and the second	والمجادح ومنطؤاه وأقتهم وبتون والمترج ومناكبته وأكمه وأسمعه
LOG NO: 1103	RD.
ACTION:	8/88
FILE NO: 87-69	2-16356

GEOLOGICAL AND SOIL GEOCHEMICAL INVESTIGATION

PPACC MINERAL CLAIM

TAHTSA LAKE AREA, B.C.

OMINECA MINING DIVISION

NTS 93 E/11 W, 11E

24" LATITUDE 53°40'N, LONGITUDE 127°15'W

Prepared for

Quiner Operator: TRIPLE STAR RESOURCE CORP.

ARCTEX ENGINEERING SERVICES

Locke B, Goldsmith, P.Eng. **Consulting Geologist**

> Paul Kallock Geologist

FILMED

December 10, 1986

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
REGIONAL GEOLOGY	2
LOCATION MAP	3
CLAIM MAP	4
LOCAL GEOLOGY	5
Stratigraphy Structure Rock Geochemistry, Alteration and Mineralization	5 6 6
SOIL GEOCHEMISTRY	7
Copper Lead Zinc Silver	7 7 8 8
DISCUSSION	8
CONCLUSIONS	9
RECOMMENDATIONS	9
COST ESTIMATE	10
ENGINEER'S CERTIFICATE	11
GEOLOGIST'S CERTIFICATE	12
REFERENCES	13

APPENDIX:	ROCK SAMPLE DESCRIPTIONS
	ANALYTICAL PROCEDURES
	ANALYSES

MAPS:

(Pocket inside back cover) GEOLOGY SOIL GEOCHEMISTRY: Cu Pb Zn Ag

.

SUB-RECORDER RECEIVED	
OCT 2 6 1987	
M.R. # \$ VANCOUVER, B.C.	

GEOLOGICAL AND SOIL GEOCHEMICAL INVESTIGATION PPACC MINERAL CLAIM OMINECA MINING DIVISION TAHTSA LAKE AREA, B.C. NTS 93 E/11 W

SUMMARY

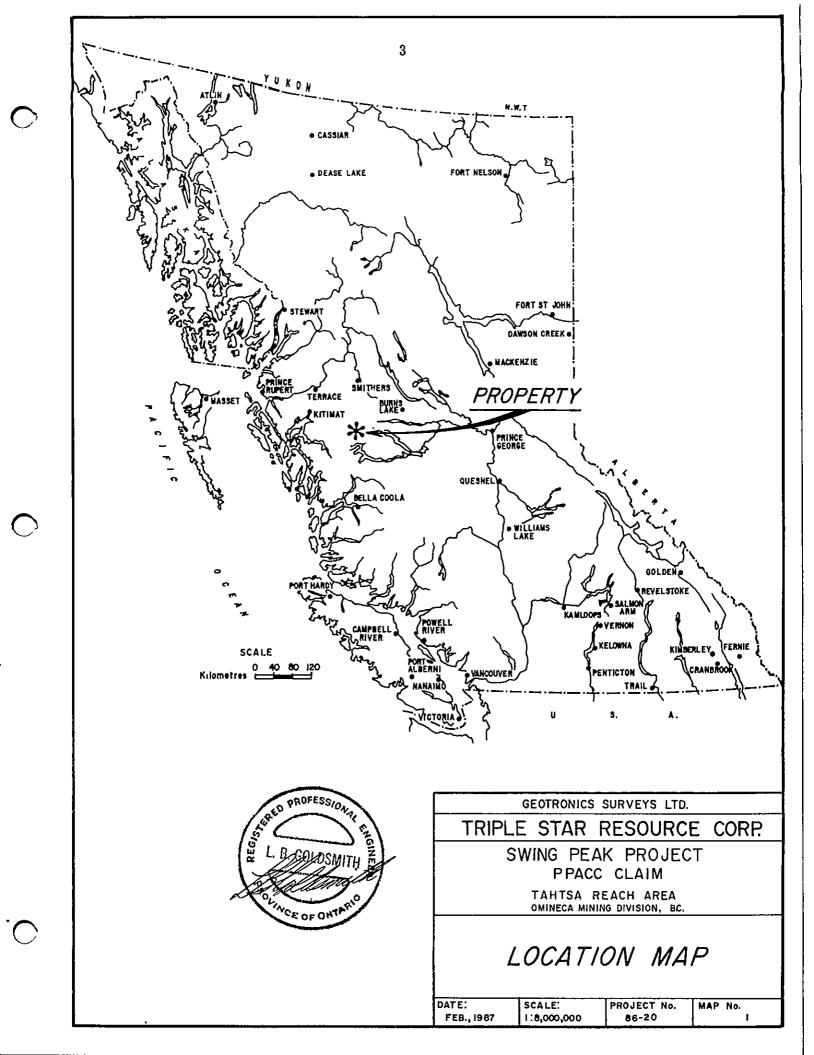
The PPACC mineral claim is located near the east end of Tahtsa Lake in westcentral British Columbia, 105 km south of Houston, B.C. During July 1986 a programme of geological mapping and soil sampling was carried out at the claim. Several lead, zinc and silver soil anomalies were delineated within a zone of strong pyrite mineralization hosted in Early Cretaceous marine sediments of the Skeena Group. Other important rock types occurring within the pyrite zone include granodiorite and andesite dykes and plugs. Sphalerite and galena in veinlets occur in the area and may contribute to the soil anomalies. An arcuate anomaly pattern may reflect a halo of mineralization around an intrusive or breccia pipe.

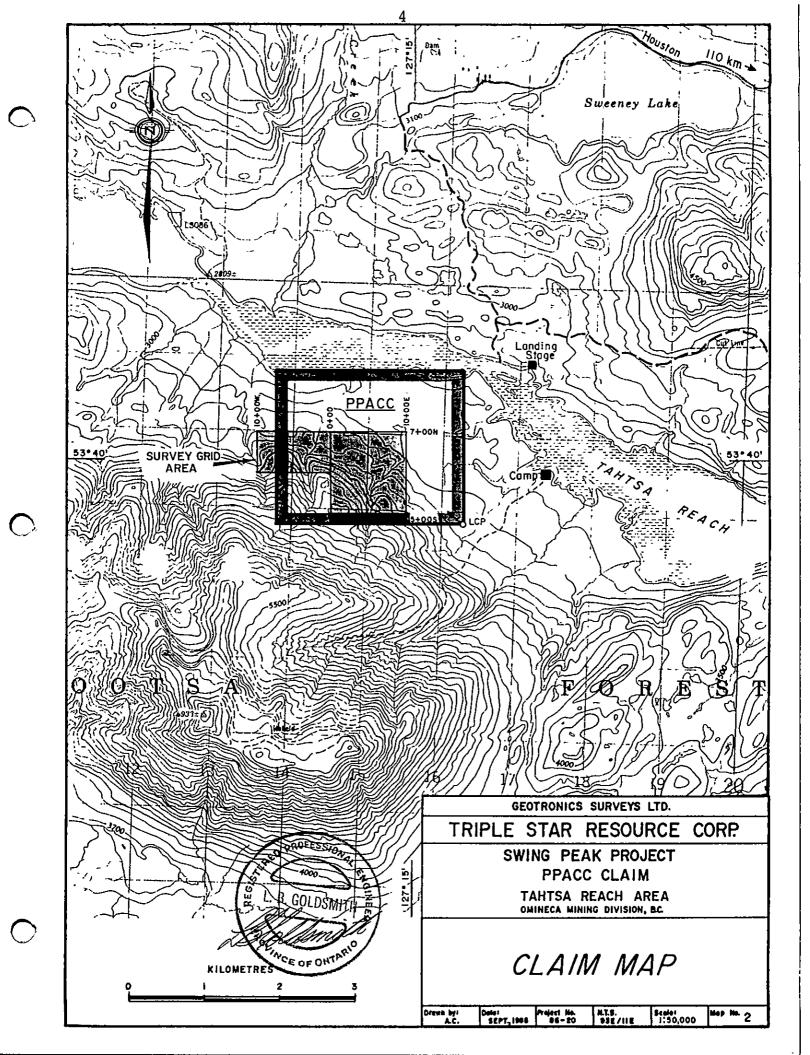
Detailed geological mapping with rock and soil geochemical sampling should be completed within and adjacent to the pyrite zone. A cost of \$20,000 in the next phase is estimated.

1

INTRODUCTION

The PPACC mineral claim is located at the eastern end of Tahtsa Lake, 4 km east of Swing Peak in west-central British Columbia. The claim ranges in elevation from 915 m near Tahtsa Lake to approximately 1525 m at the southern end of the claim. Coordinates $53^{\circ}40^{\circ}$ north longitude and $127^{\circ}15^{\circ}$ west latitude cross the property. The claim is situated in the Omineca Mining Division, NTS Map Sheet 93 E/11 W, 105 km south of Houston, B.C.


The claim is comprised of 20 units (approximately 500 hectares) with record number 7721(7) which was recorded on July 28, 1986.


Interest was generated at the property in 1981 when Tahtsa Mines Ltd. (subsequently Acorn Resources Ltd.) conducted exploration on the Sam and Swing claims(what is now partly the PPACC claim). Disseminated pyrite mineralization and a lead-zinc vein were found near the present grid station 3+00S 5+00E. When the claims were allowed to lapse, the property was restaked as the PPACC claim.

Soil sampling was conducted between July 24 and August 4, 1986, by personnel of Geotronics Surveys Ltd. Between July 28 and July 31, geological mapping was undertaken at the property.

REGIONAL GEOLOGY

The PPACC mineral claim lies on the eastern side of the Coast Range Plutonic Complex approximately 25 km east of the main granitic masses of the range. The area is characterized by deformed andesitic volcanic and sedimentary rocks of Early to Middle Jurassic Hazelton Group and successor basin deposits which are overlain by continental volcanic rocks. These Late Cretaceous volcanics of the Kasalka Group are preserved in a fault-bounded structural depression that is interpreted to be a cauldron subsidence complex (MacIntyre, 1985). The PPACC claim lies near the centre of this collapsed caldera. Intrusive rocks noted at the claim may be related in time to the volcanic events and/or to subsequent igneous activity.

LOCAL GEOLOGY

Four days of geological field mapping were conducted at the PPACC claim in July 1986. A geology map at a scale of 1:2,500 is included in the pocket at the back of this report. Topographic features such as streams and lakes, and the hip-chain and compass grid established for geochemical and geophysical surveys, were used as control for the mapping.

The northeastern part of the map area has a gentle north or northeast slope with poorly incised streams. An abrupt change in slope occurs to the southwest. Steep bluffs and strongly incised streams have moderate outcrop exposure.

Stratigraphy

Most of the claim appears to be underlain by marine sedimentary rocks belonging to the Skeena Group of Early Cretaceous age. They are composed of argillaceous mudstone, black argillite, wacke and fine arkosic sandstone. Lesser conglomerate and metavolcanics were also seen. The sediments appear to trend northwest with gentle dip to the southwest.

Intruding the sedimentary rocks are various dykes and/or sills generally trending northwest. Several intrusives are limited in extent and may be small plugs without a linear trend.

A fine- to medium-grained granodiorite dyke, 25 to 50 m wide, extends northwest-southeast across the map area. It is the largest intrusive at the claim. It commonly contains 1-2% disseminated pyrite and is moderately magnetic. Closely related dykes or plugs are also present at 1+00S 3+00E and 5+00S 8+00E.

Northwest-trending dacite dykes with 1% pyrite are present along a large stream at 0+00N 2+75W and at 1+00N 3+00W. A coarse-grained granite was seen along the lakeshore at 0+25S 0+50W. Other intrusives on the claim include a dark, fine-grained andesite at 3+25S 5+00E. It trends northwest and appears to bifurcate toward the southeast.

Structure

Almost all of the intrusive dykes and/or sills trend northwest, corresponding to the general bedding trend of the Skeena Group sedimentary rocks. Not enough bedding attitudes were seen to determine fold structures.

A N5°W77°W fault zone with 10 cm of clay gouge was seen at 4+50S 4+75E. A stronger fault zone was also seen at 5+00S 5+05E where a broken clay-rich zone is 0.5 m wide and trends N70°W72°S. Coincident with this zone is a 10 cm carbonate-sulphide vein.

Rock Geochemistry, Alteration and Mineralization

Strong pyrite mineralization is present in rock exposures along the creek between 5+00S 5+00E and 1+00S 5+00E. Pyrite occurs as fine disseminations and stockwork veinlets. Bleached and argillic to moderately siliceous fine-grained sediments are the host rock. A 10 cm carbonate-sphalerite-pyrite-galena vein is present near 3+00S 5+05E. It trends N70°W72°S. Previous assaying (Goldsmith and Kallock, 1981) returned 0.38 oz Ag/ton, 4.52% Zn, and 0.89% Pb from one location on this vein.

During 1986 the known zone of strong pyrite mineralization was extended. Outcrops of similar nature were seen as far east as 4+25S 11+00E and toward the west beyond the creek at 0+00N 3+00W. No additional base metal veins were found in 1986.

Six rock samples were collected from the pyritic area. They are described in the appendix. Geochemical analyses are also included.

Alteration of the intrusive rocks is variable. The dark grey and esite near 3+25S 5+00E has weak chlorite and epidote. The granodiorite near 0+50N 3+50E has pervasive limonite with moderate carbonate replacements.

Analyses of the six rock samples do not indicate significant base or precious metals. The highest values returned are as follows:

43 ppm Cu at 2+75S 4+00E 0.4 ppm Ag at 4+25S 11+00E 61 ppm Pb at " " 316 ppm Zn at 0+50N 2+50E

SOIL GEOCHEMISTRY

A soil geochemistry survey was carried out at the PPACC claim. A total of 634 samples were collected from 17.0 km of grid line. East-west survey lines were established using hip-chain and compass. Lines were established with 100-metre separation and samples collected at 25 m stations. A north-south base line was surveyed at the east side of the grid (10+00E). Samples were collected from the C soil horizon using a narrow spade. Depth of soil retrieval varied from 15 to 30 cm. Soil was placed in Kraft paper envelopes. Analyses for lead, zinc and silver were made by Acme Laboratory in Vancouver, B.C. Analytical procedure and certificates of analyses are included in the appendix. Statistical data treatment by Geotronics staff involved arithmetic derivation of means and standard deviations.

Copper

Values ranged from 4 to 204 ppm. Sub-anomalous threshold (first standard deviation) is 36 ppm and anomalous threshold value (second standard deviation) is 62 ppm. Copper in soils is contoured at these intervals. Contour patterns correspond well with zinc and silver. An arcuate southeast to northwest trend, concave to the southwest, is suggested.

Lead

Values of lead in soils ranged from 2 to 309 ppm. Of the 634 samples collected, the sub-anomalous threshold value (first standard deviation) was determined to be 35 ppm. Anomalous threshold value (second standard deviation) was determined to be 56 ppm. A soil geochemistry map with contours at 35 and 56 ppm lead is included in the pocket at the back of this report.

Most lead anomalies are located between the lake at 0+00N 0+00E and the north-south stream near 2+00S 5+00E. This area is partially underlain by pyritiferous sediments of the Skeena Group and northwest-trending granodiorite dykes. The lead anomalies are often coincident with anomalous zinc. Particular note should be made at stations 2+00S 1+00E and 4+00S 5+00E where 110 and 309 ppm Pb are coincident with 2.3 and 2.0 ppm Ag, respectively.

Zinc

Values of zinc in soils ranged from 17 to 615 ppm. From a population of 634 samples, sub-anomalous value was established at 135 ppm and anomalous threshold value (second standard deviation) was determined to be 225 ppm. A soil geochemistry map with contours at 135 and 225 ppm Zn is included in the pocket at the back of this report.

As with lead, many anomalous zinc values are located between the lake in the centre of the property and the stream at 1+00S 5+00E. In addition, anomalous values are also seen near the upper reaches of this creek.

Areas of anomalous zinc which also include anomalous silver are as follows:

1+00S 4+00E with 440 ppm Zn and 1.2 ppm Ag; 4+00S 5+00E with 588 ppm Zn and 2.0 ppm Ag; 4+00S 6+75E with 254 ppm Zn and 4.4 ppm Ag.

All three areas lie within the zone of pervasive pyrite mineralization.

Silver

Values of silver in soils ranged from 0.1 to 4.4 ppm. Of the 634 samples collected, the sub-anomalous threshold value was determined to be 0.55 ppm. Anomalous threshold value (second standard deviation) was determined to be 1.10 ppm. A soil geochemistry map with contours at 0.55 and 1.10 ppm Ag is included in the pocket at the back of this report.

DISCUSSION

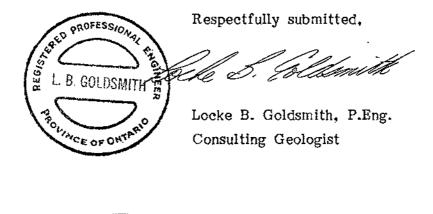
Anomalous silver values form a northwest-southeast-trending belt between 2+00N 0+00E and 5+00S 7+25E. As previously stated some of these values occur with anomalous lead and/or zinc. Geologically these anomalies follow the general

8

trend of the sedimentary rock of the Skeena Group. Andesite and granodiorite dykes also parallel this trend. But perhaps of more significance is the sphalerite, galena and pyrite vein at 3+00S 5+05E which also trends northwesterly and dips steeply to the southwest. A projection of this vein or other sub-parallel veins would extend along much of the anomalous zone. Most of the silver anomalies lie within the zone of strong pyrite mineralization. The arcuate pattern of anomalies from southeast to southwest is suggestive of a rim of mineralization surrounding an intrusive, a situation which is common around other porphyry and breecia pipe copper-silver deposits in the Tahtsa Lake camp. An intrusive centre may be present near the small lake in the vicinity of lines 0+00 0+00.

CONCLUSIONS

The PPACC mineral claim lies within a large Late Cretaceous cauldron subsidence feature. Most of the claim appears to be underlain by Early Cretaceous marine sedimentary rock of the Skeena Group which has been downfaulted into the caldera. Intruding this sequence are numerous northwest-trending dykes or plugs. Overprinting some of these dykes is an extensive zone of pyritization. A sphalerite-galena-pyrite vein is also coincident with the disseminated pyrite zone. Furthermore, numerous lead, zinc, and silver anomalies suggest the presence of more or perhaps larger base and precious metal zones of mineralization within the general northwest trend.


RECOMMENDATIONS

Detailed geological mapping and rock chip geochemistry should be undertaken northwest and southeast of the strong pyrite zone and base metal vein along the creek near 3+00S 5+00E. The high lead and zinc soil anomalies and all of the silver soil anomalies should be investigated and rock samples gathered at available outcrops. If warranted, pick-and-shovel trenching could be undertaken.

9

COST ESTIMATE

A budget of \$20,000 should be available to undertake detailed mapping, rock chip geochemistry and hand trenching within the pyrite zone.

SSOCIATION E0106/ PAUL KALLOCK PWF Paul Kallock Geologist ELLON

Vancouver, B.C. December 10, 1986

ENGINEER'S CERTIFICATE

LOCKE B. GOLDSMITH

- I, Locke B. Goldsmith, am a Registered Professional Engineer in the Province of Ontario and the Northwest Territories, and a Registered Professional Geologist in the State of Oregon. My address is 301, 1855 Balsam Street, Vancouver, B.C.
- 2. I have a B.Sc. (Honours) degree in Geology from Michigan Technological University, a M.Sc. degree in Geology from the University of British Columbia, and have done postgraduate study in Geology at Michigan Tech and the University of Nevada. I am a graduate of the Haileybury School of Mines, and am a Certified Mining Technician. I am a Member of the Society of Economic Geologists, the AIME, and the Australasian Institute of Mining and Metallurgy, and a Fellow of the Geological Association of Canada.
- 3. I have been engaged in mining exploration for the past 28 years.
- 4. I have co-authored the report entitled, "Geological and Soil Geochemical Investigation, PPACC Mineral Claim, Tahtsa Lake Area, B.C." dated December 10, 1986. The report is based upon fieldwork and research supervised by the author.
- 5. I have no ownership in the property, nor in the stocks of Triple Star Resource Corp.
- 6. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds.

ED PROFESSION AL Respectfully submitted, Collemit REGIS L. B. GOLDSMITH PROLINCE OF ONTP Locke B. Goldsmith, P.Eng. Consulting Geologist

Vancouver, B.C. December 10, 1986 11

GEOLOGIST'S CERTIFICATE

I. Paul Kallock, do state: that I am a geologist with Arctex Engineering Services, 301 - 1855 Balsam Street, Vancouver, B.C.

I Further State That:

- 1. I have a B.Sc. degree in Geology from Washington State University, 1970. I am a Fellow of the Geological Association of Canada.
- 2. I have engaged in mineral exploration since 1970, both for major mining and exploration companies and as an independent geologist.
- 3. I have co-authored the report entitled, "Geological and Soil Geochemical Investigation, PPACC Mineral Claim, Tahtsa Lake Area, B.C." The report is based on my fieldwork carried out on the property and on previously accumulated geologic data.
- 4. I have no direct or indirect interest in any manner in either the property or securities of Triple Star Resource Corp., or its affiliates, nor do I anticipate to receive any such interest.
- 5. I consent to the use of this report in a prospectus or in a statement of material facts related to the raising of funds.

SSOCIATIO PAUL KALLOCK at aul Kallock ELION Geologist

Vancouver, B.C. December 10, 1986

REFERENCES

- Goldsmith, L.B. and Kallock, P. 1981. Geological Investigation of the Sam, Swing et al. Mineral Claims, Tahtsa Lake Area, B.C. Private report for Tahtsa Mines Ltd.
- MacIntyre, D.G. 1985. Geology and Mineral Deposits of the Tahtsa Lake District, West-Central B.C. B.C.M.E.M.&P.R. Bulletin 75.
- van der Heyden, P. 1982. Geology of the West-Central Whitesail Lake Area. Ph.D. Thesis, University of British Columbia.
- Woodsworth, G.J. 1980. Geology of the Whitesail Lake Map-Area, 93 E, B.C. G.S.C. Open File 708.

ROCK SAMPLE DESCRIPTIONS

4+25S	11+00E	Grab sample of light grey, moderately siliceous, fine-grained metasediment or metavolcanic, strong limonite and 3-5% very fine dissemianted pyrite.
3+50S	8+25E	Grab sample of grey, very fine-grained metasediment or metavolcanic with 3-5% dissemianted pyrite.
0+50N	2+50E	Grab sample of granodiorite or latite dyke with calcite replac- ing feldspars, 1-2% dissemianted pyrite. Host is soft black shale.
0+30N	2+25E	Grab sample of strongly fractured black shale with moderate limonite and 1-2% fine dissemianted pyrite.
5+10S	8+40E	Grab sample of light grey to light tan, aphanitic, moderately siliceous and bleached metasediment; 3-4% fine dissemianted pyrite and lesser pyrite stringers. Strong limonite on weathered surface.
2+75S	4+00E	0.5 m chip sample of light grey metasediment with 3-5% dis- seminated and fracture-coated pyrite.

.

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone ; 253 - 3158

GEOCHEMICAL LABORATORY METHODOLOGY - 1985

Sample Preparation

1. Soil samples are dried at 60⁰C and sieved to -80 mesh.

2. Rock samples are pulverized to -100 mesh.

Geochemical Analysis (AA and ICP)

0.5 gram samples are digested in hot dilute aqua regia in a boiling water bath and diluted to 10 ml with demineralized water. Extracted metals are determined by :

A. Atomic Absorption (AA)

Ag*, Bi*, Cd*, Co, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Sb*, Tl, V, Zn (* denotes with background correction.)

B. Inductively Coupled Argon Plasma (ICP)

Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cu, Cr, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Geochemical Analysis for Au*

10.0 gram samples that have been ignited overnite at 600⁰C are digested with [•] 30 mls hot dilute aqua regia, and 75 mls of clear solution obtained is extracted with 5 mls Methyl Isobutyl Ketone.

Au is determined in the MIBK extract by Atomic Absorption using background correction (Detection Limit = 1 ppb).

Geochemical Analysis for Au**, Pd, Pt, Rh

10.0 - 30.0 gram samples are subjected to Fire Assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and Au, Pd, Pt, and Rh are determined in the solution by graphite furnace Atomic Absorption. Detections - Au=1 ppb; Pd, Pt, Rh=5 ppb

Geochemical Analysis for As

0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml. As is determined in the solution by Graphite Furnace Atomic Absorption (AA) or by Inductively Coupled Argon Plasma (ICP).

Geochemical Analysis for Barium

0.25 gram samples are digested with hot NaOH and EDTA solution, and diluted to 20 ml.

Ba is determined in the solution by ICP.

Geochemical Analysis for Tungsten

0.25 gram samples are digested with hot NaOH and EDTA solution, and diluted to 20 ml. W in the solution determined by ICP with a detection of 1 ppm. Geochemical Analysis for Selenium

0.5 gram samples are digested with hot dilute aqua regia and dilute to 10 ml with H_2O . Se is determined with NaBH₃ with Flameless AA. Detection 0.1 ppm.

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis 852 E. Hastings St., Vencouver, B.C. V6A 1R6 Telephone : 253 - 3158

Geochemical Analysis for Uranium

0.5 gram samples are digested with hot aqua regia and diluted to 10 ml.

Aliquots of the acid extract are solvent extracted using a salting agent and aliquots of the solvent extract are fused with NaF, $\rm K_2\rm CO_3$ and $\rm Na_2\rm CO_3$ flux in a platinum dish.

The fluorescence of the pellet is determined on the Jarrel Ash Fluorometer. Geochemical Analysis for Fluorine

0.25 gram samples are fused with sodium hydroxide and leached with 10 ml water. The solution is neutralized, buffered, adjusted to pH 7.8 and diluted to 100 ml.

Fluorine is determined by Specific Ion Electrode using an Orion Model 404 meter.

Geochemical Analysis for Tin

1.0 gram samples are fused with ammonium iodide in a test tube. The sublimed iodine is leached with dilute hydrochloric acid.

The solution is extracted with MIBK and tin is determined in the extract by Atomic Absorption.

Geochemical Analysis for Chromium

0.1 gram samples are fused with $\rm Na_2O_2$. The melt is leached with HCl and analysed by AA or ICP. Detection 1 ppm.

Geochemical Analysis for Hg

0.5 gram samples is digested with agua regia and diluted with 20% HCl.

Hg in the solution is determined by cold vapour AA using a F & J scientific Hg assembly. An aliquot of the extract is added to a stannous chloride / hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it is measured by AA.

Geochemical Analysis for Ga & Ge

0.5 gram samples are digested with hot aqua regia with HF in pressure bombs.

Ga and Ge in the solution are determined by graphite furnace AA. Detection 1 ppm.

Geochemical Analysis for Tl (Thallium)

0.5 gram samples are digested with 1:1 $\rm HNO_3.~Tl$ is determined by graphite AA. Detection .1 ppm.

Geochemical Analysis for Te (Tellurium)

0.5 gram samples are digested with hot aqua regia. The Te extracted in MIBK is analysed by AA graphite furnace. Detection .1 ppm.

Geochemical Whole Rock

0.1 gram is fused with .6 gm LiBO₂ and dissolved in 50 mls 5% HNO₃. Analysis is by ICP or M.S. ICP gives excellent precision for major components. The M.S. can analyze for up to 50 elements.

E ANALYTICAL LABORATORIES LTD. පාර් E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE: 251-1011

DATE RECEIVED: AUG 13 1986

DATE REPORT MAILED: Q.J. 366 ...

ASSAY CERTIFICATE

SAMPLE TYPE: P1-ROCKS P2-19 SOILS -80NESH ASSAYER: Wy dean toye. CERTIFIED B.C. ASSAYER.

GE(TRONICS	SURVEYS			86-199 - PPACC	LAKE	PAGE	1
SAMFLE	Ξ#	Cu FPM	Pb PPM	Zn FPM	Ag PPM			
0+50N 0+30N 2+758 3+008 4+258	2+25E 4+00E	6 22 43 13 22	11 3 6 10 61	316 89 151 77 101	. 1 . 1 . 1 . 1 . 4			
5+10S	8+40E	40	17	139	. 1			

.

PAGE 2

SAMPLE#	Cu	Pb	Zn	Ag
	PPM	PPM	F'PM	PPM
L6N 10+00W L6N 9+75W L6N 9+50W L6N 9+25W L6N 9+00W	17 19 18 19 32	21 12 19 17 16	32 72 41 40 117	.2 .2 .3 .6
L6N 8+75W	23	25	75	.3
L6N 8+50W	17	19	81	.1
L6N 8+25W	16	15	91	.2
L6N 8+00W	33	17	83	.4
L6N 7+75W	20	17	90	.2
L6N 7+50W	21	16	121	.2
L6N 7+25W	54	24	84	.9
L6N 7+00W	164	37	72	1.8
L6N 6+75W	35	6	58	1.0
L6N 6+50W	20	8	62	.3
L6N 6+25W	13	16	115	.2
L6N 5+50W	12	14	84	.1
L6N 5+00W	48	37	185	1.9
L6N 4+75W	35	22	180	.5
L6N 4+50W	12	15	66	.2
L6N 4+25W	10	7	79	. 1
L6N 4+00W	5	8	28	. 2
L6N 3+75W	25	25	119	. 1
L6N 3+50W	20	18	136	. 4
L6N 3+25W	8	15	43	. 1
L6N 3+00W L6N 2+75W L6N 2+50W L6N 2+25W L6N 2+00W	14 17 12 13 13	9 10 12 21 25	38 69 93 98 91	.2 .2 .3 .2
L6N 1+75W	23	15	129	.1
L6N 1+50W	15	26	89	.2
L6N 1+25W	6	16	31	.1
L6N 1+00W	4	10	38	.2
L6N 0+75W	9	15	45	.1
L6N 0+50W	90	27	98	.6
STD C/AU 0.5	62	42	138	7.3

.

•

SAMPLE#	Cu	Fb	Zn	Ag
	PPM	PPM	FFM	FFM
L6N 0+25W	15	13	74	.1
L6N 0+00W	15	11	66	.3
L6N 0+25E	54	17	86	.2
L6N 0+50E	53	12	75	.1
L6N 0+75E	23	9	65	.1
L6N 1+00E L6N 1+25E L6N 1+50E L6N 1+75E L6N 2+00E	22 22 26 51 18	7 11 8 18 14	92 60 100 81 59	. 1 . 1 . 3 . 1
L6N 2+25E	23	13	45	、.1
L6N 2+50E	34	23	50	.2
L6N 2+75E	47	20	56	.4
L6N 3+00E	49	20	44	.5
L6N 3+25E	82	21	116	.9
L6N 3+50E	31	12	29	.2
L6N 3+75E	29	17	62	.4
L6N 4+00E	62	16	50	.7
L6N 4+25E	29	16	58	.2
L6N 4+50E	22	12	38	.1
L6N 4+75E L6N 5+00E L6N 5+25E L6N 5+50E L6N 5+75E	83 27 15 18 23	30 9 15 11 16	40 48 54 69 74	1.2 .3 .1 .1
L6N 6+00E	35	4	37	.2
L6N 6+25E	27	14	49	.1
L6N 6+50E	29	17	64	.1
L6N 6+75E	52	12	77 [,]	.5
L6N 7+00E	40	23	75	.3
L6N 7+25E L6N 7+50E L6N 7+75E L6N 8+00E L6N 8+75E	29 20 22 22 4	17 17 16 22 3	64 50 72 62 12	.2 .1 .2 .5
L6N 9+00E	24	20	90	.1
STD C/AU-0.5	61	35	134	7.1

.

(

(

٠

SAMFLE#	Cu	Pb	Zn	Ag
	PPM	FPM	PPM	FFM
L6N 9+50E	27	18	137	.1
L5N 10+00W	11	21	72	.2
L5N 9+75W	11	14	81	.2
L5N 9+50W	50	20	106	1.1
L5N 9+25W	20	19	94	.1
LSN 9+00W	15	12	84	.1
LSN 8+75W	12	22	73	.3
LSN 8+50W	16	27	79	.4
LSN 8+25W	26	21	128	.4
LSN 8+00W	14	11	59	.3
L5N 7+75W	20	11	154	.4
L5N 7+50W	25	21	105	.3
LSN 7+25W	18	22	76	.5
LSN 7+00W	22	18	106	.2
L5N 6+75W	21	24	108	.1
LSN 6+50W	22	33	125	.2
LSN 6+25W	22	27	127	.1
LSN 6+00W	13	6	40	.2
LSN 5+75W	11	27	49	.1
LSN 5+25W	7	6	59	.4
LSN 5+00W	13	14	77	.2
LSN 4+75W	10 .	24	72	.1
LSN 4+50W	9	15	64	.1
LSN 4+25W	11	22	53	.2
LSN 4+00W	28	12	82	.3
L5N 3+75W	15	20	117	.2
L5N 3+50W	20	8	92	.2
L5N 3+25W	32	9	235	.7
L5N 3+00W	9	9	75	.1
L5N 2+75W	10	27	56	.2
L5N 2+50W	20	16	87	.5
L5N 2+25W	7	6	40	.2
L5N 2+00W	28	19	101	.4
L5N 1+75W	23	17	99	.1
L5N 1+50W	21	25	94	.4
L5N 1+25W	22	27	98	.5
STD C/AU-0.5	62	36	135	7.2

.

(

SAMPLE#	Cu	РЬ	Zn	Ag
	PPM	РРМ	PPM	PPM
L5N 1+00W	14	18	69	.3
L5N 0+75W	15	9	74	.1
L5N 0+50W	35	20	50	.3
L5N 0+25W	32	10	45	.4
L5N 0+25E	21	22	87	.1
L5N 0+50E L5N 0+75E L5N 1+00E L5N 1+25E L5N 1+50E	18 21 33 13 51	9 12 14 12 16	57 76 93 100 69	.2 .1 .1 .1
LSN 1+75E LSN 2+00E LSN 2+25E LSN 2+50E LSN 2+75E	18 31 14 16 10	11 11 11 8 12	53 74 56 47 27	. 1 . 1 . 1 . 1
L5N 3+00E	44	15	102	.3
L5N 3+25E	15	13	44	.2
L5N 3+50E	44	13	17	.6
L5N 3+75E	48	12	83	1.0
L5N 4+00E	30	13	53	.4
LSN 4+25E LSN 4+50E LSN 4+75E LSN 5+00E LSN 5+25E	19 25 26 27 98	14 16 13 6 14	58 50 59 66 97	.2 .2 .1 .9
L5N 5+50E	49	18	56	.4
L5N 5+75E	39	14	24	.5
L5N 6+00E	29	19	51	.3
L5N 6+25E	26	17	46	.2
L5N 6+50E	25	14	89	.3
LSN 6+75E LSN 7+00E LSN 7+25E LSN 7+50E LSN 7+75E	44 22 34 14 43	14 13 19 15 18	93 71 62 44 42	.2 .2 .3 .1
L5N 8+00E	26	8	76	.5
STD C/AU 0.5	64	43	136	7.3

•

.

.

SAMPLE#	Cu	РЬ	Zn	Ag
	FFM	РРМ	PPM	PPM
L5N 8+25E L5N 8+50E L5N 8+75E L5N 9+00E L5N 9+25E	38 32 20 22 37	7 12 14 14 26	49 86 104 131 178	.5 .3 .1 .1
LSN 9+50E	32	30	174	.1
L4N 10+00W	45	22	74	.6
L4N 9+75W	16	13	84	.3
L4N 9+50W	18	20	138	.1
L4N 9+25W	11	15	60	.3
L4N 9+00W L4N 8+75W L4N 8+50W L4N 8+25W L4N 8+00W	17 33 21 25 17	10 24 20 20 18	87 133 127 92 107	.1 1.0 .2 .3
L4N 7+75W	21	22	76	. 6
L4N 7+50W	15	13	71	. 2
L4N 7+25W	11	10	69	. 1
L4N 7+00W	9	16	49	. 1
L4N 6+75W	35	35	71	. 4
L4N 6+50W	9	12	40	.1
L4N 6+25W	28	13	111	.1
L4N 6+00W	17	11	98	.2
L4N 5+75W	9	12	144	.1
L4N 5+50W	16	26	80	.2
L4N 5+25W	20	27	77	.2
L4N 5+00W	36	30	126	.4
L4N 4+75W	15	24	87	.2
L4N 4+50W	19	14	90	.1
L4N 4+25W	24	22	- 94	.4
L4N 4+00W	44	46	193	.4
L4N 3+75W	18	20	175	.3
L4N 3+50W	30	17	95	.3
L4N 3+25W	24	17	92	.1
L4N 3+00W	22	14	107	.3
L4N 2+75W	20	18	102	.1
STD C/AU-0.5	62	42	138	7.2

,

.

•

SAMPLE#	Си	РЪ	Zn	Ag
	РРМ	РРМ	PPM	PFM
L4N 2+50W	17	26	105	.3
L4N 2+25W	15	24	105	.2
L4N 2+00W	16	22	77	.3
L4N 1+75W	21	33	109	.2
L4N 1+50W	15	23	77	.2
L4N 1+25W	38	43	203	.8
L4N 1+00W	38	20	140	.2
L4N 0+75W	66	27	164	.5
L4N 0+50W	23	15	78	.5
L4N 0+25W	20	15	202	.5
L4N 0+00W	29	17	94	.1
L4N 0+25E	33	26	104	.2
L4N 0+50E	36	23	125	.4
L4N 0+75E	58	27	182	.6
L4N 1+00E	122	53	105	1.2
L4N 1+25E L4N 1+50E L4N 1+75E L4N 2+00E L4N 2+25E	58 25 39 4 11	26 14 57 13 17	118 83 203 23 43	.5 .3 .2 .1
L4N 2+50E	10	14	42	.2
L4N 2+75E	67	27	85	.8.
L4N 3+00E	35	16	69	.6
L4N 3+25E	14	15	58	.1
L4N 3+50E	15	11	59	.3
L4N 3+75E	10	15	54	. 2
L4N 4+00E	17	12	68	. 3
L4N 4+25E	20	14	53	. 4
L4N 4+50E	18	17	46	. 1
L4N 4+75E	45	15	30	. 7
L4N 5+00E L4N 5+25E L4N 5+50E L4N 5+75E L4N 6+00E	65 21 33 22 19	18 8 12 13 11	56 38 48 44 63	1.2 .2 .5 .2
L4N 6+25E	25	7	49	.1
STD C/AU 0.5	63	39	137	7.3

 $\left(\right)$

.

•

PAGE 8	3
--------	---

SAMPLE#	Cu	РЬ	Zn	Ag
	PPM	РРМ	FFM	PPM
L4N 6+50E	35	3	68	.3
L4N 6+75E	18	7	54	.2
L4N 7+00E	15	2	73	.1
L4N 7+25E	37	10	19	.3
L4N 7+50E	17	8	39	.1
L4N 7+75E	11	9	34	
L4N 8+00E	24	7	61	
L4N 8+25E	18	8	33	
L4N 8+50E	28	11	49	
L4N 9+00E	26	5	61	
L4N 9+25E L4N 9+50E L4N 9+75E L4N 10+00E L4N 10+00W A	28 31 20 25 57	01 23 23 15 14	123 184 101 108 149	.3 .2 .1 1.0
L4N 9+75W A	24	16	79	.4
L4N 9+50W A	27	17	96	.4
L4N 9+25W A	14	17	54	.1
L4N 9+00W A	20	12	80	.2
L4N 8+75W A	33	13	142	.5
L4N 8+50W A	33	20	105	.5
L4N 8+25W A	13	13	74	.2
L4N 8+00W A	13	14	71	.1
L4N 7+75W A	15	9	88	.3
L4N 7+50W A	21	19	78	.4
L4N 7+25W A	20	15	103	.5
L4N 7+00W A	19	15	101	.1
L4N 6+75W A	16	19	78	.3
L4N 6+50W A	14	23	103	.4
L4N 6+25W A	9	17	66	.2
L4N 6+00W A	9	21	55	.1
L4N 5+75W A	24	19	83	.4
L4N 5+50W A	64	14	59	.9
L4N 5+25W A	22	14	95	.4
L4N 5+00W A	31	33	149	.2
L4N 4+75W A	32	69	254	.6
STD C/AU-0.5	62	39	136	7.1

.

.

(

SAMPLE#	Cu	Fb	Zn	Aq
	FFM	FFM	FFM	FPM
L4N 4+50W A L4N 4+25W A L4N 4+00W A L4N 3+75W A L4N 3+50W A	82 27 17 34 25	34 19 11 15 11	279 91 75 120 91	.6 .1 .3 .2
L4N 3+25W A	27	20	116	
L4N 3+00W A	20	20	127	
L4N 2+75W A	19	16	85	
L4N 2+50W A	18	25	88	
L4N 2+25W A	21	16	123	
L4N 2+00W A	11	46	270	.6
L4N 1+75W A	17	48	174	1.5
L4N 1+25W A	25	28	312	.1
L4N 1+00W A	21	29	86	.3
L4N 0+50W A	53	27	182	.7
L4N 0+25W A	100	36	346	.8
L4N 8+25E A	27	19.	47	.3
L3N 0+00E	32	33	225	.2
L3N 0+25E	21	21	326	.4
L3N 0+50E	36	29	74	.4
L3N 0+75E L3N 1+00E L3N 1+25E L3N 1+50E L3N 1+75E	36 38 22 16 22	25 25 16 20 24	88 70 121 68 102	.83 .77 .77
L3N 2+00E	53	14	68	.6
L3N 2+25E	31	12	87	.3
L3N 2+50E	45	47	201	.3
L3N 2+75E	11	20	50	.2
L3N 3+00E	7	13	20	.2
L3N 3+25E L3N 3+50E L3N 3+75E L3N 4+00E L3N 4+25E	13 11 32 42 18	11 12 15 20 10	31 27 59 52 52	.1 .2 .5 .2
L3N 4+50E	16	9	60	.2
STD C/AU-0.5	61	37	137	7.1

.

(

.

PAGE 10

•

SAMPLE#	Cu PPM	Pb PPM	Zn FFM	Ag FFM
L3N 4+75E L3N 5+00E L3N 5+25E L3N 5+50E L3N 5+75E	12 18 9 15 40	11 21 11 17 11	65 60 30 44 69	.1 .1 .1 .2
LCN 6+00E LCN 6+25E LCN 6+50E LCN 6+75E LCN 7+00E	29 19 7 31 24	12 7 12 17 17	59 58 19 70 34	.1 .1 .3 .3
L3N 7+25E L3N 7+50E L3N 7+75E L3N 8+00E L3N 8+25E	7 10 14 12 9	8 14 13 15	25 44 55 45 48	.1 .3 .1 .1
L3N 8+50E L3N 8+75E L3N 9+00E L3N 9+25E L3N 9+50E	12 13 28 46 26	5 7 25 26 38	83 54 130 136 134	.1 .2 .1 .1
L3N 9+75E L3N 10+00E L2N 0+00E L2N 0+25E L2N 0+50E	28 29 34 36 26	30 28 32 27 67	147 168 807 854 90	.3 .2 1.3 1.1 .3
L2N 0+75E L2N 1+00E L2N 1+25E L2N 1+50E L2N 1+75E	31 22 43 44 22	46 28 44 34 21	99 59 112 494 98	.4 .6 .6 .5
L2N 2+00E L2N 2+25E L2N 2+50E L2N 2+75E L2N 3+00E	18 38 17 33 45	16 32 26 32 57	144 211 65 96 327	.3 .8 .3 1.0 .3
L2N 3+25E STD C/AU 0.5	10 62	5 44	40 137	.2 7.3

.

FAGE 11

e,

e

.

SAMPLE#	Cu	Fb	Zn	Ag
	PPM	PPM	PPM	PFM
L2N 3+50E L2N 3+75E L2N 4+00E L2N 4+25E L2N 4+50E	22 74 52 12 13	16 15 5 11 12	50 53 94 34 61	.4 1.1 .8 .3
L2N 4+75E	17	8	61	.3
L2N 5+00E	17	11	71	.2
L2N 5+25E	25	9	58	.5
L2N 5+50E	20	19	77	.3
L2N 5+75E	40	13	39	.4
L2N 6+00E L2N 6+25E L2N 6+50E L2N 6+75E L2N 7+00E	12 13 13 10 20	9 13 7 14 8	39 46 67 23 80	.1 .2 .1 .2
L2N 7+25E L2N 7+50E L2N 7+75E L2N 8+00E L2N 8+25E	24 29 34 21 19	4 34 29 10 6	85 115 207 71 54	.3 .3 .1 .1
L2N 8+50E	9	7	69	.2
L2N 8+75E	5	16	23	.1
L2N 9+00E	15	12	46	.2
L2N 9+25E	17	12	39	.2
L2N 9+50E	34	14	76	.4
L2N 9+75E L2N 10+00E L1N 0+00E L1N 0+25E L1N 0+50E	20 17 10 9 30	24 29 11 13 41	159 104 71 41 200	.1 .2 .5 1.4
L1N 0+75E	13	28	117	.6
L1N 1+00E	10	5	50	.2
L1N 1+25E	111	58	135	1.4
L1N 1+50E	36	31	86	.9
L1N 1+75E	40	30	163	.8
L1N 2+00E	28	31	109	.4
STD C/AU 0.5	62	39	136	7,2

 $\left(\right)$

PAGE 12

.

••

SAMPLE#	Cu PPM	ዮb ዮዮM	Zn FFM	Ag ₽₽M
L1N 2+25E L1N 2+50E L1N 2+75E L1N 3+00E L1N 3+25E	21 15 16 13 19	29 13 27 15 32	115 79 115 51 77	.7 .4 .3 .2
L1N 3+50E L1N 3+75E L1N 4+00E L1N 4+25E L1N 4+50E	20 17 8 23 6	17 18 18 10 15	169 75 71 81 39	.2 .1 .2 .6 .2
L1N 4+75E L1N 5+00E L1N 5+25E L1N 5+50E L1N 5+75E	19 9 3 78 14	14 14 9 19 13	80 55 17 100 58	.1 .1 1.0 .1
L1N 6+00E L1N 6+25E L1N 6+50E L1N 6+75E L1N 7+00E	9 9 27 26 48	11 8 9 23 13	43 113 74 71 157	8 N N N N N N N N N N N N
L1N 7+25E L1N 7+50E L1N 7+75E L1N 8+00E L1N 8+25E	22 20 8 37 43	12 7 9 18 10	65 57 21 44 38	.1 .1 .2 .5
L1N 8+50E L1N 8+75E L1N 9+00E L1N 9+25E L1N 9+50E	35 25 11 13 11	9 16 15 15 16	30 38 53 62 41	.4 .3 .2 .2
L1N 9+75E L1N 10+00E LON 0+00E LON 0+25E LON 0+50E	10 9 36 31 22	17 14 73 38 26	23 30 151 119 167	.2 .1 .6 .4
LON 0+75E STD C/AU-0.5	26 62	33 36	44 138	1.1 7.2

.

PAGE 13

.

SAMPLE#	Cu	РЬ	Zn	Ag
	FPM	РРМ	FFM	PPM
LON 1+00E	48	140	124	.9
LON 1+25E	50	50	137	1.5
LON 1+50E	20	33	131	.6
LON 1+75E	31	26	306	1.1
LON 2+00E	18	30	82	.3
LON 2+25E	32	39	81	.6
LON 2+50E	40	64	615	.6
LON 2+75E	19	16	76	.2
LON 3+00E	16	29	71	.1
LON 3+25E	151	93	193	.6
LON 3+75E	37	28	134	.3
LON 4+00E	67	39	280	.6
LON 4+25E	14	7	64	.5
LON 4+50E	27	27	100	.2
LON 4+75E	45	67	300	1.3
LON 5+00E LON 5+25E LON 5+50E LON 5+75E LON 6+00E	11 22 26 35 22	19 15 17 15 12	77 86 116 105 80	.4 .5 .4 .1
LON 6+25E LON 6+50E LON 6+75E LON 7+00E LON 7+25E	21 18 21 23 82	12 16 16 9 17	74 66 43 48 56	. 1 . 1 . 2 . 9
LON 7+50E	68	22	78	1.0
LON 7+75E	55	13	83	.7
LON 8+00E	36	14	60	.3
LON 8+25E	31	16	54	.2
LON 8+50E	14	15	51	.1
LON 8+75E	16	10	46	.2
LON 9+00E	26	16	58	.1
LON 9+25E	19	9	61	.3
LON 9+75E	21	9	64	.1
LON 10+00E	31	21	52	.4
L1S 0+00E	57	20	217	.7
STD C/AU-0.5	61	40	136	7.3

 $\left(\right)$

PAGE 14

SAMPLE#	Cu	Pb	Zn	Ag
	PPM	PPM	FFM	PPM
L1S 0+25E	7	48	145	.5
L1S 0+50E	17	60	146	.3
L1S 0+75E	20	21	153	.5
L1S 1+00E	19	26	133	.4
L1S 1+25E	15	27	109	.4
L1S 1+50E	30	51	356	.3
L1S 1+75E	22	40	425	1.2
L1S 2+00E	31	94	165	.7
L1S 2+25E	18	40	77	.5
L1S 2+50E	24	69	167	1.0
L1S 2+75E	33	42	200	1.5
L1S 3+00E	17	39	83	.6
L1S 3+25E	14	39	177	.1
L1S 3+50E	50	70	516	1.4
L1S 3+75E	30	53	301	.4
L1S 4+00E L1S 4+25E L1S 4+50E L1S 4+75E L1S 5+00E	52 66 35 44 35	140 46 43 26 28	440 114 81 61 133	1.2 5 6 7
L1S 5+25E L1S 5+50E L1S 5+75E L1S 6+00E L1S 6+25E	21 20 17 8 29	20 16 18 19 31	76 75 64 49 200	.0 .0 .0 .4
L1S 6+50E	13	11	71	.1
L1S 6+75E	10	24	73	.5
L1S 7+00E	25	25	195	.5
L1S 7+25E	16	24	113	.9
L1S 7+50E	12	10	80	.9
L18 7+75E	32	79	185	.1
L18 8+00E	19	20	68	.2
L18 8+25E	19	14	82	.1
L18 8+50E	33	29	41	.1
L18 8+50E	19	11	50	.2
L1S 9+00E	21	17	102	.4
L1S 9+25E	41	21	132	.6
STD C/AU-0.5	61	39	137	7.2

(

 \bigcirc

٩

۰,

•

.

(

 $\left(\right)$

C

SAMFLE#	Cu	Pb	Zn	Ag
	FFM	PPM	PFM	FFM
L1S 9+50E	51	29	55	.7
L1S 9+75E	27	23	46	.2
L1S 10+00E	22	21	71	.1
L2S 0+00E	17	23	35	.8
L2S 0+25E	23	65	106	.9
L2S 0+50E	14	31	66	.2
L2S 0+75E	25	83	191	.5
L2S 1+00E	35	110	190	2.3
L2S 1+25E	33	105	235	.7
L2S 1+50E	28	129	389	.7
L2S 1+75E L2S 2+00E L2S 2+25E L2S 2+50E L2S 2+55E	49 16 25 30 12	73 31 34 44 85	721 133 266 133 107	.3 .4 .5 .7
L2S 3+00E	37	33	59	.8
L2S 3+25E	20	34	123	.4
L2S 3+50E	72	38	217	.7
L2S 3+75E	105	46	118	1.7
L2S 4+00E	29	31	74	.9
L2S 4+25E	138	81	293	.6
L2S 4+50E	29	45	69	.4
L2S 4+75E	64	92	158	1.2
L2S 5+00E	28	26	111	.3
L2S 5+25E	22	25	212	.1
L2S 5+50E	11	16	63	. 3
L2S 5+75E	10	20	75	. 2
L2S 6+00E	13	18	90	. 4
L2S 6+25E	16	22	120	. 3
L2S 6+50E	22	19	92	. 2
L2S 6+75E	16	27	35	.1
L2S 7+00E	18	25	140	.1
L2S 7+25E	16	23	63	.2
L2S 7+50E	13	15	153	.2
L2S 7+75E	8	24	135	.1
L2S 8+00E	17	26	87	.3
STD C/AU-0.5	62	37	137	7.3

.

•

C

 \mathbb{C}

.

SAMFLE#	Cu	РЪ	Zn	Ag
	FPM	РРМ	FFM	PPM
L2S 8+25E	18	86	559	.22.33
L2S 8+50E	22	21	128	
L2S 8+75E	24	18	104	
L2S 9+25E	22	11	61	
L2S 9+50E	18	21	63	
L2S 9+75E L2S 10+00E L3S 0+00E L3S 0+25E L3S 0+50E	13 13 23 33 19	20 5 25 46 19	99 95 128 165 68	.1 .1 .2 .2
L38 0+75E L39 1+00E L39 1+25E L39 1+50E L39 1+75E	22 39 39 56 37	19 18 73 20 24	91 148 114 176 49	1.0 .1 .2 .1
L38 2+00E L38 2+25E L38 2+50E L38 2+75E L38 3+00E	36 11 19 16 92	31 11 26 90 113	92 39 65 132 180	.2 .2 .4 .3
L3S 3+25E	25	60,	104	.2
L3S 3+50E	20	39	123	.1
L3S 3+75E	25	95	88	.4
L3S 4+00E	14	38	48	.7
L3S 4+25E	33	22	107	.2
L3S 4+50E	32	12	101	.1
L3S 4+75E	25	24	139	1.4
L3S 5+00E	45	33	189	.3
L3S 5+25E	28	13	113	.2
L3S 5+50E	23	14	87	.2
L38 5+75E	29	18	56	.2
L38 6+00E	7	10	19	.1
L38 6+25E	16	25	50	.2
L38 6+50E	8	12	18	.1
L38 6+75E	16	15	69	.4
L3S 7+00E	16	20	90	.4
STD C/AU 0.5	61	37	136	7.2

.

 \mathbb{C}

PAGE 17

.

SAMFLE#	Cu	РЪ	Zn	Ag
	PPM	РРМ	FFM	PPM
L3S 7+25E L3S 7+50E L3S 7+75E L3S 8+00E L3S 8+25E	15 13 11 22 6	21 18 18 20 19	73 61 38 107 84	.1 .1 .5 .2
L3S 8+50E L3S 8+75E L3S 9+00E L3S 9+25E L3S 9+50E	7 11 18 28 24	18 16 22 26 28	60 66 134 138 122	.1 .2 .1 .1
L3S 9+75E L3S 10+00W L4S 0+00E L4S 0+25E L4S 0+50E	18 15 9 7 7	25 11 17 14 16	78 64 26 57 47	.1 .5 .1 .2
L4S 0+75E L4S 1+00E L4S 1+25E L4S 1+50E L4S 1+75E	7 15 17 9 25	14 17 50 28 24	37 82 150 69 88	. 1 . 3 . 1 . 3
L4S 2+00E	42	22	80	1.0
L4S 2+25E	17	18	78	.1
L4S 2+50E	23	18	67	.2
L4S 2+75E	41	25	61	.4
L4S 3+00E	61	36	89	.3
L4S 3+25E	100	30	139	.6
L4S 3+50E	8	8	32	.1
L4S 3+75E	11	18	47	.2
L4S 4+00E	22	13	93	.1
L4S 4+25E	23	27	87	.4
L4S 4+50E	93	106	493	.3
L4S 4+75E	148	111	187	.7
L4S 5+00E	62	309	588	2.0
L4S 5+25E	27	19	98	.5
L4S 5+50E	19	27	88	.2
L4S 5+75E	23	24	95	.2
STD C/AU 0.5	64	39	136	7.2

.

.

 \bigcirc

SAMPLE#	Cu	Pb	Zn	Ag
	PPM	PPM	PPM	F'F'M
L4S 6+00E	13	13	86	.3
L4S 6+25E	7	13	60	.2
L4S 6+50E	36	20	108	1.1
L4S 6+75E	204	60	254	4.4
L4S 7+00E	20	26	85	.7
L4S 7+25E	7	15	61	.2
L4S 7+50E	9	10	46	.1
L4S 7+75E	12	19	70	.2
L4S 8+00E	67	41	65	.7
L4S 8+50E	9	30	41	.1
L4S 8+75E	15	11	82	.2
L4S 9+00E	10	13	42	.2
L4S 9+25E	10	10	46	.2
L4S 9+50E	21	29	116	.4
L4S 9+75E	14	24	45	.3
L4S 10+00E	53	24	100	.4
L5S 0+00E	13	18	82	.1
L5S 0+25E	11	24	55	.3
L5S 0+50E	11	20	42	.2
L5S 0+75E	14	15	55	.2
L5S 1+00E	18	38	97	.6
L5S 1+25E	11	9	72	.2
L5S 1+50E	5	24	32	.1
L5S 1+75E	4	27	33	.1
L5S 2+00E	9	20	59	.3
L58 2+25E L58 2+50E L58 2+75E . L58 3+00E L58 3+25E	13 26 34 21 18	31 18 30 34 16	101 117 128 87 73	.1 .3 .1 .3
LSS 3+50E	22	27	167	.6
LSS 3+75E	37	84	317	.4
LSS 4+00E	85	49	298	.8
LSS 4+25E	32	20	141	.3
LSS 4+50E	31	41	195	.7
L5S 4+75E	18	13	89	1.1
STD C/AU 0.5	62	41	136	7.2

.

•

 \bigcirc

C

SAMPLE#	Cu	Pb	Zn	Ag
	PPM	PPM	FFM	FFM
LSS 5+00E	14	19	70	.9
LSS 5+25E	17	20	70	.7
LSS 5+50E	17	21	80	.1
LSS 5+75E	11	17	52	.2
LSS 6+00E	12	13	68	.1
L5S 6+25E	24	17	78	.2
L5S 6+50E	22	15	82	.1
L5S 6+75E	14	14	63	.3
L5S 7+00E	23	24	111	.2
L5S 7+25E	21	17	84	1.2
L5S 7+50E L5S 7+75E L5S 8+00E L5S 8+25E L5S 8+50E	12 28 16 17 11	19 36 27 42 25	52 177 69 86 81	.2 .3 .2 .1
L5S 8+75E	15	21	86	.2
L5S 9+00E	14	13	78	.1
L5S 9+25E	28	17	97	.4
L5S 9+50E	16	16	85	.2
L5S 9+75E	14	21	. 89	.1
L5S 10+00E	16	11	98	.1
STD C/AU-0.5	61	40	136	7.1

+ 00 W	8+00W I	7+00W	6+00W	5+00W	4+00 W	3+00W
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		r	۱. 	L
					1	
					÷	
						
		······································				
					, ,	15° BEACH I AR
						E.
					1	
w						
						·
						LIMONITE STAINE RUBBLE CONGLON
ENE OR YOUNG	ER	DYKES, SILLS OR PLU	166		ĺ	
		DARK GREY ANDESITE GRANODIORITE (GD)			:	Ì
	2214	DACITE (DA)				
ER CRETACEOL	JS (SKEENA GROUP			2	DA
		BLACK TO LIGHT GREY I Argillite, lithic wad	CKE,		1	1% PYRTE
		LESSER PEBBLE CONG	LOMERATE			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				i	
		APPROXIMATE AREA OF OR IRREGULAR BLEBS	>2% PYRITE AS VEINL	ETS	· · _	
	90°	- ROCK UNIT CONTACT WI			, f	1.1
		POSSIBLE TREND OF ROC			i	DA DA
~~~~~	mmt	FAULT ZONE WITH ATTIT	TUDE .			
	26	VEIN ATTITUDE				
	Δ	BEDDING ATTITUDE ROCK SAMPLE LOCATION				
		STREAM				
		PRONOUNCED CHANGE IN	CI DOC.			
. •.***	and the second	STEEP TOWARD SOUTH, GENTLE TOWARD NORTH	SLUPE :			
		OLD CLAIM LINE			-	l l
	•	CLAIM POST				
PLE STAR	RESOURCE	S LTD.				
			apotro			/
GEOLOGY MAP PPACC MINERAL CLAIM					}	/
	TAHTSA L	MINERAL CLAIM Ake Area, B.C.	E L. B. CAR		1	
	OMINECA I	MINING DIVISION 93E / IIW	2 Cal	Benner 1		050

1

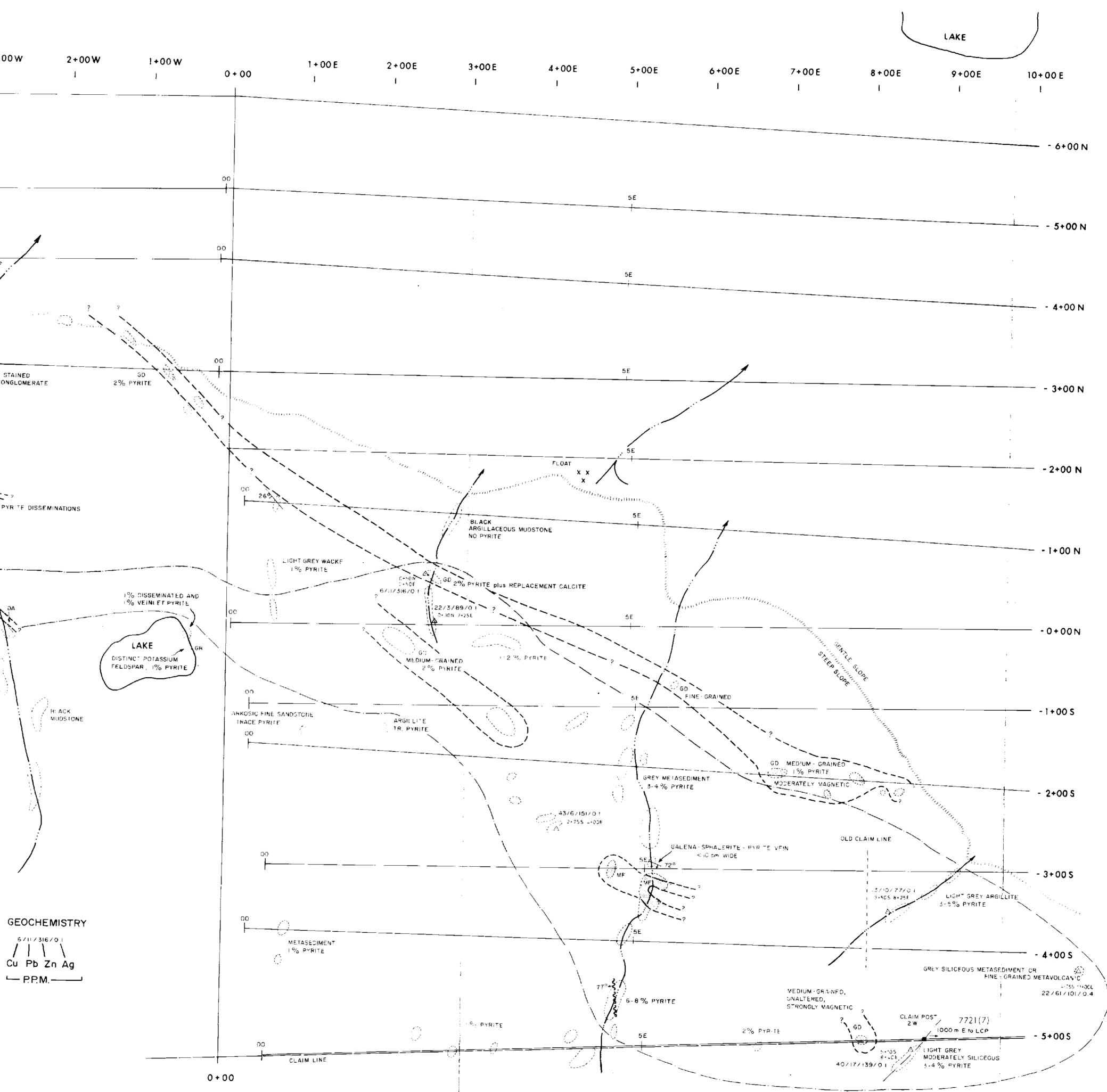
ARCTEX ENGINEERING SERVICES

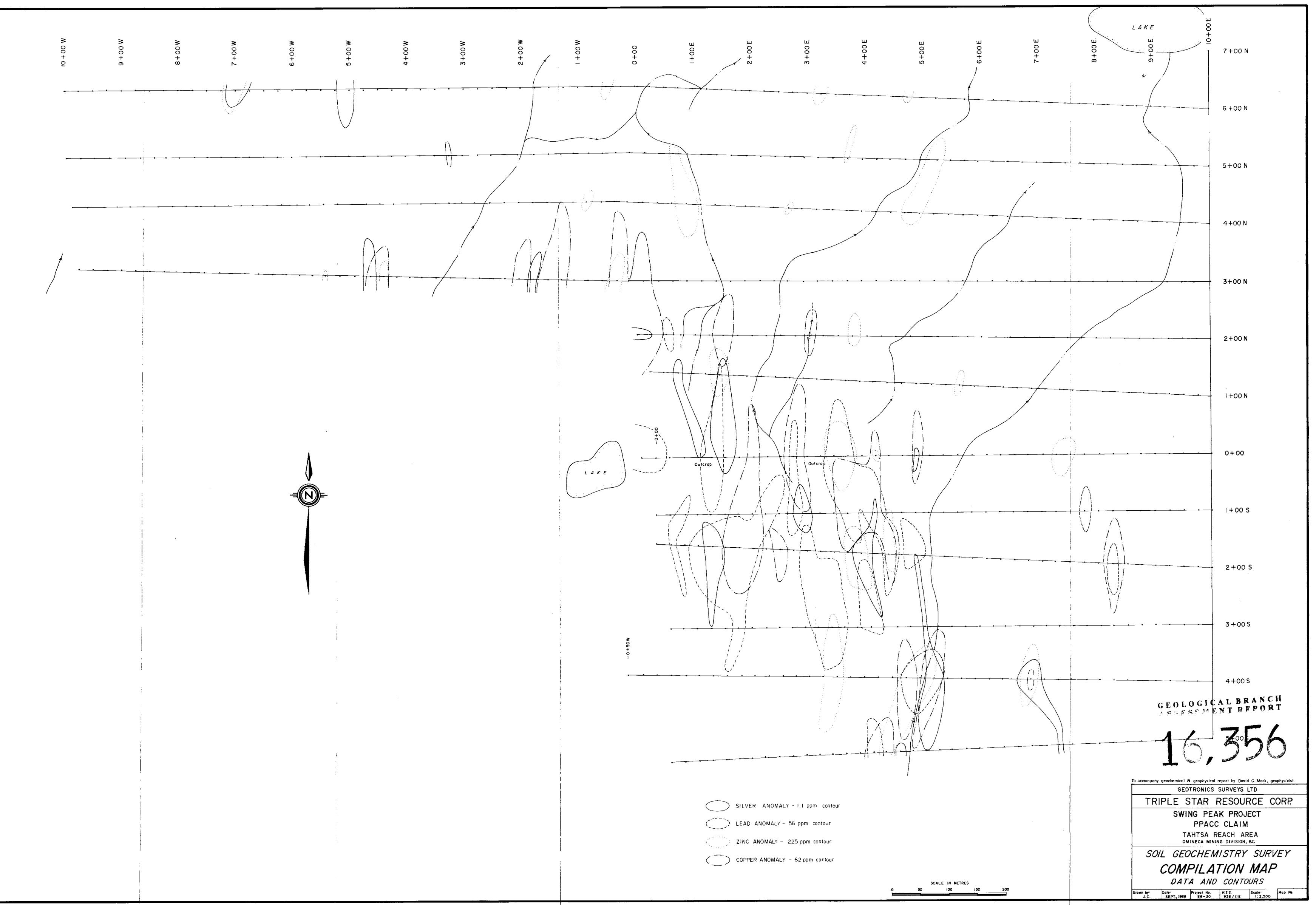
TO ACCOMPANY REPORT BY

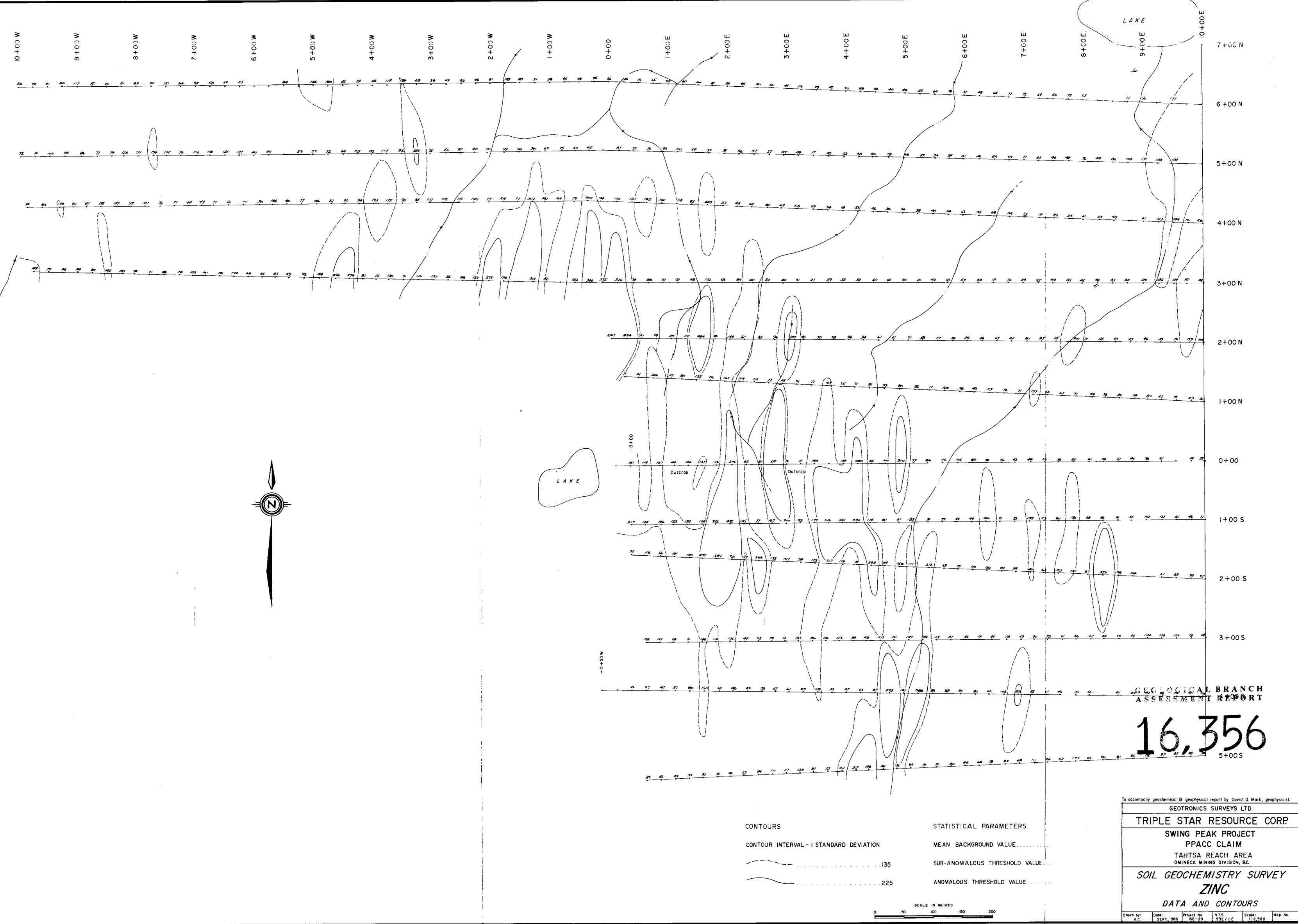
PAUL KALLOCK, Geologist, LOCKE B.GOLDSMITH, P.Eng., Consulting Geologist

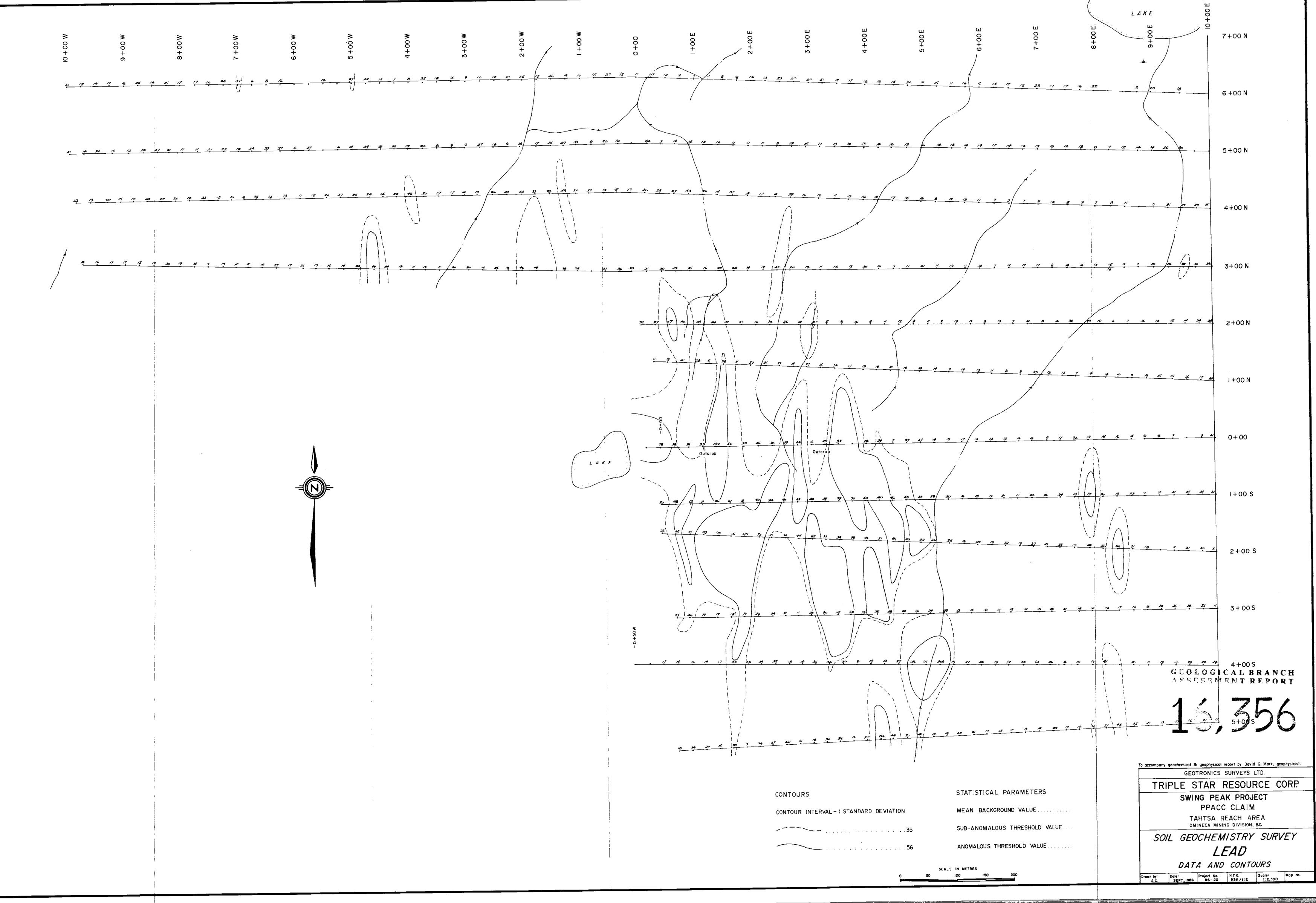
AUGUST 1986

GEOLOGICAL BRANCH ASSESSMENT REPORT


16,356


1:2500


100


MLIRES

0 25 50

