2.90	2	5	8.0		
\$1.5+004.0 \$1.5+504.0 \$2.5+504.0	0-00 (22 22	63 34	0.1 <0.1	10.00 >10.00	2 4	√2 5	3.0	7.0 5.5	
51 5+50# (\$1 5+50# (\$1 5+60#)	°+75}	5 7 3	ລິະ 1; 3	0.2 <0.1 <0.1	8,40 8,00 2,40	3 2	(5 (5) (5)	7.0 10.0	4.5	
51 5-50	1+75^	::	E5	0.3	7.00	2	ì¢		4.0	
51 6+004 (51 6+004 (0+254	30 11	44 18	(0.1 (0.1	10.00 4.40	3 2	<5 5	1.0 5.0	6.0	, ,
E1 6+3(+ S1 6+3(+)			33 30 	<0.1 C.1	5.0t 6.00	2 2	₹5 10 ————	5.¢ 3.\$	7.5	
51 5+50u (51 7+00u (. 500+0	10 33	36 64	v.1 <0.1	5.60 7.40	2 2	45 65	2.0	10.0 9.0	
S1 7+00W : S1 7+50W (S1 7+50W (N90+0	4 22 28	13 30 31	<0.1 <0.1 0.1	4.20 4.20 7.00	2 2 3	25 75 100	3.6 5.0	9.0 7.0	i
S1 7+50k (S1 7+50k (22 55	56 60	<0.1 <0.1	6.00 6.00	2 2	85 150	3.0 7.0	7.0	
\$1 7+50\(\frac{1}{2}\) \$1 7+50\(\frac{1}{2}\) \$1 7+50\(\frac{1}{2}\)	N00+1 402+1	25 19 28	27 68 33	<0.1 <0.1	5.40 9.00	2 2	110 10	2.0	8.0 10.0	
\$1 7+50 _* (45	41 41	0.1	7.00 5.00	2 E	45 	7.¢	10.0	
() S1 7+50* 1 S1 7+50% 1	1+005 1+253	22 25	28 37	<0.1 0.3	6,00 7,00	4 8	50 110	5.0 3.0	7.0	
Si 7+50. 1 Si 7+50. 2		5 22	5 52	<0.1 <0.1	3.90 4.20	2 7	16 \5	10.0 5.0		

·····			 =- 								
	REFSET: 107-403	<u> </u>	··					F	FOURCE: E		1612 2
	NUMBER SAMPLE	ELEMENT UNITE	Ge PPM	Zn PPr	Ag PP#	Fe PCT	as PPM	au PPB	Au/ut G	Auzet G	
	Si 7+50 _k 2+75S		27	51	0.:	4.20	E	₹5	3.0	7.0	
	51 7+56K 3+00S		38	65	0.1	4,40	6	16	10.0		
	S: 7+50 _H 3+255		33	6 .	(5.1	5.00	7	⟨5		10.6	
	S1 7+50 _w 3-505		25	76	<0.1	4.00	6	10	10.0		
	\$1 8+0C4 0+50A		5	14	⟨ (.:	2.90	₹2	40	6.0		
	S1 8+00# 0-75N		13	34	<0.1	4.00	2	10		10.0	
	81 84000 1400N			16	<5.1	4.40	2	(5	9.0		
	\$1 8±00@ 1±75\		15	54	6.3	6.00	2	₹5	2.0	5.0	
	S1 8+00% 0-25S			198	<1.1	5.20	4	₹5	3.0	7.0	
	5) 8+001 1+258 	·-······	<u> </u>	14	<6.1	2.80	2	6 5	10.0		
	S1 8400m 1+578	····································		<u> </u>	<5.1	3.15	2	₹.	····	17.6	
	51 8+00m 1+755		4 P	15	<c.< td=""><td>7.60</td><td>3</td><td>75</td><td>5.0</td><td></td><td></td></c.<>	7.60	3	75	5.0		
	91 8-004 2+758		50	13	(C.)	4.5.	5	65	0.0		
	SI 8+60% 2+508		Ş	iā	0.2	5.20	3	₹5	15.5		
	91 8÷00 = 2÷755		<u> </u>	2£	, 2, 1	7.3	5	10	10.0		
	51 8÷00% 3+005	······			<u>اري.</u>	4.20	2	3(70.0		
	51 8+00x 4+150		15	<u>:</u> 9	0.1	6.31	2	.5	10.3		
	S1 8+50% 0+2E*		•	25	1	3.50		25		5.0	
	81 84501 04253		Ξ	69	·	3,35	2	20	2.0	€.6	
	81 8+50# 1+00%		4	55	<0.1	E / .	2	120.	5.0		
	51 8+3%, 1+259		t,	12	<0.1	1.60	2	220	13.3		
	S1 5+50, 1+505		4	4:	<5.3	3,35	2	16	1.0	9.0	•
	S1 8-50, 14785		3	4	V.2	2.10	2	<5	10.0		
	S1 8+50k 2+008		25	16	0.1	5.60	2	∕ ₺	3.6	7.0	
	\$1 8+50± 2+258		3	7	₹0.1	3.10	2	15	5.0		
	S1 8+501 2+50S		10	19	0.1	6.00	3	30	9.0		
	SI 8+50W 2+755		15	20	<0.1	5.00	2	10	9.0		
	S1 8+50% 4+005		10	22	<0.1	3.80	2	₹5	4.0	6.0	
	S1 9+00W 0+00N		30	61	<0.1	10.00	5	₹5	3.0	7.0	
	\$1 9+00% 0+008		16	59	<0.1	6.20	2	< 5		10.0	
	\$1 9+00W 0+25\$		13	41	<0.1	7.40	2	√5	2.9	8.0	
,	S1 9+00W 0+50S	<i>¥</i>	9	21	(0.1	1.70	2	110	7.0		
	S1 9+00W 0+758		4	60	<0.1	4.20	7	75	10.0		
	S1 9+00W 1+00S		ì	11	<0.1	1.20	2	85	10.0		
	S1 9+00% 1+50S		4	ğ	<0.1	2.60	2	<5	4.0	6.0	
$\overline{\cap}$	S1 5+00W 1+75E		Ę	11	0.1	4.20	2	< 5	5.0		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	51 9+00W 2+00S		5	11	<0.1	5.80	2	15	10.0		
	S1 9+00W 2+255		5	7	<0.1	3.70	2	10	4.5	6.0	
	S1 9400k 2±755		4	7	<0.1	3.50	2	Ţ		10.0	
·····	E1 9+001 3+00S			5	<0.1	4.60	2	31(10.0	

	REPORT: 127-4251							PROCECC: NEAC			PAGE 3
	Sample Number	element Units	Cu pp4	Zn PPK	Ag PPn	Fe PGT	As PPM	Au PPR	Au/wt G	As/ut E	
	S1 9+00k 3+25	iā	10	14	<0.1	5.80	2	35		10.ú	
	S1 9+50W 0+00	N	210	50	<0.1	5.60	11	360		9.0	
	S1 9+50# 1+00	k	73	220	<0.1	6.20	3	IS		234	
	S1 9+50# 0+00	Ç.	5	15	<0.1	2.60	2	140		10.¢	
	91 9+50w 0+50	5	7	15	<0.1	4.20	2	15	10.0		
	\$1 9+50W 1+25	E	<u></u>	Ş	<0.1	3,40	3	35	8.0		
	E1 9+50# 1+50		2	4	0.1	1.10	2	15	0.5		
	S1 9+504 ±+75	Ę	۶		6.1	5.40	2	5	c.c		
	51 9+50# 2+00	5,	1(• •	6.2	6.20	ā	₹5	10.0		
	S1 9+50% 2±75	§ 		12	0.3	6.00	2	₹5	7.5		
	£1 9+50, 3+0(14	20	<\$1.x	6.20	Ę	5	.0.5		
	SI 10+00* 0+7		วี	41	(0.1	3.70	2	90	`0.7		
	SI 10+00w 1+2	51	4	, (<0.1	3.10	2	(E	8.0		
	51 10÷00w 0+0	, s	23	7:	0.2	6.20	2	120	1.0	6.0	
<u> </u>	S1 10-00% 0+7	: .	5	10	<0.i	3.26	2	75	8.0		
	E: 10+00w _+2		4	15	11.1	1,85	· · · · · · · · · · · · · · · · · · ·		3.0	7.0	
	\$1 10+004 1-5	je.	4	č.	<0.1	2,45	2	16	10.0		
	Si 10+00. 1⇒7	58	- 2	23	0.2	3.75	2	₹5		10.0	
	51 10±00± 2±0	ĺŝ	4	11	<0.I	2.50	2	75	4.0	6.5	
·· ·· ·· · · · · · · · · · · · · · · ·	EI 1(+05x 2+1)	ī	<u>.</u>	4	(v.)	2.05	2	ŧ.	43		
	\$1 lv+00% 2+5		1/	25	0.1	6.00	2	25	10.C		
	SI 10-00% 4-D	Ęį	-	5	· C	1.75	<2	ς5	10.0		
	91 10+50 _m 5+0	ງ ኒ	5	25	0.2	1.75	Ğ.	20	2013	30.0	
	51 10-50, 5-6	Ę		Ę	<0.2	2.30	3	15	10.0	-4.0	
	51 10+50 ₄ 1-0		::	19	<0.1	7.00	Š	72 44	4/1		
	51 10+50W 1-2	5S	6	11	<0.1	5.80	2	15	8.0		
	S1 10+50# 1+5		29	37	<0.1	7.60	8		4.0	6.0	
	S1 10+50% 2+0		4	ìÿ	<0.1	2.70	2	(5	5.0	0.0	
	S1 11+00# 0+5		7	23	<0.1	6.00	2	75	2.0	8.0	
	S1 11+00% 0+7		15	33	<0.1	4.20	2	10	410	10.0	•
	S1 11+00¥ 1+0	ON.	3	7	C.I	2.26	2	₹ 5		10.0	
	S1 11+00% 1+7		5	ė	<0.1	1.55	⟨2	(5	10.0	*****	
	SI 11+00W 1+2		15	3¢	(6,1	6.00	4	(5	10.0		
	S1 11+00W 1+50		28	22	(0.1	4.83	2	5	10.0		
	€1 11+00W 1+7		25	20	<0.1	4.20	2	15	16.5		
$\overline{}$	S1 11+00w 2+3	CS .	Ŧ.	13	<0.1	5.00	ړ .	<5	17		
,	S1 11+50% (+0)	9 4	5	19	<0.1	6.00	2	SC.	10.c		
	S1 11+504 0+25		24	23	0.2	5.60	4	7	7010	10.0	
	S1 11+50m (+50		3	13	⟨0.1	4.00	3	¥ 5	10.0	14.0	
	51 11±30k 0+7		3	19	0.2	4.0C	2	₹. ₹	3.0	7.4	

Bondar Clegg & Company Ltd, 130 Pemberton Ave North Vancouver, B.C. Canada V7P 2R5 Phone (604) 985-0681 vs. 04-352667

 REPGP1: 127-4	25.						į	ROJECI: E	Euş	5522 -
 Sample Numper	element Units	Cu PPk	Zn PPr	ag PPH	Fe PCI		Au PPB	4u∕wt G	AU/wt S	
 S1 11+50# 1×0	0,	10	35	<0.1	5,00	2	10	4.5	έ.Q	
S1 11+50W 1+5	Oh	2	E V	<0.1	1.00	2	₹5	8.0		
S1 12+00* 0÷0	0N	7	16	<0.1	3.35	2	₹5		10.0	
S1 12+00k 0+2	54	8	15	0.1	4.40	3	5	10.0		
 51 12+06 ₄ 0 ₇ 5	£4	4	10	0.1	2.55	3	250	15.0		
 \$1 12+00k 3+0	(4	 	5	<0.1	1.25	2	5	10.(
S1 12+00- 1-2	Đ,	3	10	<5.1	1.15	-	ξ.	20.00		

Arctex Engineering Services 301 - 1855 Balsam Street Vancouver, B.C. V6K 3M3

April 9, 1987

Memorandum To: Nationwide Gold Mines Corporation

From: Locke B. Goldsmith

Subject: Inspection Trip, Titanic Mineral Claim, Kennedy River Area,

Vancouver Island, B.C.

Observations:

An inspection of geology in one stream valley was made on April 4. A traverse was made northwesterly along the unnamed stream from its confluence with the Kennedy River.

In its lower portion the stream is incised into boulder fields which appear to have been river-transported deposits. Numerous cobbles and boulders of limonite-stained, pyrite-bearing quartz were observed in the transported material; samples TI -1 and TI -3 to -7 were collected from this type of mineralization. Sample TI -3 was taken at the break in slope where the stream channel rises out of the main Kennedy River valley. No examples of similar pyritized quartz in float were observed uphill (northerly) from this location. A source other than the area drained by the stream is suggested. Prospecting should be done in other streams in the northeast.

Karmusten andesitic to basaltic volumics are exposed along the upper valley. A shear zone which crosses the valley at a sharp angle is exposed for at least 60 metres of true width; the northwestern margin of the shear was not observed. The shear zone was followed for more than 150 metres on strike. Veins, veinlets, fracture fillings, and irregular (flow boundary) concentrations of quartz, with or without pyrite or limon; a staining, are irregularly distributed across the structure.

Sample TI -2 was taken from a quartz-pyrite vein 8 cm in width. Most veinlets could not be sampled because outcrops are smooth. A portion of each samples TI -3 to -7 was retained for inspection after the assays were received.

The highest gold assay of 0.581 oz Au/ton was obtained from sample TI-4. Possible distinguishing features of this specimen include the smoky nature of the quartz, and noticeable chalcopyrite and bormite with pyrite in fracture fillings. At least two levels of gold content and thence two sources are suggested from the assays.

Sample TI -2 from the quartz pyrite vein carries 0.098 oz Au/ton and 1.44 oz Aq/ton.

Conclusions:

The shear zone is a large structural feature; gold is contained in quartz-pyrite veins within the zone. More than one source of mineralization in quartz cobbles is suggested by the precious metal assays. Economic concentrations of gold could be hosted in shear zones on the claim.

Recommendations:

Geological mapping, soil geochemistry, and magnetic and VLF-EM surveys should be completed over the entire property. Blasting to obtain fresh, unleached samples should be undertaken along the shear zone.

Cost Estimates:

Approximately \$60,000.00 should be available to complete the project.

Locke B. Goldsmith, P. Eng.

Consulting Geologist

Sample Descriptions Titanic Claim

April 4, 1987

Sample N	lumber .	Description	Assays oz Au/to	on oz Ag/ton
TI -1	. 20 - cm in buce	diameter boulger of quart lated porphyry	z veinlets 0.(0.02
TI -2	with ma in a bro	nannel across 8 cm of white ssive pyrite. Quartz vein and shear zone with many veture fillings	occurs	1.44
TI -3	and mar malachit	pebble with partly oxidized casite stringers and one s se. At topographic break se-bearing float found upst	peck of in slope,	0.09
TI -4	pyrite v One 0.0	quartz cobble, fracture fill with lesser chalcopyrite an 5 cm massive sulphide stri which was sent for assay	d bornite.	. 0.48
TI -5		uartz cobble with several p pyrite stringers.	partially 0.0	0.03
TI -6	and mar	cobble. Fracture fillings o casite in parallel orientation chalcopyrite.		0.06
TI -7	Very fir	cobble. Gray and white que-grained pyrite to 25%.		12 0.22

Chemex Labs Ltd

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0121

TERTIFICATE OF ANALYSIS

To: NATIONWIDE GOLD MINES CORP.

1500 - 1176 W. GEORGIA ST. VANCOUVER, BC

V6E 4A2

Project : Comments: A8714 *Page No. :1

Tot. Pages: I

Date :28-MAY-87 Invoice #:I-8714816

P.O. NONE

 													
SAMPLE DESCRIPTION	PRE	Ag FA oz/T	Au FA oz/T										
TITANIC 1	207	 0.08	1.096										
			 								,		
				: 					_ Q				

CERTIFICATION :

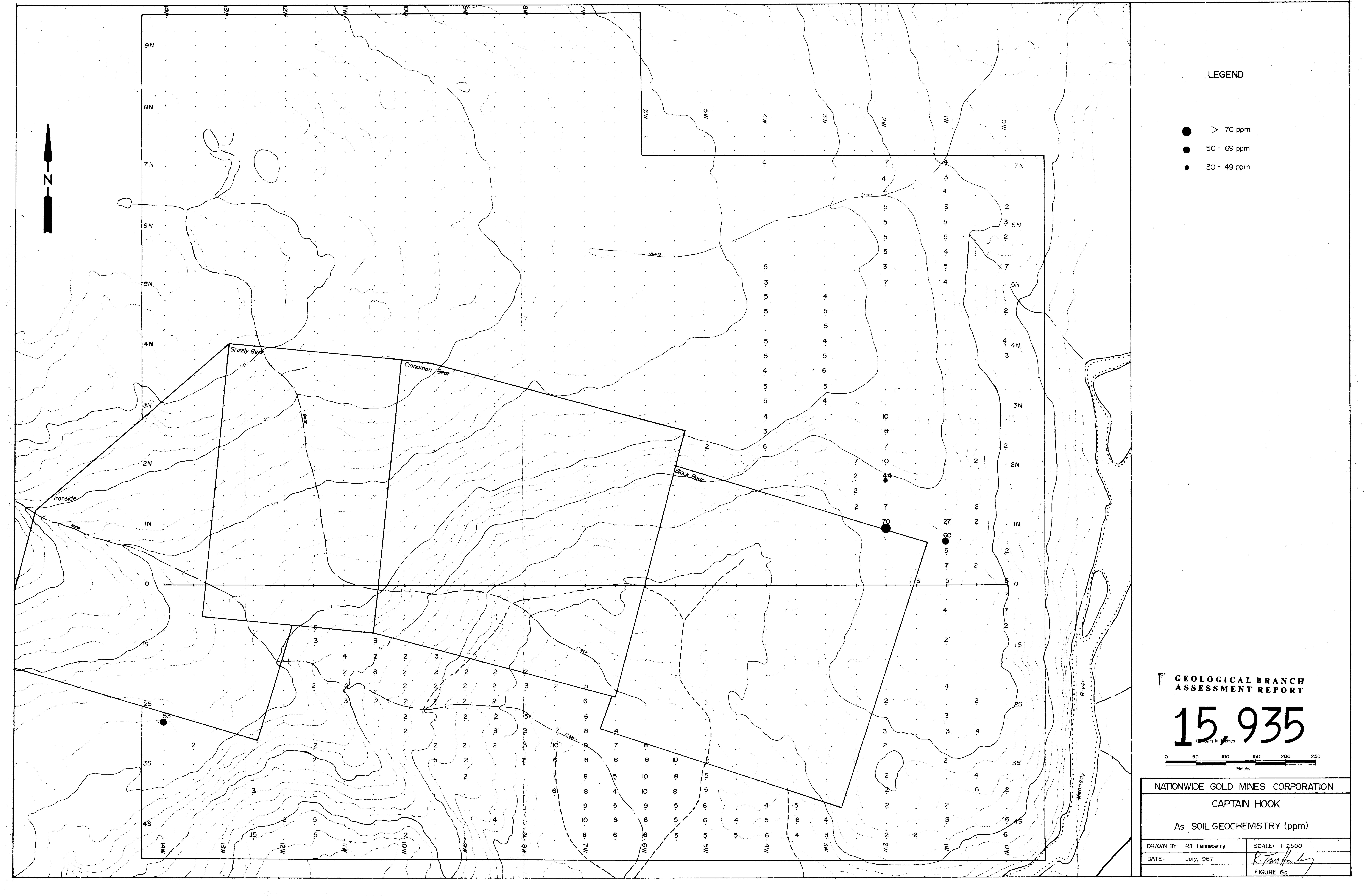
Jwaite

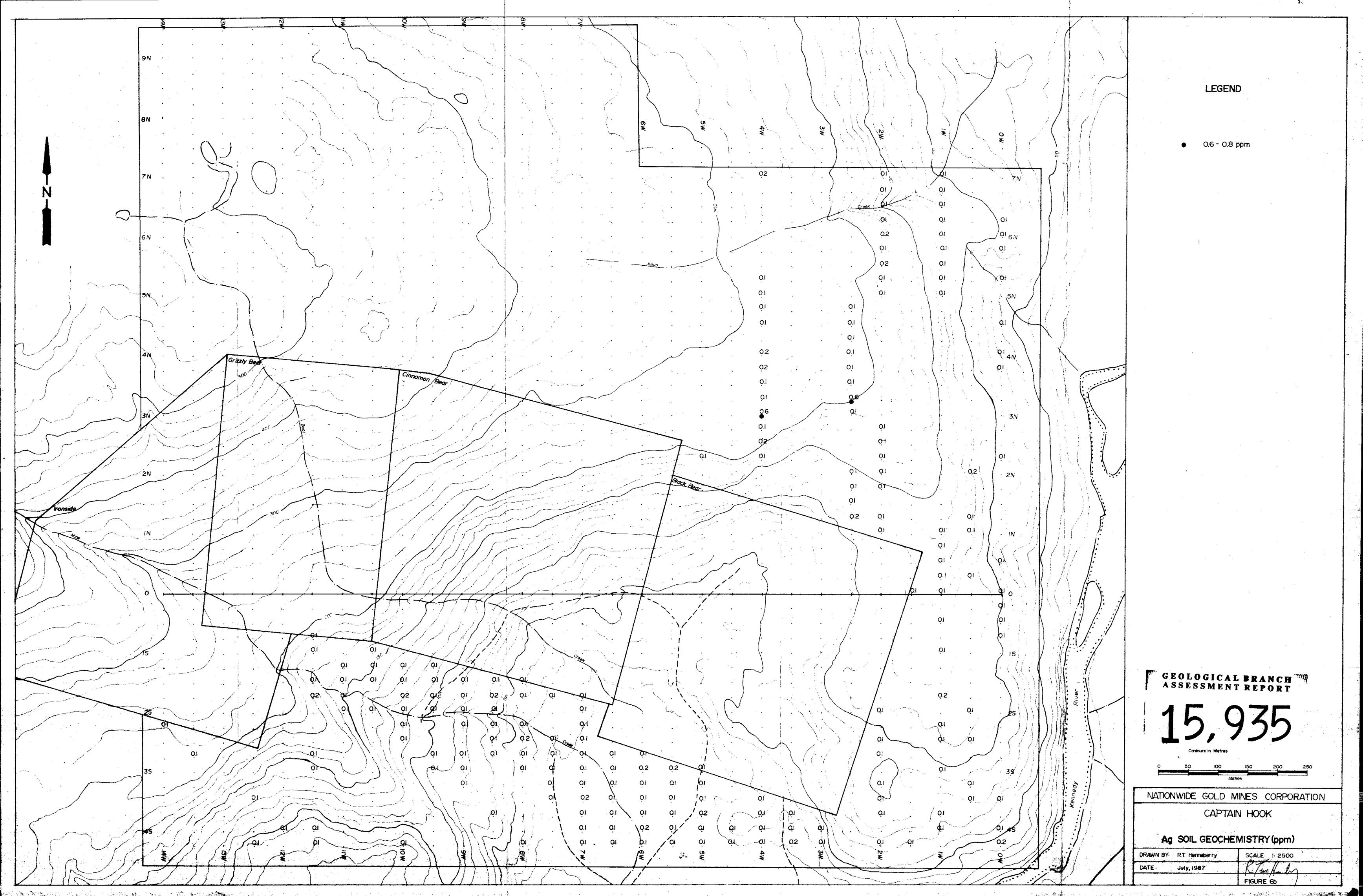
R.TIM HENNEBERRY, FGAC, Consulting Geologist

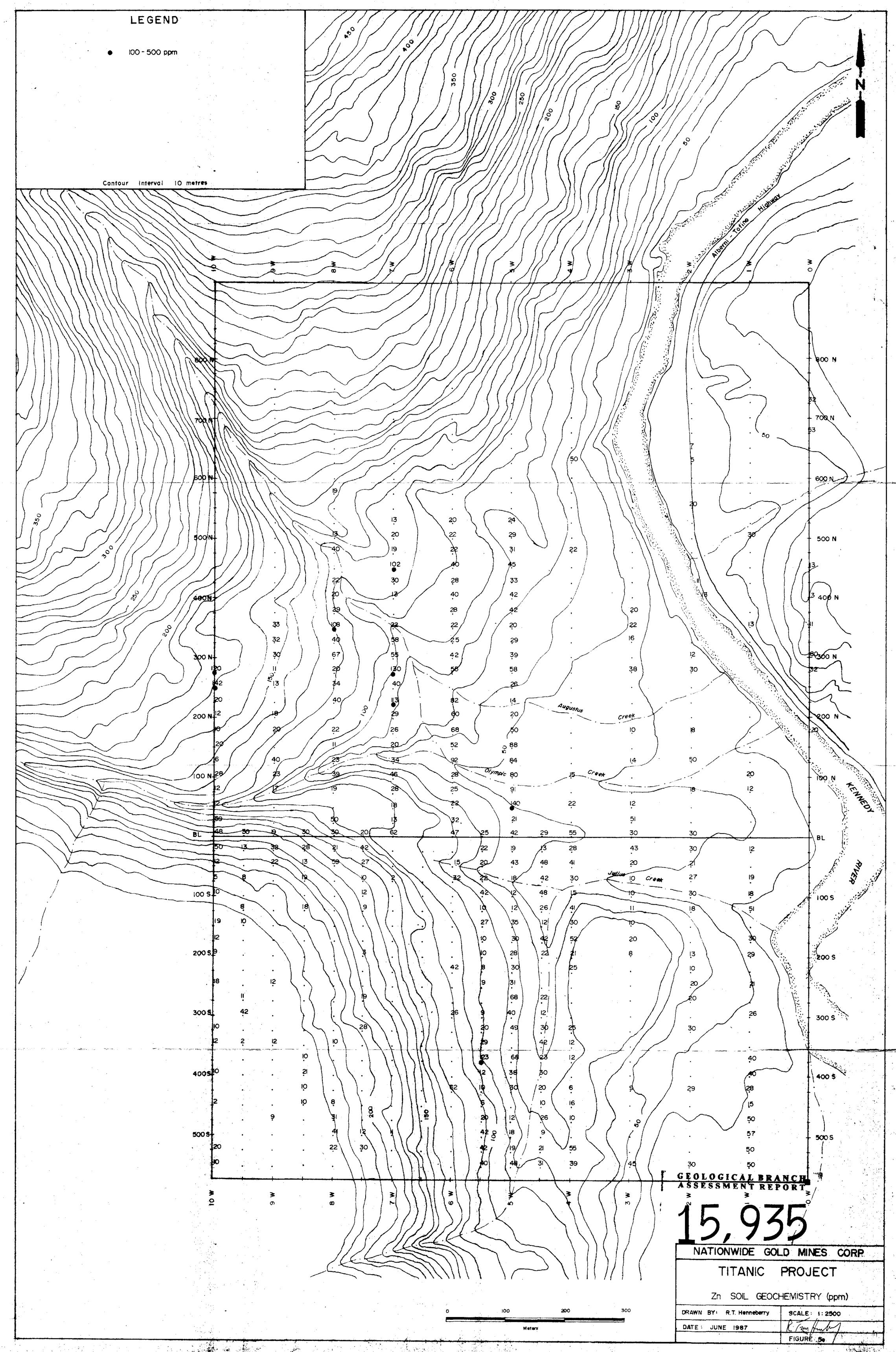
4054 Dundas St. Burnaby, B.C. V5C-IA7 (604) 291-6085

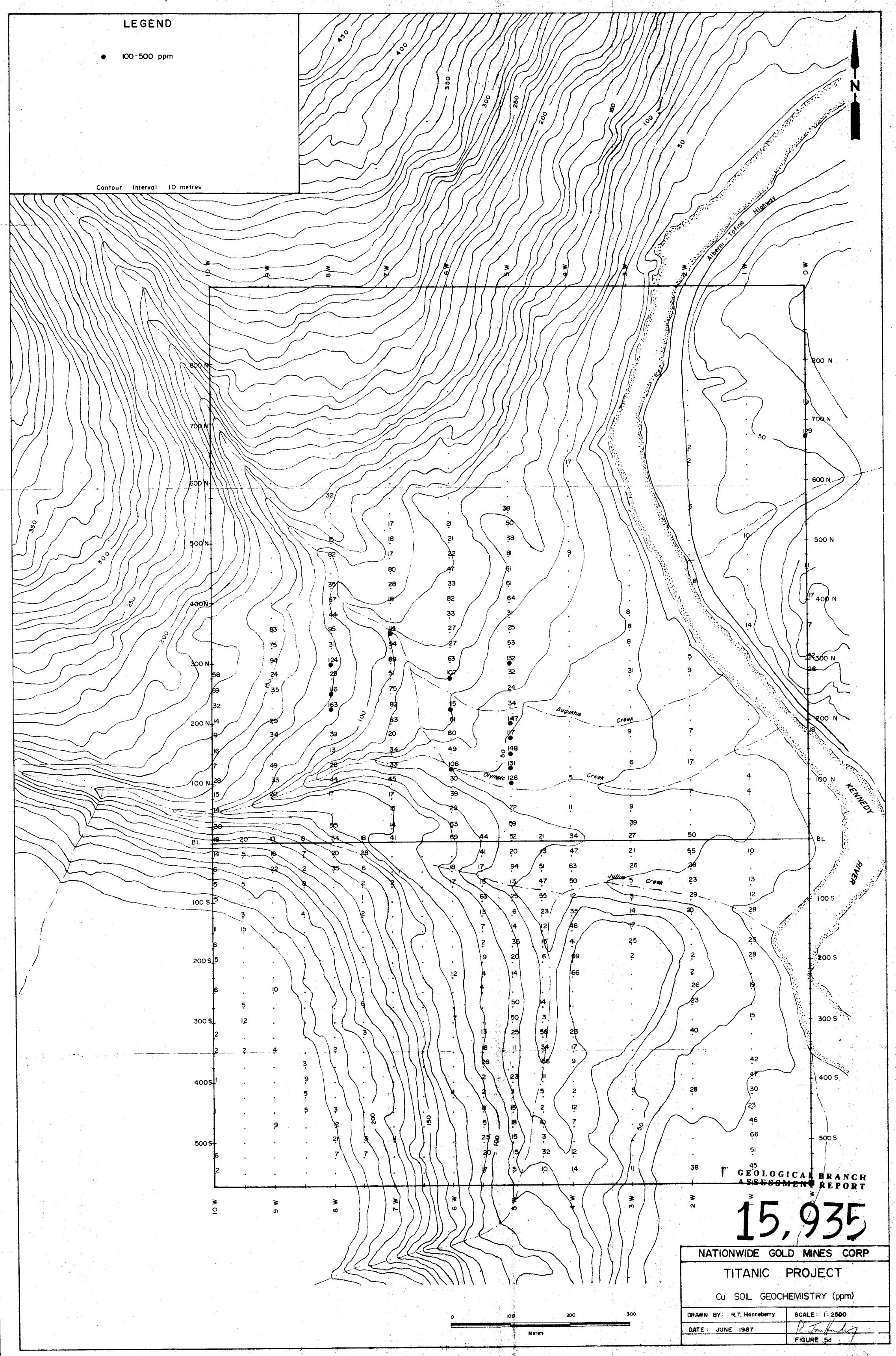
CAPTAIN HOOK

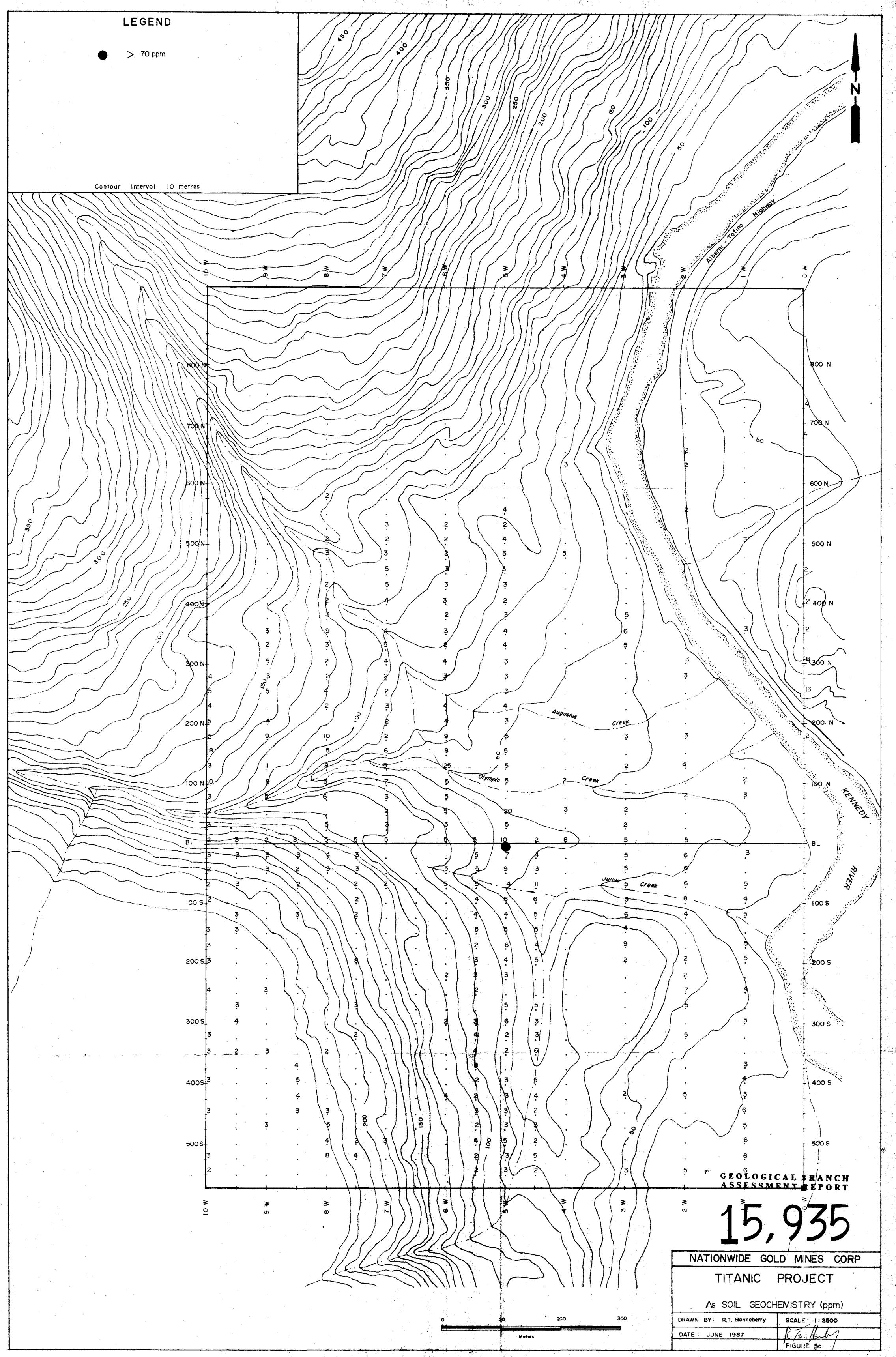
A quartz vein (033/85E) was examined on the Captain Hook property. Vein location is approximately 13+85 W 4+20 N. The showing consists of a recessed cliff face with the vein visible semi-continuously for 10 metres up the face. Vein is also traceable for 3 metres on top until it goes under overburden cover. A couple of hand-trenches were put down along strike with limited success. Quartz sub-crop was located but bedrock could not be reached. Cliff face drops off steeply below showing to a creek a couple of hundred metres down. Traverse along creek for a short distance below showing located an abundance of angular to subangular quartz float, likely derived from the vein. The geometric relationship to the Bear and Mine faults is yet to be ascertained.


The quartz vein ranges in width from 25 to 40 centimetres. Dip appears to be rolling as it changes from 85 E to vertical to 85 W in a space of 10 metres. Vein is locally vuggy with euhedral quartz crystals. Very little sulfide mineralization was noted, though recessive pits in the quartz suggest it has been weathered out. The exposed quartz gives the impression that any mineralization would have been leached or transported a metre or so inside the weathered surface. Low assay values should not discount this vein, for that reason. A small zone of sulfide mineralization is associated with the footwall and hanging wall contacts within the host rock. Mineralization consists of pyrite and pyrrhotite, though a few specks of galena were also noted.


The vein is intrusive in a granite to granodiorite that looks to be a member of the Jurassic Island Intrusions. A narrow but well defined alteration halo has been developed, consisting of a ten centimetre zone of argillic alteration both on the fotwall and hanging wall contacts. This alteration zone also hosts the aforementioned sulfide mineralization. The vein contacts are sharply defined, with the actual vein standing out 10 to 30 centimetres from the actual cliff face. The vein is situated wiothin a break, approximately 2 to 3 metres from a sharply defined contact/ cliff face, suggesting the existance of a shear zone capable of hosting quartz veins.


Four samples were taken:


10596 from bottom of cliff face - 0.25 metre 0.004 opt 10597 from half way up cliff face - 0.35 metre 0.002 opt 10598 from top of cliff face - 0.30 metre 0.002 opt 10599 subcrop grab from one hand trench - grab 0.002 opt


R.Tim Henneberry, FGAC Consulting Geologist

