87-25 SC3-RECORDER RECEIVED MAY 1 9 198? M.R. # \$ VANCOUVER, B.C.

REPORT ON PHASES II AND III 3/66 GEOLOGY, GEOCHEMISTRY, GEOPHYSICS AND DIAMOND DRILLING ON THE

CHEM PROPERTY

VICTORIA MINING DIVISION, B.C. NTS M92C/16E AND M92B/13W 48°527N LATITUDE 123°59' W LONGITUDE FOR Op/10/07: INTERNATIONAL CHEROKEE DEVELOPMENTS LTD. FEBRUARY 27, 1987 G. ALLEN, P.Geol.

Owner(s): L.A. Balak J. Simpson R. Watson

FILMED

PART 1 OF 3 GEOLOGICAL BRANCH ASSESSMENT REPORT

16.055

SUMMARY

An integrated exploration program was conducted on the Chem property in 1986 and 1987 by MPH Consulting Limited on behalf of International Cherokee Developments Ltd. The program consisted of geological mapping, prospecting, geochemical sampling, geophysical surveys and diamond drilling.

The Chem property is underlain by Paleozoic Sicker Group pyroclastic and sedimentary rocks of the McLaughlin Ridge and Cameron River Formations (formerly the Myra Formation and Sediment Sill Unit). An initial exploration program conducted in the spring of 1986 identified two areas of interest (Grids A and B) on which the present program was concentrated.

The A Grid, located in the northwest part of the property, contains a notable boulder composed of layered pyrite and magnetite-rich siliceous material. Samples of this boulder contained up to 4.80 g/t Au (0.140 oz/T) (sample 356). Subsequent mapping and prospecting led to the discovery of several other pieces of mineralized float. Analyses of some of this material are; 840 ppb Au, 830 ppm Zn and 420 ppm Ba (sample 1694), 1.84% Zn, (sample 1696) and 1200 ppb Au, assayed at 1.44 g/t or 0.042 oz/T (sample 14843).

A pyrite, magnetite and gold (up to 300 ppb) bearing hematitic chert (iron formation) horizon up to 10 m thick has been traced in this area for 700 m, with a possible continuation along strike of several kilometres. Several northeast trending fault zones cut this unit. Where exposed, these fault zones are enriched in Mn, Ba and Zn and contain anomalous Au values. It is possible that the source of the Au bearing boulder (sample 356, with 4.80 g/t or 0.140 oz/T Au) is a fault zone at its intersection with the iron formation.

Flagged and cut lines were established in area A (A Grid) to facilitate subsequent soil geochemical, biogeochemical, VLF-EM, magnetic and induced polarization surveys.

Soil geochemistry in this area has outlined a few zones with anomalous gold content apparently related to bedrock. The biogeochemical or conifer branch sample survey has also identified a few areas with anomalously high Au concentrations. No apparent correlation is observed between tree and soil sample results.

Three geophysical surveys were conducted on the A Grid. The magnetic survey outlined a zone of moderate, narrow, linear anomalies (Domain II) which may be related to ferruginous chert units. The VLF-EM survey delineated 23 northwest-trending conductive zones, the strongest of which correlate with argillite units. The IP/resistivity survey outlined 5 polarizable targets. Conductive IP sources are related to argillite (graphitic?) units; non-conductive IP responses may be caused by disseminated sulphides.

Two diamond drill holes totalling 213 m tested strong magnetic and induced polarization anomalies. A 10 m thick ferruginous chert or iron formation unit with 5-10% pyrite and a few percent magnetite was intersected in the first hole. Samples of this material contained anomalous Au values up to 130 ppb.

On the B Grid, located in the southwest part of the property, prospecting and mapping identified small shears with up to 1200 ppb Au and a small rhodonite occurrence. A soil geochemistry survey covering these showings outlined several Mn, Pb, Zn, As and Cu anomalies.

On the basis of these reasonably encouraging results further exploration of the Chem property is recommended.

A diamond drilling program is warranted on the A Grid to delineate and to test the iron formation, especially in areas where it is apparently cut by faults. A few rock sample sites with anomalous gold values require a more detailed investigation.

More detailed mapping on the B Grid is recommended to outline the extent of the rhodonite showing and to explain the cause of the soil geochemistry anomalies.

This program is estimated to cost approximately \$155,000.

TABLE OF CONTENTS

			Page
	SUMMARY		i
1.0	INTRODUCTIO)N	2
2.0	PROPERTY LO	CATION, ACCESS, TITLE	- 3
3.0	HISTORY		4
4.0	REGIONAL GE	EOLOGY	7
5.0	1986-1987 B	PHASES II AND III EXPLORATION PROGRAM	10
	5.1 Work Co	ompleted	10
	5.1.1	Phase II: Geology, Geochemistry and Geophysics	10
		A Grid	10
		B Grid	11
	5.1.2	Phase III: Diamond Drilling	12
	5.1.3	Analytical Techniques and Laboratories Used	12
	5.2 Geologi	ical Mapping and Sampling: A and B Grids	13
	5.2.1	Introduction	13
		A Grid	
	5.2.2	Geology, A Grid	14
	5.2.3	Lithology of Units of the Cameron River Formation,	
		A Grid	15
	5.2.4	Lithology of Intrusive Rocks, A Grid	18
	5.2.5	Structural Geology, A Grid	20
	5.2.6	Mineralization, A Grid	21
		B Grid	
	5.2.7	Geology, B Grid	24
	5.2.8	Lithology of Units of the Cameron River Formation,	
		B Grid	24
	5.2.9	Lithology of Intrusive Rocks, B Grid	26
	5.2.10	Structural Geology, B Grid	27
	5.2.11	Mineralization, B Grid	27

TABLE OF CONTENTS

Page

	5.3 Soil Geochemistry		
	5.3.1 Soil Geochemistry, A Grid	28	
	5.3.2 Soil Geochemistry, B Grid	29	
	5.4 Biogeochemistry, A Grid		
	5.5 Geophysical Surveys, A Grid	32	
	5.5.1 Survey Procedures	32	
	5.5.2 Magnetic Survey Results	34	
	5.5.3 VLF-EM Survey Results	36	
	5.5.4 Induced Polarization/Resistivity Survey Results	42	
	5.6 Diamond Drilling	47	
	5.6.1 Drilling Objectives and Summary	47	
	5.6.2 Lithologies and Mineralization in Drill Holes	47	
	5.7 Correlation of Geophysics, Geochemistry and Geology of the		
	A Grid: A Summary	49	
6.0	CONCLUSIONS		
	6.1 Conclusions, A Grid	53	
	6.2 Conclusions, B Grid	55	
7.0	RECOMMENDATIONS		
	7.1 Recommended Work Plan	56	
	7.1.1 Recommended Work Plan, A Grid	56	
	7.1.2 Recommended Work Plan, B Grid	57	
	7.2 Proposed Phase IV Budget		
	7.3 Proposed Phase IV Work Schedule		
	7.4 Summary of Recommendations		
	CERTIFICATE		

REFERENCES

TABLE OF CONTENTS

APPENDICES

Appendix	I	List of Personnel and Statement of Expenditures
	II	Rock Sample Descriptions and Lithogeochemical
		Results
	III	Certificates of Analysis and Assay
	IV	Soil Geochemistry Statistics
	V	Diamond Drill Logs
	VI	Conversion Factors for Metric Units
	VII	Abbreviations used in Rock Sample Descriptions
		and Diamond Drill Logs

LIST OF ILLUSTRATIONS

Figure l	General Location Map	1
2	Claim Map	3
3	Regional Geology Map	5
4	Mineral Occurrences Location Map	6

PLATES - IN VOLUMES II AND III

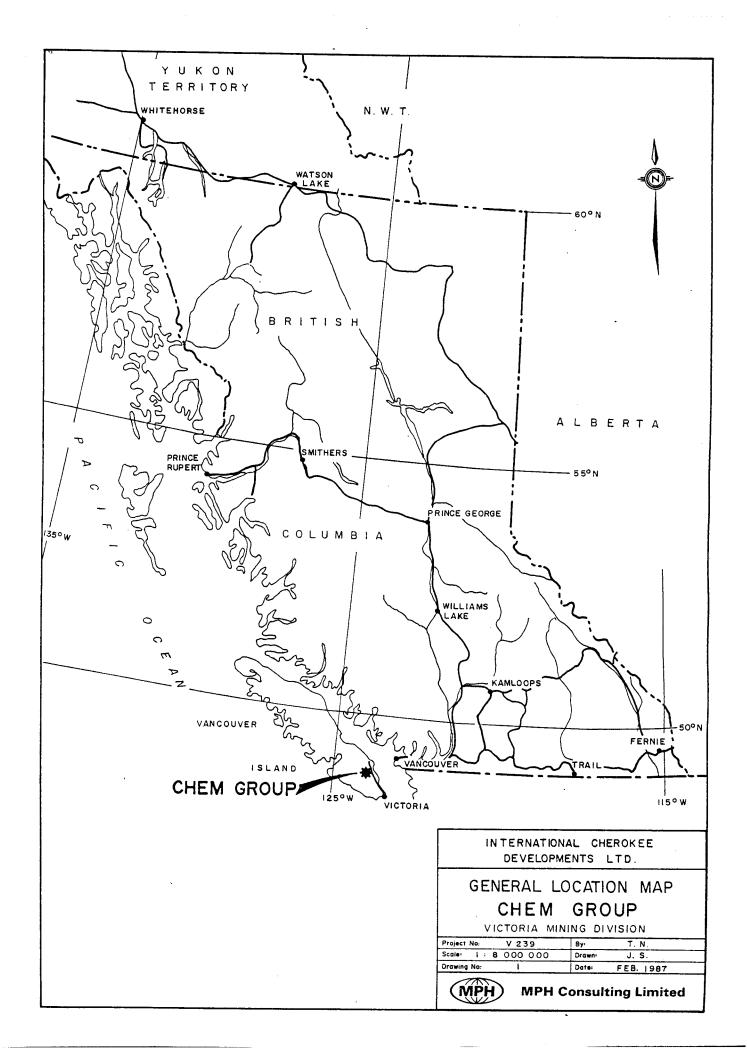
Scale

Plate 1 Geology

1:10,000

A GRID

A-2	Geology			
A-3	Rock and Silt Sample Locations and Analyses			
A-4	Soil Geochemistry and Biogeochemistry:			
	Au (ppb), Ag (ppm)	1:2500		
A-5	Magnetic Survey	1:2500		
A-6	VLF-EM Survey, Fraser Filtered Dip Angles	1:2500		
A-7a	VLF-EM Survey, Composite Profiles 1:25			
b	VLF-EM Survey, Composite Profiles	1:2500		
с	VLF-EM Survey, Composite Profiles	1:2500		
d	VLF-EM Survey, Composite Profiles 1:2500			
A-8	IP Survey, Contoured Resistivity, N=1 1:2500			
A-9	IP Survey, Contoured Chargeability, N=1	1:2500		
A-10a	IP Survey, Pseudosection, Old Grid Line 1+00N	1:1250		
b	IP Survey, Pseudosection, Old Grid Line 2+00N	1:1250		
С	IP Survey, Pseudosection, Old Grid Line 3+00N	1:1250		
đ	IP Survey, Pseudosection, Old Grid Line 4+00N	1:1250		
е	IP Survey, Pseudosection, Old Grid Line 5+00N	1:1250		
A-11	Geology, Geochemistry and Geophysics Composite	1:2500		
A-12a	Section, DDH CH 87-1	1:250		
b	Section 5+00N, DDH CH 87-2	1:250		

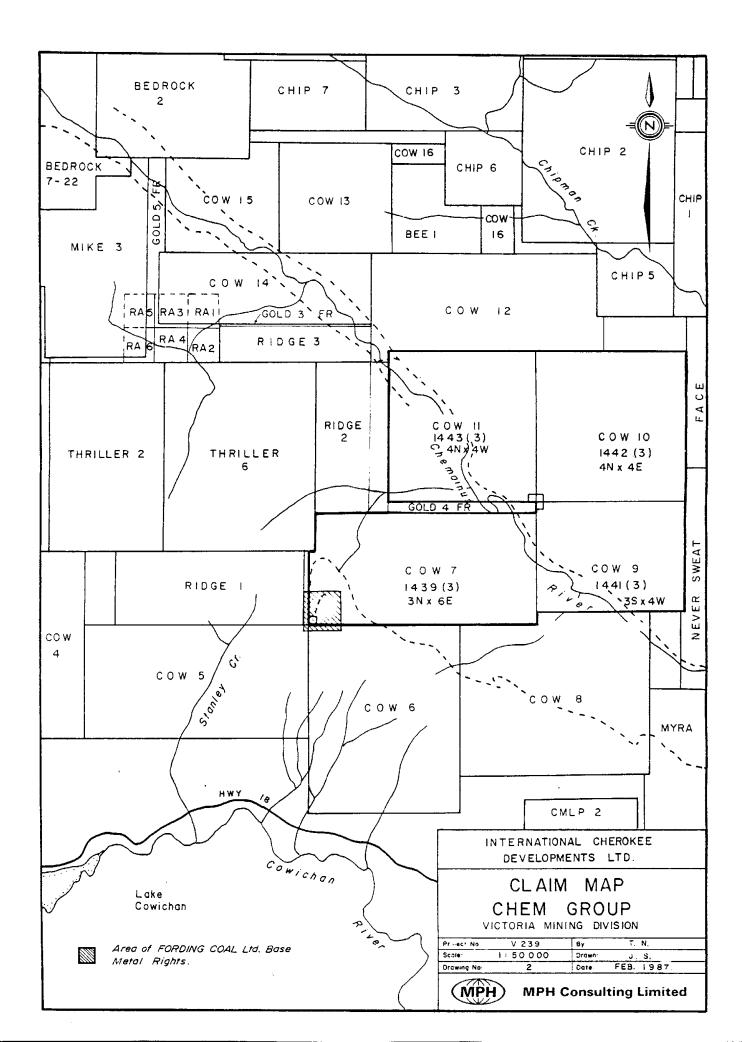


LIST OF ILLUSTRATIONS

Scale

B GRID	
--------	--

Plate	в-2	Geology	
	В-3	Soil Geochemistry: As (ppm), Cu (ppm), Pb (ppm)	1:2500
	B-4	Soil Geochemistry: Zn (ppm), Mn (ppm)	1:2500


1.0 INTRODUCTION

This report on the Chem property (Cow 7, 9, 10 and 11 claims) has been prepared by MPH Consulting Limited at the request of International Cherokee Developments Limited. Two phases of mineral exploration work are covered by this report.

Phase II involved geological mapping at a scale of 1:2500; rock, soil, silt and conifer branch sampling; and VLF-EM, magnetic and induced polarization/resistivity surveys. This work was done between September 14, 1986 and January 11, 1987.

Phase III involved a 213 m diamond drilling program carried out between January 18 and January 30, 1987.

Both phases of work were performed by or under the supervision of MPH Consulting Limited staff.

2.0 PROPERTY LOCATION, ACCESS, TITLE

The Chem property is located in the Chemainus River valley approximately 23 km northwest of the city of Duncan on Vancouver Island, British Columbia (Figure 1). The property is in the Victoria Mining Division, on NTS sheets M92C/16E and M92B/13W and centred at approximately 123°59'W longitude, 48°52'N latitude (Figure 2).

Access to the property is via MacMillan Bloedel's all weather Copper Canyon Main road from Chemainus. Smaller logging roads provide reasonable access to much of the property although many of these are blocked to vehicle traffic.

The Chem property consists of four mineral claims totalling 62 units, as summarized below:

CLAIM	RECORD NUMBER	UNITS	ANNIVERSARY DATE	YEAR REGISTERED
Cow 7	1439 (3)	18	March 6, 1993	1985
9	1441 (3)	12	March 6, 1992	1985
10	1442 (3)	16	March 6, 1993	1985
11	1443 (3)	16	March 6, 1992	1985

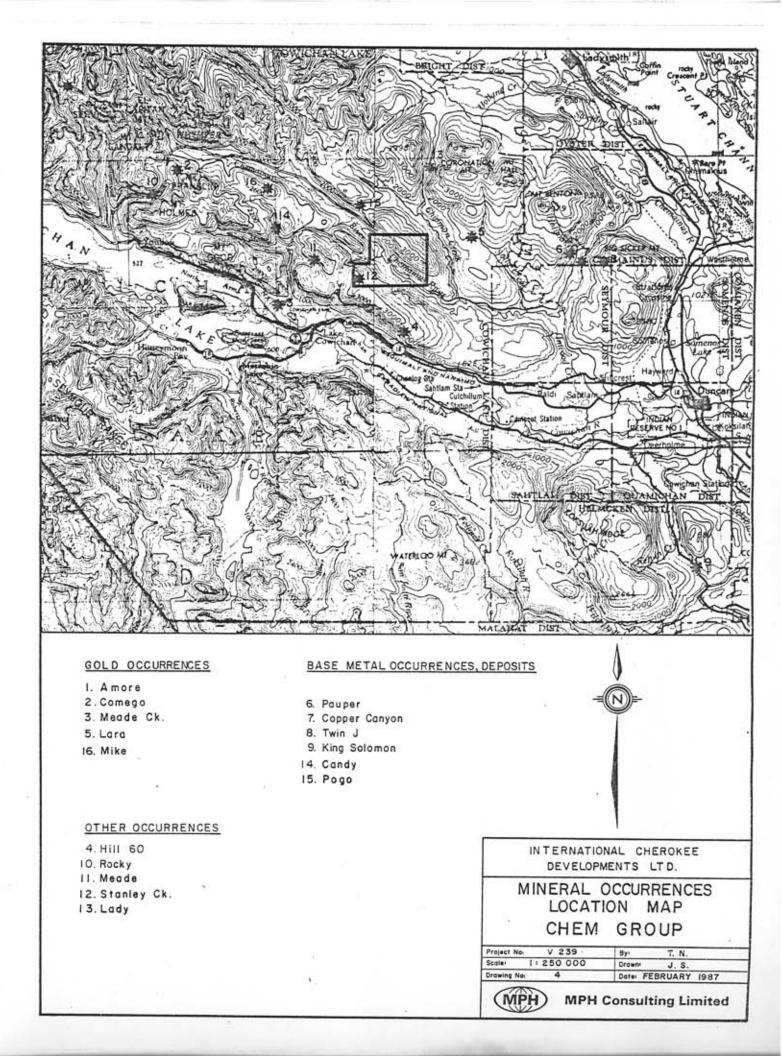
The claims were grouped as the Chem Group on March 5, 1986.

Lee A. Balak, James Simpson and Richard Watson each own one-third of the Chem Group. International Cherokee Developments Ltd. has the right to earn a 50% interest in the property by virtue of an option agreement dated December 27, 1985.

Base metal rights of a small part of the southwest corner of the Cow 7 claim are owned by Fording Coal Ltd. by virtue of the E and N Land Grant (Figure 2).

3.0 HISTORY


Little geological work has been conducted on the property prior to 1986.


Government geological work in the area includes work by J.T. Fyles (1955), J.E. Muller (1977, 1980a, 1980b, 1982) and Massey (1987).

The Stanley Creek rhodonite showing on the Cow 7 claim has been known since at least 1939, but little work has been done on the occurrence.

The first documented exploration program on the property was conducted by MPH Consulting Limited in March and April of 1986 (Neale, Hawkins and Getsinger, 1986). A few gold-bearing shears, a ferruginous chert bed with elevated gold values, and a rhodonite showing were discovered during the program.

This area of Vancouver Island has several rhodonite, massive sulphide (base metal) and gold occurrences (Figure 4), a few of which have been mined in the past. Details of the economic setting and mineral occurrences in the area are included in the report on Phase I exploration of the Chem property (Neale, Hawkins and Getsinger, 1986).

4.0 REGIONAL GEOLOGY

This area between Duncan and Port Alberni (including the Chem property) is underlain by a west-northwest trending belt of Paleozoic rocks of the Sicker Group.

The Sicker Group has been divided into four formations. Historically these formations were named Nitinat, Myra, Sediment-Sill and Buttle Lake, by Fyles (1955) and Muller (1980) (Figure 3). Type sections for these formations are in the Cowichan Lake and Buttle Lake areas. There are some problems, however, applying these divisions to the entire Sicker Group belt since geological environments appear to have varied dramatically within the complex volcanic terrane.

N. Massey (1987) has recently been mapping in the Cowichan Lake area, and has divided the Sicker Group in this area as follows:

UPPER SILURIAN TO LOWER PERMIAN SICKER GROUP

BUTTLE LAKE SUB-GROUP		
MOUNT MARK FORMATION	(formerly Buttle Lake Formation)	
CAMERON RIVER FORMATION	(formerly Sediment-Sill Unit and/or Myra Formation)	
YOUBOU SUB-GROUP		
MCLAUGHLIN RIDGE FORMATION	(formerly Myra Formation and/or Nitinat Formation)	

NITINAT FORMATION

Nitinat Formation rocks are typically pyroxene-rich pyroclastics and flows.

The McLaughlin Ridge Formation is composed predominantly of intermediate composition pyroclastics ranging from cherty tuffs to agglomerates.

The Cameron River Formation is predominantly sedimentary in nature, although many units have tuffaceous characteristics. Chert, argillite, siltstone, sandstone and conglomerate are the dominant rock types, with lesser amounts of limestone, pyroclastics and flows.

The Mount Mark Formation is composed of limestone and marble with minor amounts of chert, argillite, siltstone and sandstone.

The Sicker Group is weakly regionally metamorphosed to lower greenschist facies and folded about a northwest trending fold axis.

Sicker Group rocks have been intruded by gabbroic sills and dykes which are thought by Muller (1980) to be coeval with Upper Triassic Karmutsen Formation basalts.

Lower to Middle Jurassic grandodiorite and quartz diorite Island Intrusions cut both the Sicker Group and gabbroic rocks. Sicker Group sediments and pyroclastics are commonly hornfelsed and silicified near these intrusives.

South and north of the main Sicker Group 'greenstone' belt (and presumably overlying it) are extensive exposures of Karmutsen Formation basalt and Quatsino Formation limestone of the Triassic Vancouver Group and basalt of the Jurassic Bonanza Groups.

Shale, sandstone and conglomerate of the Cretaceous Nanaimo Group unconformably overlie all formations mentioned above.

A more detailed description of the regional geology is provided in the report on Phase I exploration of the Chem property (Neale, Hawkins and Getsinger, 1986).

5.0 1986-1987 PHASES II AND III EXPLORATION PROGRAM

5.1 WORK COMPLETED

5.1.1 Phase II: Geology, Geochemistry and Geophysics

Field work for the Phase II exploration program on the Chem property was carried out between September 14, 1986 and January 11, 1987. A total of 6 geologists, 6 geophysical technicians, 7 field technicians and 1 field coordinator spent a total of 149 persondays on the property during this phase of the program.

Exploration activities were focused on the A and B Grids in the northeast and southwest parts of the property respectively (Plate 1).

A Grid

Geological mapping at a scale of 1:2500 was conducted along logging roads and selected areas of the grid. Approximately 300 hectares were covered. During this survey, 59 rock and 4 silt samples were collected.

The original or old A Grid, established in March, 1986, consists of 6.850 km of flagged lines. Grid coverage was increased in Phase II with an additional 22.625 km of line (new A Grid). Flagged lines were established at 100 m intervals with stations marked every 25 metres. A total of 3.5 km of the old grid was cut and re-stationed in preparation for the IP survey.

The old and new grids are not consistent in their coordinate systems. The baseline for the original or old grid was

established along B6A road with crosslines running grid west (Plate A-2). A baseline for the new grid was established along the airstrip and B6A9 (B6K) road. Crosslines run grid east to B6A road. Lines cut on the old grid were re-stationed in the new grid system.

A total of 658 soil samples was collected at 25 m intervals along the new grid lines. Between lines 10+00N and 25+00N only every second line was sampled.

Douglas fir (<u>Pseudotsuga menziesii</u>) and western hemlock (<u>Tsuga heterophylla</u>) branch samples were collected along two lines (BGC Lines 1 and 2; Plates A-2, A-4) which roughly parallel topographic contours. A total of 92 samples was analysed for 20 elements including Au.

A magnetic survey was conducted along 17.975 km of line, including both new and old grids. A total of 25.850 km of lines was included in a VLF-EM survey. An IP survey covered 3.175 km of lines in the old grid area.

B Grid

Four 100 m spaced fill-in lines were established on the B grid in an area of anomalous Au, Mn, Ba and Cu mineralization. A total of 180 soil samples was taken at 25 m intervals along 4.425 km of lines.

Geological mapping at a scale of 1:2500 was conducted along 3.5 km of M1 road and limited areas of the grid.

During the course of these surveys, 9 rock samples were collected. Whole rock analyses were done on 4 of these samples.

5.1.2 Phase III: Diamond Drilling

A diamond drilling program totalling 213 m was conducted on the A Grid to test anomalous zones outlined in Phase II exploration surveys.

One geologist and one field technician spent a total of 20 mandays working on this phase of the program.

A total of 81 core samples was collected for analyses. The rove is stored at the MPH office in Armean B.C.

5.1.3 Analytical Techniques and Laboratories Used

The 828 soil, 4 silt, 68 rock and 81 core samples collected during these phases of the program were analysed for Au using an atomic absorption technique and for 30 elements using inductively coupled plasma-atomic emission spectroscopy (ICP).

Two samples were assayed for Au.

Whole rock analyses were performed on 4 samples.

A total of 92 conifer branch samples were analysed for 18 elements using a neutron activation technique and for Cu and Pb using an atomic absorption method.

Au geochemical analyses, Au assays and whole rock analyses were done by Rossbacher Laboratory Ltd. in Burnaby, B.C. The 30 element ICP analyses were done by Chemex Ltd. in North Vancouver and Acme Analytical Laboratories in Vancouver, B.C. Conifer branch samples were analysed by Bondar Clegg and Company Ltd. in

North Vancouver, B.C.

5.2 GEOLOGICAL MAPPING AND SAMPLING

5.2.1 Introduction

Phase II of the exploration program was designed to follow up anomalous mineralization discovered in Phase I activities on the A and B grids.

On the A Grid, the main objective was to locate the source of a pyrite and magnetite-rich boulder containing up to 4.80 g/t Au (0.140 oz/T) (sample no. 356, Plate A-2). Detailed geological mapping was done in an attempt to identify mineralized stratigraphic units or structures, and also to aid in the interpretation of geophysical and geochemical surveys. Geology of the A Grid is shown on Plate A-2. Analyses of rock and silt samples taken in the area are shown on Plate A-3.

On the B Grid, small mineralized shears are enriched in Au, Ag and Cu. A small rhodonite occurrence was also discovered near the property. Geological mapping was required to better understand the nature of the mineralization and to assess the potential of the area. Geology of part of the B grid area is shown on Plate B-2.

A GRID

5.2.2 Geology, A Grid

The A Grid is located on the northeast part of the property, predominantly within the Cow 10 claim (Plates 1, A-2). It is underlain by sedimentary rocks of the Paleozoic Cameron River Formation (Sicker Group) and by Triassic and Jurassic intrusive rocks.

Sedimentary rocks in the A Grid area occur as a northwest-trending succession of interbedded argillite, cherty sediment, siltstone, and sandstone with minor conglomerate, crystal tuff and marble. Exposure in the area is poor but it appears that the sediments can be divided into three distinct assemblages.

The northwest part of the grid is underlain by slate and cherty argillite. They have a well-developed foliation or cleavage striking west-northwest (approximately 115°) and dipping steeply northeast. Bedding strikes parallel to cleavage and dips moderately to the southwest.

To the southwest of the slate is an assemblage approximately 500 m thick, composed predominantly of chert and cherty siltstone with argillite units up to 100 m thick. The cherty material is commonly weakly magnetic. One 10 m thick bed is ferruginous, sporadically hematitic red and could be an 'iron formation'.

The third or southwesternmost assemblage is composed predominantly of siliceous siltstone and sandstone with minor argillite, chert, marble, crystal tuff and conglomerate. Thickness of the horizon is estimated at 200 to 500 m. It is bounded by a few metre thick

discontinuous conglomerate unit on the northeast and by diorite and quartz diorite on the southwest.

Marble occurs as a discontinuous bed up to 10 m thick along the top of the ridge. The presence of marble or limestone suggests that the rocks are in the upper part of the Cameron River Formation (Massey, personal communication).

Sandstones and siltstones on the northwest part of the grid have been intruded by a 30 m wide gabbroic dyke presumably of Triassic age. In some places it appears to parallel stratigraphy, but is clearly crosscutting on the southeastern end of the exposure. The dyke generally has a medium-grained equigranular plutonic texture but in parts is strongly foliated parallel to its strike direction.

Southwest of the grid area is a plug of medium-grained quartz diorite and diorite. In general it parallels stratigraphy but in some places is slightly crosscutting. Fine grained diorite occurs as a 10-20 m wide margin separating quartz diorite from sandstone. The diorite appears to be crosscut by the quartz diorite suggesting that it is an early phase of a 'pulsing' intrusion.

Sediments in this area have been intruded by narrow easterly to southeasterly trending diabase and feldspar porphyry dykes. These may be related to the diorite and quartz diorite intrusives.

5.2.3 Lithology of Units of the Cameron River Formation, A Grid

The Cameron River Formation (Unit 4) was formerly mapped as the Myra Formation and/or Sediment-Sill Unit. It has been subdivided in the A grid area into the following units:

4a - Argillite, Slate

Dark grey to black, thinly laminated to massive, soft to extremely hard argillite grades into both siltstone and cherty siltstone. It is commonly foliated, with slaty cleavage crosscutting bedding. Dark grey, subhedral, elongated chiastolite porphyroblasts commonly occur in the slate. They average 1 mm in length and can make up to 15% of the rock. The argillite generally contains 2-3% pyrite along fractures or as thin films on foliation surfaces.

Chiastolite porphyroblasts suggest that the rock has undergone contact metamorphism, probably from the intrusion of the nearby quartz diorite.

4b - Chert, Cherty Siltstone, Iron Formation

Rocks in this unit are generally cryptocrystalline to very finegrained granular, extremely siliceous, dark brown to light bluishgreen and range from massive to thinly laminated. They commonly grade into argillite or siltstone. Several cherty beds are weakly magnetic.

One bed located in the 'middle horizon' mentioned in section 5.2.2 is strongly magnetic, sporadically jasperoidal and contains up to 5% each of fine-grained specular hematite, magnetite and pyrite ('iron formation'). One sample of this material (1620) contained 300 ppb Au.

4c - Siltstone

This unit is dark grey to dark brown, massive to thinly laminated and generally very hard (silicified?, hornfelsed?). The siltstone is commonly interbedded with and grades into both sandstone and

argillite.

4d - Sandstone

The sandstone is dark grey to dark brown and generally very fine to fine-grained. Rarely the sandstone contains graded beds which indicate 'tops up'.

4e - Crystal Tuff, Tuffaceous Sediment

These tuffs are generally limited in extent, quite thin (beds to 5 cm) and interbedded with argillite and fine grained sandstone. They have a dark brown very fine-grained sandy groundmass with up to $10\% \leq 1 \text{ mm}$ stubby to lath shaped, subhedral, white feldspar crystal fragments.

4f - Heterolithic Conglomerate and Sedimentary Breccia

A conglomerate bed(s?) on the A Grid is generally discontinuous and only a few metres wide. It has a dark brown cherty finegrained clastic groundmass with up to 20% subangular to subrounded feldspar porphyry and cherty siltstone(?) clasts up to 1 cm in diameter. The groundmass also contains traces of chalcopyrite and 2-3% each of pyrite and pyrrhotite. The rock may be partly tuffaceous in nature.

4h - Marble

Two occurrences of marble located in the northwest part of the grid may be part of the same 2-3 m wide discontinuous bed. It is composed of medium-grained bluish-grey crystalline calcite interbedded with very fine-grained sandstone and cherty siltstone.

5.2.4 Lithology of Intrusive Rocks, A Grid

6) Triassic Karmutsen Formation

6d - Gabbro

The gabbro is variable in texture. In parts it is a mediumgrained equigranular plutonic rock with approximately 50% each of black hornblende and bluish-grey feldspar crystals up to 2 mm in length. In other parts it is strongly foliated. Mafic minerals appear to be totally altered to fine-grained chlorite and original textures have been destroyed. This foliation suggests that the gabbroic dyke has undergone some deformation along with the sediments it intruded.

9) Jurassic Island Intrusives

9b - Mafic Dykes

Diabase dykes in this area are generally southeast-trending and less than 2 metres in width. They have distinct chill margins, are rarely amygdaloidal and in some cases have acicular hornblende phenocrysts to 0.5 cm in length.

The dykes may be related to an early dioritic phase (9d) of the Island Intrusions.

9d - Diorite

Diorite in this area occurs as a narrow margin up to 20 metres wide between the Cameron River Formation sediments and intruding Jurassic quartz diorite. The diorite is fine to medium-grained with 20-40% hornblende, and 50% (+) feldspar.

9f - Feldspar Porphyry

Feldspar porphyry dykes in this area are generally less than 3 metres in width and strike from northeast to southeast. They contain 25% white stubby feldspar phenocrysts up to 1 cm (average 3-4 mm) in diameter, < 5% hornblende phenocrysts and rare rounded quartz phenocrysts in a fine-grained dark grey to brown groundmass.

These dykes may be offshoots from the nearby large plugs or sills of quartz diorite. On nearby properties they crosscut both Cameron River Formation sediments and Triassic gabbroic dykes.

9q - Quartz Diorite

Quartz diorite plugs in this area are up to a kilometre wide and several kilometres long. They are typically medium-grained equigranular plutonics with 75% (+) feldspar (mainly plagioclase), 15% hornblende, up to 10% quartz, and minor amounts of biotite.

5.2.5 Structural Geology, A Grid

As described in section 5.2.2, the A Grid is underlain by sediments which can be divided into three basic northwest trending assemblages (Plate A-2).

- 1) Slate and cherty argillite on the northeast
- 2) Cherty sediments in the centre
- 3) Siltstones and sandstones on the southwest

Bedding in Assemblage 1 strikes at roughly 115° and dips steeply to the southwest. Slaty cleavage has roughly the same strike as bedding and dips moderately to the northeast. The bedding cleavage relationship suggests that this area is on the southwestern limb of an antiform.

VLF-EM data show a series of strong conductors which truncate along a linear trend suggesting that the southwest side of Assemblage 1 is fault bounded (Plates A-2, A-6).

Bedding in Assemblage 2 strikes parallel to subparallel to Assemblage 1 and generally dips moderately to the southwest. Two small, tight folds with fold axes striking at approximately 115° are exposed along B6A road (Plate A-2).

The southwest side of Assemblage 2 is roughly delineated by a northwest trending synform fold axis (Plate A-2). A narrow unit of pyrrhotite and pyrite bearing coarse-grained clastic (4f conglomerate? lapilli?) also occurs along this zone. It is possible that this conglomerate marks a paleo erosion surface and that the apparent synform is actually an angular unconformity.

Assemblage 3 is composed mostly of sandstone and siltstone with

minor argillite, chert and limestone or marble. Bedding strike at approximately 120° and dips steeply to moderately to the northeast. A 30 m wide gabbroic dyke intrudes this horizon subparallel to bedding strikes and it is assumed that it also dips to the northeast.

Assemblage 3 is bound by diorite and granodiorite on the southwest. The contact also subparallels bedding strike and a northeast dip is assumed.

Sedimentary rocks in the grid area have been cut by series of easterly and northeasterly trending faults (Plate A-2). Surface traces of these faults have been picked from airphoto lineations and geophysical data. Where exposed, the faults are characterized by zones of intense shearing and limonitic gouge from a few centimetres to a few metres in width. Faults have not been traced either on airphoto or on the ground into Assemblage 3, supporting the hypothesis of an angular unconformity separating Assemblages 2 and 3.

Apparent offsets of magnetic sources (Plate A-5) are both right and left lateral. This could be explained by normal block faulting and erosion of dipping strata.

Bedrock exposure in the Grid A area is poor, making structural interpretations difficult.

5.2.6 Mineralization, A Grid

Several varieties of mineralization occur on the A Grid.

Specific interest in this area was initiated by the discovery on

B6A road of a siliceous, magnetite and pyrite-rich boulder (Plate A-2, sample 356) which contains up to 4.80 g/t Au (0.140 oz/T). Sulphides and magnetite occur in bands up to 5 cm thick which parallel compositional layering. A petrographic report on this material was prepared by J.S. Getsinger (1986) in which it is suggested that the sulphides and magnetite may be primary and that the rock is a recrystallized quartzose mudstone or chert. Deformation and alteration of the rock, however, has destroyed original textures and genesis of the sulphides is unclear.

A sample of fine-grained, siliceous, clastic float (Plate A-2, 0+00S, 4+25E - new grid, sample 1694) contained up to 5% disseminated pyrite, 840 ppb Au and anomalous Ba and Zn.

Another boulder from the same area contained up to 40% sulphide rich (pyrite, chalcopyrite and sphalerite) bands in a dark greenish-grey siliceous host. A sample of this material (1696) contained 1.84% Zn and anomalous Ag, Cu, Cd and Bi.

A sample of brecciated hematitic cherty sediment float (14843) collected at 14+00N, 1+00E contained 1200 ppb Au (1.44 g/t or 0.042 oz/T) and anomalous Ba and Zn. The area was investigated in response to a high Au-in-soil anomaly (840 ppb). The hematitic boulder is probably not far from its source. This area is underlain by cherty sediments cut by a southeast trending quartz feldspar porphyry.

A sample of fine-grained amphibole-rich intrusive float (sample 811; 23+00N, 3+50W) with 2-3% fine-grained pyrite contained 190 ppb Au, 0.6 ppm Ag, 1520 ppm Cu and 569 ppm V. The area is underlain by siliceous siltstones cut by a gabbroic dyke. The sampled material is likely from this dyke. Gabbros in this area are typically sporadically enriched in Au, Cu and V.

Several samples of rhodonite float were collected in the 3+00N to 4+00N, 11+00E (old grid) area (Plate A-2). The abundance of this material in a small area suggests a local source.

Exposures of fault zones were discovered in only two locations on the property: 0+00N, 6+00W (old grid) and 13+25N, 0+00E (Plate A-2). Samples of this material were consistently anomalous in Mn, Ba and Zn. If the hypothesis of an angular conformity between Assemblages 2 and 3 (section 5.2.5A) is correct, it is possible that the fault zones were conduits for hotsprings responsible for the deposition of the above-mentioned rhodonite.

An approximately 10 m thick ferruginous chert ('iron formation') horizon has been traced in Assemblage 2 (section 5.2.5) for 700 m between 1+50S, 5+00E and 4+00N, 5+85W (old grid) (Plate A-2). This bed is generally composed of blue-grey cryptocrystalline quartz (sporadically jasperoidal) with up to 5% each of pyrite and specular hematite, and a few percent magnetite. One sample of this material (1620; 4+00N, 5+85W - old grid) contained 300 ppb Au.

It is possible that the source of the Au bearing boulder (sample 356) is an enriched part of this ferruginous horizon, possibly at its intersection with a mineralizing fault zone.

A few metre wide, apparently discontinuous unit of gossanous conglomerate or lapilli tuff is exposed on B6K road (Plate A-2) at 2+00N (old grid) and 11+50N (new grid). Up to 5% fine-grained pyrrhotite and pyrite is disseminated throughout the groundmass. Samples of this material contained up to 40 ppb Au, and weakly anomalous copper values.

24

B GRID

5.2.7 Geology, B Grid

The B Grid is located on the southwest part of the property, mostly within the Cow 7 claim (Plates 1, B-2). It is predominantly underlain by sedimentary rocks of the Paleozoic Cameron River Formation and by Triassic intrusives.

Sedimentary rocks in the B Grid area are generally northwesttrending interbedded siltstone, sandstone and sedimentary breccia grading into cherty siltstone and chert. All of these sedimentary rocks may be in part tuffaceous.

Although mapping coverage is quite limited in the area, sediments appear to grade from coarse-grained clastics along Ml road to cherty sediments to the southwest.

These sediments have been intruded by a medium-grained gabbro, probably of Triassic age. The orientation of this intrusive is uncertain.

Narrow, 2-4 m wide rhyolite dykes also intrude the sediments. Their age relationship with the gabbro is not known.

5.2.8 Lithology of Units of the Cameron River Formation, B Grid

4b - Chert, Cherty Siltstone, Cherty Tuff, Rhodonite

These rocks are well bedded to massive, extremely siliceous and

composed predominantly of dark brown to light grey cryptocrystalline quartz. They generally contain fine-grained sand-sized feldspar crystal and lithic fragments. Commonly these cherty sediments are interbedded with, and grade into siltstone and sandstone.

Small lenses (1 m x few m x?) of rhodonite have been found associated with cherty sediments in this area.

4c - Siltstone

This unit is dark grey to dark brown, massive to thinly laminated, generally very hard, and is commonly interbedded with and grades into cherty sediments and sandstones.

These siltstones commonly contain sedimentary features such as load casts, soft sediment deformation and graded bedding. In all cases where these features were observed, the beds are 'tops up', younging to the southwest.

4d - Sandstone

This unit is similar to 4c, except that it ranges from fine to coarse-grained. Cross bedding observed in the southwest dipping sandstone indicates that the beds are younging up to the southwest.

4e - Crystal Tuff, Tuffaceous Sediment

These rocks range from fine to coarse-grained, are dark grey to dark brown and contain up to 50% light grey feldspar crystal fragments to 1 mm.

26

4f - Heterolithic Conglomerate and Sedimentary Breccia

This unit has a coarse-grained sandstone matrix and up to 35% subangular to subrounded chert (<u>+</u> bedding) and feldspar porphyry fragments ranging in size from a few millimetres to 10 centimetres (average 1-2 cm). Chert fragments commonly have a tabular shape and are possibly rip-up clasts.

5.2.9 Lithology of Intrusive Rocks, B Grid

6) Triassic Karmutsen Formation (?)

6d - Gabbro

This gabbro is a medium-grained plutonic rock with 50% each of black hornblende and dark blue-grey lath-shaped plagioclase up to 2 mm in length. It commonly contains up to 2% fine-grained pyrite. The rock is weakly magnetic.

9) Jurassic Island Intrusive (?)

9? - Rhyolite

Narrow 2-4 m rhyolite dykes intrude the sediments. They have a light greenish grey fine-grained crystalline groundmass with 5% rounded quartz phenocrysts up to 1 mm and 2-3% medium grained disseminated pyrite cubes.

Whole rock analyses of four of these dykes are included in

Appendix IV. Siliça content averages 78% and Na_20 averages 2.4%. Sample 4654 contains over 90% Si0₂ and only 0.7% Na_20 . This material may be a cherty tuff rather than a rhyolite.

5.2.10 Structural Geology, B Grid

Sediments in the mapped area of the B Grid are relatively flat lying to moderately dipping, and gently folded. Bedding generally strikes northwest and dips to the southwest.

The sediments have been cut by a series of 10-20 cm wide, easterly trending, steeply dipping, limonitic shears.

5.2.11 Mineralization, B Grid

Some limonitic, easterly trending shears up to 20 cm wide are mineralized with 5% pyrite and 2-3% chalcopyrite. A sample of one such shear on Ml road (sample 352, Phase I) contained 1260 ppb Au (1.4 gt or 0.041 oz/T), 17.6 ppm Ag, and 1.58% copper.

Lenses of rhodonite are hosted in cherty sediments in the area. One sample of such a lens (1611) was taken on an abandoned railway bed at the west end of line 19+00N. It contained 14.8% Mn, 3590 ppm Ba and 108 ppm Pb. The extent of this occurrence is not known.

The Stanley Creek rhodonite showing is reportedly located near the ridge top in the southwest part of the Cow 7 claim. It was not visited during this phase of the exploration program.

5.3 SOIL GEOCHEMISTRY

Soil geochemistry surveys were conducted on both the A and B grids. Soil samples were collected from the B horizon at an average depth of 20 cm. Horizon development in the grid areas is fair except on steep rocky slopes.

5.3.1 Soil Geochemistry, A Grid

Au, Ag, As, Cu, Pb and Zn-in-soil analyses were plotted, and except for Au and Ag, contoured using the mean plus 2 standard deviations as an approximate anomalous threshold. Statistical information on the soil geochemistry data is included in Appendix IV.

The anomalies are generally weak and sporadic, and only the gold and silver plots have been presented (Plate A-4). Any Au and Ag values above the detection limits were taken as anomalous.

Gold-in-soil anomalies are one sample in extent with the exception of an area between 1+00S, 0+50E (90 ppb Au) and 2+00S, 0+75E (70 ppb Au). There is no outcrop in the area, and additional soil samples taken in the zone were not anomalous.

The most significant Au anomaly occurs at 14+00N, 1+00E. The sample site is located within a few metres of a cherty sediment – feldspar porphyry dyke contact. Au content in the initial sample was 840 ppb. Re-sampling and re-analyses have confirmed the validity of this anomaly. Soil samples within a few metres of the original site are not anomalous, suggesting a small, local source.

A sample of a brecciated, hematitic boulder of cherty sediment dug from a small pit at the initial sample site (14843) contained 1200 ppb Au (1.2 g/t or 0.042 oz/T) and weakly anomalous Ba and Zn.

Several soil sample sites with anomalous values of 20-50 ppb Au have not been investigated.

Similar to Au, Ag-in-soil anomalies are generally weak, sporadic and limited to one sample site in extent.

The highest Ag value is 2.4 ppm at 14+00N, 5+00E. The site appears to be near an old road and the anomaly could be due to contamination. The area has not been investigated.

One sample site at 12+00N, 2+25S on B6J road has weak coincident Au and Ag anomalies (20 ppb and 0.4 ppm). The area is underlain by a narrow argillite horizon. The reason for the anomaly is unknown.

Soil geochemistry has had limited success in outlining mineralized zones on the A Grid. The area has a fairly continuous cover of clay-rich till which may be acting as a barrier to the dispersion of metal ions from bedrock sources.

5.3.2 Soil Geochemistry, B Grid

A large soil sample grid with widely spaced lines (generally 400 m) was established on the southwest corner of the Chem property in the spring of 1986.

In the Phase II program, fill-in lines (13+00N to 15+00N and 17+00N) were established in the southwestern part of the grid in

an area of anomalous As, Cu, Pb and Zn-in-soil values. A rhodonite showing and a Au-Cu bearing shear zone (samples 1161 and 352 respectively, Plate B-2) also occur in this area.

Plots of As, Cu, Pb, Zn and Mn-in-soil values are shown in Plates B-3 and B-4. Except for one 40 ppb Au value at 14+00N, 11+75W, no Au or Ag anomalies occur in the recent sampling and plots of these data are not included with this report.

Anomalous zones on Plates B-3 and B-4 have been labelled 'a' through 'f', from grid east to west. Threshold values for Cu, Pb, Zn and As are similar to those calculated in the initial survey (Neale, Hawkins and Getsinger, 1986). The anomalous threshold value for Mn was arbitrarily picked at 1000 ppm.

Zone 'a' is a moderate arsenic anomaly extending from 14+00N, 0+50W (505 ppm As) to 15+00N, 1+75W (130 ppm As). The anomaly has no apparent associated bedrock mineralization but is near and parallel to shear zones with anomalous Au, Ag and Cu values (sample 352).

Zone 'b' is a 500 m long anomaly with coincident high As, Mn, Zn, Pb and Cu values. This anomalous zone is parallel to and just downhill from an old railway grade. A rhodonite showing (sample 1611) with 14.8% Mn and anomalous Pb occurs on this railway bed to the west. It is possible that some of this material was used as fill along the grade creating a transported anomaly. Bedding in the area does parallel the railway grade, however, and the anomaly may in fact be outlining a mineralized horizon.

Anomaly c-c' also has strong coincident As, Mn, Zn and Pb values. It trends toward the rhodonite showing and may be outlining a continuation of the zone.

Anomalies 'd', e-e' and 'f' are zones with high Mn <u>+</u> Pb and As values. The abundance of Mn anomalies in this area suggests that several rhodonite bearing horizons are included in the stratigraphy.

Metal-in-soil anomalies outlined in the initial soil geochemistry survey have not been investigated.

5.4 BIOGEOCHEMISTRY, A GRID

The soil geochemistry survey on the A Grid appeared to be ineffective because of an impermeable clay layer covering most of the area. Conifer branch samples were taken in the hope that the root systems would penetrate this clay layer and pick up elements in concentrations reflective of bedrock geochemistry.

Two lines of samples were taken approximately 150 m apart. These lines (BGC Lines 1 and 2) are located roughly along the 730 m and 770 m topographic contours, directly above the Au bearing boulder (sample 356) discovered on B6A road. Samples of Douglas fir (<u>Pseudotsuga menziesii</u>) or western hemlock (<u>Tsuga heterophylla</u>) were taken every 25 metres. Approximately 20 cm of the ends of several branches was sampled from the largest tree available at each sample site. Samples were analysed for Pb and Cu using a standard atomic absorption technique and for 18 other elements using a neutron activation method.

A total of 92 samples was taken. With so few samples it was not practical to do statistical analyses of the data, and threshold values were visually estimated (Au - 1.0 ppb, As - 2.0 ppm, Pb - 10 ppm). Au, Ag and As analyses are plotted on Plate A-4.

Several strong Au and As anomalies were outlined by the survey.

A gold anomaly directly uphill from the Au bearing boulder (sample 356) extends between the two tree sample lines. An arsenic anomaly is adjacent to this zone on the lower line. No outcrop occurs in this area.

A second notable anomalous zone lies on line 1+00N (old grid) near 2+00W. It has coincident high Au, As and Pb values.

In general the Au anomalies are much stronger on the lower biogeochemical sample line (BGC Line 1). This line roughly follows a geophysically-indicated fault zone separating argillites from cherty sediments. The biogeochemical anomalies may reflect mineralized zones along this fault.

5.5 GEOPHYSICAL SURVEYS

The geophysical surveys conducted on the Chem property consisted of total field magnetic and VLF-EM surveys together with selected lines of IP coverage. The surveys were conducted on a grid with stations at 25 m intervals along lines 100 m apart.

5.5.1 Survey Procedures

Magnetic Survey

Base stations were established along the 0+00E baseline on B6K road (Plate A-5). Closed loop traverses were tied into these base stations and the data arithmetically corrected for diurnal

variation. Data collected on a small part of the grid were corrected to readings from a recording base station magnetometer (Scintrex MP-2) set up at the field office in Duncan.

Magnetic data were recorded at 25 m intervals except on lines 15+00N through 17+00N where fill-in readings were taken at intermediate stations.

VLF-EM Survey

VLF-EM is a well established method for detecting shallow conductive mineralization and lithologies. The method utilizes the electromagnetic field created by distant U.S. Navy transmitters at frequencies ranging from 15 to 25 kHz. The presence of conductive features is indicated by distortions of the normally planar electromagnetic field.

The VLF-EM method generally permits only a qualitative interpretation. Although the responses from narrow bedrock sources can under some circumstances be distinguished from overburden sources, they are not universally separable.

This survey was executed using a Sabre 27 VLF-EM receiver which measures the dip angle (in degrees) of the ellipse of polarization and the relative horizontal field strength (in percent). The VLF signal from a transmitter in Seattle, Washington was used for this survey. The angle between the azimuth of the signal and the grid lines is approximately 76°, providing effective coupling to conductors striking across the grid.

Induced Polarization/Resistivity Survey

The induced polarization/resistivity (IP) technique provides a measure of the earth's chargeability and resistivity. Values of

both parameters are directly related to the presence of certain polarizable sulphides and/or graphite. The technique requires separate transmitter and receiver units in contact with the ground through a variety of electrode arrays.

The IP survey on the Chem A Grid employed Huntec time domain equipment, consisting of a 2.5 kW transmitter and a Mark IV receiver.

Measurements of the standard parameters of primary voltage (Vp) and secondary voltage (Vs) were made, from which the normal parameters of apparent resistivity (in ohm metres) and chargeability (in milliseconds) were obtained. Chargeability was measured over the interval from 100 milliseconds to 1100 milliseconds.

5.5.2 Magnetic Survey Results

Magnetic data have been corrected, plotted and contoured on Plate A-5. The survey outlined a series of weak to moderate, generally grid north (true northwest) trending linear anomalies.

Magnetic sources are all quite shallow, at depths of less than 15 m, reflecting a thin impersistent overburden cover. Dips of the magnetic sources cannot be determined with certainty, but they generally appear to be subvertical.

On the basis of the magnetic patterns and anomaly characteristics, the survey grid has been divided into three magnetic domains designated I through III from grid east to west (Plates A-5, A-11).

Domain I, which extends across the eastern part of the grid, displays a very limited magnetic relief with only a few comparatively isolated anomalies of more than 25 to 50 nT (1 nanotesla = 1 gamma). This domain corresponds to a unit of the Cameron River Formation which is predominantly composed of slatey argillites.

Domain II, which contains most of the magnetic sources detected on the survey grid, is composed of a series of narrow, impersistent, weak to moderate anomalies whose trend is dominantly grid north. The domain as a whole appears to be widest at its southern end where its eastern boundary is undefined by the present survey coverage. The domain narrows to the grid north and by line 16+00N it is only approximately 60 m wide.

A number of cross-faults are interpreted with varying degrees of confidence. The offset across these faults is indicated to be relatively small, not more than 100 m.

Domain II appears to correspond to units 4b and c of the Cameron River Formation, dominantly composed of chert and cherty siltstone. Several of the more pronounced magnetic anomalies are tentatively correlated with a narrow, magnetite bearing, jasperoidal 'iron formation.' A persistent anomaly extending between line 14+00N and 17+00N, near 3+50E occurs in an area essentially devoid of outcrop. It also could be related to an iron formation horizon.

Domain III covers the western third of the survey grid. Like Domain I, Domain III is largely devoid of significant local magnetic anomalies. It is underlain by cherty siltstones with minor argillite, conglomerate and tuffaceous sandstone.

5.5.3 VLF-EM Survey Results

The VLF-EM survey outlined 23 conductive zones. Data are shown on composite profiles (Plates A-7a to A-7d). Contoured Fraser filtered dip angles are shown on Plate A-6. Anomalies are numbered 1 through 23, the strongest of which are highlighted with a hexagonal symbol.

Most of the conductive zones are persistent over distances of 400 to 1000 m and exhibit trends that vary between grid south and grid east-southeast.

Interpreted cross-faults are comparatively rare. A disconformity or major shear zone however, is indicated near 4+50E by the oblique termination of a number of conductive zones.

Anomalous conductive zones 1 through 23 are summarized below:

Zone 1 consists of weak anomalies detected near the western end of line 17+00N through 19+00N. The zone trends on average grid north (approximately 316° true). It may continue further to the north, beyond the limits of the present survey.

Zone 2, located approximately 125 m to the grid east of Zone 1, is a similarly weak, uncertain series of responses spanning line 17+00N through 19+00N. It also may continue further to the grid north beyond the limits of the present survey.

Zone 3, located approximately 150 m further to the grid east, just grid east of the B6K road, is defined by weak, uncertain responses spanning line 16+00N through 19+00N. The zone which trends nearly grid north-south may continue further to the north and south onto lines not covered in the present survey.

Zone 4, is defined by anomalies of moderate strength and character detected on lines 19+00N and 11+00N near 4+00W. The conductive zone, which trends approximately grid north-south, probably continues further both to the north and to the south onto lines not presently surveyed.

Zone 5, located approximately 150 m grid east of Zone 4, consists of two segments designated 5a and 5b separated by line 9+00W, which has not been surveyed. Zone 5 is presently defined to extend from line 7+00N to line 12+00N, and may well extend further to the north and south, beyond the limits presently surveyed.

Zone 5a has a moderately strong response on line ll+00N, with weaker, less credible anomalies defining northern and southern extensions.

Zone 5b consists of weak but possible responses on lines 7+00N and 8+00N.

Zone 6, located 150 m grid east of Zone 5, consists of weak but plausible responses on line 10+00N and 12+00N near 1+50W. The zone trends grid north-northwest, parallel to stratigraphy. It may well continue further to the north onto lines not presently covered.

It is speculated, in the absence of data on lines 13+00N through 15+00N, that Zones 1, 2, and 3 may be correlative to Zones 4, 5, and 6. Completion of VLF surveying on the above cited omitted lines is required to validate this hypothesis.

Zone 7 consists of moderately strong to strong anomalies of well defined character detected on the western ends of lines 5+00S through 0+00S. The zone, which trends subparallel to the B6K road, likely continues further north and south of the surveyed

area. On the basis of its strength and character, anomaly 7 is presumed to be related to a bedrock conductor.

Zone 8 consists of weak to moderate responses on lines 18+00N and 19+00N near 1+75E. The zone may extend further to the grid north beyond the limits of the present survey.

Zone 9, located to the grid south-southwest of Zone 8, consists of weak, rather poor character responses spanning lines 15+00N through 18+00N near 1+00E.

Zone 10, located several hundred metres grid south of Zone 9, is a long, persistent conductive feature extending from line 3+00N (old) near 2+50E, northwards to line 13+00N near 0+75E.

The individual anomalies constituting Zone 10 vary from weak to strong. The conductor is best defined over the interval from line 9+00N to 11+00N where a bedrock source is reasonably surmised.

One of the more important gold anomalies detected in the soil geochemical survey lies just beyond the northern limit of Zone 10 at 14+00N, 1+00E.

Zone 11, which flanks Zone 10 to the grid east, is of weak and uncertain character. This zone extends from line 2+00N (old) near 5+50W, grid northwards to line 9+00N near 2+50E.

Zone 12, which flanks Zone 10 approximately 75 m to the grid west, is a persistent conductive feature that can be traced from line 6+00N (old grid) near 7+50W, southward as far as line 5+00S near 4+00E on the new grid. The conductor likely extends further to the grid south beyond the present survey limits.

Zone 12 is predominantly composed of moderately strong to strong

anomalies, most of which probably have bedrock sources. In form, the anomaly exhibits a somewhat variable strike, ranging from grid north-northwest in the southern part to more nearly grid northsouth in the northern part.

This strike is somewhat at odds with local stratigraphic and magnetic source trends, suggesting that the conductor may be a fault.

Zone 13 is a conductor defined by weak anomalies detected on lines 0+00S (old) and 1+CON (old) near 6+00W. The contoured Fraser-filtered dip angle plot (Plate A-6) suggests an even weaker continuation several hundred metres further grid south, although anomaly definition on the profiles is largely lost.

Zone 14, located approximately 150 m grid west of Zone 13, is similarly composed of poor anomalies on lines 0+00 (new) and 0+00 (old). Zone 14 may be an offshoot of Zone 12.

Zone 15, located between lines 3+00S and 5+00S near 4+50E, forms a weaker subsidiary conductive feature to Zone 12. The constituent anomalies are largely weak and not particularly well resolved because of the stronger responses from Zone 12 to the west. In addition, several of the anomalies are located on the edge of the road where cultural contamination may be present. The southern part of the zone, which extends away from the road, is the more credible portion. It may extend further to the south beyond the limits of the present survey.

Zone 16 is a strong, persistent, conductive feature extending from line 10+00N near 3+00E grid northwards to line 19+00N and undoubtedly extending further into the area presently unsurveyed. Most of the constituent anomalies are strong, definite responses and bedrock sources are probable.

Zones 8 through 16, discussed above, represent an ensemble of conductors which lie in a belt extending grid north-south across the entire area surveyed. They likely reflect a particular series of lithologic units constituting a distinct horizon of the Cameron River Formation. The stronger, more persistent conductive features may represent graphitic argillite horizons while the weaker zones could be thin argillite beds and/or shear zones.

Zone 17 is a strong, persistent conductor extending from line 9+00N near 7+00E grid northwards to line 16+00N near 5+25E. An isolated response on line 18+00N near 4+50E is viewed as a probable continuation of this conductive trend. Individual component anomalies defining this zone are generally strong and definite and a bedrock source is readily surmised. The abrupt termination of the conductor grid north of line 18+00N suggests the possibility of a cross-fault.

Zone 18, a persistent conductor detected south of Zone 17, has a grid north-northwest strike and extends from 9+00N near 6+00E south-southeastwards to line 2+00N (old) near 0+25W, it may well extend further to the grid south-southeast onto presently unsurveyed ground.

The characteristics of the conductive zones on most lines are reasonably convincing as to a probable bedrock source. In addition, the asymmetric form of the field strength responses on a number of profiles suggest a shallow dip to the grid east.

Zone 19, located grid south and southwestward from Zone 18, consists of strong responses extending grid south from line 5+00N (old) to 0+00N (old) near 2+50W, and likely extends further south beyond the limits of the present survey. The constituent anomalies are generally strong and definite and probably have a bedrock source. As with Zone 18, the asymmetry of the horizontal

40

field strength profile suggests a comparatively shallow dip to the grid east.

It will be noted that Zones 17, 18 and 19 all terminate obliquely along a nearly north-south line located at approximately 5+00E on a number of the new grid lines. This oblique termination in strike is viewed as indicative of an unconformity or possibly a shear zone (thrust fault?) as has been speculatively interpreted on Plate A-6. This boundary corresponds reasonably closely to the boundary between magnetic Domains I and II, which lends support to the existence of a significant lithologic contact at this location.

Zone 20 extends from line 4+00N near 0+50W on the old grid northwards to line 15+00N near 6+75E on the new grid. Individual anomalies vary from weak to moderately strong, with the strongest response detected on line 9+00N. The better responses probably have a bedrock source.

The nearly north-south strike of Zone 20 is somewhat oblique to the trends exhibited by Zones 17-19. It is possible that a fault or shear zone separates the grid southern end of Zone 20 from its oblique-trending neighbour, Zone 18.

Zone 21 consists of weak to strong responses, detected near the eastern ends of line 6+00N on the old grid, and lines 8+00N and 9+00N on the new grid.

The stronger responses constituting Zone 21 probably have a bedrock source.

Zone 22 consists of a series of anomalies spanning lines 8+00N through 13+00N near their eastern limits. The zone has been divided into a grid northern Subzone, 22a, and a grid southern

Subzone, 22b, to reflect the fact that the northern anomalies are generally weak and of lackluster character, while the southern portion contains rather strong and definite responses. In fact, as seen in plan form, the zone may actually consist of 2 distinct sources, possibly offset by a fault.

Segment 22a, which consists of weak, uncertain responses, is defined between lines 11+00N and 13+00N and may continue further to the grid north into an area presently unsurveyed.

Segment 22b, principally defined by strong anomalies on lines 8+00N and 9+00N, may well extend further to the grid south.

Zone 23 is located in the grid northeast corner. The zone consists of rather weak, unimpressive responses detected on lines 17+00N through 19+00N. The conductive feature appears to follow an old road along which a cable is noted, suggesting that the responses may be due to cultural contamination.

Zones 20 through 22 of the preceding zones define a group, or system of conductors, which are generally parallel. Their nearly grid north-south trend is slightly oblique to the grid northnorthwest trends of Zones 17, 18 and 19. This suggests, as noted previously, the possibility of a fault or some other discontinuity between the lithologies hosting the two sets of conductive sources.

5.5.4 Induced Polarization/Resistivity Survey Results

The IP/resistivity survey conducted on 5 lines in the centre of the A Grid disclosed a number of interesting chargeability highs and resistivity lows.

The data are displayed in standard pseudosection format, representing the values taken at increasing n separations (Plates A-10a through A-10e). The N=1 resistivity and chargeability data have also been plotted and contoured in plan (Plates A-8, A-9).

As seen in Plate A-9 and in the individual pseudosections, the chargeability data have delineated 5 significant polarizable horizons, designated Zones A through E. These are dominantly linear, strike generally grid north-northwest and range in amplitude from moderate to very strong. Several of these zones are accompanied by moderate to distinctly lower resistivities, as indicated on both the plan and pseudosections.

The resistivity data disclosed 7 significant resistivity lows, designated 'a' through 'f'. Like the chargeability features, these are dominantly narrow, linear in aspect and trend grid north-northwest (west-northwest true). Intrinsic resistivities are generally in the range of 200 to 500 ohm metres, as shown in Plate A-8.

As seen in Plate A-8, as well as in the pseudosections, resistivity lows 'a', 'b' and 'c' have associated chargeability highs.

It is also worth noting that resistivity low 'cc', a narrow zone at an estimated depth of 10 to 25 m, located to the grid west of zone 'c', may simply represent its down-dip continuation.

As seen on the compilation map A-ll, there is generally good correlation between the resistivity lows outlined by the IP survey and the conductors detected by the larger scale VLF-EM survey.

VLF-EM Zone 18 corresponds precisely with resistivity low 'a', Zone 19 with Zone 'b', and Zone 12 with Zone 'e'. A somewhat

poorer correlation exists between resistivity low 'c' and VLF-EM Zone 11 which may indicate the presence of narrow, subsidiary resistivity features that are resolved less well by the resistivity survey than by the VLF-EM survey. In a number of instances the VLF-EM survey has detected the edge of a wider conductive feature.

The 5 principal chargeability zones are discussed in greater detail below.

Zone A is partially indicated at the eastern extremity of line 3+00N near 7+85E.

The anomaly is tentatively inferred to be quite strong and effectively at surface, although its full characteristics cannot be determined due to the limited survey coverage. It is apparently accompanied by a significant resistivity low ('a') and corresponds to a strong VLF-EM conductor (Zone 18).

Zone B is defined in the present survey by very strong chargeability anomalies on lines 3+00N and 4+00N near 6+50E. The individual anomalies are shallow or effectively at surface and are accompanied by distinct resistivity lows. This low ('b') also corresponds to VLF-EM conductive Zone 19.

Based on the present geologic mapping and prospecting, a zone of graphitic argillite may account for the geophysical response seen at this location.

Zone C, the most extensively defined and persistent chargeability feature detected in the present survey, extends from line 1+00N near 4+00E grid north-northwestward to line 5+00N near 3+20E. The zone likely continues further to the grid south and north beyond the limits of the present IP survey coverage.

The individual chargeability anomalies constituting Zone C are generally moderate in amplitude, narrow, and at the surface. Lower resistivities accompany the chargeability 'highs' on lines 2+00N through 4+00N. Elsewhere the chargeability features are apparently accompanied by higher resistivities suggesting a lower content of pyrite and/or graphite.

Zone C correlates in part with resistivity low 'c', although the locus of the lowest resistivities apparently lies approximately 30 m to the grid east.

The chargeability zone displays a similarly less than exact correlation with VLF-EM conductive Zone 11. It is suspected that some of this variability is due to the lesser resolution of the IP resistivity measurement as well as the uncertainties in interpreting VLF anomalies.

Zone CC flanks Zone C to the grid west. It consists of moderate to moderately strong chargeability responses detected on lines 3+00N and 4+00N near 2+40E. The zone appears to be at a depth of 35 to 40 m and is generally accompanied by high resistivities.

Zone CC may be a down dip extension of Zone C to the west or it may reflect a separate, unrelated chargeability source.

Resistivity low 'd' is close to or coincident with chargeability Zone CC. The resistivity feature reflects a very shallow source overlying the source of the chargeability anomaly and the two features may be unrelated.

Zone D is, in the present survey, solely indicated on line 5+00N near 2+00E as a moderate response at an estimated depth of 30 m. The zone may continue further to the north into the portion of

46

Grid A not covered by the present survey. High resistivities apparently accompany the anomalous chargeabilities.

Zone D is spacially close to resistivity low 'd'. The resistivity feature is, however, at surface (overburden?) and is probably unrelated to the deeper chargeability source.

Chargeability **Zone E** extends from line 3+00N near 0+60E to line 5+00N (old) near 0+70E. The anomaly amplitudes range from weak to moderate and accompanying resistivities are generally high.

The anomaly characteristics are best discerned on line 5+00N. The anomaly is only indicated at the western extremity of the survey coverage, while on line 3+00N the anomaly response is notably weaker suggesting a grid southern limit to the zone near this line.

Zone E is not directly related to any resistivity low. The resistivity low designated 'e' lies approximately 50 m to the east and is unrelated to the chargeability feature.

Those resistivity features which are persistent and appear to be related to a bedrock source but which are unaccompanied by any chargeability response may well reflect shears or fault zones which are lacking in any secondary sulphides. Resistivity low 'e' may be related to such a source. Zone 'e' is correlative to VLF-EM anomaly 12 (section 5.5.3) which appears to crosscut stratigraphy.

A correlation of geophysical and other surveys follows in section 5.7.

5.6 DIAMOND DRILLING

5.6.1 Drilling Objectives and Summary

The drilling program on the Chem property was designed to test two strong magnetic sources on lines 3+00N and 5+00N (old A Grid) (Plate A-5), an 'iron formation' horizon with anomalous Au values and an induced polarization chargeability anomaly on line 5+00N (Plates A-9, A-10e).

A total of 213 m of diamond drilling was completed in 2 holes.

Hole CH 87-1 intersected 23 m of ferruginous, magnetic chert with elevated Au values. Hole CH 87-1 intersected diabase and feldspar porphyry dykes, cherty sediments and argillite.

Drill logs are included in Appendix V and drill sections are shown on Plates 12a and 12b.

5.6.2 Lithologies and Mineralization in Drill Holes

HOLE CH 87-1

Hole CH 87-1 (Plate 12a) intersected cherty siltstone, ferruginous chert and minor amounts of feldspar porphyry dyke and sandstone.

The hole followed a strong fault zone to a depth of approximately 48 m. Cherty siltstone is sheared subparallel to the core axis and hosts a few narrow quartz stringers.

Sporadic anomalous Au values up to 100 ppb in the cherty siltstone appear to be related to fracture filling pyrite. Except for this minor pyrite mineralization the zone is barren.

A ferruginous chert or 'iron formation' horizon was intersected between 75 and 98 m (approximately 10 m true width). This material is translucent bluish-grey (sporadically jasper colored), massive and extremely hard. It is weakly to moderately magnetic and contains an average of 5% very fine-grained disseminated and fracture filling pyrite. The gold content of this horizon is consistently elevated, with values ranging from 20 to 130 ppb. Ag values are generally elevated in the zone, and a few intervals have anomalous amounts of Cu and As. (Note: Two samples with Au values of 600 ppb and 1130 ppb (samples 15151, 15152) were reanalysed and re-sampled. (Re-analysis values are 110 and 80, and re-sample values are 130 and 100 ppb Au respectively).

HOLE CH 87-2

Hole CH 87-2 was drilled to test magnetic and IP anomalies on line 5+00N (old grid) (Plate A-12b).

Diabase and feldspar porphyry were intersected to a depth of 35 m. Diabase appears to have intruded along both selvages of a feldspar porphyry dyke.

Cherty fine-grained sediments were intersected between 35 m and 69 m. This material is well-bedded at 30-40° to the core axis suggesting a possible true dip of 80° to the southwest. No significant mineralization was intersected in these cherty sediments.

Argillite was intersected from 69 m to 105 m (end of hole). This material is dark grey to black, well-bedded, and contains 1-2%

pyrite or marcasite as radiating crystalline films on fracture surfaces. The argillite appears to correspond to an induced polarization chargeability high outlined on line 5+00N at 3+00E to 3+25E (IP grid).

One anomalous gold value was obtained from a 0.5 m light green silicified zone in the argillite. The zone contains 2-3% pyrrhotite and 400 ppb Au (sample 15175).

No reason was found for the magnetic anomaly at 5+00N, 6+50W (old grid). A magnetic horizon at this location with a gentle to moderate dip to the southwest could have been truncated by the diabase and feldspar porphyry dykes.

5.7 CORRELATION OF GEOPHYSICS, GEOCHEMISTRY AND GEOLOGY OF THE A GRID: A SUMMARY

A compilation of geology, mineralization, geochemical anomalies and geophysical features on the A Grid is shown on Plate A-11.

The A Grid is underlain predominantly by sedimentary rocks of the Cameron River Formation. These sediments can be roughly divided in this area into three assemblages based on dominant lithologies. From northeast to southwest these are:

- 1) Slate and cherty argillite
- Chert and cherty siltstone with minor argillite and 'iron formation'
- 3) Siltstone and sandstone.

These assemblages correspond roughly to magnetic Domains I, II, and III. Domain II is a zone with abundant linear, weak to

moderately strong magnetic sources which are probably magnetic chert and 'iron formation' units. Domains I and III are zones of low magnetic relief.

An apparent offset of a strong magnetic feature between 3+00N and 4+00N at 2+50E may be fault related. The distortion may also be related to a small kink fold.

The VLF-EM survey has defined many conductive zones, the strongest of which are generally correlative with argillite or slate units. Geological Assemblage 1, composed predominantly of slate, is particularly well defined by a series of closely spaced conductors.

The VLF-EM survey has also outlined a few potential fault zones. Anomaly 12 appears to crosscut stratigraphy and may be fault related. Several conductors outlined in geological Assemblage 1 terminate along a linear trend and a fault or possibly an unconformity is suspected.

The IP/resistivity survey has outlined conductive and nonconductive zones of polarizable mineralization. The more conductive anomalies appear to correspond to units of graphitic argillite. Sources for the non-conductive polarizable responses (Zones D and E) remain undetermined, but could be disseminated sulphides.

A distortion of IP anomaly C between 3+00N and 4+00N may be related to faulting or kink folding.

Drilling tested magnetic and chargeability features in the vicinity of lines 3+00N to 5+00N near 2+50E. The drilling indicates that the magnetic anomalies may be related to a magnetite, pyrite-bearing chert, or iron formation unit and the

IP/resistivity anomalies to a graphitic argillite unit. The iron formation horizon was not defined by the IP survey. This may be because the unit is too narrow to be resolved by an IP survey with a 25 m dipole separation.

The soil geochemistry survey outlined a few small, sporadic and generally weakly anomalous zones. With few exceptions, these anomalies cannot be correlated with any specific lithological, structural or geophysical feature. A 2.0 ppm Ag anomaly at 14+00N, 5+00E, however, correlates with a geophysically indicated fault zone. This may be significant because the fault trends into an area uphill from a Au bearing boulder (sample 356).

A coincident weak Au and Ag anomaly at 12+00N, 2+25E is underlain by a strong VLF-EM conductor (16) thought to be outlining an argillite unit. No reason for the geochemical anomaly is known.

The most significant Au-in-soil anomaly in the area is located at 14+00N, 1+00E. Detailed sampling in the area indicates that the anomaly is very limited in extent. Brecciated, hematitic, siliceous siltstone float from the soil sample site contains 1200 ppb Au (sample 14843). This material may have come from a cherty siltstone-feldspar porphyry dyke contact zone which lies a few metres uphill from the mineralized boulder. The area has no anomalous geophysical features.

The biogeochemical survey outlined several Au and As anomalies, the strongest of which lies directly uphill from a Au bearing boulder (sample 356). This anomaly is coincident with a strong VLF-EM and IP resistivity indicated conductor (19 and B respectively) and is near to a geophysically indicated fault zone. It is also possible that a northwest-trending fault zone, intersected in CH 87-1 and apparently responsible for the offset of magnetic horizons, trends into this area. The multiple

coincident anomalies in a possible fault zone make this an interesting exploration target.

6.0 CONCLUSIONS

6.1 CONCLUSIONS, A GRID

The best mineralization discovered on the A grid to date is a pyrite, magnetite and Au-bearing (4.80 g/t or 1.40 oz/T - sample 356) boulder of siliceous material located on B6A road at 3+25N. Geological, geophysical and geochemical surveys were conducted on the grid in an attempt to locate the source of this mineralization. To date, this source has not been found.

The rock appears to be a sheared magnetic cherty sediment and several potential sources have been identified.

The most likely source for the mineralization is a fault zone crosscutting magnetic cherty siltstone or chert in magnetic Domain II.

Such an environment was tested in diamond drill hole CH 87-1 and although a ferruginous chert horizon contained elevated Au values, the mineralization was dissimilar to that seen in the boulder. Mineralogy may, however, change along strike or adjacent to a different structural break.

The ferruginous chert or 'iron formation' horizon appears to have a magnetic signature which can be followed for approximately 800 m. It is exposed in only two outcrops 700 m apart (possibly 2 different horizons) and has been tested with only one drill hole. It contains elevated Au values in two of the three sample locations, and it remains a high priority exploration target.

Cherty beds occur throughout the section and it is possible that

the boulder's source is outside of the main cherty horizon; perhaps even within the argillites in the vicinity of the boulder (geological Assemblage 1). A lack of magnetic sources in this area does not lend support to this theory, but if the magnetite is restricted to relatively narrow fault zones, it would not necessarily be detected by a magnetic survey.

One such interesting exploration target lies between lines 3+00N and 4+00N at 6+50E, 200 m uphill from the mineralized boulder (sample 356). It is underlain by a fault and has coincident biogeochemical and conductive anomalies.

Several other coincident Au and As biogeochemical anomalies occur downhill from cherty magnetic rocks of magnetic Domain II. These are also viable exploration targets.

A note of interest about the mineralized boulder (sample 356) is its relatively high vanadium content (581 ppm). Elevated vanadium values in magnetite bearing pyritic rocks have been observed in and adjacent to gabbroic intrusives elsewhere on the property. It is possible that the boulder comes from a mineralized zone along a gabbro-cherty sediment contact. No gabbro is seen in the vicinity of the boulder but a gabbroic dyke with high vanadium (samples 811 and 1625) exposed 2 km to the grid northwest appears to trend into the area.

Several pieces of rhodonite float occur near the ridge top (3+00N, 11+00W) in a zone underlain by chert and cherty siltstone. There is potential for a rhodonite deposit in this area.

6.2 CONCLUSIONS, B GRID

Mapping on the B Grid is rather limited in extent but the area observed in the northwest corner is underlain by coarse-grained clastic and cherty sediments of the Cameron River Formation which have been intruded by a gabbroic dyke and several small rhyolite dykes. These dykes are possibly Triassic and Jurassic in age respectively.

A few, small east-west trending pyritic shears near the gabbroic intrusive contain anomalous Au values up to 1260 ppb (0.041 oz/T or 1.41 g/t). Gold mineralization is found on the flanks of gabbroic dykes on the nearby Cow and Mike properties. There is fair potential for more gold mineralization on the B Grid peripheral to the gabbro dyke.

The soil geochemistry survey in the vicinity of a rhodonite showing in the northwest part of the grid has outlined numerous strong, linear, coincident Mn, As, Pb and Zn anomalies. Several rhodonite beds may occur in the area.

Au-in-soil anomalies from Phase I of the exploration program on the B Grid have not been investigated, and the potential for mineralization in these areas is yet to be assessed.

7.0 RECOMMENDATIONS

Phases I, II and III of the exploration program on the Chem property have identified several zones of anomalous Au mineralization in a variety of geological settings, both on the A and B Grids. At least two showings of rhodonite occur on the B Grid and some potential exists for similar deposits to occur on the A Grid. More work is warranted in order to better define these mineralized structures or horizons and to isolate within them zones of enrichment with some economic potential.

7.1 RECOMMENDED WORK PLAN

7.1.1 Recommended Work Plan, A Grid

- a) More detailed mapping is needed on the A Grid to confirm the present interpretation of the stratigraphy. Mapping would be focused on the area outlined by magnetic Domain II with specific attention paid to areas around and uphill from mineralized float, and in areas of geophysical and/or biogeochemical anomalies. A second area requiring detailed mapping is in the vicinity of 3+00N, 11+00W where several pieces of rhodonite float have been found.
- b) The source for the Au bearing float at 14+00N, 1+00E has not been found, but soil geochemistry data defines a very restricted anomalous zone. Trenching in this area may help to locate the source of the mineralization and to define its nature.

- c) A jasper bearing, pyritic, magnetic chert unit ('iron formation') intersected in drill hole CH 87-1 has consistently elevated gold values (20-130 ppb). This horizon could be the source for the Au bearing boulder (sample 356) found on B6A road and it deserves further investigation. Several drill holes between 1+00S and 6+00N would be required to adequately test the horizon. A detailed magnetic survey in this area would assist in picking drill targets.
- d) An area 150 m uphill from the Au bearing boulder (sample 356) has a Au biogeochemical anomaly over a probable fault zone adjacent to a strong geophysically indicated conductor (VLF-EM survey-conductor 19, IP/resistivity survey - chargeability Zone B). This zone deserves a diamond drill hole.

Drilling recommended in sections 'c' and 'd' above would total approximately 750 m (2500') in 7 holes.

7.1.2 Recommended Work Plan, B Grid

- a) Metal-in-soil anomaly areas outlined in phase I of the exploration program on the B Grid should be mapped. If any encouragement is found, the density of soil sample coverage should be increased.
- b) Mapping along the flanks of the gabbro in the northwest part of the grid is warranted because of the association between gabbroic rocks and Au mineralization seen on adjacent properties.

c) The rhodonite showings in the northwest corner should be mapped in order to assess their economic potential. Soil geochemical anomalies on this part of the grid suggest that there are several rhodonite bearing horizons in the area. Mapping is required to confirm this.

7.2 PROPOSED PHASE IV BUDGET

FIELDWORK

Personnel	No.	Days	Rate	Cost	
Geologist	1	35	375	13,125	
Geologist	1	· 35	250	8,750	
Geophysical Tech	. 1	5	200	1,000	
Core Cutter	1	25	150	3, 750	
Total Pe	ersonnel	Cost		26,625	26,625
Equipment Rental	No.	Days	Rate	Cost	
4WD Truck	1	35	110	3,850	
4WD TRUCK	1	5	110	550	
Rock Saw	1	28	15	420	
Magnetometer	1	5	75	375	
Pajari	1	25	15	375	
Total Ec	quipment	Rental	Cost	5,570	5,570

Accommodation

100 Persondays @ 55

5,500

Disbursements

•

	Rate	Cost		
Drilling:				
750 m	80.00	60,000		
Analyses:				
350 Rock and Core	12.75	4,463		
(Au, ICP)				
20 Au Assay	6.00	120		
20 Mn Assay	8.50	178		
Thin Sections, 5 @	60.00	300		
Miscellaneous		1,000		
Disbursement Subto	tal	66,053		
Administration (15	ዩ)	9,908		
Total Disbursement	s Cost	75,961	75 , 961	
Fieldwork Subtotal			113,656	
Contingency (15%)			17,048	
Total Fieldwork Co	sts		130,704	\$130,704

CONSULTING

Personnel	No.	Days	Rate	Cost	
Geological					
Consultant	1	10	500	5,000	
Geophysical					
Consultant	1	2	500	1,000	
Total Personne	el Cos	t		6,000	6,000
Equipment Rental					
4WD Truck	1	10	110		1,100
Accommodation					
10 Persondays @ 4	5				450

Disbursements			
Miscellaneous	500		
Administration (15%)	75		
Total Disbursements Cost	575	575	
Consulting Subtotal		7,825	
Contingency (15%)		1,174	
Total Consulting Cost		8,999	\$ 8,999

REPORT

Personnel	No.	Days	Rate	Cost			
Geologist	1	20	350	7,000			
Geologist							
(Office Assistance)	1	2	250	500			
Geologist							
(Proofing)	1	2	375	750			
Total Personne	l Cos	t		8,250	8,250		
	-						
Disbursements							
Drafting Supplies				300			
Drafting				1,700			
Copying, Reproduct	ions			500 ·			
Miscellaneous				500			
Disbursements	Subto	tal		3,000			
Administration	(15%)		450			
Total Disburse	ments	Costs		3,450	3,450		
Report Subtota	1				11,700		
Contingency (1	5%)				1,755		
Total Report C	ost				13,455	\$ 13,455	
						<u></u>	

Estimated Total Project Cost

\$153,158

7.3 PROPOSED PHASE IV WORK SCHEDULE

.

	WEEK							
	1	2	3	4	5	6	7	8
GEOLOGIST					· · · · · · · · · · · · · · · · · · ·			
- Mapping								
- Drill Program								
- Report					<u></u>			
GEOLOGIST								
- Mapping								
- Drill Program								
MAGNETIC SURVEY								
SAMPLE ANALYSES							_ _	
DIAMOND DRILLING						*		
CONSULTING								

7.4 SUMMARY OF RECOMMENDATIONS

On the basis of the encouraging results from Phases I, II and III of the exploration program it is recommended that exploration work continue with Phase IV.

The Phase IV program on the A Grid would consist of geological mapping in specific areas, a limited magnetic survey, trenching and diamond drilling. A total of 750 m (2500') of drilling is needed to adequately test the outlined targets.

Continued exploration on and peripheral to the B Grid would consist of geological mapping in showing and anomaly areas.

The estimated cost of this program is \$155,000.

Respectfully submitted

MPH CONSULTING LIMITED

Gordon J. Allen

Gordon J. Allen, P.Geol.

Duncan, B.C. February 27, 1987

CERTIFICATE

I, Gordon J. Allen, do hereby certify;

- I am a graduate in geology of the University of British Columbia (B.Sc. 1975).
- I have practised as a geologist in mineral exploration for twelve years.
- 3) I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4) Opinions, conclusions and recommendations contained herein are based on field work performed by myself and other MPH personnel between October 1986 and January, 1987.
- 5) I own no direct, indirect, or contingent interests in the subject property, or shares or securities of International Cherokee Developments Limited or associated companies.

Gordon J. Allen

Gordon J. Allen, P. Geol.

Duncan, B.C. February 27, 1987

REFERENCES

- Brandon, M.T. Orchard, M.J., Parrish, R.R., Sutherland Brown, A., and Yorath, C.J. 1986. Fossil ages and isotopic dates from the Paleozoic Sicker Group and associated intrusive rocks, Vancouver Island, British Columbia; in Current Research, Part A, Geological Survey of Canada, Paper 86-1A, pp683-696.
- Carson, D.J.T. 1968. Metallogenic Study of Vancouver Island with Emphasis on the Relationships of Mineral Deposits to Plutonic Rocks; Ph.D. Thesis, Carleton University.
- Cowley, P. 1979. Correlation of Rhodonite Deposits on Vancouver Island and Saltspring Island, British Columbia; UBC B.Sc. Thesis, April 1979.
- Fyles, J.T. 1949. Geology and Manganese Deposits of the North Shore of Cowichan Lake, Vancouver Island, B.C.; UBC M.A.Sc. Thesis, April 1949.
- Fyles, J.T. 1955. Geology of the Cowichan Lake area, Vancouver Island, British Columbia; BCDM Bull. 37.
- Isachsen, C. 1984. Geology, Geochemistry, and Geochronology of the Westcoast Crystalline Complex and Related Rocks, Vancouver Island, British Columbia; UBC M.Sc. Thesis, September 1984.

- Massey, N. 1987. Geology of the Cowichan Lake Area, NTS 92C/16; Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources, Open File 1987/2.
- Muller, J.E. 1977. Geology of Vancouver Island (West Half); GSC Open File 463.
- Muller, J.E. 1980a. The Paleozoic Sicker Group of Vancouver Island, British Columbia; GSC Paper 79-30.
- Muller, J.E. 1980b. Geology, Victoria Map Area, Vancouver Island and Gulf Islands, British Columbia; GSC Open File 701.
- Muller, J.E. 1981. Insular and Pacific Belts; GAC-MAC-CGU, Annual Meeting, 1981, Calgary. Field Guides to Geology and Mineral Deposits, pp316-334.
- Muller, J.E. 1982. Geology of Nitinat Lake Map Area, British Columbia; GSC Open File 821.
- Muller, J.E. and Carson, D.J.T. 1969. Geology and Mineral Deposits of Alberni Map-Area, British Columbia (92F); GSC Paper 68-50.

- Neale, T. 1984. Compilation of Mineral Occurrences of the Sicker Group, Vancouver Island, British Columbia; for MPH Consulting Limited.
- Neale, T., Hawkins, T.G. and Getsinger, J.S. 1986. Report on Phase I Geology and Soil Geochemistry, Chem Group (Cow 7, 9, 10, 11 Claims); for International Cherokee Developments Ltd., May 21, 1986.
- Walker, R.R. 1983. Ore Deposits at the Myra Falls Minesite; Western Miner, May 1983, pp22-25.

APPENDIX I

LIST OF PERSONNEL AND STATEMENT OF EXPENDITURES

LIST OF PERSONNEL AND

STATEMENT OF EXPENDITURES

The following expenses have been incurred on the Chem property as defined in this report for the purposes of mineral exploration between the dates of September 14, 1986 and February 27, 1987.

PERSONNEL

T. G. 1	Hawkin	s,			
Geolog	ical C	onsultar	nt, P.Geo	01.	
	8	Days	6	475	3,800.00
J. Rot	h,				
Geophy	sical	Consulta	nt, M.A.		
	10	Hours	9	70	700.00
	3	Days	6	450	1,350.00
G. All	en,				
Project	t Mana	ger, P.G	ieol.		
	39.5	Days	6	350	13,825.00
J. Get:	singer	, Geolog	ist, Ph.	D.	
	1	Day	@	350	350.00
	5.25	Hours	6	40	210.00
T. Haye	es, Fi	eld Coor	dinator		
	14	Days	9	250	3,500.00
D. Ame	s, Geo	logist,	B.Sc.		
	7	Days	<u>6</u>	150	1,050.00

G. Royer, G l	eologist Day		150	150.00
T. Neale, G 3	eologist Hours		40	120.00
B. Thomae, 0.5	Geologis Hours		• 35	17.50
H. Eijgel, 0.2	Geologis [.] 5 Hours		• 35	8.75
T. Naciuk, 3	Geologis [.] Days		• 150	450.00
G. Roste, G 8	eologist Days		150	1,200.00
H. MacIsaac 12.5	, Geop. 1 Days		3.Sc. 150	1,875.00
J.P. Slomin 10.5	ski, Sr. Days		Fech. 250	2,625.00
J. Harvey, 1 7	Field Teo Days	ch. Q	150	1,050.00
R. Fenske, 7	Field, Te Days	ech. Q	150	1,050.00
T. Styan, F 7	ield Tecł Days	9. 0	150	1,050.00

H. Chaudet,					
13.5	Days	@	150	2,025.00	
P. Kelly, Fi	eld Tech	1.			
5	Days	0	150	750.00	
D.S. Hawkins	, Field	Tech.			
11	Days	9	150	1,650.00	
M. Wilkinson	, Field	Tech.			
1	Day	0	150	150.00	
T. Wilkinson	, Field	Tech.			
9	Days	0	150	1,350.00	
J. Elliot, F	'ield Tec	ch.			
7	Days	@	150	1,050.00	
T. Auckland,	Field I	lech.			
1	Day	6	150	150.00	
C. Campbell,	Field D)raftsper	son		
28	Hours	0	10	280.00	
L. Woodgate,	Field I	raftsper	son		
9	Hours	0	10	90.00	
A. Wardwell,	Field D	raftsper	son		
31 3/4	Hours	@ 	10	317.50	
Total	Personne	el Costs		42,193.75	\$42,193.75

EQUIPMENT RENTAL

4x4 Truck	69 Days	@ 90	6,210.00	
Rock Saw	12 Days	@ 15	180.00	
Pajari	10 Days	@ 15	150.00	
Magnetometer	9 Days	@ 15	135.00	
VLF-EM	10 Days	@ 25	250.00	
IP Equipment	7 Days	@ 300	2,100.00	
Core Splitter	7 Days	@ 15	105.00	
Total Equipme	ent Rental (Costs	9,130.00	\$ 9,130.00

ACCOMMODATION AND FOOD

173 Persondays @ 40

\$ 6,920.00

DISBURSEMENTS

Analyses

68	Rock	(Au,	ICP)	9	12.75	8	867.00	
81	Core	(Au,	ICP)	9	12.75	1,0	032.75	
828	Soil	(Au,	ICP)	0	10.60	8,	776.80	
4	Silt	(Au,	ICP)	9	11.75		47.00	
4	Rock	(WRA)		9	32.00	-	128.00	
2	Rock	(Assa	y)	9	6.00		12.00	
92	Conifer	Bran	ch	9	17.68	1,6	526.69	
Stat	istical	Analy	sis				85.75	
						12,5	575.99	12,575.99

Drilling Costs

Drilling Contractor		10,103.43	
Cat and Lowbed Charges		5 ,294. 18	
Custom Topographic Map Prep.		4,091.31	
Cleaning Drill Sites		90.00	
Report Preparation Cost			
Drafting Supplies	253.00		
Drafting	1,575.00		
Typing	441.12		
Map Reproduction	985.94		
Copying and Binding Reports	120.00		
	3,374.94	3,374.94	
Site Loss and Inspection Fee (MacMil	lan Bloedel)	575.00	
Site hoss and inspection fee (Machin	ian bioedery	575.00	
Miscellaneous			
(Gas, Phone, Courier, Maps, Suppli	es Etc.)	1,759.68	
Disbursements Subtotal		37,864.53	
Administration (15%)		5,679.68	
Total Disbursements		······································	\$ 43,554.21
Total Cost of Project			\$101,787.96

APPENDIX II

.

ROCK SAMPLE DESCRIPTIONS AND LITHOGEOCHEMICAL RESULTS

.

MINERALS

AB	Albite
AS	
	Arsenopyrite
CB, CARB	Carbonate
CP	Chalcopyrite
CHL	Chlorite
CZ	Clinozoisite
DI	Diopside
EP	Epidote
FSP	Feldspar
GL	Galena
GT	Garnet
HM	Hematite
HB	Hornblende
LEUC	Leucoxene
MT	Magnetite
MC	Malachite
PLAG	Plagioclase
PY	Pyrite
PX	Pyroxene
PO	Pyrrhotite
	Quartz
QZ	
SER	Sericite
SL	Sphalerite
t tory	
LITH	DLOGY
ACCI	Neglements
AGGL	Agglomerate
ARG	Argillite
BAS	Basalt
CARB	Carbonate
CHT	Chert
CONG	Conglomerate
XLT	Crystal Tuff
DIAB	Diabase
DIOR	Diorite
FHP	Feldspar Hornblende
	Porphyry
FBX	Flow Breccia
GABB	Gabbro
HYAL	Hyaloclastite
LMST	Limestone
MAF	Mafic (Basalt,
	Andesite)
QFP	Quartz Feldspar
	Porphyry
SDST	Sandstone
STST	Siltstone
SKN	Skarn
VN, VNLT	Vein, Veinlet
•	
<u>c</u>	OLOUR
DI W	
BLK	Black
BLU	Blue
BRN, BN	Brown
GN	Green
GY	Gray
OL	Olive
RD	Red
WHT	White

TEXTURES AND ALTERATION

ALT'D AMYG'L ANG ANH BDD BX'D, BX'N CHTY CHL'C XLLINE DISS EP'C EUH FG MG CG GRAD HM'C LAM'D MSV MED P PY'C RDD SER'C SIL, SIL'D SUB-ANG SBH TK VES	Altered Amygdaloidal Angular Anhedral Bedded Brecciated, Brecciation Cherty Chloritic Crystalline Disseminated Epidotitic Euhedral Fine Grained Medium Grained Coarse Grained Gradational Hematitic Laminated Massive Medium (Bedded), 2-10 mm Porphyry, Phyric Pyritic Rounded Sericitic Siliceous, Silicified Subangular Subhedral Thick (Bedded), >10 mm
ABDT AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NTWK PHENO QCV QV SHR STG STR, STRLY SX TR W, W, W/	GENERAL Abundant Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear Stringer Strong, Strongly Sulphides Trace With

ROCK SAMPLE DESCRIPTIONS & LITHOGEOCHEMICAL RESULTS

Sample <u>No</u>	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
723	Location: 'A' Grid, between 19+00N and 20+00N on B6 Road, Cow 10 Claim	5	<u>0.4</u>	10	68	<u>320</u> Ba
	Rock Type: Sandstone (Tuff?) Occurrence Type, Size: Large					
	Banded maroon to black or dark grey, very fine-grained sandstone or tuff with traces of pyrite and pyrrhotite.					
724	Location: Old 'A' Grid (4+00N, 11+00E), Cow 10 Claim	5	0.4	5	45	<u>320</u> Ba
	Rock Type: Cherty Sediment (Tuff?) Occurrence Type, Size: Large					
	Banded blue-grey to dark maroon or black sediment with a small percentage of very fine-grained sand sized grains and 2 - 4% disseminated pyrite in a cherty matrix. The rock is cut by hairline quartz stringers.					
811	Location: "A" Grid (22+25N, 3+60W) Cow 11 Claim Rock Type: Gabbro (?) Occurrence Type, Size: Float, probably near source.	<u>190</u>	0.6	5	1520	<u>569V</u>
	Dark green, fine-grained crystalline gabbroic material. Mafic minerals are mostly altered to chlorite. Fine-grained disseminated pyrite approximately 5%. The rock is moderately magnetic. This material is probably from a nearby gabbroic dyke.					

Sample <u>No</u> .	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
812	Location: 'A' Grid (13+40N, 2+25W) Cow 10 Claim Rock Type: Cherty Siltstone Occurrence Type, Size: Outcrop, few metres square. Strongly gossanous buff to bluish-gray siliceous siltstone with 5% fine-grained disseminated pyrite and possibly pyrrhotite.	5	0.2	10	81	
813	Location: 'A' Grid (13+40N, 2+25W) Cow 10 Claim Rock Type: Cherty Siltstone	20	0.2	10	45	
	Occurrence Type, Size: Outcrop, few metres square. Similar to sample 812.					
1305	Location: 'A' Grid Approximately (24+25N, 4+00W), Cow 11 Claim	<u>50</u>	0.6	10	<u>275</u>	
	Rock Type: Quartz Diorite Occurrence Type, Size: Float					
	Equigranular, medium-grained intrusive. Mafics probably originally biotite. 5% dis- seminated and fracture filling Py.					

Sample <u>No</u>	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
1306	Location: 'A' Grid (24+68N, 3+90 W) Cow 11 claim Rock Type: Brecciated Cherty Sediment Occurrence Type, Size: Float	<u>230</u>	0.8	<u>210</u>	200	<u>198</u> Zn
	Mottled light gray to dark blue- grey cherty sediment (tuff ?) with 25-30% Py as a breccia filling.					
1961	Location: 'A' Grid (2+45S, 1+15W), Cow 10 claim Rock Type: Quartz Diorite Occurrence Type, Size: Large	5	0.Ż	< 5	92	
	Medium grained medium grey intrusive with 15-20% quartz, 65% feldspar and 15% chlorite after hornblende and/or biotite.					
1962	Location: Old 'A' Grid (3+94N,11+08W) Cow 10 claim Rock Type: Rhodonite Occurrence Type, Size:	5	<u>io</u> (0.2	5	L28 > <u>9999</u> Mn
	Banded (3-10 mm) pink to greenish brown interbedded rhodonite and cherty sediment with up to 3% disseminated and fracture filling pyrite.					
1963	Location: Old 'A' Grid (3+88N, 10+53W) Cow lO claim Rock Type: Rhodonite Occurrence Type: Size:	·	5 ().2	10 :	199 > <u>9999</u> Mn
	As 1962 Bands (light green-tan) less continuous, 10-20mm long.					

-

Sample						
<u>No</u>	Description	<u>Au</u> ppb	Ag ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
1964	Location: Old 'A' Grid (3+94N, 10+85W), Cow 10 Claim Rock Type: Cherty Tuff (?) Occurrence Type, Size: Bluish-grey slightly hematitic cherty tuff with 3-5% fracture filling pyrite.	10	0.2	< <u>5</u>	<u>316</u>	<u>6011</u> Mn
1965	Location: Old 'A' Grid, (2+59N,11+135W) Cow 10 Claim Rock Type: Gabbro Occurrence Type, Size: Float Dark greenish-grey medium grained gabbro with 1-2% fracture filling pyrite and a trace of chalcopyrite.	<u>50</u>	0.4	< 5	<u>1255</u>	
1966	Location: Old 'A' Grid, (3+94N,11+08W) Cow 10 claim Rock Type: Diabase Occurrence Type, Size: Very fine grained crystalline black intrusive with 3-5% pyrite,5% pyrrhotite and possibly magnetite. The rock is slightly magnetic.	<u>60</u>	<u>0.6</u>	< 5	77	
3413	Location: 'B' Grid, Cow 7 claim Rock Type: Diabase Occurrence Type, Size: Float Very fine grained dark green crystalline dyke with 5 disseminated pyrrhotite.	5	0.2	<5	31	

Sample No	Description	Au ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
3414	Location: 'B' Grid, Cow 7 claim Rock Type: Cherty Siltstone (Tuff?) Occurrence Type, Size: Float	5	0.2	<5	20	
	Very fine grained cherty groundmass with 10% vague rounded grains to 0.5 mm. Could be a tuff.					
3901	Location: 'A' Grid, (15+48N,2+40E) on B6J Road, Cow 10 claim Rock Type: Sandstone with Interbedded Mudstone Occurrence Type, Size: Outcrop, 0.5m	5	< 0.2	5	69	<u>265</u> V 100 Zn
	wide unit. Interbedded medium grained brown sandstone with fine grained black mudstone. Some sandstone fragments in mudstone. Appears barren.					
3902	Location: 'A' Grid, (4+92N,6+02W) on B6J Road, Cow 10 claim Rock Type: Sandstone Breccia Occurrence Type, Size: Outcrop, 5m x 1m	5	< 0.2	< 5	1	•
	Brecciated light grey medium grained sandstone with infilling cherty, hematitic material.					
3903	Location: 'A' Grid, (4+66N,5+63W) on B6J Road, Cow 10 claim Rock Type: Cherty Sandstone Occurrence Type, Size: Outcrop	20	< 0.2	<5	22	
	Dark grey to black very fine grained cherty sandstone with milky quartz stringers. Up to 3% pyrite occurs predominantly along fractures.					

No	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	<u>Other</u> ppm
3904	Location: 'A' Grid, (4+54N,5+63W) on B6J Road, Cow 10 claim Rock Type: Chert Occurrence Type, Size: Float Grey to brown chert with 2% pyrite as irregular lenses up to 1 cm in diameter.	5	∠0. 2	5	12	
3905	Location: 'A' Grid, (19+90N,3+75W), Cow ll claim Rock Type: Sandstone Occurrence Type, Size: Outcrop Medium grained grey-brown sandstone.	5	<0.2	5	83	
3906	Location: 'A' Grid, (17+72N,4+50W), Cow 10 claim Rock Type: Garnet Vein in Sandstone Host Occurrence Type, Size: Float Narrow garnet and diopside bearing vein in sandstone.	5	< 0.2	5	29	
3907	Location: 'A' Grid, (15+71N,4+03W), Cow 10 claim Rock type: Sandstone/Siltstone Occurrence Type, Size: Outcrop Dark grey to black sandstone and inter- bedded siltstone. Beds up to 1 cm thick.	5	< 0.2	- <5	9	·
3908	Location: 'A' Grid, (15+60N,4+04W), Cow 10 claim Rock Type: Siltstone Occurrence Type, Size: Float Dark grey to black siltstone with narrow quartz stringers. Up to 1% phrrhotite	5	<0.2	5	<u>868</u>	

١.

magnetic

78

Sample <u>No</u>	Description	<u>Au</u> ppb	<u>Ag</u> ppm	As ppm	<u>Cu</u> ppm	Other ppm
3909	Location: 'A' Grid, (7+12N,3+26W), Cow 10 claim Rock Type: Quartz Diorite Occurrence Type, Size: Outcrop, 2x3 m Highly fractured gossanous quartz diorite dyke (?) with 2% amphibole.	5	< 0.2	∠ 5	7	
3910	Location: Old 'A' Grid (1+54N,12+00W), Cow 10 claim Rock Type: Siltstone Occurrence Type, Size: Outcrop Dark grey to black siltstone with <1% disseminated pyrite.	5	< 0.2	⁻ 5	95	
3911	Location: Old 'A' Grid,(1+23N,11+90W), Cow 10 claim Rock Type: Feldspar Porphyry, Occurrence Type, Size: Outcrop, 0.5 m wide dyke. Fractured feldspar porphyry dyke with 20% 2 mm feldspar phenocrysts in a fine grained matrix.	5	< 0.2	< 5	30	• • •
3912	Location: Old 'A' Grid, (O+36N,9+10W) on B6A8 Road, Cow 10 claim Rock Type: Argillite Occurrence Type, Size: Float Dark gray fractured, limonitic argillite float near source.	5	< 0.2	5	78	<u>2327 Mn</u>

Sample No	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
3913	Location: Old 'A' Grid, (2+95N, 11+13W), Cow 10 claim Rock Type: Cherty Sediment (Tuff?) Occurrence Type, Size: Float Medium bluish-grey cherty sediment (tuff?) with 10% vague, rounded very fine-grained sand particles.	5	0.2	5	95	
3914	Location: Airstrip, 'A' Grid, (baseline, between 4+00S and 9+00S), Cow 9 claim Rock Type: Siltstone/Sandstone Occurrence Type, Size: Float Dark greyish-green to black siltstone to sandstone with 1% @ Py and Po. Sulphides associated with amphibole veinlet.	5	0.2	5	<u>616</u>	
3915	Location: Old 'A' Grid, (O+10S, 6+40W), Cow 10 claim Rock Type: Chert Breccia Occurrence Type, Size: Outcrop, 1 m Shear Zone Brecciated maroon to white cherty sediment flooded with 40% white quartz. Appears to be barren, but fractures are rusty.	5	0.2	5	33	
3916	Location: Old 'A' Grid, (O+10S, 6+35W), Cow 10 claim Rock Type: Siltstone and Gouge Occurrence Type, Size: Outcrop Dark greenish-grey sheared siltstone and clay gouge. Minor quartz veining in siltstone.	5	0.2	<u>45</u>	68	<u>230 Ba</u> 2274 Mn

Sample No	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm	
3917	Location: Old 'A' Grid, (O+OON,6+19W), Cow 10 claim Rock Type: Cherty Siltstone and Gouge Occurrence Type, Size: Outcrop, 3m x 40m (+) Sheared cherty siltstone and gouge with up to 1% Py.	5	< 0.2	5	45	<u>300 Ba</u>	
4651	Location: 'B' Grid on M1 Road, (22+00N,7+30W), not on claim block Rock Type: Diorite to Gabbro Occurrence Type, Size: Outcrop Medium grained hornblende gabbro (diorite?) with < 1% fine grained disseminated and fracture related pyrite. Colour index approximately 40. Weakly magnetic.	5	< 0.2	<5	38		
4652	Location: 'B' Grid on M1 Road (18+40N, 2+75W), Cow 7 claim Rock Type: Rhyolite Occurrence Typė, Size: Outcrop, 3-4 m wide dyke 3-4 m wide rhyolite dyke (150/90). Very fine grained light greenish grey crystalline groundmass with ≤ 5% rounded quartz phenocrysts up to 1 mm. 2-3% medium grained ≤ 1 mm cubic, disseminated pyrite.	5	< 0.2	< 5	28	· .	
4653	Location: 'B' Grid, on M1 Road, Cow 7 claim Rock Type: Rhyolite Occurrence Type, Size: Outcrop Same as 4652	5	< 0.2	< 5	4		

Sample <u>No</u>	Description	<u>A</u> pi	<u>u</u> pb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
4654	Location: 'B' Grid, on M1 Road, Cow 7 claim Rock Type: Rhyolite? Cherty Tuff? Occurrence Type, Size: Outcrop Very fine-grained, siliceous (cherty), light blue green groundmass. 5% vague rounded quartz phenocrysts (crystal fragments?) to 1 mm. Rock has a weakly banded texture (bedding?, flow banding?, alteration?)		5	0.2	5	9	
4655	Location: 'B' Grid, on M1 Road, Cow 7 claim Rock Type: Cherty Tuff (?) Occurrence Type, Size: Outcrop, 0.5 m weak fracture zone Light greenish-grey to medium bluish-grey cherty tuff (?). 0.5 m zone of limonitic fractures healed with hairline quartz stringers with 1-2% chalcopyrite.		5	0.2	5	<u>626</u>	
4656	Location: 'B' Grid, (15+00N, 5+75W), Cow 7 claim Rock Type: Sedimentary Breccia Occurrence Type, Size: Float Dark grey subrounded cherty (tuff?) fragments to 1 cm in a dark grey siliceous groundmass. 2-3% Py along hairline fractures.		5	0.2	5	67	
4657	Location: 'B' Grid, (15+00N, 6+00W), Cow 7 claim Rock Type: Cherty Tuff Occurrence Type, Size: Float Dark grey to black cherty tuff cut by vuggy quartz stringers (30%) up to 1 cm. Quartz stringers contain 1% dark brownish- black metallic mineral.		5	0.2	10	17	

Sample No	Description	<u>Au</u> ppb	Ag ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
4672	Location: 'A' Grid, (7+50S, 1+50E), Cow 10 claim Rock Type: Tuff (?) Occurrence Type, Size: Float Dark greenish-grey chloritic groundmass with vague rounded clasts of fine-grained material (sediment?) to 5 mm, average 3 mm. Could be a conglomerate or lapilli tuff. Rock contains approximately 5% disseminated pyrite.	5	0.2	5	<u>318</u>	
4673	Location: 'A' Grid, (1+50S, 5+00E) on B6A Road, Cow 10 claim Rock Type: Jasper-bearing Chert Breccia Occurrence Type, Size: Outcrop A dark greenish-grey silicified fine- grained chloritic groundmass makes up approximately 25% of the rock. The groundmass may be a fine-grained clastic which contains subrounded to subangular, dark red to purplish-grey cherty jasper fragments to 2 cm. Approximately 1%, fine to medium-grained Py occurs in groundmass and jasper fragments. Moderately magnetic.	5	0.2	5	16	
4674	Location: New 'A' Grid, (0+58S, 4+00E), Cow 10 claim Rock Type: Chert, Jasper Occurrence Type, Size: Float, 20 cm x 40 cm x ?. Subangular boulder Mottled, transluscent light grey to dark bluish-grey to dark hematitic red coloured cryptocrystalline quartz. The dark grey colour is likely due to fine-grained disseminated hematite and magnetite. -1% Py in cubes to 1 mm. The rock is moderately magnetic.	5	0.2	5	33	

Sample No	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
4675	Location: Old 'A' Grid, (2+35N, 1+95W), on B6 All Road, Cow 10 claim Rock Type: Argillite Occurrence Type, Size: Float Dark blue grey, very fine-grained argillite, well foliated parallel to bedding. 5% Py in very thin films on foliation surfaces.	5	0.2	5	70	
4676	Location: 'A' Grid (B.L., 3+25S), Cow 10 claim Rock Type: Chert Breccia Occurrence Type, Size: Abundant, Angular Float Composite sample of gossanous dark blue grey cherty float. Some pieces have distinct subangular to subrounded chert clasts to 1 cm in a cherty groundmass.	5	0.2	5	189	
4677	Location: 'A' Grid, (2+40S, B.L.0+00), Cow 10 claim Rock Type: Cherty Siltstone Occurrence Type, Size: Abundant, Angular Float Dark greenish-grey to brownish-grey cherty material (vaguely clastic) with 10% very fine-grained crystals of pale green mica? (sericite?); probably porphyroblasts. 3-4% very fine-grained disseminated Po. Weakly magnetic.	<u>40</u>	0.2	5	76	

Sample No	Description	<u>Au</u> ppb	Ag ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
4678	Location: 'A' Grid, (1+75S,B.L.0+00) on B6K Road, Cow 10 claim Rock Type: Cherty Breccia (Lapilli?) Occurrence Type, Size: Abundant Float Dark Grey to pinkish-brown cherty ground- mass with 5 - 15% chloritic masses and ~5% disseminated fine grained Py. Trace Po. Dark brown rounded cherty clasts to 2 cm with vague porphyritic texture. Could be lapilli.	5	<0.2	<5	<u>305</u>	
4679	Location: New 'A' Grid, (B.L.,2+20N), on B6K Road, Cow 10 claim Rock Type: Siliceous Siltstone Occurrence Type, Size: Outcrop. Dark greenish-grey fine grained siliceous siltstone to fine grained sandstone. Some vague sand sized particles in a very fine grained siliceous groundmass with 2-3% fine grained disseminated Py.	5	<0.2	< 5	137	<u>290</u> Ba
4680	Location: 'A' Grid, (9+09N,0+10W), on B6K Road, Cow 10 claim Rock Type: Tuff Occurrence Type, Size: Outcrop Dark greenish grey chloritic siliceous groundmass with ~ 20% vague, light coloured subrounded feldspar crystal fragments to 0.5 mm. Vague dark clasts may be lithic fragments. Up to 5% disseminated Po and minor fracture filling pyrite.	<u>40</u>	<0.2	<5	128	<u>540</u> Ba

Sample No	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
4681	Location: 'A' Grid, (B.L.,10+75N), on B6K Road, Cow 10 claim Rock Type: Lapillistone Occurrence Type, Size: Float	5	< 0.2	< 5	<u>283</u>	<u>260</u> Ba
	Dark bluish grey very fine grained siliceous groundmass containing ~50%(+) porphyritic lithic fragments with poorly defined clast boundaries. Some feldspar crystal fragments in groundmass. 3-4% fine grained disseminated and fracture filling pyrite.					
4682	Location: 'A' Grid, (11+40N,0+05W), on B6K Road, Cow 10 claim Rock Type: Chert Breccia Occurrence Type, Size: Outcrop Light grey cherty groundmass containing	5	0.2	5	59	
	2-3% disseminated pyrite and subangular to subrounded chert fragments to 0.5 cm (~50% of rock).					
4683	Location: 'A' Grid, (11+83N,0+10S) on B6K Road, Cow 10 claim Rock Type: Siliceous Siltstone to Argillite Occurrence Type, Size: Float 1m	5	0.2	10	73	
	Transitional rock between siliceous siltstone and argillite. Bedding and foliation at∽30 to each other.					

·

Sample <u>No</u>	Description	<u>Au</u> ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	<u>Other</u> ppm
4684	Location: 'A' Grid, (13+25N,B.L.) on B6K Road, Cow 10 claim Rock Type: Fault Gouge Occurrence Type, Size: Outcrop, 20 cm wide fault zone. Chip sample across a 20cm limonitic shear zone hosted in greenish grey siliceous siltstone. Shear at 104/90. Shear contains lenses of barren quartz up to 10 cm x 50 cm x ?. Shear developed along a feldspar porphyry dyke contact.	5	<0.2	5	199	280 Ba 9010 Mn 162 Zn
4685	Location: 'A' Grid, (22+30N,3+45W), Cow 11 claim Rock Type: Siltstone Occurrence Type, Size: Outcrop, 1 cm shear in several metre outcrop. Very fine grained moderately soft dark brown siltstone with trace disseminated Py. Rock cut by 1 cm gossanous shear with 10% Py.	5	0.2	5	133	<u>400</u> Ba
4686	Location: 'A' Grid, (22+20N,3+50W), Cow 11 claim Rock Type: Diabase Occurrence Type, Size: Outcrop, Less than 1 m exposed. Dark green soft to moderately siliceous, fine grained chloritic, altered diabase. Taken across road from sample 811 with high vanadium. 10% very fine grained black metallic; probably ilmenite. Non-magnetic.	<u>100</u>	< 0.2	5	190	<u>354</u> V

Sample No	Description	<u>Au</u> ppb	<u>Ag</u> ppm	As ppm	<u>Cu</u> ppm	Other ppm
4687	Location: 'A' Grid, (21+87N,3+85W), Cow 11 claim Rock Type: Siliceous Siltstone Occurrence Type, Size: Outcrop.	5	< 0.2	< 5	92	
	Siliceous siltstone to argillite. Weakly brecciated with carbonate filling and a trace of pyrrhotite.					
4688	Location: 'A' Grid, (23+75N,B.L.), on B6 Road, Cow 11 claim Rock Type: Conglomerate (Lapilli?) Occurrence Type, Size: Outcrop.	5	<0.2	< 5	147	610 Ba
	Dark greenish grey to brownish grey fine grained crystalline chloritic siliceous groundmass with 3-5% fine grained disseminated Py. Dark brown rounded clasts to 1 cm are very fine grained and could be siltstone or volcanic (Lapilli?).					
4689	Location: 'A' Grid, (21+70N,4+02W), Cow 11 claim Rock Type: Diabase, Gabbro Occurrence Type, Size: Outcrop. Several metre wide dyke.	5	< 0.2	< 5	76	
	Fine grained equigranular intrusive with CI 25. Mafics altered to chlorite. Sample taken ~12 m from 1306 to see if elevated gold and vanadium values are related to basic dykes.					
4690	Location: 'A' Grid, (21+70N,4+02W), Cow 11 claim Rock Type: Diorite (?) Gabbro (?) Occurrence Type, Size: Float Probably from large dyke 30 m x 100's m.	5	< 0.2	<5	149	

Dark green equigranular medium grained diorite or gabbro cut by quartz stringers

٤

Ľ,

Sample <u>No</u>	Description	Au ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	<u>Other</u> ppm
4691	Location: 'A' Grid, (24+25N,4+37W), Cow 11 claim Rock Type: Foliated Diorite (?) Gabbro (?) Occurrence Type, Size: Outcrop Dark green foliated gabbroic dyke similar to sample 0811. Rock appears to be mostly chlorite, with < 1% Py streaked out parallel to foliation.	20	< 0.2	10	158	
4692	Location: 'A' Grid, (14+48N,1+95W), Cow 10 claim Rock Type: Siliceous Siltstone Occurrence Type, Size: Outcrop, 10cm bed Medium grey silicious siltstone with 2% disseminated pyrite.	5	≺0. 2	5	98	
4693	Location: 'A' Grid, (13+55N, 2+08W), Cow 10 claim Rock Type: Cherty Siltstone Occurrence Type, Size: Float Thinly laminated blue-gray cherty sediment (tuff?) with 3-5% Py disseminated along ≤ 1mm dark bands.	5	<0.2	< 5	92	
4694	Location: New 'A' Grid, (0+15S, 2+90E), Cow 10 claim Rock Type: Sandstone (Tuff?) Occurrence Type, Size: Float, 20cm diameter boulder Very fine grained, cherty, greyish-brown groundmass with vague light colored grains to 1mm. Could be a siliceous crystal tuff. 5% very fine grained disseminated Po.	5	< 0.2	< 5	93	

Ÿ,

Sample No	Description	Au ppb	<u>Ag</u> ppm	<u>As</u> ppm	<u>Cu</u> ppm	<u>Other</u> ppm
4695	Location: New 'A' Grid, (O+78N, 3+48E), Cow 10 claim Rock Type: Rhodonite Occurrence Type, Size: Float, 10cm diameter angular boulder.	5	0.2	5	4	<u>102</u> Zn > <u>9999 Mn</u>
	Mottled and thinly laminated very fine grained, greyish brown cherty layers and pink rhodonite layers. Black manganese oxide developed along fractures and on weathered surfaces.					
4696	Location: Old 'A' Grid, (O+10N, 5+50W), Cow 10 claim	40	0.2	< 5	3 9	<u>124</u> Zn
	Rock Type: Siliceous Siltstone Occurrence Type, Size: Outcrop					<u>1040 Ba</u>
	Medium bluish grey siliceous siltstone with 4% fine grained disseminated and fracture filling pyrite. Some rounded dark grey masses to 2mm may be chiastolite porphyroblasts.					
4697	Location: Old 'A' Grid, (O+10N, 5+60W), Rock Type: Cherty Silstone (Tuff?) Occurrence Type, Size: Float	5	0.2	5	126	<u>560</u> Ba 2026 Mn
	Highly fractured medium greenish-gray cherty siltstone, with 5% vague, very fine grained light colored clasts (?) and 3% fracture filling Py. Could be a tuff.					
14843		<u>1200</u>)42 oz/T +4 g/ <i>t</i>	•.	5	86	<u>200</u> Ba 104 Zn
	Very fine grained siliceous to cherty sediment with earthy red hematite developed on shear surfaces and in zones of brecciation up to 1 cm wide. Follow					

up to 840 PPB Au in soil.

Sample <u>No</u>	Description	<u>Au</u> ppb	Ag ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
14844	Location: 'A' Grid, (14+00N, 1+00E), Cow 10 claim Rock Type: Sheared Limonitic Cherty Sediment Occurrence Type, Size: Float Grab of 2 cm limonitic shear zone in a	<u>100</u>	0.2	5	28	<u>202 Zn</u>
	boulder of cherty sediment or siliceous siltstone. Earthy limonite along shears with veinlets of goethite. 1 m uphill from original soil sample site 14+00N, 1+00E.					
14845	Location: 'A' Grid, (14+00N, 1+00E), Cow 10 claim Rock Type: Cherty Sediment Occurrence Type, Size: Outcrop, Large	5	0.2	5	33	
	Grab of outcrop at bottom of 0.5 m deep hole, 1 m uphill from original anomalous sample site (840 ppb Au). Rather dull looking very fine-grained cherty sediment. No mineralization.					
14847	Location: 'A' Grid, (11+50N, B.L.), on B6 Road Rock Type: Brecciated Cherty Sediment Occurrence Type, Size: Float	420 (0.013 (0.45	0.2 oz/T Au g/t Au		54	<u>260 Ba</u>
	Appears to be a silicified, cherty fine- grained sediment with 5% dark grey fine- grained metallic mineral. Limonite has developed along fracture surfaces and is probably an alteration of the metallics (?).					

Sample No	Description	<u>Au</u> ppb	Ag ppm	<u>As</u> ppm	<u>Cu</u> ppm	Other ppm
14848	Location: Old 'A' Grid, (4+00N, 5+85E), Cow 10 claim Rock Type: Jasper-bearing Cherty Sediment Occurrence Type, Size: Outcrop, 2 m thick Dark grey to light grey to jasperoidal hematitic red, extremely siliceous moderately magnetic cherty sediment. The outcrop has been cut by a 5 cm(+) carb filled breccia as well as irregular quartz stringers. Pyrite occurs as m-cg disseminated cubes up to 1 mm. Resample of 1620 (300 ppb Au).	5	0.1	6	11	
14849	Location: Old 'A' Grid, (4+00N, 5+85E), Cow 10 claim Rock Type: Vein-Breccia Occurrence Type, Size: Outcrop, 5 cm wide vein - breccia 5 cm calcite filled breccia of jasperoid chert (14848). Breccia fragments to 1 cm.	5	0.1	10	22	

APPENDIX III

.

CERTIFICATES OF ANALYSIS AND ASSAY

A list of all samples sent for analysis is included with the certificates of analysis and assay. All certificates (Au geochemistry, ICP, Au assay etc.) for a particular sample series have been kept together and arranged in numerical order using the certificate number of the Au geochemistry analyses.

-

No. VZ39

LAB: <u>Rossbacher</u>

ANALYTICAL REQUESTS & RECEIPT

			SAMPLE		ANALYTIC	AU GE	CHEMISTRY	1 10	LP	Asa	MYS .	RECH	ECKS
SAMPLE SERIES	SOURCE	# SAES	TYPE	PATE OUT	REQUEST	DATE	CERT # INY #		CERTH INVA	DATE	CERT# 104#	DATE	CERTH, INVH
1++00N 9+25W-11+00W	GRID A MESA	8	Soil	Sept 22/86		0173/86	86485	OCT 17/86	A B618956				
L3+00N 7+00N - 1/+00W	 v	9	Soil			- 11	11	11					
SITN- SATN	,	L	silt	N		н	- 11	11	<u>, 1</u>	·			····
1305,1306	.1	2	Rock	4		0	. 1	11	0				
723,724	u	Z	Rock			11	<i>,</i> 1	şı.	11				
1961-1966	19	6	Rock	<u>, , , , , , , , , , , , , , , , , , , </u>		h	• 1	ΰ	, I			138,10	
2134000 0425N - 10400	GridB	40	Soil	α t5/86		Sept. 17/86	86555	oct. 22/86	18619651			DEC 12/86	86712
L14+00N 0+50W - 14+00W	14	54	11	ų		Sept. 12/86	86555	at.22/86	R8619651				
LIS+00N 1+00W - 13+00W	9 .	49	- 11	4		Sept. 17/86	86555	act. 22/86	H8619651				
LI7+00N S+00W - 12+00N	••	37	1	ч		Sept.12/86	86555	24.22/86	A8619651				<u> </u>
3413 , 3414	**	<u>Z</u>	Rock	4		Sept. 17/86	86555	at. 22/86	A8619651		5		
1651 - 4657	BIGRID	7	Rock.	oct6/86		Scot. 17/86	86555	at.22/86	A8619651	WRA 46 Oct.20/86	86551.A		
14+005 0+00-6+50E	GRID A	27	Soil	at10/86		at.22/86	86569	Nov. 6/86	A8619953				
13+005 0+00 - 5+50E	n	23	<u> </u>	u		at.22/86	86569	Nov. 6/86	A8619953				
LZ+005 0+00-4+50E	u		4	-11		at. 22/86	86569	Nov. 6/86	A8617953				
20+00 0+00-5+50f	11	23	4	t1		FEB 12/87	86569.A	Nov. 5/86	A86 20024				
LI+005 0+00 - 5+00F		21	<u> </u>	ч		24.22/86	86569	Nov. 6/86	A8619953				
L9+00N 0+00-11+00E	μ	45	••	ч	····	at122/86	86569	Nov. 5/86	A8620024				
L8+00N 0+00 - 10+50E	์ ป	45		11		Qt22/86	86569	D+00 - Nov, 6/86	10750E 18619953				
L1+00N 0+00-6+50E	1)	27	u	14		at. 22/86	86569	Nov. 6/86	<u> A8619953</u>			1+00H 0+25E DEC 12/87	86712
L14+CON 0+00-7+50E	GRID A	31	Soil	Oct 13/86		21.22/86	86569	N/04.5/86	<u> 198620024</u>			14N, 15	.,
LI5+00N 0+75W - 7+00 E	ţ#	26	и	•1			Not	ANALYSE	0				
LI3+00N 2+00 - 9+00E	"	.37	- 11	11			Not	ANALT	iid .				
LIZ400N 1400 - 10400E LI1400N	þ	411	18	۱.		Q1:22/86	86569	Nov. 5/86	A8620024				
2+00 - 11+00E	v	~15	''				Not	ANALYSE	D A8620327		2065		
L16+00N +50W-6+00E	N	31	Ч	1,		21.22/86	86569	Nov. 5/86	18620024	150W-	225 E		
コクヨ ショー26	177.2.1.1												

コクヨ シヨー26 (27×14)

LAB: Rossbacher

ANALYTICAL REQUESTS & RECEIPT

C. A. C.	0	# c.	SAMPLE		ANALYTIC	F	<i>γ</i> μ		1P		says		ECKS
SAMPLE SERIES	Source	# SALES	TYPE SS	DATE OUT	REQUEST	DATE	CERT # JNY #	DATE	CERTH, INVH	DATE	CERT# LOV#		CERTH, INVH
1+75 W - 7+50E	AGRID	38	Soil	act 13/86			Not	ANALYS					
LIO+00N 2+75E - 11+00E	1 N	34	11	ч		Qt. 22/86	86569	2+75E - Wou:5/86	700E F18620024				
LZZ+000 3+25W-4+50W LZ3+00N	CHEM A GRID			Oct 17/86		Nov. 5/86	86605	Nov.25/86	A8620591	•			
3+25W - 4+50W	.,	6	11	ч			Nor AI	VALYSED		u			
LZ4+00N 3+50W-4+50W		5		11		Nov. 5/86	86605	Nov.25/86	A8620591			24H, 4+ 50W DEC 12	86712
LZ5+00N 3+25W-6+50W	<u>,</u> a	14	п	· •{			Not A	NALYSED					
GA. SIIT 1 - 4	4	- Ц	silt	.1		NOV,5/86	86605	Nov. 25/86	A8620591				· · · · · · · · · · · · · · · · · · ·
GA. Soil #1		(Soil	n			86605	. ·					
3901 - 3917	, 1	17	Rock	11		· · ·	Í	16012/86	A8620322				
4672-4697 LII+00N	4	26		ч		Q-1.21./80	86597	4673 - Nov.17/86	4672				
0+25W-6+00W	14	24	Soil	<u>.</u>		<u> </u>	Not	ANALYSE	,				
LIZ+00N 0+25W-5+25W		21	τι .			NOV15/86	86605	NOV. 25/86	A8620591				
LIB+00N 0t25W-5+25W	ر ،	21		4			Nor	ANALYSE	ם				
L14+000 0+25W-4+75W	ut .	19	·(u		NOV.5/86	86605	Nov. 25/86	A8620591				
LIS+00N 0+75W-4+50W	a.	16	11	. 1		, í	Not	ANALYS	£ 0				
150W - 4+50W	(1	13	u.	ч		NOU,5/86	86605	Nov. 25/86	A8620591				
L17+00N 1+75W-5+00W	o	14	-1	••									
LIB+00N 0+00 - 6+00W	0	24	le .	11		100,5186	86605	Nov.25/06	A8620591				
L18+00N D+25E-3+75E	۴.	15	N.	ù			86605			···· ·· ·			
LIB+00N 4+25E-0+00E L6+00N	st	16	i :	4			86605	· · · ·		······································			
0+00-2+75W	c)	12	ų	4			•	Nov.25/86		·			
L7+00N 0+00-3+25W	n	14	u	4		Nov.5/86		Nov. 25/86					
68+00N 0+00-3+50W 19+00N	*	(5	u	ч			86605	1					
0+25W-3+25W	17	13	Į1 .	*1		Nou,5/86		Nov.25/86		······································	<u> </u>		
400 - 5+00W	P	21	ч	ч			86605						· · · ·
10 +00N 0+25E-2450E	N	10	if				86605	· · ·					
773 53 00	Annual					1.0012180	100000	1001.03/80	10-2021				

コクヨ シヨー26 (27×14)

No. VZ39

LAB: 1,055	sbache	2		ANAL	YTICAL T	JESTS &	RECEIPT				(、 / No. <u></u>	-34
			SAMPLE		ANALYTIC	A	u	I I	10		says	RECI	lecks
SAMPLE SERIES	Source	# SAFS	TYPE	PATE OUT	REQUEST	DATE	CERT # JNY #	DATE	CERTH, INVH	DATE	CERT# INV #	DATE	CERTH, INVI
8+00E - 5+00W	A GRID	53	Soil	act 17/86			Not	ANALYSE	<u> </u>		·		
L 20+00N 8+00E - 5+00W		53	NI.	• • •		Nov.5/86	86605	Nou25/86	A8620591			20N,250 E DEC. 12	86712
121+00N 2+75W-4+50W		8	, 1	łı .			Not	1 '					
LI4+00N 1+00E: 0.6.C		3	, vi	Nov 10/86		Nov. 21/86						a, b Dec. 12	86712
14+00N, 1+00E d-9	A GRID	4	SOIL	Dec. 6			86716	TAN. 7/87	1-8622241			JAN. 6/82	86724,CH
1+005,0+50E(A)	ıf	1		•			. /		11				
1+00N, 0+25F .		2		.,		14	,1	JAN. 7/87	1-862.224				
2+005, 0+75E a	"			.,		u	1	DAN. 7/87	1-8622241				
0+ 75E 1+505		ŀ	• •			,1	11	JAN. 7/82	1-8622241				
0+75E 1+255	,,	. 1		· · ·		u	,t	11	/1				
14 9 43 - 14845	14130H 1+00E	3	Pork	13			11	11	11	14843 JAN 16/87	86747-A		
14847	CHEM A' B.L. H+ SON)	Rock	DEC. 18		JAN 02 57	86747	Jon 20/87	I-8710120	JAN 16/87	86747-A		
15061-15100	DDH CH 87-1	·40	CORE	JAN 251	7	FEB 2/67	87025	FEB 3/87	87025			AURE. MAR. 20	87025
15151-15168	11	18	ų	ı) I		U.	٩	1.6	.1	RE SAMPLE MAR 29	87137	μ	Р
14848	4100 N CM	M	ROCK	11		11	1 ;	13	۰1			1.	11
14849	<u>ب</u>	1	31	JAN 30/87		FE & 4/87	87036	Fre 9/87	87036				
15169-15189	Б ОН С Н 87-2	21	CORE	11			U		.1	. <u> . </u>			
				·									
								····					
									· · · · ·				
		·											
コクヨ シヨー26	(27 × 14)				•	l		[

.

I

• • • • •

LAB: (tar c	legg	.	ANAL	MTTCAL 1	et. iests a	C RECEIPT				. (No. <u>k</u>	<u>- 39</u>
		1	SAMPLE TYPE	24-24-	ANALYTIC	NEUTRON	CERT # JAY #	A.A	Pb, Cý	As	SAYS		IECKS
SAMPLE SERIES	ICHEM 'A'	4/3	CONIFER					1			CERT# 10V#	<u></u>	CERTHI, IN
BCC #1	GRID	1	BRANCH	200117/86		Nov 6/86	126-5625	02127186	126-3625				
BGC #2		49_		Nov 18/86		DEC 12	126-6493	Dec. 2/26	126-6475				
										`			
		·			<u></u>								
				ļ									
										<u></u>			
										-			
			-										
			ļ		. <u>.</u>								
			· · ·				-						
										· · · ·			
		<u> </u>											
			ļ	ļ		ļ	ļ						
				I									
						-							
						1						•	

コクヨ シヨー26 (27×14)

•

...

T0 : MPH CONSULTING LTD. CERTIFICATE#: 86462 301-409 GRANVILLE STREET INVOICE#: 6806 VANCOUVER B.C. DATE ENTERED: 86.09.25 PROJECT: V 239 FILE NAME: MPH86462 TYPE OF ANALYSIS: GEOCHEMICAL PAGE # : 1 PRE PPB FIX SAMPLE NAME A 0811 A 812 A 813 A 814 A 815 A 816 FI Sample Defection A 816	
PRE PPB FIX SAMPLE NAME Au A 0811 190 A 812 5 A 813 20 A 814 5 A 815 5 A 816 5	
A 0811 190 A 812 5 A 813 20 A 814 5 A 815 5 A 816 5	******
A 812 5 A 813 20 A 814 5 A 815 5 A 816 5	
A 813 20 A 814 5 A 815 5 A 816 5	
A 814 5 A 815 5 A 816 5	
A 815 5 A 816 5	
A 816 5	
RECEIVED OCT 1 1986	

•----

•

CERTIFIED BY	iv: Honobash	

C				С	he	en	۱e	хI	La	bs	s L	td	.		t	212 B North V Canada	/ancou	ver,														
			-Апа	lytica	l Chen	nists	•	Geoche	emists		•Regist	ered A	ssaye	rs		hone: Felex:	(604		-0221 52597		Semi	ดูปร	inti	tat:	ive	mult	i e	leme	nt I	CP 3	inal	ysis
						CERT	IFI	CATE	QE	ана	YSI	<u>-</u>										rial	fo	110	wed	byŤl	ICP :	anal	ysis	. Ši	nce	this
	SOUT Aby,	H SP	RING				ED							£ .‡	ŧ	: A8 : I8 : 3 : N0	6187 -QCT	15	001-A		diqe valu Ga, only COMM	es r La, be	epa Mg, con	rte: K,	oî to Na,	r Al Sr,	, SI T1,), B. . Ti	а, В , И	e, C and	(a, (V c:	Cr.
Sample Mescription	Al Z	Ag ppm	As ppn	Ba ppm	Be 9pa	Bi ppm	Cə X	Cd pp n	Co ppn	Cr ppa	Cu ppn	Fe Z	Ga ppm	K	La ppu	-	Kn ppn	Ho pon	Na Z	Ni ppn	P ppn	РЬ ррн	Sb ppir	Sr ppm	Ti Z	T1 ppm	U pp=	V ppu	U ppa	Zn ppu		
11 12 13 14 15 16	0.26 1.12 0.94 2.41 2.78 2.11	0.2 0.2 0.2 0.2	<pre><5 10 10 10 10 10 25</pre>	70 80 900 110	<pre>(0.5 (0.5 (0.5 (0.5 (0.5 (0.5) (0.5)</pre>	0000 00000	0.60 0.45 0.42 0.35 1.46 0.42	<0.5 <0.5 <0.5	36 15 24 13 22 62	37 81 51 76 241 100	45 95 68	10.17 4.22 5.02 4.69 3.22 4.87	10 (10 10 10	0.14 0.19 1.56 0.25	(10 (10 10 (10	0.09 0.29 0.23 1.17 2.11 0.90	229 1159 911	12 32 31 31	0.01 0.03 0.03 0.04 0.17 0.07	18 10 5 11 78 33	950 1330 600 930	2 10 10 6 8 6	ଷ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	22 18 13 57	0.35 0.07 0.08 0.34 0.16 0.05	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	569 29 22 182 91 129	(5) (5) (5) (5) (5)	42 38 14 84 48 78		
																	ł															
				RE	CEIV	/ED	OCT	6	1986																							
																						<u>Бу .</u>	Ð		LR		0.					

ť

€

r

ſ

(

1

€.

1

C

1

€.

10 L

	SBACHER L			2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1
C	ERTIFICATE	OF ANALY	SIS	TEL : (604) 299 - 6910
PROJECT TYPE OF	PH CONSULTING LTD 301-409 GRANVILL VANCOUVER B.C. F: V 239 F ANALYSIS: GEOCH	E STREET	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	6828 86-10-03
.?RE		PPB		
FIX	SAMPLE NAME	Au		
S	L 4N 925W	5		
S	950W			
S	975W	5		
ទ	1000W	5 5		
	1025W 1050W			
S	1030W			
ŝ	1100W	5		
S	L 3N 900W			
<u>S</u>	925W	5		
S	950W			
S	975W			
S	1000W			
S	1025W			
<u>s</u>	1050W			
	1075W			
S	1100W			
S S	S1 TN	5 5		
5	S2 TN S3 TN	5		
 S		5	******	
Ā	1305	50		
A	1306	230		
A	723	5		
A	724			
	1961	<u> </u>	αμές θης τημαγική της τημαγικής του του τημαγικής του αγγατικό του τημαγικό του του του του του του του του του Το προγραφικό του	
A	1962	50		
A	1963	5		
A	1964	10		
<u> </u>	1965	50		New-UN-RU-SCEICLIGHTVIU - 11111 IL 21112 RU-21111 - 211112 RI-11 - 211112 (2273
Â	1966	60		

RECEIVED OCT 6 1986

1. Aonoborch

==

C				he					bs	5 L	.tc	1.		N		/ancol	bank Ave uver, B.C V7J2C													
A Descent of the		•An	alytica	al Chem	nists	•	Geoche	emists		•Regist		Assayei	2		hone: elex:	(60	4) 984-022 043-5259												analy	sis
					ERT	IFIC	ATE	OF	ANAL	YSI	┋┛┝							_	mat	eria	l fo	1104	ied l	by I	ICP a	anal	ysis	.5 ga 5. Si	ince	this
	SOUTH SP BY, B.C.	RING				ED						CER INV(DAT) P.O. V239	DICE E • ‡	* :	A8) 18(17- N0)	6189 -OCT		-A	val) Ga, onl;	ues: La,	repo Mg, con	rtec K.	i fo: Na.	r Al Sr.	, SI T1.	5, B: . Ti	а, Е . W	8e, (and	erals Ca, C V ca ive.	·
Sample description	Al Ag Z ppm	As ppm	Ba pp n	Be ppn	Bi ppm	Ca Z	Cd ppm	Co ppm	Cr ppm	Cu ppa	Fe Z	G3 ppm	K Z	La ppm	Ng Z	Nn ppa	Mo N ppm	n Ni K ppm		Pb ppm	Sb ppa	Sr pps	Ti Z	T1 pps	U ppm	V ppm	y ppa		· .	
LO4N 925W LO4N 950W LO4N 975W LO4N 1000W LO4N 1025W LO4N 1050W LO4N 1075W LO4N 1075W LO4N 1075W LO3N 900W LO3N 900W LO3N 950W LO3N 950W LO3N 950W LO3N 1025W LO3N 1025W LO3N 1055W LO3N 1075W LO3N 1075W LO3N 1075W LO3N 1100W S1 TN S2 TN S3 TN S4 TN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 √5 5 5 5 5 5 5 5 5 5 5 5 5 5	70 50 70 100 50 90 50 80 70 50 80 60 70 290 100	<0.5 <0.5	0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.09 0.09 0.08 0.15 0.11 0.00 0.06 0.07 0.10 0.11 0.09 0.15 0.14 0.16 0.10 0.86 1.07 1.55	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	7 8 4 7 9 13 7 8 9 4 7 8 6 11 11 5 7 21 4 11 19	24 27 17 22 32 45 36 35 21 23 24 28 24 28 24 36 21 29 318 116 77 147	66 28 51 69 81 48 51 70 46 63 67 43 69 58 35 47 738 42	4.34 4.73 3.40 4.05 4.87 4.89 4.43 5.03 4.09 4.05 5.10 3.81 4.27 3.89 2.76 4.47 4.52 2.96 4.30	<pre>(10 (10 (10 (10 (10 (10 (10 (10 (10 (10</pre>	0.02 0.03 0.05 0.04 0.02 0.05 0.04 0.02 0.05 0.05 0.05 0.05 0.02 0.03 0.15	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	0.48 0.55 0.19 0.35 0.49 0.82 0.51 0.49 0.47 0.29 0.57 0.52 0.27 0.76 0.73 0.73 0.73 0.73 0.43 0.43 0.53 0.49	1000	(1) (0.0) (1) (0.0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 710 1340 830 1140 1560 1480 720 660 1266 1050 920 1140 980 1150 950 540 610	14 40 14 18 10 10 12 10 8 6 10 10 2 22 22 22 22 22 22 22 22 20 106 28	<u>ᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐ</u> ᲐᲐ <u>Ა</u> Ა	5 5 4 5 7 5 5 4 4 5 6 4 7 7 10 6 47 31 56	0.16 0.18 0.14 0.12 0.12 0.19 0.15 0.13 0.16 0.17 0.14 0.20 0.24 0.12 0.13 0.14 0.06 0.07 0.10	(10) (10) (10) (10) (10) (10) (10) (10)	 (10) (10)<td>98 113 91 119 101 119 115 114 97 99 96 115 93 108 101 107 76 67 101</td><td>ଌଌଌଌଌଌଌଌଌଌଌଌଌଌଌଌଌଌଌଌ</td><td>56 62 40 52 84 86 50 70 66 50 58 64 52 78 64 64 60 114 78 160 100</td><td></td><td></td>	98 113 91 119 101 119 115 114 97 99 96 115 93 108 101 107 76 67 101	ଌଌଌଌଌଌଌଌଌଌଌଌ ଌଌଌଌଌଌଌଌ	56 62 40 52 84 86 50 70 66 50 58 64 52 78 64 64 60 114 78 160 100		
																													****`	
																						. *	. •						· •	
					RE	CEI	VED	001	21	1986	i																			
	,																					•								
			•																											
																							d}-	•		:				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. CERTIFICATE OF ANALYSIS material followed by ICP analysis. Since the digestion is incomplete for many minerals, digestion is incomplete for many minerals, successful to the second seco	222 BUF	25 SOUTH RNABY, B	R LAI	<u> </u>	1			Geoche	emists		•Registe		Assayers	C P	North Canada Phone: Felex:	t		0221	1		-		.ative							is
description Z ppm ppm ppm ppm ppm ppm ppm Z ppm Ppm Z ppm Z ppm Z ppm Z ppm Ppm ppm ppm Z ppm ppm Z ppm Z ppm ppm	description Z ppm ppm ppm ppm ppm ppm ppm ppm ppm Z ppm PPm ppm Z Ppm <thz< th=""> Z <thz< th=""> <thz< th=""></thz<></thz<></thz<>		8 3N1			DRY	L I M I 1		ATE	OF f	ANAL	<u>YS15</u>		INVOICE DATE P.O. #		: 12(: 23-	5194 -OCT	55	01-A		mate: dige: valu: Ga,) only COMM	rial stio es r La, be ENTS	fol n is epor Mg, cons	lowed inco ted f K, Na idere	by mple or A , Sr d as	ICP te fo 1, SI , Tl	anal; or m: b. B: , Ti	ysis. any m a, Be , W a	. Sin miner e, Ca and V	als, als, , Cr car	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•		-																							•				
		1306 723 724 1951 1962 1963 1964 1965	2.55 2.48 1.43 2.16 0.27 0.16 0.87 2.45	0.8 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4	210 10 3 <5 5 5 10 <5 <5	70 <0.	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.21 1.52 0.30 1.59 3.95 6.31 0.30 2.52	1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	18 15 14 14 17 18 10 45	43 53 109 63 37 17 138 13	200 63 45 92 128 199 316 1255	5.26 3.69 2.60 3.19 1.13 1.30 4.67 3.95	<pre><10 0.04 <10 0.76 <10 0.37 10 0.10 20 <0.01 20 <0.01 <10 0.05 10 0.05</pre>	10 10 (10 20 (10 (10 10 (10) (10)	0.65 0.92 0.86 0.94 0.05 0.07 0.31 1.00	705 816 878 717 >9999 >9999 6011 1066		0.02 0.12 0.03 0.03 (0.01 (0.01 (0.01 0.10	8 7 9 36 39 16 34	680 1170 400 920 490 600 350 1070	18 18 2 6 8 10 6 4	00000000000000000000000000000000000000	17 0.2 58 0.2 7 0.1 18 0.1 37 0.0 27 0.0 1 0.0 9 0.2	1 (10 1 (10 2 (10 1 (10 2 (10 1 (10 9 (10 9 (10	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	103 94 55 61 (1 61 227	ତ ତତ ତ ତ ତ ତ ତ ତ	198 126 54 60 36 34 32 62		
			,																												

- NU 2	BEACHER LAP	JUKAIURY		BURNABY, B.C. VSB 3N1
	CERTIFICATE O	F ANALYSIS		TEL : (604) 299 - 6910
FO :	MPH CONSULTING LTD. 301-409 GRANVILLE ST VANCOUVER B.C.	REET	CERTIFICATE#: INVOICE#: DATE ENTERED:	7040
PROJE	CT: V 239 - GRID B		FILE NAME:	MPH86555
	OF ANALYSIS: GEOCHEMIC	AL	PAGE # :	1
	****		****************	
'RE		PPB		
FIX	SAMPLE NAME	Au		
 S	L 13N 0+25W	5		
ŝ	0+50W	5		
S	0+75W	5		
S	1+00₩	240		
	1+25W	5		
S	1+50W	5	***************************************	\$1.77
S	1+75W	5		
S	2+00W	5		
S	2+25W	5	•	
<u>_S</u>	2+50W	5		
<u>ទ</u> ទទ្ធ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	2+75W	10		
S	3+00W	5		
S	3+25W	5		
S	3+504	5		
5	<u>3+75W</u>	5		
5	4+00W	5		•
S S	4+250	5		
S	4+50W	5		
S	4+75W	5		
<u> </u>	L 13N 5+00W 5+25W	<u> </u>		
	5+50W	5		
ິ ເ ເ ເ ເ ເ ເ ເ เ เ เ เ เ เ เ เ เ เ เ เ	5+75W	5		
S	6+00W	5		
ŝ	6+25W	5		
ŝ	6+50W	5		
	6+75W	5		
S	7+00W	5		
S	7+25W	5		
S	7+50W	5		
S	7+75W	5		
ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	-8+00W	5		
S	8+25W	5		
S	8+50W	5		
S	<u>8+75W</u>	5		
S	9+00W	5		· ·
S	9+25W	5		
ទ	9+50W	5		
S S	9+75W	5		2
5	L 13N 10+00W	5		
· == == := :	*		\sim	
		CERTIFIED BY :		shach
			11.110	
			1	

ROSSBACHER LABORATORY LTD. 2225 S. SPRINGER AVENUE

-

CERTIFICATE OF ANALYSIS

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

PROJE	MPH CONSULTING LTD. 301-409 GRANVILLE ST VANCOUVER B.C. CT: V 239 - GRID B OF ANALYSIS: GEOCHEMIC	AL	CERTIFICATE#: 86555 INVOICE#: 7040 DATE ENTERED: 86-09-17 FILE NAME: MPH86555 PAGE # : 2
PRE F'X	SAMPLE NAME	 РРВ Ац	, , , , , , , , , , , , , , , , , , ,
 ຮ ຮ	L 14N 0+50W 0+75W 1+00W	5 5 5	- * * • = = = = = = = = = = = = = = = = =
<u> </u>	1+25W 1+50W 1+75W	5 5	
S (2+00W 2+25W 2+50W 2+75W	5 5 5 5	
	3+00W 3+25W 3+50W 3+75W	5 5 5 5 5 5	
<u>S</u>	4+00W 4+25W 4+50W	5 5 5 5	
در ای ا	4+75W 5+00W L 14N 5+25W	5 5 5	
້ອ ອີສິ ເ	5+50W 5+75W 6+00W 6+25W	5 5 5 5 5	
<u>S</u>	6+50W 6+75W 7+00W	5 5 5	
ຣ 	7+25W 7+50W 7+75W	5 5 5	
ច្រ ្	8+00W 8+25W 8+50W 8+75W	5 - 5 5	
<u>S</u> 	9+00W 9+25W 9+50W 9+75W	<u>ទទទទ</u> ទ	· · · · · · · · · · · · · · · · · · ·
; ; =====	10+00W L 14N 10+25W [/]	5 5 	
		CERTIFIED E	iv: //sobach

	CERTIFICATE	OF ANALYSIS		BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJ	MPH CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. ECT: V 239 - GRID B OF ANALYSIS: GEOCHE		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7040
PRE FI"	SAMPLE NAME	PPB Au		
	L 14N 10+50W 10+75W 11+00W 11+25W 11+50W 11+75W 12+00W 12+25W 12+50W 12+75W 13+00W 13+25W 13+50W 13+75W L 14N 14+00W L 15N 1+00W 1+25W 1+50W 1+75W L 15N 2+00W 2+25W 2+50W 2+75W 3+00W 3+25W	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3+50W 3+75W 4+00W 4+25W 4+50W 5+00W 5+25W 5+25W 5+50W 5+75W 6+00W 6+25W 6+50W 6+75W L 15N 7+00W	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

CERTIFIED BY : _

an

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1

CERTIFICATE OF ANALYSIS

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

PROJ T' ² E	MPH CONSULTING LTD. 301-409 GRANVILLE STR VANCOUVER B.C. ECT: V 239 - GRID B OF ANALYSIS: GEOCHEMICA	L		INVOI DATE FILE PAGE	ENTERED: NAME:	86555 7040 86-09-17 MPH86555 4
PRE F [*] X	SAMPLE NAME	PPB Au				
- 5 ເ ເ	L 15N 7+25W 7+50W 7+75W 8+00W	5 5 5 5 5				
<u>ທ</u> ີ່ ຫ ເ.	8+25W 8+50W 8+75W 9+00W 9+25W	5 5 5 10 5				
د م مالہ ا	9+50W 9+75W 10+00W 10+25W 10+50W	5 5 5 5 5 5				
<u>ຫຼຸ</u> 	10+75W 11+00W 11+25W 11+50W	5 5 5 5				
د. مارور م ا	11+75W L 15N 12+00W 12+25W 12+50W 12+75W	5 5 5 5				
	L 15N 13+00W L 17N 3+00W 3+25W 3+50W	5 5 5 5				
ر مارم را م ا	3+75W 4+00W 4+25W 4+50W	10 5 20 5		98 ty t t-t		
ر شام 	4+75W 5+00W 5+25W 5+50W	5 5 5				
5 5 5 5 5 5	5+75W 6+00W 6+25W 6+50W L 17N 6+75W	5 5 5 5 5 5				
		CERTIFIED	BY :		7 A	onback

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD. 301-409 GRANVILLE STREET VANCOUVER B.C. PROJECT: V 239 - GRID B TYPE OF ANALYSIS: GEOCHEMICAL

4

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (504) 299 - 6910

CERTIFICATE#:	86555
INVOICE#:	7040
DATE ENTERED:	86-09-17
FILE NAME:	MPH86555
PAGE # :	5

PRE		PPB	
FIX	SAMFLE NAME	Au	
<u></u>	L 17N 7+00W	5	
S	7+25W	5	
5	7+50W	5	
c c	7+75W	CI CI	
S	8+00W	5	
5	8+25W	5	
ę	8+50W	5	·
S	8+75W	5	
S	9+00W	5	
ບ] ເປັ ເບີ ເບີ ເບີ ເບັ ເບ	9+25W	5	
<u> </u>	9+50W	5	
S	9+750	5	
£	10+00W	5	
٤	10+25W	5	
S	10+50W	5	
Ξ.	10+75W	5	
s S	11+00W	5	
S	11+25W	5	
ຣ	11+50W	5	
<u> </u>	11+75W	5	
S	L 17N 12+00W	5	
Т	3414	5	
Т	3414	5	
٦	4551	5	
<u> </u>	4652	5	
Т	4653	5	
٦	4654	5	
Т	4655	5	
т	4656	5	
<u> </u>	4657	5	

tombore

			•An		Cher	nists		Geoch	emists		•Regist	ered A		75	P			iver, V7 4) 984	Ave. B.C. J 2C1 I-0221 52597		dite	1:	lqua	-20	aia (dige	stic	on a	ro.	ICP a	1c	
2205	SBACHE 5 SOUT 1ABY. 1 3111	HEP			YL	IMIT				11)1		븨	CER INVO DATI P.C. VDDO	20105 E 	1	154 22 20	5196: - 00T	51 -93	001-/	•	dige vale Ga, onl;	isti La. be EPTS	n i repo Mg, con	s in rteo K. side	fo Na.	plet r Al Sr. as	e fo . Si . Il.	or m b. B . Ti	any a, B	wine e, C and tati	ral a, i V c	r.
iacle Rescription	31 :	Ag pse	às pp≏	51 556	3e șca	31 205	۵ :	Cd ppn	Ca pos	Cr çça	Cu ppe	5e :	Ga ppa	и :	L3 ;25	89 :	Xn ppo	No p£a	81 :	Ni ppm	P ppc	25 252	55 225	S: ppa	ni 5	T1 pcu	2 pça	y soc	а рса	En opa		
21 00+254 21 00+254 21 00+754 21 01+254 21 01+254 21 01+254 21 01+254 21 01+254 21 01+254 21 02+254 21 02+254	2.27 1.61 1.61 2.97 1.94 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.05 3.65 1.75 1.01 2.75 1.01 2.05 3.65 1.01 2.05 3.65 1.01 2.05 2.05 2.55		5 15	150 00 11 7 9 70 00 00 11 7 10 40 10 11 10 20 10 70 10 10 10 10 10 10 10 10 10 10 10 10 10	(0.5 (0.5 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)	000000000000000000000000000000000000000	3.3: 0.00 0.11 0.12 0.12 0.12 0.12 0.15 0.5 0.5 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	(9.5 (0.5 (7.5 (0.5 (0.5 (0.5) (0.5)	120000011212121212121212121212121254391126391212128481810015211715	291172171111111715557171971261119120191557377218172827284572	32 25 55 54 15 2 20 2 20 4 20 1 7 20 37 11 11 12 10 11 10 20 4 35 12 20 20	2.30 2.32 4.57 5.59 4.12 2.59 2.95 5.59 2.95 5.59 2.95 5.59 2.95 5.59 2.95 5.59 2.59 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1.11 0.07 0.09 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	133 130 130 130 130 130 130 130 130 130	$\begin{array}{c} 0.12\\ 0.52\\ 0.55\\$	2000 2752 2752 2000 2000 2000 2000 2000	0-0-0-0000-0-0-0-0-0-0-0-0-000-0-0000-0000	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	25 5 4 10 10 10 6 8 12 17 19 11 2 5 9 11 8 11	695 529 353 355 755 950 1130 550 550 550 550 120 640 740 551 350 550 1210 640 260 620 351 350 1210 260 620 351 350 350 1210 260 620 350 1210 1200 260 620 350 1210 1200 260 1210 260 250 1210 1200 260 250 250 250 250 250 250 250 250 250 25	3 10 12 10 5 3 8 3 12 5 8 3 10 12 10 10 14 10 14 10 14 10 26 8 8 10 14 10 14 10 14 10 14 10 10 8 8 10 8 10	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	19 23 14 16 11 19 11 15 11 15 11 15 12 15 15 19 7 10 11 10 10 7 10 11	0.17 0.17 0.12 0.15 0.16 0.16 0.16 0.16 0.16 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	10 10 00 00 00 00 00 00 00 00 00 00 00 0	000000000000000000000000000000000000000	123 112 112 113 113 114 114 115 115 115 115 115 115	អមភាជិនាន និកនាននេះខ្លួន និងខ្លួន និង និង និង និង និង និង និង និង និង អំណំង និ	120 94 54 54 50 74 22 6 52 75 78 74 56 56 50 52 54 54 56 56 55 55 56 58 56 56 55 55 56 56 56 55 55 56 56 56 56		

			"An		l Chen	iists	-	Geoche	mists		Regist	wred A	l.	5	No Ca Ph	_	ancou	oank wer, V7J 4) 984- 043-5	B.C. 2C1 0221		litr	ic-A	qua-	229	is (diga	stic	lemer on di snal;	e c.	5 33	i of	
	SCUTA APY, 3	H SP	E 11:0		YLI	111						-1	CERT INVO DATE P.O. V229	102	* :		196	51	02-/		dine valu Ga. 1	stia es r La. be ENTS	n i epo Ng. con	: in ted K. side	icani 1 fo: Na. Fed	piet Al Sr. as	e fa . St Tl.	r at 5. St Ti. i-gut	any 5. B . Y	aia: e. 1 and	221 23. 4 7 2	s.
Exagle description	Al 2	49 295	às 9;2	93 93	Ee ppa	8i ;20	:	Cd ppa	Co ppa	C: 993	Cu șia	E:	61 550	g :	La ppe	# <u>9</u>	36. 552	10 572	81 :	71 202) ppa	Pb 392	Sb spa	St Spa	71 2	11 599	tj pps	ų pos	1 194	54 502		
11 48 (32+528) 11 48 (32+528) 11 48 (31+558) 11 48 (31+558) 11 48 (31+558) 11 48 (32+558) 11 48 (32+558)	155 3.714 517 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.5		11 11 11 11 11 11 12 12 13 14 14 14 14 14 18 15 18 15 18 18 18 18 18 18 18 18 18 18 18 18 18	112 7 7 9 92 10 9 92 10	(0.5 (0.5 (0.5) (0.5) (0.5) (0.5) (0.5)	000000000000000000000000000000000000000	2.15 6.22 9.14 2.15	0.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12 10 21 9 20 19 12	77 F1 F1 F1 F1 F1 F1 F1 F3	¥22228\$\$*112119288812282828282222222222222222222	4.76 1.55 3.77 1.39 4.35 3.73 5.19		0.11 0.12 0.13 0.15 0.15 0.19		0.551557777790000.000000000000000000000000000	747 8534 2271 3004 641 702 547 457 205 215 215 215 207 207 207 207 207 207 207 207 207 207	01000000000000000000000000000000000000	0.01 0.01 9.61 0.01 0.02 0.02	12 29 29 14 14 10 8 10 5 12 11 11 20 16 8 9 ? 2 15 26 12 12 12 12 12 12 12 12 12 12 12 12 12	227	15 16 17 12 15	000000000	215 7 7 7 7 9 4 5 7 7 7 8 7 7 1 4 9 7 7 7 8 5 4 5 1 1 1 9 1 2 8 9 15 7 4 7 1 1 1 9 1 4	0.11 0.13 0.12 0.11 0.11 0.10 0.03 0.11		(10) (12) (12) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	99 137 134 99 113 65 35 89	0000000	53 H 15 137 H 11 115 H 11 112 H 112 H 11 112 H 11 11 112 H 11 112 H 11 112 H 11 112		

Circinies by taut sectler.

903 New 11/85

	Analytics	d Chem	ists	•Geoch	emists		•Registered			212 B North V Canada Phone: Telex:	/anco		.C. C1 21	ilit	ric-	Aqua	-Se	gia	dişe	stic	lemor on of	e o.	5 93	n si	
TO : ROSSBACHER LAB DODE SOUTH SPR PURHARY, B.C. VSP DH1		YLI		LLATE	OF	ARAL	<u>YS IS</u>	CERT. NWOIC DATE P.O. 1 V239	2 1		5196 - DCT		3-A	di val Ga. onl COM	esti La. y be HEHT	an i repo Mg. con	s in rte K, sid	ncom d fo Na. ered	plet r Al Sr. at	e fo . SN . T1.	analy ar ma b. Ba Ti. i-qua	any a. B . W	mine e. C and	eral Ca. V c	s. Cr.
	As Ba pe ppa	3e ppa	91 С рра	Cd ppe	Ca pps	C: 959	Ca Es pre :		K 1: 1 79		.30 221	Но рры		IL I Ca pp:	75 202	55 p24	Er ppa	11	T1 pps	U pps	7 Spe	u ppa	In ccia		24
114W 10475W 4.21 0.2 115W 114675W 4.23 0.2 114W 11475W 2.43 0.2 114W 11475W 2.44 0.2 114W 11475W 2.44 0.2 114W 11475W 2.45 0.2 114W 11475W 3.43 0.2 114W 11475W 3.43 0.2 114W 11475W 3.43 0.2 114W 11475W 3.44 0.2 114W 11475W 3.43 0.2 114W 11475W 3.44 0.2 114W 11475W 3.43 0.2 114W 11475W	10 10 10 10 10 10 10 10 10 10 10 10 10 1	(0.5 (0.5 (0.5 (0.5 (0.5		<pre>(0.5 (0.5)(0.5) (0.</pre>		1223 22 21 21 22 22 21 21 22 22 22 22 22 22	61 4.61 29 1.79 22 5.71 23 1.12 72 5.12 53 4.13 59 3.57 15 4.71	10 0.1 15 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 11 0.1 110 0.1 111 0.1 112 0.1 113 0.1 114 0.1 115 0.1 116 0.1 117 0.1 118 0.1 119 0.1 110 0.1 111 0.1 112 0.1 113 0.2 114 0.1		0 1.03 0 1.21 0 0.20 0 0.27 0 0.73 0 0.73 0 0.22 0 0.47	418 444 245		02 02 01 01 01 02 02 01 02 02 02 02 02 02 02 02 02 02	4 366 13 911 12 123 12 713 12 713 12 713 12 713 13 1050 14 516 14 517 14 517 14 517 13 772 14 517 13 772 14 517 13 772 14 621 13 772 14 621 13 772 14 621 13 772 14 621 15 590 11 590 12 590 12 590 12 262 12 262 12 262 13 590 14 590 15 590			15 11 11 10 9 10 10 8 7 9 9 7 13 14 8 17 18 14 19 10 20 20 20 20 11 14 11 14 16 13 9 16 77 17 14 11	9.04 0.10 0.12 0.09 0.14 0.09 0.10 0.05 0.12 0.15 0.15 0.16 0.27 0.11 0.25 0.21 0.10 0.25 0.21 0.10 0.25 0.21 0.21 0.25 0.21 0.21 0.25 0.21 0.21 0.25 0.21 0.25 0.21 0.25 0.21 0.25 0.25 0.21 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	00 01 01 00 00 00 00 00		27 101 112 112 112 112 112 112 112 112 112	a a b b b b b b b b b b b b b b b b b b	228322148212212232222395894465823646766646880139938888216		

	Analytical Chemists Geochemis	ts •Registered Assayers	North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597	Seni quantitative multi element ICF anal,cia
TO : ROSSBACHER LAB 2025 SOUTH SPE BUEMAR7, S.C. VSB 301		CERT. ¢	: A8619651-004-A : 13319651 : 22-027-34 : NOWE	<pre>Hitric-Acua-Regia digestion of 0.5 pm of Estorial followed by HCP shalpsis. Since this digestion is incomplete for many minerals. values reported for Al. Sb. Fa. Fe. C. C. Ss. La. da. X. Ma. Sr. TL. TL. M and V can anly be incodered as semi-quantitative. COMMENTS : hTT.d: P. ROSSBACHER</pre>
ACCONTRACTOR AND A CONTRACTOR AND A CONT	As 3s Be 3i Ca Cd C pps pps pps I pps pp	a Cr. Cu. Fe 35 X 14 pps pps 1 pps 1		311 7 75 55 5r Ti Ti U U J Tr. pti spis spis piz spis 5 ppis ppi piz spis spis
15% 07+504 4.36 60.2 15% 07+794 3.37 0.2 15% 02+794 3.37 0.2 15% 02+794 3.37 0.2 15% 02+694 4.73 0.2 15% 02+594 6.73 0.2 15% 02+594 0.11 0.2 15% 02+594 5.75 0.2 15% 02+594 5.75 0.2 15% 02+594 5.75 0.2 15% 02+594 5.75 0.2 15% 02+594 3.73 0.2 15% 10+594 3.13 0.2 15% 10+794 2.66 0.2 15% 10+794 2.11 0.2 15% 10+794 2.11 0.2 15% 11+594 4.11 0.2 15% 11+594 4.11 0.2 15% 12+794 3.12 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 22 42 5.29 616 0.12 0 22 39 4.31 15 3.13 6 25 27 5.62 16 1.13 6 25 27 5.62 16 1.13 6 25 27 5.62 16 1.13 6 25 27 5.25 16 0.29 1 27 41 4.02 16 0.12 5 15 54 2.12 19 0.29 1 27 41 4.02 10 0.12 5 15 54 2.12 19 0.25 15 14 4.67 10 0.26 16 2.42 10 0.12 4 41 53 6.32 19 0.02 27 70 2.62 (10 0.02 10 0.12 4 41 53 6.32 19 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

			-Ar	alytic.	al Chen		_	Geoch		ANAI	•Registe	-1	Assayers	Phone Telex:	(60	04) 984-0221 043-52597	i	litric	-Aqu	a-Re	sia	dige	stio	n af	0.5			
TO : ROSSI D205 BURN V5B :	saut Ast.	TH SE	PRIN		Y LI	HIT	-					-1	CERT. 4 INVOICE DATE P.O. 8 V229	1 : 13	6196	51-005-, 51 -96		ligest value: ia, L.	ion Fep Mg Mg co	is i orte , K, nsid	ncom d fo Na. ered	plet r Al Sr. as	e fo: , Sb T1.	r man , Ba, Ti.	sis. ny min , Be. W an- ntita	ca.	Sr.	3
Sample description	Al Z	Ag ppa	As ppa	93 pps	Ва рри	Bi ppe	Cs L	Ed ppa	Co pps	Cr ppa	Cu pps	Ee		Ls Mg	Ho ppa	No Ha ppa 1	Ni pps	P 1 pps pj	t Sb		Ti Z	T1 pps	U DDa	ij pra p	7 Zr			
117# 07+004 117# 07+004 117# 07+004 117# 07+004 117# 08+004 117# 08+004 117# 08+004 117# 08+004 117# 08+004 117# 08+004 117# 08+004 117# 09+004 117# 09+004 117# 10+004 117# 10+004 117# 10+004 117# 10+004 117# 10+004 117# 10+004 117# 10+004 117# 10+004 117# 11+004 117#	2.74 1.76 2.66 2.51 3.53 1.11 2.03 0.72 1.83 0.47 0.40		8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	110 80 120 70 90 50 50 100 60 50 50 100 50 50 50 50 50 50 50 50 50	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	00 00 00 00 00 00 00 00 00 00 00 00 00	0.07 0.25 0.14 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.05 0.12 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.05 0.14 0.05 0.05 0.12 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.13 0.05 0.05 0.13 0.05 0.05 0.13 0.05 0.05 0.13 0.05 0.05 0.13 0.05 0.05 0.13 0.05 0.05 0.13 0.05 0.05 0.13 0.05 0.05 0.05 0.05 0.13 0.05 0.05 0.05 0.13 0.05 0.05 0.05 0.05 0.05 0.13 0.05	(0.5 (0.5 (0.5))(0.5))(0.5)(0.5	7 4 29 16 5 8 17 5 5 5 7 7 16 9 19 11 10 9 11 14 3 26 1 (1 6 7 11 (1	17 16 34 25 11 12 14 15 14 29 17 29 29 36 24 16 34 29 36 22 44 47 29 29 35 101 57 59 10 157 50 10 100 100 100 100 100 100 100 100 1	60 4 6 4 2 1 3 2 3 4 5 5 6 6 5 4 1 1 3 2 3 4 5 5 6 6 6 5 4 1 3 2 3 1 2 2 5 4 6 6 6 6 6 1 1 4 0 0 1 2 3 5 4 1 1 4 6 6 6 6 1 1 4 0 0 1 2 3 5 4 0 0 1 2 3 3 1 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 2 8 0 0 1 2 3 3 3 2 8 0 0 1 2 3 3 3 2 8 0 0 1 2 3 3 3 2 8 0 0 1 2 3 3 3 2 8 0 0 1 2 3 3 3 2 8 0 0 1 2 3 3 3 2 8 0 0 1 2 3 3 3 2 8 0 0 1 2 3 3 3 3 2 8 0 0 1 2 3 3 3 3 2 8 0 0 1 2 3 3 3 3 2 8 0 0 1 2 3 3 3 3 3 2 8 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	48.06 275.45 2.25 2.26 2.25 2.26 2.25 2.26 2.25 2.26 2.27 45 2.27 5 2.27 5 2.27 5 2.27 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(10 0.15 (10 0.09 (10 0.09 (10 0.29 (10 0.35 (10 0.35 (10 0.14 (10 0.14 (10 0.13 10 0.13 10 0.13 10 0.13 10 0.13 10 0.13 (10 0.13 10 0.13 (10 0.13 (10 0.13 (10 0.12 (10 0.12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156 5064 753 412 9999 9999 564 407 133 230 955 516 702 795 516 702 795 516 702 795 516 702 239 955 516 459 955 516 459 955 516 459 955 516 407 502 955 516 407 502 9099 9099 9099 9099 9099 9099 9099	2 0.02 2 0.01 2 0.01 3 0.01 1 0.01 1 0.01 1 0.02 1 0.01 1 0.02 1 0.01 1 0.02 1 0.01 1 0.01 1 0.02 1 0.01 1 0.01	543 24 9 8 2 4 9 8 7 6 5 1 2 6 8 5 1 2 6 8 5 1 2 6 8 5 1 2 6 8 5 1 5 1 1 1 7 1 4 1 4 2 1 9 8	450 1950 1950 1950 1950 1950 1950 1950 19		1014 1227 4910 45827 8676 6603 3385282 2033 85282	0.11 0.11 0.15 0.11 0.06 0.02 0.05 0.05 0.05 0.06			$\begin{array}{c} 135\\ 94\\ 143\\ 190\\ 115\\ 90\\ 125\\ 90\\ 120\\ 174\\ 123\\ 172\\ 126\\ 141\\ 242\\ 92\\ 1149\\ 287\\ 11\\ 196\\ 1\\ 17\\ 144\\ 43\\ \end{array}$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			

- 0111 0 1098

1

903 mrs 11 4

HartBichle

ROSSBACHER LABORATORY LTD. 2225 S. SPRINGER AVENUE

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD.

YSIS		BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910	
	CERTIFICATE#: INVOICE#:		

PROJECT	301-409 GRA VANCOUVER, V 239 ANALYSIS:	B.C.				D	NVOICE ATE EN ILE NA AGE #	TERED: ME:	7050 86-10 MPH86 1 A		
PRE FIX	SAMPLE	NAME	% Si02	% A103	% Mg0	% Fe203	% CaO	% К20	% Na20	% TiO2	 % MnO
A		· – – –	78.0	14.8	0.6	1.4	0.3	2.7	2.9	0.i	0.1
A A		4653 4654	76.0 91.0	14.6 5.4	0.5 1.2	1.3 2.1	0.3 0.2	2.9 1.0	2.7	0.1 0.1	0.1 0.1
A			81.5	9.7	1.2	z.: 3.4	0.2	1.6	1.8	0.2	0.1

RECEIVED OCT 2 1 1986

_____ ______ 1. Hansbou CERTIFIED BY :

RO				ANALYSIS	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJ	MPH CONSULTI 301-409 GR/ VANCOUVER, ECT: V 239 OF ANALYSIS:	ANVILLE B.C.		-	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7050 86-10-20
PRE FIX	SAMPLE	NAME	% LOI	TOTAL		
A A A A		4652 4653 4654 4655	1.8 1.4	101.6 100.3 102.2 102.8		

•

.

=======================================	
-	1
CERTIFIED BY :	

.....

RO	SSBACHER L			2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJI TYPE	MPH CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. ECT: V 239 OF ANALYSIS: GEOCHE	MICAL	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7060 86-10-22 MPH86569 1
PRE	SAMPLE NAME	PPB Au		·
<u>.</u> 	L1S 000 025E 050E 075E 100E 125E 150E 150E 275E 200E 225E 250E 275E 300E 325E 300E 325E 350E 375E 400E 425E 450E 475E L 1S 500E L 2S 000 025E 050E 075E	5 5 70 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
3 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	150E 175E 200E	5 5 5		
	225E 250E 275E 300E 325E	5 5 5 5 5 5	RECEIVED COT 3	1 1986
5 5 5 5 5	350E 375E 400E 425E 450E	20 5 5 5 5		Λ
		CERTIFIED BY	. Aor	plach

.1

•

RO	SSBACHER L			2225 S. SPRINGER AVENUE Burnaby, B.C. V5B 3N1
	CERTIFICATE	OF ANALYSIS	-	TEL : (604) 299 - 6910
PROJ TYPE	MPH CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. ECT: V 239 OF ANALYSIS: GEOCHE	MICAL	DATE ENTERED: FILE NAME: PAGE # :	7060 86-10-22 MPH86569 2
PRE FIX	SAMPLE NAME	РРВ Ац		
 S	L 3S 000			
S	025E	5		
S	050E	5		
S	075E	5		
<u>s</u>	100E	5		
S	125E	5	······································	
ន នេ នេ ន	150E	5		
S	175E	5		
S	200E	5		
_ <u>S</u>	225E	5		
S	250E	5		· ·
S S	275E	5		
S	300E	5		
S	325E	5		
<u>ສ</u> ສ	350E	5		
S	375E	5		
S	400E	5		,
S	425E	5		
S	450E	5		
<u> </u>	475E	5		
S	500E	5		
S	5256	5		
S	L 38 550E	5		
S	L 4S 000	5		
	025E	5		
5	050E	10		
5	075E	5		
- -	100E 125E	5		
0 C	123E 150E	5		
	<u>100E</u>	5		
G	200E	5		
g	200E 225E	5		
ŝ	250E	5		
S	2302 275E	5		
		5		
s	325E	5		
s	350E	5		
ŝ	375E	5		
S	L 45 400E	5		/
====			\sim	·····

.

CERTIFIED BY : Astrobach

C	ERTIFICATE	OF ANALYSIS	-	BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJEC TYPE OF	PH CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. T: V 239 F ANALYSIS: GEOCHE	STREET	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7060 86-10-22
PRE FIX	SAMPLE NAME	 PPB Au		
 S	L 4S 425E	5	د بروی چند برایه بردی خذه همه جنان برانه باند باند برانه الانه الانه الانه الانه ا	
S	450E	10		
S S	475E	5		
S	500E	5		
<u>s</u>	525E	5		
S	550E 575E	5		
5	600E	5		
5	625E	10		
S	L 4S 650E	5		
S	L 1N 000	5		
S	025E	120		
S	050E	5		
ន	075E	5		
s s s	100E	5	·	
	125E	5		
S	150E	5		
5	175E	5 5		
ហ ហ ហ ហ	200E 225E	5		
<u> </u>	220E250E	5		
s	275E	5		-
S	300E	5		
S	325E	5		
S	350E	5		
S	375E	30	······································	
S .	400E	5		
S	425E	5 5		
ទទ	450E			
<u> </u>	475E 500E	<u> </u>		
	525E	20		
S	550E	5		
S	575E	5		
S	600E	5		
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	625E	5		<u></u>
S	L 1N 650E	5		
	L 8N 000	5		
S	025E	5		
S	L 8N 050E	5		Λ

CERTIFIED BY : 1000000

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1

ROSSBACHER LABORATORY LTD.

.

ROSSBACHER LABORATORY LTD. 2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 CERTIFICATE OF ANALYSIS TEL : (604) 299 - 6910 TO : MPH CONSULTING LTD. CERTIFICATE#: 86569 301-409 GRANVILLE STREET INVOICE#: 7060 VANCOUVER DATE ENTERED: 86-10-22 B.C. PROJECT: V 239 FILE NAME: MPH86569 TYPE OF ANALYSIS: GEOCHEMICAL PAGE # : 4 ----------PRE PPB FIX SAMPLE NAME Au S L 8N 075E 5 S 100E 5 S 125E 5 S 50 150E S 5 175E S 5 200E S 225E 5 S 5 250E S 5 275E S 300E 5 S 325E 5 S 350E 5 S 375E 5 S 5 400E 1 S 5 425E S 450E 5 S 475E 5 S 500E 5 S 525E 5 S 550E 5 S 575E 5 S 600E 5 S 5 625E S 5 650E S 5 675E S 700E 5 S 725E 5 S 750E 5 S 775E 5 S 5 800E S 825E 5 S 5 850E S 5 875E S 5 900E S 5 925E S 5 950E S 5 975E S 1000E 5 S 1025E 5 S L 8N 1050E 5 ===

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD. 301-409 GRANVILLE STREET Ρ

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

301-409 GRANVILLE STREET VANCOUVER B.C. PROJECT: V 239 TYPE OF ANALYSIS: GEOCHEMICAL			CERTIFICATE#: 86569 INVOICE#: 7060 DATE ENTERED: 86-10-22 FILE NAME: MPH86569 PAGE #: 5
PRE	SAMPLE NAME	РРВ Ац	
S	L 9N 000		
S	025E	5	
s s s	050E	5	
S	075E	5	
<u>s</u>	100E	5	
S	125E	5	
S	150E	5	
S	175E	5	
30	200E	5	
S S S S	225E 250E	<u> </u>	
с С	230E 275E	5	
s	300E	5	
s s	3255	5	
S	350E	5	
<u>s</u>	375E	5	
S	400E	5	
S	425E	5	
S	450E	5	
ຣ ຣ ຣ ຣ	475E	5	
S	500E	5	
5	525E	5	
S S	550E 575E	5	
S	600E	5	
<u> </u>	625E	5	
S	650E	5	
S	675E	5	
S	700E	5	
S	725E	5	
ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	· 750E	5	
S	775E	5 5 5	
S	800E	5	
ູ ສ	825E	5	
<u> </u>	850E 875E	5 5	
5	900E	5	
ŝ	9256	5	
S	950E	5	
S	L 9N 975E	5	
====		CERTIFIED B	v: Aonsbord

-

CERTIFICATE#: 86569

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD. 301-409 GRANVILLE STREET VANCOUVER B.C. PROJECT: V 239 TYPE OF ANALYSIS: GEOCHEMICAL

•

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

CERTIFICATE#:	86569
INVOICE#:	7060
DATE ENTERED:	86-10-22
FILE NAME:	MPH86569
PAGE # :	6

1 tombe

PRE		PPB	
FIX	SAMPLE NAME	Au	
		F TLA	ور ان اس این از این اس این اور این
S	L 9N 1000E	5	
S	1025E	5	
S	1050E	5	
S	1075E	5	
ŝ	L 9N 1100E	5	
S	L 10N 275E	5	NTERNIATION
S	300E	5	
S	325E	5	
S	350E	5	
S	375E	5	
S	400E	5	
ន ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	425E	5	
S	450E	5	
S	475E	5	
S	500E	5	
S	525E	5	
S	550E	5	
S	575E	5	
S	600E	5	
S	625E	5	
S	675E	5	
S	L 10N 700E	5	
S	L 12N 000	5	
S	025E	5	
S	050E	5	
S	075E	5	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
S	100E	5	
S	125E	5	
S	150E	5	
S	175E	5	
S	200E	5	
<u>ទ</u> ទ ទ ទ ទ	225E	20	
S	250E	5	
S	275E	5	
S	SOOE	5	
<u>ទ</u> ទ ទ ទ ទ	325E	5	
S	350E	5	
S	375E	5	
S	400E	5	
S	L 12N 425E	5	Λ
	=======================================		***************************************

•	•			
RO	SSBACHER LAE		LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJI	MPH CONSULTING LTD. 301-409 GRANVILLE ST VANCOUVER B.C. ECT: V 239 OF ANALYSIS: GEOCHEMIC	REET	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	86569 7060
PRE FIX	SAMPLE NAME	PPB Au		
	L 12N 450E 475E 500E 525E 550E 575E 600E 625E 650E 675E 700E 725E 750E 775E 800E 825E 850E 875E 900E 975E L 12N 1000E 975E L 12N 1000E L 14N 000 025E 050E 075E 100E 125E 150E 175E 200E 225E 250E 275E 300E 325E 350E	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
S ====	L 14N 400E	5 CERTIFIED BY :	A.M.	bach

	BACHER LA			2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
3 V PROJECT:	CONSULTING LTD. 01-409 GRANVILLE S ANCOUVER B.C. V 239 ANALYSIS: GEOCHEMI		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7060
PRE FIX	SAMPLE NAME	PPB Au		
5 5 5 5 5	L 16N 500E 550E 525E 575E L 16N 600E	5 5 5 5 5 5 5		

.

-

.

.

	A
CERTIFIED BY :	\sim

301-409 GRANVILLE STREET VANCOUVER B.C. PROJECT: V 239 TYPE OF ANALYSIS: GEOCHEMICAL			INVOICE#: 7060 DATE ENTERED: 86-10-22 FILE NAME: MPH86569 PAGE #: 8
PRE		PPB	
FIX	SAMPLE NAME	Au	
S	L 14N 425E	5	
S	450E	5	
S S	475E	5	
S	500E	5	
<u>s</u>	525E	5	
S	55°E	5	
S S	575E	5	
S	600E	5	
S	625E	5	
S	650E	5	
S	675E	5	
S S	700E	5	
S	725E	5	
S	L 14N 750E	5	
<u>s</u> s s	L 16N 150W	5	
5	125W	5	
S	100W	5	
5	075W	5	
S	050W	5	
<u> </u>	<u>025W</u>	5	
5 5 5 5	000	5	
5	0255	5	
5	050E	5	
5	075E	5	
<u>s</u>	100E	5	······································
3	1255	5	
S	150E	5	
S	175E	5	

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD. CERTIFICATE#: 86569 301-409 GRANUTLLE ~~~~~~

S

S

S

S

s

s

S

S

S

S

S

S

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

CERTIFIED BY :

=======

5

30

5

5

5

5

5

5

5

5

5

5

200E

225E

250E

275E

300E

325E

350E

375E

400E

425E

450E

475E

===== Tombo

ROSSBACHER LABO	JRATORY	LTD.
-----------------	---------	------

CERTIFICATE OF ANALYSIS

2225 S. SPRINGER AVENUE BURNABY, B.C. . V5B 3N1 TEL : (604) 299 - 6910

torsbar

TO : MPH CONSULTING LTD.	CERTIFICATE#: 86569.A	
301-409 GRANVILLE STREET	INVOICE#: 7414	
VANCOUVER B.C.	DATE ENTERED: 87-02-12	
PROJECT: V 239	FILE NAME: MPH86569.A	
TYPE OF ANALYSIS: GEOCHEMICAL	PAGE # : 1	
		==

PRE		PPB	
FIX	SAMPLE NAME	Au	
S	L 0 000 E	5	
S	025 E	5	
S	050 E	5	
S	075 E	5	
S S S	100 E	. 5	
S	125 E	5	
S	150 E	5	
S	175 E	5	
S	200 E	5 ·	· · · · · · · · · · · · · · · · · · ·
ຜ ຈ ຮ ຮ	225 E	5	
S	250 E	5	
S	275 E	5	
S	300 E	5	
S	325 E	5	
5	350 E	5	
S	375 E	5	
S	400 E	5	
S	425 E	5	
S	450 E	5	
<u> </u>	475 E	5	
ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	500 E	5	
	525 E	5	
S	L 0 550 E	5	

CERTIFIED BY :

RECEIVED FEB 1 3 1987

C	Cheme	x Lab	s Ltd.	212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1	
	•Analytical Chemists	•Geochemists	•Registered Assayers	Telephone:(604) 984-0221 Telex: 043-52597	Some quantitative multi element ICP analysis Ditric-Aqua-Regio dege bloc of C.C gm of material followed by ICP analysis. Since that
TO : ROSSFACLER LAD 2225 SOUTH SIR SULLASY, 9.2. USP 201			CERT. 9 INVOICE I BATE P.O. ¥ VECC	: A2619953-001-A # : I9619953 : 6-NDV-96 : NGME	<pre>digestion is incomplete for many.minerals. values reported for Al, Sb. Ba, Be. Co. Cr. Ga. La, Mg. K. Ma, Sr. Tl. Ti. W and V can only be considered as semi-quantitative. COMMENTS : ATTN: PETER ROSEBACHER</pre>
	As Ba Bc Bi Ca pps pps pps pps 7	Cd Co Cr ppm ppm ppz	Сы Ее Са К рра 7 ррц 7	Li Xy Xin Xo Na ppu I ppu ppu I	Ni P Pb Sb Sr Ti Tl U V U Zn ppm ppm ppm ppm ppm ppm ppm ppm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(10 0.25 449 (1 (0.01) (10 0.72 692 (1 (0.01) (10 0.72 692 (1 (0.01) (10 0.83 452 (1 (0.01) (10 0.83 452 (1 (0.01) (10 0.43 657 (1 (0.01) (10 0.69 507 (1 (0.01) (10 0.63 669 (1 (0.01) (10 0.19 278 (1 (0.01) (10 0.13 263 (1 (0.01) (10 0.13 263 (1 (0.01) (10 0.13 263 (1 (0.01) (10 0.62 434 (1) 0.01 (10 0.62 433 (1) 0.01 (10 0.65 644 (1) 0.01 (10 0.45 1263 (1) 0.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

				С	he	em	e	x L	a	bs	; L	td		No			nk Ave. Iver, B.C. V7J 2C1												
			۰A	nalytic	ai Chem	ists	-1	Seochen	nists	•	Regist	ered A	ssayers	Tel Tel			984-0221 043-52597	~	•	•	* : :	1.12	· *	5	'enref	n I	CF a:	េះវិត្	• 1 5
					[r							51		101		,		1 14	litri	c -Aq	ua-l	lowed	dige	estie	to ac	r 0.	5 gm	of	+1.1
						EFTI	IFIC	ATE (<u>) E </u>	ANAL	<u>YS 1</u> 9							b [liges	tion	13	incom	plet	ta fo	or ad	30.2	mine	rals	•
TO : 3	ROSSBA	CHER	LABOI	(ATO)	RY LI	MÍTI	:1:						CERT. 4 INVOICZ		A0511 12611		->_0∩2-Å 3	1 6	∕alu. Ma. E	a. M	ig. 1	(, N.a.	, Sr	. Tl	. Ti,	. 😡	and ?	V cai	к. Гі
	2225 S			GER	AVEN	UΕ							DATE P.O. #	:	6-N		26	0	nly	be c	ons	idere	d as	sem	i-qu:	anti	tati	V01	
	BURNAB JSB 34		٤.										V235	•	nonu				онне ТТН:			ROSSI	aru	25					
														-										····					
Sample descricti	00		la As DL pp2		Ba ppm	Bi ppz	63 2	CJ BDE	Co pça	Cr pps	Ըս թրու	۶e ۲	Ga X pps X	La ppa		Mili Open	No Na Spm II	Ni ppa	Р руж			Sr Ii opa	11 224	ך שלל	y ppm	y pps	Zn opu		
								(0.5	14	29		4.00	<10 0.05	(10 ((1 0.01	17	1250	10	<5	6 0.10	<10	(10	106	<5	94		
3S 00+00 3S 00+25E	;	3.44 <0 3.94 <0	.2 5	120		(2	0.14	(0.5	13	29	58	4.22	<10 0.04	<10 ((10 (0.62 6	582 72	(1 (0.01 (1 (0.01	18	1220 590	8	ँड उ	7 0.14	(10		93 102	(5 (5	112 96		'
35 30+50E 35 00+75E		3.91 (0 3.91 (0			(0.5 (0.5		3.11 0.10	(0.5 (0.5	17 13	31 27	52	1.40 4.04	- (10 - 0.03 - (10 - 0.05	(10	0.49 5	532	.1 <0.01	16	750	12	(5	6 0.14	(10	(10	35	:5	90		•
300+16 20		0) 87.13	.2 (5		(0.5 (0.5		0.10 0.12	:0.5 <0.5	7 9	18 22		3.23 3.50	(10 0.04 (10 0.05	(10) ((10) (165 385	(1 (0.01 (1 (0.01	11 15	140 860	2 18	্র ব্য	5 0.13			82	(5 √5	64 94		
35 01+35E 38 01+56E		3.02 <0 3.75 <0					0.14		14	24	53	4.11	<10 0.07	(10 (0.71 7	19	(1 0.01	18	1300	8	(5	8 0.18		<10	92	<5	110		••• ,
3S 01+75E		3.49 (0					0.10 0.13	(0.5 (0.5	8 16	23 31		4.75 4.85	<10 0.05 (10 0.06	<10 <10		385 305	<1 <0.01 (1 0.01		1220 1620	12 3	<5 /5	6 0.19 9 0.23) (10 (10	<10 (10	110 103	(5 (5	92 100		
25 02+00E 35 02+05E		1.27 0 2.02 (0						(0.5	10 5	19		4.02	(10 0.00	<10	0.25 3	399	(1 <0.01	8	900	16	<5	9 0.13	? (10	(16	90	(5	58		
35 02+502		1.16 (0			0.5		0.10 0.11	:0.5 <0.5	22 12	29 31		4.44 4.51	<10 0.03 <10 0.04	10 4		269 186	(1 (0.01 (1 (0.01	23 15	600 1120	6 10	ය ග	7 0.17 6 0.14		(10 (10	109 95	୍ ର ଓ	94 102		
35 02+75E 35 03+00E		4.60 <0 2.43 <0					-	(0.5	8	18		3.76	(10 0.03	<10	0.37 3	302	(1 (0.01	10	660	10	(5	11 0.16	(10	<10	86	<5	94		
35 03+25E		1.63 <0					0.09	<0.5	4	13 16		3.18 3.19	<pre><10 0.02 <10 0.03</pre>	<10 (10		205 12?	<1 <0.01 2 (0.01	7 9	280 230	10 1	<5 (5	6 0.13 3 0.10		(10)	74 97	<5 (5	48 62	··· ··· ·	
35 03+50E 35 03+75E		1.75 (0 3.32 (0					0.64	(0.5	21	23		4.45	(10 0.09	10	0.43 13	383	2 0.01	24	690	12	(5	29 0.1	1 (10	(10	102	(5	212		
35 04+0CE		1.51 (0					0.15 0.19	(0.5	11	30 · 29		4.72	<10 0.05 <10 0.02	<10 <10		161 608	(1 (0.01 (1 (0.01	21 18	630 720	2 16	ය (5	8 0.21 11 0.15		(10) (93 93	୍ ଓ	92 168		
35 04+25E 35 04+50E		3.22 <0 2.53 <0						<0.5	7	22		4.08	<10 0.03	<10 ·	0.40 3	360	(1 (0.01	12	650	6	<5	7 0.1	(10	<10	86	(5	63		
35 04+75E		4.06 <0 2.21 (0					0.21 0.15	<0.5 10.5	17	30		4.80 3,38	<10 0.05 (10 0.03	(10 (10		640 505	<1 0.01 (1 (0.01	25	890 640	8 12	(5) (5)	10 0.2			105 20	(5 (5	94 70		· ·
DS 05+00E 38 05+25E		2.92 (0					0.10	(0.5	9	24	26	3.98	<10 0.02	<10	0.49 (334	(1 <0.01	15	500	10	(5	6 0.1	e (10	(10		<5	76		
25 05+595		2.49 ()					0.13	(0.5	7 9	32 23		3.57 3.30	<10 0.04 <10 0.05	<10 <10		351 972	(1 (0.01 (1 (0.01	14 13	570 810	16 20	<5 <5 ·	3 0.1				5 _<5	63 76		
45 00+00 45 00+25E		2.51 <0 3.94 <0						<0.5	14	34	58	4.57	<10 0.07	10	0.33 8	823	(1 0.01	21	1100	10	(5	8 0.1	9 (10	<10	105	<5 (5	90		
45 00+50E 45 00+75E		3.25 KC 2.23 (0					0.13 0.13	(0.5 10.5	11 12	26 33		3.80 3.84	<10 0.05 (10 0.06	<10 (10		747 691	<1 <0.01 <1 <0.01	18 13	690 730	14 8	ব্য ত	7 0.1				(5 ি	84 84		
45 01+00E		4.91 (3	.2 2		(0.5	(2	0.10	0.5	12	29	53	4.65	(10 0.06	<10	0.56	505	(1 (0.01	17	1920	1£	(5	6 0.1	7 (10) (10	94	(5	120 88		
45 01+255 45 01+50E		4.00 (0	.2 15			3	0.11	(0.5 (0.5	12 8	26 24		4.08	(10 0.06 (10 0.06			472 357	<1 <0.01 <1 <0.01	19 13	670 1060	9 14	্র (5	2 0.1 9 0.1				(5 (5	-		
45 01+50E 45 01+75E		4.29 C 3.50 (0			<0.5 <0.5		0.09		10	24	37	3.96	(10 0.05	(10	0.40 3	366	<1 <0.01	12	650	8	(5	7 0.1	5 (1)	(19	- 89	<5	86	-	
45 02+00E		4.00 (0			(0.5			<0.5 <0.5	13 23	31 34		4.01	<10 0.01 (10 0.11			455 823	<1 <0.01 (1 (0.01	24 30	490 580	3 2	୯ ୯	8 0.1 3 0.2				(5 (5			·
45 02+255 45 02+505		5.17 (0 4.86 (0	.: 3	290	(0.5 (0.5			<0.5	12	28	84	4.44	<10 0.05	(10	0.95	738	(1 (0.01	26	630	12	<5	8 0.1	9 (1)) as	105	(5	102		
15 02+75E		4.31 (0	.2 25	240	<0.5	3	0.13	(0.5	16	30		4.11				794 364	(1 (0.01 (1 0.01		790 1150	14 8	<5 <5	3 0.1							
45 03+00E 45 03+25E		2.79 <(3.73 <(<0.5 <0.5			<0.5 <0.5	7 7	19 23			(10 0.04	<10	0.47	370	(1 (0.01	14	460	14	(5	8 0.1	8 (1)) (10	91	<5	64		
4S 03+50E		2.45 <0	.2 1	5 340	(0.5	(2	0.60	1.5	8	21	32	3.35	<10 0.1	: 10	0.39 4	1625 295	2 0.01 1 0.01		2700 510	5£. 20	<5 (5	39 0.1							
45-03+755 45-04+008		1.34 (0 2.25 (((0.5) (0.5)			ാ.5 ര.5	14 9	30 30			(10 0.0				(1 0.01		420	10	3	12 0.2) 114	(5			•

RECEIVED YOU 1 1 mon

C	Che	emex l	_ab	s Lt	d.			nk Ave. ver, B.C. V7J 2C1								
A second second	•Analytical Chen	nists •Geoche	emists	•Registered	Assayers	Telephon Telex:		984-0221)43-52597	Sen;	i quant	itative	nult	ı ele	ement	ICP	analysis
TG : ROSSBACHER LAB DODS SOUTH SPR SURMABY, B.C. VSP 201	ORA CORY LI		OF And	<u></u>	CERT. # INVOICS DATE P.3. \$ V229	: AUG • : ISG : G- : NON	1995: NOV-:	3	mati digi Gi. oril COM	erial f action La, Mg , be co nENTC :	a-Regia ollowed is inco o the 2 , K, Na nsidere ER ROSSI	by I mplet or Al , Sr. t as	CP ar a for . CL; Il, semi-	alys мэл Ba, Ti,	is. S y min Be, W and	ince thi erals, Cu. Cr. V can
	As Ba 2e pn ppn ppm	Bi Ca Cd ppa Z ppa	Co Cr pps pps		Ga K ppa Z	La Hg ppm I		Ho Ha ppa I	N1 ?	РБ 35 ,,рш рръ			រ រ	y spn sp	u Zn Nu ppu	
4S 04+50E 3.14 4C.2 15 04+50E 3.13 1.2 15 05+03E 2.42 0.2 15 05+03E 2.42 0.2 15 05+55E 3.13 4C.2 15 05+55E 3.13 4C.2 15 05+55E 3.13 4C.2 15 05+55E 3.13 4C.2 15 05+55E 3.90 4C.2 15 05+55E 2.42 3.2 15 06+55E 2.42 3.2 15 06+55E 2.42 3.2 16 06+50E 3.72 4C.2 10 06+50E 3.72 4C.2 11 00+50E 3.71 4C.2 11 00+50E 3.61 4C.2 11 01+50E 2.85 1.21 4C.2	5 129 (0.5 0 100 (0.5 5 160 (0.5 0 190 (0.5 0 90 (0.5 0 90 (0.5 0 50 (0.5	(2 0.14 (0.5 (2 0.09 (0.5 (2 0.10 (0.5 (2 0.08 (0.5 (2 0.30 (0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C10 0.14 (10 0.13 (10 0.13 (10 0.13 (10 0.13 (10 0.13 (10 0.14 (10 0.13 (10 0.14 (10 0.14 (10 0.16 (10 0.17 (10 0.14 (10 0.17 (10 0.16 (10 0.17 (10 0.11 (10 0.12 (10 0.14 (10 0.15 (10 0.16 (10 0.17 (10 0.18 (10 0.11 (10 0.12 (10 0.13 (10 0.16 (10 0.17 (10 0.18 (10 0.19 (10 0.10 (10 0.13 (10 0.13 (10 0.14 (10 0.14 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>430 263 362 495 301 261 325 4495 301 261 325 4495 301 261 325 5400 641 3399 244 509 728 427 5291 420 531 427 532 532 437 532 437 532 433 532 433 532 433 532 433 532 433 532 433 532 433 532 433 532 532 533 543 543 543</td> <td>(1 0.01 (1 0.03 (1 0.01 (1 0.01 (1 0.01 (1 0.01</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>12 (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>17 0.12 14 0.12 16 1.23 12 0.12 15 0.17 9 0.13 10 0.14 9 0.15 9 0.15 7 0.15 9 0.17 7 0.15 9 0.17 7 0.15 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 9 0.12 7 0.16 9 0.14 9 0.14 9 0.12 7 0.14 9 0.12 7 0.14 9 0.15 9 0.12 9 0.12 7 0.14 9 0.12 7 0.14 9 0.15 9 0.12 7 0.16 8 0.16 8 0.16 8 0.16 10 0.14 9 0.12 7 0.12</td> <td></td> <td>(10) (10)</td> <td>B0 (77 (71 (</td> <td>55555555555555555555555555555555555555</td> <td></td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	430 263 362 495 301 261 325 4495 301 261 325 4495 301 261 325 5400 641 3399 244 509 728 427 5291 420 531 427 532 532 437 532 437 532 433 532 433 532 433 532 433 532 433 532 433 532 433 532 433 532 532 533 543 543 543	(1 0.01 (1 0.03 (1 0.01 (1 0.01 (1 0.01 (1 0.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17 0.12 14 0.12 16 1.23 12 0.12 15 0.17 9 0.13 10 0.14 9 0.15 9 0.15 7 0.15 9 0.17 7 0.15 9 0.17 7 0.15 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 7 0.16 9 0.17 9 0.12 7 0.16 9 0.14 9 0.14 9 0.12 7 0.14 9 0.12 7 0.14 9 0.15 9 0.12 9 0.12 7 0.14 9 0.12 7 0.14 9 0.15 9 0.12 7 0.16 8 0.16 8 0.16 8 0.16 10 0.14 9 0.12 7 0.12		(10) (10)	B0 (77 (71 (55555555555555555555555555555555555555	

K				eme				s L	.tc	Ι.		No Can	rth Var ada	icou	nk Ave. ver, B.C. V7J 2C1											
		 Analytica 	of Chemi	ists	•Geoch	emists		•Regist	ered A	Assayers		Tele Tele	•		984-0221 143-52597		Semi gu Nitric-									analysis
				ERTIF	ICATE	OF	ANGL	YS 19								{ }	materia	1 f c	11000	ed b	⊳y Î I	CP a	analy	/sis	. Š:	ince this
TO :	ROSSBACHER LAB	ORATOR	YLI	MITED					1	CERT	. ŧ	:	A3619	903	3-004-A		digesti values									
	2225 SOUTH SPR BURNABY, B.C.	INGER	AVEN	UE						INVO DATE P.O.	-	:	18619 6-NC NONE				Ga, La, only be									
	V5B 301									V239	-	-					COMMENT ATTN:		R 803	ES 9 A	сне	R				
Semple descript		As Ba ps pps	Be ppm	Bi C ppm	a Cd Z ppz	Co ppe	Cr pps	Cu pp∎	Fe 2	Ga pps	K I	La ppm	Hg H 2 pp		No Na ppa I	Ni ppm	P Pt ppm ppm	SP Bod	Sr pp n	Ti 2	T1 ppm	U ppn	y ppa	¥ ppa	Дл рри	
BH 00+75E SN 01+00E EI 01+25E SN 01+00E EI 01+25E SN 01+75E SN 02+00E SN 02+75E SN 02+75E SN 02+75E SN 02+75E SN 02+75E SN 02+75E SN 04+75E SN 02+75E SN 02+75E	2.54 0.2 0.44 0.2 0.76 (0.2 3.08 (0.2 2.40 0.2 1.97 0.2 2.35 0.2 3.40 (0.2 2.93 (0.2 5.41 0.4 1.92 0.2 3.46 (0.2 5.41 0.4 1.92 0.2 1.95 0.2 3.06 (0.2 2.90 (0.2 3.06 (0.2 2.90 (0.2 3.06 (0.2 3.92 (0.2 3.44 0.2 2.50 (0.2 3.44 0.2 3.44 0.2 2.97 (0.2 3.25 0.2 2.97 (0.2 0.12 (0.2 7.91 0.2 2.04 (0.2 7.91 0.2 2.04 (0.2 3.24 (0.2 7.91 0.2 2.04 (0.2 3.25 0.4 2.11 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.5 <0.5	$\begin{array}{c} \mathbf{C} & 0.1 \\ \mathbf{C} & 0.0 \\ \mathbf{C} & 0.0 \\ \mathbf{C} & 0.1 \\ \mathbf{C} & 0.1 \\ \mathbf{C} & 0.0 \\ \mathbf{C} & 0.1 $	$5 \ (0.5) \ $	9 7 2 8 1 8 4 5 7 7 7 7 8 4 5 10 9 12 8 <1 18	40 15 14 22 7 7 21 22 20 27 4 37 4 35 20 20 27 20 20 27 20 20 27 20 21 21 20 20 21 21 20 20 21 21 20 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	3 42 4 5 36 38 23 23 23 23 23 80 19 27 43 16 34 51 36 67 12 80 49 79 51 51 34 51 16 79 51 51 16 57 12 10 80 12 12 12 12 13 16 12 12 13 16 13 16 16 16 16 16 16 16 16 16 16 16 16 16	3.54 5.10 2.68 3.51 1.07 3.46 3.43 3.55 1.98 4.39 0.48 3.12 3.69 3.39 3.20 0.09 3.39 3.20 0.09 3.39 3.20 0.09 3.39 3.20 0.03 3.51	(10) (10) (10) (10)	0.02 0.02 0.05 0.04 0.04 0.05 0.09 0.11 0.08 0.07 0.12 0.10 0.06 0.09 0.12	K10 0. 110 1. 110 1. 110 1. 110 1. 110 1. 110 1. 110 0. 110 0. 110 0.	.05 14 .09 11 .64 146 .43 33 .38 28 .45 55 .92 .73 .44 .66 .31 24 .32 28 .31 24 .32 .27 .82 .45 .27 18 .34 .21 .54 .26 .20 51 .55 .30 .57 .45 .55 .21 .55 .35 .57 .45 .55 .35 .55 .30 .57 .24 .40 .23 .56 .56 .48 .38 .48 .38 .44 .38 .44 .38 .45 .56 .48 .38 .49 .57	9367.1452224523420071009755731973691	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 8 12 14 6 12 15 12 12 15 12 12 13 12 13 13 13 17 20 14 20 14 20 5 1 32 3 9	370 <2	A A A A A A A A A A A A A A A A A A A	6 0 5 0 5 0 7 5 0 7 5 0 8 0 9 5 0 8 0 9 5 0 8 0 9 5 0 8 0 9 5 0 0 0 9 5 0 0 0 0 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.04 .15 .03 .04 .12 .14 .09 .10 .11 .13 .13 .14 .09 .14 .09 .14 .01 .14 .09 .14 .09 .14 .09 .15 .09 .10 .12 .11 .11 .09 .12 .11 .12 .12 .11 .12 .12 .12 .12 .12			60 21 101 30 50 50 50 50 80 73 90 94 90 94 90 94 90 94 90 94 90 94 90 73 80 75 80 77 73 80 75 80 77 73 80 77 77 80 77 77 80 77 77 80 77 77 80 77 77 66 81 82 77 77 77 80 77 77 66 81 82 77 77 77 80 77 77 77 80 77 77 77 80 77 77 66 81 82 77 72 80 77 77 80 77 77 80 77 77 80 77 77 80 77 77 80 77 77 80 77 77 80 81 77 72 80 77 75 81 81 82 75 81 81 82 75 80 81 75 81 81 82 75 81 81 82 82 83 83 75 80 81 81 82 83 83 83 83 80 77 75 80 81 81 82 85 80 80 75 75 80 80 80 80 80 80 80 80 80 80	<u>ଌଌଌୠୠୡଌଌଌ</u> ଌଌଌଌଌ <mark>ୄ</mark> ଌଌୄଌୄଌଌଌଌ <mark>ଌ</mark> ଌଌଌଌଌଌଌ ଽ	$\begin{array}{c} 40\\ 12\\ 73\\ 20\\ 6\\ 6\\ 79\\ 9\\ 74\\ 122\\ 62\\ 74\\ 122\\ 62\\ 74\\ 122\\ 62\\ 74\\ 49\\ 82\\ 74\\ 49\\ 84\\ 94\\ 80\\ 202\\ 76\\ 0\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84$	
BN 10+00E 38 10+25E 88 10+55E	0.29 0.2	25 80 35 40	(0.5 (0.5 (0.5	(2 0.1) (2 0.1) (2 0.0)	9 (0.5 1 (0.5	5	. 9 . 3	38	1.53 0.30	<10 (.06	(10 0. (13 0.	.28 19 .04 52	1	<1 <0.01 <1 0.01 <1 0.01 <1 0.01 <1 0.02	10 4	310 8 610 4 470 34 800 12	666 8	2 <0 15 0 12 0	.05	<10 <10 <10 <10	<10 <10 <10 <10	45 10 62	ចំ ខេ ទំ ទ	68 54 86	

RECEIVED House .

R			•Ar	alytic	al Chen	nists		•Geoch	emists		•Regis	tered .	Assaye	275	Te	anada elepho elex:	ne:{604	V7J 2C1 4) 984-0221 043-52597		Semi Nitr										analy mof	/sis
			<u> </u>		$\frac{1}{2}$	CERT	IFIC	CATE	OF	ár á t	<u>35 I</u>	<u></u>							-	mate	rial	fo	110	led t	byĪ	CP a	mal	ysi≊	. S.	ince	this
BUR	SBACHE 5 SOUT NABY, 3N1	H SF	RIN				ED							. ŧ	* : ;	126	52003 - NOV-		•	valu Ga.	ies I La, ' be iENT:	еро: Му, сол:	rte K, side	d foi Na,	r Al Sr, Əs	. Sb T1. Sewi	, B Ti	э.́Е , W	}e. (and	eral: Ca, (V c: ive.	Cr.
Sample description	A1 2	Ag pps	As pp=	Ba pos	Be pps	Bi ppm	- دع ۲	C.J pp#	Са ррж	Cr ppm	Cu pp n	Fe Z	Ga ppa		La ppo	Hg Z	Nn ppn	No Na ppa X	Ni ppm	P ppa	Pt pp=	SD pp b	Sr ppa	Ti Z	Ti ppa	U ppe	V ppb	y pps	Zn ppz		
09N 00+00		<0.2	10	60	(0.5			(0.5	5	13		3.45	10			0.23	384	(1 (0.01	6		6	(5		0.22	<10	<10	99	(5	44		
09N 00+25E J7H 00+50E		<0.2 <0.2	30 10	280 140	(0.5 (0.5		0.09	<0.5 <0.5	11 12	26 18		5.01 3.51	10 10	0.10 0.04	<10 <19	0.59	803 623	1 <0.01 (1 (0.01	20 14		14 6	<\$ (5		0.25	<10 <10	(10 (10	119 94	<5 <5	124 98		
09N 00+75E	3.03	(0.2	20	100	(0.5	0	0.11	<0.5	6	18	29	4.23	10	0.04		0.35	382	1 <0.01	10	860	10	5	•	0.20	(10	<10	114	<5	66		
09N 01+00E 09N 01+25E	1.03	(0.2	5 25	70 180	(0.5 (0.5		0.10	(0.5 70 F	3	8		1.67		0.02		0.14	218	(1 (0.01	4		6	<u>رج</u>	-	0.16	<10	(10	64	(5	30		
09H 01+50E	4.3/	<0.2 <0.2	20 15	180	<0.5		0.21	<0.5 <0.5	12 5	22 16		4.22		0.09		0.73	529 243	1 0.01 <1 <0.01	19 7		10	<5 <5		0.25 0.19	<10 <10	<10 <10	104 99	<5 <5	92 52		
09N 01+75E	2.17	0.2	15	660	1.0	<₽	1.24	2.5	23	15		2.10		0.07		0.35		4 0.01	25		28	3	-	0.10	<10	(10	56	(5	124		
091 02+0CE	3.23		20	110	0.5		0.25	(0.5	10	34		5.25		0.05	<10		424	(1 0.01	19		12	3		0.21	<10	<10	127	(5	90		
09N 02+25E 09N 02+50E	2.65 1.37	0.4 <0.2	20 15	240 120	(0.5 (0.5		0.54	(0.5 (0.5	10 9	25 22		3.61	10 10	0.06	10 <10	0.53	565 410	<1 0.01 <1 (0.01	16 9		22 6	<5 <5		0.25	<10 <10	<10 <10	91 119	(5 (5	84 53		
09N 02+75E		<0.2	20	150	<0.5		0.21	<0.5	16	29		4.91		0.05		0.89	591	<1 <0.01	16		10	(5		0.20	(10	<10	101	<5	112		
09N 03+00E		<0.3	25	100	<0.5		0.17	<0.5	9	29		5.73		0.04		0.57	350	(1-(0.01	14		8	<5		0.20	<10	<10	123	<5	83	'	
09N 03+25E J9N 03+50E	3.03 3.04	<0.2	20 35	280 210	<0.5 <0.5		0.60	<0.5 <0.5	17 14	30 23		4.07 3.67		0.09		0.84	1080 965	<1 0.01 (1 0.01	20 18		10 12	<5 <5		0.20	<10 <10	<10	99 92	<5 25	94		'
09H 03+75E	0.32	0.2	5	136	<0.5		1.53	0.5	1			0.36		0.03		0.09	71	(1 0.01	4		10	 ⊲S		0.17 0.03		<10 (10	92 11	് ്	.94 70		
09H 04+00E	4.17	<0.2	25	120	(0.5		0.19	<0.5	12	33		4.43	10	0.06	(1)	0.67	415	(1 0.01	21	690	10	<5	10	0.21	(10	<10	109	<5	94		
09N 04+25E 09N 04+50E	1.43 2.56	0.2	10 10	90 80	<0.5 <0.5		0.59	<0.5 <0.5	4	12 23		1.69	10 10			0.26	170	(1 (0.01	10		40	<5		0.11	(10	<10	45	<5	68		
09N 04+75E	4.39	0.4	25	120	(0.5		0.24	(0.5	9	-1-3 -36		4.80		0.06	<10 10	0.50	489 398	<1 <0.01 <1 0.01	15 17		12 10	ය ය	_	0.18	<10 <10	<10 <10	71 124	<5 <5	68 94		
09N 05+00E	3.53		20	50	:0.5		0.12	<0.5	6	25		4.51		0.02	<10	0.34	229	(1.(0.01	9	1030	8	3		0.16	<10	(10	101	(5	ć4		
09N 05+25E 09N 05+50E	4.47 3.37	<0.2 (0.2	30 15	120	(0.5 (0.5		0.15	(0.5	13	43 32		4.82		0.07		0.94	521	(1 (0.01	29		6	<5		0.22	(10	<10	106	<5	112		
09N 05+75E		(0.2	15	70			0.15	<0.5 <0.5	11 5	32 22		4.09		0.05	<10 <10		384 253	<1 <0.01 <1 <0.01	20 10	490 320	4	<5 <5		0.19	<10 <10	<10 <10	96 94	් රි	94 54		
09N 06+COE	4.34	<0.2	20	260	<0.5	0	0.13	<0.5	14	31	74	4.75	10	0.12	(19	0.85	535	(1 0.01	25	520	6	(5	7	0.20	<10	(10	103	<5	112		,
09N 06+25E 09N 06+50E	5.87 3.46	0.2	20 15	270 100	(0.5 (0.5		0.14 0.16	(0.5	21	38 26		4.99		0.09		0.98	536	<1 0.01	33		16	<5		0.23	(10	<10	115	3	116		`
09N 06+75E	3.48	0.2	15	100	(0.5 (0.5		0.18	<0.5 <0.5	9 7	26 29		3.98	10	0.06 0.04		0.49 0.39	366 275	(1 0.01 (1 (0.01	15 14		3 12	(5 (5		0.19 0.19	<10 <10	(10 (10	96 124	\(5 \\5	96 90		
200+70 H2	5.03	0.4	25	160	:0.5	2	0.13	(0.5	14	36	68	5.00	10	0.06	10	0.59	474	<1 0.01	27	530	10	<5		0.15 0.18	(10	<10 <10	119	<5	102		
09N 07+25E 09N 07+50E	4.26	0.2	20	170	<0.5				15	32		4.22		0.09		0.74	545	<1 0.01	23		10	<5		0.31	<10	<10	109	<5	76		 .
D9N 07+50E D9N 07+75E	4.42	<0.2 0.2	20 20	4 30 260	<0.5 <0.5			<0.5 <0.5	21 23	30 17		4.43 3.78	10 <10	0.05			1745 1108	<1 0.01 1 0.01	20 21		26 16	۲5 ۲5		0.19	<10 <10	<10 <10	112	<5 <5	112 100	•	
09N C2+00E	3.41	<0.2	10	160	(0.5		0.20	(0.5	13	17		3.96		0.05		0.46	847	1 0.01	20		13	3		0.03	(10	(10		ंड	92		
09N 08+35E	3.27	10.2	10	130	(0.5		0.15	(0.5	13	29		4.16		0.04		0.48	419	1 <0.01	19	490	10	(5	10	0.15	<10	<10	77	<5	90		
09N 03+50E 09N 09+75E	3.09 2.80	<0.2 <0.2	25 15	90 60	<0.5 <0.5		0.14	<0.5 (0.5	9 6	24 25		2.47 3.77	(10	0.03		0.39 0.33	397 256	1 <0.01 (1 <0.01	- 13		10	୍ୱର (5		0.10	<10	(10	65	<5 (5	69		
09N 09+00E	2.63	0.2	13	90	<0.5		0.15	(0.5	7	24		3.44	10			0.33 0.41	205 305	(1 0.01	11		4	<ა <5		0.14	<10 <10	<10 <10	91 70	<5 <5	50 66		
09N 09+25E	2.83	0.2	5	60	<0.5	$\langle 2 \rangle$	0.13	<0.5	4	11	31	3.28	10	0.04	<10	0.26	279	(1 <0.01	5	260	10	3	7	0.02	(10	(16	45	<5	62		<u>-</u>
)9/1 09+50E D9N 09+75E		:0.2 :0.2	10 5	120	(0.5 (0.5		0.24	(0.5 (0.5	12 11	23 31		4.17 4.09	<10	0.04 0.04		9.61	412	(1 0.01 (1 (0.01	21	440 320	12 8	<5 <5		0.21	<10 <10	(10	100	<5 <5	24 90		

\$YETEMS BUSINESS FORMS LIMITED VANCOUVER TAJOIOSANS

1

C			Ch	em	ex	La	bs	s Lt	d	•		Vanc	ibank Ave. ouver, B.C. V7J 2C1		
		•Anal	lytical Che	mists	•Geoci	hemists		•Registere	d Ass	sayers	Teleph Telex:	one:(60)4) 984-0221 043-52597		Semi quantitative multi element ICP anal
				CERTI	ICATE	QE	ANAL	YSIS]						litric-Aqua-Regia digestion of 0.5 gm of Material followed by ICP analysis. Since
TO • POS	SBACHER LA		L						ן ר	ERT. #	: 49	86300	24-002-A		ligestion is incomplete for many mineral values reported for Al. Sb. Ba, Be, Ca,
					-				I	NVDICE	† : I8	6200	24		ia, La, Mg, K, Na, Sr, Tl, Ti, W and V c
	S SOUTH SI MABY, B.C.		ER AVE	NUE						ATE	: : : NC	3-80V Эме	-36		only be considered as semi-quantitative.
	3N1									239					COMMENTS : TTN: PETER ROSSBACHER
Sample description	Al Ag X ppw	As pps	Ba Be ppa ppa	₿i ppm	Ca Cd Z ppa		Cr ppm	Cu i ppas	e Z	Ga K ppm Z	La Mg ppm 2		Ho Ha ppe Z	Ni ppw	P Pb Sb Sr Ti Tl U V W Zn ppm ppm ppm ppm Z ppm ppm ppm ppm ppm
09N 10+00E	3.51 <0.2		140 <0.5		26 (0.5	10	27	46 3.8	86	<10 0.03	(10 0.45		(1 (0.01	15	330 6 <5 12 0.18 <10 <10 91 <5 86
09N 10+25E	5.24 (0.2		170 <0.5		24 (0.5	16	40	72 5.		(10 0.03	10 0.69	450	<1 0.01	27	400 10 <5 14 0.27 <10 <10 116 <5 86
09H 10+50E	2.37 (0.2	5	50 (0.5	(2 0.		6	22	33 3.3		(10 0.04	(19 0.34		(1 (0.01	10	460 16 (5 10 0.13 (10 (10 89 (5 52 900 12 (5 9 0.30 (10 (10 86 (5 98
09N 10+75E 09N 11+00E	3.98 (0.2 4.74 (0.2	10 15	60 (0.5 100 (0.5	(2 0) (2 0)	19 (0.5 20 (0.5	10 13	28 32	53 4 68 4.:		<pre><10 0.04 <10 0.05</pre>	<10 0.69 <10 0.74		<1 (0.01 <1 0.01	14 21	900 12 <5 9 0.30 <10 <10 86 <5 98 1770 12 <5 10 0.22 <10 <10 95 <5 100
10N 02+75E	3.07 0.2		140 (0.5	(2 0		16	31	57 4.		<10 0.10	10 0.85		<1 0.01	21	440 6 <5 17 0.23 <10 <10 94 <5 84
10N 03+00E	3.50 (0.2		100 <0.5	<2 0.	24 (0.5	11	29	54 4.4		(10 0.07	(10 0.64	517	<1 0.01	16	700 12 <5 15 0.23 <10 <10 109 <5 90
10N 03+25E	3.27 0.2		110 <0.5	(2 0		14	29	46 3.1		10 0.07	10 0.68		(1 0.01	20	450 12 <5 14 0.23 <10 <10 92 <5 86 500 6 <5 15 0.24 <10 <10 104 <5 116
10N 03+50E 10N 03+75E	4.74 <0.2 3.90 <0.2		170 <0.5 140 <0.5	(2.0)	22 (0.5 17 (0.5	20 13	41 35	89 4.9 64 4.1		<10 0.09 <10 0.06	10 1.00		<1 0.01 <1 <0.01	31 24	530 B (5 11 0.21 (10 (10 91 (5 96
ION 04+00E	3.97 (0.2		100 <0.5		19 <0.5	13	34	63 1.6		<10 0.05	<10 0.71		(1 (0.01	21	620 4 <5 10 0.19 <10 <10 94 <5 100
10N 04+25E	3.64 <0.2		130 (0.5		16 <0.5	13	36	66 4.		<10 0.07	<10 0.87		<1 <0.01	ప	870 24 <5 11 0.20 <10 <10 80 <5 94
10N 04+50E 10N 04+75E	0.83 0.2 3.00 (0.2	10 <5	50 <0.5 140 <0.5		16 <0.5 14 <0.5	2 9	8 25	13 1.2 52 3.5		<pre><10 0.05 <10 0.06</pre>	<10 0.11 <10 0.5		<1 <0.01 <1 <0.01	5 17	550 18 <5 9 0.08 <10 <10 31 <5 36 400 8 <5 10 0.17 <10 <10 91 <5 68
10N 05+00E	1.92 (0.2	3	80 (0.5		29 (0.5	ร์	20	21 3.1		<10 0.04	<10 0.28		(1 (0.01	9	490 10 (5 11 0.21 (10 (10 32 (5 68
10N 05+25E	3.24 (0.2		290 (0.5		42 (0.5	18	24	74 4.		<10 0.14	10 0.80		<1 0.01	16	560 10 <5 13 0.24 <10 <10 109 <5 86
10N 05+50E 10N 05+75E	2.27 <0.2 1.33 0.2	10 (5	70 <0.5 40 <0.5	C 0.	30 (0.5 23 (0.5	7 2	25 11	33 3.3 11 2.3		<pre>(10 0.03 (10 0.02)</pre>	<10 0.51 (10 0.18		<1 0.01 <1 <0.01	11 6	370 13 <5 11 0.19 <10 <10 95 <5 50 280 16 <5 10 0.16 <10 <10 65 <5 40
10N 06+00E	2.02 (0.2	20	70 (0.5		29 (0.5	6	23	29 3.5		<10 0.03	(10 0.44		<1 <0.01	9	370 24 <5 10 0.17 <10 <10 94 <5 54
10N 06+25E	1.42 <0.2	6	40 <0.5		16 (0.5	3	13	12 2.		<10 0.02	<10 0.20			5	260 10 <5 6 0.11 <10 <10 69 (5 38
ION 06+50E 10N 06+75E	1.99 <0.2 0.99 <0.2	10 <5	50 (0.5		16 (0.5 14 (0.5	1	17 9	20 3.1		<10 0.02 <10 0.02	<10 0.29 (10 0.14		<1 <0.01 <1 <0.01	8	350 20 <5 7 0.12 <10 <10 87 <5 48 180 8 <5 6 0.11 <10 <10 64 <5 32
10N 07+00E	3.24 <0.2		150 (0.5		22 (0.5	16	33	30 5.3		<10 0.01	<10 0.49		(1 (0.01	18	400 10 <5 12 0.19 <10 <10 118 <5 96
12N 00+00E	3.31 (0.2	15	80 <0.5	C2 0	12 (0.5	9	20	42 3.		<10 0.05	<10 0.40		<1 <0.01	9	710 12 <5 8 0.18 <10 <10 82 <5 60
12N 00+25E 12N 00+50E	2.29 <0.2 1.78 <0.2	10 3	110 <0.5 90 <0.5		16 <0.5 26 <0.5	8	20 18	28 3.4 24 2.4		<10 0.05 <10 0.06	<10 0.41 10 0.42		<1 <0.01 <1 <0.01	10 9	380 6 (5 10 0.16 (10 (10 94 (5 60
12N 00+75E	3.04 (0.2		160 (0.5		32 (0.5	13	28	45 3.5		<10 0.08	10 0.6		<1 0.01	18	690 26 <5 15 0.19 <10 <10 90 <5 102
12N 01+00E	2.97 <0.2	10	120 <0.5	<2 0	38 <0.5	9	29	41 3.	54	<10 0.06	(10 0.5	i 624	<1 <0.01	15	700 16 <5 17 0.21 <10 <10 88 <5 80
12N 01+25E 12N 01+50E	0.92 0.2 2.40 0.2	<5 <5	70 <0.5		24 (0.5	2	9 21	14 1.3 24 3.		<10 0.02 10 0.04	<10 0.15 10 0.30		<1 <0.01 <1 <0.01	4	260 8 <5 14 0.13 <10 <10 43 <5 23 320 2 <5 11 0.17 <10 <10 75 <5 62
12N 01+75E	3.91 0.2		150 (0.5	<20. (20.	18 <0.5 22 <0.5	29	33	53 4.3		10 0.04	10 0.65		(1 0.01	20	420 14 (5 16 0.22 (10 (10 98 (5 126
12N 02+00E	3.85 0.2	20	160 (0.5	(2 0	43 <0.5	13	32	65 4.	80	<10 0.07	10 0.6	637	(1 0.01	21	570 14 <5 20 0.18 <10 <10 92 <5 92 -
12N 02+25E	3.95 0.4		140 (0.5		51 (0.5	31	23	139 5.		10 0.06	10 0.53				1300 46 <5 22 0.20 <10 <10 121 <5 179
12N 02+50E 12N 02+75E	3.81 0.2 1.93 0.2		160 (0.5 300 (0.5	(C) 0	67 (0.5 37 0.5	24 15	33 16	104 4. 58 2.3		<10 0.11 10 0.06	10 0.93 10 0.25				740 14 <5 39 0.21 <10 <10 91 <5 106 690 20 <5 43 0.12 <10 <10 53 <5 126
12N 03+00E	1.92 0.2		130 (0.5		55 (0.5		13				<10 0.2				
12N 03+25E	3.72 (0.2	5	120 <0.5	<2 0	23 <0.5	15	31	55 4.4	89	10 0.08	10 0.38	593	<1 0.01	15	640 8 (5 11 0.19 (10 (10 107 (5 116
12N 03150E	3.33 (0.2		110 (0.5		22 (0.5	13	34				(10 0.6			20	550 16 <5 13 0.21 <10 <10 98 <5 82
12N 03+75E 12N 04+00E	4.73 (0.2 4.30 (0.2		250 <0.5 200 <0.5		20 <0.5 23 <0.5		36 42			<10 0.09 <10 0.09			<1 0.01 (1 0.01		710 14 (5 13 0.25 (10 (10 111 (5 136 530 12 (5 12 0.26 (10 (10 109 (5 98
124 011000	1.30 \0.2		700 (013	1. V		1,	7.	0, 1.	1		10 0.5	5 300	11 0101	20	

· •

IC,			С	he	m	e)	La	ab	s L	_tc	1.				bank Ave. ouver, B.C. V7J 2C1													
		•An	alytica	l Chem	ists	•G	eochemis	ts	•Regis	stered A	Assayers		Telephor Telex :	ne:(60	4) 984-0221 043-52597			-						lemen				.15
				L_C	ERT	IFICA	TE OF	ANA	LYSI	<u>e</u> -						-	mater	rial	fol	100	ed t	∍ýI	CP :	on of analy or ma	'sis	. Si	nce	
TO : ROSS	SBACHER LA	A B O R	ATOR	Y LI	MITE	ED					CERT. INVOIC				24-003-6 24	4	value	es r	epor	ted	foi	r Al	, Sł	b. Ba . Ti.	9. B	le. C	a, C	Cr.
	5 SOUTH SI HABY, B.C.		BER	алей	UE						DATE P.O. I		-כ: וסא:	- NOV			only	be	cons	ide	red	35	sen	i-qua	nti	tat	ve.	
	31/1										V 239						COMMI ATTA:		ETER	RO	SSBA	ACHE	R					
Sample description	Al Aq Z ppm	As ppm	Вз орв	Be ppm	Bi pps	Ca Z	Cd C ppz pp		Cu ppm	Ee I			La Xig pm Z	Hr. ppm	Mo Ha ppm 2	Ni ppm	P ppm	Pb ppm	Sb ppn	Sr pps	Ti Z	T1 ppm	U pp±	y ppm	y ppa	Zn pp≊		
12N 04+25E	3.52 0.2	15	200	(0.5	(2	0.36 (0.5 1	7 33	55	4.23	10 0.0	57	10 0.31	910	<1 0.01	24	520	20	(5	16	0.22	<10	(10	101	· (5	98		
12N 04+50E	1.38 (0.2	5	120	<0.5	<2	0.27 <	0.5	4 11	15	2.02	(10 0.0	04 <	10 0.37	336	<1 <0.01	8	280	18	<5	11	0.18	<10	<10	75	<5	42		
12N 04+75E	3.35 (0.2	15		(0.5 (0.5				6 31 0 20		5.00 3.34	10 0.0 (10 0.0		10 0.70 10 0.53	307 464	<1 0.01 <1 0.01	13 10	1260 610	12	্য ব্য		0.27	<10 <10	(10 (10	103 92	(5 (5	140 116		
12N 05+00E 12N 05+25E	2.71 (0.2 3.56 (0.2	5 5	130 190	(0.5 (0.5			0.5 1 0.5 1			3.34 4.39	<10 0.0 <10 0.0			1040	(1).01	15	910	9	3		0.23	(10	<10	103	(5	122		
12N 05+50E	4.27 <0.2	15	340	(0.5	$\langle 2 \rangle$	0.33	0.5 1	8 31	7?	4.58	<10 0.3	14	10 1.04	940	<1 0.01	21	660	8	<5		0.28	<10	<10	119	<5	108		
12N 05+75E	4.61 <0.2	15		(0.5				2 30	98		10 0.2			1431	<1 0.01	22	760	14	<5		0.29	<10	<10 <10	136 90	(5 (5	122 86		,
12N 06+00E 12N 06+25E	2.78 <0.2 2.53 (0.2	55		<0.5 <0.5				3 18 8 27	63 22		<10 0.1 10 0.0		10 0.83 10 0.50	1075 434	<1 0.01 <1 0.01	13 11	490 210	16 9	් ර		0.25	<10 <10	(10	103	്	56		
12N 06+50E	7.04 0.4	:5	390	(0.5				0 51	74		10 0.1		10 0.78	1578	(1 0.01	39	750	16	(5		0.05	<10	<10	150	<5	159		
12H 06+75E	1.77 0.2	5	190	(0.5	<2	0.32 <		8 16		2.35	<10 0.0		10 0.25	378	(1 (0.01	11	660	20	<5		0.13	(10	(10	56	<5 (5	76		
12N 07+00E 12N 07+25E	3.46 <0.2 3.23 <0.2	<5 10	190 180	<0.5 <0.5		0.41 〈 0.45 〈		6 34 8 37	41 38	4.56 4.40	<10 0.0		10 0.76 10 0.90	656 720	<1 0.02 <1 0.01	23 23	620 710	12 10	<5 ব্য		0.27 0.22	<10 <10	<10 <10	103 89	<5 <5	108 106		
12N 07+50E	3.56 (0.2	15		(0.5				0 40		4.99	<10 0.0		10 0.83	847	<1 0.01	23	640	18	(5		0.24	(10	<10	107	<5	108	· ·	
12N 07+75E	3.74 0.2	15		<0.5			0.5 2		42		<10 0.0		10 0.24	977	1 0.01	25	470	16	-(5		0.22	<10	<10	39	<5	34		
12N 08+00E 12N 08+35E	4.53 (0.2 2.99 0.2	10 10		(0.5 (0.5			0.5 2 0.5 1	1 47 6 33			10 0.0		10 1.14 10 0.74	651	(1 0.01 (1 0.01	32 21	390 670	14 16	(5 ج		0.22	<10 <10	<10 <19	117 20	୍ୟ ୧୨	104 104		
12N 08+50E	3.20 (0.2	(5		(0.5				6 36			<10 0.0		10 0.52	649	<1 0.01	20	560	10	<5		0.15	(10	<10	92	<5	98		
12N 08+75E	3.28 <0.2	10		<0.5	<2	0.33 <	0.5 1	5 41	47	4.86	<10 0.0		10 1.04	590	<1 <0.01	26	500	12	<5		0.20	<10	<10	92	<5	98		·
12N 09+00E	2.61 <0.2	10		<0.5				5 34			10 0.0		10 0.72	844	(1 0.01	20	510	14	<5 (5		0.16	<10	<10	94 91	<5 (5	100		
12H 09+25E 12N 09+50E	3.22 <0.2 2.96 <0.2	10 10		<0.5 <0.5			0.5 2 0.5 1	3 32 7 34		4.61 4.35	<10 0.0 <10 0.0		10 0.59 10 1.06	1944 756	1 0.01 <1 0.01	22 25	740 460	12 6	(5 ∢5		0.15 0.23	<10 <10	<10 <10	85	<5 <5	119 82		
12N 09+75E	3.23 (0.2	10		<0.5			0.5 2		47	4.61	(10 0.0		10 0.73	1290	<1 <0.01	23	630	10	(5	17	0.19	(10	<10	91	<5	105		
12N 10+00E	2.69 (0.2	5	-	<0.5	-	0.71 <		5 26			<10 0.0		10 0.63	962	<1 <0.01	16	620	12	<5		0.15	<10	<10	72	<5	92		
14N 00+00 14N 00+25E	2.83 <0.3 3.91 <0.2	<5 15		<0.5 <0.5				721 525			<10 0.0 <10 0.0		10 0.40 10 0.34	317 207	<1 <0.01 <1 <0.01	9 7	560 820	6 9	<5 <5	-	0.16	<10 <10	<10 <10	84 102	<5 <5	62 46		
14N 00+50E	1.54 (0.2	.15		(0.5				J JJ 3 14			<10 0.0		10 0.34	575	(1 (0.01	6	720	14	<5		0.13	<10	(10	93	ंड	40		
14N 00+75E	5.22 (0.2	15	70	(0.5	$\langle 2 \rangle$	0.19	0.5	9 34	5?	5.25	(10 0.	04 🔣	10 0.59	254	(1 (0.01	14	950	12	(5	7	0.19	<10	<10	111	<5	74		
14N 01+00E	3.36 (0.2	15	30	(0.5				7 23	54		(10 0.0		10 0.42	511				24	(5 /5		0.14	(10	(10	24	<5 /5	130		
14N 01+25E 14N 01+50E	6.29 (0.2 5.06 (0.2	10 5		<0.5 <0.5		0.13 < 0.14 <		2 47 2 41		5.76 5.52	<10 0.0		10 0.74	464 461	<1 <0.01 <1 <0.01	20 19	1010 730	10 6	্র ব্য		0.19	<10 <10	<10 <10	114 119	<5 <5	94 88		
14N 01+75E	2.71 <0.2	ວ 5	40	(0.5				5 23			<10 0.0		10 0.29	248	(1 (0.01	7	370	4	<5		0.16	<10	(10	99	3	52		
14H 02+00E	3.36 (0.2	15	210	(0.5	(2	0.62	0.5 1	7 33	34	3.57	<10 0.0	06	20 0.67	2359	1 0.01	26	480	14	<5	25	0.14		<10	94	(5	123		
14N 02+25E	2.52 0.2	10	60	(0.5	3	0.24	0.5 1	0 23	26		10 0.1	25 25		540				٤	<5 (5			(10			<5 /5	82		
14N 02+50E 14N 02+75E	3.73 (0.2 3.08 (0.2		90 210			0.30 (0.35 (1 55 6 32			<10 0.0		10 0.92		<1 0.02 <1 0.01		960 360	16 8	∕5 ∕5			<10 <10		35 99	⟨5 ⟨5	114 82		
14N 03+09E	2.50 <0.2		100			0.33 (3.23	<10 0.0		10 0.83		<1 (0.01		260	8	(5		0.17		<10		<5	94		
14N 03+25E	4.60 <0.2	5	200	<0.5	$\langle 2 \rangle$	0.14 <	0.5 1	9 35	67		<10 0.	05 <	10 0.91	79E	<1 <0.01	29	710	12	<5	9	0.19	<10		93	<5	129	.	
14N 03+50E 14N 03+75E	2.37 (0.2		70			0.12 <		6 25 5 3)			(10 0.0				(1 (0.01		720	6	(S	5	0.13	(10)			55	30		
198 V37/3E	2.62 (0.2	5	20	(0.5	1	0.12	ບ.ວ	5 21	11	3.30	(10 0.)	- i - (10 0.23	-21	(1 (0.01	4	1000	8	(5	~ ⁶	0.12	<10	<10	12	:0	72		

C			C	Ch	en	ıe	x	La	bs	s L	.tc	1.			rth V		oank Ave. ouver, B.C. V7J 2C1													
A Deserved			Analyti	cal Che	mists		Geoch	emists		•Regist	ered A	Assayer	\$	Tele Tele		e:(60	4) 984-0221 043-52597		Semi	gu:	anti	tati	ve	m.lt	i e	leme	nt I	.CF ∋	mal	ysic
					CERI	IFI	CATE	OF	ANAL	YS 19									mate	ria	lÍfo	110w	ed i	by Îl	CP a	anal	ysis		ince	thi
TO : ROSS	BACHER	LABO	IRATC	RYL	INII	ΕD						CERT	. *	:	A86.	200	24-004-											mine le, C		
	SOUTH ABY. B CN1		NGER	AVE	NUE							INVO DATE P.O. V DS	: ‡		186: 5- Noni	νои			Ga,	La, be ENTS	Mg, con	к,	Na, red	Sr. as	Tl. sem	, Ti	. W	and ta'l	V c:	
Sample description		Ag A Ipa pi	is Ba an ppr			63 2	Cď pp∎	Co pp:	Cr pps	Cu ppa	Fe	Ga pp n	ĸ	La ppa	Ho 1	lín. ppa	No Na ppn Z	Ni ppa	P ppm	Pb ppn	Sb ppn	Sr pp ə	Ti X	Ť1 ppm	U ppm	y pp=	W pom	Zn ppa		
14H 04+00E	4.28 <(5 310			0.17		23	41		5.13		0.08	<10 0		779	<1 0.01	30	630	12	<5	11		<10	<10	110	<5	144		
14N 04+258 14N 04+508			(5 100 .5 150			0.14 0.15		9 14	21 22		3.25 3.37	(10 (10	0.01	- <10 0 - (10 0		341 2139	<1 <0.01 <1 (0.01	14 17	510 710	6 14	<5 <5		0.14 0.13	<10 <10	<10 (10	68 71	≺5 ্র	92 102		
14N 04+75E			5 130	(0.5	(2	0.16	<0.5	11	23	45	3.92	10	0.01	(10 0	.57	570	(1 (0.01	14	610	10	<5	9	0.1?	<10	(10	66	(5	91		
14N 05+00E 14N 05+25E		1.4 1).2 1		:0.5 (0.5		0.57 0.27	(0.5 (0.5	19 12	22 20		3.95 3.62	10 <10	0.06	10 0 (10 0		1532 766	<1 0.01 <1 (0.01	25 16	660 530	12 6	(5 (5	23 13		<10 <10	<10 <10	104 75	<5 <5	96 92		
14N 05+50E	3.41 <0	.2 1	0 200	<0.5	C	0.16	(0.5	24	27	42	4.06	(10	0.04	<10 Q	.72 1	1094	(1 (0.01	20	390	12	<5	8	0.13	<10	<10	81	∕5	130		 .
14N 05+75E 14N 06+00E			l5 350 0 250			0.29 0.16	<0.5	26 15	27 21		4.42	<10 <10		- <10 0 - <10 0		1534 765	<1 <0.01 <1 <0.01	24 19	1200 590	20 12	(5 (5	12	0.14 0.13	<10 (10	<10 <10	83 90	ය ය	136 106	••••	
14N 06+25E	3,12 (0		5 160	:0.5	0	0.14	(0.5	14	31	41	3.99	<10	0.04	<10 O	.62	490	(1.0.01	18	530	6	ंऽ		0.16	(10	<10	90	<5	102		
14N 06+50E 14N 06+75E	3.29 <0 4.48 <0		5 160 15 290			0.15 0.16		15 20	34 35		4.25 4.74	<10 <10		<10 0. 10 1		619 1068	<1 (0.01 <1 0.01	21 26	890 910	3 16	<5 (5		0.17 0.21	<10 <10	<10 <10	92 109	<5 (5	102 96		
14H 07+00E	4.28 (0	.2 1	0 360	<0.5	-	0.20		21	31	79	4.38	<10		10 0.		1085	<1 0.01	25	780	8	G	17		(10	(10	97	<5	76 102		
14N 07+25E 14N 07+50E	4.64 C 0.30 (0		0 320 5 100			0.20 0.17		20 3	33 9		4.90	10 (10	0.13	10 0 (10 0.		799 111	<1 0.01 (1 0.01	26	940 640	10	<5 (5	13		(10	<10	100	≺S ⊲S	108		
16N 02+50E	3.35 (0	.2 1	0 40	(0.5	Ċ	0.11		6	29		4.83	(10		<10 0.		374	<1 (0.01	6 12	1460	24 9	୍ୟ ସ	26 5	0.08	<10 (15	<10 <10	29 99	(3) (5)	43 76		
16/ 02+75E 16N 03+00E		.2 1 .2 <				0.09 0.07	(0.5 (0.5	3	41 25		5.27 4.47	<10 <10		<10 0.		304	(1 (0.01	17 B	1220	8	(5		0.17	<10	<10	3 9	5	80		
16N 03+35E	3.96 <0					0.07		6	26		5.26	<10		<10 0 <10 0.		216 222	<1 <0.01 <1 <0.01	•	940 1120	6 10	<5 <5		0.13 0.11	<10 <10	<10 <10	93 83	<5 <5	52 62		
16N 03+50E 16N 03+75E		.2 1				0.12		B	30		3.95	(10		<10 0		311	(1 <0.01	18	810	6	< 5	8	0.17	<10	<10	91	<5	70		
16N 04+00E	2.25 (0 1.45 (0		560 530			0.11 0.12		8	38 12		3.83 2.20	<10 <10		<10 0. <10 0.		269 216	<1 <0.01 <1 <0.01	16 5	490 130	6 4	<5 <5		0.16 0.16	<10 <10	<10 <10	75 65	(5 (5	73 34		
16H 04+25E	1.26 (0			(0.5	C_{2}	0.11	(0.5	3	16	9	2.37	<10	0.02	<10 0 .	.24	206	(1 (0.01	7	150	4	<5	7	0.13	<10	<10	67	:5	34		
16N 04+50E 16N 04+75E	3.34 <0 3.44 <0		-	<0.5 (0.5		0.51 0.25	<0.5 <0.5	16 13	26 25	77 41		10 <10	0.05	10 1. <10 0.		620 553	<1 0.01 <1 (0.01	16 19	200 410	8 16	<5 <5	18 14 (<10 <10	<10 <10	114 96	<5 5	112 123		
16N 05+00E	3.88 <0	.a (5 170	<0.5	<2	0.16	0.5	18	28	59	4.23	<10	0.05	10 0.	.53	660	1 (0.01	19	520	16	<5	10		<10	<10	96 105	5	123		
16N 05+25E 16N 05+50E	4.18 (0		5 30 5 120			0.31 0.17	(0.5 (0.5	9 19	19 40	29 89	3.16 4.60	<10 (10		- <10 0. - (10 0.		956 783	<1 <0.01 (1 <0.01	9 29	910 1010	10 10	(5 5	10 10		<10 <10	(10	77 07	5 5	70		
16/1 05+75E	1.65 (0	.2 C	5 69	<0.5	<u>्</u> य	0.16	(0.5	5	16	19	2.29	<10	0.02	<10 0.	.24	785 340	(1 (0.01	_3 6	350	6	<3 <5	10 S -		<10 <19	(10 (19	97 62	- 3 ≺5	128 50		
16N 06+00E L0 C0+00	5.06 0 3.91 (0		5 220 5 110	<0.5 <0.5		0.22		22 11	49 27	106 63	4.99 3.94	<10		10 0.		714	(1 0.01	36	760	14	(5 (7	16		<10	(10	113	<5	118		
L0 00+25E	3.02 (0		5 100	(0.5	$\langle 2 \rangle$	0.14		8	24		3.94 3.95	<10 <10		10 0. <10 0.		779 684	<1 <0.01 <1 <0.01	14 10	800 1130	14 12	(5 (5	10 1	0.21 0.18	<19 <19	<10 <10	104 102	(5 (5	92 80		
L0 00+50E L0 00+75E	2.03 (0			19.5		0.09		4	16		2.97	<19	0.02	(10 0.	.22	376	<1 (0.01	4	730	5	<5	6	0.15	<10	<10	79	(5	40		- '
L0 01+00E	2.77 (0 1.59 (0			<0.5 (0.5		0.14		7	17 11			<10 <10		<12 0. <10 0.		732 254	<1 <0.01 <1 (0.01	10	900 460	22 4	(5 (5	11 - 5 -		-(10 -(10	(10 (10	69 31	(5 (5	72		
L0 01+25E	1.28 (0	.3	5 50	<0.5	(2	0.11	(0.5	2	11	18	2.79	<10	0.02	<10 9.	.14	370	CI (0.01		510	8	(5		0.14			85	<5 <5	40		
L0 01+50E L0 01+75E	2.39 <0 1.14 0		570 5100	<0.5 <0.5		0.12 0.29		5 4		32 21	2.94	<10 <10	0.04	<10 0. <10 0.	.31 20	431 199	<1 <0.01 (1 0.01		410 740	10	<5 /5	7		<10 Z1A		30 29	<5 10	54		
L0 02+00E	1.40 0	.a ka	5 80	<0.5	<2	0.19	:0.5	3	12	19	2.23	-(10	0.05	10 0.	.16	259	(1 0.01	5	330	40 22	্য (5	13 12 +		<10 (10	<10 <10	39 67	10 .5	ыс 74		
LO 02+25E	4.79 (0	. 2 0	5 240	(0.5	. (2	0.12	(0.5	19	30	S.7	4.56	(10		10 0.			(1 0.01			14		13					:5	104		

C						_	Ltc		No Can	rth Van ada	sbank Ave couver, B.C V7J 2C													
	 Analytica 	l Chemist	5	Geoche	emists	•R	egistered ,	Assayers	Tele Tele		04) 984-0221 043-52592		Semi	qu	anti	tativ	'e m	ulti	el	emer	nt I	CP a	inaly	ysi
		CE	RTIFI	CATE	OF A	NALY	SIS					_	Nitr mate	ria	lfo	llowe	ed b	yÎIC	Pa	maly	ysis	. Ši	incu	
TO : ROSSBACHER LAB 2225 SOUTH SPR BURNABY, B.C. V5P 3H1							ł	CERT. 4 INVOICE DATE P.O. F V 239	* : ;			A	dige valu Ga. only COMM ATTN	es : La, be ENT:	repo: Mg, con 5 :	rted K, N sider	for la, ed	Al, Sr, as s	St Tl. emi	, B: Ti,	э, В , W	e, C and	2a. 0 V ∈a	Cr.
	As Ba		Bi Ca pa Z	CJ ppa	Со ррв		Cu Fe opm Z	Ga K pp∎ I		Hg Hi Z pp				Pb ppm	Sb pp=	Sr ppn	ti z	Tl ppm	U ppm	y ppa	y ppn	2n pps		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 260 (5 240 (5 120) 5 170 (5 220) (5 260 (5 260 (5 260 (5 170) (5 110) (5 100) (5 130)	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	(2 0.16 (2 0.17) (2 0.15) (2 0.25) (2 0.25) (2 0.23) (2 0.23) (2 0.23) (2 0.23) (2 0.23) (2 0.33) (2 0.33)	0.5 (0.5 (0.5 0.5 0.5 (0.5 (0.5 (0.5 (0.	16 11 13 20 21 23 20 15 9 6 18	31 30 24 36 39 41 35 31 38 63 34	89 4.66 31 4.22 32 4.38 56 3.49 69 4.55 81 4.77 91 4.81 79 4.62 61 3.97 41 3.03 27 2.56 68 4.17 60 2.89	(10 0.15 (10 0.13 (10 0.17 (10 0.10 (10 0.10 (10 0.11 (10 0.15 (10 0.16 (10 0.17 (10 0.16 (10 0.17 (10 0.07 (10 0.07	10 0 10 0 <10 0 <10 0 10 1 10 1 10 1 10 0 <10 0 <	.79 75 .52 52 .68 73 .95 820 .01 80 .06 79 .96 88 .73 64 .49 75 .30 488 .92 92	0 (1 0.01 0 (1 0.01 1 (1 0.01 1 (1 0.01 1 (1 0.01 1 (1 0.01 1 (1 0.01 1 (1 0.01 1 (1 0.01 1 (1 0.01 3 (1 0.01 1 (1 0.01 1 (1 0.01	1 15 25 26 30 21 19 30 21 30 21	9 730 5 960 5 770 7 700 7 660 0 880 5 660 9 660 9 740 0 550 2 720	12 8 14 20 20 12 10 14 12 18 14 14 18	ର ର ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ	11 0 11 0 9 0 10 0 14 0 13 0 14 0 11 0 9 0 12 0 17 0 12 0	.22 .20 .16 .22 .25 .24 .24 .21 .16 .13 .21	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	101 92 103 87 109 112 109 115 93 75 69 101 72	(5)(5)(5)55555555555555555555555555555	104 100 94 122 108 114 96 89 92 58 94 74		
									÷															
																5	<i>.</i>							

.

C									bs	s Lto	1.			Vancou	bank A uver, E V7J2	I.C.												
Sector Sector		•Ar	oalytica	Chen	nists	•G	eochem	nists		Registered	Assayers		Phone: Telex:	(60	4) 984-0) 043-52				•		ative Regia							sis
					CERT	FICA	TE (DF A	IAN	YSIS							ល	ster	ial	fül	lowed	by	1CP	anal	ysis	s. Š:	ince t	thi
	BACHER L South S Aby, b.C	PRIN				D					CORT. INVOI DATE P.O.	CE #	: 19	16203 1014-1)1 -A	÷ G	olue a. L	s 20 a, M	.p.,: 19,	incom tod Ca K. Na. idered	or A Sr	ι, s , τι	b, B , Ti	a, Ì , ₩	Be, (and	Ca, Cr V car	г.
V5B	ЗИ1										0239	•							NTS P.		SSBACH	IER						
Sample description	Al Ag Z ppm		B 3 ppm	Be pps	Bi ppm	Ca Z	Cd ppm	Со ррш	Cr pp a	Cu Fe pp n Z			La Mg pa Z	Mri ppe	Mo ppm		Ni ppm	P pp=		Sb ppm	Sr Ti ppm Z		U ppm	V ppm	W ppm	Zn DDia		
3901	4.26 (0.2			0.5		.78 <		34	90	69 7.10		05	10 2.22	992	<1 0	.03	53	800	8	(5	6 0.50	<10	<10	265	۵	100		
3902 3903	0.42 (0.2		90 (10	(0.5 (0.5		.04 (0.5	<1 1	43 106	1 0.28	<10 0. <10 <0.		10 0.02 10 0.03	67 132	<1 0 1 <0		2 3	80 100		<5 ⊲5	4 <0.01	<10	<10	2	<5	24		
3904 3905	0.61 <0.2		190	<0.5	<c (<="" td=""><td>.06 <</td><td>0.5</td><td>11</td><td>38</td><td>12 1.43</td><td><10 0.</td><td>04 - 3</td><td>10 0.54</td><td>371</td><td>10</td><td></td><td></td><td>230</td><td></td><td>(5 (5</td><td><1 <0.01 5 <0.01</td><td><10 <10</td><td><10 <10</td><td>86 9</td><td><5 √5</td><td>4 18</td><td></td><td></td></c>	.06 <	0.5	11	38	12 1.43	<10 0.	04 - 3	10 0.54	371	10			230		(5 (5	<1 <0.01 5 <0.01	<10 <10	<10 <10	86 9	<5 √5	4 18		
3906	2.93 (0.2 1.54 (0.2	5 5		<0.5 <0.5	 	.33 (.57 (0.5	21 8	39 57	83 5.22 29 2.39	10 0.		10 1.41 10 0.32	763 1784	(1 0			530	12	<5 /	13 0.21	(10	(10	176	3	36		
3907	0.57 (0.2	<5	10	(0.5	(2 1	.03 (0.5	4	32	9 1.06	<10 0.		10 0.32 10 0.20	519	(1 0 (1 0			140 360		<5 <5	29 0.11 5 0.18	<10 <10	<10 <10	41 37	<5 <5	44 36		
3908 3909	1.04 <0.2 0.80 (0.2	5 (5		<0.5 <0.5	(2) (2) (2) (2)		0.5 0.5	18 2	57 30	868 4.47 7 1.12			10 0.41 10 0.15	345 524	23 0 <1 0			540 500		<5	10 0.19	<10	<10	96	<5	52		
1910 3911-	7 70 6 7									• • •	1 0.	1	0.15	J.1						(5	5 0.02	<10 10	(10 10	2 163	≺5 ⊲5	24 46		
3912	2.39 (0.2	رج ح		<0.5 <0.5	(2) 0	.91 () .23 ()	0.5 0.5	9 16	77 42	30 2.93 78 4.80	<10 0. <10 0.		0 0.84	983 2327	<1 0 <1 0			20 120		<5 (5	49 0.13	<10	<10	53	5)	56		
3913 .	1.21 (0.2	.5	60	<0.5	<2 0	.11 <	0.5	3	52	95 3.73	<10 0.		0 0.51	1158	1 0			120		<5 <5	9 0.25 5 0.10	<10 <10	<10 <10	1:25 50	<5 <5	90 42		
3914 - 3915 -	1.03 0.2 0.19 (0.2	<5 5		<0.5 <0.5	<2 1 <2 0	.37 (.01 ()	0.5 0.5	27 2 1	99 177	616 2.71 33 2.16	<10 0. <10 <0.		0 0.18	397 660	<1 0			800		<5	45 0.18	<10	<10	29	<5	50		
3916 - 3917 -	1.09 <0.2	45	230	<0.5	<2 0	.06 (0.5	29	109	69 3.59	<10 0.	19 (1	0.29	2274	1 <0 1 <0		5 30 1	20 70		(5 (5	1 <0.01 3 <0.01	<10 <10	<10 <10	20 49	<5 <5	10 60		
4673	1.97 (0.2 0.36 (0.2	5 ⊲S		<0.5 <0.5		.02 <(.06 <(63 231	45 2.94	<10 0.1		0 1.14	542 456	<1 <0 1 <0			20		<5	1 (0.01	<10	<10	22	<5	70		
4674	0.05 <0.2	5	10	<0.5	<2 0	.05 <0).5	(1)	163	33 2.49	<10 <0.0	1 (1	0.02	139	1 <0		-	40 90		<5 <5	3 0.02	<10 <10	<10 <10	34 44	<5 <5	30 8		
4675 1676	2.11 <0.2	5 <5		<0.5 <0.5	<2 0 <2 1			15 14 1	42 103	70 4.41 189 4.19	<10 0. 10 0.1		0 1.25 0 0.60	294 607	<10 <10			130 70		<5	2 0.21	<10	<10	54	<5	94	·	
4677 4679	2.17 (0.2	<5	100		<2 1	.43 ((0.5	13	104	76 5.76	10 0.0	9 🖯	0 0.67	1003	<1 0			40		<5 <5	23 0.19 7 0.17	<10 <10	<10 <10	95 112	⊲5 ⊲5	54 72		
4679	2.11 (0.2 2.81 (0.2	<5 <5	100 290	<0.5 <0.5	<20 <20	.44 <(.44 <(70 54	305 4.39 137 4.46	<10 0.1 <10 0.1		0 0.73	492 708	<1 0. <1 0			70 00		<5 <5	13 0.13	(10	(10	74	(5	66		
4680	1.14 (0.2	(5	540	(0.5	<2 0	.28 <0	.5	16	66	123 3.22	<10 O.:	4 (1	0 0.62	618	<1 0.			40		<5	14 0.26 5 0.22	<10 <10	<10 <10	80 104	<5 <5	53		
4681 4632	3.15 <0.2 1.09 0.2	<5 5		<0.5 <0.5	<2 1 <2 0	.39 <(.33 <(52 148	283 4.94 59 2.16	10 0.1		0 0.78 0 0.20	677 428	<1 0. <1 0.		31 34 11 4			<5 /5	28 0.42	(10	<10	67	<5	76	·	
4683	1.51 0.2	10	190	<0.5	<2 0	.32 🔇	.5	9	52	73 2.75	<10 0.2	2 0	0 0.32	563	<1 0.	.03		40		<5 <5	24 0.08 15 0.19	<10 <10	<10 <10	22 32	<5 <5	63 74		
4634 4685	4.34 <0.2	5 5	220 400	<0.5 <0.5	<00 (C0)	.24 <0 .97 <0			3£ 80	199 3. 36 133 4.9 2	<10 0.3 <10 0.3		0 1.03 0 0.75	9010 1622	(1 0		21 13		16	< 5	10 0.11	<10	<10	117	<5	162		
4686	1.61 (0.2	5	70	(0.5	(2 1	S0 <0	.5	27	10	190 6.11	10 0.0		0 0.26	625	<1 0. <1 0.			50 E0		(5 (5	2 0.39	<10 <10	<10 <10	48 354	<5 5	90 78		
4687 4633	1.96 <0.2 3.11 <0.2	<5 \5	10 610		C 1 C 1	.11 (C			93 79	92 3.63 147 3.30	10 0.0 10 0.4		0 0.91	561	1 0	.05	37 4	10	4	<5	1 .0.23	<10	<10	131	< 5	56		
4689	3.23 (0.2	<5	60		<2 0	.39 <().5		266	76 3.67	10 0.1		0 0.77		<1 0. <1 0.		12 3 95 10	70 40			73 0.20 50 0.27	<10 <10	<10 <10	96 114	(5 5	79 52		
4690 4691	4.69 (0.2	<5 10	10		<26		.5	24	49	149 2.79	20 0.0	5 (1	0 1.03	456	<1 0.	. 07	40 3	50	6	6	(1 0.16	<10	<10	109	<5	56		
4692	2.66 (0.2 1.63 (0.2	10 5	70 90		(2) 2 (2) 0.				29 89	158 3.07 98 1.98	10 0.1		0 0.85 0 0.59	369 264	<1 0. <1 0.		24 6 11 4				75 0.34 23 0.16		<10 <10	171 62	<5 <5	32		
4693 4693a	1.89 <0.2 2.40 0.2	<5 5	110 60	(0.5	C 0 C 1	54 <0	.5	13	67	92 3.54	<10 0.3	7 (1	0 0.84	553	<1 0.	.07	13 3	60	8	<5	20 0.19	<10	<10	80	<5	80		
4694	3.69 (0.2					41 /0		11 14	92 64	71 2.95 93 4.01	10 0.1	o di n di	0 0.24	433	70. 60.		14 6 5 11		10 · 8	(5) S	73 0.12 76 0.24	(10	(10	4 9 99	្ទ	78		

Ľ			•An		al Chen			Geoche			•Regisi			rs	C P	orth N anada hone: élex:		ver, B.C. V7J 2C1) 984-0221 043-52597		Seni	i gu	anti	tat	ive	mere i l		'bĕ	րե	tn≖ .	ana)	ysis
BUR	5 SOUT 5 SOUT 4ABY, 3H1	H SF	RIN		CY L	- I# I1		CATE	05	ANAI	<u>. YE I</u>		IHV DAT	. ‡	4 : ;	18	6203 -40V		A	Nitr mate dige valu 6a, only COMM ATTM	eria estic La, be ENTS	1 00 200 1 200 1 200 1 200 1 200 1 200 1	110. 3 in rten K. side	ved ncom i fo Na, ered	bγ let plet r Al Sr, ac	C ? e fa . Si . Ti	anal or M b. B . Ti	ysis any a. ¶ . W	s. Ši mine Be. (Brd	ince eral Ca, J V c	Cr.
Sample description	41 2	Ag ppa	As ppa	Вз рра	Be ppm	Bi DOM	Ca Z		Cc pon	Cr ppa	Cu pp∎	Fe Z	Ga pp a		La ppm	Ng 2	Min ppe	Ho Na Don Z	Ni ppa	P pps	Pb ppm	Sb ppm	Sr pps	Ti Z	T1 pon	U øpm	y pp <u>a</u>	U ppm	Zn		
95 96 97 97 9 01+559 9 01+559 9 01+559 9 00+759 9 00+559 9 00+555 9 01+055 9 01+055 01+555 01+555 01+555 02+255 9 - 255 9 - 25	4.83 2.07 3.62 2.12 3.00 5.38 3.22 2.54 5.27 6.34 6.00 3.74 3.00	<0.2 0.6 <0.2 <0.2	5 <5 15 <5 5 15 10 5 15 10 5 15 10	1040 560 200 90 60 110 50 50 110 70 80 120 120 120 120 120 120 140	<0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.92 0.44 0.25 0.10 0.10 0.13 0.23 0.23 0.23 0.23 0.15 0.16 0.17	<pre> <0.5 0.5 (0.5) (0.5</pre>	15 21 15 3 2 3 3 1 8 2 6 8 8 1 4 5 5 1 4 7	56 29 117 20 20 21 14 24 19 30 23 21 30 20 21 30 35 20 35 20 36 33	39 126 67 53 22 47 18 23 72 35 94 84 84 84 80 37 20 73	0.63 3.83 2.50 3.42 3.71 3.55 5.01 5.67 4.88 5.43 2.18 4.83	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	0.01 0.23 0.05 0.13 0.06 0.02 0.06 0.02 0.10 0.02 0.10 0.05 0.07 0.08 0.10 0.09 0.10 0.09 0.10	<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 10 10 10 10 10 10 10 10 10 10 10 10 1</pre>	0.07 1.73 0.34 0.75 0.48 0.23 0.47 0.16 0.53 0.28 0.37 0.53 0.53 0.52 0.53 0.52 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.45 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.57 0.57 0.56 0.57		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 6 12 4	520 350 520 980 490 810 490 810 520 420 910 520 420 910 520 910 400 640 720	14 6 3 10 12 14 12 14 12 10 12 14 10 16 16	333635353535353535353535353535353535	21 12 6 8 11 10 10 12 12 12 12 12 12 12 13	0.09 0.27 0.32 0.32 0.14 0.16 0.19 0.20 0.17 0.32 0.17 0.12 0.18 0.11 0.16 0.17 0.12 0.19 0.23 0.12 0.23	C10 C10	10 <10 <10 <10 <10 <10 <10 <10 <	4 42 30 97 73 96 77 72 96 77 105 92 105 94 72 97 103 104 107 85 112 104	ସ ଥି	102 124 38 94 58 54 74 52 38 89 80 54 72 80 54 72 52 52 52 52 52 74		
																				ied :					·	0					

1

ſ

ł

£

÷

ł

€

C

€

į{

C

f

€

£.

€.

C

C

C

10

Ł

i.

	CERTIFIC	ATE	OF ANALYSI	S	BURNABY, B.C. V5B 3 TEL : (604) 299 - 69
PROJE	MPH CONSULTI 301-409 GRA VANCOUVER ECT: V 239 OF ANALYSIS:	B.C.		DATE ENTERED:	7151
===== PRE FIX	SAMPLE		PPB Au		
 S	L 6N	0+00			
S		0+25W	5		
S S		0+50W	5		
S		0+75W	5		
5		1+00W	5		
S		1+25W	5		
S		1+50W	5 . 5		
5		1+75W 2+00W	5 5		
ំ ហ		2+00W 2+25W	5		
5		2+50W	5		
ŝ	L 6N	2+75W	5		
S		0+00	5		
S		0+25W	5		
<u>-</u> S		0+50W	5	·	
S		0+75W	5		
S		1+00W	5		
s S		1+25W	5		
S		1+50W	5		
<u>s</u>		<u>1+75W</u> 2+00W	<u> </u>		
		2+25W	5		
S S		2+50W	5	R	CEIVED NOV 1 1 1986
S		2+75W	5		-IVED NOV 1 1 1986
S		3+00W	5		· · · · · · · · · · · · · · · · · · ·
5		3+25W	5		
S		0+00	5		
S		0+25W	5		
S		0+50W	5		
		0+75W 1+00W	<u> </u>	**************************************	,
ມ 5		1+25W	5		
ŝ		1+50W	5		
S		1+75W	5		
S		2+00W	5		
S		2+25W	5		
S		2+50W	5		
		2+75W	5		
S	1 m.h.t	3+00W 3+05W	5		
S =====	L EN	3+25W	J		
			CERTIFIED BY	:	sbach

, ---r

(CERTIFIC	ATE D	F ANALYSIS		BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJE	MPH CONSULTIN 301-409 GRA VANCOUVER CT: V 239	ANVILLE S B.C.		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME:	7151 86-11-05
	OF ANALYSIS:			PAGE # :	2
PRE	SAMPLE		 РРВ Au	****************	
 S	L 8N	3+50W	 5		
S		0+25W	5		
S		0+50W	5		
0 0 0		0+75W	5		
<u> </u>		1+00W	5		
S		1+25W	5		
S		1+50W	5		
ទេល		1+75W	5		
S		2+00W	5		
<u> </u>	*****	2+25W	5		
5 S		2+50W 2+75W	5		
5		Z+/3W 3+00W	5		
5 5	I 9N	3+25W	5		
S		5+00W.	5		
5		4+75W			
S		4+50W	5		
S		4+25W	5		
S		4+00W	5		
S		3+75W	5		
S		3+50W	5		
S		3+25W	5		
S		3+00W	5		
S		2+75W	5		
S		2+50W	5		
S		2+25W	5		
S		2+00W	5	REC	EIVED YOY : 1 1988
S		1+75W	5		
S		1+50W	5		
		1+25W	5 5 5 5 5 5 5 5 5 5 5 5 5		
S		1+00W	5		
S		0+75W	5		
5		0+50W	5		
S		0+25W	5		
	L 10N		5		
5		0+25E	5 5 5		
5 C		0+50E			
0 C		0+75E 1+00E	5		
0 C	L 10N		ວ 5		
	L 1VN 2222222222222222	172JE =========		ی وی می برد برد این که می می بید این	<u></u>
_			CERTIFIED BY :	Ana	sback

RO	SSBACHE	ER L	ABC	RATOR	۲Y	LTD	•-		SPRINGER AVENU ', B.C. V5B 3N
	CERTIFIC	CATE	OF	ANALYS	SIS				(604) 299 - 691
PROJI TYPE	ECT: V 239 OF ANALYSIS:	ANVILLE B.C. GEOCHE	MICAL			INVO DATE FILE PAGE	TIFICATE#: DICE#: E ENTERED: E NAME: E # :	7151 86-11- MPH866 3	05
-==== ?RE			=====	======================================		nésza	1999999999		
FIX	SAMPLE	NAME		Au					
S	L 10N	1+50E		5					
S		1+75E		5					
S S		2+00E		5					
а 9	1 100	2+25E 2+50E		5 5					
5		<u>2+30E</u> 0+25W		<u>5</u>					
S	14	0+50W		5					
S		0+75W		5					
S		1+00W		5					
<u>n</u> 10		1+25W		5					
S		1+50W		5			<u></u>		
S		1+75W		10					
50		2+00W		5					
50		2+25W		5					
ອ ອ ອ ອ ອ ອ ອ ອ		2+50W 2+75W	•••••••••••••••••••••••••••••••••••••••	<u>0</u>					
s		2+00W		5					
S		3+25W		5					
S		3+50W		5			RECEIVE	D NOV 1	1 1000
_S		3+75W		5				- 1.07 1	1 1986
S		4+00W		10				***************************************	
S		4+25W		5					
S		4+50W		30					
S S		4+75W		5					
and statements in success of	1 1 ON	5+00W 5+25W		5					
5		0+25W							
ŝ	L 117	0+50W		5					
ន ទ ទ ទ ទ ទ		0+75W		5 5 5 5					,
S		1+00W							
S		1+25W		5					
S		1+50W		5					
S		1+75W		ទ ទ ទ					
S		2+00W		5					
<u> </u>		2+25W 2+50W		<u> </u>					1918 - 1914 - 1918 - 1916 - 1916 - 1916 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917
а С		2+30W 2+75W		5 5					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2+00W		5					
S		3+25W		5					/
	L 14N			5					
				CERTIFIED	===== BY :		1.1.20	26-04	d

٠

•

PROJE	MPH CONSULTIN 301-409 GRA VANCOUVER CT: V 239	NVILLE (B.C.		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME:	7151
	OF ANALYSIS:			PAGE # :	4
FRE FIX	SAMPLE		PPB Au		
S	L 14N	3+75W	5		
S		4+00W	5		
S		4+25W	5		
S		4+50W	5		
<u>S</u>		<u>4+75W</u>	5		
S	L 16N	1+50W	5		
S		1+75W	<u> </u>		
S		2+00W	5		
S		2+25W	5		
6		<u>2+50W</u>	<u> </u>		
S		2+75W	E.		
S		3+00W	5		
S		3+25W	5		
S		3+50W	20		
S		<u>3+75W</u>	<u> </u>		
8		4+00W	5		
S		4+25W	see 		
S	L 16N		5		
S	L 18N				
5	······	<u>5+75W</u>			
S		5+25W	5		
S		5+00W	10	DECENTE	
S		4+75W	5	RELEIVED	NOV 1 1 1986
S S		4+50W	5		1.00
		4+25W			
5 C		4+00W	5		
0 C		3+75W	5		
3 C		3+50W 3+25W	5		
а с		3+25W 3+00W	5		
ន ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ		<u>2+75W</u>	5		
с С		2+70W 2+50W	5		
ມ ເ		2+30W 2+25W	10		
с С		2+20W 2+00W	10		
S		1+75W	5		
<u></u>		1+50W	ي ۲		
S		1+25W	5		
S		1+00W	5		
S		0+75W	5		
S	L 18N		5		•
~ ~ ~					
			CERTIFIED BY :	Anon	back

•

•

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD. 301-409 GRANVILLE STREET VANCOUVER B.C. PROJECT: V 239

BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910 CERTIFICATE#: 86605 **INVOICE#:** 7151

5

DATE ENTERED: 86-11-05 FILE NAME: MPH86605

PAGE # :

2225 S. SPRINGER AVENUE

TYPE OF ANALYSIS:	GEOCHEMICAL	PAGE # :	5
=======================================			=======================================

PRE			PPB	
=IX	SAMPLE	NAME	Au	
 S	L 18N	0+25W	 5	
S		0+00	30	
S		0+25E	5	
S		0+50E	5	
លលលលលលលលលលលលលលលលលលលលលលលលលលល 		0+75E	5	
S		1+00E	5	
S		1+25E	5	
S		1+50E	5	
S		1+75E	5	
S		2+00E	5	
S		2+25E	5	
S		2+50E	5	
S		2+75E	5	
S		3+00E	5	
S		3+25E	5	
S		3+50E	5	
S		3+75E	5	
S		4+25E	5	
S		4+50E	5	
S		4+75E	5	
S		5+00E	5	
S		5+25E	5	RECEIVED NOV 1 1 1986
S		5+50E	5	
S		5+75E	5	
S	-	6+00E	5	
S		6+25E	5	
S		6+50E	5	
5		6+75E	5	
S		7+00E	5	
5		7+25E	5	
5		7+50E	5	
S		7+75E	5	
S	L 18N		5	
	L 20N	5+00W	5	
S		4+75W	5	
5		4+50W	5	
S		4+25W	5	
S		4+00W	5	
ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល		3+75W	5	
5		3+50W	5	Λ
			CERTIFIED	BY: Amboren

	BRACHER LAE		LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJECT TYPE OF	H CONSULTING LTD. 301-409 GRANVILLE ST VANCOUVER B.C. : V 239 ANALYSIS: GEOCHEMIC	θL_	CERTIFICATE# INVOICE#: DATE ENTERED FILE NAME: PAGE # :	7151
FRE FIX	SAMPLE NAME	PPB Au		
 S	L 20N 3+25W	 5	99- 99	
S	3+00W	5		
S	2+75W	5		
S	2+50W	5		
<u>S</u>	<u>2+25W</u>	5		
S	2+00W	5		
S	1+750	5		
S S	1+50W 1+25W	5		
S	1+20W			
<u>5</u> 5	0+75W	5		
S	0+50W	5		
S	0+25W	5		
S	L 20N 0+00	5		
<u>s</u>	0+25E	5		
S	0+50E	ير. بريا		
S	0+75E	5		
S	1+00E	5		
S	1+256	5		
<u>s</u>	<u>1+50E</u>	5	****	
s S	1+75E 2+00E	5		
	2+25E	5		
S	2+50E	170	REC	CEIVED NOV 1 1 1986
S	2+75E	5		
S	3+00E	5		······································
S	3+25E	5		
S	3+50E	5		
S	3+75E	5		
5	- 4+00E	5		
ន ន ន ន ន ន ន ន ន ន ន ន ន ន ន ន ន ន ន	4+25E	5		
5 C	4+50E	5		
0 ·	4+75E 5+00E	5 5		
5	5+25E	5		
<u> </u>	5+50E	 5	99	
S	5+75E	5		
S	6+00E	5		
	6+25E	5		
S	L 20N 6+50E	5		ſ
		CERTIFIED BY :	A.A.	ploret

ROS	SSBACHE	ER L	ABORATO	RY LTD	-	2225 S. SPRINGER AVENUE
	CERTIFIC	CATE	OF ANALY	SIS		BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJE	MPH CONSULTI 301-409 GRA VANCOUVER ECT: V 239 OF ANALYSIS:	ANVILLE B.C.		INVO DATE	ENTERED:	7151
===== PRE		======	======================================	==============================		*=========================
• • • • • • • • • • • • • • • • • • • •	SAMPLE	NAME	ггө Ац			
S	L 20N	6+75E	5	·		
S		7+00E	5			
S		7+25E	5			
S		7+50E	5			
<u>s</u>		7+75E	20			
		8+00E	5			
S	L 22N	3+25W	5			
S		3+50W	5			
S		3+75W	5			
<u></u>		4+00W	5		ann gur a bharadh an fa cad yarad an ann a darr anna ag c bagada bugar a	
	1 2011	4+25W	5			
5		4+50W	5			
5	L 24N	3+50W	5			
а с		3+75W 4+00W	5			
ა ი თი თ		4+25W				
S	L DAN	4+20W 4+50W	د 140			
5	G.A. SOI		5			
L	G.A. SIL		5			
L	0.0.01	#2	5			
		#3				
L.	G.A. SIL		5		R	ECEIVED NOV 1 1 1986

CERTIFIED	BY : Morsborch	

~

IC,				C	he	m	e	x L	.a	bs	L	td	_	212 North Canad	Vanco	bank Ave. uver, B.C. V7J 2C1												
			•Anal	lytical	Chemi	sts	•	Geochen	nists	•	Registe	red A	ssayers	Phone Telex:	(60	4) 984-0221 043-52597		Semi	qu.	anti	tati	venu	սլե։	• 1	went	I C F	anal	ysis
				[EFT	IFIG	ATE	<u>0</u> E	ANGL	<u>7515</u>]_	······				_									0.5 g	am of Nince	
TO : ROS	SBACHER	E LA	BORA	ם אנונג	Y · I. I	HIT	ED					لسي	CERT. 4	: A:	9620	591-001-	digestion is incomplete for many minerals.											
	15 SOUTH												INVOICE DATE	⊧:I8		591		Ga,	La,	M3.	к,)	43. (Зг, '	T1,	Ti,		IV er	
BUF	WABY, B		N 116-1	i I'.	riv 41:	01							P.O. #	พ่		00					51961			G 10 L	4.4011	01030	+ * 12 -	
	381												V239					OOMM Attn			DSSBA	ACHE	3					
Sample	Al	àq.	Аs	83	ве	Bi	Ca	Cđ	Ĉ6	Cr [.]	Eu	Fe	63 K	La N					Pt	Sb	Sr	Ti	71	U		¥ Zn		
description	X			DDS	ope	ppn	7	pp#	ppa	ppa	pps		ppa Z	ppa	par	opa 3	p p1	spa.	ppa	ppm	ppa		pp n j	pne p	ppa pr	400 40		
LOGN 00+00 -		0.2 0.2	10 <5		(0.5 (0.5		0.26	<0.5 <0.5	11 2	22 6		4.00 0.91	<10 0.09 <10 0.03	10 0.7					10 16	<5 <5	13 0 16 0					(5 92 (5 40		
LOGN 00+50M	3.04	0.2	्ऽ	30	<0 . 5	$\langle C \rangle$	0.13	0.5	6	21	20	4.37	<10 0.05	<10 0.29	9 643	(1 (0.01	8	9 700	12	েই	9 3).26	<10 <	(10 1	123 - <	(5 50		
1068 00+750 1068 01+000		0.4	10 .5		0.5 (0.3		0.17	<0.5 (0.5	9	28 21	43 24	4.21	<10 0.07 <10 0.05	<10 0.5 <10 0.3		<1 <0.01 <1 <0.01			16 18	(5 (5	11 0					(5 68 (5 50		
LOGN 01+25W		0.2	10		<0.5		0.13		13	29		4.61	<10 0.04	(10 0.4)		<1 <0.03		3 1240	14	(5	10 0					(5 76		
LOGN 01+504		0.2	25		<0.5		0.23	(0.5	14	45	74		(10 0.05	10 0.7		(1 0.01) 1820	10	(5	10 0					(5 82		
LC6N 01+75W LC6N 02+00W		0.2	10 <5		<0.5 (0.5		0.15		11 9	45 47	35 34	5.03	<10 0.04 <10 0.05	<10 0.5%				7 1570 } 1600	10 8	<5 ব্য	8 (3 ((5 76 (5 92		
LOGN 02+25W	2.46	0.2	5	30	(0.5	3	0.16	:0.5	2	32	ā		(10 0.03	(10 0.2)		(1.0.01	. (940	14	<5						5 32		~
LIGH 02+50W LOGN 02+75W		0.2 0.2	15 10		(0.5 (0.5			0.5	12	50	47		<10 0.06	10 0.71		(1 0,01		1420	14	<5	15 0					(5 · 36		
LOSN 02+75		0.2			(0.5			<0.5 <0.5	8 13	43 19	32 55	4.36 3.35	<10 0.05 <10 0.12	<10 0.44 10 0.73		<1 0.01 <1 0.01		1 1290 1 820	14 10	(5 (5	11 0					(576 (576		
107N 00+25N		0.2			<0.5		0.21		13	23	50	3.98	<10 0.10	10 0.7	967	<1 0.01	16	5 780	10	<5	13 0	.25	<10 <	(10	98 🤇	(5 86		
LO7N CO+SCU - LO7N CO+75W		0.2			(0.5 (0.5		0.19 0.19		9 10	19 25	43 47	3.21 4.29	<10 0.08 <10 0.08	10 0.65		<1 0.01 <1 0.01			8 14	্র ত	12 0 11 0					(5 50 (5 76		
L07N 01+0CW		0.2			0.5			(0.5	9	23	34		<10 0.08	<10 0.35		1 (0.01			10	(5	12 0					.5 76 .5 64		
LOZN 01+CSN		0.2	15		<0.5			<0.5	11	31		4.63	<10 0.05	<10 0.5		<1 <0.01		1210	16	<5	9 0					(5 84		
LO7N 01+50W LO7N 01+75W		0.2	5 15	70 70	<0.5 <0.5		0.16 0.19	<0.5 <0.5	9 9	34 38	45 : 33	3.92 5.17	<10 0.05 <10 0.04	<10 0.50 <10 0.50		<1 (0.01 <1 0.01		1290	8 · 16	(5 (5	80 90					(5 68 (5 74		
107N 02+00W	5.04	0.2	15	109	(0.5	<2	0.35	(0.5	12	48		4.98	<10 0.07	10 0.26		<1 0.01	23		10	< <u>5</u>	16 0	.20				(5 92		
LO7N 02+250 LO7N 02+500		0.2	15 5		<0.5			(0.5	9	40		4.49	(10 0.08	(10 0.80		(1 0.01			12	(5	15 0			-		(5 76		
LO7N 02+350		0.2	ა 5	70	<0.5 <0.5		0.25 0.45	<0.5 <0.5	7 10	31 62	29 . 43	3.41 4.28	<10 0.04 <10 0.06	<10 0.43 10 0.6		<1 0.01 <1 0.01			8 14	<5 <5	13 0 13 0					(5 60 (5 78		
L07N 03+00W	3.84	0.2	10	60	<0.5	<2	0.25	<0.5	5	30	24 -	4.05	<10 0.05	<10 0.33	400	(1 0.01	11	1040	12	<5	14 0	.25	<10 <	10 1	02 (5 62		
LO7N 03+258 LJ3N 00+00		0.2 0.2	10 15	70 140			0.32	<0.5 (0.5	8 12	29 21		4.14 3.82	<10 0.06 <10 0.09	<10 0.40 10 0.70		<1 0.01 (1 0.01			18 22	(5 ج	19 0					(570 (583		
LOSN 00+25W		0.2			(0.5			(0.5	15	21		3.22 3.73	<10 0.09	10 0.63		(1 (0.01			10	(5 (5	13 0 12 0					.5 83 (5 94		
LOSN 00+508 -	3.39	0.2	5	90	<0.5	3	0.16	(0.5	6	16	26	2.94	(10 0.05	<10 0.34	334	<1 (0.91	9	530	14	<5	10 0	.16	<10 <	(10	83 <	(5 52		
LOBN 00+750 - LOBN 01+000		0.2		120 160	<0.5 <0.5		0.15	<0.5 <0.5	11 12	28 32		4.54 4.46	<10 0.08 <10 0.13	<10 0.77 10 0.97	-	<1 <0.01 <1 0.01			20 12	<5 <5	9 0 17 0					(580) (596)		
LOBN 01+25W		0.2		100			0.24		13	40	88		<10 0.13	10 0.76		(1 0.01			8	<5 <5	1/ 0					(5 104		
LOON 01+500		0.2		100				(0.5	14	41		5.57	<10 0.07	10 0.74		(1 0.01		2020	12	<5	13 0	.25				5 84		
LOSN 01+754 Losn 02+904		0.2 0.2	10 5	109 30	<0.5 <0.5		0.27		12 9	43 39		4.46 4.57	<10 0.07 <10 0.07	10 0.6: 10 0.5:				9 1100 5 2820	14 14	(5 (5	14 (14 (<10 < <10 <		114 (107 ((596 (576		
LOBN 02+25N	6.07	0.2	<s< td=""><td></td><td>(0.5</td><td></td><td></td><td>(0.5</td><td>12</td><td>48</td><td>56</td><td>4.82</td><td><10 0.05</td><td>10 0.6</td><td>5 993</td><td></td><td></td><td></td><td>10</td><td><5.</td><td></td><td></td><td>(10) (</td><td></td><td></td><td>(5 78</td><td></td><td></td></s<>		(0.5			(0.5	12	48	56	4.82	<10 0.05	10 0.6	5 993				10	<5.			(10) ((5 78		
LOSN 02+5(N	3.56		5	50			0.26		4	33			<10 0.04					2440	10	<5	12 0					(5 60		
LOSN 02+75W LOSN 03+00W	1.64 3.57		5 5	50 50	<0.5 0.5		0.33		3 4	28 32			<10 0.03 <10 0.04					7 470) 800	14 14	₹5 ₹5	14 (<10 < <10 <			(5 40 (5 54		
LOSN 03+258	1.96		5		(0.5			(0.5	5	4?			310 0.04					460	16	:5						(5 44		

PECEIVED NOV 2 6 1988

		(Che	m	ex	La	bs	Ltc	1.	212 B North \ Canada	/ancou	ank Ave. ver, B.C. V7J 2C1										
R. Sandar		•Analyı	tical Chem	ists	•Geo	chemists	•	Registered /	Assayers	Phone: Telex:	(6 04) 984-0221 043-52597		Semi , Nitric	-Aqua	-Regi:	a di¢	esti	on of	0.5	jw of	
				ERTI	FICA	TE DE	ANAI	YEIE -					1	matari digest								
TO : ROSS	SBACHER L	ABOEAT	ORY-L	тите	: D				CERT. 4	: A8	6205	91-002-	A	values	repo	rted :	for A	1. S	b. Ba	, Be,	Сэ,	Cr.
53.01	5 SOUTH SI	5 D T M C Z	10 AU 10	me					INVOICE DATE		6205 -NOV			Ga, La only b	. Mg,	K, Na sider	a, Sr ad as	, 1 1 . sem	. Ti. d-dua	W an Intita	d V a Aivia	ап
	ABY, B.C.		IN HVG	(UL					P.O. #	: NO		55				21001						
VSB	1 M E								A536					COMMEN: ATTH:		OSSBA	CHER					
		•							<u> </u>	• • • •										W Z		
Sample description	Al Ag Dpm		8a 8e p≊ pp∎	Bi ppm		Cd Co pa ppa	Cr ppm	Cu Fe ppa 2		La Mg ppm Z		Ио Nз ррв Z	Ni ppm	P Pt ppm ppi			Ti T. Z pp:		y pps	ppa po		
L09N 02+50U	3.61 0.2		90 (0.5	<u></u> (1)).14 (0		27	30 4.55	10 0.04		489	(1 (0.01	11	690 12	<5	10 0.2	20 (1)) <10	117	<5 7·	4	
LOSH 03+300 LOSN 00+250	3.15 0.2	-	90 (0.5		0.07 <0		18	29 4.19		<10 0.43		(1 (0.01	8			5 0.1				(5 6		
L09N 00+50W	3.39 0.2		70 <0.5		.08 <0		21	9 4.86	10 0.03	(10 0.24		<1 <0.01		1260 10		6 0.1			125	(5 4)	6	
LO9N 00+750+ Lo9n 01+000+	3.67 0.2 3.72 0.2		90 <0.5 90 <0.5	- C - C - C - C - C - C - C - C - C - C - C - C	0.09 0 0.10 0		27 27	47 4.96 33 4.88	(10 0.05	(10 0.65	481 426			1410 1 1290 10		6 0.1 7 0.1			119 117	<5 7 <5 7-	й л	
LC9N 01+25W	4.97 0.2		20 <0.5).11 <0		27 33	65 4.71	10 0.04 10 0.06	<10 0.47 <10 0.76		<1 <0.01 <1 <0.01		1720 6		7 0.3				<5 9	+ 6	
LC9N 01+50U	2.66 0.2		60 (0.5	ä			24	23 3.09	(10 0.05	(10 0.44		<1 <0.01	10		-	6 0.1			109	<5 6	-	
L09N 01+75W	2.35 0.2	20	70 (0.5	<2 ().14 <0	.5 7	25	34 3.16	<10 0.03	<10 0.35		<1 <0.01	11	950 10	<5	6 0.1			85	<5 5	8	
L09N 02+00W	2.95 0.2		60 (0.5		.13 (0		31	31 3.97	<10 0.02	(10 0.42	466	<1 (0.01		1300 4	<5	8 0.1			97	<5 5	-	
LO9N 02+25W Lo9N 02+56W	4.66 0.2 2.33 0.2		00 (0.5 50 (0.5	(2) (2)).20 0 .14 <0		43 31	59 4.59 34 3.30	10 0.07 <10 0.02	10 0.90		<1 0.01 <1 <0.01	20 13		<5 <5	9 0.1			121 83	(5 8)	· ·-·	
LO9N 02+75W	4.30 0.2		10 <0.5).15 <0		35	63 3.73		<10 0.73		<1 <0.01	19			6 0.1			50 95	(5 9)	6	
LC9N 03+00W	3.54 0.2		90 <0.5	(2 0			49	56 3.83	<10 0.04	<10 0.58	573	(1 (0.01	20			6 0.1			104	<5 7	0	
L09N 03+25W	4.59 0.2		90 <0.5	(2) (36	64 5.29		(10 0.64	428	<1 <0.01		1780 3		8 0.3			128	(5 9	a	
LION 05+00W- LION 04+75W	1.12 0.2 2.34 0.2		30 <0.5 50 <0.5	0 0	13 <0 13 <0		10 18	10 1.85 25 3.19	<10 0.02 <10 0.04	<10 0.12 <10 0.35	261 474	<1 <0.01 <1 <0.01	2 8	320 6 800 6	••	6 0.1 6 0.1			43 73	<5 40 <5 6) /	
LICN 04+50W	2.59 0.2		50 (0.5 50 (0.5		13 (0		22	25 3.19	(10 0.05	<10 0.35	4/4	<1 <0.01	-	1100 <2		6 0.1			82	(5 8	+ a	
L10N 04+25W	3.45 0.2		90 <0.5	0.0			109	33 3.85	10 0.05	<10 0.93		<1 0.01	38			10 0.3			97	(5 11)	-	
L10N 04+0CW-	4.29 0.2		30 <0.5	(2)			27	71 4.60	10 0.30	<10 0.91	822	(1 (0.01	15			8 0.2			135	<5 9		
LION 03+75W LION 03+50W	4.83 0.2 2.54 0.2	-	20 (0.5 50 (0.5).14 <0 .14 <0		26 21	63 5.09	10 0.14	<10 0.69	521	<1 <0.01		1130 6		8 0.3			130	<5 10	-	
LION 03+250	2.59 0.2		60 (0.5 60 (0.5	0 0			33	29 3.75 35 2.74	<10 0.03 <10 0.02	<10 0.30 <10 0.44	244 508	<1 <0.01 <1 <0.01	7 14	500 6 490 6		6 0.1 4 0.1			110	<5 56 <5 64	- •	
108 03+00W	2.44 0.2		50 (0.5	~ Č 0			27	30 3.16	<10 0.03	<10 0.39	411	(1 (0.01	10	760 6	3	7 0.1			39	(5 5		
L10N 02+75W	3.63 0.2		50 < 0.5	<2 0			41	39 3.81	<10 0.03	(10 0.49	274	<1 <0.01	15	800 E	(5	10 0.1	18 (10	(10	96	<5 6·	-	
10N 02+50W	5.65 0.2		80 <0.5		.16 <0		42	84 4.38	10 0.03	(10 0.93	419	(1 (0.01	20	760 2		7 0.3			114	(5 8)	-	
LION 02+259 LION 02+000	3.49 0.2 2.37 0.2		50 <0.5 10 <0.5	0 0			35 22	34 4.26 23 4.03	<10 0.02 <10 0.02	<10 0.43 <10 0.29	313 200	<1 <0.01 <1 <0.01	13 5	660 6 640 6	. (5 (5	5 0.1 5 0.1			113 110	<5 63 <5 48	2 8	
LION 01+758	4.14 0.2	-	50 (0.5				28	21 5.40	10 0.02	<10 0.30	379	(1 (0.01	7	1290 2		4 0.1			133	(5 5)	2	
10N 01+50W	2.23 0.2	56	60 (0.5	<2 0	.06 <0	.5 (1	19	23 4.31	<10 0.03	<10 0.29	284	<1 <0.01	5	570 3	<5	4 0.1			114	<5 43	-	
LION 01+250	2.40 0.2		60 (0.5	(2 0			17	30 3.73		<10 0.32	410	(1 <0.01	6	660 6		6 0.1			105	(5 4)	<u></u> ه	
10N 01+COU 110N 00+75W	3.54 0.2 2.94 0.2		X0 <0.5 B0 <0.5	(2) (2)			21 18	63 4.02 33 4.34	<10 0.05 <10 0.03	<10 0.65 <10 0.40	916 439	<1 <0.01 <1 <0.01	11 7	680 4 780 2	(5 (5	5 0.1			96 117	<5 63 <5 58	·	
LION 00+500	3.36 0.2		50 (0.5		.05 (0		17	29 4.26		(10 0.40			•	1010 6	3	3 0.1			102	<5 52	2	
LION 00+25W	3.94 0.2		40 <0.5	ā			20	56 3.97						1010 4		6 0.3				<5 7	-	
10N 00+00	3.24 0.2	K5 18	30 <0.5	{2 })	.10 0	5 9	19	52 4.00	<10 0.07	(10 0.53	309	<1 <0.01	10	930 8		7 0.1	8 (10	(10		<5 7	2	
LION 00+25E	2.78 0.2		B0 (0.5		.09 <0		16		<10 0.03			<1 <0.01		360 E	<5		10 8		102	<5 5·	4	
10N 00+505 -	1.73 0.2		50 (0.5 Do (0.5		.09 <0		12	12 3.43		(10 0.21	172	(1 (0.01		310 4			.3 <10		89 72	<5 30	ز -	
10N 01+00E -	3.55 0.2 3.31 0.2		90 (0.5 10 (0.5		.09 0 .12 .0		20 13		<10 0.03 <10 0.04			<1 <0.01 3 (0.01		1000 4 430 2	(5 ্য		14 (10 .3 (16		72 78	<5 94 <5 94		
10N 01+25E	3.66 0.2				.29 (0		35		<10 0.07	10 1.03		<1 0.01		670 2	<5	14 0.1	0 /1/	- 210		<5 120	· · · · ·	

PECEIVER HOY 2 6 1989

C			Ch	en	1e	хL	.at)S	Ltc	Ι.		Vanc	sbank Ave. Duver, B.C. V7J 2C1											
		•Ana	ilytical Ch	emists	•	Geoche	mists	•/	Registered A	Assayers	Phor Telex		04) 984-0221 043-52597		t° ≥m		·1· ·					1. ICF		
		-		CER	TFI	CATE	0£ A	NAL	YSIS				- <u></u>	-	mate	rial	fol	Regia lowed incom	t₀y []	1CP =	analys	sis.	Since	e thi
TO : R05	Macher L	(2007	u îm c	ſΞÐ					INVOICE			6.0 000. Fai		e du		. go	fod fo	à à!	t., St	s, Sh	. ⁹ е-	Sa.	Cr.
	5 SOUTH SI MABY, B.C. 3N1			(AUS						DATE P.O. # V000	: :		36-V.	Ga, La, Mg, K. Na, Sr, Tl. Ti. W and V can only be considered a construction structure COMMENTS : ATTN: P. ROSSBACHER										
Sample description	Al Ag X pps	é é Badd	Ba B ppa pp		נ] ז			13 19	Cu Ee ppa X			Mg P X PI	n Ho Na Il ppa Z	Ni ppa	р рр ь	PL opm	Sb ppa	Sr Ti ppm 7		U star	y , a	V Z ppn co		
LION 01+50E	2.73 0.2	5	80 <0.		0.26		5	25	24 1.45	10 0.05	10 0.			10	560	6	ব্য	14 0.23		(10	114		6	
LION 01+75E- LION 02+00E	4.05 0.2 4.26 0.2	10 5	70 <0. 110 (0.		0.15 0.19		7 3	32 41	33 4.95 38 6.39	<10 0.04 10 0.06	<10 0. 10 0.			10 17	990 790	4 4	് പ്	9 0.19 14 0.27		<10 <10	106 152	5 9	18 13	
L10N 02+25E L10N 02+50E	3.43 0.2 2.95 0.2	(5 5	160 (0. 140 (0.		0.31	<0.5 <0.5	9	37 31	25 3.86 34 4.06	10 0.03 10 0.07	10 0. 10 0.			20 17	160 220	É 4	(5 (5	22 0.23		<10 <10	112 109	<5 8 .5 7	14 14	
L128 00+25W	6.51 0.2	25	200 (0.	5 (2	0.22	<0.5	14	18	123 6.12	<10 0.08	10 0.	88 10	1 1 (0.01	22	1280	10	(5	10 0.15	<10	(10	97 129	<5 16 √5 6	6	·
L13N 00+500 L13N 00+750	3.61 0.2 4.37 0.2	20 10	80 <0. 60 <0.		0.13 0.11		3 4	23 25	28 5.46 34 5.07	10 0.04 <10 0.04					1300 1230	3 4	<5 <5	9 0.23 8 0.20		<10 <10	111	(5 6	ia	
L12N 01+00W- L12N 01+25W-	2.35 0.2 1.25 0.2	(S 5	80 <0. 40 <0.		0.11 0.12		6 3	19 9	29 3.99	10 0.05 <10 0.03				9 4		9 2	্র <5	8 0.20 7 0.15		<19 <19	107 54	୍ଟ 5 (S 2	6 6	
L12H 01+55W	4.42 0.2	.5	100 (0.	5 (2	0.15	1.0	;	35	48 1.62	10 0.08	10 0.	62 54	6 (1 (0.01	12	750	2	<5	11 0.25	<10	<10	113	<5 7	2	
L12N 01+75W - L12N 02+00W -	2.69 0.2 4.50 0.2	5 5	70 (0. 80 (0.		0.13		7 7	19 31	37 3.61 48 4.00	<10 0.06 10 0.05	<10 0. <10 0.			7 12		10 4	<5 <5	7 0.17		<10 <10	95 115	<55 <57	0 2	
LICN 02+250 LICN 02+500 -	2.96 0.2 4.61 0.2	10 5	90 (0. 50 (0.		0.18 0.17		9 6	29 33	56 3.57 40 4.54	<10 0.05 10 0.03	<10 0. <10 0.			14 12		4	(5 (5	9 0.19 10 0.21		<10 <10	95 115	<5 6 <5 6	4	
L12N 02+75U	4.80 0.2	10	60 <0.	s <2	0.17	(0.5	4	36	30 6.04	10 0.04	<10 0.	49 3	9 (1.0.01	9	1440	2	-(5	11 0.27	(10	:1:	139	<5 7	4	
L12N 03+004 L12N 03+25V.	3.09 0.2 4.29 0.2	10 10	40 (0. 130 (0.		0.30		4 9	37 46	16 5.91 67 4.15	20 0.04	10 0. 10 0.			10 23	2000 890	10 8	<5 <5	11 0.28		(10 (10	145 118	53 (59	2 14	
L12N 03+50W- L12N 03+75W-	3.22 0.2 3.36 0.2	<5 5	70 (0. 70 (0.		0.25		9 B	39 32	43 3.14	(10 0.04 10 0.05				17	820 1290	4 10	(5 (5	9 0.18 10 0.24		<10 <10	92 110	<5 6 <5 8	io	
L12N 04+00U -	4.21 0.2	10	80 (0.	្រ ្	0.29	<0.5	13	27	53 4.24	10 0.07	10 0.	54 34	4 (1 0.01	12	1050	3	:5	15 0.23	(10	<10	107	(5 II	.0	
L12N 04+25U L12N 04+50W	3.95 0.2 3.04 0.2	<5 5	100 <0. 60 <0.		0.20		7 7	25 24	51 4.00 34 3.40	10 0.10 10 0.10	10 0. 10 0.			13 10		6 6	(5 (5	12 0.29 6 0.25		<10 <10	99 111		10 15	
L12N 04+759	3.56 0.2	<5 10	70 (0.		0.16 0.21		9 15	26 32	44 3.73	(10 0.07	10 0.			12 17		4 8	<5 <5	8 0.21 13 0.29		<10 <10	93 137	<5 10 <5 10	-	
L12H 05+004 - L12N 05+25W -	4.64 0.2 2.97 0.2	10 <5	100 <0. 60 <0.	5 <2	0.21	(0.5	10	24	78 4.67 37 3.47	10 0.13 10 0.07	10 0. 10 0.	50 6	4 <1 <0.01	11	760	8	<5	10 0.21	<10	<10	94	<5 10)0 - -	
L14N 00+35W - L14N 00+56W -	0.90 0.2 4.02 0.2	5 5	40 (0. 90 (0.		0.11		3 7	9 25	9 2.12 40 4.60	(10 0.01 10 0.05	<10 0. <10 0.			3 12		ි 8	(5 ≺5	8 0.13 8 0.29			70 30		13 72	·
L14N 00+75W-	1.33 0.2	√5	40 KC.	5 (2	0.10	(0.5	1	15	10 3.27	10 0.02	<10 ð.	21 22	9 (1-0101	4	320	4	<5	5 0.00	<19	<10	123	5 2	16 12	
L14N 01+00U- L14N 01+25U-	3.85 0.2 4.34 0.2	<5 10	90 (0. 120 (0.		0.12 0.18		7 11	25 31	43 4.30 49 5.07	<10 0.05 <19 0.03	<10 0. 10 0.			12 17		4 12	<5 ⊲5	10 0.19 14 0.23		<10	98 103	(5 7	02	·
L14N 01+50W L14N 01+75W	4.04 0.2	5 10	130 (0. 30 (0.		0.17 0.10		9 6	2B 27	53 4.48 20 5.32							12 14	<5 <5	12 0.25			112 123	୍ୟ 7 ୍ୟ 5	72 54	·
L14N 02+00W	4.31 0.3 4.12 0.2	10 5	70 .0.	5 (2	0.15	(0.5	7	25 25 22	45 4.39	<10 0.06	<10 0	46 4	e 2 (0.01	11	850	10	(5	10 0.25	5 <10	40	115	<5 €	,4	
L14N 02+25U - L14N 02+50U -	3.08 0.2 3.11 0.2	√5 5	70 (0. 60 (0.		0.14		9 9	22 28	22 3.72 37 3.80						630 600	12 14	্র ্র	10 0.21			100 100	<5 4 <5 4	8 14	
L14N 02+75W	3.54 0.2	5	70 (O.	5 (2	0.19	(0.5	9	30	42 4.15	<10 0.04	(10 0	51 3	0 (1 (0.01	13	810	9	< 5	11 0.22	<10	<10	104 168	୍ଟ ମ ଏସ ମ	i4	
L14N 03+00W - L14N 03+25W -	3.57 0.2 4.61 0.2	<5 10	B0 <0. 50 √0.		0.20 0.24	(0.5 (0.5	8 12	34 23	42 4.18 73 5.04	(10).03	<10 0	.76 3:	4 1 0.01	29		14 3	(5 (5	12 0.2 10 0.2	E <10	<10	124	୍ଟ ୫	 	
L14N 03+50W	3.49 0.3	15	120 <0.	.5 (3	0.29	<0.5	14	31	53 4.30	<10 0.11	10 0	.69 10	i6 <1 0.01	16	1030	16	(5	12 0.2		. ::) ~eft		(5 ž	/0 31	•

RECEIVED NOV 2 6 1936

Promition and a const

KC				С	he	en	1e	хL	.a	bs	s Lto	1.		Nor	Broc th Van ada														
			•Ana	lytica [Chem	oists		Geoche	mists		Registered	Assayer	5	Pho Tele) 984-0221 043-52597			•		tativo -Regia							sis
				{	L	יתבר	IFI	CATE	0F	<u>aMai</u>	TETEL							-	mate	rial	fo	-kegi: llowe) s inco	t by	ICP	anal	ysis	: Si	nea -	
TO : ROSS	BACHER	LAF	GRA	ATOK	Y L	INIT	00					CER		:			91-005-A		valu	es r	epo	rted 1	or A	1, 5	b, B	a, B	e. C	a. Co	г.
) SOUTH MARY, B. 3년1		ING)ER	AVEN	4UE	<u></u>					DAT) P.O. VC20	E . ₽		1062 25-X Non2	0V-		Gs. La, Mg. K. Na, Sr. Tl. Ti, W and Y can only be considered as semi-quantitation CONMENTS : ATTA: P. ROSSBACHER											
Saple description	Al I		As poa	Ba pp n	Be ppm	LG MQQ	C 3 2		Co ppa	C: opa	Cu Fe		ĸ	La pp n		ăn Spa	No Na pps Z	Ni ppm	P Pa	₽Ŀ pp∎	St ppa		'i Ti X pp:	-	i) pps	¥ ppm	La pea		
LIEN 00+250 -	1.75 0.		< 5		<0.5		0.15		4	13	19 2.13		0.04	<10 0		74	<1 <0.01	8	420	10	<5	12 0.1			51	\$	40		
LISN 00+00 LISN 00+25E	2.50 0 2.13 0.		<5 িয		<0.5 <0.5		0.17		5 3	13 19	23 2.71		0.07 0.04	<10 0 10 0		263 194	<1 <0.01 ⊖ 0.01	13 7	520 690	6 3	<5 .5	10 0.1 12 0.1			66 82	<5 (5	54 44		
L18N 00+50E* L18N 00+75E*	4.37 0 5.57 0.		(5 5		<0.5 <0.5	3		0.5	7	30 45	24 5.53	<10	0.05	10 0	.42	66	<1 <0.01	11	990	3	(5	10 0.3	5 (1)	- :1¢	115	(5	78	~	
LIGN GI+CDE	3.23 0		5 (5		0.5			(0.5 (0.5	34 9	+3 29	26 6.03		0.17	10 1 10 0		C0 114	<1 0.01 <1 0.01	33 16	1120 740	10 8	্য ব্য	22 0.1 14 0.1			119 83	් ර	123 76		
L128 01+25E	5.47 0.		2		<0.5		0.26		12	37	42 5.31		0.09	10 0	.63 6	39	(1 0.01		1260	8	<5	17 0.2	9 (1)		109	(5	115		
LIBN 01+50E* LIBN 01+75E*	6.29 0 5.10 0.		(হ (হ		<0.5 <0.5		0.22		17 12	39 36	70 5.47		0.0B 0.06	10 0 10 0		/94 12	<1 0.01 <1 0.01	26 22	880 1000	10 6	<5 <5	15 0.1 13 0.1			100 96	≺5 ∢5	126 90		
LISN CO+OOE -	3.33 0	.2	<5	130	<0.5	< <u>(</u> 2	0.26	(0.5	14	30	47 4.14	(10	0.27	10 0		<i>о</i> .			530	10	ंड	16 0.1			34	5	24		
LISN 02+25E - LISN 02+50E	1.98 0. 5.00 0.		्ड 20		0.3 (0.5		0.31	0.5	5 20	20 43	10 2.66 60 5. 25		0.05 0.10	10 0 10 1		22 66	<1 (0.01 <1 0.01	10	370	8	(5 (5	16 0.3			71	<5 (5	54		
LISN 02+75E	4.12 0.				<0.5		0.30		14	36	41 4.55		0.09	10 0	-	87	<1 0.01	32 25	760 950	12 14	<5 (5	20 0.3			113 105	<5 <5	138 112		
LIBN 03+0CE - LISN 03+25E -	3.45 0.				(0.5		0.26		9	33	31 3.99		0.05	10 0		15	<1 0.01	1B	520	10	<5	16 0.3			98	<5	78		
LIBN 03+SCE	5.29 0. 2.19 0.		5 ∢5	170 70	୍ଡ.ଅ (0.5		0.24		17	47 20	60 5.06 7 3.03		0.11	10 0 10 0		97 110	<1 0.01 (1 <0.01	33 8	1010	8	(5 ∖5	16 0.2			111 82	୍କର (5	150 62		
19N 03+75E	0.57 0.				<0.5	:2	3.95	1.0	3	B	19 0.51	10	0.04	<10 0	.16 2	41	1 0.01	6	980	8	<5	116 0.3	3 (10	<10	20	<5	100		
LIBN 04+25E - LIBN 04+50E -	3.86 0. 3.33 0.				<0.5 <0.5		0.26	<0.5 <0.5	12 16	29 27	35 4.65 37 4.53		0.09	10 0 <10 0		20 79	<1 0.01 <1 0.01	19 16	630 1460	6 12	<5 ⊲5	12 0.3			102 99	<5 <5	124 119		
LIBN 04+75E	4.14 0.	.2	<5	230	(0.5	$\langle 2 \rangle$	0.24	<0.5	16	27	59 4.55		0.11	<10 0			(1 0.01	22	990	22	G	10 0.3			106	Ğ	124		
L18N 05+01E - L18N 05+25E -	4.14 0. 2.93 0.			200 100	<0.5 70 5		0.34		17 9	26 24	57 4.49 22 3.58		0.16	10 0 10 0	.29 13	63 .93	<1 0.01 <1 0.01	21 15	770 650	12 8	<5 (5	13 0.3			99 PA	<5 /5	134		
LISH 05+50E -	3.01 0.		10		0.5		0.30	(0.5	11	34	10 3.93		0.05	10 0		83 85	(1 0.01	15 15	360 360	8 10	(5 (5	15 0.3 21 0.3			84 101	.<5 <5	85 84		
LIBN 05+75E -	1.81 0.				<0.5	-			6	21	16 2.39		0.07	10 0	-	53	-1 0.01	13	490	38	:5	26 0.	1 13	<10	69	<5	56		
LISN 06+00E - LISN 06+25E -	4.65 0. 3.01 0.		10		<0.5 <0.5		0.30		26 14	48 34	49 5.19 28 3.96		0.07	10 1 10 0		92 .20	<1 0.01 <1 0.01	33 .12	460 630	6 26	<5 <5	18 0.3 20 0.3		-	112 83	(5 (5	114 94		
LIBN 06+50E -	4.59 0.	3	Ġ.	230	<0.5	<2	0.42	(0.5	24	48	40 5.23	<10	0.09	10 1	.12 9	96	<1 0.01	32	520	14	(5	22 0.3	8 (10	<19	161	<5	126		*-
L18N 06+75E . L18N 07+00E .	2.77 0. 3.36 0.				<0.5 <0.5		0.30	<0.5 <0.5	13 22	31 45	26 3.48 53 5.00		0.06	10 0 10 1		i95 07	<1 <0.01 <1 0.01	19 30	490 730	16 16	<5 (5	16 0.1 25 0.2			70 106	<5 ⊲5	8B 102		
LICH 07+25E .	2.33 0.	2	15	60	(0.5	<2	0.29	<0.5	9	30	9 3.90	<10	0.03	(10 0	.69 3	65	<1 <0.01	16	490	6	<5	14 0.	2 (1)		94	<5	72		
LIBN 07+50E LIBN 07+73E	4.32 0. 4.43 0.			120 140	(0.3		0.35	<0.5 <0.5	16 10	43	52 5.11		0.06	10 0		05	<1 0.01 <1 0.01	29 21	550 950	10	(5 /5	23 0.1			107	<5 /5	103		
1188 07470E -	4.43 U. 4.51 O.				<0.5		0.40		18 20	49 51	48 5.13 29 5.11		0. 08 0.09	10 1 10 0		19		31 29	950 570	12 6	<5 ⊲5	24 0.3			110 103	(5 (5	114 112		
L20N 05+00W	2.42 0.		15		(0.5			(0.5	7	22	10 3.43	<10	0.04	10 0	.52 3	57	<1 <0.01	10	360	8	<5	15 0.3	0 <10	(10	112	(5	86		
L20N 04+75W - L20N 04+56W -	2.39 0. 2.38 0.		15 10		().5 ().5		0.31	<0.5 <0.5	6 9	23 31	9 3.37 12 3.46		0.03 0.03	10 0 <10 0	.51 3 .36 3		<1 <0.01 <1 <0.01	9 13	330 430	9 8	୍ଟ ` (5	14 0.3 15 0.3			109 98	<5 (5	96 88		
LOON 04+25W	2.45 0.		15		<0.5			(0.5	6	27	15 3.33		0.04	<10 0			<1 <0.01		1390	10	3	13 0.1			95	(5	90		
L20N 04+00W1	3.77 0.		10		(0.5	$\langle 2 \rangle$	0.79	<0.5	15	33	78 3.90		0.07	10 0	.66 13	376	(1 0.01	14	1790	18	<5	22 0.3	2 (1)	<10	107	<5	92		
L208 03+750 - L208 03+500	5.38 0. 1.63 0.		5 5	140	10.5 (0.5			(0.5 (0.5	10 3	44 17	66 4.16 17 0.09		0.05 0.03	10 0 (10 0	.57 4		<1 :0.01 <1 :0.01		2960	4 7	(5 (5	10 0.1			59 59	(5 (5	82 62		

Trenes automore of Power Lands of the Valoutie States

RECEIVED HEY 2 & 1936. VOI THES

C Litratification Classified and the second and th		Chemex Labs Ltd. Analytical Chemists Geochemists Registered Assayers Analytical Chemists Geochemists Registered Assayers Analytical Chemists Geochemists Registered Assayers Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597 Nitric-Aqua-Regia digestion of 0.5 gm of
Contriguios 3 0.0 0	2225 SOUTH SPR BURNABY, B.C.	CERTIFICATE OF ANALYSIC material followed by ICP analysis. Since this digestion is incomplete for many minerals. DRATORY LIMITED CERT. # : A8620591-006-A values reported for Al, Sb, Ba, Be, Ca, Cr. INVOICE # : I8620591 Ga, La, Mg, K, Na, Sr, Tl, Ti, W and V can INGER AVENUE P.D. # : NONE V239 COMMENTS :
1000 07-00 14 0.2 03 03 03 04 03 04 03 04 03 04 03 04 03 04 03 04 03 04 03 04 03 04 03 <		
Light 05+75E 4.24 0.2 10 130 (0.5 (2 0.18 (0.5 14 36 48 4.38 10 0.06 10 0.31 555 (1 0.01 24 690 4 (5 10 0.22 (10 (10 98 (5 98 110 06+00E 3.16 0.2 35 70 (0.5 (2 0.17 (0.5 8 29 21 3.90 (10 0.04 10 0.55 396 (1 0.01 17 600 10 (5 10 0.19 (10 (10 73 (5 70 110 06+55E 2.91 0.2 30 70 (0.5 (2 0.16 (0.5 8 33 38 41 10 0.03 (10 0.44 523 (1 0.01 17 600 10 (5 10 0.15 (10 (10 73 (5 72 110 06+55E 2.91 0.2 35 70 (0.5 (2 0.18 (0.5 7 20 22 2.85 (10 0.03 (10 0.44 524 (1 0.01 14 570 12 (5 7 0.15 (10 (10 73 (5 56 110 06+55E) 2.24 0.2 35 70 (0.5 (2 0.18 (0.5 7 20 22 2.85 (10 0.03 (10 0.44 524 (1 0.01 14 570 12 (5 7 0.15 (10 (10 73 (5 56 110 06+55E)))))))))	L20N 03+00W 4.44 0.2 L20N 92+75W 4.41 0.2 L20N 92+75W 5.04 0.2 L20N 02+50W 5.04 0.2 L20N 02+50W 5.72 0.2 L20N 02+50W 5.72 0.2 L20N 01+50W 3.02 0.4 L20N 01+50W 3.71 0.2 L20N 01+50W 3.77 0.2 L20N 01+50W 3.37 0.2 L20N 01+50W 3.37 0.2 L20N 01+50W 3.37 0.2 L20N 00+50W 4.45 0.2 L20N 00+50W 4.45 0.2 L20N 00+50E 3.20 0.2 L20N 00+50E 3.20 0.2 L20N 00+50E 3.20 0.2 L10N 00+50E 3.55 0.2 L10N 01+50E 3.55 0.2 L10N 02+50E 3.58 0.2 L10N 02+50E 3.58 0.2 L10N 02+50E 4.63 0.2 L10N 02+50E 3.56 0.2 L10N 02+50E 4.63 0.2	$ \begin{array}{c} 3 & 1 & 3 & 0 & 5 & 0 & 5 & 2 & 0 & 2 & 0 & 5 & 1 & 3 & 1 & 3 & 5 & 4 & 3 & 5 & 4 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$

----- MAY 2 6 1986

C		. 4 .					× L				-	-		212 North Canad	Vanco a	uver, V7	B.C. J 2C1													
		•An	alytical				ATE					lssayers		Phone Telex:	(60	04) 984 043-	-0221 52597		Nitr	ic-4	ация:	-Reg	ia (dige	sti	on a:	f 0.	ICP a .5 gm 5. Si	n of	-
	SOUTH ABY, B.	5PRIN		YLI	MITH							CERT. INVOI DATE P.O. V239	CE	⊧:I(36205 5-NOV	591	007-		dige valu Ga,	estic La, be ENTS	on i repo Mg, con	s in rtæd K, side	com fo Na, red	plet r Al Sr, as	a f , S! . Tl	or m 5, F , Ti	any a, B , W	mine Se, C and itati	eral: Ca, C V ca	s. Cr,
Saaple description	AI A Z pr		Ba pom	Be pp∎	Bi ppm	Сэ 2	Cd ppa	Со рръ	Cr ppm	Cu ppa	Fe Z	Ga ppa	ĸ	La Ny ppm 2				Ni ppm	P ppa	Pb ppm	SD ppm	Sr pps	Ti Z	11 pp=	U pp≊	y ppa	ы ppm	Zn poz		
L20N 06+75E - L20N 07+00E L20N 07+00E L20N 07+05E L20N 07+05E L20N 03+05E L22N 03+50W L22N 03+50W L22N 03+50W L22N 03+50W L22N 03+50W L22N 03+50W L24N 03+50WL24N 03+50W L24N 03+50WL24N 03+50W L24N 03+50WL24N 03+50WL24N 03+50WL24N 03+50WL24N	2.79 0. 1.23 0. 2.33 0. 1.95 0. 4.80 0. 3.61 0. 2.85 0. 4.27 0. 3.55 0. 4.27 0. 3.56 0. 1.28 0. 2.92 0. 3.21 0. 2.92 0. 3.21 0. 3.51 0. 3.50 0. 3.50 0. 3.59 0. 3.50 0. 3.59 0. 3.50 0. 3.57 0. 3.50 0. 3.57 0. 3.5	10 35 25 35 25 35 25 25 20 25 210 25 210 40 22 10 230 10 240 30 250 10 300 15 100 30 240 30 20 20	60 100 270 100 80 90 110 40 60 80 50 60 80 40 280 180 240	<pre>(0.5 (0.5)(0.5) (0.</pre>		0.65 0.16 0.15 0.31 0.56 0.30 0.29 0.27 0.17 0.16 0.13 0.32 0.32 0.32 0.45 0.45 0.45	<pre>(0.5 (0.5)(0.5) (0.</pre>	14 6 12 12 27 10 17 11 12 4 8 9 5 4 10 5 17 17 19 14 15	30 14 24 20 26 57 33 32 33 32 33 32 33 32 33 32 33 15 57 22 20 19 7 21 30 60 93 62 48	8 13 51 56 83 41 91 58 47 13 35 33 20	4.31 4.07 3.60 2.55 3.33 3.84 4.38 4.28 4.28 4.17 3.23 3.46 4.23 4.62 3.30	(10 0. 10 0.	02 · · · · · · · · · · · · · · · · · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1169 347 523 5 523 640 1112 9 918 2146 918 2146 519 519 330 271 5256 2566 292 1841 778 894 842		0.01 (0.01 0.01 0.01 0.01 0.02 (0.01 0.01 (0.01 (0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.	19 17 19 7 15 13 9 8	670 1230 770 1110 2930 570 370 620 1240 610 840 910 1340	12 4 4 6 8 14 6 4 2 6 14 8 8 6 10 8 8 6 14	<u>ଌୢଌୄଌ</u> ୄଌଌୄଌ <mark>ଌ</mark> ୄଌୡୡୡୡୡଌଌଌ ଽ	7 3 11 7 25 13 13 12 14 7 6 6 8 15 9 31 18 22 36	0.20 0.18 0.20 0.24 0.14 0.15 0.13 0.13 0.13 0.13 0.14 0.13 0.13 0.20 0.14 0.13 0.23	C10 C10	(10) (10) <t< td=""><td>85 37 111 71 105 131 108 127 111 107 108 127 94 106 127 55 83 81 105 113 81 105 77</td><td>9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>94 44 62 74 128 66 112 90 100 44 66 82 52 88 98 100 98 114 74</td><td></td><td></td></t<>	85 37 111 71 105 131 108 127 111 107 108 127 94 106 127 55 83 81 105 113 81 105 77	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	94 44 62 74 128 66 112 90 100 44 66 82 52 88 98 100 98 114 74		
																												<u>6 1</u> 0		

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

•

÷

TO : MPH CONSULTING LTD.	CERTIFICATE#:	86597
301-409 GRANVILLE STREET	INVOICE#:	7085
VANCOUVER B.C.	DATE ENTERED:	86-10-26
PROJECT: V 239	FILE NAME:	MPH86597
TYPE OF ANALYSIS: GEOCHEMICAL	PAGE # :	1

-

PRE FIX	SAMPLE NAME	PPB Au	
A	3901	5	
A	3902	5	
A	3903	20	
A	3904	5	
Â	3905	5	
A	3906	5	
A	3907	5	
A	3908	5	
A	3909	5	
<u>A</u>	3910	5	
A	3911	5	
A	3912	5	· ·
A	3913	5	
A	3914	5	
<u>A</u>	3915	5	
A	3916	5	
A	3917	5	
A	4673	5	
A	4674	5	
<u> </u>	4675	5	
A	4676	5	
A	4677	40	
A	4678	5	
A	4679	5	
<u>A</u>	4680	40	
A	4681	5	
A	4682	5	
A	4683	5	
A	4684	5	
<u>A</u>	. 4685		
A	4686	100	
A	4687 4688	5	
A	4688	5 5	
A A	4650	5	
	4690	20	
A A	4692	20	
A	4692 4693	5	RECEIVED OCT 2 7 1986
A	4673 4693A	5	
A	4694	5	
		CERTIFIED	BY : Monsborets

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1
CERTIFICATE OF ANALYSIS		TEL : (604) 299 - 6910
TO : MPH CONSULTING LTD. 301-409 GRANVILLE STREET VANCOUVER B.C. PROJECT: V 239 TYPE OF ANALYSIS: GEOCHEMICAL	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7085
essessessessessessessessessessessessess		

FIX	SAMPLE NAME		
A	4695	5	
A	4696	40	
A	4697	5	

.

Hombach

ī .

CERTIFIED BY : ____

	SBACHER LA			2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 ~ 6910
PROJE	MPH CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. CT: V 239 DF ANALYSIS: GEOCHEM	ICAL		86665 7211 86-11-21 MPH86665 1
PRE	SAMPLE NAME	PPB		
S	L 14+00N 1+00E-A L 14+00N 1+00E-B L 14+00N 1+00E-C	5		
			RECEI	/ED NOV 2 4 1986
		CERTIFIED BY :		stad

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD. 301-409 GRANVILLE STREET VANCOUVER B.C. PROJECT: VAR

.

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

CERTIFICATE#: 86712 INVOICE#: 7286 DATE ENTERED: 86-12-12 FILE NAME: MPH86712

TYPE OF	ANALYSIS: GEOCHEMIC	AL		E # :	1	
PRE FIX	SAMPLE NAME	FPB Au I	PPB Au II	PPB Au III	PROJ.#	I ii ii ii ii ii ii ii
5	L 1N 025E	120	20	20	V239	
S	L13N 100W	240	5		11	
S	L14N 100E	840	630	520	11	
S	L14N 100E-A	650	800		11	
S	L14N 100E-B	5	5		11	
S	L20N 250E	170	5		11	
S	L24N 450E	140	5		U.	

RECEIVED JAN 8 1987

_____ 1. Arstach CERTIFIED BY :

C	ERTIFICATE OF	ANALYSIS		BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJEC	PH CONSULTING LTD. 301-409 GRANVILLE STR VANCOUVER B.C. T: V239 F ANALYSIS: GEOCHEMICA		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7302 86-12-17 MPH86716
?RE		 PPB		
FIX	SAMPLE NAME	Au		
 S	1400N 100E"d"	100		
S	1400N 100E"e"	70		
S	1400S 100E"f"	30		
S	1400S 100E"g"	20		
ິ ສ ຮ	1008 050E"a"			
	100N 025E"a"	5		
S	100N 025E"b"	5		
S	075E 2008"a"	5		
S	075E 150S	5		
5	075E 125S	5		
A	14843	1200		
A	14844	100		
A	14845	5		-

recid Dec 19/86

Honsbor CERTIFIED BY :

0

. .

ROSSBACHER LABORATORY LTD.

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1

Chemex Labs Ltd.

Analytical Chemists • Geochemists • Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

CERTIFICATE OF ANALYSIS A8622241

To : ROSSBACHER LABORATORY LIMITED

2225 SOUTH SPRINGER AVENUE BURNABY, B.C. V5B 3N1 Page No. : 1-A Tot. Pages: 1 Date : 7-JAN-87 Invoice #: I-8622241 P.O. # : NONE

Project : V239 RACK E Comments: ATTN: P. ROSSBACHER

SAMPLE DESCRIPTION	PREP CODE	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fc %		к %	La ppm	М д %	Mn ppm	Mo ppm	Na 96
1400N-100E D 1400N-100E E 1400S-100E F 1400S-100E G 100S-050E A	221 23 221 23 221 23 221 23 221 23 221 23 221 23	8 5.39 8 4.69 8 4.88	0.2 0.4 < 0.2	5 5 < 5	120 80 90	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.18 0.15 0.12	0. 0. 0.	9 6 11	42 36 40	89 67 88	6.40 5.32 5.28	10 10 10	0.10 0.06 0.07	10 10 10	0.58	429 316 459	< 1 < 1 < 1	0.01 0.01 0.01
100N-025E A 100N-025E B 075E-200S A 075E-150S 075E-125S	221 23 221 23 221 23 221 23 221 23 221 23	8 4.67 8 5.17 8 3.23	0.8 0.6 0.4	< 5 5 < 5	290 130 140	0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.24 0.20 0.15	0.9 0.9 < 0.9	17 11 7	37	91 76 53	4.76 4.54 3.58	10 10 10	0.13 0.11 0.09	10 10 10	0.99	5 1065 521 461	< < <	0.01 0.01
14843 14844 14845	221 23 221 23 221 23	8 1.07	0.2	< 5	1 50	0.5	< 2	0.86	2.0	8	94 107 131	28	2.81	< 10	0.07	10	0.54	2070	< 1	0.01
					R	ECEI	VED	JAN 2	3 198	37										

CERTIFICATION : D. Com

Chemex Labs Ltd .

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

CERTIFICATE OF ANALYSIS A8622241

To : ROSSBACHER LABORATORY LIMITED

2225 SOUTH SPRINGER AVENUE BURNABY, B.C. V5B 3N1 Page No. : 1-B Tot. Pages: 1 Date : 7-JAN-87 Invoice # : I-8622241 P.O. # : NONE

Project : V239 RACK E Comments: ATTN: P. ROSSBACHER

SAMPLE DESCRIPTION	PRI COI			P ppm	Pb ppm	Sb ppm				U ppm	1	W ppm	Zn ppn			•	
1400S-100E F 1400S-100E G	221 221 221 221 221 221	238 238 238	17 12 21	1 570 1 280 1 000			19 14 11	0.23	< 10 < 10 < 10	< 10 < 10 < 10	118 106 114	< 5 < 5 < 5	100 82 92				
100N-025E B 075E-200S A 075E-150S	221 221 221 221 221 221	238 238 238	7 27 18 12 13	1020 790 570			21 16 12	0.27 0.24 0.19	< 10 < 10 < 10	< 10 < 10 < 10	106 106 90	< s < s < s	94 86 56				
14843 14844 14845	221 221 221	238	18 11 12	100	4		39	0.11 0.07 0.09		< 10	25	< 5	202				

				ANALYSIS	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJECT	H CONSULTI 301-409 GR /ANCOUVER : AS MARKE ANALYSIS:	ANVILL B.C. D	E STRE		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: FAGE # :	7367
PRE FIX	SAMPLE	NAME	-1996	ORIGINAL PPB Au	CHECK Au PPB	PRO- JECT
5 5 5 5	1400N- 1400N- 1400S- 1400S-	100E 100E 100E 100E	-d -e -f -g	100 70 30 20	120 50 30 5	V 239

•

.

RECEIVED JAN 8 1987

1. Honbord CERTIFIED BY : _

ROSS	BACHER LA	BORATORY	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1
CE	RTIFICATE O	F ANALYSI	5	TEL : (604) 299 - 6910
3 V PROJECT:	CONSULTING LTD. 01-409 GRANVILLE S VANCOUVER B.C. V 239 ANALYSIS: GEOCHEMI		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7350
PRE FIX	SAMFLE NAME	PPB Au		
A	14847	420 -		

RECEIVED JAN 5 1987

Aprobac ____ ==== CERTIFIED BY : -

Chemex .abs

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

CERTIFICATE OF ANALYSIS A8710120

To : ROSSBACHER LABORATORY LIMITED

2225 SOUTH SPRINGER AVENUE BURNABY, B.C. V5B 3N1

Page No. : 1-A Tot. Pages: 1 Date : 20-JAN-87 Invoice # : I-8710120 P.O. # :NONE

Project : RACK Y1 V239 Comments:

SAMPLE DESCRIPTION	PREP CODE		-		Ba ppm		Bi ppm	Ca %	Cd ppm	Co ppm	1					La ppm			Mo ppm	Na %
AP 14847 ,	221 238	2.10	0.2	10	260	< 0.5	< 2	0.96	0.5	7	71	54	3.61	< 10	0.12	< 10	0:21	187	1	0.0
								- -												
						۶ ۲	ECE	VED	I HAL	3 19	87							Por		

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI PHONE (604) 984-0221

CERTIFICATE OF ANALYSIS A8710120

To : ROSSBACHER LABORATORY LIMITED

2225 SOUTH SPRINGER AVENUE BURNABY, B.C. V5B 3N1

Page No. :1-B Tot. Pages:1 Date :20-JAN-87 Invoice #:I-8710120 P.O. # :NONE

Project : RACK YI V239 Co

Comme n	1	3	:					
---------	---	---	---	--	--	--	--	--

SAMPLE DESCRIPTION	PR CO		Ni ppm	P		Pb ppm			Sr ppm	Ti %		Ti ppm	U pp			w		Zn ppm							
AP 14847	221	238		0	240	<	< 2	< 5	6	0	0.10	< 10	0	< 10	2 5		< 5	94							
r																									
											1												5 7 7 8		
	L	L	I	<u> </u>		L	4		I	<u> </u>			_1	I		I		J	 RTIFICA	L	14	aut	Bic	hle	I

	BACHER LA Ertificate			2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJECT	H CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. : V239 ANALYSIS: ASSAY	STREET	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7374
PRE FIX	SAMPLE NAME	oz/t Au		
A A	14843 14847	0.042 0.013		

RECEIVED JAN 1 9 1987

Ambach CERTIFIED BY : ____

RO	SSBACHER L	ABORATORY	LTD.	2225 S. SPRINGER AVENUE
	CERTIFICATE	OF ANALYSIS	:	BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJ TYPE	MPH CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. ECT: V 239 III OF ANALYSIS: GEOCHEN		CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7416
PRE		PPB		
=IX	SAMPLE NAME	Au		
A	15061			
A	15062	5		
A	15063	30		
A	15064	5		
A	15065	5		
A	15066	43,		
A	15067	5		
A	15068	5		
A	15069	5		
<u>A</u>	15070	10		
A	15071	10		
A	15072	807 1.12		
A	15073	60		
A	15074	800 100		
A	15075	<u> </u>		
	15076			
A	15077	5		
A A	15078	5		
A	15079	5		
A	15080			
A	15081	100		
A	15082			
A	15083 15084	5		
~	15085	10		
A A	15086	5 5		
A	15087			
A	15088	,		
A	15089	 5		
A	15090			
A	15091	یں۔ مرب ہے کہ میں اور میں میں میں اور اور میں میں اور اور میں		
A	15092	130		
A	15093	20		
A	15074	20		
A	15095	110		
A	15096			
A	15097	20		
A	15098	30		
A	15099	30		
A	15100	Sõ		
				<i>N</i>
				A

CERTIFIED BY : _______

RO	SSBACHER LAB	LTD.	2225 S. SPRINGER AVENUE							
\frown	CERTIFICATE OF	ANALYSIS	6	BURNABY, B.C. VSB 3N1 TEL : (604) 299 - 6910						
PROJI TYPE	MPH CONSULTING LTD. 301-409 GRANVILLE STR VANCOUVER B.C. ECT: V 239 III OF ANALYSIS: GEOCHEMICA	L_	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	7416 87-02-02 MPH87025 2						
PRE		PPB		RE-SAMPLE						
= I X	SAMPLE NAME	Au	PPB AU	PPB AU						
A	15151	600	1/0	130						
A	15152	1130	80	100						
A	15153	130	2 -							
A	15154	70								
A	15155	70								
A	15156	100								
A	15157	100								
A	15158	20								
A	15159	40								
A	15160	30								
A	15161	40								
A	. 15162	40								
A	15163	20								
A	15164	10								
A_	15165	5 L								
	15166	60								
(-1	15167	20								
A	15168	5								
A	14848 1	5								

.

CERTIFIED BY : Abobach

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

TO : MPH CONSULTING LTD. 301-409 GRANVILLE STREET VANCOUVER B.C.

÷

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

.

CERTIFICATE#: 87025

INVOICE#: 7416

LE NAME 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083	Au 5 5 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RERUN 5 20 5 5 5 5 5 5 5 10 10 5 5 5 10 5 5 5 10 5 5 5			
15062 15063 15064 15065 15065 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	5 30 5 5 5 5 5 5 10 10 5 60 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 5 5 5 5 5 5 5 10 10 5 5 5 10 5 5 5 5 5			
15063 15064 15065 15067 15067 15068 15069 15070 15071 15072 15073 15074 15075 15074 15075 15076 15077 15078 15079 15080 15081 15081	30 5 5 5 5 5 5 10 10 5 60 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 10 10 5 5 5 10 5 5 10 5 5 5			
15064 15065 15067 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	5 5 5 5 5 5 10 10 5 60 5 5 5 5 5 5 5 5 5 100	5 5 5 5 5 10 10 5 5 5 10 5 5 5 5 5 5 5 5			
15065 15066 15067 15068 15069 15070 15071 15073 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	5 5 5 10 10 5 60 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 10 10 5 20 5 5 10 5 5 10 5 5			
15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15081 15082	5 5 5 10 10 5 60 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 10 10 5 20 5 5 10 5 5 10 5			
15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	5 5 10 10 5 60 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 10 10 5 20 5 5 5 10 5 5 5 10 5			
15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15081	5 5 10 5 60 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 10 10 5 20 5 5 5 5 10 5 5			
15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15081	5 10 5 60 5 5 5 5 5 5 5 5 5 5 100	10 10 5 20 5 5 10 5 5 10 5			
15070 15071 - 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	10 10 5 60 5 5 5 5 5 5 100	10 10 5 20 5 5 10 5 5 10 5			
15071 - 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	10 5 60 5 5 5 5 5 5 5 100	10 5 20 5 5 10 5 5 10 5			
15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	5 60 5 5 5 5 5 5 5 100	5 20 5 5 10 5 5 10 5			
15073 15074 15075 15076 15077 15078 15079 15080 15081 15082	60 5 5 5 5 5 5 5 100	20 5 5 10 5 5 10 5			
15074 15075 15076 15077 15078 15079 15080 15081 15082	5 5 5 5 5 5 100	5 5 10 5 5 5 10 5			- -
15075 15076 15077 15078 15079 15080 15081 15082	5 5 5 5 5 5 5 100	5 10 5 5 5 10 5			- .*
15076 15077 15078 15079 15080 15081 15082	5 5 5 5 5 100	10 5 5 5 10 5			
15077 15078 15079 15080 15081 15082	5 5 5 5 100	5 5 5 10 5			
15078 15079 15080 15081 15082	5 5 5 100	5 5 10 5			• •*
15079 <u>15080</u> 15081 15082	5 5 100	5 10 5			
15080 15081 15082	<u>5</u> 100	10 5			
15081 15082	100	5			
15082					
1 - () - ()	5	5 5			
15084	10	20			
15085	5	5			
15086	5	5			<u>, , , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, </u>
15087	5	5			
15088	5	5			
15089	5	5			
15090	5	5			
15091	5	5			
15092	130	200			•
15093	20				
15094	20				
15095	110				
15097					
					2.5
15100	50	50			1
	15093 15094 <u>15095</u> 15096	15093 20 15094 20 15095 110 15096 40 15097 20 15098 30 15099 30 15100 50	15093 20 20 15094 20 20 15095 110 100 15096 40 50 15097 20 20 15098 30 30 15099 30 20 15100 50 50	15093202015094202015095110100150964050150972020150983030150993020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

JSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

TO : MPH CONSULTING LTD.	CERTIFICATE#:	87025
301-409 GRANVILLE STREET	INVOICE#:	74.16
VANCOUVER B.C.	DATE ENTERED:	87-02-02
PROJECT: V 239 III	FILE NAME:	MPH87025
FYPE OF ANALYSIS: GEOCHEMICAL	PAGE # :	2

PRE	SAMPLE NAME	PPB Au	PPB Au RERUN	
 A	15151	 600	110	
A	15152	- 1130	80	
A	15153	130	50	
A	15154	70	60	
A	15155	70	60	
A	15156	100	70	
A	15157	100	100	
A	15158	20	10	
A	15159	40	20	
A	15160	30	30	
A .	15161	40	40	
A	15162	40	60	
A	15163	20	20	
A	15164	10	5	
<u> </u>	15165	5	5	
	15166	60.	40	
Ĥ	15167	- 20	20	
A	15168	5	5	
A	14848	5	5	

CERTIFIED BY :

tombas

. CE	RTIFIC	ATE O	F ANALY	SIS	·	BURNABY, B.C. V5B 3 TEL : (604) 299 - 69
3 V PROJECT: TYPE OF	ANALYSIS:	B.C. GEOCHEMI) I F F		N.A. 87-03-29 MPH87137 1	
PRE	SAMPLE		 PPB Au			
A	151 151	151 A 152 B				
-						
	## ## ## ## ## ## ## ## # 		CERTIFIED		\overline{A}	

ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ICP ANALYSIS

.SOO GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO IO ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.H.AL.NA.F.W.SI.ZF.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOLUTION

DATE RECEIVED: JAN 30 1987 DATE REPORT MAILED: Jub 3/87 ASSAVER. ALL JUGA. DEAN TOYE. CERTIFIED B.C. ASSAYER. ROSSBACHER LABORATORY FROJECT - CERT#87025 FILE # 87-200 FAGE 1

SAMPLE	No PPN	Cu PPM	P5 PPM	ln PPM	Aç PPM	Ni PPN	Co PPN	Mn PPX	Fe I	As PPM	U PPM	Au PPM	Th PPN	Sr PPM	Cd PPM	SD PPN	Bi PPN	V PPM	Ca X	P 1	La PPM	Cr PPN	Ka 1	Ba PPM	Ti X	B PPM	A) Y	Na Z	K I	W PPM	
15061	1	42	5	84	.1	12	10	439	3.56	2	5	ND	1	10	1	2	2	59	. 43	.042	4	45	1.45	220	.01	2	1.70	. 05	.07	1	
15062	i	38	6	74	.4	8	6	683	2.56	2	5	ND	i	83	1	2	2	29	3.05	.048	6	42	.97	109	.01		1.28	.07	.08	i	
15063	i	21	2	50	.1	8	5	249	1,99	2	11	ND	1	12	1	2	2	26	. 35	.036	3	38	.89	164	10,		1.11	.04	.12	1	
15064	1	103	3	42	.3	9	12	364	2.68	3	5	ND	1	20	1	2	2	28	1.30	.023	2	44	. 90	382	.03	2	1.22	. 07	.11	1	
15045	1	22	3	53	.2	6	5	343	2.22	2	5	ND	1	19	1	2	2	49	1.08	.054	2	68	1.03	764	.08		1.28	.09	. 20	1	
15066	1	25	2	50	.1	8	1	239	1.95	2	5	ND	;	4	ł	2	2	27	.15	.017	2	52	1.03	367	.05	3	1.15	.04	.10	1	
15067	1	16	5	43	.4	7	5	285	2.01	2	5	NÐ	2	29	1	2	2	30	3.21	1.085	12	52	1.03	661	.03	4	1.19	.09	.11	2	
15068	1	.24	4	57	.3	8	7	265	2.32	2	5	ND	2	6	i	2	2	27	.17	.027	8	45	1.27	520	.04	- 4	1.41	.04	. 17	i	
15069	2	29	8	44	.4	12	14	294	1.71	16	5	ND	2	69	1	2	2	20	5.23	1.288	25	38	. 68	489	.01	14	1.23	. 08	.23	1	
15070	1	29	4	57	.2	8	5	346	2.04	2	5	NĎ	l	28	t	2	2	31	1.02	.017	2	41	1.01	340	.03	4	1.17	.06	. 12	l	
15071	1	245	7	58	.3	34	16	290	2.95	2	5	ND	1	21	1	2	2	81	1.15	.065	2	37	1.02	163	.12	7	1.32	.11	.02	t	
15072	1	127	10	39	.4	12	6	284	1.33	2	5	NÐ	1	58	1	2	2	35	5.59	.034	2	34	. 49	1396	.10	6	1.03	.11	.03	1	
15073	1	52	21	70	.3	6	4	252	i.60	2	6	ND	2	14	1	2	2	29	1.22	.013	2	50	.79	540	.05	4	. 99	.07	.07	1	
15074	1	15	10	66	.2	14	6	295	2.15	2	5	ND	2	10	1	2	2	26	.82	.010	4	50	.94	281	.01	3	1.16	.05	.07	1	
15075	1	21	6	25	.3	5	3	307	. 98	2	12	ND	3	55	l	2	2	14	2.10	.010	26	57	.47	844	.01	10	, 78	. 06	.19	1	
15076	1	5	3	53	.2	6	6	311	2.25	2	10	ND	I	22	1	2	2	21	. 69	.018	4	40	1.14	250	.03	3	1.28	. 06	.11	1	
15077	1	17	- 4	62	.1	5	1	370	2.36	2	5	ND	1	81	1	2	2	26	1.79	.021	4	39	1.18	162	.01	5	1.38	.07	.10	1	
15078	1	14	2	66	.2	8	8	305	Z.49	17	5	ND	3	39	1	2	2	16	.97	.053	8	15	1.17	331	.01	5	1.47	. 06	.18	1	
15079	1	25	6	59	.2	9	6	345	2.38	6	5	ND	1	71	1	2	2	29	1.19	.021	4	54	1.05	218	.01	4	1.26	.07	.09	1	
15080	1	46	5	54	.3	9	5	324	2.21	3	9	ND	2	27	1	2	2	36	.06	.057	6	54	1.01	375	.01	4	1.22	.06	.11	1	
15081	1	46	4	57	.3	10	6	338	2.19	2	12	ND	2	66	1	2	2	28	1.36	.019	4	40	1.00	287	.01	4	1.18	. 06	.11	ł	
15082	ł	33	2	56	.1	11	9	300	2.13	2	5	ND	1	33	1	2	2	27	.74	.016	3	- 44	1.01	337	.01	- 4	1.13	.05	.09	1	
15083	1	26	3	50	.2	10	8	301	2.18	2	5	ND	1	18	1	2	2	37	. 46	.020	4	61	F.01	440	.01	3	1.07	.05	.07	1	
15084	1	12	3	59	.3	8	6	308	2.47	2	5	ND	2	25	1	2	2	34	.34	.014	2	70	1.11	810	.06	4	1.33	.06	. 20	1	
15085	1	35	5	59	.3	14	6	477	2.73	8	5	ND	1	49	i	2	2	39	1.14	.014	4	90	1.03	1009	.01	4	1.26	.07	.09	1	
15086	ſ	34	6	62	.3	17	5	585	2.81	27	5	ND	1	97	1	2	2	19	1.64	.010	2	43	1.11	1706	.01	5	.92	.06	.10	t	
15087	1	38	3	72	.3	13	6	713	3.33	- 1	5	ND	1	31	1	2	2	46	.65	.022	5	47	1.35	533	.02	3	1.55	.07	.11	1	
15088	2	21	3	84	.3	17	5	697	3.59	3	5	КD	1	26	1	2	2	34	1.15	.014	3	55	1.23	209	.01	2	1.63	.06	.07	1	
15089	2	- 4	13	204	.4	35	10	1478	8.60	2	5	ND	2	34	1	:	2	82	1.05	.027	4	22	2.70	271	.08	4	3.54	. 09	. 13	1	
15090	2	9	7	89	.3	14	6	1089	3.89	12	5	ND	2	36	1	2	2	31	1.42	.036	7	48	1.04	341	.02	4	1.68	.09	. 15	1	
STD C	22	60	40	139	7.1	67	29	1051	3.99	38	17	8	36	51	18	16	21	61	. 48	.105	38	59	.88	173	.09	37	1.72	.10	. 15	14	

RECEIVED FEB 5 1987

ROSSBACHER LABORATORY PROJECT - CERT#87025 FILE # 97-200

SAMPLE	Но РРН	Ŭu PPN	Pb PPN	Zn PPM	Aọ PPM	N1 PPN	Co PPM	Nn PPN	Fe	As PPN	U PPN	Au PPN	Th PPN	Sr PPM	Cđ PPM	S6 PPM	Bı PPN	V PPM	ta 1	P Z	La PPM	Cr PPN	Nọ L	Ea PPM	11 1	F PPN	A1 X	Na Z) 2	N PPN	
	rrn	rrn	rrn	rra	rrn	rra	rrn	FFA	1	rrn	rrn	rrn	rra	rrn	LLU	FFN	rrn	rrn		4	rra	c (fi	•	110	•	71.5	•	•	•		
15091	1	37	5	44	.4	25	14	634	2.27	2	5	ND	1	30	1	2	2	24	2.26	.006	2	73	. 58	249	.01	2	.85	. 04	.0!	1	
15092	i i	62	3	15	.2	23	16	300	1.93	20	5	ND	i	13	1	2	2	59	. 56	.001	2	101	.11	26	.01	2	.21	.03	.02	1	
15093	1	40	4	7		29	17	232	1.64	11	5	ND	1	7	1	4	2	59	. 3Ł	.001	2	96	.04	9	.01	:	.07	.02	.07	1	
15094	1	53	3	13	.1	34	22	295	1.74	8	5	ND	1	8	1	3	2	56	.72	.001	2	110	.08	12	.01	2	.16	.03	.01	1	
15095	i	64	3	18	.5	17	12	366	2.03	6	5	ND	t	15	1		2	60	1.72	.001	2	92	.09	8	.01	2	.10	, 05	.01	1	
15096	1	40	2	13	.1	21	11	344	2,03	11	6	ND	L	23	1	2	2	22	1.30	.002	2	113	.14	8	.01	2	. 22	.04	. 01	1	
15097	1	149	2	90	.6	22	8	783	5.16	3	5	ND	ŧ	29	1	2	2	11	1.05	.006	2	83	1.05	9	.01	2		.06	.01	t	
15098	1	64	3	17	.4	11	2	316	3.13	18	5	ND	1	17	1	2	2	39	2.34	.003	2	113	.10	9	.01	2	.17	.05	.01	1	
15099	I.	31	5	31	.4	12	3	359	4.56	29	8	ND	2	19	1	2	2	47	3.57	.003	2	99	. 15	12	.01	2	. 35	.07	. 02	1	
15100	1	47	9	170	. 6	52	10	1047	17.72	21	5	ND	2	63	1	2	2	134	.73	.004	2	47	1.63	9	.01	18	2.58	.08	.01	1	
							_			_	_					_	_						•	-	• •						
15151	1	59	4	28	2.0	10	2	389	4.82	7	5	ND	1	31	1	2	2	67	1.21	.003	2		.26	6	.01	2	. 37	. 05	.01	1	
15152	2	116	5	22	.9	15	2	298	3.54	27	5	ND	1	17	4	2	2	68	.94	.003	2	115	.14	8	.01	2	.22	.04	.01	1	
15153	1	38	2	1	.3	7	1	190	2.20	19	5	ND	1	29	1	2	2	64	.94	.004	2	149	.04	5	.01	4	.07	.04	.01	1	
15154	1	38	2	7	.2	9	1	368	2.02	43	5	ND	1	15	1	2	2	22	1.61	.004	2	146	.03	4	.01	2	.04	.04	.01	1	
15155	2	39	2	7	.1	10	1	240	2.93	40	5	ND	1	17	1	2	2	33	1.13	.006	2	152	.04	6	.01	2	.0£	.04	.01	1	
15156	2	31	5	7	.5	17	1	212	3.34	19	5	ND	,	19	1	2	2	38	.94	.004	2	169	.05	4	.01	2	.05	.04	.01	1	
15155		249	2	32	1.3	13	3		3.79	15	10	ND		30	1	2	2		1.03	.003	2	128	.21	i	.01	2	.26	.04	.02	i	
15158	÷	304	á	26	.7	10	2		2.57	18	5	NĐ	2	323	÷	2	2		15.53	.002	2	88	.13	19	.01	2	.07	.10	.01	1	
15159	1	96	6	56	.6	19	5	899		Ĩ	12	ND	2	28	:	2	2		2.01	.004	2	101	. 43	10	.01	2	. 60	.07	.02	i	
15160	2	67	5	8	.3	ii.	2		2.82	3	5	ND	t	13	1	ź	2	22		.007	2	120	.03	3	.01	2	.03	.03	.01	i	
10100	•			v	••	••	-	100		•			•		•	•	•	••			-			-		-				-	
15161	2	46	3	8	.3	7	1	328	2.72	5	5	NÐ	1	15	1	2	2	23	.94	.005	2	145	.02	6	.01	2	.04	.03	.01	1	
15162	2	68	2	1	.2	9	2	307	2.36	12	6	ND	1	12	1	2	2	16	1.00	.004	2	136	.03	2	.01	2	.05	.03	.01	i	
15163	1	74	3	13	.2	10	2	293		3	5	ND	1	11	1	2	3	27	.58	.003	2	149	. 06	3	.01	2	.1!	.03	.01	1	
15164	1	87	5	69	.4	13	10	686	2.56	2	5	ND	2	14	1	2	2	47	. 62	.044	4	83	1.06	196	.10	3	1.34	.06	.13	1	
15165	1	24	2	76	.2	10	9	982	2.52	2	5	ND	3	40	1	2	2	32	2.22	.056	4	82	. 94	266	.13	7	1.38	.09	. 16	1	
15166	1	18	8	53	.2	2	5	925		3	7	ND	5	37	1	2	2			.061	7	37	.52	331	.03		1.09	.10	. 22	1	
15167	1	23	7	41	.3	- 4	6	1091	1.90	2	5	ND	- 4	119	1	2	2		6.44	.053	9	34	. 47	336	.01		1.02	.11	.24	1	
1516B	1	24	4	79	.2	19	12		2.76	2	5	ND	2	17	1	2	2	20		.038	- 4	47	.97	330	.12		1.43	.07	. 18	1	
15169	1	11	2	4	•1	5	2		1.56	6	5	ND	1	1	1	2	3	. 25	.03	.004	2	142	.01	8	.01	4	.04	.01	.02	1	
STD C	20	61	38	140	7.0	88	29	1087	3.99	40	19	8	36	51	18	16	20	62	.48	.107	38	58	.88	176	.09	37	1.71	.11	. 15	12	

PAGE 7

ROS	SBACHER LA	BORATORY	LTD.	2225 S. SPRINGER AVENUE
C	ERTIFICATE	OF ANALYSIS	5 -	BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910
PROJECT TYPE OF	H CONSULTING LTD. 301-409 GRANVILLE VANCOUVER B.C. Y 239 III ANALYSIS: GEOCHEM	104	CERTIFICATE#: INVOICE#: DATE ENTERED: FILE NAME: PAGE # :	87036 7431
PRE FIX	SAMPLE NAME	PPB Au		
A A	14849	5		
A	15169	5		
A	15170 15171	5		
A	15172	5		
A	15173	5		
A	15174	5		
A	15175	400		
Α	15176	5		
A	15177	5		
A	15178			
A A	.15179	S		
A	15120	5		
A	15181	5		
A	15182	5		
A	15183	5		
A	15184 15185	5		
A	15186	5		
A	15187	5		
A	15188	5		
A	15189	5		

T. Owroback -----_____ CERTIFIED BY : RECEIVED FEB 5 1987

=====

ACME ANALYTICAL LABORATORIES LTD.

B52 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.IR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPH. - SAMPLE TYPE: SOLUTION

					•••••								,					7	1.												
DATE REC	EIVE	D:	FEB 4	1987	DAT	E RE	POR	T M	AILE	D: _	i'e	69	187	7	ASS	AYEF	. A	K 4	apc.	DE	EAN	TOYE	E. C	ERTI	FIE	D F.	с.	ASSA	YER	•	
		ŧ	V	۱	١	R	1055	BACł	ÆR	LABC	RAT	JRY .	PR	OJEC	: T -	CEF	:1#9]	703	6	FILE		37-0	245	シ		17			i	PAGE	l
SAMPLEN	Ro PPN	Cu PPN	¥ РЬ РРИ	In PPN	Aq PPN	Ni PPH	Co PPM	На РРН	Fe 1	As PPH	U PPN	Au PPM	Th PPN	Sr PPM	Cd PPH	Sb PPN	Ei PPM	V PPN	Ca I	Р 1	La PPN	Cr PPN	Hợ 1	Ba PPK	Ti 1	E PPN	Al Z	Na 1	K I	V PPH	
14849	2	22	2	18	.1	1	. 5.		2.73	10	5	ND	1	3	I	2	5	61	.05	.007	2	200	.14	69	.01	2	. 59	.02	.01	1	
- 15169	1	17	5	66	.1	2	9	1224	4.12	7	5	ND	4	18	1	2	2	28	2.41	.101	18	20	.54	226	.01	6	1.78	.09	.30	1	••
15170	1	28	5	63	.1	8	9	808	2.58	2	5	ND	2	23	1	2	2	49	1.08	.057	5	83	1.03	1499	.05	4	1.37	.08	.20	1	
15171	1	15	6	60	.1	6	4		2.05	2	5	NQ	3	17	1	2	2	17	.60	.024	2	65	1.04	1062	.11	ó	1.34	.05	.20	1	
15172	2	65	9	146	.1	5	4	1439		2	5	ND	1	81	1	2	2	32	14.06	.476	7	24	.66	297	.06	2	2.00	. 18	.08	1	
15173	2	-103	11	126	.2	11	9	758	3.79	4	5	ND	3	25	1	2	2	59	3.55	.037	5	35	.74	108	. 20	5	2.89	.09	.16	1	
15174	4	- 74	11	70	.2	11	9	574	3.51	2	5	NÐ	5	47	i	2	2	52	5.42	.033.	6	43	.70	663	.12	3	2.21	.18	.17	1	
15175	2	48	9	82	.1	10	8	799	4.00	4	5	ND.	3	27	1	2	2	73	2.85	.091	1	38	.84	187	.13	2	2.47	.10	.11	1	
15176	2	95	12	108	.1	18	13	550	4.73	2	5	KD	2	44	1	2	3	80	2.98	.031	2	26	.96	- 74	.16	2	3.12	. 09	.12	1	
15177	1	54	7	98	.1	12	11	692	4.47	5	5	KØ	3	47	1	2	2	101	1.75	.061	2	39	.94	170	.12	2	2.54	. 19	.21	1	
15178	1	63	8	110	.1	14	13	511	5.40	3	5	ND	2	16	1	Ż	2	115	.45	.053	3	34	1.05	155	.н	2	2.24	. 09	.20	1	
15179	3	152	1	81	.2	17	- 11	575	4.12	2	5	ND	3	63	1	2	2	76	2.49	.245	4	66	1.30	115	.12	2	2.45	.20	.16	1	
15180	1	78	5	- 74	.2	11	9	600	3.77	4	5	¥D.	3	39	1	2	2	56	2.83	.042	3	37	.75	201	.13	- 4	2.19	.13	.25	1	
15181	2	69	10	90	.1	16	10	493	4.54	2	5	NÐ	3	38	1	3	2	101	1.76	.025	4	28	.92	194	.21	2	2.75	.10	.18	1	
15182	2	72	5	100	.1	16	14	483	4.83	8	5	ND	3	16	1	2	2	74	1.43	.031	3	27	.97	127	.17	2	2.33	.10	.25	1	
15193	3	9 0	9	121	.1	17	13	519	5.81	5	5	ND	3	13	1	2	2	96	.62	.029	2	27	1.09	115	.20	2	2.43	.09	.24	i	
15184	3	122	9	86	.1	19	15	764	5.17	- 4	5	ND	2	39	1	2	2	74	3.87	.407	5	23	. 99	191	.11	2	2.42	.10	.20	1	
15185	2	66	13	113	.1	16	12	545	5.47	6	5.	ND	3	17	1	3	2	92	. 60	.035	- 4	25	1.14	158	.24	2	2.56	. 09	.29	1	
15186	1	77	15	108	.1	18	11	639	4.64	2	5	ND	2	94	1	2	2	100	3.77	.029	3	31	. 88	146	.30	- 4	3.96	.10	. 30	1	
15187	2	98	19	116	.1	17	14		4.72	2	5	ND	2	38	1	2	2		3.56		2	22	.85	233	.16	5	2.57	.13	-21	1	
15188	5	69	15	116	.2	19	14	644	4.84	3	5	ND	3	49	1	2	2	79	3.59	. 028	2	28	.78	150	.23	5	3.02	.21	.29	1	
15189	2	78	12	130	.1	18	13	645	4.93	4	5	ND	2	27	1	2	2	71	1.93	.148	2	24	.92	128	.15	2	2.48	.11	.21	1	
STO C	21	60	41	137	7.1	70	29		3.97	28	17	7	36	49	18	16	20	67		.103	37	61	. 88	187	. 69		1.71	.10	.14	13	

)

Bondar-Cley, & Company, I 130 Pembertan Ave. North Vancos et. B.C. Canada V.P. 245 Phone: (524-345-5581 Teley: 64-35267	л а .			BC	INDAF	R-CLE	EGG	Geochemic: Lab Repor
REPORT: 1	20-562	S (COMPLETE)		·		2	SPERENCE INFO:	
CLIENT: HE PROJECT: (SULTING LTD.					JEXITIEC PY: 8 ALLEN ATE PRINTED: 6-NOV-9	5
	,					·····		
0205	2	51.6X347		NUMBER OF ANALYSES	LOWER DSTECTION LINIT	EXTRACTION		
1	Au	Gold		43	0.5 PPB		IND. NEUTRON	ACTIV.
2	55	Antizony		43	0.05 PPM		IND. NEUTRO	N ACTIV.
3	ÁS	Arsenic		43	0.2 PPH		IND. NEUTRO	
4	Ra	Barius		43	50 PPH		IND. NEUTRO	N ASTIV.
5	57	Promine		43	0.5 PPM		IND. NEUTRO	
6	Cd C-	Cadalua		43	1 PP#		IND. NEUTRO	
7	Cr	Chroziua		43	5 PPM		IND. NEUTRO	Y ACTIV.
3	63	Cotait		43	1 775	~~···	IND. NEUTRO	ACTIV.
9	Ir	Iridius		43	10 PPB		IND. NEUTRO	
10	Mo	Nolytdenum		43	0.2 ??#	•	INP. NEUTRO	
11	Ni	Nickel		43	5 204		IND. NEUTRON	
12	Ga	Selanus	· · · · · · · · · · · · · · · · · · ·	43	1 PPM		IND. HEUTRO	N ACTIV.
10	A9	Silver		43	1 558		IND. NEUTRO	
14	īa.	Tantalum		43	0.2 39%		IND. NEUTRO	
15	12	Thorium		43	0.2 99%		IND. MENTRO	
15	W .	Tungstan		43	0.5 PPM		IND. HEUTEO	
17	IJ	Uranium		43	0.05 PPM	•	IND. MEUTRO	N ACTIV.
13	Zn	Zinc		43	10 PP#		INC. NEUTRO	
19	Cu	Cepper		43	• 1 PPH	HNOS-HOL HOT		rotion
20	25	lesd		43	2 PPM	HNO3-HCL HCT	EXTR Atomic Abeu	rpticn
<u>3.4</u> 95	<u>,5 - 74 p</u>	se	<u>10x555</u>	<u> </u>	<u></u>	MARIES		
V V2	GETAT	IGN	43	5 01	NE2	43	MACEPAT ING/BLEND ING BRIQUETT ING	43 0
	:: :3 :	100-101-XB. CR	eg pankin e Ro allen	<u>}</u>		Those is	5-70: NP. GRED HANK D	Ş
		n r. 69.	() ALLIN	R	ECEIVED NO	y 1 3 1386	i	

Bondar-Clegg & Company Ltd.		
130 Pendetien Ave. North Vanzover, B.C. Canada VP 133	BONDAR-CLEGG	Geochemical Lab Report
Phone: (604) %5-0681 Telex: 04-352x67		

•

RBFORT: 125-562	35						22	CJECT: VZ	39		PAGE 1A	
SAMPLE	ELEMENT	Au	Sb	Ås	3a	8r	Ca	Cr	Ca	Ir	ho	N
NUMBER	UNITS	PPB	ррн	PPH	PPH	PPM	P?H	PPH	Poy	200	554 ****	223
V5 \$60-1 0+00		7.5	0.72	3.2	190	7,4	(]	<5		<19	<0.2	7
V5 890-1 0+25N		1.3	0.03	0.6	82	1.7	$\langle 1 \rangle$	<5	Ω	(10	<0.2	$\langle c \rangle$
V5 2GC-1 0+50%		<0.3	<0.05	0.4	95	3.4	$\langle 1 \rangle$	<5	$\langle 1 \rangle$	<10	<0.2	K
V5 BGC-1 0+75N		0.9	<0.05	0.8	68	1.5	$\langle 1 \rangle$	(5	1	<10	<0.2	9
V5 392-1 IN		0.5	<0.05	1.9	73	4.5		<5	D	<10	<0.2	<
V5 RGC-1 1-05N		<0.7	<0.05	1.0	130	5.3	<u></u>	<5	a	<10	0.3	<
VE BGC-1 1+50N		<0.5	<0.05	0.5	150	2.5	4	<5	<1	<10	<0.2	4
V5 960-1 1+75N		<0.5	(0.05	0. 7	150	2-5	4	3		(10	<0.2	i k
V5 SSC-1 CN		1.1	<0.05	0.3	130	6.8	D	<5	4	<10	<0.2	<
VE BGC-1 2+254		5.7	<0.05	0.3	220	4.3	4	<5	4	<10	<0.3	<
V5 BGC-1 2+50N		7.3	<0.05	1.2	130	2.7	त	<5		(10	<0.2	Ń
V5 BGC-1 2+73N		<0.5	<0.05	3.3	130	1.9		<5	0	<10	(0.2	<
V5 860-1 3N		1.0	<0.05	15.0	<50	2.2	<1	<5	1	<10	<0.2	<
V5 280-1 2425X		(0.5	<0.05	0.3	71	1.7		<5	<1	<10	<0.2	<i>Ç</i>
V5 3GC-1 3+50N		0.6	<0.05	0.3	<50	2.5	D	(5		<19	<0.0	
V5 200-1 3475W		(0.5	<0.05	0.4	110	2.5	<1	(5	4	(10	<0.2	<
VE 360-1 4N		0.6	<0.05	0.3	130	2.5	$\langle 1 \rangle$	<5	$\langle 1 \rangle$	(10	<0.2	~
VE 260-1 4+25N		<0.5	<0.05	0.4	83	3.8	$\langle 1 \rangle$	<5	Ω	C10	<0.2	<
VE 390-1 4+50N		<0.3	<0.05	1.1	270	12.0	1	<3	<1	<10	10.3	e e
V5 8GC-1 4+75N		<0.5	<0105 	3.0	99	5.1		. (5		(10	<0.3	<
VS 360-1 5N		<0.7	<0.05	3.3	150	6.2		<5	<1	<19	-10.3	
VE 200-1 5+25N		<0.5	<0.05	2.8	• 73	2.2	(1	<5	$\langle 1 \rangle$	<10	<0.3	<
VS 360-1 3-30N		<0.6	<0.05	1.4	76	2.3	Γ	<5	a	<10	<0.2	
VE 360-1 5+75N		<0.5	(0.05	1.3	86	3.2	<1	(5	a	<10	<0.2	Ś
VE 250-1 SN		0.8	<0.05	1.1	60	1.9		্র		<10	<u> </u>	•.
V5 800-1 6-25N		<0.5	(3105	2.2	63	1.3	- a	<5	- a	<10	(0.0	
VE 200-1 5+50N		0.9	<0.05	0.9	120	2.5	1	<5 	4	<10	<0.2	4
VE 200-1 6+75N		<0.5	<0.05	2.3	97	4.3		6	(1 (1)	<10	<0.2	<
V5 860-1 7N		<0.5	<0.05	h.7	54	1.6		<5 (5		<10	<0.2	<
VE 860-1 7+25N		<0.5	<0.05	1.1	129	1.6	0	<5		<10	0.3	<
V5 BGC-1 7+50N		<0.3	0.11	0.5	62	7.9	D	<5	4	<u>(10</u>	.3	١,
V5 860-1 7+75N		<0.7	<0.05	0.5	98	2.3	a a	<5	4	<10	<0.2	\leq
V5 3GC-1 8N		0.6	<0.05	0.8	92	2.4		<2		<10	0.5	<
V5 8GC-1 8+25N		<0.9	<0.05	2.3	S5 .	3.6	a a	5	0	<10	(0.3	<
VE 360-1 3+50N		<0.6	<0.05	0.3	170	3.5 -		(5		<10	<0.3	<
V5 300-1 07255		2.2	<0.05	0.5	190	3.5	(1	<5	(1	<10	<0.3	<
V5 86C-1 0+30S		1.5	<0.05	1.0	140	2.4	$\langle 1 \rangle$	(5	4	<10	0.5	¢
V5 3GC-1 0+75S		^j 2.1	<0.05	9.7	150	2.0	4	<5 	4	<10	(0.3	<
V5 3GC-1 1+00S		Ŷ.7	<0 .05	4.9	170	4.4		- (5		<10	<0.3	ŝ
75 3GC-1 1+25S		0.7	<0.05	2.6	100	1.6	\sim \sim \sim	৲ < 5	<1	<10	(0.2	\langle

Bondar-Clegg & Computy Ltd. 130 Periberton Ave. North Vancouver, B.C. Canada VTP 235 Phone: (6/4) %5/5/681 Telex: 04-352657

.

.

BONDAR-CLEGG

۰.

-

_i

Geochemical Lab Report

REPORT: 126-5	REFORT: 126-5625						97	OJECT: V2	29	74GE	13
SAMPLE	ELEASNT	S z	÷4	Īa	Ĩh	L.	U	Zn	Cu	P5	
erinesik	U#113	FTH		Pîn -	P2#	199H	??N	PPN	PPn	528	
V5 86C-1 0400	<u> </u>	(2	<1	(0. 3	<0.2	<0.5	<0.05	36	7	15	
(* 19 <u>0-</u>) 3-33		<u>í</u>	્ર	(0.3	√.3 	31.5 	<0.05 	<20	2	9	
VS B30-1 0+50		4	<1	<0.2	<0.2	<0.5	<0.05	<20 (20	2 2	6. 6	
VE 890-1 0-77 V5 800-1 1N		2 3		<0.2	<0.2	<0.5 (0.5	<0.05 KA AF		-	3	
VD 360-1 18		<u>ند `</u>		<0.2	<0.2	<0.5	<0.05	25	4	<u>ی</u>	
45 360-1 1+25		<2	4	<0.2	<0.2	<0.5	(0.05	24	2	6	
V5 BGC-1 1+50		<2	Ğ	<0.2	<0.2	(). 5	<0.05 70.05	<20 29	2	79	
V5 860-1 1+75	Ä			<0.2	<0.2 <0.2	<0.5	(0.05 (0.05	<20	2	. 10	
V5 BGC-1 2N		<2 (2	a a	<0.2 <0.2	<0.2 <0.2	<0.5 <0.5	<0.05 <0.05	42	ے 4	11	
V5 390-1 2+25	.n	<2	<1	(0.2	(0.4 		N9909			<u>د د</u>	- , , .
V5 960-1 2+50		~2	(1	<0.2	<0.2	<0.5	<0.05	32	2	5	
V5 860-1 2+75	H	$\langle 2 \rangle$	4	<0.2	<0.2	<0.5	<0.05	21	2	<2	
VE BGC-1 3M		(2	<1	<0.2	<0.2	<0.5	<0.05	49	2	÷	
V5 360-1 3+25		<2	<1	<0.2	<0.2	<0.5	<0.05	27	2	5	
V5 960-1 3+50	N	2	4	<0.2	<0.2	<0.5	<0.05	<20	2	8	
25 660-1 3+75		~2	1	(0.2	<0.2	<0.5	<0.05	<20	2	5	
V5 830-1 4N		3	$\langle 1 \rangle$	<0.2	10.2	<0.5	<0.05	32	2	9	
VS 360-1 4+25	122 /1	< <u>0</u>	\sim	<0.2	<0 . 2	(0.5	K0165	21	2	8	
V5 260-1 4+50	11	$\langle 2 \rangle$	$\langle 1 \rangle$	<0.2	<0.2	<0.5	<0.05	42	1	10	
V5 8GC-1 4+73	H.	$\langle 2$	4	<0 .2	<0.2	<0.5	<0.05	46	2	7	
V5 860-1 5N			- (1	<0.2	<0.2	(0.5	<0.05	22	1	Ą	
V5 2GC-1 5+05	in .	<2	$\langle 1 \rangle$	(0.2	. <0.2	<0.5	<0.05	32	3	4	
VS BGC-1 5+50	N	<2	0	<0.2	<0.2	<0.5	<0.05	27	1	8	
V5 BGC-1 5+75	N	<2	$\langle \mathbf{l} \rangle$	<0.2	(0.2	<0.5	<0.05	31	1	3	
VE BGC-1 SM		<2	41	<0.2	<0.2	<0.5	<0.05	40	2	5	
V5 BGC-1 6+25	¥.	<2		<0.2	<0.2	<0.5	<0.05	(20		<2	
VE BCC-1 6+50	Ħ	<2	\Box	<0.2	<0.2	<0.5	<0.05	42	2	5	
V5 8GC-1 6+75	R	<2	<1	<0.2	<0.2	<0.5	<0.05	<20	2	<2	
V5 892-1 7N	•	<2	\Box	<0.2	<0.2	<0.5	<0.05	23	2	4	
V5 BGC-1 7+2	EN .	<2	Ω	<0.2	<0.2	<0.5	<0.05	<20	2	5	
VE 360-1 7450	N	<2	- (1	<0.2	<0.2	<0.5	<0.05		2	<2	
V5 BGC-1 7+73	EN	<2	Δ	<0.2	<0.2	<0.5	<0.05	<20	2	<2	
V5 BGC-1 8N		<2	\Box	<0.2	<0.2	<0.5	<0.05	20	2	<2	
V5 860-1 8+25		<2	<1	<0.2	<0.2	<0.5	<0.05	38	2	3	
V5 BGC-1 8+50	N	<2	D	<0.2	<0.2	<0.5	<0.05	23	2	<2	
V5 BGC-1 0+2	5S	<2	1	<0.2	<0.2	<0.5	<0.05	30	2	3	
V5 BGC-1 0+50		<2	a	<0.2	<0.2	<0.5	<0.05	<20	1	2	
V5 3GC-1 0+7	55	<2	0	<0.2	<0.2	<0.5	<0.05	34	2	<2	
V5 B6C-I 1+00	S	<2	<1	<0.2	<0.2	<0.5	<0.05	29	2	2	
V5 8GC-1 1+2	55	<2	$\langle 1 \rangle$	<0.2	<0.2	<0.5	<0.05	32	2	3	

názz-Clegg & Compuny Ltd. Pemberton Ave. rsh Vanonuver, B.C. rada VPI 285 tone: rá041985-5631 ex: 04-332567	BONDAR-CLEGG	Geochemical Lab Report

SAHPLE	ELEMENT	Au	Sò	 Às		19		Cr		ir	ňa	
NUKBER	UNITS	PPB	ррн	PPH	PPH	PPN	PPH	PPN	ррн	PPB	PPH	PPH
V5 8GC-1 1+5	05	<0.5	<0.05	1.5	93	3.1	a	<5		<10	<0.2	
V5 BGC-1 1+7	55	0.7	<0.05	0.9	200	2.0	4	<5	<1	<10	<0.2	<5
V5 36C-1 2S		1.4	<0.05	0.4	230	2.9	a	5	<1	(10	<0.3	1

. .

.

. .

.

.

" Bondar-Clegg & Company Ltd.		
130 Periberton Ave. North Vancouver, B.C. Canada VTP 285	BONDAR-CLEGG	Geochemical Lab Report
Phone: (604) 935-0681 Telex: 04-352567		

REFERT: 126-56	.25						PR	OJECT: V2	39	9	AGE 28
Sample Number	ELEMENT UNITS	Se PPH	A <u>q</u> PPH	īs PPH	Th የዖሽ	y Pon	U Pe n	Zn PPM	Cu PPM	РЬ Ррн	
V5 BGC-1 1+50	<u>.</u>	<2	4	<0.2	<0.2	<0.5	<0.05	33	2	<2	
V5 BGC-1 1+759	5	<2	a j	<0.2	<0.2	<0.5	<0.05	28	2	2	
V5 8GC-1 2S		(2	(1	<0.2	<0.2	<0.5	<0.05	23	2	6	

------• •

,

.

•

•

.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-332-57

n

Geochemical Lab Report

REFERENCE INFO: REPORT: 126-6493 (COMPLETE) CLIENT: MPH CONSULTING LTB. SUBHITTED BY: UNKNOWN DATE PRINTED: 12-DEC-86 PROJECT: V239 NUMBER OF LOWER DETECTION LIMIT EXTRACTION METHOD ORDER ELEHENT ANALYSES IND. NEUTRON ACTIV. 0.5 PPB Gold 49 1 Au HNO3-HCL HOT EXTR Atomic Absorption 2 Cu 49 1 PPH Copper IND. NEUTRON ACTIV. SЪ 0.05 PPH 3 Antimony 49 HND3-HCL HOT EXTR Atomic Absorption 2 PPM 4 Pb -Lead 49 IND. NEUTRON ACTIV. 5 As Arsenic 49 0.2 PPH 49 50 PPH IND. NEUTRON ACTIV. Ba Barium 6 49 0.5 PPH IND. NEUTRON ACTIV. 7 Bromine Br ____ 8 Cd Cadmium 1 PPM IND. NEUTRON ACTIV. 49 49 5 PPM IND. NEUTRON ACTIV. 9 Cr Chromium 10 Co Cobalt 49 1 PPN IND. NEUTRON ACTIV. IND. NEUTRON ACTIV. 11 Ir Iridium 49 10 PPB IND. NEUTRON ACTIV. 12 Но Molvbdenum 49 0.2 PPN IND. NEUTRON ACTIV. 13 Ni Nickel 49 5 PPH 14 Se Selenium 49 1 PPM IND. NEUTRON ACTIV. 15 1 PPM IND. NEUTRON ACTIV. Aq Silver 49 IND. NEUTRON ACTIV. Тэ Tantalum 49 0.2 PFM 16 IND. NEUTRON ACTIV. 17 Th Thorium 49 0.2 PPM IND. NEUTRON ACTIV. 0.5 PPM Н Tungsten 49 18 IND. NEUTRON ACTIV. 19 U Uranium 49 0.05 PPH 49 IND. NEUTRON ACTIV. 20 10 PPH Zn Zine NUHBER ----NUMBER -SAMPLE PREPARATIONS NUMBER SAMPLE- IYPSS - SIZE -FRACTIONS -----V VEGETATION 5 OTHER 49 MACERATING/BLENDING 49 49 BRIQUETTING 49 REPORT COPIES TO: MR. GREG HAWKINS -MR. GORD ALLEN

RECEIVED DEC 1 9 1986

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

-(

<u>]</u>

F

5

REPORT: 126-	-6493						PI	ROJECT: V2	39		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	Cu PPM	Sb PPN	Pb PPH	As PPH	Bə PPH	Br PPM	Cd PPH	Cr PPH	Co PPH	Ir PPB
V5 BGC-2 0+(DON	0.8	4	0.06	7	1.6	62	4.2	4	< 5		<10
V5 BGC-2 0+3	25N	<0.6	4	<0.05	7	3.4	110	7.5	\Box	<5	$\langle 1$	<10
V5 BGC-2 0+5	SON	0.7	4	<0.05	6	3.2	120	6.4	$\langle 1 \rangle$	<5	$\langle 1 \rangle$	<10
V5 BGC-2 0+1	75N	0.9	4	0.05	6	1.3	100	6.2	, d	<5	(1)	<10
V5 BGC-2 1+0	HOON	0.6	4	(0.05	5	1.1	90	5.4	0	<5	4	<10
V5 BGC-2 1+2	25N	<0.6	3	<0.05	5	2.9	92	8.3	<1	<5		<10
V5 8GC-2 1+5	50N	<0.6	4	<0.05	5	2.1	110	10.0	Δ	<5	$\langle 1 \rangle$	<10
V5 BGC-2 1+1	75N	0.6	5	<0.05	4	1.2	56	2.3	\sim 1	<5	(1)	<10
V5 BGC-2 2+(NOC	1.3	3	<0.05	5	6.4	91	21.0	$\langle 1 \rangle$	<6	0	<10
V5 BGC-2 2+:	25N	<0.5	3	<0.05	5	1.3	61	4.4	<1	<5	D	<10
V5 BGC-2 2+3	50N	<0.5	5	<0.05	6	0.7	100	3.9		<5	<u></u>	<10
V5 BGC-2 2+3	75N	<0.6	4	<0.05	6	1.8	57	11.0	$\langle 1$	<5	0	<10
V5 BGC-2 3+0	лон	2.7	4	<0.05	6	7.5	130	41.0	0	<8>	\sim	<14
V5 BGC-2 3+2	25N	0.8	3	<0.05	5	1.7	<50	6.4	$\langle 1 \rangle$	<5	D	<10
V5 BGC-2 3+5	SON	<0.5	4	<0.05	6	1.5	120	5.8	$\langle 1$	<5	<1	<10
V5 BGC-2 3+1	75N	2.4	4	0.15	6	2.0	130	7.4	(1	(5	<u>(1</u>	<10
V5 BGC-2 4+(NOC	1.7	4	<0.05	7	0.7	110	2.5	d	<5	a	<10
V5 BGC-2 4+3	25N	<0.5	4	<0.05	8	0.2	<50	<0.5	<1	<5	Ω	<10
V5 BGC-2 4+5	50N	0.7	4	0.05	7	0.4	<50	0.9	$\langle 1 \rangle$	<5	\mathbf{D}	(10
V5 BGC-2 4+3	75N	<0.5	Э	<0.05	9	0.6	100.	2.7	Ω	<5	$\langle 1 \rangle$	<10
V5 BGC-2 5+4	DON	<0.5	4	<0.05	8	0.2	(50	1.3		<5	4	<10
V5 BGC+2 5+3	25N	<0.5	4	<0.05 ·	8	0.2	110	2.0	$\langle 1 \rangle$	<5	$\langle 1 \rangle$	<10
V5 BGC-2 5+5	50N	<0.5	6	<0.05	6	<0.2	<50	0.5	$\langle 1 \rangle$	(5	$\langle 1 \rangle$	<10
V5 BGC-2 5+3	75N	<0.5	4	<0.05	9	0.9	190	2.3	4	<5	$\langle 1 \rangle$	<10
V5 BGC-2 6+0	NON	<0.5	5	<0.05	7	0.4	200	1.0	\mathbf{D}_{i}	<5	41	<10
V5 BGC-2 6+3	25N	<0.5	5	<0.05	6	4.3	75	3.4		<5	<1	<10
V5 BGC-2 6+3	50N	<0.5	4	<0.05	6	2.5	210	5.4	\Box	<5	$\langle 1 \rangle$	<10
V5 BGC-2 6+3	75N	0.6	6	<0.05	6	1.9	53	3.2	Δ	<5	$\langle 1 \rangle$	<10
V5 BGC-2 7+0	. ноо	<0.5	é	<0.05	6	0.3	<50	<0.5	$\langle 1$	<5	$\langle 1 \rangle$	<10
V5 BGC-2 7+	25N	<0.5	4	<0.05	9	0.9	150	2.5	<1	<5	$\langle 1$	<10
V5 BGC-2 7+5	50N	<0.7	4	<0.05	5	0.5	110	11.0	<1	<5	<1	<10
V5 BGC-2 7+1	75N	<0.5	4	<0.05	6	0.3	<50	0.6	<1	(5) -	\Box	<10
V5 BGC-2 8+0	DON	<0.5	4	<0.05	10	0.7	140	2.1	\Box	<5	4	<10
V5 BGC-2 8+3	25N	<0.5	3	<0.05	7	1.0	130	4.2	4	<5	4	<10
V5 BGC-2 8+	50N	1.2	4	<0.05	9	1.3	55	3.1		<5	<1	<10
V5 NGC-2 8+	75N	<0.5	3	<0.05	11	0.4	180	2.3	4	<5	<1	<10
V5 BGC-2 9+4	oon	0.8	4	<0.05	8	0.2	<50	0.8	\mathcal{O}	<5	Δ	<10
V5 BGC-2 9+	25N	0.6	3	<0.05	10	0.3	120	5.7	<1	<5	$\langle 1 \rangle$	<10
V5 BGC-2 9+	50N	<0.5	4	<0.05	7	1.0	120	3.9	a	<5	4	<10
V5 BGC-2 9+	75N	<0.5	3	<0.05	8	0.3	150	2.8	4	(5	(1	<10

-

.

Geochemical Lab Report

							· · · · · · · · · · · · · · · · · · ·				
Sample Number	elehent Units	No PPK	Ni PPM	Se PPM	A3 PPM	Ta PPH	Th PPM	W PPM	U PPM	Zn PPM	
 V5 BGC-2 0+00N		<0.2	<5	<2	4	<0.2	<0.2	<0.5	<0.05	21	
V5 BGC-2 0+25N		(0.2	<5	<2	$\langle 1 \rangle$	<0.2	<0.2	<0.5	<0.05	23	
V5 RGC-2 0+50N		<0.2	<5	<2	0	<0.2	<0.2	<0.5	<0.05	27	
V5 BGC-2 0+75N		<0.2	<5	<2	\mathbf{D}	<0.2	<0.2	<0.5	<0.05	<20	
V5 RGC-2 1+00N		<0.2	<5	<2	4	<0.2	<0.2	<0.5	<0.05	35	
 V5 BGC-2 1+25N		<0.2	<5	<2	<1	<0.2	<0.2	<0.5	<0.05	32	
V5 BGC-2 1+50N		<0.2	<5	$\langle 2 \rangle$	\Box	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 1+75N		<0.2	<5	<2	<1	<0.2	<0.2	<0.5	<0.05	37	
V5 BGC-2 2+00N		<0.2	<5	<2	$\langle 1 \rangle$	<0.2	<0.2	<0.5	<0.05	38	
V5 BGC-2 2+25N		<0.2	<5	<2	<1	<0.2	<0.2	<0.5	<0.05	21	
 V5 BGC-2 2+30N		<0.2	<5	<2	(1	<0.2	<0.2	<0.5	<0.05	25	
V5 BGC-2 2+75N		<0.2	<5	<2	$\langle 1 \rangle$	<0.2	<0.2	<0.5	<0.05	25	
V5 BGC-2 3+00N		<0.3	<5	\sim	0	<0.2	<0.2	<0.3	<0.05	<23	
V5 BGC-2 3+25N		<0.2	<5	<2	$\langle 1 \rangle$	<0.2	<0.2	<0.5	<0.05	21	
V5 BGC-2 3+50N		<0.2	<5	<2	0	<0.2	<0.2	<0.5	<0.05	35	
 V5 BGC-2 3+75N		<0.2	<5	<2		<0.2	<0.2	<0.5	<0.05	22	
V5 EGC-2 4+00N		<0.2	<5	<2	<1	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 4+25N		<0.2	<5	<2	(Ì	<0.2	<0.2	<0.5	<0.05	23	
V5 BGC-2 4+50N		<0.2	<5	2	à	<0.2	(0.2	<0.5	<0.05	25	
V5 BGC-2 4+75N		<0.2	ঁ	<2	à	<0.2	<0.2	<0.5	<0.05	23	
V5 BGC-2 5+00N		<0.2	<5	<2	(1	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 5+25N		<0.2	(5	<2 ·	ā	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 5+50N		<0.2	<5	2	ä	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 5+75N		<0.2	<5	2	ā	<0.2	<0.2	<0.5	<0.05	37	
V5 BGC-2 6+00N		0.3	Ğ	<2	ā	<0.2	<0.2	<0.5	<0.05	<20	
 V5 BGC-2 6+25N		<0.2	<5	<2	<1	<0.2	<0.2	<0.5	<0.05	23	
V5 BGC-2 6+50N		<0.2	<5	<2	a	<0.2	<0.2	<0.5	<0.05	26	
V5 BGC-2 6+75N		<0.2	<5	č	a	<0.2	<0.2	<0.5	<0.05	24	
V5 BGC-2 7+00N		0.2	<5	2	<1	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 7+25N		<0.2	ंऽ	2	ā	<0.2	<0.2	<0.5	<0.05	(20	
 V5 BGC-2 7+50N		<0.2	<5	<2	4	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 7+75N		<0.2	<5	₹2	à	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 8+00N		<0.2	<5	2	à	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 8+25N		<0.2	<5	<2	à	<0.2	<0.2	<0.5	<0.05	25	
V5 BGC-2 8+25N		<0.2	ব্য	<2	a	<0.2	<0.2	<0.5	<0.05	21	
 V5 BGC-2 8+75N		<0.2	<5	<2	<1	<0.2	<0.2	<0.5	<0.05	26	
V5 BGC-2 9+00N		<0.2	<5	- <2		<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 9+25N		<0.2	<5	<2		<0.2	<0.2	<0.5	<0.05	21	
V5 BGC-2 9+30N		<0.2	<5	<2		<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 9+75N		<0.2	<5	<2	a	<0.2	<0.2	<0.5	<0.03	21	

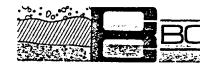
Bondar-Ciegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

· · · ·

Geochemical Lab Report

ġ

 REPORT: 126-6	493						PI	ROJECT: V2	39		PAGE 2A	
 Sanple Number	ELEMENT UNITS	Au PPB	Cu PPH	Sb PPM	Pb PPM	As PPH	Ba PPM	Br PPM	Cd PPM	Cr PPM	Co PPH	Ir PPB
 V5 BGC-2 10+0	ON	<0.7	3	<0.05	10	0.7	94	6.9	1	<5	(]	<10
V5 BGC-2 10+2	SN .	0.6	3	<0.05	12	0.4	150	3.4	· (1	<5	4	<10
V5 BGC-2 10+5	ION	0.6	3	<0.05	10	0.2	<50	1.3	$\langle 1 \rangle$	<5	<1	<10
V5 BGC-2 10+7	75N	<0.5	3	<0.05	11	<0.2	<50	2.3	<1	<5	\Box	<10
 V5 BGC-2 11+0	ON	0.6	3	<0.05	10	0.2	<50	0.7	a	<5	4	<10
 V5 BGC-2 11+2	25N	<0.7	4	<0.05	6	1.1	89	12.0	4	<5	<1	(10
V5 BGC-2 11+5	SON	0.5	4	<0.05	7	0.2	<50	0.7	<1	<5	$\langle 1 \rangle$	<10
V5 BGC-2 11+7	75권	<0.5	3	<0.05	7	0.3	<50	0.3	4	<5	<1	<10
V5 BGC-2 12+0	NON	<0.5	3	<0.05	6	1.3	68	2.5	\mathbf{D}	<5	Δ	<10


•

.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

. ____.

.

.

.

Geochemical Lab Report

REPORT: 126-6493			PI	PROJECT: V239			PAGE 2B				
NUHBER	ELEMENT UNITS	Ho PPH	Ni PPM	Se PPM	Ag PPM	T3 PPH	Th PPM	u PPM	U PPM	Zn PPM	
V5 BGC-2 10+00N		<0.2	<5	<2	4	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 10+25N		<0.2	<5	$\langle 2 \rangle$	a	<0.2	<0.2	<0.5	<0.05	37	
V5 BGC-2 10+50N		<0.2	<5	<2	<1	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 10+75N		<0.2	<5	<2	(1	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 11+00N		<0.2	<۲	<2	D	<0.2	<0.2	<0.5	<0.05	30	
V5 BGC-2 11+25N		<0.2	(5	<2	(1	<0.2	<0.2	<0.5	<0.05	25	
V5 BGC-2 11+50N		<0.2	<5	<2	Ω	<0.2	<0.2	<0.5	<0.05	<20	
V5 BGC-2 11+75N		<0.2	<5	<2	4	<0.2	(0.2	<0.5	<0.05	<20	
V5 BGC-2 12+00N		<0.2	(5	<2	$\langle 1 \rangle$	<0.2	<0.2	<0.5	<0.05	20	

•

-

-

And the second second

.

-

APPENDIX IV

SOIL GEOCHEMISTRY STATISTICS

STATISTICAL REPORT

To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C. 2225 S. SPRINGÉR AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

and the second second

 Project:
 V 239

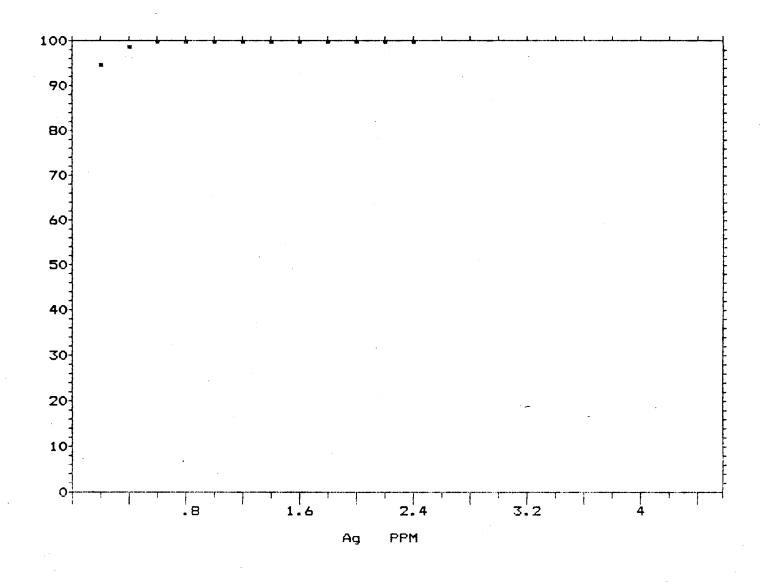
 Date:
 87-02-19

Element: Aq

Sample Type: Soil

CLASS IN	TERVAL	CLASS FREQUENCY	RELATIVE FREQUENCY%	CUMULATIVE FREQUENCY%	CLASS MEAN
0.0 -	0.2	 649	94.61	94.61	0.20
0.3 -	0.4	29	4.23	98.84	0.40
0.5 -	0.6	5	0.73	99.57	0.60
0.7 -	0.8	2	0.29	99.86	0.80
0.9 -	1.0	0	0.00	97.86	0.00
1.1 -	1.2	0	0.00	99.86	0.00
1.3 -	1.4	0	0.00	99.86	0.00
1.5 -	1.6	0	0.00	99.86	0.00
1.7 -	1.8	0	0.00	99.86	0.00
1.9 -	2.0	0	0.00	99.86	0.00
2.1 -	2.2	0	0.00	99.86	0.00
2.3 -	2.4	1	0.15	100.00	2.40

For Statistics

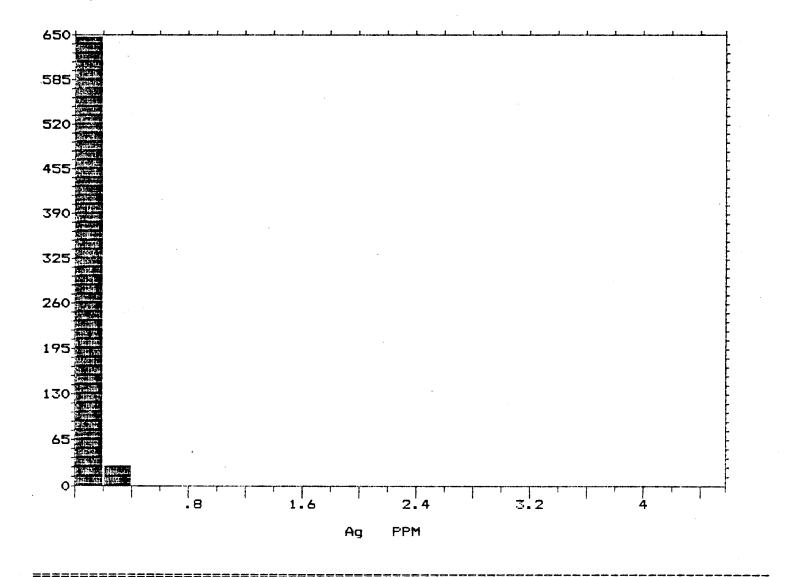

For All Data

Number of Samples:	686	686
Arithmetic Mean :	.22	N.A.
Standard Deviation :	. 1	N.A.
Minimum Value :	.2	.2
Maximum Value :	2.4	2.4
Range :	.2 10 PPM	.2 2.4 PPM

File(s) used for Statistics:

V239STAT

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE Burnaby, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD.	Project:	V 239
301-409 GRANVILLE ST. Vancouver, b.c.	Date:	87-02-19
Element: Ag	Sample Type:	Soil



Cumulative Frequency Histogram

ii -

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD.	Project:	V 239
301-409 GRANVILLE ST. Vancouver, b.c.	Date:	87-02-19
Element: Ag	Sample Type:	Soil

Frequency Histogram

STATISTICAL REPORT

To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C.

Project: Date:

V 239 87-02-19

Element: As

Sample Type: Soil CLASS RELATIVE CUMULATIVE CLASS FREQUENCY FREQUENCY% FREQUENCY% MEAN

 CLASS	INTERV	AL	FREQUENCY	FREQUE		FREQUENC		MEAN
0		2	0	0.	00	0.00		0.00
3	-	4	0	0.	00	0.00		0.00
5		6	312	45.	48	45.48		5.00
7		8	0	ο.	.00	45.48		0.00
9	- 1	0	130	18.	95	64.43		10.00
11	- 1	2	0	о.	.00	64.43		0.00
13	- 1	4	0	о.	00	64.43		0.00
15	- 1	6	77	11.	22	75.65		15.01
17	- 1	8	0	о.	00	75.65		0.00
19	- 2	0	55	8.	.02	83.67		20.00
21	- 2	2	0	О.	00	83.67		0.00
23	- 2	4	0	Ο.	.00	83.67		0.00
25	- 2	6	41	5.	98	89.65		25.00
27	- 2	8	0	ο.	00	89.65		0.00
29	- J	0	36	5.	25	94.90		30.00
31	- 3	2	0	о.	00	94.9 0	I	0.00
33	- 3	4	1	٥.	15	95.05		34.00
35	- 3	6	15	2.	19	97.24		35.00
37	- 3	8	0	· 0.	00	97.24		0.00
39	- 4	0	10	1.	46	98.70		40.00
41	- 4	2	0	о.	00	98.70		0.00
43	- 4	4	0	ο.	00	98.70		0.00
45	- 4	6	6	о.	87	99.57		45.00
47	- 4	8	0	Ο.	00	100.00		0.00

For Statistics

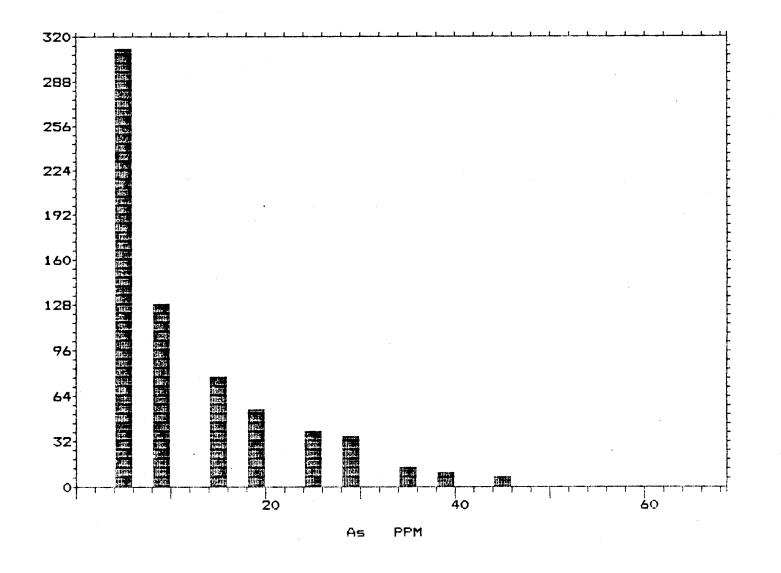
For All Data

· --

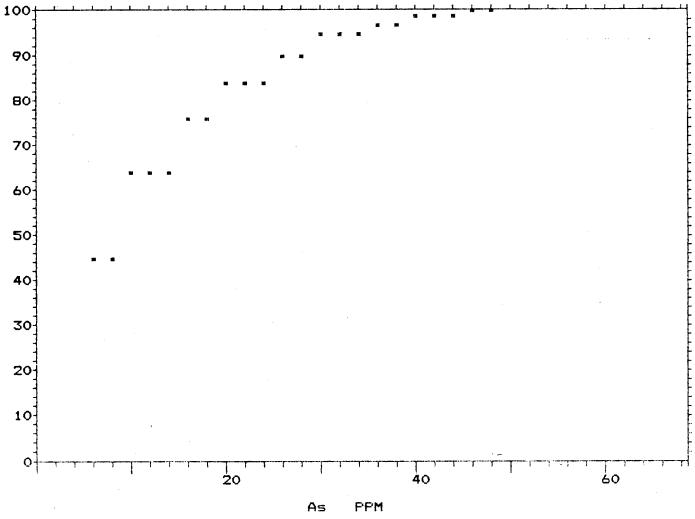
.

Number of Samples:	686	686
Arithmetic Mean :	12.55	N.A.
Standard Deviation :	9.850001	N.A.
Minimum Value : .	5	1
Maximum Value :	56	56
Range :	1 500 PPM	1 56 PPM

File(s) used for Statistics:


V239STAT

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910


e de la companya de l

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD.	Project:	V 239
301-409 GRANVILLE ST. Vancouver, b.c.	Date:	87-02-19
Element: As	Sample Type:	Soil

Frequency Histogram

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE Burnaby, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER. B.C.	Project: Date:	V 239 87-02-19
Element: As	Sample Type:	Soil

Cumulative Frequency Histogram

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

-

STATISTICAL REPORT

To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C.

Element: Cu

 Project:
 V 239

 Date:
 87-02-19

Sample Type: Soil

CLASS	INTERVAL	CLASS FREQUENCY	RELATIVE FREQUENCY%	CUMULATIVE FREQUENCY%	CLASS MEAN
0	- 21	121	17.69	17.69	12.79
22	- 42	228	33.33	51.02	32.60
43	- 63	183	26.75	77.77	51.84
64	- 84	101	14.77	92.54	72.08
85	- 105	31	4.53	97.07	92.35
106	- 126	8	1.17	98.24	114.50
127	- 147	5	0.73	98.97	136.80
148	- 168	2	0.29	99.26	153.50
169	- 189	1	0.15	99.41	189.00
190	- 210	2	0.29	99.70	194.50
211	- 231	0	0.00	99.70	0.00
232	- 252	Ο.	0.00	99.70	0.00
253	- 273	0	0.00	99.70	0.00
274	- 294	1	0.15	99.85	286.00
295	- 315	1	0.15	100.00	305.00
316	- 336	0	0.00	100.00	0.00
337	- 357	0	0.00	100.00	0.00
358	- 378	0	0.00	100.00	0.00
379	- 399	0	0.00	100.00	0.00
400	- 420	0	0.00	100.00	0.00
421	- 441	0	0.00	100.00	0.00
442	- 462	0	0.00	100.00	0.00
463	- 483	0	0.00	100.00	0.00
484	- 504	0	0.00	100.00	0.00
	<u>-</u>	For Statistic	5	For All Data	

Number of Samples:	68	34				686	
Arithmetic Mean :	48	5.32				N.A.	
Standard Deviation :	30	0.38				N.A.	
Minimum Value :	1					1	
Maximum Value :	30	05				868	
Range :	1 5	500	PPM	1	-	868	PPM

File(s) used for Statistics:

V239STAT

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

STATISTICAL REPORT

To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C. Project: Date:

Sample Type: Soil

V 239

87-02-19

Element:	Cu	

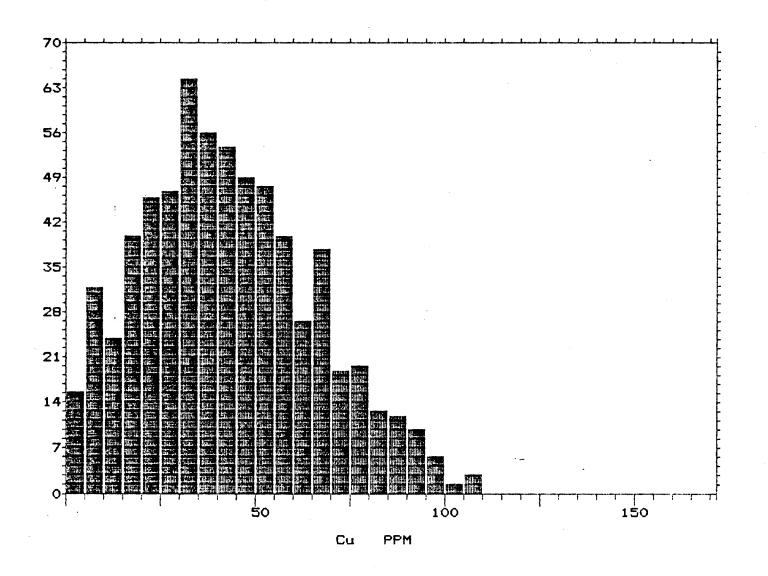
à.

CLASS	INTERVAL	CLASS FREQUENCY	RELATIVE FREQUENCY%	CUMULATIVE FREQUENCY%	CLASS MEAN
0	- 5	16	2.40	2.40	3.13
6	- 10	32	4.80	7.20	8.56
11	- 15	24	3.60	10.80	12.92
16	- 20	40	6.00	16.80	18.13
21	- 25	46	6.90	23.70	22.91
26	- 30	47	7.05	30.75	28.23
31	- 35	65	9.75	40,50	33.23
36	- 40	56	8.40	48.90	37.96
41	- 45	54	8.10	57.00	42.94
46	- 50	49	7.35	64.35	47.65
51	- 55	48	7.20	71.55	52.85
56	- 60	40	6.00	77.55	57.85
61	- 65	27	4,05	81.60	63.37
66	- 70	38	5.70	87.30	67.84
71	- 75	19	2.85	90.15	72.58
76	- 80	20	3.00	93.15	77.85
<u> </u>	- 85	13	1.95	95.10	82.77
85	- 90	12	1.80	96.90	88,42
91	- 95	10	1.50	98.40	92.50
1.5	- 100	6	0.90	99.30	97.67
101	- 105	2	0.30	99.60	103.00
106	- 110		0.45	100.05	107.33
111	- 115	0	0.00	100.05	0.00
116	- 120	0	0.00	100.00	0.00

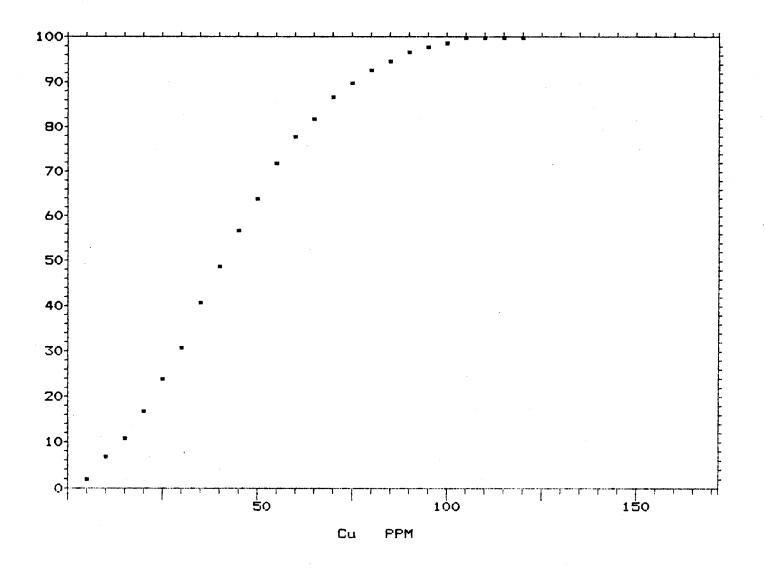
For Statistics

For All Data

Number of Samples:	667	686
Arithmetic Mean :	43.38	N.A.
Standard Deviation :	22.75	N.A.
Minimum Value : .	1	1
Maximum Value :	110	868
Range :	1 110 PPM	1 868 PPM


File(s) used for Statistics:

V239STAT


ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE Burnaby, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
TO: MPH CONSULTING LTD.	Project:	V 239
301-409 GRANVILLE ST. Vancouver, b.c.	Date:	87-02-19
Element: Cu	Sample Type:	Soil

Frequency Histogram

í

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C.	Project: Date:	V 239 87-02-19
Element: Cu	Sample Type:	Soil

Cumulative Frequency Histogram

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL: (604) 299 - 6910

STATISTICAL REPORT

To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C.

Project: Date:

V 239 87-02-19

<u> Ilement:</u>	РЬ	Sample Type:	Soil
*******		 	*******************

CLASS	INTERVAL	CLASS FREQUENCY	RELATIVE FREQUENCY%	CUMULATIVE FREQUENCY%	CLASS MEAN
0	- 4	107	15.60	15.60	3.20
5	- 8	222	32.36	47.96	7.06
9	- 12	185	26.97	74.93	10.76
13	- 16	91	13.27	88.20	14.64
17	- 20	41	5.98	94.18	18.83
21	- 24	16	2.33	96.51	23.13
25	- 28	10	1.46	97.97	27.00
. 29	- 32	2	0.29	98.26	31.00
	- 36	1	0.15	98.41	34.00
37	- 40	4	0.58	98.99	40.00
41	- 44	1	0.15	99.14	42.00
45	- 48	2	0.29	99.43	47.00
49	- 52	1	0.15	99.58	50.00
0.2	- 56	0	0.00	99.58	0.00
57	- 60	0	0.00	99.58	0.00
61	- 64	1	0.15	99.73	62.00
	- 68	0	0.00	99.73	0.00
u ,	- 72	0	0.00	99.73	0.00
	- 76	0	0.00	99.73	0.00
	- 80	0	0.00	99.73	0.00
	- 84	0	0.00	99.73	0.00
85	- 88	1	0.15	79.88	88.00
υ,	- 92	0	0.00	99.88	0.00
93	- 96	0	0.00	100.00	0.00

For Statistics

For All Data

Number of Samples:	686	686
Arithmetic Mean :	10.7	N.A.
Standard Deviation :	8.24	N.A.
Minimum Value :	2	2
Maximum Value : 🕔	106	106
Range: 1	500 PPM	2 106 PPM

File(s) used for Statistics:

V239STAT

STATISTICAL REPORT

÷

MPH CONSULTING LTD. 10: 301-409 GRANVILLE ST. VANCOUVER, B.C.

Project: Date:

V 239 87-02-19

1.5 We share the second secon second sec

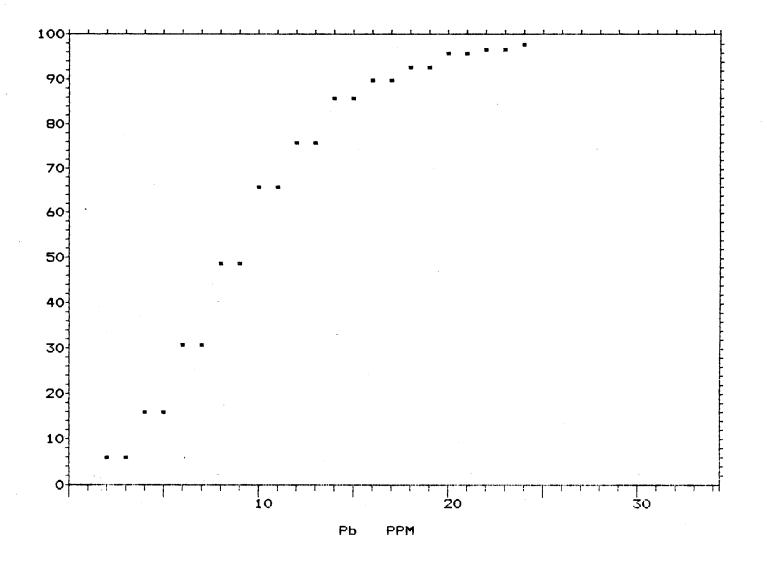
2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

lement:	Рb	Sample Type:	Soil
******			******

CLASS	INT	ERVAL	CLASS FREQUENCY	RELATIVE FREQUENCY%	CUMULATIVE FREQUENCY%	CLASS MEAN
0	-	1	0	0.00	0.00	0.00
2	-	2	43	6.39	6.39	2.00
3		3	0	0.00	6.39	0.00
4	-	4	64	9.51	15,90	4.00
5	-	5	0	0.00	15.90	0.00
6	-	6	104	15.45	31.35	6.00
7		7	0	0.00	31.35	0.00
. 8		8	119	17.68	49.03	8.00
9		9	0	0,00	49.03	0.00
10		10	113	16.79	65.82	10.00
11	-	11	0	0.00	65 .8 2	0.00
12	-	12	71	10.55	76.37	12.00
13	-	13	0	0.00	76.37	0.00
14		14	62	9.21	85.58	14.00
15	-	15	Ō	0.00	85.58	0.00
16		16	29	4.31	89.89	16.00
17		17	0	0.00	89.89	0.00
18	-	18	24	3.57	93.46	18.00
19	-	19	0	0.00	93.46	0.00
20	-	20	17	2.53	95.99	20,00
21		21	0	0.00	95.99	0.00
22		22	7	1.04	97.03	22.00
23		23	0	0.00	97.03	0.00
24		24	9	1.34	98.00	24.00

For Statistics

For All Data

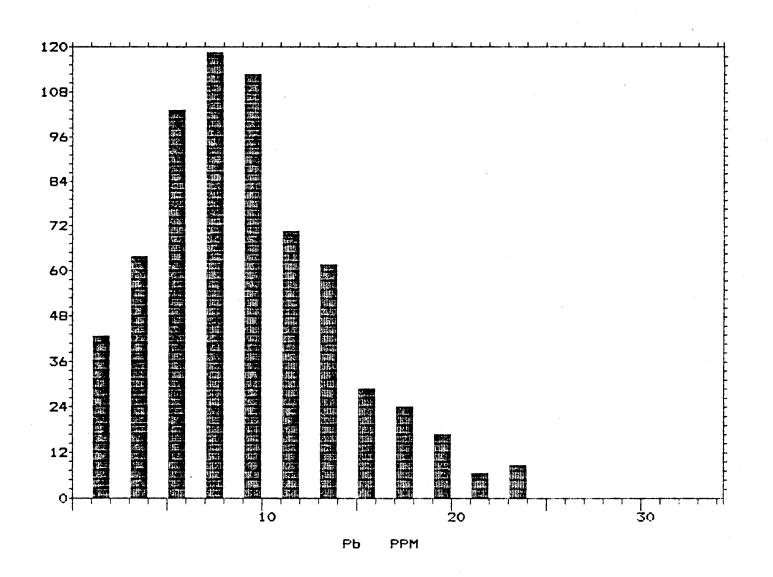


Number of Samples:	673	686
Arithmetic Mean :	9.92	N.A.
Standard Deviation :	5.29	N.A.
Minimum Value :	2	2
Maximum Value :	30	106
Range :	1 30 PPM	2 105 FPM

File(s) used for Statistics:

V239STAT

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE Burnaby, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD. 301-409 GRANVILLE ST.	Project: Date:	V 239 87-02-19
VANCOUVER, B.C. Element: Pb	Sample Type:	Soil



Cumulative Frequency Histogram

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD.	Project:	V 239
301-409 GRANVILLE ST.	Date:	87-02-19
VANCOUVER, B.C.		
Element: Pb	Sample Type:	Soil

Frequency Histogram

STATISTICAL REPORT

To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C.

Date:

Sample Type: Soil

•

Project: V 239 87-02-19

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1

TEL : (604) 299 - 6910

Element: Zn

1

,

CLASS	INT	ERVAL	CLASS FREQUENCY	RELATIVE FREQUENCY%	CUMULATIVE FREQUENCY%	CLASS MEAN
0	_	9	3	0.44	0.44	6.00
10		18	3 5	0.73	1.17	14.80
19	-	27	6	0.87	2.04	24.67
28	-	36	24	3.50	5.54	32.67
37		45	28	4.08	9.62	41.50
46	•••••	54	54	7.87	17.49	51.33
55	-	63	63	9.18	26.67	57,54
64	-	72	89	12.97	39.64	67.73
73		81	78	11.37	51.01	76.72
82	-	90	90	13.12	64.13	86.09
91	-	9 9	90	13.12	77.25	94.67
100		108	64	9.33	86.58	104.00
109	-	-117	39	5.69	92.27	112.72
118	-	126	24	3.50	95.77	122.58
127	-	135	12	1.75	97.52	129.50
136	-	144	7	1.02	98.54	139.00
145	••••	153	3	.44	78.78	148.67
154		162	े उ उ	0.44	99.42	160.00
163	-	171	2	0.29	99.71	168.00
172	-	180	0	0.00	99.71	0.00
		189	0	0.00	99.71	0.00
190		198	0	0.00	99.71	0.00
199	-	207	. 1	0.15	99.86	202.00
208		216	1	0.15	100.00	212.00

For Statistics

For All Data

Number of Samples:	686	686
Arithmetic Mean :	80.45	N.A.
Standard Deviation :	27.55	N.A.
Minimum Value :	4	2
Maximum Value :	212	212
Range :	1 750 PPM	2 212 PPM

File(s) used for Statistics:

V239STAT

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL: (604) 299 - 6910

STATISTICAL REPORT

To: MPH CONSULTING LTD. 301-409 GRANVILLE ST. VANCOUVER, B.C.

Project: V 239 87-02-19 Date:

2

212

PPM

Element: Zn

Sample Type: Soil

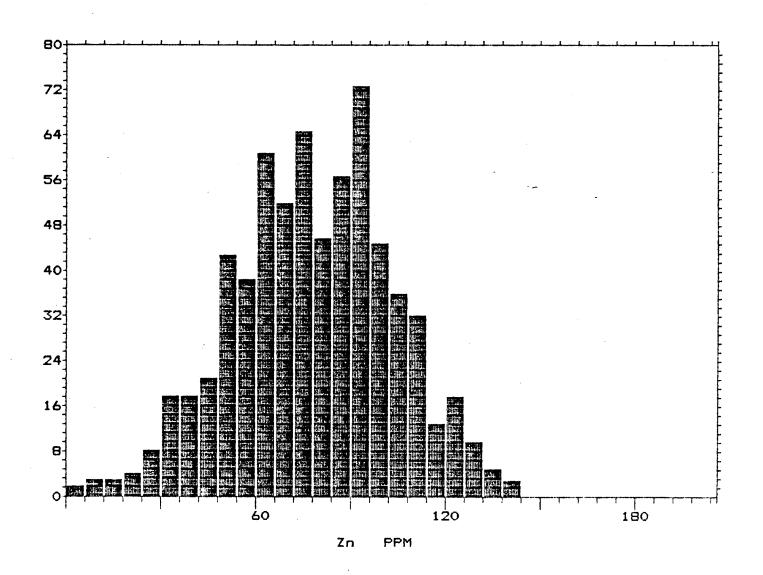
CLASS INTER	CLASS VAL FREQUEN		CUMULATIVE FREQUENCY%	CLASS MEAN
0 -	6 2	.30	0.30	5.00
7 -	12 3	Q.44	0.74	10.00
	18 3		1.18	17.33
	24 4		1.77	24.00
	20 8		2.96	28.50
31 -	36 18	2.67	5.63	33.78
37 -	42 18	2.67	8.30	40.11
43 -	48 21	3.11	11.41	45.71
49 – .	54 43	6.37	17.78	52.37
55 -	60 39	5.78	23.56	58.05
61 -	66 61	9.04	32.60	63.74
67 -	72 52	7.70	40.30	69.77
73 -	78 65	9.63	49.93	76.06
79 -	84 46	6.81	56.74	82.22
85 -	90 57	8.44	65.18	87.82
91 -	96 73	10.81	75.99	93.89
97 - 1	02 45	6.67	82.66	99.91
103 - 1	08 . 36	5.33	87.99	106.28
109 - 1	14 32	4.74	92.73	112.00
115 - 1	20 13	1.93	94.66	117.23
121 - 1	26 18	2.67	97.33	123.89
127 - 1	32 10	1.48	98.81	128.60
133 - 1	38 5		99.55	135,60
139 - 1	44 3		100.00	139.67
	For S	tatistics	For All Data	
umber of Sam	ples:	675	686	
ithmetic Me	an :	79.06	N.A.	
tandard Devi		25.39	N.A.	

1 --- 140 FPM 2 -- 212 File(s) used for Statistics:

.

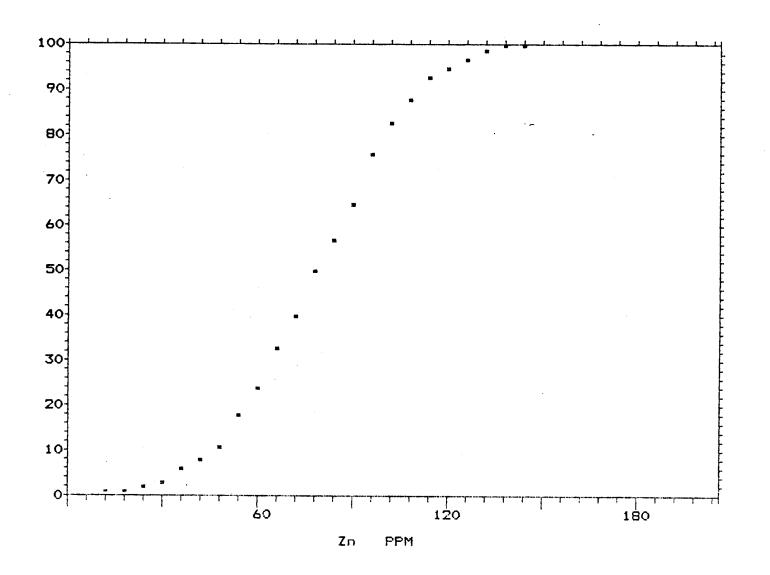
4

140


V239STAT

Range :

Minimum Value :


Maximum Value :

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE Burnaby, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
To: MPH CONSULTING LTD.	Project:	V 239
301-409 GRANVILLE ST. Vancouver, b.c.	Date:	87-02-19
Element: Zn	Sample Type:	Soil

Frequency Histogram

ROSSBACHER LABORATORY	LTD.	2225 S. SPRINGER AVENUE Burnaby, B.C. V5B 3N1
STATISTICAL REPORT		TEL : (604) 299 - 6910
O: MPH CONSULTING LTD.	Project:	V 239
301-409 GRANVILLE ST. VANCOUVER, B.C.	Date:	87-02-19
lement: Zn	Sample Type:	Soil
゠゠゠ヿヸヸ゙゙ヸヹ゙ヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹヹ	********	**************

Cumulative Frequency Histogram

APPENDIX V

DIAMOND DRILL LOGS

PROJECT:	CHEM V239-111					DIAM	ND DRILL HOL	e data				COMPANY: INTERNATIONAL CHERIKEE
HOLE NO.	DRILLER	LATITUDE	DEPARTURE	ELEVATION	HOLE LENCTH	DIP	AZIMUTH	CASING DEPTH	CORE SIZE	DATE STARIED	DATE COMPLETED	DOWN-HOLE SURVEY / REMARKS (LENGTH/DIP/AZI) TYPE: PAJARI
·····		<u> </u>		(m)	(m)		·	(m)		· *		
		(0Id 6	rid)									
CH87-1	Roger's	3+50N	6+50W	~835	107.9	-43	080 ⁰ 30″	5.2	BQ	Jan. 18/87	Jan. 23/87	106.36 m / -40 / 081°
		(01d G	rid)									
Q187-2	Roger's	4+96N	6+85W	~835	105.2	-45	046 ⁰	4.6	BQ	Jan. 24/87	Jan. 28/87	103.6 m / -42 / 045 ⁰

.

Total 113.1

-

MINERALS

AB	Albite
AS	Arsenopyrite
CB, CARB	Carbonate
CP	Chalcopyrite
CHL	Chlorite
CZ	Clinozoisite
DI	Diopside
EP	Epidote
FSP	Feldspar
GL	Galena
GT	Garnet
HM	Hematite
HB	Hornblende
LEUC	Leucoxene
MT	Magnetite
MC	Malachite
PLAG	Plagicclase
PY	Pyrite
PX	Pyroxene
PO	Pyrrhotite
QZ	Quartz
SER	Sericite
SL	Sphalerite
LITI	HOLOGY
•	
AGGL	Agglomerate
ARG	Argillite
BAS	Basalt
CARB	Carbonate
CHT	Chert
CONG	Conglomerate
XLT	Crystal Tuff
DIAB	Diabase
DIOR	Diorite
FHP	Feldspar Hornblende
	Porphyry
FBX	Flow Breccia
GABB	Gabbro
HYAL	Hyaloclastite
LMST	Limestone
MAF	Mafic (Basalt,
	Andesite)
QFP	Quartz Feldspar
	Porphyry
SDST	Sandstone
STST	Siltstone
SKN	Skarn
VN, VNLT	Vein, Veinlet
	COLOUR
	m1 1.
BLK	Black
BLU	Blue
BRN, BN	Brown
GN	Green
GY	Gray
OL	Olive
RD	Red
WHT	White

.

TEXTURES AND ALTERATION

MSV MED P PY'C RDD SER'C	Altered Amygdaloidal Angular Anhedral Bedded Brecciated, Brecciation Cherty Chloritic Crystalline Disseminated Epidotitic Euhedral Fine Grained Medium Grained Coarse Grained Gradational Hematitic Laminated Massive Medium (Bedded), 2-10 mm Porphyry, Phyric Pyritic Rounded Sericitic Siliceous, Silicified Subangular Subhedral Thick (Bedded), >10 mm Vesicular
ABDT AMYG AV BDG BX BC CMT CM XL	Abundant Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal
CT CA Ø, DIA FRCR FRAG GO GND GM J	Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated
LAM MOD NTWK PHENO QCV QV SHR STG STR, STRLM SX TR W, W, W/	Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear Stringer

Hole No. CH 87-1 Objective: To Test Postulated MPH CONSULTING LIMITED Length (m): 107.9 Grid : A Drilled : 01/18-23/87 CHEM PROJECT Dip : -43^o latitude : 3 + 50N Contractor : Roger's Fault Zone and Mag Anomaly. Hole Survey Type : Pajari Project No. V239-III Azimuth : 080.5° Depth Dip Azi Departure : 6 + 50W Logged by : G. Allen 106.4m -40° 81⁰ INTERNATIONAL CHERCKEE Core Size : BQ Collar elev.: "835n Date logged : 01/20-25/87 Casing · : 5.2 m (3491) Remarks : Mineralization/Sul-Sample Au Ag Qu As From - To Lithology phides/Structure/ Interval Lgth ppb - or Alteration No. ppb/oz/T Core Condition meters m m ppm ppm ppm 0 - 5.9 NO RECOVERY RECOVERIES 5.9-48 B.C. - Abdt 6.10-7.01 = 23% 5.9 - 14.0CHERTY SEDIMENT 7.01-7.62 = 61% frers and go. sub 7.62-9.75 = 49% parallel CA. 10.90-12.50 5 Dk gy to L gn-gy, v sil, massive to 9.75-10.67 = 93% 15061 1.60 0.1 42 2 weakly banded v.f.g. sediment. Probably 10.9-12.5 - Intensely 10.67 - 12.50 = 63%12.50-13.50 predominately Qz. Rdd, dk gn frcred core, subparallel 15062 1.00 5 0.4 38 2 12.5 - 13.72 = 94%grains could be silicified fsp xl frags 13.72-15.24 = 88% CA. 15.24 - 19.51 = 100%15063 13.50-14.0 0.50 30 0.1 21 2 19.51 - 20.42 = 51%12.5-13.5 - 1/2 cm vuggy Qz 20.42-23.47 = 57% stg subparallel CA. Tr Py. 10.6 - weakly banded - $20^{\circ} - 30^{\circ}$ CA. 23.47-24.38 = 99% Minor Oz flooded bx. (bedding?) No traces of sulphides. F.G. L bn mineral diss throughout and 6.10-23.47 = 72% along frcrs. Sericite?

14.0 - 14.74 SANDSTONE

M gn gy to blu-gy mod soft, m.g. clastic. V.f.g. blu-gy gn with: ~40% f.g. to m.g. white, sub rdd fsp xl frags. Tuff? 14.0-14.74 - intensely frered. Minor go along frers 30⁰ CA.

Page 1 of 5

MPH CONSULTING	G LIMITED CHEM PROJECT V239-III	Logged by: G. Allen	Date: 01/20-25/87			Hole No.:	QI 87-1		Page 2	of 5
From - To meters	Lithology	Alteration	Mineralization/Sul- phides/Structure/ Core Condition	No.	Sample Interval	Lgth m	Au ppb – or ppb/oz/T	Ag ppm	Qu ppma	As ppm
14.74 - 74.67	GIEKTY SEDIMENT -	······································	16.76-18.43 - Tr Py	15064	16.76-18.43	1.67	5	0.3	103	3
·	Intensely frered to blocky. Mottled L bn gn gy to dk gn-gy. Generally v sil. Frers subparallel to 30° CA. Predom Qz		along frers. 18.43-20.42 - Tr diss PO. Minor carb stgs to 0.5cm	15065	18.43-20.42	1.99	5	0.2	33	2
	and f.g. sericite. Weakly schistose in places, 20° CA.		Irregular.	15066	25.95-28.7	2.75	5	0.1	25	2
	Non mag. 14.9 - Banding (bedding?) [~] 45 ⁰ CA.		RECOVERIES	15067	28.7-29.4	0.70	5	0.4	18	2
	20.4 - Banding, probably bedding, 20° CA.		25.9 - 31.24 = 70%	15068	29.4-31.53	2.13	5	0.3	24	2
	Dipping away from collar "65°.		41.14 - 47.2 = 86%	15069	31.53-31.78	0.25	5	0.4	29	16
	19.2 - Banding (bedding?) ~65 ⁰ CA.			15070	31.78-32.46	0.68	10	0.2	29	2
	 22.7-2 cm bed at ~30° CA. C.G. clastic. Surd to subang frags of v.f.g. bn sil material and to porphryrtic frags to lcm. Tuffaceous? 27 - Banded 20° CA. 29.6-30.1 - Extremely f.g., sil, Qz - sericite schist with 25% rdd, dk gn clasts (?) to 2mm. Could be altered plag xl frag 		28.7-29.4 - L blu-gy sil band within gn to bn gy chty sed. Band ~lcm, 20 ^o C4 5-8% f.g. cubes Py - diss and frcr related. 31.53-31.78, 1 gy colour 2-3cm Qz-carb flooded zone 45 ^o CA. 5% py over 2cm	4.						
	or porphyroblasts? Foliated 20 ⁰ CA.		31.78-32.46 - Sheared sub- parallel to CA.							
	36.9-40.0 - Dk gn-gy to black, v.f.g.		39.64-39.99, lcm carb stg	15071	38.1-39.64	1.54	10	0.3	245	2
	cherty siltstone cut by a few carb stgs to 2 mm , 60° CA. Tr CP.		zone subparallel CA.	15072	39.64-39.99	0.35	5	0.4	127	2

1941 CONSULTIN	G LIMITED CHEM PROJECT V239-111	Logged by: G. Allen	Date: 01/20-25/87			Hole No.:			Page 3	
			Mineralization/Sul-		Sample		Au	Ag	Qı	As
From - To	Lithology	Alteration	phides/Structure/	No.	Interval	Lgth	ppb – or			
meters			Core Condition		m	m	ppb/oz/T	ppm	ppm	ppm
14.74 - 74.67			42.74-42.89, Irregular	15073	39.99-41.14	1.15	60	0.3	52	2
(Cont [*] d.)	40.0 - v.f.g. gn gy to bn gy siliceous, chty sed.		L gn gy sil zone with ~2% Py	15074	41.14-42.74	1.60	5	0.2	15	2
	42.89–43.28 – Transluscent blu-gn		46.99-47.24, wk carb filled	15075	42.74-42.89	0.15	5	0.3	21	2
	cherty sed.		bx.							
				15076	42.89-44.50	1.61	5	0.2	5	2
	47.24-47.8 - V.f.g. Qz sericite									
	schist with ~20% dk gn rdd clasts (?)		47.44-48.82 - Carb stgs							
	to lm.		and crackle bx filling,	15077	46.99-47.24	0.25	5	0.1	17	2
	47.8-50 - Gn gy to bn gy chty sed.		Barren	15078	47.24-47.44	0.20	5	0.2	14	17
	Abdt hairline frors, tr py									
	52.12 - Banding (bedding?) 50 ⁰ CA.		48.82-50.35 - carb stgs	15079	47.44-48.82	1.38	5.	0.2	25	6
			to 2mm. Vuggy 30-50 ⁰ CA.	15080	48.82-50.35	1.53	5	0.3	46	3
	52.5 - Banding - probably bedding 45° CA.									
			51.8-53.3 - <1% Py	15081	50.35-51.8	1.45	100	0.3	46	2
	50-74.67 - Well bedded, gn-gy to bn gy,		on frers.							
	v.f.g. to mg cherty to moderately soft			15082	51.8-53.3	1.50	5	0.1	33	2
	sediment. Ang to sub rdd clasts $\leq 1/2$ mm.		53.3-4.19 - 2% frer py	15083	53.3-54.19	0.89	5	0.2	26	2
	Predom Qz - sericite. Weakly foliated		58.83-62.48 = 12% recovery							
	parallel to bedding $20^{\circ}-40^{\circ}$ CA.		Mislatch.	15084	56,87-57,14	0.27	10	0.3	12	2
4.67 - 98.3	CHERT (IRON FORMATION)		71.8-74.67 - B.C.	15085	63.94-65.30	1.36	5	0.3	35	8
	Mottled dk blu-gy to lt gy transluscent		Sheared subparallel CA.	15086	65.30-65.96	0.66	5	0.3	34	27
	chert. Extremely siliceous, massive.		74.98-77.72 - 60% recovery							
	Abundant hairline frors and calcite			15087	65.96-67.22	1.26	5	0.3	38	4
	stgs sub-parallel to 80 ⁰ CA		84.52-84.7 - 10% py in frers							

MPH CONSULTEN	G LIMITED CHEM PROJECT V239-111	Logged by: G. Allen	Date: 01/20-25/87			Hole No.:	CH 87-1		Page 4	4 of 5
From - To	Lithology	Alteration	Mineralization/Sul- phides/Structure/	No.	Sample Interval	Lgth	Au ppb – or	Ag	Qı	As
meters			Core Condition		m	m	ppb/oz/T	ppm	ppm	ppm
74.67 - 98.3	2-8% (av "5%) v.f.g. diss and frcr Py.		in chloritic zone	15088	71.63-72.97	1.34	5	0.3	21	3
(Cont'd.)	Weakly to moderately magnetic (probably		91.05 - 2 cm white calcite	15089	72.97-73.46	0.49	5	0.4	4	2
	due to f.g. diss magnetite). Tr CP.		60° CA.	15090	73.46-74.75	1.29	5	0.3	9	12
	88.65-89.8 - Sporadic jasperoid patches.			15091	74.75-75.7	0.95	5	0.4	37	2
				15092	75.7-78.22	2.52	130	0.2	62	20
98.3-100.28	QERTY SEDIMENT									
	M gy to L ba well bdd ($^{-45^{\circ}-50^{\circ}}$ CA)			15093	78,22-79,55	1.33	20	0.4	40	11
	v.f.g. cherty sediment (tuff?)			15094	79.55-80.47	0.92	20	0.4	53	8
				15095	80.47-81.08	0.61	110	0.5	64	6
100.28-104.3	FELDSPAR PCRPHYRY			15096	81.08-82.80	1.72	40	0.1	40	11
	Gougy shear zones ~70 ⁰ CA on each selvage.			15097	82.80-83.52	0.72	20	0.6	149	3
	Bn-gy v.f.g. sil, bn-gy gm with:			15098	83.52-84.10	0.58	30	0.4	64	18
	~ 20% stubby gn-gy anhedral plag (?)			15099	84.10-84.52	0.42	30	0.4	31	29
	phenos to 3mm. "5% vague chloritic			15100	84.52-84.70	0.18	50	0.6	47	21
	patches; ~1-2% f.g. diss py			15151	84.70-85.55	0.85	600	2.0	59	7
						reanalys	is 110			
104.3-107.9	SILTSTONE TO SANDSTONE		104.2-104.3 - calcite bx			resample	130			
	Dk gn-gy to ba gy, mod soft with cherty			15152	85.55-85.82	0.27	1130	0.9	116	27
	patches, well bedded ~30 ⁰ CA, siltstone		104.3-105.4 - sheared			reanalys	is 80			
	to f.g. sandstone.		sub-parallel CA.			resample	100			
				15153	85.82-87.40	1.58	130	0.3	38	19
107.9	END OF HOLE			15154	87.40-88.60	1.2	70	0.2	38	43
				15155	88.60-89.64	1.04	70	0.4	36	40
	SAMPLE 15151 - 600 ppb - Typical dark			15156	89.64-89.96	0.32	100	0.5	31	19
	gray to light blue-gy translucent chert			15157	89.96-90.95	0.99	100	1.3	249	15
	with: 3-5% Py in frcrs (F-0G), 2-3%			15158	90.95-91.14	0.19	20	0.7	304	18
	v.f.g. diss Py. Weakly magnetic.			15159	91.14-92.66	1.52	40	0.6	96 96	4

MPH CONSULTING LIMITED		CIEM PROJECT V239-111	logged by: G. Allen	Date: 01/20-25/87		Ho	le No.:	QI 87-1		Page 5	of 5
				Mineralization/Sul-	<u></u>	Sample	<u>.</u> <u>.</u>	Au	Ag	<u>Cu</u>	As
From - To		Lithology	Alteration	phides/Structure/	No.	Interval	Lgth	ppb – or			
meters		-		Core Condition		m	m	ppb/oz/T	ppm	ppm	ppm
	15152 - 11	30 ppb. Similar to 15151.			15160	92.66-93.62	0.96	30	0.3	67	3
	Total Py 5	- 8%. Predom fror set			15161	93.62-95.24	1.62	40	0.3	46	5
	70 ⁰ - 80 ⁰	CA.			15162	95 . 24 -96 .72	1.48	40	0.2	66	12
					15163	96.72-98.24	1.52	20	0.2	74	3
					15164	98.24-100.00	1.76	10	0.4	87	2
					15165	100.00-100.35	0.35	5	0.2	24	2
					15166	103.57-104.22	0.65	60	0.2	18	3
					15167	104.22-104.37	0.15	20	0.3	23	2
					15168	104.37-105.37	1.00	5	0.2	24	2

					Page 1 of	5
MPH CONSULTING LIMITED	Length (m): 105.15	Grid : Chem A	Drilled : 01/24-28/87	Objective: To Test Strong Mag	Hole No. CI 87-2	
CHEM PRIJECT	11ip : −45 ⁰	Latitude : 4 + 96N	Contractor : Roger's	+ Mod I.P. Anomaly on Line	Hole Survey Type : Pajari	
Project No. V239-III	Azimuth : 046 ⁰	Departure : 6 + 85W	Logged by : G. Allen	5 + 00N	Depth Dip Azi	
INDERNATIONAL CHEROKEE	Core Size : BQ	Collar elev.: 7835m	Date logged : 01/26-30/87		103.6 -43° 045°	
	Casing • : 4.57 m	Remarks :				

From - To meters	Lithology	Alteration	Mineralization/Sul- phides/Structure/ Core Condition	No.	Sample Interval m	lgth m	Au ppb – or ppb/oz/T	Ag	Cu ppm	As ppm
0 - 4.57	CASING		4.57-10.9 - B.C.						<u> </u>	<u>PP**</u> _
4.57 - 12.55	DIABASE (?) Dk gn-gy v.f.g. xlline massive, mod soft chloritic rock. Probably intrusive. Highly fractured subparallel to CA. Minor go.		12.55-17.8 - B.C.							
12.55 - 13.8	FELDSPAR PORPHYRY Gy bn sil crypto - crystalline gn with: 25% white to gn gy, stubby, subhedral feld phenos to 2mm. 5-10% chloritic patches after Hb (?) to 2mm. Highly frcr d subparallel to 60° CA. Upper contact sharp at ~30° CA.									
13.8 - 16.76	ALTERATION - FAULT ZONE 13.8-15.2 - intense limonitic alt of feld p described in previous interval. Greenish feld phenocrysts in an orangey, v.f.g., limonitic, argillic gm. Minor, black, dendritic, manganese oxide.	13.8-16.76, Limonitic Al	t.	15169	13 .8 –16 . 76	2.96	5	0.1	22	10

MPH CONSULTING	LIMITED CIEM PROJECT V239-111	Logged by: G. Allen	Date: 01/26-30/87			No.:	CH 87-2		Page 2	of 5
From - To meters	Lithology	Alteration	Mineralization/Sul- phides/Structure/ Core Condition	No.	Sample Interval M	lgth m	Au ppb – or ppb/oz/T	Ag ppm	Qu	As ppm
13.8 - 16.76 (Cont ⁻ d.)	15.2-16.76 - gouge. Angle to CA unclear but could be subparallel.	r,								
16.76 - 26.05	FELDSPAR PORPHYRY As 12.55-13.8. Few 0.5 cm calcite stgs 30 ⁰ CA. Lower contact sharp 30 ⁰ CA. No apparent chill margin.									
26 . 05 - 34. 6	DIABASE Uk gn-gy f.g. xlline, chlorite rich dial Kare, light gy, sub hedral stubby feld phenocrysts to lmn. Abdt 1-2mm carb. st 30° CA to 70° CA. Tr Py.									
64 . 92 - 66 . 73	HORNBLENDE-FELDSPAR PORPHYRY M blu-gy, v.f.g., sil gn. with: ~25% stubby, white, rdd to sub hedral pi phenocrysts to 3mm. (av 1-2mm). ~5-10% chloritic masses after Hb. Some lath - shaped Hb phenocrysts to 1mm. \leq 1% f.g. diss Py. Upper contact in from zone. Lower conta sharp at 45°. No apparent chill margin	uct								

3

MPH CONSULTIN	G LIMITED (HEM PROJECT V239-111	Logged by: G. Allen	Date: 01/26-30/87			Hole No.:	CH 87-2		Page 3	of 5
From - To meters		Lithology	Alteration	Mineralization/Sul- phides/Structure/ Core Condition	No.	Sample Interval m	Lgth m	Au ppb – or ppb/oz/T	Ag ppm	Ou ppm	As
66.73 - 68.50	CHERTY SEDIMER	rr ·								F <u>F</u>	PP
	Mgy to gy-bn	fairly well bedded 45° CA.									
	Some beds cher	ty, others appear to be f.g	•								
	clastics. Pre	dominately gy with minor									
	sericite.										
68.50 - 85.70	ARGIILITE										
	M - dk blue-gy	to blk, mod soft, well bed	ded								
	argillite. Sc	me beds to 10cm with 30%									
	sub rdd, L gy	chiastolite porphyroblasts	to								
	lmn.										
	72.5 - Bedding	60 ⁰ CA.									
	Py <1-2% as ve	ry thin, continuous films a	nd								
	-	es with radiating crystals									
	(Marcasite?) o	n fracture surfaces. Proba	bly								
		he I.P. anomaly.									
' .	73.23-73.40 -	Sil L gn gy bed at 60 ⁰ CA		73.23-73.40- 5% Po, Tr CP	15172	73 . 23 - 73 . 40	0.17	5	0.1	65	2
		e frcr filling + 5% Po in									
	masses to 0.5c	m. Tr CP		75.75-75.90 - 1cm carb stg	15173	75.75-75.90	0.15	5	0.2	103	4
	76.6-77.19 - 1	gy to bn gy siliceous stst	•	30° CA. 5% Po							
				177.6 - 2cm calcite vein	15174	77.54-77.72	0.18	5	0.2	74	2
				50° CA, Barren.							
	78.2-78.76 - 1	-	78.2-78.76, Silicified	78.2-78.76 - silicified zone	15175	78.2-78.76	0.56	400/	0.1	48	4
	80.24 — Beddin	-		with 2-3% Po.							
		sts suggest tops up - hole.		79.28-79.70 - Stg - frer	15176	79.28-79. 70	0.42	5	0.1	95	2
	-	5 ⁰ CA, suggesting a dip		zone. Carb stgs ~20° CA.	15177	79.70-81.38	1.68	5	0.1	54	5
	of 50 ⁰ towards	collar.		Barren.							

٠

MPH CONSULTIN	G LIMITED OHE	M PROJECT V239-111	Logged by: G. Allen	Date: 01/26-30/87			Hole No.:	CH 87-2		Page 4	of 5
From - To meters	L	ithology	Alteration	Mineralization/Sul- phides/Structure/ Core Condition	No.	Sample Interval m	Lgth	Au ppb – or ppb/oz/T	Ag ppm	Cu ppm	As
68.50 - 85.70 (Cont [*] d.)		-		85.64-85.68 - 4cm Qz vein 80 ⁰ CA. 2% Py.	15178	81.38-82.60	1.22	5	0.2	63	3
85 .70-86.35	HORNBLENDE PORPH f.g.m gn-gy, xl ~15% euhedral, h	line chloritic gm with:		94.40-94.80 - Shear zone 20 ⁰ to subparallel CA.	15179 15180	85•62 -8 5•74 94•40 -9 4•80	0•12 0•40	5 5	0.2 0.1	162 78	2 4
	phenocrysts to 4 ~10% 1-2mm rdd m	nn (av ~2mn)		•	15181	95 . 50 .9 5.66	0.16	5	0.1	69	2
	10cm chill margin at 45 ⁰ CA.	n at lower contact. Sha	rp 95.5-96.8 - B.C.	93.3-93.6 - Carb flooded fracture zone, Py ~2%.	15182 15183	97 . 30-97.60 97.60-98.45	0.30 0.85	5 5	0.1 0.1	72 90	8 5
86.35-105.15	ARGILLITE As 68.5-85.7, Py	~2% along frers.		98.1-98.3, Py - 10% in masses to 1cm. Frer control.							
	94 - Bedded 60 ⁰ 9	Ω.		99.66-102.9 - B.C. 99.66-99.89 - Wk carb flooded frer zone 45 ⁰ -60 ⁰ CA. Py to 5% in 0.5 cm masses along frers.	15184 15185	99.66-99.89 99.89-102.67	0.23 2.78	5 5	0•1 0•1	122 66	4 6
	99.66-102.9 - Bro subparallel to C	ken Core. Fracturing A.		99.89-102.67 - B.C. frers subparallel CA. Py to 2% along frers.	15186 15187	102.67-102.81 102.81-103.32		5 5	0.1 0.1	77 98	2 3
	102.67-102.61 - 1 2cm + go zone ~50 5cm carb vein - 1) ⁰ (A with associated		102.67-102.81 - FAULT ZONE Carb vein - bx to 5cm with with 5% Py.	15188 15189	103.32-103.46 103.46-104.39		5 5	0.2 0.1	69 78	3 4

MPH CONSULTING LIM	TED OHM PROJECT V239-111	Logged by: G. Allen	Date: 01/26-30/87			Hole No.:	CH 87-2		Page 5	of 5
From - To	Lithology	Alteration	Mineralization/Sul-	No.	Sample Interval	Lgth	Au ppb - or	Ag	Qu	As
meters	inclusive)		Core Condition		<u>m</u>	n	ppb/oz/T	ppm	ppm	ppm
86.35-105.15 (Cont'd.) 105.	.5 END OF HOLE		103.32-103.46 - 3mm carb stg 40° CA with 10% Py. 103.46-104.39 - Minor carb	;						
			flooding of frers with ~3-4% Py over interval.							

•

•

APPENDIX VI

CONVERSION FACTORS FOR METRIC UNITS

Conversion Factors for Metric Units

.

•

.

1 inch	=	25.4 millimetres	(mm)
		or 2.54 centimetres	(cm)
1 cm	=	0.394 inch	
1 foot	=	0.3048 metre	(m)
1 m	=	3.281 feet	
1 mile	=	1.609 kilometres	(km)
1 km	=	0.621 mile	
1 acre	-	0.4047 hectares	(ha)
1 ha	=	2.471 acres	
1 ha	=	$100 \text{ m} \times 100 \text{ m} = 10,000 \text{ m}^2$	
1 km^2	=	100 ha	
1 troy ounce	=	31.103 grams	(g)
l troy ounce 1 g		31.103 grams 0.032 troy oz	(g)
-	=	-	(g) (kg)
1 g	=	0.032 troy oz	
1 g 1 pound (1b)	=	0.032 troy oz 0.454 kilogram	
1 g 1 pound (1b) 1 kg	H H H	0.032 troy oz 0.454 kilogram 2.20 lb	(kg)
1 g 1 pound (1b) 1 kg 1 ton (2000 1b)	H H H	0.032 troy oz 0.454 kilogram 2.20 lb 0.907 tonne	(kg)
1 g 1 pound (1b) 1 kg 1 ton (2000 1b)		0.032 troy oz 0.454 kilogram 2.20 lb 0.907 tonne	(kg)
1 g 1 pound (1b) 1 kg 1 ton (2000 1b) 1 tonne	н н н н н н	0.032 troy oz 0.454 kilogram 2.20 lb 0.907 tonne 1.102 ton = 2205 lb	(kg)
<pre>1 g 1 pound (1b) 1 kg 1 ton (2000 1b) 1 tonne 1 troy ounce/ton</pre>	н н н н н н	0.032 troy oz 0.454 kilogram 2.20 lb 0.907 tonne 1.102 ton = 2205 lb 34.286 g/t	(kg)
<pre>1 g 1 pound (lb) 1 kg 1 ton (2000 lb) 1 tonne 1 troy ounce/ton 1 g/tonne</pre>	H A H H	0.032 troy oz 0.454 kilogram 2.20 lb 0.907 tonne 1.102 ton = 2205 lb 34.286 g/t 0.0292 troy oz/ton	(kg) (t)
<pre>1 g 1 pound (lb) 1 kg 1 ton (2000 lb) 1 tonne 1 troy ounce/ton 1 g/tonne 1 g/t</pre>		0.032 troy oz 0.454 kilogram 2.20 lb 0.907 tonne 1.102 ton = 2205 lb 34.286 g/t 0.0292 troy oz/ton 1 part per million	(kg) (t) (ppm)

APPENDIX VII

ABBREVIATIONS USED IN ROCK SAMPLE DESCRIPTIONS AND DIAMOND DRILL LOGS

ABBREVIATIONS

ALT'D

MINERALS

•

AB	Albite
AS	
	Arsenopyrite Carbonate
CB, CARB	
CP	Chalcopyrite
CHL	Chlorite
CZ	Clinozoisite
DI	Diopside
EP	Epidote
FSP	Feldspar
GL	Galena
GT	Garnet
	Hematite
HM	
HB	Hornblende
LEUC	Leucoxene
MT	Magnetite
MC	Malachite
PLAG	Plagioclase
PY	Pyrite
PX	Pyroxene
PO	Pyrrhotite
	Quartz
QZ	
SER	Sericite
SL	Sphalerite
LITH	HOLOGY
AGGL	Agglomerate
ARG	Argillite
BAS	Basalt
CARB	Carbonate
CHT	Chert
CONG	Conglomerate
XLT	Crystal Tuff
	Diabase
DIAB	Diorite
DIOR	
FHP	Feldspar Hornblende
	Porphyry
FBX	Flow Breccia
GABB	Gabbro
HYAL	Hyaloclastite
LMST	Limestone
MAF	Mafic (Basalt,
	Andesite)
QFP	Quartz Feldspar
	Porphyry
SDST	Sandstone
STST	Siltstone
SKN	Skarn
VN, VNLT	Vein, Veinlet
VIN, VINDI	vein, veiniee
	COLOUR
	COLOOK
BLK	Black
	Blue
BLU DDN DN	
BRN, BN	Brown
GN	Green
GY	Gray
OL	Olive
RD	Red
WHT	White

.

ALT'D	Altered
AMYG'L	Amygdaloidal
ANG	Angular
ANH	Anhedral
BDD	Bedded
BX'D, BX'N	Brecciated, Brecciation
CHTY	Cherty
CHL'C	Chloritic
XILINE	Crystalline
	Disseminated
DISS	
EP'C	Epidotitic
EIЛ	Euhedral
FG	Fine Grained
MG	Medium Grained
CG	Coarse Grained
GRAD	Gradational
HM'C	Hematitic
	Laminated
MSV	Massive
MED	Medium (Bedded), 2-10 mm
	Porphyry, Phyric
P	
PY'C	Pyritic
RDD	Rounded
SER'C	Sericitic
SIL, SIL'D	Siliceous, Silicified
SUB-ANG	Subangular
SBH	Subhedral
ТК	Thick (Bedded), >10 mm
VES	Vesicular
	GENERAL
ABDT	Abundant
ABDT	Abundant Americal e
AMYG	Amygdule
amyg av	Amygdule Average
amyg av BDG	Amygdule Average Bedding
AMYG AV BDG BX	Amygdule Average Bedding Breccia
AMYG AV BDG BX BC	Amygdule Average Bedding Breccia Broken Ground
AMYG AV BDG BX BC CMT	Amygdule Average Bedding Breccia Broken Ground Cement
AMYG AV BDG BX BC CMT CM	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin
AMYG AV BDG BX BC CMT CM XL	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal
AMYG AV BDG BX BC CMT CM	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin
AMYG AV BDG BX BC CMT CM XL	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal
AMYG AV BDG BX BC CMT CM XL CT	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact
AMYG AV BDG BX BC CMT CM XL CT CA	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NTWK	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO QCV	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO QCV QV	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO QCV QV SHR	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO QCV QV SHR STG	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear Stringer
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO QCV QV SHR STG STR, STRLY	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear Stringer Strong, Strongly
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO QCV QV SHR STG STR, STRLY SX	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear Stringer Strong, Strongly Sulphides
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NTWK PHENO QCV QV SHR STG STR, STRLY SX TR	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear Stringer Strong, Strongly Sulphides Trace
AMYG AV BDG BX BC CMT CM XL CT CA Ø, DIA FRCR FRAG GO GND GM J LAM MOD NIWK PHENO QCV QV SHR STG STR, STRLY SX	Amygdule Average Bedding Breccia Broken Ground Cement Chill Margin Crystal Contact Core Axis Diameter Fracture Fragment Gouge Ground Groundmass Joint Laminated Moderate Network Phenocryst Quartz Carbonate Vein Quartz Vein Shear Stringer Strong, Strongly Sulphides

TEXTURES AND ALTERATION

Altered