gROLOGICAL, GEOPHYSICAL AND GEOCHEMICAL REPORT on the

hititle bigroot grode of mineral claims

$$
\begin{aligned}
& \text { FOR } \begin{array}{|l|l|}
\hline \frac{\text { LOG NO: } 1021}{\text { ACTION: }} \\
\text { VENTURES INC. } \\
\hline \text { FILE NO: } 87-646-16338 \\
\hline
\end{array} \\
& \text { HARRISON LARE AREA } \\
& \text { NEW WESTMINSTER MINING DIVISION } \\
& \text { british Columbia } \\
& \text { FILMED } \\
& \text { NTS 92H/05W }
\end{aligned}
$$

BY

FRANK DISPIRITO, B.A. Sc., P.Eng.
CAROL DITSON, B.Sc.
NIGEL HOLME, B.Sc. MARTIN ST-PIERRE, B.Sc.

MOUNTAINSIDE MANAGEMENT LIMITED
VANCOUVER, BRITISH COLUMBIA

TABLE OF CONTENTS

PAGE
SOMMARY i
PART A
Introduction 2
Location, Access \& Topography 2
Property status 3
History of Mining Exploration in the Area 4
Property History 5
PART 3 SURVEY SPECIFICATIONS
Grid 7
Geochemical and Soil Survey Method 7
Magnetometer Survey Method. 8
Shootback EM Survey Method. 8
PART C GEOLOGY
Regional Geology 8
Property Geology 16
Lithologies 17
Structure 19
Mineralization 19
Alteration 20
DISCUSSION OF GEOCEEMICAL RESULTS 21
DISCUSSION OF GEOPHYSICAL RESULIS
Magnetometer Survey 22
Shootback EM Survey 22
CONCLUSIONS AND RECOMMENDATIONS 24
REFERENCES

APPENDICES

Appendix A	Cost Breakdown of Phase I Program
Appendix B	Certificates
	F. Di Spirito, B.A.SC., P.Eng.
	Carol Ditson, B.SC.
	Nigel Hulme, B.SC.
Martin St-Pierre, B.SC.	
Appendix C	Sample Descriptions
Apendix D	Analytical Result

ILLUSTRATIONS

Figure 1	Property Location...............following page 2
Figure 2	Claims........................following page 3
Figure 3	Regional Geology................following page 8
Figure 4	Property Geology and Rock Sample Locations...................................in pocket
Figure 5a	Zinc Geochemistry........................in
Figure 5b	Copper Geochemistry.....................in
Figure 5c	Lead Geochemistry.......................in in pocket
Figure 5d	Gold Geochemistry........................in pocket
Figure 6	Total Magnetic Field Strength...........in pocket
Figure 7a	Shootback EM Resultant Dip Angles High Frequency.............................in pocket
Figure 7b	Shootback EM Resultant Dip Angles, Medium Frequency................................... in pocket
Figure 7c	Shootback EM Resultant Dip Angles, Low Frequency...............................in pocket
Figure 8	Compilation Map.........................in pocket

Summary

During April and May of 1987, Mountainside Management Limited conducted geologic, geochemical, magnetometer and shootback electromagnetic surveys over the Little Bigfoot Group of mineral claims. This program was designed to explore for near surface volcanogenic massive sulfides.

This property, located on the west shore of Harrison Lake, is favorably situated in an area of proven gold-bearing massive sulfide and hydrothermal vein mineralization (Seneca, Doctors Point and RN deposits). The property can be reached in 2.5 hours of driving time from Vancouver, British Columbia along paved highway and improved gravel roads. Accommodation and most other requirements are available locally.

The claims are underlain by volcanic flows and pyroclastics with minor sediments. A rhyolite dome covers most of the western expanse of the property. Late stage solfataric activity has extensively altered a great portion of this dome. Much of the western grid area has been pervasively silicified and pyritized. The eastern grid area is underlain by predominantly dacitic rocks. Tuffs of this composition were found to host anomalous concentrations of zinc (up to 3725 ppb). Several persistent northwesterly trending faults cross the property, one of which appears to have considerable offset.

Significant gold values (185 ppb over 9 meters) were reported from a 1976 percussion drill hole. The recent surface sampling yielded spotty anomalous gold values in soil with one isolated high of 135 ppb .

Shootback EM and magnetic surveys confirm the presence of northwesterly trending faults and magnetite found in andesitic intrusions. No strong, near surface conductors were identified.

As a result of the recent program several areas of interest have been identified where high soil geochemistry (zinc, copper, and gold) coincide with fault related geophysical anomalies. As a result of the foregoing, a second phase of exploration is recommended. The Phase Two program is to consist of fill-in geochemistry combined with caterpillar and blast trenching over defined areas of interest. A sum of $\$ 65,250$ is required to complete this program.

PART A

Introduction

Mountainside Management Limited, on behalf of Stacia Ventures Inc., has recently completed a program of gold and base metal exploration over the Little Bigfoot group of Mineral Claims. This property, located on the west shore of Harrison Lake, B.C., is centrally situated in an area of proven gold bearing massive sulfide and hydrothermal vein mineralization (Seneca, Doctor's Point and RN deposits).

The Little Bigfoot exploration program, conducted during April and May of 1987, consisted of line cutting, geologic mapping, soil sampling and analysis, with Magnetometer and Shootback Electromagnetometer surveys.

Location, Access, Topography

The Little Bigfoot property is located on the west shore of Harrison Lake, approximately 200 kilometers east of Vancouver, 13 kilometers northwest of Harrison Hot springs, B.C. The claims lie between Ten Mile Bay on the northeast and the headwaters of Wells Creek on the northwest, with Cartmell Creek to the southwest.

The property can be reached in 2.5 hours of driving time from Vancouver via Highway 7 to Harrison Mills, then along the West Harrison Forest access road, a solid gravel road usable by 2 wheel drive vehicles year around. The Red Mountain Logging Road zig zags across the property from east to west and, combined with a new forestry service road, gives good access to the northern half of the property. A system of overgrown, sometimes washedout secondary roads provides reasonable foot access to the remainder of the claim block. These roads could be refurbished should the need arise.

A power transmission line from Seton Lake, via Pemberton, crosses the property in a roughly north-south direction.

The property lies on the lower east facing slopes of the Douglas forest mountain range with elevations ranging from 760 meters on the west to near sea level at Harrison lake. Topography is gentle to very steep, locally cliffy.

The drainage system of Wells Creek crosses the Bigfoot 4 claim from northwest to southeast, as does a major tributary of Cartmell Creek, both heavily dissecting the claim topographically.

The property is covered by moderate to dense second growth fir and hemlock. Recently logged areas have dense young firs, but areas logged earlier have mostly alder and maple cover. In addition, southern facing slopes sport a dense undergrowth of salal and assorted berry bushes.

Relatively low elevations and a prevailing mild coastal climate allow access and exploration during most of the year.

Property Status

The Little Bigfoot property consists of 4 modified grid system claims comprising 37 units and 4 2-post claims of 1 unit equivalent each for a total of 41 contiguous units. Detailed claim information follows:

Subsequent to a Bill of Sale (\#2929) dated May 30, 1986, Robert Carolo is the record owner of the claim block.

Most of the claims contain fewer than the represented number of units due to overstaking and overlap of claims, (Little Bigfoot $1-4$ are entirely contained within the Bigfoot $4 \& 5$, Woolybooger and Emma 1 claims).

The claims are located in the New Westminster Mining Division and shown on B.C. Department of Energy, Mines and Petroleum Resources Claim map number NTS 92H/05 W.

History of Mining Exploration in the Area

Exploration in the Harrison Lake area began in the 1890^{\prime} s with the discovery and development of gold-quartz veins at fire Lake, 20 km northwest of Harrison Lake, and at the providence property 20 km north of the Bigfoot property. In both areas, veins were lensoid and could not support continued exploration. The Seneca or "Lucky Jim" prospect, which is several kilometers southwest of the claims, was discovered in 1950. The massive sulfide ore at Seneca was mined in 1961, although extension of the deposit and recognition of a volcanogenic or "Kuroko" origin did not occur until 1971. Between 1964 and 1971 numerous "stringer-type" copper-zinc occurrences were staked and explored in the area between the Chehalis River and Simms Creek. Small mineral claims near or over the Little Bigfoot showing have been held from 1964 to the present. Exploration for massive sulfide deposits in the Harrison Lake area continued during the later 1960's and 1970's, conducted largely by Macdonald Consultants for Newmont Canada Ltd., Aaron Mining, Amax Exploration, Hudson Bay Oil and Gas and Canadian superior Ltd., most of whom limited their exploration to one specific property without attempting to correlate volcanic stratigraphy over a broad area to search for new areas.

Between 1971 and 1977, the seneca property was intensively explored by Cominco under an option agreement with Zenith Mining Corporation. From 1977 to the present, exploration of this significant massive sulfide property has been conducted by Chevron Exploration Ltd. and International Curator Resources Ltd.

During the period from 1980 to 1982 , Territorial Gold Placers Ltd. and JMT Services located several properties of merit and active exploration in the region is continuing.

Property History

Very little information is available pertaining to work done on the Little Bigfoot property prior to 1972. It is known that W. M. Sharp. P. Eng., accomplished a minor amount of soil sampling and other field testing in the mid l960's, however, it was not until late 1972 that he staked the $5 F$ l-l4 claims. A geochemical survey conducted the following year by Nielsen Geophysics (Donaldson, l973) identified a northwesterly to westerly trending band of strongly anomalous zinc and copper mineralization in the central portion of the present Bigfoot 4 claim. This resulted in further staking (SF 15 and 16 claims) to extend the claim group to the east.

Early in 1974, the original claim group was optioned to Swim Lake Mines Ltd. and the claim area extended yet further eastward by staking the $S F 17$ to 20 claims. Later in the year, M. J. Fitzgerald supervised geologic and further geochemical surveys over the property and identified 7 areas of anomalous $z i n c$, copper and cadmium (Fitzgerald, 1974). This work was followed-up the following year by Gravity (Galesky, 1975) and VLF Electromagnetic (Reamsbottom, 1975) surveys. The VLF-EM survey identified several northwest trending conductors, several of which were coincident with geochemical anomalies.

In 1976, Swim Lake Mines added more ground to their property (the B.Q. claim) and, in May, conducted a 457 m (1500 ft.)
percussion drill program (Reamsbottom, 1976). Five $91.5 \mathrm{~m}(300$ ft.), vertical drill holes were spread across the Bigfoot 4 (northern portion) and woolybooger claims. Two zones of anomalous gold mineralization were intersected with values averaging $185 \mathrm{ppb}(.005 \mathrm{oz} / \mathrm{ton})$ over a total of 9.1 m (30 ft.) (Price, 1986). Although samples were collected every 3 m (lo ft.), only select (heavily pyritized) intervals were assayed. It is apparent from studying Swim Lakes' records that gold does not necessarily occur with high pyrite content; ie, a value of 230 ppb Au over a 3 m (10 ft .) interval was not from a stated heavily pyritized interval. It is, therefore, possible that further significant mineralization was overlooked. The property was kept in good standing until the early 1980's when some of the claims were allowed to lapse.

The Woolybooger claim was staked in March of 1981 and, as the SF claims expired, they were restaked as the Bigfoot 4 and 5, and Little Bigfoot l-4. The claims were optioned to Lornex Mining Corporation Ltd. in conjunction with 4 claims adjacent to the north (Bigfoot 1-3 and Duke). Under the supervision of B. price, Lornex conducted a program of linecutting, soil sampling, and geologic mapping with Induced Polarization surveys conducted by Phoenix Geophysics Ltd. During the course of this work, the Emma 1 and 2 claims were staked for Lornex.

In 1984, Lornex conducted a diamond drill program which included only 2 closely spaced drill holes on the Little Bigfoot 2 Claim. These drill holes did not intersect any mineralization of significant grade. M. L. Serak concluded in her report that the drilling program was unsuccessful in locating the source of previously outlined geochemical and geophysical anomalies and Lornex relinquished their option in June 1984.

Pursuant to a Geological Summary Report by B. J. Price (February 1986) in which suggestions were made for further exploration, the subject claims were acquired by Robert Carolo in May of 1986.

Grid

The existing grid on the property consisted of two cut baselines (B.L. 2250 S and B.L. 1350 S) trending 120 deg . with cross lines spaced at 250 meter intervals.

Baseline 2250 S was refurbished by brushing and re-cutting, where necessary (525 meters), for use as the current baseline. Lines were turned off the baseline at right angles (azimuth 30 deg.) with 100 meter spacing and stations were instituted at 25 meter intervals. All lines were brushed. Recent juvenile tree spacing necessitated cutting of a few sections of lines in the eastern grid area.

A total of 2,200 meters of baseline was refurbished and 34,775 meters of grid line established. Total cut line was 1950 meters.

Geochemical and Soil Survey Method

A total of 453 soil samples and 36 rock samples were collected and analyzed. Soils were collected from alternating grid lines except in the northeast corner of the grid where 6 intervening lines were also sampled.

Soil samples were taken from the "B" horizon using a cast iron mattock. Samples of no less than 200 grams were placed in Kraft paper gusset bags and sun dried before shipment to Acme Analytical Laboratories. All samples were analyzed for 30 elements using an Induction Coupled Plasma Spectrophotometer and for gold by atomic absorption.

Magnetometer Survey Method

The survey was conducted using an EDA OMNI IV proton Precession Magnetometer. This instrument measures the magnitude of the Earth's total magnetic field to an accuracy of 1 gamma. Corrections for diurnal variation were made by an EDA PPM 337 proton precession base station magnetometer.

A total of 34.3 km of grid was surveyed.

Crone Shootback EM Survey Method

The shootback method involves two identical coils, each capable of transmitting and receiving. While transmitting, the coils are accurately held with the same angle of tilt and their axes roughly in the same plane. Both coils in turn transmit, then measure the dip angle at their respective positions. The two dip angles are added together and, if no conductors are present, the "resultant dip angle" equals "o". The reading is recorded at the mid point between the two operators.

The grid was surveyed with a dipole spacing of 50 m and measurements were made on three frequencies ($5010 \mathrm{~Hz}, 1830 \mathrm{~Hz}$ and 390 Hz).

A total of 33.8 km of grid was surveyed.

PART C GEOLOGY

Regional Geology

The first study of stratigraphy in the Harrison Lake area was done by C.H. Crickmay in 1926. Later mapping by Monger (1970) in the Hope area includes compilation of geological data in the Harrison Lake area. The most recent, and most valuable mapping in the area, was done by R. Thomson (1972) and D. Pearson (1973) who investigated the Seneca deposit in detail and

continued mapping outward to correlate stratigraphy within the Harrison Lake and underlying Camp Cove Formations.

The area is underlain mainly by rocks of the Jurassic Harrison Lake formation, part of a eugeoclinal assemblage of marine and volcanic rocks which evolved from middle Devonian to mid Cretaceous time. The volcanics range from basaltic to rhyolitic in composition with rhyolite and dacite predominating.

The depositional regime ended with widespread and intense orogenic activity which culminated in the intrusion of the mid Cretaceous Coast Plutonic Complex which bounds the belt of volcanics and sediments on the west. The Harrison Lake Formation is further bounded on the north by overlying fossiliferous sedimentary formations and to the east a major north-trending, eastward dipping thrust fault which underlies Harrison lake. The belt of volcanics is gently folded and cut by numerous northwesttrending faults.

The Harrison Lake Formation was reported by Crickmay to be 2800 meters thick, however, Thompson (1973) estimates a thinner section of 1372 m . The unit is underlain by the Camp Cove Formation which is exposed in a prominent anticlinal window near Camp Cove (4.5 km due south of the Little Bigfoot property), and consists of greywackes, varicolored chert horizons and black argillites. The basal unit exposed in the core of the anticline is a polymictic, poorly sorted conglomerate. Fossils in the greywackes are of Lower Jurassic age.

Overlying the Harrison Lake Formation is the Echo Island Formation, consisting of arkoses, bedded tuffs, sandstones and argillites of probable Middle Jurassic age.

Major structural features of the area are the Camp Cove anticline and several northwest-trending faults, a notable example is the Sakwi Creek Fault. This fault, which roughly follows Sakwi Creek valley (located about 6 km south of Bigfoot 4), is a normal fault with the southwest side downthrown (Pearson, 1973). Other faults with similar trend but unknown displacement are visible on air photos.

The major mineral deposits in the area include the RN gold deposit (Abo Oil-Kerr Addison), the Seneca and T gold deposits (Int. Curator-Chevron Canada Ltd.), and the Doctors Point gold deposit (Rhyolite Resources). These are described briefly:

Seneca Deposit

The deposit, which is situated at 300 m elevation on the north side of the Chehalis River, 10 km north of Harrison Mills, was discovered in 1950 and initially explored by Noranda Exploration. Small amounts of massive sulfide occurred at surface in what was regarded as a shear zone. Drilling the "shear zone" proved fruitless and 10 years lapsed until surface mining in a small pit, by M. Poschner, resulted in production of 287 tons of massive ore containing 17 oz . Au ($0.06 \mathrm{oz} / \mathrm{t}), 959 \mathrm{oz}$. Ag $(3.3 \mathrm{oz} / \mathrm{t}), 7118 \mathrm{lbs} . \mathrm{Cu}$ (1.248), and 40,657 lbs. zn (7\%).

Further drilling was done by Noranda Mines in 1964-65, but holes were spotted south of the showing and no mineralization was encountered. In 1969, Zenith Mining Corporation explored south of the showing with induced polarization surveys and drilled an anomalous area, but intersected only minor (stringer?) mineralization. (Minister of Mines Annual Report, 1972).

After option of the property to Cominco in 1971 by zenith, a series of diamond drill holes confirmed surface indications of northeasterly dip to the mineralized horizon, and by 1974 the program had indicated "the presence of a wellmineralized fragmental zone over an area of 245 m by 457 m . (George Cross Newsletter).

By 1977, 35 diamond drill holes totalling over 6048 m ($20,000 \mathrm{ft}$.) had been drilled on various parts of the property and additional drilling has been done by Chevron since that time. In 1977, Chevron constructed a scale model of the deposit and undertook a geochemical/statistical study of the footwall rocks.

Size of the deposit in 1982 was thought to be somewhat less than one million short tons of unknown grade. Mineralization consists of massive sphalerite-barite-chalcopyrite-galena-pyrite with textures varying from finely laminated and "colloform" banding to sulfide breccias. Bladed barite occurs in sulfides; chalcopyrite content varies considerably and silver and gold content are significant in some holes. The mineralized horizon occurs within a thin acid pyroclastic host (pyritized rhyolite lithic tuff and lapilli tuff). Lenses of breccia consisting of bleached rhyolite fragments in a fine black friable "mud" occur, and thin bands of laminated argillite and andesite lapilli are present. Thin rhyolite and andesite flows overly the pyroclastics and these in turn are overlain by rhyolite and dacite porphyritic flows (possibly dykes). The pyroclastic rocks southeast of the pit are cut by rhyodacite and andesitic dykes. Above the pit (above the mineralized horizon) the rocks are described as "a distinctive volcanic breccia with wispy andesite clasts", overlain by well bedded, convolute-laminated tuff. (Minister of Mines Annual Report, 1973.)

Thickness of the "ore" horizon varies considerably, from zero to approximately 4.5 m .

Textures and thickening indicate the sulfides were deposited as "turbidity flows" of fragmental material and fine chemical sediment in a submarine channel.

Post depositional faulting and extensive dilation by more than one set of dykes has compounded and problem of mining a shallowly dipping thin bed, and the deposit does not appear to be mineable at this time.

International Curator Resources Ltd., in joint venture (5050\%) with Chevron Canada Ltd., have developed at least 1.6 million tons of polymetallic mineralization in the Seneca Deposit.*

Wright Engineers calculated $1,660,600$ tons grading 0.024 oz/ton gold, $1.2 \mathrm{oz} / \mathrm{ton}$ silver, 0.63% copper. 0.15% lead and 3.57% zinc, with a higher grade reserve of 990,000 tons averaging $0.032 \mathrm{oz} / \mathrm{ton}$ gold, $1.62 \mathrm{oz} /$ ton silver, 0.84% copper, and 5.17% zinc.

1985 drilling extended the known mineral body, and D.D.H. 85-3 contained a 2 ft . section assaying $0.174 \mathrm{oz} /$ ton gold, $7.2 \mathrm{oz} / \mathrm{ton}$ silver, 10.1% zinc, 0.36% copper and 0.72% lead.*

A significant new showing was discovered in 1985. The "T" or "Vent" zone, Hole 85-12, intercepted 31 feet averaging 4.18 zinc, 1.45% lead, 0.26% copper, $0.96 \mathrm{oz} /$ ton silver and $0.024 \mathrm{oz} / \mathrm{ton}$ gold. The new zone is situated 1.5 km northwest of the seneca zone.

Mineralization is near-surface, flat-lying, and is outlined by an IP anomaly $150 \mathrm{~m} \times 250 \mathrm{~m}$ open in 3 directions.

Drill hole 85-3, northeast of the main (Seneca) showing intercepted 2 feet of massive sulfides overlying 60 feet of fragmental felsic volcanics with high concentration (subeconomic) of sulfides. The seneca zone is now considered open and trending to the northeast.

* Stockwatch: $25 \mathrm{Feb} / 86,5 \mathrm{Feb} / 86$, $21 \mathrm{Jan} / 86,30 \mathrm{Dec} / 85$.

Doctors Point Deposit

A significant gold deposit situated at Doctors Point on Harrison Lake, about 10 miles north of the Bigfoot Property, is being developed by Rhyolite Resources Lta, and Harrison Gold Mines.

Over 90 drill holes have proven 250,000 tons of open pit mineable material grading $0.10 \mathrm{oz} /$ ton gold and $2.0 \mathrm{oz} /$ ton silver. (Price, 1986.)

The deposit consists of a large area with subhorizontal quartz-arsenopyrite veins in hornfelsed volcanics marginal to a granodiorite stock. Gerry Ray (1982) indicates that the Doctors Point area lies close to a mid Jurassic acid volcanic centre. He goes on to state that other such volcanic centres could exist elsewhere in the Harrison Lake Group and would represent good targets for gold exploration.

RN Deposit

The RN deposit, situated on the east side of Harrison Lake, a few miles north of the town of Harrison Hot Springs, B.C., is showing potential as a low-grade bulk mineable deposit. The property is currently being explored by kerr Addison Mines under an option agreement with Abo Oil Ltd.

Total drilling by Abo Oil in 1983 and 1984 was 3,224 meters in 34 holes.

In 1985, diamond drilling, trenching, and bulk sampling was done by Kerr Addison. A lo-ton bulk sample was taken near DDH 84-28 which returned 64 m of 0.11 oz/ton gold. Considerable visible gold occurs in trenches and drill core, in quartz veins and stockworks near the margin of a quartzdiorite stock.

The 1986 Diamond drill program (1,971 meters in 15 holes) intersected 126 meters of gold mineralization in 4 of those holes with an average of $0.164 \mathrm{oz} / \mathrm{ton}$ gold. (ABO Resources Corp., 1986)

At present, Kerr Addison is undertaking a $\$ 750,000,1,000$ metric ton underground bulk sampling program to establish ore continuity and grade. This program, scheduled for completion in August 1987, will involve some 330 meters of cross-cutting, drifting and raising. The material collected will be processed in a pilot mill located near Agassiz. (Abo Resources Corp.r Annual Report 1986).

Other Occurrences

In addition to these three significant deposits, many additional gold, polymetallic and molybdenite porphyry deposits are situated along the Harrison Lake-Lillooet River Valley, which marks a major crustal fault. This fault is comparable with the parallel Fraser River and Cadwallader Faults, along which significant gold deposits are also found.

Some of the occurrences are briefly described below:

Bigfoot

Bordering the Little Bigfoot claims on the north, this property has several showings of stringer-style massive sulfide mineralization. Veins of sphalerite, galena, pyrite and chalcopyrite are hosted in dacite lapilli tuffs. (Falconer, et al, 1986). Recognition of similarities in lithology and mineralization to the Seneca deposit has led to renewed exploration of the Bigfoot property for Kurokotype (stratabound) massive sulfide mineral mineralization.

Hooey

Massive sphalerite, galena and chalcopyrite occur in shears within faulted lapilli tuffs. The northwesterly trending fault system which hosts the mineralization is depicted by Devlin (1982) as crossing onto the Bigfoot 5 Claim and may, in fact, be the southern extension of the Wells Creek Fault.

Fab, Hot (Mt. Woodside)

Chalcopyrite, sphalerite and pyrite occur as impregnations and veinlets in siliceous pyroclastic rocks of the Harrison Lake Formation, on the southwest side of Mt. Woodside.

Mad, Rye

Minor sphalerite and (unconfirmed) silver minerals occur in a fault breccia explored by an adit, one mile east of wolf Lake.

I Am

Several centers of chalcopyrite-sphalerite-quartz "stringer" mineralization occur in pyritized rhyolite to rhyodacite breccias and domes, north and northeast of Weaver Lake.

Con

Minor sphalerite and galena occur in a small kaolinized area in tuffs or sediments adjacent to a maganiferous pyrite-jasper-chert-horizon, 1.5 km south of Camp Cove.

Brett

A large area of solfatarically altered rhyodacite volcanics has a siliceous stringer zone at its center with sphalerite and maganiferous carbonate in quartz veinlets, 2.5 km up Brett Creek.

Cloud 1

Numerous quartz-barite-chalcopyrite-sphalerite stringers cut altered rhyodacite tuffs and flows, 1.5 km southwest of the Brett Creek showings and 1.5 km east of Mt . Klaudt.

Harmony

Similar "stringer" mineralization occurs in a dome-like rhyodacite intrusive south of Weaver Lake.

PROPERTY GEOLOGY

The Little Bigfoot property is underlain by a complex group of volcanics belonging to the Harrison Lake formation. Compositions range from rhyolitic to andesitic with a full spectrum of volcanic textures. Massive, often porphyritic flows and intrusions are present with assorted pyroclastics (tuff, lapilli tuff and tuff breccias). Sedimentary rocks (sandstone and mudstone) are known to exist on the property (Serak, 1983), however, were not seen within the grid area.

Rhyolite porphyry and tuff, which cover most of the western grid area, have been interpreted by Price (1986) as a rhyolite dome. This unit is surrounded by rocks of dacitic composition (dacite porphyry, tuff and lapilli tuff). Andesitic tuffs are exposed in Creek beds beneath dacites. Andesite is also present as intrusions.

Rock units on the property have undergone faulting and alteration by several stages of hydrothermal activity.

Lithologies

Rhyolite Porphyry

White to light grey rhyolite porphyry contains biotite amphibole and rare feldspar phenocrysts with up to 5\% clear, glassy quartz "eyes". Phenocrysts seldom exceed 2 mm in size. Ground mass often appears "sugary" in texture. Disseminated euhedral pyrite is common in this unit. Weathered surfaces are usually a rusty brown colour, presumably from oxidation of pyrite. Patchy red hematite also locally stains rhyolite.

Dacite Porphyry

Pale to medium blue-green dacite usually contains small feldspar, biotite and amphibole phenocrysts in an aphanitic matrix. Feldspars are generally seen altering to or entirely converted to epidote. Rare exposures of a coarser grained dacite porphyry, present in the northern grid area, may be transitional to a plutonic diorite.

Andesite and Andesite Porphyry

Dark greenish-grey andesite is present as flows and intrusions. Amphibole and plagioclase phenocrysts, when present, are generally 1 mm or less in size although phenocrysts up to 3 mm were seen. One andesite flow unit was found to contain amygdules of zeolite with minor epidote. Magnetite crystals were noted, occuring as blebby accumulations in andesite dykes. Weathered surfaces of andesites are generally rounded in profile and white to light tan in color.

Near the headwaters of Wells Creek, andesites, where in contact below rhyolite, were found to be heavily pyritized, although generally only a trace of finely disseminated pyrite is present in these rocks.

Thin bedded andesite was found intercalated with dark grey andesitic tuff in the northwest grid area.

Tuff

Tuffs, defined as being composed of volcanic ash and other particles less than 2 mm in size, often contain crystals or crystal particles that mimic phenocrysts. Rhyolitic tuff generally contains quartz "eyes".

Composition of tuff units on the Little Bigfoot is extremely variable, ranging from white rhyolitic to dark grey andesitic tuffs with these two end members predominating. Tuff units are often compositionally banded and display fine laminae that indicate a subaqueous depositional environment.

Lapilli Tuff

Lapilli tuffs are primarily dacitic in composition and, by definition, contain lapilli sized particles and lithic fragments which range in size from 2 to 65 millimeters. Lapilli are generally rounded and subspheriodal, set in a medium greenishgrey crystal tuff matrix. Silicification is often extensive within this unit, obliterating textures and leaving only the occasional "ghost fragment" to attest to the origin of the altered rock.

Pumaceous fragments are present in a rhyolite lapilli tuff outcropping in the southern part of the grid, just north of Cartmell Creek.

Tuff Breccia

Rhyodacite tuff breccia, present in the northwestern grid area, consists of unsorted lithic particles up to 10 centimeters in diameter set in a pale green and purple tuffaceous matrix. Rare blocks up to 0.5 meters are present. Lapilli-sized fragments tend to be angular (squarish) while larger fragments are normally rounded and subspheroidal. This unit is believed to be a coarser phase of the lapilli tuff unit.

This unit is extremely susceptible to weathering; decomposition of the tuffaceous matrix appears to result in accumulations of pebbles amid a bed of clay.

Structure

Bedding within the Little Bigfoot grid area is limited to laminae in tuffs. Attitudes generally trend west to northwesterly with shallow to moderate dips to the south. As dips are known to vary on properties adjacent to the north and south, it is believed that the Little Bigfoot claims occupy a single limb of a broad regional east-west trending fold. Dips tend to shallow from west to east, indicating plunging of this structure to the east. A few exceptions to the regional trend, which occur within Wells and Cartmell creeks, are likely a result of syn or post-depositional slumping related to faulting.

Fault traces seen in Wells \& Cartmell Creeks coincide with prominent lineaments commonly interpreted as northwesterly trending faults. The Wells Creek fault appears to have considerable right lateral displacement in addition to a vertical displacement of approximately 10 meters (south side downthrown). One prominent set of fractures was noted with measured attitudes averaging 30 deg. $/ 65 \mathrm{deg} . \mathrm{W}$.

Mineralization

Pyrite, the most abundant sulfide mineral present at surface on the Little Bigfoot, is common throughout the western grid area. It occurs primarily as striated, euhedral disseminations, although it is also present as blebs, stringers and fracture coatings. Pyrite, believed to have originated as a result of hydrothermal alteration (Fitzgerald, 1974), is present in areas of both silicification and clay alteration in amounts up to 25% to locally. Sampling from heavily pyritized areas did not reveal any other significant surficial mineralization,
however, as most of the rocks sampled were heavily leached at surface, this may not give a true picture of mineralization at depth. Zinc, in particular, is an extremely mobile element.

Geochemical analyses of soils indicates that significant zinc mineralization is present at a number of localities within the grid area, although it is seldom seen in hand specimen. Analytical results show zinc (as sphalerite?) to be present in the vicinity of L50E, 3020 S where andesitic tuffs are exposed in a creek bed. Rock sample LBF ll5, collected from this area, contained 3725 ppm zinc.

Minute traces of disseminated chalcopyrite were visible, with pyrite, at a few localities.

Alteration

Propylitic alteration is present in all rocks on the property, although this alteration is often masked by hydrothermal processes. Epidote occurs within dacite as blebs and replacement of plagioclase feldspar. Chlorite is also present, replacing mafic minerals.

The north and west peripheral areas of the rhyolite body have undergone strong silicification and variable pyritization, resulting in the masking of primary textures. Commonly, the only magmatic feature remaining are quartz "eyes", which are characteristic of the unit.

Late stage volcanic "solfataric" activity has occured in a northeasterly trending discontinuous band, 300 m in width, that cross the northwestern grid area. Sulfurous (acidic) gasses have attacked rocks around the vent areas, breaking down silicate minerals and leaving a residue of clays and iron oxides (limonite). Pyrite is usually present, as disseminations or clumps of euhedral crystals, in amounts up to 20\%. Outcrop surfaces are usually leached.

Slight carbonitization has occurred within dacite and andesite, particularly along the fault at Wells Creek. Field examinations show the carbonate to follow minute fractures in bedding planes.

discussion of geochemycal resulis

Several areas of anomalous zinc geochemistry are present on the Little Bigfoot. The most notable is a northwesterly trending belt which coincides with dacitic rocks present in the eastern grid area. This belt is bounded roughly by the easternmost creek in the grid area and the rhyolite/dacite contact. The highest zinc values in this area are slightly in excess of 1000 ppm . Paralleling this belt on the west is a second, lesser anomaly (values to 645 ppm zinc) within rhyolite. Two other smallersized anomalous zones (values to 757 ppm) are centered on line 50W where Wells Creek and a smaller creek to the south intersect the rhyolite/dacite contact. This southern anomaly coincides with the locale of a rock sample containing 3725 ppm zinc. In general, highly anomalous zinc values (over 700 ppm) appear to be hosted in dacitic or andesitic tuffs.

Copper is sporadically anomalous with values up to 355 ppm . Three anomalous zones are apparent from contouring of soil geochemistry, forming a northerly trending zone in the center of the grid area (lines 50 W to 150 E between stations 2000 S and 2850S). All are near or on the rhyolite/dacite contact and close to or overlapping areas anomalous in zinc.

Lead is elevated (up to 174 ppm) in the north central grid area, also proximal to the rhyolite/dacite contact.

Silver is very slightly elevated within the grid area (up to 1.0 ppm) in regions where base metalsare also anomalous. Discrete, scattered anomalous gold values exist on the little Bigfoot. The highest, 135 ppb (L350E, 1950S) and 36 ppb (L50W, 2400S), are coincident with areas of anomalous zinc and copper. Several elevated gold values, however, appear to have no relationship to base metal geochemistry.

dISCUSSION OF GEOPHYSICAL RESULTS

Magnetometer Survey Method

The magnetic field on the property is relatively quiet, in general varying from 56250 to 56400 gammas. Isolated highs appear to be caused by andesitic rock, i.e. highs at Ll 050 w , 2600 S and L550 $W, 2600 \mathrm{~S}$. The fact that these anomalies do not trend from line to line can be due to varying magnetite concentration in the andesite or, more likely, small isolated intrusions (Fig. 6 and 4). The level of magnetic activity on the northeast side of the Wells Creek fault is slightly higher than on the southwest side although isolated peaks on the northeast side are of significantly lower magnitude (Fig. 6). No trends seen on the magnetic map can be related to other known geologic features.

Crone Shootback EM Survey Method

This method was used in an attempt to define a massive sulfide conductor.

A separation of 50 m was used for detection of near surface anomalies (maximum depth penetration of 25 m). This coil separation is also optimal for anomalies of about 35 m to 50 m width.

Depth of a conductor and the degree of conductivity affect the amplitude of the electromagnetic (EM) response. With few exceptions, responses obtained by the present survey were relatively weak amplitudes under 10 deg. In general, anomalies on the Little Bigfoot are roughly symmetrical about positive peaks, indicating that conductors dip near vertically (Figs. $7 a, b, c)$.

On this property two geological features seem to affect the EM data. These are faults intermittently mineralized with pyrite (and other sulfide) concentrations associated with andesite-rhyolite contacts (see Fig. 4 Geology).

There are two major, mapped faults which show clear EM responses. These faults affect all frequencies but are clearest on the high frequency plot (Fig. 7a). Both faults are northwesterly trending. The first cuts through the center of the property roughly coincident with the drainage of Wells Creek. Cartmell Creek, to the south of the grid area, follows the second fault for a portion of its distance. Other linear EM conductors are subparallel to creeks and may indicate faults covered by overburden. Weak EM conductors caused by sulfide mineralization (up to 10-15\%) associated with rhyolite-andesite contacts are present on lines $1050 \mathrm{~W}, 950 \mathrm{~W}$ and 850 W at about 2650 S (Figs.7a, 7b, 7c).

The relationship between geochemistry and EM anomalies is not obvious. In some locations there are coincident anomalies, although, in general the relationships are spotty at best. It should be noted that zinc usually occurs as zinc sulfide (sphalerite) which is a non-conductive mineral. In massive sulfide deposits, however, zinc is often associated with copper and lead minerlization which can be picked up by EM methods.

From this survey it is clear that no strong, near surface conductors are present and faulting is the main contributor to the weak EM anomalies.

Widespread silification, combined with the presence of several faults on the Little Bigfoot, makes this a promising environment for fault controlled hydrothermal gold-quartz veins as exist at RN and Doctors Point. Lithologies are also favorable for Kuroko-style massive sulfide mineralization as occurs at Seneca.

The present program has succeeded in outlining several areas of interest.

1) Anomalous copper, lead, zinc and gold are present in a northerly trending band approximately $200 \mathrm{~m} x 400 \mathrm{~m}$ in size. This band, centered on LI50 E, 1700 S , is located downslope from a rhyolite/dacite contact.
2) Anomolous zinc in soil is coincident with weak EM conductors in an area of dacite flows and tuffs at BL 2250 s between 450 E and 750 E .
3) An EM conductive zone coincident with the Wells Creek fault and anomalous copper, gold and zinc in soil is centered on L50 E at 2450 s .
4) An EM conductor associated with anomalous copper and zinc in soil is located on L 50 W at 3000 S . This target is also in the vicinity of a rhyolite/dacite contact, near the locale of rock sample LBF 115 which contained 3725 ppm zinc.
5) Anomalous copper and zinc in soil are associated with an EM conductive zone and a dacite/andesite contact just south of Cartmell Creek, at L250 W, 3450 S.

In view of the presence of anomalous base metal concentrations in soils and a favorable geologic environment, it is reccommended that a program of caterpillar and blast trenching subsequent to additional geochemical soil sampling be used to further evaluate these targets.

Estimated Cost of Recommended Exploration Program

New Grid Establishment, cut and brushed line, allow $\$ 4,000$
Geochemical Soil Sampling and Assays

$$
1000 \text { samples @ \$16/sample } \quad 16,000
$$

$$
\text { Blasting, allow } 4,000
$$Trenching, allow12,000

Road Building, allow 5,000
Geological Support 4,500
Rock Sample Assays
50 samples @ $\$ 25 /$ sample1,250
Engineering and Interpretation 5,000
Report 5,000
Contingencies 8,500
Total$\$ 65,250$

Contingent upon favorable results of the reccommended program, a third phase consisting of percussion drilling and limited diamond drilling would be necessary to test geometry and grade of mineralizatigneace

REFERENCES

Abo Resource Corp. (1987)
News Release Number 81, May 8, 1987

Abo Resource Corp. $(985, ~ 1986)$
Annual Reports for 1985 and 1986

Bullard, F.M. (1976)
Volcanoes of the Earth, University of Texas, Austin, 1976.

Deviin, Barry D. (1982)
Prospecting Report on the Hooey Claim, Assessment Report 10661, July 12, 1982.

Falconer, J.S., et al (1986)
Geological, Geochemical and Geophysical Report on the Bigfoot Group of Mineral Claims, a report for Briana Resources Ltd., December 5, 1986.

Fitzgerald, M.J, (1973)
Report on Geochemical Survey, SF l-l6 Mineral Claims, Assessment Report 4858, December 21, 1973

Fitzgerald, M.J. (1974)
Report on Geology and Geochemistry of the $S F 1-20$ Mineral Claims, Assessment Report 5340, December 31, 1974.

Galeski, R.B. (1975)
Gravity Interpretation for Swim Lake Mines Ltd., Assessment Report 5779, December 1975.

Green, J. and Short N.M. (1971)
Volcanic Landforms and Surface Features, a Photographic Atlas and Glossary, Springler-Verlag, New York, 1971.

Lambert, M.B. (1978)
Volcanoes, Douglas \& McIntyre Ltd., North Vancouver, 1978.

MacDonald, Gordon A. (1972)
Volcanoes, Prentice-Hall Inc., New Jersey, 1972.

Price,B.J. (1986)
Geological Summary, Bigfoot Property, a report for ShangriLa Minerals, Ltd., February 26, 1986.

Ray, G.E. (1981)
Geological Summaries of Gold Deposits in the Harrison Lake Area, B.C. Department of Mines, Summaries of activities, 1981 through 1985.

Reamsbottom, Stanley B. (1976)
Report on Percussion Drill Programme on the SF 1-20 Mineral Claims, Assessment Report 6102, 1976.

Reamsbottom, Stanley B. (1975)
Geophysical Report of the Ground VLF Electromagnetic Survey on the SF l-20 Mineral Claims, Assessment Report 5738, 1975.

Serak, M.L. (1983)
Prospecting Report on the Emma 1 and 2 Claims - Bigfoot Property, Assessment Report 11740, December 1, 1983.

Serak, M.L. (1984)
Diamond Drill Report, Bigfoot Property, a report for Lornex Mining Corporation, Ltd., May 5, 1984.

APPENDIX A
COST BREAKDOWN OF PHASE I PROGRAM

COST BREARDOWN FOR PHASE ONE

Geological mapping, sampling and project supervision.
30 days @ $\$ 300.00$ \$ $9,000.00$

Grid Establishment

Cut line: 2.475 kilometers @ $\$ 750.00 / \mathrm{km}$. $\quad 1,856.25$
Flag and hipchain (brushed out)
35.55 kilometers
35.55 kilometers @ $\$ 250.00 / \mathrm{km}$.
Magnetometer Survey
34.275 kilometers @ $\$ 200.00 / \mathrm{km}$. $6,885.00$
Crone Shootback EM survey
$33.8 \mathrm{kilometers} @ \$ 500.00 / \mathrm{km}$.
$16,900.00$
Assays and analyses (including collection costs)
Soils - 30 element ICP, plus A.A. for gold 453 samples @ \$18.00/sample
$8,154.00$
Rocks - 30 element ICP, plus A.A. for gold 36 samples @ 22.00/sample

$$
792.00
$$

Consumed materials, camp costs and vehicle rentals 5,910.04
Analysis and interpretation of data, report writing $\quad 8,000.00$
and engineering
Wordprocessing, drafting, blackline printing, printing $\quad 2,500.00$
and binding costs for the and binding costs for the report
TOTAL COSTS FOR PHASE I

CERTIF ICATE

I, Frank Di Spirito, of the City of Vancouver in the Province of British Columbia, do hereby certify:
That I am a Consulting Engineer to the firm of Mountainside Management Limited of 827 West Pender Street, Vancouver, B.C.
I further certify that:
I) I am a graduate of the University of British Columbia (1974) and hold a Bachelor of Applied Science in Geological Engineering.
II) I am a registered member, in good standing, of the Association of Professional' Engineers of British Columbia.
III) Since graduation I have been involved in numerous mineral exploration programs throughout Canada and the United States of America.
IV) This report is based on an evaluation of privately and publicly held data pertaining to the said property, as well stafield data collected by a Mountainside Management Limited staff.
V) Neither I nor Mountainside Management Limited hold any direct or indirect interest in the property described herein, or in Stacia Ventures Inc.r or any associated companies, nor do we expect to receive any.
VI) This report may be utilized by Stacia Ventures Inc. for inclusion in a Prospectus or Statement of Material Facts.

CERTIFICATE

I, Carol Ditson, of the City of Vancouver, in the Province of British Columbia, do hereby certify:
I) I am a Consulting Geologist to the firm of Mountainside Management Limited at 827 West Pender street, Vancouver, B.C.
II) I graduated in 1985 from the University of British Columbia with a B.Sc. in Geology.
III) I have been involved in mineral exploration since 1979.
IV) This report is based upon field work carried out by this author and a Mountainside Management Limited crew between April 18 and May 24, 1987 and upon an evaluation of privately and publicly held data pertaining to the said property.
V) I hold no direct interest or indirect interest in the property or in any securities of Stacia Ventures Inc., or in any associated companies, nor do I expect to receive any.
VI) This report may be utilized by stacia Ventures Inc. for inclusion in a Prospectus or Statement of Material Facts.

CERTIFICATE

I, Nigel J. Hulme, do hereby certify that;
I) I am a Consulting Geologist to the firm of Mountainside Management Limited at 827 West Fender Street, Vancouver, British Columbia.
II) I graduated in 1982 from Carleton University, Ottawa, Ontario with an Honours B. Sc., in Geology.
III) I have been involved in mineral exploration since 1979.
IV) This report is based upon field work carried out by myself and a Mountainside Management Limited crew between April l 8 and May 24 , 1987 and upon an evaluation of privately and publicly held data pertaining to the said property.
V) I have no direct or indirect interest in the property nor in Stacia Ventures Inc., nor do I expect to receive any.
VI) This report may be utilized by Stacia Ventures Inc. for inclusion in a prospectus or Statement of Material Facts.

Respectfully submitted at Vancouver, B.C.

$$
\frac{\text { Cis el decker }}{\substack{\text { Nigel } \\ \text { June } 29,1987}}
$$

CERTIFICATE

I, Martin St-Pierre, of the City of Vancouver in the Province of British Columbia, do hereby certify:
I) I am a Consulting Geophysicist to the firm of Mountainside Management Limited at 827 West Pender Street, Vancouver, British Columbia.
II) \quad with araduated in 1984 from McGill University in Montreal with a B.Sc. in Geophysics.
III) I have been involved in numerous mineral exploration programs since 1982.
IV) The geophysical portion of this report is based upon field work carried out by myself and a Mountainside Management Limited crew from April 18 to May 24, 1987.
V) I have no direct or indirect interest in the property described herein, or in any securities of Stacia Ventures Inc.
VI) This report may be utilized by stacia Ventures Inc. for inclusion in a prospectus or Statement of Material Facts.

Respectfully submitted at Vancouver, B.C.

ROCR SAMPLE DESCRIPTIONS

LBF 1

LBF 2

LBF 3

LBF 4

LBF $5 \quad 75 \mathrm{~m}$ W of property
Pale grey rhyolite porhyry and tuffs with medium grey andesitic tuffs. Extensive solfataric alteration is present with patchy zones where clays and pyrite only predominate. Up to 20% disseminated pyrite is present.

70 m W of property
Mixed volcanics: porphyritic rhyolite, rhyolite tuff and andesite flows, all with limonitic alteration and trace to 5% pyrite. Sample was taken avoiding solfataric alteration present at this site.

LBF
$1130 \mathrm{~W}, 2775 \mathrm{~S}$
Selective chip over 30 m
Light grey rhyolite with heavy solfataric alteration. Feldspars are locally weathering to yellow clay. 10\% sulfides are present as pyrite and trace chalcopyrite.

Vuggy dacite lapilli tuff, medium greenish grey in color, with lithic fragments up to 1 cm in diameter. Trace pyrite and sphalerite. Limonitic and chloritic alteration.

LBF $91060 \mathrm{~W}, 2090 \mathrm{~S}$
Grab sample
Highly altered dacite (lapilli tuff?) with blebs and fine stringers of yellow solfataric alteration and 5% pyrite. Limonite and minor hematite coat surfaces.

LBF 10
$960 \mathrm{~W}, 1815 \mathrm{~S}$
Grab sample
Dark grey tuffs with intercalated andesite and minor andesite lapilli tuffs. Extensive limonitic alteration and 5% pyrite as disseminations, blebs and stringers.

LBF 11 L950 W, 1900 S
Grab sample
Highly altered andesite from rhyolite-andesite contact zone contains white silica and carbonate stringers and 25% euhedral disseminated pyrite. Chlorite and limonite are present as alteration minerals.

LBF $12860 \mathrm{~W}, 1940 \mathrm{~S}$
Grab sample
Medium grey porphyritic andesite flow with 1 mm sized plagioclase phenocrysts, extensive chloritic and limonitic alteration and 10-12\% euhedral pyrite crystals disseminated throughout.

LBF $13 \quad 730 \mathrm{~W}, 1905 \mathrm{~S}$
Selective chip sample over 25 m
Silicified rhyolite porphyry with patchy solfataric alteration and sulfides (pyrite and chalcopyrite) present in amounts ranging from trace to 15\%, occurring as stringers and blebs.

LBF $14455 \mathrm{~W}, 1905 \mathrm{~S}$
Grab sample
Volcanic agglomerate with up to 25% euhedral pyrite, solfataric and limonitic alteration. porphyry with quartz "eyes" and feldspar phenocrysts. Variable amounts of pyrite are present (3 to 25\%) as disseminations and blebs. Chlorite pods often surround pyrite blebs.
$\mathrm{L} 550 \mathrm{~W}, 1660 \mathrm{~S}$
Grab sample
Volcanic agglomerate with lithic fragments in a pale purple to pale green tuffaceous rhyo-dacitic matrix. Fragments are unsorted, blocky to subspheroidal and rounded lithic clasts, ranging in size from less than 1 cm to 10 cm with rare blocks up to 50 cm . No visible mineralization is present.

LBF 17 L950 W, 3050 S
Grab float
Mixed porphyritic rhyolite and medium grey, slightly porphyritic dacite. Contains 3-5\% disseminated pyrite and sphalerite (?) with heavy concentrations of pyrite on fracture surfaces. Iimoniticr chloritic and solfataric alteration are present.

LBF $18765 \mathrm{~W}, 3115 \mathrm{~S}$
Grab sample
Light grey rhyolite with primary textures obliterated by silicification. l\% quartz "eyes" remain. Limonitic and solfataric alteration are present with $7-10 \%$ pyrite and traces of sphalerite (?) and chalcopyrite.

LBF $19970 \mathrm{~W}, 2350 \mathrm{~S}$
Grab sample
Light grey porphyritic rhyolite with 3% quartz "eyes" and 5 to 7% pyrite. Limonitic and solfataric alteration.

LBF $20 \quad 1120 \mathrm{~W}, 2630 \mathrm{~S}$
Grab sample
Light to medium grey silicified rhyolite (and dacite?) with extensive solfataric alteration, limonitic surfaces and up to 30% pyrite.

LBF 101 $152 \mathrm{E}, 2150 \mathrm{~S}$
Grab sample
Pale grey-green rhyolite, weathers rusty brown. Yellow and reddish-brown stains. Quartz eyes $1-2 \mathrm{~mm}$ in size, 5% of rock. Disseminated pyrite, 3-10\%.

LBF 102145 E, 2090 S
Grab sample
Dacite Tuff. plagioclase and alkaline feldspar crystal fragments. White to green-grey fresh surface, grey weathered surface. Tarnished pyrite, 1-3\%.

LBF 103

LBF 104

LBF 105

LBF 106

LBF 107
L350 E, 2525 S
Dacite similar to LBF 104. Collected from creek bed. Carbonate stringers, 5-20\% disseminated pyrite.

LBF 108
275 E, 2460 S
Grab sample
Collected from possible fault in dacite. Rusty brown, 10-30\% disseminated pyrite.

LBF 109275 E, 2440 S
Chip sample over 20 cm
Sample collected over 10 cm on either side of dacite tuff - andesite ash tuff contact. Andesite tuff is black and contains 3% disseminated pyrite. Beds are 10 cm wide and finely laminated. Dacite tuff is slightly coarser grained than andesite, pale to dark green in color, and contains 5\% disseminated pyrite. carbonate, 5 disseminated pyrite. In one instance carbonate surrounds a pyrite crystal.

LBF $111125 \mathrm{~W}, 2200 \mathrm{~S}$
Grab sample
Pale green dacite at creek. Plagioclase is altered to epidote. 10% disseminated euhedral pyrite.

LBF $112 \mathrm{~L} 250 \mathrm{~W}, 3645 \mathrm{~S}$
Grab sample
Rusty, fine grained volcanics. Fresher rock appears to be pyritized dacite.

LBF 113
653 W, 2550 S
Grab sample
Rhyolite. Oxidized red weathered surface, pale green fresh surface. Disseminated pyrite, 5\%.

LBF $114675 \mathrm{~W}, 3630 \mathrm{~S}$
Chip sample over 1.8 m
Sheared, faulted andesite. Massive, powdery pyrite (60\%) is concentrated within 20 cm wide zone in the middle section of the sampled interval. Attitude of fault $105 \% 80^{\circ} \mathrm{S}$.

LBF 115
L. $50 \mathrm{E}, 3020 \mathrm{~S}$

Grab sample
Black, andesitic tuff exposed by small creek. Rock is finely laminated. Some areas have grey fresh surface and weather brown. Minute amount of carbonate along laminations. Disseminated pyrite, 1-3\%. Sulphurous smell when tested with HCl .

LBF $116 \mathrm{~L} 450 \mathrm{~W}, 3605 \mathrm{~S}$
Grab sample
Dacite tuff. Creamy weathered surface, quartz "eyes" 0.5 to 1 mm . Disseminated pyrite, 1-3\%.

EEDCHEMICAL ICP ANALYSIS

MOUNTAINSIDE MANAGEMENT FRQJECT - LEF File \# 87-1214 Fage 1

MOUNTAINSide management froject - LbF file \# 87-1214

SAMPLEI	$\begin{array}{r} \text { KO } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { CU } \\ \text { FPK } \end{gathered}$	$\begin{array}{r} \text { PI } \\ \text { PRK } \end{array}$	$\begin{gathered} \text { IN } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { AE } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \mathrm{NI} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \text { CO } \\ P P K \end{gathered}$	$\begin{gathered} \mathrm{HK} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{cc} \mathrm{K} & \mathrm{FE} \\ \mathrm{H} & \mathrm{I} \end{array}$	$\begin{gathered} A S \\ \text { APK } \end{gathered}$	PPK	PPM	¢ CH	$\begin{gathered} \text { SR } \\ \text { PPR } \end{gathered}$	CD	SPK	PI	PPM	CA	P 7	LTh	CR	M5 4	PA	11	Pp	AL	HA	K	H	AUS
LA50\| 19005	1	31	9	157	. 2	7	7	384																			2	2	I	PF\%	PPB
L8504 19505	1	27	7	85	. 1	7	7	288	3.57	15	5	ND	2	11	1	2	2	72	. 21	. 104	4	11	. 58	62	. 10		3.09	. 01	. 02	1	1
L.8501 2000 S	1	18	12	121	. 1	7	9	607	3.86 4.30	16	5	HD	1	15	1	2	2	88	. 31	. 028	5	9	. 52	75	. 22		2.85	. 02	. 03	1	1
L501205 2050S	2	9	12	119	. 1	7	12	663	3.80	12	5	ND	2	3	1	2	2	97	. 19	. 443	1	14	. 56	58	. 17		3.60	. 02	. 02	1	2
L8501 2100S	1	19	10	70	. 1	4	12	259	4.55	12	5	N0	1	11	1	2	2	95	. 32	. 020	7	14	. 90	99	. 39		2.72	. 02	. 02	1	了
L.8501 2150S	1	6	3	39	-	3							1		1	2	2	112	. 24	. 021	5	6	. 49	59	. 24		2.56	. 01	. 02	1	1
L8501 22005	1	15	10	55	.1	3	3	103	2.47 4.78	8	5	ND	1	8	1	2	2	70	. 13	. 025	3	7	. 12	26	. 11	2	1.42	. 01	. 02		1
STD C/AU-S	20	58	35	134	6.9	68	28	1015	4.78 4.05	42	5 15	ND	2	8	1	2	5	98	. 13	. 052	4	10	. 24	37	. 15	2	2.08	. 01	. 02	1	3
L050k 2250S	1	9	6	32	. 1	2	2	119	3.80	4	15	7	35	41	18	15	18	64	. 50	. 102	36	56	. 91	172	. 08	36	1.79	. 07	. 13	13	49
L850H 2300 S	1	18	10	79	.1	5	5	356	3.75	12	5	N0	1	10	1	2	2	92	. 17	. 044	3	6	. 26	22	. 16	2	1.18	. 01	.01		4
L.850Y 23505	1														1	2	2	73	. 19	. 048	1	12	. 49	56	. 16	2	2.75	. 01	. 03	1	2
L850M 24005	3	12	6	58	1	6	1	103	2.43	3	5	ND	1	8	1	2	3	58	. 16	. 018	3	3	. 22	39	. 08	2	1.49	. 01	02	2	1
L850\% 2450 S	1	9	5	60	. 1	4	2	22	5.46	10	5	HD	2	5	1	2	2	50	. 13	. 067	5	8	. 52	69	. 08	2	5.02	. 01	. 03	2	1
L850Y 2500S	1	5	4	35	. 1	3	2	135	4.69	13	5	ND	1	8	1	2	2	55	.14	. 051	3	7	. 53	53	. 11	2	2.57	. 01	. 02	1	4
L.850% 25505	2	19	8	52	. 1	5	4	396	4.45	10	5	ND	1	5	1	3	2	37	. 09	. 025	2	4	. 37	33	. 06	2	1.50	. 01	. 02	2	3
														8	1	2	2	54	. 16	. 061	3	7	. 62	36	. 21	2	2.61	. 01	. 02	1	1
L850N 26005	4	13	2	54	.1	4	2	280	4.48	12	5	ND	1	5	1	2															
L850M 2650S	1	6	5	34	. 1	2	1	154	2.55	2	5	HD	1	5	1	2	2	74	. 09	. 068	3	7	. 65	44	. 04	2	3.19	. 01	. 03	1	1
L8501 2700S	1	28	5	65	. 1	4	8	783	4.94	3	J	HD	1	15	1	2	2	47	. 12	. 033	3	1	. 28	31	. 06	2	1.62	. 01	. 03	1	1
Le501 27505	3	29	2	59	. 1	4	3	235	5.97	J	5	NO	2	7	1	2	2	97	. 28	. 044	3	7	. 40	94	. 04	2	2.70	. 01	. 04	1	3
L850H 2900S	1	12	7	48	. 1	6	1	230	3.71	3	5	MD		7		2	2	74	. 0.5	. 065	4	9	. 66	52	. 02	2	3.58	. 01	. 04	1	1
									3.7	J	5	ND	1	4	1	2	2	48	. 06	. 057	3	5	. 41	44	. 04	2	1.90	. 01	. 03	1	1
L8501 2150S	3	7	5	28	. 1	10	1	95	6.32	11	5	KD																			
LP50H 2400S	2	13	2	42	. 2	13	1	117	2.17	1	J	HD	1	2	1	2	2	32	.03	. 056	6	6	. 26	37	. 01	2	2.12	. 01	. 04	1	2
L8501 2950S	1	6	8	56	. 1	2	2	298	2.16	91	5	KD	1	4	1	2	2	42	. 10	. 032	4	1	. 26	40	. 02	2	2.24	. 01	. 02	1	1
L850130005	2	14	8	42	. 1	4	3	246	4.56	8	5	ND	1	7	1	2	2	51	. 09	. 029	3	5	. 34	36	. 04	2	1.58	. 01	. 03	1	1
L850k 30505	1	16	12	47	. 2	1	2	162	5.48	11	5	ND	1	5	1	2	2	55	$\cdot 12$. 044	4	9	. 56	73	. 07	2	2.64	. 01	. 03	1	1
												N	1	5	1	2	2	76	. 12	. 075	3	7	. 46	35	. 07	2	1.91	. 01	. 02	2	1
28501 31005	3	33	14	70	. 2	2	5	1023	5.32	32	5	No																			
L8501 3150 S	4	24	10	124	. 1	9	21	1092	3.15	14	5	NO	1		1	2	2	52	. 11	. 041	8	6	. 69	212	. 11	2	2.05	. 01	. 04	1	1
L8501 32005	1	5	7	23	. 1	2	1	85	2.31	14	5	KD	1	5	1	2	2	42	. 10	. 040	15	7	. 44	52	. 08	2	4.13	. 01	. 02	1	1
L8504 3250S	1	12	15	35	. 1	2	1	221	4.12	6	5	ND	1	7	1	2	2	40	. 07	. 023	5	4	. 18	20	. 02	2	1.38	. 01	. 01	1	2
LI50: 3300s	4	10	20	34	. 2	3	1	270	3.76	16	5	ND	1	4	1	2	2	53	. 13	. 048	3	10	. 38	25	. 07	2	2.01	. 01	. 02	1	3
												H	1	4	1	2	2	42	. 03	. 060	3	3	. 50	5	. 01	2	2.47	. 01	. 05	1	1
1850133505	2	12	11	50	. 2	2	2	286	3.36	12		ND																			
L8501 34005	1	7	7	33	. 1	1	1	90	3.34	9	5	WD	1		1	2	3	57	.14	. 045	4	8	. 54	31	. 07	2	2.11	. 01	. 03	1	1
L850M 34505	1	7	4	32	. 1	2	1	42	2.94	6	5	ND	1	6	1	2	3		. 08	. 027	4	8	. 18	19	. 04	2	1.31	. 01	. 01	1	,
2.850) 21505	4	14	5	47	. 1	3	2	207	4.73	11	5	ND	1	6	1	2	2	55	. 09	. 019	3	6	. 19	24	. 06	2	1.18	. 01	. 02	1	1
20508k 29005	4	14	2	31	. 1	1	1	68	6.51	12	5	ND	1		1	2	3	55	. 11	. 050	3	8	. 26	36	. 08	2	2.26	. 01	. 02	2	2
									6.5	12	J	H0	1	4	1	2	3	44	. 05	. 075	4	10	. 18	27	. 01	2	1.77	. 01	. 02	1	1
L8503M 29505	2	19	4	107	. 1	5	3	311	3.99	10	5																				
C50]H 3000S	1	20	9	50	. 3	3	2	377	6.69	24	5	ND	1	10		2	2	64	. 17	. 032	3	9	. 69	58	. 16	2	2.46	. 01	. 04	1	1
															1	2	2	6	. 11	.108	4	1	. 36	36	. 07	2	2.29	. 01	. 02	1	4

MOUNTAINSIDE MANAGEMENT FROJECT - LBF FILE \# B7-1214
SAKPLE

L050BH 30505	3	7	14	29	, 1	2		1129	3.50	10	5	KD	1	6																	
L95014 3100S	2	12	16	52	. 1	2	2	157	3.87	14	5	KD	1	6	1		2	61	. 10	. 036	4	10	. 20	29	. 07	2	1.17	. 01	. 02	1	
L9508y 31505	4	20	19	97	. 1	4	3	3330	4.17	13	5	ND	2	6	1	2	2	67	. 09	. 046		7	. 30	31	. 13		2.04	. 01	. 02	2	3
LI505M 3200S	2	15	18	73	. 1	3	2	176	3.81	11	5	ND	1	6	1	2	2	56	. 10	. 053	5	11	. 6	59	. 08	2	2.91	. 01	. 02	1	
L850ER 3250S	3	11	19	50	. 1	2	2	2339	4.10	6	5	ND	1	8	1	2	2	55	. 16	. 038	4	16	. 39	48	. 12	2	3.06	.01	. 02	1	
													1	7	1	4	3	54	. 11	. 037	3	11	. 27	38	. 08	2	1.94	. 01	. 01		
1850[ㅐ 3300s	2	24	17	107	.1	4	3	3 407	3.84	16	5	ND	2	8	1	2	2														
L7501 16505	1	4	19	38	.1	3	2	272	2.45	11	5	ND	2	12	1	2	2	67	. 13	. 058	5	10	. 54	54	. 09	2	2.01	. 01	. 03	1	5
L7501 1700s	1	10	18	113	. 1	3	4	519	2.90	6	5	N0	1	12	1	2	2	63	. 24	. 070	4	10	. 19	29	. 24	2	1.04	. 01	. 01	1	1
L7501 17505	1	10	12	122	. 1	4	5	345	2.70	8	5	ND	1	13	1	2	2	44	. 19	. 043	4	9	. 20	40	. 25	2	1.51	. 01	. 02	1	2
L750\% 18005	1	10	19	100	. 1	4	4	442	2.75	!1	5	ND	2	13	1	2	2	58	. 29	. 031	5	13	. 29	64	. 16	2	1.48	. 01	. 03	1	1
								44	2.7	.	5	N	2	13	1	2	2	66	. 23	. 039	4	11	. 21	40	. 21	2	1.58	. 01	. 03	1	1
L7501 1850S	1	10	20	97	- 2	4	1	282	2.62	9	5	KD	2	10	I	2															
L7501 1900S	1	35	16	190	. 1	8	B	394	3.72	16	5	ND	1	11	1	2	2	68	. 21	. 039	4	9	. 33	10	. 22	2	1.79	. 01	. 03	1	1
L7504 1950S	1	19	13	82	. 2	4	5	287	3.49	15	5	ND	1	11		3	2	96	. 22	. 058	5	15	. 70	71	. 26	3	3.34	. 01	. 02	1	2
L7501 2000S	2	47	18	122	. 2	5	12	615	4.84	24	5	ND	2	11	1	2	2	93	. 21	. 060	4	10	. 50	48	. 24	2	2.24	. 02	. 02	1	1
L7501 2050S	1	19	12	129	. 1	6	6	219	4.15	15	5	HD	2				2		. 24	. 044	7	11	. 70	97	. 24	3	2.97	. 02	. 02	1	1
											5	\boldsymbol{N}	2	9	1	2	2	89	. 16	. 087	4	13	. 44	19	. 20	2	3.04	. 02	. 02	1	2
L75012100S	2	25	16	158	. 1	-	7	380	4.56	14	5	ND	2		1																
L750W 2140S	1	20	13	83	. 1	3	3	180	3.50	8	5	ND	1	11	1	2	2	102	. 25	. 049	8	15	. 68	55	. 29	2	2.75	. 02	. 03	1	3
L7501 2200s	1	16	12	111	. 3	5	4	235	3.38	13	5	ND	2	11		2	2	58	. 15	. 029	5	8	. 20	34	. 15	3	2.09	. 02	. 02	1	1
L7504 22505	2	17	18	74	.1	5	6	394	3.94	18	5	ND	1	12		2	2	76	. 23	.028	4	9	. 47	57	. 22	2	2.22	. 02	. 02	1	1
L.650k 16505	1	40	20	77	. 1	2	6	725	4.07	7	5	ND	1	20		2	2	12	. 26	. 042	6	11	. 53	66	. 19	2	2.44	. 02	. 02	2	1
								72	4.0	7	5	No	1		1	2	2	72	. 19	. 068	4	6	. 21	82	. 22	2	1.89	. 01	. 01	1	1
L65011 17005	1	37	39	211	. 1	8	9	596	4.14	16	5	ND	1	10	1	2															
L650N 17505	1	40	23	277	. 1	7	10	609	3.63	8	5	ND	2	11	1	2	2	97	. 33	. 036	5	14	1.12	80	. 32	2	3.29	. 02	. 02	1	1
L45011 18005	1	21	24	149	. 1	5	5	343	3.68	17	5	N0	1	11	1	2	2	81	. 23	. 035	6	15	. 62	72	. 24	2	2.46	. 02	. 02	1	1
L6501 10505	1	31	14	160	.1	7	10	730	4.47	18	5	N9	1	10	1	2	2	74 100	. 19	. 065	6	11	. 44	62	. 15	2	2.36	. 01	. 03	1	1
L6501 19005	1	19	23	334	. 2	4	4	277	3.30	13	5	MD				2	3	100	. 34	. 086	4	11	.77	78	. 25	8	2.90	. 02	. 03	1	1
									J.J	13	\checkmark	R	1	9	1	2	3	74	. 15	. 040	4	8	. 37	47	. 14	2	2.67	. 01	. 02	1	1
L6501 1950S	2	20	12	103	.1	5	5	352	3.42	14	5	ND	1	9																	
L6501 2000 S	1	22	14	136	. 1	6	7	472	3.12	18	5	ND	1	11	1	2	2		14	. 098	7	10	. 53	70	. 10	2	3.16	. 02	. 03	1	1
L6501 2050 S	1	18	12	133	. 3	6	5	336	3.48	15	J	ND	1	10	1	2	2	88	. 24	. 094	5	13	. 56	55	. 20	2	2.66	. 02	. 02	1	1
L650M 21005	1	28	12	124	. 2	6	9	605	5.62	28	5	HD	2	9		2	2	72 114	. 22	. 037	5	10	. 61	69	. 20	2	2.35	. 02	. 02	1	1
L650 21505	1	21	5	112	. 1	6	7	323	4.06	13	5	HO		8		2	2	114	. 30	. 278	4	21	. 90	51	. 22	2	4.74	. 02	. 04	1	2
									4.06	13	5	HO	2	8	1	2	3	94	. 14	. 058	4	13	. 40	48	. 24	2	3.23	. 02	. 03	1	1
L650H 2200 S	1	35	24	115	. 1	6	!	562	5.74	27	5																				
L6501 2750S	1	11	10	78	. 1	4	5	394	3.50	6	5	HD	3			2	2	109	. 32	. 017	4	15	. 19	45	. 22	3	4.43	. 02	. 03	1	1
STD C/AU-S	21	60	35	136	7.2	70	29	1062	3.95	42	18	8	37	48	18	2 17	2	68	. 15	. 039	37	9	. 49	86	. 09	2	2.55	. 01	. 03	1	1
L650K 2300 S	1	8	5	58	. 1	J	3	218	3.07	4	5	ND	3	18	1	17	2	64	. 48	. 105	37	60	. 89	178	. 08	36	1.76	. 06	. 14	14	41
L6504 2350S	3	61	4	216	. 1	7	43	2765	4.15	37	5			12	1		2	75 36	. 28	. 024	16	11	. 32	50	. 15	2	1.23	. 01	. 03	1	1
								2765	4.15	37	5	R	3	12	1	2	2	36	. 25	. 077	26	6	. 38	78	.10	6	5.35	. 02	. 04	1	1
650Y 24005	2	6	10	40	. 2	3	3	218	3.63		7																				
650\% 24505	2	17	18	81	. 1	4	4	312	3.32	10	5			11	$!$	2	2	85	. 19	. 020	4	12	. 16	55	. 15	2	1.41	. 01	. 02	1	1
									3. 3	10	5	NO	1	11	1	2	2	46	. 23	. 075	5	10	. 46	50	. 21	3	2.52	. 02	. 03	1	1

SAIPLEI	$\begin{gathered} \mathrm{KO} \\ \mathrm{PM} \end{gathered}$	$\begin{gathered} \mathrm{CU} \\ \mathrm{PFK} \end{gathered}$	P1	$\begin{gathered} \text { IK } \\ P P \% \end{gathered}$	$\begin{gathered} \text { Af } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \mathrm{KI} \\ \mathrm{PM} \end{gathered}$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} Y \mathrm{KN} \\ \mathrm{PPR} \end{array}$	$\begin{gathered} \text { FE } \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} U \\ \text { UPh } \end{array}$	$\begin{gathered} \text { AU } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { TH } \\ \text { PM } \end{array}$	$\begin{gathered} \text { SR } \\ \text { PM } \end{gathered}$	$\begin{aligned} & \text { CD } \\ & \text { PPH } \end{aligned}$	$\begin{array}{r} \text { SP } \\ \text { PPH } \end{array}$	PP\%	PPM	Ca	2	LA	CR PPM	K1	PA	II	PPM	${ }_{\text {AL }}$	MA	k 4	PPK	Pit
L65012 25005	5	31	10	67	. 1	6	15	643	5.70	20	5	HD	1	9	1																
L6501 25505	34	18	9	34	. 2	2	2	153	4.99	3	5	MD	1	6	1	2	2	67	. 18	. 048	5	11	. 3 ?	59	. 15	2	2.20	. 01	. 03	1	
L450H 2600 S	5	8	4	21	. 1	2	1	110	3.62	7	5	HD	1	4	1	2	2	45 50	. 10	. 075	3	5	. 33	56	. 06	3	2.01	. 01	. 04	1	
L650N 21505	6	13	10	4	. 1		5	251	3.84	8	5	K0	1	6	1	2	2	48	. 10	. 039	3	7	. 33	35	. 03	2	1.63	. 01	. 02	1	
L650\% 27005	5	28	7	54	. 1	5	!	620	4.51	10	5	NJ	1	5	1	2	2	43	. 09	. 044	9	9	. 70	62	. 12	2	2.30 2.20	. 02	. 03	$?$	
L6501 2750 S	4	16	10	42	. 1	2	2	197	8.55	11	6	ND																	.		
L6504 28005	4	10	8	21	.1	2	2	146	5.55	6	5	HD	1	3	1	2	2	76	. 05	. 077	3	10	. 36	35	. 13	3	2.22	. 01	. 03	1	23
L.650' 28505	3	11	7	38	.1	2	1	219	2.93	5	5	ND	1	4	1	2	2	79	. 05	. 064	4	9	. 42	30	. 11	2	1.72	. 01	. 02	1	2
L6501 29005	1	6	3	25	. 6	1	1	51	1.68	2	5	ND	1	2	1	2	2	41	. 06	. 052	3	9	. 37	29	. 07	2	2.13	. 01	. 02	1	1
L650H 2950S	1	1	5	20	. 1	1	1	39	. 76	2	5	ND	1	4	1	2	3	11	. 01	. 089	9	2	.11	21	. 03	2	1.63	. 01	. 02	1	1
															1		3	11	. 01	. 020	9	2	. 11	26	. 01	2	1.09	. 01	. 02	1	1
L65013 30005	6	8	10	50	.1	3	1	188	4.49	10	5	ND	2	3	1	2	2	43	. 05	. 057	5	7	. 47	24							
L650H 31005	1	7	7	36	. 1	1	1	91	2.12	3	5	HD	1	3	1	2	2	29	. 04	.032	J	4	. 27	35	. 03	2	2.25	. 01	. 03	1	
L6501 31505	2	14	15	50	. 1	2	1	150	2.84	5	5	ND	1	3	1	2	3	35	. 04	. 014	4	4	. 21	51	. 02	2	1.07	. 01	. 02	1	
L.6501 32005	1	24	8	89	.4	4	2	171	4.11 4.50	16	5	KD	1	4	1	2	3	48	. 08	. 041	4	10	. 31	34	. 04	2	2.34	. 01	. 03	2	1
								17	4.50	16	5	K	1	4	1	2	2	63	. 08	. 061	1	10	.29	37	. 07	2	3.07	. 01	. 02		1
L6504 32505	1	3	4	26	. 3	1	1	92	1.39	2	5	1 ND	1	3	1	2															
L6504 3300S	3	30	12	76	. 1	2	2	277	3.65	17	5	Nid	1	3	1	2	2	33	. 05	. 011	4	2	. 16	14	. 03	2	1.08	. 01	. 03	1	1
L6501 3350S	2	24	12	77	. 2	3	2	214	3.81	17	5	KD	1	4	1	2	2	51	. 09	. 062	1	8	. 36	35	. 05	2	2.26	. 01	. 02	1	1
L450N 34005	2	$5!$	14	182	. 3	3	4	677	4.65	12	5	ND	1	6	1	'2	2	62	. 10	. 056	3	8	. 33	33	. 05	2	2.20	. 01	. 02		2
L450) 34505	1	22	20	101	. 1	3	5	543	3.76	10	5	ND	1	10	1	2	2	62	.10	. 061	3	10	. 34	55 55	. 04	2	1.14	. 01	. 03	1	$!$
L650M 3500S		18																5	$\cdot 16$. 042	4	1	. 3	55	. 07	3	1.75	. 01	. 03	1	2
L650K 3550S	2	16	12	130	,	3	4	454	4.56	14	5	ND	1	1	1	2	2	57	.12	. 042	4	9	. 43	90	. 06	2	1.71	. 01	. 04	1	
L6504 3600s	2	30	10	213	. 2	3	9	263	4.04	11	5	N0	1	6	1	2	2	60	. 10	. 035	3	8	. 35	81	. 04	3	1.63	. 01	. 01	1	
L550\% 16505	1	33	10	92	. 1	6	9	521	4.19	43	5	ND	2	7	1	2	2	62	. 14	. 070	5	9	. 88	93	. 07	3	2.61	. 02	. 08	1	1
L55014 1700S	1	19	14	301	. 1	B	9	1029	3.42	23	5	ND	1	8 10	1	2	2	99	. 24	. 100	3	10	. 11	50	. 30	4	2.97	. 02	. 02	1	1
								(02)	3.42	2	5	ko	1	10	1	2	2	86	. 34	. 046	1	9	. 67	178	. 28	2	2.16	. 02	. 03	1	1
L550\| 17505	1	24	19	87	. 1	5	6	355	3.75	16	5	NO																			
L5504 18005	1	17	18	134	. 2	7	7	366	3.21	16	J	HD	2	6			2	97 76	. 18	. 026	1	10	. 69	57	. 24	2	2.28	. 02	. 03	1	1
L5501: 1850S	1	19	15	224	. 1	3	5	841	3.04	7	5	ND	2	7	1	2	3	76 57	. 15	. 037	4	12	. 53	72	. 24	2	2.54	. 02	. 03	1	3
L550119005	1	17	18	249	-1	5	6	1170	3.16	15	5	KD	1	8	1	2	3	67	. 15	. 087	4	7	. 35	72 143	. 07	2	1.90	. 01	. 03	1	1
L5501 1950S	1	21	17	443	. 1	7	10	1414	3.30	14	5	ND	1	10	1	2	2	71	. 33	. 063	4 13	6	. 57	143 112	. 14	2	1.85 2.07	. 01	. 04	1	4
L5501 20005	1	20	10	545	. 1	5	6	502	3.84	16	5																				
STD C/AU-S	20	55	37	124	7.0	41	27	975	3.79	40	14	$\begin{array}{r}1 \\ \hline\end{array}$	34	44	1	2	${ }_{20}^{2}$	51	. 21	. 024	6	14	. 74	103	. 16	2	1.99	. 01	. 02	1	1
L5504 20505	1	9	12	80	. 1	3	3	173	3.65	9	5	ND	3	44	17	18	3	98	. 14	. 018	35	52	. 8^{3}	162	. 07	38	1.60	. 06	. 12	14	19
L550k 2100S	1	24	16	85	. 1	4	4	356	3.74	12	5	ND	1	8	1	2	2	70	. 14	. 053	3	10	. 23	34	. 14	2	1.38	. 01	. 02	1	1
L550k 2150 S	1	26	10	121	. 1	5	7	536	3.48	12	5	ND	1	9	1	2	2	72	. 24	. 041	5	8	. 46	46 121	. 14	2	2.11	. 01	. 03	1	
L550W 2200S	1	12	11	70	. 1	3	3	138	3.49	14																					
L550M 22505	1	16	11	76	. 5	3	4	159	4.16	14	5			5	1	2	2	87	. 08	. 115	3	9	. 15	45	. 14	3	1.80	. 02	. 02	1	1
								I59	4.16	14	\checkmark	N	2	5	1	2	2	96	. 09	. 115	3	11	. 22	39	. 11	2	3.04	. 02	. 03	1	2

MOUNTAINSIDE MANAGEMENT FROJECT－LbF FILE \＃87－1214

SAKPLEI	RO PPM	CO	$\begin{gathered} \text { PB } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { IN } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { A6 } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { HI } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { CO } \\ \text { PPM } \end{gathered}$	$\begin{aligned} & \text { MK } \\ & \text { PPK } \end{aligned}$	$\begin{gathered} \mathrm{FE} \\ \mathrm{I} \end{gathered}$	$\begin{array}{r} A 5 \\ P R K \end{array}$	$\underset{P H}{U}$	APM	TH	SR	CD	SP\％	$\begin{gathered} \text { II } \\ \text { PRK } \end{gathered}$	PPK	ch 2	$\begin{array}{r} p \\ > \end{array}$	LA	CR PPM	16 2	PA P\％	II	PP	4 i	$N A$ $\%$	K	＊	PP！
L450｜ 16505	1	16	12	B3	． 1	1	5	457	2.96	2																					
L450k 1700S	1	32	19	17	． 1	5	7	748	2.96	16	5	N0	1	B	1	2	2	70	． 13	． 039	5	13	． 34	41	． 10	3	2.32	． 01	． 03	1	
L450X 1750S	1	10	13	120	． 1	7	7	678	2.95	16	5	NO	3	\％	1	2	2	85	． 12	． 213	6	14	． 34	64	． 12	2	4.79	． 01	． 04	1	2
L450M 1800S	1	15	12	103	． 2	2	2	246	2.77	8	5	WD	3	9	1	2	2	58	.18	． 063	11	12	． 39	113	． 06	2	3.23	． 01	． 04	1	
L45011 1850S	2	25	15	469	． 1	6	7	709	5.54	25	5	NO	2	9	1	2	3	32 58	． 09	． 070	11	8	． 19	53	． 03	2	2.04	． 01	． 03	1	
											5	\ldots	2	9	1	2	2	58	.15	． 068	7	14	． 72	144	． 08	2	2.69	． 01	． 04	1	
L450\％ 19005	2	31	16	308	． 1	7	7	541	4.14	14	5	ND	2	7	1	2	2	85	． 18		6										
L450以 19505	1	36	26	621	． 1	8	5	367	3.14		5	HD	3	9	1	2	2	71	． 20	． 024	4	11	.79	56	． 25	4	3.59	． 02	． 04	1	
14504 2000S	1	3	2	40	． 1	1	1	101	4.81	7	5	ND	3	2	1	2	2	35	． 20	． 027	3	11	． 79	48	.31	3	4，03	． 02	． 03	1	
L450K 2050S	3	13	9	206	． 1	2	J	213	6.11	7	5	ND	1	2	1	2	2	45	． 01	． 047	3	4	． 49	42	． 01	2	1.59	． 01	． 02	1	
L4501 21005	1	22	11	161	． 1	7	10	810	5.13	15	5	ND	2	8	1	2	2	96	． 41	． 057	4	6	． 36	105	． 01	2	2.26	． 01	． 06	1	
												H	2	8	1	2	2	99	． 41	． 059	4	16	1.34	51	.19	3	2.38	． 03	． 06	1	4
L450M 21505	1	36	10	131	． 1	6	10	773	5.18	15	6	ND	2	10	1	2	2														
L450N 22005	2	26	13	101	． 1	5	6	33）	5.15	34	5	HD	2	10	1	2	2	102	$\cdot 42$	． 071	5	16	1．46	60	． 24	3	3.47	.03	． 06	1	2
L450以 22505	1	13	13	53	． 1	4	3	181	3.70	12	5	H0	2	7	1	2	2	102	． 15	． 046	3	11	． 62	45	． 23	3	2.76	． 01	． 02	3	2
L450H 2300S	1	9	10	35	． 1	1	2	144	4.75	13	5	HD	1	5	1	2	2	78	． 15	． 032	7	11	． 40	40	． 20	2	2.55	． 01	． 01	1	1
L450H 2350 S	1	13	12	44	． 2	3	2	89	3.82	12	5	ND	2	6	1	2	2	115	． 10	． 056	3	7	． 26	28	． 22	3	1.68	． 01	． 01	1	4
									3． 2	12	5	N0	2	6	1	2	2	69	． 10	． 041	4	12	.17	34	． 14	2	2.17	． 01	． 02	2	1
L450N 2400S	1	16	9	53	． 1	3	3	317	3.12	8	5	ND	2	7	1	2	2	57													
L450M 24505	1	20	10	63	． 1	5	1	200	4.66	8	5	ND	2	7	1	2	2	70	.15	． 053	5	11	． 52	52	.13	3	2.16	． 01	． 03	1	1
L45011 25005	1	13	13	43	． 2	3	2	186	5．58	23	J	ND	2	9	1	2	2	78	． 13	． 054	4	12	． 39	47	． 13	2	2.86	． 01	． 02	，	2
L4501 2550 S	1	11	11	54	． 3	3	3	279	4.00	5	5	ND	2	7	1	2	2	58	.14	． 051	3	12	． 23	54	． 18	2	1.75	． 01	． 04	1	2
L450K 26005	2	19	8	134	． 1	11	24	1818	5.38	12	5	HD	3	5	1	2	2	47	． 15.	． 054	30	11	． 35	57	.10	2	1.91	． 01	． 03	1	1
										12	J	HD	3	5	1	2	2	47	． 10	． 044	30	16	． 53	80	． 11	2	5.07	． 02	． 04	1	1
L450⒉ 26505	J	9	10	4	． 1	3	3	1051	4．3\％	10	5	ND	2	5	1	2	2	62													
L450N 2700S	2	12	9	63	.1	3	2	348	4．18	8	5	ND	1	5	1	2	2	58	－10	． 065	6	15	1.10	81	． 07	2	3.22	． 02	． 05	2	1
L450H 2750S	2	16	9	70	． 1	4	3	294	4．618	10		H0	1	5	1	3	2	58	． 10	． 053	3	12	． 64	55	． 06	2	2.34	． 01	． 03	1	1
L45014 2400s	3	8	10	36	． 1	2	1	145	3.15	12	5	\cdots	1	5	1	3	2	66	． 10	． 064	3	14	． 46	40	． 07	3	2.48	． 02	． 02	2	1
L45014 2850S	3	40	4	56	． 1	3	2	105	2.41	2	5	ND	3	2	1	8	2	23	． 03	． 018	1	8	． 20	35	． 02	2	1.41	． 01	． 02	2	1
																									． 07	2	5.35	． 01	． 02	3	3
1450N 29005	3	13	B	53	．1	3	2	300	4.00	11	5	NO	1	4	1	2	2	50													
L4501 29505	2	11	7	42	． 1	2	2	519	5.48	13		H0	1	4	1	2	2	76	． 11	． 051	3		． 0	37	． 08	2	3.37	． 01	． 03	1	1
L45011 30005	3	15	9	133	． 3	3	1	179	2.74	3	5	ND	1	4	1	2	2	3	． 11	． 067	3	10	． 97	34	.11	2	1.58	． 02	． 04	1	1
STD C／Ad－S	20	55	37	125	6.1	16	27	770	3.14	37	19	7	34	44	17			55	． 07	． 030	34	7	． 26	45	． 05	2	1.35	． 01	． 02	1	2
L450以 30505	1	10	19	31	． 2	1	1	151	3.00	10	5	KD	1				19		． 45	． 096	34	56	． 85	162	． 07	36	1.62	． 06	． 12	14	51
								15．	3.00	10	J	KI	1	2	1	2	2	36	． 03	． 047	2	5	． 20	36	． 01	2	1.35	． 01	． 04	1	1
L4501 3100S	2	8	7	31	． 1	2	1	78	2.08	6	5	ND	1	3	1	2	3														
L4501：31505	2	40	21	262	． 1	4	7	492	7.10	15	5	ND	1	4	1	3	3	51	． 03	． 027	！	10	． 15	22	． 02	2	1.79	． 01	． 01	1	1
L4504 32005	2	40	23	259	． 1	4	7	490	6.97	15		ND	2	4	1	3	2	51	． 06	． 075	8	10	． 31	64	． 06	2	3.08	． 01	． 02	1	4
L4501 32505	3	46	17	202	． 1	5	4	711	5.60	25	5	HD	2	5					． 08	． 074	8	0	． 30	63	． 06	2	3.04	． 01	． 02	2	1
L．450K 33005	2	24	12	110	.2	3	2	300	3.67	17	5	HD	1	5	1	2	2	55	． 10	． 100	6	10	． 71	108	． 08	3	2.65	． 02	． 03	1	1
										17	5	H0	1	5	1	2	2	$5!$	． 10	． 067	4	10	． 34	49	． 07	2	1.62	． 02	． 02	1	3
L450il 33505	1	22	12	96	． 1	4	2	214	4.35	10	5	N	1	5	1	2															
L4504 3400S	2	21	14	118	． 1	3	4	513	4.03	11	5	HD	1	5	1	2	2	52	． 09	． 050	3	11	． 41	55	． 05	2	1.92	． 01	． 03	1	1
																2	2	52	． 09	． 060	4	7	． 48	53	． 07	3	1.81	． 01	． 03	1	

	SAMPLEI	KO PPM	$\begin{aligned} & \text { CU } \\ & \text { PPW } \end{aligned}$	PR	IN	$\begin{array}{r} A 6 \\ \text { PFK } \end{array}$	Pri	CO PPK	$\begin{gathered} \text { KN } \\ \text { FPM } \end{gathered}$	$\begin{gathered} \mathrm{FE} \\ \mathrm{I} \end{gathered}$	$\begin{gathered} A S \\ P P M \end{gathered}$	$\underset{\text { PPK }}{U}$	$\begin{aligned} & \text { AU } \\ & \text { PPM } \end{aligned}$	TR	$\begin{array}{r} 5 R \\ \text { PRH } \end{array}$	$\begin{gathered} C D \\ P P K \end{gathered}$	$\begin{gathered} \text { S! } \\ \text { PPY } \end{gathered}$	P1	V	$\begin{gathered} C A \\ I \end{gathered}$	I	$\begin{aligned} & \text { LA } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \text { CR } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \mathrm{MI} \\ \mathrm{I} \end{gathered}$	$\begin{gathered} B / \\ \text { PFK } \end{gathered}$	$\begin{array}{r} \mathrm{II} \\ 7 \end{array}$	Pr	$\underset{I}{A l}$	M I	$\underline{\mathbf{K}}$	PPH	GUN PPI
	L4504 3450S	1	13	8	15	. 3	1	2	159	2.41	4	6	ND	2	5	1	2	2	42	. 08	. 025	3	5	. 27	54							
	L.4501 3500S	2	31	5	86	. 1	2	3	255	4.18	11	5	M0	1	4	1	2	2	59	. 07	. 054	3	4	. 36	44	. 02	2	1.39 1.54	. 01	. 04	1	1
	L450X 3550S	1	23	14	123	. 1	2	1	249	5.12	13	5	ND	1	5	1	2	2	64	. 10	. 042	3	9	. 36	71	. 05	2	1.69	. 02	. 03	1	1
	L450y 36005	3	48	10	116	. 1	6	5	747	4.12	17	5	ND	2	5	1	2	2	62	. 09	. 137	4	15	. 72	60	. 05	2	3.12	. 01	. 03	1	1
	L4501 36505	3	56	11	201	. 1	8	8	62.	Ј.86	6	5	ND	1	5	1	2	3	52	. 08	. 046	4	11	. 42	62	. 06	2	2.72	. 01	. 03	1	1
	L45013 37005	3	18	7	257	. 2	10	1	454	4.47	22	5	H0	2	7	1	2	2	57	. 10	. 057	3	11	.6!	ft	. 08	3	3.17	. 01	. 04	1	1
	L45013 37505	2	73	5	225	. 3	1	7	450	4.16	16	5	ND	2	7	1	2	2	54	. 10	. 052	5	10	. 56	5	. 07	2	2.88	. 01	. 03	2	1
	L350\% 18505	1	11	18	16	. 2	2	2	247	2.18	,	5	HD	2	4	1	2	2	31	. 08	. 050	5	6	. 23	65	. 02	2	1.94	. 01	. 04	1	1
	L3504 1700 S	2	36	26	111	. 1	6	,	353	3.52	8	5	ND	5	5	1	2	2	60	. 12	. 039	12	13	. 64	45	. 22	2	3.02	. 02	. 04	1	1
	L3501 1950S	1	15	13	65	. 1	2	2	203	2.53	7	5	HD	1	4	1	2	2	41	. 10	. 027	5	9	. 33	35	. 05	2	1.70	. 02	. 04	1	1
	L3501 20005	3	42	12	80	. 1	2	2	189	5.84	7	5	H0	3	4	1	2	3	44	. 07	. 067	5	6	. 22	59	. 02	2	2.72				
	L350N 20505	1	28	11	176	. 1	5	6	499	3.60	3	5	HD	2	b	1	2	2	69	. 18	. 053	5	9	. 67	46	. 14	2	2.72 2.35	. 02	. 04	1	12
	L350 2100 S	1	20	14	146	.1	5	5	214	4.06	11	5	KD	2	5	1	2	2	70	. 10	. 053	4	14	. 30	48	. 13	2	3.31	. 01	. 03	1	12
	L3504 21405	1	16	13	73	. 2	3	3	237	3.67	11	5	KD	1	6	1	2	2	69	. 13	. 050	3	9	. 27	53	. 12	2	1.69	. 01	. 04	1	1
	L3501 2200S	1	11	7	52	. 2	1	2	104	4.55	11	5	ND	2	5	1	2	2	109	. 08	. 053	3	10	. 11	32	.22	2	2.11	. 01	. 02	1	3
	13504 22505	1	18	13	59	. 3	3	3	201	4.71	11	5	ND	2	6	1	2	3	72	. 12	. 054	4	11	. 36	55	. 12	2	2.37	. 01	. 02	1	1
381500	L2501 0+50S	1	20	19	100	. 2	5	4	203	5.02	12	7	ND	1	7	1	2	3	84	. 15	. 055	3	12	. 47	48	. 17	2	2.6	. 01	. 02	1	1
$\overline{2} 5005$	L2501 $1+005$	2	14	14	58	. 2	2	2	213	3.83	12	5	HD	2	4	,	2	2	65	. 07	.048	3	7	. 11	32	. 08	2	2.10	. 01	. 02	1	1
22-00S	L250H1+50S	1	20	14	71	. 2	5	3	189	3.32	5	5	N	2	6	1	2	2	46	. 11	. 033	4	12	. 27	43	. 13	2	2.50	. 01	. 03	1	1
	L2501 $2+005$	1	8	10	42	. 1	2	2	172	3.18	4	5	HD	1	6	1	2	3	71	:II	. 014	3	9	.10	30	. 14	2	1.02	. 01	. 01	1	2
	2501 $2+505$	2	42	14	108	. 1	10	19	388	4.44	17	5	ND	2	5	1	2	2	54	. 11	. 041	5	11	. 61	4	. 15	3	2.67	. 01	. 02	1	1
	L2501 3+00S	2	16	7	51	. 1	3	2	297	2.48	3	5	H0	1	4	1	2	3	37	. 06	. 058	9	10	. 71	71	. 08	2	2.15	. 02	. 04	1	1
	L2501 3+505	3	10	4	4	. 1	4	2	229	4.08	3	5	RD	2	5	1	2	3	54	. 04	. 068	4	10	. 50	39	. 03	2	2.19	. 01	. 03	1	1
	L25014 $4+005$ 25014	2	58	7	16	. 3	4	3	368	4.53	5	5	ND	3	3	1	2	3	76	. 05	. 105	4	30	. 90	41	. 06	2	4.05	. 02	. 02	1	3
	L2501 $4+50 \mathrm{~S}$	1	33	15	47	. 2	3	6	276	2.17	17	5	ND	4	1	1	2	4	16	. 02	. 143	6	9	. 12	17	. 04	3	9.73	. 01	. 02	1	15
	L250N 5400S	2	14	10	75	. 2	3	2	343	3.32	8	5	MD	2	4		2	2	50	. 06	. 050	5	8	.b3	51	. 03	2	2.42	. 02	. 02	1	1
	L2501 5450S	2	5	7	41	. 1	1	3	477	5.00	8	5	ND	2	2	1	2	3	19	. 02	. 076	3	3	. 12	46	. 01	2	1.24	. 01	. 02	1	1
	L2501 $6+00 \mathrm{~S}$,	14	5	50	. 1	4	3	158	3.19	4	5	H0	1	5	1	2	2	46	. 07	. 038	3	1	. 22	47	. 05	2	2.33	. 01	. 02	1	1
	L2501 $6+505$ 125017	1	44	8	65	. 1	2	1	332	10.82	9	5	ND	3	5	1	2	2	78	. 09	. 187	2	16	. 35	55	. 07	2	3.98	. 01	. 02	1	1
	L2501 $7+005$	3	25	12	140	. 1	6	5	225	3.86	10	5	ND	2	6	1	2	2	50	. 10	. 035	4	14	. 31	88	. 07	2	2.87	. 01	. 03	1	2
	12504 7+505	1	1	7	37	. 1	2	1	423	1.51	3	5	ND	1	3	1	2	4	24	. 03	. 024	4	3	. 22	82	. 02	2	1.27	. 01	. 02	1	
	L25011 $8+005$	1	5	2	27	. 1	1	1	110	. 96	4	5	ND	1	4	1	2	2	18	. 03	. 010	3	2	. 09	67	. 01	2	. 67	. 01	. 01	1	1
	L2501: 2505	4	60	.	871	. 2	5	4	344	6.3\%	16	5	kD	3	6	1	2	3	58	. 10	. 075	5	11	. 40	135	. 04	2	2.11	. 01	. 04	1	1
	L2501 9+00S	1	39	5	227	. 1	5	4	389	3.86	8	5	ND	1	6	1	3	2	50	. 11	. 052	5	11	. 48	9	. 04	2	2.26	. 01	. 01	1	1
	L2501 9+50S	2	21	7	169	. 1	6	4	452	4.41	7	5	ND	2	6	1	2	3	54	. 10	. 088	4	11	. 51	86	. 05	2	J. 26	. 02	. 03	1	1
	W L250K 10+00S	1	17	14	108	. 3	3	2	278	2.78	2	5	ND	2	5	1	2	2	38	. 08	. 050	4	8	. 32	65	. 02	2	2.32	. 02	. 03	1	1
	STD C/AU-S	20	58	38	135	6.7	70	29	1023	3.98	40	14	7	34	48	18	18	21	64	. 47	. 104	36	56	. 83	180	. 08	33	1.72	. 07	. 15	12	50

L2501 10+50s	1	18	11	121	- 1	3	3	249	2.86	4	5	HD	2	7	1	2															
L250Y 11+005	2	21	9	208	. 2	6	4	346	3.75	3	5	ND	2	7	1	2	2	42 54	. 12	. 817	4	9	. 36	71	. 04	2	2.34	. 01	. 04	1	
STD C/AL-S	21	60	37	138	7.3	72	30	1079	4.04	40	17	W	38	50	19	16	2	54	. 12	. 047	4	11	. 50	96	. 04	2	3.02	. 01	. 04	1	
L250N 11+505	4	48	9	409	. 3	11	9	489	7.67	10	5	HD	3	7	19	16	20	66	. 48	. 109	37	58	. 19	176	. 08	35	1.71	. 07	. 14	13	$5!$
L25014 12+00S	2	14	8	15	. 3	4	3	276	3.47	6	5	ND	2	6	1	2	2	65 55	. 11	. 074	5	15	. 49	131	.11	4	3.82	. 01	. 05	1	1
											J	H	2	6	1	2	2	55	. 11	. 041	4	11	. 30	76	. 04	2	2.13	. 01	. 04	2	
L250N 12+505	2	31	12	112	. 3	6	4	361	4.17	I	5	HD	2	6	1	2															
t250M 13+00s	10	37	14	578	.1	13	13	7048	11.38	28	5	ND	7	9	4	2	2	55	. 10	. 060	5	10	. 51	73	. 08	3	2.53	. 01	. 04	3	
L250\| 13+50S	3	95	31	302	. 4	12	15	865	4.78	61	5	HD	J	7	4	2	2	40	. 22	. 082	12	9	. 23	225	. 05	3	3.64	. 01	. 03	1	1
L250H 14+005	t	29	10	568	. 1	11	9	536	5.57	10	5	ND	2	9	1	2	2	68	15	. 092	9	10	. 60	144	. 05	1	3.11	. 01	. 05	1	1
L2501 $14+50 \mathrm{~S}$	2	12	5	106	. 2	3	3	260	2.93	10	5	ND	2	7	1	2	2	48	. 13	. 0945	4	15	. 55	130	. 05	2	2.27	. 01	. 03	1	1
																			. 10	. 040	4	7	. 22	60	. 03	2	1.95	. 01	. 03	1	1
L250K $15+00 \mathrm{~S}$	8	33	9	621	. 1	19	10	578	5.59	26	5	NO	3	8	1	2	2	50	. 13		5										
L250N 15005	1	26	19	167	. 1	4	4	323	2.42	9	5	ND	2	9	1	2	2	47	. 15	. 079	5	14	. 60	114	. 10	3	4.48	. 02	. 04	1	1
L250H 15505	1	18	12	105	. 2	11	8	669	3.21	2	5	ND	2	8	1	2	2	45	. 15	. 0.088	6	17	. 13	80	. 04	2	2.02	. $01{ }^{\circ}$. 03	1	1
L25014 1600 S	1	12	10	58	. 1	4	4	254	4.61	11	5	MD	2	6	1	2	2	113	-17	. 107	4	17	. 43	62	. 26	3	3.05	. 02	. 03	1	1
L250M 1650S	1	28	11	56	. 1	5	4	306	4.20	2	5	ND					3	113	. 12	. 079	4	17	. 28	31	. 27	3	2.39	. 01	. 03	1	8
								306	4.20	2	5	NO	2	7	1	2	3	82	. 14	. 121	4	17	. 26	32	.15	2	3.24	. 01	. 02	1	1
L2501 1700S	1	57	12	95	. 2	20	17	487	5.84	5	5	RO	2	7		2															
L.25011750S	1	10	7	69	. 1	3	3	214	2.39	3	5	HD	2	4	1	2	2	34	. 09	. 074	4	24	. 71	56	.17	3	3.87	. 02	. 04	1	1
L2501 18005	1	6	5	45	. 1	2	2	204	1.90	3	5	HD	1	4	1	2	2	31	. 07	. 063	4	9	.15	36	. 04	2	2.31	. 01	. 03	1	1
L2501 1850S	1	14	13	69	. 1	6	4	340	2.99	5	5	H8	2	5	1	2	2	31	. 07	.038	4	7	. 12	34	. 03	2	1.82	. 01	.03	3	1
L2501 1900S	2	100	39	353	.3	5	4	172	10.07	17	5	ND			1	2	2	56 64	. 11	. 049	5	11	. 30	42	. 16	3	2.84	. 01	. 03	1	1
							4			17	5	H.	4	4	1	2	2	64	. 07	. 150	6	21	. 31	51	. 11	4	4.78	. 01	. 05	1	1
1250\% 19505	2	10	12	63	. 1	2	2	171	4.76	10	5	ND	3	4		2															
L250\% 20005	1	14	10	163	.1	4	4	246	2.88	7	5	ND	2	7	1	2	2	39	. 06	.093	11	7	. 22	74	. 02	2	3.51	. 01	. 03	1	1
L2504 2050 S	1	10	10	317	. 1	3	6	581	2.67	2	5	ND	2	8	1	2	2	47	. 14	.035	5	6	. 31	69	. 10	3	3.20	. 01	. 05	1	1
L2501 21005	1	26	10	323	. 1	5	5	327	3.77	8	5	H0	2	8	1	2	2	38 54	. 15	. 043	7	7	. 27	109	. 06	2	1.76	. 01	. 03	1	1
L2501 21505	1	16	11	135	. 1	5	4	231	4.20	10	5	ND	1	7	1	2	2	54 65	. 19	. 035	10	9	. 46	93	. 16	3	2.13	. 02	. 04	1	2
								2	4.2	10	\checkmark	N	1	7	1	2	2	65	. 13	. 048	4	9	. 43	79	. 10	2	2.50	. 01	. 02	1	1
L250M 22005	1	18	4	53	. 1	2	3	447	3.77	5	5	ND																			
L250以 22505	1	16	10	41	. 2	2	2	177	2.62	17	5	KD	1	7	1	2	2	57			3	7	. 36	41	. 11	2	1.87	. 01	. 03	1	1
L150H 1500S	2	7	77	43	. 1	3	2	105	3.01	1	5	H0	2	12	1	2	3	42	. 13	. 047	3	9	. 33	34	. 14	2	1.66	. 01	. 03	1	1
L150H 15505	1	19	38	58	. 1	4	3	170	3.03	7	5	HD	3	5	1	2	2	42	. 08	. 056	6	9	. 09	37	. 08	2	2.97	. 02	. 02	2	1
Li50M 1600S	1	23	9	56	. 1	6	6	211	3.00	6	5	ND	3			2	3		. 06		4	14	. 18	26	. 15	2	3.65	. 01	. 03	1	2
'												H	3	4	1	2	3	55	. 06	. 174	5	14	. 21	28	. 14	3	5.40	. 01	. 02	1	1
L150M 16505	1	10	14	71	. 1	6	5	222	1.95	4	5	KD	1	7																	
Li50M 17005	1	9	4	40	. 1	3	2	121	2.43	1	5	HD	1	4	1	2	2	35		. 024		15			.11	2	2.03	. 01	. 04	1	1
L150H 1750 S	4	7	15	6	. 1	2	3	270	2.57	20	5	ND		1		2	2	30	. 08	. 043	5	9	. 16	31	. 05	2	1.99	. 01	. 04	1	1
L1501 1800S	3	12	17	65	. 1	6	4	279	2.84	1	5	RD	2	4			2	31	. 08	. 033	7	5	. 27	113	. 01	2	2.40	. 01	. 05	1	2
L1504 1850S	1	15	43	85	. 1	3	3	210	2.55	11	5	ND	2	4			2	41	. 07	. 037	8	10	. 36	88	. 05	2	3.30	. 01	. 03	1	1
																2	2	40	. 09	. 033	7	12	. 17	54	. 05	2	2.11	. 01	. 02	1	1
LI501 1900S	1	19	9	152	. 1	4	3	315	3.36	14	5	ND	1	3																	
L50\% 19505	1	13	10	283	. 1	7	4	339	3.14	5	5	KD				2	2	43	. 05	. 054	11	8	. 39	129	. 01	2	2.73	. 01	. 04	1	1
												H	1	5	1	2	2	47	. 09	. 055	5	10	. 31	109	. 09	2	3.18	. 02	. 04	1	1

SAMPLEI	Pr1	$\begin{gathered} \text { CU } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { PI } \\ \text { PM } \end{gathered}$	$\begin{gathered} \text { IK } \\ P P H \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { PPK } \end{gathered}$	HI PPH	CO PPM	$\begin{gathered} \text { WN } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \mathrm{FE} \\ \mathrm{I} \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PPK } \end{gathered}$	$\underset{\text { MPK }}{\text { U }}$	$\begin{gathered} \text { AU }{ }^{\circ} \text { PPM } \end{gathered}$	$\begin{aligned} & \text { TH } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \text { SR } \\ \text { PPK } \end{gathered}$	$\begin{gathered} C O \\ P P M \end{gathered}$	$\begin{gathered} \text { SI } \\ \text { PPH } \end{gathered}$	$\begin{array}{r} \mathrm{BI} \\ \mathrm{PPK} \end{array}$	$\begin{gathered} V \\ \text { PPM } \end{gathered}$	Ca	?	$\begin{gathered} \text { LA } \\ \text { PPM } \end{gathered}$	CR	$\begin{gathered} 161 \\ I \end{gathered}$	$\begin{gathered} \text { IH } \\ \text { PPK } \end{gathered}$	II	Pr	$\stackrel{\text { AL }}{2}$	$\begin{gathered} \text { NA } \\ I \end{gathered}$	K I	PM	$\begin{aligned} & \text { MUt } \\ & \text { PI } \end{aligned}$
2150M 20005	4	19	34	491	.1	6	20	550	3.40	20	5	MD	5	5	1	3	3	32	. 04	. 112	29	11	. 22	120	. 07	3	5.89	. 01	. 03	2	15
L1501 20505	3	21	14	259	. 1	6	4	302	4.40	23	5	KD	2	5	1	2	2	53	. 07	. 057	21	11	. 38	88	. 13	J	3.06	. 01	. 02	2	3
L1501 2100s	2	21.	11	15%	. 1		3	347	4.27	15	5	HD	1	5	1	2	2	47	. 07	. 085	1	1	. 46	98	. 09	2	3.06 2.62	. 02	. 02	1	3
L150N 21255	2	56	20	274	. 1	6	17	866	4.52	17	8	ND	2	6	1	2	3	42	. 11	. 094	15	7	. 29	9	.10	2	3.52	. 01	. 05	1	J
L150\% 2200S	1	23	14	89	. 1	4	6	330	3.32	1	5	HD	3	7	1	2	2	55	. 17	. 035	14	7	. 5	67	.14	J	1.8日	. 01	. 03	1	5
L150k 22505	2	35	17	104	. 3	6	5	425	3.67	29	5	KD	2	14	1	2	3	60	. 30	. 055	10	7	. 46	51	. 16	3	2.16	. 01	. 03	1	2
L5014 1650S	2	12	19	105	. 1	9	6	765	3.52	32	5	ND	,	7	1	2	2	57	. 17	. 124	4	12	. 38	89	. 12	3	3.63	. 01	. 04	1	2
1501 17005	1	6	10	59	. 1	4	4	186	2.18	10	5	ND	1	5	1	2	2	39	.10	. 020	7	7	. 17	69	. 04	2	1.61	.01	. 02	2	4
L50N 1750S	1	4	10	66	. 1	3	3	173	1.77	4	5	ND	2	2	1	5	3	18	. 03	. 036	9	3	. 09	68	. 01	2	2.20	. 01	. 04	1	3
L50M 1800S	3	13	15	76	. 1	6	5	ЈJJ	4.70	46	5	KD	2	4	1	2	3	43	. 07	. 147	10	9	. 26	66	. 03	2	2.20 3.85	. 01	. 04	2	2
L501 18505	1	11	21	75	. 1	2	1	171	2.43	14	5	ND	1	5	1	2	2	35	. 06	. 030	4	I	. 22	37	. 02	2	1.84	. 01	. 02	1	2
L50H 19005	2	17	26	14	. 1	2	2	324	3.18	21	5	KD	3	3	i	2	2	27	. 04	. 255	1	8	. 10	55	. 03	2	5.84	. 01	. 02	1	1
L501 19505	3	38	22	132	. 1	2	3	326	6.93	17	5	HD	2	5	1	2	2	36	. 07	. 091	!	4	. 19	136	. 02	3	2.47	. 01	. 03	2	4
L50H12005	3	10	15	66	. 1	3	2	163	4.06	13	5	HD	2	4	1	3	3	37	. 07	. 053	5	5	. 37	76	. 05	2	2.49	. 01	. 03	1	1
L50M 20505	1	9	11	75	. 1	2	2	689	3.70	10	5	ND	1	2	1	2	3	57	. 03	. 053	3	9	. 54	77	. 02	2	1.62	. 02	. 06	i	1
L50N 21005	1	3	6	17	.1	1		70	2.69	1	5	KD	1	2	1	2	6	16	. 02	. 023	3	2	. 21	48	. 01	2	1.36	. 01	. 03	1	3
L504 2150 S	1	59	20	294	. 1	5	1	581	4.05	19	5	ND	2	4	1	2	2	44	.10	. 104	5	8	. 24	119	. 06	2	5.76	. 01	. 04	1	2
L504 22005	1	37	11	128	. 1	5	3	215	3.ts	12	5	HD	1	4	1	2	2	52	.12	. 065	5	8	. 42	45	.10	2	2.81	. 01	. 03	1	3
L501 22505	1	16	17	97	.4	5	2	105	3.05	14	5	ND	2	5	1	4	5	55	.10	. 048	4	9	. 17	34	. 11	2	2.26	. 01	. 02	1	1
L50N 23005	2	26	14	66	. 1	3	4	351	4.49	21	5	KD	1	4	1	2	2	59	:13	. 048	,	1	. 61	60	. 14	2	1.70	. 01	. 02	1	1
L5012350S	$!$	17	10	93	. 1	5	5	554	2.9\%	14	5	ND	1	8	1	2	2	60	. 11	. 040	4	\dagger	. 30	55	. 15	2	1.88	. 01	. 03	1	5
L50H24005	1	29	18	140	. 1	13	14	48	2.92	13	5	V10	5	8	1	2	2	46	. 18	. 021	II	10	. 67	44	. 19	3	2.70	. 02	. 03	1	3
L50才 24505	1	21	17	757	.1	9	10	559	5.75	22	5	ND	2	8		2	2	65	. 20	. 059	5	13	. 44	77	. 14	2	2.05	. 01	. 05	1	2
L50\% 2500S	1	9	11	191	. 1	4	3	296	2.31	1	5	ND	1	6	1	2	3	36	.12	. 035	4	6	. 23	55	. 06	2	1.01	. 01	. 01	1	3
L501 25505	1	16	IJ	167	. 2	5	3	462	2.76	5	5	ND	1	8	1	2	2	53	.15	. 036	4	10	. 30	43	. 08	2	1.53	. 01	. 01	I	1
L501 2600 S	1	20	12	71	. 1	4	4	228	3.19	1	5	ND	,	17	,	2	2	54	. 18	. 037	3	11	. 24	15	. 12	2	1.03	. 01	. 01	1	3
L5012650S	1	86	11	404	. 2	1	9	574	4.54	15	5	WD	1	5	1	2	2	59	. 09	. 076	4	14	. 41	39	. 11	2	4.00	. 01	. 02	1	1
150Y 2700 S	1	34	11	152	. 1	5	1	466	2.73	1	5	ND	1	6	1	2	2	49	. 14	. 053	1	8	. 35	46	. 09	2	1.89	. 01	. 02	,	2
L50M 27505	- 1	26	21	138	. 3	8	8	900	3.22	9	5	ND	2	5	1	2	2	45	. 06	. 109	14	10	. 53	89	. 01	2	2.73	. 01	. 02	1	
L501 2400S	1	212	13	373	. 4	12	18	4726	6.12	28	5	WD	2	11	1	2	2	96	. 12	. 181	4	28	1.34	77	. 01	2	3.60	. 01	. 03	1	J
L50124505	2	150	12	164	. 2	6	12	1003	4.99	16	5	ND	1	5	1	2	2	64	. 01	. 075	3	7	. 67	57	. 02	2	4.34	. 02	. 03	1	4
150129005	2	26	10	186	. 2	5	4	378	2.49	10	5	WD	1	5	1	2	2	38	. 04	. 036	3	10	. 40	52	. 04	2	2.26	. 01	. 03	1	2
L501 29505	2	51	7	161	. 1	4	5	457	3.40	12	5	ND	1	4	1	3	2	39	. 06	.038	J	6	. 29	72	. 01	2	2.70	. 01	. 02	1	2
L50M 30005	1	19	7	119	. 5	3	4	184	3.05	8	5	H0	1	4	1	2	3	41	. 06	. 071	3	10	. 22	42	. 02	2	1.80	. 01	. 03	1	2
2504 30505	3	105	9	709	. 1	13	7	530	4.66	16	5	HD	1	6	1	2	2	56	. 09	. 061	4	10	. 57	149	. 04	3	2.86	. 02	. 02	1	
L5013 31005	2	62	8	451	. 1	6	6	520	2.32	9	5	ND	1	5	1	2	2	40	. 08	. 039	3	9	. 37	118	. 01	2	1.69	. 01	. 05	1	1
STD C/All-S	20	57	39	131	7.0	70	$2 B$	1005	3.96	40	17	2	33	47	18	15	20	63	. 48	. 100	36	53	. 8	177	. 08	$3 J$	1.71	. 07	. 14	12	47

L501 31505	2	53	11	442	. 1	10	11	941	3.32	8	5	HD	1	6	1	2	2	42	. 08	. 052	4	7	. 45	100	. 02	2	2.98	02	02		1
L501 3200S	2	75	6	275	. 1	5	7	595	2.96	6	5	ND	1	5	1	2	2	41	. 07	. 057	4	1	. 44	0	. 02	2	2.98		. 03	1	1
(50\% 32505	1	43	12	205	. 2	7	1	1225	2.74	9	5	ND	1	7	1	2	2	50	. 13	. 051	5	3	. 54	75	. 03	2	2.41	. 02	. 03	1	I
1504 3300S	4	20	17	160	.1	6	5	512	3.25	11	5	HD	1	6	1	2	2	43	. 09	. 069	5	1	. 54	174	. 04	2	2.95	. 02	. 03	I	1
L504 33505	3	11	11	196	.1	5	5	582	2.18	5	5	KD	2	7	1	2	2	40	. 13	. 034	6	8	. 43	124	. 04	2	2.39	. 01	. 03	1	3
15013 34005	2	39	14	174	. 1	\%	6	402	4.22	9	5	ND	2	7	1	2	2	59	. 13	. 065	5	14	. 49	81	. 09	2	4.91	. 01	. 04		
L5013 3450S	1	13	13	156	. 1	3	3	315	3.69	12	5	H	1	8	1	2	2	51	. 12	. 054	6	7	. 33	72	. 04	2	2.72	. 01	. 03	1	2
L50N 35005	3	21	14	135	. 3	7	5	457	4.77	16	5	ND	2	8	1	2	2	15	. 12	. 075	5	12	. 63	98	. 08	2	4.03	. 02	. 05		1
L504 3550S	2	36	14	128	. 1	4	6	500	4.03	14	5	ND	1	6	1	2	2	54	. 10	. 065	5	6	. 56	46	. 03	2	2.19	. 01	. 02	3	3
L50Y 36005	1	37	11	151	. 1	6	12	1126	4.66	43	6	ND	2	16	1	2	2	60	. 33	. 051	9	10	1.03	141	. 09	3	1.89	. 02	. 04	1	3
L50M 3650S	2	39	17	79	. 3	2	3	322	6.28	30	5	N0	1	7	1	2	2	72	. 13	. 103	3	4	. 44	71	. 07	2	1.91	. 01	. 02	1	1
L504 3700S	3	32	23	107	. 1	3	6	335	3.22	18	5	ND	1	5	1	2	2	38	. 06	. 024	3	4	. 17	151	. 01	2	2.29	. 01	. 02	1	2
L504 37505	8	11	8	81	. 1	4	4	428	2.28	9	5	ND	1	9	1	3	2	42	. 15	. 020	5	5	.32	81	. 03	5	1.43	. 01	. 02	1	1
L50E 2025S	B	49	24	156	. 3	3	4	454	8.30	29	5	HLI	2	4	1	2	2	43	. 07	. 090	15	3	. 45	182	. 04	2	2.18	. 02	. 04	1	1
L.50E 2050S	11	177	50	123	. 3	3	1	515	8.27	32	5	HD	2	4	1	2	2	45	. 07	. 104	13	6	. 80	164	. 04	2	2.72	. 02	. 05	1	1
L50E 21005	3	38	22	233	. 1	9	6	367	5.24	14	5	ND	2	7	1	2	2	60	. 12	. 093	8	16	. 62	98	. 14	3	3.57	. 02	. 05	3	2
LS0E 21505	1	18	12	148	. 2	4	4	810	3.06	6	5	H0	2	7	1	2	2	45	. 13	.053	6	7	. 46	187	. 05	2	2,52	. 01	. 04	1	1
L50E 22005	2	36	24	351	. 3	11	13	1057	3.25	41	5	HO	2	9	1	3	2	50	. 16	. 112	7	11	. 44	125	. 08	2	3.22	. 02	. 05	2	3
L50E 2250S	2	44	19	275	. 2	1	5	211	3.50	22	5	HD	2	9	1	3	2	65	. 19	. 058	7	14	. 50	52	.16	2	3.71	. 02	. 03	1	5
L150E 15505	1	13	13	69	. 1	7	7	336	3.76	14	5	ND	2	1	1	2	2	84	. 16.	. 059	4	15	. 24	44	. 16	2	3.76	. 02	. 02	1	1
LIS0E 16005	1	23	14	146	.1	18	19	1532	4.58	17	5	ND	2	17	1	2	2	122	. 50	. 145	6	30	. 92	149	. 21	4	3.28	. 02	. 04	1	2
LL50E 1450S	1	8	11	90	. 1	5	7	1053	1.87	3	5	HD	1	,	1	2	2	41	. 21	. 096	4	10	. 19	71	. 11	2	1.48	. 01	. 02	1	2
LIS0E 1700S	1	99	29	194	. 2	19	15	559	4.85	10	5	N0	2	8	1	2	2	132	. 14	. 079	3	38	1.36	691	. 16	2	5.00	. 02	. 04	1	1
LI50E 17505	1	20	30	344	.1	9	11	1615	3.43	14	5	KD		12	1	2	2	62	. 57	. 075	4	12	. 91	356	. 09	3	2.20	. 02	. 01	1	1
STD C/RU-S	19	51	37	126	6.8	67	27	938	3,75	39	13	7	32	44	16	16	19	59	. 45	. 095	34	49	. 84	166	. 07	38	1.64	. 06	. 13	13	50
LI50E 1100S	3	64	61	337	. 1	14	17	1107	6.12	31	5	ND	1	6	1	2	2	70	. 23	.163	7	11	1.09	267	. 14	2	2.99	. 02	. 16	1	2
LI50E 1850S	9	101	174	216	. 9	4	27	2450	6.00	52	5	KD	1	10	1	2	2	54	. 21	. 114	10	11	. 99	433	. 08	5	2.38	. 02	. 07	1	5
LI50E 19005	6	107	114	994	. 2	9	27	4078	7.09	25	5	(1)	2	11	3	2	2	54	. 22	. 207	13		. 58	471	. 07	2	3.40	. 01	. 06	,	2
L150E 1950S	4	56	54	155	. 1	5	13	2503	4.40	21	5	H0	1	5	1	2	2	39	. 20	. 117	9	7	. 92	264	. 07	2	2.09	. 02	. 09	1	1
LI50E 20505	12	118	52	226	.4	5	7	500	8.90	41	5	ND	2	5	1	2	2	63	. 06	. 129	18	9	. 50	218	. 01	2	3.13	. 01	. 05	1	1
LI50E 2100S	2	33	21	260	. 1	7	10	424	3.07	41	5	ND	1	9	1	2	3	38	. 13	. 050	10	1	. 43	254	. 02	3	2.18	. 01	. 05	1	1
LI50E 21505	2	40	19	122	. 1	10	9	431	4.31	25	5	Nid	1	9	1	2	2	43	. 22	. 045	6	11	. 76	83	. 17	5	3.74	. 02	. 03	2	3
LI50E 22005	1	11	12	132	. 1	6	5	525	2.12	14	5	ND	1	1	,	2	2	52	. 19	. 052	5	12	. 37	67	. 12	2	2.39	. 01	. 03	2	10
LI50E 2250S	1	33	34	125	. 2	\%	8	563	3.75	41	5	H0	2	8	,	2	2	76	. 23	. 111	6	15	. 74	51	. 17	2	3.19	. 02	. 05	1	2
LI50E 2300S	1	29	18	172	. 1	5	7	1067	4.97	18	5	HD	2	7	1	2	2	73	. 25	. 135	5	13	.88	74	. 15	2	2.59	. 03	. 07	1	1
L.150E 2350S	2	44	20	126	. 1	7	8	533	4.11	36	5	ND	2	11	1	2	2	65	. 32	. 042	10	10	. 76	128	. 20	2	2.05	. 02	04		3
LI50E 24005	1	19	11	71	. 1	4	4	304	2.44	15	5	KD	1	10	1	2	2	65	. 24	. 027	5	8	. 47	56	. 17	2	1.90	. 01	. 02	1	2

moUntaingide management project - laf file \# 87-1214

5APPLEE	$\begin{gathered} \mathrm{MO} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { PPM } \end{gathered}$	Pl	IN	$\begin{array}{cc} 4 & \text { AG } \\ \hline & \text { PPK } \end{array}$	$\begin{gathered} \text { HI } \\ \text { PRK } \end{gathered}$	$\begin{gathered} C O \\ \text { PPH } \end{gathered}$	$\begin{gathered} \mathrm{KN} \\ \mathrm{PPH} \end{gathered}$	$\begin{array}{cc} N & F E \\ H & I \end{array}$	$\begin{gathered} \text { A5 } \\ \text { PPH } \end{gathered}$	Pf	U	$\begin{gathered} \mathrm{All} \cdot \\ \mathrm{PFH} \end{gathered}$	$\begin{array}{r} \text { TH } \\ \text { HFH } \end{array}$	$\begin{gathered} \text { SR } \\ \text { PFK } \end{gathered}$	CP/		H	$\begin{array}{r} \text { BI } \\ \text { PPH } \end{array}$	$P P$	CH	$\begin{array}{ll} 1 & P \\ I & Z \end{array}$	Li	CR	M6 I	$\begin{gathered} \text { Ih } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \mathrm{TI} \\ Z \end{gathered}$	PPI	$\begin{array}{ll} \mathrm{A} \\ \hline & \mathrm{IL} \\ \hline \end{array}$	H	$\begin{aligned} & K \\ & \vdots \end{aligned}$	PM	Nu
LI50E 2450S	2	37	16	262	. 1	1	6	335	5.92	10		5	k																				
LIS0E 2500S	3	355	20	150	. 5	5	8	1020	3.18 4.78	12		6	\%0	2	11			2	3	68	. 21	. 039	4	11	. 60	14	. 18		22.96	. 02	. 03	1	
LI50E 25505	4	25	13	165	. 1	6	9	1164	5.6	5		5	KD	1	110			2	3	54	. 19	. 083	4	9	. 28	69	.13		22.04	. 01	. 03	1	
LI50E 26005	2	22	9	131	. 1	5	4	471	2.69	3		5	ND	1	8			2	2	18	. 18	. 147	1	11	1.07	112	. 04		33.61	. 02	. 03	1	
LI50E 26505	12	39	20	137	. 3	6	10	121	5.74	15		5	NII	2	11	1		3	2	70	.19	. 0497	4	13	. 41	63	. 13		$\begin{array}{ll}2 & 2.48 \\ 2 & 2.82\end{array}$. 02	. 03	1	
LI50E 27005	3	47	12	137	. 1	5	4	337	4.3	2		5	ND	2	7																		
L150E 2750S	2	16	13	171	. 1	5	5	515	3.10	2		5	ND	2	7			2	2	70	. 14	. 080	4	13	. 49	40	. 13		24.52	. 02	. 02	1	
LI50E 2100S	2	J3	8	210	.1	6	5	586	4.49	2			NO	1	7			2	2	52	. 16	. 076	5	7	. 53	89	. 07		22.94	. 01	. 03	1	
L150E 28505	2	17	12	180	. 1	3	5	699	3.24	2			N0	1	9			2	3	51	. 17	. 050	5	10	. 46	101	. 10		22.34	. 01	. 03	1	
LIS0E 2900S	3	113	11	231	. 1	7	8	609	5.48	12		5	WD	1	6	1		2	2	27 54	. 09	. 086	4	g	. 37	140	. 01		22.61	. 02	. 04	2	
								S	5.4	12				1	6	1		2	2	54	. 10	. 083	4	8	. 11	62	. 06	2	22.81	. 02	. 03	1	
LI50E 2450S	1	6	8	83	. 1	2	4	966	2.75	2	11		ND	1	5	1																	
LI50E 3000S	1	41	11	211	. 1	5	6	826	3.57	3	5		MII	1	7	1			5	1	. 05	. 041	2	3	. 09	125	. 01	2	21.69	. 01	. 04	1	2
LI50E 3050S	3	69	19	345	.1	10	8	536	5.31	1			ND	3	7	+			3	52	. 14	. 070	J	7	. 51	121	. 05	3	2.62	. 02	. 03	1	
LI50E 31005	3	39	17	734	. 1	19	23	1512	3.54	3	5		10	3	8	1			3	75	111	. 057	4	17	. 92	125	. 06	2	4.95	. 01	. 04	1	1
LISOE J150S	3	111	18	405	. 1	9	12	1067	4.26	8	5		HD	1	5	1			2	55	. 13	. 042	15	14	. 46	269	. 07	2	2.82	. 01	. 04	1	1
														1	J	1			2	57	. 08	. 126	7	17	. 54	115	. 05	2	3.84	. 02	. 03	1	1
LI50E 32005	1	6	8	41	. 1	4	2	212	2.64	2	5		ND	2	5	1			2														
LI50E 3250S	2	16	8	84	.1	1	2	131	3.45	2	5		ND	1	5	1			2	52	. 08	. 051	6	11	. 27	42	. 09	2	1.61	. 01	. 02	1	2
LJ50E 15005	1	8	12	109	. 1	8	7	795	2.76	11	5		ND	1	9				2	57	. 10	. 021	J	$!$. 26	56	. 07	2	2.41	. 01	. 01	,	1
L350E 15505	2	22	12	8	. 1	7	6	255	2.98	10	5		ND	1	B	1			2	57	. 27	. 079	4	9	. 33	91	. 14	2	2.25	. 01	. 03	1	1
LJ50E 16005	1	10	12	81	.1	7	7	1417	3.11	2	5		ND	1	7				2	62	. 22	. 060	4	9	. 38	57	. 16	2	2.90	. 02	. 01	3	1
													N			1			2	1	$\cdot 17$. 105	5	20	. 37	71	. 16	2	1.55	. 02	. 02	1	1
L350E 1650S	2	19	21	194	-1	9	13	536	3.97	11	5		N0	1	10	1			2														
LS50E 17005	1	8	14	164	. 1	6	6	1190	2.27	13	5		ND	1	1	1			2	118	. 21	. 057	5	20	.32	71	. 20	2	2.65	. 01	. 03	1	1
L350E 17505	2	19	18	100	.1	8	7	470	3.49	19	5		N0	2	7				3	46	. 27	. 072	6	13	. 32	16	. 11	2	1.85	. 01	. 03	1	
LJ50E 18005	2	25	104	174	. 2	9	4	258	3.51	11			10	2	7				2	72	. 27	. 174	4	12	. 70	86	. 15	2	3.09	. 02	. 04	1	1
LJ50E 18505	2	42	135	366	. 1	6	11	733	3.6	35	5		V	1	10	1	2		2	72	19	. 042	4	14	. 45	55	. 16	2	3.15	. 01	. 03	1	1
											5		I		10	1	2		2	77	. 28	.07\%	7	10	. 45	114	. 13	5	2.92	. 01	. 04	1	1
L350E 19005	2	23	15	172	. 1	7	8	637	3.01	20	5		10	2	8	1	2		2	61													
LJS0E 19505	3	37	18	789	.1	t	1	380	3.38	47	5		10	2	d	2	2		2	61		. 077	7	9	. 65	63	. 15	2	2.70	. 02	. 04	1	2
LJ50E 20005	1	$1!$	14	147	. 1	3	4	310	2.50	15	5		10	1	6	1	2		4	48	. 29	. 045	8	13	. 58	113	. 19	2	2.88	. 01	. 03	1	135
L350E 20505	1	19	11	96	. 2	7	4	283	3.55	24			10	2	10	1	2		4	48	. 23	. 055	4	10	. 30	54	. 11	2	1.96	. 01	. 02	1	1
350E 2100S	1	10	9	353	. 1	5	6	377	2.21	13	5		10	1	7	1	2		2	48	. 23	. 114	6	10	. 19	[11	. 13	2	3.36	. 02	. 02	1	1
																			2	48	. 20	.011	4	9	. 39	48	. 15	J	2.44	. 01	. 02	1	1
350E 2150S	4	9	11	65	. 1	2	2	207	2.56	If	5	NI					3																
350E 22005	1	11	13	133	.1	5	5	6632	2.53	8	5	,		2	9		2		2	35	. 15	. 018	4	5	. 21	20	. 17	2	1.72	. 01	. 02	1	1
350E 22505	3	20	15	599	. 1	14	7	3402	2.82	10	5	K1	D	1	?	1	2		2	43 60	-19	.063	4	7	. 34	65	. 10	2	2.42	. 01	. 03	1	1
350E 23005	1	14	15	145	. 3	7	6	6682	2.16	13	J	NI		2	8	1	5		2	50	. 22	. 034	4	11	. 52	67	. 21	2	3.25	. 02	. 02	1	1
350: 23505	1	15	14	76	. 1	5	3	175	3.23	13	5	K0		1	8	1	4		3	53	. 21	. 070	3	12	. 30	58	. 11	2	3.31	. 02	. 03	1	1
											5			1	8	1	4		3	67	. 19	. 077	3	10	. 27	36	. 19	2	2.66 .	. 01	. 02	1	1
350524005	2	22	18	170	. 2	5	5	3283	3.11																								
TD C/AU-S	19	56	41	127	6.6	68	27	9673	3.96	3	14			3			17			62	.19	. 063	4	10	. 37	50	. 17	2	3.21.	. 01	. 03	1	1
						d	27			3	14			3	45	17	17			61	. 46	. 096	34	56	. 8	171	. 08	35	1.71 .	. 07	. 12	15	47

mountainside management project - leff file \# 87-1214

SAMPLEA	$\begin{gathered} \text { KO } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { PI } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { IN } \\ P P N \end{gathered}$	$\begin{gathered} \text { Af } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \text { MI } \\ \text { PPK } \end{array}$	CO PPM	$\begin{aligned} & \text { MH } \\ & \text { PPK } \end{aligned}$	$\begin{gathered} \text { FE } \\ Z \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PPM } \end{gathered}$	$\underset{\text { PPM }}{V}$	$\begin{gathered} \mathrm{AU} \\ \mathrm{PPK} \end{gathered}$	$\begin{gathered} \text { TH } \\ \text { PPM } \end{gathered}$	SR PFH	CD	P8	$\begin{array}{r} \text { PI } \\ \text { PPK } \end{array}$	PP	CA z	2	LA	CR	M6 $\%$	IA	11 $\%$	PP	AL I	H/ I	K	H	AUt
L350E 2450S.	. 4	. 22.	. 12	107	. 1	4	6	410	4.57	24	5	ND	1	10	1																
L350E 2500S	1	28	12	110	. 1	5	!	579	3.61	31	5	HD	1	10	1	2	2	64	. 14	. 101	4	4	. 52	235	. 04		2.14	. 01	. 05	2	1
LJ50E 25505	1	14	12	117	. 1	4	1	355	2.48	11	5	ND	;	5	1	2	2	47	. 19	. 111	4	10	. 73	95	. 14		1.83	. 02	. 03	1	2
L350E 26005	1	10	9	127	. 1	3	4	332	1.75	7	5	HD	1	5	1	2	2	4	. 12	. 057	2	8	. 26	54	. 09	2	1.90	. 01	. 02	2	1
L350E 26505	1	8	3	164	. 2	3	3	231	2.08	8	5	HD	1	6	1	2	2	43	. 12	. 019	4	6	. 20	46	. 07	2	1.48	. 01	. 02	1	1
L550E 15005	1	19	3	72	I		7																	5	. 07	2	1.70	. 01	. 04	1	1
LS50E 1550S	2	14	10	56	. 1	1	6	140	2.56	12	5	ND	1	5	1	2	2	50	. 15	. 055	3	10	. 38	59	. 16	2	2.69	. 01	. 03	1	1
L550E 16005	3	7	8	37	. 1	4	12	218	1.85	23	5	H0	1	5	1	2	2	72	. 17	. 015	4	11	. 29	50	. 20	2	2.08	. 01	. 02	1	1
L550E 1650S	2	5	5	29	. 1	1	1	42	1.58	7	5	HD	1	2	1	3	2	47	. 15	. 015	8	1	. 19	46	. 08	2	1.41	. 01	. 03	1	
L550E 1700S	1	18	11	47	.1	3	3	90	2.00	8	5	HD	2	2	1	4	2	22	. 04	. 012	3	1	. 08	76	. 01	2	1.42	. 01	. 05	2	2
L550E 1750S	1	8	4	178	. 1	6	5	271	2.24	10	5	N0	,						. 04	. 205	8	-	. 06	41	. 06	2	3.93	. 01	. 03	2	1
L550E 1800S	2	7	6	108	. 1	4	3	150	2.66	10		ND	1	7	1	2	2	45	. 21	. 059	3	10	. 31	15	. 07	2	1.73	. 01	. 02	1	1
L550E 1850 S	1	13	10	150	. 1	6	6	294	2.48	17	5	ND	1	4	1	2	2	57	. 21	. 020	3	10	. 27	49	. 12	2	1.36	. 01	. 02	1	1
L550E 1900S	1	15	7	194	. 1	7	6	320	2.60	23	5	ND	1	6	1	2	2	57	. 22	. 024	3	8	. 43	78	. 14	2	1.14	. 01	. 02	1	1
L550E 1950S	1	19	1	227	.1	4	1	110	2.54	97	5	ND	1	B	1	2	3	38			5	9	. 43	65	. 16	2	2.10	. 01	. 01	1	1
																	3	38	. 18	. 140	5	7	. 26	43	. 04	2	2.22	. 01	.03	1	1
L550E 2000S	2	25	17	751	. 1	8	13	749	2.77	28	5	Ni	1	9	3	2	2														
L550E 2050S	5	11	4	324	. 3	7	5	284	3.17	27	5	ND	1	6	3	2	2	73	. 34	. 042	8	11	. 40	46	. 14	2	1.75	. 01	. 03	1	1
L550E 2100S	6	46	9	1016	1.0	20	8	419	3.94	172	5	KD	2	8	2	2	2	75	. 19	. 030	3	10	. 44	56	. 19	2	1.82	. 01	. 03	1	1
L550E 2150S	1	23	12	8 EL	-1	10	25	591	2.30	17	5	ND	1	7	2	2	2	15	.38	. 098	10	11	. 51	73	. 19	2	2.71	. 02	. 04	1	1
LS50E 22005	3	28	13	115	. 1	6	4	302	3.45	34	5	HD	1	6	2	2	2	48	. 24.	. 032	6	12	. 3	101	. 13	2	1.46	. 01	. 03	1	1
										3	5	H	1	6	1	2	2	53	.10.	. 090	4	12	. 31	51	. 09	2	2.62	. 01	. 02	1	1
L550E 2250S	2	23	10	417	. 1	5	9	483	1.76	15	5	HD	1	6	1	2	2	33													
L550E 23005	1	11	7	247	. 1	4	6	604	2.32	15	J	ND	1	7	1	2	3	48	. 16	. 077	4	10	. 33	19	.10	2	1.24	. 01	. 03	1	1
L550E 24505	1	22	12	407	. 1	9	4	1209	2.32	18	5	KD	1	7	1	2	2	49	. 17	. 062	4	10	. 28	153	. 09	2	1.43	. 01	. 03	1	1
L550E 2500S	1	10	10	173	. 1	4	4	845	1.51	6	5	ND	1	7	1	2	2	30	. 17	. 04	5	11	. 40	124	. 17	2	1.88	. 01	. 03	1	1
L550E 2550S	1	10	8	83	. 2	5	1	276	1.96	9	5	KD	1	5	1	2		39	. 13	. 050	5	6	. 19	98	. 06	2	1.28	. 01	. 01	1	1
																	2	39	. 13	. 046	3	9	. 27	40	. 08	2	1.93	. 01	. 03	1	1
L550E 2600S	1	25	9	81	. 1	4	5	483	2.97	17	5	ND	1	7	1	2	2	61													
750E 1500s	1	8	1	100	. 1	6	6	1768	2.85	7	5	H0	1	6	1	2	2	54	. 21	. 050	3	10	. 51	78	.12	2	2.08	. 01	. 02	1	1
750E 1550S	1	18	8	80	. 1	7	7	429	3.05	11	5	HD	2	6	1	2	2		. 22	. 106	3	10	. 11	86	. 12	2	2.07	. 01	. 04	1	1
750E 16005	1	14	11	51	. 1	7	5	474	3.14	17	5	HD	,	5	1	2	2	78	. 22	. 104	4	10	. 44	63	. 18	2	2.77	. 01	. 03	1	2
T50E I650S	1	15	8	59	. 1	7	6	353	2.63	7	5	H0	1	7				6	. 19	. 047	,	15	. 33	68	.17	2	2.62	. 01	. 03	1	2
											J	N	1	7	1	2	2	69	. 26	. 032	3	12	. 55	78	. 22	2	2.14	. 02	. 02	1	2
750E 1700S	1	25	20	95	. 1	6	7	471	2.95	24	7	HD	2																		
T30E 17505	1	10	9	72	. 1	5	5	411	2.91	16		H0	2	1		2	2	77	. 31	. 085	7	11	. 83	60	. 14	2	2.26	. 02	. 04	1	1
750E 1800S	1	8	9	100	. 1	5	6	272	2.66	6	5	W0	1	8	1	2		71	. 31	. 082	3	12	. 18	56	. 16	2	1.81	. 01	. 03	1	1
TO C/Ald-S	20	59	41	127	6.8	15	27	977	3.80	39	16	7	34	4	17	15	21	78	. 36	. 022	33	12	. 25	61	. 18	2	1.34	. 01	. 02	1	1
750E 1850S	1	10	10	141	. 1	6	6	698	2.07	9	5	N0	3	7	1	2	2	47	. 24	. 048	3	52	. 38	169	. 06	37	1.67	. 07	. 13	14	52
																2	2	4	. 24	. 046	4	11	. 28	111	. 20	2	1.85	. 01	. 02	1	1
750E 19005	1	13	8	92	. 2	6	5	435	1.96	7	6	HD																			
750E 17505	1	23	7	122	. 1	10	8	287	3.03	12	5	KD	1	6	1			79	. 24	. 056	3	11	. 25	47	. 15	2	2.29	. 01	. 03	1	1
										12	5	K	1		1	2	2	79	. 24	. 039	4	13	. 57	82	. 23	2	2.55	. 02	. 02	1	1

SAMPLEt	$\begin{gathered} \text { YO } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \mathrm{PPH} \end{gathered}$	$\begin{array}{r} \text { PI } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { IK } \\ P \mathrm{PM} \end{gathered}$	$\begin{array}{r} \text { A6 } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{KI} \\ \mathrm{PPK} \end{array}$	$\begin{array}{r} C 0 \\ \mathrm{CPM} \end{array}$	$\begin{gathered} \text { IKH } \\ \text { PPM } \end{gathered}$	$\begin{gathered} F E \\ q \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { PPK } \end{gathered}$	PR	$\begin{gathered} \text { AU } \\ \text { PPM } \end{gathered}$.TH	$\begin{gathered} \text { SR } \\ \text { PR } \end{gathered}$	$\begin{gathered} \text { CD } \\ \mathrm{PH} \end{gathered}$	S\$	PP	PPM	CA Z	7	$\begin{gathered} \text { LA } \\ \text { PPR } \end{gathered}$	CR PPK	M6 7	IA	11 z	PP	AL I	NA z	K χ	P¢	Nut Prt
LT50E 2000S	5	26	9	220	. 1	8	1	251	3.40	25	5	ND								014											
L750E 2050S	1	22	10	99	. 1	6	5	350	3.90 2.90	12	5	NO	2	8	1	2	2	95	. 33	. 014	12	15	. 57	56	. 28		2.91	. 02	. 03	1	1
L750E 2100S	2	25	11	223	. 2	7	6	473	2.93	15	5	ND	2	1	1	2	2	67	. 26	. 095	4	15	. 44	52	. 21		2.54	. 02	. 03	1	I
L750E 21505	7	19	4	d66	. 1	6	1	181	3.17	74	5	ND	1	11	1	3	3	72	. 28	. 152	4	13	. 43	69	. 14	2	2.37	. 02	. 03	1	3
L750E 2200S	2	18	10	161	. 1	4	5	310	2.54	46	5	ND	2	1	1	2	2	55	. 27	. 084	5	${ }_{11}$. 33	46	.19	2	1.92	. 01	. 02	1	1
L750E 2250S	1	18	7	363	. 2	7	6	426	2.41	21	5	HD	1	!	1	3	2														
L750E 2300S	2	30	10	258	. 1	6	5	489	2.69	26	5	HD	2	11	1	2	2	47	. 27	. 067	5	11	. 42	82	.15	3	1.19	. 01	. 03	1	1
L750E 2350S	4	18	8	485	. 1	7	6	411	2.83	44	5	HD	2	10	1	2	2	62	. 31	. 036	4	11	. 45	116 99	. 17	2	1.62	. 01	. 02	1	1
L750E 2400S	2	12	10	1015	. 1	8	6	69	2.83	18	5	ND	1	11	3	2	2	55	. 46	. .103	5	12	. 46	89	. 18	3	2.13	. 02	. 03	1	2
L750E 2450S	1	19	17	253	. 1	10	9	1871	3.22	12	5	HD	2	11	1	2	2	44	. 24	. 098	5	19	. 29	89	. 21	2	2.31 2.26	. 02	. 04	1	1
L750E 2500S	1	16	9	150	-1	-	6	347	2.85	17	5	ND	2	10	1	2	2	6													
L750E 2550S	1	22	9	217	. 3	6	5	44	3.06	23	5	ND	2	9	1	2	2	59	. 26	. 078	4	13	45	14	. 18	2	3.03	. 01	. 04	1	3
L750E 2600S	1	22	11	96	. 2	6	7	600	3.20	32	5	Hid	2	12	1	2	2	69	. 35	. 201	4	13	. 47	104	. 08	2	2.81	. 02	. 03	1	1
L750E 26505	1	7	7	117	. 2	5	5	603	1.68	10	5	H0	2	9	1	2	2	65	. 25	. .084	5	12	. 61	93	. 14	2	3.56	. 02	. 05	1	1
L950E 1500S	2	12	11	76	. 1	7	8	647	2.95	16	5	ND	1	15	1	2	2	77	. 54	. 023	5	13	. 51	180	. 12	2	2.02	. 01	. 04	1	1
L950E 15505	1	10	6	129	.1	9	6	411	2.24	6	5	ND	2	10	1	2	2														
L950E 1600S	1	23	14	92	. 1	7	8	870	3.15	24	5	ND	2	15	1	2	2	47	. 25	. 037	6	16	. 50	130	. 09	2	2.32	. 01	. 04	1	1
L950E 16505	1	16	10	73	. 1	7	6	959	2.40	12	5	ND	2	15	1	2	2	61	. 30	. 086	7	16	. 14	87	. 16	2	3.10	. 02	. 05	1	2
L950E 17005	1	16	7	82	. 1	8	7	574	2.61	15	5	H0	2	8	1	2	2	61	. 33	. 106	4	12	. 52	64	. 21	2	2.31	. 01	. 02	1	1
L950E 17505	2	25	13	74	. 1	12	7	291	3.91	13	5	H0	3	8	1	2	2	99	. 26	. 063	5	25	-48	78	. 19	7	2.69	. 02	. 04	1	1
STO C/AU-S	21	56	36	130	6.9	67	27	980	3.97	39	17	7																			
L.950E 1800s	1	17	11	68	. 1	11	7	445	3.00	15	5	N0	3	45			20			. 098	35	54	. 88	170	. 08	39	1.73	. 07	. 13	12	53
L950E 1850S	1	13	10	94	. 1	7	7	488	2.24	2	5	ND	1	11	1	2	2	81	. 32	. 041	5	20	. 57	64	. 28	4	3.43	. 02	. 02	3	1
L950E 19005	1	16	9	100	. 1	10	7	651	3.03	13	5	MD	1	10	1	2	2		. 4	. 037	5	13	. 40	82	. 20	5	1.82	. 02	. 03	1	1
L950E 19505	1	23	10	139	. 1	13	10	701	3.35	10	5	ND	1	13	1	2	2	76 13	. 37	. 113	4	15	. 49	84	. 20	2	2.47	. 02	. 03	1	1
																	2	${ }^{3}$. 38	. 072	3	24	. 94	104	. 24	2	2.41	. 02	. 03	1	1
L950E 2000S	3	61	8	163	. 1	14	19	542	5.12	12	5	RD	2	15	1	2	2	115	. 26	. 040	3	40									
L950E 2050S	1	23	9	268	. 1	6	10	559	3.15	14	5	N0	2	13	1	2	2	15	. 37	. 0405	5	10	1.14	89	. 24	2	3.60	. 02	. 04	2	1
L950E 21005	2	28	12	160	. 3	9	7	333	3.49	23	5	HD	3	9	1	2	2	84	. 27	. 105	5	12	. 37	128	. 07	2	2.53	. 01	. 04	1	1
L950E 2150S	1	35	13	122	. 1	8	9	699	3.42	29	5	ND	3	15	1	2	2				11	16	. 64	79	. 21	3	3.35	. 02	. 04	1	1
L950E 22005	3	15	1	308	. 1	8	6	261	3.19	46	5	ND	1	9	1	2	2	75	. 21	. 107	8	16	. 90	79	. 19	3	2.97	. 02	. 04	1	1
																		7	. 28	. 02	5	13	. 54	65	. 17	2	2.18	. 01	. 03	1	1
L950E 2250S	2	15	8	225	. 2	9	8	324	3.37	18	5	ND	2																		
L.950E 23005	1	14	12	233	. 1	6	6	870	2.49	11	5	HD	2	11	1	2	2	79 60	. 29	. 035	5	13	. 16	115	. 19	5	2.84	. 02	. 03	1	1
L950E 23505	2	13	3	112	. 2	6	7	735	2.53	14	5	RD	1	10	1	2			. 30	. 037	7	12	. 32	130	. 16	2	1.74	. 01	. 03	1	1
L.950E 24005	1	15	7	137	. 2	7	6	489	2.50	13	5	ND	1	10		2	2	61	. 50	. 04	5	13	. 39	91	. 14	2	2.28	. 01	. 03	1	2
L750E 2450S	2	25	7	273	. 1	13	11	638	3.92	23	5	RD	1				2	81	. 31	. 042	5	13	. 48	80	. 14	2	2.24	. 01	. 03	1	1
													1	7	1	2	2	84	. 28	. 033	5	22	. 78	104	. 20	2	3.67	. 02	. 03	1	2
L950E 2500S	1	22	18	137	. 1	7	6	627	2.78	12	5	H0	1																		
L950E 25505	1	15	14	100	. 1	8	5	111	2.87	11	5	ND	2	il			2	6	. 24	. 113	4	16	. 38	56	. 17	5	3.01	. 02	. 03	1	1
														\cdots	1	2	2	72	. 26	.058	4	19	. 32	50	. 18	2	2.69	. 01	. 03	1	1

MOUNTAINSIDE MANAGEMENT PFOJECT - LEFF FILE \# 87-1214

MOUNTAINSIDE MANAGEMENT PROJECT - LBF FILE \# 87-1214

SAMPLEI	$\begin{array}{r} \text { KO } \\ \text { PPK } \end{array}$	$\begin{gathered} \text { CU } \\ \text { PPK } \end{gathered}$	P1	$\begin{array}{r} 2 \mathrm{H} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \text { AE } \\ \text { PFFK } \end{gathered}$	$\begin{gathered} \mathrm{HI} \\ \mathrm{PPM} \end{gathered}$	CO PPK	$\begin{aligned} & \text { AN } \\ & \text { PR } \end{aligned}$	$\begin{gathered} \text { FE } \\ X \end{gathered}$	$\begin{array}{r} \text { AS } \\ \text { PPK } \end{array}$	$\begin{array}{r} \text { U } \\ \text { UPH } \end{array}$	AU	TH	SR	CD PPK	S8	BII	1	CA	P	LA	CR	85	BA	II		AL	NA	K	\#	NUt
LBF : χ^{3}		9	8												PPK	PP\%	PPK	PPH	\%	\%	PPK	PPM	z	PPM	2	PPt	\%	z	I	PPM	PP3
LIF 2	1	5	12	82	.1	1	6	593	2.89	8	5	ND	1	14	1	2	2	24	. 58	. 075	6	1	. 61	70	. 22		1.55	04	14		3
LJF 3	1	1	4	95	. 1	1	9	1223	2.04	7	5	M 1	,	3	1	2	2	7	. 11	. 033	5	1	. 73	73	. 04	3	. 75	. 03	. 13	1	3
LEF 4	1	-	9	52	.1	10	10	572	7.24 6.4	2	5	H0	1	6	1	2	3	78	. 05	. 108	2	1	1.85	16	. 01		1.72	. 03	. 10	1	1
LAF 5	1	29	16	91	. 3	1	12	1154	5.24	12	5	HD	!	3	1	2	2	78	. 03	. 012	4	26	1.71	22	. 01	2	1.57	. 03	. 09	1	1
											\checkmark	H0	1	4	1	2	2	67	. 53	. 064	4	1	1.43	37	. 01	2	1.18	. 03	. 10	1	8
LBF 6	1	31	6	57	. 1	2	-	891	6.35	13	8	HD	1	11	1	2	3														
LIF 7	1	4	1	24	. 1	2	4	368	3.39	18	,	ND	1	11	1	2	3	108	. 36	. 079	3	2	1.91	56	. 03	2	2.26	. 08	. 03	,	1
LIF 8	1	61	10	18	. 2	3	11	1485	4.63	23	5	HD	1	8	1	2	2	15	. 24	. 045	3	1	1.41	49	. 08	3	1.38	. 04	. 10	2	1
LBF 9	1	5	8	60	. 1	3	2	997	5.08	2	8	ND	1		1	2	2	127 54	. 47	. 100	4	1	1.87	51	. 25	2	2.30	. 04	. 06	3	1
LBF 10	1	29	10	409	. 1	5	10	1670	5.07	15	5	ND	1	6	2	2	2	109	. 12	. 092	2	23	1.81	70	. 22	2	1.54	. 04	. 08	1	1
										.	5	H	1	6	2	2	2	109	. 35	. 081	6	8	1.91	29	. 09	2	2.11	. 04	. 03	1	1
LIF 11	1	29	7	71	.1	1	11	125	6.19	8	6	ND	1	15	1	2	2														
LBF 12	1	21	4	173	. 1	5	7	1598	5.92	11	5	ND	1	15	1	2	3	119	. 63	. 075	2	1	2.51	25	. 19	2	2.39	. 03	. 03	1	1
LPF 15	2	6	3	17	.1	1	1	130	1.81	3	5	ND	1	5	1	2	3	124	. 16	. 079	6	11	2.90	36	. 01	3	2.95	. 03	. 08	1	3
LPF 14	1	71	16	101	. 1	9	21	2086	7.19	13	5	ND	1	6	1	3	2	198	. 02	. 020	6	1	. 21	109	. 01	3	. 38	. 03	. 13	1	1
LEF 15	1	19	11	8	. 1	2	8	1026	5.73	22	5	H2	2	6	1	2	2	198	. 26	. 081	2	7	3.24	13	. 11	2	2.41	. 04	. 09	1	1
													2		1	2	3	59	. 19	. 079	7	3	8.70	18	. 03	2	1.45	. 04	. 11	1	1
L.PF 16	1	30	9	103	. 2	4	13	1250	6.19	10	5	HD	1	16	1	2	2														
LBF 17	1	12	4	56	. 1	2	8	798	4.27	6	5	HO	1	16	1	2	2	167	. 91	. 092	5	2	1.17	26	. 42	2	2.17	. 04	. 03	3	1
LIF 18	1	13	18	46	. 1	1	1	27	1.47	17	5	RD	1	3	1	2.	2	71	. 18	. 066	3	1	1.44	48	. 08	2	1.59	. 02	. 04	1	1
LBF 19	2	2	5	16	. 1	1	2	182	3.04	1	5	ND	2	3	1	2	2	15	. 04	. 021	6	1	. 44	81	. 01	3	. 55	. 03	. 10	1	4
LIF 20	1	3	2	16	. 1	1	7	391	3.37	15	5	KD		6	1	2	2	15	. 09	. 059	2	1	. 68	95	. 14	2	. 73	. 02	. 14	1	2
													1	6	1	2	2	22	. 41	. 065	4	1	. 78	56	. 09	4	1.16	. 04	. 15	1	1
LEF 101	1	1	2	7	. 1	1	2	41	3.01	2	5	ND	1																		
LBF 102	1	3	2	87	. 1	1	4	1166	3.91	7	J	ND	1	8	1	2	2	3	. 03	. 021	2	1	.11	49	. 07	2	. 24	. 06	. 10	1	1
LBF 103	18	10	45	31	1.0	11	4	278	3.34	47	5	kD	1	19		2	2	12	. 23	. 034	12	2	2.66	409	. 01	2	2.67	. 04	. 05	2	1
LPF 104	1	17	6	252	. 1	4	9	1676	4.29	13	5	KD	1	18		2	2	12	. 1.41	. 034	3	2	. 41	38	. 07	3	. 63	. 05	. 12	1	1
L日F 105	2	3	6	129	. 1	-	8	968	B. 28	20	5	HD	1		1	2	2	43	1.11	. 066	5	4	1.66	41	. 01	4	2.09	. 02	. 11	2	2
									. 20		\checkmark	H	1	3	1	2	2	63	. 18	.066	3	33	2.60	34	. 01	4	2.97	. 03	. 04	2	4
LPF 106	1	4	6	161	. 1	$4{ }^{\circ}$	8	1434	4.12	5	5																				
LPF 107	1	2	6	86	. 1	3	-	447	4.24	31	J	N2	1	19	1	2	2	45	. 72	. 032	9	15	1.84	68	. 01	2	2.25	. 03	. 05	1	1
LPF 108	1	15	B	145	. 1	6	8	1375	5.49	19	5	H0	1	8	1	3	2	71	. 27	. 025	2	10	1.58 258	36	. 07	2	1.62	. 04	. 01	1	6
LBF 109	2	58	4	113	. 1	7	5	1300	3.85	56	5	ND	1	24	1	2	2	70	. 210	. 032	3	31	2.53	36	. 11	3	2.19	. 03	. 02	2	2
LBF 110	2	7	日	65	. 1	2	4	658	2.59	23	5	HD	1	12	1	2	2	14	. 31	. 047	3	17	2.04	130	. 15	2	2.27	. 04	. 05	2	1
											5	,	1	12	1	2	2	14	. 36	. 037	3	2	1.02	69	. 05	3	1.09	. 05	. 10	1	1
LIF 111	2	7	5	50	. 1	1	3	776	3.70	9	5	ND	1																		
LJF 112	1	74	4	204	. 1	51	15	2320	5.82	23	5	HD	1	23		2	2	114	. 40	. 083	7	1	1.18	37	. 12	2	1.32	. 05	. 09	2	1
LFF 113	2	6	2	5	. 1	2	1	75	2.49	4	5	ND	1	8	1	5	2	114	. 52	. 099	4	96	3.54	94	. 21	2	2.96	. 04	. 07	1	3
LPF 114	6	9	B	93	.I	9	9	1489	7.24	88	5	R10	1	27	1	2	2	14	. 01	. 028	2	2	. 65	141	. 01	2	. 72	. 02	. 18	1	1
LPF 115	4	313	5	3725	. 1	33	17	2765	3.96	18	7				15	2		39	. 26	. 045	5	22	2.09	31	. 20	5	2.27	. 03	. 11	2	2
											7	Ho	1	23	15	2	2	64	2.02	. 053	4	8	1.40	167	. 01	4	. 36	. 02	. 06	1	1
STD C/AU-R	19	55	35	134	6.8	64	27	955	3.73	43																					
L.gF 116	1	1	4	57	. 1	4	4	1050	2.58	6	5				17	15	2	59	. 44	. 098	33	53	. 82	165	. 07	38	1.61	. 06	. 13	13	490
										6	5	N0	1	7	1	2	2	32	. 17	. 033	3	9	1.52	63	. 02	2	1.59	. 04	. 06	1	4

