$$
87-210-16024
$$

REPORT ON THE ADAMS PLATEAU

Kamloops Mining Division, B.C.

ATS: 82M/4E

$$
51^{\circ} 04.4^{\prime} \quad 119^{\circ} 37.2^{\prime}
$$

```
By: P. Holbek/
    P. Thiersch

For esso minerals canada (Operator)
Owner. Ad ans Silver Resources Inc. GEOLOGICAL BRANCH ASSESSMENT REPORT
\[
16,024
\]

APRIL 16, 1987
(i) SUMMARY ..... (i)
1. INTRODUCTION ..... 1
1.1 Objectives ..... 1
1.2 Location and Access ..... 1
1.3 History ..... 1
1.4 Current Program ..... 2
2. GEOLOGY ..... 4
2.1 Regional Setting ..... 4
2.2 Property Geology ..... 6
2.2.1 Stratigraphy ..... 6
2.2.2 Structure ..... 10
3. MINERALIZATION AND ALTERATION ..... 13
3.1 Mineralization ..... 13
3.2 Alteration ..... 14
4. GEOCHEMISTRY ..... 16
4.1 Lithogeochemistry ..... 16
4.2 Soil Geochemistry ..... 17
5. STATEMENT OF COSTS ..... 19
6. CONCLUSIONS ..... 20
APPENDIX I Geochemistry Data Statistical Plots
APPENDIX II Drill LogsPlates I and II
LIST OF FIGURES
Figure 1 Location MapFigure 2.1Regional Geology
Figure 2.2 Stratigraphic ColumnFigure 2.3 StereonetsFigure 2.4 Geological Map
Figure 2.5 Cross Section
Figure 3.1-3.4 Long and Cross Sections

\section*{SUMMARY}

Stratiform, massive sulphide occurrences are exposed intermittently over a 2.5 km strike length within a volcanic-sedimentary rock sequence on Adams Plateau. The volcanic-sedimentary rock package has been mapped as part of the Paleozoic Eagle Bay Formation (Schiarizza and Preto, 1985) although recent lead isotope work suggest a Triassic age (Goutier, 1986). Rocks have been isoclinally folded into a gently north-northwest plunging synform. Most of the sulphide occurrences are on the western limb of the synform.

Apart from an airborne EM survey, most of the exploration to date has concentrated on finding and evaluating surface showings. EM geophysical surveys are of limited use to exploration, due to the extensive distribution of graphitic argillites within the stratigraphic sequence. Surface showings and shallow diamond drilling indicate that sulphides are laterally extensive but thin (less than 2 m ) and of moderate grade ( \(10 \% \mathrm{~Pb}+\mathrm{Zn}\); 100 gm Ag ).

Sulphides occur near the contact between argillaceous limestone in the stratigraphic footwall and sericite-chlorite phyllite in the hanging wall. Sulphides are generally enclosed by a moderately well-developed alteration halo consisting of sericitization and local carbonatization and silicification. Characteristics of mineralization, alteration and host rock stratigraphy suggest distal volcanogenic mineralization deposited in a back-arc setting. Potentially, economic sized deposits may have formed, and be preserved, in paleo-topographic depressions. Tendency of tight fold hinges to form in zones of low competency, such as sulphide deposits, encourages drill testing of the sulphide horizon in a down-plunge, rather than down-dip, direction. Gravity surveys may contribute to defining favourable drill targets.

\subsection*{1.1 Objectives}

The Adams plateau area has been explored intermittently for the last sixty years. Limited production has come from small surface operations on stratiform lead, zinc, silver and gold deposits. Recent exploration by Adams Silver Resources and regional geological studies by the B.C. Ministry of Energy, Mines and Petroleum Resources has shown that mineralization extends discontinuously for a 2500 m strike length along the westerly limb of the Nikwikwaia Syncline.

This study was initiated to evaluate the remaining exploration potential of the area and to propose drill targets in favourable areas. Present mineralization and associated alteration was examined to determine if a characteristic mineralogical or geochemical expression could be used to guide drilling towards the center of hydrothermal activity. Soil geochemistry was used to test for continuity of the mineralized horizon in areas of overburden and limited or no drilling. Detailed mapping was performed to establish the orientation of structural controls on localization of mineralization.

\subsection*{1.2 Location and Access}

The Adams Plateau property is located 64 km northeast of Kamloops, B.C., on the east side of Adams Lake, at an elevation of 1700 m (fig. 1). Access is provided by a system of logging roads that extend from various points along the northeast side of the Adams River. The most direct route is a 17 km gravel road that leads from paved highway at the south end of Adams Lake.

\subsection*{1.3 History}

The property has been explored and worked intermittently since 1927, when the initial crown grants were established. In 1977, two pits were mined and 1,360 tons of mineralization were shipped to Trail (Spencer,
1985). A program of mapping, soil geochemistry and diamond drilling by Adams Silver Resources, in 1981, focussed on testing near-surface extensions of exposed mineralization. Additional drilling by the same group in 1984 tested for a shallow down-dip extension to the southern open pit area and tested an 800 m length of stratigraphy on strike but southwest of the pit area. Results of this work suggest that mineralization pinches out down dip and along strike, although some mineralization does occur in other horizons that continue to the southwest.

\subsection*{1.4 Current Work}

A 1125 hectare area of the property was mapped at a \(1: 5,000\) scale between July 8 and July 31, 1986. A 1:5,000 scale orthophoto was commissioned to assist in structural mapping. 900 m of drill core was relogged to characterize alteration and to sample for geochemical analyses. 127 soil samples collected from depths of 30 to 100 cm with hand augers established guides for sample and line spacing.


Figure 1 Location Map

\subsection*{2.0 GEOLOGY}

\subsection*{2.1 Regional Setting}

Rocks of the Adams Plateau area are part of the Eagle Bay Formation, a multiply deformed sequence of low grade volcanics and associated sediments, that extends from Clearwater in the northeast, to Sicamous in the southwest (Fig. 2.1). The Eagle Bay Formation ranges in age from Cambrian to Permian (Schiarizza and Preto, 1984); although recent work by Goutier (1986) indicates that part of the Formation may be Upper Triassic in age. Internal stratigraphy of the Formation is complicated by multiple phases of folding and extensive thrust faulting. Stratigraphy is described by Preto and Schiarizza (1985) who recognize four intricate slices separated by southwesterly directed thrust faults.

The Eagle Bay Formation is bounded to the northeast by a low angle detachment fault which separates it from the Shuswap Metamorphic Complex (Goutier, 1986), and to the west by oceanic rocks of the Fennell formation. Contact between the Eagle Bay and Fennell Formations is believed to be an easterly directed thrust fault (Schiarizza and Preto, 1984).

Numerous mineral deposits are hosted by the Eagle Bay Formation, most notably the Rea Gold and Homestake deposits. These stratiform sulphide deposits occur within altered felsic volcaniclastics and are considered volcanogenic in origin (Hoy and Goutier, 1986; pirie, pers. comm. 1986). Stratiform sulphide deposits on the Adams Plateau exhibit both similarities and differences with the Homestake and Rea Gold deposits. The main differences include host rock lithologies, which on Adams plateau are predominately sedimentary in character, and mineralogy where the copper and barite mineralization of the Rea and Homestake deposits is absent on the Plateau. Recent lead isotope work on showings and deposits of the Eagle Bay Formation by Goutier (1986) indicates a Devonian syngenetic origin for the Homestake and Rea deposits, and an Upper Triassic syngenetic origin for the Plateau deposits.


\subsection*{2.2 Property Geology}

The property area is underlain by a sequence of intermixed sedimentary and volcaniclastic to volcanic rocks. This sequence has been folded into a well defined synformal structure referred to as the Nikikwia Syncline (Schraizza and Preto, 1984; Olford, 1985). Most of the past work as well as this study were focussed on the western limb of the synform where outcrop is more abundant. No indications of younging were observed and the sequence is assumed to be overturned along the western limb, although minor folds may locally turn stratigraphy rightside up.

\subsection*{2.2.1 Stratigraphy}

A schematic stratigraphic column which assumes that rocks young towards the core of the synform and illustrates facies relationships is given in Fig. 2.2. Brief lithological descriptions are as follows:

\section*{Greenstone:}

Massive to foliated, fine to medium grained, dark green chloritic rock. This unit likely represents massive basaltic flow units with interbedded mafic ash tuffs. Diagnostic textures such as pillows are not preserved but in some locations thin to thick laminae are preserved, suggestive of ash layers. Predominate mineralogy consists of variable proportions of chlorite, epidote, albite and magnetite. On the extreme western edge of the map area, light grey to cream colored recrystalized limestone outcrops are observed. It is uncertain whether these were originally interbedded with the mafic rocks or represent fold keels of a mostly eroded overlying limestone.

\section*{Chert:}

This unit has been referred to as a quartzite by many of the past workers and is a major marker for defining the Nikikwia
synform. The unit consists of massive to laminated, aphanitic, black to white quartz. The unit thickens towards the hinge area of the syncline and is often intensely fractured in this area, giving it a granular appearance. Interbeds of graphitic argillite or argillaceous greywacke are common, particularly on the west side of Nikikwia Lake. It is seldom foliated but laminations run parallel to the general foliation trend.

The origin of this unit is not of particular significance to exploration but a chert is more in keeping with the depositional environment of the argillites and limestones.

Limestone-Argillite Unit:

The limestone-argillite unit forms the core of the Nikwikwaia synform and consists of a number of interbedded andor interfolded lithologies including: light grey laminated crystalline limestone; black and white banded graphitic limestone; dark grey-brown to black argillaceous graphitic phyllites; and green phyllitic mafic ash tuffs. Rare outcrops of felsic lapilli tuffs were observed within the phyllitic rocks, but their stratigraphic significance is unknown. Contacts between the various lithologies can be either sharp or gradational. Limited outcrop, structural complexity and discontinuity of lithologies prevents mapping the sub-divided rock types with the exception of the green phyllites and calc-silicates which are discussed below. In general, the unit is more limestone-rich near the base (outer portion of the synform) and becomes progressively more argillaceous towards the top. True thickness of this unit is approximately 500 m (including green phyllites). The mineralized horizon(s) occurs near the center of the unit on the northwest side of the synform, usually near a limestone-argillite or a limestone-green phyllite contact.

The mineralized horizon has not been clearly recognized on the southeastern limb of the synform; possibly due to intrusion of granitic dykes or sills and lack of exposure.

\section*{Green Phyllites:}

Green phyllites and associated lithologies occur as layers or pods throughout the limestone-argillite unit but are most prominent along the southern part of the northwest limb of the synform. Three sub-types, based on mineralogy, were recognized during mapping and drill core logging. They are green phyllite, yellow to yellow-green phyllite, and grey-green phyllite. Colour changes reflect dominant mineralogy which ranges from chlorite through chlorite-muscovite to chlorite-graphite. This rock is interpretted to have been derived from mafic ash tuffs, lithic wackes, and tuffaceous shales. Presence of muscovite appears to be an alteration effect which is spatially related to mineralization. Weathering of iron-carbonates within the sericitic phyllites often gives them a red-brown earthy appearance. Changes between phyllite sub-types and enclosing rocks are invariably gradational. Occasionally fine fragmental textures within the green phyllites can be observed in drill core, supporting a pyroclastic/epiclastic origin for this unit.

Calc-Silicate:

This unit forms distinctive, resistive outcrops of laminated to banded epidote, quartz and carbonate. Disseminated pyrite, chalcopyrite and pale brown garnets occur erratically. Just below the old damsite (Figure 3), an irregular band of massive pyrrhotite and magnetite with a black manganiferous coating occurs within the

\section*{Core of Synform}


Chert


Greenstone


Limestone

Figure 2.2 Schematic diagram illustrating facies relationships of lithologies within the Nikwikwaia Synform.
Stratigraphic thicknesses not to scale.
Diagram based mostly on data from the western limb of the synform.
calc-silicates. Contacts of the calc-silicate unit are irregular. This unit is interpretted to be a zone of contact metamorphism (skarnification), indicating proximity to a sub-surface granitic dyke or sill.

Granitic Dykes:

Granitic rocks on the property occur as dykes or sills which are generally conformable, but locally crosscutting. Lithologies range from aplites and felsites to medium grained quartz or feldspar porphyries. All varieties are leucocratic. Minor hornfelsing is observed near intrusive contacts on the northeast side of the map area. Outcrop patterns suggest two elongate bodies (Figure 3) that may be connected. Textural and mineralogical characteristics between the two bodies are different and indicate that two phases of intrusion are more likely.

\subsection*{2.2.2 Structure}

Rocks of the Adams Plateau area have been deformed by at least three phases of folding, which have produced a northeasterly trending isoclinal inclined synform. At the property scale it is only the first phase that has significance for exploration.

The first phase of folding (FI) produced the Nikwikwaia synform during tight to isoclinal folding of regional scale. A penetrative axial planar foliation (Sl) accompanied this phase. A subsidiary phase of folding coaxial to \(F l\) may have produced the crenulation cleavage observed at two locations in drill core, however, clear evidence of a significant second phase of isoclinal folding was not observed. Definition of the Nikwikwaia synform by the chert unit indicates that thrusting, commonly associated with attenuated fold hinges, is minimal.

Second phase of folding (F2) is represented by a large north-trending antiform which runs along Nikwikwaia Creek, immediately east of the map area. F2 folding likely caused significant flattening of earlier structures, producing Fl fold limbs with little sense of vergence. Open to tight upright westerly trending folds and warps with limited amplitude are termed F3; although clear chronological relationships between \(F 2\) and \(F 3\) were not observed. Minor folds of the second and third phase structures are rare, but are easily recognized by orientation and folded \(S l\) foliation. Neither phase significantly alters contact geometry within the map area.

Stereonets of field data (Figure 2.3) show a single cluster of poles to foliation typical of flattened isoclinal folds. Some scatter of points may have been introduced by second and third phases of deformation, but no clear trends are indicated. Fold axes demonstrate considerably more scatter, but cluster at \(020 / 20\) which is the average orientation of flald axes. F3 folds plot along the western edge of the diagram. Observation of folds in the field is difficult due to the shallow plunge of the structures and limited outcrop. Previous mapping (Forster, 1981; Stewart, 19??) indicated closure of the Nikwikaia synform, but complete closure was not determined during this program.

Metamorphism of lower greenschist facies occurred during the early phase of deformation, as indicated by growth of chlorite and muscovite parallel to \(S l\). Recrystallization of sulphides may have taken place during metamorphism. Significant accumulations of sulphides can be localized in fold axes during deformation due to competancy contrast, and therefore drilling down the plunge direction is often more rewarding than drilling down-dip.


FIgure 2.3

\subsection*{3.1 Mineralization}

Mineralization is exposed in trenches, open cuts and shallow drill holes along a 2500 m strike length. Massive to semi-massive base metal sulphides occur within a gangue of quartz and carbonate. Best exposures are in the open cuts or pit area of the Lucky Coon showing (Fig. 3.1). Here, sulphides can be seen to be finely laminated and up to 1.5 m thick. A maximum sulphide thickness of 2.8 m was cut by a 1981 drill hole just below the pit area (Tough, 1981).

Sulphides in the southwestern part of the property occur at the interface between laminated argillaceous limestones (footwall) and structurally underlying sericite-chlorite phyllites. Irregular, pale yellow coloured carbonate lenses are commonly associated with the sulphides. Immediately north of the Lucky Coon pits the chlorite phyllite unit pinches out and the sulphide horizon is difficult to trace. Sulphides and phyllites reappear about 2 km further north at the King Tut showing.

Immediately southeast of the main Lucky Coon pit a small cat trench exposes a narrow band of sulphides within a reversed hanging wall-footwall sequence, indicating that either a small fold or subordinate sulphide lenses occur within hanging wall stratigraphy.

Stratigraphy surrounding the sulphides becomes more complex towards the southwestern end of the property with phyllitic rocks becoming much more prominent. Longitudinal and cross-sections (Figs. 3.x - 3.y) illustrate the poor correlation of rock types hosting the mineralization. Sulphides can occur at three or more intervals, but are generally narrow zones (2-20 cm) of weak grades (2-5\% combined Pb and Zn ). Manganiferous dolomite associated with one sulphide horizon is exposed in surface trenches but does not appear in any of the drill core. A small trench exposes a narrow massive pyrite-arsenopyrite pod or lens 20 m east of the main sulphide horizon near DDH-28. This mineralization, which is reminiscent of that at Rea Gold, was not intersected in any of the drill holes.

\subsection*{3.2 Alteration}

Mineralization on Adams Plateau is frequently enclosed by a modest halo of hydrothermally altered rock. Such alteration is usually more extensive than the actual mineralization, and therefore can serve as a useful exploration guide. Three mineral assemblages characterize the alteration and include silicification, sericitization and carbonate alteration.

Intensity of sericite is largely controlled by wall rock composition and permeability; forming readily within the phyllites, less so within the argillites and not at all within the limestones.

Sericite alteration is spatially associated with mineralization and extends for significant distances both laterally and horizontally away from sulphides although the geometry of the alteration zone is complicated by lithological changes. Within phyllitic rocks, sericite alteration commonly extends for 5 to 15 m into both hanging and footwalls.

Carbonate alteration consists of spots (porphyroblasts), laminations and fine sheets along foliation planes of orange to brown weathering iron and manganese rich dolomite. Carbonate alteration is best developed within the chlorite phyllites, but is also observed within the argillaceous rocks where it is distinguished from "primary" carbonate by texture and its orange brown weathering colour. Carbonate alteration is strongly spatially associated with sulphides and less widespread than the sericite alteration.

Silicification is closely related to sulphides both spatially and temporally. It occurs as gangue, lamination, pervasive flooding and as fine stockworks peripheral to the sulphide horizon. Extensive quartz veining both above and below the sulphide horizon may be related to post-mineralization events. Only a few of the drill holes (Adams 28 and 29) had siliceous horizons (cherty tuffs) that suggest siliceous exhalatives.

\begin{abstract}
Alteration appears to be best developed within drill holes near the Elsie showing, but this may be due to an increased thickness of phyllites in this area. Characteristics of the alteration and mineralization suggest a distal volcanogenic origin rather than a sedimentary exhalative ore.

Weak to moderate sericite and carbonate alteration was observed in outcrop immediately south of the old mine huts (Fig. 3.1). This alteration trends along strike towards the Nikwikwaia lakes but has never been tested.
\end{abstract}

\subsection*{4.1 Lithogeochemistry}

Published studies of lithogeochemical exploration techniques applied to volcanogenic and sedimentary exhalative massive sulphide deposits have concentrated on chemical indicators of alteration and distal mineralization. Widely recognized trends include enrichment of MgO, \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) and \(\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}\) in chloritized footwall rocks close to stringer zones, and \(\mathrm{K}_{2} \mathrm{O}\) enrichment accompanied by \(\mathrm{Na}_{2} \mathrm{O}\) and CaO depletion in sericitized rocks (Ashley, 1983; Riverin and Hodgson, 1980; Vrabe, et al, 1983 zzawa, et al, 1978 and Goodfellow, 1984). Trace element studies detail a host of elements that are enriched or depleted within altered zones. The most significant of these are \(F\) (Lavery, 1979 and Lalonde, 1976), As, Co, Mn and base metals (Ashley, 1983).

Objectives of lithogeochemical sampling of Adams Plateau drill core were to determine if there was a characteristic geochemical signature associated with mineralization, and whether this signature could be used to guide future drilling towards improving alteration and mineralization. Three drill holes with well developed alteration in both the hanging wall and footwall, composed predominately of chlorite phyllite, were selected for sampling. Drill core samples consisted of 4 to 6 cm lengths of core taken every 50 cm over the sample interval. Sample intervals ranged from 3 to 10 m depending on lithological and alteration homogeneity. Massive or semi-massive sulphide mineralization was deliberately avoided during sampling. Samples were analyzed for \(\mathrm{Cu}, \mathrm{Zn}, \mathrm{Mo}, \mathrm{Ag}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{As}, \mathrm{Bl}\),
 digestion. \(F\) was analyzed by specific ion method following a potassium hydroxide fusion. All analyses were performed by Bondar clegg Labs of North Vancouver, B.C.

Lithogeochemical results are contained within Appendix \(I\) and selected elements are plotted as drill hole histograms in Figures 4.1 to 4.3.

The drill hole histograms do not show well-defined chemical trends related to mineralization. Sporadic highs in elements such as \(\mathrm{Sr}, \mathrm{Mn}, \mathrm{Mg}\) and Fe appear to be controlled by lithology rather than alteration. \(N a / N a+K, ~ Z n\), \(C u\), As and \(F\) display definitive but irregular signatures related to alteration and mineralization. The geochemistry correlates better with visibly observed alteration rather than with actual sulphide occurrences, suggesting that the sulphides may be minor distal depositions of a much larger hydrothermal system. Geochemistry of the sampled holes does not significantly improve on visibly observed alteration in terms of target size or definition. Other drill holes have added problems of intermixed lithologies within both the hanging and the footwall. Geochemistry of alteration haloes may however improve with increasing proximity to the hydrothermal source area.

\subsection*{4.2 Soil Geochemistry}

Soil samples were collected from depths of 20 to 110 cm with hand augers and mattocks at 25 m spacings along six lines over the projected surface trace of the mineralized horizons. Sample location and method of collection are shown on Figures 4.4 and 4.5. The purpose of these lines was to establish the correct sampling density and to determine if there was any structural offset along the mineralized horizon between the Lucky Coon showing and the westernmost drill holes. Soils were analyzed for \(\mathrm{Ag}, \mathrm{Pb}\), Zn , As and Mn by Atomic Absorbtion methods by Eco-Tech Labs Ltd. of Kamloops. Analytical results and statistical plots are located in Appendix I. Threshold values were determined from histograms and cumulative probability plots after the method of Sinclair (1976). Threshold values are similar to those reported by Spencer (1985) for a previous survey.

A well-developed soil profile overlies a clay rich glacial till on the property. Till depths range from 0 to 3 m . Boulder lithologies within the till indicate a locale derivation. Glacial direction is unknown. Fragments of massive sulphide within the till, observed 200 m northeast of the mine huts, indicate potential for transported anomalies. Background and mean values are 30 - \(50 \%\) higher for the auger samples than for the mattock samples (Appendix \(I\) ) suggesting that till may be a better sampling medium. Threshold values for the two sampling techniques are similar.

Most of the anomalous areas are multi-element and occur in two or more adjacent stations, indicating that 25 m spacing is appropriate. Lead, zinc and arsenic have log-normal distributions with small but distinct anomalous populations. Silver is normally distributed with minor deviations that may reflect lithological controls. Arsenic tends to show better dispersion and have broader anomalies than the other elements. Basal till samples would likely give higher contrast and better geographic control, but are extremely difficult to obtain with hand augers.

\subsection*{5.0 STATEMENT OF COSTS}
Mapping, Core Logging and Geochemistry:
LABOUR:
P. Holbek, Project Geologist - 20 days @ 245 ..... \(\$ 4,900\).
P. Theirsch, Geologist - 20 days @ 140 ..... \(\$ 2,800\).
LOGISTICS:
Road and Accommodation - 40 mandays @ \(40 / \mathrm{man} /\) day ..... \(\$ 1,600\) 。
Truck Rental - 20 days @ 45/day ..... \$ 900 .
Gas ..... 170.
Equipment and Supplies ..... 200.
GEOLOGY:
Orthophoto 1:5000 ..... \(\$ 3,300\).
GEOCHEMISTRY:
26 Rock and Drill Core - 21 element 17.50 ..... \$ 455 .
127 Soil samples @ 6.00762.
REPORT WRITING ..... 1,600 .

Regional geological setting, local stratigraphy and the nature of alteration suggest that the stratiform massive sulphide mineralization on Adams Plateau is volcanogenic. Mineralization is thin but laterally extensive, and hosted by an interbedded sequence of ash tuffs, argillites and argillaceous limestones typical of a back-arc depositional environment. A significantly sized massive sulphide deposit could have formed and been preserved in a paleo-topographic depression. Locations of such depressions are difficult to determine, but may be indicated by rapid facies changes. Tendency of fold hinges to form in low competancy zones encourages drilling the mineralized horizon in a down-plunge rather than a down-dip direction.

Alteration around the presently exposed mineralization indicates that a large sulphide deposit should have an extensive geochemical and mineralogical expression. Lithogeochemistry may be able to guide drill holes towards improving alteration when drilling a blind deposit.

\section*{STATEMENT OF QUALIFICATIONS}
1) I graduated from the University of British Columbia in 1980 with a B.Sc. (Honors) Degree in Geological Sciences;
2) I have completed three years of post-graduate work in preparation for an M.Sc. Degree in Geology at the University of British Columbia;
3) I have practiced my profession in British columbia for the last five years, and
4) The work described herein was done under my direct supervision.

APPENDIX I

GEOCHEMISTRY DATA,STATISTICAL PLOTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SAMPLE \# & NORTHING M & EASTING M & SILVEF ppm & LEAD ppin & ZINC ppm & ARSENIC ppm \\
\hline DGTAF-AO1 & 6300.0 & 0.0 & 0.9 & 23 & 84 & 2 \\
\hline DSTAF-AO2 & 4300.0 & 25.0 & 0.6 & 21 & 86 & 4 \\
\hline DGTAF-AOS & 6300.0 & 50.0 & 0.6 & 23 & 109 & 4 \\
\hline D6TAF--AO4 & 6300.0 & 75.0 & 0.5 & 22 & 100 & 4 \\
\hline D6TAF-AOS & 6300.0 & 100.0 & 0.6 & 21 & 87 & 6 \\
\hline DETAP AOE & 6300. & 125.0 & 0.9 & 19 & 89 & 2 \\
\hline DOTAF-AO7 & 6300.0 & 150.0 & 1.0 & 35 & 174 & 4 \\
\hline DGTAF-AOB & 6300.0 & 175.0 & 0.9 & 45 & 148 & 62 \\
\hline DOTAF-AOP & 6800.0 & 200.0 & 1.6 & 109 & 186 & 2 S \\
\hline DGTAF-A10 & 6800.0 & 225.0 & 1.9 & 216 & 564 & 10 \\
\hline DGTAF-A11 & 6300.0 & 250.0 & 0.9 & 27 & 101 & 4 \\
\hline Dotap-A12 & 6300.0 & 275.0 & 0.6 & 30 & 118 & 6 \\
\hline DGTAF-A1Z & 6300.0 & 300.0 & 0.0 & 5 & 478 & 1.9 \\
\hline DGTAF-A1.4 & 6300.0 & 325.0 & 0.6 & 30 & 130 & 14 \\
\hline DGTAF-A15 & 6300.0 & 350.0 & 0.7 & 2 & 110 & 12 \\
\hline DSTAF-A1. & 609.0 & 375.0 & 1.1 & 25 & 95 & 10 \\
\hline D6TAF-A17 & 6 OO 0 & 400.0 & 0.7 & 24 & 111 & 11 \\
\hline DGTAF-A18 & 630.0 & 425.0 & 0. 5 & 60 & \(10 \%\) & 32 \\
\hline DGTAF-A1\% & 6\%0.0 & 450 & 9.7 & 5 & 147 & 11 \\
\hline DOTAF-A2O & 6ד0. & 4750 & 1.0 & 97 & 341 & 11 \\
\hline DGTAF-A2 & 6300. & 500.0 & 1.0 & 15 & 257 & 20 \\
\hline DGTAF- EOL & 6500.0 & 2.0 & 0.6 & 24 & 96 & 10 \\
\hline DETAF-EO2 & 6590. & 2w.0 & 0.7 & 28 & 117 & 10 \\
\hline D6TAF-EOS & 600. & 50.0 & 0.7 & 22 & 102 & 11 \\
\hline D6T, DCA & 6500.0 & 75.0 & 0.9 & 38 & 180 & 12 \\
\hline 3TAF-EणS & 6590.0 & 100.0 & j. \({ }^{\text {d }}\). & 28 & 164 & 16 \\
\hline DGTAF-EOE & 650.0 & 1250 & 0.9 & 42 & 1.45 & \% \\
\hline D6TMF-E\%7 & 6500.0 & 150.0 & 0.9 & 58 & 184 & 9 \\
\hline DGTAF-BOE & 6590.0 & 175.0 & O. 6 & 25 & 107 & 12 \\
\hline D6TAF-EO9 & 6509 & 20.0 & 0.7 & 21 & 96 & 7 \\
\hline D6TAF-E10 & 6 O .0 & 220 \% & 0.9 & 44 & 425 & 29 \\
\hline Dotap-bit & 6 EO 0 & 25.0 & 1. 3 & 122 & 780 & 37 \\
\hline DCTAF-Ex & \(60^{60}\) & 2750 & 0.8 & 29 & 118 & 14 \\
\hline D6TAF- \(\mathrm{BLS}^{\text {a }}\) & 6500 & \(\mathrm{OQ}_{4} 0\) & O. 4 & 34 & 104 & 15 \\
\hline DGTAF-B14 & 6 6 ¢0 & 250 & \%. 5 & 20 & 9 c & 10 \\
\hline DOTAF- 815 & \(60^{60} 9\) & \%0.0 & 0.6 & 3 & 98 & 16 \\
\hline DotAF-E16 & 6500.0 & 37.0 & \% 9 & 104 & \(10 \%\) & \% \\
\hline Dotap-B17 & 650.0 & 49.0 & 9. & 56 & 250 & 6 \\
\hline DeTAF-E1E & 6 EO 0 & 425.0 & O. 4 & 25 & 90 & 6 \\
\hline Dotap-nig & 6500.0 & 450.6 & 0.5 & 40 & 75 & 8 \\
\hline DETAF-E20 & 6 OQ 0 & 475.6 & \%. 6 & 22 & 86 & 17 \\
\hline DeTAP-E21 & 600.0 & Э0. & . 5 & 5 & 134 & ] \\
\hline DGTAF-COI & 759.0 & 175. & \% & 17 & \% & 6 \\
\hline DSTAP-CO2 & 75280 & 2250 & 0.6 & 23 & 09 & 13 \\
\hline D6TAP-COZ & 7525.0 & 2750 & 0.8 & 41 & 94 & \(1 \%\) \\
\hline DoT¢F-CO4 & 7525.0 & 25.0 & O. 2 & 15 & 8 & 9 \\
\hline D6TAF-COS & 752.0 & 775.0 & 0.5 & 19 & 26 & 7 \\
\hline D6TAP-COO & 75250 & 425.0 & 0.3 & 19 & 25 & 8 \\
\hline D6TAF-COT & 7525.0 & 475.0 & \(\mathrm{O}_{4}-\) & 14 & 14 & 3 \\
\hline DSTAF-COS & 7525.0 & 525.0 & O. 4 & 16 & 25 & \(\underset{\square}{ }\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(r\) SMMPLE＊ & NOFTHINE Ni & \begin{tabular}{l}
EASTINE \\
N
\end{tabular} & SILVER ppm & LEAD ppm & ZINC ppm & ARGENIC PP！ \\
\hline DGTAF－COC & 759.0 & 575.0 & O． 2 & 12 & 18 & 18 \\
\hline D6TAF－C10 & 7525.0 & 625．0 & 0.4 & \％ & 59 & 6 \\
\hline DOTAF－C11 & 759.0 & 675.0 & 0.7 & 16 & \(5 \%\) & 4 \\
\hline DETAP－DO1 & 7725.0 & 175.0 & O． 1 & 16 & 17 & \(\because\) \\
\hline DGTAP－DO2 & 77250 & 200．0 & 0.8 & 3 & 2 S & 4 \\
\hline DGTAP－DOS & 7725.0 & 2em， 0 & 0． 8 & 20 & ¢8 & 4 \\
\hline D6TAF－D04 & 7725.0 & E． 0 & O． 4 & 22 & 119 & 1 \\
\hline DGTAP－DOE & 772 E .0 & 2750 & O． 2 & \(1 \%\) & 30 & 1 \\
\hline DOTAP－DOG & 7720 & O\％． & 0， 6 & 21 & 110 & 1 \\
\hline D6TAF－DO7 & 7725.0 & re． 0 & \％， & 15 & 50 & 7 \\
\hline DGTAP－DO¢ & 779 ． & 50 & 0.9 & 94 & 175 & 2 \\
\hline D6TAP－D99 & 7725.0 & 375.0 & 0.7 & 54 & \(9 \%\) & 2 \\
\hline DGTAF CH & 77200 & 40.0 & 0． & 21 & 77 & 1. \\
\hline DoTAF－D11 & 7720.0 & 425.0 & 0.3 & 15 & 29 & 1 \\
\hline DeTAF－D12 & 77250 & 450.0 & 9．7 & 22 & 94 & \(\square\) \\
\hline DGTAP DIE & 7726 ） & 475.0 & 0.5 & 20 & 65 & \(\square\) \\
\hline DeTAP－64 & 7725.0 & W0．0 & 1.3 & \(26 \%\) & 254 & 17 \\
\hline Detap－Dis & 7725.0 & 52.0 & O． 7 & 84 & 74 & 2 \\
\hline DGTAF－D1\％ & 7725 & 550.0 & 0.7 & 35 & 162 & E \\
\hline DGTap－wiz & \(772 \% 0\) & 575.0 & O．\({ }^{\text {a }}\) & 15 & 20 & 2 \\
\hline DGTAP－DIC & \(77 \%\)－ & 60．0 & \％ 5 & 27 & 104 & 2 \\
\hline D6TAF－DI9 & 7726 & 625 & ． 5 & 16 & 25 & 1 \\
\hline DCTAP－TQ & 772 \％ & ¢0． & ． 8 & 43 & 15 E & 7 \\
\hline －DGTAF－D2I & 7725.0 & 6750 & 0.8 & \(\therefore 2 \mathrm{E}\) & 67 & \(\square\) \\
\hline GTAPEO & 79 \％ & 17 C & \％． 4 & 14 & 36 & 3 \\
\hline DGTAF－EQ & 7924 & OO． & 0.4 & 21 & 114 & 9 \\
\hline DGTAF－EOG & 79.6 & 25．0 & 0.8 & 16 & \(13 \%\) & 4 \\
\hline DOTAP E－EA & 7925.0 & E\％． & 9．7 & 21 & \(\underline{25}\) & 3 O \\
\hline DGTAP－EOT & \(79 \pm .0\) & 275.0 & 0． 5 & 16 & 70 & 8 \\
\hline D6TAF－E6 & 7920 & 90．0 & ． C & \％ & 98 & \(\Xi\) \\
\hline DeTAF－at & 77 \％ 0 & ¢5．0 & 2． & 12 c & 179 & 13 \\
\hline D6TAP E－E & \％¢E． & 区． 0 & 4.0 & 207 & 246 & 16 \\
\hline DeTmp Eoc & 79 ¢ & 95．0 & ¢． 8 & 20 & \％ & 4 \\
\hline DGTAF－Li & 7926 & ¢0．0 & 1．1 & P0 & Q1 & 2 \\
\hline DCTAF－E1 & \(79 \%\)－ & \(4 \mathrm{~F}_{4} \mathrm{O}\) & 1.8 & 138 & 114 & 12 \\
\hline Dotmpele & 79250 & 45 C & O． 7 & 31 & 115 & 6 \\
\hline Detmbere & 79 ¢ & 49.0 & 1．2 & 115 & 2 G & 17 \\
\hline Detmpersa & 79850 & FO． & \％． 7 & 区 & 111 & 21 \\
\hline D6TAP E1\％ & 79.6 & 勺5، & ］． 7 & 68 & 6 & 15 \\
\hline TCTAP Eb & 79 es & 于9， & \％． 7 & 41 & 165 & ¢ \\
\hline  & 99\％ & 5750 & ）． C & 2 & ¢\％ & \(t\) \\
\hline Demp－E18 & 7925 & 600 & 0.7 & 8 B & 186 & 17 \\
\hline DeTAF－EI\％ & 79.0 & ל250 & 0.6 & ¢ & 5 & 12 \\
\hline WGTAP－EO & 7\％． & 659．0 & O．\({ }^{\text {a }}\) & 210 & 225 & 3 \\
\hline DCTAP－ED & 7950 & ¢7w． & \％．9 & 31 & 108 & 1. \\
\hline  & 815 0 & 1750 & O． & 17 & 39 & 5 \\
\hline Detap Foz & 8155． & 0．0 & 0.6 & \％ & 95 & \(\theta\) \\
\hline DSTAP F－WE & 9125． & 225.0 & O． 2 & 12 & 14 & 4 \\
\hline DCTAF－FO4 & e1\％．0 & 250.0 & ． 4 & 17 & 68 & 4 \\
\hline －\({ }^{\text {OTAP－FOE }}\) & ¢ 4 & 276 & O． 4 & 16 & 49 & \(\therefore\) \\
\hline
\end{tabular}


Gecchem General Imquiry Flateau golls
SAMFLE N NORTHING EASTING

DGTAF FOG DGTAF-FO7 DGTAF-FOE DETAF-FOG DGTAF F- F 10 DGTAF-FII DGTAP-F12 DGTAP-F13 DGTAF-F14 DGTAP-F15 DETAP-F16 DSTAP- F 1.7 Dotap - F18 DGTAF-FIG DOTAF FW DGTAF-F21
\begin{tabular}{|c|c|}
\hline 8126.0 & 50, 0 \\
\hline ¢125.0 & 25. 0 \\
\hline E125.9 & 35.0 \\
\hline 5126.0 & 375.0 \\
\hline 8125.0 & 400.0 \\
\hline 8125.0 & 425.0 \\
\hline 8125. & 450.0 \\
\hline 8125.0 & 475 \\
\hline 5125.0 & 500.0 \\
\hline 8125.0 & E5. 0 \\
\hline 8125.0 & 56. \\
\hline 8125.0 & 575.0 \\
\hline 8125.0 & 600.0 \\
\hline 8125.0 & 625، \\
\hline 8125.0 & 650.0 \\
\hline 0125.0 & 675.0 \\
\hline
\end{tabular}
850.

Set Feb 21, 1987
Fage 3
\(\angle E S D\)
ppm
0.6
0.0
0.7
0.5
0.0
0.4
\%.
0.4
1.8
. 5
1.7
0.6
. 9
0.
.. e
. 5

24
17
\(4 \%\)
22
उ5
20
46
2a
150
58
63
59
St
15
25
24
\(Z \mathrm{TNO}\) ppm

ARSENIC ррп

50
134
00

\section*{190}

89 5 11
56
6S 69 20
208
73 19

138
20 9 1.4

142 9

5


ESSO MINEEALS CANADA
HR. PETER HOLPEK
1600-409 GRANUILLE ST.
UANCOJUER, B.C.
V6C. 112
AdAms Platener
Driuitera 15, 35, 38.


130 Pemberton Ave.
North Vancouver, B.C
Canada VTP 2RS Phone: (604) \(985-0881\) Telex: 04-352667

Geochemical Lab Report



\section*{Geochemical} Lab Report
```

REPORT: 226-4023 (COMPLETE)

```

CLIENI: ESSO HINERALS CANADA PROJECT: NONE GIVEN
\begin{tabular}{|lllll|}
\hline & SEPT & 3 & 0 & 80 \\
\hline REEERENCE INEO: & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ORDER & ELEMENI & NUHBER OF ANALYSES & LOUER DETECTION LIMII & EXIRACIION & METHOD \\
\hline 1 & Fluorine & 25 & 20 PPM & POI HYDROXIDE FUSION & Specific Ion \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAMPLE TYPES & NUABER & SIZE ERACIIONS & NUABER & SAMPLE PREPARATIONS & NUKBER \\
\hline D DRILL CORE & 25 & \(2-150\) & 25 & AS RECEIVED, NO SP & 25 \\
\hline
\end{tabular}

REPORT COPTES TU: ESSO KINERALS CANAIA
INVIICE IIO: ESSO RINERALS CANAIA
Mr. PETER HOLPEK

Geochemical
Lab Report
\begin{tabular}{lllllll}
\hline & & \\
\hline
\end{tabular}


Variable:zINC ppm
\(\begin{array}{lr}\text { Number of Semples Selewted: } & 110 \\ \text { Number of Missing or Null Values: } & 0\end{array}\)

Minimum:
Masi mum:
Fiange:
Mean:
14.000
700.000
760.000
120.509
101.000

Var i. ance:
Stendard Deviations
Standard Error:
Coefficient of Variation (\%):
Coefficient of Gtemmess:
Coefficient of Kurtosis:
Log 10 Transformed Meant
12245.989
115.991
10.606
89.559
2.727
13.915
96.16
3.102

Log 10 Variance:
1.761

GENEFAL FFOJECT FLATEALS SOTLS

Variable:LEAD ppm
Number of Samples Selected:
Number of miseing or Mula values:
Mirimum:
Maximum:
Fenge:
Mean:
Median:
Veriance:
Standard Devictiom:
Standard Error:
Coefficient of Variation (\%)
Coefficient of scewness.
Coefficient of furtosis:
Log io Trancformed mean:
Log 10 Variance:
hog 10 btandard Deviation:

Elementery statistics
\[
116
\]
o
12.000
65. 000 54.000
46.172
28.00
2741.194
54.2 S
\(5,0 \%\)
117.457

3 ,
15.589

उ. 771
2.906
1.728

Sat Fet 21, 1587

VariableasILVEF ppm
Number of Samples Selected: 116
Number of Missing or Null Values: o

\section*{Minimum:}

Maximum:
Famge:
Mean:
Median:
\begin{tabular}{lr} 
Varjance: & 0.217 \\
Standard Deviation: & 0.466 \\
Standard Error: & 0.043 \\
Coefficient of Variation (\%): & 63.153 \\
Coefficient of Skewness: & 3.510 \\
Coefficient of Furtosis: & 2.621 \\
Log 10 Transformed Mean: & 0.641 \\
Log 10 Variance: & 2.192 \\
Log 10 Standard Deviation: & 1.481
\end{tabular}

Fance
\[
\begin{array}{ll}
0.1 & 1.4 \\
1.4 & 2.7 \\
2.7 & 4.0
\end{array}
\]

MAF FLOT \(\angle E G E N D\) FOF \(\angle E A D\) PPM
Famge
\begin{tabular}{rr}
12 & 62 \\
82 & 154 \\
154 & 224 \\
224 & 296 \\
296 & 366
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Circie & Fadius & 2 \\
\hline Circle & Fadius & \(=4\) \\
\hline Cirme & Fedius & \(\cdots 6\) \\
\hline Circle & Radius & 8 \\
\hline Cipmele & Fedius & \\
\hline
\end{tabular}

MAP FLOT LEGEND FOF ZINC PPm
Fange
\begin{tabular}{rr}
14 & 167 \\
167 & 220 \\
260 & 474 \\
474 & 627 \\
627 & 760
\end{tabular}
\(\begin{array}{ll}\text { Circle Redius } & = \\ \text { Circie Radius } & =2 \\ \text { Circle Redis } & =6\end{array}\)

Cimele Radiu
Circle Fadius
Crocle Radius
\(=10\)
\begin{tabular}{|c|c|c|}
\hline Circie & Fadius & 2 \\
\hline Circle & Redius & \(=4\) \\
\hline Curcle & Radius & \(=6\) \\
\hline Eirmede & mecijus & \(=5\) \\
\hline Circle & Redius & \(=1.0\) \\
\hline
\end{tabular}

MAF FLOT LEGEND FOF ARSENTE PPA

Fange
\begin{tabular}{rr}
1 & 15 \\
15 & 28 \\
28 & 42 \\
42 & 55 \\
55 & 69
\end{tabular}
\begin{tabular}{ll} 
Circle redius & \(=2\) \\
Circle Radius & \(=4\) \\
Circle Redius & \(=6\) \\
Circle Radius & \(=6\) \\
Circle Radius & \(=10\)
\end{tabular}

MAF FLOT LEGEND FOF STLUER pPm

Fange
\begin{tabular}{ll}
0.1 & 0.9 \\
0.9 & 1.7 \\
1.7 & 2.4 \\
2.4 & 3.2 \\
3.2 & 4.0
\end{tabular}

Circle Fadius
Circle Fadius
Circle Fadius
Circle Fadius
Circle Fadius
\(=2\)
\(=4\)
\(=6\)
Circle Fadius \(=10\)

















780.00

132.00

70.00

7.00





APPENDIX II

DRILL LOGS
PLATES I, II


PLATE I Drill core from ADAMS-15 showing massive sulphides
at 55 ft . Upper unit is limey graphitic argillite. Lower unit is chloritic phyllite (mafic ash tuff). Note carbonate alteration below sulphide horizon to approximately 88 ft .


PLATE II Typical sulphide intersection of semi-massive pyrite, galena and sphalerite at contact between argillaceous limestone and carbonate altered chloritic phyllite.

Prouect iden : adams
COLLAR WORTHING: 60768.00

START MTE : 86/7/30
COLLAR EASTING : 16194.00 TOTAL LENGTH : 68.50
completion date :
COLAB Ei EVATION: 1608.00 CORE/HOLE SIIE : EE

GEOLGGED EY : PMH + GEID filimith : 0.00


CORE \(\quad Z \quad\) TYFI- ERL TEX- GRAIN FRAC-

EFY 1 TH MAT TY TK F C 4



DESTG AGE COL AEPC

Sthuctin-: ALTERGTION MINS ORE-TYPE MiNS
H H H H H ANO Hi H HANY
TID STX DIF A A A A AMIN A A A KIN

I 10 STK DIP GF KU CL EF HE HA PR ME SL HA
STAUCTUE-2 A A AA A A A A

DER P
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & F & 8n & 45 & & 4 \\
\hline  & & 80 & 35 & \(F 1\) & \\
\hline
\end{tabular}

Limey graphitic arqillite. Black ant white banded/thing laminated. Minor porphyroblastic pyrite. Last 2 a of the interval becone chloritit and strongly Fe-caro aitered.

MESF SP PY ERG FG LM PS P P
EL Q1 SF2
Fine grained massive sulahides in a siliceous watrix.

WI In ST PY CA! Pi P2
Thiny bedded te laminateg intaramiate ash tuff. iop a lime strongiy muse. and Fe-cari altered. Chicrite jncreases down the interval. Calcite is abundant (102) throughout the section. Clusters of leminated py ocar sporadically to 35an.

LH
Limey, weakiy pyritic, graphtic argillite. Fasty weathering looks to te fe-cate (some as daste).
SUUMABYREMARKS

This is one of the better heles for sulphice besting stratioraphy. The kanging well tafis are much thicker here than in the otfor hoies and moderateiy altered. The footwall may also be lesc limey then norgial. This hele suggeste a possible correlation between thichness of tuffs and sulphide harizon.
\(\left.\begin{array}{llll}\text { ESSO Minerals Canada } \\ \text { ADAMS }\end{array}\right]\)


\section*{ESSO Minerals Canada ADAMS}

DRILLHDE/TRAVERSE : ADAMS-20 (COMTiNUED)

SUMMARYREMARES
This hole has very poor recovery of suspected aineraiized zones. Hanging wall is black and white banded limey argillite. Footwall is pale green and black banded tuffaceous argillite. Pyrite occurs througiout. Quartz carbonate alteration around the zone of poor recovery.

ES50 Minerals Canada ADAMS

DRILLHOLE/TRAVERSE : ADAMS-21

PRGJECT IDEM : ADAMS
cOLLAR NORTHING: 61150.00

START DATE : 86/7/16
COLLAS EASII等: 17210.00 TOTAL LEWMTH : 36.30

COMFLETION DATE :
COLLAR ELEVATION: 1795.00
COFE/HOLE SIIE : BG

GEDLOGGED EY: PMH + GRID AIIMUTH:


> SUMMARYREMAFKE

Hele is entirsly composed of aiked and /or interbeddes argillite, liestone and minor chloritic tuff. local fragmental textures. Core is split between 14.8-16. Bm. Differences beiween tinits in this hole are relatively ainor.

\section*{ESSO Minerals Canada}

\section*{ADAKS}

DRILLHOLE/TRAVERSE : ADAMS-22
\begin{tabular}{|c|c|c|c|}
\hline START DATE & : 86/ 71:6 & COMPIETION DATE : & GEOLDGEED BY : PCT + \\
\hline COLLAF EASTING & : 17210.00 & COLLAR ELEVATion: 1770.00 & GRID ALINTit : \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline F & 0.60 & 4.87 \\
\hline \(p\) & 4.87 & 14.02 \\
\hline 1 & & \\
\hline R & 4.87 & 14.02 \\
\hline 8 & 4.87 & 14.02 \\
\hline \% & 4.87 & 14.02 \\
\hline R & 12.08 & 13.51 \\
\hline H & 12.08 & 13.41 \\
\hline \(p\) & 14.02 & 17.37 \\
\hline 1 & & \\
\hline A & 14.02 & 17.37 \\
\hline F & 14.02 & 17.37 \\
\hline F & 14.02 & 17.37 \\
\hline P & 17.37 & 88.20 \\
\hline \(L\) & & \\
\hline \(f\) & 17.37 & 15.20 \\
\hline \(R\) & 17.37 & 10.20 \\
\hline \(R\) & 17.37 & 18.70 \\
\hline 4 & 17.37 & 18.20 \\
\hline \(F\) & 15.20 & 24.38 \\
\hline - & & \\
\hline 8 & 18.20 & 24.38 \\
\hline 8 & 18.20 & 24.38 \\
\hline 8 & 18.20 & 24.38 \\
\hline \(p\) & 24.38 & 24.68 \\
\hline 1 & & \\
\hline \multirow[t]{2}{*}{5} & 24.38 & 24.58 \\
\hline & 24.38 & 24.6 \\
\hline
\end{tabular}


STRUCTUR-1 ALTERATION HLNS ORE-TYPE MINS H H H H A ANY H H H ARY TID STK Dip A A A A BimA A A A MIN I ARM K: OZ BI EY CE ME XX PY CF EL YY SUMYARY I ID STK DIP XF WUCL EP HE KA PK MO SL HA 2 ALH KT HHHHHHHH STRUCTUR-2 \(\quad A A A A A B A A\)

Banded black and wite limy arglilite with high graphite content leading io high tissility. Lower meter of wit centeins increased ouartz as irregular lenses. Dark grey fine grained with 20t safic specks: Lemprophyre dyke. . DYKE 品
100.0 YL PHYL PY QI MS3 P 70 N

Yellow grey phyllite becoming mure silicecus and sericitic doxn section. Pyrite occurs finely discetinated and as nodules uf to 0.5 cm ; again increasing down sectitn.
100.0

HSSF FY AA CA: BH
\(F \quad 70\)
M4 Ii 12 AS \(0=0=\)
Minerajized zone consists of banded maseive and porphyrotiastic pyrite, galena, significant arsenopyrite, wispy sphaierite and tracs chalcopyrite. Graphite laminations incrases doun section, calcite layers occur throughont.
100.0 6G PHYL PY OT GES E\%
\(p \quad 70\)

CA!
9
Biack and pate grean bander ntylite, Grapatic and fiscile, contains pyrite cubes up to lem in size. Uper . Jo settion is atteret-iron stained and hichty graphitic.

Siliceose grey siltstone with tineiy laminatot grapaite and winer pyrite.
SU:AABYREMtRKG

This noie intersects . Je of mastive sulohide: predominantly pyrite, dalena, lesser sphalerite; arsenopyrite, and trace chalcopyrite. bipoer section is highly eraphitic banded lisy

\section*{ESSO Minerals Canada}

ADAMS

MRILLHOLE/TRAVERSE : ADAMS-22 (CONTINUED)

\section*{SUMMARYREMARKS}
argiliste. Imediate hanging wall is strongiy sericitic and pyritized. The footwall is banded green and black graphitic phyllite grading into siliceous siltstone, both containing porpiyroolastic pyrite.

PROJECT LDEN : ADAMS
COLLAR NORTHING: SI131.00

START DATE : 86/ 7116
COLLAR EASTING: 17000.00
TOTAL EENGTH : 35.40

COMFBETION DATE :
COLLAR ELEVBTION: 1794.00 cOAR/HOLE SIDE: BE

GEOLOEGED EY: PMH + GRID AZIMITH:


\section*{SUMMARYREMARES}

Banced ijght and dark grey argillaceous limestone is underiain by wuscovite altered, silicified and weakly minerajized yellow voicaniclastic. This material probaly weathers to a rusty paeer sericite schist. Jnderlain by graphitic argillite. Once again they probably sicpped the hole too soon, as sterked mineralization zonss are quite likely.

\section*{ESSO Minerale Canada}

ADAMS

DRILLHOLE/TRAVERSE : ADAMS-24
\begin{tabular}{lllll} 
PROJECT IDEN : ADAMS & STAR DATE \(: 86 / 7 / 16\) & COMPLETION DATE : & GEOLOGGED BY: PMH + \\
COLLAR NORTHING: \(: 1118.00\) & COLLAR EASTING: 16944.00 & COLLAR ELEVATIOH: 1789.00 & GRIN AZIMUTH:
\end{tabular}


SUMMARYFEUARES

Hoie is predominantly intermixed limestone and graphitic arcillite. Some layers may have enough graphite and thickness to act as airborne conductors. Hole did not go far enough to intersect mineralization.

PROJECT IDEN : ADAHS
COLLAR NURTHING: 61147.00

START DRTE : \(86 / 7 / 16\) COMPLETIDN DATE :
CDLLAR EASTING : 17070.00 COLLAR ELEVATION: 1785.00
TOTAL LENGTH : 22.70

CORE/KOLE SIIE : BE

GEOLOGGED BY: PMH + GRID AIIMUTH :


\section*{CORE \% TYPI- QAL TEX- GRAIN FRAC-} recov- Mrock fying min tures characs ture ERY I TM TMMATY TY FC \% M

\(\qquad\)
ROCK FOREN FT TM QM2 TX TX SRSODIP F dUAL MEMVQLC-3 \(\quad 40 N H / S H L I\)
DESIG AGE COL ADPC
OVER P
50.0 HLSTPY CAGLMLSJ 0 FO FO 80

Banded black and white argillaceous limestone or liny argillite. Calcite is recrystallized
Banjed black and white argillaceous limestone or liay aroilite. Caicite is recrystalized into white layers.
70.0

SMSF SP PY GAR2
9
P6
EY Olt
01 H2
M
Core is badiy ground up, zone is silicified with thin 5 -10ca zones di seni-massive çalena t- sphalerite +- pyrite. Actual thickness is fard to determine, but wouid appear to be 40 cos mex. Other than silicification, there is no alteration to speak of in this hole.

EC CAS EX
Core is nostly rubtile. Some of it is quite crumbled. Appears to be changing from argillaceous limestone to liay argillite wich is typical of this unit.

SUMMARYREMAKKS
Poor core recovery. Its very possibie that this is not the main zone. If the dip displayed in the pit as 35-45 is consistent, then the hoie stops atout loom short of intersecting the main zone.

PROJECT IDEN : ADAKS COLLAR NORTHING: 60714.00

STAFT DATE : \(86 / 7 / 31\) CDMFIETION DATE :
COLLAR EASIING: 16076.00 COLLAR ELEVATION: 1813.00 total Lengti : 47.90

CORE/HOLE SILE : ED

GEOLDGEED EY : PCT + GRID AZIALITH:



OVEF p


AG \(\quad\) \& 211
Finely laminated pale grey-green phylite with minor grey carbonate bands and interbedded lifestone.
\begin{tabular}{|c|c|c|c|c|}
\hline 100.0 an & PWI 02 CE 22 LE & F & 70 V 2 & \\
\hline & 76 PY Cl 2 & 4 & & P2 \\
\hline
\end{tabular}
(1)

Dark grey laninated, graphitic, chloritic phyllite, Abundant white guertz veins and bands. Unit is only slightly limy. Sraphite and chlorite increase with pyrite which occurs locally to \(3 \%\). ipper contart with green phyllite is graciational. Louer contact ie fallted, with 15 cm of gouge.
100.0 AG PHYL OZ NJ LE LM P 70 B3

A6C: FG 1
Dark grey-oreen chlorite rich phyilite. Pale green muscevite laminations are characteristic, chlorite increases with quartz anc may te seconder\%. lone is extensively faulted and fractured, breccia recemented with quartz. Seven zones of qouge for a total ot 25 cm . Upper cortart faulted; lower contact gracetiona:.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(100.0 \quad 46\) & PHMEOECL & LB FE & P & 70 & \(N+\) \\
\hline & 766 & L & & & \\
\hline
\end{tabular}

Dark grey-green phyllite, slightly liay, abundiant quartz tands, oorphyrceisetic pyrite to icm, 3\%, Graphite laminations, trace ankerite. Lower contact oradationel, with increasing ankerite,

\begin{tabular}{|c|c|c|c|c|}
\hline 100.0 Y & PHYE 01 mid & LELM & F & 8031 \\
\hline & 36 Cl & FG & 4 & L3 P2 \\
\hline
\end{tabular}

51

Fine grained yeliow ankeritic phyllite. iecal quarta flcoding with trate pyrite and sphalerite.
100.G AG PHYL 02 CE GF LSLM P 70
\(\mathrm{C} \quad \mathrm{FG}\)
5
bat of internedien grey phylite \(40 \%\) grey limetone \(40 \%\).

\section*{ESSO Minerals Canada}

C ADAMS

\section*{DNILLHOLE/TRAVERSE : ADAHS-27 (CONTINUED)}


CORE \% TYPI- GAL TEX- GRAIN FRAC-RECOV- M GOCK FYING MIN TURES CHARACS TUAE ERY 1 TH TM MAT TX TXFC\% M (FT.1) TYPE 12 QHI 12 FFCP TK

STRUCTUR-1 ALTERAIIDA MINS ORE-TYPE MINS
\(H\) H H H H ANYY H H ANY
IID STK OIP A A A A A MIN A A A MIN
1 AIM RT OZ BI CY CB MG XX PY CP GL YY SUMmARY
ROCK FOA EN KT TM OM2 TX TX SRSODIPF TID SIK DIP KF NUCLEP HE HR PR ME SL HA
Qufi men Volc- \(3 \quad 30 N H / S K L I 2\) AZM RT HHHHHHHHH DESIG AGE COL ROPC STRUCTUR-2 A A A A A A A A
yellow-green phyllite 20\%. Trace pyrite, pervasive quartz, local graphite, local brectia texture.

SUMMARYREMARKS

Weak mineralization occurs at 30 in the form of wispy sphalerits. Pyrite is present throughout. Both hanging wall and footwall are similariy interbeded grey, green, and yellow phylites with ainor limestone. Mineralization is aseociated with guartz flooding.

\section*{ADAMS}

DRILLHOLE/TRAVERSE : ADAMS-28

PROJECT IDEN : ADAMS
COLLAR NORTHENG: 60508.00

START DATE : \(86 / 7 / 25\)
COLLAR EASTINS : 16080.00
TOTAL LENGTH: 35.70

COMPLETIGN DATE :
collar elevation: 1837.00
CORE/HELE SIIE : BQ

GEOLGGEED BY: PHH + GRID ALIMUTH:


\section*{ES50 Minerals Canaga ADAMS}

DRILLHOLE/TRRUEFSE : ADAMS-28 (CONTINUED)

SUMAARYREMARKS

Upper portion of hole is interbedded phyllites and limestone. Gver:ying the mineralization is a highly silicified phyllite or a tuffaceous chert. Mineralized zone shows unusual alteration with the lower calc-silicate breccia suggestive of skarn affinities. The chlorite phyllite belew the aineralization does not appear to be altered.
\begin{tabular}{|c|c|c|c|c|}
\hline Prouect iden : Adams & Start date & : \(86 / 7 / 25\) & COMPLETION DATE : & GEDLOGEED BY: PMH + \\
\hline COLLAR NORTHING: 60600.00 & CDLlar easting & : 15976.00 & COLLAR ELEVATION: 1823.00 & 6RID ALIMLTH: \\
\hline & total lensth & : 59.60 & CORE/HOLE SIIE : 昭 & \\
\hline
\end{tabular}


\section*{ESSO Minerals Canada}

\section*{ADAMS}
brillhole/traverse : adams-29 icontinued:


\section*{ESSO Minerals Canada}

ADAFS

ORILLHOLEITRAVERSE : ADAMS-29 (CONTINLED)

\section*{SUHMARYREMARKS}

This hole appears to te upside down relative to the Lucky Coon, where the hanging wail is argillaceous liestone and the foctuall is yellow-green phylite. The eineralization is inpressive in tenor but is so thin as to berder on insignificance.

\section*{ADAKS}

\section*{DRILLHOLE/TRAVEFSE : ADAMS-30}

PROJECT IDEN : ADAMS COLLAF NORTHING: 60537.00

START DATE : 86/7/26
COLLAR EASTIMG : 15884.00
TOTAL LENGTH : 58.70

COMPLETION DATE :
COLLAR ELEVATION: 1831.00
CORE/HOLE SIIE : 明

GEOLOSGED BY : PCT + ERID ALImITH :


\section*{ESSO Minerals Canada ADAKS}

DRILLHOLE/TRAUERSE : ADAMS-30 (CONTINUED)

\section*{SUMMARYREMARES}

20ce zone of semi-massive pyrite and trace sphalerite is intersected at 13.4 . Henging wall and footwail are both limestone. Neyt unit down section is green phyllite uith interbedoed limestane, then grey argillitellimestone, highly deforeed, graphitic and pyrite rich.

\section*{DRILLHOLE/TRAUERSE : ADAMS-35}

PROJECT IDEN : ADAMS COLLAR NORTHING: 60160.00

START DATE : 86/7/23
COLLAR EASTING : 15600.00 TOTAL LENGTH: 84.50

COMFLETION DATE :
COLLAR ELEVATICN: 1855.00
CORE/HOLE SIIE: PO

GEOLGGGED BY : FMH 4 PMH GRID SIINUTH: 0.00


\section*{ESSO Minerals Canada}

\section*{ADAMS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{F-Intefval-} \\
\hline \multicolumn{3}{|l|}{K L IUNITS \(=\)} \\
\hline \multicolumn{3}{|l|}{E A} \\
\hline Y 6 & FROH & 10 \\
\hline \multicolumn{3}{|l|}{\(k\) F} \\
\hline \multicolumn{3}{|l|}{\(E\)} \\
\hline \multicolumn{3}{|l|}{Y 6} \\
\hline R & 64.90 & 68.60 \\
\hline A & 64.90 & 68.60 \\
\hline \(p\) & 68.60 & 70.80 \\
\hline \multicolumn{3}{|l|}{L} \\
\hline R & 68.60 & 70.80 \\
\hline R & 68.60 & 70.80 \\
\hline \(p\) & 70.80 & 82.90 \\
\hline \multicolumn{3}{|l|}{L} \\
\hline \(\boldsymbol{R}\) & 70.80 & 82.90 \\
\hline 8 & 70.80 & 82.90 \\
\hline R & 70.80 & 82.90 \\
\hline f. & 70.80 & 82.90 \\
\hline 1 & 70.80 & 82.90 \\
\hline \(N\) & 70.80 & 82.80 \\
\hline \multicolumn{3}{|l|}{L} \\
\hline P & 82.90 & 84.40 \\
\hline \multicolumn{3}{|l|}{L} \\
\hline A & 92.90 & 84.40 \\
\hline 8 & 82.90 & 84.40 \\
\hline R & 82.90 & 84.40 \\
\hline
\end{tabular}


Inter mediate tuff/wacke with high chlorite content. Graphite increases towards the botton of the interval.

YG PHYL OI CA CL2 LHVD \(35+1 \quad P \quad F 0 \quad 8032 \quad 11 \quad 0)\)
As altered tuff/wacke - becomes wore sedimentary in character going down the interval (eg: up section.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 100.0 & & CA & C. 4 & 5 & & 450 & 485 & (1) & 10* \\
\hline & E & 50 & 022 & 0 & 2 & BI & 85 & & D) \\
\hline
\end{tabular}
hack is interbedced chiorite phyllite (Fe rich silt) and grey
liagstone. Channels, loactasts and gradded bedding suggest that tops are up, although this data is not nithout anbiguity. Sphaierite and galena occur sporadically, usually alona
limestone - phyliite contacts.

4 LMGT CAX LH IB N
ES 7A

\section*{CLST CL7 HYLS F \\ VE 30 CA!}

Couls also be celled a greenstone, but textures and depositional environment indicate a mafic ashiwacke as opposed to き fiow.

\section*{SUMMARYREMARKS}

This is the southernost hole and displays the best clastic or sediementary textures. Fairly intense muscovite alteration and mers tuffaceous aterial above (foothall! the wineralization (normaily its mastly argillite). Poscibly a different horizon or a facies chariqe?

\section*{ADAHS}

DRILLHOLE/TRAVERSE : ADAMS-J6

PROJECT IDEN : ADAMS COLLAR NORTHING: 60278.00

START DATE : 86/7/11
COLLAR EASTING : 15715.00 TOTAL LENGTH : 90.50

COMPLETION DATE :
COLLAR ELEVATION: 1843.00 CORE/HDLE SIIE : BO

GEOLOGGED BY : PKP + PMH GRID AlIMITH: 0.00


\section*{ESSO Minerals Canada}

ADAKS

DRILLHOLETTRAUERSE : ADAMS-36 (CONTINUED)


31.3933 .83

AFBX
025 MT LB
F
6 6:
YG PHYL MS CE SF= MT LE \(4 \quad\) P FD TE
LM 3 LM 75 I)

Yellow groy, finely laminated 0l-CE-NG rock. Resembles the ASHT + CEEX units of Kutcho.
\begin{tabular}{|c|c|c|c|c|}
\hline 67BY CL & Q2E Ex XX & \(p\) & \(\mathrm{D}=\) & D) 45 \\
\hline & SFI & & & D: D) \\
\hline
\end{tabular}

Possible vein.
98.0

LATF LF MS CLZ FALLI 3 KIL F
33 P1
8. VCDE 56EP Olb WS CR 0
\$1 72 L!
D) \(\quad\) *

Miner compositional and textural variations throughout this interval. In places this rack could be called a banded calc-silicate. Rock is strongly deformed and sheareti. Suiphides are scattered throug̣hout but concentrated locally. Some sections of argillaceous phyilite with gradational contacts tut an overall uniformity to the interval.
\begin{tabular}{|c|c|}
\hline \(x\) LPTF & fy2 \\
\hline YL 5 PHYL & CE2 LM \\
\hline
\end{tabular}

N
N
4

Appears to be a tectonic breccia - pessibie fault zone.
90.0 Q Q EXK N

MARE CR9 RX P

Limestere unit recrystalized to marbic. iakes sense in liont of calc-silicate rocis further up the holel.

SUMMARYREMARES

Fine granned epiclastic rocks with volcanic parentage preconinate in this hole. Deformation has overprinted many of the primary textures giving aost of the core a fuzzy mottled look. Rock nowenclature is a bit misleading as most units are made up of a combination of lithologies. Fine grained, disseninated sulphides are ubiquiteus with rare locailized cancentrations. Alteration is difficult to ciscern from metamorhic effects (both regional and contacth. Increase in skarn type minerals (EP: FO, DO etc.) jown the hole indicate pranioity to an intrusive rock.

\section*{ESSO Minerals Canada}

\section*{ADAMS}

DRILLHOLE/TGAVERSE : ADAMS-38

PRDJECT IDEN : ADAMS
COLLAR MDRTHING: 60233.00

STAFT DATE : 86/7/11
COLLAR EASIING: 15625.00
TOTAL LENGTH : 75.30

COMFLETION DATE :
COLLAR ELEVATION: 1851.00
CORE/HOLE SIIE : BQ

GEOLDGGED SY : P\&F + PMH GRID ALIKUTH : 0.00


CORE Z TYPI- BAL TEX- GRAIN FRAC-RECOU- M ROCK FYING MIN TURES CHARACS TURE ERY 1 TM TM MAT TX TX FC C M


ROCK FORENRT TM QM2 TX TX SRSODIPF TID STK DIP KF MLCLEP HE HO PR MO SL HA QLAL MEM V ELC- J \(340 \mathrm{CH} / \mathrm{SMLI} 2\) ALM RT H H H H H H H H DESIG AGE COL SOPC STRUCTUR-2 A A A A A A A A
structur-i alteration hins ore-type mins H H H H Hany H H H anv
IID STK DIP A A A A A MIN A A A MIN

\begin{tabular}{lll}
8 & 54.56 & 61.57 \\
8 & 57.00 & 58.27 \\
8 & 57.00 & 58.27
\end{tabular}
(*)
U)

Fine grained greenish siltstone or volcanic muci. Very similar to the GN-PHYL of edh-036.
\[
2 \text { SILT } 022 \mathrm{IB} \mathrm{LM}
\]

54
\(\begin{array}{clll}\text { PHYL CB } & \text { GP1 LB LM } \\ E C & I A & Q Z 2 F G F O & B\end{array}\)
Protolith was likely a tuffaceous argillite. 07 segregation plus deformation give the rock a wattied or lensoid banded appearence. On a fine scale rock is composed of interlaminated graphitic and ash tuff material.
\[
\begin{array}{ccc}
\text { GN } & \text { PHYL } 07 \text { CB MSI LM LB } \\
\text { EC } & C L 2 F G F O
\end{array}
\]

D!

Kuch the same as 3.9 to 8.5 m.
4 SILT
N
 Looks like the grey phyllite above but with a bit nore volcanit naterial and conspicuous opidote nocuies. In sone places excess quarta has caused brecria type textures.

More mafic than the preceeding gn_PHYL interval. Also abuntant carb-muse laminations suggesting an affinity with the yellow phyilite.

Sligntly acre 07 , \(C E\) and MS; relatively weai alteration. Quartz flooded zene with Gisseminated sulphides. This could be remobilized.

\section*{ESSO Minerale Cenada ADAHS}

\section*{DRILLHOLE/TRAVERSE : ADAMS-39 (CONTINUED)}


SUMMARYREMARES

Hele is alaost entirely composed of graphitic and chlorite phyllites. Deformation of Q1/CA rich lavers pronuces a boudinage or iensoid banded texture. Mineralization consists of sulphite enrichment within siliteous zones. Thare is a winor increase in carb end musc peripheral to the siliceous zones. The patchy nature of the aineralization, lack of intense alteration, and presence of chlorite and brecria textures suggest that this area has more affinity to a steckwork-feeder zone than the overlying eassive sulphides.

\section*{ESSO Minerals Canada}

\section*{ADAMS}

GRILLHOLE/TRAVERSE : ADAKS-39

PRDJECT IDEN : ADAMS
COLLAR NERTHING: 60645.00

START DATE : 86/7/17
COLLAR EASTING: 15941.00
TOTAL LENGTH : 183.80

COMfletign date :
collar elevation: 1834.00
CORE/HDLE SILE : DE

GEDLOEEED BY : PWH + PMH GRID AlIMUTH: 0.00
 Very fine grained, light to darik green laminated chlorite phyllite - interbedded with grey limestone. Minor QZ-CA veinlet5.

2 LMST CAGIB N
\(6 A\)
10.0 LHGT CAX LM FG P

79
 E® AG GP CAS PAFG 2 LM 50 Pt This inierval je sinilar to the previous 6N-PHYL except that wost of the carbonete foos have been squirted around and recrystalized as faintiy banded irreqular patches. Some minor intervale of cniorite schist or greenctone, when core is ariented bediding is steeper than foliation indicating westeriy vergence.
4 LMET
CAX If PA

N

\begin{tabular}{ll}
36.60 & 49.80 \\
& \\
36.60 & 48.80 \\
36.60 & 48.80 \\
36.60 & 48.80
\end{tabular}

AG CLJ RX 6C
5 LM 60
Fine to coarsely interlaminated/bedded grey LMST and chiorite phill. Minar graphitic laninae.
GA 5 PMY CLS N 36

\section*{ESSO Minerals Canada}

\section*{ADAMS}

\section*{DRILLHOLE/TRAVEFSE: ADAMS-39 (CONIINLED)}


\section*{ESSO Minerals Canada ADAMS}

\section*{DRILLHOLE/TRAVERSE : ADAMS-39 (CONTINUED)}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TABLE，FLAG} \\
\hline ＇AL．T & \(\cdots\) & \％．0000 & －tof daf alteration \\
\hline －AnH & ， & \％．00\％， & O，ANHYDFTTE \\
\hline ＇CEX & ， & 0．0000， & －Cambonate exhal ite \\
\hline \(\cdots \mathrm{Cl}\) & ， & O．000， & O．Carbonate，olfartz Exhal ite \\
\hline J1 & \％ & ．0000． & O，assay data on \\
\hline ＇F？ & ， & 0.0000 & O．POSSTBLE FAULT \\
\hline ＇FLT＇ & ＇ & O．ब०0． & O，Fallt \\
\hline ，FTz & ＂ & \％．000． & O，FAULT ZOME \\
\hline HO］ & 4 & ¢．00\％ & O，ASSAY HEADEE OL \\
\hline HED & ＇ & ＂ण毋． & O．HEADEF REMAFS \\
\hline ，Mef & 4 & \％．0000． & O，MASCIVE SUPHIDE \\
\hline ＇MTF & 4 & －¢0\％． & O，MAFIC TUFF HOFIZON \\
\hline ，OXF＇ & ＂ & ¢． 0 ， & O．OXIDE FACJES \\
\hline －PGN & \(\cdots\) & 6.700. & ＊FOLISHED THIN SECTION \\
\hline －Qme & \％ & －0¢0， & O，DUARTZ，CAFBONATE EXHAL ITE \\
\hline ，bct & 4 & 0．000． & O．TOP OF OZFX CFYSTA TUF \\
\hline －DEx & ， & \％．00．， & ，DUAFTZ ExHalyte \\
\hline －PEE & ， & \(0^{0.0000}\) & O，FEDUCED FGCTES \\
\hline －EEF & ， & 0.000 ， & ，TOF OF SERJCITIZATMON \\
\hline －SEX & ， & ．000． & O．SILTCA EXHALTTE \\
\hline －SME & ， & O．000， & \(O_{4}\) SEMT MASSTUE SUFWTDE \\
\hline ＇Eum & ？ & ＂ & ＊Eunlmay memaras \\
\hline ＇TSN & ， & 0．090． & \％THIN SEOTTON \\
\hline \multicolumn{4}{|l|}{TABE，FOCE} \\
\hline A A ST & 7 & \％ & ＊AbGY LAEEDUS LTMETONE \\
\hline －ANDS & \(\cdots\) & .\(^{.00}\) &  \\
\hline －AREX & ＂ & ＂ & EOEO EFECCTATED AFTMLITE \\
\hline ，Mbl & ＂ & －¢0¢． &  \\
\hline ＇Asme & \％ & ．ण〇， &  \\
\hline Y\％ & 4 & 6．700． & OE2，ASH TUFF＇ \\
\hline －Ame & 4 & －¢\％， & B7\％，CABEONATE EAVEF \\
\hline －Cemb & \(\cdots\) & ， & ，calcrte stocrubre \\
\hline CAVN & ， & ？ & ，CALCITE VEIN \\
\hline －cemx & ＇ & 6．790\％ & 1084．CAFSONATE BFECOTA \\
\hline CEEX & \(\cdots\) & 6．70¢． &  \\
\hline CesF & \(\because\) & ．000\％． & OXa \({ }^{\text {¢ }}\) CAFBONTtE SuFtom \\
\hline comex & 4 & － &  \\
\hline WEx & ＂ & \％ &  \\
\hline CHET & ＊ & －．000\％ & OEE，CHEFT \\
\hline CHTE & \(\cdots\) & ． & उठ0，TWFFACETE CHET \\
\hline －CNGL & ， & ， & GOB\％CONBLOMERATE \\
\hline －COEX & ＇ & ． 0 ¢． &  \\
\hline ＇Comb & \％ & ， &  \\
\hline －csex & \(\cdots\) & ， & －CALC－STL TCTE 日fECCTA \\
\hline 110\％ & ： & 4 & 50cc，DTOETTE \\
\hline \％YE & \％ & 4 & G\％\％\％LAE ADOESTTE Dre \\
\hline \(\cdots \mathrm{T}\) & ： & ¢0¢， & 区S5， EQH \\
\hline FOXT & \(\cdots\) & «．प毋． &  \\
\hline ＇\(E \times 1\). & － & ＂ & ＊Finsere crystm lumye tum \\
\hline ＇Ex｜r＇ & ， & उ．\({ }^{\text {ab，}}\) &  \\
\hline ＇FXXI & ＂ & ब．एण， &  \\
\hline ＇GAER & ， & \(\mathrm{O}^{\text {900 }}\) & 618，EAEERO \\
\hline －GEER & ＂ & 0．000\％， & 616，GADEAD \\
\hline － 6046 & ＂ & ． 0000. & BOSE，AULT GOUGE \\
\hline －Brwis & \(\cdots\) & ． \(\mathrm{OOO}^{\text {，}}\) & 30\％，GRE Y ACEE／EFYUTLCAWTAASTTCS \\
\hline MHa & ， & ．क00． & उOSI，＇AHme \\
\hline CATE & \(\cdots\) & ，¢000， & OEw，＇LTHE SEH TUH \\
\hline ＇ 1 MAT & \(\cdots\) & ． 000 &  \\
\hline UTFF & ＂ & ．कण． &  \\
\hline \({ }^{2} \mathrm{~L} \times \mathrm{x}\) ］ & \(\cdots\) & ． 000 ： &  \\
\hline －LDST & \(\cdots\) & A．000． & ¢06\％，＇LNESTONE \\
\hline －TWE & & & S¢O，LITHIC WACKE \\
\hline
\end{tabular}

LXTF
MATF MENZ
MISn
MLAT
MIIT
\(\therefore 4 \mathrm{TF}\) 주：
MSEX
－MEFC
MSFe
＇MSEY
－Mssc
MSSF
MSEL
MTHW
MTGE
MXL T
－MXTF＂
MzTF
NXTF
－Overe
－Prym
－DEE
－BCEX
－Gercs
0cs＋
－ CE
－ \(\mathrm{Br} \times \mathrm{T}\)
－एलए
－QxAT
－Qxi
Q E
© XTF
CZEX
GZEW
GZVN
＇Hy
GEXI
－ 916
－ 5 m
－ 5 me
－लिए
－Smb
．बलि
， \(\sin \mathrm{C}\)
ऽलक＂
－EMDN
－6\％\％
TFEE
－TVWに
－When
vadex
勺リIN
＇\(x\) ． mF
XiAT
XLTE TMAF，MNEXQ

0.0000 ，
0.0000, 10．0000， c．0000， ．0000，
0.0000,
0.0000, \(0.0000_{4}\)
6． 7000,
0.0000,

6．760．，
6.7000,
\(0.0000^{\circ}\)
．．0000：
6.7000,

O．000，
．．0000：
62.2000,
6.7000 ，
6.7000,
．．0000，
1.0000,
0.0000,
\(\mathrm{O}_{\mathrm{M}}, 00{ }_{4}\)
0.0000.

O．ण0\％＂
0．0000．
．＂000．
． 000,
0.0000.
．．000，
．．000．
．．00\％，
．．6000．
＂ 0.
O．0000，
．．0000．
．．0000，
．．0000．
．．0000，
．．0000，
．．00\％，＂
0.000 ．
．，कण，
o．soo，
0.0000.

Q．000，
0.0000 ；
．．ण००． \(0.0 \% 0\),
0.0000,
0.0000

1386，LITHIC CRVSTAL TUFF
3OSS．MAFIC ASH TUFF
14OA：MINERAL TATION（TYPE UNENOWN）
，MISSINE CORE
ose，MAFIC lithic ash tuFF
631，mafyc lithre lapilat tuff
631 ，MAFIC LITHIC TUFF
631，MAFIC LITHIC CFYSTAL TUFF
3060，MASEIVE SUPHTDE ERECCIA
3O64，MASGTVE FYRITE＋CHALCOPYRITE
3O66．MACETVE BPHALERTTEPYFETE
उO6．＇＇mestve Frfite
3070．MASSIVE FY，DF AND CP．
14OE，NASSTVE SUIFPHDE
Bo6s，MASEIVE SPHALEETTE
6S1：MAFIC TUFF／WACRE
618，METAGAEGFO
2056．MAFIC CRYSTAL LITHIC TUFF
1331，MAFIC CEYSTAL TUFF
GODO MNEFALIZED TUFF
Ben ，MAFTC CRVETAL TUFF
1．422，OVEREURDEN
G067，＇PHYLLTTE
5O7．，QUAFT\％EAFITE ETOCK WORE
O29，GUARTZ CABE EXHAL TE

1－2S，OTZ cAREONATE SERTCTE SCHTST
－DUARTZ－CACITE STOCKWORE
T2，GUARTZ FEDDGFAR CRYGTAL THFF 1925，＇DTZMUSC－CARE SCHIST
BO4O，GUAETZ CRYSTAL ACH TUF：
13B6，DuABtz CRyctal lathte TuFF

30A4，DUARTZ CRVETAL TUFF
－blaptr brecera
－DUAFtz STGCEWORK
14B6．guamtz vern
30®2，PHVOLTTE
BAg，GILITCA EXHATTE
50\％7，SILTSTONE
＇GRTCMEED zONE
SOT2，SEMI－NASSIVE EG，CP AND FY
3070，SEMI MASERVE OP，GL AND FY
BOT2，＇SEMI MASSTVE FY＋EO
उO62．GEMI MASSIVE FYRITE
3070，SEMT MASSIVE Gl，CF AND PY
1404．SEMT－MASSIVE GUPHTOE
，STOCwors zont
，STCOWORE zONE
3O：TUFF ERECCXA
3OS4，TUFF WACE
2052，＇unonown
EO4，volcante meccha underney
1480，VEIN
G马G，CFYSTA－ABH TUFF
909．CRYSTA－ITHIC ASH TUFF
917，CFYSTA－TITHC TUFF
：ANHEDRTTE
－ANGERTE
－aforlate

，AMPHTBOLE CRYETALS
－BAETE
－blotite


0,0
O. CHLORITE, NO MUSC.

0 , CHLORITE \& MUSC.
o, CHLORITE \(\gg\) MUSC.
- calcite
O. CAFEGNATES, gENERAL
, calcocite
O, chlortte
o, Chalcopyrite
, 'clay general.
' dolomite
O. EFIDOTE
, Fuschite
, Fluorite
o, Feldspar, genefol
O. FUCHSITE
, 'FELDSFAFS, GENEFAL
- Galena
- GRAPHITE
- GRAPHITE
- GYFSUM
, HORNBLENDE
, hematite
-' Fotaserum feldgeme
o, LITHIC FRAGMENT
-LTMONITE
? Ltthic laftila
\%, 0
O, MUSE., NO CHLORITE
O, CHORTTE \(>\) MUSC.
, MALACHITE
O. MAFTCS, GENERAL
, MAGNETITE
- MAGHEMETITE
, manganse
, Muscovite
o, MUSCOVITE
" maric chystals general
O, PUMTCE FFAGMENT
: PYHRROTITE
O, PORPHYRORLAST:IC:
O. FYRITE
- Quartz chystale

O, GUABTZ. GENEFAL
, RHODOCROEITE
0 , RHYOLIT(IC)
, guffhide
, कphaterte
- SFHALERTTE
, TETRAHEDRITE-TENADTITE
o, velcanic fragmem
o, CRYSTAL FRAEPENT
, quIsTtE
O. SHEETED
- angular fraghents

O, AFHANITIC.
o, 'alIGNED PHENOCRYSTG
- Aphanttic
O. EEDDED
, 'ELADED
O. banded
, brecciateo
Q. ERECCIATED
- Chalcedony bondine
\begin{tabular}{|c|c|c|}
\hline \({ }^{\prime} \mathrm{CL}\) & ， & 0．0000， \\
\hline － CO & ＂ & 0．000\％， \\
\hline ＇CF＇ & \％ & 0.0000, \\
\hline －DC & ＂ & ¢．000， \\
\hline ＇EL & ， & ． 000 \\
\hline EU & 4 & ． 0.00 ． \\
\hline \(\cdots\) & \％ & －ف00． \\
\hline 3 & \％ & \％．000． \\
\hline － FD & ， & O．ف0， \\
\hline ＇FE & ＊ & ．¢0\％． \\
\hline FG & 4 & onooy． \\
\hline ＇FI & ＊ & －अपक， \\
\hline ＇Fm & 4 & \(\mathrm{m}_{\text {¢0，}}\) \\
\hline ＇ FO & 4 & ． \(\mathrm{mog.}^{\text {¢ }}\) \\
\hline ＇FFi & ， & ． 0 ¢， \\
\hline FT & 4 & ． \(000 \%\) \\
\hline ＇ BE & ＂ & O．000． \\
\hline － 60 & 4 & \(0^{600}\) \\
\hline －GR & 4 & ．000\％． \\
\hline \({ }^{\prime} \mathrm{HE}\) & ＊ & O．000． \\
\hline ． T 8 & ＊ & ¢， \\
\hline －IN & \％ & ． 000 ． \\
\hline ＇IFi & ＂ & ． \(\mathrm{OOOO}_{\text {，}}\) \\
\hline － 6 E & 7 & \(\mathrm{m}^{0000}\) \\
\hline ＇LE & 4 & O．0ण． \\
\hline ＇LE & 4 & ． 000 \\
\hline －LM & ＂ & ． 0 ¢ \\
\hline ＇LN & \％ & ．\({ }^{\text {¢0．}}\) \\
\hline －MS & ＂ & ． 0 ¢． \\
\hline ＇MT＇ & ＊ & ． 0 ¢\％ \\
\hline －MX & 4 & ．， \\
\hline ＇PA & ＊ & ¢．ण¢\％ \\
\hline 8 & ＂ & \％¢¢\％． \\
\hline \({ }^{1}+\) & ＊ & ． 0 ．0． \\
\hline ＇FE & \(\cdots\) & \％．00． \\
\hline ＇PM & ＇， & \％，000， \\
\hline FO & y & O． O ， \\
\hline FF＇ & \(:\) &  \\
\hline ＇Fs & ＂ & \％．0¢\％ \\
\hline FG & ＊ & ． 0 ¢ \\
\hline ＇R0 & ＊ & ．ए¢： \\
\hline ＇ ET & ＇ & ¢． 00. \\
\hline F F & ＊ & ． 0 ． \\
\hline ＇6a & ， & \％．00\％ \\
\hline SE & \％ & ．000， \\
\hline － 56 & \％ & －व0\％， \\
\hline ，EH & ＊ & －ण¢， \\
\hline ＇\({ }^{\text {L }}\) & ＇ & ． 0 ¢， \\
\hline ＇ 9 & 4 & ． \\
\hline － 8 & ＂ & औ，ف¢\％． \\
\hline －64 & \％ & \\
\hline － 82 & ＊ & ¢． O \\
\hline \({ }^{7} \mathrm{~T}\) \％ & ＊ & ¢，ゆण \\
\hline －TF & \％ & ． 0000 \\
\hline －UA & ＂ & ． 0 ¢ \\
\hline － 45 & ＊ & ．ف¢ \\
\hline －VG & \％ & 0.000 \\
\hline －㐌 & ： & ． 0 ¢ \\
\hline 盛 & 4 & «． CO \\
\hline －Wo & \％ & ¢．00 \\
\hline －WF & \％ & ．\(\dagger\) ¢ \\
\hline －WL & 4 & －．0¢3 \\
\hline ＇We & & ． O C \\
\hline
\end{tabular}
，CLASTIC
O，COLLOFORM BANDED
－CROWDED PHENOCRYSTS
－dengely packed xtal ffagm
，Elifticfl
＂ELHEDRAL
O，FISSILE
O．Flod banded
，FOLDED
O，fELTED
O，FINE ERATNED
FIGSTEE
O．FRGMEOTDAL
O．FGIIATED
O，FFAGMENTAL
0 ，FLATTENED
O，GRADED GEDDING
－gradatronal contact
－eranllar
O．HYPTDIC．GRANULAR
O，TNTEREEDDED
，INTERGROWIM
o，JPREGULAF
O，KINK Banded
o，LENGOMD EANDED
O．＇ENTICBAR
O，GAMTNATED
＂Lentrculab
O，MATRIX SUFFGRTED
o，Matreed
o．masstve
O，PATCHY
o，＇Forfaymoblastue
O．PTVGMATIC FOLDED
，＇FOL YGGONzzED
o，Pol．ymictic
－Fobcelaneous
O．PORFHFITTE
○．＇VGRLY SORTED
O PACEED
on Robnem
Q．RETMCUATE
O．RECBYSTALIZED
O．SUE APHANITTC
o，EEPIATE
on gugary
O，SHEARED
，GLUMF FOLDED
O，EFOTTED
－SUAHEDFAL
，sTocenome
，＇stanger zone
，Tabllaf
o．TuFFaceous
subanglaf
O．Ungonted
o．＇veger
O．VETNED
o．Weakly betomed
＇Weboco
O，WEAGY FDIMATED
O．WELDED
o，WISEY
TABLE ，STRUCTURE TAREE FOQMATOON

```

'A
0.0000,
1,'A, CAVITY FILLINGS
2,'BLEBS
\Xi.'COATINOS \& ENCRUSTATIONS
5090, DISSEMINATED, SCATTERED XTALS
G: ENVELOFES
6.'FRAMEWORK CFYSTALS
7.GANGLE
B116. FEPLACED FHENOCFYSTS
Z1.|, 'EYES, AUGEN
10, TNTEFGTITMAL
11.'STOCKWDFK
3O2, LAMINATTONS/EEDDED
1%,MHSSTVE
14, WODULES
\#10.'5FOTS
3122, FFRVASTVE
3124, FATCHES, AS IN OUTGTS
18, RTMMTNG
17.'SELVAGES
20. STAINTNGS, AS IN TARNIGH
Si, EU-HEDRAL CNYSTALS
22, VEINE
Z, EOXWOFK
24, MASSTVE, LAM, SHEETED TO DTSS.
LMMNO-MSSVE FFAM/CLSTG
TAELE STZE-SCME

' 0	Y	. 90¢\%,
-1	,	O.00g.
, 2	,	¢, 0x\%.
-	*	9.2e\%.
- 4	,	\%.54\%
'	"	2.00\%.
	*	E. O_{4}
\%	\%	E.000,
-8	"	$1 \mathrm{E}_{\text {, 00\% }}$
-9	4	512.0000 .
'A	*	. mb_{4}
E		¢ ¢0.
' 6		©.0110.
- 0	7	. Q_{4}
- EF	4	\% \%44.
- F'	\%	. ${ }^{\text {abe }}$
'G	*	\%.177\%
'H	\%	\% डa\%.
]	4	\%. \%. $^{\text {a }}$
\cdots	,	1. 4100 .
' 6	5	, EO
'1.	9	\% 6000
\cdots	4	11.0\%\%
'N	"	2. 600 .
- 0	"	Aद. 1000 ,
'p	"	7. 000
'01		161. ¢00\%. $^{\text {a }}$
'F'		उ', 900.
'S		724.00 m
'T		1450.091.
' U		¢कण.0\%\%
' \times		कण.001.
' ${ }^{\prime}$		\%. ${ }^{\text {a }}$
')		1. णक,
- ${ }^{\text {\% }}$		6. 0 \%
'+		- ज0¢\%.
'....		¢ 区¢,
'		¢.

```


TATLE，- SCAE
TABLEEN－GCALE
TABt
\begin{tabular}{|c|c|}
\hline ， & ＊ \\
\hline ＇ & － \\
\hline ＇） & ＂ \\
\hline ＊ & ， \\
\hline \(\cdots\) & 4 \\
\hline ＇\(\cdot\)－ & 4 \\
\hline ＇． & ＇， \\
\hline ， & ＂ \\
\hline － 1 & 4 \\
\hline \(\cdots\) & 7 \\
\hline － & ， \\
\hline \({ }^{4} 4\) & ＂ \\
\hline －5 & ＂ \\
\hline \％ & ＇ \\
\hline \(\cdots\) & ＂ \\
\hline ？ & ＂ \\
\hline 9 & ＇ \\
\hline \(?\) & ＊ \\
\hline ＇F＇ & ， \\
\hline ＇ X & 4 \\
\hline
\end{tabular}

TABLENOO2－5CAE
\begin{tabular}{|c|c|c|}
\hline & & E．000\％， \\
\hline \(\cdots\) & \％ & O． 1.00 \\
\hline － & ＊ & 1．000， \\
\hline ＊ & \(\because\) & ．． \\
\hline ＇+ & ＂ & 2．Foo． \\
\hline ＇－－ & ＂ & ¢．0¢， \\
\hline ． & ： & 0.0100 \\
\hline ＇0 & ＊ & O． \(0^{\circ}\) \\
\hline ＇ 1 & \％ & 10．0¢\％， \\
\hline \(\cdots\) & ＊ & \％． 0 ． \\
\hline ＇ & ＂ & \％． 0 ． \\
\hline － 4 & ＂ & 4．ण． \\
\hline ＇5 & ＂ & \％．00\％． \\
\hline ＇6 & 4 & 6． \(0^{\text {at．}}\) \\
\hline \(\cdots\) & \％ & \(70^{\circ} \mathrm{O}\) ． \\
\hline － & ， & ¢． 000 ． \\
\hline － 9 & ＊ & ¢． 0 ¢0， \\
\hline ＇？ & 4 & \％．कण०． \\
\hline ＇F＇ & \％ & 0．070\％4， \\
\hline － x & ＊ & 1．0．00\％． \\
\hline \multicolumn{3}{|l|}{} \\
\hline \(\cdot 1\) & ， & ¢． \\
\hline －2 & ： & ．0め\％ \\
\hline － & ， & \％．0\％， \\
\hline \(\cdot 4\) & ， & 0．00¢． \\
\hline ＇5 & ＂ & ．000． \\
\hline \(\cdot 6\) & & ．ف00． \\
\hline
\end{tabular}
0.0000,
10.0000,
20.0000,
30.0000,
40.0000,
60.0000,
6.0000,
70.0000,
90.0000,
90.0000,
5.0000,
0.0000,
100.0000,
\[
\begin{aligned}
& \text {. } \\
& \text {. } 1000 \text {. } \\
& \text { 1. } 000 \text {. } \\
& \text { - उल०, } \\
& \text { 2.5000, } \\
& \text { O. 0x0\%, } \\
& 0.0100 \text {. } \\
& \text {. } 0^{000} \\
& 10.000 \\
& \text { 2. एकण. } \\
& \text { \%.0やण, } \\
& \text { 40. } 00 \text {. } \\
& \text { 5. } 000 . \\
& \text { 6. }{ }^{000} \text {. } \\
& 7 \text {. } 000_{4} \\
& \text { ब. ण00. } \\
& \text { क, फण०, } \\
& \text {.000. } \\
& \text { 0.0700: } \\
& \text {, ण. णणः, }
\end{aligned}
\]

2OS1，NIL，ABSENT

\section*{2041． 7 TO＜15}

2042， \(1570<25\)
2943， 25 TO＜ 5
2044， 35 TO 45
9045， 45 T0＜ 5
2046，55 TO＜ 5
\(2047,6570<75\)
\(249, \quad 7570<85\)
949， 95 T0 99
200， \(3 \quad 10\) 亿
202．FOSE．FFESENT 2O世，EST．TMFOSSTBLE 20\％O，ESSENTIMLLY 100\％ 

\begin{tabular}{|c|c|}
\hline ¢A\％， & \(370<7\) \\
\hline 2¢5： & ＂क T0＜，2 \\
\hline 2¢e． & ． 50 ¢ 2 \\
\hline 20¢\％ & ． 2 TO 8 \\
\hline 2\％\％ & 2 7 ¢ \\
\hline 2区ड， & ． 02 TO ¢ 0 \\
\hline ए¢ & TRQTE＝¢ ¢ \\
\hline 2¢1． & MTL，ABEENT \\
\hline 2 C 1. & 7 TO ¢ 15 \\
\hline 242． & ¢ \(50 \times 2 \mathrm{~S}\) \\
\hline 94\％ & ए C ¢ \\
\hline 204．4， & E 70 ¢ 4 \\
\hline ए4 & \(4570<5\) \\
\hline 946， & E\％T0＜6\％ \\
\hline 2¢\％ & ¢ 60 ¢ \\
\hline 294， & \(7 \times 10\) ¢ \\
\hline 2049． & 日6 T0 \％\％ \\
\hline 2区玉． & PQ¢a Ftesent \\
\hline 209． & EST．IMFOSSTME \\
\hline \(\mathrm{OEO}_{4}\) & Esemarmaiy ioo \\
\hline O，＇ & ANEEFTTE \\
\hline O： & ANEESTTE \({ }^{\text {a DOLOMTTE }}\) \\
\hline & DOLOMITE \(>\) ANGERTTE \\
\hline O： & DOLOMITE \\
\hline O． & DOLOMITE＋CALCITE \\
\hline \％．＇ & ANCEFTTE＋CMLCTTE \\
\hline
\end{tabular}


TABLE F F-SCALE
TAELE I I- SCALE
TAELE FILTAB
TABLE, FHTSCALE
TAELE, WETNESS
TAELE, HOWDET
\(r\) TLE,FTD
1. LLE, ENDTAE

TABLE, TRTYFE
DH
TABLE, LC-GCALE
\begin{tabular}{|c|c|c|}
\hline 1.A & * & O.0000, \\
\hline -1E & 4 & 0.0000. \\
\hline - 1.6 & 4 & -. 0000 , \\
\hline -10 & \% & . 0000 \\
\hline , 1F & , & O.0000, \\
\hline \(\cdots\) & , & - 000\%. \\
\hline -14 & , & Q.0000, \\
\hline -2A & * & 0.0000. \\
\hline - 2 B & * & .0000, \\
\hline - 2 C & \(\because\) & . 0000 , \\
\hline -20 & " & -.0000. \\
\hline - 2 F & " & -000\%. \\
\hline - 27 & , & \(\mathrm{O}_{\text {, 000\%, }}\) \\
\hline -211 & \% & \%. 0 ¢, \\
\hline - 2 Y & 5 & . O . \\
\hline - A & " & \%. 000 \\
\hline , E & : & O. ण\%, \\
\hline . 30 & " & . 90, \\
\hline O & \(\because\) & ¢ ¢00, \\
\hline
\end{tabular}

TT
E
-y
- \(A \mathrm{~A}\)
- 4 E
\(\cdot 40\)
. 40
- 42

47
4
.4 Y
-5
- 5E
- 56
.50
5
E
- Y
. 6 A
' GB
'60
60
. 6
6!
br
-月
\(7 \pm\)
76
-70
-7に
\(\cdot 7 T\)
.. कण\%
. ©लः
. فण.
. \(\mathrm{OOO}_{5}\)
\(0.0000^{\circ}\)
. 0004
. .000:
. 000 .
. 0000,
. 000 ,
. क00.
. 000,
. 000 .
. 000,
0.0009 .
. 000 ,
. कण
. क्ण.
ए. कण
. शण्.
. ○○.
. बकण.
. बलक,
. O .
., 000,
. बल०,
. فल
. बल०
. .ण्,
". 0 .
".00\%.
. ण्व
. ण००,
बल्,
O. DFTLLHOLE
O.TRAVEFGE

O, DAFYEST GREY
O. DARKEST BLUE

O, DARKEST GREEN
O, DARKEST OFANGE
O. DAFKEST FED
O. DAREEST TAN

O DAREEST EFCOWN
O. VEFY DARK GREY
, 'VEFY DARE ELLE:
O, VEFY DAFK GREEN
O, VEFY DAFIE ORANG
O. VEFY DAFE RED

G VEEY DARE TAN
O, VEFY DARC BFOWN
O, VEFY DARE YELLO
O: DAREER GREY
O: DARKER BLUE
O. DAREER GREEN

O, DAREEF GRANGE
O: DAFEER RED
\(\partial_{y}\) DAFEEER TAN
O. DARCER EROLUN

O, DAREER YELLOW
O. DARE GREY

O, DAFTE BLUE
O, DARE GREEN
O. DARK DFANGE
, DARE FED
- DARE TAN

O DAFK BFOUN
, DAFE YELLTW
O. MEDTEM GFEY

O, MEDIUM BLUE
O. MEDIUM GFEEN

O, MEDIUN OFANGE
O. MEDSUM RED
, MEDTEM TM
O, MEOTUN EROWN
O, MEDINM YELLOW
O. IGHTEF GREV

O 'LTGHTEF BUE
O LIBATER GREEN
O, LIGHTEF DFANGE
-, LIEHTER FED
O'LIGHTER TEN
O, IIGHTER EROUN
○'LIGHTER YEL LUW
○ AEHT GFEY
\% 'UTGHT ELUF
O 'LIGHT GEEEN
O. LTBHT ORANGE
O. ITAT RED

O, LTBHT TAN

\begin{tabular}{|c|c|c|}
\hline 10 & 0.0000, & O, O UNFRACTURED \\
\hline . 1 & A. 0000 . & O. 1 SLIEHT FRACTUFED \\
\hline '2 & 3.0000, & \(O_{4}{ }^{3}\) U LIGHTLY FRACTUFED \\
\hline \(\square\) & 6.000 , & \%' 6 LIGHTLY FFAACTURED \\
\hline 4 & 10.0000: & O, 10 FAIFLY LIGHTLY FFAC \\
\hline , 5 & 15.0000 & O, 15 MOD FRACTURED \\
\hline \% & 21.000. & 0,21 FATFLY WELL FFAC \\
\hline \% & 28.0000 , & O. 28 WELL FRACTIFED \\
\hline ' \({ }^{\text {e }}\) & 36.0000, & O, Go veri well fractured \\
\hline . 9 & 45.000 & O, 45 EXT WELI FRACTURED \\
\hline ' X & 55.0090. & O. \(5: 5\) SHATTERED \\
\hline \multicolumn{3}{|l|}{TABLE, SID} \\
\hline 'ED & . 0000 , & O, BEDDING \\
\hline EN & .000, & , BAND TNG \\
\hline - CN & O.000. & , Contatt' \\
\hline - C & 7 O .1000 & * CALCITE VEIN \\
\hline - FO & O.000, & O, FOLIATICN \\
\hline FC & 9.000. & - FFFACTURE \\
\hline - LM & O. 000 , & , LAMINATED \\
\hline - P & .0000. & , POLYGONIZED \\
\hline - O & 7 m .100 , & - muartz vetn \\
\hline UN & O. 000 & O, VEIN, EEN \\
\hline vel & O. ण¢, & O, QUAFTZ VEIN \\
\hline \multicolumn{3}{|l|}{TAELE , FOCKA} \\
\hline TAEIE, TEXTUFEA & & \\
\hline TAELE MNSTS & & \\
\hline
\end{tabular}




\title{
GEOLOGICALBRANCH
}

\section*{ASSESSMENTREPORT}

\section*{16,024}


ESSO Minerals Canada
Stratiform Ag-Pb-Zn Massive Sulphide Vertical Cross Section






GEOLOGICALBRANCH
16,024
ESSO MINERALS CANADA
ADAMS PLATEAU GEOCHEMISTRY GRID

Lead / Zinc
proalect No No
 Pale: Apriil 87


GEOLOGICALBRANCH
ASSESSMENT REPORT
16,024
ESSO MINERALS CANADA
ADAMS PLATEAU GEOCHEMISTRY GRID Silver / Arsenic```

