1986 EXPLORATION REPORT
H\&H CLAIM GROUP
OLIVINE MOUNTAIN, TULAMEEN AREA SIMILKAMEEN MINING DIVISION (ATS: 92H/10)
LAT. $49^{\circ} 31^{\prime} \mathrm{N}$ LONG. $120^{\circ} 52^{\prime} \mathrm{W}$
Owned and Operated by:
North American Platinum Ltd.
615 Lillooet street Vancouver, B.C.
Report Written by:
John Gravel, M.Sc.A.
January 7, 1987

GEOLOGICALXRANCH
ASSESSMENT REPORT
16,323

Table of Contents

Page
Summary 1
Recommendations 2
Estimated Cost of Recommendations 2
Introduction 3
Location, Access and Physiography 3
Claim Status 5
History 5
Geology
Regional Geology 7
Local Geology 7
Mineralization
Placer Deposits 10
Lode Deposits 11
Geochemical Survey
Description of Results 13
Discussion of Results. 27
Conclusion 28
Reference List 29
Table of Appendices
Appendix I Certificate
Appendix II Statement of Exploration Expenditures 1984-1986 Appendix III Sampling, Analytical, Statistical and Plotting Procedures
Appendix IV Analytical Results
Appendix V Letter of Review - Donald Allen, P.Eng. (B.C.)
List of Tables and Figures
Page
Table 1. Concentrations of $P t$ and $A u$ in units of the Tulameen Ultramafic Complex. 12
Figure 1. Location and Access 4
Figure 2. Claim Map 6
Figure 3. Regional Geology 8
Figure 4. Local Geology 9
Figure 5. Sample Location in map pocket
Figures 6a-61
Figures 6a-61 Element Dot Maps 14-25
Figure 7. Compilation Map 26

Summary

North American Platinum holds title to 19 contiguous lode claim units in the Tulameen River area of the Similkameen Mining Division. The claims principally overly the Tulameen Ultramafic complex, a zoned "Alaskan type" ultramafic intrusion. A core of dunite forming the summit of olivine Mountain, is asymmetrically ringed by successive layers of olivine clinopyroxenite, hornblende clinopyroxenite, and syenogabbro to syenodiorite. The complex intruded Nicola Group metasediments and metavolcanics.

A geochemical program was carried out by GHS Geochemical Services Ltd. on October 6th to 12 th , 1986. A total of $318 \mathrm{sam-}$ ples were collected in a region of anomalous platinum and gold. Samples were fire assayed for gold, platinum and palladium as well as ICP spectrometer analysed for 30 other elements.

Anomalously high levels of gold (up to 288 ppb) and platinum (up to 355 ppb) were encountered in rock and soil. Three targets having potential of economic mineralization have been defined;

1) a chromite rich zone having anomalous platinum concentration found in clinopyroxenite;
2) a zone of deformation along the Tulameen Ultramafic Complex/Nicola Group contact having anomalous levels of platinum and palladium in serpentinized cinopyroxenite, and gold-copper mineralization in quartzcarbonate veins hosted by the Nicola rocks; and
3) an inferred sulfide zone with gold-platinum values found in or adjacent to the above described deformation zone.

Further work is warranted on these targets. The source of goldcopper anomalies down slope of the deformation zone should be clarified and the soil grid should be expanded to cover the entire Claim Group.

Recommendations

Priority is given to the defining of economic material in the three target zones.

Chromite rich pod: continued sampling of soils and rocks to pinpoint high grade zones, followed by backhoe trenching, mapping and sampling of bedrock.

Deformation zone: due to the present inaccessibility of known showings, a hand trenching and blasting program is recommended followed by mapping and sampling of the bedrock.

Sulfide zone: hand trenching and blasting followed by mapping and sampling is recommended.

A lower priority is given on defining the source of the gold-copper anomaly downslope of the deformation zone. Good accessability will allow the trenching of this zone by backhoe. The remainder of the property should be geochemically sampled and mapped to define other potential zones of mineralization.

A program for 1987 is recommended at a total cost of $\$ 80,000$.

Estimated Cost of Recommendations

-	Completion of Road to Property	\$15,000
	Labour, Room \& Board	
	1 geologist \& 3 assistants for 1 month	\$17,000
-	Rental of Vehicles	\$3,000
-	Stripping, blasting \& trenching backhoe @ \$80/hr \& blasting for 50 hrs .	
-	backhoe @ $\$ 80 / \mathrm{hr}$ \& blasting for $50 \mathrm{hrs}$.	$\$ 5,000$
-	Report Preparation	\$5,000
-	Contingencies	\$5,000
	Subtotal	\$65,000
-	Administration	\$15,000
	TOTAL	\$80,000

Should results of the 1987 program prove encouraging, a Phase II program entailing diamond drilling would be warranted.

Introduction

The sharp increase in platinum prices since 1984 have spurred a heightened interest in platinum exploration. Western world demand in 1985 outstripped supply by $100,000 \mathrm{oz},(2,810,000$ oz. vs. 2,740,000 oz.), a scenario that is forecasted to continue in the near future (Stockmarket; The Examiner, October 1986).

North American Group consisting of British Columbia. complex, believed to be the lode the rich platinum placers found in and around the property.

A program comprising geological mapping, soil, stream and rock sampling was undertaken from October 6 th to October 12 th, 1986. Exploration was carried out by GHS Geochemical Services Ltd. involving J. Gravel, D. Morneau and J. Dykes. Efforts were concentrated along Hines Creek were previous surveys uncovered modestly anomalous levels of platinum and pathfinder elements. The following report summarizes the results of the 1986 and previous exploration programs and reviews known literature on the area.

Location, Access and Physiography

The H\&H Claim Group lie on the northeastern flank of Mount Olivine approximately 10 kms . west of the town of Tulameen and 25 kms. northwest of Princeton (fig.l). The property is accessible via paved road from Princeton to Tulameen, from there a good gravel road follows the north bank of the Tulameen River to the property's northern boundary. At present a cable car suspended over the Tulameen river provides access to the main portion of the property.

The topography varies from moderately sloping, over most of the claim group, to precipitous along the Tulameen River and sections of Hines Creek. Elevation ranges from 850 metres (2800 ft. above sea level) along the Tulameen River to 1800 metres (5900 ft. a.s.I.) at the summit of Olivine Mountain. Thick (10 m.) outwash covers a terrace found along the lower 100 metres (500 ft.) of the property. Thin (typically <l metre) locally derived glacial till or residual soil overlies the mid and upper slopes. A moderate climate sustains a mature forest comprising cedar, spruce, pine, birch and alders. The snowpack averages 1 to 2 metres and generally lasts until late May or early June.

Claim Status

North American Platinum holds 100% title to the H\&H Claim group comprising 19 contiguous claim units in the similkameen Mining Division of British Columbia (fig. 2). The boundary of the Claim Group was surveyed in October, 1986 by S. Buzikievich, a professional surveyor. Claim status of the $H \& H$ Claim Group prior to acceptance of this report is as follows:

Claim Name	No. of Units	Record No.	Expiry Date
H\&H +	4	128	October 18, 1987
H\&H +	8	265	August 29, 1987
Eastside +	2	1709	September 9, 1987
Eastside 3*	1	541110	October 15, 1987
Eastside 4*	1	541109	October 15, 1987
Westside *	1	1747	October 5, 1987
Westside *	1	1748	October 5, 1987
Westside *	1	1749	October 5, 1987
+ Modified M * 2 post cla	ral Claim		

History

The Tulameen area is one of British Columbia's oldest placer camps having been discovered prior to 1885. In 1891 the camp was recognized as an important producer of platinum. Recorded gold production from the camp from 1886 to 1941 is 37,422 ounces of gold (Holland, 1950). Platinum production is not well documented but has been estimated by o'Neill and Gunning (1934) at about 20,000 ounces. Other economic minerals found in the area include diamonds, copper, magnetite, chromite, molybdenite, asbestos, coal and clay.

The geology and placer deposits of the area have been studied by numerous private and government workers such as Law (circa 1900), Camsell (1912, 1913 and 1919), Poitevin (1924), O'Neill and Gunning (1934), Rice (1948), Holland (1950), Ruckmick (1956), Eastwood (1959), Steiner (1960), Findlay, (1969) and most recently by St. Louis (1986). Examination of literature has shown little, if any, systematic exploration has been carried out by the industry for lode platinum deposits in the Tulameen Ultramafic Complex.

Regional Geology

The H\&H Claim group lies in the Princeton Map Sheet (fig. 3) mapped by Rice (1947). The area is underlain by metasedimentary and metamorphic schists of the upper Triassic Nicola Group that have been intruded by syenodioritic to ultramafic rocks of the Tulameen complex. According to Findlay (1969), Nicola rocks of the Tulameen area are dominantly albite-epidote-amphibole schists and calcareous greenschists derived from andesitic to basaltic flows. Metasediments, including argillaceous quartzites, quartz-mica-plagioclase schists and crystalline limestone bands, are subordinate. Other intrusions in the area include the Eagle Mountain granodiorite (a member of the Coast Mountain Complex, unit 3) and the Copper Mountain intrusions (unit 4). The latter are indicated by Findlay to be related to the gabbroic phases of the TUC. Tertiary sedimentary rocks (units 6 and 7) outcrop to the east and southeast of the Complex.

Local Geology

The H\&H Claim Group overlays the northeastern margin of the Tulameen Ultramafic Complex (fig. 4). The TUC is an "Alaskantype" ultramafic complex as described by Findlay (1969);
"... the ultramafic units form an elongate body that dips steeply to the west and is bordered by, and partly overlain by gabbroic rocks. Gabbroic and ultramafic rocks occur in about equal amounts, but their distribution is asymmetric, with the former mainly restricted to the eastern and southeastern parts of the complex. The total exposure area of the complex is about 22 sq . mi. (57 km2).

Ultramafic rocks outcrop in three areas within the complex...

The principal ultramafic rocks are dunite, olivine clinopyroxenite, and hornblende clinopyroxenite. Peridotite, clinopyroxenite, hornblende-olivine clinopyroxenite, and hornblendite are subordinate and generally not mappable units. A minor feldspathic rock - mafic pegmatite - is probably a late*differentiate of the ultramafic suite.

In the northern part of the complex, the ultramafic units display the characteristic zonal pattern of similar intrusions in Alaska and U.S.S.R., comprising a dunite core surrounded by shells of olivine clinopyroxenite and hornblende clinopyroxenite. South of Olivine Mountain, where dunite is not

Figure 3. Regional geology of the Tulameen area.

Figure 4. Local geology of the Tulameen Complex
exposed, the two main ultramafic zones contain a median zone of olivine clinopyroxenite bounded by hornblende clinopyroxenite. In the Tanglewood Hill area, hornblende clinopyroxenite is the principal ultramafic type exposed.

The principal gabbroic types are syenogabbro and syenodiorite with the former most abundant. In addition to forming the large mass lying to the east of Lodestone Mountain, gabbroic rocks occur elsewhere as smaller bands and lenses notably south of Olivine Mountain along the west margin of the complex, on the northeast flank of Olivine Mountain, and on Lodestone Mountain."

Outcrops are abundant on the summit of Olivine Mountain and along the bed of the Tulameen River, exposures are less common along Hines Creek and rare or non-existent on the gentler slopes. A core of dunite (la in Figure 5) forms Olivine Mountain in the southwest corner of the claim group. Alternating bands of olivine Clinopyroxenite (lb), Hornblende Clinopyroxenite (lc) and syenodiorite to syenogabbro (ld) having a southeast to northwest trend underlies most of the claim group. Nicola Group rocks are found in the northeastern corner of the property.

Mineralization

Placer Deposits
The Tulameen River area is well known for its placer gold and platinum deposits. The placer deposits were described by I.aw (circa 1900), Camsell (1913), O'Neill and Gunning (1934) and Raicevic and Cabri (1976). Steiner (1961), in studying a placer deposit on the Tulameen River near Lawless Creek immediately east of the Claim Group, states on page 4 of his report an average grade of 14.6 oz . platinum and 6.9 oz gold per ton of heavy mineral concentrate.

The gold and platinoid minerals in the camp are accompanied by chromite, magnetite, and in places, native copper. The platinoid minerals, magnetite and chromite are derived by erosion of the ultramafic rocks of the Tulameen Complex. The gold is thought to have originated from gold bearing quartz veins in both the Tulameen acomplex and Nicola group rock. i.ccording to Raiceivic and Cabri:
"The gold and platinum of the placers must have been released from the parent rocks in preglacial time and deposited in preglacial placers, because, since glacial times, although canyons have been cut in the floors of some of the valleys, erosion has not
succeeded in removing the mantle of glacial debris over most of the areas much less eroding any quantity of the underlying rock. Some dissipation of preglacial placers must have occurred, as well as further concentration during postglacial times by reworked deposits in the present river beds. The icesheet also filled up some valleys with detritus so that, in some cases, the streams did not re-occupy their original channels after the retreat of the ice. There is, therefore, the possibility of the occurrence of buried placers deposits."

Lode Deposits

Platinum: the ultramafic complex is undoubtedly the source of platinoid minerals in the Tulameen placer deposits. The distribution can be highly erratic but overall a strong correlation exists between platinum concentration, chromite content and rock type. St.Louis (1986) assayed over 300 rocks, the results are given in Table 1.

The most promising rock units based on studies by Findlay (1969) and St. Louis (1986) are dunites, serpentinites and olivine clinopyroxenites as these units are most likely to contain chromite rich pods that can accumulate platinum in economic concentrations. A chromite rich sample collected by B. Holliday (see Appendix IV) from the H\&H claim group assayed 0.160 oz./t Pt ($\$ 108 \mathrm{Cdn} . / \mathrm{ton}$ at $\$ 675 \mathrm{Cdn} . / \mathrm{oz}$.) and 32.18 Cr 203 .

A second less studied but potentially lucrative target would be sulfide rich veins and lenses in the complex. Typically, platinum group elements are mined from sulfide rich horizons in ultramafic complexes. Accumulation of PGE by sulfides can produce enrichments ranging from 3 ppm in sudbury type ore to 2,500 ppm in Merensky Reef (Bushveld Complex) type ore (Gravel,

Gold: background levels of gold vary greatly from rock unit to rock unit. St. Louis (1986) measured the highest concentrations in the syenodiorites and syenogabbros having an average content of 40 ppb . It is highly probable that hydrothermal events could scavenge gold from these units and precipitate economic enrichments in quartz-carbonate veins. Chisholm (1982) in a private report for Tarnation Mining Ltd. reports that gold values have been obtained from the property.

Number of samples in each case is given in parenthesis.

Copper: copper concentrations are reported in the Olivine Mountain area. According to Camsell (1913) they appear to be confined to east-west zones of shearing although chalcopyrite is a primary mineral in places.

Chromite: chromite occurs near the outer borders of the peridotite and olivine pyroxenite phases of the Tulameen complex. It is a primary mineral and occurs as disseminated grains and locally as irregular veins or masses up to $10-15$ centimeters in diameter.

Magnetite: magnetite in the Tulameen Complex was studied by Eastwood (1959) and Ruckmick (1956). Abundant magnetite is found in the pyroxenite phase and locally in the peridotite-dunite. Mapping by Ruckmick outlined a large area containing greater than 20% magnetite. Drilling by Imperial Metals on Lodestone Mountain and Tanglewoodhill has outlined 176.9 million tonnes grading 14.5% iron. Similar material may be present on the claim group.
Diamonds: Camsell (1913) reports the presence of diamonds, which are associated with chromite in the dunite. The diamonds are small and of industrial quality (borts) which break up on exposure to the atmosphere.

Geochemical Survey

A soil, silt and rock chip sampling program was conducted in the vicinity of Hines Creek from October 6th to 12 th , 1986. A total of 318 samples were collected. Sampling concentrated on gold and platinum anomalies defined by a previous survey (Jones, 1983). Grid lines were established by compass and topofil chaining using the 1983 survey grid as a base. The ragged nature of the lines is a result of the highly magnetic nature of some bedrock units. A total of 318 samples were collected at 50 metre intervals on lines 50 metres apart. Sampling and analytical procedures are outlined in Appendix III.

Description of Results

Dot maps were computer generated for the elements; gold (fig. 6a), platinum (fig. 6b), palladium (fig. 6c), silver (fig. 6d), copper (fig. 6e), nickel (fig. 6f), chromium (fig. 6g), cobalt (fig. 6h), iron (fig 6i), manganese (fig. 6j), magnesium (fig. 6 k) and calcium (fig. 6i). Stated simply, each dot on a map represents a sample site, the size of the dot relates the concentration of the element in question in the sample collected at that site. A more detailed discussion of statistical and plotting procedures is given in Appendix III.

Anomaly patterns were compared between elements, a compilation was produced (fig. 7) that outlines multielement anomalous zones. Anomaly patterns from previous surveys was used

to fully define the anomalies. been defined. These are:

Three multielement zones have

1) Platinum-Chromium Zone: a northwest trending zone found in the southwest quadrant of the property.
2) Gold-Platinum Zone: a north trending zone overlying Hines Creek in the east central portion of the property.
3) Gold-Copper zone: a northeast trending zone found in the northeast quadrant of the claim group.

Platinum-Chromium Zone:

The Pt-Cr zone has a northwesterly trend, similar to the underlying pyroxenite units. Anomalous elements are platinum (up to 138 ppb in rock and 355 ppb or $0.010 \mathrm{oz} . / \mathrm{t}$ in soil), chromium (up to 331 ppm in rock and 911 ppm in soil), nickel (up to 657 ppm in soil) magnesium (up to 10.8\%), cobalt (up 67 ppm) and moderately anomalous levels of iron (up to 7.5\%). Gold and palladium exhibit sporadic low level enrichments (30 ppb and 86 ppb respectively) in this zone.

Gold-Platinum Żone:

The trend of this zone is along Hines creek suggesting either a structural (e.g. fault) or alluvial basis for the anomaly. Anomalous elements are: gold, up to 288 ppb or .009 oz/t in rock; platinum, up to 153 ppb in rock; palladium, up to 106 ppb in soil; copper, up to 708 ppm in rock and 2425 ppm or 0.24% in soil; iron, up to 10.1% in rock and 15.61% in soil; with minor enrichments in chromium, nickel and manganese.

Gold-Copper zone:

The gold-copper zone extends northeasterly from Hines Creek to the edge of the property in the northeast quadrant. Anomalous elements are: gold, up to 50 ppb ; copper, up to 517 ppm ; and manganese up to 1323 ppm .

Discussion of Results

The platinum-chromium anomalous zone is believed to be reflecting an underlying chromite rich pod within clinopyroxenite. St. Louis (1986) and Findlay (1969) have shown that three pods can locally have economic concentrations of platinum in which the platinum is tied up in the chromite grains or interstitial to the grains.

The platinum-gold zone is potentially a region of structural deformation found along the contact between the ultramafic complex and the surrounding Nicola group rocks. This suggested zone of deformation is observed as serpentinization of the ultramafics (St. Louis, 1986) along the contact. Accompanying the serpentinization is an enrichment of platinum, possibly to ore grade levels. The deformation is also seen as quartzcarbonate veining within the chloritic schist of the Nicola Group. Associated with the veining is enhanced levels of gold and copper. A zone of sulfide or magnetite, although not observed, is inferred by high levels of iron with accompanying anomalous concentrations of copper, lead and zinc in soils. The iron-rich area lies within the platinum-gold zone.

The gold-copper zone cannot readily be explained in a lithological or structural sense. The shape and position of the anomaly may be due to placer enrichment from Hines Creek and the Tulameen River.

Conclusion

The follow-up geochemical survey has defined three targets each having a potential for economic mineralization.

A chromium enriched area suggests an underlying chromite accumulation in clinopyroxenite. Past studies of the TUC have found economic platinum grades within samples of the chromite cumulates.

A zone of serpentinization and quartz-carbonate veining found along the contact is thought to outline a deformation zone between the Tulameen Complex and Nicola Group rocks. Sampling of these areas have returned anomalously high levels of platinum, gold and copper.

An inferred sulfide zone is believed to occur within the ultramafic complex near the deformation zone. Sulfide horizons have proven to be the main platinum bearing units as outlined by case histories from major platinum producers.

Priority is given to further testing of these targets, the defining of the source of the gold-copper anomalous zone, and expansion of the exploration grid to cover the remainder of the property.

Reference List

Camsell, C. (1912). Note on the Occurrence of diamonds at Tulameen and Scottie Creek near Ashcroft. Geological survey of Canada, Sum. Report l911, p. 123, 124.

Camsell, C. (1913). Geology and Mineral Deposits of the Tulameen District. B.C. Geological Survey of Canada, Memoir 26.

Camsell, C. (1919). Platinum Investigations in B.C. Geological Survey of Canada, Sum. Rept. 1918, Pt. B.

Chisholm, E. (1982). Geological Report on the H\&H Claim Group; Private Company Report for Tarnation Mining Ltd.

Eastwood, G.E.P. (1959). Magnetite in Lodestone Mountain Stock. B.C. Dept. Mines Ann. Rept. for 1959; p. 39-53.

Findlay, D.C. (1963). Petrology of the Tulameen Ultramafic Complex. Unpublished Ph.D. Thesis; Queen's University.

Gravel, J. (1984). Commodity Report: Platinum; Private Report.
Holland, S.S. (1950). Placer Gold Production of British Columbia. B.C. Dept. Mines Bulletin 28.

Jones, H. (1983). Report on the H\&H Claim Group; Private Assessment Report for Tarnation Mining Ltd.

Law, C.F. (1900). Report on Tulameen Platinum, British Columbia. Private Report, unsigned, 4 pp. undated.

O'Neill, J.J. and Gunning, H.C. (1934). Platinum and Allied Metal Deposits of Canada. Geological Survey of Canada, Econ. Geol. Sur. No. 13.

Poitevin, E. (1924). Platiniferous Rocks from Tulameen Map Area and Ural Mountains, Russia. Geological Survey of Canada, Sum. Rept. 1923, Pt. A.

Raicevic, D. and Cabri, L.J. (1976). Mineralogy and Concentration of $A u-$ and $P t$ - Bearing Placers from the Tulameen River Area in B.C.; CIM Bull. Vol. 69, No. 6, p. 111-118.

Rice, H.m.A. (1947). Geology and Mineral Deposits of the Princeton Map-Area, B.C. Geol. Survey of Canada; Memoir 243.

Ruckmick, J.C. (1956). Geological Examination of the Lodestone Mountain Ultramafic Intrusion and Associated Magnetite Deposits. B.C. Ministry of Mines Assess. Rept. 128.
St. Louis, R.M. (1982). Platinoids in the Tulameen Ultramafic Complex in Geological Fieldwork 1981. B.C. Ministry of Mines, p. 218-222.
Steiner, R. (1960), Report on Placer Leases held by GRA Dorpham Mining Company; Private Company Report.

APPENDIX I

Certificate
I, John Gravel, of the city of Vancouver, Province of British columbia, hereby certify as follow

1. I am a graduate with a Bachelor of Science degree in Geology from McGill University in 1979 and a Master of Science Applied degree in Mineral Exploration from McGill University in 1985.
2. I have practiced my profession as an exploration geologist/geochemist in the Province of British Columbia since 1979.
3. I am a Fellow of the Geological Association of Canada and a Voting member of the Association of Exploration Geochemists.
4. I have no financial interest either directly or indirectly in the securities of North American Platinum Ltd., Vancouver, British Columbia, or in the properties described within this report, nor do I expect to acquire or receive any interest.
5. This report is based on work performed by the writer assisted by D. Morneau and J. Dykes and on a revision of pertinent literature by private and government workers.
6. I consent to the use of this report in connection with the raising of funds for the project described herein.

Date Vancouver, British Columbia this 30th day of December, 1986

Statement of Exploration Expenditures H\&H Claims from 1984 to 1986
E.O. Chisholm, P.Eng. March 23, 1984 $\$ 285.00$
Harold M. Jones, P.Eng. July 24, 1984 23.33
Bondar-Clegg, Rock Analysis
Vradimix Cukor, P.Eng.
Sept. 28, 1984 191.25
Normand Champigny, P.Eng.
January 17, 1986 165.50
Cliff Stanley, M.Sc. September, 1986 68.20
Min-En Laboratories Ltd. July 23, 1986 2,320.50
Analysis of 130 soil samples
Steven Buzikievich October 6, 1986 6,470.22
survey of property boundaries
George Obrecht Sept. to Oct. 1986 4,500.00
title search of claims, preparation for survey crew
GHS Geochemical Services Ltd. December 30, 1986 13,200.00
1986 Exploration programs on H\&H claims
Total Expenditures$\$ 27,724.00$

BHS Geochemical Services Lrd.

H\&H CLAIMS 1986 EXPLORATION PROGRAM STATEMENT OF COSTS AND EXPENSES

Salaries

1	5	days	@	\$150/	
D. Morneau	5	days	a	\$115/day	575.00
J. Dykes	5	days	a	\$100/day	\$500.00

Room \& Board
15 man days $@ \$ 45 /$ day...................................... $\$ 675$
Transportation
Rental of $4 \mathrm{X4}$ truck 5 days @ $\$ 40 /$ day.................... $\$ 200.00$
 gas \& oil............................... $\$ 80.00$

Purchase of Field Supplies.:... $\$ 300$
Analysis of Samples
30 element ICP + FIRE ASSAY for AU, Pt and Pd 304 soils @ $\$ 20 /$ sample................ $\$ 6080.00$
14 rock samples @ $\$ 25 /$ sample........ $\$ 350.00$
\$6,430
Total Field Expendatures
$\$ 9,750$

Computer Analysis and Plotting $\$ 900$

Drafting, Typing and Reproduction $\$ 850$

Report Writing
J. Gravel 8 days @ \$150/day
\$1200.00
D. Allen.
$\$ 500.00$

Sampling, Analytical, Statistical and Plotting Procedures

Sampling Procedures

Sampling procedures for soils consists of using a shovel to collect 0.5 to 1.0 kg . of B horizon material at a depth of 20 to 50 cm . After placing the soil in a marked Kraft paper bag, site specific data concerning texture, color, horizon and depth of the sample as well as percentage and shape of rock fragments was noted on specially prepared forms.

Stream sediment sampling involves collecting the sand and silt fraction from several sites within a 10 metre distance of the station thus reducing the bias of a single sample site. Data concerning texture, color, amount of heavy minerals and amount of organics in the sample as well as average width and depth of the stream were recorded on prepared forms.

Rock sampling comprises the collection of a dozen or more rock chips from across the rock exposure within a 5 metre radius of the sample station in on effort to obtain a representative sample of the exposure. Geological notes were collected in a geological note book.

Analytical Procedures

All samples were sent to Acme Analytical Laboratories in Vancouver for fire assay analysis of gold, platinum and palladium followed by ICP analysis of 30 other elements. The general analytical procedures are as follow:

1. Samples are oven dried at $80^{\circ} \mathrm{C}$.
2. Soil and silt samples are screened to produce a -80 mesh size fraction, rocks are crushed and milled to produce a -100 mesh size fraction.
3. A 10 gm split of the fine fraction is mixed with a flux containing lead and silver and melted at $750^{\circ} \mathrm{C}$. A lead button is recovered from the cooled flux and subsequently melted to produce a silver bead contain the gold, platinum and palladium. The bead is dissolved in aqua regia and the solution subjected to mass spectrometry for quantitative determination of gold, platinum and palladium.
4. A 0.5 gm split of the fine fraction is dissolved in aqua regia at $95^{\circ} \mathrm{C}$ for 1 hour then diluted by water and aspirated into an inductively coupled plasma mass spectrometer for determination of molybdenum, copper, lead, zinc, silver, nickel, cobalt, manganese, iron, arsenic, uranium, gold, thorium, strontium, cadmium, antimony, bismuth, vanadium, calcium, phosphorus, lanthanum, chromium, magnesium, barium, titanium, boron, aluminum, sodium, potassium and tungsten.

The analytical results received from Acme were entered into a computer for simple univariate statistical analysis. After examining their histograms, gold, platinum, palladium, silver, copper, nickel, chromium, cobalt, iron, manganese, magnesium and calcium were chosen for further study as they are either precious metals (Au, Pt, Pd, Ag), pathfinder elements (Cu, Co, Cr, Ni) or rock forming elements that would help to distinguish underlying rock types ($\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}$ and Ca).

Plotting Procedures

Six concentration intervals were chosen for each element based on the nature of their histograms. A dot map is computer generated for each element using the geochemical program GEOMHM. On a dot map, the location of a dot represents a sample site, the shape of the dot defines the type of sample collected, thus a circle represents a soil, a triangle signifies a rock and a diamond means a stream silt sample was collected. The size of the dot reflects the concentration of the element in question in the sample collected at that site. For example on the gold dot map (fig. 6a) an open circle means that the concentration of gold at that site is 5 ppb or less, the smallest solid dot signifies a gold concentration of greater than 5 ppb up to a maximum of 10 ppb. The next larger dot would represent a concentration of greater than 10 ppb up to a maximum of 15 ppb , and so on up the scale of dot sizes. The largest dot would relate a concentration between 30 and 50 ppb., If a sample should exceed 50 ppb gold, the largest dot is plotted with the actual gold concentration of that sample printed next to the dot.

In this method of treating geochemical data, the absolute concentration of an element at a sample site is considered of secondary importance compared to the relative difference in concentration between sample sites up to a predetermined concentration level. The patterns formed by the various dot sizes for each element and the similarity in patterns between elements allows a refined interpretation of the data without losing sight of the concentration, a tendency with more sophisticated statistical treatments of geochemical-data.

ACME ANALYTICAL LABORATURIES LTD．BS2 E．HASTINGS ST．VANCOUVER B．C．VGA 1R6 PHONE 25J－3IS日 DATA LINE 2SI－1O11

GECICHEMICAL ICF ANALYSIS

IHIS LEACK IS FARTIAL FOR MN．FE．CA．P．CR．ME．BA．TI．I．AL．MA．I＇N．SI．IK．CE．SK．Y．HI AND TA．AU DETECTIOK LIMIT OY ICP IS 3 PPM．
AUII FIIt YOUI BY FA－HS．SAMFLE TYPE：SOILS－8OHESH \＆9－KOCK＞

GHS GEOCHEMICAL FFROJECT－ $\mathbf{- 4 5}$ FILE＊B6－玉igo r＇HLt 1

SAKFLEI	$\begin{gathered} \mathrm{Ho} \\ \mathrm{PFH} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PPH } \end{gathered}$	${ }_{P P \text { n }}^{2 n}$	$\begin{gathered} \text { Ra } \\ \text { PPM } \end{gathered}$	$\underset{P!M}{K_{1}}$	$\begin{gathered} \text { Co } \\ \text { PPK } \end{gathered}$	$\underset{P \cdot n}{M n}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{y} \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { FPR } \end{gathered}$	$\underset{\text { PPK }}{\substack{\text { U }}}$	$\begin{gathered} A \mathrm{~A} \\ \mathrm{PPK} \end{gathered}$	$\begin{aligned} & \text { Ih } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \text { Sr } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { YPM } \end{gathered}$	$\begin{gathered} 5 b \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \text { It } \\ P P K \end{array}$	$\begin{array}{r} Y \\ P P M \end{array}$	Cl	2	La	$\underset{f F R}{\mathrm{Cr}}$		$\begin{array}{r} 82 \\ \text { PPR } \end{array}$	$\begin{aligned} & I_{1} \\ & 2 \end{aligned}$	$\stackrel{E}{P P_{K}}$	AI	$\begin{gathered} K_{1} \\ 2 \end{gathered}$	I	$\begin{array}{r} \\| \\ \text { PPH } \end{array}$	$\begin{gathered} \text { Aut! } \\ \text { PFI } \end{gathered}$	Ptit PFB	$\begin{gathered} P d!1 \\ P P I \end{gathered}$
50345650001	1	42	3	67	． 1	46	23	465	5．6？	5	5	Hi	1	25	1	2	2	168	． 43	．03！	2	40	1.81	62	．17	2	1.80	． 06	． 07	1	1	28	4
5034 650002	2	124	4	40	． 1	18	27	450	6.43	2	5	HD	1	45	1	2	2	265	． 70	． 012	2	51	3.79	89	． 15	4	2.14	． 0 ？	． 11	1	2	16	17
50345650003	2	$8!$	6	54	． 1	48	29	420	4.71	8	5	KD	2	38	$!$	2	2	110	． 53	． 020	3	58	1.50	53	． 20	3	2.00	． 05	． 0^{7}	1	1	2	2
50345650004	1	67	5	73	.2	50	17	513	4.05	1	5	HD	2	26	1	2		77	． 31	． 067	2	38	1.06	10	． 13	2	1.96	． 05	． 06	1	5	$?$	3
50345450005	1	85	5	95	． 1	39	18	484	3.57	11	5	N0	1	24	1	2	2	87	． 35	． 115	2	32	． 99	154	． 14	1	2．2！	． 06	．${ }^{7}$	1	1	2	2
50345650007	1	118	5	79	． 1	35	26	1220	3.63	1	5	HD	2	2！	1	2	2	99	． 67	． 048	2	3	2.01	19	． 15	3	2.64	． 11	． 05	1	1	2	2
50345650009	1	$!1$	4	71	． 2	45	20	131	4.24	13	5	HD	2	33	1	2	2	${ }^{88}$	． 48	． 050	3	59	1.56	5	． 15	2	2.21	． 05	． 08	1	5	2	$?$
5034565000%	1	94	7	106	． 4	35	15	376	3.61	10	5	H0	2	1%	1	2	2	84	． 24	． 092	3	33	． 02	9	． 10	2	2.18	． 04	． 07	1	1		2
50345650010	2	135	t	175	． 5	50	27	634	4．08	26	5	H0	2	21	1	2		81	$\checkmark .30$	． 140	2	37	1.04	9	． 12	2	2.57	． 04	． 06	1	1	2	2
50345450011	1	100	4	103	． 2	45	20	164	3.44	9	5	HD	2	21	1	2	2	71	． 35	． 137	4	37	． 97	95	． 11	4	2.17	． 05	． 06	1	1	2	2
50345650012	1	4	1	131	.1	11	17	4 C	4.02	3	5	N0	$!$	16	1	2	2	90	． 31	． 249	2	16	． 55	60	． 13	4	1.53	． 04	． 04	1	$!$	2	$?$
50345150013	2	97	5	$13!$	． 2	28	19	712	4.11	4	5	N0	2	22	1	2	2	141	． 36	． 107	2	22	． 74	69	． 20	5	2.12	． 06	． 01	1	1	2	2
50345650014	1	36	6	70	． 1	31	14	452	3.11	4	5	ND	1	26	1	2	2	75	． 36	． 042	3	$3!$	－ 1	58	． 15	1	1.78	． 05	． 06	1	1	2	2
50315650015	1	172	3	108	． 2	47	24	345	3.76	25		ND	1	16	1	2	2	88	． 29	． 117	2	38	． 78	50	． 13	5	2.70	． 05	． 05	1	1	2	2
50315650016	1	12	1	47	． 4	31	15	304	3.36	13	5	no	2	22	1	2	2	76	． 24	． 019	3	34	． 74	10	． 14	5	2.55	． 05	． 06	1	1	2	2
50315650017	1	49	6	77	．$]$	40	16	583	3.27	3	5	HD	1	25	1	2	2	71	． 36	． 047	4	41	． 12	113	． 15	4	2.53	． 05	． 09	1	1	2	2
50345850018	2	55	\％	17	． 1	45	14	372	3.22	7	5	WD	2	21	1	2	2	70	． 29	． 078	6	36	． 81	98	． 14	4	2.21	． 04	． 06	1	1	2	2
50345 \＄50019	2	62	5	121	． 2	62	16	160	3.73	－	5	MD	2	21	1	2	2	83	． 29	． 116	4	43	． 76	124	． 15	5	2.50	． 05	． 07	1	33	2	2
50345650020	1	$6!$	5	78	． 1	54	11	1010	4.35	13	5	MD	1	$2!$	1	2	2	101	． 10	． 010	4	4	1.14	152	． 13	3	2.10	． 05	．0？	1	2	2	2
50345 \＄50021	2	65	4	65	． 1	40	17	390	4.11	3	5	KD	1	32	，	2	2	102	． 45	． 035	〕	41	1.31	52	． 17	5	2.04	． 05	． 05	1	2	2	2
50345650022	2	02	5	76	． 2	43	14	488	4.11	7	5	NO	2	31	$!$	2	2	100	． 51	． 055	4	54	1.40	74	． 17		1.43	． 05	． 01	1	16	2	5
50345650023	2	43	7	64	． 2	34	18	432	4.76	11	5	ND	1	29	1	2	2	115	． 42	． 045	3	39	1.62	42	． 16	5	2.21	． 05	． 06	1	2	2	2
50345 450024	1	47	7	78	． 6	38	13	318	3.58	6	5	ND	2	19	1	2	2	82	． 23	． 100	5	27	． 77	74	113	5	2.27	． 04	． 05	1	10	2	2
50345 \＄50025	1	28	6	79	． 1	56	11	438	3.93	7	5	ND	1	22	1	2	2	71	． 36	． 078	3	31	． 80	97	． 11	5	2.02	． 05	． 07	，	5	2	2
50345650024	1	121	5	\bigcirc	． 1	63	31	610	6.29	2	5	KD	，	47	1	2	2	267	1.24	． 312	7	137	3.53	218	． 23	5	2.91	． 09	． 97	1	1	8	2
$1034565002 \pm$	2	48	6	48	． 1	198	33	622	8.27	2	b	MD	2	40	1	2	2	204	． 71	． 130	5	151	4．36	8	． 10	4	1.13	． 07	． 11	1	4	18	2
50345 65002：	2	33	5	82	． 1	47	38	721	7.50	7	5	ND	1	12	1	2	2	354	2.01	． 012		16	5.14	145	． 28	2	3.27	． 09	． 10	1	6	10	？
50345650031	1	24	8	50	． 1	212	39	407	9.55	4	5	ND	1	15	1	2	2	231	． 21	． 023	2	135	4.24	53	． 18	2	1.28	． 06	． 07	1	1	111	5
50315650032	1	15	！	81	． 1	51	30	111	6．95	1	5	$N 0$	1	15	1	2	2	233	． 33	． 021	2	46	1.77	135	． 28	3	3.21	． 06	． 07	1	2	22	5
50345 650033	1	29	3	86	． 1	32	20	543	3.75	2	5	ND	1	22	1	2	2	125	． 49	． 021	2	102	1.55	4	． 22	3	1.94	． 07	． 07	1	1	2	2
5035650034	1	34	1	133	．t	19	17	381	4.05	10	5	N1	2	19	1	2	2	9？	． 24	．117	1	38	． 76	126	． 14	6	2.32	． 05	． 06	1	2	21	22
50745650035	1	46	7	70	． 2	47	33	579	5.04	4	5	HD	2	36	，	2	2	151	． 59	． 021	6	64	1.72	203	． 11	4	2.10	． 01	． 08	1	2	$\underline{5}$	2
50345450036	1	6	$!$	4	． 4	57	20	737	5.18	1	5	HD	1	$4{ }^{4}$	1	2	2	147	1.70	． 0619	4	$5!$	1.60	217	． 0	6	1.64	． 07	． 0	1	1	5	5
503151500037	1	62	10	54	． 2	30	13	254	4.03	2	5	ND	1	18	1	2	2	109	． 34	． 035	4	38	． 67	78	． 16	5	2.21	． 05	． 04	1	8	2	2
59545 650038	1	551	$?$	8	.4	61	16	584	4．26	3	5	ND	2	23	1	2	2	113	． 46	． 058	5	42	． 6°	234	． 14	6	2.11	． 05	． 6	1	2	2	2
50345650079 510 $154-51$	12	32 60	5	$6 ?$ 135	． 1	14	13	277 1027	3.65 3.97	$\underline{2}$	14	M 7	15	46	18	5	${ }_{19}$	110 $6 t$	． 28	． 048	\pm	16 58	．87	145	． 07	51	$\begin{aligned} & 1.79 \\ & 1.77 \end{aligned}$	$.04$	$.06$	12	${ }_{4}^{1}$	$10 ?$	2 105

ghs geochemical ffoject - ミ4S file neb-ilion
F-ALT $\quad \because$

SAMPLEI	Ho	Cu	Po	In	Aa	Nl	Co	Ms	Fe	As	U	Au	In	Sr	Cd	$5 b$	Pl_{1}		Ca	P	La	Cr	Mo	If	11	6	Al	H		χ			
SARHET	PfP	PPM	PFM	PPM	Pan	PFh	fFh	FP\%	2	FPh	FPM	PFM	ffr	PPM	PFM	PPH	PFiK	PFM	2	2	PPh	Pfh	2	PPM	2	PPM	2	1	2	pry	PFE		
10315650040	1	S5	5	58	. 1	18	17	66	4.16	7	5	H0	1	47	1	2	2	11^{7}	1.48	.066	1	44	1.46	104	. 08	7	1.54	.)?	. ${ }^{7}$	1	:	-	16
$5034565004!$	1	22	1	77	. 1	22	13	277	士. 88	1	5	H0	1	16	1	2	2	100	. 23	. 071	2	32	. 71	$8!$. 15	4	1.72	. 65	. 05	1	1	?	2
50.45650042	1	25	6	58	. 1	24	16	293	3.81	-	5	ND	?	19	1	2	2	106	. ${ }^{\circ}$. 026	2	25	1.11	118	. 17	5	1.61	.	\cdots	1	1	5	2
50345850043	1	$?$	7	75	. 1	$3!$	34	100	7.51	2	5	N0	1	12	1	$\hat{2}$	2	713	. 4 !	. 012	2	1	2. 12	108	\cdots	5	1.65	-	. 0	1	1	17	4
50345650044	1	24	5	60	. 1	48	26	$4{ }^{45}$	t.63	2	5	NO	1	13	1	2	2	108	.	. 033	2	$\cdot 1$	1.4	1	.15	-	1.J						
50345 65001?	2	177	6	10	. 1	49	40	769	7.91	t	5	19	1	28	1	2	2	151	1.10	. 112	4	38	4.43	251	.2?	5	? 01	.0!	. 88	1	1	18	$\stackrel{8}{2}$
50345650044	1	46	5	13	. 1	190	32	605	6.67	2	5	N0	1	34	1	2	4	$1 t^{7}$	${ }^{6}$. 117	3	122	4.19	${ }^{85}$. 15	1	1.11	. ${ }^{2}$.19	1	1	14	146
50345650049	1	2425	5	65	. 1	67	104	201	7.50	10	5	HO	1	24	1	2	$?$	290	87	. 24 T	3	58	2.40	134	. 14	5	1.\% 1.87	. 05	.07	1	1	2	2
50345150050	1	54	4	57	. 1	32	14	$37!$	3.82	2	5	H2	$!$	25	1	2	3	79	. 17	. 049	2	${ }_{5} 11$	1.01	63	.14	5	1.86 2.05	. 06	. OH	1	19	2	2
$50345 \leq 50051$	1	$7!$	5	71	. 1	54	18	531	4.67	7	5	HD	1	$2!$	1	2	2	93	. 46	. 101	1	58	1.73	4	. 14	5	2.0			1			
50345 45005?	1	100	5	92	. 1	24	30	-75	5.60	27	5	ND	1	26	$!$	2	3	129	. 41	. 037	2	23	1.65	4	. 15	1	2.61	. 06	. 0 ?	1	7	2	2
50545450053	1	40	1	76	. 1	9	32	449	7.83	8	5	MD	1	23	1	2	2	232	. 45	. 026	2	121	2.20	8	. 21	E	1.79	. 09	. 07	1	2	11	5
50345450054	,	30	7	48	. 1	31	15	413	4.00	20	5	ND	1	16	1	2	2	103	. 23	. 44	2	34	. 11	13	. 16	1	1.87	. 05	. 05	1	1	14	2
50345650055	1	21	b	59	.1	74	$1!$	337	4.59	2	5	ND	1	19	1	2	2	116	. 27	. 042	2	4	1.28	67	. 14	3	1.43	. 05	. 04	1	3	2	3
$50345 \mathbf{4 0 0 5 6}$	1	54	5	79	. 1	49	17	440	4.36	10	5	ND	3	41	1	2	2	97	1.04	. 053	5	57	1.12	$2{ }^{1}$.10	5	2.20	.0?	.05	1			
50345650057	1	194	8	54	. 2	39	23	457	6.02	4	5	NO	2	16	$!$	2	2	214	. 40	. 017	3	80	2.04	155	. 20	7	3.05	. 06	. 05	1	1	12	2
50345650051	1	15	1	52	. 1	19	10	350	2.14	2	5	KD	1	15	1	2	2	76	. 31	. 036	2	28	. 51	73	. ${ }^{10}$	2	1.50	. 05	. 04	2	1	2	2
50345 65005?	1	37	10	80	. 6	57	27	Pt5	6.82	14	5	HD	2	16	1	2	2	190	. 25	. 05%	5	129	1.14	155	. 04	6	2.71	. 06	.0e	1	18	24	5
50345650050	1	$13!$	15	128	. 1	51	38	1072	15.56	38	5	KD	2	17	1	2	2	185	. 27	. 054	6	21	2.52	174	. 02	2	1.50 2.74	. 08	. 08	1	1	43	2
50345650061	1	131	5	91	. 1	37	28	432	5.16	4	5	ND	1	18	1	2	2	180	. 34	. 021	2	23	2.01	131	. 24	5	2.74	. 08		1			
50345450062	1	31	5	76	. 1	19	21	26	5.33	6	5	HD	1	20	1	2	2	125	. 29	. 143	2	76	1.26	61	. 11	1	1.53	. 06	. 04	1	1	5	2
50345650043	1	56	2	72	. 1	79	21	363	5.39	3	5	MD	1	23	1	2	2	121	. 35	. 124	\%	75	1.61	81	. 12	5	1.78	. 06	. 06	1	1	1	2
50345650064	1	31	6	84	. 1	78	24	337	5.64	5	5	KD	1	22	1	2	2	100	. 44	. 015	4	6	2.06	122	. 21	6	3.11	. 01	. 04	1	$!$	2	2
50345650065	1	71	5	bl	. 2	157	33	661	7.25	2	5	MD	2	28	1	2	2	183	. 65	. 067	2	107	3.5	51	. 14	1	1.45	. 08	. 00	1	1	9	2
10345650066	1	50	7	51	. 1	209	34	453	7.36	?	5	ND	1	38	1	2	2	170	, 6 ?	. 138	4	150	4.6?	73	. ${ }^{\text {! }}$	3	1.15	. 8	. 10				2
10345650061	1	43	7	47	. 1	55	23	533	6.17	3	5	HD	1	34	1	2	J	205	. 92	. 075	2	12	1.97	13i	. 11	b	1.46	. 01	.14	1	1	7	2
50345650069	2	325	2	95	. 1	54	37	1111	6.69	6	5	HD	1	41	1	2	2	231	1.07	. 112	4	47	2.83	117	. 15	3	2.56	. 01	.1?	1	1	13	6
50345550070	1	02	3	67	. 1	38	25	463	6.24	2	5	MD	1	44	1	2	2	250	. 71	. 018	3	21	2.56	53	. 29	4	2.53	. 11	. 19	1	1	4	2
50545650072	1	141	2	30	. 1	58	23	605	4.51	6	5	N0	1	20	1	2	3	11^{7}	. 37	.051	2	6	1.72	124	. 27	2	3.05	. 07	.0?	1	1	3	2
50345150073	1	39	4	82	. 2	$2!$	20	74	3.20	7	5	ND	1	17	1	2	2	73	. 24	. 064	3	29	. 75	88	. 10	3	1.68	. 05	. 07	1	1	2	2
50345650074	1	22	2	13	. 1	29	13	520	3.36	5	5	HD	1	22	1	2	2	0	. 35	.104	2	29	. 74	93	. 14	2	1.70	. 06	. 07	1	1	2	2
50345450075	2	56	6	71	. 1	54	21	${ }^{6} 36$	4.77	5	5	MD	2	32	1	2	2	123	. 51	. 041	2	52	1.90	48	. 17	,	1.91	. 07	. 11	1	1	4	2
50345450076	1	50	2	41	. 1	198	32	635	6.53	3	5	ND	1	3 ?	1	2	3	150	. 71	. 120	2	126	4.41	91	. 09	3	1.15	. 07	. 10	1	1	21	2
50345.50077	1	21	2	114	. 3	42	20	412	3.44	1	1	N0	1	20	1	2	2	67	. 26	. 396	2	42	. 74	108	. 10	2	1.87	. 04	. 05	1	3	14	$\frac{2}{6}$
50345 450071	1	28	5	67	. 1	53	37	104	8.37	5	5	H0	1	16	1	2	2	313	. 54	. 011	3	23	3.60	203	. 37	2	2.54	. 07	. 45	1	3	19	
50345650090		73	7	43	. 2	31	13	617	3.54	6	5	ND	2	27	1	2	2	107	. 52	. 022	3	42	. 99	169	. 15	3	2.04	. 05	. 05	1	2	2	2
STD C/FA-5i	21	58	37	131	6.1	67	28	485	3.91	37	15	7	33	46	17	15	21	65	. 11	. 103	34	51	. 88	173	. 08	34	1.73	. 0^{4}	. 13	13	101	9	98

GHS GEOCHEMICAL FROJECT - $\mathbf{3} 45$ FILE H E6- 3190
PAGE :

sarplein	no		Pb	In	Af	H .	Co	\%n	Fe	As	\Downarrow	Au	Th	Sr	cd	55	1	ψ	Cl_{2}	P	La	5	no	li	ti	f	${ }^{\text {A }}$	M	1	y	hult	Ptit	Pdit
	PPM	PPM	PPM	PPM	P1\%	PPH	PPM	PPM	1	PPM	PPH	PPM	1	2	PPM	PPM	1	PPM	1	PPM	1	2	\pm	PPM	PlI	PP)	Pr						
50345650091	1	207	6	41	. 3	$2{ }^{1}{ }^{\text {a }}$	17	328	3.50	2	5	MD	1	21	1	2	2	100	. 27	. 108	11	33	. 92	70	. 15	4	2.02	. 06	. 05	1	1	10	8
50345650092	1	15	;	18	. 1	50	20	430	4.01	2	5	XD	1	24	1	4	2	100	. 56	. 055	9	56	1.30	35	. 17	5	2.04	. 06	. 05	1	1	9	2
50345650093	1	33	7	75	. 2	23	14	587	3.28	2	5	ND	1	16	1	2	2	1	. 22	. 178	1	31	. 41	56	. 12	1	1.79	. 04	. 03	1	1	2	2
50345650094	1	10	1	71	. 1	34	17	445	3.14	2	5	HD	1	27	1	2	2	41	.13	. 073	10	48	1.18	98	. 16	3	2.32	. 05	. 07	1	1	2	2
50545650095	1	25	10	74	. 1	24	14	511	3.69	4	5	8	1	24	1	2	2	\%	. 32	.14	11	41	1.02	79	. 12	1	1.88	. 05	. 05	$!$	1	2	2
$503456500 \% 6$	1	29	6	11	. 1	30	37	727	7.12	2	5	N0	1	25	1	2	2	297	. 81	. 051	15	17	2.95	355	. 25	10	2.57	. 08	. 14	1	1	39	2
10345650097	1	3	7	10	. 1	38	20	176	4.39	2	5	ND	1	34	1	2	2	120	1.15	. 088	14	56	1.83	183	. 12	7	2.09	. 01	. 16	1	1	2	2
50345650098	1	54.	6	44	. 2	34	20	103	4.12	2	5	N0	1	31	1	2	2	124	. 60	. 034	13	55	1.74	122	. 16	7	2.15	. 06	. 10	$!$	1	2	2
50345650049	$1{ }^{\prime}$	4	10	61	. 1	21	19	501	4.54	5	5	ND	1	30	1	2	2	130	. 50	.036	8	44	1.52	74	. 15	4	2.01	. 06	. 04	1	1	2	2
50345650101	1	36	10	59	. 1	52	22	188	5.99	5	5	ND	1	22	1	1	2	13	. 46	. 041	11	129	1.40	67	. 11	7	1.91	. 06	.	1	5	2	2
50345650102	1	40	8	67	. 2	31	17	412	3.94	2	8	ND	2	28	1	2	2	$10!$. 41	. 058	7	41	1.27	6	. 15	5	2.26	. 04	. 08	1	1	2	2
50345650104	1	59	9	83	. 2	27	16	191	3.92	4	5	ND	1	20	1	2	2	106	. 27	. 040	,	34	1.03	16	. 10	5	2.40	. 05	. 05	1	17	11	2
50345650106	1	21	10	73	. 1	35	13	295	$3 . \%$	2	5	ND	2	11	1	2	2	103	. 25	. 125	11	49	. 11	58	. 11	4	2.55	. 06	. 05	1	1	2	2
50345650107	1	43	10	54	. 2	33	14.	320	4.12	7	5	ND	1	29	1	2	2	111	1.11	. 114	$!$	45	. 90	4	. 13	3	1.10	. 06	. 05	1	1	3	2
50345650101	1	41	1	72	. 4	33	17	709	3.91	7	5	NO	1	25	1	$!$	2	52	. 36	. 114	-	47	1.19	79	. 11	-	2.37	. 05	. 05	1	1	2	2
50345, 650)09	,	33.	7	70	. 2	25	14	694	3.35	2	5	ND	1	28	1	2	2	12	. 34	. 158	10	37	1.06	14	. 13	3	2.25	. 06	. 06	1	1	3	2
50315 ¢50110	1	26^{\prime}	7	70	. 3	26	15	816	3.11	2	5	ND	1	27	1	2	2	77	. 35	. 098	8	34	. 96	85	. 14	3	1.99	. 06	. 04	1	1	3	2
50345650111	1.	271	7	69	. 7	21	24	374	3.52	2	5	ND	2	29	1	2	2	172	. 54	. 374	11	34	1.10	50	. 12	5	1.92	. 01	. 06	1	1	7	19
50345650112	1	57	1	76	. 2	36	15	334	3.94	2	5	W	2	20	1	2	2	97	. 24	. 081	7	44	. 79	5	. 14	3	2.01	. 05	. 05	1	27	2	11
50345650113	1	44	8	73	. 1	94	36	521	6.30	3	7	ND	1	19	1	4	2	201	, 3	. 033	1	47	3.73	7	. 2	¢	2.17	.07	. 07	1	1	7	5
10345650114	1	52	$!$	49	. 2	22	33	442	5.75	4	7	ND	1	3	1	5	2	118	. 11	. 139	11	144	4.91	59	. 08	5	1.12	. 07	. 11	1	1	34	5
50345650115	1	46	6	77	. 2	41	20	170	4.35	2	5	K0	2	35	1	2	2	92	. 62	. 079	12	56	1.59	57	. 14	2	2.01	. 06	. 08	1	21	2	2
50515450116	1	43	4	63	. 1	29	13	228	3.14	2	5	MD	I	19	1	2	2	101	. 29	. 124	7	57	. 70	73	.14	1	2.08	. 05	. 03	1	1	3	2
50315450117	1	39	10	71	. 1	45	35	576	1. $\%$	2	5	ND	1	35	1	2	2	407	1.15	. 248	1	81	4.16	100	. 12	7	3.06	. 03	. 50	1	1	41	2
1034565011%	1	10	12	52	. 2	194	35	452	8.42	2	1	ND	1	37	1	2	2	207	. 73	. 131	11	144	4.36	40	. 10	t	1.25	. 08	. 12	1	71	36	2
50345650119	1	23	10	38	. 1	167	31	241	7.26	2	5	ND	1	6	1	2	2	16	. 20	. 007	3	911	2.95	41	. 12	5	1.85	. 05	. 01	1	1	74	2
50345650121	1	29	'	43	. 1	137	28	342	4.61	1	6	ND	1	19	1	2	2	112	. 27	. 017	10	215	2.24	48	. 14	2	1.37	. 05	. 04	1	1	355	2
50345650122 '	$1{ }^{1}$	22	!	51	. 1	12	28	231	5.19	4	5	KD	1	14	1	2	2	130	. 21	. 016	1	404	2.17	54	. 16	5	2.30	. 05	. 03	2	1	116	2
50315650123	1	15	,	35	. 1	78	24	217	4.75	2	5	KD	1	11	1	2	2	118	. 24	. 011	1	156	. 96	145	. 18	3	2.00	. 05	. 03	1	1	22	2
50345650124	1	32	1	47	. 1	110	27	451	5.12	11	5	N0	1	23	1	2	2	142	. 36	. 019	7	197	2.03	138	. 16	4	1.9	. 06	. 04	2	1	24	2
50345.650125	1	23	7	71	. 1	143	21	285	4.10	2	5	ND	2	16	1	4	2	100	. 20	. 049	2	156	1.37	122	. 16	2	3.01	. 05	. 05	1	1	35	2
50345650126.	1	63	9	12	. 3	-75	29	411	5.19	4	5	KD	1	31	1	3	2	160	. 12	. 101	7	142	1.99	78	. 18	2	2.19	. 06	. 12	1	1	26	2
$50345 \$ 50127$	1	12	1	53	. 4	46	17	112	3.16	2	5	ND	1	34	1	2	2	117	. 37	. 021	7	101	1.09	92	. 15	3	1.70	. 06	. 05	1	1	20	2
50345650121	1	41	10	91	. 1	71	21	345	6.91	2	5	ND	1	29	1	2	2	170	. 34	. 136	1	147	1.26	90	. 14	J	2.29	. 05	. 05	1	2	20	14
50345650129	2	140	11	78	. 5	73	24	d7!	5.07	1	5	KD	2	39	t	2	2	141	. 57	. 031	11	142	1.91	45	. 16	5	2.27	. 07	.13	1	12	41	15
50345650130	1	34	6	75	. 2	37	13	200	4.29	2	5	nd	2	21	1	2	2	104	. 21	. 067	4	89	. 70	49	. 17	2	1.97	. 05	. 04	1	1	14	2
5 D C/FA-5I	22	51	42	135	7.2	70	24	1020	3.98	J8	15	7	3	47	18	15	19	68	. 41	. 105	35	62	. 89	171	. 01	34	1.73	. 09	. 14	13	45	100	18

SAMPLEI

50345650132	2	121	7	91	. 2	43	21	354	5.43	. 2	5	HD	1	36	1	2	2	139	. 30	.111	5	120	1.37	92	. 16	5	2.87	. 05	. 06	1	1	25	2
50345650134	2	42	5	71	. 1	52	17	252	4.84	7	5	ND	1	28	1	2	2	112	. 24	. 076	3	106	1.05	69	. 17	1	2.41	. 04	. 04	1	1	8	2
50345450135	1	72	-	102	. 1	47	20	555	4.92	2	5	ND	2	14	1	2	2	127	. 39	. 293	3	42	1.04	11	. 17	7	2.21	. 05	. 05	1	1	2	2
50345650136	2	4	4	72	. 1	16	17	304	4.61	4	5	MD	1	23	1	2	2	115	. 25	. 112	4	17	1.05	45	. 14	5	2.44	. 05	. 04	1	1	4	6
50345650137	1	40	6	46	. 1	34	11	286	4.6	2	5	N0	1	38	1	2	2	113	. 25	. 081	4	112	. 64	$5!$. 18	3	2.24	. 04	. 04	1	18	3	11
50345 450138	1	47	6	90	. 1	70	19	412	5.07	2	5	Kl	2	14	1	2	2	112	. 32	.159	3	142	1.29	11	. 14	8	2.79	. 05	. 05	1	15	t	2
10345151001	2	41	6	57	. 1	136	31	4t!	7.26	1	5	ND	1	46	1	2	2	204	. 10	. 108	1	105	3.70	171	. 12	6	1.46	. 02	. 10	1	41	22	11
50345651002	2	27	6	79	. 1	145	22	301	5.01	7	5	ND	,	22	1	2	2	114	. 28	. 103	4	75	1.70	75	. 12	4	1.85	. 05	. 04	1	12	26	3
50345651003	2	22	3	94	. 2	94	17	572	3.13	3	5	MD	1	11	1	2	2	11	. 21	. 222	3	49	. 88	104	. 11	6	2.08	. 04	. 05	1	1	45	2
$50345 \$ 51004$	1	16	1	70	. 2	71	21	421	5.30	12	5	KD	,	26	1	2	2	12J	. 35	. 088	2	65	1.73	75	. 12	6	1.76	. 05	. 06	1	1	5	2
50315651005	3	12	1	85	. 2	49	19	565	4.76	13	5	N0	1	31	1	2	2	104	. 47	. 123	7	6	1.51	128	. 12	5	2.11	. 05	. 06	1	8	5	2
50345651006	1	31	1	77	.1	25	10	333	3.02	2	5	K0	1	35	1	2	2	73	. 52	. 05%	4	37	. 77	44	. 15	5	1.45	. 04	. 07	1	1	2	2
$50315 \$ 51007$	2	40	5	110	. 1	42	12	619	3.04	4	5	ND	,	23	1	2	2	63	. 30	. 159	1	38	. 75	110	. 12	5	1.95	. 04	. 07	1	34	2	2
50345451008	2	171	1	65	.1	15	17	398	4.75	13	5	KD	1	24	1	2	2	102	. 31	. 077	4	16	. 95	78	. 01	7	2.55	. 04	. 11	1	1	2	2
5034545100%	2	95	6	72	. 1	52	18	484	4.69	15	5	Nid	2	31	1	2	2	105	. 60	. 020	9	10	1.14	12	. 14	6	2.57	. 05	. 07	1	24	2	1
50345451010	1	31	9	104	. 2	34	11	534	3.10	2	5	ND	2	19	1	4	2	65	. 24	. 112	4	34	. 72	113	. 11	5	2.11	. 01	. 06	1	1	2	2
50345651011	1	21	7	99	. 1	30	9	481	2.59	2	5	Nio	,	19	1	2	2	51	. 22	. 084	4	27	. 54	104	. 12	3	1.86	. 04	. 04	1	1	2	2
50345651012	1	21		84	. 1	26	1	608	2.41	2	5	N0	1	20	1	2	2	54	. 26	. 043	5	24	. 48	43	. 11	5	1.60	. 04	. 05	1	16	2	2
50345651013	1	32	3	4	. 2	27	8	472	2.47	2	5	N0	2	19	1	2	2	53	. 22	. 075	5	27	. 54	125	. 10	3	1. 15	. 04	. 08	1	1	2	2
50345651014	1	17	6	105	. 1	30	9	1195	2.20	2	5	NO	1	18	1	3	2	51	. 23	. 046	4	27	. 49	134	. 12	3	1.84	. 04	. 05	1	1	2	2
50345651015	2	22	6	81	. 1	30	1	451	2.47	2	5	KD	2	21	1	5	2	57	. 29	. 061	5	32	. 61	91	. 13	4	1.79	. 04	. 06	1	15	12	11
50345651016	1	45	1	51	. 1	30	12	315	3.33	1	5	N0	2	26	1	2	2	76	. 31	. 052	5	45	. 13	56	. 14	6	1.53	. 04	. 07	1	11	2	2
50345651017	1	51	7	91	. 2	29	12	43	3.14	7	5	n	2	33	1	3	2	72	. 44	. 110	4	37	. 19	12	. 13	1	1.12	. 05	. 08	1	13	2	2
50345651018	1	47	6	75	. 1	38	13	404	3.54	b	5	K0	1	22	1	2	2	16	. 30	. 059	6	39	. 96	31	. 15	6	2.16	. 05	. 05	1	19	2	4
50345651019	1	145	1	72	.1	39	28	443	5.20	19	5	ND	2	11	1	2	2	157	. 37	. 018	7	41	2.65	53	. 10	5	3.46	. 07	. 05	1	14	2	2
$50345 \$ 51020$	1	15	4	76	. 1	23	11	441	3.07	t	5	N0	1	28	1	2	2	1	. 77	.036	3	22	1.98	4	. 15	5	2.36	. 15	. 08	1	6	2	2
50345651021	3	52	5	114	. 1	54	17	750	4.17	1	5	ND	1	26	1	2	2	1	. 41	. 080	4	42	. 96	11	. 13	3	1.83	. 05	. 09	1	2	2	2
50345651022	2	43	1	100	. 1	45	17	881	3.72	4	5	ND	1	34	1	2	2	83	. 48	. 107	1	55	1.12	111	. 14	6	1.73	. 05	. 10	1	1	3	2
10345651023	2	do	7	56	. 1	149	32	787	7.00	7	5	NO	1	44	1	1	2	205	. 15	.098	9	13	3.49	100	. 12	9	1.56	. 09	. 12	1	14	53	11
50345851024	1	517	5	65	.1	34	29	537	5.97	5	5	ND	1	64	1	2	2	234	1.14	. 167	6	28	2.91	137	. 17	7	2.34	.11	. 20	1	1	43	19
50345651025	1	32	9	75	. 1	41	18	47	3.60	3	5	ND	1	24	1	2	2	104	. 55	. 035	5	33	1.11	164	. 16	4	1.96	. 06	. 09	1	1	4	2
50345651026	1	17	1	6	. 4	50	19	131	4.18	11	5	XD	2	46	1	2	2	100	. 94	. 072	9	31	1.58	141	. 12	5	1.65	. 07	. 04	1	14	4	2
50345 651027	1	73	1	77	. 9	55	20	151	5.75	b	5	Wb	2	4	1	2	2	149	. 91	. 013	7	67	1.46	337	. 04	5	1.97	. 01	. 10	1	1	1	3
50345151028	2	10	12	101	.4	43	38	732	9.50	22	5	10	1	9	,	3	2	210	. 17	. 039	6	19	. 80	169	. 08	2	1.13	. 05	. 05	1	3	39	2
50345 451029	2	41	6	4	. 1	30	15	311	3.73	6	5	\%	1	32	1	2	2	93	. 54	. 054	4	40	1.10	57	. 14	1	1.95	. 05	. 07	1	1	2	2
50345651030	1	30	7	101	. 4	34	13	317	3.39	2	5	MD	1	19	1	2	2	79	. 28	. 055	3	28	. 61	111	. 13	5	2.15	. 04	. 06	1	4	2	2
STD C/FA-51	22	59	38	131	7.0	65	28	1004	3.95	37	11	7	35	48	17	15	18	66	. 41	. 087	$3!$	4	. 11	182	. 08	35	1.73	. 09	. 13	13	103	41	100

GHS GEOCHEMICAL FHUJECT－こ +5 FILE＊BO－こ190

5KMPLE：

． 50345 tsicil	1	32	！	2	． 4	$5]$	23	501	4．96	8	5	ND	2	37	1	4	2	133	． 54	． 045	15	46	1.55	3：3	． 14	10	2.69	（t）	． 4	1	22	3	2
50345651032	1	117	＇ 7	． 64	． 1	59	21	531.	4.33	5	5	H0	1	22	1	2	2	114	． 32	． 770	8	69	． 96	34	． 15	B	1.44	．00	． 0	1	2	4	2
50345651033	1	44	－	71	． 2	－ 20	15	521	3.6	5	5	$n 0$	1	38	1	2	2	11	． 42	． 064	9	47	1.25	${ }^{*}$	． 16	$\stackrel{\square}{\circ}$	1.77	－ 4	． 07	1	15	0	1
50345651034	1	107	－	45	． 3	55	32	1058	7.01	6	5	H0	1	33	1	2	2	275	． 81	． 04 ？	19	46	2．3？	171	． 19	Io	2.59	0	． 12	$!$	13	2	2
50345651035	1	＇93	10	0	． 2	63	23	86	4.74	10	5	ND	1	34	1	2	2	11^{0}	． 72	． 075	$1 ?$	1	1.80	$1{ }^{7}$	． 14	－	2.01	．	． 12	1			
50345651058	1	＇ 62	7	84	． 2	39	18	799 ：	4.20	4	5	H0	2	34	1	2	2	9	． 18	． 089	13	58	1.59	6？	． 16	0	1.48	． 0	． 11	1	7	2	2
50345 651050	1°	28	1	17	． 3	30	14	54	3.57	2	5	ND	1	32	1	2	2	13	． 47	． 048	0	53	1.22	？ 1	．16	－	2.97	． 15	． 0	1	3	2	4
5044561050	1	39	5	100	． 1	33	15	542	3.53	2	5	NO	1	27	1	3	2	80	． 43	．131	8	42	1.12	！	－ 15	25	1.67	．${ }^{(5)}$	． 0 ？	1	2	2	6
50315651061	1	29	11	41	． 1	29	15	1114	3.24	3	5	N0	1	35	1	2	2	74	． 67	． 069	8	46	1.08	88	． 10	2	1.86	． 05	． 10	1	：	2	2
50345651062	1	32	7	93	． 2	27	18	1010	3.91	1	5	H0	1	34	1	2	2	b）	． 5	． 076	－	46	1．25										
10345651063	＇1	92	\％	77	． 3	51	23	181	5.12	2	5	ND	1	$3!$	1	2	2	147	1.33	． 01	10	49	1．69	180	． 13	1	1.87	． 01	． 12	1	1	9	2
50345.51064	1	18	5	63	． 2	135	14	364	3.48	7	5	H0	1	29	1	5	2	86	． 41	． 072	6	42	．$\% 2$	${ }^{6}$	． 16	5	1.10	． 05	． 05	1	194	2	137
50345651065	1	123	10	$!$	． 2	$2!$	14	405	3.35	4	5	KD	1	29	1	2	2	77	． 11	． 084	5	11	． 98	6	． 13	5	1.95	． 05	． 07	$!$	10	2	2
50345051046	1	． 42	7	68	． 1	14	26	670	4.54	7	5	H0	1	28	1	5	2	147，	． 49	． 069	7	57	1.70	90	． 16	7	1.93	． 07	． 08	1	12	2	2
50345651067	1	30	6	50	． 1	43	18	543	3.44	b	5	MD	1	21	1	2	2	9	． 36	． 062	1	42	． 96	73	． 16	1	1.77	． 05	． 8	1	12	2	2
50345651068	1	： 37	7	55	． 1	＇ 50	19	016	3.47	3	5	KD	1	33	1	2	2	1	． 53	． 074	7	44	1.29	41	． 11	4	1.60	． 05	． 08	1	＊	6	3
50346551069	1	， 23	8	＋73	． 3	こ22	13	＇754	2.15	6	5	H0	1	19	1	2	2	68	． 30	． 144	3	27	． 56	sl	． 11	3	1.64	． 4	． 06	1	2	2	2
50345651070	1	35	1	89	． 2	－ 150	16	477	3.58	5	5	； NO	1	29	1	2	2	－ 79	． 40	． 139	5	4	1.05	15	． 15	4	2.20	． 05	． 07	1	，	2	2
50345451071	1	－ 25	8	73	． 1	54	15	379	3.69	6	5	KD	1	26	1	2	2	84	． 41	．084	6	47	． 78	91	． 14	5	2.12	． 07	． 11	1	2	8	2
50345451072	1	74	5	； 70	． 2	18	22	742	4.99	6	5	HD	1	35	1	2	2	134	． 81	． 085	10	64	1.92	115	． 15	5	1.98	． 07	．	1			
50315651073	1	－ 28	1	107	.4	36	16	574	3.33	2	5	HD	1	24	1	3	2	77	． 34	． 142	5	41	1.04	58	． 14	5	2.18	． 15	． 07	1	3	，	2
50345651074	1	83	7	82	． 3	40	19	766	4．51	$\cdot 12$	5	ND	2	36	1	2	2	100	． 74	． 075	11	56	1.68	54	．15	1	2.23	． 07	． 08	$!$	15	2	${ }_{14}^{2}$
50345651075	1	91	－	15	.1	46	20	E36	4.12	6	5	ND	2	40	1	2	2	104	． 69	． 076	13	67	1.84	52	． 14	3	2.46	．0？	．${ }^{10}$	1	15	2	14
50345651076	1	， 34	10	82	． 2	34	15	493.	3.68	8	5	MD	1	28	1	4	2	83	． 42	． 046	9	47	1.05	12	． 15	4	2.17	． 05	． 06	1	1	2	2
50345651077	1	45	1	82	． 1	． 32	16	472	3.91	2	5	ND	1	27	1	2	2	\％	． 40	． 055	1	52	1.22	51	． 16	1	2.15	． 05	． 08	1	1	2	2
10345.651078	1	， 51	5	53	． 1	． 266	38	706	7.04	6	5	MO	2	47	1	2	3	14%	． 71	．163	8	110	5.71	61	．0\％	5	1.13	． 08	． 12	$!$	1	17	3
5034565107°	1	53	6	5	.1	388	≤ 1	$4{ }^{1} 5$	6.22	？	5	－ND	1	24	1	2	4	118	． 33	． 0.1	3	150	6.11	21	． 08	5	． 4	．0？	． 15	1	1	22	3
50345，651080	1	， 41	8	54	． 1	657	67	： 13.	6．3！	6	5	HD	1	15	1	2	6	79	． 25	． 064	10	191	10.79	28	． 06	－	． 80	． 06	． 05	1	1	11	2
50345 －651081	1	： 2 ！	＇	－ 64	.1	100	52	：737	6.11	5	5	HD	，	21	t	2	3	104	． 27	． 045	3	$1!6$	6.21	37	． 10	5	.96	． 08	．04	！	1	21	7
50345651082	－1	9	18	${ }_{\text {t }} 62$	1.1	46	53	：80	d． 7	6	5	－MD	1	22	1	2	4	128	． 38	． 094	5	136	7.45	01	． 07	5	1.07	． 08	． 09	1	1	21	7
10345651083	1	62	＇ 6	． 56	－ 1	． 230	137	124	6.64	6	5	ND	1	43	1	2	3	147	． 65	． 125	5	165	4.91	76	． 10	2	1.27	． 09	． 10	1	1	21	1
50345151084	1	1．70	7	$\div 71$.2	380	46	995.	5．69	d	5	MD	2	31	1	2	2	98	． 44	． 052	10	144	5.20	62	． 14	！	1．61	． 08	.10	1	1	5	2
． 50345.651055	， 1	＋22	\cdots ？	62	． 2	－3！1	$5{ }^{\text {c }}$	971	5.13	11	7	ND	1	19	1	2	5	46	． 34	． 04	2	117	4.13	58	． 08	4	1.02	． 0	． 04	1	1	${ }_{18}$	2
50345 651014	1	25	b	52	． 1	13	33	－ 471	5．18	2	5	HD	1	31	1	2	2	110	． 50	．065	4	112	$2.2{ }^{\text {a }}$	3 39	． 19	2	1.50	． 07	． 07	$!$	1	18	2
S034 651017	1	77	－	17	． 1	247	26	667	4.85	6	3	ND	1	30	1	2	2	106	． 44	． 045	B	81	1.68	100	． 14	3	2.31	． 06	． 07	1	！	－	2
SID C／FA－53	22	51	40	131	7.2	72	29	1033	3.96	42	16	7	33	47	18	16	21	69	． 48	． 108	36	59	．8B	177	． 08	37	1.73	． 10	． 14	13	102	86	100

50345 t5108e 50345651089 50345651089 50345651091 50345651092

50345351093 50345651084 50345451095 10345651098 10345651098
50345651097

10345451048 50345651099 50345652001 50345652002 50345652003

50345652004 50345652005 0345652006 50345652007 50345652008

50345652009 50345652010 50345652011 50345652012 50345652013

50345452014 50315652015 30515652016 50345652017 50345452018

50345652019
$50345 \mathbf{5} 2020$
30345 652021
$50345 \$ 52022$
50345 652023
50345652024
5034E 652025
cTU C/FA-5X

2	64	11	46	.3	217	20	734	4.13
2	27	6	44	.1	85	14	240	3.93
2	20	1	56	.1	34	1	201	3.31
3	76	7	74	.2	37	17	930	4.33
2	53	4	47	.2	36	14	697	3.29

5	KD
5	ND
5	KD
5	KD
5	KD

ND	1	35	1	2
ND	1	23	1	J
NO	1	22	1	2
WD	1	33	1	4
ND	1	32	1	2
ND	1	33	1	2
N0	1	35	1	2
KD	1	38	1	2
WD	1	45	1	2
MD	1	48	1	2

93	.57	.036
92	.31	.071
92	.30	.061
112	.10	.044
91	.52	.041

6	88	1.46
2	59	1.22
2	31	.69
	48	1.28
7	34	.97

97	.12
54	.11
72	.14
81	.11
79	.11
68	.12
53	.16
55	.16
16	.13
10	.24
100	.11
44	.22
18	.15
43	.12
57	.12

2	1.87	.06	.05
3	1.47	.05	.04
3	1.49	.05	.03
5	2.46	.06	.07
3	1.87	.05	.06
5	2.36	.05	.06
3	2.12	.05	.04
3	2.24	.05	.01
1	2.13	.06	.11
1	2.41	.05	.01

6	1.63	.06	.04
5	2.15	.05	.01
6	1.78	.06	.05
5	1.54	.05	.04
2	1.39	.06	.06

$5 \quad 751.45$ $\begin{array}{cc}10 & .51 \\ 13 & 1.25 \\ 31 & 1.14\end{array}$ $\begin{array}{rr}114 & .05 \\ 16 & .14 \\ 115 & .10 \\ 16 & .14 \\ 95 & .14\end{array}$
$\begin{array}{rrrr}10 & 1.50 & .08 & .08 \\ 5 & 1.40 & .05 & .09 \\ 7 & 1.93 & .06 & .17 \\ 1 & 1.73 & .05 & .13 \\ 5 & 1.44 & .04 & .04\end{array}$ 26
36
35
50
45
45
51
36
47
11 .45
.44
.52
.75
.65

.63
.99
.47
.71
.64 105
109
101
121
81 .10
.14
.10
.04
.12

1	1.11	.05	.05	1	1	2	2
1	2.75	.04	.04	1	1	2	1
7	2.28	.04	.06	1	1	2	2
1	2.00	.04	.06	1	1	103	1
7	2.29	.04	.04	1	13	2	13

64.3 .042
45
51
36
47
14
.08
.14
.12
.11
.12
$\begin{array}{ll}5 & 1.01 \\ 1 & 2.03 \\ 6 & 1.29 \\ 5 & 1.95 \\ 1 & 1.19\end{array}$ 4
$\begin{array}{llll}5 & 1.37 & .05 & .05 \\ 5 & 1.11 & .04 & .05 \\ 7 & 1.73 & .04 & .05 \\ 7 & 1.49 & .04 & .07 \\ 1 & 1.44 & .03 & .05\end{array}$
2
1
1
1
1
$\begin{array}{lll}5 & 2.47 & .04 \\ & 55 & .72\end{array}$$\begin{array}{ll}04 & .06 \\ .04 & .07 \\ .09\end{array}$
07$\begin{array}{rr}1 & 7 \\ 1 & 7\end{array}$

SAMPLEI

50345652026	1	32	§	80	.2	25	10	276	2.53	2	5	ND	2	20	1	2	2	55	． 21	． 010	2	31	． 53	50	． 14	f	2.02	． 04	． 05	1	1	2	2
50345652027	1	32	7	92	． 1	14	12	753	2．63	7	5	RD	1	21	1	2	2	6 ？	． 21	． 210	2	27	． 45	105	． 10	？	1.86	． 04	． 04	1	1	2	2
50345652020	2	37	5	105	． 2	32	14	654	3.10	2	5	ND	1	2	1	2	2	79	． 51	． 055	2	$3!$	． 78	12	． 13	4	1.88	． 15	．${ }^{7}$	1	1	2	2
50345 652029	2	35	5	75	． 2	44	12	449	3．35	2	5	HO	1	21	1	2	2	83	． 34	． 075	2	41	． 73	4	． 13	4	1.64	． 04	． 05	1	3	1	2
50345652030	2	55	7	73	.2	61	18	400	4.82	$\stackrel{\square}{9}$	5	10	1	25	1	6	2	120	． 40	．071	2	6	1.31	10	． 13	5	1.68	． 05	．05	1	1	5	2
50345 －52031	2	34	5	93	． 4	130	21	302	4.97	2	5	KD	2	19	1	3	2	117	． 28	． 120	2	71	1.19	71	． 14	5	2.12	． 05	． 05	1	1	3	2
50345652032	1	26	5	91	． 2	138	21	607	3.78	2	5	ND	1	21	1	2	2	88	． 34	． 172	2	$5{ }^{\circ}$	1.68	4	． 12	1	1.65	． 05	． 05	1	29	5	5
50345652033	2	21	9	78	.1	98	18	608	3.10	2	5	MD	1	24	1	4	2	100	． 41	． 692	2	53	1.24	95	． 12	6	1.17	． 06	． 05	1	1	1	2
50345×52034	2	23	9	117	． 2	8 8	17	402	3.78	5	6	KD	1	18	1	2	2	$!1$	． 31	． 141	2	47	． 71	87	． 12	5	1.82	． 14	． 05	1	1	2	2
50345 －52035	2	45	6	63	.4	55	14	524	3.73	2	5	ND	2	38	1	2	2	4	． 78	． 054	8	63	1.22	82	． 10	4	1.59	． 06	． 14	1	2	3	2
50345152036	2	34	7	$6!$	． 2	34	11	424	3.44	1	5	ND	1	40	1	3	2	83	． 41	． 051	6	51	1.07	61	.13	5	1.48	． 06	． 11	1	3	2	2
50345652037	2	35	4	104	． 3	24	11	741	3.13	2	7	N0	2	2	1	2	2	62	． 41	． 155	3	31	． 72	124	． 07	7	1.50	． 04	． 12	1	2	2	2
50345652031	1	21		90	． 2	30	\dagger	335	2.59	2	5	ND	1	25	1	2	2	60	． 36	． 071	2	33	． 6	101	． 11	3	1.66	． 04	． 04	1	6	2	2
50345 652036	3	71	6	72	． 3	＇40	15	： 620	3.78	6	5	MO	2	41	1	2	2	81	． 79	． 034	11	49	1.05	76	． 12	4	1.83	． 05	． 01	1	8	2	2
50345652040	1	－ 22	1	58	． 1	in 22	$!$	345	2.71	2	5	H0	1	26	1	2	2	64	． 39	． 030	3	26	． 71	45	． 10	4	1.43	． 04	． 11	2	5	2	2
，．－		：				い																											
50345652041	3	54	1	102	． 2	57	17	＇667	4.19	7	5	N0	2	32	1	2	2	90	． 58	．058	2	50	1.04	137	． 16	3	1.10	． 05	． 10	1	7	1	2
$50345 \mathbf{5 2 0 4 2}$	1	115	7	105	． 3	34	20	594	3.51	17	5	ND	2	23	1	5	2	17	． 51	．196	3	32	1.27	88	． 14	5	2.61	． 01	． 08	1	1	2	2
50545452043	1	125	$\because 7$	80	． 3	－ 47	27	＇709	4.01	15	5	kD	1	31	1	2	2	110	． 74	． 027	2	46	1.91	85	． 17	4	2.93	． 12	． 08	1	1	2	2
50345652044	2	－ 100	1	80	.2	i35	22	165	3.84	9	5	ND	1	33	1	2	2	106	． 76	． 031	2	35	2.12	82	． 11	4	2.70	． 12	． 09	1	3	2	2
50345 652045	2	40	1	90	． 2	， 30	14	1323	3.35	7	5	HD	1	27	1	2	2	8.	． 46	． 043	2	34	． 18	99	． 16	5	2.30	． 05	． 06	1	1	2	2
，＇				1																													
50345652046	2	； 5	9	118	． 3	47	17	183	3.61	9	${ }^{5}$	N0	2	29	1	2	2	11	． 46	． 062	2	44	1.03	88	． 17	5	2.58	． 05	．06	1	1	2	2
$50345 \$ 52047$	2	$2{ }^{\circ}$	8	73	． 1	40	14	617	2.90	6	5	Kid	1	32	1	2	2	72	． 52	． 054	2	11	． 86	78	． 17	4	1.95	． 05	． 07	1	$!$	2	2
50345 ¢ 52048	2	53	7	65	＇． 2	－ 36	15	557	3.42	7	5	no	1	36	1	2	2	${ }^{1}$	． 62	．029	3	42	．99	107	． 20	1	1.79	． 05	． 08	1	1	10	2
50345 45204？	2	54	\bigcirc	142	． 2	49	18	1052	4.01	5	5	HD	1	33	1	2	2	4	． 55	． 056	2	40	． 98	216	． 15	t	2.01	． 05	． 09	1	5	2	2
50345652050	2	50	i	105	． 3	55	17	89	4.28	10	5	H	1	32	1	2	2	97	． 60	． 046	2	49	1.01	199	． 17	5	2.12	． 05	．0＇	1	7	2	2
．						－																											
50345 652051	2	154	8	116	． 2	$\therefore 61$	24	1011	5.10	31	5	KD	2	34	1	2	2	120	． 13	． 104	4	47	1.61	174	． 10	1	2.44	． 0	． 14	1	5	2	10
50345652052	1	26	7	73	.1	32	31	613	7.08	8	5	KD	1	44	1	2	2	277	． 91	． 145	2	26	2.84	144	． 18	2	2.39	． 07	． 16	1	1	22	10
50345652053	1	36	4	64	． 2	BB	20	429	4.71	5	5	ND	2	26	1	2	2	124	． 47	． 063		68	1.57	44	． 15	6	1.15	． 06	． 10	1	2	3	2
50345652054	2	$1{ }^{1}$	6	＋ 68	． 2	73	17	670	4.66	1	5	KD	1	25	1	2	2	119	． 49	． 044	2	47	． 98	$7!$	． 13	5	1.44	． 05	． 05	$!$	1	4	2
50345452055	2	37	6	－ 65	． 6	． 39	17	416	4.39	5	5	ND	1	29	1	2	2	111	． 44	． 029	3	45	1.03	107	． 14	1	1.95	． 05	． 05	1	18	4	2
i i		：				\because																											
50345＇152056	， 1	． 61	16	108	． 1	－ 34	12	782	3.30	2	5	KD	2	25	1	2	2	71	． 53	． 032	2	30	． 53	186	.13	6	2.12	． 05	． 07	1	21	${ }^{2}$	2
50345652061	2	14	7	85	． 1	181	25	281	4.52	2	5	ND	2	18	1	2	2	86	． 24	． 151	2	90	2.21	58	． 12	5	1.51	． 04	． 03	1	1	25	3
50345652062	1	12	5	51	． 2	125	30	400	5.99	4	5	KD	1	19	1	2	2	157	． 44	． 021	2	105	1.50	75	． 14	4	1.47	． 06	． 04	1	1	63	6
－50345 652003	1	46	， 5	87	． 6	－ 30	17	331	4．12	3	5	KD	1	15	1	2	2	127	． 31	． 044	2	22	． 39	19	． 21	1	2.12	． 06	． 04	1	2	31	14
50345652064	1	27	11	74	． 7	34	$1{ }^{10}$	300	5.97	7	5	ND	1	14	1	3	3	142	.11	． 042	2	35	． 50	167	． 02	4	1.87	． 04	． 07	1	1	1	1
50345652065	1	87	－	59	． 7	$3!$	19	122°	4.97	1	5	MD	2	44	1	2	2	189	1.26	． 051	5	108	1.57	319	． 18	6	2.71	． 09	． 06	1	1	12	43
50345 652066	1	21	3	66	． 1	531	51	589	5.67	4	6	KD	1	17	1	2	4	12	． 19	． 053	2	172	7.37	44	． 07	5	．？2	． 05	． 03	1	1	11	2
STD C／FA－St	22	57	$3 i$	15 z	－．？	67	28	993	3.87	42	16	6	33	47	17	15	20	16	． 53	． 092	38	58	． 86	174	． 08	34	1.71	． 09	． 13	13	102	88	9

5KRFLE:

50345 652007	2	33	5	52	. 1	469	16	501	6.10	J	5	ND	1	12	1	2	2	143	. 20	. 020	2	149	4.93	45	. 10	9	1.08	. 05	. 03	1	1	13	
50345 652068	1	10	6	46	. 1	96	10	145	2.56	1	5	KD	1	15	1	2	2	61	. 17	.058	2	56	. 51	00	. 12	5	1.12	. 03	. 05	1	1	10	2
50345 .5206"	2	14	1	49	.1	417	43	46	5.04	5	5	ND	1	16	1	2	2	72	. 21	. 034	2	133	6.66	3	. 08	6	. 90	. 04	. 05	1	$!$	13	2
50345652070	1	53	4	49	. 1	174	30	640	5.94	3	5	ND	1	43	1	2	2	150	. 12	. 047	2	115	3.96	78	. 09	9	1.13	. 07	. 09	1	1	11	2
50345 652071	1	26	\bullet	71	. 1	46	41	121	4.61	10	5	Hi	1	17	1	2	2	349	. 12	. 017	3	75	3.79	123	. 34	2	2.41	. 06	. 30	1	11	10	6
50345 e52072	1	20	3	67	. 1	25	12	424	3.16	2	5	HD	2	32	1	2	2	72	. 46	. 042	$?$	45	1.12	50	. 14	3	1.75	. 04	. 07	1	1	2	z
50345 652073	1	55	4	76	. 3	31	14	700	3.46	5	5	KD	1	38	1	2	2	79	. 18	. 103	3	49	1.21	157	. 10	7	1.68	. 05	. 10	1	2	2	2
50345652074	1	29	2	60	. 1	28	14	495	3.36	2	5	MD	1	29	1	2	2	78	. 14	. 036	2	48	1.20	49	. 15	-	1.87	. 14	. 06	1	$!$?	2
50354 t5i075	2	24	6	79	.1	33	13	435	3.36	5	5	HD	1	26	1	2	2	76	. 12	. 048	2	43	1.06	55	. 16	5	1.94	. 04	.0?	1	1	?	2
50345 -52074	1	32	7	47	. 1	95	24	359	5.22	9	5	M ${ }^{\text {d }}$	1	29	1	2	2	165	. 52	. 041	2	78	2.22	43	. 10	8	1.63	. 07	. 08	I	J	5	3
50345652077	1	2!	4	12	. 1	27	16	397	3.52	4	5	KD	2	19	1	2	2	93	. 28	. 273	2	21	. 89	69	. 12	5	2.02	. 04	. 05	1	3	${ }^{6}$	2
50345652078	1	87	4	58	. 1	96	30	583	6. 15	5	5	MD	1	30	1	2	2	234	. 64	. 043	2	52	3.66	54	. 17	1	2.12	. 07	. 22	1	37	22	18
50345652079	1	24	2	60	.1	$2!$	14	47	3.41	2	5	ND	1	39	1	2	2	92	. 57	. 042	2	52	1.24	44	. 19	6	1.76	. 04	. 07	1	17	2	8
50345 652010	1	69	7	74	. 2	36	18	018	3.93	9	5	MD	1	36	1	2	2	92	. 61	. 062	6	4	1.42	101	. 12	7	1.99	. 05	. 09	1	3	2	3
50345652081	1	32	8	4	. 1	34	14	375	3.43	2	5	ND	1	29	1	2	2	78^{1}	. 42	.056	2	55	1.09	56	.14	6	1.93	. M	. 07	1	1	13	2
50345652012	2	23	4	10	. 1	49	31	491	6.95	1	5	MD	1	26	1	2	2	254	. 81	. 033	2	157	2.37	282	. 22	6	1.76	. 06	. 12	1	1	55	4
10345652083	2	55	5	66	1	212	31	642	8.32	10	5	ND	1	36	1	2	2	247	. 60	. 061	2	110	5.20	61	. 14	4	1.24	. 08	. 08	1	1	20	2
50345652084	1	25	,	58	. 2	43	11	227	3.34	5	5	10	1	22	1	3	2	81	. 30	. 099	2	43	. 11	67	. 14	1	1.44	. 05	. 04	1	2	1	2
50345152085	2	69	6	74	.4	28	14	375	3.50	2	5	ND	2	23	1	2	2	100	. 30	. 113	2	27	. 01	11	. 13	1	2.00	. 04	. 05	1	1	2	2
50345 552015	1	40	1	75	. 3	26	11	431	3.32	4	5	N0	2	20	1	2	2	77	. 22	. 128	2	24	. 71	80	.10	5	2.27	. 04	. 05	1	1	2	2
50345652087	1	35	7	76	. 2	17	\#	513	2.58	2	5	ND	1	11	1	2	2	4	. 23	. 083	2	25	. 4^{4}	84	. 11	6	1.48	. 04	. 05	$!$	2	2	2
50345 15\%068	,	44	?	92	. 3	30	14	591	3.61	3	5	HD	1	31	1	2	2	90	. 44	. 067	2	35	. 95	116	. 12	6	2.23	. 05	. 06	1	1	?	2
50345652019	1	973	5	79	. 3	30	39	157	4.16	3	5	KD	1	34	1	2	2	112	. 57	. 060	3	51	1.34	213	.13	6	2.11	. 06	. 08	1	3	5	3
50345 852090	1	55	5	53	. 1	43	20	436	4.50	6	5	MD	1	34	1	2	2	125	. 51	. 049	2	54	1.57	53	. 19	7	1.9\%	. 06	. 07	1	1	\%	2
503455^{51200}	1	25	7	78	. 1	22	9	425	2.86	4	5	NO	2	16	1	2	2	71	. 20	.05t	2	24	. 55	58	. 09	5	2.00	. 04	. 04	1	1	2	2
50345 $655^{\circ} 002$	1	16	6	65	. 3	16	7	286	2.43	2	5	ND	1	15	1	2	2	60	. 18	. 099	2	21	. 34	44	. 09	5	1.15	. 03	. 04	1	1	2	2
50345 652093	1	30	5	73	.	22	12	414	3.23	2	5	N0	1	22	1	2	2	13	. 31	. 087	3	29	. 15	82	.11	5	1.85	. 04	. 05	1	1	2	2
50345.52094		27	7	120	. 1	29	11	567	3.00	2	5	ND	2	20	1	2	J	72	. 24	. 118	2	21	. 61	87	. 11	5	2.17	. 04	. 05	1	25		20
50345652015	1	35	10	189	. 4	20	11	1196	2.65	2	5	KD	1	21	1	3	2	69	. 32	. 093	3	25	. 58	117	. 07	5	1.71	. 04	. 0 ?	1	4	2	2
50345 -52096	1	162	4	152	. 1	47	21	470	4.20	5	5	NO	2	35	1	2	2	107	. 51	. 053	3	34	1.21	87	. 16	6	2.22	. 05	. 04	1	-	\checkmark	0
50345 152097	1	12	7	44	. 1	371	48	655	7.02	3	5	ND	,	24	1	2	2	129	. 32	. 055	2	174	4.26	19	. 07	10	. 71	. 06	. 06	1	1	29	2
50345 65\%0\%8	1	14	6	5	. 1	51	12	345	4.35	2	5	N0	1	23	1	2	2	45	. 39	. 064	2	76	. 90	57	. 14	8	1.30	. 05	. 06	1	1	5	2
50315652060	2	23	7	54	.1	303	16	195	6.27	6	5	ND	1	31	1	2	2	118	. 30	. 040	2	192	3.62	32	. 12	8	1.05	. 05	. 04	1	1	56	2
50345 52100	1	20	*	54	. 1	162	27	290	5.65	2	5	kD	1	21	1	2	2	114	. 34	. 044	2	161	2.00	33	. 12	7	1.01	. 05	. 04	1	2	15	2
50345 652101	.	24	8	73	. 1	33	10	24	3.23	3	5	ND	1	25	1	2	2	14	. 32	. 070	2	34	. 71	69	. 12	6	1.67	. 04	. 05	1	5	2	2
50345652102	1	32	6	69	. 1	94	11	757	2.70	3	5	MD	1	20	1	2	2	70	. 27	. 045	5	47	. 74	74	. 11	7	1.49	. 05	. 04	1	$!$	$?$	2
50365652103	1	40	6	77	. 1	37	14	311	3.96	2	5	KD	2	26	1	2	2	102	. 34	. 070	2	40	1.22	1	. 13	7	2.32	. 05	. 05	1	1	1	2
STD C/FA-5x	21	58	39	132	7.0	67	21	994	\$. 91	38	11	7	34	47	17	16	19	-6	. 48	. 095	35	51	. 88	178	. 08	37	1.72	. 0	. 14	12	97	102	15

												CHEM			ROJ	CT			I	E		S19									FAgE		9
SAYPLEA	He	Li	1	In	AF	${ }^{1}$	co	Mn	fe	As	u	Au	th	Sr	cod	5b	${ }^{1}$	v	c^{2}	p	Lı	Cr	\%	8	It	!	4	Kz	,	\pm	Auts	Ptt1	Path
.,	Pr	Pr	PPK	PPs	PM	PPs	PPM	PPK	1	PM	PM	PPM	PrM	PPM	PPM	Prs	Pr	PFs	1	1	PPM	PPM	1	PPM	I	Prs	1	2	2	PPK	Pl	PP1	P3
1035 ${ }^{\text {c/4000 }}$	1	78	2	28	. 1	12	12	54	2.16	2	5	k0	1	12	1	2	2	71	5.62	. 025	2	38	1.22	23	. 15	6	1.5?	.17	. 08	!	1	2	22
10345650027	1	3	7	9	. 1	25	31	730	10.13	7	5	H0	1	76	1	2	2	333	2.17	. 259	1	11	3.41	116	. 21	2	2.69	. 09	. 65	1	8	26	${ }^{19}$
80345650030	2	708	,	17	. 2	51	45	1209	10.00	14	7	H0	1	170	1	2	2	213	5.34	. 046	8	2	1.99	154	. 07	2	. 29	. 08	. 16	1	288	7	15
10345450043	1	1	3	16	. 1	16	18	210	4.20	6	5	no	1	12	1	3	2	4	1.01	. 04	2	124	1.66	9	. 14	!	. 67	. 05	. 01	1	1	153	1
10345650046	2	328	6	56	. 6	26	25	1036	6.99	8	10	\%0	1	322	1	2	2	223	9.34	. 022	7	23	4.12	40	. 01	5	. 57	. 08	. 01	1	4	2	!
10345650067	1	4	6	26	. 1	32	11	291	9.21	7	5	No	1	59	1		2	377	2.10	. 013	2	7	. 96	27	. 26	2	. 76	. 19	. 09	1	29	8	3
10351500075.	1	\%	2	27	. 1	19	15	314	4.00	3	5	\%	1	94	1	2	2	234	1.55	. 029	3	1	1.51	37	. 28	!	1.31	. 25	. 17	1	26	$2!$	17
30345650100,	1	b	1	8	. 1	60	19	242	4.42	3	5	10	1	40	1	2	3	54	3.95	. 005	2	636	1.4	1	. 08	,	. 52	. 05	. 01	1	1	20	${ }^{2}$
20315650103	1	3	5	24	. 1	3 E	18	34	7.31	2	5	KI	1	4	1	2	2	227	2.22	. 101	7	171	1.65	40	. 24	5	1.19	. 26	. 13	1	I	5	12
10345650105 ,	1	1	4	27	. 1	4	17	369	5.92	3	5	WD	1	40	1	2	2	190	3.00	. 060	2	181	1.4	59	. 27	7	1.36	. 31	. 20	1	1	4	2
80345650120	1	1	2	17	.1	72.	22	250	2.85	4	5	N0	1	5	1	5	3	38	. 50	. 003	2	331	2.77	7	. 03	?	. 13	. 04	. 01	1	1	138	12
t0345 650131	1	12	5	47	. 1	1	15	373	3.08	2	5	N0	1	108	1	2	2	10	1.14	. 139	5	4	1.96	36	. 21	7	1.43	. 18	. 06	1	12	2	10
80345450133	1	136	J	60	. 1	15	16	47	3.59	2	5	yo	1	283	1	2	2	129	1.44	. 211	1	28	1.41	30	. 15	10	1.30	. 00	. 03	1	1	2	${ }_{3}^{33}$
STD C/FA-SI	22	59	37	134	7.0	4	28	1003	3.97	43	15	7	35	4	17	14	20	67	. 48	. 102	37	57	. 88	110	. 08	41	1.73	. 09	. 3	13	103	102	n

APPENDIX IV

Pre-1986 Analytical Results

Fo
Assaying \& Trace Analysis
Telephone:' 299.5242
6455 Laurel Street - Burnaby. BC. Vi sb 3 i3-4
Hudson Bay Exploration \& Development Co. Ltd.: 1695 Dental No. 2, ASsay CERTIICCATE

Fie Na 7369A

555 Burrard St.,
Vancouver, B. C. V7X IG6
Disposition_ \qquad

CHEMEX LABS LTD.

212 BHOOKSBANK AVI - NORTH VANCOUVER. BC CANADA

V7J 2C
TELEPHONE (604) 984-022 TELEX. 043.5259

TO : SHEARER, JOE

$$
\begin{aligned}
& \text { P.O. BOX } 1695 \\
& \text { HOPE, B.C. } \\
& \text { VOX } 1 \mathrm{LO}
\end{aligned}
$$

CERT.	$:$ A8213867-001
INVOICE \#	$: 18213867$
DATE	$: 22-0 C T-82$
P.O.	$:$

57981 - obivine Mountoen courtany kock Cat serpentimized Durite, Magnotile, chrowite.
57982" " " Feotwall schist 0.5 mwide at guartz veis showring
57983 " " Quartzvein 0.8 m wide.
$\begin{array}{lll}57984 & " . \quad " \quad \text { Quartz' grab of muck at } \quad " \text { in of zofoot. declince. } \\ 57985 & " \text { at }\end{array}$
57985 " " " Dt Mith sitie, ground up L..... i' 5
5خ987 " " 31 V cornorpost HrW*1 chromiñt aunguctite.
57988 " " . neer 5th switchback coarse pyoveruite.

CAROLIN MINES MADE MHIS REPORT.
ON TARNATION MINING LTD. PROPERIY

\square

MIN-EN Laboratories Ltd:

705 WEST 15th STREET, NORTH VANCOUVER, B.C., CANADA V7M IT2

TELEPHONE (604) 980.5814

ANALYTICAL REPORT

Copies sent to:

 \qquad
2. \qquad
3.

Somples: Sieved to mesh-. 8.0...s.0.ii................ Ground to mesh-80..rack
Prepared samples stored $\mathbf{2}$. discarded
\ldots rejects discarded $\square \ldots$
 A..A.

Remarks:

				$\begin{array}{ll} \hline \mathrm{zn}_{\mathrm{n}} & 25 \\ \mathrm{ppm} & \\ & 105 \end{array}$	${ }^{\mathrm{NtIm}}$	$\begin{gathered} c_{0}{ }^{35} \\ \text { pom } \\ \\ \hline 115 \end{gathered}$		$\begin{gathered} 45 \\ \hline \mathrm{Fom} \\ \hline 125 \\ \hline \end{gathered}$	$\begin{array}{ll} & 50 \\ \mathrm{H}_{9} & \\ \mathrm{ppb} & \\ \hline \end{array}$		$\begin{gathered} \mathrm{Mn}^{60} \\ \mathrm{ppm} \\ \hline \end{gathered}$	${ }_{\text {a }}^{\substack{\text { ab } \\ \text { pi }}}{ }^{65}$	(${ }_{\text {Pd }}{ }^{70}$		
	1	CiS_{1}	4,00, ${ }^{\text {a }}$	11	9	1		1	Luld	-1	1-1			26	- 350
		$8_{18} 5_{1}$	50,0,4)	+11			L_?		-		$1-1$		-13	-14	1 ± 40
- 11.10182		8, ${ }_{1}$	S,0pE						1	1	,	(1)	2	-5	
11816	111	11.1	Yid, 0_{1},	1	1.14	1.	,		1		111	1.19	11.1	$1 \rightarrow 9$	
818			30,0,		$2 \cdot 3$										25
$11^{1} 18$			20.0		$12 \cdot 4$		ir	1.1	1		1-1.			10	30
1119			10.0		311						1.1	18	,	13	5
1.194				11	$1-413$	1	-11	,	1	-1.	1-1	-7	-1-8	-26	-
L-1.19:6				-	$\underline{-1.2}$						1-1	5	4	-43	- 3.5
-					$12+6$;						$1-3$	1.2	1.5
-1]100			5	1	- 20		1	-1		1	L	53	1.6	-1,1	-25
-1, 102		1	4	$\underline{1}$	i. 24	-1.1	-1i	1	1	L.L.	L	123	1-5	1.12	-130
1,11110,4	1,	G151	-Stume	11	-14616	$\underline{1-1}$	Li	1	1.	1	1,111	$\underline{-74}$	\bigcirc	- 2.5	$\bigcirc 45$
-120012	11.	$z \theta 91$	Crum	1	1.213	-11	11i	1	i, ,	1.1	1.1	1.1	-1, 2	1.13	-120
1		-1,	1	+	; 1.8		-							1	-20
1.1106	111	-1.1	2-10-1	11	1214		i	1-1	11.	-	1, 1.	1 くil	-1.1. 1	1, 6	-1, 10
1.1108	11.	L-L	3770	L1-1	-21	1	1.6-i				1	- 18	-	3	-130
-1.10	-1	-1.	4-b	-1	1.8						1.1	6	- 3	6	$\underline{20}$
- 112		2015	-594	1	i1				1		1.	20	-1-8	IL 4	- 30
-14					$\cdots 8$								-	14	- 30
- j 16					2.6						LـL	L 4		-... 8	- 30
11				1-1	1211	1-1.	1-1.	1	1	느는	1	- 1	-1-3	- 5	1.40
1-120			4 Comy	-1	-1216	1	i-i	1	11	1-1	1-1	-《1		- 2	- CO
-i22			-9LEL	-	$\underline{-1.6}$	-ucl	-		1			- 6	2	3	$\underline{1.40}$
2.4			Hot		1.8				\cdots			1	$1-41$		$\underline{.25}$
-1-126			- 0		1.8							2	1	17	- 3.3
218			\%		, 1.5						-1,		2	-ـ.1.1	- 25
13.0					- 212						1	1.6	- 3	7	1.100
1, 3,2					24		S				1,4	$\underline{30}$			
2034		16 iS			, 27		-1						1) 4		3.0

\square \square. \square
compa (VLH_Consultantes

ATTENTION: 705 WEST 1SIT ST., NORTH VANCOUYER, B.C. V7M ITM

	$\mathrm{m}_{\mathrm{pom}}^{\mathrm{pog}}{ }_{90}^{10}$		$\begin{gathered} t-y_{y}= \\ \text { pom } \\ \text { pem } 100 \end{gathered}$	$\begin{gathered} \hline 2 \mathrm{zn} \\ \hline \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \mathrm{Nt}^{30} \\ \mathrm{pom} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathrm{co}_{\mathrm{ol}}{ }^{35} \\ \mathrm{pom} \\ \mathrm{n} \\ \hline \end{array}$			$\begin{array}{ll} \mathrm{H}^{\mathrm{Ho}} \\ \mathrm{pob} \\ & 130 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline \text { As } & 55 \\ { }^{50 m} \\ \hline \end{array}$	${ }^{\substack{M n \\ \text { ppm } \\ 140}}{ }^{60}$		$\begin{gathered} \mathrm{P}^{\mathrm{P} \mathrm{~d}^{70}} \\ \mathrm{ppb} \\ \mathrm{fin} \end{gathered}$	$\begin{gathered} \mathrm{Pt}^{75} \\ \mathrm{ppb} \\ \mathrm{fire} \end{gathered}$	
3000	-	1		1	34		S		-10			4	icul		20
1,011		L			- 20	-11	\%		-			L 28	1.5		20
					$\dot{\sim} 417$		\because					1.8	- -4		25
1.1013	\cdots	1.1		1	11.5						1	-1	-	+1. 0_{1}	
					22				,			- 18			-
10.5	1				-25							18.1		43	20
1006				,	- 3.7							14			25
1007					- 45							- 31	- 45	22	60
$1.10,8$					1.2							23	\cdots	, 1	95
- 0					27							27	L	<1	20
$\cdots 110$		L	以		46							- 42	$1-3$	16	110
$\square 1.11$	'	11	-1-1	L-1	- 6.0	,	-				1.	- 30	$1-1,1$		$\underline{20}$
-1.12		1.		L-1-1	- 80	-1	-				L11	38	- 1	46	210
11		-11	い 1	W	- 180	-11	$\ldots 1$	\ldots	\therefore	1.	1	27	- < 1		5.70
114					- 9.60						1	31	1		150
, 1.15				-1	-1-9,7		[i	\square	,		11	- 29	- <1		. 95
$1 \cdot 1.6$		-			4116						1	30	L <1	21	1000
-1, 4,2	+	,			26							28	1×1	<,1	6,60
-, 1, 1,8		L			114							55	\bigcirc	13	750
- 1,9					70							43	- 4	16	470
-2,0					144							42			510
,2,1					134							79		26	530
, 1, , 2, 2		\pm		1	15,6							64		18	540
$1-123$,			1,64							23		<1	710
- 2.4					38							19	11		
. 2,5					3.6							14			35
, 2,6					2,6							30			20
, 2, 2					-4, 3							- 14	,		120
2,8					- 40							- \sim_{1}^{11}			175
, 3, 0,2,9					2.4										2,5

PROJECT No.: Tatinat-ion-Mining-Eastside MIN-EN Leboreterles hid.

PROJECT ND:
705 HEST 15TH ST., NORTH VANCOUVER: E.C. V7H ITZ
FILE NO: 6-494S/P1+2
ATIENTION: C.STANLEY/J,WILCIYK
(6041980-5814 OR (604)988-4524
\pm TYPE SOIL GEOCHEH \& DATE:JULY 23. 1986

LURFHET: NUKIH HAEMILHN FLHIINUN PROJECT NO:
ATTENTIOK: C.STANLEY/S WOLCIYK
705 HEST 15TH ST., NORTH YANCOUVER. B. C. V7K 1 T2
FILE NO: $6-4945 / P 3+4$

ATIENTIOK; C.STANLEY/J.HBLCIYK				601988	1 QR	198		4 TYPE SOIL GEDCHES 4	OATE:TULY 23, 1986
(VALUES IN PPM)	A6	AS	CD	CU	WI	P9	$A D P P P B$	PD-PPB PT-PPB	
$16^{\prime} \mathrm{S} 4+50 \mathrm{k} 2041$. 3	(1)	16	45	C86	34	. 31	13	
12.5 0+00 2043	. 4	1	12	36	34	27	2	21	
12's 1+00E 2045	. 6.	1.	7	17	22	11	1	12	
12'S 2+00E 2047	, 1, 5	(12)	22.	Ci8i	32	29	1	31	
12's 3+COE 2049	. 8	1	11	, 75	31	22	4	1	
12'S 4 +00 2051	. 8	1	10	55	22	16	2	1	
12'S 5t00E 2053	. 7	1	10	49	23	20	1	17	
12's 1+00H 2055	.3	46:	36	13	(238)	c 3	1	1.1	
12's 2+00H 2057	1.0	1	14	cis	36	27	3	(24 3	
12'5 3+00N 2059	. 6	1	9	14	26	21	2	1-2.-n-	
12.9 3+00H2059	. 7	5	10	14	46	18	1	11	
12's 4+004 2061	. 9	6	(27)	13	123	27	2	$3 \quad 30^{\circ}$	
12'S 5tall 2063	. 9	8	16	26	C72	31	1	$2-3$	
10'S 4+50H2065	. 7	6	12	35	(6)	25	1	16	
10.5 3+504 2067	. 9	(30)	11	17	(16i)	22	2	1 - 1	
10's $2+50 \mathrm{Cl} 2069$	-1.2	1	10	19	18	14	2	1 3	
10's 1+50 2071	(1.2)	(18)	9	14	25	26	1	11	
10's 0+50H 2073	(1.2	(59)	290'	12	50	(.65	1	11	
819+5050+5022101	1.0	1	12	C80)	39	21	1	11	
818+5050+5042103	. 9	1	13	54	29	IB	4	8	
B17+0050+50M2105	.6	(26)	2 c	36	205.	(22	1	1	
B15+5050 +50 H 2107	. 8	1	9	26	36	14	2	11	
$814+5050+50 \mathrm{H} 2109$. 9	1	8	58	24	14	1	22	
B13+0050 $500 \mathrm{H2111}$.9	1	17	(6B)	35	20	1	11	
B11 $+5050+5012113$. 9	15	17	15.	(126)	32	4	5 30">	
810+5050+5042115	1.1	(20)	19	37	(94)	33	4	$11 \times$	
BL.9+0050 +5042117	(1.5)	50	(24)	21	50	(57)	6	2	

$\begin{array}{ll}\text { BL } 9+0050+50 H 2117 \\ \text { RL } 7+50 S 0+50 H 2119 \\ \text { BL } 6+5050+50 H 2121 & 1 . \\ \text { BL } 5+0050+50 H 2123 & \end{array}$

BL5+0050+5012123	3	B	10	30	59	32	1	9	2	
BL $3+50.502125$. 9	(3)	18	42	(30)	169	4	5	10	
BL 2+50'S 02127	. 5	15	18	52	(110)	(44	6	11	2	
8L $1+00 \cdot 502129$. 3	1	6	10	31	14	1	1	1	
40012 S 505	. 6	1	11	26	<6\%	22	1	1	2	
$40032^{\prime} 5150 \mathrm{E}$	8	1	11	37	47	21	1	1	1	
40052 S 250 E	. 7	2	10	C.80)	36	28	3	2	2	
4007 2'S 350E	. 8	1	7	36	29	13	3	6	(26."	
40092 S 450E	. 7	1	7	27	26	10	7	1	3	
4011 4'S 500E	1.0	2	12	(77)	38	20	4	1	2	
4013 1'S 400E	. 7	6	13	(8)	37	33	2	2	1	
40154 S 30 E	. 1	1	10	30	21	23	, 26	6	2	
4017 4'S 200E	. 6	1	3	12	10	7	2	5	12	
4019 4'S 100E	.7	7	12	52	38	27	1	1	1	
$40214^{\prime} \mathrm{S}$ 㫙	1.0	6	14	(87)	48	32	1	1	15	
40230 'S 50E	. 6	1	. 7	27.	23	16	9	1	1	
40250 S 150E	. 5	1	6	12	28	13	1	1	3	
4027 O'S 250E	. 8	3	9	(63)	30	28	$!$	1	2	
4029 O'S 350E	. 3	1	9	23	43	23	1	2	3	
40310 O 450 E	. 8	6	9	33	39	22	12	5	2	
$40330 \cdot 5100 \%$	8	8	9	(61)	35	24	3	4	1	
403505200 H	. 7	1	6	19	29	16	1	1	1	
4037 O's 300W	. 8	1	9	31	25	19	1	1	12	
4039 O'S. 400 W	. 5	3	6	22	24	19	1	1	3	
$40410.5500 H^{\prime}$. 6	4	7	18	20	22	1	1	2	
40A1A 2'S 100	. 9	5	11	42	50	25	1	2	17	
40432 S 200 m	. 9	-20	13	51	- 64	39	1	1	2	
4045 2'S 300h	. 9	- 25.	12	51	52	38	1	1	1	
3047 2'5 400k	. 8	1	7	15	24	19	2	1	1	
4049 2'S 500H	. 8	1	14	30	22	$=34$	17	25	3	
$40516^{\prime} \mathrm{S} 50 \mathrm{H}$. 5	42°	12	31	-64	37	3	5	14	

Hanch LhDO at nct mit
InLSiUENLII rBus 1 ur 1
705 HEST 15TH ST.: NDRTH VANCOUVER. B.C. V7H 172
FILE NO: $6-4945 / P 5$
ATIENTIOM: C.STAMLEY/X.HOLCZYK
(604)9B0-5814 OR (604)988-4524

- TYPE SOIL GEOCHEK :

DATE: JULY 23. 1986

IVALJES IN PPH)	A	AS	CO	CII	NI	PB		PPP	-PPB
415365150 H	. 5	1	7	17	18	20	2	1	4
405565250 K	. 9	3	10	(184)	21	25	12	1	2
405765350 H	. 5	7	10	50	26	25	4	4	1
405965450 H	. 4	2	8	15	24	20	3	5	3
406145500 H	. 6	23:	18	(72)	C80)	(2)	5		18
4063454004	.8	1	10	32	27	20	3	1	1
40654530013	. 4	2	(20)	(1) ${ }^{88}$	18	34	4	≤ 28.	1
4067452001	. 5	4	12	21	27	24	15	7	(26)
4069 45 100W	. 9	(29)	19	(25)	(98)	(5)	2	10	1
205 O+00E 2001	. 9	1	9	44	26	22	3	9	2

APPENDIX V

Letter of Review Donald Allen, P.Eng. (B.C.)

January 7, 1987

The Directors
North American Platinum Ltd. 615 Lillooet Street
Vancouver, B.C.
V5K-4G6

Gentlemen:

This letter is prepared at the request of Mr. John Gravel as an independent assessment of the $H \& H$ Claim Group. This assessment is made without benefit of field examination; however, I am familiar with the general claim area, the deposit target types, and with the logistics of working in the area. The subject report and the technical data therein and the abundant published literature of the Tulameen area provide sufficient documentation to permit comment.

Mr. Gravel's report describes results of a geochemical soil survey carried out in 1986. Three zones of interest, defined in part by enhanced levels of platinum, copper and gold, were outlined. Considering the favourable underlying geology, follow-up work to fully define the area of interest, followed by trenching and/or drilling are warranted.

The recommended completion of road construction to the property, additional geochemical sampling, and backhoe trenching of the known and any new targets, is a logical approach to the next phase of evaluating the mineral potential of this property.

I endorse the conclusion and recommendation made by Mr . Gravel in his report.

DGA/ap

CERTIFICATE

I, Donald G. Allen, certify that:

1. I am a Consulting Geological Engineer, with offices at Suite 614, 850 West Hastings Street, Vancouver, British Columbia.
2. I am a graduate of the University of British Columbia with degrees in Geological Engineering (B.A.Sc., 1964; M.A.Sc., 1966).
3. I have been practising my profession since 1964 in British Columbia, the Yukon, Alaska, and various parts of the Western United States.
4. I am a member in good standing of the Association of Professional Engineers of British Columbia.
5. This assessment is based on a review of a report written by J. Gravel and on selected published references. I have not visited the property; however, I have worked on the LODE claims which lie two kilomentres to the southwest and have a knowledge of the exploration targets and logistics of working in the area.
6. I hold no interest, nor do I expect to receive any in the H \& H Claim Group, in North American Platinum Ltd., nor in any other company active in the Tulameen area.
7. I consent to the use of this report in a Statement of Material Facts or in a Prospectus by North American Platinum Ltd.

January 7, 1987
Vancouver, B.C.

Donald G. Allen
P. Eng. (B.C.)

March 25, 1987

TO WHOM IT MAY CONCERN

> Re: Deficiencies in engineering report of North American Platinum Ltd.

I have checked the scale in the pocket map (Figure 5) in the Report entitled "1986 Exploration Report, Hand H Group" dated January 7, 1987 by John Gravel. The scale has been adjusted to the correct dimension.

The $11^{\prime \prime} \times 17^{\prime \prime}$ fold out maps have been reduced to page size and the scales modified accordingly in the title block.

Yours sincerely,

Donald G. Allen, P. Eng. (B. C.)

