

3/88 87-144-15969

TRENCHING, GEOLOGICAL MAPPING & SAMPLING, AND DIAMOND DRILLING PROGRAMMES

ON THE

SADIM PROPERTY

SADIM I - 6 CLAIMS

Missezula Mountain Area

Similkameen Mining Division, B.C.

NTS Ref. 92H/10E

Latitude: 4904040 43

Longitude: 120°30'401 32.5] M.R. #

FILMED

For Owner Operator: LARAMIDE RESOURCES LTD.

By

I.M. WATSON & ASSOCIATES LTD.

(0) 0 6 hand [it] [W [m]

learn farms

C Z

I.M. Watson, P.Eng. Vancouver, B.C.

Table of Contents

	Page
NTRODUCTION	1
OCATION, ACCESS, PHYSIOGRAPHY	1
CLAIMS	2
HISTORY	3
SUMMARY OF WORK Trenching/Sampling Programme (Phases I and II) Diamond Drilling Programme	4 5 6
GEOLOGY Regional SADIM Gold Showing Lithology & Structure Mineralisation	6 7 7 8
SUMMARY OF RESULTS	10
CERTIFICATE	11
REFERENCES	12
STATEMENT OF COSTS Phase I Phase II Diamond Drilling Programme Summary	14 15 16 17

Appendices

A Diamond Drill Logs

B Geochemical Analytical Reports

List of Illustrations

In Text

Figure 1 Index Map
Figure 2 Location, Access and Claims
Figure 3 Regional Geology

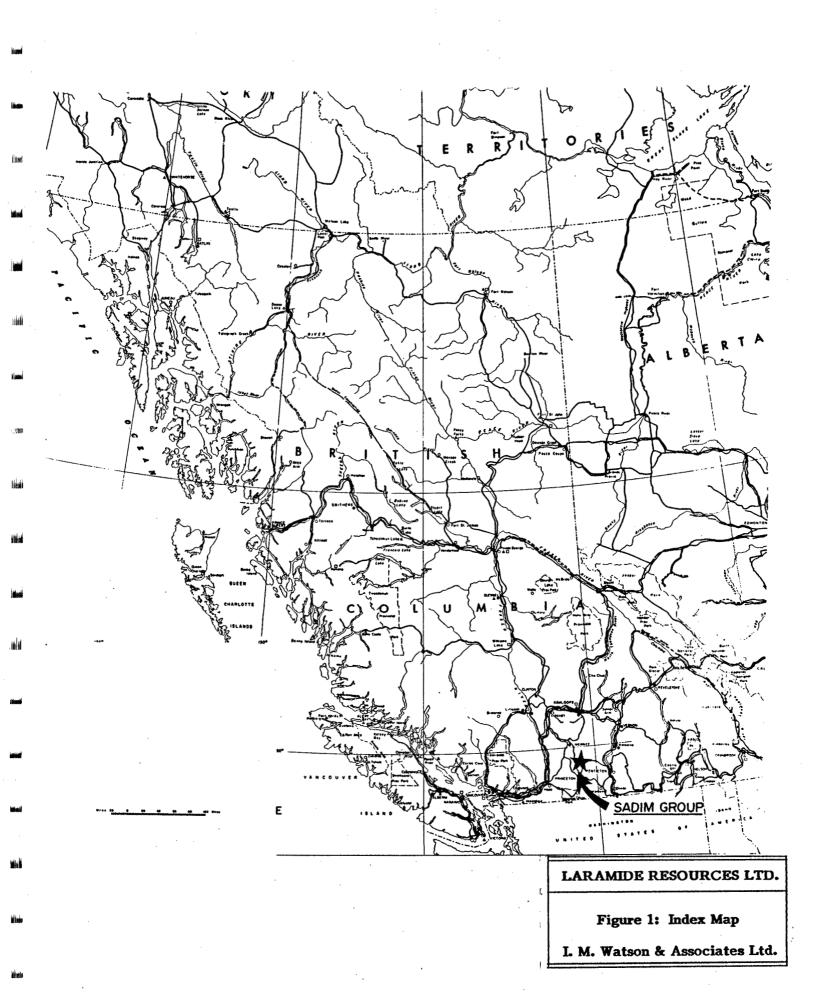
In Pocket

Figure 4	Drill Hole & Trenching Plan - SADIM 3/4 Claims	1:2500
Figure 5	Geology - SADIM 3/4 Claims	1:2500
Figure 6a	Trench-Geology/Drill Holes East	1:200
Figure 6b	Trench-Geology West	1:200
Figure 6c	Trench-Geology South	1:200
Figure 7a	Trench-Geochemistry Rock Sampling East	1:200
Figure 7b	Trench-Geochemistry Rock Sampling West	1:200
Figure 7c	Trench-Geochemistry Rock Sampling South	1:200
Figure 8	Longitudinal Drill Hole Section Geology	1:200
Figure 8a	Longitudinal Drill Hole Section Assays	1:200
Figure 9	Cross Section 3+00S	1:200
Figure 10	Cross Section 3+75S	1:200
Figure II	Section DDH 87-2 - Assays	1:200

INTRODUCTION

The SADIM I - 5 claims are situated in the Missezula Mountain area of southwestern B.C. The claims are underlain by rocks of the Nicola Belt in a geological setting essentially similar to that hosting the porphyry copper-gold deposits of the Quesnel Trough in the Quesnel-Cariboo area.

Geological and geochemical reconnaissance surveys of the SADIM 1 - 4 claims during the summer of 1985 revealed gold and silver bearing quartz veins within a northerly trending zone of altered tuffs close to the common boundary between the SADIM 3 and 4 claims (Watson, 1985). Preliminary sampling of the veins and host rocks gave encouraging results; follow-up trenching programmes during September/October and December 1986 led to a preliminary six-hole diamond drilling programme during January/February 1987.


This report summarises the results of the 1986 trenching and 1987 drilling programmes.

LOCATION, ACCESS & PHYSIOGRAPHY (Figures 1 and 2)

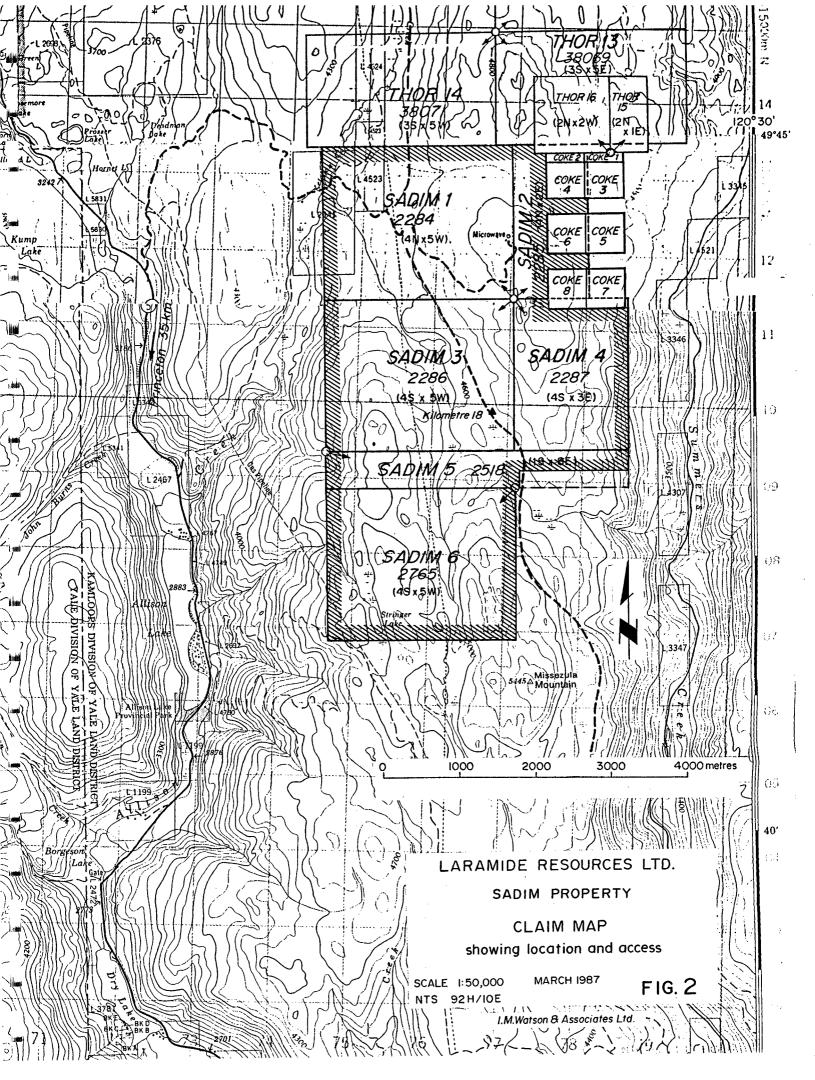
The SADIM claims are situated four kilometres east of Highway 5, 30 kms. north of Princeton and 45 kms. south of Merritt, within the Similkameen Mining Division. The centre of the property is at $49^{\circ}44'40"N$, $120^{\circ}30'40"W$. The NTS reference is 92H/10E.

Access to the property from Highway 5 is by the Dillard-Ketchan Creek main logging roads which branch east from the highway about 12 kms. south to the village of Aspen Grove. The Ketchan Creek road traverses the SADIM I and 3 claims in a southeasterly direction. Distance from Highway 5 to the property is approximately 16 kms.

An alternate access route is by gravel logging road from Highway 5 at a point 2.5 kms. north of Allison Lake. This road climbs east for 5 kms. to join the Ketchan Creek road at the northwestern corner of the SADIM I claim.

Within the property boundaries, logging and 'mining' roads, and the B.C. Telephone microwave tower road, provide good access to all parts of the claim group. The B.C. Hydro power line crosses the centre of the SADIM I and 3 claims.

The property occupies the summit area of the broad, north trending ridge separating the deep fault valleys of Summers Creek to the east and Allison Creek to the west. Elevations on the property range from 1615 metres at the summit of Microwave Hill, on the common boundary between SADIM 1 and 2, to 1200 metres at the headwaters of Allison Creek, in the northwestern corner of the SADIM 1 claim. The topography is typical of this part of the Thompson Plateau, reflecting the effects of a predominantly northerly structural trend, accentuated by glaciation; heavily forested, relatively gentle upland slopes are cut by deep, steep-sided, north trending valleys. Bedrock exposure varies and is largely a function of glacial action; generally outcrop is abundant on ridges and along the upper slopes of steep valleys but lower slopes and valley bottoms bear a thick mantle of glacial overburden.


Away from the main north-south river valleys, drainage is weakly developed and consists of ill-defined water courses and seepages.

Vegetation is dense on shaded and northerly slopes, but is more open on south facing hillsides; mixed conifers, alder and poplar predominate. Logging operations are currently active immediately south of the SADIM claims.

CLAIMS (Figure 2)

The SADIM property consists of six mineral claims containing a total of 88 units, as follows:

Claim Name	No. of Units	Record No.	Recording Date
SADIM I	20	2284	10 October 1984
SADIM 2	8	2285	10 October 1984
SADIM 3	20	2286	10 October 1984
SADIM 4	12	2287	10 October 1984
SADIM 5	8	2518	30 December 1985
SADIM 6	20	2765	8 December 1986

The SADIM 1-4 claims were staked by and on behalf of I.M. Watson on the 17th and 18th September 1984. Ownership was transferred to Laramide Resources Ltd. by bill of sale dated 12 November, 1985. The SADIM 5 and 6 claims were staked for Laramide on 5th December, 1985 and 30th November, 1986, respectively.

HISTORY

The earliest record of work in the SADIM claim area dates back to the early 1960's - the beginning of the porphyry copper exploration boom which persisted until the early 1980's. Most of the work recorded within the present SADIM claim area was concentrated in the northeastern and eastern part of the claim group, over the SADIM 2 and 4 claims.

The following is a summary of past activity in the property area.

- The 40 claim KR group was staked by Plateau Metals Ltd. Work consisted of a magnetometer survey, bulldozer trenching, and an undisclosed amount of diamond drilling. The claims occupied the area presently covered by the SADIM 2 claim, and by the northern part of the SADIM 4 claim.
- Adera Mining Ltd. optioned the KR claims and carried out soil sampling and magnetometer surveys followed by diamond drilling. The claims were allowed to lapse.
- 1970 Amax Explorations Inc. staked the RUM claims; the southern half of the property lay within the area now covered by the SADIM 2 and 4 claims. Work done by Amax consisted of geological mapping, soil sampling, and magnetometer and I.P. surveys, followed by a nine-hole, 1879-foot percussion drilling programme.
- 1972 Kalco Valley Mines Ltd. optioned the RUM claims, then relinquished the property after a programme of mapping and trench sampling.

- 1973-74 Bronson Mines Ltd. staked the CINDY claims, covering ground now lying within the SADIM I claim. Mapping and prospecting programmes were carried out.
- Ruskin Developments Ltd. acquired the RUM claims, and completed geological mapping and soil sampling surveys before allowing the ground to lapse.
- 1979-81 Cominco Ltd. staked 55 claims, (RUM 1-55), coincident with the main area of interest covered by the original RUM claims staked by Amax. Cominco refurbished and renumbered the old Amax grid and used it for control of geological, soil and rock geochemical, and magnetometer surveys. Since then Cominco has allowed the claims to lapse.
- The SADIM 1-4 claims were staked by I.M. Watson and subsequently transferred to Laramide Resources in 1985. In the fall of 1985 Laramide carried out reconnaissance mapping, prospecting and geochemical soil sampling. Encouraging soil and rock geochemical results in the southern part of the SADIM 3 and 4 claims led to detailed sampling and mapping of the anomalous area. Gold and silver bearing quartz veins were found in rusty altered tuffs, over a strike distance of at least 300 metres. Preliminary chip sampling of the mineralised vein material yielded assays of up to 4,120 ppb Au, and a selected grap sample contained 0.20 oz/ton Au.

SUMMARY OF WORK SEPTEMBER 1986 - FEBRUARY 1987

1110

The area of gold mineralisation discovered in 1985 is situated 200 metres east of the Ketchan Creek logging road at kilometre 18. Recent logging (1983) has bared a triangular area, about I kilometre long and 500 metres wide at the north end of the clearing. The topographic grain is northerly. A shallow, south draining swampy depression bisects the cleared area. To the east the ground rises moderately from the edge of the clearing to the summit of the broad ridge separating Allison and Summer Creeks. The mineralised veins and host tuff are intermittently exposed along the

eastern side of the swamp over a distance of 300 metres. Other, smaller exposures of mineralised veins have been found up to 700 metres to the north, but the 1986-87 trenching, sampling and drilling programmes were confined to the larger southern area of interest.

(a) Trenching/Sampling Programme

Phase I - Sept. 23 to Oct. 2, 1986 (Figures 4, 6a, and 7a)

Ten trenches were completed using a JWSB H90 Excavator rented from Douglas Lake Ranch Co. Trenches were laid out east-west across the general strike of lithology in the showing area. Seven trenches (Nos. 1-7) were spaced at 25 metre intervals along a 160 metre strike length. Host rock exposures a further 100 metres to the north and south were investigated by trenches #9 and #10 (north) and #8 (south). The total length trenched during Phase I was 320 metres. Average depth of the trenches was 1.5 metres, and overburden cover ranged from zero to 2.0 metres.

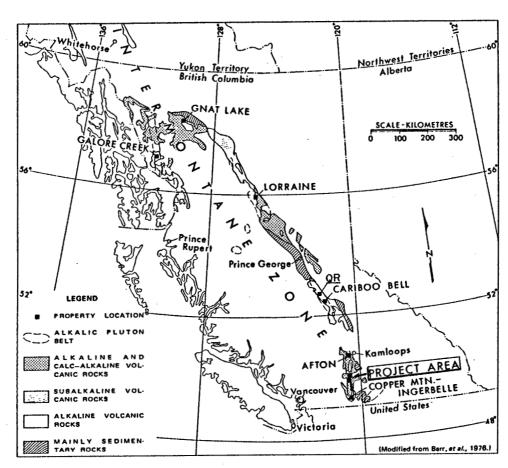
All trenches were sampled and mapped; continuous chip samples were taken at I metre intervals. Additional chip and channel samples were taken to test individual veins or zones of specific interest. A total of 186 samples was collected, and shipped to Acme Analytical Laboratories Ltd. in Vancouver, to be analysed for Au, Ag, Pb and Cu. Gold was determined by atomic absorption (AA), and silver, lead and copper by the inductively coupled argon plasma method (ICP).

Phase II - December 10 to 17, 1986 (Figures 4, 6a-c, 7a-c)

The Phase II trenching programme was undertaken to test the extent and tenor of the gold bearing quartz vein stockwork revealed by Phase I. Trenches #'s 2 - 7 were extended to the east and the ground to the north and northeast of the anomalous zone was tested by new trenches IA and

II; trenches, 12, 13 and 14 explored the area west of the swamp. Total length of trenches completed, mapped and sampled during Phase II was 455 metres. Average depth was approximately 1.5 metres. 175 chip samples were sent to Acme Laboratories for analysis.

b) <u>Diamond Drilling Programme - January 24th - February 11th, 1987</u> (Figs. 4, 5 and 6a)


A preliminary diamond drilling programme was laid out to test the quartz-vein stockwork exposed by the trenching programme. Six vertical NQ diameter holes totalling 292 metres were drilled by Rainbow Diamond Drilling Ltd. of Merritt. The holes were evenly spaced along a 200-metre strike length; maximum depth attained was 94 metres in hole 87-3. The planned programme was curtailed by broken ground, and particularly by a wide easterly dipping shear zone. Circulation losses and high compressive forces prevented four of the holes penetrating the shear and only one of the other holes (87-3) reached target depth. All core was logged, split and sampled at one metre intervals. 270 samples were shipped to Acme Analytical Laboratories where they were analysed for gold, silver, lead and copper.

The split core is stored in covered racks at the Willow Heights Ranch, Aspen Grove.

GEOLOGY

Regional

The Upper Triassic Nicola Group rocks extend from the 49th parallel north to Kamloops Lake, and continue north beneath Tertiary cover to emerge in the Quesnel area as the Quesnel Belt (Preto, 1979).

Upper Triassic and Lower Jurassic volcanic rocks, significant copper deposits, and associated alkalic plutons in the Intermontane Zone.

LARAMIDE RESOURCES LTD. SADIM PROPERTY REGIONAL GEOLOGY

SCALE 1:13,500,000(approx)

MARCH 1987

The volcanics of the Quesnel and Nicola Belts form a mixed alkaline and calc-alkaline sequence of basalts and derived breccias, tuffs, and minor sediments.

The volcanic rocks are intruded by comagmatic alkaline plutons, ranging in composition from syenogabbro to alkali syenite. The intrusions appear to be structure related and occur in belts along major lineaments and faults. They vary in size from plugs to small batholiths, and have been emplaced into the volcanic centres which produced the abundance of volcanic material (Barr et al, 1976).

In the Allison Lake-Missezula area, Preto has delineated three assemblages - a <u>Western Belt</u> of easterly dipping calc-alkaline flows, pyroclastics and sediments; a <u>Central Belt</u> of alkaline and calc-alkaline volcanics and intrusions, and minor sediments; and an <u>Eastern Belt</u> of westerly dipping volcanic sediments, tuffs and alkaline flows associated with small monzonite porphyry stocks. The belts are separated by major north-striking faults.

Preto believes that the Central Belt of dominantly volcanic rocks originates from eruptive centres along the major fault system, and points out the greater concentrations of mineral deposits along this belt.

The SADIM claims lie immediately west of the Summers Creek Fault, which marks the eastern boundary of Preto's Central Belt.

The property is underlain by northerly striking intermediate to basic flows, green monolithic and polylithic volcanic breccias, tuffs, and less abundant argillites and limestones. These rocks have been intruded by irregular bodies of gabbroic to dioritic composition. Volcanics and sediments marginal to the intrusions have been variably propylitised (epidote-pyrite-chlorite-carbonate) and locally host erratically distributed copper-pyrite zones.

SADIM Gold Showing Area (Figures 5, 6a-c, 8, 9 and 10)

14

Lithology and Structure: The trenching and drilling programmes have provided additional detailed information regarding the lithology, structure and mineralisation of

the area hosting the SADIM gold zone. The geological setting is shown on the 1:2500 geological plan (Figure 5).

The general trend is slightly west of north; dips are steep to moderate easterly. 'Tops' have yet to be recognised.

A major easterly dipping shear zone was intersected in all the drill holes and projects to surface along the north trending swamp in the middle of the map area (Figures 5, 8, 9 and 10). The fault, probably a thrust, separates essentially andesitic flows (1a) and tuffs (1e) on the west from mixed tuffs (1e, 1e sil, 1e cal) on the east. The fault zone, which is about 15 metres thick, occurs along a dark grey carbonaceous limestone (See Figures 8 and 10), but also contains thick sections of quartz rich gouge.

The shear has caused intense and extensive fracturing and alteration (silification, pyritisation) in the adjacent rocks, particularly the tuffs above and to the east of the fault.

The silicified tuffs (le sil) appear to be altered equivalents of the green and grey tuff (le)-contacts in core and outcrop are irregular and transitional, and veins within the darker tuffs have alteration 'haloes' along their contacts. The silicified tuffs are pale grey, fine grained, and contain abundant small closely packed quartz eyes in a fine feldspathic groundmass. Pyrite occurs as fine disseminations, and is concentrated most heavily in zones of veining and fracturing. Weathering has oxidised the pyrite and the tuffs are strongly and pervasively hematitised to a depth of 10 metres.

An extensive fracture controlled quartz vein stockwork has developed in the altered tuffs, particularly in the silicified tuffs. Veins range from hair fractures to greater than one metre in thickness. There appear to be two dominant strike directions, roughly 30° north and south of east-west. Dips are southerly; the diagrammatic representation of veins in the 3+75S cross section (Figure 10) suggests that dips tend to flatten with depth as the veins close with the major shear zone.

Mineralisation: The quartz veins contain erratically disseminated sulphides, mainly pyrite, as well as chalcopyrite, and less commonly galena. In many cases, sulphides are concentrated along the vugay margins or centres of a vein. Galena is usually

present as very fine crystal clusters or linings along hair fractures in the quartz. Sulphide concentration is related to vein size and to density of fracturing of the host tuff. Trench and drill hole sampling results show a close relationship between precious metal content, quartz veining (and fracturing), and sulphide concentration. The presence of galena is a good indication of elevated gold and silver content.

SUMMARY OF RESULTS

1111

- I. Gold mineralisation on the SADIM property occurs in a quartz-vein stock work within silicified and calcareous tuffs (le sil and le cal) above a major northerly striking, easterly dipping shear zone.
- 2. Significant precious metal contents have been obtained from trench sampling over an area approximately 200 metres by 60 metres. The gold content of chip samples ranges from 50 to 4,350 ppb. A 1.1 metre vein in Trench #2 assayed 6,390 ppb Au (0.19 opt.).
- 3. The six hole, 292 metres preliminary drilling programme was curtailed by bad ground within and adjacent to the shear zone, but tested the stockwork to a depth of 50 metres (Hole 87-1). Drill hole and trench sample data suggest that precious metal content increases from south to north (Figure 8a). The most northerly hole, 87-6, cut a 9.0 metre section from 22 metres to the bottom of the hole which averages 3,090 ppb Au (0.09 opt.) and 25.4 ppm Ag (0.74 opt.) and includes a one metre section assaying 19,800 ppb Au (0.58 opt.) and 159.1 ppm Ag (4.6 opt.).
- 4. The stockwork is open to the east (down-dip) and to the north. Although gold and silver content appears to diminish to the south, further, deeper drilling is needed to establish the southern limits of the mineralised veins.
- 5. Comparison of the geological and assay plans and sections shows a close correlation of gold/silver content with quartz veining and sulphide concentration (pyrite, chalcopyrite and galena in order of abundance). The presence of galena is a good indication of elevated gold and silver content. The Au:Ag ratio is consistently 1:8.

6. Further drilling and trenching is required to establish the full extent and tenor of the SADIM stockwork. The northerly strike and easterly down-dip potential of the zone are obvious priority targets.

I.M. WATSON & ASSOCIATES LTD.

I.M. Watson, P.Eng.

CERTIFICATE OF QUALIFICATIONS

I, Ivor Moir Watson, of 584 East Braemar Road, North Vancouver, British Columbia, hereby certify that:

- 1. I am a consulting geologist with offices at 816 675 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of St. Andrews, Scotland (B.Sc. Geology 1955).
- 3. I have practised my profession continuously since graduation.
- 4. I am a member in good standing of the Association of Professional Engineers of B.C., and a Fellow of the Geological Association of Canada.
- 5. Work on the SADIM Property was carried out during the periods September 23rd to October 2nd, 1986; December 10th to 17th, 1986; and January 24th to February 11th, 1987 by the following personnel:

1. M. Watson- Geologist/Supervisor

J. H. Randa - Prospector/Sampler - Sept. 23 to Oct. 2,

D. England - Sampler - Sept. 29 to Oct. 2, 1986

D. Whalen - Prospector/Sampler - December 10 to 17,1986
 S. Angus - Prospector/Sampler - December 10 to 17,1986

R. Gibbs - Core Splitter - January 24 to February 11,1987

March 26, 1987 Vancouver, B.C.

I.M. Watson, B.Sc., P.Eng.

REFERENCES

- Barr, D.A., Fox, P.E., Northcote, K.E., and Preto, V.A., 1976. The Alkaline Porphyry Deposits A Summary; in CIM Special Vol. No. 15.
- Preto, V.A., 1975. Notes to Accompany Preliminary Map No. 17. Geology of the Allison Lake Missezula Lake Area. B.C. MEMPR.
- 1979. Geology of the Nicola Group between Merritt and Princeton, Bull. 69, B.C. MEMPR.
- Watson, I.M., 1985. Reconnaissance Geological and Geochemical Surveys of the SADIM Group, for Laramide Resources Ltd.

Assessment Reports

- #517 1963 Report on the K.R. Group of Plateau Metals Ltd. by Asarco Smelting & Refining Co. (Geology, magnetometer survey.)
- #985 1967 Geochemical report on the K.R. Group by C. Lammle for Adera Mining Ltd.
- #3363 1971 Geological, Geochemical and Geophysical Report on the Ketchan Creek property by J. Christofferson, G. DePaoli, and C. Hodgson for Amax Exploration Inc.
- #5044 1973 Geological and Prospecting Reports on the Cindy Group by D.C. Malcolm and E. Sleeman.
- #6036 1976 Geochemical Report on Rum Claim Group by D.G. Mark for Ruskin Developments Ltd.
- #8352 1980 Ground Magnetic and Soil Geochemical Survey over part of the Rum Property, by D.T. Mehner for Cominco Ltd.
- #9407 1981 Soil Geochemical Survey over part of the Rum Property, by D.T. Mehner for Cominco Ltd.

Statement of Costs - SADIM Claims

Trenching, Sampling & Mapping Programme -September 23 to October 2, 1986 SADIM I - 5 Claims Phase I

Phase II Trenching, Sampling & Mapping Programme - December

10 - 17, 1986

SADIM 1-4 Claims

Diamond Drilling Programme January 24 to February 11, 1987

SADIM I - 6 Claims

STATEMENT OF COSTS - SADIM CLAIMS

Phase I

		Phase I		
a)	Trenching - 23 - 26 September, 198	<u>36</u>		
	Salaries I.M. Watson (Consulting Geolog 4 days @ \$400/day J. Randa (Prospector) 3 days @ \$185/day	ist/Supervisor) \$ 1,600.00 555.00	\$ 2,155.00	
	Accommodation/Board		245.00	
	Vehicle Rental - (4 x 4) 4 days @ \$30/day Fuel Excavator Rental JSWBH 90 Excavator		120.00 51.50	
	Operator Mob & Demob		2,300.89	\$ 4,872.37
p)	Geological Mappling/Sampling - 27 Salaries a) Field Work 1.M. Watson (Consulting Geolog 6.5 days @ \$ \$400/day J. Randa (Prospector) 6.5 days @ \$85/day D. England (Labourer/Assistant 3 days @ \$116/day b) Report Preparation 1.M. Watson 3 days @ \$400/day Accommodation/Board	ist/Supervisor) \$ 2,600.00 1,202.50	5,150.50 1,200.00 660.31	
	Telephone, Freight		49.96	
	Vehicle Rental 6 days @ \$30/day Fuel Supplies Geochemical Analyses - Acme Labo 186 samples @ \$11.50/ea (Au, A		180.00 50.75 80.67 2,147.07	
	Drafting - D. Phillips 12 hrs. @ \$20.00/hr.		240.00	8,789.26
		Total Phase I		\$13,631.63

I.M. WATSON & ASSOCIATES LTD. -

Phase II

a)	Trenching Dec. 10-15, 1986		
	Salaries I.M. Watson (Consulting Geologist/Supervisor) 3 days @ \$400.00/day	\$ 1,200.00	
	Accommodation/Board	105.00	
	Vehicle Rental (4 x 4) 3 days @ \$30.00/day	90.00	
	Fuel	22.98	
	Excavator Rental JSWB490 - 41.5 hrs. @ \$95.00 \$ 3,942.50 Operator Costs 16.5 hrs. @ \$20.00/hr. 330.00	h 720 7E	/ 157 72
	Mob/Demob - 7 hrs. @ \$66.75 467.25	4,739.75	6,157.73
ь)	Geological Mapping/Sampling Dec. 11-17, 1986		
	Salaries I.M. Watson (Consulting Geologist/Supervisor) 5 days @ \$400.00/day 2,000.00 S. Angus (Prospector/Sampler) 8 days @ \$140.00/day 1,120.00 D. Whalen (Prospector/Sampler) 8 days @ \$180.00/day 1,840.00	4,560.00	
	Accommodation/Board	840.09	
	Telephone, Freight	34.94	
	Vehicle Rental (4X4) 5 days @ \$30.00/day	150.00	
	Fuel	45.97	
	Supplies	199.84	
	Geochem Analyses (Acme Analytical Labs) Au, Ag, Pb, Cu (175 samples + freight)	2,138.14	
	Drafting - D.L. Phillips Drafting Services 22 hrs. @ \$20.00/hr.	440.00	8,408.98
	Total Phase II		\$14,566.71

Diamond Drilling Programme - 24 January - 11 February, 1987

	Total	\$40,105.57
Drafting - D.L. Phillips Drafting 41.5 hrs. @ \$20.00/hr.	830.00	40,105.57
Map Printing	163.14	
Assaying – Acme Analytical Laboratories 270 core samples @ \$10.50/ea 2,835.00 Shipping 96.98	2,931.98	
Diamond Drilling - Rainbow Diamond Drilling 292 m NQ @ \$59.05/m (1,800 ft.) 17,244.00 Filed costs, consumables 5,661.00	22,905.00	
Supplies/Equipment	686.86	
Fuel	269.46	
Vehicle Rental (4 x 4) 19 days @ \$35.00/day	665.00	
Telephone/Freight	126.82	
Accommodation/Board	1,802.31	
I.M. Watson (Consulting Geologist/Supervisor) 19 days @ \$400.00/day 7,600.00 R. Gibbs (Core Splitter) 19 days @ \$115.00/day 2,185.00	9,785.00	
Salaries L.M. Watson (Consulting Coologist/Supervisor)		

SUMMARY

	\$63,431.54
Diamond Drilling	40,105.57
Phase II Trenching, mapping, sampling	14,566.71
Phase I Trenching, mapping, sampling	\$ 8,759.26

I.M. WATSON & ASSOCIATES LTD.

I.M. Watson, P.Eng.

APPENDIX A
DIAMOND DRILL LOGS

CLAIM NO.	DIAMOND DRILL	. RE	COR	D	PROPI	ERTY	DADIM		•••••			HOLE	NO	87	<u>-1 Ki</u>	ļ.
LATITUDE	3+505 ELEVATION	BEARING	c	D	_{ЕРТН} <u>51.</u>	5m	STARTED	24.	1.8	7_	COMP	LETED	<u>27</u>	<u>. / .</u>	87	
DEPARTURE	7+85W SECTION	DIP	- 90') 	DRILLEC	BY Rame	ow Diane	ושר פנים	LUNG	rogge	3 8Y	IMW	<u> </u>		1/Q	
DEPTH M .	FORMATION	SAMPLE NO.	FROM	10	HTDIW	Аи ррь	ASSAYS Gg ppm	Pb ppu	Cuppu							
0 - 2.74	EVERBURDEN (Boundes, Gay)															
(2.74)	(COSING TO 4.9 m)				ļ									!		
2.74 - 7.00	TUCK : SINCERED - RUSHY WEATHERING.	88701	2.70	4.50	1.3	105	0.8	12	6			!				
(4.26)	Oxigises, Pare Gazy - Gazy Creens WHERE FRESH		:				ļ									
	ABUND. SHALL SENI. ROWNED CLOCKLY BEKED.			<u> </u>										1		
•	QUARTZ EXES IN F. FRANSPORING CHAND. MASS.				<u> </u>									!		
	CORE MUCH BENES, FRAGMENTED - HIGHLY													$\perp \perp$		
	FRACTURED THROUGHOUT DOM. D 40-60°/CA.													$\perp \downarrow$		
	PURISE. FINELY & GRATIERLY DISSON.															
	THOUGH SECTION, HOLE HEAVILY CONC. IN													!		
	& AJJACENT TO QUARTZ KNS/KNLTS.													-		
	Puperz Wis @ -		V.				٠.									
	3.10-3.85: - (Brown Caz)	88702	4.0	5.0	1.0	"	0.1	5	75							
	5.30-5.70: (Broken Care)			<u></u>											·	
	5.88 . 5.92: 2 55°/CA	88703	5.0	6.0	1.6	165	1.6	13	88					$\perp \downarrow$		
	609-6.10: 300/CA						ļ	<u> </u>				1		$\perp \downarrow$		
	6.68 - 6.77: - 35% A + MOJ. Dissen POS	88704	6.0	7.0	1.0	840	7.9	350	205					$\perp \perp$		
	6.90 - 7.50: - 40°/KA															
					1					.					.	

DIAMOND DRILL RECORD PROPERTY South HOLE NO. 87-1 7.2 ASSAYS FROM FORMATION An pob Da pom Do par Cupum 6.0-7.0 . Hem. Gove 70%. CORE LOSS IN BROKEN CROWN :-4.7. 6.1 : 0.15m (Lore Recovery a 77%) 7.00-24.8 TURE SILVERED - OS ABOVE BUT FRESH. (21.8) (HENDERE AGENT EXCEPT ALONG OPEN FRACTS.) -CONTINS PRECE. ZONES OF DAKE GREY CHARGERS TUFF, POORLY DEMANCHIED MANSTONIAL WITH FAR BUT - CREY PURINCES ISTURBED TOLL S. @ 12.0 - 12.9 : 16.5 - 18.5 (BERLIED ADS/ VMS. FRATE - FINELY & POTENTY DISEST. EXCEPT IN UNALTERED ZONES; - MOST PROVINCEST IN & ADJACEST TO QTZ WAS 76 1.0 265 8.0 1.7 88705 7.0 GLARIZ VENS . DISTRIBUTION DESCRIPTION ON 3.1 8.0 9.0 108 88706 1.0 FRACTURE DENSITY INTENSITY:-26 23.6 3260 7.91-8.30: 150/ca - ALONG CAR. LINES FRACT. 88707 10.0

9.10 - 9.60 : (BROKEN COLE) VN. FRANTO 11/ CONTACTS

DEPTH		SAMPLE	****	T	1		ASSAYS			1		
DL7 1.1	FORMATION	NO.	FROM	10	WIDTH	An pob	agreem	Po ppm	Cuppan		_	
0-28.8	YM. CONTIANTS TWO GENERATIONS QTZ DON. CLOSEN, CUT?			·			·					
OUTD .	By MILLY, chance. PyRITE IN VW (WK.) is WALL ROCK (HEAVY)											
	960-4.90: WILTS. 1. 750/CA + 400 DISSEN. Py				<u> </u>							
	10.5 - 11.8: 7º/ca. MINDE Py IN W., HILY DISSEN. IN WALL	88708	10.0	11.0	1.0	3,	0.1	4	131			
-	Rock						,					
	12.0-12.5 : VALES ASSOCIO WITH CH. SLIPE 15º/CA	88709	11.0	12.0	1.0	355	2.2	6.	57			
	13.0-13.3: " 30%											
	13.6 - 14.2 : ABUND F. WILFS IN SHAFFERED (BUT TICHT) TUFF	88710	12.0	13.0	1.0	10	0.1	3	18			
	associo. With Rosemy Dresen. Ly. VI. @ 14.2-20°/CA.	,						٠.				
	Consons Ry, cep (Miky Marcins) 167: YN @ 60°KA	88711	13.0	14.0	1.0	265	1.5	۵	58			
	17.0.17.6: MARGEOUS RADONLY CRIENTED YNS/VILTS											
	(Brown Core) ASSOCIO WITH CIR LINED FENERSO 30°/CA	88712	14.0	15.0	1.0	995	6.2	5	51			
	17.7 : 55°/ca (2 0.5 cms), SL. Vuccy.											
	14.3 : Ramieyacy, ENCL. Super Bx. FRAS.	88713	15.0	16.0	1.0	52	0.3	2	45			
	187 : 40% (1 3 cms) Ry hox Corners											
	19.0 € 19.1: 550/CA (1 cm) - ASSOCIO WITH CHIE	88714	16.0	17.0	1.0	33	0.1	4	4			
	Sups (19.1 - 20.2)											
	20.9-30.3: Q12W+Ry 2016 - WSE 20.9; 2.4-21.5;	88715	17.0	18.0	1.0	12	0.1	6	51			
	216-220 25°/CA INCL. Py. CCP. V.F. PBS											_
	, ,	88716	18.0	19.0	1.0	185	0.9	7	83			

DIAMOND DRILL RECORD PROPERTY SADIM HOLE NO. 81-1 PH FROM 10 HIDIH FORMATION Popu Kuppu Da ppin ALPOD (7.00.28.8) 234-23.8: Y.F. KNLTS IN FINELY FRACT. HOTELED GREY TOKE 88717 19.0 88718 20.0 495 21.0 124 10 CONTO. 21.9-25.9 : MUNEERUS RREEN, VALTS. IN TIGHT FRACT, ZONE, 88719 21.0 22.0 2510 WKLY. DISSEL F. Ry. 88720 22.0 23.0 1.0 26.8 : VN. (20ms) TR Ry 55°KA 88721 23.0 24.0 1.0 27.0 - 28.8: NUMBEROUS KILTS. IN TIGHT SLOTTER ZONE 88722 24.0 250 1.3 103 25.0 1.0 75°/CA., VNLTS. FRINCED BY PY. 88723 25.0 26.0 1.0 1330 328 10.4 5.2 174 FRACTURES / FAULTS / STRUCTURE 88724 26.0 27.0 1.0 740 88725 27.0 28.0 1.0 305 20.4: 3em Cours / SIMTTER ZONE 60º/CA 1.8 5 115 20.5.20.7 : Sup 150/KA 88726 28.0 29.0 1.0 435 3.0 21.5 : FARCT. TICHT, 80°/CA (DISPLACES W.) 22.7.23.0: SHOTTER / FRACT. ZONE, TIGHT. 23.0 223.3: 11 SLIPS @ 50°/CA 24.9-259: TICHT FRACT, BURGA ZONE, RY WKLY. DISSEN. GLONG GROCI. PLANER. 30.35°/CA 28.8.31.4 TUEE . DOM. DK. BLUE CREY, MOTTLED BUT (2.62) TRANSFONDE WITH POLE GREY BUE SILVERS TOCK. CONTACTS MAGUE, MRZG, SIL. TOKK CENTRALY MARGINAL TO Q12. WS. & FRACTS

DEPTH	FORMATION	SAMPLE	FROM	10	WIDTH		ASSAYS				T	\top	T
		NO.			WIDIN	Au pob	Ag pon	& ppu	Cupan				1
5.8.31.4	WHICH FORM IRRECT. NEWWORL THRO' SECTION. PARE CREY												
ioves :	TOFF AFFERDS TO BE ALTERED (SILLEFIED, SECT) EQUIV. OF												
	CREY MOTERA.												1
	QTZ. VN & FRACT. ATTITUDES DON @ 70-75%CA											7	1
	Any 35°/c4.										\top	\top	1
	PLATE WKLY DISENT THEOUGHEST, STRONGES IN SIL.										1		7
	ZONES, & MARCINAL TO QTZ. VNS.											1	1
	Moss Roy. Q12. VAS & -									\neg		十	1
	29.5 : (40°/CA); 30.1; 30.4; 30.6 (AL @ 135°/G)	88727	29.0	30.0	1.0	19	0.1	2	35	$\neg \dagger$		\top	†
	31.2 (30%/4)	00 701								7	\neg	+	†
	MINOR CHE DONG WAS /SLIPS & FRACES.	8 8728	30.0	31.0	1.0	43	0.3	3	63		1	1	\dagger
	. /										\top	\top	†
4-39.2	TUFF SILICIFIED: SIMILAR TO SECTION (1.0-28.8)	88729	31.0	32.0	1.0	275	1.5	4	119	1			1
	asove Heavily Fractures, Finay in worke her												T
	of Section (F. FASETS D 2 Sem. WiGENES)												T
	Br. Berney Winey Surgers / FRACT, Down												T
	HOLE (FROM 33 m) COLE BLOKEN OVER LOWER 6 m											1	t
	ESF Segn. QT2 VNS /VNLTS., CHL., RELATED TO											1	T
	GRACTURNES.			-								1	T
	PRITE (+ OCC. CCP + PDS) GRATICALLY DISSEN	i								+	-	1	t

PROPERTY____SADIM DIAMOND DRILL RECORD HOLE NO. 87-1 96 ASSAYS SAMPLE FROM FORMATION Poppon Cupa Augob Agran 505 (3.4.39.2) THROUGHTS, HEAVIEST & CORRECT AD1. TO DTZ KUS, 88730 37.0 33.0 3:2 83 12 Comis 12-5% Ry overgre 3 15 QTZ Vas & Supinges 88731 33.0 34.0 350 2.0 32.25 : 1 45°/CA , ILARO . FINE BXTN ADOK VW. 335 2.3 114 World Case Break Ry TR Pas Two Generalis 88732 34.0 35.0 QTZ . GLOSSY & MILKY. 32.78. 32.80: 550/CA F. Ry move, Corners 88733 35.0 36.0 1.0 440 3.3 160 32.9: ADJ TO SUAS @ 32.7 ~ SOO/CA. 33.1 : VALT (1cm) 80°/CA HINDR Py. 88734 36.0 37.0 1.0 62 46 0.4 34.1: (Bens) - MULTIRE (HINKY & GLOSSY), F. Ry 88735 37.0 38.0 1.0 150 1.0 36.0-36.9 - TUFF. DK. BWE GREY, UNALTERED 88736 380 390 1.0 375 2 CONTINCTS PRRECULAR PRANSITIONAL. 36.9 -> END OF SECTION. CORE BROKEN, Spours. 37.9. Sup 250/ca

38.0. Q12. W., (BriD) 250/CA

CORE RELOYERY 34.0 - 34.2 ~ 46%.

38.1. Sup 35º/ca.

DEPTH	FORMATION	SAMPLE	FROM	10	WINTE		ASSAYS				\top	T	T
		NO.		10.	WIDIH	Auporto	Ban	Popper	Cuppun				ļ
34.2.34.5	ALTERATION ZONE (INTERNA UNCERTAIN - CHOWS	88737	39.0	40.0		109	0.8		60			-	
	(ac) Casy XTALLINE, QT20. FELSPATING, FINELY	•	·										
,	Faces. Con. Ser. Develope more Faxes Romes.											T	T
	Corrans Finally & Willy Disser Py.	·										1	
	(one Recovery ~ 50%?)											1	Ť
:5.34.7	TUFF SILICIFIED - PS ABOVE - BROKEN											1	t
	Finery & Way Ryarises											1	T
	7,9,0										十	1	t
17.41.0	Action Zone (as Sein 39.2.39.5 agova)	56738	40.0	41.0	1.0	151	1.,	2.	44	$\neg \uparrow$	1	+	t
	fore Cary - WHITE, MINOR CAR. Charle FRONT.	00758									\top	1	T
\ -	Promes - Consons Faces of BUEF SILLERS										1	1	T
	TUFF. MINOR FINELY DISSEN PY									\top	\top	1	T
	(LORE RELOVERY - 65%)					· · · · · · · · · · · · · · · · · · ·							t
										_	_		T
0.41.5	FAULT. 10 cm. Gover Zove, QTROSE.	88739	41.0	42.0	1.0	285	1.9	7	33		1		r
(0.5m)	. 780WZ 2002			,,,,		-03							
5.42.2	INFE SILLEHED ? - MARGON - RED BROWN.										1		r
	Quese (TIGHTLY BRIDE SHALL QUE EXCE), FINELY	86711	42.0	43.0	/.0	6	0./	7	29	\top	+		
	,	00/40	,,,,	75.0					-		1		-
,	HONOTATISED. HEAVILY & TIGHTLY FRACT., FRACTS. HEALED										-	\vdash	H

DEPTH	FORMATION	SAMPLE	FROM	10			ASSAYS				T	
		NO.	FROM	100	WIDTH	An ppb	Ag ppm	Po ppm	ugen	\perp		
.2.42.7	TUFF SILLCIFIED: , AS ABOVE, FINDLY FRACT.		·									
	SHEARED - NUMBEROUS V. FINZ CONTERES DEZ VINLES.											
7- 43.3	TUFF: Marrows BUFF . INTENSEY SHEARED & FEARE											
	FINELY BANGES DELESCANCE											
,												
.3.51.51	FAULT ZONE: HOJOR SHEAR / FAULT (BROSCE)	88741	43.0	44.0	1.0	275	2.8	11	63			
	Daywarry Orace CREY / WHITE. URREL 10 cms.											
	CLOURE. SECTION INTENSITY SIKORED, WIEWSITY	88742	44.0	45.0	1.0	355	4.8	77 .	20			
	INCR. DOWNHOLE UNTIL ROCK BELOVES DRUSK GOUGE											
	Py Finesy Disept. THEOREMOUT, STRONGEST IN WHER	88743	45.0	46.0	1.0	9,	5.9	28	223			
	POUTION TO 46.3m - BY LARRY THIN THIS ALONG											
	972 BACK - ELONGATION OF FRACE, IN JURGETION OF	88744	46.0	47.0	1.0	848	9.5	4.9	106			
	Sussemble 15.30°/C4 Vas.											
	W.O : Sem. Gover Zore 45/CA	88745	47.0	48.0	1.0	615	5.6	67	80			
	44.8 : SHEARS @ 10°/CA		1									
	45.4.46.3 - HILLY & GLOSSY CREY OFZ., F. WK. Py.	88146	48.0	49.0	1.0	6	0./	29	29			
	46.33-47.85. Gover. OTZOE., FINELY LYDITISED											
	47.85-49.1- TWO. PAREGREY BANG, HOMY ALT. SHO											T
	's FROCT.			•								\top

•	DIAMOND DRILL REC	ORD	I	ROPERTY		SADIH			Н	OLE P	10. <u>87</u>	-1	4
DEPTH	FORMATION	SAMPLE NO.	FROM	10	WIDTH	Au goto	ASSAYS	Poppu	Cugan				T
33-51.5)	49.1-49.7. Gover, 'CLAY' BLACK- GREY	ક્કાના	.49.0	50.0	1.0	82	1,2	80	57				
ريتس	49.7 - St. S Crowce, fore GREY, i FINELY GROWD											_	1
	QTZOSE CORE.	88748	50.0	51.0	11.0	1180	11.9	167	100			_	_
	LAST Run (15'm) LOST IN HOLE		-									\perp	
	Core RELOVERY - 70%												
												_	
51.5	HOLE STOPPED - RODS SINDING IN HOLE.												
	(cosine, frues)												
	,											_	
	OVERALL CORE RELOYERY: 78%												
	·												
		•											1
													1
													L
				Ţ									
	, in the second												T

t at E E E E E E E

CLAIM NO.	DIAMOND DRILL REC	ORD	1	PROPERTY	·	MICA	***************************************		но	DLE NO	1. 87-	2 P.
LATITUDE	3+75.5 S ELEVATION BEARING		DEP1	H 42.6	7m	STARTED	30.1.	87	COMPLETE	D!	. 2	. 87
DEPARTURE	8+24.9 W SECTION DIP	-90°		DRILLED BY.	ganson.	DIAMON	Deune	L LOGG	ED BY /A	<u>'W</u>	·	*******
DEPTH	FORMATION	SAMPLE NO.	FROM	10	WIDTH	1	ASSAYS By ppm	[a]				
0-4.5	CANNCI					m pph	ig ppin	Oppm	uzpm			
4.9-5.2	QUARTE YEN - (BROKEN, CROWNS CORE). MILLY	88749	u.5	4.8	0.3	455	3.5	37	6 4			
l .	Orr., Russy Anox Frances.											
	F.Ry, Rys CCP, PBS	88750	4.8	6.0	1.2	83	0.7	10	38			
	RELOWERY 50%											
		88751	6.0	7.0	1.0	9	0.1	7	29			
5.2-9.14	TUSE SILLEGED. POLE GREY WHERE FRESH, HEAVILY											
(4.022)	RUSE STOWNED ON WESTMERED SWEETERS : PROJE FRACTS	88752	7.0	8.0	1.0	1	0:1	2	15			
	F.CR., Danger Syon Trainy Parcey QT. EYES											
		88753	8.0	9.0	1.0	3	0.1	3	19			
,	QUE VAS/VALES. DESOCTO WITH FRACTURING											
	Sulfinges RARE - Sugar xions by Grower Force	88754	9.0	10.0	1.0	1	0.1	8	3			
	7.62-9.14 - POOR CORE RECOVERY-											
	OVERNE RELOVERY - 75%											
	·											
9.14-15.54	WEE . DARK RIRDLE, F.C.R WEREDEING											
,	ALGORION DOWNLOSE, ESP. FROM 9.614 - SiO2											
	DS VNS, YNLIS, MREG. BLESS, + SER + CLON + Py											

DIAMOND DRILL RECORD PROPERTY SADIH HOLE NO. 87-2 Pz SAMPLE NO. FORMATION FROM (9.14-15.54) RTZ WS NNLTS FORM LACEWORK RELIGITING TOFF. 188755 10.0 Como Muncy Brances fore BUEF - CREY WAR LIKE ALREST PYRIE INCREMENT TO 5%+ FROM 13.0 88756 11.0 12.0 185 12.34: FOLTN. @ 450/CA 15.0: Piz.W. (Bemo) - F. Disser Ry 188757 12.0 13.0 Drawle Courses CORE LOSSES @ 10.97 - 12.34. 2 6.25m 88758 13.0 0.1 13.72 - 15,54 ~ 1.05m. CORE RELOVERY 80% 188758 14.0 15.0 1.0 650 3.8 5 15.54-17.50 QUARTZ VEN DOM., HINOR SILICIES TOFF. 188760 15.0 16.0 1.0 475 3.3 (1.96m) POOR RECOVERY, GROVES COLE Some Evidence of Bangure in Q12. FRACES .-88761 16.0 17.0 1.0 830 4.8 Sparse F. Ry, TR cup? Cone RELOVERY - 70% 88762 17.0 18.0 1.0 625 19 4.8 17.50-21-40 FOULT ZONE . DOW COUGE CONTAINING ABOUT. 88763 18.0 19.0 1.0 510 3.4 19 (3.90m) CRANVLAR QTZ - PAR CREY, DARKENING DOWN HOLE SPARSE FINE SULAMORS (R) THROUGHOUT. 17.83-18.29 - NO RELOVERY

DEPTH	FORMATION	SAMPLE	1	T	Ī		ASSAYS					T
	FORMATION	HO.	FROM	10	WIDTH	Augo	ngen	Poppon	Cugan		\perp	4
7.50-21.40	19.7 - Crowse Becoming Carenesous, Contains	88764	19.0	20.0	1.0	128	0.7	20	97			
(cirus)	FARCIS. DK. CREEP LINESTONE	<u> </u>										
, , , , , , , , , , , , , , , , , , ,	20.47-21.25 - Gover GREY BEACK 15%, FROMS.	88765	20.0	21.0	1.0	43	0.3	24	158			
	(LST. F.NEY Banes)											
	(Core Recovery - 80%)	88766	21.0	22.0	1.0	14	0.9	45	69			
4.21.8	LIMESTONE DAZIE CREY, F. GR., CRAGHTIC.		<u> </u>									
	MINOR Q12. YNLIS CORE BROKEN											1
	(RELOVERY 50°/)							· ·			-	+
8-22.25	FAULT. CHOUSE ZONE	88767	22.0	23.0	1.0	60	0.4	38	69			_
0.45m)		867/8	230	2.1.0	1.0	16	0.7	15	13			-
25.25.25	LIMESTONE. PS (21.4 - 21.8) ABOVE HERRY	40/6/	250	4.0							11	\top
	Considered - TIGHT hastic forging wirecaningres	88769	24.0	25.0	1.0	20	0.2	12	11.			
	WITH THIN GOUGE ZOWES										11	_
	23.85. Lanimae @ 50°/CA	88770	25.0	26.0	1.0	21	0.9	32	53	_	11	\bot
	ABOUT. QTZ/CORB. VALTS, IRRELL, LIGHLY DEGGENED		ļ								1	\bot
		88771	26.0	27.0	1.0	24	0.4	12	65		$\perp \perp$	_
25-26.52	FAULT COURS - DK CREY, CONT. DK. LST. FROMS. (RECOVERY 85%)		1					l		1_		

Ī

Ĩ

Ĩ

DIAMOND DRILL RECORD SADIM HOLE NO. 87-2 P4 PROPERTY.... DEPTH FORMATION FROM Anger Oggan Popu 26.52-27.70 FAULT CLOUGE . PAR CREY . FRAGS . PARE BURE - 88772 27.0 28.0 57 (1.18m) GREEN VOICE @ LOWER CONTACT ! Recovery 85% 7770-33.70 ANDESITE SEECED. DK. PURAZ : CREEN MOTHED 88773 28.0 29.0 1.0 (LOW) CASE FRAMESSA (how Bx?), PURRE HAMPEIN CONTAINS ERROTTE - WENDTITE EDIDOTE YAR 188774 24.0 30.0 1.0 67 TIMOUGHOUT, LORMLY STRONG EG. 31.0. 31.4 28.9-29.55: PALE BUKE ALTREATION ZONE. BXD 88775 30.0 31.0 88 & FINELY LACED BY HEALINE QTZ VAS/VALES RIRITE FINALY & EXEMICALLY DISSEN. 88776 31.0 32.0 1.0 0.1 103 MINOR Q12 /CARR AS VALUES ALONG FLAT KACES (80-90°/CA) - Aso @ 37.4-32.5 @ 20°/CA 88777 32.0 33.0 80 RECOVERY 97% 88778 33.0 34.0 96 33.7-36.56 Angesine / Annesine TUFF. PARE CREW CREW, F.CR. (2.86m) 49my Foris 2 KREGULARLY BANDES CH. SER/510,88779 34.0 35.0 25 104 arrenomon. Finay Devely FRACT NUMBROUS CLOSED SAMES PREEL GITZ/CARS. YNLIS. 88780 35.0 36.0 75 FOLTH / BANGING DON. O 450/CA

DIAMOND DRILL RECORD MICAL PROPERTY____ HOLE NO. 87-2 PS ASSAYS SAMPLE FORMATION FROM 10. WIDTH Pb ppm ses pour 1337-3656 RRITE: V. FINEN JISSEN THROUGHOUT AS V. 88781 .36.0 37.0 100 Syan xian Cursibes GONGER MONEY FOUR & QTZ VALES & BLESS a 5% Ry OVERALL UPPER & LR CONTRETS TRANSPROMEN 88782 37.0 38.0 RECOVERY 95%+ 1.0 0.1 102 88783 38.0 0.1 8 118 39.0 36.56-4267 ANDREGER. DK. CREEN, F.CA. FAIRLY UNIFORM. (6.11m) NR. MASSIVE LOCALLY, ALSO TIGHTLY BY'D LOCALLY (AUTO. 88784 34.0 40.0 22) 1.0 ४० 10 ABUND. Y.F. CARB. YNLES E. PREC BLESS, CENTRALLY 73 88785 40.0 0.1 41.0 ORIGINIED 11/ FOLTIN 40.35.40.7. ATREATION ZONE - BEACHED & FRACT - NUMBEROUS KREET CARR YMLDS PLONE FRACTS 88786 41.0 42.67 1.67 12 100 PYRITE FINELY DISSEY (2.3%) IN ZONE NACL-Rock 42.67 STOPPED * HOLE REGILED (TRICONE) & CASED TO SOM IN ATTEMPT TO PREVENT CAVING / SQUEEZING IN FAULT ZONE

DIAMOND DRILL RECORD SADIM HOLE NO. 87-3 Pz PROPERTY..... ASSAYS SAMPLE FORMATION FROM WIDTH An eat Da pan Db ppin 13.05-12.4 GOUGE LINES Suf @ LR. CONTACT 750/CA. 88795 .1/.0 12.0 155 Cours RELOVERY 90% 88796 12.0 TUFE PURCE CREY WKLY HOTTLED, F.CR. 13.0 12.2m) Corrans Super Scarperes am EXES IN VIE. 5 0.1 75 88797 13.0 MOTATITIC & CHESTIFIC GROUNDHOSS 14.0 1.0 FINELY & RANDOMLY FRACTO ATERPTION (BLEDENING) MONE OTT KARS HORES FOOTS 88798 14.0 67 4.12.6: 300/CA 14.35-14.7: 15º/CA IR. Conser (Conor Come, INCR SIOZ) IRRECTO 60°/CA Raway 95% 1 14.6-40.1 TUEF, SILVEREN - Day PARE CREY, E.C.R., URICE (25.5m) 5m Horries BK (REY (UNGLIREED)? TUFE)-ALSO 24.4.263 ENERY GRAGURED, RANZON TO 400: 950/CA PLEFFEREZO, FRANTS, GENZERMY QTZ MERCED Sullinges, HANNEY R. IMEG. DISSEY THROUGHOUT, BUT UNDETERED ZONES ARE BORREN & STRONGEST CONC.

PROPERTY_____SADIN DIAMOND DRILL RECORD HOLE NO. 87-3 f3 ASSAYS SAMPLE DEPTH FORMATION FROM 10. Popen ag epn Au och VILLE. 40.1) ARE IN & ADMINIST TO QTZ. VMS / FRANCES 15.0 37.1 88799 16.0 1.0 3620 1526 150 17.0 88800 16.0 59 QUART VENTS SULALISES -وتبحا 0.10 13 15.5-15.88 : QV HULY DISSEN PSS. DV. CEP 88951 17.0 18.0 1.0 20.25-20.37: ON MINOR PBS. LYLY DISSLY RY@ FW. COVERT 88952 0.2 (30°/CA) 188953 19.0 20.0 0.3 98 20.5 : QV: (0.5 ems) 250/CA 20.0 21.0 88954 48 27.5-27.6: Ry, Minore FINERY DISSEN 188955 21.01 72.0 0.2 22.0 23.0 10 78.5- 28.6 : QV 70°/CA, TR. V.F. SULPHOES 88956 78 2 0.2 30.0 - DOWNHOLE INCREASING PURITE, V.F., MOD 188957 23.0 24.0 65 52 0.4 24.0 - HEAVILY DISSEY IN TICHT ZONES ALONG QTZ VAS/VARTESSESSES 250 1.0 5 31.0: QV (3ems) 65°/CA 25.0 26.0 88959 31.5 : QV (2 cms) Soo/CA. - Ry Mos 25584 88960 26.0 27.0 155 8 445 1.3 27.0 28.0 30.8- 31.4 106 1.0 231 88961 319-324: Py, MOD. DISSEN 88962 28.0 29.0 : QV (1cm) 40°/CA 29.0 30.0 1.0 88963 32.6.32.9: Q12 YNL13 550/CA, PJ 30.0 31.0 102 88964 350 77 33.9; QV 70°/CA 2.6 88965 31.0 32.0 10 1.0 1.3 34.4 : QV 350/CA 88946 32.0 33·o 37.9-38.4 7 5-10% Ry. 33.0 34.0 88967 1.0 54 38.8. 40.1 a HEAVILY DISSEY About FRANK (n30/KA) 88968 34.0 35.0

Ē

DIAMOND DRILL RECORD PROPERTY SAGAM HOLE NO. 81-3 Pg SAMPLE ' WIDTH Au epts 2g gen Ben FORMATION FROM TO. 35.0 36:0 Cours. 16.5.17.0 : Sup 200/CA 88470 36.0 37.0 76 0.5 18.55-18.70: Russy Scip 150/CA 37.0 38.0 0.1 88471 20.7-21.1 : RUSHY FRACTS. 10°/CA & 30°/CA 88972 38.0 39.0 11.0 465 5.5 23.4-23.5: - 25°/CA 88973 39.0 40.0 1.0 675 9.1 25 401 26.5. 26.8: CIL/HEN LINED SUP 11/CA 27.0: Cm. Sup 250/CA 31.4-31.9: RUSHY SLIP ~ 11/CA 32.9.33.0. RECOVERY - 90% 40.1-42.97 QUARTZ VEN - URBER CONTINES BREG. n. 30/Kg 88974 40.0 43.0 3.0 3690 31.8 2977 (2.87m) Consons a 50/ Sulanges. Py, CCP & FINE PBS, LATTER AS F. FRACT FILLINGS & NUMBEROUS XTAIL Guerres. Surpurges DIMINISHING OVER LOWER HALL OF SECTION. Lore Brown - food Recovery - 47%* 42.97-445 TUER SILLIES - AS AGOR - HOMY ATERO 88975 43.0 124 (1.53m) (SER) - HEAVILY GRACTURES . PIRITE, MINOR POS

l [

DIAMOND DRILL RECORD SADIM PROPERTY___ HOLE NO. 87.3 PS ASSAYS SAMPLE WIDTH QUEED Da pom Bygun Rigem FORMATION 4297-445 GREATIENLY DISSEN TURO SECTION, HAMMY ASSOCIO Couris WITH NUMEROUS QTZ WALTS RELOVERY 80% 44.5.47.85 FALLS ZONE - HIGHLY SHOTTERED & 88976 44.0 45.0 6.8 259 (3.35m) FRAGNENTED; DOMINDATILY QUARTZ . CUT BY STRONG CHARLIE SERVICE SHEETS & SLIPS TWO 45.0 46.0 156 3.3 103 88977 GENERATIONS DIZ. - LOTER? GLESSY CREY DIZ. 88978 Convious FINELY DISSEN Py. 46.0 48.0 1.0 69 46.0. Sup 550/CA - FAULT SUBRATIONE, RTZOSK ROCK UP-HOLE (FOLTH. 50/CA) FROM HIGHLY SERILITISED PURKIZ ZONE DOWNWOLE /FOITH 50 /(4) 44.5-463: CORE RECOVERY 35% 46.3.47.85: " CNEWAL COME RELOYERY 28% * 47.85-48.7 No RELOWERY

PROPERTY SADIM HOLE NO. 87-3 PG DIAMOND DRILL RECORD ASSAYS FROM FORMATION Ageom Popon 48.7-49.1 LIMESTONE DK. GREY-BLOCK, V.F.CR - IN PACT 88979 48.0 49.0 Slarsky Dissey. By as Minure Cuses Lower Courses @ Smong Sup (1cm. Googs) @ 700/ca Lose Broken Cole Revolute 50%? 188980 49.0 50.0 1.0 49.1-49.98 CALPREOUS GRIT - CREY. BUCK. ELONGATED (0.88) SHALL LET? CLOSES PROJUCE CORESE FOLTON @ 50°/CA MINOR Some Q12/CORS! VINGS, NO SEV. PREFERED FRACES. DARK LIST @ LR. CONTRET (67º/CA FOUTN) 88981 50.0 51.0 1.0 RECOVERY 900/ 19.98-54.55 CALERETORE ARRILL / LINESTONE: PORE CREY, V.F. CR., 88982 52.0 (4.57m) UNIGORY, NEAR MASSIVE IN LART, BUT CHARRALLY WEAKLY FOLTO, FINELY FRACTURED. MOD. WILLY CALL (\$983 52.0 53.0 1.0 PURITE: SPANSE, SMALL XTANS: 45 46 88984 53.0 54.0 1.0 Scarreage COLB. YMLTS (FARETURE HEQUISCO) 50.9: Clouge (3cms) @ 60°/CA 52.4 & 53.2 FOLTH @ 65°/CA CORE RECORMY 750

DIAMOND DRILL RECORD PROPERTY SAGAM HOLE NO. 87-3 PT WIDTH An ast regan Popen Cufer Enga FORMATION 54.0 54.55-563 LINESTONE - DK - MED CREY, F. GR., FINAY 55.0 1.0 88986 (1.75m) BANGED @ 700/CA 188986 55.0 56.0 1.0 PYRITE - V. FINELY & WKLY DISSEM. 0.6 13 21 88987 56.0 57.0 1.0 53 72 56.3-57.65 FAVIS . GOVER . BLACK . CRAPHICK , CONTAINING (1.35m) FRACS (TO Sens) LST. & QTZ., LOTTER WITH TR. 188988 57.0 | 58.0 | 1.0 LOWER CONTINCT PLONE, SUP @ 60°/CA Broker - Lecovery 50% 5765-6044 TUEE SINCIFIED? (BROKEN COKE, GROWN) 88489 58.0 59.0 1.0 135 80 (2.34m) Pare CREY, F. GR., HOLLY FRACT., SHATTERED, 88990 59.0 60.0 1.0 195 63 WKLY. COLC. MINOR F. Py. CORE RELOVERY 25% 95 76 86 88991 60.0 61.0 60.04-60.3 FAULT CHOSCE - PARE - DX GREY, Sr. CALC. (0.26m)

HOLE NO. 87.3 /8 DIAMOND DRILL RECORD PROPERTY____ Dagen Bean Coppin Zoga FROM FORMATION 603-63.8 TOER SILVERS ? POSSIBLY ATTERS ANDESTIC (3.5m) NEF. BUEE- CREY MORRED V. F. CR. HUND! FARET & SUMMERS TO LIGHTLY BUD LOCALLY Swor Sections are Rea. MASSIVE RIPITE MOD DISSEY THROOF, NAMELY PROME DIZ VNS VALIS & GRACIS. 78 166 LUCALLY TRANSPORMEN WITH LONG OF DR CAREN CAL 88492 61.0 62.0 1.0 0.1 ang TOFF. ey. 617-61.87; 62.65-62.5. 55 76 61.87.62.05. GOLGE ZONE 90°/CA @ LOWER COMMET-88993 62.0 63.0 1.0 (PROSE SAN CONT. F. Y.) 88994 63.0 64.0 54 COME LOSSES @ 61.26 - 63.09 OVERAL RELOVERY 85% 79 85 ٤ 0.1 188995 64.0 65.0 1.0 638-66.4 AMPERITE TOFF . DOW. DK. CREEN, V.F.GR. (26m) Findy FRACT., NUMBEROS CON/EP LINES SURS -88496 65.0 66.0 1.0 94 89 15°- 30° /CA. Minor QTA /CARS? WANNE GRACES No Vis SULAHISES RELOVERY 95% 66.4-68.75

SADIM

DEPTH	FORMATION	SAMPLE		T			ASSAYS			T		
,	FORMATION	NO.	FROM	10.	WIDTH	Au Apots	29 ppm	Db ppm	Cugan	Zupp		\perp
6.4-68.7	STURE SILLEGED (POSS PLEARED AND. TUFF)	88447	66.0	67.0	1.0	ı	0.1	6	76			
(2.35m)	Day BURE V. E.C.R., Larry Horriso Reple CREE	,					<u> </u>					
	INCL. NARROW ZONES OF DIK GREEN ANY TUFF.	६४५५४	67.0	68.0	1.0	3	0.1	6	74	71		
	66.9.67.3 - QTZ HOMED REACTS @ 40°-60°/CA	<u> </u>										
	NARROW (1cm), WKLY RYRITISED	88999	68.0	69.0	1.0	33	0-1	7	87	67		
	67.6 - Sem. Gove Zone 60°/CA											
	Recovery 95% +											
	1											
175-70.15	FAULT GOVER . CREY - CREW, INCL. FROLS.	89000	69.0	70.0	1.0	4	0.8	25.	76	285		
(1.40m) g	BUTT ALT. SEE. AND TURF?											
	UPPER CONTINCT SUMPLE (2) 55°/CA											
	MINOR QTZ. AS FEREIS IN LOWER 0.2 m of					_						
	GONGE , SCATTERED V. C. PY XTALS IN COULE											
	RECOVERY 85%+											
15-76.0	ANDESIFE BREICHA . DOM. DK. CREEN CONT.	•										
	GREW & PURRE FRAGS UP TO 1 CM IN TURANCEOUS	8885!	70.0	71.0	1.0	2	0.1	6	98	74		
	CANDWASS											
	ABUND FRACTS QTZ (CARS?) HEALED - BLEACHE	88852	71.0	72.0	1.0	3	0.1	6	75	67		
	Zones FRINCING QTZ VNS/FRACTS.										T	

T E E

Ī

Ī

Ĩ.

L

DEPTH	FORMATION	SAMPLE	FROM	T			ASSAYS			П	T
	romation	NO.	FROM	10	WIDTH	Augob	Ag som	Popper	Cuppen	Zyan	\perp
70.15-76.0	PYRITE - MANNY OF F. DISSEMINATIONS FRANCING	88853	72.0	73:0	1.0	10	6.1	10	83	59	\perp
Courd	QTZ WAS & BLEACHED ALT. ZONTZS RY . @					<u></u>		<u> </u>			
	1	88854	73.0	74.0	1.0	2	0.2	8	110	52	
	71.8-71.95- Gove Zove (55*/CA.): 74.4-74.65	-									
	(55°KA	88855	74.0	75.0	1.0	4	0.1	9	109	56	
	74.6.74.8. CIERTY SANDING 47./CA (SiOZ+HEA)										
		188856	75.0	76.0	1.0	5	0.2	9	82	52	\top
	FAULT @ LOWER CONTACT										1
		55557	76.0	77.0	1.0	1	0.1	7	232	42	十
76.0 -92.1	ANDERITE TUEF: PALE. DARK CREEN, V.FOR.	100021				-					十
1	TIGHTLY FRACT. THROUGHOUT - NUMBEROUS QTZ/CARR	cerce	77.0	78.0	1.0	,	0.1	7	134	611	+
	,	0 88 38		70.0					1 2 4	37	\dashv
A	VALTE - FRACT HEALING, USUALLY RAYITYING, -	ccca	78.0	26.0	, 6		0.1	9	93	71	\dashv
	More Proy. VINCOS Q ATTITUDES RANGING FROM 47°	08851	16 0	74.0	7.0	······································	0.7		7.3	-	十
	TO 65°/CA. BREAKHANG AROUND MORE PROM. FRACTS.	• / - / -	7c -	80.0	1.0		0.1	3	107	75	+
		88860	74.6	00.0			0.1		701	-	+
	ASSOCIO WITH VENNING & BLEACKED PLIT ZONES		e	e	1.0	2	0./	3	102	7/	+
	EPIDOTE 20028 782.95 - 85.5 - F. LAKEWORK	88861	86.0	81.0	1.0		0.7		762	/6	+
1 1	OF PARE CREEN EP. AS MOTEIX OF SUPPLIED BX & DX		<u>.</u>							_	+
	MRECI VNS. & SECIS No VIS SULPHOPES.	88862	81.0	82.0	1.0		D·/	5	71	7/	- -

	DEPTH		SAMPLE	1	T	1	1	ASSAYS			T	T
•		FORMATION	SAMPLE NO.	FROM	10	WIDTH	augos	Daggen	Popa	Cupan	Znya.	
	76.0.42.1	82.85 (350/CA); 83.7 (20°/CA): 83.9, 84.1 (25°/CA)	४ ४४४३	.82.0	83.0	1	3	6.1	и	115	76	
		76.0: Sem. Gover Zone (40°/CA)		83.0		1.0		0.1	4	138	78	T
		77.0.77.5: HEY COATED SUP (50/CA)	88865	84.0	85.0	1.0	1	0.2	2	62	83	T
		87.4 - 88.8. AND. BX. (as SETM. 70.15-76.0)	88866	85.0	86.0	1.0	2	0.1	5	85	66	T
		90.55 : IRRECT . BANGING (400/CA) MINOR F. Dy.				1.0	2	0.7	6	84	62	T
		Recorder 95% -	88868	1		1.0	- 1	0.1	u.	/03	74	T
		·	88864	88.0	84.0	1.0	,	0:1	6	86	7/	
*	92.1-93.6	ANDESITE BREICH - (AS SECTION 70.15.76.0			90.0	1.0	26	0.1	7	130	57	
		· ·	84871			1.6	15	0.2	4.	94	57	Γ
]			1.0	2	0./	4	89	68	Γ
		·			93.6	1.6	1	6./	8	92	70.	Γ
. [Cone Lecovery 95%										
	93.6	any of Hore					•					
		CASING PULLOD										
		CORE RELOVERY - 80%										
1												

-

Ē.

Ē

	DIAMOND DRILL F		(υ					6.2.			Cole	:	MP		Pi
		EARING - 90				_									
DEPTH	FORMATION		MPLE IO.	FROM	10	WIDTH	Au pab	ASSAYS	Pb ppm	Cupem		T	$ \top $		
0-1-83	OVERBURDEN											-	1	1	
	(CASING TO 3.2)	911	10 1	.63	2.29	0.66	265	2.4	55	90		\dashv	+	-	
1.83 - 229	QUARTO VEN: (ExOREN TO 2.2m) FRACTURE	(e)													
(0.46)	Russy ALONG FRACTS @ 45°; 60°/CA											\dashv	\dashv	+	_ _
	NO VISIBLE SULAHIORS CORE RECOVERY 65%						-	·				+	\dashv	+	+
	COLLE RECESTERY 63/6	$\neg \vdash$										\top	\top		1
2.79 - 8.13	TUFF & CALCARTTUS (RIT: HEAVILY OXIDISED,	911	11 2	.29	3.0	0.7.1	104	1-1	13	93					
, ,	HEMPITIC, TO 6.0m. WHERE FRESH PALE											_	\bot		
1	CIEY. GREEN, MED - CRSE. CRAINED, EQUICED		2 3	3.0	4.0	1.0	124	0.8	7	119	\dashv	\dashv	+	+	- -
	SEN. ANGULAR PACE GREY, GREEN, & ROBER PUR PARTICLES. NARROW ZONES OF CREE. GRIT-	911	3 4	۰0	5.0	1.0	32	0.2	6	48		1	+	+	-
	FINE CONCY. (FEA SIZE)														
	FINELY SUMMERCO, FRACTURED, HARED BY CARA	1952? 9111	4 5	۰۰	6.0	1.0	31	0.1	۵	44		\downarrow	_	\perp	
	VNN4., DOM. @ 30°/CA & 70°/CA									,		\dashv	+	+	+
	RAKE Sulmoss, Userly as Syall Bolongo	XTACS 9111	5 6	.0	7.0	1.0	44	6.7	9	60		+	-	+	+
	Py. (Warer Loss @ 4.88.) RELOVERY 90%	9,,,	16 7	۰٥	8.0	1.0	31	0.3	6	71					士

DIAMOND DRILL RECORD PROPERTY SAOIM HOLE NO. 87-4 P2 FORMATION FROM Pb ppm AG Dem 8.13-9.6 FAULT COUCE - KHOKI - BUEF TO 8.2, WYERLAM 91117 8.0 250 2.1 (1.47m) By FRACHENCED POLE hucke CALE GRIT & GOICE Brown Core - RECOVERY 55% 91118 9.0 10.0 0.1 10 19.6-29.57 CALCAGOUS CRIT: VARAGLE, PARE PURPLE - CREEN-(19.97m) BUFF, DOM. GRIT BUT COARSENING LOCALLY AS NARROW BANDS/BLDS F. CONG. Ry. 24.5.25.5 CHENERARUY FINALY FRAMINED, HOMED BY CARB. VALUES FRACES. USUALLY RAMIPHINE. OCCASIONAL LARGER CARB/QIZ VAS. PURITE ABSENT - ROBE IN RUBBLE TONES, WEAKLY & SARATICALLY DESEN. IN BUFF, FINER CRAWED MATERIAL STRUMBERT ADJ. TO FRACTIONICY VENNING - AND IN LOWER PART. OF SECTION FROM 26.0 M WHERE LANT BELONE BLESCHET, LOS COLC. 91119 10.0 11.0 0.1 9.75 : GOVGE LUED FRACT. 50°/CA 11.7: FRACT (0.5cm. DISPL.) 55°/CA 91120 11.0 85 0.7 16 27 120 12.1: QTZ. VN. - (4 Cus) PURITIC ZONES: 91121 12 12.0 13.0 1.0 0.1 13.4-13.8 - F. DISSEN IN BROKEN FRAKT, BUETS GRIT

DEPTH	· · · · · · · · · · · · · · · · · · ·	SAMPLE	T		T		ASSAYS					\neg
	FORMATION	NO.	FROM	TO	MIDIH	Au ppb	Адром	Poppm	Cu pen			_
- 29.57	145.146 : Ry F. DISSEN IN BUFF GRIT	91122	.13.0	14.0				9	63			_
	15.3-16.0: Samesky : F. Dissey	91123	14.0	15.0	1.0	265	1.7	4	87			
	16.4 - 17.0 : 10% Ry IN HIGHLY ALT. CASE GRIT	91124	15.0	16.0	1.0	125	1.1	8	112			
	ADJACENT TO 1 cm. COVER ZOWE @ 16.5	91125	16.0	17.0	1.0	215	1.6	11	63			
	19.0. 22.0: GRATICALY DISSEY. IN NESS HASS.	91126	17.0	18.0	1.0	165	1.2	12	71			
	PURPLE / HOTTLES GRIT CUT BY CARB , Q Q TZ KMS	1	18.0	19.0	1.0	225	1.6	25	39			
	INCL 21.2-21.65 @ 25°/CA	91128	19.0	20.0	1.0	185	1.5	15	20			
	27.5-29.57: WKLY TO 400. DISSEN PY	91129	20.0	21.0	1.0	98	0.7	13	35			
	STRUCTUREN FORWARD	9/130	21.0	22.0	1.0	1310	8.7	16.	50			
	23.95 - 24.2 - FRACT ZONE, BREAKS CONTINUINCE	91131	22.0	23.0	1.0	7	0.1	11	7			
	HINOR COLLE @ 65°/CA IN CAR. /SER. ALS. ZONE	91132	23.0	24.0	1.0	1	0.1	11	8			
	24.5-25.5 : Cause Bessine 650/CA-(F.	91133	24.0	25.0	<u>ن</u> 0	42	0.3	13	27			
	SPEWLANTE ALONG SLIP FAXES)	91134	25.0	26.0	1.0	67	0.7	11	43			
	26.0-27.9 - OPEN FRANCES SO'/CA SURROUNDED	91135	26.0	27.0	1.0	3	0.1	12	14			
	By DALE BUFF- PLAIR OUTERSTION ZONE	91136	27.0	28.0	1.0	112	0.8	10	15			
	QUARTZ WS	91137	28.0	29.0	1.0	560	3.7	14	56			
	28.50 - 28.55 - Bloker . Space F. Py	91138	29.0	30.0	1.0	76	1.0	53	89	·		
	28.8-28.9 - INCL. O.Sem BAND F. Ry Award VII											
	F.W. @ 60°/CA.											
	CORE RECOVERY 95%			•	·							

PROPERTY SADIA HOLE NO. 87-4 Pu DIAMOND DRILL RECORD SAMPLE DEPTH FORMATION FROM Augob Aggon Popon Gipon 91139 30.0 31.0 37 29.57-31.3 ALGERATION ZONE . QUARTZ . FROMPAR, CRYY (1.73m) XTALLINE (Cf. DOH 87-1 @ 39-42). DOM. CIRCH SUMMERED QUARTY FRACE, IN PARE 34.0 32.0 37 91140 CREAM CIRCY KGOLINISED? FELDSPAR - COLONE LICHTERS DOWN-HOLE UNIT HAS BEEN SHATTERED / FRACTURED & HEALED (OTZ) PURITE THROUGHOUT AS SMALL IRREG. CLUSTERS & SHARDS OF V.F. YTOLS a 50/2. Core RELOVERY 85% 31.3.33.5 FAULT - GOVEE - PAE. MED GREY, F. OTZ. GAMMS 9114! 32.0 33.0 28 1.0 (55%ca) & FRACIS -IN HEAVY GREY CLAY! PYRITE FINZLY & WILLY DISSEM. THROUGHOUT 32.9-33.22. BROTCOS CORE - PORE GREY. GREY 91142 33.0 33.5 0.5? CREEN, PTZUSE, SERICITE GLONG FRACTS. 62 4.5 33.22 - 33.5. CLAY & CREE PTZ SAND, GROUND 91143 580 CORE / CAVE? 33.5 HOLE ABANDONED - RODS JAMMED CORE RECOVERY CORE BARREL SHEARED OFF, HOLE CAVED 11 BARREL ABANDONED, CASINCI PULCO)

	DIAMOND DRILL		-				SADIA STARTE		2 . 87	,		DRE	: HE	87. <i>5</i> 87	<u> </u>
DEPARTURE	1+48.6 h! SECTION	DIP	- 40°	· · · · · · · · · · · · · · · · · · ·	DRILLE	BY KANE	w Diamos	on Derw	<u> ۲۵</u>	LOGGE	2 BY 1M	W			
DEPTH	FORMATION	SAMPLE NO.	FROM	то	WIDTH	Aueph	ASSAYS Ag Open	form	Cupan	Engal					
0_ 1.82	CASING	88874	1.82	3.0	1.18		0.2	6		77		1			
1.82-10.0	GRIT - VOICANIC, PARE hoose, Lange	88875	3.0	4.0	1.0	61	6.5	10	65	39					
		88876		5.0	1.0	51	0.4	7	57	57					
	F. Cone. GRIT CONTAINS CLOSEN POCKED	88877	5.0	6.0	1.0	7	0.1	5	54	7,					
· · · · · · · · · · · · · · · · · · ·	Louges to Sug. Anguar Lougerine Voic.	1	i	7.0	1.0	5	0.1	7	21	60					
	CLASS - FLEGE, FUSO CREY, CRESS, BROWN.		1	8.0	1.0	2.	6.3	8	146	82					
	(Rescues GRIT/Cong Bains Exercis @ E.	1	1	9.0	1.0	52	0.7	4	82	65					
	END OF Mancres 6:7 CAUGE SEAR 450/CA.			10.0	1.0	98	1.0	5	80	46		-			
	NUMEROUS OTZ. VNS/VNLTS (2/0/mete) -			11.0	1.0	t	0.2	Z	14	40					
	ESOCIPLY Agen. IN Zorse of ALTERATION	1													
	Breaunicy.														
	Riere Parchy 252180780 IN THESE NOWN						٠.				-	!			
	Myorphon 20085. eg. 27-3.2; 3.6;3.9	1													
	56-5.7; 7.0-7.3; 8.9-9.0; 9.2; 9.5-9.6											T		1.	
	Section Howing Hardingson Paris Drawing														
	Trags. @ 20 -75°/CA		·									1			
	10.0-10-04 FAULT GOUGE a GOO/CA.														
	RENORY 90% +.											1			
												!			

DIAMOND DRILL RECORD

PROPERTY SADIM

HOLE NO. 87.5 P.

		SAMPLE					ASSAYS]			
DEPTH	FORMATION	NO.	FROM	10	WIDTH	Gucot	Da spn-	Popper	Cappon	Znorm.		↓
0.0.26.9	CIDIT I WALKE - VOICANIC DE DESOVE BUT	88885	11.0	12:0	1.0	1	0.2	2	1	30		<u> </u>
	FRESH NOT OXYDISED, GLEASIONAR NARROW	88884	12.0	13.0	1.0	2	0.1	6	8	32		
	1	K8885	1	14.0	1,0	1	0.2	2	61	30		
	WITH ELOCATED CLOSTS (UP TO ZEMS).	88886	14.0	15.0	1.0	1	6.1	ч	2	27		
······································	ABOUNDATILY FRACTURED PERCED BY NARROW	88887	15.0	16.0	1.0	!	0.1	8	3	33		
	CORS 1012 VALTS	88888	16.0	17.0	1.0	3	0.1	0,	2	23		
		188889	17.0	18.0	1.0	'	0.1	3	1	26		
	16.0-16.7 - Sussance 350/ca : 11/CA	86890	18.0	19.0	1.0	1	0.1	11	3	42		<u> </u>
	18.5.18.55 - GONGE 65°/CA	88891	19.0	20.0	1.0	23	0.1	8	49	32		
	19.0. Chuse Banguary 60°/CA	88892	20.0	2.0	1.0	2	0.1	10	20	25		<u> </u>
11	14.2. 3cm. Gove 25°/CD	88893	21.0	22.0	1.0	3	0.1	8	6	40		<u> </u>
	21.9 - Eng of Segn: INCL. FRACTS @ 25° & 10° KA	88894	22.0	23.0	1.0	2	0.1	11	7	30		
	23.2 - 23.5 - Gove	88695		24.0	1.0	12	0.2	11	7	45		
	24.3 - 24.4 - GOVCE	88896	24.0	25.0	1.0	1	0.1	12	3	42		
	Cole Resover 85%	58897	25.0	26.0	1.0	2	0.1	8	3	45		
		58598	26.0	27.0	1.0	1	0.1	12	4	44		
4.9.30.0	ALTERDION ZONE: PALE BUTT - PALE CREEN	88899	27.0	28.0	1.6	Su	0.6	11	595	73		
(3.1m) -	TUPE? . FINAN FRACT 'S SIMPLED HERED BY	88900	25.0	29.0	1.0	28	0.2	ų	5y	81		
	\$72 VALTS; FRACTS. DOM @ 60°/CA.	91101	29.0	30.0	1.0	7	0.2	9	4	- -	<u> </u>	
	Gene - V. FINE V. SPACELY DIESEN. LOCALLY											
								-				

SADIM HOLE NO. 87-5 P3. DIAMOND DRILL RECORD PROPERTY DEPTH WIDTH Lu sob sagan fogon FORMATION FROM 1269.30.0 29.0: Q12. VN (2em) 550/CA. Hay. Recked. CONTO 29.7-30.0 - Ry., V.F., WKLV DISSEN. MCL 29.87 - NARROW? GOVER - IN BROKEN CORE RECOVERY 90% 30.0.32.0 FAULT. CREV GOVER - FROGS CREV. DX CREV 91102 30.0 32.0 2.0 29 (20m) PIZOSE MATRIAL GARITE. FINELY DISSEY. ~ 10% POOR RECOVERY ~ 25% 320-39.93 QUARTZ · MINIMUTE ' ZONE - NAMEON LANINGE ' 91103 32.0 33.0 6.8 287 (7.93m) FRE & SL. GREV QTZ - HUHLY SHEARED, FRACT, 91104 350 0.5 153 34.0 SERICITE CLOSE & PARTIMES - LAMINATIONS BADO 91105 340 35.0 108 0.4 2 15-20°/CA LOCALU EVEKLES, HOLLY CANONES 91106 35.0 36.0 0.3 RURITE. TINZEN DESCHI TIKOUCHOUT, BUT MAINLY 91107 98 36.0 37.0 2.0 157 AS F. PARINCES ALONE JAMES OTT. ZONES .-91108 37.0 38.0 1.0 18 0.5 53 ey. @ 3v.3-3v.5; 35.2.39.0; 91109 34.9 38.0 0.5 IC PBS LOWER IN DANKER ZOVES 33.0-36.5; 37.0; 37.5-39.0 - Goice Zover RELOVERY 70% RECOVERY 80%1 OVERDEL 34.43 HOLE STORDED - ROOS JAMPHINK

DIAMOND DRILL RECORD SADIM HOLE NO. 87-6 PROPERTY..... CLAIM NO.____ DEPTH 30.8 STARTED 8.2.87 COMPLETED 11.2.87 3+505 DRILLED BY RAINSON DAMAGE DRILLING LOGGED BY IMW 7+67W SAMPLE DEPTH FORMATION FROM Anoph Agopan Bopon Engon 0-3.05 CVEKBURNEN COMPANY ABUND RUSTY SOLLHUD (3.05m) 3.05-8.90 Youc. Bx / THEF - PURAR CARY, CARE, CRUSHY 91144 3.4 4.5 81 1.1 32 0.1 11 (5.85m) LAYERS, INCL. CRSE BANDS CONTAINING ANGULDR 91145 4.5 5.5 45 0.2 5.5 TO SUB-DIRECTOR YOLK & MINTOR PAIR. FRACES. 91146 6.5 6 43 1.0 3 91147 6.5 7.5 NUMBEROUS CARB. VAS/VALOS. HEALING FRACTS -91148 8.5 2 6 7.5 RAMIEYING BUT. DOM. @ 50-700/ca. 1.0 0.1 RUSIY EXIDERION/WERTHERING TO 4.0M. 6.5. Russy Sup 30%. RECOVERY 95% 9.7-10.9 FAULT ZONE . GREY & RUSHY GOVERE, CONTAINING 91149 8.5 9.5 3 0.2 91150 9.5 75 (1.2 m) PURDLE TUFF + QTZ. FRAGS. - TUFF CONFAINS 10.5 0.3 occasionar Syme by Cuses RELOVERY 60% 10.9.11.6 ALTERATION LONE - INTENSITY ALT. TURB/GRAS? 91151 10.5 11.5 1.0 (0.7m) Doy. WHITE - BAK GREY - PINX SINCE, MINOR CORB.

DIAMOND DRILL RECORD SADIM HOLE NO. 87.6 /2 PROPERTY____ WIDTH Augob ag pom Poppur Engan FORMATION FROM Russy Service Sups @ 350/ca No Vis Sulanges RECOVERY 90% 11.6-12.4 BRECIA TOFF . ANDRESIGE SIN. TO SETN. 91132 11.5 12.5 1.0 (0.8 m) Purpose, Care, But Contamine Lange Gonice CLASSIS GREY CARD ILST. RUSTY, FRACT. & FRACIS @ 300/CA. MANNSTIONAL CONTACT WITH U/LYING UNIT. RELONERY 90% 12.4-1493 BRECCIA / TOFF CALL, CREEN - SIN TO ABOVE 91153 12.3 13.5 (2.53 m) INCR. LST. CONTENT INCL. MARROW IRREG. 91154 13.5 14.5 1.0 BANDS PARE CRY 131. 104 BANGING / BERS 450/CA. 14.4-14.5- GRIT BOND WITH SHOW PURCE CLASPS RELOVERY 95%

DIAMOND DRILL RECORD SAMPLE FROM 14.93. 18.4 TUFF BEECIA, RURAR COLL. SIN, TO ABOVE, 91155 14.5 18.5 0.1 (3.47m) BUT FINER GRAINED . CONTIGUENCY MINOR 91156 15.5 10 8 25 16.5 0.1 CARR / OTZ VALOS ALONG FRACTS (3.4/meta) 91159 16.5 17.5 1.0 285 @ ~ 400/CA 1.6 MINER ALTATIN / BEGGINNE GROWN FRACTS. 16.5 1cm. Q72 VN FLANKED By 0.2m by 2002 91138 17.5 18.5 (Ry n 100/s) Raway 95% 184-287 TUFF. PALE BUFF, CALL, F.GR., WKLY-MOD. 91159 18.5 19.5 120 (103m) REPRISED. (Poss. ALT. EQUIN OF PREAS TURES) -- Contiants Nangon Zones furas TURF WITH 91160 19.5 20.5 46 0.3 13 TRANSMONAL CONTACTS Ry 19.5-20.1; 20.8-21.8; 20.5 21.5 0.1 CARB CONTENT DIMINISHING DOWN HOLE FROM 19.0 91161 WER = SILLEFIED TUPE WITH DEPTH?

91162

GRIFE THROUGHOUS BUEF AG. ZONES, HEAVIESS

22.0-22.3 - Brown ~ 2.3% Sulpages - ccp, Ry, BS

Suprounding VNS & PRINCE.

QUARTZ VNS

21.5 22.5

1.0

91163 22.5 23.5 1.0 505 3.7

1630

15.0

1064 328

27

PROPERTY SADIM HOLE NO. 87-6 P3

DIAMOND DRILL RECORD SADIM HOLE NO. 87-6 Pu PROPERTY.... ASSAYS SAMPLE NO. WIDTH Aures 49 Rom FROM Phopu 91164 23.5 965 47 24.5 24.4.24.6: 25% CCD. PBS, Py Broken (Vw. from @ Low & / CA.) Cours 25.15-25.4: HIGHLY SUPPREED, VUGGY/lows 91165 24.5 25.5 1.0 2530 223 298 295 F. ccp, py, PhB = 1% NR. 4.2008 OF VN. 70% 25.7-26.35. FRACT - HEAVILY DISSEY BS, CCP, 91166 25.5 76.5 1.0 19,800 189.1 2852 Py a 15-20% Suldiges. Broken. 91167 26.5 27.5 1.0 1750 12.9 450/(4? PATTITIONE NOT PRESENTED) 39 26.5: (2ems) · ccp, py. 26.9-27.45- CLOSALY SPACED QTZ. VALTS 500/CA 91168 27.5 28.5 1.0 505 3.4 3 211 WK. Ry, cep (n 1-2% Sulations) 27.15-27.35: SHATTERED, SPARSE V.F. Py+PBS 791164 28.5 445 48 29.5 10 2.0 Form @ 250/4. 27.5 - TRANSITIONAL CONTACT -> PLACE CHE TUFF, CM. Anower FRACES - 250/CA. RELOVERY 85% 91170 29.5 36.78 1.28 3960 28.4 403 50 287-29.87 TUFF. DIK. GREY GREEN, F.CR., AND (1.7m) BURK SILICITIES BROKEN COLE, POOR F. Py herevery ~ 60%

	1	DIAMOND DRILL REC	ORD	E	ROPERTY	<u>. </u>	40,M			н	OLE 1	10. <u>87</u>	-6	P5.
	DEPTH	FORMATION	SAMPLE NO.	FROM	10	WIDTH		ASSAYS						
	29.87-3048	DUGGEZ VON - GROWND GRE - MOD-HEAVILY						.,						
	٠,	Dissey Pos, Ry, Cip.												
		Cone RECOVERY 40%											1_1	
· . :	30.48-3078	TUFF? - PALE BUFF, FINELY YMO, MINORPY	ļ										$\perp \perp$	
	(0.3m)								<u> </u>			_		
		RECOVERY 20%											\dashv	
•												- -	\vdash	
	30.78	HOLE STORAGED - ROOS JAMMING		-					· ·			-	\vdash	
												-	H	
		Overque Recovery 85-90%.									-	-	++	
													H	_
												_	H	
		·									_	1	\Box	
•					_									

APPENDIX B GEOCHEMICAL ANALYTICAL REPORTS

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE RECEIVED: SEPT 29 1986

DATE REPORT MAILED:

FILE # 86-2930

Oct 8/16

PAGE

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPN.
- SAMPLE TYPE: ROCK CHIPS AND AND YSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: P. JULY. DEAN TOYE. CERTIFIED B.C. ASSAYER.

I.M. WATSON & ASSOCIATES

STD C/AU-R

41

7.1

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: OCT 4 1986

DATE REPORT MAILED:

Oct 10/86

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: ROCK CHIPS AU ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: ... ASSAYER. CERTIFIED B.C. ASSAYER.

 I.M.WATSON	PPOTECT	_CADIM	CT: E#	86-3055	PAGE	1
				66-3033	PHOE	1
SAMPLE#	РЬ РРМ	Ag PFM	Au* PPB			
2107 2108 2109 2110 2111	41 13 82 123 15	6.0 12.5 2.5 8.7	680 1250 220 875 24	•		
2112 2113 2114 2115 2116	24 10 13 27 7	1.5 .4 1.7 28.1 2.1	127 24 210 3450 305			
2117 2118 2119 2120 2121	8 6 19 8	.3 .3 14.0 1.2 4.9	38 31 1510 85 730			
2122 2123 2124 2125 2126	5 3 7 4 4	20.0 .9 4.7 .1 .3	39 93 665 10 13			
2127 2128 2139 2140 2141	7 8 13 17	.3 .6 .2 .1	2 6 12 19 36			
3601 3602 3603 3604 3605	11 37 39 9 17	.8 1.4 22.5 .6 13.3	110 195 2700 61 1810			
3606 3607 3608 3609 3610	109 7 22 1990 1269	15.6 .3 7.8 56.2 11.4	1860 22 1030 6470 1130			
3611	19	2.7	360			

38

6.7

510

STD C/AU-R

I.M.WATSON	PROJECT	-SADIM	FILE#	86-3055
SAMPLE#	Pb PPM	Ag PPM	Au* PPB	
3612	83	3.8	450	
3613	51		2080	
3614	6		1090	
3615	18		1060	
3616	2927			
3617	21	14.6	2190	
3618	65	18.7	2180	
3619	29	3.8	550	
3620	1566	31.4	3450	
3621	175	14.3	2060	
3622	1468	41.2	4590	
3623	40	5.4	810	
3624	647	25.0	3110	
3625	4	4.4	1060	
3626	8	1.3	240	•
3627	15	2.3		
3628	121	6.9	950	
3629	344	18.2	2100	
3630	141	8.1	1090	
3631	40	10.8	2100	
**** / *****	_			
3632	9	6.5		
3693	7	13.2		
3694	55			
3695	_6			
3696	57	23.4	2960	
3697	16	6.5	850	
3698	5	1.3	190	
3699	3	13.8	1610	
3700	82	25.0	3200	
3751	6	3.2	390	
47.04	J			
3752	8	5.5	930	
3753	22	9.7	1380	
3754	3	6.8	930	
3755	2	2.9	420	
3756	7	. 9	93	
	-			
3757	8	9.8	1490	
STD C/AU-R	37	6.8	505	
••				

I.M.	WATSON	PROJECT-S	ADIM	FILE# 86-3055	PAGE	3
	SAMPLE#	Pb PPM	Ag FPM	Au* PFB		-
	3758 3759 3760	2 6 26	2.2 2.0 4.7	215 270 490		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: 352 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 ∭PHONE 253-3158 DATA LINE 251-1011

I.M. WATSON

OCT 4 1986

PROJECT-SADIM FILE# 86-3057

DATE REPORT MAILED:

Oct 16/86

PAGE

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.N.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK CHIPS AU ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: Note DEAN TOYE. CERTIFIED B.C. ASSAYER.

·				
	SAMF'LE#	Pb PPM	Ag FFM	Au* FFB
	2142	8	2.2	290
	2143	10	.2	14
	2144	10	.5	36
	2145	51	7.0	720
	2146	120	2.7	260
	3651	12	.5	35
	3 6 52	4	.2	
	3653	7	.2	1 9
	3654	7	.2	7 5
	3655	7	.2	9
		/	• 🛋	4
·	3656	10	9.6	1310
	3657	5	.8	160
	3658	2	.2	16
	3659	29	8.9	1160
	3660	7	.5	15
•	3661	9	2.0	290
	3662	Ċ	.3	14
	3663	11	. 2	4
· .	3664	11	. 6	25
	3665	8	.2	12
	3666	11	.3	8
	3667	8	. 5	44
	3668	13	2.9	380
	3669	1001	19.3	2350
	3670	414	14.9	
	3671	168	9.3	1080
	3672	17	1.0	123
	3673	13	.5	45
	3674	11	.3	14
	3675	19	1.0	95
	3676	21	1.9	240
	3677	15	. 2	12
	STD C/AU-R	39	7.2	490

I.M.	WATSON	PROJECT	-SADIM	FILE#	84-3057	PAGE	2
	SAMPLE#	Pb PPM	A <u>q</u> PPM	Au* FFB			/
	3678 3679 3680 3681 3682	15 20 25 4 3	.4 .7 1.2 .1	12 10 93 2 1			
	3683 3684 3685 3686 3687	3 3 2 5 4	1.0 .7 .2 .3	13 2 1 3 4			
	3688 3689 3690 3691 3692	11 9 10 9 10	.5 .2 .1 .2	7 6 8 12 17			
	16102 16103 16104 16105 16106	18 30 49 114 1472	9.5 2.7 8.1 16.9 34.3	1150 290 1150 2250 4350			
	16107 16108 16109 16110 16111	12 20 11 4 7	1.2 1.4 3.2 .3	106 67 950 21 5			
	16112 16113 16114 16115 16116	7 9 8 10 8	1.7 .2 .6 .3	215 4 31 8 112			
	16117 16118 16119 16120 16121	9 18 8 5 7	.2 1.4 .2 .3	9 86 16 6 4			
	16122 STD C/AU-R	6 38	.5 7.0	42 520			

٠.

I.M.	WATSON	PROJECT-	SADIM	FILE#	86-3057	FAGE	3
	SAMPLE#	PЪ	Ag	Au*			
		FFM	PPM	PPB			
	16123	335	10.1	1180			
	16124	271	9.2				
	16125	10		106			
	16126	10	. 5	57			
	16127	224	10.1	1450			
	16128	450	17.0	2080			
	16129	7	.5	118			
	16130	44	2.7	290			
	16131	7	5.7	840			
	16132	14	3.6	480			
	16133	7	. 2	32			
	16134	9	.5	26			
	16135	6	1.5	210			
	16136	4	.5	56			
	16137	12	2.7	340			
	16138	14	1.5	159			
	16139	36	8.1	1150			
	16140	9	4.5	680			
	16141	9	4.4	630			
	16142	11	8.3	1300			
	16143	15	3.8	405			
	16144	11	1.8	160			
	16145	10	1.9	350			
	16146	6	. 4	50			
	16147	40	3.3	540			
	16148	12	4.9	860			
	16149	7	6.8	1250			
	16150	5		149			
	STD C/AU-F	R 40	6.9	480			

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE RECEIVED: DEC 3 1986

DATE REPORT MAILED: Dec E/66...

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.IR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: SOILS -80MESH AU\$ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: N. ASSAYER. CERTIFIED B.C. ASSAYER.

I.M. WATSON & ASSOC	CIATES	FILE	: # 86-3894	P'AGE	1
SAMPLE#	Pb	Αg	Au*		
••	PPM	FFM	PPB		
TR#2 12W 0.5-1.5	22	.7	30		
TR#2 12W 1.5-2.5	18	. 9	84		
TR#2 12W 2.5-3.0	11	1.3	290		
TR#2 12W 3.0-3.25	24	5.3	445		
TR#2 12E 0-0.5	35	1.4	149		
TR#2 11W 0-1	15	1.9	106		
TR#2 11W 1-1.5	26	2.6	119		
TD#9 116 1 5_1 75	4.	₹	00		

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-315B DATA LINE 251-1011 DATE RECEIVED: DEC 23 1986

DATE REPORT MAILED:

Jan 13/87

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK CHIPS AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: Nolly DEAN TOYE. CERTIFIED B.C. ASSAYER.

	/						
I.M.	WÁTSON	PROJECT	-SADIM	FILE#	86-4071	F'AGE	1
	SAMPLE#	Fb FFM		Au* PPB			
	2421 2422 2423 2424 2425	8 15 47 145 23	.3 3.0 4.7	22 25 380 845 520			
	2426 2427 2428 2429 2430	22 25 9 177 12	2.7 2.9 7.0	680 410 495 960 350			
	2431 2432 2433 2434 2435	7 9 7 3 8	.3 .7 .2	49 18 66 42 29			
	2436 2437 2438 2439 2440	9 8 12 5 6	. 1 . 1 . 1	9 6 10 14 7			
	2441 2442 2443 2444 2445	6 6 4 10 9	.1 .5 .3	11 8 48 16 34			
	2446 2447 2448 2449 2450	8 11 9 12	.1 .3 .2 .4	12 19 9 25 10			
	2507 2508 2509 2510 2511	17 41 9 12 7	7.5 2.2 1.5	22 435 320 180 27			
	2512	7	2.3	510			

STD C/AU-R 39 6.9

SAMPLE# Pb Ag Au									
PPM PPM PPB 2513 8 2.8 320 2514 6 .2 7 2515 7 .2 6 2516 5 .2 3 2517 6 .1 4 2518 5 .2 5 2519 9 .4 75 2520 11 .1 10 2521 9 8.0 1430 25221 9 8.0 1430 25221 9 8.0 1430 25221 9 8.0 1430 25222 11 25.7 144 2523 2377 76.7 9140 2524 18 .2 17 2525 44 .6 36 2524 18 .2 17 2525 44 .6 36 2526 39 .4 15 2528	I.M.	. WATSON	PROJECT-S	ADIM	FILE#	86-4071		FAGE	2
2514 6 .2 7 2515 7 .2 6 2516 5 .2 3 2517 6 .1 4 2518 5 .2 5 2519 9 .4 75 2520 11 .1 10 2521 9 8.0 1430 2521 9 8.0 1430 2522 11 25.9 144 2523 2377 76.7 9140 2524 18 .2 17 2525 44 .6 36 2525 44 .6 36 2525 44 .6 36 2525 44 .6 36 2526 39 .4 15 2527 21 .3 3 2528 10 .1 2 2539 14 .2 4 2531 12 .2 18 2535 59 16.8 1820<		SAMFLE#							
2519 9 4 75 2520 11 1 1 10 2521 9 8.0 1430 2522 11 25.9 144 2523 2377 76.7 9140 2524 18 .2 17 2525 44 .6 36 2526 39 .4 15 2527 21 .3 3 2528 10 .1 56 2529 10 .1 2 2530 14 .2 4 2531 12 .2 18 2532 10 .1 1 2533 9 .1 1 2534 6 1.2 140 2535 59 16.8 1820 2536 5 .3 29 2537 5 .6 46 2538 5 .1 9 2539 5 .1 15 2540 7 .1 1 2541 5 .2 2 2542 8 .1 1 2544 7 .1 1 2544 7 .1 1 2544 7 .1 1 2545 4 .4 41 2546 8 .5 12 2547 3 .2 1		2514 2515 2516	6 7 5	.2 .2 .2	7 6 3				
2524		2519 2520 2521	9 11 9	.4 .1 8.0	75 10 1430		٠.		
2529 10 .1 2 2530 14 .2 4 2531 12 .2 18 2532 10 .1 1 2533 9 .1 1 2534 6 1.2 140 2535 59 16.8 1820 2536 5 .3 29 2537 5 .6 46 2538 5 .1 9 2539 5 .1 15 2540 7 .1 1 2541 5 .2 2 2542 8 .1 1 2543 7 .1 1 2544 7 .1 1 2544 7 .1 1 2545 4 .4 41 2546 8 .5 12 2547 3 .2 1		2524 2525 2526	18 44 39	. 2 . 6 . 4	17 36 15				
2534 6 1.2 140 2535 59 16.8 1820 2536 5 .3 29 2537 5 .6 46 2538 5 .1 9 2539 5 .1 15 2540 7 .1 1 2541 5 .2 2 2542 8 .1 1 2543 7 .1 1 2544 7 .1 1 2545 4 .4 41 2546 8 .5 12 2547 3 .2 1 2548 127 40.4 4310		2529 2530 2531	10 14 12	.1 .2 .2	2 4 18				
2539 5 .1 15 2540 7 .1 1 2541 5 .2 2 2542 8 .1 1 2543 7 .1 1 2544 7 .1 1 2545 4 .4 41 2546 8 .5 12 2547 3 .2 1 2548 127 40.4 4310		2534 2535 2536	6 59 5	1.2 16.8 .3	140 1820 29				
2544 7 .1 1 2545 4 .4 41 2546 8 .5 12 2547 3 .2 1 2548 127 40.4 4310		2539 2540 2541	5 7 5	.1 .1 .2	15 1 2				
		2544 2545 2546	7 4 8	.1 .4 .5	1 41 12				

lasa.

أسأا

I.M	. WATSON	PROJECT-	-SADIM	FILE#	86-4071	F'AGE	3
·	SAMPLE#	F'b	Αg	Au*			
		FFM	FFM	FFB			
	2549	128	61.7	7110			
	3633	9	1.7	195			
	3634	12	3.8	565			
	3635	8	2.3	270			
	3636	4	1.2	190			
	3637	5	.3	24			
	3638	Ġ	2.2	245			
	363,9	6	• •	142			
	3640	6	1.2	133			
	3641	7	1.7	335			
	3642	3	1.3	119			
	3643	7	2.0	195			
	3644	4	.7	81			
	3645	8	. 9	62			
	3646	3	.8	165			
	3647	7	1.9	255			
	3648	6	1.5	235			
	3649	5	.9	152			
	3761	4	. 1	4			
	3762	7	. 1	6			
	3763	6	. 1	10			
	3764	8	. 1	2			
	3765	8	. 1	1			
	3766	5	. 1	1			
	3767	6	. 1	2			
	3768	9	.2	2			
	3769	44	. 2	5			
	3770	43	.3	3			
	3771	フ	.2	5 3 2 7			
	3772	7	. 4	7			
	3773	9	.2	43			
	3774	6	. 1	6			
	3775	4	. 1	1			
	3776	6	. 1	2			
	3777	6	. 1	1			
	3778	10	. 1	10			
	STD C/AU-R	38	6.9	505			

He

1:00

I.M.	WATSON	PROJECT	-SADIM	FILE#	86-4071	FAGE	2
\$	SAMPLE#	Pb PPM	Ag FFM	Au* PPB			
;	3779 3780	4 8	.2	3			
	3781	4 4	.3	18			
	3782 3783	2	. 1	1 1			
•	3/03		• 1	1.			
:	3784	4	. 1	14			
	3785	2	. 1	7			
	3786	5	. 1	13			
	3787	9	.3	12			
		104		2410			
•	3788	104	10.2	2410			
	3789	4	2.0	390			
	3790		1.1	155			
	3791	5	. 1	4			
	3792	4	. 1				
				1			
•	3793	6	.6	92			
:	3794	567	50.8	5560			
	3795			780			
	3796	7	2.4				
	3797		62.9				
	3798	12	17.2	3080			
•	J/70	12	17.2	3000			
	3799	8	5.2	1100			
	4005	9	. 6	72			
	4006	2	2.0	330			
	4007	è	4.3	610			
	4008	2	1.3	280			
		. —					
	4009	7	. 9	65			
4	4010	4	. 1	10			
	4011	4	. 1	1			
	4012	2	. 1	3			
	4013	9	. 1	4			
4	4014	6	. 1	6			
4	4015	28	6.6	1160			
	4016	8	2.9	390			
4	4017	10	1.3	152			
	4018	6	.3	23			
4	4019	5	.2	8			
ç	STD C/AU-R	37	6.8	530			

SAMPLE#	Pb PPM	Ag FFM	Au* FFB
4020	2	. 4	8
4021	2	.2	6
4022	4	. 1	16
4023	5	.2	
4024	5 4	.3	2 3
4025	2	.3	14
4026	4	2.9	400
4027	9	1.9	240
4028	8	. 5	21
4029	5	.5	13
4030	6	. 4	19
4031	5	.5	8
4032	3	.4	60
4033	5	.5	71
4034	6 ១ ១ ១ ១	. 1	2
4035	2	. 1	28
4036	2 3 2 2 4	.2	1
4037	2	.2	3
4038	2	. 1	· 1
4039	4	. 1	12
4040	2	. 4	1
4041	25 5 3 3	.2	8
4042	3	. 1	1
4043	3	. 1	3
4044	. 3	.3	2
4045	5	. 1	7
4046	2 5	.2	1
4047	5	.2	6
4048	4	. 1	27
4049	4	. 1	1
4050	5	. 1	1
STD C/AU-R	37	6.9	510

_____Accay required for correct result for Ag > 34 PPM

■ ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: FEB 3 1987

DATE REPORT MAILED: July 187

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU\$ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

> Wally DEAN TOYE. CERTIFIED B.C. ASSAYER. ASSAYER:

I.M.	WATSON ASSOCIAT	ES	PROJEC	T-SADIM	1 FILE	# 87-0230	PAGE	1
	SAMF'LE#	Cu PFM	Pb PPM	Ag FFM	Au* FFB			
	088701 088702 088703 088704 088705	76 75 88 205 76	12 5 13 350 5	.8 .1 1.6 7.9 1.7	105 11 165 890 295			
	088706 088707 088708 088709 088710	108 76 131 57 18	7 26 4 6 3	3.1 23.6 .1 2.2 .1	445 3260 31 355 10			
	088711 088712 088713 088714 088715	58 51 45 41 51	6524 6	1.5 6.2 .3 .1	265 995 52 33 12			
	088716 088717 088718 088719 088720	83 67 124 106 98	7 2 10 173 6	.9 1.4 3.9 18.1 2.6	185 205 495 2510 475			
	088721 088722 088723 088724 088725	62 103 328 174 115	5 3 11 4 5	.9 1.3 10.4 5.2 1.8	195 250 1330 740 305			
	088726 088727 088728 088729 088730	167 35 63 119 83	6 2 3 4 12	3.0 .1 .3 1.5 3.2	435 19 43 275 505			
	088731 088732 088733 088734 088735	75 114 160 46 100	3 2 2 2 2 2	2.0 2.3 3.3 .4 1.0	350 335 440 62 215	,		
	088736	104		2.0	375			

STD C/AU-R 61

6.9

490

I.M.	WATSON	ASSOCIATE	ES	PROJEC	T-SADI	1 FILE	E # 87	7-0230	F	AGE	2
	SAMF	PLE#	Cu FFM	Pb PPM	Ag FFM	Au* PPB					
	0887	737	60	4	.8	109					
	0887	738	44	2	1.1	151					
	0887	739	33	7	1.9	285					
	0887	740	29	7	. 1	6					
	0887	741	63	11	2.8	275					
	0887		20	77	4.8	355					
	0887		223	28	5.9	91					
	0887		106	49	9.5	845					
	0887		80	67	5.6	615					
	0887	746	29	29	. 1	6					
	0887	747	57	80	1.2	82					
	0887		100	167	11.9	1180					٠.
	0887	749	84	37	3.5	455					,
	0887	750	38	10	.7	83				•	
	0887	751	29	7	. 1	9					
	0887	752	15	2	. 1	1					
	0887	753	19	3	. 1	3					
	0887		3	8	. 1	1					
	0887		3	7	. 1	1					
	0887	756	7	5	1.1	185					
	0887		3	8	. 1	27					
	0887		5	5	. 1	32					
	0887		5	7	3.8	650					
	0887		7	4	3.3	475					
	0887	761	6	6	4.8	830	٠				
	0887	762	19	5	4.8	625					
	0887	763	19	9	3.4	510		,			
	0887	764	97	20	. 7	128					
	STD	C/AU-R	60	41	6.8	485					

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE RECEIVED: FEB 11 1987

DATE REPORT MAILED: \

Feb 13/87

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU* ANALYSIS BY &A FROM 10 GRAM SAMPLE.

I.M. WATSON	PROJEC	T-SAI	OIM FI	_E# 87-0290	FAGE	1
SAMPLE#	Cu FFM	Pb PPM	Ag PPM	Au* FPB		
088765 088766 088767 088768 088769	158 69 69 13 11	24 45 38 15 12	.3 .9 .4 .1	43 14 60 16 20		
088770 088771 088772 088773 088774	53 67 57 40 67	32 12 3 5 4	.9.4.1.1	21 24 1 7 6		
088775 088776 088777 088778 088779	88 103 80 96 104	00000	.1 .1 .1 .1	1 1 2 7 25		
088780 088781 088782 088783 088784	75 100 102 118 80	7 13 2 8 10	. 1 . 1 . 1	7 1 1 2 1		
098785 088786 088787 088788 088789	73 100 8 74 47	7 12 7 2 2	. 1 . 1 . 1 . 1	13 1 1 1 1		
088790 088791 088792 088793 088794	46 105 83 86 50	4 9 5 4 4	.1 .6 .3 17.3	1 82 97 99 1		
088795 088796 088797 088798 088799	100 96 75 67 150	3 5 5 2 1526	.1 .1 .1 .1 37.1	1 1 2 1 3620		
088800 STD C/AU-R	59 59	2 38	.1 7.0	40 490		

FROJ	ECT-SA	DIM FIL	_E# 87-	-0290	PAGE	2
Cu PPM	Pb FFM	Ag PPM	Au* PPB			
73 20 65 98 48	8 6 2 8 4	.3 .2 .3 1.1	1 1 87 1			
30 78 52 19 445	10 2 6 5 8	.2 .2 .4 .1	1 1 65 1 155			
231 74 76 102 77	4 6 2 4 10	1.0 .4 .1 .1 2.6	106 92 19 1 350			
120 54 126 92 46	5 6 8 12 7	1.3 .1 1.4 1.9				
119 172 401 116 376	6 40 25 2977 124	5.5 9.1 31.8 8.1	41 465 675 3690 - 665	-		

I.M. WATSON

SAMP'LE#

STD C/AU-R

6.8

3.3

1.0

. 1

7.0

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 DATA LINE 251-1011 PHONE 253-3158

STD C/AU-R

İI

DATE RECEIVED: FEB 12 1987

DATE REPORT MAILED: Jul. 17/87...

GEOCHEMICAL ANALYSIS ICP

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: NEMPT DEAN TOYE. CERTIFIED B.C. ASSAYER.

	/							
I.M.	WATSÓN	FROJECT -	SADIM	87	FILE #	87-0323	PAGE	1
	SAMPLE#	Cu FFM	Pb FPM	Zn PPM	Au* FFB			
	088851 088852 088853 088854 088855	98 75 83 110 109	6 6 10 8 9	74 67 59 52 56	2 3 10 2 4			
	088854 088857 088858 088859 088860	82 232 139 93 107	9 7 7 9 3	52 63 64 71 75	5 1 1 1 1			
	088861 088862 088863 088864 088865	102 101 115 138 62	3 5 4 4 2	76 71 76 78 83	2 1 3 1 1			
	088866 088867 088868 088869 088870	85 84 103 86 130	5 4 6 7	66 62 77 71 57	2 2 1 1 26			
	088871 088872 088873 088874 088875	94 89 92 67 65	4 4 8 6 10	57 68 70 77 39	15 2 1 1 61			
	088876 088877 088878 088879 088880	57 54 21 146 82	7 5 7 8 4	57 71 60 82 65	51 7 5 2 52			
	088881 088882 088883 088884 088885	80 19 14 8 61	55262	46 40 30 32 30	78 1 1 2 1			
	088886		4	.27	1			

60

39

136

I.M.	WATSON	PROJECT	- SADIM	87	FILE #	87-0323	PAGE	2
	SAMPLE#	Cu FFM	P'b F'F'M	Zn PPM	Au* PPB			
	088887 088888 088889	3 2 1	8 10 3	33 23 26	1 3 1			
	088890 088891	3 49	1 1 8	42 32	23			
	088892 088893	20 6	10 8	25 40	2 3			
	088894	7	11	30	2			
	088895	7	11	45	12			٠.
	088896	3	12	42	1			
	088897	3	6	45	2			
	088898	4	12	44	1			
	088899	595	11	73	54			
	088900	54	4	81	28			
	088995	79	5	85	7			
	088996	94	6	89	3			
	088997	76	6	74	1			
	088998	74	6	71	3			
	088999	87	7	67	33			
	089000	76	25	285	4			
	088780	25	13	49	2			
	088981	46	7	57	1			
	088782	51	7	57	13			
	088983	60	9	58	11			
	088984	45	7	46	9			
	088985	39	1.1	46	6			
	088986	21	13	27	20			
	088987	53	15	72	24			
	088988	122	14	83	10			
	088989	135	19	80	3			
	088990	195	2	63	1			
	088991	95	86	76	1			
	088992	78	4	66	1			
	088993	76	2	55	1			
	088994	50	2	61	1			
	STD C/AU-F	8 61	37	137	505			

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 DATA LINE 251-1011 PHONE 253-3158

DATE RECEIVED: FEB 16 1987

DATE REPORT MAILED:

ANALYSIS GEOCHEMICAL ICP

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU: ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: . M. JUJ DEAN TOYE. CERTIFIED B.C. ASSAYER.

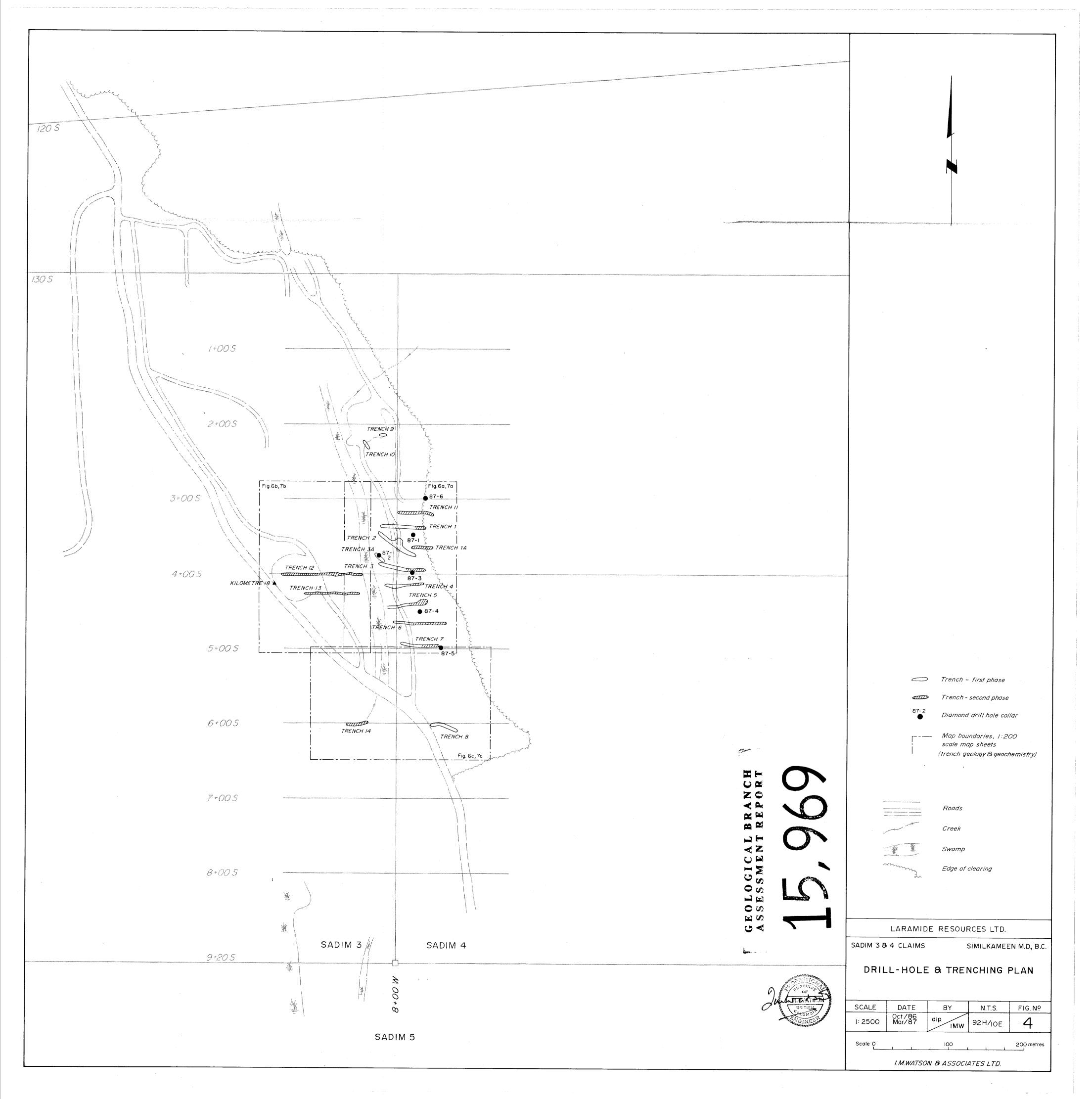
I.M.WATSON	PROJECT	- SADI	M FIL	_E # 87-0350)	FAGE	1
SAMFLE#	Cu PPM	F'FM	Ag PPM	Au* FFB			
091101 091102 091103 091104 091105	4 49 287 153 108	9 29 24 10 11	.2 .4 .8 .5	7 30 50 24 58			
091106 091107 091108 091109 091110	71 157 53 49 90	13 98 21 11 55	.3 2.0 .5 .5 2.4	15 19 18 26 265			
091111 091112 091113 091114 091115	93 119 48 44 60	13 7 6 6 9	1.1 .8 .2 .1	104 124 32 37 44			
091116 091117 091118 091119 091120	71 61 10 2 27	6 12 6 11 16	.3 2.1 .1 .1	31 250 2 1 85		,	
091121 091122 091123 091124 091125	3 63 87 112 63	12 9 4 8 11	.1 1.7 1.7 1.1	4 235 265 125 215			
091126 091127 091128 091129 091130	71 39 20 35 50	12 25 15 13 16	1.2 1.6 1.5 .7 8.7	165 225 185 98 1310			
091131 091132 091133 091134 091135	7 8 27 43 14	11 11 13 11 12	.1 .3 .7 .1	7 1 42 67 3			
091136	15	10	.8	112			

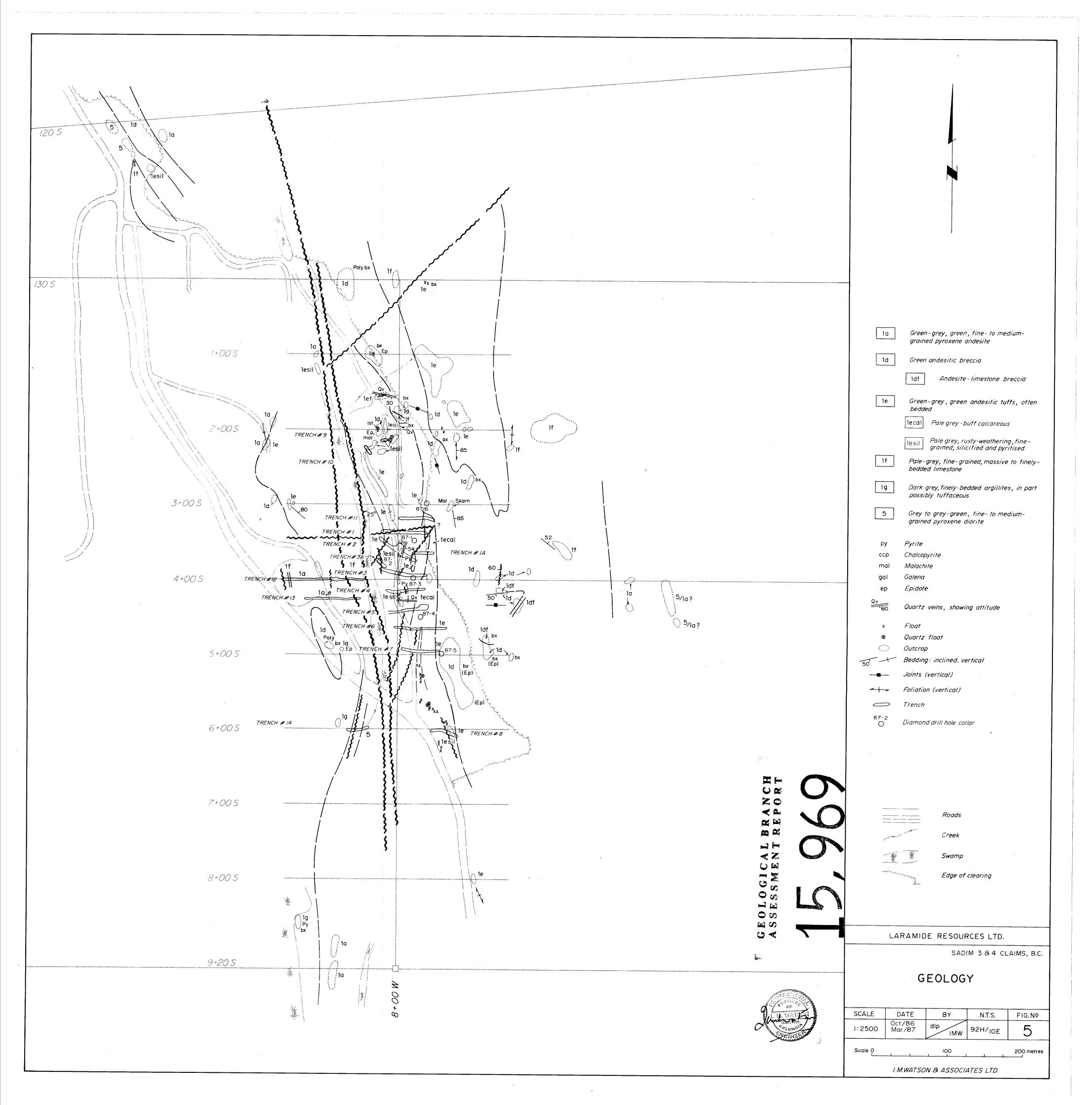
495

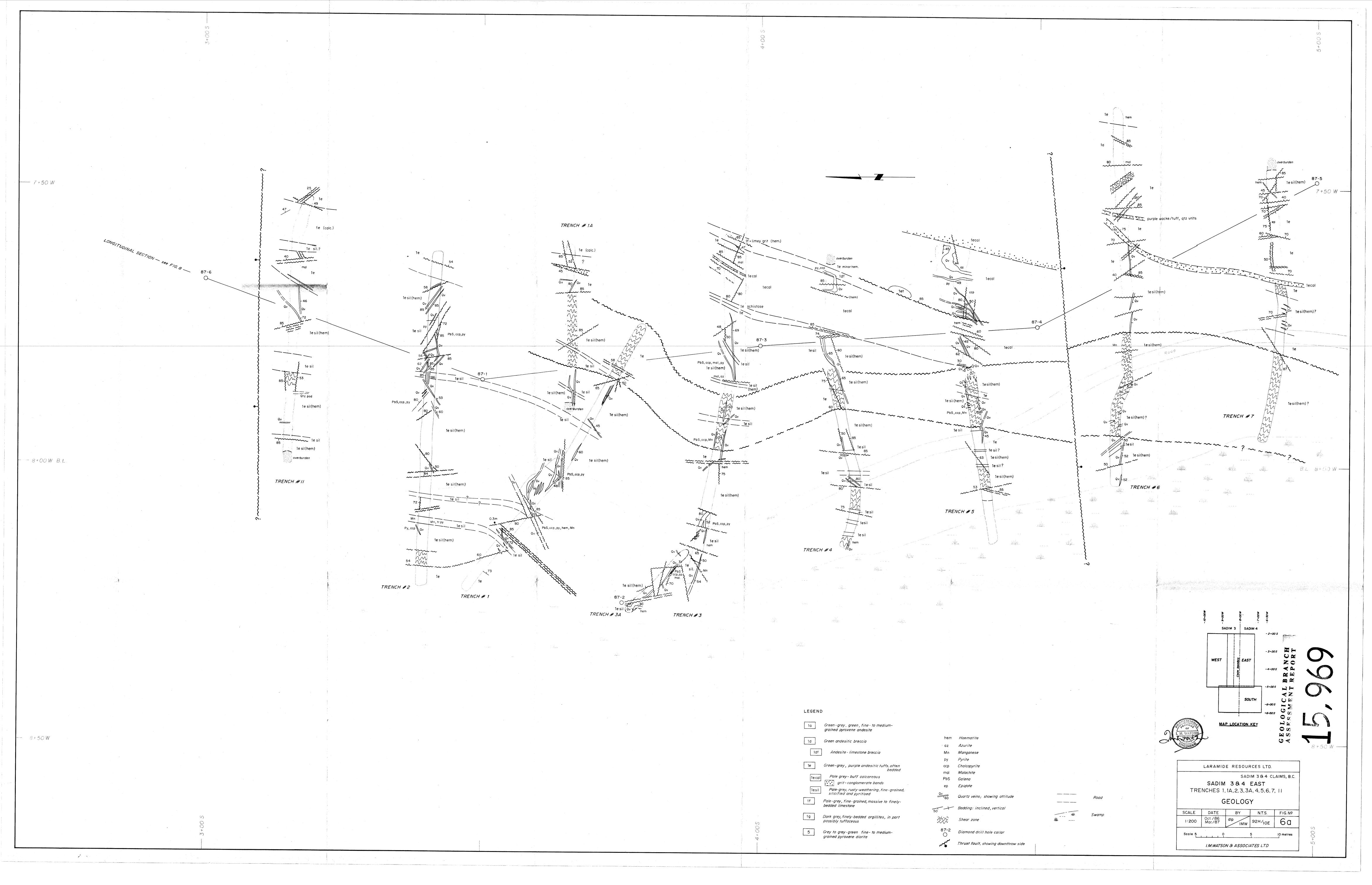
41

57

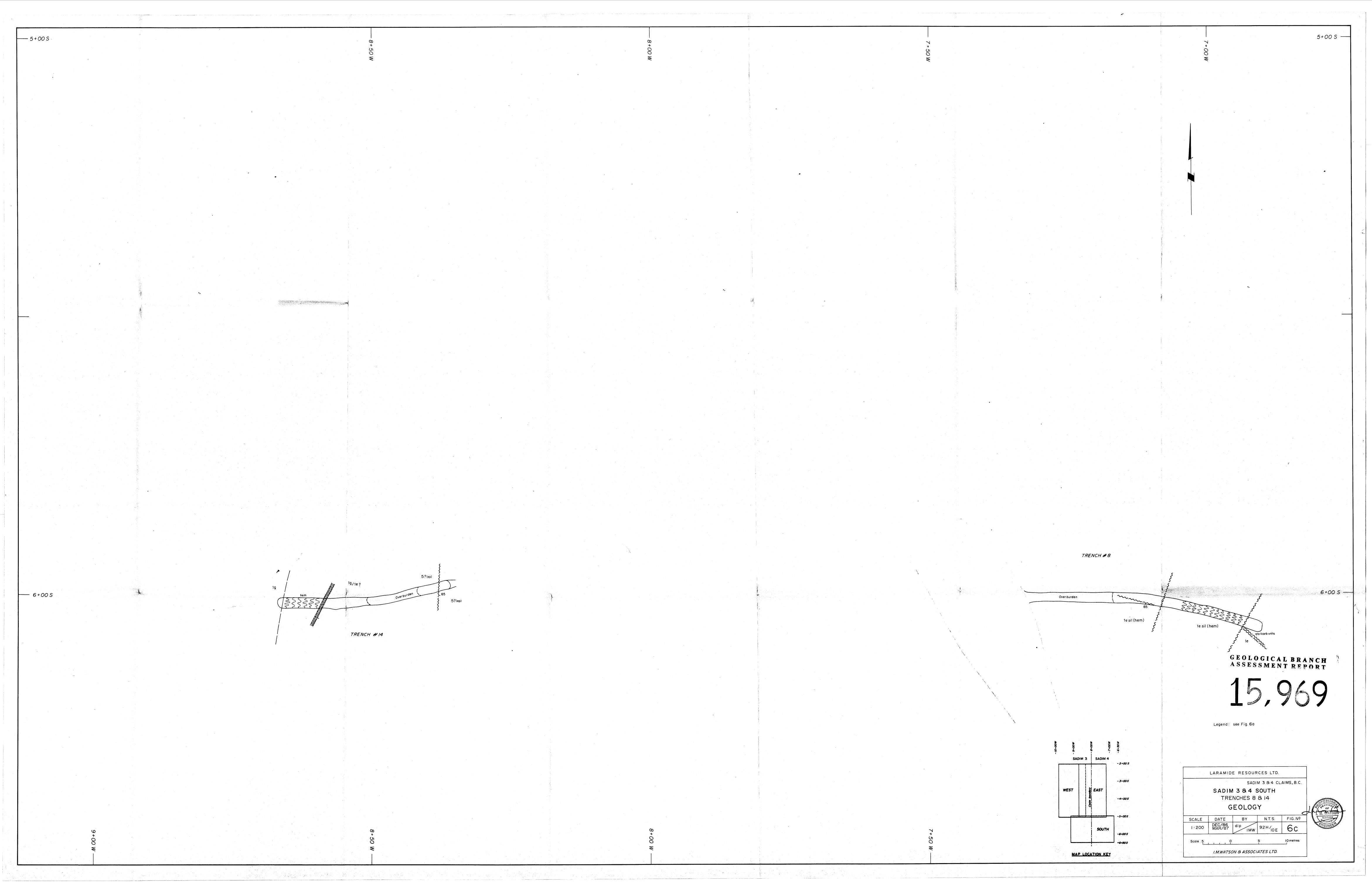
STD C/AU-R

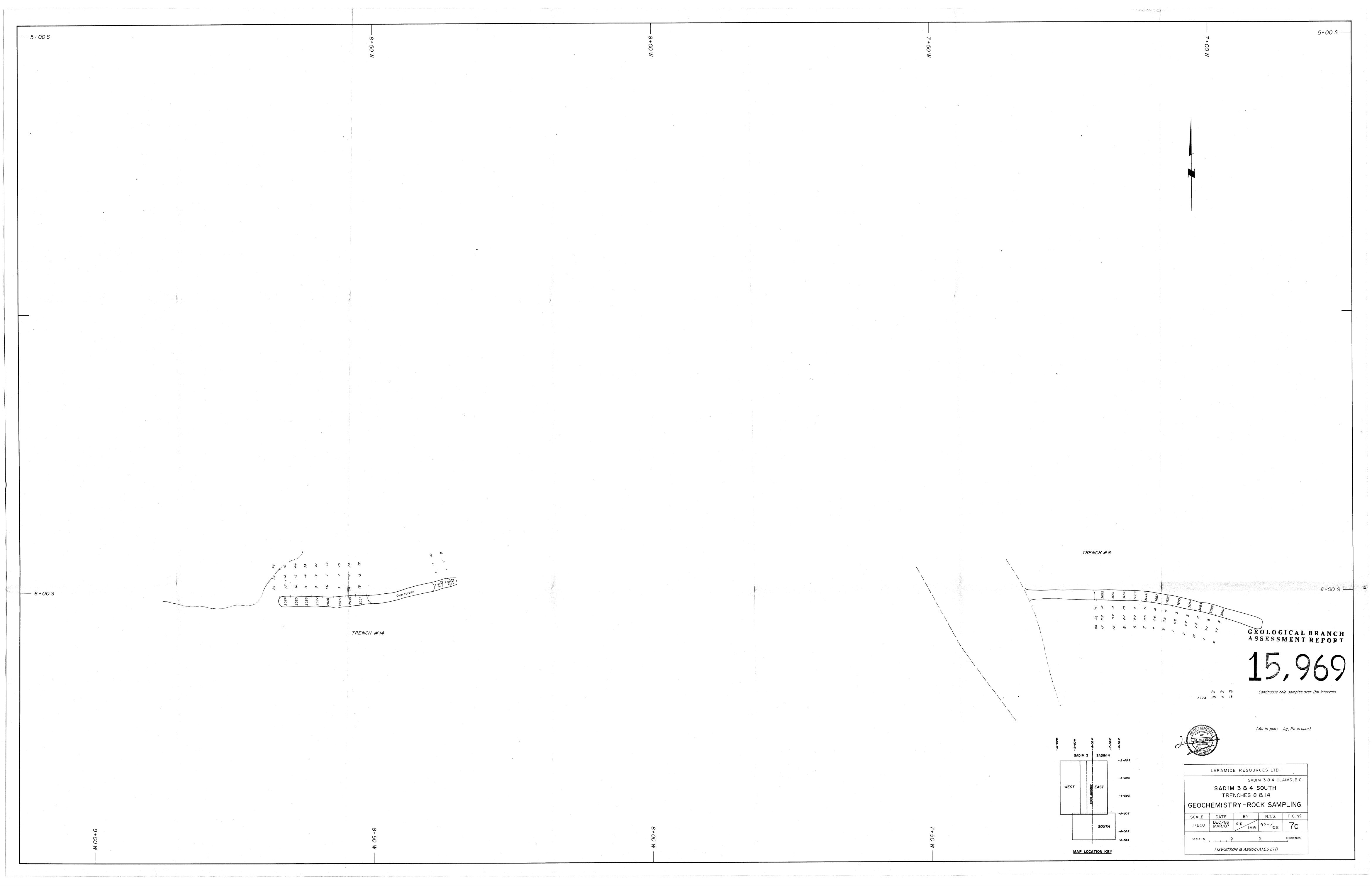

6.9

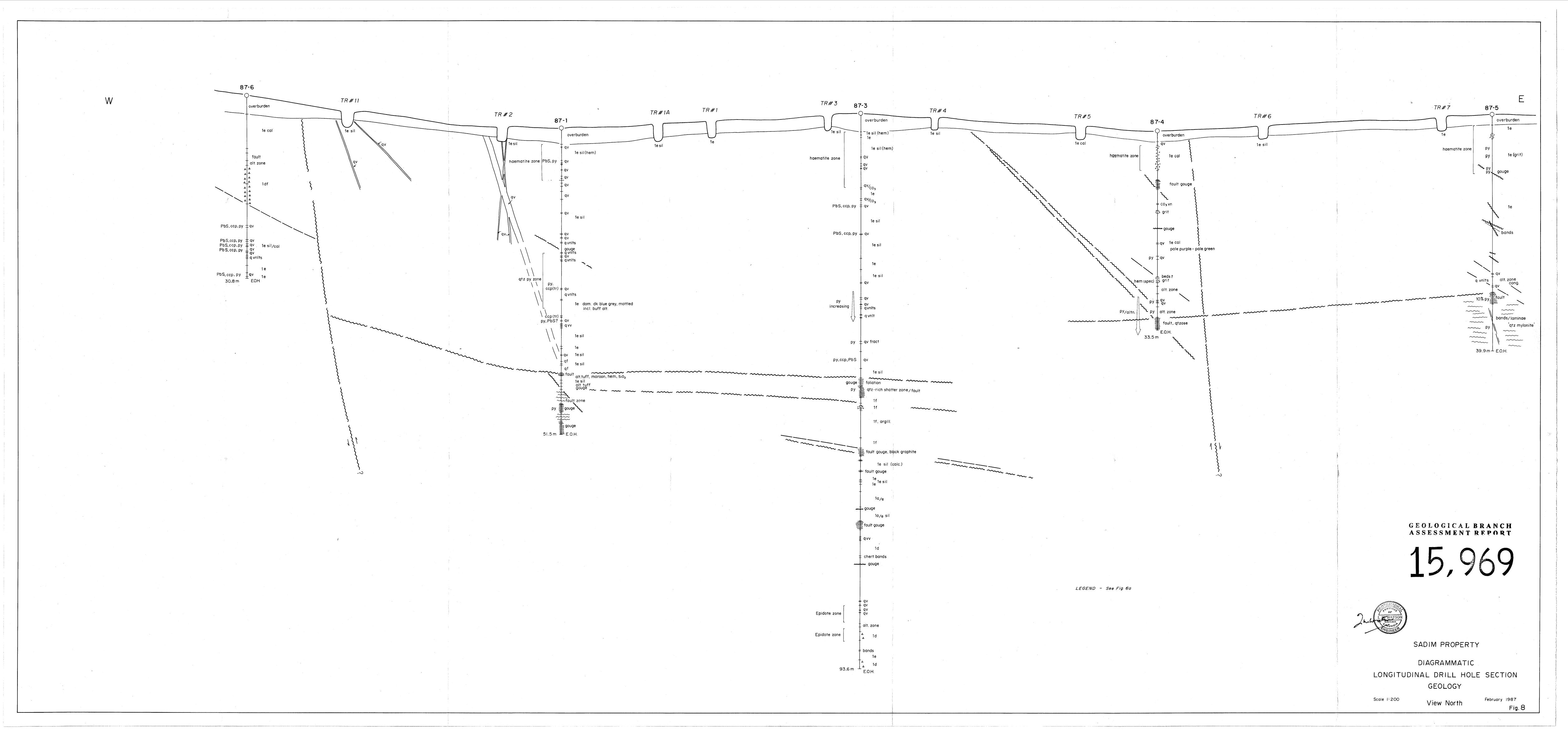

I.M.WATSON	PROJECT	- SAD	IM FI	LE # 8	7-0350		PAGE	2
SAMPLE#	Cu PPM	Pb PPM	Ag PPM	Au≭ FFB				
091137	56	14	3.7	560				
091138	89	53	1.0	76				
091139	27	37	.5	7				
091140	52	37	1.0	129				
091141	49	28	1.2	127				
091142	37	41	1.2	77				
091143	75	62	4.5	580				
091144	81	11	. 1	32				
091145	45	6	. 2	1				
091146	43	6	. 1	1				
091147	31	3	. 1	3				
091148	27	6	. 1	2				
091149	54	3	.2	1				
091150	75	11	.3	1				
091151	19	11	- 1	1				
091152	29	5	.2	1				
091153	63	7	. 1	1				
091154	104	7	. 2	1				
091155	47	5	. 1	1				
091156	25	8	. 1	10				
091157	15	13	1.6	285				
091158	29	7	. 1	19				
091159	20	10	.8	120				
091160	13	7	.3	46				
091161	8	8	. 1	2		,		
091162	328	1064	15.0	1630				
091163	41	27	3.7	505				
091164			8.0					
091165			22.3					
091166			159.1					
091167	62		12.9					
091168	211		3.4					
091169	48		2.0					
091170			28.4					
STD C/AU-R	59	36	6.9	500				


11.5880

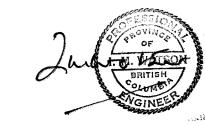
hil


Mi




1e/a? (pale green) 9+00W 9+00 W ---TRENCH # 13 GEOLOGICAL BRANCH ASSESSMENT REPORT --- 9+50 W TRENCH # 12 LARAMIDE RESOURCES LTD. SADIM 384 CLAIMS, B.C. SADIM 384 WEST LEGEND: See Fig. TRENCHES 12 & 13 GEOLOGY I.M.WATSON & ASSOCIATES LTD.

4030 19 4 6 3781 18 .3 4 4031 8 .5 5 / ·/ 4 37 -83 / ·/ 2 60 .4 3 14 .1 4 4033 71 .5 5 --- 9+00W 9+00 W ---40 2 / 3 28 1/ 2 3772 7 .4 7 / 2 3 3773 43 2 9 3 .2 2 / 1/2 3774 6 1 6 12 ./ 4 3775 / -/ 4 3776 2 1 6 1 .4 2 8 .2 5 3777 / 1/6 / ./ 3 3778 10 1 10 3 / 3 2 .3 3 7 / 5 TRENCH # 13 / ·2 5 6 2 5 / ./ 4 / ·/ 5 4 1 4 6 17 10 .1 6 2 ./ 8 / ./ 8 Continuous chip samples over 2m intervals 1 1 5 3773 *45 ·5 /3* 2 16 2 .2 9 5 .2 44 (Au in ppb; Ag,Pb in ppm) --- 9+50 W 9+50 W ---3 3 43 GEOLOGICAL BRANCH ASSESSMENT REPORT 2 .2 7 TRENCH # 12 LARAMIDE RESOURCES LTD. SADIM 384 CLAIMS, B.C. SADIM 384 WEST TRENCHES 12 8 13 GEOCHEMISTRY-ROCK SAMPLING I.M.WATSON & ASSOCIATES LTD. MAP LOCATION KEY

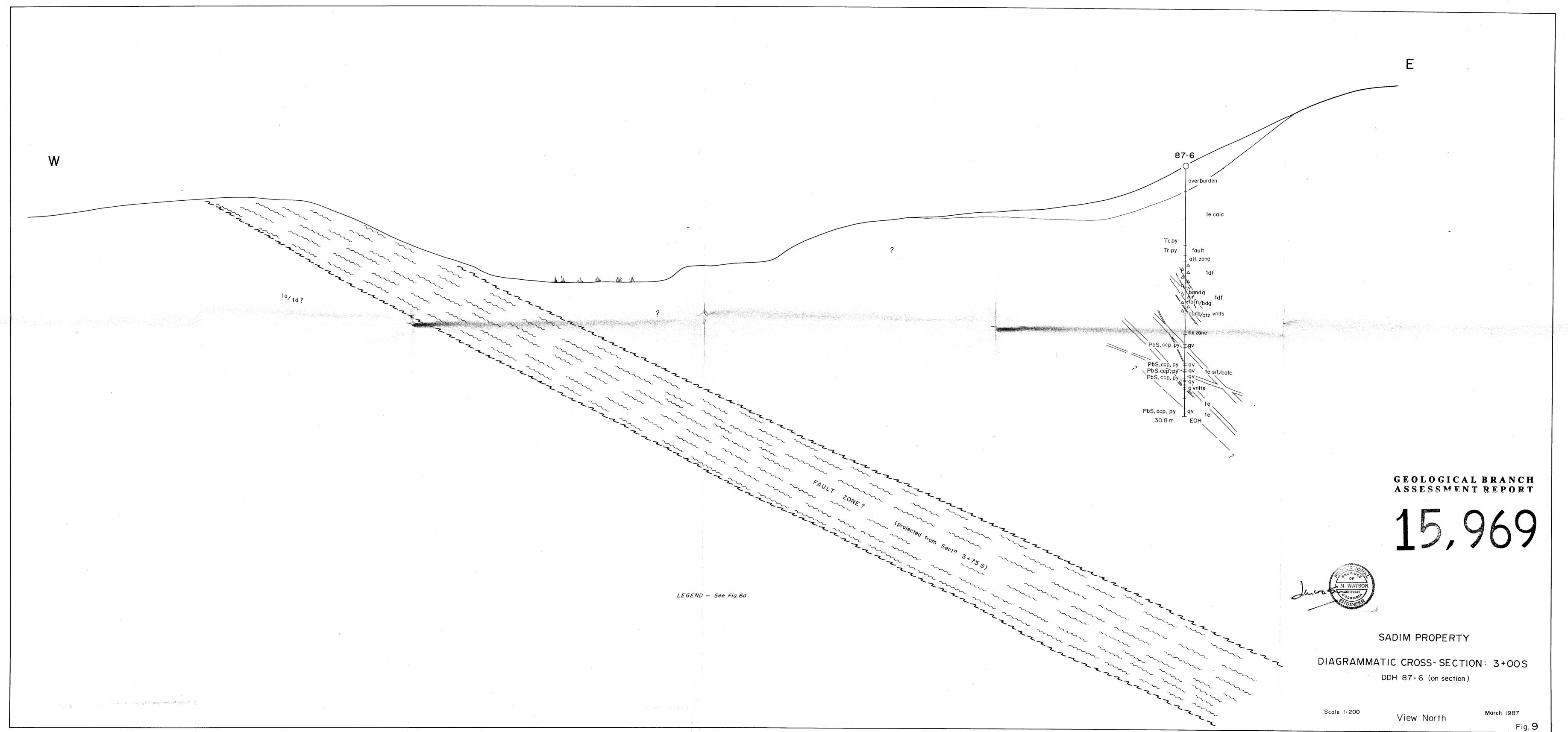


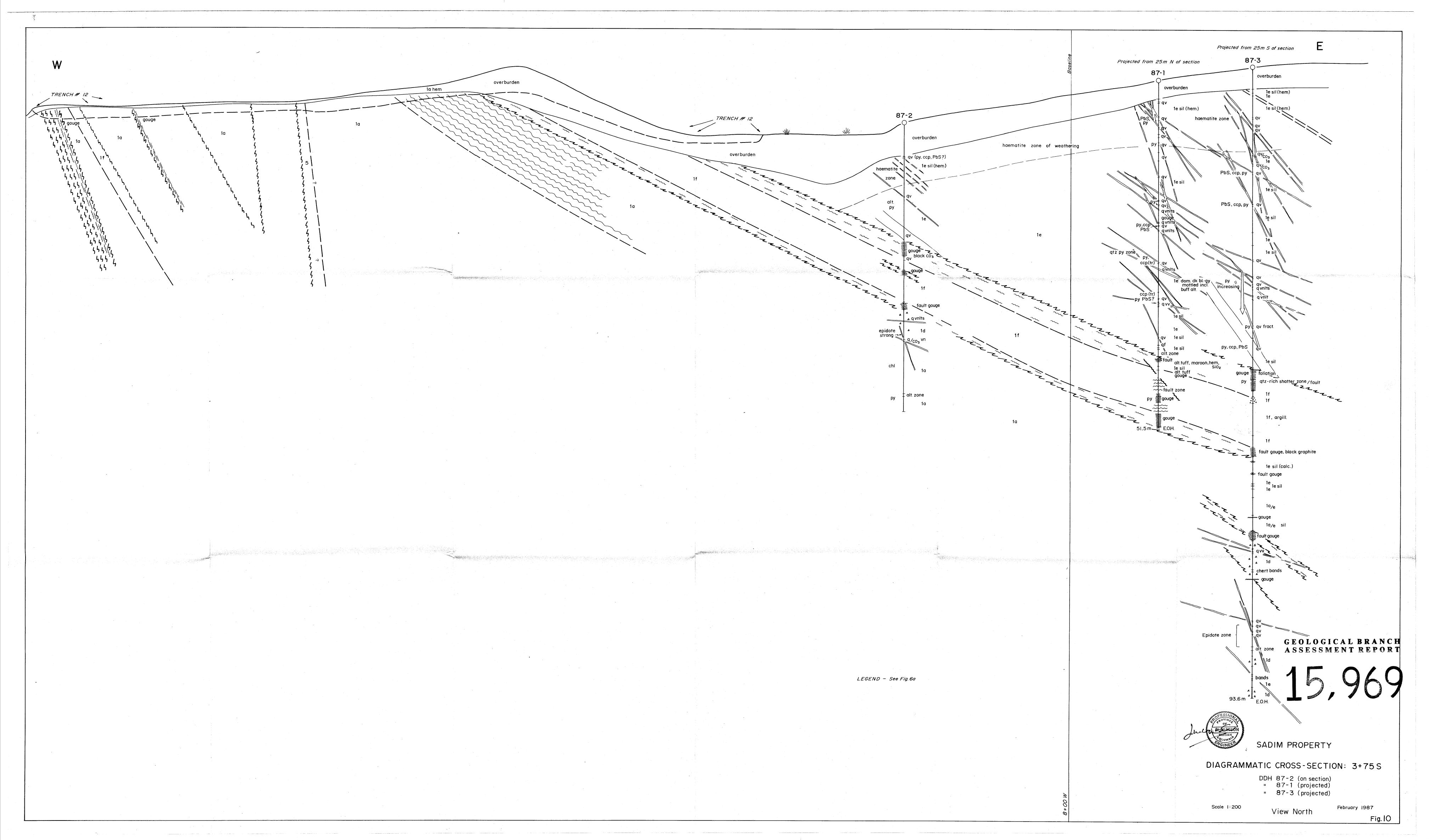
ppm Ag 50 40 30 20 10 0 1000 2000 3000 4000 5000 ppb Au

GEOLOGICAL BRANCH ASSESSMENT REPORT

15,969

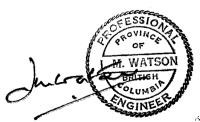
SADIM PROPERTY


DIAGRAMMATIC


LONGITUDINAL DRILL HOLE SECTION showing Au, Ag assays

Scale 1:200

ew North February I


ary 1987 **Fia. 8a**

GEOLOGICAL BRANCH ASSESSMENT PUPORT

15,969

SADIM PROPERTY

DIAGRAMMATIC

DRILL HOLE CROSS SECTION 87-2

showing Au, Ag assays

Scale 1:200

March 1987