

DAWSON GEOLOGICAL CONSULTANTS LTD.
Suite 203, 455 Granville Street,
Vancouver, British Columbia V6C ITI

Bernard Dewonck, B.Sc., F.G.A.C.

GEOCHEMICAL REPORT ON THE WILL CLAIM GROUP
 Lillooet Mining Division, British Columbia

TABLE OF CONTENTS

INTRODUCTION		.1
SUMMARY AND CONCLUSIONS		.2.
LOCATION AND ACCESS		. 4.
CLAIM STATUS		.5.
PHYSIOGRAPHY AND VEGETATION		.6.
GEOLOGY AND MINERALIZATION		.7.
GEOCHEMICAL SOIL, STREAM SEDIMENT AND ROCK SAMPLING SURVEY		.9.
TABLE 1	Rock Geochemistry	. 12.
APPENDICES		SUB-RECORDER
Appendix A	Certificates of Analysis	RECEIVED
Appendix B	Personnel	OCT 191987
Appendix C	Statement of Expenditures	
Appendix D	References	VANCOUVER, B.C.
Appendix E	Writer's Certificate	
LIST OF FIGURE		Following Page
Figure 367B-l	Location Map	. 4.
Figure 367B-2	Claim Map	.5.
Figure 367B-3a	Sample Location (North Sheet)	in pocket
Figure 367B-3b	Sample Location (South Sheet)	in pocket
Figure 367B-4a	Geochemical Plan: Gold (North Sheet)	in pocket
Figure 367B-4b	Geochemical Plan: Gold (South Sheet)	in pocket
Figure 367B-5a	Geochemical Plan: Arsenic (North Sheet)	in pocket
Figure 367B-5b	Geochemical Plan: Arsenic (South Sheet)	in pocket

INTRODUCTION

This report describes the first stage of exploration carried out on the Will Claims in 1987, consisting of soil sampling along topographic contours, stream sediment sampling of drainages intersecting the property, and limited follow-up prospecting and rock sampling. Continued exploration in the form of detailed prospecting, geological mapping and rock sampling in the areas of anomalous soil values is recommended.

SUMMARY AND CONCLUSIONS

1. The Will property consists of four contiguous MGS claims totalling 80 units, located in steep terrain in the Bridge River District of southwestern British Columbia. The property is presently accessible only by boat or helicopter.
2. The property is underlain by highly deformed metasediments and metavolcanics of the pre-Permian age (?) Fergusson Group. These rocks have been intruded by several types of dykes and sills, some of which are related to nearby Coast Plutonic granitic stocks. Serpentinized ultramafic bodies, observed in the southwest portion of the claim block, appear to have listwaenitic zones (carbonatized ultramafic rocks) associated with them.

Prior to the work described in this report, the property had not been explored to any great extent. Several old pits on tetrahedrite-bearing quartz veins were noted near the south claim boundary during staking, but these were not included in this program. A weak porphyry copper/molybdenum system is located immediately southwest of the property; some of the distal parts of this system are evident along the western boundary of the claim block.
4.

The 1987 exploration program consisted primarily of soil sampling at approximately 100 -meter intervals along topographic contours 152 meters (500 feet) apart vertically, stream sediment sampling at approximately 200-meter intervals along major drainages and on small tributaries as they were crossed on the soil lines. Several areas of coincident gold and arsenic soil anomalies were defined, of which one in particular can be traced directly to a large outcropping of an apparent listwaenite zone and is corroborated by stream sediment geochemical anomalies as well. A limited amount of follow-up prospecting and rock sampling was done, confirming the presence of elevated gold values in the listwaenite zone. Examination of other anomalous areas in the southwest was of a very cursory nature and inconclusive. One anomalous area in the west-central
to northwest portion of the property was confirmed by check soil sampling, and favourable host rock was found in the vicinity of another. Insufficient rock sampling or prospecting was done to determine the source of these anomalies and several single sample anomalies in excess of 200 ppb gold remain to be investigated.
5. Continued exploration is warranted and should consist of detailed prospecting, rock sampling and geological mapping at a scale of 1:5000, grid controlled as topography permits. Relief in the northern third of the property is particularly steep, making traversing slow and difficult. Any further work in the area should be preceded by the preparation of helicopter landing pads in strategic areas, thereby minimizing time and energy wasted in accessing areas of interest.

LOCATION AND ACCESS

The claims are located in the Bridge River District of southwestern British Columbia (NTS Map Sheet 92J/15E), approximately 50 kilometers west/northwest of Lillooet and 14 kilometers east of Goldbridge (Figure 367B-1). The approximate geographic center of the property is latitude 50051' north and longitude 122039' west.

Direct access can presently be gained only by helicopter, or by boat from the north side of Carpenter Lake. A logging access road from Goldbridge into the Truax Creek Valley lies less than three kilometers west of the property. Helicopters are available for casual charter from Lillooet and Pemberton (40 kilometers to the south).

CLAIM STATUS

The property is located within the Lillooet Mining Division, and consists of four contiguous, modified grid system, located claims totalling 80 units. A small portion of the northern part of the Will 1 claim overlaps pre-existing claims still in good standing (Figure 367B-2).
$\left.\begin{array}{lcccc}\begin{array}{c}\text { Claim } \\ \text { Name }\end{array} & \begin{array}{c}\text { Record } \\ \text { Number }\end{array} & & \begin{array}{c}\text { Tag } \\ \text { Number }\end{array} & \end{array} \begin{array}{c}\text { Expiry } \\ \text { Date }\end{array}\right]$

The recorded owner of these claims is No. 28 Sail View Ventures Ltd., of Suite 550, 999 Canada Place, Vancouver, British Columbia V6C 3 C8.
1

PHYSIOGRAPHY AND VEGETATION

The property is located primarily on steep northerly slopes which extend from some of the east and west spurs of Mount Williams down to the south shore of Carpenter Lake. This north-facing slope is dissected by several steep northerly-flowing creeks, including Williams Creek and the lowermost part of Truax Creek.

Elevations vary from 2287 meters (7500 feet) above sea level in the southwest corner of the claim block, down to approximately 671 meters (2200 feet) at the lake level. Relief is especially steep in the northern third of the property, where traversing is slow and difficult.

The property is treed with virgin forest up to the tree line, which is at approximately 1982 meters (6500 feet). From the lake level to about 1524 meters (5000 feet), the tree cover consists of mature spruce, fir and cedar. From 1524 meters to tree line, vegetation consists primarily of scrubby alpine spruce, with alpine meadows becoming more predominant with elevation.

GEOLOGY AND MINERALIZATION

Since no detailed mapping has ever been carried out on the subject claims, the only reference available is the preliminary mapping (scale of $1: 250,000$) completed by the Geological Survey of Canada. According to this map, the property is totally underlain by rocks of the Fergusson Group of (?) pre-Permian age. This unit has recently been redefined by Dr. B. N. Church of the British Columbia Ministry of Energy, Mines and Petroleum Resources, who describes it as follows:
> "The Fergusson Group ... where best developed ... consists of steeply dipping chert beds, some marble, schist, gneiss and hornfels. Chert is the most common rock type, attaining a thickness of 1000 meters or more. The beds are typically thin ribbons of recrystallized light and dark grey quartz with a few jasper zones and more rarely, green quartz.

"Locally, the beds are intricately folded and crisscrossed by thin quartz veinlets. In some places cataclasis has reduced bedding laminations to sheared quartz lenses and intensely milled breccias resembling quartz pebble conglomerate.
"Impurities in the chert are mostly white mica interlayers and graphitic schist. In the contact aureoles of the major granitoid intrusions the formation is transformed into highly deformed garnet-biotite-quartz gneiss.
"The base of the Fergusson Group is nowhere visible. The only marker horizon is a thin marble band, 1 to 10 meters thick, observed infrequently across the map area.
"Locally, the group is invaded by numerous greenstone dykes and sills. In zones of intense shearing these feeders are reduced to chlorite schist; in the thermal aureoles of the large granitic stocks, fine grained amphibolite is formed from these basic intrusions."

This is necessarily a generalized description and local variations and features are to be expected. The claims are unmapped on a detailed scale, and observations made during limited prospecting follow-up are discussed in conjunction with results of the soil and stream sediment sampling survey (see following section). A few geological features are plotted on the gold geochemistry maps (Figures 367B-4a and -4b).

Some old prospecting pits on tetrahedrite-bearing quartz veins were noted near the south claim boundary during staking, but were not evaluated during this program. A weak prophyry copper-molybdenum system is centered approximately two kilomters south/southwest of Mount Williams. The easterly distal portion of this system is evident along the southwestern boundary of the claim bock, in the form of pyritic alteration, hornfelsed sediments and sills and/or dykes of feldspar-hornblende porphyry.

GEOCHEMICAL SOIL, STREAM SEDIMENT AND ROCK SAMPLING SURVEY

The property has not undergone systematic exploration in the past and, and as noted previously, includes some very steep terrain. The most effective means of covering the claims on a reconnaissance basis was to establish lines along topographic contours by altimeter and hip chain. Totals of 639 soils, 67 stream sediment and 28 rock samples were taken. The soil samples were collected every 100 meters along contours 152 meters (500 feet) apart vertically, and stream sediment samples were collected at 200-meter intervals along major creeks and on small tributaries as encountered along the soil lines. Rock samples were collected at various locations on the property. A layer of volcanic ash of variable thickness covers much of the claim area which necessitated sampling of B-horizon soils at depths ranging from 15 to 50 centimeters.

Soil and stream sediment samples were put into kraft sample envelopes, rocks into plastic sample bags and delivered to Acme Analytical Laboratories of Vancouver for analysis. A 30 -element analysis by ICP methods plus gold by atomic absorption was conducted on the soil and sediment samples while 24 of the 28 rock samples were analyzed geochemically (by atomic absorption) for gold only. The other four rock samples were included in the 30-element ICP analysis.

Map coverage of the claims was divided into two contiguous sheets, designated 'north' and 'south'. Sample locations and numbers appear on figures 367B-3a and 367B-3b (north and south sheets respectively). Only gold and arsenic values were plotted (Figures $367 \mathrm{~B}-4 \mathrm{a},-4 \mathrm{~b},-5 \mathrm{a}$ and -5 b respectively); complete results appear in Appendix A. Rock geochemistry is also presented in Table 1, with the exception of samples WRR-1 to 4 for which no descriptions are available.

Several areas with essentially coincident gold and arsenic anomalies were defined, and designated ' A ' to ' G ' (Figures 367B-4a and -4b)).

There are, in addition to these seven areas, several single-point anomalies of interest. Anomaly categories were determined statistically using the mean (\bar{x}) and standard deviation (S):

$$
\begin{aligned}
& \text { Negative }=0 \text { to } \bar{x} ; \\
& \text { Possibly Anomalous }=\bar{x} \text { to }(\bar{x}+1 S) ; \\
& \text { Probably Anomalous }=\bar{x} \text { to }(\bar{x}+2 S) ; \\
& \text { Definitely Anolamous }=\text { greater than }(\bar{x}+2 S) .
\end{aligned}
$$

Gold categories are based on 595 samples, excluding values greater than 100 ppb and arsenic categories are based on 608 samples, excluding values greater than 300 ppm .

Anomaly A (Figure 367B-4b) includes one of the highest single soil values within the claims (350 ppb) and is backed up by a very specific stream sediment anomaly pattern in Williams Creek. Regularly spaced sediment samples gradually increase in value as the anomalous area is approached, a distinctly higher value is recorded in the tributary directly draining the area and markedly depressed values are evident above the confluence of the two creeks. The anomaly reflects a very clearly exposed zone of alteration known as listwaenite, resulting from the carbonatization of ultramafic rocks which are in fact in contact with this zone.

Typically, listwaenites consist of Mg-Fe-Ca carbonates and quartz with accessory serpentine, talc, Mg-chlorite, fuchsite (Cr-moscovite) and ore minerals (Buisson \& Leblanc). The latter include hematite, magnetite, $\mathrm{Fe}-\mathrm{Ni}$ or FeCu sulphides and relict chrome-spinel. Gold values ocurr erratically within typical listwaenites. The material collected at anomaly A (samples 2611 to 2614) consists largely of quartz with associated ankerite, variable amounts of mariposite and disseminated grains and small blebs of a black, lustreless mineral. No sulphides were noted. The above-mentioned samples returned elevated gold values (see Table l) which are clearly not economic but are indicative of enhancement relative to associated ultramafics (example, sample \#2638). Economic grades are related to pyrite or arsenide-rich zones and to late quartz veins (Buisson \& Leblanc) which have not yet been observed on the Will property but certainly are possible in view of the coincident gold-arsenic soil anomalies identified to date.

Rock samples $2610,1615,2616,2636$ and 2640 are all collected in similar but much smaller and less well-developed listwaenitic zones a few hundred
meters south of anomaly A. Weaker soil anomalies are recorded below these sites, indicating that soil geochemistry is reflecting the favourable environments for gold mineralization. The listwaenite zones in this general area appear to be conformable to the general stratigraphic trend, that is, striking west to northwesterly with moderate south to southwest dips.

Anomaly B (Figure 367B-4b) is a single point anomaly in the vicinity of which rusty sediments in outcrop (samples 2617 and 2634) and maripositebearing, siliceous float (samples 2618 and 2635) are evident. An outcrop of ultramafic rock can be seen to the east (down slope) from this area. Check soil samples were taken a closely spaced pattern at and around the original sample site and failed to reproduce the anomaly exactly; two samples did return anomalous values, one of which was taken in very rusty soil where rock sample \#2625 was collected. This area is possibly the western fringe of the ultramafic system exposed more extensively at area A.

Anomaly C occurs outside the property boundary and appears to be related to alteration (pyrite, hornfelsing) effected by the porphryry copper-molybdenum system referred to previously. The area was quickly traversed over and three samples were taken (samples 2619 to 2620) (see Table 1).

Anomalies D and E (Figure $367 B-4 a$) also received brief follow-up examination which was hampered by limited time available. No outcrop or float source was located for anomaly D; however, three of six check soil samples produced anomalous values as high as 520 ppb . The other three samples were of quite poor quality, containing a substantial proportion of volcanic ash. Anomaly E occurs at the bottom of a shallow but steep ravine in which material similar to the listwaenite zone in area A was sampled from outcrop (?) (samples 2622 and 2623). These rock samples produced no gold values and the single check soil sample is only weakly anomalous; however, the area warrants detailed follow-up prospecting as some pyrite was noted in sample 2623 and in fractured chert, healed with quartz veinlets, sampled in float in the same area (sample 2643). The ravine possibly reflects a fracture zone cross-cutting the general stratigraphic trend.

Anomaly F is of lower magnitude and has not been examined. It appears to lie at the base of rusty-weathering bluffs visible from the air and should be included in subsequent exploration. The general area bounded to the south, west and east by anomalies D, E and F respectively contains several single sample anomalies which should be investigated as well.

Unfortunately, the highest soil anomaly recorded in this program comes from a site outside the property, in close proximity to a narrow, northerlytrending, west-dipping shear zone. A 4-meter long tunnel was driven, probably many years ago, on the shear which is 35 centimeters wide, heavily limonite and jarosite stained, and includes a 3- to 5-centimeter pyrite and arsenopyritebearing quartz veinlet (sample 2641). The face of the tunnel was sampled across 1.65 meters where the shear zone is reduced to the quartz veinlet only; nonetheless, an elevated gold value of 136 ppb is recorded (sample 2642). There do not appear to be any ultramafic bodies outcropping in this area of the claims; however,this occurrence could indicate proximity to hidden or presently unrecognized, potentially gold-bearing listwaenite zones associated with buried ultramafics.

TABLE 1
ROCK GEOCHEMISTRY

Sample No.	Location		Description	

Sample No.	Location	Description	Au
2615	South of Anomaly A	Schistose listwaenite intercalated w/serpentine, no mariposite, random grab sample	$\begin{gathered} (\mathrm{ppb}) \\ 1 \end{gathered}$
2616	South of Anomaly A	Listwaenite outcrop w/intermittent mariposite, select chip of maripositebearing material	1
2617	North of Anomaly B	Rusty outcrop of quartz-flooded chert, random grab sample	5
2618	North of Anomaly B	Frost-heaved listwaenitic material, sparse mariposite, very limonitic, sparse disseminated pyrite, grab sample	11
2619	Anomaly C	Feldspar/hornblende porphyry dyke, grab sample from outcrop	1
2620	Anomaly C	Hornfelsed andesite(?), grab sample from outcrop	1
2621	Anomaly C	Scree slope float, grab sample of quartz vein material	1
2622	Anomaly E	Ankeritic quartz vein, grab sample from outcrop in ravine - width?	1
2623	Anomaly E	Similar to \#2622 and downhill from it, but has abundant mariposite, trace pyrite	1
2634	Anomaly B	Rusty, shattered chert in outcrop, grab sample	13
2635	Anomaly B	Foliated, siliceous metasediment float in patch of rusty soil w/mariposite along foliations (site of soil sample WDS 18, 230 ppb)	1
2636	South claim boundary	Listwaenite zone w/associated mariposite, chip sampled across 1.0 m	1
2637	South claim boundary	North side \& contiguous to \#2636, talc/ actinolite zone chip sampled across 1.0 m	1
2638	South claim boundary	Next to \#2637, serpentinized peridotite, schistose on margins, chip sampled across 6.2 m	1
2639	South claim boundary	Next to \#2638, talc/actinolite zone, chip sampled across 1.8 m	1

$\begin{gathered} \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	Location	Description	Au
2640	South claim boundary	Next to \#2639, similar to \#2636 but more siliceous, less mariposite, chip sampled across 2.6 m	$\underset{\substack{\text { (ppb) } \\ 1}}{ }$
2641	Anomaly G	Shear zone at mouth of short adit; limonite, jarosite stained, including $3-5 \mathrm{~cm}$ quartz veinlet w/pyrite, arsenopyrite, channel sampled across 0.35 m	5180
2642	Anomaly G	Face of drift, shear zone pinches out to quartz stringer only, wallrock is metasediments, chip channelled across 1.65 m	136
2643	Anomaly E	Shattered chert healed w/pyrite-bearing quartz, grab of float from sides of ravine.	21

CERTIFICATES OF ANALYSIS

 DAWSON GEOLOGICAL

File * $87-2558$
Fage 1

SAMPLEE	$\begin{gathered} \text { MO } \\ \text { PPM } \end{gathered}$	$\underset{\text { POH }}{\text { CU }}$	$\begin{gathered} \text { Pg } \\ P \mathrm{FH} \end{gathered}$	$\begin{gathered} 2 N \\ \mathrm{P} \boldsymbol{2} \end{gathered}$	$\begin{gathered} A 6 \\ P p \% \end{gathered}$	$\begin{gathered} \text { NI } \\ \text { PrK } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{HN} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{FE} \\ \mathrm{I} \end{array}$	$\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$	$\underset{\text { PPK }}{\text { U }}$	$\begin{gathered} \text { AU } \\ \text { FFK } \end{gathered}$	$\begin{gathered} \text { TH } \\ \text { FPM } \end{gathered}$	$\begin{gathered} 5 R \\ P_{P} \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { S! } \\ \text { PPM } \end{gathered}$	$\underset{\text { PPM }}{\text { It }}$	$\underset{P P K}{V}$	$\underset{\mathbf{Z}}{\mathrm{CA}}$	i	$\begin{aligned} & \text { LA } \\ & \text { PPM } \end{aligned}$	$\underset{\text { CPR }}{\text { CR }}$	$\begin{gathered} \text { Hi } \\ \Sigma \end{gathered}$	$\underset{\text { PPM }}{\text { in }}$	$\begin{gathered} \pi \\ 2 \end{gathered}$	PPK	$\underset{Z}{A L}$	$\underset{Z}{K A}$	k 1	PPM	$\begin{aligned} & \text { AUS } \\ & \text { PFI } \end{aligned}$
vipr-1	2	20	7	14	.1	1061	48	203	5.86	$\int 407$		*D	1	11	1	92	2	6	. 29	. 002	2	275	5.44	23	. 01	¢	. 05	. 01	. 02	1	
URR-2	1	121	23	71	. 4	46	25	1541	6.90			HD	2	43	1	3	,	88	5.51	. 164	11	19	1.58	9	. 52	3	1.49	. 02	. 01	1	2
MRR-3	1	121	13	96	. 2	56	22	1318	6.38	7		ND	2	12	1	2	2	151	3.17	. 042	5	98	1.18	62	. 45	3	2.16	. 12	. 19	1	$21 /$
WRR-4	1	58	1	55	. 1	69	16	1156	4.50	16	5	HD	1	810	1	2	2	71	9.36	.053	7	89	4.11	292	. 01	22	. 45	. 02	. 01		$1 /$
STD C	20	60	39	135	7.1	72	23	939	4.04	41		8	59	53	17	16	18	61	. 52	. 085	31	62	. 93	113	. 08	35	1.79	. 07	. 13	12	-

DAWBGN GEDLOGICAL FILE 4 -

5ARPLEA	$\begin{array}{r} \mathrm{HO} \\ \mathrm{PPP} \end{array}$	$\begin{gathered} \mathrm{CJ} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} \text { Pg } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { IK } \\ \text { PPM } \end{array}$	$\begin{aligned} & \text { A } \\ & \text { PPH } \end{aligned}$	$\begin{gathered} \text { HI } \\ \text { PPM } \end{gathered}$	$\begin{gathered} C 0 \\ P H_{i} \end{gathered}$	$\begin{gathered} \mathrm{HK} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \text { FE } \\ Z \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$	$\underset{\text { PP }}{\mathbf{U}}$	$\begin{gathered} \text { AU } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { TH } \\ \text { PR: } \end{array}$	$\begin{gathered} \mathrm{gR} \\ \mathrm{PR} \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { S8 } \\ \text { PPH } \end{gathered}$	$\begin{array}{r} \text { B! } \\ \text { PPM } \end{array}$	P PM	$\begin{gathered} C A \\ Z \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & L A \\ & P M \end{aligned}$	$\begin{gathered} \mathrm{CR} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \mathbf{M H} \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { II } \\ \text { I } \end{gathered}$	$\underset{\mathrm{HPH}}{\mathrm{~B}}$	$\underset{Z}{A L}$	$\begin{gathered} M A \\ y \end{gathered}$	$\underline{1}$	$\begin{gathered} \text { Y } \\ \text { HPM } \end{gathered}$	$\begin{aligned} & \text { NU8 } \\ & \text { PP: } \end{aligned}$
URSL-1 P	1	10	14	135	. 1	254	29	919	6.19	27	¢	ND	5	59	1	2	2	111	1.57	. 074	15	322	4.12	258	. 35	31	2.63	. 04	. 22	1	$37 /$
WRSL-2 ?	1	8	3	14	. 1	15	1	35	. 22	2		ND	13	413	1	2	2	2	30.98	. 014	2	1	. 22	24	. 01	19	. 09	. 01	. 01	1	1
URSL-3 P	1	48	25	109	. 1	120	30	1234	7.59	10		HD	4	40	1	2	2	141	2.12	. 0116	11	154	3.40	36	. 11	32	2.52	. 01	. 11	1	1
Mrst-4 P	1	12	15	137	.1	225	23	760	5.30	41		ND	3	29	1	2	2	96	. 94	. 053	9	254	3.27	59	. 26	11	2.04	. 05	. 21	1	31
URSL-5 (2	42	15	125	. 1	62	10	570	3.29	23		ND	1	46	1	2	2	50	. 52	. 030	7	51	. 14	167	. 11	7	1.34	. 05	. 13	1	1
URSL-6 ${ }^{\text {P }}$	1	47	7	94	. 1	185	11	752	4.14	14	1	ND	3	29	1	2	2	73	. 61	. 045	9	201	2.15	97	. 19	13	1.76	. 05	. 13	1	,
WRSL-7 P	1	25	7	73	. 1	39	13	410	4.58	15	2	ND	2	31	1	2	2	144	. 70	. 050	5	4	. 41	24	. 30	6	1.05	. 01	. 06	1	
MRSL-9 f	2	59	19	107	. 1	173	21	157	4.41	105	5	ND		30	1	2	2	70	. 40	. 059	9	155	2.09	B	. 15	11	1.64	. 04	. 17	1	10
URSL-9 ?	1	77	16	100	. 1	408	43	1072	7.38			ND	3	23	1	2	2	134	1.52	. 054	d	503	5.17	44	. 3 \%	29	2.42	. 03	. 13	1	11
URSL-10 ${ }^{\text {P }}$	1	15	17	105	. 1	501	49	1175	7.05	70	5	ND	3	30	1	3	2	127	1.49	. 056	9	512	5.10	50	. 37	29	2.41	. 02	. 15	1	17
URSL-11\%	1	40	1	92	. 1	159	17	600	4.14	1	15	N0	2	42	1	2	2	84	. 69	.036	9	193	2.22	224	. 21	16	2.07	. 08	. 14	1	$1 /$
HASL-12?	1	40	5	100	. 1	95	20	230	5.35	11	1	ND	2	4	,	2	2	112	1.35	. 066	13	104	1.90	108	. 52	17	2.38	. 07	. 16	1	
\{ HRSL-13 ${ }^{\text {P }}$	2	43	13	111	. 1	213	27	479	4.27	35	5	ND	3	36		4	2	110	. 99	. 064	12	323	3.93	130	. 35	24	2.32	. 03	. 16	1	11
\{	1	42	16	104	. 1	90	19	308	5.23	1	5	ND	3	53	,	2	4	111	1.63	. 058	11	101	1.17	115	. 53	23	2.47	. 06	. 14	1	
URSL-15 P	1	59	15	103	. 1	240	21	710	5.15	10	5	ND	3	41	,	2	2	95	1.11	.066	13	24	3.16	138	. 34	18	2.63	. 03	. 19	1	2
HRSL-16 ${ }^{p}$	1	56	0	101	. 1	244	23	111	5.19	26	6	ND	3	40	1	4	2	15	1.12	. 041	12	273	3.65	141	. 21	25	2.21	. 02	. 16	1	
STD C/AU-S	19	60	42	124	7.3	69	26	454	3.14	(5)	17	-	37	50	16	16	17	58	. 49	. 081	36	57	. 18	174	. 09	3	1.70	. 07	.13	13	51

DAWSON GEOLOGICAL FILE * 87-2538

5AKPLEI	$\begin{gathered} \text { Mo } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { PB } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { IN } \\ \text { PR } \end{gathered}$	A6	$\begin{gathered} \text { HI } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \mathrm{KH} \\ \mathrm{PH} \end{gathered}$	$\begin{gathered} \text { FE } \\ z \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PFM } \end{gathered}$	$\begin{array}{r} \text { V } \end{array}$	$\begin{gathered} \text { AU } \\ \text { PP } \end{gathered}$	$\begin{gathered} \text { TH } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { SR } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PP } \end{gathered}$	$\begin{array}{r} \mathrm{SB} \\ \mathrm{FPM} \end{array}$	$\begin{array}{r} \text { I! } \\ \text { PPK } \end{array}$	$\begin{gathered} V \\ \text { PPM } \end{gathered}$	$\begin{gathered} C A \\ z \end{gathered}$	$\begin{aligned} & \text { P } \\ & \mathbf{Z} \end{aligned}$	LA	$\begin{gathered} \text { CR } \\ \text { PPM } \end{gathered}$	$\begin{gathered} 14 \\ 2 \end{gathered}$	$\underset{\text { FPM }}{\text { BA }}$	$\begin{array}{r} \mathrm{I} \\ 1 \end{array}$	$\underset{\text { PPM }}{8}$	$\underset{2}{A l}$	$\underset{Z}{M A}$	2	PPM	$\begin{aligned} & \text { AUI } \\ & \text { PPS } \end{aligned}$
WISL-1 p	2	53	10	110	. 1	505	35	781	5.89	$\int 462$		ND	2	54	1	78	2	80	. 54	. 062	11	386	4.18	18	. 12	22	2.00	. 04	. 16	1	$180 /$
WSSL-2 ${ }^{\text {f }}$	2	67	9	118	. 1	157	22	809	5.51	10		ND	4	33	1	2		102	1.15	. 092	16	144	2.95	161	. 39	19	2.61	. 03	. 21	1	5
WISL-3 P	1	71	16	103	. 1	431	43	1144	6.53	72	5	NB	2	31	1	4	2	118	1.16	. 060	9	427	4.91	73	. 32	21	2.55	. 04	. 15	1	$11 /$
WJSL-4 9	1	20	2	6	. 1	73	13	375	3.65	15		H0	1	41	1	2	2	103	. 10	. 041	5	134	1.19	33	. 27	θ	1.33	. 12	. 09	1	
MSSL-5 ρ	2	75	14	74	. 1	527	27	49	4.90	31	5	ND	2	50	1	6	2	78	. 94	. 064	7	277	3.15	71	. 18	21	2.02	. 07	. 21	1	
MSSL-S 1	2	58	17	49	. 1	217	22	758	4.95	22	$/ 5$	HD	2	44	1	5	2	12	1.17	. 062	12	257	3.50	139	. 28	25	2.19	. 03	. 11	1	7
STD C	20	62	43	132	7.0	71	27	921	3.92	40	18	8	38	52	17	16	18	40	. 51	. 083	37	61	. 91	179	. 08	34	1.75	. 07	. 13	12	-

DAWBON GEOLOGICAL FILE H7ーZU58

DAWBON GEOLOGICAL FILE \# B7-25S8

DAWSON GEQLOGICAL FILE * 87-2558

SAMPLEI	$\begin{gathered} \text { Ro } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \mathrm{CU} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \text { PR } \\ P P M \end{gathered}$	$\begin{array}{r} \text { IN } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { AG } \\ \text { PPK } \end{gathered}$	$\begin{gathered} K l \\ P P K \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { Kin } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { FE } \\ Z \end{gathered}$	$\begin{gathered} A 5 \\ P P K \end{gathered}$	$\begin{gathered} \text { U } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { AUU } \\ \text { Pre } \end{gathered}$	$\begin{array}{r} \text { IH } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { SR } \\ \text { PPR } \end{gathered}$	$\begin{array}{r} C D \\ \text { PP皿 } \end{array}$	$\begin{array}{r} \text { SI } \\ \text { PPH } \end{array}$	$\begin{gathered} \text { II } \\ \text { PR } \end{gathered}$	$\begin{array}{r} V \\ P R \end{array}$	$\begin{gathered} \text { CA } \\ Z \end{gathered}$	$\begin{aligned} & P \\ & \% \end{aligned}$	LA	$\begin{gathered} \text { ER } \\ \text { PPH } \end{gathered}$	$\begin{array}{cc} \mathrm{KC} \\ \hline & 2 \end{array}$	$\underset{\text { PF }}{\text { It }}$	$\begin{gathered} 11 \\ \mathrm{I} \end{gathered}$	PPM	$\underset{I}{\text { AL }}$	$\begin{gathered} M A \\ Z \end{gathered}$	K	$\underset{P P K}{V}$	AUE PPI
WSS-73	2	54	31	125	. 3	110	11	$70!$	6.43	26	5	ND	1	10	1	2	2	115	. 23	. 094	15	132	1.23	215	. 16	2	3.12	. 01	. 09	2	6
4195-74	1	41	33	154	. 3	140	26	1425	5.70	19.	+ 5	N0	1	19	1	2	3	41	. 32	. 074	16	146	1.66	231	. 18	4	3.26	. 01	. 10	2	4 '
M185-75	3	53	52	140	.3	B!	17	1113	5.59	21.	. 5	No	,	27	1	2	2	45	. 39	. 113	15	122	1.06	319	. 11	5	3.09	. 01	. 13	1	$4{ }^{1}$
M05-76	1	7	8	37	. 1	9	4	124	1.67	3	5	H0	,	13	1	2	2	30	. 19	. 141	,	15	. 20	73	. 10	2	. 17	. 03	. 02	1	1 ,
U18-77	1	74	29	162	. 1	157	31	1113	4.57	14	5	No	1	26	t	2	2	19	. 53	. 081	15	145	1.96	251	. 16	9	2.95	. 03	. 19	1	4,
WDS-79	2	102	27	141	. 2	356	34	417	4.36	13	15	His	3	27	1	2	2	91	. 40	. 029	19	34	4.34	247	. 27	10	3.59	. 01	. 11	2	25
His-79	1	12	19	122	. 2	207	26	694	4.99	12	5	NI	2	37	1	2	2	11	. 57	. 040	22	149	2.02	281	. 14	1	2.48	. 02	. 11	1	2 '
W15-80	5	128	33	193	.1	164	36	1852	5.37	15 -	- 5	MD	5	45	1	2	2	44	1.02	. 075	32	136	1.75	925	. 15	11	2.57	. 02	. 21	1	5
WIS-81	1	41	25	141	.1	31	13	1265	3.27	10	5	HD	1	26	1	2	2	44	. 41	. 076	13	$3!$. 4 !	438	. 10		1.71	. 03	. 10	1	105
WPS-62	1	42	29	302	. 3	92	20	1375	4.54	14	5	HD	1	19	2	2	2	57	. 25	. 143	12	81	. 87	419	. 09	1	2.67	. 02	. 14	1	3/
Wis-93	1	45	24	241	.3	85	21	815	4.67	22	+ 5	ND	2	23	1	2	2	64	. 26	. 113	13	75	. 80	315	. 11	8	2.85	. 01	. 13	1	6
HIS-84	1	45	J0	$21!$. 2	75	20	435	5.85	24	- 5	HD		13	1	2	2	92	. 11	. 086	12	81	. 93	200	. 11	2	3.22	. 01	. 11	2	$54 /$
His-15	1	41	32	234	. 3	50	15	383	4.40	19	T 5	ND		27	1	2	2	70	. 30	. 111	12	63	. 71	293	. 12	2	2.14	. 02	. 12	1	1
M85-16	3	41	33	379	.3	58	21	406	5.12	20	-5	10	2	15	3	2	2	76	. 10	.068	17	51	. 63	315	. 04	1	3.20	. 01	.14	1	(143)
HIDS-87	2	48	25	163	.1	44	12	354	5.40	45		N0	1	14	1	5	2	64	.10	. 055	11	51	. 51	190	. 05	4	2.21	. 01	.11	1	10
WSS-98	1	41	35	310	. 2	126	29	1174	7.70	32	5	H0	2	31	2	2	3	115	. 24	. 114	15	158	1.68	391	. 06	-	3.67	. 02	. 15	1	6
WIS-54	7	129	$3{ }^{1}$	273	. 2	121	29	2479	7.96	33	9	ND	2	28	1	2	2	109	. 41	. 013	30	P5	1.34	219	. 16	4	3.19	. 01	. 29	1	4 '
U15-90	9	133	25	284	. 1	60	21	679	5.99	19	5	NO	2	15	,	3	2	40	. 16	. 096	24	16	. 24	193	. 01	2	1.14	. 01	. 09	1	5
W15-91	1	124	35	123	. 3	107	29	2236	7.15	35	5	ND	2	36	1	2	2	121	1.19	. 043	25	102	2.41	201	. 25	9	3.36	. 02	. 15	1	10%
W\|S-92	3	75	24	275	. 4	51	19	1498	7.04	9	5	N	1	38	1	3	2	44	. 26	.061	16	18	. 38	105	. 02	2	1.45	. 02	. 14	1	45
W15-93	2	73	29	249	.3	40	21	972	6.64	19	5	W0	1	22	1	2	2	51	. 10	. 065	16	34	. 55	151	. 02	2	2.73	. 02	. 12	1	$31 /$
U15-94	2	176	32	1064	. 1	77	24	1103	1.69	11	5	N0	2	33	4	2	2	53	. 19	. 111	31	26	. 15	172	. 02	2	3.23	. 02	. 11	1	91%
UES-95	14	253	29	422	2.3	85	27	339	6.00	46	5	ND	3	110	1	10	2	48	. 04	. 085	25	21	. 34	It4	. 01	4	1.30	. 02	. 13	1	45'
HIS-96	1	65	71	232	. 3	34	17	1615	6.20	05	5	40	1	30	1	2	3	80	. 18	. 080	22	45	. 41	336	. 05	2	3.16	. 02	. 10	1	d $\sqrt{7}$
UBS-97	1	122	47	222	. 1	33	22	925	7.01	41		M ${ }^{\text {d }}$	1	13	1	2	2	72	. 011	. 069	20	37	. 71	216	. 04	2	3.55	. 01	. 11	1	15
W15-9t	2	91	33	453	. 1	91	19	523	4.58	31	5	N0	2	26	1	2	3	79	. 13	. 074	17	4	1.03	240	. 10	3	3.19	. 02	. 09	1	$23 /$
115-99	5	65	37	355	3.7	69	27	1390	6.18	20 -	5	ND	2	31	1	2	2	71	. 22	. 057	21	65	. 99	437	. 17	2	3.31	. 02	. 13	,	6^{\prime}
435-100	5	157	36	6418	. 2	125	29	843	7.10	24	5	ND	3	32	5	2	2	74	. 15	. 077	19	40	. $\%$	239	. 09	2	2.12	. 02	. 12		15'
485-101	3	101	46	713	. 2	104	40	3439	7.30	39	5	N0	3	35	7	2	2	92	. 27	. 101	23	90	1.36	376	. 20	5	4.25	. 02	. 19	1	64^{\prime}
13S-102	1	79	37	378	. 1	81	21	617	6. 11	27	5	ND	2	43	1	2	3	90	. 37	. 067	13	71	1.43	$23!$. 25	2	3.34	. 02	. 14	1	$11 /$
U15-103	3	40	36	554	.1	94	30	2407	6.19	23	5	N0	3	44	4	2	2	74	. 33	. 123	16	74	1.15	312	. 18	5	3.56	. 02	. 15	1	00^{\prime}
WSS-104	1	65	30	431	. 1	65	17	594	5.36	26	5	H0	2	35	3	2	3	6	. 29	. 050	14	69	1.03	227	. 15	2	2.47	. 02	. 13	1	26 /
HST-105	1	40	26	206	. 3	57	15	517	5.02	21	5	N0	1	17	1	2	3	91	. 26	. 072	12	77	1.11	114	. 33	3	3.02	. 02	. 07	1	12'
M95-104	2	64	34	270	. 4	76	20	2021	4.14	351	5	ND	1	24	1	2	2	4	. 21	. 057	16	61	. 44	519	. 07	3	3.23	. 02	. 10	1	$4{ }^{\prime}$
US-107	2	43	24	162	. 1	46	17	587	4.70	251		NO	1	26	1	2	2	64	. 31	. 047	13	46	. 72	310	. 09	6	2.39	. 01	. 09	1	3
15-108	3	4	36	142	. 1	136	23	7015	5.02	31	5	*	2	22	1	2	2	78	. 51	. 073	13	144	1.9	407	. 12	3	3.33	. 02	. 11	1	71
STO C/Al-S	21	58	40	130	7.2	65	28	939	4.12	(17)	19	7	33	41	17	16	22	54	. 49	. 089	30	54	. 90	176	. 08	31	1.35	. 07	. 13	13	(4)

DAWSON GEOLOGICAL FILE \# B7-2S5B

DAWGON GEOLOGICAL FILE* 87-25SB

SAPPLE
WBS-145
U95-146
H\|SS-147
UPS-148
WIS-149
WILS-150
U/SS-151
WBS-152
UBS-153
WJS-154
M85-155
U15-154
U15-157
W9S-151
HSS-15\%
W15-160
WPS-161
413-162
4 ES -163
MOS-164
STD C/AU-S

M0	CU	P1	2H1	A5	W!	co	m	FE
PFI	PPM	PP\%	PPM	Pr月	PPH	PPH	PP\%	2
1	72	22	174	. 2	249	24	516	5.47
1	75	22	251	. 2	283	24	557	5.55
7	202	43	260	1.2	363	38	1075	7.76
1	139	22	159	. 3	219	35	1056	7.87
1	101	17	135	. 3	214	26	478	6.07
1	127	17	229	. 4	216	37	1090	4.23
1	123	25	160	. 2	77	20	998	4.14
1	134	20	164	. 4	458	49	1254	6.79
1	114	25	148	.4	441	32	723	4.70
1	62	13	114	.1	204	20	310	4.73
1	66	12	134	. 1	256	20	410	4.20
1	71	21	143	. 2	241	21	474	5.34
1	57	13	201	. 1	134	19	371	4.17
1	48	12	177	. 2	130	11	409	4.01
1	51	10	99	.1	162	11	377	4.29
1	82	17	172	. 2	82	17	76	4.91
1	11	19	297	. 3	120	25	885	4.12
1	55	20	271	. 2	102	24	426	4.9\%
3	198	11	535	. 3	15	31	2100	5.41
1	75	12	450	. 4	115	23	1068	4.68
20	12	10	132	6.8	69	27	984	4.01

101	. 74	. 060	11	307	3.52	15
101	. 72	. 044	12	241	2.57	131
73	1.03	. 043	33	311	2.70	122
132	1.25	. 034	28	221	3.32	50
$t 5$. 69	. 035	20	218	1.41	91
109	. 93	. 134	11	200	2.30	139
13	1.06	. 059	21	49	1.24	172
116	. 80	. 047	22	507	4.19	100
127	. 6	. 026	18	592	5.90	50
82	. 35	.021	11	216	2.23	100
78	. 43	. 032	10	220	2.47	91
109	. 59	. 041	11	243	2.42	149
6	. 31	. 074	1	107	1.27	13
61	. 33	. 04	7	106	1.26	114
80	. 39	. 025	-	185	2.04	If
4	. 43	. 122	16	75	1.07	16.
75	. 40	. 044	10	44	. 81	147
16	. 29	. 041	9	4	. 94	$1{ }^{15}$
61	1.74	. 114	10	49	. 16	310
72	. 68	.141	15	71	. 91	205
60	. 51	. 090	36	58	. 92	182

.33
.01
.37
.13
17
.15
.25
.32
.13
.26
.27
.11
.15
.20
.12
.11
.17
.09
.14

4	3.31
7	3.51
7	3.10
13	3.87
12	2.17
7	3.11
11	2.16
7	3.69
4	3.44
5	2.45
6	2.61
3	3.55
2	2.20
3	2.47
5	2.31
2	2.06
3	2.76
3	3.01
6	2.15
4	2.67
2	1.77

$$
10
$$

dawson gedlogical file * 87-255b

SAMFLEt	H0	Cl	18	IN	45	MI	co	HM	FE	AS	U	AU	IH	SR	CD	S!	P1	Y	CA	P	LA	$C R$	15	PA PPM	II	$\begin{gathered} \mathrm{B} \\ \hline 1 \end{gathered}$	AL	MA	K	PPM	$\begin{aligned} & \text { AUI } \\ & \text { PMJ } \end{aligned}$
	PPh	PPM	Prn	PPM	FP\%	Pph	PPh	PPh	2	PP/	PPM	PPM	PP\%	PPK	PPM	PPM	PPR	PPM	1	2	PPA	PM	2	PFM	y	PPM	q	2	z		
WRS-178	1	$1!$	17	124	.1	139	29	1443	6.57	22	5	HD	2	29	1	2	2	109	1.20	. 077	13	138	3.50	54	. 43	33	2.99	. 01	. 14	1	13^{\prime}
MRS-179	1	116	37	153	. 2	60	27	1226	7.01	42	- 5	ND	3	23	1	2	2	107	1.43	. 085	15	56	1.15	112	. 35	11	2.87	. 02	. 21	1	21.
WRS-110	3	84	50	256	.1	103	24	1319	6.02	63	5	ND	1	16	2	3	2	86	. 41	. 091	14	75	1.69	118	. 10	7	2.09	. 02	. 24	1	16
whs-t01	2	94	39	173	. 3	171	36	2907	5.94	109	5	HD	1	35	1	5	2	44	. 31	. 145	19	149	. 97	276	. 03	6	2.04	. 01	. 17	1	10
URS-1/2	3	38	13	23	. 1	1564	57	429	4.40	10	5	ND	1	4	1	7	2	27	. 20	. 005	2	6902	21.77	15	. 02	62	1.07	. 01	. 03	1	16
MRS-183	4	99	23	136	. 4	838	50	1320	6.67	269	5	ND	2	58	1	31	2	53	. 35	. 071	16	325	5.98	129	. 02	29	1.31	. 01	. 10	2	90%
WRS-184	2	78	20	101	.1	531	3 !	2633	5.38	63	. 5	ND	1	30	1	5	2	41	. 43	. 015	14	207	4.30	119	. 03	22	1.34	. 01	.13	1	13
Mrs-105	1	56	12	81	. 1	772	44	1133	5.56	59	5	ND	1	18	1	12	2	56	. 31	. 039	8	449	8.15	61	. 11	31	1.50	. 01	. 08	1	$3{ }^{\prime}$
URS-196	1	54	15	142	. 1	135	24	559	5.79	27	5	ND	1	15	1	4	3	14	. 31	. 073	11	121	1.50	73	. 17	9	2.74	. 01	. 10	1	6
URS-107	1	9	11	29	.1	12	4	138	1.51	4	5	no	1	14	1	2	2	31	. 17	. 054	6	7	. 23	21	. 09	4	1.06	. 05	. 03	1	$1 /$
WRS-188	1	11	11	30	. 1	9	2	130	1.20	2	5	ND	1	17	1	2	2	27	. 21	. 049	5	2	. 20	44	. 09	3	. 72	. 04	. 07	1	1
M65-189	1	43	20	100	. 1	152	20	B15	4.56	${ }^{6}$	T 5	HD	1	15	1	2	2	65	. 19	. 059	9	141	1.51	98	. 07	1	1.89	. 02	. 04	1	31
URS-140	1	111	20	146	. 1	514	49	979	6.91	45	$\underset{5}{ }$	*D	2	25	1	8	2	116	. 46	. 040	10	313	5.30	147	. 32	16	3.64	. 04	. 23	2	9
UR5-191	1	89	26	127	. 1	451	55	2544	5.84	45	6	H0	1	34	1	10	2	74	. 17	.074	10	294	2.60	138	. 15	14	2.24	. 01	. 14	1	$3!$
URS-192	1	12	18	120	.1	170	32	1886	5.72	38	5	ND	1	21	1	6	2	11	. 57	. 081	11	134	1.87	121	. 13	1	2.45	. 02	. 16	1	11
URS-193	1	95	25	140	. 1	117	28	733	4.57	35	5	ND	2	14	1	2	2	113	. 43	. 070	11	104	1.72	105	. 31	4	3.75	. 01	. 08	1	51
URS-194	1	150	23	134	.1	120	32	1302	7.12	37	7	NB	2	19	1	4	2	112	. 79	. 046	16	72	2.04	71	. 29	8	2.45	. 01	. 11	1	12
Hf5-195	1	45	21	102	. 1	49	17	973	5.41	25	- 5	HD	1	12	1		2	104	. 21	. 066	11	75	. 95	14	. 26	4	2.98	. 02	. 08	1	$3 \times$
URS-19\%	1	33	13	时	.1	30	11	547	4.19	18	- 5	N0	1	11	1	2	2	07	. 26	. 082	4	42	. 59	44	. 19	1	1.71	. 02	. 07	1	3
URS-197	3	57	20	76	. 1	27	14	775	3.51	19	15	ND	1	12	1	2	2	67	. 22	. 054	9	43	. 43	62	. 21	7	2.62	. 03	. 07	1	3
URS-198	1	11	17	102	. 1	257	41	1169	7.01	12	- 5	Ni	1	22	1	4	2	97	1.03	. 054	$!$	321	4.92	51	. 41	11	3.87	. 02	. 09	1	2,
WRS-199	1	8	20	136	. 1	78	26	1059	6.72	29	-5	HD	1	17	1	2	2	112	. 57	. 075	10	92	1.54	92	. 30	4	3.35	. 01	. 12	2	4^{\prime}
URS-200	1	58	12	104	. 1	13	17	1083	5.16	30	5	ND	1	15	1	2	2	13	. 76	. 0882	9	76	1.17	79	. 17	5	2.31	. 02	. 11	,	$1 /$
Mns-201	1	05	31	164	. 2	121	34	1567	7.51	37	5	ND	2	23	1	4	2	115	. 12	. 042	13	130	3.41	79	. 27	1	3.46	. 02	. 32	+	17
URS-202	1	140	35	164	. 3	109	41	1553	7.05	69	5	ND	2	24	1	17	2	112	. 0	. 064	10	12\%	2.91	46	. 34	7	3.41	. 02	. 64	5	*
URS-203	1	169	19	274	. 4	90	41	1499	8.98	76	1	H0	2	26	1	17	4	120	. 35	. 070	6	122	2.60	108	. 43	6	4.27	. 03	. 07	4	45^{\prime}
URS-204	1	205	34	289	.4	85	71	1974	11.99	240	5	ND	2	44	2	312	16	124	. 26	. 082	7	91	1.96	92	. 34	2	4.01	. 05	. 63	5	178
Mirs-205	2	166	37	263	. 3	143	34	695	6.52	341	5	ND	2	33	1	16	6	75	. 16	. 049	14	126	1.84	173	. 17	4	3.33	. 02	. 25	5	35%
URS-206	3	80	36	194	. 1	19	24	544	7.22	(311)	1	ND	2	23	1	32	5	9	. 12	. 051	15	47	1.25	129	. 29	5	3.27	. 02	. 16	3	4^{4}
M H -207	1	75	16	110	. 2	94	27	1212	6.49	30	5	ND	3	23	1	5	2	4	1.04	. 084	12	102	2.76	51	. 41	2	2.4	. 01	. 10	1	
URS-208	1	122	20	155	. 1	173	34	1396	7.35	23	5	ND	3	28	,	4	2	109	. 13	. 075	16	t11	3.50	58	. 31	24	3.40	. 01	. 11	2	$12 /$
WRS-209	13	143	24	196	. 3	171	36	1914	7.01	75	15	No	3	44	1	16	3	54	. 48	. 077	27	112	1.48	192	. 07	10	3.51	. 01	. 11	1	61
URS-210	12	185	28	215	-1	229	42	3096	7.21	116	7	10	3	74	1	29	3	43	. 32	. 084	31	103	1.05	214	. 02	$1!$	1.20	. 01	. 11	1	60
MRS-211	4	84	20	119	. 2	751	52	1365	6.20	69	- 5	Ni	2	28	1	49	2	42	. 19	. 067	11	361	4.34	119	. 02	11	1.10	. 01	. 10	1	41
URS-212	\$	30	6	38	. 1	1476	59	628	4.21	10	/5	H0	1	4	1	6	2	20	. 22	. 012	2	6462	20.20	19	. 01	22	. 62	. 01	. 03	1	
URS-213	2	71	11	122	. 1	257	34	1445	5.23	3.		N	1	18	1	15	3	60	. 14	.055	12	233	2.22	177	. 06	12	2.04	. 01	. 11	1	
StD C/Au-S	20	56	31	124	4.1)	65	26	147	3.76	36	15	4	31	44	16	17	22	49	. 45	. 018	35	53	. 85	161	. 08	J2	1.75	. 06	. 13	11	09

DAWBON GEOLOGICAL FILE ET-2USB

SAMPLEI	180	cu	P9	In	M	HI	CO	H ${ }^{\text {H }}$	FE	AS	U	A	TH	SR	CD	51	II	V	CA	p	L. ${ }_{\text {a }}$	CR	146	B	II	-	AL	MA	x	\geqslant	Alt
	PPM	PP\%	PPM	PPK	PPM	PP楽	PFH	PPM	2	PPM	Pr	PP\%	F\%M	PP\%	PPM	PPR	PPK	PPK	1	2	PFM	PPK	1	PPM	z	PPM	2	2	z	PPR	PfI
WPS-250	1	60	21	120	. 2	97	21	1025	5.29	19	5	ND	1	15	1	2	2	BO	. 31	. 043	11	130	$1.3{ }^{\circ}$	191	. 16	8	2.67	. 01	. 09	1	5
WRS-251	1	31	$1!$	86	. 2	57	12	506	3.07	14	5	HD	1	14	1	2	2	54	. 21	. 062	9	90	. 88	116	. 11	7	1.74	. 02	. 06	1	$1 /$
WRS-252	1	35	19	120	. 4	5	$1{ }^{*}$	409	6.45	30	1	ND	1	20	1	2	2	126	. 40	. 053	9	78	1.09	139	. 31	3	2.95	. 02	. 07	1	16
WRS-253	1	32	16	127	. 5	46	13	313	5.74	20	7	HD	1	19	1	2	2	118	. 47	. 061	10	71	. 72	$12!$. 36	1	2.71	. 02	. 06	1	1
URS-254	1	41	10	255	. 5	41	27	162	5.51	11	5	HD	2	27	1	2	2	101	. 62	. 074	14	77	. 85	213	. 32	10	3.23	. 02	. 09	1	
HRS-255	1	43	19	219	. 2	73	24	504	6.31	25	15	ND	2	22	1	2	2	117	. 66	. 150	9	92	1.15	175	. 31	5	3.55	. 02	. 09	1	2 \%
URS-256	1	53	7	165	. 2	53	27	1501	6.45	17	7	NO	3	35	1	2	3	102	1.09	. 153	22	64	1.16	14°	. 30	12	3.10	. 03	. 09	1	13 '
URS-257	1	30	14	146	. 2	42	11	431	5.94	24	5	ND	1	10	1	2	2	117	. 51	. 059	12	89	1.04	178	. 38	5	2.97	. 02	. 07	1	11
4R5-250	1	34	12	180	4	112	20	374	6.16	22	-	ND	2	22	1	2	2	123	. 53	. 044	11	143	1.56	171	.41	1	3.11	. 02	. 08	1	36
HAS-259	1	37	20	120	. 4	74	17	365	5.47	63	5	ND	1	11	1	3	2	109	.6!	. 073	9	49	1.15	146	. 38	7	2.95	. 02	. 07	1	1
WRS-260	1	59	13	143	. 3	127	27	911	4.15	27	5	N0	2	25		3	2	124	. 56	. 058	12	$16!$	2.27	143	. 31	7	3.49	. 01	. 10	1	31
WRS-261	1	41	9	191	. 2	84	25	46	5.11	16	P:	ND	2	19	1	2	2	99	. 55	.128	9	94	1.17	170	. 31	7	3.23	. 02	. 10	1	1
URS-262	1	64	3	211	.1	73	21	702	4.57	18	/ 5	ND	2	30	,	2	2	98	. 60	. 150	13	1	1.11	175	. 32	1	3.59	. 01	. 15	1	1'
MRS-263	1	54	14	134	.1	96	22	470	5.14	18	8	HD	1	20	1	2	2	112	. 60	. 050	10	111	1.62	178	. 41	1	3.50	. 02	. 11	1	1
URS-264	t	61	9	133	. 1	60	20	34	5.39	14	5	ND	3	15	1	2	2	85	. 20	.063	8	71	. 81	143	. 14	\bullet	2.57	. 01	. 04	1	$1 /$
URS-265	1	67	12	133	. 1	47	21	412	5.36	20	$\checkmark 5$	H0	1	14	1	2	2	79	. 24	.053	9	79	1.09	181	. 15	11	2.57	. 01	. 04	1	$1 /$
URS-266	3	80	14	130	. 1	49	21	342	5.14	17	+ 5	ND	1	15	1	2	3	83	. 16	. 050	10	73	. 91	167	. 14	10	2.59	. 01	. 09	1	16
MRS-267	3	9	13	192	. 1	102	22	351	5.74	25	$\checkmark 5$	ND	1	18	1	2	2	89	. 21	. 056	10	99	1.17	221	. 17	11	2.9	. 01	. 11	1	$3 /$
MRS-218	3	49	10	180	. 3	44	16	329	5.13	22	$\checkmark 5$	HD	2	20	1	2	3	07	. 22	.074	9	46	. 74	132	. 17	7	2.81	. 02	. 10	1	$1 /$
URS-269	4	48	19	163	.1	48	19	434	4.77	12	, 5	HD	1	23	1	3	5	83	. 24	. 051	11	55	. 71	179	. 17	5	2.10	. 02	. 08	1	$3 /$
MRS-270	3	45	16	146	. 1	161	23	316	5.63	21	+ 6	MD	2	17	1	2	2	10	. 25	.051	18	196	2.03	177	.13	8	2.70	. 02	.11	1	16
His-27!	2	81	15	210	. 1	117	25	694	5.50	22	- 5	NO	2	23	1	2	2	85	. 32	. 063	13	120	1.39	254	. 20	E	2.15	. 02	. 11	2	4\%
MRS-272	4	76	17	188	. 2	193	32	2197	5.98	19	5	N0	3	26	1	2	2	91	. 62	. 107	21	204	2.10	343	. 34	\dagger	3.47	. 02	. 12	1	1
URS-27S	1	49	18	169	. 2	214	21	430	5.47	19	5	MD	2	19	1	2	2	96	. 40	. 075	12	246	2.56	232	. 38	11	3.20	. 02	. 12	2	$1 /$
MRS-274	1	74	14	117	. 2	235	21	776	5.78	11	/ 5	HD	2	76	1	2	2	91	1.27	. 056	17	324	3.31	255	. 21	13	3.08	. 02	. 10	1	$6 /$
WRS-275	1	85	10	116	. 1	297	32	034	6.51	30	-	ND	3	25	1	4	2	95	. 57	. 028	15	299	3.46	162	. 29	6	3.27	. 02	. 13	2	12 '
\%ns-276	2	50	10	124	. 1	213	27	426	6.79	29	5	NID	2	23	1	3	2	10%	. 48	. 035	11	229	2.40	177	. 28	10	3.37	. 02	. 09	2	$1 /$
HRS-277	2	35	E	112	.1	85	13	255	4.62	17	C 5	HD	2	14	1	3	2	69	. 20	.013	7	127	1.15	104	. 16	4	2.27	. 02	. 06	1	31
UfS-271	2	60	17	140	.1	198	29	403	6.13	27	5	H0	1	26	1	6	2	82	. 48	. 062	13	237	2.90	238	. 21	13	2.71	. 02	. 11	1	5%
Wht-279	1	45	17	138	. 1	138	23	499	5.59	23	5	NO	1	20	1	2	2	84	.32	. 057	11	164	1.51	166	. 14	6	2.65	. 01	. 08	1	$1^{\prime \prime}$
URS-280	2	42	18	178	. 2	101	25	704	6.28	27	5	KD	2	27	1	2	3	45	. 45	. 154	12	143	1.42	229	. 16	10	2.73	. 02	. 15	1	41
WhS-202	2	75	16	129	. 2	262	32	144	6.06	32	\%	ND	2	24	1	4	2	67	. 42	. 041	15	212	3.69	244	. 13	13	2.82	. 01	. 10	1	35%
WRS-213	1	29	17	178	. 1	56	18	705	3.80	15	5	ND	1	16	1	2	2	56	. 19	. 152	8	58	. 61	204	. 11	6	2.05	. 02	.68	1	$1 /$
URS-214	2	41	13	231	. 2	73	18	1002	5.05	25	5	NO	1	17	1	3	2	51	. 19	. 147	14	54	. 59	420	. 03	9	2.27	. 01	. 16	1	$7 \prime$
URS-215	1	49	11	206	. 3	85	22	677	5.01	22	6	ND	2	17	1	2	4	72	. 10	. 150	16	80	. 66	440	. 05	1	2.58	. 01	. 17	1	14
URS-216	3	62	10	171	. 4	25	13	600	5.18	14	$1 / 5$	KD	1	14	1	3	2	51	. 18	. 037	16	18	. 30	450	. 01	9	1.11	. 02	. 01	1	1
SID C/RN-S	20	58	41	127	7.3	67	30	957	4.18	d	11	7	34	50	19	16	21	56	. 50	.018	3	58	. 92	18J	. 08	35	1.71	. 07	. 14	12	(1)

DAWSON GEOLOGICAL FILE 日フー2558

DAWSOIN GEOLOG1CAL＋1LL \＃8／ー2ちこル
Fane 1 ：

DAWBON GEOLOGICAL FILE \# $87-2558$

GEDCHEMIEAL ICF AMALYBIS

DATE RECEIVED：JLY 14 1947 DATE REPORT MAILED：Quly $18 / 87$ ABEAYER．． $4 /$ Q／fM．．．DEAN TOYE，CERTIFIED B．C．ABEAYER
DAWBON GEDLOGICAL PROJECT－367 File B7－2399 Fage 1

SAMMES	$\begin{gathered} \text { Mo } \\ \text { PM } \end{gathered}$	$\begin{gathered} C N \\ P M A \end{gathered}$	PI	$\begin{gathered} \text { IM } \\ \text { PH } \end{gathered}$	$\begin{gathered} \text { M } \\ \text { PM } \end{gathered}$	$\begin{gathered} \mathrm{Ml} \\ \mathrm{P} \boldsymbol{1} \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { N } \\ \text { PH } \end{gathered}$	$\begin{gathered} \text { FE } \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \text { Af } \\ \text { PPR } \end{gathered}$	$\underset{\text { PP\% }}{\substack{\text { N }}}$	$\begin{gathered} \mathrm{AN} \\ \mathrm{PRH} \end{gathered}$	$\begin{gathered} \text { TH } \\ \text { PF } \end{gathered}$	$\begin{gathered} \text { SR } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { S! } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { !! } \\ \text { PPn } \end{gathered}$	$\begin{array}{r} \mathrm{P} \\ \hline \end{array}$	$\begin{gathered} c a \\ z \end{gathered}$	z	$\begin{aligned} & \text { LA } \\ & \text { Prin } \end{aligned}$	$\begin{gathered} \text { CR } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { 脂 } \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \text { Bn } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { II } \\ \mathbf{2} \end{array}$	$\begin{array}{r} B \\ \text { PP品 } \end{array}$	$\begin{gathered} \text { AL } \\ \text { I } \end{gathered}$	$\begin{gathered} u_{A} \\ \mathbf{z} \end{gathered}$	$\begin{aligned} & k \\ & \mathbf{k} \end{aligned}$	$\underset{\text { PM }}{(1)}$	$\begin{aligned} & \text { AHI } \\ & \text { PHI } \end{aligned}$
$4 \times 5-1$	1	59	45	167	． 2	103	19	451	4.95	134	5	01	2	40	1	6	2	4	． 46	． 049	24	73	． 42	238	． 11	11	1.90	.03	． 19	1	65
uss－2	6	161	15	145	.1	107	20	450	5.09	07	5	ND	3	30	1	13	2	59	． 47	． 052	21	4	． 73	212	． 14	－	1.4	． 02	． 23	1	31
M65－3	1	74	7	75	.1	89	16	181	3.51	43		\cdots	2	39	1	3	2	52	． 72	． 041	15	62	． 10	116	． 15	14	1.40	． 04	． 19	1	33
U的的－4	2	170	13	201	.1	132	35	1622	4.45	75	5	W	3	54	1	11	2	71	． 92	． 145	20	50	1.07	373	． 12	10	2.22	． 06	． 25	1	105
nus－5	1	115	12	102	.1	130	29	749	4.12	46	5	WJ	2	41	1	3	2	ES	． 76	． 044	17	95	1.35	185	． 19	12	2.49	.13	． 41	1	5
UPSS－4	1	74	14	101	． 1	230	27	504	4.21	29	5	20	2	37	1	2	2	72	． 75	． 058	11	239	2.53	171	． 29	13	3.45	． 08	． 27	1	7
	1	48	15	152	.1	139	22	40	3.13	4	5	NH	1	38	1	3	2	55	． 52	．058	18	132	1.19	14	． 21	7	2．25	． 04	． 20	1	6
His－9	1	8	6	59	.1	11	4	204	1.20	2	5	N0	1	23	1	2	2	26	． 22	． 131	5	7	． 19	12	． 09	4	． 72	． 04	． 07	1	1
Musiog	1	57		130	.1	167	21	411	3.61	23	5	00	2	30	1	3	2	65	． 51	． 085	11	143	1.57	157	． 26	32	2.80	． 06	． 22	1	270
4ts－10	1	50	4	115	． 1	150	11	301	3.58	28	5	N0	2	27	1	4	2	66	． 50	． 027	10	135	1.55	163	． 27	17	2.33	． 04	． 24	1	41
MS－11	1	52	4	70	.1	154	18	578	3.35	24	5	W0	2	21	1	2	2	61	． 31	． 030	1	147	1.45	66	． 16	11	1.73	． 03	． 15	，	24
Licc－12	1	45	9	147	． 1	137	17	448	3.49	31	5	ND	2	20	1	2	2	39	． 34	． 038	10	97	1.05	165	． 19	7	2.21	． 02	． 16	2	11
4．4－13	1	4	1	142	． 1	142	11	344	3.74	23	5	10	2	22	1	2	2	6	.40	． 037	11	126	1.31	156	． 22	12	2.32	． 03	.13	1	5
mis－14	1	4	12	121	.1	235	25	725	4.63	23	5	40	2.	36	1	2	2	75	． 50	． 044	12	239	2.35	15！	． 17	11	2.54	． 04	． 32	1	1
－ \mathbf{H}_{5}^{5-15}	1	77	14	10	.1	263	27	702	5.37	26	5	0	2	27	1	2	2	8	． 42	． 050	16	274	2.57	124	． 16	13	3.14	． 02	． 12	1	21
MRS－16	4	126	24	179	． 4	357	42	1245	7．25	74	5	\％	3	50	2	4	2	． 2	1.57	． 071	22	247	4.03	49	． 11	19	3.56	． 01	． 11		32
65－17	1	76	7	140	.1	174	26	116	4.33	19	5	10	2	57	1	3	3	47	． 44	． 077	21	135	1.33	126	． 17	14	2.13	． 04	． 16	，	1
4－180	1	59	5	118	． 1	190	20	471	4.44	15	5	\％ 10	2	21	，	2	2	76	． 57	．031	10	190	1.94	94	． 32	20	2.74	． 02	． 0	1	2
485－19	1	107	12	136	． 1	141	24	635	4．4．	14	5	0	3	50	1	2	2	118	． 11	．033	11	143	1.57	135	． 25	24	3.26	． 03	.12	1	4
4．5－20	1	75	11	155	． 3	117	27	712	6．3＊	17	5	to	2	37	1	2	2	101	． 90	． 044	13	104	1.77	85	． 36	19	3.71	． 02	.13	1	15
MS5－21	1	0	14	203	． 1	130	31	594	7.13	16	5	40	3	39		2	2	122	t．04	． 120	17	11	1.38	65	． 40	24	3.60	． 02	． 14	1	8
4NS－22	4	139	21	246	． 1	341	42	1218	5.95	17	5	0	5	50	2	3	2	90	1．10	． 062	34	276	2.66	4	． 27	19	3．25	． 01	． 11	1	1
Mis－23	5	174	25	163	． 5	143	35	1382	7.31	14	5	10	4	47		2	2	92	． 94	．02t	26	118	1.64	270	． 18	22	2．71	． 02	． 13	，	13
Whr－24	1	139	18	14	． 1	229	47	1352	7.70	16	5	80	2	50	1	2	2	105	1.36	． 065	26	14	2，46	90	． 41	12	3.35	． 01	． 15	1	1
－ini－25	1	97	5	13	.1	217	30	717	5.45	12	5	10	2	37	1	2	2	91	1.05	． 037	15	170	1.97	es	． 37	21	3.97	． 02	． 10	1	，
Mas－26	3	107	48	242	． 2	592	55	1390	4.03	22	5	W0	4	72	1	2	2	151	1.07	．051	22	53	5.75	63	． 52	26	4.94	． 03	． 09	1	7
STD C／Nu－5	18	57	40	129	7.3	48	29	96	3.84	40	21	1	35	49	17	14	21	55	． 45	．089	39	54	． 14	146	． 08	39	1.77	． 07	． 14	13	52
WRS－27	1	102	11	134	． 1	130	31	1392	6.79	51	7	＊ 0	3	34	1	4	3	45	． 44	．083	15	107	2.03	136	． 24	14	2.51	． 02	． 25	1	21
Mins－2t	1	115	9	125	． 1	113	39	2316	4.45	28	5	W0	3	19	I	8	2	129	1.15	．083	14	90	2.90	85	． 40	23	3.26	． 01	． 10	1	24
1－5－29	1	60	17	124	． 1	69	24	1640	4.21	41	5	N0	1	21	1	4	2	107	． 50	．0\％	10	91	1.36	107	． 17	11	3.13	． 01	． 09	1	2
URS－30	1	90	14	150	． 1	110	27	1191	7.10	32	5	MD	1	13	1	3	2	104	． 43	． 090	11	105	1.97	82	． 20	13	3.10	． 01	． 04	，	6
URS－51	1	135	22	125	． 1	197	34	173	7.48	35	7	10	2	19	1	2	2	116	． 72	． 075	11	145	J． 01	47	． 34	22	3.37	． 01	． 14	1	4
un5－32	1	4	1	109	． 1	139	26	1240	6.74	20	5	KD	3	17	1	3	2	90	． 65	． 091	11	46	2.03	79	． 31	24	2.39	． 01	． 12	1	7
LRES－33	1	93	17	127	.1	236	35	1469	6.75	25	5	N0	2	21	1	2	2	49	． 71	． 105	19	123	2.11	134	． 25	28	2.37	． 01	． 16	1	4
Hffe－34	1	72	9	97	． 1	127	23	1326	4．35	23	5	no	2	11	1	2	2	72	． 46	． 0.4	11	89	1.93	70	． 22	20	1.06	． 03	． 10	，	14
WRS－35	1	111	7	121	． 1	126	37	2201	7.78	29	5	ND	2	27	1	2	2	126	1.11	． 082	16	105	2.61	73	． 42	26	3.23	． 01	． 16	1	5
WRS－36	1	10.6	15	148	． 1	12	32	3170	7.22	47	7	ND	1	20	1	2	2	124	． 46	． 078	16	81	1.53	121	． 26	17	3.21	． 01	． 14	1	7

gatrles	$\begin{aligned} & \text { MN } \\ & \text { PM } \end{aligned}$	$\begin{gathered} \text { cu } \\ \text { PP菏 } \end{gathered}$	PI PM	$\begin{gathered} \text { IN } \\ \text { PPM } \end{gathered}$	$\begin{gathered} A 6 \\ P P M \end{gathered}$	$\begin{gathered} \text { Ml } \\ \text { PFM } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$	$\underset{\text { PPR }}{\mathrm{HN}}$	$\begin{gathered} \text { FE } \\ Z \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PPR } \end{gathered}$	$\underset{P P n}{U}$	$\begin{gathered} \text { AU } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { IH } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { gK } \\ \text { P阴 } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PFR } \end{gathered}$	$\begin{gathered} \text { sil } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { II } \\ \text { PP舟 } \end{gathered}$	$\begin{gathered} V \\ P P h \end{gathered}$	$\begin{gathered} \text { CA } \\ i \end{gathered}$	\%	LA	$\begin{gathered} \text { Ck } \\ \text { Pph } \end{gathered}$	$\begin{gathered} 15 \\ 2 \end{gathered}$	$\begin{aligned} & \text { If } \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} \text { II } \\ t \end{array}$	$\underset{r}{\mathbf{B}}$	$\begin{gathered} \text { AL } \\ \mathbf{I} \end{gathered}$	$\begin{aligned} & M \\ & 2 \end{aligned}$	K I	P	$\begin{aligned} & \text { Nol } \\ & \text { Pft } \end{aligned}$
W10－37	6	194	130	341	.1	176	41	246\％	7.59	227	5	H0	3	38	3	7	3	77	， 34	． 101	21	41	1.32	301	． 13	5	1.77	． 01	． 14	1	248
4RS－39	2	42	30	139	． 1	248	42	2157	6，35	92	5	NO	1	25	1	2	3	90	． 3	． 119	21	265	3.25	105	． 07	11	3.13	． 01	． 14	1	15
WRS－39	2	30	17	88	． 1	32	17	1442	2.45	30	5	ND	1	25	1	2	3	47	． 31	． 108	1	32	． 40	105	． 05	1	1.13	． 03	． 10	1	1
wRS－40	6	176	48	407	． 1	107	37	2398	7.75	\＄20	5	ND	2	25	3	7	2	76	． 49	． 121	29	54	1.29	26	． 12	3	1.97	． 01	． 29	1	21
Hes－41	2	158	16	169	.1	11	40	3511	1.25	107	5	MD	3	34	1	2	3	106	． 12	． 047	22	55	1.93	142	． 25	65	2.24	． 01	.19	1	36
WRS－42	1	81	12	116	． 1	111	32	142\％	4.75	37	5	HD	2	26	1	2	2	108	． 97	． 100	13	115	2.85	12	． 45	24	2.55	． 01	． 10	1	2
Hf5－43	2	124	20	146	． 1	40	37	33 DI	7.95	58	5	KD	2	32	1	2	3	118	． 12	． 100	17	70	2.51	127	． 37	37	2.78	． 02	． 17	1	3
N65－44	5	134	12	187	． 1	276	41	1958	7.41	97	5	kD	3	32	1	1	3	11	． 41	．091	23	290	3.37	111	． 20	14	2.44	． 01	． 15	1	4
WkS－45	－	177	19	213	． 1	1.9	42	3637	7.70	67	5	N0	3	57	1	19	6	5	． 62	． 111	J1	126	1.55	223	． 04	11	1.51	． 01	． 19	1	27
WhS－4	3	105	7	100	． 1	43	55	1119	4.10	48	5	kJ	1	19	1	11	2	59	． 34	． 065	11	390	1.11	39	． 07	26	1.95	． 01	． 12	1	13
W6－47	1	73	7	65	． 1	873	60	912	4.72	13	5	ND	2	1	1	6	2	40	．6）	． 064	8	532	10.90	76	． 20	42	2.35	． 03	． 09	1	1
445－48	3	71	9	124	． 2	271	37	1554	5.45	84	5	$k 0$	1	26	1	36	3	61	． 14	． 068	12	278	1.99	216	． 05	24	1．83	． 01	． 13	1	41
H65－19	1	86	11	138	． 2	207	44	1740	5.27	115	5	10	1	51	1	35	2	67	． 97	． 104	15	221	2.05	130	． 04	6	2.27	． 01	． 11	1	107
MTS－50	4	95	13	163	． 1	148	23	122	5.72	25	5	10	2	25	1	2	2	11	． 29	． 084	16	150	1.74	147	． 12	6	3.53	． 01	． 12	，	1
Has－51	1	14	12	131	． 1	115	17	132	4.67	15	5	nd	1	52	1	2	2	55	1.09	． 124	29	112	1.37	173	． 05	6	2.44	． 01	． 14	1	1
mas－52	3	50	10	84	． 1	91	16	74	3.84	11	5	N0	1	24	1	2	4	49	． 32	． 045	13	104	． 96	171	． 11	6	2.12	． 02	． 09	1	4
－15－53	4	89	17	153	.1	172	28	1114	5.66	23	5	N	1	35	1	12	2	67	． 10	． 101	18	131	1.09	243	． 07	9	2.04	． 01	． 11	1	1
M S－54	3	73	17	132	.1	175	25	1192	5.20	34	5	ND	1	20	1	16	1	73	． 25	． 047	18	177	1.56	230	． 01	14	2.49	． 02	． 13		1
W（5－56	2	87	17	157	.1	121	21	447	5.44	40	5	H	1	19	1	2	2	67	.34	． 044	13	111	1．58	121	． 12	4	2.31	． 02	． 15	1	1
MRS－57	2	57	15	169	.1	95	18	422	4.49	26	5	N0	1	24	1	2	2	73	． 40	． 044	9	102	1.30	150	． 18	9	2.48	． 02	． 11	2	3
45－58	2	55	14	227	． 2	46	17	949	4.34	24	5	N0	1	25	1	4	2	59	． 42	． 058	11	45	． 74	94	． 11	2	2.05	． 02	． 10	1	27
MRS－59	1	30	＊	139	． 2	58	12	937	2.64	16	5	N0		26	1	3	2	49	． 42	． 018	$\stackrel{1}{1}$	41	． 52	177	． 15	3	1.53	． 03	． 12	1	13
uns－60	2	42	7	98	． 1	43	13	295	3.02	20	5	10		17	1	3	2	51	． 22	．034	7	42	． 50	99	． 13	2	1.62	． 03	． 01	1	31
WHS－4t	1	117	10	152	． 1	504	41	753	5.54	37	5	NO	3	12	1	3	2	101	1.14	． 041	12	412	3.93	502	． 24	3	3.14	． 23	． 49	1	3
M5－62	7	169	12	108	． 1	174	31	730	5．36	91	5	ND	4	43	1	3	2	50	． 49	． 044	17	154	1.54	319	． 15	10	2.31	． 04	． 35	2	270
40， 43	4	231	11	77	． 1	152	34	552	4.95	29	3	KD	2	37	1	2	2	100	． 51	． 034	13	108	1.48	154	． 22	10	3.3	． 07	． 17		20
Mes－64	12	455	18	109	.1	124	40	761	11.29	42	5	ND	3	25	1	2		152	． 17	． 001	1	110	2.64	214	． 45	2	5．64	． 07	． 53	15	
4，5－65	5	273	15	104	． 1	134	35		7．ta	26		ND	2	32	1	2	2	121	． 55	． 047	13	109	1.98	16）	． 31		3.31	． 03	． 38	4	5
M6S－66	1	38	12	\＄0	． 2	50	17	433	4.57	14	5	ND	2	21	1	2	2	79	.21	． 096	7	59	． 11	159	． 27	8	2.12	． 03	． 12	3	2
MES－67	1	16	10	58	． 2	26	0	492	1.12	d	5	ND	，	20	1	2	2	36	.13	． 038	6	19	． 28	112	． 10	2	． 97	． 03	． 04	1	3
485－69	3	102	16	245	． 1	106	29	1146	7.02	30	5	$N 0$	3	40	1	2	2	5	． 31	． 009	14	11	1.10	216	． 16	d	4.17	． 02	． 19	2	3
1615－69	4	6	15	976	． 2	94	27	1560	6.26	24	5	no	3	44	－	2	2	74	． 30	． 079	14	70	． 94	204	． 16	9	3.34	． 02	． 19	1	2
W－70	3	55	17	737	． 2	42	24	1405	5.33	31	5	ND	3	61	4	2	2	73	． 51	．133	19	65	．4）	276	． 20	5	3.41	． 03	． 20	1	
uns－71	J	45	17	377	． 2	95	26	643	5.71	31	5	NO	2	37	，	3	2	83	． 40	． 092	13	17	1.17	14	． 16	14	3.38	． 02	． 25	2	22
Hf－72	1	21	12	500	． 6	41	14	407	3.25	17	5	no	1	23	4	3	3	55	． 20	． 137	7	4	． 55	151	． 15	3	2.10	． 03	． 07	1	11
485－73	2	29	13	282	． 3	70	22	540	4.28	16	5	NO	2	41	2	2	2	74	． 41	． 112	10	76	． 81	102	． 20	3	2.87	． 02	． 13	2	9
STD C／all－S	19	60	42	131	7.6	6	30	989	3.96	43	10	9	3	52	18	15	22	58	． 48	．086	41	9%	． 87	184	． 09	35	1.10	． 07	． 15	12	52

SNritel	$\begin{gathered} \text { Mo } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { PPM } \end{gathered}$	PI	$\begin{gathered} 2 \mathrm{H} \\ \mathrm{PH} \end{gathered}$	$\underset{P(H)}{A b}$	$\begin{gathered} M I \\ P H_{1} \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { MN } \\ \text { PPM } \end{gathered}$	$\begin{gathered} F E \\ i \end{gathered}$	$\begin{aligned} & \text { AS } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} U \\ P R^{\prime} \end{gathered}$	$\begin{gathered} \text { AN } \\ \text { PPH } \end{gathered}$	$\begin{array}{r} \text { TH } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathbf{5 K} \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPr } \end{gathered}$	$\begin{gathered} \text { St } \\ \text { PPK } \end{gathered}$	$\begin{gathered} 1! \\ \text { PPH } \end{gathered}$	$\begin{array}{r} V \\ P H B \end{array}$	$\begin{gathered} \mathbf{C A} \\ \mathbf{Z} \end{gathered}$	$\begin{aligned} & p \\ & Z \end{aligned}$	LA	$\begin{aligned} & \text { CR } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \mathrm{H} 6 \\ \mathrm{Z} \end{gathered}$	$\underset{\text { PPR }}{\text { In }}$	$\begin{array}{r} \mathrm{I} \\ \mathbf{z} \end{array}$	$\begin{array}{r} \mathbf{B} \\ \text { PP } \end{array}$	$\underset{Z}{n}$	$\begin{gathered} M A \\ Z \end{gathered}$	$\begin{aligned} & k \\ & I \end{aligned}$	$\underset{\text { PPM }}{n}$	$\begin{aligned} & \text { aus } \\ & \text { PPI } \end{aligned}$
MrS-74	2	27	16	204	. 2	57	14	327	4.25	17	5	ND	2	36	1	2	2	13	. 13	. 059	10	B0	. 87	154	. 20	1	2.37	. 02	. 11	1	22
URS-75	1	34	19	161	. 1	107	18	329	4.62	22	5	MD	2	20	1	2	2	$1{ }_{1}$. 31	. 126	12	130	1.22	149	. 16	12	2.75	. 02	. 07	1	-
URS-76	2	59	10	147	. 1	104	22	540	5.59	42	J	ND	2	21	1	3	2	93	. 51	. 105	11	III	2.21	175	. 15	15	2.17	. 01	. 11	1	6
L205-77	3	54	1	109	. 1	318	31	551	5.79	34	5	\%	1	17	1	2	2	75	. 21	. 137	9	317	3.79	118	. 13	16	3.06	. 02	. 01	2	2
URS-71	3	44	22	223	. 3	112	27	720	5.40	24	5	10.	2	27	1	2	2	91	. 42	. 123	15	134	1.27	193	. 17	!	3.32	. 02	. 11	2	15
US-79	2	40	3	168	.2	96	23	552	4.71	21	5	ND	2	29	1	3	2	4	. 42	. 070	15	100	1.27	274	. 17	12	3.07	. 02	. 12	1	2
4.5-90	1	1H1	5	147	.1	125	40	1810	9.71	9	5	KD	2	59	1	2	2	149	2.21	. 040	0	131	J. 51	142	. 70	312	4.07	. 02	. 01	1	1
Mas-it	1	92	12	137	. 1	276	40	1307	4. 63	22	5	HD	4	36	1	2	2	111	1.25	. 010	17	217	3.17	149	. 58	13	3.73	. 02	. 14	1	1
MRS-12	1	41	1	I	. 1	131	24	923	3.11	10	5	ND	2	17	1	2	5	75	. 11	. 011	13	157	1.69	141	. 20	13	2.21	. 03	. 09	1	1
MS-03	2	55	11	124	.1	106	21	224	5.19	17	5	HD	1	17	1	2	4	89	. 20	. 121	15	172	1.15	171	. 13	10	2.11	. 02	. 12	1	1
MS-34	1	42	9	120	. 1	167	21	1178	5.53	10	5	* ${ }^{\text {d }}$	1	15	1	2	2	41	. 37	. 082	14	200	2.17	115	. 24	32	3.04	. 03	. 12	1	1
M HS_{5}-95	3	9	14	140	. 1	369	47	1455	6. 65	1	5	10	3	18	1	2	2	102	. 29	. 093	25	423	4.34	100	. 12	10	3.9	. 01	. 11		4
M5-16	3	90	9	130	. 1	190	32	1077	5.16	15	5	N0	4	16	1	2	2	41	. 44	. 075	19	197	2.27	205	. 33	12	3.10	. 01	. 10	1	5
Mas-97	2	57	0	100	. 1	102	22	1331	4.77	14	5	10	1	21	1	2	2	79	. 33	. 074	11	117	1.45	152	. 18	10	2.64	. 02	. 11	,	5
M 4 S-11	2	121	16	161	. 1	550	67	3546	10.27	24	5	(0)	2	27	1	2	2	110	. 37	. 050	10	435	2.69	340	. 04	15	3.51	. 01	. 08	2	1
M5-4y	3	80	22	140	. 1	129	26	1934	5.94	17	5	30	1	20	1	2	3	106	. 33	. 017	19	173	2.00	251	. 31	10	3.07	. 02	. 11		J
URS-90	2	41	12	98	. 1	79	11	1226	3.14	11	5	N0	1	16	1	2	,	47	. 14	. 087	11	11	. $\%$	143	. 04	9	2.33	. 02	. 08	1	2
Mis-91	2	15	14	152	. 1	82	29	2513	4.44	15	5	00	1	29	1	2	2	87	. 54	. 132	11	118	1.32	271	. 11	10	2.89	. 02	. 11	1	1
48S-72	3	118	12	144	. 1	304	42	1625	7.36	17	5	10	3	31	1	2	2	93	. 50	. 075	28	279	2.23	318	. 02	14	3.00	. 01	. 12	1	1
M, $5-93$	3	116	9	171	. 1	250	47	1616	7.23	19	5	ND	3	27	1	2	2	113	. 71	. 090	32	24	3.04	425	. 27	16	3.01	. 01	. 12	1	6
untic-94	2	0	17	147	. 1	134	31	1218	5.58	19	5	ND	2	33	1	2	2	82	. 65	.091	19	150	2.16	273	. 27	12	3.37	. 01	. 14	1	4
Mis-95	3	105	4	17	. 1	117	30	104	4.07	15	6	10	3	28	1	2	2	97	. 73	.094	21	197	2.33	304	. 47	13	3.11	. 01	. 11	1	1
4 $45-96$	1	4	E	142	. 1	158	\boldsymbol{J}	1041	4.65	16	5	\cdots	3	39	1	2	2	101	. 76	. 042	16	153	2.20	303	. 37	9	3.41	. 02	. 13	1	1
Mes-47	5	127	11	173	. 2	267	51	2649	9.02	20	5	10	3	25	1	2	2	75	.63	.089	20	242	2.50	340	. 19	25	3.24	. 01	. 15	1	5
-5-74	1	13	12	125	.1	219	30	1135	4.56	13	5	W	3	24	1	2	2	119	1.10	.005	17	219	3.57	257	. 57	20	3.13	. 02	. 12	1	1
Un6-99	2	87	9	144	. 1	161	37	1467	7.92	18	5	$N \mathrm{~N}$	2	26	1	2	2	101	. 61	. 089	20	160	2.14	235	. 22	16	3.11	. 01	. 13	1	2
2m-100	1	93	3	120	.1	128	3	12.51	4.33	20	5	ND	2	33	1	2	2	103	. 73	. 059	12	141	2.14	231	. 37	22	3.26	. 02	. 12	,	1
M5-101	1	84	3	137	. 1	194	34	1464	7.11	11	5	N0	3	24	1	2	2	111	. 75	.084	21	191	3.20	221	. 37	14	3.73	. 02	. 15	1	4
4is-103	4	58	19	155	. 1	165	27	1446	5.00	13	5	ND	2	36	1	2	2	14	. 71	. 124	16	216	2.11	213	. 19	11	3.17	. 02	. 17	1	1
MS-104	3	47	11	164	. 1	4	22	2230	4.55	14	5	MD	1	3	1	2	3	45	. 36	. 122	16	80	. 16	37%	. 07	1	2.45	. 02	. 18	1	2
ins-105	2	72	10	187	-1	07	19	14	4.73	16	5	ND	1	33	1	2	2	60	. 38	. 181	17	4	1.05	301	. 07	17	2.5	. 01	.11	1	1
4n-106	2	73	1	157	. 1	159	21	1376	5.40	19	5	NO	1	22	1	2	2	74	. 33	. 107	14	170	1.98	201	. 17	10	3.51	. 01	.14	1	+
UKS-107	3	52	13	159	. 1	13	26	2143	4.71	17	5	ND	1	28	1	2	5	67	. 30	. 181	16	113	1.16	271	. 08	11	3.09	. 02	. 16	1	1
MSS-104	2	54	1	158	. 1	111	27	1316	5.20	19	1	NO	1	27	1	2	2	75	. 44	. 148	13	142	1.42	175	. 12	5	3.12	. 01	. 16	1	10
485-109	2	4	15	112	. 1	539	18	2162	7.15	38	5	ND	1	23	1	2	2	71	. 23	. 116	15	555	5.67	136	. 03	30	2.60	. 01	. 12	1	5
Wes-110	2	80	11	12!	-1	359	40	1563	6.79	20	5	ND	1	15	1	2	2	69	. 22	. 096	14	325	3.90	106	.06	23	2.10	. 01	. 13	1	${ }^{*}$
STD C/ALS	14	59	41	126	7.5	6	27	861	3.90	42	20	1	35	50	17	16	23	57	. 47	. 090	40	57	. 15	113	. 09	36	1.63	. 07	. 15	13	51

SARPLE:	$\begin{aligned} & \text { HO } \\ & \text { PRM } \end{aligned}$	$\begin{gathered} \text { Cu } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { PI } \\ \text { PPM } \end{gathered}$	$\begin{gathered} 2 \mathrm{~N} \\ \text { PPM } \end{gathered}$	N	$\begin{gathered} \text { Nl } \\ \text { PPH } \end{gathered}$	$\begin{gathered} C D \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { M N } \\ \text { PRH } \end{gathered}$	$\begin{gathered} \text { FE } \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \text { AB } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { U } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { AU } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { IH } \\ \text { PPK } \end{gathered}$	Sis PPH	$\begin{gathered} \text { Co } \\ \text { PFR } \end{gathered}$	$\begin{gathered} \text { S! } \\ \text { PPM } \end{gathered}$	$\begin{gathered} 11 \\ \text { PPn } \end{gathered}$	$\begin{gathered} \mathbf{Y} \\ \text { PPM } \end{gathered}$	$\begin{aligned} & \mathrm{CA} \\ & \mathrm{I} \end{aligned}$	i	la PFH	$\begin{gathered} C R \\ P H \end{gathered}$	$\begin{gathered} \mathrm{Mi} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} 1 A \\ P P R \end{gathered}$	$\begin{gathered} 11 \\ i \end{gathered}$	$\begin{array}{r} \vdots \\ \text { PPM } \end{array}$	$\begin{gathered} M 1 \\ Z \end{gathered}$	$\begin{gathered} \text { Wh } \\ 2 \end{gathered}$	k	$\begin{array}{r} y \\ \text { yPM } \end{array}$	$\begin{aligned} & \text { Nel } \\ & \text { PPI } \end{aligned}$
H6-111	1	41	13	146	. 1	929	53	1155	7.77	24	5	WD	1	18	1	2	2	15	.17	. 137	11	465	2.96	171	. 03	4	2.12	. 01	. 09	2	5
UR5-112	2	74	12	141	. 1	245	35	1157	6.53	24	5	NO		20	,	2	2	74	. 19	. 093	14	317	2.31	151	. 07	9	2.3	. 01	. 11	1	1
vas-113	1	59	4	127	. 1	219	37	1190	b. 65	25	5	NO	1	21	1	2	2	72	. 21	.089	15	324	3.49	132	. 07	15	2.21	. 01	. 10	1	
Mas-114	1	42	1	113	. 1	120	20	516	4.93	7	5	H0	1	13	1	2	2	11	. 31	. 095	10	138	1.36	105	. 31	7	2.75	. 01	. 01	1	
M 4 S-115	1	24	5	17	. 2	72	13	294	4.32	16	5	MD	1	12	1	2	2	43	. 25	.046	10	111	1.03	73	.30	4	2.39	. 01	. 01	1	1
4 WS-116	1	33	11	100	. 1	178	24	525	5.71	10	5	NO	1	14	1	2	2	02	. 20	. 017	10	246	1.69	133	.14	3	2.10	. 02	. 05	1	1
MRS-117	1	52	7	15	. 1	307	22	780	4.50	45	5	ND	1	36	1	2	,	17	. 50	. 012	11	477	1.94	15.	. 12	5	2.51	. 02	. 10	1	2
H/5-110	2	41	11	118	. 1	95	19	519	4.51	15	5	MD	1	20	,	2	2	61	. 24	. 117	11	$\%$. 76	178	. 11	\$	1.15	. 02	. 14		1
465-119	2	45	10	159	.1	152	24	1045	4.56	9	5	ND	2	21	1	2		1	. 47	. 017	13	169	1.15	340	. 30	14	2.55	. 02	.14	2	1
MS-120	1	99	\square	134	. 1	386	44	1254	d. 05	14	5	ND	3	23	1	2	2	115	. 3	. 065	21	450	4.43	165	. 06	15	3.11	. 02	. 12	1	1
w ${ }_{\text {H-121 }}$	4	103	16	150	. 3	312	40	1082	5.87	17	5	\% 0	4	27	d	2	2	99	. 44	. 047	18	324	3.39	238	. 39	5	3.01	. 01	. 10	1	1
WRS-122	1	97	20	121	.1	202	40	1238	7.09	12	5	$N 0$	3	37		2	2	111	. 71	. 059	17	209	3.10	12	. 52	11	3.43	. 02	. 09	1	3
UTS-123	1	6	7	142	. 2	231	30	774	5.11	16	5	k	2	22	1	2	2	94	. 47	.086	11	306	2.72	204	. 31	2	3.07	. 02	.10	2	1
URE-124	1	122	15	141	. 1	260	37	1370	7.14	17	5	ND	3	32	1	2	2	125	.4	. 042	20	285	3.16	243	. 47	17	3.61	. 02	.12	1	2
M ${ }^{\text {a }}$-126	1	43	17	127	.1	552	12	1048	5.78	15	5	10	3	24	1	2	2	111	.71	. 047	14	45	4.24	139	. 44	7	4.19	. 01	. 06	1	,
4n5-127	2	73	13	116	.3	132	28	1150	5.05	15	5	$N 0$	2	32	1	2	2	4	. 54	. 042	16	124	1.71	249	. 12	14	2.40	. 01	. 13	1	1
4R2-124	2	7	12	137	.1	230	29	1019	d.03	13	5	ND	2	21	1	2	2	78	. 49	. 081	15	246	2.92	122	. 17	10	3.24	. 02	. 14	1	
HR5-129	5	131	20	165	. 1	235	37	73	8.10	22	5	10	2	30	,	4	2	67	.35	. 046	24	14	1.30	337	. 02	5	2.2!	. 01	. 11	2	2
URS-130	1	103	7	138	. 1	151	40	1580	5.nt	7	5	10	2	55	1	2	2	105	1.15	. 121	13	191	2.35	217	. 33	12	3.01	. 02	. 21	1	1
W 5 -132	1	105	2	107	. 3	159	34	1000	4.12	11	5	10	2	32	1	2	2	104	. 83	. 056	14	174	2.53	12	. 43	9	3.74	. 01	. 12	1	1
HRS-132	1	97	11	165	. 1	105	4	2456	6.19	17	5	10.	1	24		2	2	100	. 34	. 113	17	157	1.38	262	. 16	4	3.71	. 02	. 01	1	1
Wis-133	1	93	6	158	.1	220	32	9月1	5.42	13	5	NO	2	24	1	2	2	107	. 5	. 070	14	251	2.07	314	. 3	14	4.02	. 01	. 11	1	1
mat-134	2	107	18	245	. 2	11	31	1018	6.75	100	5	WD	2	21	1	20	2	104	. 37	. 011	12	114	2.26	154	. 21	2	2.85	. 06	. 47	1	23
mts-155	1	14	10	52	. 1	14	7	214	2.35	10	5	10	1	11	1	2	2	52	. 15	. 041	5	23	. 30	63	. 14	4	1,31	. 03	. 04	1	1
mis-134	1	52	17	128	. 1	57	21	659	6.00	25	3	M	,	16	,	2	2	111	. 40	. 120	\dagger	75	1.31	7	. 31	2	2.94	. 02	. 10	1	-
\%6-137	1	${ }^{69}$	14	137	-1	135	27	655	5.47	39	5	10	2	16	1	2	2	111	. 30	.053	9	127	1.84	107	. 32	5	3.22	. 02	. 09	1	2
45935	2	5	15	172	.1	94	23	69	6. 60	40	5	LD	1	25		4	2	132	. 15	. 017	16	127	t. 14	197	. 34	2	3.37	. 02	. 17	1	1
Ms-139	2	51	24	97	. 1	121	22	474	5.58	76	5	\%	1	15	1	7	2	104	. 27	. 139	11	112	1.02	97	. 22	5	2.64	. 02	. 04	2	
ukfr 140	2	37	13	96	. 1	56	15	307	5.67	28	5	N0	2	21	1	2	3	122	. 34	. 067	13	91	. 91	113	. 31	2	2.85	. 01	. 07	1	1
4tis-141	1	91	15	143	.1	31	24	9167	7.58	25	5	ND	2	20	1	6	2	70	. 22	.080	18	275	1.41	96	. 01	7	2.01	. 01	. 13		2
UKS-142	1	53	9	74	. 1	1250	76	1127	4.81	21	5	10	2	15	1	2	2	79	. 38	. 036	13	759	7.49	25	. 13	7	3.31	. 01	.03	1	1
Wht 143	1	38	12	47	.1	50	13	5432	2.14	14	5	ND	1	25	1	2	2	51	.69	. 049	12	55	. 6	144	. 24	4	1.62	. 03	. 01	1	1
4RS-149	2	69	19	135	. 1	289	42	1706	4.12	$4{ }^{4}$	3	W	1	16	1	2	2	100	. 28 .	. 012	11	184	2.33	117	. 20	7	3.03	. 02	. 11	2	3
WRS-145	1	43	12	106	. 1	11	23	022	6.21	25	5	N0	2	22	1	2	2	126	. 47 .	. 094	10	125	1.33	110	. 43	4	2.79	. 01	. 09	1	1
Unifilt	1	42	14	114	.1	75	21	5345	5.50	22	5	MD	2	14	1	2	2	109	. 47.	. 097	10	1061	1.26	100	. 39	112	2.93	. 01	. 01	1	1
Mas-147	1	41	18	116	. 2	95	21	4575	5.45	32	5	10	2	16	1	2	3	100	. 32.	. 092	11	122	1.58	10\%	. 30	22	2.91	. 02	. 10		
STD C/Au-S	18	59	40	130	7.7	48	30	935	3.93	41	11	1	36	52	17	16	22	50	. 47.	. 017	41	51	. 4.1	187	. 04	341	2.11	. 027	. 15	13	55

DAWEQN GEDLOGICAL FROJECT-367 FILE G7-2399

SNPIEP	$\begin{gathered} \text { HO } \\ \text { PPM } \end{gathered}$	$\underset{\text { PRH }}{\text { Cll }}$	$\begin{aligned} & \text { PI } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & \text { IH } \\ & \text { PPM } \end{aligned}$	Af PPA	$\underset{\sim P I}{M I}$	$\underset{\mathrm{Pr}}{\mathrm{CO}}$	M PFH	$\begin{gathered} \text { FE } \\ \mathbf{t} \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { PFM } \end{gathered}$	$\begin{array}{r} u \\ \text { U } \end{array}$	$\begin{gathered} \text { AU } \\ \text { PRH } \end{gathered}$	$\begin{aligned} & \text { IH } \\ & \text { PM } \end{aligned}$	$\begin{gathered} S K \\ P M \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PR } \end{gathered}$	$\begin{gathered} \text { fi } \\ \text { P险 } \end{gathered}$	$\begin{array}{r} \text { Bl } \\ \text { PPM } \end{array}$	$\underset{\text { PM }}{V}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{t} \end{gathered}$	I	$\begin{gathered} \text { LA } \\ \text { PM } \end{gathered}$	CR PFin	$\begin{gathered} \text { Wis } \\ 2 \end{gathered}$	$\begin{gathered} \text { IA } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { II } \\ 2 \end{gathered}$	$\underset{\text { PPM }}{1}$	$\underset{\mathbf{I}}{\mathbf{M L}}$	$\underset{2}{\mu}$	$\begin{aligned} & k \\ & Z \end{aligned}$	$\underset{\text { PM }}{N}$	NUI PFI
	2	38	14	103	. 1	55	17	914	4.20	20	5	ND	1	13	1	3	2	25	. 29	. 113	10	95	. 11	81	. 23	\downarrow	2.16	. 02	. 05	1	7
URS-149	1	49	13	1!6	. 1	64	11	534	5.53	29	5	N0	1	14	1	2	2	112	. 32	. 012	13	108	1.14	119	. 30	9	3.09	. 01	. 06	2	5
Mfs-150	2	41	8	130	.1	82	22	1131	5.23	22	1	ND	2	22	1	2	2	107	. 43	. 082	15	123	1.14	144	. 30	9	2.72	. 01	. 08	t	5
ms-151	3	37	22	108	. 3	48	20	2547	4.47	21	1	10	2	18	1		2	11	. 24	. 014	17	5	. 41	154	. 22	2	2.71	. 01	. 07	1	7
uns-152	3	27	9	42	. 1	37	14	532	3.29	15	5	N0	1	11	1	2	2	4	. 11	.073	14	65	. 16	214	. 13	E	1.94	. 02	. 06	1	4
WRS-153	3	43	17	152	. 1	40	15	606	3.10	18	5	* ${ }^{\text {d }}$	2	14	1	2	3	4	. 18	. 043	14	72	. 65	310	. 11	2	2.35	. 02	. 018	1	6
HRS-154	5	54	11	154	.1	56	11	347	4.01	16	5	40		16	1	2	2	56	.14	. 071	14	59	. 54	245	. 05	7	2.01	. 01	. 09		,
URS-155		55	14	163	. 3	53	15	451	3.01	14	5	ND	,	18	1		2	51	. 12	. 059	15	55	. 44	371	. 05	4	2.17	. 01	. 07	1	1
Mes-156	3	34	7	129	. 1	30	14	615	3.28	12	5	N	1	21	1	2	2	59	. 14	.032	18	42	. 42	443	. 06	4	2.34	. 01	. 07	1	5
mes-157	5	$1!$	12	173	. 1	55	12	375	4.98	27	5	M0	1	21	1	2	2	70	.13	.056	12	56	. 72	272	. 04	22	2.24	. 02	. 09	1	1
URS-155	7	51	21	303	. 2	75	17	414	4.94	3	5	ND	2	20	1	2	2	79	. 14	. 055	15	107	1.07	261	.13	4	2.97	. 02	. 08	1	1
Wik-159	4	56	22	187	. 1	B	25	411	4.77	16	5	ND	2	19	1	3	3	4	. 24	. 089	21	114	1.11	$41!$. 15	10	3.14	. 02	. 14	1	2
UkS-160	4	46	17	190	. 1	46	23	903	4.55	10	5	N0	2	11	1	2	2	17	. 21	.074	18	102	. 90	371	. 20	2	2.86	. 02	. 11	1	1
URS-161	4	42	1	241	. 1	95	25	974	5.19	20	5	10	2	19	1	2	2	4	. 23	. 126	15	141	1.19	302	. 21	7	3.30	. 02	. 11	1	4
mis-162	5	72	18	185	.1	313	36	1131	6.32	14	5	10	3	26	1	2	2	49	. 31	.058	24	335	3.04	400	.13	4	3.48	. 01	. 17	2	1
UR5-163	-	90	14	161	. 2	244	32	951	5.47	11	5	MD	3	22	1	2	2	12	. 29	. 041	21	304	3.19	516	. 11	1	3.38	. 01	. 14	2	1
URS-164	7	10	14	153	. 2	173	20	313	4.81	17	5	ND	2	17	1	2	2	73	. 13	. 055	19	157	1.41	275	. 04	5	2.59	. 01	. 09	1	1
Ticrolis	2	133	9	132	. 1	345	31	2372	7.27	33	5	MD	3	26	1	2	2	91	. 34	. 046	21	227	3.05	225	. 17	10	3.04	. 01	. 17	1	21
(105-164	1	99	13	154	. 1	320	47	1012	6.91	38	5	ND	2	23	1		2	78	. 39	. 057	31	271	2.60	304	. 10	10	2.62	. 01	. 19	1	14
WRS-107	2	7	12	144	. 1	177	31	004	6.21	21	5	No	2	25	1	2	2	4	. 54	. 103	13	194	2.01	260	. 86	6	3.18	. 01	. 12	1	1
4ns-168		51	11	120	. 1	57	26	1076	4.ta	17	5	10	2	30	1	2	2	4	. 46	. 037	11	52	1.07	311	. 06	3	2.93	. 01	. 10	1	1
Lms-169	3	87	17	134	.1	206	42	1613	5.73	22	5	10	2	37	1	2	2	03	. 69	. 064	5	181	2.14	310	. 07	E	2.17	. 02	. 10	1	5
485-170	2	12	11	130	.1	315	40	45t	5.12	19	5	N0	2	27	1	2	2	77	. A $^{\text {c }}$.037	17	327	2.12	212	. 23	4	2.71	. 02	. 10	1	2
M Mricili	4	139	31	220	. 2	157	42	1554	7.12	33	5	N0	2	43		2	2	45	. 61	. 008	21	134	1.76	4	. 01	2	2,50	. 01	.01	1	12
M5-172	1	9	5	59	. 1	19	7	177	1.70	6	5	10	1	19	1	2	2	37	. 20	.050	1	20	.21	40	. 10	2	. 72	. 03	. 04	1	,
4-45-173	1	104	11	143	. 1	250	41	1355	7.46	16	5	N0	3	28	1	2	2	107	.ty	. 083	25	303	4.10	206	. 53	0	3.4	. 01	. 24	2	3
Mes-174	2	49	17	157	. 1	378	47	1222	4.54	34	5	no	1	24	1	4	2	91	. 31	. 077	20	339	3.04	237	. 04	2	2.93	. 02	. 09	1	12
Mas-175	2	53	13	62	. 1	102	69	118	5.46	40	5	MD	2	14	1	10	2	52	. 13	. 024	E	441	8.04	105	. 05	18	1.76	. 02	. 05		12
UnS-176	3	42	14	164	. 1	408	70	1373	9.11	212	5	KD	2	20	1	6	2	90	. 11	. 100	13	511	4.49	140	. 02	12	2.27	. 01	. 08	2	10
(185-177	2	49	13	73	. 1	009	47	935	3.44	32	5	N0	1	23	1	2	2	42	. 24	. 072	1	215	5.74	145	. 05	27	1.11	. 02	. 08	1	1
Sto C/RJ	19	51	39	131	. 9	4	30	987	. 97	11	20	-	3	52	11	16	24	59	. 47	. 040	41	51	.4	169	. 09	34	1.80	. 07	. 15	13	41

GEDCHEMICAL IEF ANALYEIS

DATE RE	IV		$\begin{aligned} & -9 \operatorname{lish}+5 \\ & \text { NUG } 51997 \end{aligned}$			DATE REPDR DAWSON			2T MAILED:			$\text { lucoj } / \beta / c^{\prime} 7$				ASSAYER.File \#			$\begin{aligned} & 40.64 \% \\ & 87-3023 \end{aligned}$		TOYE, 1				CERTIFIED E			B.C.	ABSAYER		
SARPLE	$\begin{array}{r} \text { KO } \\ \text { PPR } \end{array}$	$\begin{gathered} \text { CU } \\ \text { PPM } \end{gathered}$	$\underset{\text { PR }}{\text { PI }}$	$\begin{gathered} \text { LH } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { A6 } \\ \text { PMM } \end{gathered}$	$\begin{array}{r} \text { MI } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$	$\operatorname{Max}_{P P M}$	$\begin{gathered} \text { FE } \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$	$\begin{gathered} U \\ \text { PPR } \end{gathered}$	$\begin{gathered} \text { AU } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { TH } \\ \text { PHK } \end{gathered}$	$\begin{gathered} \text { SR } \\ \text { PPh } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { SI } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Bl } \\ \text { PPh } \end{gathered}$	$\begin{array}{r} V \\ P P_{1} \end{array}$	$\begin{array}{r} \text { CA } \\ Z \end{array}$	2	$\begin{aligned} & L A \\ & P P M \end{aligned}$	$\underset{\text { ch }}{c \mid}$	$\underset{\mathbf{I}}{\mathbf{N G}}$	$\begin{array}{r} \text { IA } \\ \text { PA } \end{array}$	$\underset{2}{\mathrm{TI}}$	Brin	$\begin{gathered} A L \\ Z \end{gathered}$	$\underset{Z}{\mathrm{Ma}}$	$\begin{aligned} & x \\ & z \end{aligned}$	$\underset{\text { PPM }}{\text { N }}$	AUt PPI
ข MSL-7	2	72	11	130	. 2	276	28	973	5.02	32	5	ND	2	49	1	2	2	40	1.21	. 077	13	322	4.17	120	. 26	51	2.61	. 01	. 04	1	18
UBSt-8	1	14	2	29	. 2	34	5	179	. 92	2	5	ND	1	706	1	2	5		29.59	. 021	2	34	. 63	10	. 07	51	. 53	. 04	. 03	5	1
UPSL-9	1	78	14	131	.1	101	24	2038	7.57	41	5	ND	1	20	1	2	2	152	1.54	. 012	10	104	2.54	72	. 49	11	3.16	. 01	. 13	1	24
W15L-10	1	15	1	105	. 2	502	47	1297	6.71	71	5	kD	1	30	1	2	2 .	- 109	1.29	. 065	1	517	5.90	44	. 33	24	2.62	. 01	. 10	1	23
U15S-11	1	73	11	100	.3	538	16	1867	7.12	94	5	no	1	21	1	2	2	109	1.04	. 054	7	564	6.09	44	. 31	24	2.36	. 01	. 09	1	25
UPSL-12	1	65	10	93	. 3	473	41	1124	6.47	80	5	MD	1	22	1	2	2	108	. 97	. 055	7	415	5.25	46	. 31	56	2.23	. 02	.10	1	20
VISL-13	1	47	11	92	. 1	570	45	1153	6.09	83	5	KD	1	23	1	2	3	91	. 93	. 056	7	51	6.32	50	. 27	37	2.24	. 01	.10	1	19
U15L-14	1	59	10	101	. 3	419	31	1012	6.37	41	6	Hi	1	21	1	2	2	103	1.06	. 041	1	449	5.69	44	. 24	24	2.42	. 01	. 11		12
UISL-15	1	61	7	102	. 2	390	37	1075	6.65	61	5	ND	1	24	1	2	2	111	1.04	. 060	0	412	4.55	57	. 32	21	2.39	. 01	.11	1	14
UPSL-16	1	51	6	93	. 1	337	32	984	5.11	49	5	KD	1	22	1	2	2	102	. 01	. 053	7	351	3.95	59	.27	16	2.14	. 01	. 09	1	9
UBSL-17	1	40	9	101	. 2	321	33	1024	6.56	46	5	W0	1	21	1	2	2	117	1.16	. 042	9	357	3.71	67	. 34	17	2.47	. 01	. 11	1	11
UPSL-1	1	56	7	96	. 2	319	32	967	5.96	49	5	ND	1	25	1	2	2	105	1.02	. 058	-	335	3.94	40	. 32	17	2.31	. 02	. 10	1	14
WISL-19	1	59	5	114	.1	298	28	885	5.60	5	5	NO	1	30		2	2	91	. 95	. 054	1	315	3.75	62	. 20	15	2.21	. 03	.14	1	9
M3SL-20	1	46	7	13	. 2	753	38	707	4.8I	88	5	HD	1	25	1	2	5	54	. 41	. 043	1	316	9.35	49	. 10	47	1.27	. 03	. 10	1	10
WISL-21	2	57	\bullet	120	. 1	271	25	78	5.15	47	5	KD	2	26	1	2	2	18	.77	. 053	9	210	3.79	81	. 27	13	2.25	. 04	.17	1	9
WPSL-22	2	77		94	. 2	402	24	744	5.41	32	5	NO	2	29	1	2	2	99	. 94	. 055	11	302	4.61	89	. 32	27	2.70	. 02	. 11	1	14
M SL-23	2	51	10	105	. 3	270	23	677	5.05	38	5	NO	1	31	1	2	2	100	. 76	. 047	7	338	3.38	63	. 27	11	2.34	. 05	. 12	1	7
H9SL-24	1	71	10	112	. 5	508	32	799	5.06	111	5	HD	1	35	1	\%	6	73	. 65	. 049	7	413	6.04	60	. 19	15	1.95	. 04	. 26	3	51
U15i-25	1	43	7	89	. 2	150	19	590	4.51	57	5	KD	,	33	t	8	2	78	. 57	. 014	5	130	1.92	43	. 26	6	1.72	. 07	. 24	1	7
Mas-26	1	24	3	6	. 1	56	14	402	3.90	40	5	ND	1	36	1	2	2	97	. 46	. 044	5	103	. 69	27	. 24	19	1.00	. 08	. 09	2	4
MrSL-17	1	64	17	122	. 2	112	20	1224	7.46	12	5	no	2	32	1	2	2	135	1.53	. 102	12	12	3.45	43	. 55	44	3.07	. 01	. 13	1	3
misc-il	1	61	10	115	. 1	111	29	1263	7.63	10	5	N8	2	24	1	2	2	134	1.24	. 105	12	127	3.44	37	. 54	34	2.76	. 01	. 14		4
WnSt-19	1	64	10	115	. 3	125	29	1351	7.71	14	5	no	3	27	1	2	2	135	1.28	. 104	12	135	3.62	42	. 10	38	2.90	. 01	. 15	1	5
WRSL-20	1	61	8	117	. 2	108	29	1419	6.te	17	5	MD	2	29	1	2	2	110	1.04	. 083	11	179	3.75	56	. 45	32	2.31	. 01	. 15	!	
URSL-21	2	71	5	130	. 3	217	29	1450	7.14	24	5	M0	2	30	1	2	2	109	1.04	. 080	13	210	4.01	07	. 46	39	2.51	. 01	. 17	1	6
MESL-22	1	56	0	101	. 1	435	33	1120	5. 17	91	5	N0	2	28	1	33	2	14	. 79	. 069	9	335	6.21	4	. 28	28	1.97	. 01	. 13	$!$	70
yast-23	1	61	4	111	. 1	315	27	1176	6.33	78	5	no	1	29	1	20	2	47	. 14	. 077	10	291	4.70	64	. 35	33	2.14	. 11	. 13	1	53
L0M1-24	2	67	11	112	. 1	312	30	1234	6.36	69	5	KD	2	$3!$	1	20	2	100	. 17	. 077	11	272	4.00	66	. 37	4	2.26	. 02	. 15	,	44
MRSL-25	2	56	6	109	. 3	320	21	1149	5.91	73	5	HD	2	29	1	20	2	90	. 79	. 078	10	291	4.63	76	. 30	24	2.14	. 01	. 13	6	42
Whst-26	2	45	12	121	. 2	305	31	1313	7.03	67	5	no	2	32	,	18	2	115	. 14	. 012	11	304	4.46	93	. 37	27	2.27	. 01	. 13	1	41
WnSL-27	2	56	7	104	. 1	254	24	455	5.36	37	5	KD	2	35	1	11	2	03	. 71	. 063	11	259	3.43	94	. 27	19	2.33	. 02	. 13	1	20
MRSL-28	2	41	11	129	.3	$26!$	29	1141	7.77	39	5	ND	2	33	1	-	2	142	. ${ }^{\text {d }}$. 076	10	397	3.67	14	. 31	31	2.15	. 02	. 11	7	23
WRSL-29	3	51	6	111	. 4	264	25	1014	5.71	40	5	HD	2	34	1	13	2	18	. 14	. 069	10	290	3.14	127	. 30	23	2.25	. 02	. 14	2	27
MASL-30	2	50	9	114	. 4	199	19	793	5.35	13	5	HD	2	39	1	2	2	97	. 77	. 056	11	234	2.78	192	. 30	24	2.20	. 03	. 12	3	5
URSL-31	3	58	9	118	. 4	258	25	1008	5.74	41	5	ND	2	35	1	12	2	时	. 96	. 072	11	294	3.85	131	. 29	23	2.24	. $0 t$. 13	1	25
MRSL-32	2	57	7	112	. 2	273	25	Fif	5.40	42	5	KD	2	34	1	1	2	79	. 79	. 067	11	254	3.98	116	. 25	21	2.13	. 01	. 12	1	23
STD C/ALLS	20	10	39	132	7.6	72	21	1021	3.97	41	23	8	39	52	19	17	21	60	. 41	. 044	39	60	. 07	180	. 08	35	1.15	. 06	. 14	13	49

SAAPLEA	$\begin{array}{r} \text { KO } \\ \text { PFF } \end{array}$	$\underset{\text { FFF }}{\mathrm{CU}}$	$\begin{gathered} \mathrm{Pg} \\ \mathrm{fPh} \end{gathered}$	$\begin{gathered} \text { lN } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { AG } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { nl } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \mathrm{HK} \\ \mathrm{PFK} \end{gathered}$	$\begin{gathered} \mathrm{FE} \\ \mathbf{Z} \end{gathered}$	$\begin{array}{r} \text { AS } \\ \text { PFK } \end{array}$	$\begin{gathered} \text { U } \\ \text { PFF } \end{gathered}$	$\begin{gathered} \text { AU } \\ \text { PPR } \end{gathered}$	$\begin{gathered} \text { TH } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{Sk} \\ \mathrm{PFH} \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { PP月 } \end{gathered}$	$\begin{gathered} \text { S! } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { ! } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} V \\ \text { VPR } \end{array}$	$\begin{gathered} C A \\ 2 \end{gathered}$		$\begin{aligned} & \text { LA } \\ & \text { FFR } \end{aligned}$	$\begin{gathered} \text { CK } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{M6} \\ \mathrm{Z} \end{gathered}$	$\begin{array}{r} \text { In } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{II} \\ \mathrm{Z} \end{array}$	$\stackrel{B}{\text { PPR }}$	$\begin{gathered} A L \\ Z \end{gathered}$	$\underset{2}{M}$	$\underline{1}$	fPM	AUS PfI
WK5L-33	1	57	8	111	. 4	254	24	909	5.34	40	5	H ${ }^{\text {d }}$	2	31	1	8	2	76	. 14	. 065	11	246	3.77	127	. 24	32	2.11	. 01	.13	2	21
MFSL-34	1	60	1	117	. 6	273	23	764	5.49	21	5	HD	3	39	1	2	2	16	1.00	. 073	13	331	4.37	154	. 30	15	2.85	. 01	. 12	1	1
URSL-35	1	56	3	109	. 3	243	23	812	5.21	27	5	ND	2	37	1	2	2	76	.9	. 066	11	249	J. 18	157	. 25	46	2.23	. 01	. 14	t	15
W ASL -36	1	4	3	99	. 3	207	20	720	4.86	25	5	HD	2	37	1	b	2	74	. 98	. 066	10	276	3.35	138	. 25	15	2.14	. 01	. 12	2	5
WRSL-37	1	53	10	106	4	224	21	713	5.08	27	5	ND	2	40	1	2	2	76	1.04	.061	11	263	3.59	142	. 25	50	2.25	. 01	. 13	2	10
\#K5L-34	1	54	2	105	. 3	235	21	743	5.20	30	5	ND	2	$4!$	1	2	2	77	1.05	. 069	11	265	3.76	143	. 25	19	2.2\%	. 01	. 13	1	7
URSL-39	1	50	7	103	, 3	216	20	70%	5.12	24	5	N0	2	3!	1	2	2	77	1.04	. 068	11	269	3.50	147	. 26	46	2.27	. 01	. 12	1	1
MESL-40	1	51	7	103	. 2	215	20	710	4.19	30	5	HD	2	36	1	2	2	74	. 95	. 066	11	237	3.41	110	. 24	22	2.25	. 01	. 12	2	9
URSL-41	1	54	11	108.	. 3	221	31	74!	5.29	24	5	WD	2	39	1	2	2	81	1.03	. 010	11	263	3.63	137	. 27	21	2.37	. 01	. 15	1	1
SID C/AU-S	18	59	40	133	7.4	71	29	450	J.99	39	17	7	31	51	19	10	22	59	. 41	. 012	38	58	. 80	111	. 01	38	1.05	. 06	.13	13	48

GEDCHEMICAL ICP ANALVEIG

 DAWSON GEOLOGICAL File \#97-2951 Fage 1

SAMPLEA	$\underset{\sim}{\mathrm{KP}}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \text { PI } \\ P H \end{gathered}$	1N	$\begin{gathered} \mathrm{A6} \\ \mathrm{PPR} \end{gathered}$	$\underset{P H}{N I}$	CO	$\begin{gathered} \mathrm{KH} \\ \mathrm{FH} \end{gathered}$	$\begin{gathered} \text { FE } \\ 2 \end{gathered}$	A5	$\underset{\text { PPM }}{U}$	$\underset{\text { PPH }}{\text { Al }}$	$\begin{gathered} \text { iH } \\ \text { PFH } \end{gathered}$	SR FPM	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$		$\underset{P H}{B I}$	$\underset{\text { PP菏 }}{\text { V }}$	$\underset{\text { CA }}{C}$	z	$\begin{gathered} \text { LA } \\ P A K \end{gathered}$	$\underset{c}{\text { CR }}$	$\begin{gathered} \text { M6 } \\ \mathbf{Z} \end{gathered}$	$\underset{\text { PPH }}{\substack{\text { Ph}}}$	$\begin{array}{r} 11 \\ 2 \end{array}$	PPR	$\underset{Z}{A L}$	$\begin{array}{r} \text { UA } \\ 2 \end{array}$	k	$\underset{P H K}{N}$	$\begin{aligned} & \text { M11 } \\ & P R 1 \end{aligned}$
WBS-165	1	38	18	119	.1	191	20	492	4.69	170	5	MD	3	30	1	7	2	83	. 61	. 030	14	171	1.10	241	. 23	4	2.74	. 05	. 47	2	48
U8S-168	1	119	11	100	. 1	160	20	304	4.45	41	5	MD	3	27	1	2	2	98	. 55	. 029	11	132	1.77	182	. 32	2	2.15	. 04	. 63	1	16
U1SS-167	3	304	70	521	1.2	615	90	1841	10.54	1112	5	N0	2	72	4	2	2	102	1.09	. 076	23	407	4.71	279	. 17	2	3.92	. 09	. 75	1	1050
UES-16t	1	101	14	142	. 3	155	24	485	4.6	145	,	KD	2	5	1	6	2	4	2.08	. 075	12	123	1.76	$19!$. 17	7	1.90	. 06	. 30	1	171
435-169	5	194	151	¢5	1.4	523	53	1115	7.17	423	5	N0	2	40	6	2	2	127	1.42	. 045	17	455	5.22	144	. 15	7	4.02	. 05	. 34	1	165
U15-170	2	95	40	198	. 4	254	56	1622	8.69	276	4	ND	1	81	1	2	2	51	3.4	. 124	20	87	1.70	334	. 03	11	1.55	. 02	. 44	1	240
W15-171	1	69	9	210	. 1	143	19	364	3.12	30	5	\%	1	25	1	2	2	40	. 59	. 042	0	96	1.17	212	. 21	3	2.13	.03	. 21	1	12
Y15-172	1	71	7	13	. 1	125	18	308	4.17	42	5	10	1	20	1	2	2	74	. 53	. 031	-	109	1.38	133	. 23	2	2.12	. 03	. 19	1	10
U15-173	I	51	10	116	. 1	132	18	427	3.92	25	5	10	,	10	1	2	2	4	. 44	. 049	8	10%	1.35	160	. 20	2	2.18	. 03	. 16	1	15
LES-174	1	41	7	118	. 5	113	15	363	3.47	20	5	N0	1	19	1	2	3	55	. 41	. 054	7	9	1.10	145	. 19	2	1.83	. 02	. 19	1	12
W25-175	1	42	10	158	. 1	107	17	457	3.64	22	5	10	1	20	1	2	2	57	. 39	. 047	10	98	1.08	124	. 19	1	1.89	. 02	. 18	,	10
U15-174	2	94	17	169	. 1	112	14	497	5.33	45	5	ND		23	1	2	2	71	. 43	. 041	16	123	1.41	159	. 13	2	2.08	. 02	. 23	,	160
UJS-177	2	102	18	261	. 1	122	17	555	5.50	42	5	ID	2	29	1	2	2	68	. 48	. 045	20	123	1.27	159	. 10	8	2.20	. 02	. 35	2	6
WIS-174	1	71	16	137	. 1	190	19	514	5.13	75	J	\% 0	2	31	1	2	2	92	. 76	. 045	13	322	3.04	144	. 18	2	2.78	.05	. 10	1	5
W15-179	3	63	21	19	.1	151	18	122	5.44	45	4	10	1	37	1	2	2	72	. 47	.035	21	170	1.4	170	. 11	5	2.34	. 02	. 27	1	12
VRS-180	4	120	37	203	. 4	246	23	674	4.32	11	5	ND	2	26		2	2	02	. 49	. 047	14	300	3.07	5	. 06	4	2.44	. 02	. 16	1	50
M5-181	1	57	13	146	. 1	119	16	53	4.14	22	5	ND	2	23	,	2	2	60	. 38	. 046	13	120	1.21	210	. 14	5	2.06	. 62	. 22	1	11
MRS-142	5	109	13	197	. 1	284	27	553	5.17	21	5	80	1	$3!$	2	2	3	76	. 45	. 032	21	241	1.94	312	. 06	2	2.42	. 01	. 14	1	7
Mis-103	7	158	19	194	. 2	247	29	832	4. 21	60	5	物	4	36	1	2	2	63	. 6	. 035	20	21	1.41	431	. 01	3	2.17	. 01	. 17	1	5
M15-184	3	121	21	213	.2	407	52	1043	7.17	218	5	ND	2	37	1	2	2	112	. 60	.07t	15	755	4.60	142	.10	1	3.65	. 01	. 16	1	6
M85-185	3	111	39	161	. 2	534	49	939	6.73	50	5	ND		66	1	2	2	107	3.06	. 064	14	634	5.16	133	. 08	17	3.12	. 01	. 12	,	8
Wis-16	3	70	15	131	. 1	193	11	448	4.97	21	5	Wb		29	1	2	3	53	. 41	. 045	16	161	1.28	247	. 04	6	2.15	. 02	. 11	,	10
405-117	1	56	11	167	. 1	137	19	470	4.03	12	5	0	2	24	,	2	2	63	. 52	. 077	11	132	1.43	175	. 12	5	2.35	. 01	. 13	1	1
ves-108	1	61	11	177	. 1	270	26	502	4.25	11	5	ND	2	21	1	2	3	64	. 41	. 049	12	332	2.31	107	. 17	2	2.71	. 02	. 10	1	15
WB5-149	2	156	10	332	. 1	129	19	1453	3.18	9	7	N0	2	44	1	2	2	55	1.03	. 212	24	113	1.04	304	. 15	6	2.26	. 05	. 16	1	2
M 3 S-190	1	11	9	327	. 1	216	26	123	5.03	13	5	10	2	31	1	2	2	77	. 76	. 077	12	179	1.94	146	. 27	1	3.04	. 03	. 14	1	9
455-191	,	51	9	185	. 1	161	20	627	4.45	11	5	N0	2	25	1	2	2	69	. 60	. 057	11	167	1.81	136	. 31	5	2.11	. 02	. 13	1	7
185-192	,	12	1	121	. 1	144	21	620	4.59	11	5	mo	2	23	,	2	3	64	. 40	. 044	12	141	1.79	75	. 21	2	2.51	. 02	. 13	1	32
W125-193	1	112	15	137	. 2	109	36	1095	4.03	21	6	Ni	2	160	1	2	2	11	2.52	. 051	13	175	2.45	51	. 31	158	3.05	. 02	. 10	1	19
4t5-194	1	78	12	115	. 1	184	36	793	6.02	40	5	0	1	51		2	2	100	1.67	.033	12	116	2.39	31	. 45	21	3.18	. 02	. 05	1	25
UES-195	1	77	9	224	. 1	81	25	481	5.55	11	5	ND	3	44	1	2	2	41	.99	. 018	12	72	1.20	65	. 32	18	2.93	. 03	. 12		1
U85-196	1	50	2	133	. 1	128	20	505	4.74	2	5	Nill	2	30	1	2	2	81	. 77	. 049	10	139	1.77	72	. 47	3	2.75	. 02	. 16	1	1
M185-197	1	75	11	154	. 1	185	31	960	6.79	t	5	W0	2	34	1	2	2	93	1.11	. 087	18	119	2.53	40	. 35	19	3.10	. 01	. 15	1	4
M15-194	1	76	6	143	. 1	172	21	803	6.67	6	5	10	2	35	1	2	2	76	1.08	. 057	16	175	2.52	59	. 37	11	2.71	. 02	. 12	1	3
M5-179	5	140	19	148	. 3	94	17	454	5.35	16	5	10	2	48	1	2	3	59	. 92	. 055	11	65	. 86	298	. 13	10	1.62	. 01	. 15	1	4
MTS -200	1	69	5	144	. 1	133	20	670	5.49	5	5	WD	2	35	1	2	2	89	. 98	. 055	14	136	1.44	175	. 40	6	3.07	. 02	. 16	1	1
STJ C/NLS	19	61	41	132	7.1	68	28	:23	4.07	37	16	1	37	51	17	16	20	54	. 50	. 088	38	60	. 93	181	. 08	30	1.78	. 06	. 13	13	53

SAIPLEA	$\begin{gathered} \text { KO } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{CU} \\ \mathrm{PFH} \end{gathered}$	$\begin{gathered} \text { PB } \\ \text { PTH } \end{gathered}$	$\underset{\text { pox }}{ }$	$\begin{aligned} & A 6 \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \text { HI } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPK } \end{gathered}$	$\begin{aligned} & \text { BN } \\ & \text { PMM } \end{aligned}$	$\begin{array}{r} \text { FE } \\ \mathbf{Z} \end{array}$	$\begin{array}{r} \text { A5 } \\ \text { P.PR } \end{array}$	$\begin{gathered} \mathbf{U} \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { AUN } \\ \text { PPM } \end{gathered}$	$\begin{aligned} & \text { TH } \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} \text { 8R } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { CD } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Sl } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { BI } \\ \text { PPM } \end{array}$	$\begin{array}{r} V \\ \text { PFH } \end{array}$	$\begin{gathered} C A \\ z \end{gathered}$	P	$\begin{aligned} & \text { LA } \\ & \text { PPH } \end{aligned}$	$\begin{gathered} C R \\ \text { PRM } \end{gathered}$	$\begin{gathered} \text { Mi } \\ \text { Z } \end{gathered}$	$\underset{P P K}{i n}$	$\begin{gathered} \text { II } \\ \text { 2 } \end{gathered}$	$\underset{P P H}{1}$	$\underset{Z}{N L}$	$\begin{aligned} & \text { NA } \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{Z} \end{aligned}$	$\underset{P M}{N}$	ANB
4ns－20］	1	169	11	204	． 1	140	44	1579	9.19	16	3	WD	5	48	1	2	2	125	1.40	． 053	28	137	2.14	153	． 38	41	4.10	． 03	． 20	1	J
vis－202	1	71	4	110	． 1	B	18	501	5.23	9	5	ND	2	25	1	2	2	14	． 92	． 045	9	103	1.14	114	． 46	2	2.54	． 02	． 11	1	
［15－203	2	［5］	7	167	． 1	191	30	1047	6.52	24	5	10	3	5	1	2	2	1	1.40	． 012	17	186	2.12	135	． 26	ts	2.95	． 02	． 14	1	1
U15－204	2	103	1	212	． 1	122	32	1443	6．99	37	5	ND	3	19	1	2	2	76	1.84	． 124	22	129	1.48	280	． 17	16	2.72	． 02	． 15	1	J
M05－205	1	61	2	155	． 1	139	22	697	5.59	17	5	10	4	50	1	2	2	85	1.14	． 032	20	135	1.50	173	． 30	26	3.31	． 02	.20	1	1
412－206	J	72	18	203	． 1	124	27	1496	5.81	37	5	知	1	27	1	2	2	61	． 37	． 058	17	114	1.52	150	． 11	3	2.29	． 02	． 11	1	2
Wf9－207	1	60	13	11	． 1	111	22	172	5.57	33	J	10	2	23	1	2	2	73	． 52	． 058	9	135	1.13	129	． 19	2	2.31	． 02	． 10	2	5
U15－208	1	37	3	141	． 2	51	14	542	3.40	13	5	10	1	35	1	2	2	50	． 50	． 046	1	51	． 74	125	． 11	2	1.72	． 02	． 04	，	1
W5S－209	1	72	6	122	． 1	114	19	449	5.52	27	5	10	1	21	1	2	2	69	． 31	． 030	\uparrow	116	1.11	113	． 19	2	2.55	． 02	． 16	1	3
HES－210	1	45	4	137	． 1	97	11	411	5.13	21	5	N	1	26	1	2	2	6	． 37	． 040	1	19	1.31	161	.16	2	2.11	：02	．17	2	4
HES－211	3	82	11	324	． 1	93	25	1917	7.04	33	5	10	1	39	2	5	2	78	． 32	． 084	11	86	1.14	200	． 12	2	4.08	． 02	． 19	1	1
135－212	5	109	B	140	． 1	174	24	316	4.32	19	5	no	2	25	1	1	2	10	． 26	． 045	12	169	1.11	226	． 15	3	3.32	． 02	． 17	d	1
U115－213	2	4	5	202	． 1	179	23	504	4.30	14	5	N0	1	25	1	2	2	75	． 23	． 037	11	146	1.38	323	． 12	4	2.87	． 02	． 14	1	3
M5S－214	1	71	14	113	． 1	111	27	H7	5.91	37	5	ND	2	24	1	2	2	72	． 70	． 053	11	189	2.76	133	． 16	2	2.10	． 02	． 07	1	12
418－215	4	79	17	24	． 1	116	32	1445	6.94	32	5	MO	1	32	1	2	2	59	． 40	． 047	27	97	1.30	143	．11	3	2.23	． 01	． 11	1	4
Y（SS－216	1	71	16	107	． 1	115	20	658	5.54	30	5	＊ 0	1	21	1	2	2	41	． 55	． 047	15	123	1.89	141	． 20	4	2.34	． 02	． 01	1	48
M15－217	1	63	4	105	． 1	123	19	504	5.57	25	5	10	2	21	1	2	2	71	． 53	． 046	14	137	1.91	130	． 17	2	2.11	． 03	． 09	1	3%
105－211	1	62	7	101	． 1	14	20	450	5．36	30	5	10	2	19	1	2	2	79	． 73	． 052	12	150	1.91	125	．27	3	2.52	． 01	． 08	1	2
475－219	1	57	9	124	． 1	162	25	436	5.94	32	5	W	2	22	1	2	2	93	． 75	． 116	13	155	1．71	174	． 25	2	3.46	． 02	． 07	1	3
4n5－576	4	101	12	118	． 4	22	8	234	10．16	13	5	\％ 0	1	67	1	2	2	45	． 26	．11\％	7	33	． 45	130	． 10	2	2.17	． 04	． 12	2	1
245－577	3	51	12	141	． 3	47	14	312	4.47	11	5	10	2	4	1	2	2	83	． 25	． 052	7	47	． 05	124	． 20	2	2.57	． 03	． 01	1	1
M5－571	4	155	14	15	． 3	22	10	365	16.31	17	5	泪	2	21	1	2	2	4	． 04	． 104	7	31	． 0	126	． 16	2	4.17	． 02	． 14	，	！
405－379	1	211	10	715	－ 3	147	50	1470	11.04	16	5	0	2	35	3		2	156	． 34	． 005	11	158	2.43	115	． 32	2	4.15	． 04	． 22	2	1
MRS－300	10	217	21	403	． 3	67	24	1987	13.31	10	7	0	5	59	2	2	5	176	． 48	． 019	57	90	1．59	375	． 27	2	3.01	． 02	． 72		6
Lis－381	3	57	17	220	． 2	78	22	$1 \mathrm{HP}_{2}$	8.72	18	8	10	3	41	1	2	2	97	． 30	． 085	30	47	1.01	253	． 14	2	3.27	． 02	． 20	2	1
MPS－382	4	116	9	260	． 1	14	36	2727	Q．16	43	1	10	3	84	1	2	2	132	． 15	． 063	34	197	3.16	202	． 27	2	3.79	． 06	．51	1	1
WP6－393	3	66	9	34	． 3	40	17	718	4.15	31	6	10	1	48	3	2	2	43	． 52	．049	16	26	． 55	211	． 07	4	1.44	． 03	． 14	1	5
URC－384	5	134	7	435	． 2	81	32	2907	4.25	11	5	10	2	94	13	2	3	67	1.13	． 067	12	57	． 11	347	． 12	3	2.37	． 03	． 14	4	1
LS5－305	8	75	5	240	． 1	61	17	355	3．tis	10	5	10	3	17	1	2	3	77	． 18	． 032	10	45	1.05	87	． 12	3	2.10	． 02	． 10	1	1
涨5－364	4	216	14	$4{ }^{4} 7$	． 1	125	18	1710	7.91	16	5	10	3	49	5	2	2	42	1.05	． 084	21	76	1.35	297	． 17	7	2.87	． 05	． 36	1	2
mas－387	\cdots	303	13	48	． 2	158	0	1645	9.20	46	7	ND	3	40	5	2	3	98	1.50	． 099	33	\％ 0	1.46	255	.12	4	2.99	． 08	． 40		20
U95－308	t	113	9	247	． 1	25	10	701	3.11	2	5	W0	1	44	2	2	2	15	． 09	． 021	24	10	． 04	571	． 01	3	． 44	． 01	． 04	1	1
mits－319	4	176	11	210	.2	97	27	1984	6.53	14	5	10	1	41	2	2	2	54	． 40	． 037	11	39	． 71	530	． 06	2	1.46	． 01	． 29	1	16
155－390	2	48	7	152	． 2	55	14	316	4.00	13	5	10	1	21	1	2	2	57	． 31	． 048	10	39	． 50	204	． 07	4	1.69	． 02	． 09	2	250
45－391	3	103	4	101	． 1	6	24	451	5.30	47	5	N0	3	68		3	2	18	1.69	． 040	18	73	1.07	23	． 21	9	2.52	． 04	． 35	2	10
URS－392	5	173	\dagger	127	． 1	121	37	1554	7.16	27	6	0	3	53	1	3	2	80	1.30	． 064	24	70	．99	319	． 10	7	2.10	． 05	． 32	1	17
STP C／AN－5	17	61	36	131	6.9	41	29	415	4.14	34	24	0	37	50	11	17	11	55	． 52	． 085	37	51	． 94	110	． 08	31	1.12	． 06	． 13	13	49

DAWSON GEOLOGICAL FILE * 97-2851
Fage 3

SAMTET	$\begin{gathered} \mathrm{MR} \\ \mathrm{PH} \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { PPH } \end{gathered}$	$\begin{array}{r} \text { PI } \\ \text { PH } \end{array}$	$\begin{array}{r} \text { IN } \\ \text { PPP } \end{array}$	$\begin{gathered} \text { A5 } \\ \text { PPR } \end{gathered}$	$\begin{gathered} \text { NI } \\ \text { PPR } \end{gathered}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{PFH} \end{gathered}$	$\begin{aligned} & \text { HN } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \mathrm{FE} \\ \mathbf{Z} \end{gathered}$	$\begin{aligned} & A S \\ & P P B \end{aligned}$	$\begin{array}{r} \text { U } \\ \hline \end{array}$	$\begin{gathered} \text { AU } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { TH } \\ \text { PP/ } \end{gathered}$	$\begin{array}{r} 5 k \\ \text { Prin } \end{array}$	$\begin{gathered} \mathrm{CD} \\ \mathrm{PH} \end{gathered}$	$\begin{array}{r} \text { St } \\ \text { PRH } \end{array}$	$\begin{gathered} \text { II } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} V \\ \text { PFK } \end{array}$	$\begin{gathered} C A \\ Z \end{gathered}$	$\begin{aligned} & p \\ & z \end{aligned}$	$\begin{gathered} \text { LA } \\ \text { PFh } \end{gathered}$	$\begin{gathered} \text { CR } \\ \hline P M \end{gathered}$	$\begin{gathered} \mathbf{K 5} \\ \mathbf{z} \end{gathered}$	BA PH	$\begin{array}{r} 71 \\ 2 \end{array}$	P\%	$\underset{\mathrm{AL}}{\mathrm{Z}}$	$\begin{gathered} \text { NA } \\ Z \end{gathered}$	K	$\begin{gathered} \# \\ \text { P阴 } \end{gathered}$	AUI PFI
Hes-393	4	88	4	107	. 1	67	21	601	3.90	12	6	ND	2	23	1	2	2	60	. 28	.056	13	44	. 15	152	. 10	7	2.09	. 02	. 16	1	18
MRS-394	5	1t2	7	117	. 1	17	23	759	6.37	15	7	NO	2	27	1	2	4	82	. 36	. 042	20	53	. 3	201	. 10	11	2.41	. 02	. 19	1	6
upt-345	2	178	10	200	. 1	116	37	1936	5.79	12	5	ND	2	37	1	2	3	16	. 76	. 051	17	64	1.83	205	. 21	7	3.77	. 03	. 42	1	1
*RS-396	2	129	1	279	. 2	88	27	1056	3.92	15	5	ND	1	45	2	2	2	49	1.31	. 124	13	40	. 63	169	. 01	12	1.54	. 03	. 19	1	0
U45-397	5	92	12	242	. 1	11	19	552	6.34	9	5	ND	1	32	1	2	2	69	. 31	. 052	12	55	. 11	140	. 12	10	2.32	. 02	.19	1	5
HES-JHit	3	17	1	504	. 1	101	36	2324	4.4J	10	5	NIT	1	76	10	2	2	52	2.18	. 121	14	50	. 77	334	. 04	13	1.14	. 04	. 22	1	7
URS-3\%9	3	118	11	543	.1	135	26	1789	5.24	14	5	$N 0$	2	37	2	2	2	64	. 51	. 139	26	70	. 11	304	. 12	12	2.54	. 02	. 25	1	62
WRIS-400	3	95	4	111	. 1	294	30	44	5.06	57	5	Nb	2	34	,	2	2	94	. 49	.033	10	313	2.74	252	. 29	4	3.22	. 04	. 42	1	3
M15-401	2	179	7	155	. 1	213	32	519	6.10	37	5	\%	2	37	1	2	2	17	. 43	. 103	14	124	1.57	236	. 24	7	2.96	. 04	. 24	,	36
M 4 S-402	1	77	6	116	. 1	92	32	1129	4.57	14	5	ND	2	52	$!$	2	2	6	. 90	. 184	4	67	. 42	242	. 16	4	2.22	. 03	. 24	1	36

GEロCHEMIEAL ICF AMALYEIG

DAWEON GEDLOGICAL FROJECT-367E File * 87-3918 Fage 1

SATRLEI	HO	©	PI	IN	$\underset{N H}{N H}$	$n!$	CO	N N	FE	AS	U	AN	IH	5π	00	Sd	II	V	CA	P	LA	CR PR	M5	8 PPR	π	$\stackrel{1}{P P F}$	$A L$	$\begin{gathered} N A \\ y_{2} \end{gathered}$	2	HP	AUl FPI
W05-1	1	16	12	92	. 1	20	7	430	2.06	4	5	NO	2	16	1	2	2	37	. 11	. 077	1	26	. 26	147	. 07	2	1.20	. 05	. 08	1	1
\% 12	4	31	20	185	. 3	34	1	423	4,66	33	5	$n 0$	1	16	1	6	2	53	. 08	. 064	9	40	. 35	253	. 01	2	1.93	. 02	. 09	2	4
WDS-3	2	32	14	117	. 1	86	12	1328	2.85	29	5	ND	3	19	1	2	2	44	. 20	. 083	10	61	. 74	151	. 09	6	1.15	. 04	. 07	1	10
WDS-4	4	75	131	568	. 4	55	20	1465	6.44	710	5	N0	3	24	J	4	2	38	. 08	. 011	14	27	. 33	191	. 02	2	1.53	. 02	. 09	1	520
MBS-5	6	72	28	277	. 5	51	14	795	6.27	147	5	ND	3	19	1	3	3	51	. 14	.071	15	39	. 51	184	. 04	2	2.03	. 02	. 09	1	205
4.15-6	3	26	14	100	. 1	24	9	539	2.97	19	J	ND	1	13	1	2	2	46	. 07	. 031	!	23	. 4	87	. 07	2	1.35	. 03	. 04	1	60
WDS-7	5	125	11	171	. 1	47	11	513	9.44	37	5	ND	3	43	1	2	2	64	. 14	. 137	12	49	. 73	137	. 09	3	3.02	. 03	. 10	1	4
U05-1	7	164	11	104	. $]$	122	27	1199	7.84	21	5	ND	2	15	1	1	2	60	. 72	.051	11	73	. 94	224	. 04	7	1.44	. 06	. 16	2	33
WDS-9	3	12	22	122	. 1	220	32	1151	5.71	80	5	NO	2	22	1	5	2	73	. 31	. 085	16	241	2.17	132	. 05	3	2.17	. 03	. 09	1	10
WOS-10	3	97	30	136	. 2	244	27	1101	6.18	109	5	ni	3	22	1	3	2	61	. 31	. 062	15	241	3.31	45	. 04	5	2.85	. 03	. 07	1	13
vos-11	4	W	21	143	. 2	219	31	1308	6.15	104	5	ND	2	23	1	5	2	77	. 32	. 100	15	225	2.72	144	. 05	8	2.92	. 03	. 10	1	15
UDS-12	3	51	19	110	. 1	153	20	785	4.37	60	5	ND	1	17	1	3	2	65	. 22	. 075	1	163	1.84	90	. 05	2	2.01	. 03	. 06	1	26
wDS-13	2	62	14	92	. 1	234	23	709	4.51	57	5	ND		16	1	1	2	57	. 22	. 069	7	220	2.11	1	. 04	4	2.54	. 02	. 05	1	4
WSS-14	2	43	19	99	.1	216	23	133	4.12	52	5	ND	1	16	1	5	2	59	. 21	. 072	,	226	2.13	90	. 03	3	2.37	. 02	. 05	1	4
UDS-15	2	67	17	118	. 1	222	33	1479	3.51	63	5	ND	2	11	1	2	2	76	. 27	. 093	11	242	2.97	122	. 06	5	2.71	. 03	. 07	1	4
URE-16	3	4	21	132	. 1	330	35	1681	5.83	45	5	NO	3	24	1	3	2	44	. 51	. 064	20	386	4.21	105	. 04	7	2.77	. 03	. 07	,	13
MDS-17	4	109	31	132	. 7	2as	31	1601	5.71	123	5	ND	3	29	1	5	2	60	. 61	. 047	18	247	3.42	37	. 04	6	2.51	. 03	. 06	1	135
WDS-11	3	131	203	344	1.3	493	60	2747	9.74	712	5	MD	3	41	1	0	2	77	. 44	. 113	13	213	. 92	110	. 01	10	1.13	. 02	. 13	1	230
STD E	19	58	42	132	7.0	70	27	1019	3.12	40	18	0	30	49	18	16	20	58	. 46	. 096	37	58	.t!	176	. 07	36	1.10	. 06	. 15	12	50

Cu	Au＊
ppm	PFto

$G-2610$	-	2
$G-2611$	-	85
$G-2612$	-	87
$G-2615$	-	22
$G-2614$	-	104
$G-2615$	-	1
$G-2616$	-	1
$G-2617$	-	5
$G-2618$	-	11
$G-2619$	-	1
$G-2690$	-	1
$G-2621$	-	1
$G-2622$	-	1
$G-2623$	-	1

G－こらご 4	－	1.
6－2655	－	1
こ6こ5A		1

DAWSON GEOLOGICAL PROJECT 367B FILE\# 87-3918 FAGE\# 3

SAMFLE	Au*
	Ppb
$G-26.36$	1
$G-2637$	1
$G-26.38$	1
$G-2639$	1
$G-2640$	1
$G-2641$	5180
$G-2642$	1.36
$G-2643$	21

LIST OF PERSONNEL

Name \& Position	Dates	Days
J. M. Dawson, P.Eng. (Geologist)	July 2 (0.5), 12 (1.0), 31 (0.5), August 12 (0.5)	2.5
B. Dewonck, B.Sc. (Geologist)	August 20 (1.0), 24 (0.5), 26 (0.5), 28 (1.0), 31 (1.0) September 1 (1.0), 3 (0.5)	5.5
R. Henderson (Assistant)	July 5 to 19 inclusive (15.0), 20 (0.5)	15.5
B. Doyle (Assistant)	July 5 to 19 inclusive (15.0), 20 (0.5)	15.5

APPENDIX "C" STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

LABOUR

J. M. Dawson, P.Eng.
2.5 days @ \$400/day \$ 1,000.00
B. Dewonck, B.Sc.
5.5 days @ $\$ 300 /$ day $1,650.00$
R. Henderson, Assistant
15.5 days @ $\$ 225 /$ day $3,487.50$
B. Doyle, Assistant
15.5 days @ \$175/day 2,712.50

EXPENSES AND DISBURSEMENTS

Geochemical Analyses $\quad \$ 3,915.65$
Truck Rental 1,904.60
Helicopter Support 13,349.70
Contract Personnel (Amex Exploration
Services) 3,168.00
Room and Board $\quad 1,629.20$
Field Equipment and Supplies 578.36
Drafting and Base Map Preparation 877.38
Map Reproduction, Photocopying, Secretarial and Office Expense

$$
\$ 8,850.00
$$

25,737.64
$\$ 34,587.64$

REFERENCES

Buisson G. and Leblanc, M. (1985):Gold-bearing Listwaenites (Carbonatized Ultramafic Rocks) from Ophiolite Complexes; in Extract from Metallogeny of Basic and Ultrabasic Rocks published by the Institute of Mining and Metallurgy, London England.

Church, B. N. (1987): Geology and Mineralization of the Bridge River District; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1985, Publication 1987-1.
Dawson, J. M. (1987): Report on the Will Claim Group; private report to No. 28 Sail View Ventures Ltd.

Woodsworth, G. J. (1977): OpenFile Map 482, Pemberton Area (92J); Geological Survey of Canada.

APPENDIX "E"

WRITER'S CERTIFICATE

WRITERS CERTIFICATE

I, BERNARD DEWONCK, of 8480 Littlemore Place, Richmond, British Columbia DO HEREBY CERTIFY THAT:

1. I am a geologist employed by Bel-Can Geological Services Ltd. of 8480 Littlemore Place, Richmond, British Columbia, and retained by Dawson Geological Consultants Ltd. to prepare this report.
2. I am a graduate of the University of British Columbia, B.Sc. in Geology (1974), a Fellow of the Geological Association of Canada, and a Member of the Canadian Institute of Mining and Metallurgy. I have practised my profession on a seasonal basis for three years, and full-time for ten years.
3. I am the author of this report, which is based on my participation in and supervision of the fieldwork described herein.
4. I have no interest, direct or indirect, in the property discussed in this report or in the securities of No. 28 Sail View Ventures Ltd., nor do I expect to receive any.

DATED at Vancouver, British Columbia this 13 th day of October, 1987.

Geologist

$$
\begin{aligned}
& \text { Nom" }
\end{aligned}
$$

