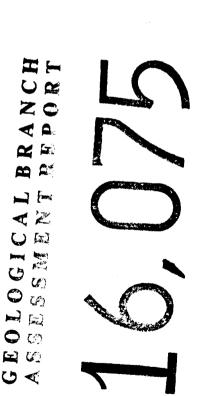
87-280-16075

DIAMOND DRILL REPORT CINDY PROJECT NTS 92-1/8 Wz3.1' Latitude 50°24' North Longitude 120°21.7'West Kamloops/Nicola Mining Divisions British Columbia

March 19, 1987


FILMED

for Operator: ASAMERA IN Calgary, Alb Owner: J.S. Delatre ASAMERA INC. Calgary, Alberta

by

David G. Dupré, P.Geol.

TAIGA CONSULTANTS LTD. #100, 1300 - 8th Street S.W. Calgary, Alberta T2R 1B2

U

TABLE OF CONTENTS

INTRODUCTI	ON		•		•	•	•	•	•		•	•	•			•	 •		•		•	•	•		1
PROPERTY S	TATUS		•		•	•			•	• •	•	•		•		•			•						1
LOCATION A	ND ACCESS.	• •	•				•	•	• .	•	•	•		•		•	 •		•		•	•			3
PHYSIOGRAP	НҮ		•		•		•		•	• •	•	•	•	•		•	 •	•			•	•	•		3
EXPLORATIO	N HISTORY.		•		•	•			•	• •	•	•				•		•			•	•	•		3
1987 DRILL	ING PROGRAM	1	•		•		•	•	•	• •	•	•	• .	•	•	•	 •	•	•		•	•	•	•	5
DRILL RESU	LTS		•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	8
CONCLUSION	S AND RECON	1MENI	DAT	ION	S.		•	•	•	•	•	•		•	•	•	 •	•	•	•		•	•		10
CERTIFICAT	E				•		•	•		•	•	•	•	•	•	•	 •	•	•		•	•	•.		11
APPENDIX:	Certificat	ces d	of .	Ana	lys	sis																			
	Diamond Di	cill	Lo	gs																					

FIGURES

1	Claim Location Map	2
2	Location and Topograhpy Map	4
3	Drill Hole Locations	6

<u>TABLES</u>

1	Diamond Dril	l Hole	Summary.						•			•	•	•		5
			-													

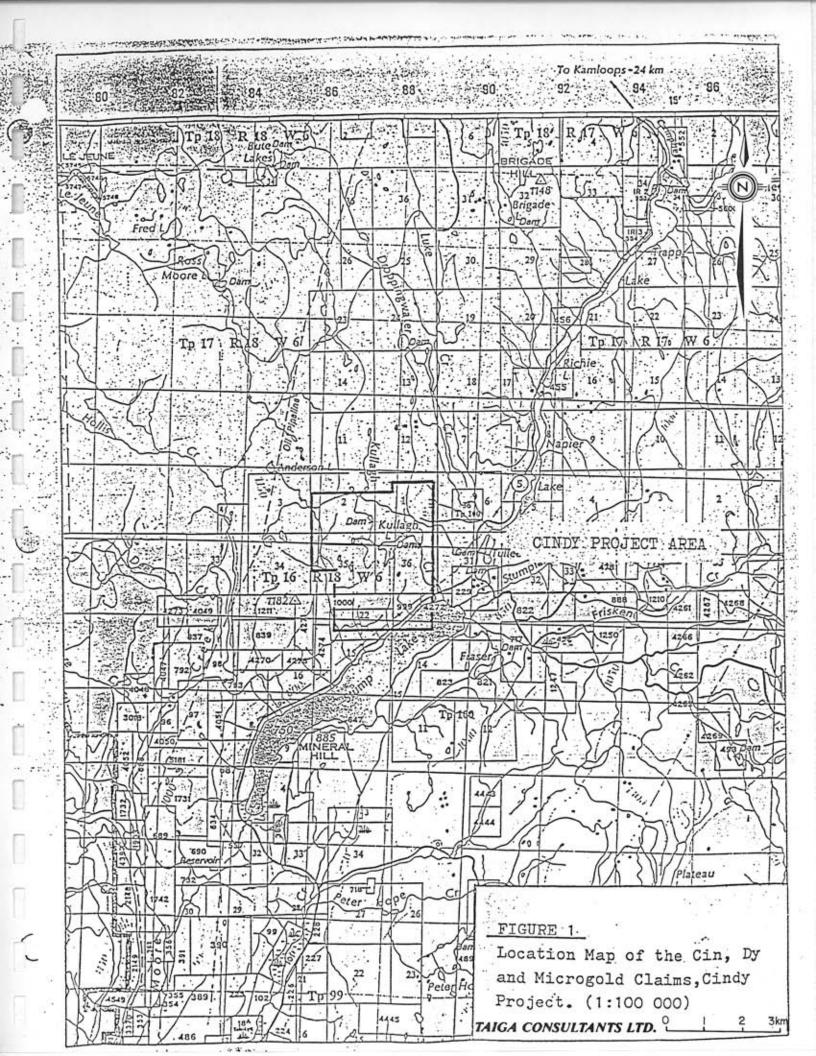
IN POCKET

Diamond Drill Sections

INTRODUCTION

This report summarizes the results of a drilling program carried out by Asamera Inc. on their optioned Cindy Group property near Kamloops, British Columbia. Three NQ holes totalling 917.7 m were drilled by Connors Drilling Ltd. during the period February 9 to March 5, 1987. The objective of the drill program was to test anomalous geochemical and geophysical (I.P. and VLF-EM) responses to evaluate the bonanza lode gold potential of the Cindy epithermal system.

PROPERTY STATUS


The Cindy Group property consists of three contiguous mineral claims totalling 45 units or approximately 1125 hectares, grouped as the Cindy #1 Group (Figure 1). All the claims are registered in the name of J. S. DeLatre of Vancouver, B.C., and optioned to Asamera Inc. of Calgary, Alberta. Relevant claim data are tabulated below:

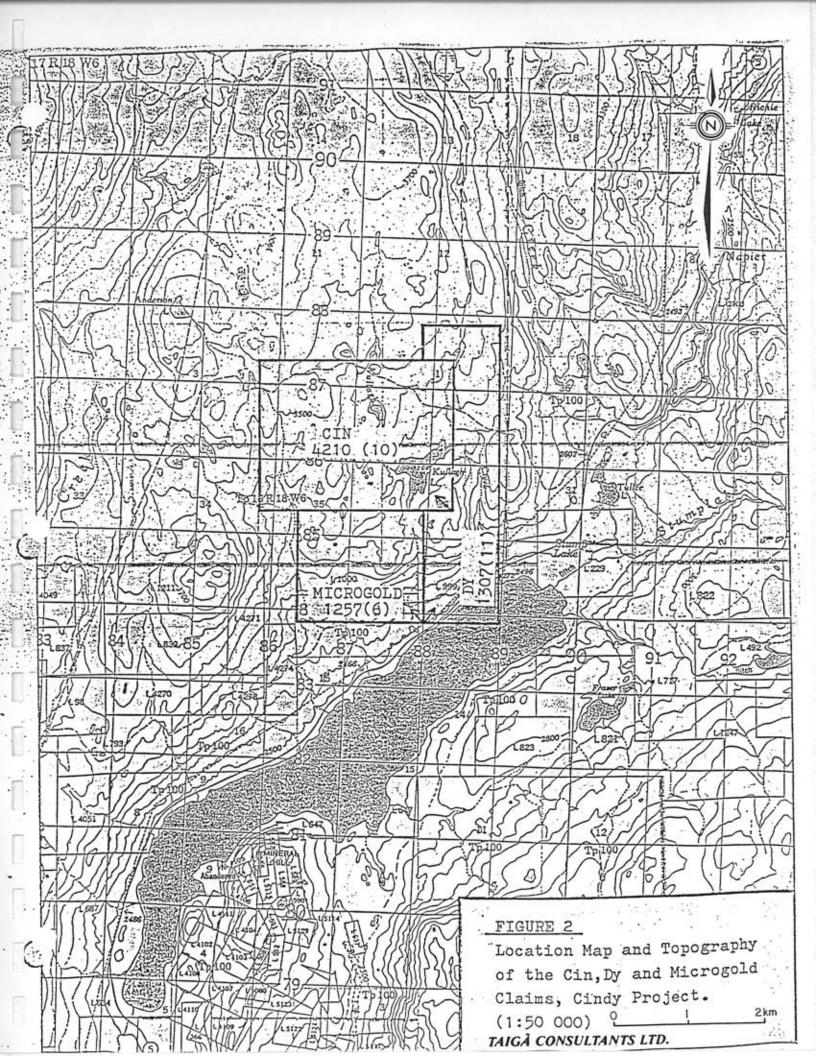
	No.of	Record		
<u>Claim Name</u>	<u>Units</u>	<u>Number</u>	<u>Record Date</u>	<u>Mining Div</u> .
Microgold	9	1257	June 21, 1982	Nicola
Dy	16	1307	Nov. 01, 1982	Nicola
Cin	20	4210	Oct. 07, 1982	Kamloops

The surface rights of all lands within the Cindy Group are privately owned. The surface title is summarized below:

Frolek Cattle Company Ltd. Sections 1+2, Twp 17, R 18 W6M Section W¹/₂35, Twp 18, R 18 W6M Lot 1000, Twp 16, R 18 W6M

Wicklow West Holdings Ltd. Section E¹35, Twp 16, R 18 W6M Section 36, Twp 16, R 18 W6M Lot 999, Twp 16, R 18 W6M Lot 4272, Twp 16, R 18 W6M

LOCATION AND ACCESS


The Cindy Group property is located along Highway 5 at the northwest end of Stump Lake, approximately 30 km due south of Kamloops, B.C. The geographic coordinates of the centre of the claims are 50°24′ North latitude and 120°21′ West longitude in NTS 92-1/8 W. The Anderson Lake gravel road leading west from Highway 5 at the north end of Stump Lake provides access to the northern part of the property. A ranch range road leading south from the Anderson Lake road provides good access to the central part of the property near Kullagh Lake.

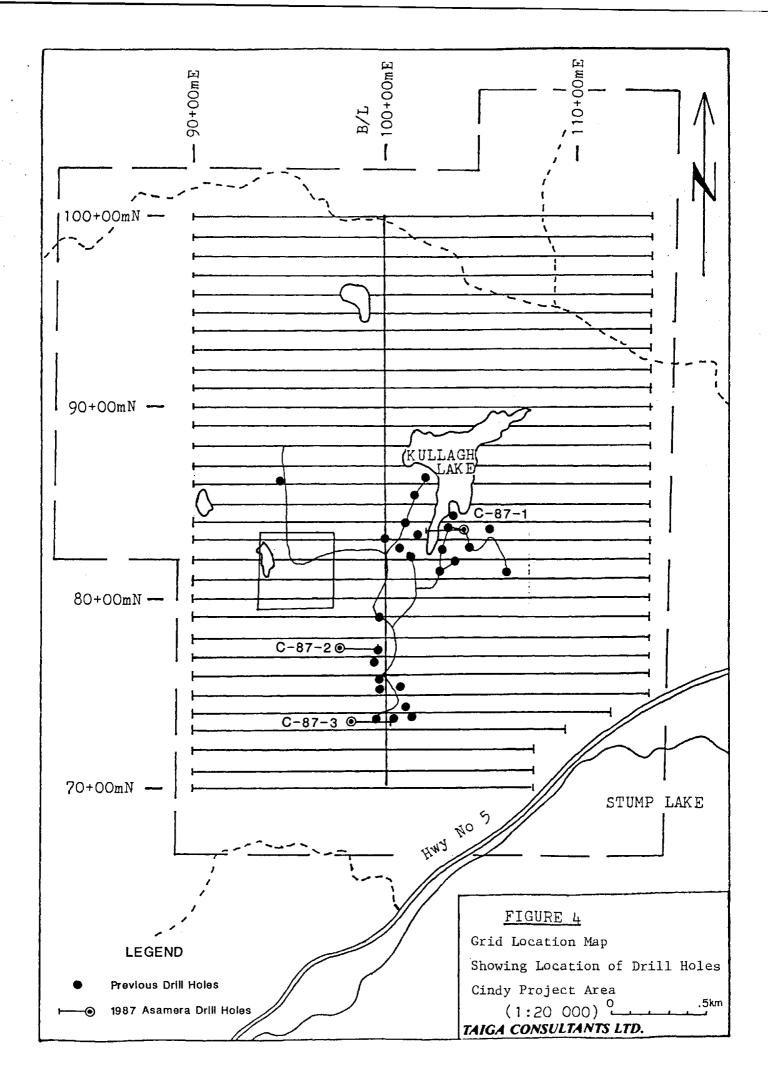
PHYSIOGRAPHY

The property is characterized by gently rolling terrain with seasonal creeks, small ponds, and Kullagh Lake. Local relief ranges from 750 m ASL at Stump Lake to 1050 m ASL. The vegetation comprises semi-arid grassland with scattered poplar groves in creek valleys. The area is cattle rangeland and considerable attention must be devoted to reclamation of areas disturbed by exploration activities.

EXPLORATION HISTORY

Two previous drill programs have been carried out in the area of the Cindy Group. In the spring of 1983, Chevron Canada Limited drilled four holes totalling 666.42 m; in late 1985, BP Minerals Limited completed 22 diamond drill holes totalling 2173.5 m. The BP program was undertaken to evaluate multi-element soil and lithogeochemical anomalies in search of low-grade openpittable material. No encouragement was obtained from these drilling programs. In the fall of 1986, Asamera Inc. carried out an I.P. and VLF-EM survey over the property. The BP grid was re-established and utilized for this geophysical program.

1987 DRILLING PROGRAM


During the period February 9 to March 15, 1987, three NQ diamond drill holes were completed for a total of 917.7 m. The drilling was contracted to Connors Drilling of Kamloops and involved one drill operating two shifts per day. The core was logged in detail and prospective intervals were split and sampled. A total of 77 samples were shipped to Bondar-Clegg & Company in Vancouver, and were analyzed for the standard 21-element I.C.P. package (Fe, V, As, Te, U, W, Sb, Se, Sn, Au, Cu, Pb, Zn, Mo, Co, Ni, Cr, Mn, Cd, Ag, Bi). The core is temporarily stored at Versatile Self-Storage in Kamloops, B.C.

The results are presented in the Appendix, and the gold results are shown on the drill logs and sections.

Table 1 summarizes the relevant drill hole data. Figure 3 indicates the drill hole locations. The drill collar sites were located with respect to the grid originally established by BP Minerals and later utilized by Asamera Inc. for the 1986 geophysical program. A brief summary of the drill holes is presented on the following pages.

		<u>Diamond</u>	l Drill Hole	Summary		
	DDH #	Location	Bearing	Angle	Total Depth	
	C-87-1	83+50N 104+00E	270°	-60°	310.0	
	C-87-2	77+50N 97+50E	090°	-60°	313.0	
	C-87-3	74+50N 97+75E	090°	-60°	294.7	
					917.7 m	
* *	* * *	* * * * * *	* * * *	* * * *	* * * * *	* * *

TABLE 1

DDH C-87-1

The objective of this deep hole was to evaluate the bonanza lode gold potential below the postulated "silica cap" mapped on surface and intersected by several shallow BP Minerals holes. It was designed to test coincident VLF-EM and I.P. (chargeability, resistivity) anomalies.

The hole intersected several altered andesitic zones with moderate chalcedonic silica veining and a 2.7 m wide composite quartz vein/breccia interval. This latter interval may represent a feeder system localized along a fault zone. The assay results were not encouraging (best result = 480 ppb Au over 1.7 m). The highest results (110 to 480 ppb Au) were encountered in altered zones between 35 and 59 m. Altered zones intersected deeper in the hole display much lower gold values (<100 ppb). No adequate explanation for the I.P. chargeability anomaly was observed. Pyrite is present, but only sporadically and in low concentrations.

DDH C-87-2

This hole was also designed to test coincident I.P. (resistivity) and lithogeochemical anomalies to evaluate the bonanza lode gold potential. Several altered zones up to 5 m wide with chalcedonic silica veining were observed but they did not return any significant gold results. The best assay result was 700 ppb Au over 2.9 m.

DDH C-87-3

The objective of this hole was also to evaluate a coincident lithogeochemical and I.P. (resistivity) anomaly for bonanza lode gold occurrences. Several weakly altered zones with abundant chalcedonic silica were encountered but did not return any encouraging assay results. The best result was 480 ppb Au over 1.7 m. The best results were obtained from above 60 m.

DRILL RESULTS

The results obtained from the 1987 drill program are presented in detailed drill logs and sections.

Andesitic flow breccias, similar to those which crop out over much of the property, comprise most of the core recovered. This rock type is composed of poorly sorted (up to 1 m), sub-angular to sub-rounded, commonly indistinct andesite fragments floating in a slightly finer grained andesitic matrix. The fragments are remnants of lithified flows which have been brecciated and re-incorporated within subsequent extrusive material. The fragments and matrix are variably epidotized and hematitized. Thin intervals of massive andesite may represent thick unbrecciated flows or intrusive equivalents. Trace to 5% disseminated magnetite is almost invariably present in the andesites. Pyrite is locally present as disseminations in amounts up to 5%.

The andesites are moderately fractured with chlorite, kaolinite, carbonate, or hematite lining the thin slips. Faulting (as evidenced by gouge, breccia, broken core, or quartz veining) was observed in all three holes.

Each of the drill holes encountered chalcedonic silica veins enveloped by variably pervasive silicification and clay alteration. The veins vary in thickness from less than 1 cm to 1 m. The vein material is cryptocrystalline, massive to laminated, vuggy or brecciated, and oriented at various angles to the core axis. Cross-cutting relationships and brecciation imply several episodes of silica introduction by open-space filling and stoping.

Purple or green fluorite and, less commonly, calcite are intimately associated with many of the chalcedonic silica veins. Thin, wispy masses of hematite or chlorite also rim the veins in places.

Fine disseminations and thin lenticular veinlets of pyrite are commonly present within the chalcedonic veins and altered zones. Several small blebs of chalcopyrite were observed at 264.4 m in C-87-2.

The altered zones invariably exhibit less magnetite than the adjacent fresh andesite. This is likely related to alteration of magnetite to pyrite.

The altered zones are characterized by weak silicification and moderate clay alteration. The clay-altered zones are evidenced by bleaching related to the presence of kaolinite and, possibly, pyrophyllite. Hematite, chlorite, calcite, and pyrite are commonly observed within the altered zones. The degree of alteration intensity is variable and is likely related to the volume of fluid introduced to the system. The maximum width of altered andesite was 12 m but the strongly altered sections generally average less than 3 m wide.

Coarse-grained milky white to grey quartz veins are present in each of the three holes. Calcite is a common associate of this type of vein. In several places, the chalcedonic silica veining was observed to cut this vein type. In general, the chalcedonic silica veins are more common near the surface while the coarse-grained variety is more abundant at depth. A 2.7 m wide composite quartz vein/breccia interval was intersected in C-87-1 and may represent a feeder system for the epithermal silica cap exposed at surface.

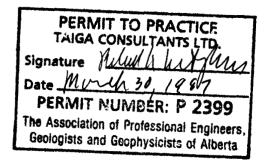
CONCLUSIONS AND RECOMMENDATIONS

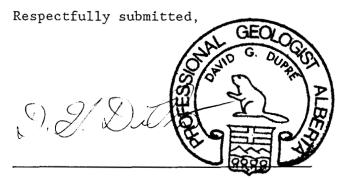
The objective of the 1987 drilling program on the Cindy Group was to test coincident lithogeochemical and geophysical (I.P. and VLF-EM) anomalies to evaluate the bonanza lode gold potential of an obvious epithermal system. The primary targets were zones of increased alteration along structural breaks where venting for the epithermal system presumably took place.

Each of the three holes encountered thin zones of altered andesite with chalcedonic silica veining. The altered zones are analogous to those encountered by the BP Minerals and Chevron shallow drilling. DDH C-87-1 encountered a 2.7 m wide zone of coarse-grained quartz and brecciation which may represent the best approximation of the bonanza lode environment.

No encouraging assay results were obtained during the 1987 program. The best assay result was 700 ppb Au over 2.9 m in C-87-2. Several conclusions are possible to explain the results obtained. These are:

- Only the upper (silica cap) part of the classical epithermal system has been evaluated to date. The presence of fluorite at depth in the holes would support this possibility. If this is true, the bonanza lode would be deeper than tested to date.
- A discrete feeder channel for the system is not present; rather, a network of small anastomosing feeders provides the plumbing.
- The system is enhanced in gold, but no part contains economic concentrations.


It can be concluded that the 1987 drilling program evaluated the best coincident geophysical and lithogeochemical anomalies associated with the Cindy epithermal system. No encouragement was obtained, and the potential for locating economic concentrations of gold is remote. Cindy Project


CERTIFICATE

I, David George Dupré, of 13116 Bonaventure Drive S.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- I am a graduate of the University of Calgary, B.Sc. Geology (1969), and I have practised my profession continuously since graduation.
- I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 3. I am a Consulting Geologist associated with the firm of Taiga Consultants Ltd. with offices at Suite 100, 1300 - 8th Street S.W., Calgary, Alberta.
- I am the author of the report entitled "Diamond Drill Report, Cindy Project, Kamloops/Nicola Mining Divisions, British Columbia", dated March 19, 1987.
- 5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of ASAMERA INC., in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 19th day of March, A.D. 1987.

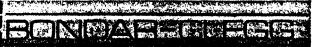
David G. Dupré, B.Sc., P.Geol., F.GAC

11

TAIGA CONSULTANTS LTD.

APPENDIX

Certificates of Analysis Diamond Drill Logs


.

A

1.11

Contraction of the

Geochemical Lab Report

REPORT: 127-0726						L	PROJECT: NO	NE GIVEN	1997 - 1997 -	PAGE 18
	EMENT Fe UNITS PCT	V PPN	As PPM	Te PPM	U PPM	N PPM	Sb PPM	Se PPM	Sn PPH	Au PPB
02 24 001		and down a too	404	· · · · · · · · · · · · · · · · · · ·						VACEN 10-5-
	3.55	93	101	<10	<10	22	17	<5	<10	140
D2 24002	3.31	90	259	<10	<10	15	13	<5	<10	240
D2 24003	3.36	89	433	<10	14	<10	19	<5	<10	320
DZ 24004	3.89	88	375	<10	<10	96	. 17	<5	<10	420
D2 24005	4.36	94	71	<10	<10	<10	17	16	<10	45
D2 24006	3.75	94	74	<10	<10	<10	19	7	<10	80
D2 24007	3.56	76	. 63	<10	<10	<10	11	<5	<10	90
D2 24008	3.92	79	27	<10	<10	<10	17	<5	×10	10
D2 24009	4.72	133	<5	<10	<10	<10	<5	<5	<10	<5
D2 24010	3.19	117	<5	<10	<10	<10	17	<5	<10	ેંડ
D2 24011	4.33	173	16	<10	<10	<10	19	<5	<10	ડ
D2 24012	4.55 5.61	204	15	<10	11	<10	17 13	<5 <5	<10	ુંડ
DZ 24012 DZ 24013						 C. C. Martin, M. K. 			Constant and a det	
	1.23	45	12	<10	<10	<10	ઙ	<5 /5	<10	-5 w
D2 24014	3.75	72	6	<10	<10	<10	9	<5	. d0	25
D2 24015	2.91	77	46	<10	<10	<10	8	<5	<10	120
D2 24D16	2.22	106	30	<10	<10	<10	9	<5	~10	5
D2 24017	3.89	106	24	<10	<10	<10	9	<5	: <10	
DŽ 24018	3.18	104	<5	<10	<10	<10	9	<5	<18	.*** * 5
D2 24019	3.87	131	13	<10	<10	<10	17	<5	<10°	ં ડ
D2 24020	2.68	103	. 5	<10	<10	<10	<5	₹5	<10	<u>.</u>
D2 24021	4.38	140	104	<10	<10	<10	10	<5	<10	7715
DZ 24022	4.74	130	16	<10	<10	<10	16	<5	<10	্ ১
D2 24023	3.72	123	534	<10	<10	<10	16	<5	<10	30
D2 24024	4.05	142	834	<10	<10	14		<5 <5	×10	700
D2 24025	4.76	159	60	<10	<10	<10	. 18 11	<5 <5	<10	15
DZ 24026		2/4	~ ~ /							and the second second
	0.54	261	34	<10	<10	<10	<5	5	ر 10 کې	680
D2 24027	2,43	167	176	<10	<10	<10	16	ঁও	<10	¹ 500
D2 24028	2.88	101	419	<10	<10	<10	12	<5	<10	170
D2 24029	3.64	75	1525	<10	<10	<10	53	< ব	<1D	85
D2 24030	3.57	64	367	<10	<10	<10	25	20	<10	35
D2 24031	3.99	93	41	<10	<10	<10	23	<5	·····	5
D2 24032	3.78	119	107	<10	<10	19	20	<5	<10	60
. D2 24033	3.58	117 .	302	<10	<10	<10	- 14	<5	े <10	45
D2 24034	3.70	136	67	<10	<10	13	.20	<5	×<10 \	35 斗
D2 24035	3.61	96	16	<10	<10	<10	25	<5	<10	****
D2 24036	7.04	154	230	<10	<10	<10	23	्र ः	, K10 .	sa (* 1851) 1997 - Start Start (* 1997)
D2 24037	6.07	124	962	<10	<10	<10	. 71	্ <5	<` ≺10 `}	/14-30
D2 24038	3.47	65	48	<10	<10	<10	19	ري د5	10	1.05
		U	70	` ⊥ 0	,TA	×10	13			

Lid.

J81

1200

Sec.

AND THE CONTRACT OF THE REAL PROPERTY OF THE PROPE

÷. Â

Geochemical Lab Report

REPORT: 127-0726							PROJECT: N	ONE GIVEN		PAGE 1A
SAMPLE ELEMENT NUMBER UNITS	Cu PPM	Pb PPN	Zn PPN	No PPM	Co PPN	Ni PPM	Cr PPM	Hn PPM	Cd PPM	Ag Bi PPN PPN
D2 24001	89	8	69	3	13	7	51	626	1	<0.5 10
D2 24002	28	8	69	171	13	5	29	614	<1	<0.5 20
D2 24003	34	13	76	284	17	6	36	660	4	0.9 4
D2 24004	100	<5	70	96	17	6	51	715	<1	0.6 9
D2 24004	142	12	78	34	25	10	36	687	<1	<0.5 ···· 6
and the second second second							an a	i Ser garner in	n ngrundet e	· · · · · · · · · · · · · · · · · · ·
D2 24006	114	9	62	233	21	12	45	325	<1	0.6 13
D2 24007	73	7 San Sectri da San	48	55	14	5	55	1066	<1 	<0.5 7
D2 24008	112	. 10	79	2	22	10	39	529	2	<0.5 4
D2 24009	75	<5	84	<1	27	15	30	890	ধ	<d.5 12<="" td=""></d.5>
D2 24010	60	<5	71	<1	25	21	53	1210	ં	
D2 24011	67	<5	84	<1	29	20	42	924	ં	<0.5 13
D2 24012	222	6	96	<1	29	24	55	1242	1	<0.5 <u>6</u>
D2 24013	2	5	13	<1	5	5	178	286	র	<0.5 - 22 <0.5 - 3
D2 24014	63	<5	41	<1	13	5	40	2414	<1	<0.5 · · · · · 3
D2 24015	271	<5	44	52	13	12	117	617	<1 [']	0.7
D2 24B16	40	.<5	41	4	16	12	73	674	ં	<0.5 15
D2 24017	70	<5 <5	70	<1	21	17	92	1734	ेंद्वे	0.6 2
D2 24018	81	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	68	<i ci<="" td=""><td>18</td><td>8</td><td>18</td><td>743</td><td></td><td></td></i>	18	8	18	743		
D2 24019	258	S 5	75	4	19	9	36	1100		0.5 <2
D2 24020	86	৻ঽ	66	<1	16	3	18	1154	र्रो	<0.5
									South and	<0.5 21
D2 24021	60	<5	63	2	22	9	37	1323	्य	<0.5 . 21
D2 24022	129	<5	66	<1	21	8	19	1774	1	<0.5 6
D2 24023	45	` 11 ,	59	19	27	11	83	256	, (1	<0.5 <2
D2 24024	55	. 15	70	154	27	11	49	423	1 1	e 0.5
D2 24025	295	1.8	74	· · · · · · · · · · · · · · · · · · ·	26	11	35	1277	2	<0.5 5
D2 24026	9	5	8	454	3	5	265	131	d	3.3
D2 24027	15	12	44	80	16	9	86	374	4	2.2 5
D2 24028	14	9	41	305	17	10	91	304	্ব	8.4 4
D2 24029	65	8	58	42	12	8	75	957	<1	0.7 14
D2 24030	33	<5	42	34	16	6	52	3264	<u>d</u>	1.1
D2 24031	63	<5	85	<1	23	12	91	2653	1	[*] <0.5 22
D2 24032	63	8	53	6	21	15	87	528	< i	<0.5 · · · · 9
D2 24033	19	6	59	15	22	14	93	880	1	<0.5 8
D2 24D34	32	7	59	<1	22	14	.72	1372	1	<0 . 5
D2 24035	30	<5	83	4	26	21	41	2111	4	<0.5
D2 24036.	44	ć5	91	12	34	26	49	2740	3	0.7
D2 24030.	37	<5 <5	74	1	38	21	38	2870	2	<0.5 × <2
D2, 24038	31	(5) (5)	70	<1	24	17	27	1573	્રોં	<1.5
	J1.			••						
								an an Albertan Albertan		A Contractor

T/	AIGA C	CONSULTANT	S LTD., Calgary, Alberta DIAMOND DRILL LOG						
	ea _		<u>Cindy</u> Latitude <u>83+50N</u> Inclination @ collar = <u>-60</u> ° Date Started <u>Feb. 13, 1987</u>	Client		Asame			I
	laim _		Departure <u>104+00E</u> Inclination @ <u>91</u> m = <u>-60</u> ° Date Completed <u>Feb. 19, 1987</u>	Hole N					of _7
	ontrac		<u>Connors</u> Elevation <u>~965m</u> Inclination @ <u>183</u> m = <u>-53</u> ° Core Size <u>NQ</u> Bearing <u>270</u> ° Inclination @ 307 m = -49 ° Total Length 310 m	Projec				BC-81	<u>′-⊥</u>
	bre st	cored at _	Bearing <u>270°</u> Inclination @ <u>307</u> m = <u>-49</u> ° Total Length <u>310 m</u>	Logged	. by	<u>D. G.</u>			
1	1			Sample	1	1	1	Au	
Fi	om	To [Int.]	Geological Description	No.	Fr.	i To	Len.	j ppb	i i
1									· · · · · · · · ·
1 (0.01	6.0 6.0	CASING, overburden, no recovery	1		I	I	I	
16	5.0 3	36.5 30.5	ANDESITE, med.grey-green with common reddish cast, very fresh, competant (good recovery); vesicular	1	I	1	1	I	1 1
ł			(filled with quartz) and feldspar phyrric in places, medium grained; commonly brecciated (70%),	1	1	I	1	1	1 1
1	I		fragments are very poorly sorted (mm to 10 cm scale), of variable volcanic texture, commonly	1	1	I	ł	1	1 1
1	1		rounded (milled) in a f.g.andesitic matric - likely a volcanic flow breccia; variably hematitic,	I	I	I	1	1	1 1
I	I		some fragments or complete sections of core exhibit 5% hematite imparting distinct pinkish hue;	I	1	I	1	I	1 1
1	1	1 1	pyrite is ubiquitous (trace to 5%) as fine disseminations or in micro veinlets; weakly fractured	1	1	J	1	ļ	1 1
I	I		(5-10/m), fine hairline fractures at various orientations; quartz and calcite veining (<1 mm to	I	1	I	i		1 1
ļ	I		l cm) moderately abundant (20-50/m), quartz varies in colour from light grey to white, veins are	I	1	I	1	1	1 1
T	Ι		very rarely zoned and at all angles to c.a., veins are mainly tabular but occasionally lenticular	I	I	I	I	I	1 1
1			or irregular, latest veining comprises quartz (l.grey), calcite \pm fluorite (24-36.5) \pm pyrite; in	1	I	1	I		1 1
I	I		places these veins show delicate compositional laminations; variable diss magnetite (1-5%).	1	1	1	I	I	I I
I	1	1 1	6.0-8.2 recovery 57% 8.2-11.3 recovery 95% 11.3-14.3 recovery 100%	1	I	I	I	I	1 1
[1	1 1	24.0-36.5 epidote veinlets	ł	ł	ł	ł	l	1 1

TAIGA CONSULTANTS LTD., Calgar	y, Alberta	DIAMOND DRILL LOG	Hole No Project					of <u>7</u>
 From To Int.	Geological Description		Sample No.	•	 To	 Len.	Au ppb	•
36.5 50.7 14.2 ANDESITE, sim	ilar to above except brecciation is sligh	tly less apparent and veining is much less	 	-				
common (5-10/	m); veins mainly comprise (in order of d	lecreasing abundance): epidote stringers,	ļ		1	I	I	I
composite lt.	grey qtz-calcite±fluorite±pyrite, calcite	; note, hematite decreases downward	1	ſ	[1	1	1
50.7 52.1 1.4 ALTERED ANDES	ITE, lt.green-grey; massive, fine graine	d; slightly altered (bleached, kaolinitic),	1	l	1	1	I	I
lighter colou	r than above but not harder (more siliced	us); upper and lower contacts are blocky,	1	l	1	1	1	I
fractured wit	h talc/kaolin on fracture planes (faulted	?);	(ľ	1	1	1	1
pyrite vein <	1 cm thick.		1			1	I	I
52.1 57.1 5.0 ANDESITE, med	to dk.green-grey with reddish cast; com	monly brecciated (volcanic bx); several	1		ļ	I	1	I
10-20 cm thic	k fault zones exhibiting fractures, brecc	ia, gouge (kaolinite, talc), hematite; trace	1 1		í	1	1	1
v.f.g.Py as d	isseminations and small films; few <code>qtz±h</code>	ematite veins and lenses.	1 1		1	1	I	·
57.1 60.0 2.9 ALTERED ANDES	ITE, lt.green-grey; f.g., commonly brecc	iated; minor quartz veining; fractured,	1 1		1	1	1	I
several 5-10	cm gouge zones; trace Py.		1 1		1	1	(1
60.0 64.1 4.1 ANDESITE, med	.green-grey; f.g. to m.g. (feldspar phyr	ric); locally brecciated; abundant qtz±	1 1		1	I	1	1
calcite±fluor	ite±pyrite veining (mm-3 cm thick), delic	ately laminated locally, veins commonly @ 45°	1 1		1	I	I	1
to c.a.; in	places veins are offset by fractures.		1 1		1	1	1	1
64.1 70.1 6.0 ANDESITE, 10%	thin (<10 cm) layered intervals (sedimen	tary, tuffaceous?) @ 45° to c.a.; massive	1 1		l	1	1	I
volcanic sect	ions are speckled (fine feldspar phenocry	sts); <5% is vein (qtz) material; broken					1	I

.

TAIGA CONSULTANTS LTD., Calgary, Alberta DIAMOND DRILL LOG	Hole No Project			Page , <u>BC-8</u>	e <u>3</u> of 37-1	7
 From To Int. Geological Description	Sample No.	· ·	To		Au ppb	
core zone from 65.7-65.9	I		1	I	ł	- 1
70.1 72.5 2.4 ANDESITE, lt.to med.green-grey, speckled; mainly massive, locally brecciated; few hairline	I.		1	1	1	1
fractures; very minor veining.	I		I	1	1	1
72.5 75.5 3.0 MOTTLED ANDESITE, pinkish green-grey; mottling related to indistinct (cloudy), lt.orange-pink masse	s		1	1	1	1
in a green-grey matrix; likely related to an alteration phenomena (k-spar, epidote), relatively	24001	72.5	73.5	1.0	140	I
pervasive, enveloping fractures; unaltered sections are m.g. phyrric andesite; composite	24002	73.5	74.5	1.0	240	Ι
qtz±calcite±fluorite±pyrite veins comprise 10% of unit; very irregular shapes; 1% Py as fine diss	24003	74.5	75.5	1.0	320	Ι
and thin films along fractures and qtz veins; talc and calcite on frac surfaces.		I	I	I.	Ι	I
75.5 81.2 5.7 ALTERED ANDESITE, lt.green-grey, bleached, silicified; mainly f.g. and massive (locally brecciated	24004	75.5	76.5	1.01	420	1
or m.g.); colouration may be due to alteration; 5-10% is qtz-fluorite±pyrite veins from 5mm to 2c	n 24005	76.5	77.5	1.0	45	1
thick, commonly @ low angle to c.a.; white soft mineral (kaolin?) on frac planes; narrow	24006	77.5]	78.5	1.0	80	1
intervals exhibit hematite within qtz veins; 1% Py as diss & thin films on frac planes; 2% small	24007	78.5	79.5	1.0	90}	1
ovoid green chlorite blebs throughout.	24008	79.5	81.0	1.5	10	I.
81.2 87.0 5.8 ANDESITE, med.green-grey; brecciated (synvolcanic), poorly sorted, sub-angular volc frags (0.5-		1	I	1	1	I
10cm) in a finer grained volc matrix; trace-2% v.f.g.diss Py; 5% of interval comprises thin (<1cm			1	I	I	I
smokey grey quartztpyrite veins, in places veins make up a network (crackle breccia).	1 1		1	I	1	1
87.0 90.7 3.7 DIORITE, med.green-grey, massive, m.g., equigranular; intrusive texture; salt-and-pepper with		: I	ł	I	1	I

	TAIGA	CONS	ULTAN	TS LTD., Calgary, Alberta DIAMOND DRILL LOG		Hole No Project					of	_Z !
	 From	То	 Int.	Geological Description		Sample No.	•	 To	 Len	Au . ppb	,	-
 1	· · I			small (<2mm) feldspar phenos; likely feeder dyke to compositionally similar andesitic volcanics	;			 		 		۱-۰ ۱
j			J 1	5-10% white calcite±quartz veins; note, calcite veining more common than units above, also no			1		Ì	1	Ì	Ì
Ì	ĺ		1	composite (zoned) qtz±calcite±fluorite veins.				Ì	1	1	I	I
	90.7	110.3	19.6	ANDESITE, med.green-grey, pinkish cast in places; brecciated, very poorly sorted (frags up to 2	0cm);			I	1	1	I	1
1	I			many sub-angular to angular frags (poss explosion breccia - pyroclastic?); frags vary in textur	e,	1 1	1	ł	1	1	1	1
Ι	1		1 1	grain size, composition; some frags show pinkish colour due to hematite dusting; commonly frag	s		l	I	I	I	1	1
1	1		1	exhibit small lt.green-grey prismatic soft crystals (zeolite?, celadonite?); below 100 m, many			I	ļ	I	I	1	1
1	I		1	frags show characteristic pistachio colour of epidote (alteration) also frags are cloudy and		I I		I	ļ	I	I	I
T	1		1	diffuse without distinct boundaries; <5% thin calcite±quartz stringers; @ 109.0-109.15 = 15cm -	of	1 1		I	I	1	Ι	1
1	1		1	white vein quartz.		1 1	1	I I	ł	1	1	1
11	10.3	112.1	1.8	ANDESITE, med.green-grey, massive, f.g.; <5% fine white plag phenos (<2mm); locally brecciated				I	I	I	I	Ι
]1	12.1	122.6	10.5	ANDESITE, green-grey wtih irregular patches of lt."pistachio" green (epidote?) and pink (hematite	e);	1 1		I	Ι	l	I	1
ł	I		1	brecciated (synvolcanic); frags often indistinct (cloudy, nebulous); 5% quartz±calcite veining	;	1 1		ł	I	I	I	I
I	1		1	several 0.3-1.0 cm thick qtz veins @ low angle (5°-20°) to c.a., these veins show breccia and op	en	1 1		I	I	ł	I	Ì
Ι	I			space filling texture (ie, small frags of wallrock in a qtz vein matrix); note, alteration is		1. 1		ł	1	1	ł	1
I	I			coincident with increased quartz veining; some veins have rims of dark green material (poss				1	I	I	I	I
ļ	1		J.	assimilated wallrock).		I I		1	I	Ι.	I	I

AIGA CONSULTANTS LTD., Calgary, Alberta	DIAMOND DRILL LOG		<u>C-87-1</u> Stump I		age <u>5</u> <u>C-87-1</u>	of
 rom To Int. Geological Description		Sample No.	 Fr. Tc	 Len	Au . ppb	
2.6/204.8/82.2/ ANDESITE, green-grey with minor pistachio and/or pinkis		1 1	1	1	1	1
becomes fresher downward, less quartz veining; breccia	, Ç		1	l	I	l
diffuse in more altered sections; thin sections of mas	sive andesite (flow or intrusive equivalent),	1 1	ł	1	I	I
usually reddish; 1-5% quartz and/or calcite veining (<	cm thick), veins commonly contain trace	1	1	ł	1	I
v.f.g. diss Py; note, most calcite veining is late-sta	ge of of planar variety; much of veining	1 1	ł	1	1	i -
is @ low angle (ie, <20°) to c.a.; some of veining show	as zonation and rarely incorporation of	1 1	1	J	J	J
angular wallrock fragments; @ 145.7 brecciated qtz vei	n material implies multiple vein injection;		I	Ι	1	T
unit becomes less altered with less vein material and ha	arder (more siliceous) downward.	1	I	Ι	1	T
4.8/205.6/ 0.8/ BRECCIA with abundant quartz and calcite vein material;	originally an andesitic flow breccia;	24010 :	204.8 205	.6 0.	8 <5	51
10-20% quartz vein material; introduction of qtz has p	oduced isolated frags of volcanic material.		I	1	1	1
5.6/207.6/ 2.0/ ANDESITE, green-grey wtih reddish tinge; flow breccia;	5% qtz and/or calcite veining;	24011 :	205.61206	.6 1.	0J <5	5]
@ 207.2-207.6 increased fracturing and alteration (kaol:	n and chlorite).	24012 2	206.6 207	.6 1.	0 5	5
7.6 207.8 0.2 QUARTZ VEIN, cloudy, milky white, c.g. quartz with 20%	ndistinct wallrock inclusions; minor	24013 :	207.6 207	.8 0.	2 <5	51
hairline fracturing.			1	I	1	1
7.8/209.2/ 1.4/ BRECCIA, 70% angular, pinkish, siliceous, poorly sorted	volcanic frags in a f.g. greenish volcanic	24014	207.8 209	.2 1.	4 25	j]
matrix: no preferred orientation to frags; fault breco			1		I	1
veining; trace kaolinite and hematite.		. ,	1	' I	1	
9.2/210.3/ 1.1/ QUARTZ VEIN, interval = 70% quartz, 30% andesite; quart	with alternative	1 2601517	י 100 1210	1 21 1	1 120	י או

TAIGA CONSULTANTS LTD.,	Calgary, Alberta	DIAMOND DRILL LOG		<u>C-87-1</u> <u>Stump</u>		Ų	<u>6</u> of -1	7
 From To Int.	Geological Description		Sample No.	 Fr. To	 Le		u opb	
smokey	grey and white quartz @ 40° to c.a.			1	Į	ł		
210.3 217.0 6.7 ANDESI	TE, slightly altered near qtz vein; mainly fragmen	ntal (flow breccia), minor massive sections;	1 1	1	ł	1	1	1
<1% qt	z or calcite veinlets at irreg.intervals, all <5mr	a wide; weakly fractured (micro fractures).		1	I	I	I	I
217.0 218.5 1.5 ALTERE	D ANDESITE, lt.pistachio green coloration, alterat	ion grades downward into fresh andesite;	24016	217.0/218	8.5 1	.5	<5	1
harder	, more siliceous; 5% qtz & calcite veining <1cm t	hick; it appears that qtz-calcite veining		1	I	I	1	1
and al	teration are most common in f.g. massive andesites	, less common in frag.volcanics.	1 I	1	I	1	1	ł
218.5 231.2 12.7 ANDESI	TE, med.to dk.green-grey with local reddish tinge;	70% of unit is fragmental (flow breccia)	1 1	1	l	I	I.	I
up to	2 cm in size some indistinct; 30% f.g. massive fl	ows, in places this lithology is speckled		I	I	I	1	1
with d	ark flakes; 10% c.g. intrusive or flow centres;	<1% qtz or calcite veinlets; this section	1 1	1	I	I	1	I
is som	ewhat harder than andesite above, possibly more fe	elsic (ie, dacite).		ł	1	1	I	1
231.2232.4 1.2 ANDEST	TE, med.green-grey; massive, m.g. intrusive rock;	chilled, finer grained borders; almost	1 1	I	1		I	1
no vei	n material.		1 1	I	I	I	1	I
[232.4]254.8[22.4] ANDESI	TE, med.green-grey with reddish tinge; mainly fra	gmental; slightly altered (bleached,		1	Ι	T	l	1
epidot	ized) locally; 1% qtz or calcite veining; @ 251.	2-252.6 bleached slightly silicified zone,	1	ł	I	1	I	I
slight	ly more abundant quartz-carbonate veining.			J	I	J	1	1
[254.8]259.6] 4.8 ALTERE	D ANDESITE, lt.green-grey; mod.bleached (kaolinit	ized), silicified andesitic flow; 5–10%	24017	254.8 256	.3 1	.5	5	I
qtz-ca	rb veining, minor brecciation related to vein intr	oduction; most veins <1cm thick, no	24018	256.3 257	.8 1	.5	<5	ł

	AIGA	CONS	JLTANT	S LTD., Calgary, Alberta DIAMOND DRILL LOG		Hole No Project				e <u>7</u> of 87-1	f7
Fr	 :om	То	 Int.	Geological Description		Sample No.	 Fr.	То	 Len.	Au ppb	
 	 ا		· 	preferred orientation; trace v.f.g. Py in veins or disseminations in andesite; chlorite on		24019	257.8	259.6	1.8	<5	
1	Ι			fracture surfaces, also minor hematite.		1			I I	1	1
259	9.6 2	77.9	18.3	ANDESITE, med.green-grey with patches of variably red (hematitic) and pistachio-green (epidot	e);	1	1 1			1	1
1	Ι		I I	fragmental flow breccia; 1-5% qtz-carb veining; variably altered (weak to mod.) locally.		1				· [I
277	7.9 2	86.4	8.5	ALTERED ANDESITE, similar to above except slightly more qtz-carb veining, bleaching, fracturi	ng;	24020	279.5	281.0	1.5	<5	1
I	I			chlorite and/or hematite on fracture planes; veins form network in places, but most commonly		1	1 1	i	l I	1	1
I	Ι			pinch and swell from 1mm to 1cm @ low angle (<20°) to c.a.		I				I	1
286	5.4 3	10.0	23.6	ANDESITE, med.green-grey with many reddish (hematite-rich) and lt.pistachio green sections;	most of	I				1	ł
I	I			interval is fragmental (flow breccia) with only 10% showing massive (flow centre or intrusive) char-	ſ	1 1	1	1	1	ł
!	1			acteristics; mainly unaltered but with several narrow (<1 m) sections exhibiting weak altera	tion	I		1		1	ļ
1	I			(bleaching); veining <5% of interval but more abundant in altered zones; mod.fractured with		I				I	1
1	1			chlorite or hematite on slips; @ 294-296 several thin (<5cm) zones of multiple quartz-carbon	ate±	1	1 1	i		1	1
1	1			hematite veining.		1		I		I	I
1	1			Note core in box 52 (299.6-305.7) is jumbled, likely dropped and re-boxed by drillers.		I		I	I	1	1
I						1	1 1	1	1	- 1	1
l	3	10.0		T.D.		I		I	1	I	1
I	1		t I			I		I	l I	I	I

-

TAIGA	CONSULTANTS LTD., Calgary, Alberta DIAMOND DRILL LOG					
Area	Cindy Latitude77+50N Inclination @ collar =60 ° Date StartedFeb. 19, 1987	Client:	Asamer	a Inc.		
Claim	Departure 97+50E Inclination @ m =60 ° Date Completed Feb. 25, 1987	Hole No.		U	e <u>1</u> of	_71
Contra	actor <u>Connors</u> Elevation <u>~975m</u> Inclination @ <u>183</u> m = <u>-56</u> ° Core Size <u>NQ</u>		Stump_		<u> C-87-1</u>	
Core S	Stored at Bearing000° Inclination @ <u>307</u> m = <u>-52</u> ° Total Length <u>313 m</u>	Logged by	": <u>D. G.</u>	<u>Dupré</u>		
	······				 !	!
Erom		Sample No. F	r. To		Au	1
From	To Int. Geological Description	NO. T	1. 10	Len. (hhn l	1
0.0	1.8 1.8 CASING, overburden, no recovery	1 1	I		1	I
1.8	6.7 4.9 ANDESITE, recovery 75%; med.green-grey; fragmental (flow breccia), frags poorly sorted to max of]]	1	1 1	I	I
	2 cm, sub-angular to sub-rounded, with diffuse (partially re-incorporated) boundaries, commonly			I I	1	ł
	epidotized; tr to 3% f.g. diss magnetite; very minor qtz-calcite veining; commonly limonite		I	I I	1	I
1 1	stained along fractures; blocky broken core.	1 1	I.	1 1		I
6.7	8.9 2.2 SLIGHTLY ALTERED ANDESITE, lt.grey-green; altered (bleached), kaolinitized, carbonatized, chlor-	24021	6.7 7.7	1.0	5	I
1 1	itized; abundant (10%) qtz-calcite veinlets, minor chalcedonic smokey grey qtz veining (most veins	24022	7.7 8.9	1.2	<5	I
	<lcm 25°="" @="" a="" c.a.;="" fragmental="" orientations="" originally="" preferred="" show="" td="" thick),="" to="" veins="" volcanic,<=""><td></td><td>I</td><td>1 1</td><td>I</td><td>I</td></lcm>		I	1 1	I	I
	variably epidotized and hematized in unbleached sections; 1% m.g. Py on fracture surfaces and	1 1	ł		1	ļ
]]	within veins; some veins contain hematite.		1		1	I
8.9	10.9 2.0 ANDESITE, green-grey with purplish hue; fresh, unaltered; trace qtz-carb veining.		I	1 1	1.	I
10.9	16.0 5.1 SLIGHTLY ALTERED ANDESITE, similar to above except slightly lighter colour (bleached), silicified,	24023 1	1.5 12.5	1.0	30	1
I I	kaolinitized; 1% white qtz-carb veining; 3% chalcedonic silica veining (commonly with hem. and/	1 1	I	1 1	I	I
1 1	or pyrite), veins vary in colour frm dk.smokey grey to lt.milky grey); veins commonly @ 30° to c.a.	I 1	I	1		I

1

TAIGA CONSULTAN	IS LTD., Calgary, Alberta DIAMOND DRILL LOG	Hole No. Project:				ge <u>2</u> -87-1	of7
 From To Int.	Geological Description	Sample No.	 Fr.	То	 Len.	Au ppb	
	but form networks up to 2 cm wide in places, also anastomosing systems; up to 5% Py in qtz veins as				1		
I I	disseminations and aggregates forming films on fracture planes; minor limonite on frac surfaces.	1 1	1		1	I	1 1
16.0 31.1 15.	ANDESITE, relatively unaltered; fragmental mainly, many frags are epidotized; minor veining		-		I	I	
	(<10/m); @28.8-29.6 slightly altered and veined (dk.grey chalcedonic silica).	I I	- 1		1		1 1
31.1 36.5 5.4	SLIGHTLY ALTERED ANDESITE, similar to 10.9-16.0m; @ 31.1-34.0m more abundant chalcedonic silica	24024	31.1	34.0	2.9	70)
i	veining with 5% diss and vein Py; @ 31.5-34.0m abundant kaolin, calcite, chlorite on frac planes.		1		1	1	1 1
36.5 51.1 14.	ANDESITE, green-grey with maroon hue; mainly fragmental but several sections of massive coarser	I I	I		1		1
	grained material (flows or intrusives); trace white calcite veining @ low angle (<20°) to c.a.;	1 1	I		1	1	1
1 1 1	thin (<10cm) sections of altered material with chalcedonic silica veining.		1		I	1	
51.1 53.8 2.	SLIGHTLY ALTERED ANDESITE, similar to 10.9-16.0m; 5% chalcedonic silica veining in places; veining	24025	51.1	53.2	2.1	1	5
	exhibits layering of dk. and lt. cryptocrystalline silica.	1 1	1		1	1	1 1
53.8 65.5 11.	ANDESITE, relatively unaltered; mainly fragmental; 1% qtz-carb veining.				I		
65.5 67.7 2.	ANDESITE, massive, m.g.; non-fragmental, likely a flow or intrusive; very fresh, unaltered.	1 1	I		1	ł	1 1
67.7 76.5 8.	ANDESITE, fragmental, relatively unaltered; few narrow (<2cm) chalcedonic silica veins;		1		1		
	<pre> <1% quartz-carbonate veins.</pre>	1 1			I	I	
76.5 78.2 1.	MODERATELY ALTERED ANDESITE, lt.green-grey; originally a fragmental andesite; bleached (kaolin-				1	ł	
	itized, silicified); boundaries of altered zone are transitional; 3% dk.grey chalcedonic silica	1 1	1		I	1	

TAIGA CONSULTANTS LTD., Calgary, Alberta DIAMOND DRILL LOG	Hole No Project				<u>3</u> of 7-1	7
 From To Int. Geological Description	Sample No.		To 1		Au ppb	·
<pre>veinlets; moderately fractured.</pre>						
78.2 83.2 5.0 VERY ALTERED ANDESITE, lt.green-grey; abundant chalcedonic silica veining, lesser qtz-carb±fluorit	e 24026	78.2	79.2	1.01	680	1
veining; zonation due to alternating layers of dk.and lt.grey silica; in places zonation is concen-	24027	79.2	80.2	1.0	500	1
tric (open-space filling); zonation commonly @ 70-90° to c.a.; upper and lower parts of unit are	24028	80.21	81.2	1.0	170	I
bleached with sub-angular poorly sorted (up to 1 cm) altered (bleached) fragments in a siliceous	24029	81.2	82.21	1.0	85	I
matrix; vein material has also been brecciated, locally vuggy; 1-5% v.f.g. diss Py; volcanic	24030	82.21	83.2	1.0	35	I
material is silicified; trace powdery creamy mineral (alunite?) on fractures; @ 81.8-83.2	1		1	I	I	1
altered (silicified, carbonatized) but minor qtz veining.	1		I	I	I	I
83.2 100.3 17.1 ANDESITE, green-maroon; mainly fragmental but several massive sections; 1% qtz-carb veinlets;	1	l I	1	1	1	I
rare chalcedonic veining (<lcm distinctly="" m.g.;="" relatively="" td="" unaltered.<="" wide);=""><td>1</td><td> </td><td>1</td><td>I</td><td>1</td><td>I</td></lcm>	1		1	I	1	I
100.3 111.1 10.8 ANDESITE, similar to above but slightly finer grained and more epidote-rich; 1% qtz-carb veinlets;	1		I	I	I	1
unaltered.	1		1	1	ł	I
[111.1]111.9] 0.8] ALTERED ANDESITE, lt.green-grey; altered (chloritized, kaolinitized, silicified); abundant	24031	111.1	111.9	0.8	51	I
white-pink qtz-carb and minor chalcedonic silica veining, preferred orientation @ 30-40° to c.a.	1		I	I	1	1
111.9 149.3 37.4 ANDESITE, med.green-grey with many thick pinkish sections (hematite); mainly fragmental but some			1	1		I
thin massive sections which may be unbrecciated flows or intrusives; several large (up to 20cm)	1		Í	1		Ì
fragments; 1% qtz-carb veinlets; weakly fractured (<10/m); @ 145.2-145.4m and 147.0-147.1m and	I I		1	l	Ì	I

i,	۱	•	 4	3	· 1	•
			•	2		

TA	IGA CO	ONSULI	NTS LTD., Calgary, Alberta DIAMOND DRILL LOG			No. <u>C</u> st: <u>S</u>	- <u>87-2</u> cump La			<u>4</u> of -1	7 1
 Fr	om 7	 Co In	 . Geological Description		Samp] No.	•	 . To	 Leı	A1 1. P1		
			149.8-150.3 and 148.6-149.3m = several thin slightly altered (silicified, kaolinitized) sections	ons.						·····	۱ ا
149	.3 150	0.9 1	6 BASALT, dk.grey-maroon; flow, vesicular, calcite filled vesicles; flow banding @ 35° to c.a		I	1	I	T	I	1	1
150	.9 168	8.6 17	7 ANDESITE, med.green-grey-pink; mainly fragmental but several thick (up to 1 m) of lt.pinkish	-grey	1	1	T	1	1	I	1
1	I	I	m.g. feldspar phyrric massive extrusive or intrusive rock; 1% qtz-calcite veinlets; very na	rrow	I	Ι	Ι	Ι	I	I	ł
I	I		alteration (bleaching) envelopes veins and fractures.		1	1	I	1	1	Ι	1
168	.6 17	L.4 2	8; ALTERED ANDESITE, lt.green-grey; bleached (kaolinitized) fragmental andesite; 20% of section	n	2403	82 168.	6 169.	6 1.	0	60	1
ł	Ι	I	\mid comprises qtz \pm carbonate veining; most of veining is chalcedonic silica but minor amount is \circ	c.g.	2403	3 169.	6 170.	6 1.	0	45	I
I	1	1	white milky qtz; in places where veining is abundant, brecciation is apparent; veining show	s	2403	84 170	6 171.	4 0.	8	35	1
I	Ι	Ι	preferred orientation @ 70° to c.a.; locally chloritic, trace white kaolin on frac planes;	58	1	ł	I	ł	Ι	I	1
1	I	I	f.g. diss Py in altered sections, qtz veins contain trace Py; @ 168.6-169.6m = blocky broken	core,	I	1	I	I	1	1	I
1	ł	1	recovery 80%; trace hematite stringers in qtz veining.		1	I	I	Ι	ł	1	I
171	.4 18	5.8 14	4 ANDESITE, med.grey-green-maroon; mainly fragmental with thin massive m.g. sections; mainly		2403	85 182.	5 183.	5 1.	0	5	1
1	Ì	Ì	unaltered but several thin altered and veined sections; veining is of the milky white m.g. v	ariety	1	1	I	I	T	1	1
ſ	1	1	(qtz-carb) with minor hematite; veins commonly @ 30° to c.a.; @ 185.4-185.8m = bleached.		1	Ì	Ì	ļ	1	ļ	Ì
1185	5.8 18	8.3 2	5 ALTERED ANDESITE, abundant qtz-carb veining; 60% altered (bleached, kaolinitized, chloritized	1)	2403	61185.	8 186.	8 1.	01	85	1
			andesite and 40% vein material; veins are mainly crystalline, milky white, zoned qtz-carb wi	zh	2403	. 186	8 188.	3 1.	5	301	I.
•			minor chalcedonic silica and thin calcite veinlets; trace v.f.g. Py in qtz-carb veins; loca	lly	1	Ì	Ì	1	1	Ì	1

TAIGA CONSULTANT:				<u>C-87</u>			ge <u>5</u> of 87-1	7 !
 From To Int.	Geological Description	Samp No.		 Fr.	То	 Len.	Au ppb	
1	aggregates of pyrite form small swirling films.	1						
188.3 191.6 3.3	ANDESITE, similar to 171.4-185.4m	1	1	I		I I	I	I
191.6 193.1 1.5	ALTERED ANDESITE with abundant qtz-carb veining; similar to 185.8-188.3m	240	38 1	L91.6 1	L93.1	1.5	<5	1
193.1 239.7 46.6	ANDESITE, green-grey-maroon; mainly fragmental (flow breccia); poorly sorted, sub-angular frags	I		1			1	I
	but many sections (up to 1 m) of massive m.g. andesite (non-brecciated flow or intrusive); generally	r		ł		1 1	1	I
	alternating sections (on metre scale) of lighter coloured andesite (characterized by abundant	I	ſ	1		1	1	1
	feldspar phenocrysts) and finer grained darker andesite; several sections exhibit epidotized	1	I	I		I I	I	ł
	indistinct fragments; <1% qtz-carb veinlets, oriented preferentially @ 30-50° to c.a.; few thin	1	Ι	I		I I	I	I
1 1 1 1	(<50cm) altered sections with minor qtz-carb \pm hem veinlets.	ł	1	1		1 1	ł	1
239.7 241.0 1.3	SLIGHTLY ALTERED ANDESITE, lt.green-grey; bleached (kaolinitized, carbonatized); 1-5% diss Py;	240	39 2	239.72	241.0	1.3	80	1
	15% qtz-carb±fluorite±hem veining; transitional over 20 cm to unaltered andesite; mod.fractured.	I	1	I		1 1	1	1
241.0 250.9 9.9	ANDESITE, med.green-grey-maroon; 50% feldspar phyrric, massive, m.g. andesite flows and 50% coarse	1	1	1			I	I
	fragmental (flow breccia); unaltered; 1% qtz-carb veinlets, a few epidote-calcite veinlets.		I	I	(1 1	1	I
250.9 252.6 1.6	ALTERED ANDESITE, bleached andesite with 40% qtz-calcite-hematite-chlorite veining; @ 251.8-252.0m	240	40 2	250.912	252.6	1.5	<5	I
	= 20 cm section strongly bleached (white) brecciated with abundant qtz-carb veining.	1	1	I		1 1	1	1
252.6264.612.0	ANDESITE, med.green-grey-maroon; mainly fragmental (coarse, up to 10cm long); frags are angular,	1	I	1	I		I	I
	mainly greenish, f.g., in a coarser matrix (likely rinds incorporated in flows); 1-5% milky white		I			1	1	1

TAIGA CONSULTANTS LTD., Calgary, Alberta DIAMOND DRILL LOG	Hole No. <u>C-87-2</u> Page <u>6</u> of <u>7</u> Project: <u>Stump Lake, BC-87-1</u>
 From To Int. Geological Description	Sample Au No. Fr. To Len. ppb
c.g. qtz-carb veining; @ 256.6-276.7m = 10 cm epidotized zone.	
264.6 267.4 2.8 ALTERED ANDESITE, lt.grey-green, bleached; minor fracturing; @ 264.6-266.2m = abundant white qtz-	24041 264.6 265.6 1.0 <5
carb veining (section also shows brecciation, slight rotation of wallrock in veins); tr f.g. diss	24042 265.6 266.6 1.0 360
Py throughout; @ 266.2-266.4m chloritic zone contains 10% Py; also trace Cpy @ 264.4m.	24043 266.6 267.4 0.8 10
267.4 273.0 5.6 ANDESITE, unaltered, fragmental, 10% qtz-carb veinlets.	
273.0 274.3 1.3 ALTERED ANDESITE, abundant qtz-carb veining; lt.green-grey (bleached); one 2cm wide qtz-carb-hem	24044 273.0 274.0 1.0 180
vein parallel to c.a.; tr diss f.g. Py except @ 273.7-274.0m = 5%; @ 273.95-274.0m = chalcedonic	24045 274.0 274.3 0.3 65
silica-carbonate vein @ 40° to c.a.; 274.0-274.3m = altered and pyritic but no qtz veining.	
274.3287.613.3 ANDESITE, mainly fragmental, only v.minor qtz-carb veining and thin alteration envelope.	
[287.6]288.6] 1.0] ALTERED ANDESITE, 30% white-red qtz-carb-hem veining; mod. bleached; one 20 cm section epidote-	24046 287.6 288.6 1.0 15
rich; trace diss Py; chlorite and calcite on fractures @ 40° to c.a.	
[288.6]302.0]13.4] ANDESITE, variably green-grey and reddish grey; locally hematite- and epidote-rich; 1% qtz-carb	
veinlets; @ 295.7-297.8m = more mafic section.	
[302.0]304.8] 2.8 ALTERED ANDESITE, bleached (altered), kaolinitized, chloritic (envelope along fractures); several	24047 302.0 303.0 1.0 200
thin (<10cm) fault gouge zones, mod.fractured; quite distinct (<5cm) boundaries to altered zone;	24048 303.0 304.0 1.0 95
1-3% f.g. diss Py; 15% qtz-carb vein material of which 5% is med.cloudy grey chalcedonic qtz;	24049 304.0 304.8 0.8 120
veins commonly @ 40-50° to c.a.	

•

- <u>1</u>

TAI	GA CON	ISULTAN	TS LTD., Calgary, Alberta DIAMOND DRILL	L LOG	Hole No. Project:			Pag e, BC-	e <u>7</u> (87-1	of <u>7</u>]. .
 Fro	 m Tc	 Int.	 Geological Description		Sample No.		 To	 Len.	Au ppb	 	
304.	8 310.	4 5.6	ANDESITE, same as 288.6-302.0m except med.to dk.green-grey (more mafic, thin ep:	idote-rich zones).							1
310.	4 311.	7 1.3	ALTERED ANDESITE, same as 302.0-304.8m		24050	310.4	311.7	1.3	420	ļ	I
311.	7 313.	0 1.3	ANDESITE, same as 304.8-310.4m.				1		ł	ł	۱
l	I	Ι	I				1	1 1	ł		I
I	313.	.01	T.D.				1		I	I	ł
1	ļ	Ι	l				1			I	I
I	I	1	I						I	ł	I
1	1	ł	1				I		l	ł	1
ł	1	I	I				1	1		I	I
I	1	1	1						I	1	I
Ι	1	I	1				1	1	1	1	I
I	1	I	1		1 1		1		ļ	1	I
}	1	1	1				l	I	l	I	١
ł	ł	1	1				I		1	1	I
ļ	1	Ι	1				1		I	l	I
1	I	I	1		1 1		1			I	۱
1	i	1	1		1 1					I	L

CAIGA CONSULTANTS LTD., Calgary, Alberta DIAMOND DRILL LOG				
Area Cindy Latitude74+50N Inclination @ collar = _60 ° Date Started _Feb. 26, 1987 Claim Departure97+75E Inclination @ _91 m = -60 ° Date Completed Mar. 03, 1987	Client: _ Hole No.	<u>Asamer</u> C-87-3		ge <u>1</u> of <u>4</u>
Contractor <u>Connors</u> Elevation <u>~930</u> Inclination @ <u>183</u> m = <u>-60</u> ° Core Size <u>NQ</u>	Project:	Stump	<u>Lake, E</u>	
Core Stored at Bearing090° Inclination @ 294 m =55 ° Total Length294.7 m	Logged by:	: <u>D. G.</u>	<u>Dupré</u>	
	Sample	I		Au
From To Int. Geological Description	No. F1	c. To	Len.	bbp
0.0 11.0 11.0 CASING, overburden, no recovery.		·····		
11.0 12.7 1.7 ALTERED ANDESITE, recovery 90%; bleached (kaolinitized, chloritized), soft; mod.fractured;	1	l		1
several fault gouge zones; trace diss Py, 5% qtz-carb veins, limonite on frac planes; originally		ł		
a fragmental andesite.				[
12.7 35.6 22.9 ANDESITE; recovery 99%; med.green-grey; mainly a fragmental (flow breccia) andesite but several	1	I		l
sections up to 2 m without frags; sub-angular andesite frags abundant but indistinct and in places	1 1	i	1 1	1
poorly sorted, in m.g. andesitic matrix; variably epidote- and hematite-rich, 1% qtz-carb veinlets	1	I	I I	1
(mm), 1-2% diss magnetite; unaltered except thin bleached zones (<10cm).	1	I	1 1	1
35.6 47.6 12.0 ALTERED ANDESITE, lt.green-grey, bleached (kaolinitized, chloritized); abundant (10%) smokey	24051 35	5.6 37.1	1.5	140
grey-white chalcedonic silica veining; net textured in places but thicker (up to 1cm) veins have	24052 37	7.1 38.6	1.5	150
preferred orientation @ <30° to c.a.; 1-3% f.g. diss Py commonly enveloping chalcedonic silica	24053 38	3.6 40.1	1.5	380
veining; kaolinite on frac planes; locally mod.fractured (broken blocky core); alteration grades	24054 40).1 41.6	1.5	140
vover 50 cm to unaltered andesite; @ 45.2-46.3m = spotted, related to well scattered 1-3mm clots	24055 41	1.6 43.1	1.5	160
of chlorite; magnetite less abundant in altered zones (poss.altered to pyrite).	24056 43	3.1 44.6	1.5	110

TAIGA CONSULTANTS LID., Calgary, Alberta DIAMOND DRILL LOG	Hole No Project				<u>2</u> of _ 7-1	4
 From To Int. Geological Description	Sample No.	 Fr.	 To L	A en. p	Au opb	
	24057	44.6	46.1	1.5	220	
	24058	46.1	47.6	1.5	120	- 1
47.6 57.6 10.0 MOD. TO SLIGHTLY ALTERED ANDESITE, similar to above except less altered, less chalcedonic veinit	ng; 24059	52.4	54.1	1.7[480	I
@ 52.4-54.0m = epidote alteration and 5% Py in veins.	24060	54.1	55.6	1.5	400	I
57.6 59.1 1.5 ALTERED ANDESITE, brecciated, faulted (gouge, broken core); 20% chalcedonic silica veining,	24061	57.6	59.1	1.5	220	1
veins show compositional layering; 1-2% Py.	Ι	1	I	1	I.	1
59.1 63.2 4.1 ANDESITE; med.green-grey, slightly bleached; tr diss Py; 5% grey chalcedonic qtz veinlets.	I	1	1	I	I	1
63.2 64.8 1.6 ALTERED ANDESITE, slightly bleached but abundant qtz-carb-hem veining preferentially @ 30-50° to	o 24062	63.21	64.81	1.6	20	I
c.a.; minor white kaolinite-calcite on frac slips; trace widely dispersed f.g. Py; locally	1	I I	1	I	1	I
chloritic; @ 64.4-64.6m = ang.frags of wallrock incorporated in qtz-carb.	1	I I	I	1	1	I
64.8 84.5 19.7 ANDESITE; various shades of reddish grey and greenish grey; mostly non-fragmental, f.g. to m.g.	, 24063	68.0	69.3	1.3	<5	I
massive andesite; some sections feldspar phyrric or with 5% small white calcite blebs; locally	1	1	I	I	1	F
weak bleaching, commonly chloritic, several 1-2cm epidote-rich zones; 1% white qtz-carb±hem vein	ing;		1	1		1
3-5% diss Py; @ 69.0-72.0m = blocky broken core (faulted).	-		I	I	I	I
84.5 88.5 4.0 ALTERED ANDESITE, bleached (kaolinitized, locally silicified); locally hematitic especially @	24064	84.5	86.0	1.5	180	1
87.0-88.5m; 5% med.grey-milky white chalcedonic silica veining, locally brecciated (most abundan	t 24065	86.0	87.5	1.5	10	I
@ 84.5-85.3m); veins commonly @ 40-60° to c.a.; trace v.f.g. diss Py, particularly on margins of	£ 24066	87.5	88.5	1.0	<5	I

and the second second

	iga co	NSULTAN	TS LTD., Calgary, Alberta DIAMOND DRILL LOG		Hole No. Project:				-	of4
 Fro	 mc	o Int.	Geological Description		Sample No.		 To	 Len	Au ppb	
	·								• • • • • • •	·
1	I	I	qtz veins; note, altered sections contain almost no magnetite.		1 1		1	1	1	
88.	.5 103	.4114.9	ANDESITE; mainly fragmental but several sections of massive f.g. flow rock; several thin (<1 m)		24067	91.8	3 92.	4 0.0	5 90)
1	ł	l	slightly bleached sections; 1-2% white qtz-carb veinlets; @ 91.8-92.4m = more abundant qtz-carb	-	24068	99.7	/ 101.	2 1.5	5 <\$	5
1	I	1	hem veining with epidote alteration and 1% pyrite; @ $99.7-103.4m = soft$, brecciated, chloritic,		24069	101.2	102.	7 1.	5 <5	5
I	1	I	hematitic, talcose (fault).		24070	102.7	/103.	4 0.3	7 10) I
103	.4(13)	.0 27.6	ANDESITE; med.red-grey; flows (massive, f.g.) with only thin fragmental sections; several thin		24071	117.5	5/118.	2 0.	/ <:	5
1	Ι	ł	altered zones with sections of qtz-carb±hem veins and trace Py; also zoned chalcedonic veining;		24072	123.3	3 124.	1 0.8	8 10) I
I	I	I	trace-2% diss magnetite; @ 103.8-107.4m = several fault gouge zones.		24073	127.0) 128.	0 1.0	20) I
131	.0 16	.9 36.9	ANDESITE; med.reddish grey with green-grey sections; predominantly fragmental (note, frags are				1	I		
١	1	I	obscure, same composition as matrix); l% v.thin carb veinlets (no chalcedonic silica veining);		1 1		1	i	1	1 1
l	ł	I	v.thin alteration zones (both kaolin-silica and epidote) except 135.1-136.9m; variably magnetite	-	I I		1	I	I	ł
I	Ι	I	bearing; @ 151.0-151.2m = fault zone (breccia, broken core), qtz-carb veining @ 60° to c.a.		I F		1	I	I	
167	.9 17:	2.8 4.9	ALTERED ANDESITE, bleached (kaolinitized, silicified); 15% chalcedonic milky grey silica veini	ng	24074	167.9	169.	4 1.5	i 100	
	ł	I	(10-20cm sections at 0.5-1.0 m intervals), brecciated; later episode of c.g. white qtz-carb vein	ing;	24075	169.4	+ 170.	9 1.9	i 20)
l	l	ļ	1-2% v.f.g. diss Py; mod.fractured with chlorite-calcite on slips.		24076	170.9	172.	8 1.9	9 <5	51 1
172	.8 23	0.6 57.8	ANDESITE; very homogeneous unit; maroon-grey with green-grey patches; fragmental (flow breccia)				1	1	I	1 1
ł	1	ł	with few thin massive sections; many frags are epidotized or hematized; locally magnetite-bearing	ng;	1 1		I	I	1	

	GA CO	NSULTA	NTS	LTD., Calgary, Alberta DIAMOND DRILL LOG	Hole No Project				age <u>4</u> C-87-1		_41
 Fro	 m T	 o Int	 .	Geological Description	Sample No.	 Fr.	 To	 Len	Au . ppb	 	
} 				very minor qtz-carb veining;			1				۱ ۱
1	1	1	1	181.7-182.8 epidotized section	I	I	1	1	I	1	1
I	ł	Ι	Ι	200.0-220.0 strongly hematitic	1	1	1	1	1	1	1
1	I.	1	I	221.6-221.7 10 cm qtz-carb vein @ 70° to c.a.; breccia	I	1	1	ł	1	1	I
230.	6 236	.9 6.	3	ANDESITE; med.reddish grey; mainly massive, m.g. flows with trace small calcite blebs; few	I	I	1	I	I	I	I
1	I.	1	1	fragments apparent.	I	1	1	1	1	ł	ŀ
I	1	I	Τ	233.8-233.9 10 cm qtz-carb vein, breccia	1	I	1	I	1	I	I
1	T		1	235.2-235.3 10 cm qtz-carb vein, breccia	1	1	I	I	1	I	I
236.	9 294	.7157.	8 J	ANDESITE; med.green-grey; not as hematitic as above units; 60% fragmental, 40% massive flows;	1	1	I	Ι	I	I -	I
1	T	I	1	local epidote-rich zones (10-30cm) partic. @ 265.0-273.0m; 10% calcite veinlets; 1% diss magnetite	24077	285.0) 286.0	1.0) <	:5	I
I	ł	I	I	236.9-237.0 10 cm qtz-carb vein, breccia	I	I	ł	I	Ι	I	I
1	Ι	1	I	237.0-238.2 several thin fractured zones (also fault gouge)	I		I	1	I	1	I
I	Ι	I	I	285.0-286.0 fault gouge (breccia)	I	I		1	1	1	I
1	١	1	Ι		I	I	1	1	ł	1	Ι
1	294	.7	I	T.D.	I	1	1	ł	ł	I	ł
Ι	1	I	I		1	1	1	I	I	1	ſ
1	١	ł	Ι		1	I	ł	I .	I	l	1
1	l	1	l		I		I	1	I		I

ASAMERA INC.

CINDY PROJECT

EXPENDITURE STATEMENT

For the Three Months Ended March 31, 1987

Geotechnical

Contract Work	\$ 6,278
Option Payments	(10,000)
Assays and Related Costs	1,771
Drilling	71,927
Supplies	211
	90,187

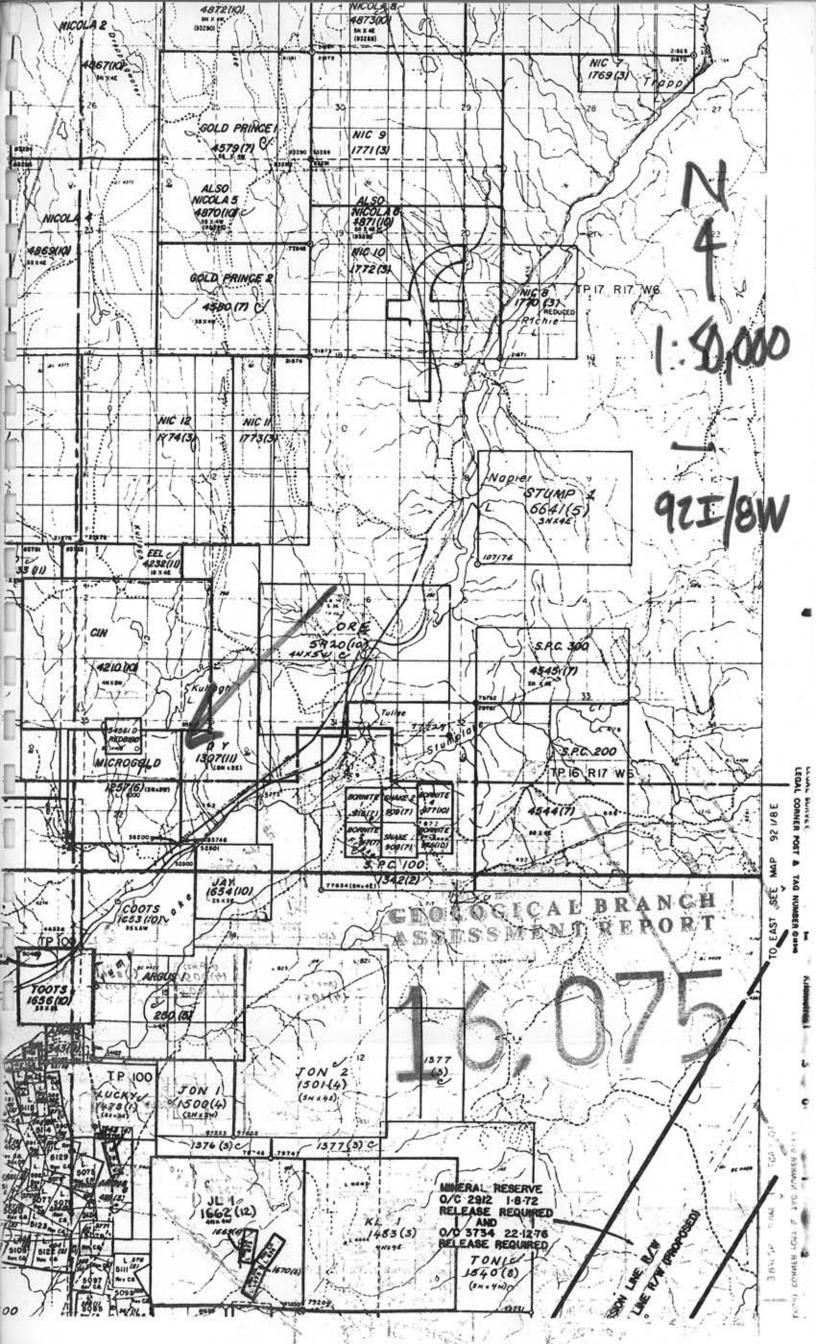
Transportation

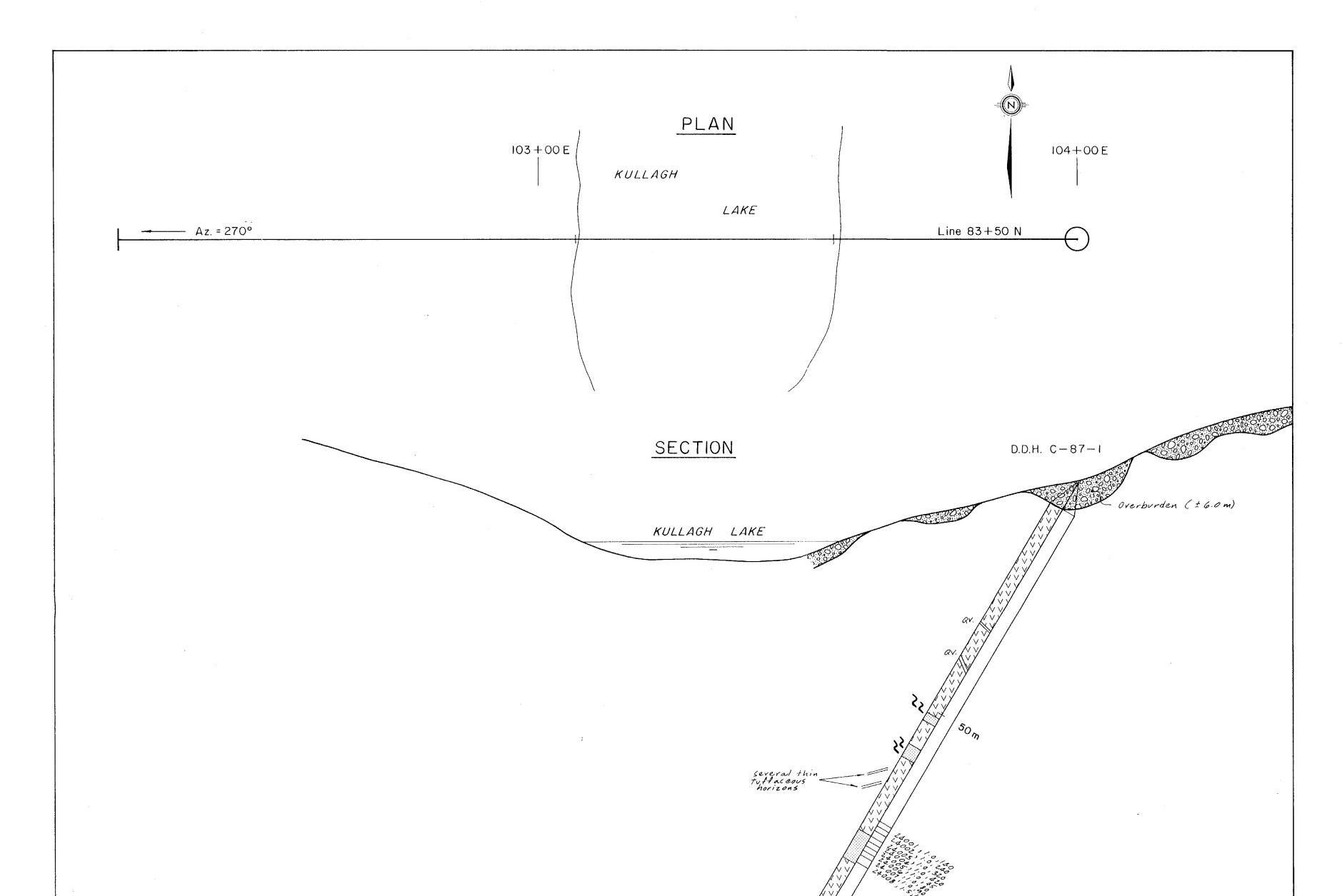
Vehicle	763
Fuel	65
	828

Camp and General Administration

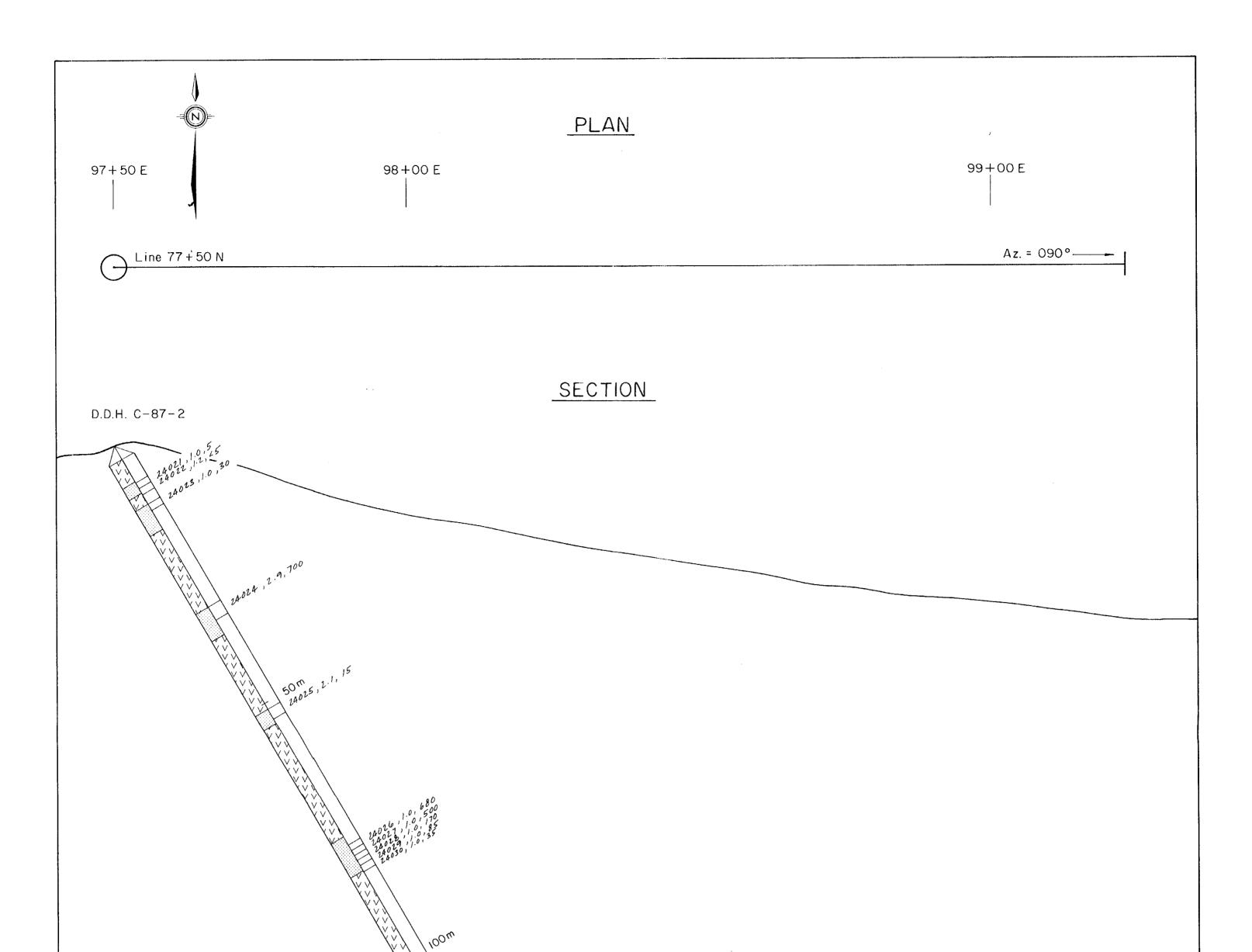
Camp Supplies & Consumab	les		262
Accommodations			419
Expediting and Warehousi	ng		195
	GREEDELCAL	BRANCH	876
	ACCEPTION	TROGET	
TOTAL EXPENDITURES	A static grant to the second state of the		\$ <u>91,891</u>

6,075


For Asamera Inc.:


P.P. DUNNE

CORPORATE CONTROLLER


April 16, 1987

5129139		MINING A.F.E. FISCAL YEAR TO DATE - EXPLODED	×	CANADIAN DOLLARS	
	PRELIMINARY 1	FOR MONTH ENDED MARCH 31, 1987			
	7296	•			
		ACTUAL CURRENT	ACTUAL		
E 🕈 AFE	DESCRIPTION	MONTH ADDITIONS	YTD		
120 CONTRA	CT WORK	1,152,60	6,277,60 ^		· · · · · ·
	PAYMENTS	10,000.00	10,000,00		
		1,771,00			
170 DRILLI	NG	71,927.58	71,927.58	······································	
200 SUPPLI	ES	+00	210,66		
* AFE SUB TOT	ALS - A	84,851,18	90,186,84 ^		
110VEHICL	E	+00	763,02		
140 FUEL		+00	65.00		
+ AFE SUB TOT	ALS - C	•00	828.02		
	UPPLIES & CONSUMABLES	•00	261.74		
120 ACCOMM	ODATION	.00	419.44		-
130 EXPEDI	TING AND WAREHOUSIND	.00 195.00	195.00		
AFE SUE TOT	'ALSD	195.00	876+18		
AFE TUTALS	- 7296	85,046.18	91,891.04		• • • • • • • •
	n ng manananan kang gagaman sa sa sa sa manan ka sa				
			······································		
· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·				-
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	- · · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·				-
					-
	ζ				· · · · · · · · · · · · · · · · · · ·
	,				
	γ				
	,				-
					-
		·			

24031,0.8,

137 1

basal.

150 m

.

24038

200 m

1.31

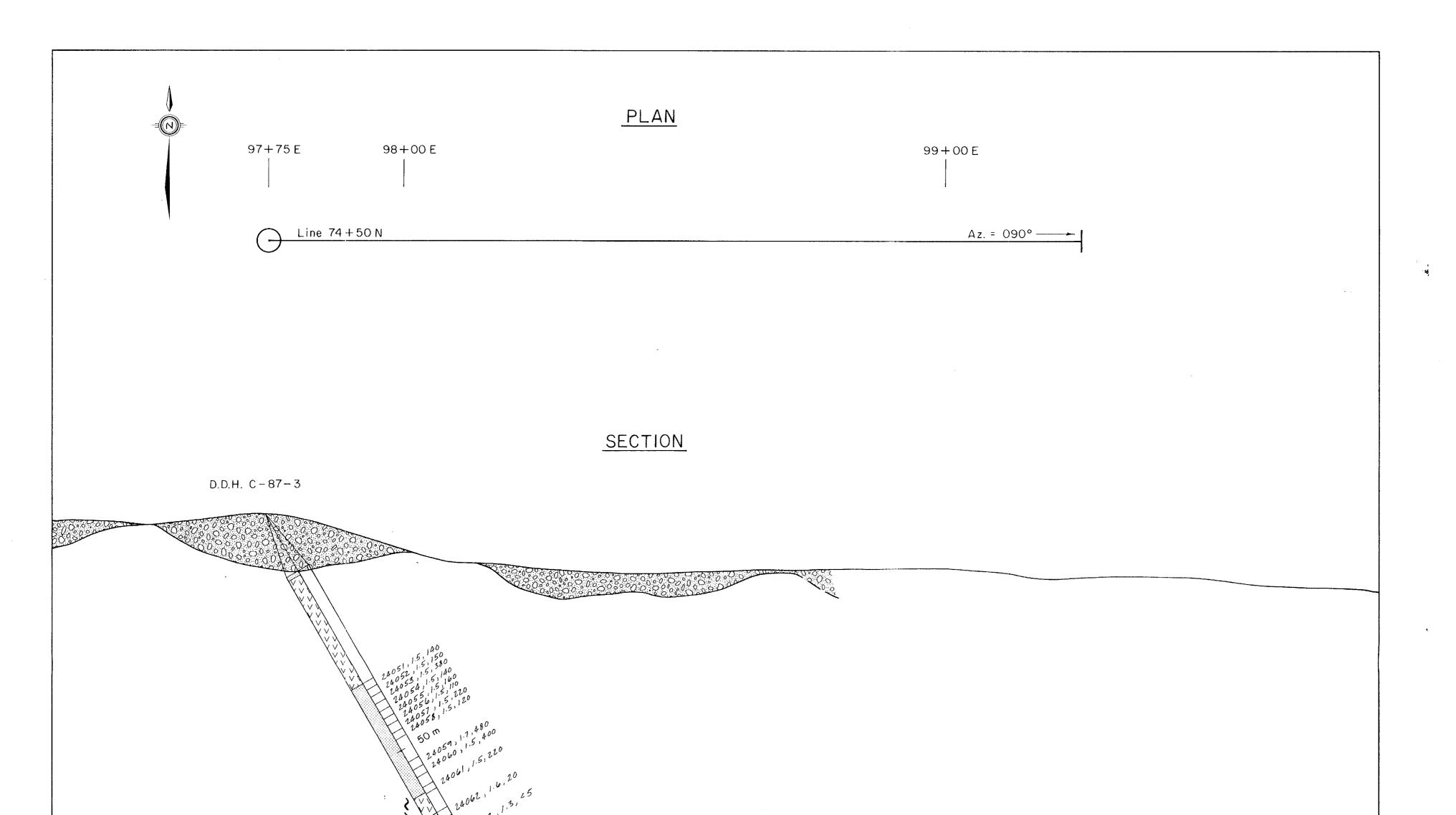
25

 $\chi \lor \chi$

. 10

24039,

GEOLOGICAL LEGEND



Andesitic Flow Breccia

Altered Andesite - clay alteration and silicification - moderate to abundant calcedonic silica veining ± fluorite ± calcite ± pyrite ± hematite ± chlorite.

- Altered Andesite clay alteration and silicification moderate to abundant coarse grained, milky white quartz ± carbonate ± pyrite

SYMBOLS	GEOLOGICAL BRANCH 1401 / /
Quartz Vein	ASSESSMENT REFUNE CONTRACTOR CONTRACTOR
b_{\times} $\begin{bmatrix} & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & $	
Fault Zone drill collar location overburden.	
width of sample assay value, Avinppb. 24011, 1.5, 95 Sample number lithology	ASAMERA INC. CINDY PROJECT SECTION D.D.H. C-87-2 DATE MARCH, 1987. NTS 92 1/8 W PROJECT K-BC-4 MAPPED/ DRAWN BY D.G. DUPRE SCALE 1:500 0 10 20m TAIGA CONSULTANTS LTD. FIG. 2

0.8 '

24072 1

140¹³ 1.0,20

GEOLOGICAL LEGEND

$\nabla \nabla \nabla$ Andesitic Flow Breccia

Altered Andesite

clay alteration and silicification
 moderate to abundant calcedonic
 silica veining ± fluorite ± calcite
 ± pyrite ± hematite ± chlorite.

Altered Andesite

clay alteration and silicification
moderate to abundant coarse grained, milky white quartz ± carbonate ± pyrite

SYMBOLS

av _____ Quartz Vein

GEOLOGICAL BRANCH

200 m