ASSESSMENT REPORT

DIAMOND DRILLING, SURFACE GEOLOGICAL GEOCHEMICAL WORK DARDANELLES AND MOTHERLODE CLAIMS

RECORD NUMBERS 2481, AND 2482
ITS 82G/12E

LOCATED AT EAST SIDE, WILD HORSE RIVER CRANBROOK AREA, FORT STEELE MIMING DIVISION, SOUTHEASTERN BRITISH COLUMBIA

FIELD WORK, DRILL LOGS SEPTEMBER - DECEMBER
LATITUDE: $49^{\circ} 44.5 \mathrm{~N}$

LONGITUDE: $115^{\circ} 29.5 \mathrm{~W}$ SUPERVISED D. WOODCOCK, P.Eng., R. WRIGHT, B.SC., W.D. EROVES, P.Eng.

REPORT DATE: AUGUST 5, 1987
by
W.D. GROVES, P.Eng.

ON BEHALF OF JUSTICE MINING CORPORATION
413-475 HOWE STREET
VANCOUVER, BRITISH COLUMBIA
VC 2B3
PAGE
ABSTRACT ..... 1 ,
INTRODUCTION ..... 3
A. PROPERTY - LOCATION, ACCESS AND PHYSIOGRAPHY ..... 3
B. STATUS OF PROPERTY ..... 5
C. HISTORY ..... 5
D. REFERENCES ..... 7
E. SUMMARY OF WORK DONE ..... 7
TECHNICAL DATA AND INTERPRETATION ..... 8
I. GEOLOGY. ..... 8

1. Regional Geology. ..... 8
2. Diamond Drill program. ..... 12
II. SOIL ORIENTATION SURVEY AT DARDANELLES ..... 12
CONCLUSIONS ..... 15
APPENDICES
3. WORK COST STATEMENT
4. CERTIFICATE, W.D. GROVES
5. ASSAY CERTIFICATES
6. Drill Intersections
7. Surface Assays
8. Drill Logs (Wright)
ILLUSTRATIONS
A) GENERAL
Figure 1 Location Map $\checkmark$
Figure 2 Claims Map - NTS 82G/12E
B) DRILL JOB MAPS - WRIGHT

Figure 3 Drill time - utility program - Wright
Figure 4 - Drill hole locations - DDH 86-1-8, DDH 86-1-A, DDH 86-5A. Scale: 1:500. Wright
Figure 5: Section A-A (Figure 4). Shows 86-1, Adit 2 Wright
Figure 6, Section B-B (Figure 4). Shows 86-1-A, 86-3 Wright
Figure 7, Section C-C' (Figure 4). Scale: 1:200, looking West shows Cabin Adit, 86-6, 86-5-A, Wright
Figure 8 Section from $E(L)$ to $W$ : shows $86-8,86-7,86-6$ Wright Figure 9, Section from $E(L)$ to $W$ : shows 86-5a an 86-5. Wright

Figure 10 . Longitudinal Section through Upper Adit (\#2) Scale 1:200, Shows 86-1-A, 866, Prog. Lower (Cabin) Adit into Section. Looking southerly. Wright.
Figure 11 Longitudinal Section Looking S. Scale 1:200. shows E (L) to W: 86-5-A, 86-5, 86-1, 86-2, 86-3, 86-4, Projection of quartz vein. Wright.
Figure 12.
Figure 13 ,
Figure 14 .
Figure 15.

## TABLES

Table I
Geochem Orientation Profile Notes, (B-Series), V-Series, Woodcock.


#### Abstract

In the period October-December 1986, Justice Mining Corp. undertook a $\$ 105,548.00,1223.5$ foot 10 -hole diamond drill, plus surface work program on the Dardanelle claims of their Wild Horse River area claim block, in an attempt to develop drill tonnage around the Dardanelles Fault veins, which had been previously opened by surface stripping and two old adits, showing 2 gold quartz sulphide veins in shallowly S-dipping thrust faults, cutting Upper Creston Formation phyllites and arenites.


The author was accompanied by original property owner, Tony Fredlund, and drill geologist, Wright.

A Notice to Group was filed May 26, 1986; the grouping Motherlode (1), Dardanelles (1) A-1 (18), C-1 (18), Ramses (16), (the latter 3 contiguous staked properties), into the Dardanelles Group, totalling 54 units all on NTS 82G/12E.

A total of \$14,000 of the above work was filed, applied on A-1 (2 years), C-1 (1 year), Ramses (2 years), the rest $\$ 91,548$ going into Justice P.A.C. account. The Dardanelles claim is a reverted crown grant of about one unit in area.

The author, who has previously reported on the Dardanelles and A-1 claims in the area, accompanied by Mr. Torrey Fredlund, original owner of the Dardanelles claim, and Mr. Bob Wright, FGDC, drill geologist, flew to Cranbrook from Vancouver on the morning of Saturday, October 25, 1986, and that afternoon walked over the Dardanelles vein exposures, and discussed drill sites.

On the following day, the author and Mr. Wright, jointly sighted-in 9 drill hole locations, generally ranging along trace but up hill (south) of the vein exposure and adits. Wright works for Mr. Dick Woodcock, P. Eng., with whom Wright also conferred about the drill setup. Woodcock and Fredlund had previously been on the property. On Sunday, October 16, the drill arrived on site, and was positioned on the DDH 86-1A site. The author then returned to Vancouver, Monday, October 27, 1986, leaving Wright (responding to Woodcock) in charge of carrying out the program.

During Woodcock's later visit to the property, following a meeting between

Torrey Fredlund, Mr.Woodock and the author, in Vancouver, October 30, 1986, Woodcock visited the property, discussed the project with Wright and carried out two soil profile projects, one in the vicinity of the adits on the Dardanelles, and a reference study on the A-1 claim in the vicinity of previously obtained gold soil anomalies on the A-1.

The actual drilling was carried out in the period October 24- December 10, 1986 (see time - footage log, Figure 3) with hole logging and core sampling carried out by Mr. Wright. Core samples were assayed by 10-gram fire assay by Acme Analytical Lab in Vancouver.

The drill period extended through freeze-up including a very cold spell of weather around November $10\left(-40^{\circ} \mathrm{F}\right)$, and several feet of snowfall, which greatly complicated the logistics of the job. The principal problem was drill water. No creek was close enough for a gravity supply. At great expense, eventually $\$ 15,862$, first one skidder was hired to relay a water tank up the steep switchback road from Wendy's Creek. When it broke down, a second skidder was hired which completed the job. Skidder breakdowns occurred intermittently, which periodically stopped drilling.

Drill core recovery was generally good, though holes DDH 86-1A and DH 86-5 had to be discontinued due to drilling problems. Results were generally below expectations. Both upper adit an lower adit veins appeared to pinch down or off at further drill stepout holes. Gold tenures for quartz vein intersections (in holes $1 A, 1,2,3,5 A, 6(5,7,8$ no assays) were in the . $001-.01 \mathrm{oz} /$ ton range in Au .

Of the 7 upper adit samples taken along the adit by Wright, assayed .001, .569, .056, . 007, . 132, .211, .092, oz/ton Au, and the four lower (cabin) adit ones .205, .446, 4.930, . 035 oz/ton Au. Another surface sample by Woodcock EA-1, ran .078 oz/ton Au - or substantialy better, in average, than the drill hole assays.

The trace upper vein is projected across strike across three holes (300'): the lower one is less extensive.

The situation is thus one of a stacked - thrust fault hosted quartz lens structure, with steep cross-cleavage 'sprues' connecting the stack. Obviously, both continuity and structure of the vein system is less than that of the thrust fault vein injection system originally postulated.

This report is based on the author's observations, but more so on engineers Wright and Woodcock's logging, mapping and sampling, in whose results the author has complete confidence.

The above drill program implements the first $\$ 100,000$ stage of a total $\$ 320,000$ program recommended by the author in his September 30 , 1986 report on the property area.

Previous reports on the property are to be found in 1898-1925 B.C. Ministry of Mines reports, Rice (G.S.C. ( Memoir 207, 1937, Sookachoff's 1983 Assessment Work report on the $N$-contiguous $A-1$ claims, and by the author, plus results of a 95 ton bulk sample of the Vein Material from the adit as run by the Cominco smelter for Magnum Enterprises Ltd. in 1975, averaging $0.463 \mathrm{oz} /$ ton Au and $88.02 \% \mathrm{SiO}_{2}$.

## INTRODUCTION

## A. Property, Location, Access, Physiography

The Dardanelles Group (Dardanelles and Mother lode contiguous Crown Grants Nos. L10329 and L10330, respectively, the Mother lode being the more easterly of the two) lies mostly on a rather gently N -s loping high bench whose contours run locally almost east-west, overlooking the upper south rim of Wendy's Creek Valley and extending towards the north edge of the upper Shepherd's Creek bowl.

The lower edge of the claims extend down over a much steeper ( $45^{\circ}$ ) lower slope. The vein exposure and old workings are along the contour level of the breakover near the lower edge of the claims. The southerly portion of the Crown Grants cover the projected gentle southward dip of the structure.

The claim area is accessed by 3.8 km of fairly steep but well constructed road from the main forestry road up the east side of Wild Horse River, meeting the latter just east of the main road's crossing of Wendy's Creek. Grades are somewhat steep for a $2 W D$ but a 4WD or truck would have no problem. The road was upgraded for haul road for the 1975 bulk sampling of the property. From the Wendy's Creek junction it is approximately 15 km along the main forestry road to Fort Steele and Highway 95.

The physiography of the area encompasses the east side of the Wild Horse river valley (river elevation abot $3,800^{\prime}(1,235 \mathrm{~m})$, plus its major side creeks (Wendy's Creek, Shepherd's Gulch) with a more gentle terrace at the 6,000 foot ( $1,850 \mathrm{~m}$ ) level on the Crown Grants, then rising to the fluted upper ice sculptured spires and knife edge ridges of Vertical Mountain (top elevation 7,250' (2,3143m).

The Wild Horse River runs over gravel and bedrock: it has downcut through an earlier 100 m of older Tertiary river terrace. The main forestry road contours the top of this terrace. Main valley sides rise at about $25^{\circ}$ average slope, which has been 'bowled' by the major side creeks. Fairly deep till and slope wash covers the lower slopes: at about $5,500^{\prime}(1,690 \mathrm{~m})$ elevation, bedrock exposures are encountered on the hillsides. At the Crown Grant elevation the increasingly steep slope "breaks over" onto another gently sloping terrace at about 6,000 ', probably another old glacial feature: on it fine sandy till coverage exists. The uppermost slopes of Vertical Mountain become valley-glacier fluted tops and cliffs, some almost vertical.

Second growth timber and overgown logging slash cover the slopes: on the upper terrace, small jackpine grows on the drier and sandier areas. The area abounds in game: large, well used game trails of elk and deer contour the hillside. Apart from the certain areas of overgrown slash, the country is easy to traverse.

## B. STATUS OF PROPERTY

## a) Reverted Crown Grants

Lot Number

| Motherlode | L10330 (Dardanelles vein exposure) |
| :--- | :--- |
| Dardanelles | L10329 |

b) Located Ground

Record No.

| A1 $3 N \times 6 E \quad 180$ | SW LCP 88906 | $1786(5)$ |
| :--- | :--- | :--- | :--- |
| RAMSES 4N $\times 4 \mathrm{E} \quad 16 \mathrm{U}$ | SW LCP 04751 | $2400(6)$ |
| C1 $3 S \times 6 \mathrm{E} \quad 180$ | NW LCP 88907 | $1788(5)$ |

The 2 lots and 3 staked claims were grouped by a Notice to Group filed May 26, 1986 as the Dardanelles Group.

Claims are, to the author's knowledge, in good standing and either optioned to, or staked by, Justice Mining or its joint venture companies.

Work was carried out on the Dardanelle's Crown Grant: the other staked properties of the Dardanelles Group.

## C. HISTORY

At two locations about 1 km apart in a N -S direction, shallowly dipping quartz veins 'countour' the rather steep upper slopes of Vertical Mountain on the east side of the Wild Horse River in the area of upper Shepherd's Gulch, some 9 km (north) up river from where the Wild Horse joins the Kootenay River at Fort Steele,

B.C.(Cranbook area). The more northerly exposure is covered by the Dardanelles Group, Crown Grants L10329 \& L10330, which the author first visited on June 30, 1985 in the course of doing regional geology around the north-adjacent "A" located claim. (The more southerly Tit-for-Tat group, south of Shepherd's Gulch headwall, was visited October 26, 1986, p.m.). Details of workings and history of both Crown Grant groups are given in several old Minister of Mines Reports for 1898, 1935 (and other years), and by Rice of the G.S.C. (1937). The original 1896 mining attempt on the Dardanelles vein system was frustrated when, after dragging 30 tons of the vein down to an arrastra near the Wild Horse River, gold values in the ore failed to amalgamate. The Minister of Mines geologist (in his 1898 report) evidently deduced from this that there was no free gold in the ore, despite the attestations of the miners. However, there certainly was tetrahedrite (grey copper): copper-silver sulphantimonide, which in any appreciable quantity fouls mercury with antimony. Thus deprived of a cash-flow, the 1896 operation ceased. On the nearby Tit-for-Tat claim, a rather more entrepreneurial approach was tried: $\$ 600,000$ was reportedly raised whereupon mining ceased. A long period of relative quiescence followed on the claims. In 1975, a bulk sample of the Dardanelles quartz veins totalling 95.93 tons from the Dardanelles vein, was shipped to Cominco, Trail, B.C. Smelter sheets averaged . $463 \mathrm{oz} /$ ton $\mathrm{Au}, 1.807 \mathrm{oz} /$ ton Ag , minor lead-zinc, copper and iron, and traces of antimony, arsenic and bismuth. The quartz ore ran $88.02 \% \mathrm{SiO}_{2}$, qualifying it as a quartz flux ore. The total sample consisted of 3 lots, varying from. $214 \mathrm{oz} /$ ton Au to $.810 \mathrm{oz} /$ ton Au , demonstrating that the vein system, like most vein systems, shows considerable local variation in grade, in a range conforming with old Minister of Mines reports of samples from various ponts in the workings. In the Dardanelles Crown Grants, a main vein, 1 m average on surface, has been traced for 1200 m along the hillside. Two inclined tunnels have been driven down-dip on the vein, one 67 m long, another 30 m long. These workings were sampled by Sookachoff (1983) and by Wright and Woodcock (this work.). What was once a well constructed cabin is located near the major adit, with annotations on the door frame readable back to 1933.

The geometry of the thrust fault-hosted Dardanelles vein system was what made the system, in the author's opinion, conducive to a considerable geological
tonnage potential of quartz ore. The present work showed both less extent and less grade than surface and adit indications indicated.

## D. REFERENCES

1. Geological Survey of Canada, Memoir 207, Cranbook Map Area, British Columbia, by H.M.A. Rice, No. 2435, 1937. (Regional Map, Appendix 1,2)
2. "Data Relating to the Tit-for-Tat, Lenz Lode and Celt AClaims, Fort Steele M.D., B.C.", Albury Resources Ltd. 1/86 by Kregosky (Fieldwork, 1982). Figure 5.
3. Cominco Smelter Sheets (3 sheets) 1975, Dardanelles 95 ton bulk sample, for Magnum Enterprises Ltd. (Assay Sheets, Item 4).
4. 

a) B.C. Minister of Mines Reports: 1998, p. 1026 Tit-for-Tat, Dardanelles Claims.
b) IBID, 1925, P. A229, Dardanelles Group.
5. Assessment Report on Geophysical and Geochmical Surveys on the "A" Mineral Claim, Ft. Steele Mining Division, Wallinger Creek, for Justice Mining Corporation by L. Sookachoff, P.Eng. Work from July 12 to December 19, 1983. Report dated December 19, 1983.
6. Assessment Report on follow-up Geochemical Surveys, "A" claim, Fort Steele Mining Division,B.C. NTS 82G/12E, for Justice Mining Corp., by Dr. W.D. Groves, P.Eng., 1986.

## E. SUMMARY OF WORK DONE

The main activity on the property in fall 1986 was the 10 -hole diamond drill program under the supervision of engineers Groves, Woodcock and Wright in the period October-December 1986. A total of 1223.4 feet were drilled. Total expenditures
on the project was $\$ 105,548$. (See Appendix I). Holes spanned east-west along the trace of the veins back from where they surfaced on the hillside.

Ancillary drill hole mapping, adit sampling and some soil profile geochem sampling by Woodcock is included in the above total figure. Logging of holes and submission of core and surface soil and adit samples was made by Wright.

## I. TECHNICAL DATA AND INTERPRETATION

## A. Geology

## 1. Regional Geology

Regional geology is treated by Rice (Ref. 1). The following attempts to summarize features of his report relevant to the general claim area.

The claim area is underlain by folded and faulted units of the Proterozoic Lower Purcell Series. The series totals some 37,000 feet ( $11,300 \mathrm{~m}$ ) in thickness. The 3 middle units, Aldridge, Creston, and Kitchener, occur in the Shepherd's GulchWendy's Creek area of the Wild Horse River Valley. The Aldridge mostly rusty weathering dark argillites; the Creston, grey-green phyllites, trending upward into white, reddish, green and purple thin-bedded quartzites, and the Kitchener, orthoquartzites to well bedded dolomites. The subunits are 1.6-3,000 meters thick each, in transitional conformal sequence. The Dardanelles Fault vein cuts the Lower Creston, just above the predominantly phyllite-predominantly quartzite transition.

Regional structural trends in the area are a northward striking west-overturned anticlinorium on the mountainous west side of the Wild Horse River. Up the river itself, a major NE to

N20E/steep $W$ fault with 5 feathers parallels the west side of the river. The fault system is west side-up, with a very large vertical displacement (west side-up an estimated 7,000 m) which has been excavated by the Wild Horse. On the east side of the valley, traversed by the author, Aldridge rusty weathering dark dense argillites are found near river elevation (approximately $1000 \mathrm{~m})$. The transition green-grey fissile banded Lower Creston phyllites then occur. At about 2000 m elevation, the well bedded white and coloured quartzites of the mid-Creston are encountered.

Bedding attitudes strike generally northerly (N $10^{\circ} \mathrm{W}$ to $N 30^{\circ} \mathrm{E}$ ) with gentle to $45^{\circ}$ westerly bed dips, up to the elevation of the workings. Exposures along the Wild Horse, Wendy's Creek, and switchback cuts on the access road to the workings provide the data base. Evidently, the route up the road to the workings trend upsection; despite the local westward dips steeper than the slope angle, the general attitude of the section must be relatvely flat in the area.

Another easterly to northeasterly-striking major fault occurs in the Mause Creek area, 7 km south of the subject area, with a $3,000 \mathrm{~m}$ plus N -side down movement as mapped by Rice.

Rice also mentions the section in the general subject area is cut by numerous unmapped small displacment block faults 'stepping' the section: these are of great importance in contourtracking a thrust fault locus: its trace can step across these faults and require location by prospecting or soil geochem.

Rice also notes that both major and minor thrust faults exist in the section. He postulates an initial Proterozoic (Windermere) age of open northerly regional folding. This was followed, in Jurassic-Tertiary time, by compression, causing
northerly-trending folding, becoming west overturning, with strikes locally turned by previous structures. During the same period, thrust faulting occurred, followed by major and minor tension block and normal faulting. The latest episodes of faulting were in Laramide time (time of the formation of the Rockies overthrusting). During this period, intrusion of stocks into major faults and the entry of magmatic solutions (ankerite dykes, quartz veins, etc.) into normal and thrust fault loci occurred.

Rice identifies the Dardanelles Fault as a thrust fault.

> Property Geology- Gold Quartz Veins, Dardanelles Crown Grant

First observations by the author were made on June 30, 1985 in a traverse on foot up the access road angling southward from the road crossing of upper Wendy's Creek, up the switchback cuts in the Lower Creston phyllites, observation of the excavated mouth of the main adit of another adit 60 m east-contour, the 1975 stripping area, etc. on the Dardanelles group in the area of the old cabin. Figure 4 outlines workings areas, and shows proposed drill hole locations. On the Dardanelles Group, the vein is just post-fault in a flat lying (dips $20-25^{\circ}$ south) south-overthurst fault cleanly cross cutting the NE/60 NW dipping medium bedded micaceous to limey arsenites of the Proterzoic Lower Crestion Formation, of Lower Windermere (Belt) age.

Bed turning in the uppersheet of the thrust indicates the direction of fault movement. The thrust fault nature of the vein setting was also noted by Rice of the G.S.C. (1937 Ref. 1). Four other parallel minor structures exist: in the hanging wall, a 1 m
carbonate-feldspar "ankerite" dyke is seen in the face of the workings carrying trace lead-zinc values. This is of the low grade ankeritic lead-zinc (low silver) mineralization type generally similar to the ankerite hosted mineralization on the Kootenay King property high on the west side of the Wild Horse River roughly opposite the Dardanelles vein. Also, three minor ( 15 cm ) quartz veins in lesser breaks parallel to the thrust have been prospected some $20-30 \mathrm{~m}$ below the main vein below the cabin.

Thickness of the Dardanelles main vein varies from 1 m to 1.3 m in the main incline driven down the dip by the cabin. In the face (at 72 m ), old Ministry of Mines Reports indicate this is disrupted by a small fault (north side downstepping it from the exposures further south), and the vein locally pinches to 5 cm . In a large area stripped in 1975, 100 m to the west, the vein is at least 1.5 m thick in a local slight dip flattening.

A similar shallowly S-dipping fault vein cross cutting the Creston Formation on the Tit-for-Tat Crown Grant is .3 to .5 m in thickness, of similar mineralogy to the Dardanelle showing. It is found at just slightly higher elevation contouring the steep hillside south of the head wall of Shepherd's Gulch.

As revealed by the drill program, the two thrust-fault hosted quartz veins were more lense-like injections fed by the same steeply dipping 'sprue' about . 1 m wide up steep cross-bed cleavage. While potential for more layers exist vertically (downhill) the cabin's adit vein and the No. 2 adit (upper) adit vein do not seem to have as large a potential as thrust-fault accessed veins.

The quartz was injected up the sprue, and locally spread out into layers of the thrust fault slices. Grades also seemed to fall off away from the adits. See Figures 4 and drill hole sections and assays.

Woodcock's traverse NE downhill from the adit area showed high soil and bedrock gold apb values, suggesting another vein intersection on the hillside about where the lower parallel minor thrust structures were noted by the author.

His comparison profiles from the A-1 claims' low pb gold soil anomaly locations, shows that these values on the 'Vtraverse' were indeed anomalous by comparison, and indicate the need for further work for the next lower member of the vein stack structure now postulated.
2. Diamond Drill Program The Role is stored in lraublook - Will movitelse where.

Wright's Figure 4-11 set out the results of the $10-$ hole diamond drill program. Quartz intersections were obtained in certain holes: 10 - gram standard fire assays gave sub-economic indications. Appendix 1 shows the costs of the program. Appedix 4 , the detailed drill logs produced by Wright, give the logging details from which the sections were built up.

## II. SOIL ORIENTATION SURVEY AT DARDANELLES

Twelve soil profiles were taken along a line that trends northeasterly down a slope of approximately $25^{\circ}$. This line of orientation sites started about 50 meters southeast of the cabin and presumably crossed the vein in its upper part. The sample profiles, along with some of the results, are shown on the accompanying sketches in which the horizontal scale is $1: 250,000(1 \mathrm{~cm}=2.5 \mathrm{~m})$ and the vertical scale is $1: 10(1 \mathrm{~cm}=10$ m).

In addition to this orientation profile, which includes ten stations, there are eleven profiles that were taken several kilometers down slope down the road. These were from pits dug around the scattered gold anomalies that were previously obtained from B horizon samples.

Perusal of the samples taken in the lower region will give some information on background values as follows:

1. Gold values are low (generally less than 6 ppb ) with a few somewhat higher, but not anomalous values including 12 ppb in one surface sample, 11 ppb in one $B$ horizon sample, and 18 ppb in one sample of parent material. Background values for gold include the following means:

| Surface Samples | 2.7 ppb |
| :--- | ---: |
| B Horizon | 2.4 ppb |
| C Hoizon | 1 ppb |

Parent material $\quad 2.2 \mathrm{ppb}+$ one value of 18 ppb which gives overall mean of 3.6 ppb.
2. The lead in the surface samples is consistently higher than in samples of the $B$ or $C$ or $A$ horizons. The mean value of ten samples is 23.5 ppm plus one sample at 36 ppm giving an overall mean of 26.4 ppb .
3. Zinc values are very low, generally between 20 and 40 ppm , with no consistent enrichment in the surface sample. In many of the profiles, the parent material has slightly higher values than the other samples.

A perusal of the results from the profile across the vein gives the following conclusions;

1. Site No. 8 is off the line because of rock outcrops on the line. Presumably this sample site, and possibly also Site 7, were near bedrock. If such is the case then this could account for the anomalus $A u$ values in parent material.
2. From the profiles it appears that some of the samples at Site 3, and for a short distance below, have anomalous gold values, whereas those above (Sites 0,1 and 2) lack anomalous gold values. Thus, one could expect the vein to have been crossed just below Site 0 .
3. In general, the Au results are somewhat erratic with no good trends. However, one could note that the $B$ horizon is anomalous for approximately 25 meters below the presumed vein sub outcrop and is also anomalous at the off-line Station 8 which is in the vicinity of an outcrop. Stations 3, 4, and 5 are also slightly anomalous in the C horizon with values of 21,84 , and 174 ppb, respectively. The erratic Site 8 is also anomalous in the C horizon.
4. Values for the parent material are very erratic with values varying from 2 to 54 ppb both above and below the vein and with the two anomalous values mentioned for sites 7 and 8.
5. The values in the surface soils in the vicinity of the vein are also anomalous although low ( $18,40,48 \mathrm{ppb}$ ) in comparison to background values which are generally 1 or 2 ppb but include 12 ppb and 16 ppb at Stations 9 and 2, respectively.
6. Lead values in surface soils are considerably higher than values in the other horizons. These have a mean value of 65 ppm versus 26.4 in the lower area. There is no trend in relationship to the vein or the slope and whether these are indicative of the
mineralized zone or of higher lithological background is not known. Certainly, the mean is higher than one normally gets for lead.
7. Zinc values are again low. However, in this case the highest zinc values occur in the surface soil and are distinctively higher than values in the underlying soil horizons. This contrasts to the lower sample area where the highest zinc values are generally in the parent material.

## CONCLUSIONS

Although this is in an area of trenches and undoubtedly fairly close to places where blasting has taken place with possible contamination of the surface areas, one can probably discount contamination effect because of the high values that also occur in the $C$ horizon and in the parent material. If one can accept that all of these are legitimate values and not partly due to contamination of blasted vein material, then generalizations are as follows: (1) values are erratic, (2) the B horizon is probably best although not completely reliable, (3) the parent material might be very good if one could get close to bedrock; however, this is not practical in a soil sampling program, (4) lead in the surface soil might indicate the overall target area of the vein system, (5) the gold in the surface soil could be useful in pinpointing the target more sharply, and (6) sample spacing along lines that cross the structure should be about ten meters.

This orientation survey has also shown that with wide sample spacing obtained, the scattered anomalous values (e.g. 50 ppb ) could be significant and that carrying on a small program of sampling of B-Horizon soils from pits surrounding these scattered high values is a reasonable way of determining whether they are part of a legitimate anomaly or merely spurious values.

The 1987 drill program indicates that both extent and grade of the two thrust-fault-hosted quartz veins (of the Cabin Adit and Upper Adit) fall off away from the adit areas.

The vein soil profile study of the V-traverse by Woodcock northeasterly down from the mid point between the two adits indicates the good possibility of another lower vein in the vein stock $20-30 \mathrm{~m} N \mathrm{~d}$ down slope from the road, i.e., in the station V5-V8 area. This should be pursued by bulldozer stripping.

## Respectfully submitted,



William D. Groves, Ph.D., P.Eng.

## APPENDIX I <br> WORK COST STATMENT (WOODCOCK)

Conseledated Project Expense
Summary
Exploration expentutuces - Cranbrook Joint Ventures $\qquad$


## APPENDIX II

## CERTIFICATE



I, William D. Groves, do hereby certify that:

1. I, William D.Groves, am a Consulting Engineer (geological) with an office at 200-675 West Hastings Street, Vancouver, British Columbia, V6B 4Z1.
2. I am a graduate of the University of British Columbia (B.A.Sc. in Geological Engineering, 1960). I am a graduate of the University of Alberta, B.Sc., in Chemical Engineering in 1962, and of the University of British Columbia with a Ph.D. in Chemical Engineering in 1971.
3. I am a registered Professional Engineer in the Province of British Columbia.
4. I have practised my profession since 1960.
5. I first visited the subject property area for a total of 6 days: 5 days on the "A" claim and one day on the "Dardanelle" Crown Grant. The visits occurred during the period June 28 to July 12, 1985 during which time I supervised geochemical grid sampling and geology on the "A" claim, and inspected the "Dardanelle" workings. Additional sources of information: Kregosky's 5day study of the Tit-for-Tat group, Sookachoff's 1983 report on the "A" claim: Rice-GSC, 1937, Regional Geology, Minister of Mines Reports from 1898 - 1925 and general geological experience with quartz fault-vein systems. I visited the Dardanelles property again October 25-26, 1986 with Messrs. Torrey Fredlund and geologist Bob Wright with whom the 1986 drill hole sites were pegged, and discussed the project with geologist Woodcock October 30, 1986 in Vancouver. He later became Senior Geologist on the drill job. The author has complete confidence in both geologists, who did a higly competent job of carrying out the drill program and drafting the plans and sections of the results.
6. I have not received directly or indirectly, nor do I expect to receive any interest, direct or indirect, in the Al, Cl, Ramses, or Dardanelle claims.

Dated the 5th day of Augsut 1987 at Vancouver, British Columbia.


## APPENDIX III <br> ASSAY SHEETS

A. Acme File 86-4003

Upper Adit (UA) and Lower Adit (LA) chip Samples (Woodcock)
B. Acme File 86-3689 and 3691, 3527A, 3527, 3878, 3936

Drill Hole Core Assays (See logs for number-position) for $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$, Au.
C. Acme File No. 86-584. (3 pp). Surface, B-Horizon, C-Horizon and Parent (berock) sample sets, soil geochem profile V-traverse and B-traverse.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VGA 1 Rb PHONE 253-3158 DATA LINE: 251-1011

DATE RECEIVED: DEC 171986 DATE REPORT MAILED: $\operatorname{kn} 5 / 97$

ASSAY CERTIFICATE


ACME ANALYTICAL LABORATORIES LTD.
852 E.HASTINGS ST. VANCOUVER B.C. VGA 1RG FHONE 253-3158 DATA LINE: 251-1011

## ASSAY CEFTIFICATE

assayer: . ALAMPLE type: cores aut 10 gram regular assay

| Justice mining | FROJE | -DAF | ANELL | ES FIL | \# 86-3689 | FAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SAMF'LE\# | $\mathrm{Cu}$ | $\begin{aligned} & \mathrm{Fb} \\ & \% \end{aligned}$ | $\begin{array}{r} \mathrm{Zn} \\ \% \end{array}$ | $\begin{array}{r} A g \\ 0 Z / T \end{array}$ | $\begin{array}{r} A u \\ 0 Z / T \end{array}$ |  |
| DDH DAR 86-2 1 | - | - | - | .01 | . 001 |  |
| DDH DAF 86-2 2 | - | - | - | . 01 | . 002 |  |
| DDH DAR 86-2 3 | .01 | . 02 | . 01 | . 0.3 | . 020 |  |
| DDH DAR 86-2 4 | - | - | - | . 01 | . 008 |  |

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST. VANCOUVER B.C. VGA 1 RE FHONE 253-3158

DATE RECEIVED: NOV 141986
DATE REPORT MAILED: ASSAY CERTIFICATE


ACME ANALYTICAL LABORATORIES LTD.
852 E.HASTINGS ST. VANCOUVER B.C. VGA 1 R6 FHONE 253-3158 DATA LINE: 251-1011

DATE RECEIVED: NOY 41986 DATE REFORT MAILED: Nov. $60 / 86 .$. ASSAY CEFTIFICATE

ASSAYER: SAMFLE TYPE: CORES AUH: AND AGUI BY FIFE ASSAY


ICME ANALYTICAL LABORATORIES LTD.
852 E.HASTINGS ST.VANCOUVER B.C. VGA 1 RG FHONE 253-3158 DATA LINE 251-1011

## GEDCHEMICAL ICP

DATE RECEIVED: NOV 41986
 AMALYSIS
. 500 GRAM SAMPLE IS DIGESTED HITH JML 3-1-2 hCL-hMO3-h20 at 95 DEg. C FOR ONE HOUR AND 15 DILUTED TO 10 ML HITH Water. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI. G.AL.NA.K.H.SI.IR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK CHIPS AUZ ANALYSIS BY FA+AA FROM 10 GRAM SAMPLE.

ASSAYER: . A.SOPLODEAN TQYE. CERTIFIED B.C. ASSAYER.
J.R. WOODCOCK CONS. FFOJECT-DAFDEN FILE\# 86-E527 F'AGE 1

| SAMFLE\# | Ag | Au** |
| :---: | :---: | :---: |
|  | F'FM | FF'E |
| W86-541F | . 2 | 1 |
| W86-342F | . 1 | 1 |
| W86-̇4.3F | . 5 | 3 |
| W86-544F | . 2 | 2 |

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VGA IR PHONE 253-3158 DATA LINE: 251-1011

DATE RECEIVED: DEC 21986 DATE REPORT MAILED:
L.00 Gran sample is digested with 50hl of 3-1-2 of hCL-hmo3-h20 at 95 deg. C for one hour. and is diluted to loom with water. detection for base metal is .01\%.

- sample type: cores fut 10 gram regular assay

ASSAYER: TOYE. CERTIFIEDB.C. ASSAYER.
JUSTICE MINING FFOJECT-DAFDANELLES FILE\#86-3878

| SAMPLE\# | Cu | Fb | Zn | Ag | $A u$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | $\%$ | $\%$ | $\%$ | $O Z / T$ | $0 Z / T$ |

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. FH: (604) 253-3158 COMPUTER LINE: 251-1011

DATE RECEIVED DEC 91986 date reports mailed Dee 18/66 ASSAY CERTIFICATE

SAMPLE TYPE : GORE - CRUSHED AND PULVERIZED TO - 100 MESH.
ASSAYEF _- NcQf4-_DEAN TOYE . CEFTIFIED E.C. ASSAYEF:


ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VGA 1 RG FHONE 253-3158 DATA LINE: 251-1011

DATE RECEIVED: NOV 141986 DATE REPORT MAILED:
ASSAY CEFTIFICATE


JUSTICE MINING

SAMFLE\#

DDH DAR 86-2 1
DDH DAF 86-2 2
DDH DAF: 86-2
DDH DAF 86-2 4

FFOJECT-DAFDDANELLES

| Cu | Fb | Zn | Ag | Au |
| ---: | ---: | ---: | ---: | ---: |
| $\%$ | $\%$ | $\%$ | $0 Z / T$ | $0 Z / T$ |
| - | - | - | .01 | .001 |
| - | - | - | .01 | .002 |
| .01 | .02 | .01 | .03 | .020 |
| - | - | - | .01 | .008 |

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VGA 1RG PHONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: NOV 61986 DATE REPORT MAILED:
. 500 gran sample is digested with ml 3-1-2 hCL-hmoz-hzo at 95 deg. C for one hour and is diluted to 10 hl with mater.



ASSAYER: AUCobeps . DEAN TOYE. CERTIFIED bic. ASSAYER.
J.R. WOODCOCK FILE \# 86-3584

PAGE 1

J.R. WOODCOCK FILE \# 86-3584

|  | SAMF'LE\# | $\begin{aligned} & \mathrm{Cu} \\ & \text { FF'M } \end{aligned}$ | $\begin{aligned} & \text { F'b } \\ & \text { F'F }^{\prime} M \end{aligned}$ | $\begin{array}{r} Z n \\ F \cdot F M \end{array}$ | $\begin{aligned} & A g \\ & F \cdot F \cdot M \end{aligned}$ | $\begin{aligned} & \text { As } \\ & \text { FFM } \end{aligned}$ | $\begin{aligned} & \text { Sb } \\ & \text { F'FM } \end{aligned}$ | Au** FFE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | E-14-7 SURFACE | 25 | 16 | 46 | . 2 | 6 | 2 | 3 |
| - | E-14-7 E HOFIZON | 20 | 18 | 42 | . 1 | 4 | 2 | 5 |
| 10 | B-14-7 C HOFIZON | 12 | 1.3 | 36 | . 2 | 6 | 2 | 1 |
|  | E-14-7 F.AFENT | 24 | 15 | 45 | . 1 | 10 | 2 | 3 |
| $\because$ | E-14-8 SUFFACE | 15 | 56 | 55 | . 1 | 5 | 2 | 2 |
|  | E-14-8 E HOFIZON | 16 | 11 | 37 | . 1 | 6 | 2 | 1 |
|  | E-14-8 C HOFIION | 24 | 12 | 48 | . 1 | 7 | 2 | 1 |
|  | E-14-8 FAFENT | 30 | 15 | 48 | . 1 | 9 | 2 | 18 |
| $\cdots$ | V9 SUFIFACE | 8 | 59 | 42 | . 1 | 2 | 2 | 12 |
|  | VG E HOFIIZON | 12 | 18 | 56 | .2 | 2 | 2 | 1 |
|  | VF C HOFIZON | 15 | 22 | 44 | . 3 | 2 | 2 | 40 |
|  | $V 9$ FAFENT | 18 | 14 | 31 | . 1 | 2 | 2 | 39 |
| $\because$ | V8 SURFACE | 11 | 95 | 59 | . 1 | 2 | 2 | 2 |
|  | VE E HOFIZON | 17 | 40 | 47 | . 1 | 2 | 3 | 109 |
|  | V® C HOFIZON | 19 | 5 | 37 | . 1 | 2 | 2 | 235 |
|  | V8 F'AFENT | 21 | 23 | 37 | . 1 | 2 | 4 | 210 |
| 込 | V7 SURFACE | 10 | 96 | 73 | . 1 | 2 | 2 | 1 |
|  | $V 7$ E HOFIIZON | 15 | 22 | 49 | . 1 | 3 | 2 | 9 |
|  | V7 C HORIZON | 10 | 17 | 27 | . 1 | 2 | 2 | 12 |
|  | $V 7$ F'AFENT | 18 | 20 | 41 | . 1 | 2 | 4 | 161 |
| 它 | VS SIJFFACE | 29 | 16 | 44 | . 1 | 10 | 2 | 1 |
|  | VG E HOFIZON | 20 | 10 | 49 | - 1 | 10 | 2 | 2 |
|  | VG C HORIZON | 39 | 13 | 39 | . 2 | 12 | 2 | 4 |
|  | VG FAFENT | E5 | 12 | 38 | . 1 | 9 | 2 | 2 |
| $\cdots$ | VS SUFFACE | 11 | 74 | 98 | . 1 | 3 | 3 | 1 |
|  | VS E HOFIZON | 19 | 19 | 21 | - 1 | 2 | 2 | 5 |
|  | VS C HORIZON | 14 | 15 | 19 | . 2 | 3 | 2 | 174 |
|  | VS F-AFENT | 10 | 18 | 19 | .1 | $\Xi$ | 4 | 54 |
|  | V4 SUFiFACE | 8 | 98 | 42 | . 4 | 2 | 2 | 48 |
|  | V4 E HOFIIZON | 10 | 21 | 25 | . 1 | 2 | 2 | $\leq 1$ |
|  | V4 C HOFIZON | 11 | 16 | 24 | - 1 | 2 | 2 | 84 |
|  | $V 4$ FAFENT | 11 | 13 | 24 | . 1 | 2 | 3 | 49 |
| is | $V E$ SURFACE | 7 | 51 | 54 | . 1 | 2 | 3 | 40 |
|  | VE E HOFIIZON | 8 | 18 | 27 | . 1 | 2 | 2 | 220 |
|  | VE C HOFIZON | 9 | 12 | 24 | .1 | 2 | 2 | 21 |
|  | VS FAFENT | 11 | 6 | 20 | .1 | 2 | 2 | 2 |
|  | STD C/AU-S | 59 | 38 | 1.37 | 7.2 | 40 | 15 | 48 |

J.R. WOODCOCK FILE \# 86-3584

|  | SAMFLE\# | $\begin{array}{r} \mathrm{Cu} \\ \text { FFM } \end{array}$ | $\begin{aligned} & \text { FO } \\ & \text { FFM } \end{aligned}$ | $\begin{array}{r} 2 n \\ \text { FFM } \end{array}$ | $\begin{array}{r} \text { AO } \\ \text { FFiM } \end{array}$ | $\begin{aligned} & \text { As } \\ & \text { FFIM } \end{aligned}$ | $\begin{array}{r} \text { Sb } \\ \text { FFM } \end{array}$ | $\begin{gathered} \text { Au** } \\ \text { FFE } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | V2 SURFACE | 14 | 82 | 75 | . 2 | 5 | 3 | 16 |
|  | V2 E HOFIZON | 12 | 9 | 21 | . 2 | $\pm$ | 3 | 5 |
|  | V2 C HORIZON | 9 | 10 | 21 | . 1 | 5 | 2 | 4 |
|  | V2 FAFENT | 11 | 5 | 19 | . 1 | 4 | 5 | $\Xi$ |
| $三$ | V1 SUFFACE | 12 | 101 | 45 | . 2 | 7 | 4 | 1 |
|  | U1 E HORIZON | 8 | 8 | 22 | . 1 | 4 | 2 | 7 |
|  | VI C HORIZON | 9 | 4 | 19 | . 1 | 2 | 2 | 12 |
|  | $\checkmark 1$ FARENT | 8 | 7 | 19 | . 1 | 2 | 2 | 46 |
| 2 | VOO SUFFACE | 14 | 65 | 28 | -1 | 6 | 3 | 18 |
|  | VOO E HOFIIZON | 7 | 11 | 20 | . 2 | 3 | 2 | 4 |
|  | VOO C HORIZON | 7 | 7 | 20 | - 1 | 2 | 2 | 9 |
|  | $V O O$ FAFENT | 10 | 8 | 23 | .1 | 3 | 3 | 7 |
|  | STD C/AU-S | 59 | 37 | 129 | 7.1 | 59 | 16 | 52 |



Scale 1:200

elar 1800.00 m (DATum)
eler of top of vein. 1792.68 m .

SAMPLING:

No. Rock Type
DAR86-1A-1 Hangingwall Phyllites
DAR86-IR-2 Fault gouge
DAR86-1A-3 Quartz vein
DAR86.1A-4 Footwall Arkoses

From To $\triangle$

| 6.64 m | 7.14 m | 0.5 m |
| :--- | :--- | :--- |
| 7.14 | 7.32 | 0.18 m |
| 7.32 | 7.40 | $0.08 \mathrm{~m}(3 \mathrm{in})$ |
| 7.40 | 7.90 | 0.5 m |

J. R. WOODCOCK CONSULTANTS LIT.
property. Dardanelles
HOLE No. 86-1A
cLAIM No. Motherlode C.G.
GEARING
$\qquad$

$$
\text { DIP }-90^{\circ}
$$

LENGTH 12.19 m . (40 ft)
DIAMETER $N Q$ (casing 7 ft).
drilled ar Adams Drilling STARTED: Oct 28,1986 10 Am TERMINATED: Oct 29,1986 4 pm LOGGED EY: RLWright

COORDINATES $1000 \mathrm{~N}, 1000 \mathrm{E}$ 1800 m (Datum)
ELEVATION 1800 m (Datum)

J. R. WOODCOCK CONSULTANTS LIED.
property. Dardanelles
CLAIM NO.
$\qquad$
hole no. ... $86-1 \mathrm{~A}$
BEARING $\qquad$
DIP $\qquad$
LENGTH $\qquad$
DIAMETER
LENGTH

DRILLED BY $\qquad$ STARTED: $\qquad$
TERMINATED:
LOGGED BY:

COORDINATES $\qquad$
$\qquad$
$\qquad$
ELEVATION


DD 86-1R

LOCATION: 10 m West of stripped area, upper adit level. GRID: N/S:

$$
E / \omega:
$$

COLLAR ELEVATION: 1800 m datum.
DIP : $-90^{\circ}$
HOR. COMP: Off ( Om .)
AzIMUTH: -
VERT COMP: $40 \mathrm{ft}(12.19 \mathrm{~m})$
LENGTH: $40 \mathrm{ft}(12.19 \mathrm{~m})$ RECOVERY: 73 \% overall.

CORE SIZE: $N W$ casing 7 ft, $N Q$ core
DATE COMMENCED OCt 28,1986 IOAM
DATE COMPLETED. OCt 29, 1986 4PM

Log:
O-23's" GREEN PHYLUTIC MUDSTONE
(0-7.14m) medium to dark grey-green, rhythmically bedded plyllitie mudstone with disseminated 1 mm . brown limonitic spots after pyrite(?). Dip angle of cleavage: $40^{\circ}$. Pronounced $S$ cleavage parallel to $S_{0}$ bedding throughout. Irregular $1-2 \mathrm{~mm}$. thick quart i siderite stringers throughout.

23'5"- $24^{\prime \prime} 0^{\prime \prime} \quad$ FAULT
(7.14-7.32m) Fractured mudstones grade downward into intensely fractured shear zone with angular fragments of mudstone and quarts in a beige clay matrix with putty- lUke consistency
$24^{\prime} 0^{\prime \prime}-24^{\prime} 3^{\prime \prime}$ QUARTZ VEIN
(7.32-7.40m) Typical white quartz vein with limonite-coated
fractures; no visible sulphides. Both upper and lower contacts appear to be sharp, and are subhorizontal, clearly cutting the inclined cleavage of underlying rocks.

24'3' - $40^{\prime \prime} 0^{\prime \prime}$ RED PHYLLITIC ARKOSE
(7.40-12.19m) Brick red layered plyllitic arkosic sediment with fine-grained beige mudstone layers $1-5 \mathrm{~mm}$ thick alternating with fine sandy material. Limonite stamied fractures. White, unaltered, siliceous sections up to 0.5 mm thick, appear to be of the same lithology
$40^{\prime \prime} 0^{\prime \prime}$ End of hole.
( 12.19 m )

SAMPLES


Rocktype.
Hanging wall phylites

Fault gouge.

Quartz vein
$\begin{array}{ccccc}-4 & 24.25 \mathrm{ft} & 25.92 \mathrm{ft} & 1.67 \mathrm{ft} \\ & 7.40 \mathrm{~m} & 7.90 \mathrm{~m} & 0.50 \mathrm{~m} .\end{array}$
Footwall arkoses.

RECOVERIES


BoXES: 10 to $27^{\prime} 9^{\prime \prime}(8.46 \mathrm{~m}) \&$ Intersection $227^{\prime} 9^{\prime \prime}$ to $40^{\prime} 0^{\prime \prime}(12.19 \mathrm{~m})$ End of Hole.

DIP ANGLES:
$\left.\begin{array}{ll}12^{\prime} & 35^{\circ} \\ 18^{\prime} & 35^{\circ} \\ 22^{\prime} & 35^{\circ}\end{array}\right\}$
$26^{\prime}: 53^{\circ}$
$29^{\prime}: 68^{\circ}$
$35^{\prime}=58^{\circ}$
$40^{\prime}: 50^{\circ}$


SAMPLING:

| No: | Rock Type | From | To | $\Delta$ |
| :---: | :---: | :---: | :---: | :---: |
| DAR86-1-1 | Hanging wall | 29.98 m | 30.48 m | 0.5 m |
| DAR86-1-2 | Fault zone | 30.48 | 32.92 | 2.44 m |
| DAR86-1.3 | Quartz vein | 32.92 | 34.39 | $1.47 \mathrm{~m}\left(4^{\prime} 10^{\prime \prime}\right)$ |
| DAR86-1-4 | Footwall | 34.39 | 34.89 | 0.5 m |

J. R. WOODCOCK CONSULIAN'IS LTD.

PROPERTY.
DARDANELLES
hOLE No. 86-1
cLAIM No. Motherlode CG.
beAring - -
DIP - $90^{\circ}$
drilled er Adams Drilling sTARTED: OCt 31,1986 TERMINATED: Nor. 1,1986 LOGGED 日Y: R.L. Wright

$$
\text { COORDINATES } \frac{9+87 \mathrm{~N}}{10+64.5 \mathrm{E}} \quad \text { LENGTH } 35.82 \mathrm{~m}(117.5 \mathrm{ft})
$$

$$
\text { ELEVATION } 1819.20 \mathrm{~m}
$$


J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-1 Logged By R.L.Wnight
Date $\qquad$ Nov. 2. 1986

Sheet No. 2 of 3

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-1 Logged By $\qquad$ RLWright

Sheet No. 3 of 3


DDH 86-1 Recoveries

From

To

4
11

24
28
33

38
41.5
47.5

51
53.5
53.5 57.5
57.5

67

| 70 | 76 |
| :--- | :---: |
| 76 | 83 |
| 83 | 87 |
| 87 | 25 |
| 95 | 103 |
| 103 | 109 |
| 109 | 111 |
| 111 | 177.5 |
| 117.5 | EOH. |

$\qquad$


DDH 86-1

| BOXES | (F+) FROM (M) |  | (F+)TO (M) |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 28.4 | 8.66 |
| 2 | 28.4 | 8.66 | 50.5 | 15.39 |
| 3 | 50.5 | 15.39 | 69.4 | 21.15 |
| 4 | 69.4 | 21.15 | 92.0 | 28.04 |
| 5 | 92.0 | 28.04 | 117 | 35.66 |
| 6 | 117 | 35.66 | 117.5 | 35.81 |


J. R. WOODCOCK CONSULTANTS LTD.

PROPERTY. DARDANELLES
CLAIM No. Motherlode C.G.
$\qquad$ bearing -

DIP $-90^{\circ}$
COORDINATES $\quad 9+81 \mathrm{~N}$
LENGTH $\quad 34.44 \mathrm{~m}$. ( 113 feet)
$10+35 E$
DIAMETER - NO
ELEVATION 1820 metres.
drilled by Adam Dolling STARTED: NOV. 4,1986 3 AM terminated: Nov, 9,1986 9 pm LOGgeD gr: RLWright

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-2 Logged By $\qquad$ R.L.Wnght

Date $\qquad$ Nov. 10,1986

Sheet No. 2 of 3

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-2 Logged By $\qquad$ R.L.wnght $\qquad$ Nov. 10,1986

Sheet No. 3 of 3


DDH 86-2 Recoveries


| DDH 86-2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BOXES: | FROM (M) | (Ft) TO | $(M)$ |  |
| 1 | 0 | 0 | 24 | 7.32 |
| 2 | 24 | 7.32 | 42.75 | 13.03 |
| 3 | 42.75 | 13.03 | 62 | 18.90 |
| 4 | 62 | 18.90 | 88 | 26.82 |
| 5 | 88 | 26.82 | 113 | 34.44 |


J. R. WOODCOCK CONSULTANTS LTD.
$\qquad$
driled by Adam Dílling started: Nov 10, 1986 IIPM terminated: Nov 12, 1986 6PM Logeed by: RLWright

|  |  |  |  | description and remarks |  | sample |  |  |  |  | Assar |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | T0 | verar | Anole | descarion ano newank | no. | From | то |  |  |  |  |  |
| 0 | 9.75 | 85 | 20.30 | PHYLLITIC QUARTZITE |  |  |  |  |  |  |  |  |
|  |  |  |  | Dark green chloritic laminated phyllites |  |  |  |  |  |  |  |  |
|  |  |  |  | interbanded with mottled white/green guartzite. |  |  |  |  |  |  |  |  |
|  |  |  |  | Brown ankeite (?) spots and stringers throughout. |  |  |  |  |  |  |  |  |
|  |  |  |  | Graded bedding in phyllites indicate tops up. |  |  |  |  |  |  |  |  |
|  |  |  |  | 4.72-5.33 brown highly foliated (sheared?) phyllite |  |  |  |  |  |  |  |  |
|  |  |  |  | with day gouge seams is Fault. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9.75 | 13.11 | 51 |  | QUARTZITE |  |  |  |  |  |  |  |  |
|  |  |  |  | Massive, beige coloured mig. quarticte with |  |  |  |  |  |  |  |  |
|  |  |  |  | thin interbeds of ught green to beige phyllite. |  |  |  |  |  |  |  |  |
|  |  |  |  | Broken core. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13,11 | 14.63 | 16 |  | PHYLUTE |  |  |  |  |  |  |  |  |
|  |  |  |  | Pale grey grean phyllite similar to that assoe. |  |  |  |  |  |  |  |  |
|  |  |  |  | with phyllitic quartziles above-very poor recovery. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14.63 | 16.46 | 30 |  | ALTERED DIKE (?) |  |  |  |  |  |  |  |  |
|  |  |  |  | Brown chalky, limionitic rock, with small |  |  |  |  |  |  |  |  |
|  |  |  |  | $2-3 \mathrm{~mm}$ angular fragments of similar material |  |  |  |  |  |  |  |  |
|  |  |  |  | and limonitic stringers. May be altered equivalent |  |  |  |  |  |  |  |  |
|  |  |  |  | of underlying unit as contact appears gradational. |  |  |  |  |  |  |  |  |

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-3 Logged By $\qquad$ RLWnght

Date $\qquad$ Nov 13,1986

Sheet No. 2 of 3

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. $\qquad$ Date
Sheet No. 3 of 3


DDH 86-3 .... Recoveres:
From
 1.5 38
$\%$

0
4
$4 \quad-\quad 6$ $6 \quad 2$

2
6
9
9 -
3
1.4 70

9 $13 \quad 4$ $4 \quad 4$ 50
$9 \quad 13 \quad 4 \quad 4 \quad 100$

13

| 17 | 22 | 5 | 5 | 100 |
| :---: | :---: | :---: | :---: | :---: |
| 22 | 23 | 1 | 1 | 100 |
| 23 | 24.5 | 1.5 | 1.25 | 83 |


| 24.5 | 28.5 | 4 | 4 | 100 |
| :---: | :---: | :---: | :---: | :---: |
| 28.5 | 33 | 45 | 4.5 | 100 |

33
35
35
39.5
$39.5 \quad 43$
43
2
1.3

65

| 43 | 48 | 5 | 0.8 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| 48 | 53 | 5 | 1.5 | 30 |
| 53 | 58 | 5 | 4.8 | 96 |
| 58 | 63 | 5 | 4.9 | 98 |
| 63 | 68 | 5 | 5.1 | 102 |
| 68 | 73 | 5 | 4.6 | 92 |
| 73 | 78 | 5 | 5.6 | 112 |
| 78 | 83 | 5 | 1.75 | 35 |
| 83 | 87 | 4 | 2 | 50 |
| 87 | 92 | 5 | 1 | 20 |
| 92 | 98 | 6 | 3.5 | 58 |
| 98 |  |  |  |  |

DDH 86-3
BOXES : No $\quad 1 \quad \frac{(F t) \text { FROM (M) }}{0} \quad \frac{(F+) \text { TO (M) }}{22}$

|  | 2 | 22 | 6.71 | 45 | 13.72 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 45 | 13.72 | 68.25 | 20.80 |
|  | 4 | 68.25 | 20.80 | 95 | 28.96 |
|  | 5 | 95 | 28.96 | 111 | 33.83 |



SAMPLING:

| No | Rock Type | From | TO | $\Delta$ |
| :---: | :--- | :--- | :--- | :--- |
| DAR 86-4-1 | Hanginguall | 31.50 | 32.00 | 0.50 m |
| DAR 86-4-2 | Fault zone | 32.0 | 32.67 | 0.67 m |
| DAR $86-4.3$ | Quartz vin | 32.67 | 32.70 | 0.03 m |
| DAR 86-4-4 | Footwall | 32.70 | 33.20 | 0.50 m |

Nov 15, 1986 RLWright
J. R. WOODCOCK CONSULTANTS LTD.

PROPERTY. DARDANEUES
HOLE NO. 86-4
CLAIM NO. MOTHERLODE C.G.

COORDINATES $\qquad$ $9+47 N$ $9+85.5 \mathrm{E}$
ELEVATION _ 1818 m
BEARING $-90^{\circ}$
DIP -97
LENGTH $37.49 \mathrm{~m}(123 \mathrm{ft}$.
DIAMETER NO

Drilled er Adam Drilling started Nov. 13,1986 TERMINATED: NoV. 14, 1986 LOGGED 日Y: R.L. Wright
$\qquad$

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-4 Logged By R.L.Wnght
Date Nov 15,1986
Sheet No. 2 of 3

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-4 Logged By $\qquad$ R.L. Wight $\qquad$ Nov 15, 1986

Sheet No. 3 of 3


## DDH 86-4 - Recoveries

$\qquad$


DDH 86-4

| BOXES | $=$ | $\frac{\text { No }}{1}$ | (F+) From (M) |  | (Ft) To (m) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0 | 0 | 29.5 | 9.00 |
|  |  | 2 | 29.5 | 9.00 | 46.9 | 14.30 |
|  |  | 3 | 46.9 | 14.30 | 76.1 | 23.20 |
|  |  | 4 | 76.1 | 23.20 | 100 | 30.50 |
|  |  | 5 | 100 | 30.50 | 123 | 37.49 |



Seale 1:200

Nov 19/1986
RL.wright
J. R. WOODCOCK CONSULTANTS LPD.
PROPERTY DARDANELLES
CLAIM No MOTherlode CG.
coordinates $\quad \begin{array}{r}9+97 N \\ 10+93 E\end{array}$
elevation 1818 m .

| footage |  |  | $\begin{aligned} & \text { OELTA } \\ & \text { ANGLE } \end{aligned}$ | description and remarke | SAMPLE |  |  | assar |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | to |  |  |  | No. | From | то |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 11.13 | 52 | $30 \cdot 40$ | PHYLLITLC QUARTZLTE |  |  |  |  |  |  |  |
|  |  |  |  | Typreal unit with ught grean tuffecerus(:) |  |  |  |  |  |  |  |
|  |  |  |  | Layers interbedded with dark green chloritic |  |  |  |  |  |  |  |
|  |  |  |  | mudstones/sultstones/quartzitts and grey |  |  |  |  |  |  |  |
|  |  |  |  | quartiites containing dussem, ankerite spots |  |  |  |  |  |  |  |
|  |  |  |  | - At 8.23 M , unit becomes chaotic, with |  |  |  |  |  |  |  |
|  |  |  |  | patches of vanous lithologies maxed |  |  |  |  |  |  |  |
|  |  |  |  | together in a breccua with chloritic |  |  |  |  |  |  |  |
|  |  |  |  | streaks parallel to core axis |  |  |  |  |  |  |  |
|  |  |  |  | - Core very broken but no clear faults |  |  |  |  |  |  |  |
|  |  |  |  | - 6.10-6.40m : several milky white $1-2 \mathrm{~cm}$ |  |  |  |  |  |  |  |
|  |  |  |  | barren crosscutting quartz veins |  |  |  |  |  |  |  |
|  |  |  |  | - Sharp contact (fault?) with undisturbe |  |  |  |  |  |  |  |
|  |  |  |  | unit beneath. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 11.13 | 25.30 | $56^{\circ}$ | $35-45$ | GREY GREEN PHYLLITES |  |  |  |  |  |  |  |
|  |  |  |  | Thinly Laminated chlontic mudstone/ |  |  |  |  |  |  |  |
|  |  |  |  | siltstone with follation parallel to bedding at |  |  |  |  |  |  |  |
|  |  |  |  | 35-45 ${ }^{\circ}$. Much regrinding and foreign |  |  |  |  |  |  |  |
|  |  |  |  | matenial, mostly quartzite, from above |  |  |  |  |  |  |  |
|  |  |  |  | Rare quartzite layers sinilar to overlying |  |  |  |  |  |  |  |

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-5 Logged By R.L. Wright $\qquad$ Sheet No. 2 of 2


| DDH | 86-5 Recov |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Box | From | To | $\Delta$ | $\operatorname{Rec}(f t)$ | \% | Remarks |
| 1 | $\bigcirc$ | 7 | 7 | 0 | 0 | casing |
| 1 | 7 | 13 | 6 | 1.5 | 25 |  |
|  | 13 | 15 | 2 | 0.5 | 25 |  |
|  | 15 | 18 | 3 | 2.5 | 83 |  |
|  | 18 | 22 | 4 | 3.75 | 94 |  |
|  | 22 | 25 | 3 | 2.25 | 75 |  |
|  | 25 | 28 | 3 | 2.6 | 87 |  |
|  | -9.10m. $\quad 28$ | 31.5 | 3.5 | 3.4 | 97 |  |
| 2 | 31.5 | 35.5 | 4 | 1.75 | 44 |  |
| $\mid$ | 35.5 | 37 | 1.5 | 0.9 | 60 |  |
|  | 37 | 42 | 5 | 1.1 | 22 |  |
|  | 42 | 43 | 1 | 0.75 | 75 |  |
|  | 43 | 48 | 5 | 2.4 | 48 |  |
|  | 48 | 50 | 2 | 1.9 | 95 |  |
|  | 50 | 53 | 3 | 2.5 | 83 |  |
|  | 53 | 55.5 | 2.5 | 1.4 | 56 |  |
| 3 | 55.5 | 57 | 1.5 | 0.6 | 40 |  |
| 3 | 57 | 58 | 1 | 0.75 | 75 |  |
|  | 58 | 63 | 5 | 4.2 | 84 |  |
|  | 63 | 68 | 5 | 4.25 | 85 |  |
|  | 68 | 73 | 5 | 2.7 | 54 |  |
|  | 73 | 78 | 5 | 1.4 | 28 |  |
|  | -25.00M-78 | 83 | 5 | 2 | 40 |  |
| 4 | -25.00) 83 | 86 | 3 | 1.25 | 42 |  |
|  | 86 | 88(?) | 2 | 3.3 | 165 ? | wrong |
|  | 88 | 93 | 5 | 3.3 | 66 |  |
|  |  |  | 93 | 53.0 | $57 \%$ |  |

J. R. WOODCOCK CONSULTANTS LTD.

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. $86-6$

Logged By $\qquad$ R.L.WRIGHT

Date $\qquad$
$\operatorname{Dec} 3,1986$
Sheet No. 2 of 4


> J. R. WOODCOCK CONSULTANTS LTD.

Hole No. $86-6$
Logged By R.L.WRIGHT
Date $\operatorname{Dec} 5,1986$
Sheet No. 3 of 4

| footabe |  |  | delta anole | degchiption and remarke | SAMPLE |  |  | abaar |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| нRom | ro |  |  |  | но. | From | то |  |  |  |  |
|  |  |  |  | At around 23.0 m a narrow quartz |  |  |  |  |  |  |  |
|  |  |  |  | vein, at least 3 cm thick was intersected, |  |  |  |  |  |  |  |
|  |  |  |  | as indicated by a single lump of quartz |  |  |  |  |  |  |  |
|  |  |  |  | preserved in core. |  |  |  |  |  |  |  |
|  |  |  |  | Layering is disrupted, and broken by |  |  |  |  |  |  |  |
|  |  |  |  | limoritic seams throughout. Core soft and |  |  |  |  |  |  |  |
|  |  |  |  | crumbly. |  |  |  |  |  |  |  |
|  |  |  |  | 26.80-27.55: Carbonate vein (ankerite?) |  |  |  |  |  |  |  |
|  |  |  |  | with later quartz veinlets near the contacts. |  |  |  |  |  |  |  |
|  |  |  |  | Whisps of brown earthy limonite throughout |  |  |  |  |  |  |  |
|  |  |  |  | At 27.9 and 28.0 m . narrow white quartz |  |  |  |  |  |  |  |
|  |  |  |  | veinlats cut foliation at right angle. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 28.35 | 28.50 | 35 | - | ALTERED GRANITIC DIKE |  |  |  |  |  |  |  |
|  |  |  |  | Pale green coarse-grained gramitic |  |  |  |  |  |  |  |
|  |  |  |  | dike identical to that above lower adit |  |  |  |  |  |  |  |
|  |  |  |  | and in 86-5A. May be much wider than |  |  |  |  |  |  |  |
|  |  |  |  | indicated as core recovery was only $35 \%$ |  |  |  |  |  |  |  |
|  |  |  |  | and neither contact was preserved |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 28.50 | 31.00 | 52 | 60 | LIMONITIC PALE GREEN PHYLLITE |  |  |  |  |  |  |  |
|  |  |  |  | - Sheared phyllite /limorite unit continues |  |  |  |  |  |  |  |
|  |  |  |  | $-30.70 \mathrm{~m}=$ A 10 cm clay fault gouge seam. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-6

Logged By $\qquad$ R.L.WRIGHT

Date $\qquad$ $\operatorname{Dec} 5,1986$

Sheet No. 4 of 4


| 115 | 120 | 5 | 3.2 | 64 |
| :--- | :--- | :--- | :--- | :--- |
| 120 | 123 | 3 | 1.75 | 58 |
| 123 | 125 | 2 | 1.2 | 60 |
| 125 | 127 | 2 | 1.7 | 85 |
| 127 | 132 | 5 | 4.5 | 90 |
| 132 | End of Hole. |  |  |  |
|  |  |  | 132.1 | 77 |

DDH 86-6 : Recoveries


J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-5A Logged By R.L.WRIGHT
Date $\qquad$ Nov 261986

Sheet No. 2 of 5

J. R. WOODCOCK CONSULIANTS LTD.

Hole No. 86-5A Logged By RLWRIGltT
Date Nov 271986
Sheet No. 3 of 5

| foorace |  |  | delta <br> anole | description and remarke | sample |  |  | absar |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | ro |  |  |  | No. | FROM | T0 |  |  |  |  |
| 39.72 | 41.15 | 100 | - | ALTERED DIKE | 1 | 39.72 | 41.15 |  |  |  |  |
|  |  |  |  | Pale grey grean coarse-graned gramitic |  |  |  |  |  |  |  |
|  |  |  |  | dike/sill, heavily saussuritied and veined. |  |  |  |  |  |  |  |
|  |  |  |  | by numerous 1 cm quartz vems at vanious |  |  |  |  |  |  |  |
|  |  |  |  | angles. |  |  |  |  |  |  |  |
|  |  |  |  | Top contact of dike is a 5 cm quartz vein |  |  |  |  |  |  |  |
|  |  |  |  | Bottom contact is gradational over $3-4 \mathrm{~cm}$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 41.15 | 42.25 | 100 | 45 | LIGHT GREY PHYLLITE | 2 | 41.15 | 42.25 |  |  |  |  |
|  |  |  |  | Similar to prevous phyllite unit, with some |  |  |  |  |  |  |  |
|  |  |  |  | pale green phyllite. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 42.25 | 44.80 | 93 | - | QUARTZ VEIN ( 2.55 m ) | 3 | 42.25 | 44.80 |  |  |  |  |
|  |  |  |  | Typical fractured quartz vein with |  |  |  |  |  |  |  |
|  |  |  |  | limorite staining. No visible sulphides. |  |  |  |  |  |  |  |
|  |  |  |  | Top contact is sharp, with no evidence |  |  |  |  |  |  |  |
|  |  |  |  | of shearing or silicification of wallrock. |  |  |  |  |  |  |  |
|  |  |  |  | Lower contact marked by core loss but |  |  |  |  |  |  |  |
|  |  |  |  | no evidence of fault. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 44.80 | 50.10 | 95 | 45-50 | PURPLE PHYLLITIC QUARTZITE | 4 | 44.80 | 45.30 |  |  |  |  |
|  |  |  |  | Massive, mottled purple, white and |  |  |  |  |  |  |  |
|  |  |  |  | cream quartzite with minor unterbeds of |  |  |  |  |  |  |  |
|  |  |  |  | pale green phyllite. Good bedding preserved in |  |  |  |  |  |  |  |
|  |  |  |  | phyllitic intervals. |  |  |  |  |  |  |  |

J. R. WOODCOCK CONSULITANTS LTD.
Hole No. $86-5 A$
Logged By RLWRIGHT
Date
Nov 27, 1986
Sheet No. 4 of 5

| rootage |  |  | $\begin{aligned} & \text { delta } \\ & \text { ANGLE } \end{aligned}$ | drecmimion ano memarxe | sample |  |  | Assar |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRom | ro |  |  |  | но. | ${ }^{\text {From }}$ | T0 |  |  |  |  |
|  |  |  |  | 47.7-48.75 becomes more phyllitic, and |  |  |  |  |  |  |  |
|  |  |  |  | also brecsiated, with blocks of quartzite |  |  |  |  |  |  |  |
|  |  |  |  | floating in phyllite matrix |  |  |  |  |  |  |  |
|  |  |  |  | From 48.75 to base of unit, interbedded phyllute |  |  |  |  |  |  |  |
|  |  |  |  | and quartzite with dip of folvation $80^{\circ}$ |  |  |  |  |  |  |  |
|  |  |  |  | Base of unit fractured, with considerable core |  |  |  |  |  |  |  |
|  |  |  |  | Loss = Fault. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 50.10 | 54.40 | 100 | 35 | ALTERED DIKE |  |  |  |  |  |  |  |
|  |  |  |  | Fine-grained grey and brown dike rock |  |  |  |  |  |  |  |
|  |  |  |  | with upper porion containing 1090 white quartz- |  |  |  |  |  |  |  |
|  |  |  |  | filled amygdules, and lower portion containing |  |  |  |  |  |  |  |
|  |  |  |  | angular to rounded fragments of white quartz |  |  |  |  |  |  |  |
|  |  |  |  | and green carbonate. |  |  |  |  |  |  |  |
|  |  |  |  | Identical to dike rock in DDH 86-3 at |  |  |  |  |  |  |  |
|  |  |  |  | 16.46 m and 31.78 m . |  |  |  |  |  |  |  |
|  |  |  |  | Foliation in matrix of dike at $35^{\circ}$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 5440 | 55.32 | 100 | - | QUARTE VEIN ( 0.92 m ) | 5 | 54.40 | 55.32 |  |  |  |  |
|  |  |  |  | Fractured, limonite stainied quartz |  |  |  |  |  |  |  |
|  |  |  |  | typical of other intersections. Trace of grey |  |  |  |  |  |  |  |
|  |  |  |  | sulphides. Upper contact parallel to foliation |  |  |  |  |  |  |  |
|  |  |  |  | in overlying dike at $35^{\circ}$ |  |  |  |  |  |  |  |
|  |  |  |  | $54.70-54.80$ numerous inchesions of brown |  |  |  |  |  |  |  |
|  |  |  |  | earthy limionite and pale green plyylle. |  |  |  |  |  |  |  |

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-5A Logged By RLWright
Date $\qquad$
Nov 27,1986
Sheet No. 5 of 5


## DDH-86-5A = RECOVERIES

Box Metres From (Ft) Td $F t) \Delta$ Rec $\quad$ \% REMARKS


86-5A RECOVERIES (contid)

J. R. WOODCOCK CONSULTANTS LTD.
cOORDINATES - 10+20N
cOORDINATES - 10+20N
11+43E
11+43E
1805.0 m.
1805.0 m.
hole no. 86-7
bearing - -
DIP $-90^{\circ}$
LENGTH $40.54 \mathrm{~m}(133 \mathrm{ft})$
DIAMETER : NQ
$\qquad$
drilled by Adams Dílling started: $\operatorname{Dec} 4,1986$
terminated: $\operatorname{Dec} 7,1986$

Logged by: R.L:WRIGHT

| footage |  |  | $\begin{array}{\|l\|} \hline \text { DELTA } \\ \text { ANGLE } \end{array}$ | descmiption and remarke | SAMPLE |  |  | Assar |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From | то |  |  |  | no. | from | то | \| |  |  |  |
| 0 | 10,00 | 52 | 50 | DARK GREEN PHYLUTIC QUARTZITE |  |  |  |  |  |  |  |
|  |  |  |  | Similar to prenous units but with layers |  |  |  |  |  |  |  |
|  |  |  |  | of black argillite included |  |  |  |  |  |  |  |
|  |  |  |  | 5.80-7.00: Pale green (bleached) phyllite, |  |  |  |  |  |  |  |
|  |  |  |  | some contorted layering. Core recovery about |  |  |  |  |  |  |  |
|  |  |  |  | $10 \%$ = probably a fault. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 10.00 | 11.45 | 90 | 45 | DARK GREY MUDSTONE/SILTSTONE PHYLUTE |  |  |  |  |  |  |  |
|  |  |  |  | Alternating dark grey mudstone and |  |  |  |  |  |  |  |
|  |  |  |  | dark grey-green siltstone layers with lensoid |  |  |  |  |  |  |  |
|  |  |  |  | bedding |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 11.45 | 13.70 | 98 | 45 | MEDIUM GREEN MUDSTONE/SILTSTONE PHYLLITE |  |  |  |  |  |  |  |
|  |  |  |  | Bleached equivalent of above unict - |  |  |  |  |  |  |  |
|  |  |  |  | alternating light green and dark green layers. |  |  |  |  |  |  |  |
|  |  |  |  | $11.45-11.85$ = Quartz-ankente veim, |  |  |  |  |  |  |  |
|  |  |  |  | parallel to foliation, with inclusions of |  |  |  |  |  |  |  |
|  |  |  |  | med, green phyllite. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 13.70 | 17.35 | 100 | 40-45 | DARK GREEN PHYLLITC QUARTZITE |  |  |  |  |  |  |  |
|  |  |  |  | Similar to unit at 0-10 m., but bedding |  |  |  |  |  |  |  |
|  |  |  |  | contorted, possibly a primany (slump) feature |  |  |  |  |  |  |  |

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. $\qquad$ $86-7$

Logged By $\qquad$
R.L.WRIGHT

Date $\qquad$ $\operatorname{Dec} 8,1986$

Sheet No. 2 of 3

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-7
Logged By $\qquad$ R.L.WRIGHT

Date $\qquad$ $\operatorname{Dec} 8,1986$

Sheet No. 3 of 3


DDH 86.7 Recoveries

| Box | Metres | From | To | D | Rec | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\quad$ Remarks


J. R. WOODCOCK CONSULTANTS LTD.

PROPERTY. $\qquad$ DARDANELLES HOLE NO 86-8
CLAIM NO. MOTHERLODE CIG.

Drilled by Adams Dialling
STARTED: DEC 8,1986
TERMINATED: Dec 10,1986
LOGGED BY: RLWRIGHT

LENGTH 45.72 m (15 0feet)
DIAMETER: NE
ELEVATION 1808.4 m .

J. R. WOODCOCK CONSULTANTS LTD.

Hole No. 86-8 Logged By $\qquad$
R.L. Wright

Date $\qquad$ $\operatorname{Dec} 11,1986$

Sheet No. 2 of 2


DDH 86-8 Recoveries



GEOCHEM CRIENTHIION PRCF'IE
B-SERES El digurán

TPKEN ON A-1 (KASS) AU (BGEAES) ANOMALY(S)

|  |  |  |  | STN | co | IEXTURE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dark grey orange LIEHT BRaw GREYISH |  |  | VOACACE | Rlackibia | FINS | - |  |
|  |  | MED-FINE FINE MED-COARSE CCARSE(SAMOT) | $\begin{aligned} & x^{\prime \prime \prime} \\ & 5^{\prime \prime} \\ & \hat{2}^{\prime \prime} \\ & y^{\prime \prime} \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | Ccars |  |  |
|  | Dark Bhown orange BROWNISH LTREY | FINE <br> FINE <br> SANOT |  | sulface <br> B- Hod <br> C-HOR | BLACK BROWN ORANGE Browiv GREY | FINE |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  | MED-FINE | $\begin{aligned} & 1^{\prime \prime} \\ & 1^{\prime \prime \prime} \\ & 2^{\prime \prime} \\ & 3^{\prime \prime} 6^{\prime \prime} \end{aligned}$ |  | GrownORANEE Brown GREY |  |  |  |
|  |  | FTNE |  | E-HO |  |  |  |  |
|  | RIGHT | SA |  |  |  |  |  |  |
|  |  |  |  |  |  | COA |  |  |
|  | DARK BROLUN ORANOE BROWN LEEHT BROWN GREY | MED-FINE FINE sanor CCABSESANOY |  | $\begin{aligned} & \text { B-HOR } \\ & \text { CHOR } \\ & \text { PRAENT } \end{aligned}$ | BLACK/BROGN ORANLE Light Brewn GREY | FINE: | ${ }^{\prime \prime}{ }^{\prime \prime}$ |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | cark BRavin orance bRown GREY | FINE MED-FINE SANOY COARSE SAMDY |  | Surface | BLACK orance Brown GREY | $\begin{gathered} \text { MED-FINE } \\ \text { GJNE } \\ \text { COARSE } \end{gathered}$ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | S-jemand |  |  |  |  |
|  |  | MED-FINEFINE | 1"- ${ }^{\prime \prime}$ |  | BLACK Brawn GREY | fine CCARSE |  | 2.5 |
|  |  |  |  |  |  |  |  |  |
|  | RED BRC |  |  |  |  |  |  |  |
|  | HIEtTT BRCown |  |  |  |  |  |  |  |
|  | Grocirs GED LIEHT PROWN GREY | $\begin{aligned} & \text { MEDCCOASE } \\ & \text { MED-FINEE } \\ & \text { MEDCOARE } \end{aligned}$ |  | Surface | BiAck |  |  |  |
|  |  |  |  |  | orante |  |  |  |
|  |  |  |  |  | dra |  |  |  |
|  |  |  |  |  |  | " SAMST |  |  |
|  | leobrain Red chaicie liget oracue UREY | MED-COASE Med-FINE FINE CoARSE Spricy |  |  | bícown | $\left\lvert\, \begin{aligned} & \text { FINE } \\ & \text { COPRSE } \\ & \text { CONDT. } \\ & \hline \end{aligned}\right.$ |  |  |
|  |  |  | $\begin{aligned} & 2 \\ & e^{\prime \prime} \\ & 2^{\prime} \\ & 3^{\prime} \end{aligned}$ | ch Hor | ORANGECiGHTBRELN |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  | Med Fine FINE Deo coproie Sinmy cantia | $\begin{aligned} & 1^{\prime \prime} \\ & 8^{\prime \prime} \\ & 1^{\prime} \\ & 1^{\prime \prime} 6^{\prime \prime} \end{aligned}$ |  | BiackORARIEE | fine <br> COPASE |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | C-HRR | LREY |  |  |  |
|  |  |  |  | Parant. |  | "Spaint | $2) 6$ |  |
|  | Brans <br> Liunt crancue <br> RED <br> GREY | $\begin{aligned} & \text { FINE } \\ & \text { CORBGE } \\ & \text { CRDFTINE } \\ & \text { SANOT } \end{aligned}$ |  |  | Batck foramiv orprie leehtbrain Gefy | Fine <br> CuARE |  | $\begin{aligned} & 2.5 \\ & 7.6 \\ & 77.8 \end{aligned}$ |
|  |  |  | $\left(\begin{array}{l} 1,5^{\prime \prime} \\ 5^{\prime \prime} \\ 11^{\prime \prime} \\ 7.1 \end{array}\right.$ |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | * taken do wisín (atcrep ) |  |  |  |  |
|  | biavin ier crapice - IEHT Bitwn iney |  | $\begin{aligned} & 2^{\prime \prime} \\ & s^{\prime \prime} \\ & 1^{\prime} \\ & 21 \end{aligned}$ | - - d sertes inconplete due to Ertir creatied oy sial bat labieler日-2l-2 \& $3-26-3$ CNLY PRFILES HRE TO be AnPlysed. |  |  |  |  |











16,327

## Figure 10. Longitudinal Section

 Tihrough UPPER ADIr (\#2). SCDLE l:200SHows 86-1-A, 86-6, Drog. Lowre Grain




Vein Soal profile: Adit Trati Map.



TIEDCI S RUEY STAKE 21 (SE CCNNEFCFCABIN). TRAVELEEC $21^{\circ} S G F E$ for $X \mathrm{Mm}$ THEN $33^{\circ}$ TCFE FLS 235 m AND SET STN VC. SIN VO $\rightarrow \sqrt{2}$ TRAVELS VOSLCRE KA AT $46^{2} W S S$ STN.VO - VA TRRVELS DOWNSLEPE GCN ATSQ'E OFN.

IIE ( $O$ JTU VO. TRAVELLED ITM AT $\partial J^{\circ}$ OOFE.
 for inin To TLIE AnIt

STN V1 SM uprluge sin Ve
STN VS SM DEWNJLCPESTNVO ASSESSMENTREPORT

$\uparrow$ Ourrilote
Fig 14. Plan Vein Sorl Profile. Tranamet ( V -Traverse). Schef icm $=10 \mathrm{~m}$. Woapercek. wRG.
 Semelan=10m. wola.
Gold in PPB OS surface


B hovizon $C$ horizon P parent

Virt sealt $1: 10 \mathrm{~cm}=10 \mathrm{~cm}$

--. GEOLOGICALBRANCH ASSESSMENTRERORT 16,327

