Shangrí-La Mínerals Límíted

ouner/operator:
nttro resodrces inc.
FILMED 7

GREENWOOD MINING DIVISION
BRITISH COLUMBIA

NTS 82E/1E
49 DEG. - Oor OZ' 人4
NORTH LATItUDE
WEST LONGITUDE 118 DEG. $09^{\prime} 30^{\prime \prime}$

BY
FRANK DISFIRITO, B.A.SC., F.Eng. HELEN GROND, M.Sc.
H.M. MEIXNER, B.Sc.

MARTIN ST. FIERRE, B.SC.

J.C. GRAHAM, B.Sc., M. Eng.

MARCH 31, 1987
fAGE
SUMMARY i

1. INTRODUCTION 1
1.1 Froperty status 1
2. 2 Location, Access and Topography 3
1.3 History 4
3. SURVEY SFECIFICATIONS
2.1 Grid Establishment 5
4. 2 Airborne VLF-EM and Magnetometer Survey. 5
2.3 Ground Magnetometer Survey 6
2.4 Self Fotential Survey 6
5. 5 Geochemical Survey 7
2.6 Geological Mapping 7
6. GEOLOGY
3.1 Regional Geology 7
3.2 Froperty Geology 8
3.2.1 Distribution of Units 9
3.2.2 Description of Units
3.2.2.1 Archibald Formation-Unit 1 10
3.2.2.2 Agglomeratic Andesite-Unit 11
3.2.2.3 Basalt Forphyry Dykes-Unit 3 11
3.2.2.4 Feldspar Forphyry-unit 4 12
3.2.2.5 Serpentinized Dunite-unit 5 12
3.2.2.6 Alter Serpentinized Dunite-Unit 13
3.2.2.7 Diorite Dykes-Unit 7 14
3.2.2.8 Gabbro Dykes-Unit 8. 14
3.2.3 Structure 15
3.2.4 Minexalization
3.2.4.1 Ultramafic Rocks 15
3.2.4.2 Elise and Archibald Formations 16
3.2.5 Discussion-Economic Geology3.2.5.1 Flatinum Fotential17
3.2.5.2 Chromite Fotential 18
3.2.5.3 Gold Fotential 20
7. GEOCHEMISTRY 21
8. GEOFHYSICS
5.1 Discussion of Self Fotential and Ground Magnetic Surveys. 22
5.2.1 Airborne Magnetometer Survey 24
5.2.2 Airborne VLF-EM Survey 25
9. CONCLUSIONS 26
10. RECOMMENDATIONS 27
REFERENCES

LIST OF FIGURES

FAGE

LIST OF AFPENDICES

AFPENDIX 1 Breakdown of Costs for Fhase I Exploration Frogram

AFFENDIX 2 Certificates of Authors
a) Frank DiSpirito, B.A. Sc., F. Eng.
b) Helen Grond, M. Sc.
c) H. M. Meixner, B. Sc.
d) Martin St. Fierre, B. Sc.
e) J. C. Graham, B. Sc., M. Eng.

AFPENDIX 3 Analytical Results

AFFENDIX 4 Mineralogy Report

SUMMARY

The Castle Group of claims are comprised of the Castle 1-4 modified grid system mineral claims and the candy $1-16,2$ post claims.

They are located 6 kilometers southeast of the town of Christina Lake, B.C.

Chromite was first discovered just south of the claim block in 1917. Eight hundred tons of high grade ore was shipped from the area in 1918. Small chromite bodies occur in the Midnight area of the Castle claims. Flatinum values of up to . 015 oz/ton have been reported from massive chromite ore from this area.

A program of geological mapping, sampling, geochemistry, self-potential and ground and aerial magnetometer surveys was carried out by Shangri-La Minexals Limited. The purpose was to define the "type" of ultramafic body occurring on the claims and investigate the potential for platinum.

The results of the program indicate that the castle ultramafic body is an "alpine type" and thus is economically less interesting for platinum.

The program failed to outline any areas which have significant chromite or platinum potential.

Ground self potential and magnetometer surveys were performed on the Castle Mountain grid. The self potential survey was useful to deliniate sulphide bearing units. Over the dunites (unit 5) the self potential data was very active because of the high magnetite content of this rock and also because of strong topographic effect. The magnetometer survey was useful to deliniate area B (unit 5).

Interesting gold values were obtained from several areas on the claims. Soil geochemistry values of up to 1,067 ppm Au were encountered in the central western area of the grid and are coincident with areas of interesting geology. An additional Au anomaly occurs over a dunite/volcanic contact in the northcentral portion of the grid. These gold values in conjunction with a reported gold intersection obtained during a previous drilling program (Steiner personal communication) indicates a gold potential on the claims.

A 2-phase program of geological mapping, sampling and trenching, followed up by drilling is being recommended to investigate this potential.

The background nickel values obtained throughout the property occur primarily in solid solution in olivine and do not represent significant nickel sulphide concentrations.

```
Respectfully submitted at Vancouver, B.C.
```


1. Introduction

A program of reconnaissance geological, geophysical and geochemical surveys was carried out on the castle group of mineral claims for Nitro Resources Inc. by Shangri-La Minerals Limited. This work was carried out from October 7 to November 18, 1986. The purpose of the program was to investigate a reported platinum occurrence and to locate other promising showings of platinum group elements.

1.1 Froperty Status

The Castle 1-4 claims and the Candy 1-16 claims are located in Greenwood Mining Division at $49^{\circ} 00^{\prime}$ north latitude and 118° 09' west longitude. They are recorded as follows:

Name

Castle 1	20 *
Castle 2	20

Anniver. Date

11 October 1987
11 October 1987
11 October 1987
11 October 1987
9 January 1988
9 Januaxy 1988
9 January 1988

Record No.

4414
4415
4416
44167
4802
4803
4804
4805
4806
4807
4808

Name	Units	Anniver. Date	Record	
Candy	8	1	9 January 1988	4809
Candy 9	1	9 January 1988	4810	
Candy 10	1	9 January 1988	4811	
Candy 11	1	9 January 1988	4812	
Candy 12	1	9 January 1988	4813	
Candy 13	1	9 January 1988	4814	
Candy 14	1	9 January 1988	4815	
Candy 15	1	9 January 1988	4816	
Candy 16	9 January 1988	4817		

* Castle 1 claim contains an excepted Crown Grant (Caledonia), thus it does not comprise the full 20 units. Similarly, castle 3 claim does not comprise 20 units because the 5 crown grants (Mammoth, Mastodon, Canyon, Fan and Dominion) contained therein, are not owned by Nitro Resources Inc. (Fig.2)

1.2 Location, Access, Topography

The center of the claims block, comprised of the Castle 1-4 claims and the candy $1-16$ claims, is situated about 6 kilometers southeast of the town of Christina Lake, B.C. The property is located atop Castle Mountain and an adjacent peak to the southwest at 1,420 metres elevation. The southernmost claimblock boundary is coincident with the canada/U.s. bordex.

Access is via Southern Frovincial Highway \#3 to Christina Lake, 22 km east of Grand Forks and approximately 560 km east of Vancouver. From the main highway, at the southeasternmost point of. the lake, near the weigh scales, the santa Rosa Road, an allweather gravel-paved highway, leads south and easterly round the foot of Castle Mountain. It traverses the castle 3 and 4 claims. A number of abandoned but negotiable logging roads, which transect the property, lead off from this main road at several points along the lower slopes of the mountain. The west Kootenay Light and fower high voltage transmission lines and the Inland Natural Gas Co. Ltd. pipeline also traverse the castle 3 and 4 claims along an east-west corridor. Access throughout the property is facilitated by open forested areas and regions of grassland.

Topographic relief is gentle throughout most of the map area, steepening somewhat where Chandler creek dissects Castle 1 claim in the west. Elevations range from 450 m to $1,430 \mathrm{~m}$ at the Castle Mountain summit.

1.3 History

Chromite was first discovered on the Mastodon Group (Crown Grants on western part of Castle 3 claim) in 1917. A number of pods and lenses, no more than 7 metres long, contained chromite ore grading from 30% to 50 chromium. In 1918 the stewartCalvert Company of Oroville, Washington had developed these deposits by shallow shafts and stripping to recover and ship 670 tons of chromite averaging 39 chromium. Eventually 800 tons of ore were shipped by the end of 1918. The platinum content of the chromite was not considered until 1918 when W. Thomlinson tested for this commodity in order to determine new sources of supply. Thomlinson's investigations were instigated by the british Ministry of Munitions and the Canadian Resources Commission who were seeking an increased platinum supply for war purposes. flatinum values of 0.02 oz $f t / t o n$ were obtained from the Blacktail claim which is located on the east-central edge of the Castle 3 claim.

A short distance to the northeast, on the Midnight claim, a sample of chromite taken by Thomlinson in 1920, assayed 0.015 oz Ft/ton. No obvious platinum potential was indicated on the Mastodon claim however, where the most extensive chromite occurrences are located. Samples of chromite taken from this locality in 1920 gave 0.01 to $0.05 \mathrm{oz} \mathrm{Au/ton} \mathrm{but} \mathrm{only} \mathrm{traces} \mathrm{of}$ platinum.

No further work was done in this area until the 1967-1978 period when Hunter foint Exploration Ltd. investigated the Mastodon and other Crown-granted and located claims, for chromite and nickel. This company later became a wholly-owned subsidiary of Chromex Nickel Mines Ltd. Extensive drilling during this period, showed that low grade (0.25\% Ni) nickel mineralization occurs at depth within serpentinized dunite. No specific nickel minerals were identified however, nor was any further chromite mineralization discovered.

2. SURVEY SFECIFICATIONS

2.1 Grid Establishment

A 4.5 kilometre, northeast-trending baseline was cut, cleared and flagged at 50 metre intervals with survey stakes, metal tags and flagging. Crosslines were emplaced in a similar manner on both sides of the baseline so as to cover the claims area but to exclude the adjoining areas of private land. In the northern part of the grid, on Castle Mountain, the crosslines were spaced every 50 metres whereas in the southern part they were placed every 100 metres. Stations were flagged and staked everywhere at 50 m intervals however. Line-of-sight chaining with stakes was necessary so as to avoid compass deviations caused by magnetite-bearing outcrops. Seventy kilometers of grid lines were laid down.

2.2 Airborne VLF-EM and Magnetometer Survey

The survey system equipment simultaneously monitors and records the output signals from a proton precession magnetometer and two VLF-EM receivers installed in a bird which is towed over the survey area at an altitude of approximately 75 m by helicopter. The average flying speed while surveying is about $110 \mathrm{~km} / \mathrm{hr}$. Landmarks along the fiight lines are plotted on aerial photographs as the lines are flown. This allows subsequent production of a flight line map on which to plot the survey results.

The two vLf-EM receivers respond to signals from two different transmitters - one in Seattle, Washington and one in Annapolis, Maryland. The Annapolis transmitter was not functioning during the survey, however, so only the seattle
results are available. Conductors will respond most strongly to the transmitter in the direction of their strike. The azimuth to the seattle transmitter from the Castle property is 253°.

The geophysical data was recorded on chart recorders. The chart profiles were digitized and plotted by computer as contour maps. Instrument specifications are detailed in Appendix C.

The flight lines run north-south. The line spacing is roughly 100 m .

2.3 Ground Magnetometer Survey

The ground magnetometer survey was conducted using a Scintrex MF-2 proton precession magnetometer. An EDA Omnimag 375 was run as a base station to allow correction for diurnal variations.

Readings were taken at 25 m intervals along the grid crosslines. A total of 30 line-km was surveyed.

2.4 Self Fotential Survey

Equipment used in this self potential survey were one voltmeter with a precision of $0.001 v+0.001$ and an input resistance of 107 ohm. Also used were two poxous pots with copper sulphate solutions. Measurements were made every 25 meters on lines separated by 100. A base value of 0.00 von the base line $0+00$ was set. The self potential measurements were added together to produce a self potential contour map (fig. 9). A total of 43 km was surveyed on all cut lines.

2.5 Geochemical Survey

Soil samples were collected at 25 metre intervals across the entire grid area. The "B" horizon was sampled at depths which were usually greater than 15 cm . Samples were analyzed by Acme Analytical Laboratories Ltd. using an induced coupled plasma (IFC) spectrophotometer.

2.6 Geological Mapping

Geological mapping was accomplished initially by traverses along old logging roads and later along cut and flagged gridifnes. A northeasterly grid was established to cover as much of the ultramafite as possible and to exclude privately leased areas of land. Lines were spaced, for the most part, 50 metres apart. In the southernmost part of the grid 100 m lines were mapped. The geology was recorded on a l:5000 scale base consisting of a corrected and contoured orthophoto of the castle Mountain area.
3. GEOLOGY

3.1 Regional Geology

The Castle Mountain ultramafic body occurs within rocks of the Omineca Crystalline Belt (Rublee 1986), near the eastern margin of the Quesnel terrane. This north-trending margin separates westerly-lying paragneiss of frecambrian Monashee and Grand Forks Groups from easterly-lying granitic rocks of the Jurassic Nelson intrusions, as shown on the Kettle River geology map by Little (1957). Eocene Coryell alkaline rocks, including syenite, monzonite, shonkinite and granite have been intruded into Nelson granodiorites and make up a large proportion of the
granitic terrane. Several inliers of greywacke, greenstone and carbonate strata of the Fennsylvanian-fermian Mt. Roberts Formation occur adjacent to the eastern shore of Christina Lake just north of the map area. Andesites and andesitic agglomerates, as well as argillites and sandstones of the Jurassic Rossland Group surxound the ultramafic body at Castle Mountain. These lithologies have been described in detail by Little (1982), in the Rossland-Trail Map area to the east of the property.

3.2 Froperty Geology

The Castle and Candy claims area is underlain by Juxassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body, (Fig. 3). The oldest rocks in the grid area are iron-stained argillites and fine clastics of the Archibald formation which occur to the north and to the east of the serpentinite. Massive andesite and agglomeratic andesite of the Elise Formation predominate in the western region. Fragmental members of these two units are occasionally interbedded and gradational into one another in the northern part of the grid. The serpentinized dunite which makes up the Castle Mountain alpine body, is surrounded predominantly by volcanic strata of the younger Elise Formation. Chromium has in the past been extracted from a chromite pod located beyond the southern claim boundary and also from a small occurrence in the Midnight area. Flatinum values were determined in 1918 from chromite samples taken from both these localities.
3.2.1 Distribution of Units

Numerous outcrops of Archibald formation argilifites and siltstones occur in the northeast portion of the map area. Beds are generally less than a meter thick and are usualy well laminated. They are also occasionally interbedded with volcanic sequences of the overlying Elise Formation and at several localities, the lithologies of members of the both formations grade into each other laterally. Well exposed occurrences of Archibald Formation strata are present also on Bowser creek road east of the grid. In this area numerous olivine porphyry basalt dykes cut the sediments.

Widespread exposures of agglomeratic andesite of the Elise Formation are present throughout the north-central portion of the grid area. This unit is typically bluff forming, especially in the Chandler creek drainage area. Numerous outcrops of this unit are also present along the main Santa Rosa Road.

Ultramafic rocks comprising serpentinized dunite are extensively present in the southern half of the mapped area. These resistant outcrops are characteristically bluffoforming and large outcrop areas are marked by bald peak areas or grassy open slopes. An isolated, distinctive bald knob of serpentinized dunite constitutes Castle Mountain Feak, at 1, 443 metres. Generally, areas underlain by ultramafic rocks contain sparse vegetation in comparison to surrounding areas of volcanic or sedimentary rocks which are generally forested.

Minor isolated exposures of "salt and pepper" diorite are present in the west-central grid area of as well as in the northeast.

3.2.2 Description of Units

3.2.2.1 Archibald Formation - Unit 1

This apparently oldest sequence of rocks occurs prominently in the northeast and is situated between the castle Mountain serpentinite body to the west and the granodiorite of the Nelson Intrusions to the east. It is comprised of a sucession of interbedded and interfingered volcanic and sedimentary units which have all been metamorphosed to the greenschist facies. Dykes and sills of porphyritic andesite are common within this succession as are occasional exposures of gabbro and diorite.

The volcanics consist of meta-andesites and metardacites as well as occasional foliated basalts. Andesites are commonly porphyritic containing abundant plagioclase phenocrysts as well as biotite flakes. Chlorite filled vugs are occasionally also present. The groundmass is generally a fine grained mixture of feldspars and mafics, occasionally siliceous and usually containing disseminated pyrite.

The metasediments appear derived from rather siliceous mudstones and siltstones and are presently mapped as metaargillites and quartzites. They are less well exposed than the volcanic rocks and consist of centimetre to decimetre bedded dark brown to pale tan units which occasionally exhibit graded bedding and are usually limonite stained. fyrite is typically concentrated on shaley partings where it may constitute up to 20% of the rock volume. Shears, where present, are always heavily pyritized and limonitic. Occasional porphyritic andesite sills of similar thicknesses to the argillaceous beds are also present. Andesite dykes which cut beds are common.

3.2.2.2 Agglomeratic Andesite - Unit 2

This unit occurs extensively in the north-central portion of the grid and also in the southwestern part and along the santa Rosa Road. Outcrops are aerally extensive and they often form bluffs. The rock type is characterized by a dark green, fine grained groundmass which contains prismatic hornblende phenocrysts and quartz eyes as well as the distinctive breccia fragments which are comprised of the same material as the groundmass. This agglomeratic texture is this units most distinguishing feature. Throughout the map area the andesite has undergone greenschist grade metamorphism, contains abundant epidote and is almost always magnetic. Fyrite is also usually present as sparse fine disseminations as is the more abundant epidote alteration.

Near the western claim boundary, this unit contains distinctive white limestone clasts which Little (1982) has described as being a key marker for the basal part of the Elise Formation in the Rossland-Trail area. Locally, patches of skarn minerals were noted; these consist of garnet, deposed, calcite, chalcopyrite and pyrite. They are thought to be metamorphosed limestone clasts.

3.2.2.3 Basalt Forphyry Dykes - Unit 3

Basalt porphyry dykes are common in the northeastern grid area. They cut the metasediments at steep to vertical angles and exhibit sharp contacts. Thicknesses of 5 to 10 metres are common and at least one body of loot metres appears to be present, however it is only sporadically exposed. The dykes are composed of porphyritic basalt in which conspicuous chloritefilled amygdules are predominant within the grey-green coarse grained groundmass. In some exposures a moderate foliation has been imparted by the alignment of augite phenocrysts and their
altered equivalents of stretched ellipsoidal chlorite-filled amygdules. These dykes were not noted in the southern portion of the map area.

3.2.2.4 Feldspar Forphyry - Unit 4

This unit is most prominent in the south-central and eastern parts of the grid and appears to be absent in the northern section. Discrete andesitic feldspar porphyry outcrops of varying dimensions are set within the mass of serpentinized dunite. The outcrops are generally more recessive than the surrounding dunites and their contacts appear always to be tectonized.

Lithologically the rock consists of a pale green and fine-to medium-grained quartz-feldspar-hornblende groundmass which contains fresh euhedral plagioclase phenocrysts. Well developed hornblende laths are commonly also present as are up to lof clear quartz eyes. Disseminated pyrite is present throughout this unit. The eastern exposures, near the orange-weathering dunites, are somewhat more siliceous and pyritic.

3.2.2.5 Serpentinized Dunite - Onit 5

This extensive rock type, which is host to several chromite occurrences, minor nickel mineralization and several platinum indications, occurs in a widespread fashion throughout the southern grid area and beyond. Castle mountain peak, to the north, is an isolated dunite body contained within the surrounding agglomeratic andesite of the lower membexs of the Elise Formation.

Outcrops of serpentinized dunite are generally resistive and thus they characteristically form bluffs and cliffs. Areas of
dunite are usually more devoid of vegetation than adjacent areas of volcanic rock which are somewhat more recessive and normally under forest cover. Contacts between ultramafites and volcanics have been sheared and thus are usually obscured by soil and forest cover.

Weathered surfaces are typically tan, brown and grey in colour and textures are usually coarse and occasionally mottled. The rock composition appears to be homogenous throughout the mapped area and there is a general lack of any well developed tectonic or cummulate layering. Areas of pale green, sheared and schistose serpentinite in the western part of the grid usually have core areas of resistive fresher serpentinized dunite.

Fresh surfaces are typically aphanitic to fine grained, and black to green depending on the intensity of serpentine alteration. Olivine has been pervasively serpentinized to some degree in all exposures. Crosscutting serpentinite veinlets are not common and traces of asbestos fibre were noted in only one locality. Magnetite is a common but sparse accessory mineral and occurs as discrete fine to very coarse grains. occasional chromite grains are also present. At the Midnight Area, a pod of chromite, of perhaps several cubic metres, was excavated from sheared, schistose serpentinite. Elsewhere a unique texture consists of green and black alternating layers of serpentinite which are crosscut by black dunite veinlets containing up to 5 accessory magnetite and probable chromite grains.

3.2.2.6 Altered Serpentinized Dunite - Unit 6

This area of serpentinized dunite in the southeast is distinctive because the weathered outcrops are stained an orangered colour. The rocks appear to have been hydrothermally altered because the staining is pervasive throughout fresh rock surfaces.

The outcrops are also highly magnetic, more so than usual and magnetite grains are generally visible. An east-west fault is indicated by a cliff-forming fault scarp in this vicinity which also brings siliceous pyritic andesitic feldspar porphyries into contact with the orange serpentinites.

3.2.2.7 Diorite Dykes - Unit 7

Several areas of aligned diorite outcrops in the northern grid indicate that dykes of this unit are present within the metasediments of the Archibald formation and the volcanics of the Elise Formation. The rock is a medium- to coarsergrained holocrystalline dark grey diorite which is typified by a "salt and pepper" appearance on fresh surfaces. Equal amounts of feldspar and hornblende are normally present along with lesser occasional biotite and magnetite; the rock is almost always slightly magnetic. A pale grey and coarser variety of this unit occurs in several outcrops in the northeasternmost portion of the grid.

$$
\text { 3.2.2.8 Gabbro Dykes - Unit } 8
$$

Several minor outcrops of gabbro occur within the metasediments and volcanics of the northern grid area. The rock consists of a fine to medium-grained hornblende gabbro with up to 3\% disseminated sulphides. It is darker than the diorite and slightly magnetic.

3.2.3 Structure

Tectonic layering, a common structural feature in alpine ultramafic suites, is sporadically and poorly developed in the Castle Mountain ophiolite. Some alignment of outcrops is evident in the western part of the grid, where resistive ridges trend 160 degrees; similar alignments were noted also in the east central area. On a smaller scale a schistosity or layering was noted on some cliff faces, exemplified by black-green colour banding (preferential serpentinization) which trends 160 degrees and appears to dip 35° to 70° to the east. No alignment of magnetite and/or chromite grains was noted anywhere. A moderately developed foliation of wisps of serpentinite can occasionally be observed on fresh surfaces; they are aligned in a north-south direction. Local shear zones of several metres width, trend usually at 45°, and are not uncommon throughout the serpentinite body. Large joints, evidenced by deep vertical clefts, occur in the vicinity of Ll800s and loow and near the baseline at 2850 s .

Air photo lineations, interpreted as probable faults, trend primarily in northwesterly directions and less prominently in east-west directions. The regional Chandler Creek Fault marks the eastern contact of the serpentinite with the east-lying volcanics. Other local northeasterly faults within serpentinized dunite are marked by bluffs which are occasionally sheared. East-west faults are similarly marked by bluffs.

3.2.4 Mineralization

3.2.4.1 Ultramafic Rocks

Mineral concentrations of chromite occur within the ultramafic rocks, as well as background values of nickel. Several platinum values have been obtained from high grade chromite samples in the past.

The chromite occurs in the form of small pods (up to 3 metres in diameter) in two areas, one of which, the midnight area, is on the claims.

A hand specimen of massive chromite ore, taken from a dump on the Midnight, gave a value of 58918 ppm Cr. Accessory chromite in the ultramafics averages 1-2\% with assay values ranging from 8188 ppm to 7 ppm Cr .

Nickel minerals were not observed in hand specimen, however, assay values range up to 2508 ppm. Values of about $2,000 \mathrm{ppm} \mathrm{Ni}$ are taken as a common background value for ultramafic rocks.

Flatinum values obtained from various ultramafic hand specimens were generally quite low. The highest value obtained was 18 ppb . from the host rocks of a small chromite pod (CM-49). The high grade chromite sample yielded a value of 6 ppb platinum. In general, values were at or near the detection limit.

In general, gold values were very low. The exceptions were two hand specimens of massive chromite oxe which assayed 303 and $126 \mathrm{ppb} A u \quad$ respectively ($C M-50$, $C G-50$). The mineralogical studies of this material by C. Soux indicates that one fleck of gold was observed in polished sections.

3.2.4.2 Elise and Archibald Formations

Values for platinum were generally quite low throughout these units. The exception includes a couple of elevated values which were obtained from various volcanic units.

Values of 45 ppb and 52 ppb were obtained from samples CM56A (felsite dyke) and CM-63 (feldspar porphyry or deceit) respectively.

The highest gold value obtained was 53 ppb for sample CG-37, which is a highly stained siliceous agglomeratic andesite belonging to the Archibald Formation.

Rare-earths (C. Soux's Report).

3.2.5 Discussion-Economic Geology

The serpentinized dunite body at Castle Mountain is classified as an "alpine type", or ophiolite (Rublee, 1986), that is, a segment of ocean crust which has been tectonically emplaced amongst the volcanic and sedimentary rocks of the Jurassic Rossland Group. The presence of podiform chromite bodies within zones of shearing is typical of the lower portions of alpine ultramafic complexes as is the pervasive serpentinization of the dunite throughout all of the mapped area. tectonic layering (albeit, poorly developed) and sheared contact zones with the surrounding country rocks are also common features of this dunite body and of alpine ultramatites in general. Layered gabbros, pyroxenites and plagiogranites, all typical components of the lower portions of alpine suites and which generally overly dunites, are all absent. This indicates that the Castle Mountain ultramafite represents only a small and monolithologic portion of a larger ophiolite suite. The potential for platinum, chromite and gold deposits will be discussed individually in the following sections.

3.2.5.1 Flatinum Fotential

The potential for finding economic concentrations of platinum on the castle Mountain ultramafite depends on the possibility of discovering podiform chromite deposits and to a lesser degree on the likelihood of discovering copper-nickel sulphide deposits. This is due to the fact that several platinum values were obtained from chromite ore in the past, and also that platinum may be associated with nickel bearing sulphides. Both
types of mineral deposits, that is chromite and nickel, are known to occur within ophiolitic dunites, Sawkins, 1984 (pp. 138-157), and both types of mineral species have been identified on the property. Several chromite pods were mined in the past and minor background values of nickel are present throughout the dunite. Additionally, in alpine-type ultramafic bodies, most nickel occurs in solid solution within olivine, although small amounts may occur as disseminated sulphides. Commonly nickel sulphides are associated with gabbros and norites rather than dunites. Assays of nickel bearing dunite hand specimens, however, did not show any platinum enrichment. In general the platinum-group element content within nickel sulphides of alpine ultramafites is considered to by low by Naldrett and Cabri (1976).

FGE concentrations within podiform chromites of alpine complexes in oregon and California have also been shown to be very low-grade and uneconomic in a recent study by fage et al (1986). This study further suggests that the potential supply of by-product platinum-group elements from the mining podiform chromite is stall and thus most likely uneconomic.

3.2.5.2 Chromite Fotential

The potential for finding economic concentrations of chromite at Castle Mountain is very low. Mapping and prospecting on 50 metre grid lines has failed to reveal any chromitite showings. Frospection for concealed chromite pods is difficult since they cannot be readily detected by geochemical or geophysical means. The ubiquitous presence of accessory chromite throughout the ultramafic rocks masks detection of localized concentrations by magnetic surveys which cannot indicate concealed chromite because most chromite is less magnetic than its enclosing host rocks, Thayer 1973. Gravimetric and seismic methods cannot be used in areas of high relief and in fractured
and sheared rocks. Both these conditions prevail at castle Mountain. Consequently detailed prospecting is the most direct and efficient means for locating chromite showings. This is evident on the castle Mountain property from a number of hand-dug trenches and test pits at widespread localities within areas of sheared serpentinite. These were evidently excavated in search of chromite. These were evidently excavated in search of chromite. At the Midnight Area, a chromite showing of several cubic metres was excavated; a sample of "high grade" chromite from the ore dump contained only about 5.9% total $C r$ and only 6 ppb of Ft.

3.2.5.3 Gold Fotential

The gold potential of the serpentinite on purely geological evidence appears to be rather low. In general, the dunites are devoid of gold throughout the property, however they are rarely enriched to more than 100 ppb $A u$. No altered zones or structural features, such as faults or shear zones, have yielded elevated Au values. Contact zones between ultramafites and surrounding country rocks are often associated with sporadic gold values due to the generally elevated gold values commonly found in ultramafic rocks. The tectonism which accompanies the emplacement of oceanites into its ultimate host rocks contributes to the remobilization of gold along contact areas. A 20 metre contact zone between serpentinite and agglomeratic andesite, carefully sampled and assayed, yielded only one value of 19 ppb Au.

Some potential for gold may exist within the andesites and metasediments of the Rossland Group. The metasediments, in particular, are often sheared, pyritic and limonitic and could have provided a favourable geologic setting for gold deposition. Routine sampling of the shears yielded no appreciable gold values however. A sample of silicified pyritic andesite feldspar porphyry, located near a northwest fault, returned 34 ppb Au. The numerous faults which transect the property and the proximity of the late Eocene Coryell alkalic intrusives could all have contributed to gold forming processes on the Castle property.

Steiner (1986) reported that gold assays of 0.1 oz/ton were derived from "small, gold-bearing quartz veins" related to the Coryell intrusive rocks. These values were obtained during a dxilling program conducted by Chromex Ltd. in the vicinity of Trout Creek which is located on the Castle claims.

4. GEOCHEMISTRY

Values in the soil for chromium, nickel and platinum were generally equivalent to background levels for these elements in ultramafic rocks (fig. 5, 6, \& 7) . Contacts between the ultramafics and surrounding host rocks were well marked by a dramatic increase in values for these elements over ultramafic rocks. Gold values in the soil were somewhat more erratic with spot highs ranging up to 1,061 ppb (Fig. 4). Several high values exist between lines $1800 s$ and $2100 s$ east of the baseline. (Area B) Specific anomalies in this area are weak, however, there $i s$ a general trend in the contact area between the dunite and surrounding volcanics. The dunite which occurs in this area is distinct in that it has a peculiar orangered staining and is in general more highly altered than adjacent ultramafics. An additional anomalous zone occurs just east of (0.0) (Area A). This anomaly appears to be related to the dunite/volcanic contact which occurs here.

5. GEOFHYSICS

5.1 Discussion of Self Fotential and Ground Magnetic Surveys

Self potential data can be affected by three different factors. First and most importantly anomalies created by concentrations of minerals which dissolve in water and create a potential because of the ions produced. The second is topographic effect and is related to potentials which change with altitude. The third is organic in nature and can be detected on boundaries of organic growth, for instance between an open field and a densely wooded area. The self potential anomalies due to minerals are mainly related to pyrite and magnetite.

The self potential survey does not seem to have any organic anomalies but it definitely has mineral anomalies and probably some topographic effect because of steep slopes.

In the north of the grid (lines 00 to 900 S) the self potential data correlates well with the presence of pyrite in the rock. There is a 300 mv gradient between lines 00 and $100 S$ on the north-west side which is probably related to topographic effect. A more significant gradient starts between lines 300 S and $400 s$ at the north-west end of these lines. The gradient follows the north-west trend of unit 1 which is a metasediment with pyrite layering (fig. 9 and 3). This north-west trending gradient has localized gradients along its strike which correlate well with sulphide enriched areas mapped out by the geology. for instance, on line 500 S station 700 W there is a strong gradient related to float from unit 1 with 30 to 50% sulphides (fig. 9 and 3). Between lines 8005 and 900 there is a gradient on the north-west side from station 500W to 900W. This gradient is probably due to the same unit 1 as the previously discussed
gradient. This relationship is made because of the presence of unit 1 on line 800 s , stations 700 w to 800 w . Therefore this gradient probably represents the extention of unit 1 from that particular outcrop (Figs. 9 \& 3).

Another gradient which can be related to geological information is present on line 500 S station 450 F were we have unit 2 (agglomeratic andesite) with 5 to 10 sulphide concentration. Between lines 7005 and 800 on the south-east side there is a gradient of increasing voltage towards the south. This gradient probably represents a decrease in sulphide enrichment. Supporting geological fieldevidence, includes pyrite enriched rocks on line 700 S station 530 E , in contrast with a lack of pyrite enrichment on lines 800 s and 900 S (Fig. 9.\& 3).

The magnetic data along on the north grid shows a generally quiet field with no apparent trends. One magnetic anomaly exist here and is located on the base line 00 between 1505 and 2005 where there is the magnetite-enriched dunite (unit 5) (Fig. 8 \& 3).

In the south of the survey grid (lines 1600 s to 3100 s) there is an area of strong self potential and magnetic activity (Lines 1600 to 22005). The main rock type in this area is dunite (unit 5) which is rich in magnetite. The strong self potential gradients which occur here are due to a combination of the magnetite mineral and strong variations in the topography between the lines. The magnetic field in this area (lines 1600s to 220s) varies strongly but no clear trends can be determined. At the eastern tip of lines 17005 to 2000 the magnetic field is lower and relatively quiet. This corresponds to a change in rock type from dunite (unit 5), in the active magnetic are, to altered serpentinized dunite (unit 6) in the quiet area (Figs. 8 \& 3).

The remaining portion of the southern grid (lines 2300 s to 3100 S) has no magnetic data. Geological information shows a
lower proportion of dunite (unit 5) and the presence of feldspar porphyry dykes (unit 4) which contain no magnetite. The self potential data in this area shows a lack of strong gradients because of more level ground, less dunite and no significant sulphide concentrations. There is an additional significant self potential gradient between lines 2900 and 3000 on the northwest side which is probably due to a combination of a strong increase in the slope and the presence of a ultramafic rock with 1\% disseminated sulphides (Figs. $9 \& 3$).

5.2.1 Discussion of Airborne Magnetometer Survey Results

The results of the magnetic survey are shown in Figure 10 . The contour interval of the data is 500 gammas - a very coarse interval necessitated by the extreme magnetic relief encountered on the property. Ultramafic bodies are highly magnetic relative to other roak types.

The west-central portion of the claim area is an area of high magnetic field strength due to the presence of the ultramafic body. The area is also one of strong magnetic gradient, with values ranging from less than 500 to greater than 2500 gammas (relative to a datum level of 57000 gammas). This indicates that the ultramafic body is intruded by much less magnetic rock types, or simply that the magnetic mineral content of the body is erratic. The extent of the magnetically active zone indicates the extent of the ultramafic body.

The magnetic relief over the rest of the castle property is relatively gentle, although thexe is still significant variation - on the order of $100^{\prime} s$ rather than $1000^{\prime} s$ of gammas. Areas of higher magnetic field strength are probably due to the presence of andesite, which would be relatively magnetic with respect to the metasediments.

5.2.2 Airborne VLF-EM-Survey

The VLF-EM results are dominated by topography and the power line which traverses the castle property. There do not appear to be any significant zones of conductivity which are unrelated to topography or the power line, indicating that any possible sulfide zones are not large andor conductive enough to be detected by the airborne survey. Any conductive areas located under the power line or on ridge tops could not be distinguished from the interference of these features.

6. CONCLUSIONS

The serpentinized dunite body on the Castle and Candy claims represents the lower portion of an incomplete alpine ophiolite sequence which in the past contained several podiform chromite concentrations from which several platinum indications were derived.

Since the cessation of chromite mining prior to 1918, no new chromite pods have been discovered. The present exploration program of geological, geophysical and geochemical investigations have not revealed any new chromite showings. Consequently no new FGE indications were discovered.

As indicated by the unfavourable geology and the negative geochemical response it is unlikely that economic concentrations of platinum group minerals are present near surface on the property. It is also unlikely that new hidden chromite concentrations are present near surface in the mapped area.

The present exploration program was not exhaustive and was somewhat limited in scope to the ultramafite and portions of the contact areas and some of the country rocks.

There may be a limited potential for gold mineralization as shown by the soil geochemistry in the Castle feak area (Area A) and in the altered area in the southwest (Area B). A magnetic low, which is associated with Area B indicates significant alteration occurred in this area (Fig. 11). Some limited work should be devoted to determining the cause of the elevated gold values.

The potential for copper-nickel sulphides appears also to be non existent, due to the unfavourable rock types. Background nickel values of $2,000 \mathrm{ppm} \mathrm{Ni}$, such as those found throughout the property, are consistent with and common to alpine ultramafites.

7. RECOMMENDATIONS

A combined program of detailed geochemistry and geology, followed $u p$ by rrenching and sampling is being recommended to investigate the anomalous gold geochemical values in Areas A an B.

Froposed Cost for Fhase II A Frogram

flagged lines, 20 km @ $150 / \mathrm{km}$	\$ 3,000.00
Soil geochemistry, 150 samples @ $\$ 20.00$ including analysis	3,000.00
Analytical testing, 100 rocks @ \$15.00	1,500.00
Geologist 15 days @ \$300.00/day	$4,500.00$
Trenching/Bulldozing, allow	15,000.00
Engineering supervision, report	$8,000.00$
Contingencies	5,000.00

$$
5,000.00
$$

$$
\text { Total } \quad \$ 40,000.00
$$

Contingent upon favourable results from the fhase II A program, additional trenching, sampling and percussion drilling should be carried out to further evaluate the economic mineral potential of the property.

Froposed Cost for Fhase II B Frogram

Trenching and Sampling, allow	$\$ 15,000.00$
Drill Tests, allow	$30,000.00$
Geologist, allow	$5,000.00$
Report and Engineering	$5,000.00$

$$
\$ 60,000.00
$$

Total Fhase II A and II B $\$ 100,000.00$

References

Rublee, V.J. 1986 Occurrence and distribution of flatinum -Group Elements in British Columbia Open File 1986-7 Ministry of Energy, Mines and Fetroleum Resources.

Sawkins, F.J. 1984
Metal Deposits in Relations to Flate Tectonics, Ch. 5, Metallogeny of OceanicType Crust, pp. 138-157.

Naldrett, A.J. and Cabri, L. J. 1976, - Ultramafic and Related Mafic Rocks: Their classification and Genesis with Special Reference to the Concentration of Nickel Sulphides and Flatinum-Group Elements, Econ. Geol. Vol 71, pp. 1131-1158.

Eage, V.J., Singer, D.A., Moring, B.C., Carlson, C.A., McDade, J.M., Wilson, S.A., 1986, Flatinum-Group Element Resources in Fodiform Chromitites from California and Oregon, Econon. Geol. V 81, pp. 1261-1271

Thayer, T.F. 1973 Chromium, pp. 111-121, in United States Mineral Resources, D.A. Frobst and W.f. Fratt Eds. Geol. Survey frof. Faper 820.

AFFENDIX 1
 BREAKDOWN OF COSTS FOR fhase I EXfLORATION fROGRAM

COST BREAKDOWN

Geological mapping and sampling40 days＠\＄300／day $\$ 12,000.00$
Airborne VLF－EM and magnetometer survey 245.1 kilometers ＠ $100.00 / \mathrm{km}$ ． $24,510.00$
Analysis and assay costs $30,973.80$
IF standard linecutting45.25 kilometers ＠$\$ 350.00 / \mathrm{km}$ ． $15,837.50$
Flag and Hipchain Grid Establishment
$63 \mathrm{kilometers} @ \$ 100.00 / \mathrm{km}$ ．

$$
6,300.00
$$

Self－potential survey
34 kilometers＠\＄250．00／km．

$$
8,500.00
$$

Ground magnetometer survey
$27 \mathrm{kilometers} @ \$ 125.00 / \mathrm{km}$ ． 3，375．00
Camp Costs／consumables $8,503.70$
Engineering，relort preparation and supervision

$$
10,000.00
$$

CERTIFICATE

I, Frank DiSpirito, of the City of Vancouver in the frovince of British Columbia, do hereby certify:
I) I am a Consulting Engineer residing at 1319 Shorepine Walk, Vancouver, British Columbia, V6H $3 T 7$ for the firm of Shangri-La Minerals Limited, based at $706-675$ West Hastings street, Vancouver, B. C., V6B 1 N 2.
II) I am a graduate of the University of British Columbia (1974) and hold a Bachelor of Applied Science in Geological Engineering.
III) I am a registered member, in good standing, of the Association of frofessional Engineers of British Columbia.
IV) Since graduation, I have been involved in numerous mineral exploration programs throughout Canada and the United states of America.
V) This report is based on my personal visit to the property on September 13,1986 and on field work carried out by a Shangri-La Minerals Limited crew from October 7 to November 18, 1986.
VI) I have no direct or indirect interest in the property described herein, or in any securities of Nitro Resources Inc., nor do I expect to receive any.
VII) This report may be utilized by Nitro Resources Inc., for inclusion in a frospectus or statement of Material Facts.

Certificate

I, Helen C. Ground, do hereby certify:
I) I am a Consulting Geologist with the firm of shangri-La Minerals Limited at 706-675 West Hastings Street, Vancouver, British Columbia, V6B 1N2.
II) I graduated in 1980 from the University of British Columbia with Honours B.Sc. in Geology, and in 1982 with a M. Sc. in Geology.
III) I have been involved in mineral exploration since 1977.
IV) This report is based upon fieldwork carried out by this author and a Shangri-La Minerals Limited crew between October 7 to November 18, 1986.
V) I hold no direct or indirect interest in the property or in any securities of Nitro Resources Inc., or in any associated companies.
VI) This report may be utilized by Nitro Resources Inc. for inclusion in a Prospectus or Statement of Material facts.

Respectfully submitted at Vancouver, B.C.

CERTIFICATE

I, Henry M. Meixner, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:
I) I am a Consulting Geologist with the firm, shangri-La Minerals Limited, at 706-675 West Hastings street, Vancouver, British Columbia, V6B 1N2.
II) I graduated in 1969 from the University of British Columbia with a B.Sc. in Geology.
III) Since graduation I have been actively involved in mineral exploration and other geological studies in canada, U.S.A., the Middle East and Africa.
IV) This report is based on field work carried out by this author October 7 to November 18, 1986.
V) I hold no direct or indirect interest in the property or in any securities of Nitro Resources Inc., nor do I expect to receive any.
VI) This report may be utilized by Nitro Resources Inc. for inclusion in a prospectus or Statement of Material Facts.

Respectfully submitted at Vancouver, B.C.

thnhweizer

Henry M. Meixner, B.Sc. March 31, 1987

I, Martin St.-Fierre, of the City of Vancouver in the Frovince of British Columbia, do hereby certify:
I) I am a consulting Geophysicist with the firm of Shangri-La Minerals Limited at $706-675$ West Hastings Street, Vancouver, British Columbia, V6B 1N2.
II) I graduated in 1984 from McGill University in Montreal with a B.Sc. in Geophysics.
III) I have been involved in numerous mineral exploration programs since 1982.
IV) This report is based upon field work carried out by the author and crew of Shangri-Ia Minerals Limited from October 7 to November 18, 1986.
V) I hold no direct or indirect interest in the property or in any securities of Nitro Resources Inc., or in any associated companies, nor do I expect to receive any.
VI) This report may be utilized by Nitro Resources Inc. for inclusion in a frospectus or statement of Material Facts.

Respectfully submitted at Vancouver, B.C.

CERTIFICATE

I, J. Campbell Graham of the City of Vancouver in the Province of British Columbia, do hereby certify:
I) I am a Consulting Geophysical Engineer with the firm of Shangri-La Minerals Limited at 706-675 West Hastings street, Vancouver, B.C., V6B 1N2.
II) I graduated in 1985 with a M.Eng. degree in Geophysical Engineering and in 1982 with a B. Sc. in Geophysical Engineering from the Colorado School of Mines in Golden, colorado.
III) I have been involved in numerous mineral exploration programs since 1975.
IV) This report is based upon data collected by myself and a - Shangri-La Minerals Limited crew on October 8, 1986 and an evaluation of data collected by a shangri-Ia Minerals Limited crew between October 7 and November 18, 1986.
V) I hold no direct or indirect interest in the property described herein, or in any securities of Nitro Resources Inc., or in any associated companies, nor do expect to receive any.
VI) This report may be utilized by Nitro Resources Inc. for inclusion in a Prospectus or Statement of Material Facts.

CG-1	Upper Bowser Rd Grab
	Volcanic or metasediment, medium gray, finely crystalline. Skarn assemblage of minerals associated with fractures, minerals include garnet, diopside, calcite? calcopyrite and pyrite.
CG-2	Mastodon Grab
	Serpentinized dunite with white precipitate on surface (calcium, quartz)? taken from waste pile at Mastodon adit entrance.
CG-3	Mastodon Grab
	Relatively fresh unaltered dunite, lime green on weathered surface. 2% accessory chromite/magnetite. Taken from roof at entrance of Mastodon adit.
CG-4	Mastodon Grab
	Serpentenized dunite, visable tiny serpentine veinlets throughout. No visable accessory chromite or magnetite grains.
CG-5	Bowser Rd. Grab
	Altered volcanic (metasediment?) Large equigranular pyrite (2-3mm) grains (5\%). Iron stained on weathered surface, slightly vuggy in places (sulphides weathered out).
CG-6	Bowser Rd. Grab
	Well layered shaley/slate unit, heavily iron stained, more schistose in some places than others, very fine grained sulphides, particularily on fracture partings.
CG-7	Bowser Rd. Grab
	Basalt dyke; foliation marked by elongate hornblende phenocrysts. Dark gray aphanitic groundmass with primary mafic phenocrysts. Also contains quartzite clasts (5-i0cm).
CG-8	Bowser Rd. Grab
	Intensely foliated (layered?) volcanic, (metasediment) moderatedly siliceous, no staining or alteration.

CG-9	Bowser Rd. Grab
	Forphyritic Basalt (dark spots on pale gray background on weathered surface). Hornblende phenocrysts slightly elongated.
CG-10	Bowser Rd. Grab
	Highly stained meta argillate. Sulphides ~10\% occur as finely disseminated grains and small veinlets. Outcrop is well layered on a centimeter scale.
CG-11	Bowser Rd. Grab
	Well-layered sedimentary sequence, highly stained with disseminated pyrite and pyrrhotite (Magnetic) as well as thin massive pyrite seams which are conformable to bedding.
CG-12	Bowser Rd. Grab
	Mafic dyke, almost gabbroic (pyroxinite?). Disseminated pyrite (~5\%) coarse grained, crosscuts altered, chloritized sediments.
CG-13,	
CG-14	Bowser Rd. \quad chip 1 meter
	Two shears, one meter apart in stained argillites. Shears are $20-30 \mathrm{~cm}$ in width. (Shears are vertical.)
CG-15	Bowser Rd. Grab
	Meta-argillite, minor iron staining and disse-inated sulphides. Green on fresh surface. Tan/buff coloured on weathered surfaces.
CG-16	BLOO 400N Grab
	Intrusive mafic rock, salt and pepper texture, lightly magnetic, poorly developed foliation, some chlorite alteration.
CG-17	BLOO 425 N (Grab
	Forphyritic andesite, abundant biotite phenocrysts and plagioclase. 10 chlorite filled vugs (amygdules?) no obvious quality (Diorite, monzonite?).

CG-18	BLOO 475E	Grab
	Very fine grained, medium grey, andesité Minor foliation chloritization.	highly siliceous (mafics) some
CG-19	L600N 475 E	Grab
	Massive dark grey andesite. vesicles. Medium grey on weathered	chlorite filled rface.
CG-20	L600N 1000 E	Grab
	Highly mafic (Biotite-rich), non(basalt). Minor chloritization.	agnetic andesite
CG-21	L $725 \mathrm{~N} \quad 1150 \mathrm{E}$	Grab
	Heavily iron stained siliceous meta quartz lenses occur between layers.	rgillate. Drusy
CG-22	L950N 1175 E	Grab
	Siliceous limonite stained sediments disseminated through certain lay vaguely marked by colour changes.	with 5-10\% pyrite rs. Jayers are
CG-2 3	L1150S 50W	Grab
	Iron-stained siliceous meta-sed (arg disseminated pyrite. Sample, taken deep 8^{\prime} wide and 20^{\prime} long. Rough la	```llate) with finely rom old trench 5' ering is visable.```
CG-24	L150S 600W	Grab
	Fine-grained andesite with some ru Very minor, fine-grained disseminate	ty stained vugs. sulphides.
CG-25	L80S 205	Grab
	Fine-grained andesite. Iron stainin very finely disseminated pyrite.	on fractures 2-3\%
CG-26	L175s 00w	Grab
	Serpentinized dunite, dark bluis surface. Rusty buff coloured on wea	black on fresh ered surface.

Grab
Slightly iron stained andesite, blocky massive, hornblende phenocrysts on weathered surface.

L475S 1025W
Grab
Shaly -eta-seds (argillate) well-developed layering with rusty limonite on shaly partings.

L475S 1075W
Grab
Medium grained intrusive rock, distinctive pinkish colouring on fresh surface, probably diorite.

L500S 375W
Grab
Small outcrop of slaty meta-sediments. Hematite stained. Very fine grained no visable mineralization.

L475S 450W
Grab
Very aphanitic, siliceous greenstone (originally andesite) extremely hard, rings when hit. No visable sulphides. Very minor iron staining.

L775s 50W
Grab
Salt and pepper intrusive rock, highly magnetitic, minimal alteration. Isolated outcrop. Frobably a gabbro dyke.

L700S 500W
Grab
Highly siliceous, heavily iron stained metasediment -10; finely disseminated sulphides.

L575S 825W
Gxab
Blackish green, highly magnetic volcanic rock. Moderately chloritized, aphanitic (looks like basalt).

L8505S 1000W
Grab
Dark coloured magnetic volcanic rock looks similiar to CG-34 but is not basaltic because of ${ }^{5 \%}$ quartz blebs throughout andesite).

CG-36	工725S 550E Grab
	Agglomeritic andesite which is heavily iron stained and contains 2-3\% disseminated pyrite.
CG-37	L525S 300E Grab
	High stained siliceous volcanic with 5-10\% finely disseminated sulphides. Agglomertic andesite with multilithic well-rounded clasts.
CG-38	L200S 75E Grab
	Highly serpentinized grundgy dunite. All textue (smali-scale) feathers and distinctive minerals have been obliterated by serpentinizations.
CG-40	L875S 650W Grab
	Alphanite andesite, dark yreyish black with abundant bright green epidote on fracture partings, highly magnetic.
CG-41	L550S 865W Grab (dump)
	Very old hand dug trench (6' wide $x 5^{\prime}$ long). The sample is from some waste material beside trench (no outcrop in vicinity). Rock is siliceous, heavily stained with limonite. Contains up to 20% disseminated sulphides (mainly pyrite) in vague seams. Could be either volcanic or metasediment.
CG-42	L1875S 50E Grab
	Very hard jade green serpentine (looks similiar to jade) contains -5-10\% disseminated metallic mafics (magnetite and chromite).
CG-43	L1900S 125 E (Grab
	Sample from large outcrop of serpentinized dunite. Appears to be in a shear zone which trends at $N 45^{\circ} E$. Hard rounded clots of more resistant material are stuck in the sheared material. CG-43 is one of these clots.

CG-44	L1900S 450E Grab
	Serpentinized dunite has a unique texture on a fresh surface consisting of pistachio green and bluish black vaguely alternating stripes. These are crosscut by bluish black veins and the whole rock contains ~ 5 \% accessory magnetite/chromite.
CG-45	L1900S 900E Grab
	Volcanic taken from bluffs of steep gully. Volcanic is highly silicified (almost hornfelsed). Steep gully has appearance of fault.
CG-46	工1875s 1050E Grab
	Very peculiar ultramafic, orange hematitic red staining pervasively throughout the rock. Still highly magnetic with visable magnetite/chromite grains.
CG-47	L1900S 1200E Grab
	Sample from large outcrop of grundgy ultramafic, some orange red staining. 1 grain of sulphide with slightly bronzy colour (pentlandite?).
CG-48	L1975S 875E Grab
	Black mafic (intrusive rock) some serpentinization, somewhat cxystaline in texture, highly magnetic (Gabbro).
CG-49	L1675 1025E Grab
	Red-yellow stained serpentinized dunite.
CG-50	L1770S 275 W (Grab
	High grade chromite ore from dump. Host rock in cut is pale green serpentinized dunite, appears to be quite sheared.
CG-51	L2150S 300E Grab
	Fistachio green dunite with black seams of serpentine. Chromite/magnetite grains are slightly concentrated along these dark seams.

CASTLE FROJECT - HAND SFECIMEN
 (for localities see Figure 3)

CM49	Serpentinized dunite - host rock to chromite ore.
CM5 6A	Felsite dyke cutting CM56A, plagioclase porphyry andesite, assay sample.
CM6 3	Andesitic to rhyolitic rock; a feldspar, hornblende porphyry with 5\% quartz eyes; dacite?
CM 72	Andesite - to fine grained diorite with disseminated pyrite.
CM 73	Serpentinized dunite ox gabbro, magnetic fine grained.
CM 74	Andesite - near contact with ultramafic - pyrite.
CM 75	Serpentinized dunite (peridotite?), magnetic near ultramafic contact.
CM76	Serpentinized dunite - bluffs at 500 W .
CM 77	Andesite, disseminated pyrite at contact zone at 500 N approximately.
CM79	Serpentinized dunite L1650 S and 1250 W .
CM 80	Sexpentinized dunite.
CM81.	Flagioclase porphyry - andesite porphyry, pale green rock, white euhedral feldspars in light green groundmass.
CM8 3	Sexpentinized dunite.
CM8 4	Quartz feldspars porphyry (cf. CM63) - pyrite, loz quartz-eyes, with laths like CM63.
CM86	Hornblende porphyry, magnetic, Gabbro?- Diorite?Andesite?
CM87	Hornblende porphyry - gabbro?, magnetic same as CM86.
CM8 8	Flagioclase porphyry - gabbro?

CM91 Gabbro or basalt, fine grained dark grey rock -

CM92 Andesite, feldspar-porphyry - plagioclase and

CM89

CM90

CM9 3

CM9 4

CM95A

CM96

CM9 7

Serpentinite, serpentinized dunite, magnetic.
Andesite or poorly developed feldspar porphyry. - poor hornblende laths in feldspathric groundmass - poorly developed plagioclase phenos. biotite. hornblende phenos in quartz-feldspar-hornblende groundmass.

Latite? Feldspar, hornblende porphyry - quartz eyes 2\%, hornblende laths, plagioclase phenos, pale green rock, much paler than CM92.

Flagioclase porphyry - (similar to CM93) well developed plagioclase phenos, less hornblende, 10z+ quartz eyes same rock type as CM93.

Agglomeratic andesite, fine grain, schistose, siliceous, abundant pyrite in fractures and disseminated.

Andesite (agglomeratic andesite) - schistose, siliceous, 3% pyrite; calcite alteration.

Flagioclase porphyry - plagioclase hornblende prohyry - very coarse texture, - plagioclase phenos, some hornblende phenos, no quartz eyes.

EXPLANATION ON THE USE OF THE VANDEVEER DIAGRAM

A NEW DIAGRAMATIC SCHEME FOR PARAGENETIC RELATIONS OF THE ORE MINERALS

The ore minerals are arranged on the circumference of a circle and represented by smaller circles. Lines connect each pair of minerals which are observed to be in contact. An arrowhead points toward the mineral replaced where replacement textures are represented. The absence of arrows indicates simultaneous deposition. Minerals formed by exsolution are attached to the primary minerals by a line to the exsolution mineral point, which is outside the hypogene ore mineral circle. Supergene minerals are arrranged on an outer arc and connected by lines to the hypogene minerals which are replaced. The density of the connecting lines in the diagram indicates semiquantitatively the relative replaceability of the host minerals.

After Forbes Robertson and Paul L. Vandeveer
Department of Geology,
Montana School of Mines,
October 16, 1951.

Example: (Above diagrarn)

Pyrite is replaced by sphalerite, galena and goethite. Arsenopyrite is replaced by galena and pyrite. Galena is replaced by sphalerite. Chalcopyrite is in contact with pyrite and sphalerite, but there is no evidence of replacement. Goethite and arsenopyrite are observed to be in contact. Sphalerite contains exsolution blebs of chalcopyrite and pyrrhotite.

For: Shangri La Minerals
Project : Castle Claims
Sample: CO-9K (Meg)

Location:
Collector:
Date Analyzed : March 10, 1987

MACROSCOPIC DESCRIPTION:

Ferromagnetic product of pan concentrate of sample co-9.
MICROSCOPIC ANALYSIS IN POLISHED SECTION

Abr.	Mineral	Chem. Formula	\$	Description
Mag	Magnetite	$\mathrm{FeFo2O4}$	88	
Chr	Chromite	(Cr,A1,Fe)2 04	<1	Replaces? Mag
Py	Pyrite	$\mathrm{FeS2}$	1	Replaced by Gt
Gt	Goethite	FeOOH	1	Replaces Py
Cpy	Chalcopyrite	CuFeS	$《 1$	Inclusions in Py
Gg	Gangue		10	Associated with Mag

Gt

Yandeveer Diagram

TEXTURES AND DESCRIPTION:

- The sample is composed mainly of magnetite. All other minerals present are seen to be intergrown with this mineral.
- Pyrite is replaced by Goethite and contains inclusions of Chalcopyrite,
- Chromite is closely associated with magnetite. These two minersls display a mutual boundary texture. The replacement of magnetite by chromite is inconclusive.

For: Shangri La Minerals
Project : Castle Claims
Sample: CO-7 (N Mag)

Location:
Collector :
Date Analyzed: March 10, 1987

MACROSCOPIC DESCRIPTION:
Non magnetic product after magnetic separation of pan concentrate at an intensity of 1.5 Amps.
(Frantz separator was used.)
MICROSCOPIC ANALYSIS IN POLISHED SECTION

Abr.	Mineral	Chem. Formula	\%	Description
Py	Pyrite	Fa S2	10	
Mrc	Marcasite	Fe S2f	1	Gt in part Intergrown with Py
Gt	Goethite	FeOOH	5	Replaces Py
Ru	Rutile	Ti 02	1	Discrete grains
Cpy	Chalcopyrite	CuFeS 2	<1	Discrete grains
Au	Gold	Au	<1	Free
Chl	Chloritoid		10	Frees
Gg	Gangue		73	Mainly frea

Vandeveer Diagram

TEXTURES AND DESCRIPTION:

- Pyrite is seen to be replaced by goethite in part.
- Marcasite is intimately intergrown with pyrite and replaces it.
- Two particles of free gold and one intergrown with quartz were observed.

For: Shangri La Minerals
Project : Castle Claims
Sample: CO-12K

Location :
Collector :
Date Analyzed : March 10, 1987

MACROSCOPIC DESCRIPTION:
Pan concentrate of sample CG-12.
MICROSCOPIC ANALYSIS IN POLISHED SECTION

Abr.	Mineral	Chem. Formula	\$	Description
Py	Pyrite	Fe S2	5	Replaced by Gt
Pyrr	Pyrrhotite	Fe S	4	Replaced by Gt in part
Gt	Goethite	Fe OOH	6	Replaces Py
Chl	Chloritoid		20	Free particles
Mag	Magnetite	Fe Fe2 04	2	Discrete grains
Nicc	Niccolite	Ni As	1	Discrete grains
Gg	Ganguo		72	Discrote perticles

TEXTURES AND DESCRIPTION:

- Pyrite is replaced to a large extent by Goethite.
- Magnetite is intergrown with minor amounts of ilmenite.
- Niccolite, chloritoid, and gangue are present mainly as free particles with no association to other minerals.

MINERALOGRAPHIC REPORT
by C. L. Soux

For: Shangri LaMinerals
Project : Castle Claims
Sample: CO-43K

Location :
Collector:
Date Analyzed : March 10, 1987

MACROSCOPIC DESCRIPTION:
Pan concentrate of sample CO-43, with ferromagnetic fraction removed.
MICROSCOPIC ANALYSIS IN POLISHED SECTION

Abr.	Mineral	Chem. Formula	\%	Description
Py	Pyrite	Fes2	5	Free particlos
Mill	Millerite	NiS	5	Free particles
Chr	Chromite	($\mathrm{Cr}, \mathrm{Al}, \mathrm{Fe}$) 204	2	Free particles
Apy	Arsenopyrite	FoAs S	1	Free particlas
Msg	Magnatite	$\mathrm{FeFe}^{\text {F }} 04$	<1	Fres particles
Ru	Rutils	Ti 02	1	Frea grains
Chi	Chloritoid		2	Free grsins
Gg	Gangue		85	Contsins inclusions of Ru and Mag

TEXTURES AND DESCRIPTION:

- The sample is composed mainly of free particles of minerals.
- Gangue, mainly quartz, contains inclusions of rutile and magnetite.
\qquad

For: Shangri Le Minerals
Project : Castle Claims
Sample: CO-9K (0.5A.)

Location:
Collector :
Date Analyzed : March 10, 1987

MACROSCOPIC DESCRIPTION:
Magnetic product at 0.5 Amp of panned concentrate from sample CO-9. (Frantz isodynamic separator was used.)

MICROSCOPIC ANALYSIS IN POLISHED SECTION

Abr.	Mineral	Chem. Formula	8	Description
Chl	Chloritoid		90	
Py	Pyrite	$\mathrm{Fe} \mathrm{S2}$	3	
Gt	Goethite	FeOOH	3	
llm	Ilmanite	$\mathrm{Fe} \mathrm{Ti} \mathrm{O3}$	2	
Mag	Magnetite	$\mathrm{Fe} \mathrm{Fe2O4}$	<1	
Cal	Calcite	$\mathrm{Ca} \mathrm{CO3}$	2	

Vandaveer Diagram

TEXTURES AND DESCRIPTION:

- Most abundant mineral is chloritaid.
- Ilmentte is intimately intergrown with calcite, displaying a mirmekitic texture. Calcite replaces ilmenite and magnetite.
- Pyrite particles are partly replaced by goethite.

ACME ANALYTICAL LABORATORIES LTD. B52 E.HASTINGS ST.VANCOUVER B.C. VGA 1RG PHONE 253-3158 DATA LINE 251-1011

WHGLEFFGCF゙ エCFーMS ANALYEIS
． 100 gram sample fused hith likio and leached hith 52 hndo．hmalysis ai icp－hass spectroneter．

SHANGRI－LA MINERALS FROJECT：CASTLE $+1 J 川$ A Ho－sibi Faat 1

SAMPLEI		Kb	${ }^{\gamma}$	Ir	Nb	Sn	C_{5}	La	Ce	Fr	Hd	5	Eu	6 d	It	Ur	Ho	Er	Tı	tb	Lu	Hf	12	W	Th	U
	PFA	PP成	PPK	PPM	FFM	PPH	PPF	PPM	PPM	PPM	PPK	PPM	PPM	FPM	PFK	PPM	PFM	PPK	PPA	PFH	PPK	PFh	FPM	PF／	PPH	PPK
c6－5	10	52	25	87	4	2	2	14	30	5	17	31	1	2	1	4	1	2	1	2	1	3	1	3	5	2
CG－5	10	75	20	111	3	2	3	13	27	2	16	35	1	3	1	3	1	2	1	2	1	2	1	2	5	3
C6－i	10	77	26	213	17	2	5	66	126	9	59	69	2	4	1	4	1	2	1	2	1	6	1	2	14	3
［8－8	10	85	20	87	3	2	4	14	30	2	16	32	1	2	1	3	1	2	1	2	1	2	1	2	1	2
［5－9	10	134	27	279	34	2	4	74	140	4	61	85	2	4	1	4	1	2	1	3	1	1	2	2	27	6
C6－10	10	81	20	90	4	2	4	15	27	2	17	34	1	3	1	2	1	2	1	2	1	2	1	2	b	4
C6－11	10	55	21	97	4	2	4	15	31	2	18	45	1	2	1	3	1	2	1	2	1	4	1	2	5	2
C6－12	10	89	29	199	27	2	3	47	174	12	81	104	3	d	1	4	1	2	1	3	1	6	1	2	14	3
C6－13	10	78	21	92	3	2	4	17	31	3	17	39	1	2	1	3	1	3	1	3	I	3	1	2	5	2
Cf－14	31	66	22	112	5	2	2	17	37	3	20	37	1	3	1	4	1	2	1	3	1	3	1	3	5	3
［6－15	10	35	23	84	4	2	3	21	43	3	27	43	2	J	1	3	1	2	1	2	1	3	1	2	5	2
CH－50	10	2	2	2	2	2	2	1	2		1	6	1	1	1	，	1	1	1	1	1	1	1	2	1	1
CK－54	10	42	18	69	3	2	5	10	23	2	13	23	1	2	1	2	1	1	1	2	1	2	1	2	3	1
CH－55	10	2	2	8	2	2	2	1	2	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cr－5b	10	06	19	81	3	2	9	15	38	2	19	44	1	2	1	3	1	2	1	3	1	2	1	2	3	2
$\mathrm{CH}-57$	10	25	12	42	2	2	2	10	20	1	10	19	1	1	1	2	1	1	1	1	1	1	1	10	3	2
CM－66	10	3	2	5	2	2	2	1	2	1	1	3	1	1	1	，	1	1	1	1	1	1	1	2	1	1
CH－69	10	48	11	79	4	2	1	19	44	3	24	36	1	3	1	3	1	2	，	3	，	2	，	20	5	2
CM－71	10	110	24	88	4	2	5	22	41	3	24	37	1	3	1	3	1	2	1	3	1	3	1	7	5	3
detection	10	2	2	2	2	2	2	1	2	1	1	1	1	1	1	1	1	1	1	1				2		3

WHOLE FRGCK ICF ANALYSIS

－SAKPLE TYPE：ROCk CHIPS

SHANGRI－LA MINERALS FFOJECT－CASTLE FILE \＃86－3281 F•AG，！

SAIMF＇LE＊	$\begin{array}{r} S_{1} 02 \\ \% \end{array}$	$\text { Al } 205$	$\begin{array}{r} \text { Feno } \\ \vdots \end{array}$	Mo $\%$	$\begin{array}{r} \text { Cas } \\ \% \end{array}$	$\begin{array}{r} \mathrm{Na} \mathrm{G} \\ \% \end{array}$	$\begin{array}{r} \text { r } \because \dot{O} \\ \% \end{array}$	בי'י T	$\begin{array}{r} \text { F.205 } \\ \% \end{array}$	Mnc $\%$		$\begin{array}{r} \mathbf{E}_{c 1} \\ \mathrm{FFM} \end{array}$	101	Srina
CG－S	58.16	16.04	7.30	3.10	5.77	$\because .09$	2．－5	． 07	． $2 \boldsymbol{\square}$	． 15	－1	1675	$\because .1$	100，ce
CG－6	59.78	16.05	5.92	3.05	5.98	$=.20$	1.85	． 69	． 24	． 08	． 01	1105	4.4	100． 10
CG－7	57.54	15.00	7.69	4.31	6.19	2.75	3.19	． 96	． 51	.10	． 01	1900	1.4	100
CG－G	58.66	15.91	6.97	2.68	7.65	2.50	3.75	． 68	． 24	． 16	－ 01	2421	． 6	109．08
CG－9	58.76	15.47	6.71	3.49	5.19	2.95	4.15	． 91	． 41	． 09	－ 01	1564	1.7	100.15
CG－10	60.79	15.77	6.45	2.30	3.12	2.90	2.90	． 67	． 18	． 05	． 01	1776	4.7	100.11
CG－11	62.52	15.73	5.91	2.11	4.29	2.65	2.05	． 73	． 22	． 08	．01	1196	3.4	100.15
CG－12	$5 こ .92$	15.56	9.74	4.75	6.46	2.80	3.90	． 98	． 73	． 12	－01	2155	1.7	100.07
CG－13	61.37	16.46	6.36	2.60	1.91	3.35	2.90	． 75	． 18	.07	． 01	1604	$\pm .8$	$100^{2} 67$
C6－14	58.77	17.15	7.54	2.94	1.34	4.70	2.40	.76	.20	． 08	． 01	1368	4.0	100． 15
CG－15	55.19	16.12	8.59	5.14	6.38	4.70	1.05	． 89	． 44	． 13	． 01	418	1.4	100． 11
Cill－50	25． 26	11.09	17．ここ	22.89	1.86	． 65	． 15	.19	． 06	1.06	12.75	18	6.9	90.49
CM－54	57.14	13．52	5.85	2.14	9.90	2.45	1.65	． 5	． 19	． 17	． 4.46	857	0.6	10.19
Crioss	48.00	．63	9.92	24.16	． 15	． 0	． 15	－0．1	． 10	.12	1.15	11	14.7	09.12
CM－56	57.44	15.57	7.42	3.23	5.49	3.30	2.40	． 63	． 24	． 13	.19	1391	3.4	100．12
CM－57	86.95	4.44	2.95	1.39	－ 26	． 05	． 95	． 19	． 13	． 02	．07	317	2.6	100.06
CM－66	97.81	． 81	． 60	． 06	． 08	． 30	.10	． 01	． 01	． 01	.01	30	． 4	100.21
C1－69	51.35	15.61	10.10	4.77	5.77	4.20	1.75	． 80	． 42	． 17	.01	593	5.0	100.06
CM－71	56.39	16.95	7.53	2.50	7.27	1.15	4.15	． 70	． 35	． 18	． 61	1748	2.5	100.02
STD SO－4	67.70	10． 5	5.45	． 99	1.65	1.40	2.00	． 55	． 23	.07	－61	768	11.5	100.03

ACME ANALYTICAL LABDFATORIES LTD.
BS2 E.HASTINGS ST.VANCOLVER B.C. VGA 1RG PHDNE 253-3158 DATA LINE 251-1011

DATE RECEIVED: NOV f 1986
DATE REPORT MAILED:

GEDGHEMIEAL ICFAMALYEIS

CR - . 1 GM SAMPLE IS FUSED hith mazoz and leached uith 3-1-2 HCL-hho3-h2O. - SAMPLE TYPE: ROCK CHIPG PDit RHIz by fa-Ms.

ASSAYER: NEMETVEAN TOYE. CERTIFIED B.C. ASSAYER.

SHANGRI-LA MINERALS

10.0 gran baffle is fire assay concentrated. The solution of theodore bead is analyzed by icp/xs. CR $\& \mathrm{HI}$ HR FUSION /IMP.
 SHANGRI-LA MINERAL File \# 87-0044R Fade 1

SHANGRI－LA MINERAL FILE \＃87－0044 R

SAMFLE\＃	$\begin{aligned} & \text { Aul } \\ & \text { FPB } \end{aligned}$	$\begin{aligned} & \text { F't } \\ & \text { F'FB } \end{aligned}$	$\begin{aligned} & \text { F'd } \\ & \text { F'F } \end{aligned}$	$\begin{array}{r} \mathrm{FH} \\ \mathrm{FFB} \end{array}$	$\begin{gathered} \Sigma r \\ F F M \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{~F} \cdot \mathrm{~F} \cdot \mathrm{M} \end{gathered}$
DDH－33 23047	4	こ	2	2	135	47
DDH－93 23048	27	3	3	z	くもご	260
DDH－33 23049	7	－	4	2	185	G\％
DDH－34 こ0351	$こ$	E	2	2	215	15.45
DDH－34 20352	1	2	2	2	2506	1657
DDH－34 20353	2	6	5	2	2268	1562
DDH－34 20354	4	5	8	3	2359	163%
DDH－34 20355	5	10	13	2	2875	162G
DDH－34 20356	5	7	2	2	2747	16ごЭ
DDH－34 20358	1	5	9	2	158日	1204
DDH－34 20359	2	7	5	2	2431	13.2
DDH－34 20360	2	2	2	2	$E E$	36
DDH－34 20361	1	2	2	2	47	30
DDH－34 20362	2	2	4	2	320	72
DDH－34 20363	7	3	2	2	77	52
DDH－34 20364	1	2	ϵ	2	240	137
DDH－34 20365	1	11	ε	$\underline{ }$	2383	1509
DDH－37 23033	－	2	2	2	223	123
DDH－37 23035	4	2	2	2	48	37
DDH－37 23036	$: 0$	2	2	2	28	23
DDH－37 23037	5	3	3	2	79	ES
DDH－37．2303日	9	3	3	2	37	2
DETECTION LIMIT	1	2	2	2	5	5

GEOCHEMICAL ICP ANALYSIS

. 500 gran sample is digested with 3ml 3-1-2 hCl-hmo3-h20 at 95 deb. c for one hour ahd is diluted to 10 hl with uater.

SAMPLE TYPE: P!-ROCK P249 SOIL AUSI PTII DY FA-MS.

SHANGRI-LA MINERALS FRROJECT - CASTLE FILE\# B6-3759
FAGE 1

SAMPLES	Ho	Cu	Pb	$2 n$	kg	N_{1}	Co	Mn	Fe	As	U	Au	Th	$5 r$	Cd	5b	E_{1}	v	Ca	f	12	Cr	Ho	Pa	TI	,	Al	Hz	K.	Y	Autt P	PtII	Crt
	Prn	PPM	PPM	PPK	PPM	PPK	PFF	PPM	2	PPM	PPM	PPK	PPM	PPM	PPM	PPH	PPK	PPM	I	2	PPK	PPr	1	PPM	1	PFM	I	I	2	PM	PPg	PP1	PPM
C6-32	1	23	14	67	. 2	5	9	401	4.03	10	5	ND	1	63	1	2	2	146	1.34	. 172	2	7	. 44	71	. 16	2	. 89	. 13	. 08	!	5	5	12
C6-33	1	27	16	95	. 2	15	13	459	4.89	9	5	Ng	1	37	1	2	2	123	. 77	. 047	2	20	1.22	27	. 23	2	1.37	. 15	. 22	i	5	2	14
C6-34	1	32	12	154	. 1	19	12	776	6.07	2	5	ND	2	26	1	2	2	149	. 62	. 089	2	21	1.25	108	. 30	2	1.41	. 12	. 60	1	12	2	31
C5-35	1	15	1	121	. 2	34	13	722	5.32	10	5	mb	2	33	1	2	2	166	. 64	. 116	2	45	1.24	22I	. 35	3	1.50	. 12	. 78	1	4	2	6
[6-36	1	19	10	61	.1	6	¢	418	4.95	11	5	ND	2	39	1	2	2	114	. 55	. 104	2	12	. 46	35	. 31	1	. 88	. 08	.76 .15	1	11	2	14
C5-37	3	38	39	83	. 7	5	5	333	2.95	10	5	ND	2	53	1	2	2	106	. 67	. 066	2	12	. 76	23	. 13	2	1.79	. 19	. 11	1	53	2	12
C6-38	3	6	1	54	. 1	2455	88	796	4.83	261	5	N0	1	J	1	2	,	8	. 05	. 013	2		24.94	5	. 01	53	. 05	. 03	. 01	1	5	2	256
C6-39	5	1	2	41	1	2266	83	718	4.50	210	5	MD	1	3		2	2	10	. 04	. 008	2		25.04	3	. 01	60	. 04	. 03	. 01	2	9	3	2679
C5-40	1	89	1	79	. 3	13	11	641	3.29	6	5	KD	2	54	,	2	2	92	1.35	. 084	2	21	1.07	123	. 22	3	1.39	. 14	. 32	1	7	2	46
C5-41	1	29	22	96	. 2	21	12	408	4.84	b	5	no	2	43	1	2	2	89	. 85	. 089	2	19	1.01	24	. 23	2	1.60	. 15	. 11	1	27	2	28
	1	27	16	107	. 2	17	12	384	4.91	4	5	ND	1	43	1	2	2	81	. 89	. 091	2	14	. 90	23	. 24	2	1.58	. 15	. 11	1	t	2	47
C- -12	3	6	2	29	. 1	1762	64	340	3.10	22	5	WD	1	2	1	2	3	14	. 19	. 005	2		21.27	12	. 01	156	. 27	. 03	. 01	2		6	2493
C6-43	1	3	6	47	. 1	2339	13	968	4.16	22	5	KD	1	2	1	2	2	15	. 36	. 005	2		21.36	2	. 01	269	. 08	. 04	. 01	5	3	1	3478
C5-4	1	4	6	28	.1	2501	91	126	6.01	54	6	ND	1	11	1	2	J0	12	1.11	. 007	2	1042	26.19	11	. 01	149	. 09	. 06	. 02	1	15	3	6797
CS-45	1	5	1	57	.2	13	3	172	2.20	7	5	ND	1	104	1	2	9	45	1.70	. 073	6	,	. 70	24	. 12	6	. 84	. 06	. 01	i	3V	2	12
c6-46	4	14	20	30	J. 1	1113	51	501	3.67	26	114	$7{ }^{\prime}$	14	16	1	2	35	10	. 10	. 009	2	341	14.10	0	. 01	20	. 03	. 03	. 19	12	5	3	2667
CE-47	2	8	5	32	.1	1172	68	165	4.37	11	5	HD	1	21	1	2	3	12	. 07	. 007	2		18.48	7	. 01	40	. 07	. 03	. 01	12	5	1	274
CS-41	4	15	$!$	65	1	1924	65	534	3.00	128	5	WD	1	135	2	2	2	5	1.38	. 006	2		20.57	8	. 01	133	. 04	. 04	. 01	1	$34 \sim$	3	3721
C6-49	2	J	1	24	.1	1548	72	680	5.08	10	5	WD	1	20	1	2	7	7	. 16	. 007	2		15.52	18	. 01	19	. 03	. 03	. 01	1	1	2	6087
Cf-50	1	2	2	66	. 2	542	21	1185	1.43	2	5	HD	1	20	!	7	20	17	. 22	. 003	2	1111	7.09	3	. 01	31	1.18	. 03	. 01	1	126	4	51918
CE-5I	4	6	5	21	. 1	2178	11	709	4.91	13	6	ND	1	1	1	2	3	5	. 09	. 007	2		22.13	2	. 01	160	. 03	. 03	. 01	3	1	2	3775
L500S 15014 C	1	23	14	61	. 4	42	12	354	3.04	2	6	ND	12	119	1	2	2	76	1.30	. 247	33	93	1.39	230	. 32	4	1.69	. 16	. 27		2	2	124
15005001 C	1	14	14	85	. 2	24	11	456	J. 82	4	5	ND	8	109	1	2	2	100	1.01	. 203	21	47	1.38	220	. 30	4	2.01	. 16	. 50	2	6	2	181
STD C/FA-5X	22	61	43	144	7.1	75	30	1070	3.89	43	19	8	32	48	19	17	19	65	. 41	. 108	38	61	. 68	176	. 08	35	1.73	. 07	. 11	13	104	97	1.

- An Inteffuace from U
sakplet

:	$\stackrel{5}{5}$	$2!$	172	\therefore	$2!$	11	E2E	2.71	1?	5	NL	5	90	:	2	3	5	. 6 !	. ${ }^{-}$	10	IE	. 55	271	.:	4	$\therefore \mathrm{C}$. 05	. 26	:	!2	3	14
1	19	21	145	. 1	9	4	2189	1.55	,	5	HD	1	80	1	2	2	29	. 52	. 201	5	14	. 25	373	. 19	4	1.39	. 05	. 12	1	1	2	J0
2	31	19	155	. 2	14	10	1541	2.59	27	5	N	2	69	1	2	2	45	. 47	. 179	E	17	. 35	252	.17	4	2.48	. 0	. 12	1	12	2	34
2	26	17	128	. 1	14	10	1070	2.78	11	5	HD	2	72	1	2	2	46	. 48	. 078	5	13	. 38	103	. 10	3	1.88	. 04	. 13	1	5	2	34
1	$2 t$	24	200	.2	17	11	16t9	3.12	23	5	ND	3	73	2	6	2	52	. 46	. 132	5	19	. 35	271	.!2	4	2.34	. 05	. 12	1	2	2	36
1	29	22	$1{ }^{191}$. 1	16	9	764	2.81	21	5	ND	3	18	1	2	2	48	. 30	.188	8	17	. 37	194	. 15	5	2.49	. 05	. 14	1	5	2	40
1	40	25	181	. 7	19	15	1667	3.85	19	5	ND	1	122	1	2	2	87	1.10	. 197	1	20	. 84	165	. 06	4	1.77	. 05	. 15	1	5	2	J6
2	32	14	136	. 3	14	9	1571	2.58	20	5	HD	3	77	1	2	2	42	. 78	. 133	B	15	. 30	155	. 11	4	2.21	. 15	. 11	2	17	2	32
2	35	22	162	. 2	19	11	1241	3.62	33	5	HJ	3	65	1	2	3	54	. 43	. 125	10	18	. 44	168	. 13	3	2.75	. 05	. 13	2	3	2	91
1	23	13	131	. 2	17	8	1252	2.37	6	5	HD	3	72	1	3	2	49	. 88	. 067	10	17	. 36	157	. 12	4	2.14	. 05	. 13	1	25	2	38
?	33	34	177	. 2	24	10	2003	4.56	17	5	ND	1	136	2	,	2	82	1.14	. 134	2	20	. 61	154	. 08	J	2.23	. 08	. 22	.	1	2	37
2	26	38	192	. 3	16	10	1670	3.63	17	5	ND	2	75	2	2	2	74	. 56	. 131		20	. 57	180	. 10	4	2.45	. 05	. 24	,	2	2	36
2	21	11	149	. 4	17	7	1082	3.88	13	5	ND	4	4	1	§	2	87	. 39	. 109	8	22	. 66	178	. 13	2	2.62	. 05	. 30	1	1	2	47
1	18	11	140	. 1	14	7	636	2.62	11	5	KD	3	57	1	2	1	56	. 33	. 115	8	19	. 40	183	. 12	4	2.23	. 04	. 20	1		2	52
2	30	30	241	. 6	26	17	1088	4.60	19	5	N0	2	72	1	2	3	78	. 45	. 188	5	27	. 44	140	. 12	5	2.14	. 05	. 16	2	2	2	41
1	20	31	203	. 3	18	8	1340	2.72	11	5	KD	3	72	2	2	2	58	. 58	. 190	9	21	. 41	196	. 13	7	2.36	. 05	. 16	2	9	2	48
2	32	21	206	. 3	19	11	720	4.25	4	5	N0	4	68	2	2		72	. 43	. 204	7	17	. 45	3	. 15	1	3.02	. 05	. 13	1	15	2	41
2	19	25	234	. 1	13	11	1727	3.87	2	5	ND	2	77	,	2	2	91	. 51	. 171	6	19	. 48	154	. 13	6	2.58	. 09	. 27	2	1	2	35
1	$3!$	15	222	.2	15	12	1673	4.29	12	5	ND	2	102	1	2	2	4	. 71	. 220	5	18	.73	220	. 11	2	2.68	. 05	. 28	1	4	2	34
1	17	13	151	.1	20	7	641	2.35	8	5	ND	3	42	1	2	2	50	. 32	. 145	7	21	. 35	163	. 12	1	2.04	. 05	. 12	1	4	2	40
1	19	12	162	. 2	26	7	573	2.22	9	5	KD	3	42	1	3	2	47	. 35	. 174	10	23	. 31	179	.12	5	1.85	. 05	. 13	2	4	2	74
1	15	13	159	. 2	20	6	315	2.09	4	5	ND	3	32	1	2	2	43	. 34	. 039	7	18	. 25	43	. 13	5	2.07	. 06	. 08	1	17	2	42
1	18	12	229	. 1	15	4	601	2.02	1	5	ND	3	23		2	2	37	. 21	. 155	-	17	. 24	112	. 13	6	2.23	. 05	. 08	1	1	2	71
1	11	9	131	. 1	13	1	704	1.89	8	5	ND	2	28	1	2	2	40	. 23	.18日	1	19	. 24	201	. 10	1	1.42	. 04	. 10	1	4	2	68
1	22	12	126	. 2	15	d	741	2.57	8	5	ND	4	40	1	2	2	52	. 31	. 211	11	21	. 33	163	. 14	4	2.60	. 05	. 10	3	1	2	45
1	17	10	111	.1	17	7	60	2.31	7	5	KD	3	40	1	2	2	50	. 31	. 170	10	24	. 33	193	. 13	7	2.08	. 05	. 09	1	2	2	52
1	7	1	65	. 1	173	11	355	2.04	4	5	ND	2	27	1	2	2	41	. 27	. 141		43	. 57	164	. 12	4	1.40	. 04	. 07	$!$	1	2	90
1	9	6	65	. 1	156	10	334	2.08	2	5	MD	2	31	1	2	2	43	. 31	. 172	7	35	. 47	121	. 12	4	1.68	. 04	. 09	1	7	2	101
1	12	7	69	. 3	137	10	350	2.40	2	5	ND	3	24	1	2	2	54	. 21	. 107	8	40	. 51	119	. 14	3	1.69	. 05	. 12	1	2	2	107
1	17	2	46	.1	20	6	172	2.43	2	5	N0	3	33	1	2	2	67	. 41	. 046	12	45	. 40	71	. 16	2	1.12	. 05	. 17	1	6	2	125
1	11	1	89	. 1	243	7	302	2.10	2	5	ND	2	33	1	2	2	41	. 34	. 019	5	32	. 46	98	. 13	7	1.92	. 06	. 12	1	1	2	72
1	8	8	77	. 2	32	5	541	1.51	2	5	ND	2	30	1	2	3	32	. 24	. 184	1	25	. 21	196	. 08	2	1.18	. 05	. 11	1	4	2	51
1	6	3	53	. 1	230	9	168	1.75	2	5	FD	1	33	1	2	4	28	. 19	. 091	5	60	. 45	115	. 11	4	1.70	. 05	. 05	1	9	2	117
1	11	2	60	.1	108	7	166	1.94	2	5	ND	2	34	1	2	3	43	. 25	. 164	5	41	. 34	130	. 12	5	1.61	. 05	. 05	1	11	2	75
1	5	4	64	. 1	128	5	94	1.37	2	5	ND	1	25	1	2	2	24	. 15	. 238	4	28	. 25	192	. 09	5	1.43	. 04	. 07	1	10	2	75
1	4	7	56	. 1	18	1	213	1.17	2	5	ND	1	26	1	2	J	17	. 19	. 029	3	99	. 46	64	. 06	5	. 57	. 05	. 07	1	4	2	229
22	59	42	138	7.3	72	29	1034	3.97	$3 t$	19	8	35	49	18	17	21	66	. 48	. 104	37	$6!$. 89	183	. 08	35	1.72	. 10	. 16	17	99	95	-

5AMFLEI

1165 525K CC	1	$日$	11	50	. 1	426	14	228	2.04	5	5	N	2	39	1	2	2	19	. 31	. 044	2	187	1.21	91	. 08	5	1.42	. 12	. 46	:	9	2	424
LItS 500\% CC	1	6	9	42	. 3	240	11	271	1.36	1	5	HD	2	25	1	2	3	24	. 24	. 036	2	69	. 44	11	. ${ }^{\text {t }}$	3	1.07	. 34	. V t	1	6	2	179
L16S 475: CC	$!$	21	8	90	. \checkmark	47	9	291	2.95	4	5	NI	J	28	1	2	2	53	. 30	. 041	3	25	. 51	$11 t$. 15	2	2.20	. 64	${ }^{\prime}=$		8 E	:	5
-16E 450N CC	1	18	35	124	. 1	27	12	1326	4.09	2	5	HD	2	199	1	2	2	73	. 69	. 061	7	22	. 92	222	. 11	6	2.52	. 06	. 16	1	2	2	44
L165 4254 CC	1	15	12	111	. 2	41	E	523	2.25	5	5	NF	2	67	1	2	2	10	. 37	. 117	5	$2!$. 40	104	. ${ }^{4}$	7	2.50	. 6	. 28	!	4	?	49
-165 400W CC	2	19	12	105	. 2	34	10	316	2.97	7	5	H1	3	102	1	2	2	60	. 36	. 054	2	27	. 54	40	. 15	2	2.18	. 05	. 07	1	3	2	75
L165 375\% CL	1	12	7	143	. 1	71	1	215	2.42	6	5	KD	3	64	1	2	2	19	. 24	.053	1	29	. 52	81	. 15	2	1.91	. 04	. 07	:	5	2	88
L165 350N CC	1	14	10	113	. 1	164	11	214	2.71	8	5	ND	4	43	1	2	2	58	. 28	. 061	1	63	. 69	104	. 14	2	1.87	. 34	. 10	2	12	2	127
L165 325k CC	1	12	6	12	. 1	48	6	262	2.15	1	5	ND	3	32	1	2	2	47	. 28	. 087	4	30	. 33	108	. 13	2	1.86	. 2	. 08	1	47	2	104
L165 300W CC	1	6	4	90	. 3	63	5	187	1.71	6	7	ND	3	31	1	2	3	36	. 27	. 097	4	52	. 27	113	. 11	2	1.31	. 04	. 07	1	6	2	13
L165 2754 [C	1	11	7	122	. 4	53	1	727	1.97	5	5	ND	2	36	1	2	2	44	. 35	. 155	2	32	. 25	135	. 11	2	1.45	. 05	. 08	:	2	2	73
L16S 250U CL	1	16	8	88	.1	68	$\cdot 7$	225	2.30	2	5	MD	3	29	1	2	1	48	. 27	. 078	5	28	. 35	51	. 12	2	1.82	. 15	. 08	1	4	2	93
L165 225M CC	1	13	3	77	. 3	260	8	232	1.88	0	5	ND	J	39	1	2	3	29	. 28	. 091	3	35	. 35	81	. 11	2	1.97	. $0 t$.0	1	2	?	10
Liss 2001 CC	1	14	6	110	. 2	141	8	459	2.20	29	5	ND	2	40	1	2	3	41	. 41	. 099	4	36	. 36	88	. 12	2	2.01	. 06	. 07	2	45	2	97
L165 175以 CC	1	12	7	104	. 3	254	13	416	2.17	7	5	ND	2	46	1	2	4	35	. 18	. 044	3	122	1.10	109	. 10	2	1.75	. 06	. 11	1	49	3	301
L16S 150ㅔ CC	1	51	12	41	. 6	299	8	162	1.11	22	5	HD	2	60	1	2	2	23	. 53	. 056	6	28	. 38	70	. 13	4	2.47	. 06	. 07	2	3	2	53
L16S 125M CC	1	10	4	72	. 3	61	5	267	1.84	4	5	KD	5	29	,	2	2	38	. 32	. 087	1	23	. 21	85	. 14	4	1.97	. 05	. 10	2	1	2	157
L165 1001 cc	1	24	11	80	. 2	164	11	385	2.51	6	5	HD	2	37	1	2	2	18	. 25	. 158	2	11	. 81	128	. 14	2	2.38	. 05	. 10	1	1	2	165
L165 754 CC	1	14	10	92	. 2	70	7	346	2.77	5	5	N0	3	33	,	2	2	56	. 24	. 023	5	29	. 72	97	. 06	2	2.16	. 04	. 08	!	1	2	71
LI6S 50\% EC	1	16	15	123	. 2	274	14	489	3.38	1	5	MD	4	35	1	2	2	51	. 34	. 106	9	51	. 70	88	. 16	2	2.88	. 05	. 06	1	5	2	122
L165 25M CC	1	12	13	185	. 1	71	,	882	2.73	7	5	ND	3	32	1	2	2	51	. 29	.089	4	36	. 53	141	. 11	2	2.22	. 04	. 08	!	2	$?$	88
Lis6 00E	2	19	12	183	. 4	30	9	513	3.09	8	5	ND	5	34	1	2	3	51	. 31	. 065	12	24	. 44	133	. 16	3	2.80	. 05	. 10	1	1	2	41
LILS 25E CC	1	14	5	255	. 3	23	7	699	2.36	9	5	ND	4	27	,	2	2	49	. 29	. 120	7	27	. 35	124	. 16	3	2.46	. 05	. 11	1	1	2	86
LILS 50E EC	1	12	2	111	. 2	28	6	403	2.01	7	5	KD	3	31	1	2	2	31	. 30	. 171	6	21	. 27	121	. 14	2	2.34	. 06	. 07	1	14	2	75
L16S 75E CC	1	14	8	78	. 3	224	12	35:	1.93	13	5	N0	3	28	1	2	3	33	. 25	. 100	4	46	. 56	65	. 11	5	1.82	. 05	. 07	1	3	2	120
1165 100E EC	1	8	7	54	. 2	317	10	189	1.61	16	5	WD	2	33	,	2	2	22	. 21	. 197	4	61	. 53	94	. 12	4	2.06	. 06	. 05	$!$	1	2	105
L165 125E CC	1	10	13	60	. 3	934	24	210	2.76	37	5	ND	5	41	1	2	2	38	. 26	. 122	5	138	1.49	168	. 15		2.71	. 06	. 07	2	1	2	274
L165 150E CC	$!$	7	6	40	.1	362	21	501	1.72	13	5	ND	1	4	1	2	2	21	. 27	. 086	2	108	1.19	145	. 06	7	1.18	. 05	. 05	1	1	2	196
L16S 175E CC	1	6	1	45	. 2	247	22	311	1.73	7	8	No	2	35	1	2	2	19	. 23	. 032	2	197	1.07	167	. 05	6	. 76	. 04	. 64	2	$!$	2	37^{7}
1165 200E CC	1	7	9	75	. 2	884	59	1011	4.06	20	5	HD	2	36	1	3	2	30	. 30	. 079	2	523	6.98	146	. 06	22	1.13	. 06	. 05	1	1	2	1016
L16S 225E CC	1	8	9	61	. 1	933	50	601	3.40	10	5	WD	2	18	1	2	2	32	. 14	. 063	2	260	6.29	60	. 10	22	1.69	. 06	. 04	1	3	3	811
L165 250E CC	1	9	7	66	. 2	601	41	601	3.03	20	5	ND	2	20	1	2	2	36	. 15	.06!	3	281	2.72	67	. 09	14	1.53	. 05	. 07	1	1	2	532
L165 275E CC	2	5	7	54	. 1	41	55	798	J.56	31	5	ND	2	21	1	4	2	21	. 17	. 045	2	469	9.95	114	. 05	65	. 99	. 06	. 0	$!$	1	$\stackrel{3}{2}$	1226
L165 300E CC	1	9	1	74	. 3	189	16	449	2.37	14	5	WD	3	24	1	2	3	50	. 25	. 060	5	91	. 95	129	. 12	9	1.10	. 05	. 08	1	1	2	167
LI6S 325E CL	1	15	10	84	.1	119	12	852	2.54	11	5	ND	2	31	1	2	2	54	. 32	. 112	5	55	. 60	251	. 12	9	1.56	. 04	. 68	1	6	2	138
!16S 350E CL	1	10	11	4	. 2	330	31	120	2.27	25	5	HD	2	21	1	2	2	43	. 30	. 070	3	122	1.09	163	. 10	10	1.32	. 04	. 07	1	12	2	241
SID C/FA-51	22	57	40	134	6. 4	69	28	1015	3.96	41	19	7	?	48	17	17	12	64	. 12	. 103	33	62	. 8	180	. 08	JE	1.72	. 0 !	.!	!	98	104	-

SAMPLE	＂c	：	P1	－	fe	＊	6	！	F_{E}	45	15	H_{2}	In	Sr	cd	55	E_{1}	＊	C2	F	เe	こ	${ }^{\prime}$	E．	r.	F	4	Na		k	M1t	PH1	Cri
	DPM	dom	P9\％	PPM	－PM	FPM	f9\％	PPs	2	P滑	PPM	PPM	PPM	PFK	PPM	PPK	PPM	PFK	1	2	PFM	ppx	1	PPM	z	PPM	1	I	1	PPM	OPB	PPB	PPM
L165 375E ¢	1	14	\leq	$5!$	．	215	！	276	2.58	t	5	KD	3	30	1	2	2	57	． 2 e	． $02 \times$	ε	72	． 87	116	． 15	5	1.99	． 05	． 08	！	2	7	144
L16S 400E CC	1	11	9	54	． 1	245	12	238	2.19	13	5	ND	3	25	1	2	2	44	． 22	． 121	5	55	． 59	149	． 13	4	1.87	． 04	． 05	1	1	2	105
L16S 425E CC	1	10	16	75	． 3	57	35	t35	2.66	22	5	ND	2	29	1	2	2	42	． 28	． 063	4	121	1．8？	180	． 11	12	1.65	． 05	． 05	2	2	2	306
LI6S 459E CC	1	12	，	55	.1	274	15	306	2.18	13	5	HD	3	23	1	2	2	50	． 23	． 083	4	05	． 61	169	． 16	5	2.17	． 04	． 05	，	3	2	131
LI6S 475E CC	1	$1:$	9	61	． 2	727	$3 t$	554	2.95	24	5	ND	3	27	1	2	2	47	． 23	． 67	6	158	1.72	170	． 12	7	1.97	． 05	． 04	1	！	2	280
：165 500E CC	1	11	15	64	． 3	646	47	859	3.32	$3!$	5	NI	3	26	1	2	3	36	． 24	． 079	3	339	2.97	139	． 08	31	1.43	． 05	． 06	1	1	2	837
1175 625\％CC	，	9	8	3	． 3	260	11	179	1.93	3	5	NL	3	21	1	2	2	35	． 18	． 057	\cdots	53	． 61	107	． 11	b	1.82	． 05	． 05	2	4	2	10%
LI7S buON CC	1	11	10	70	． 3	237	16	321	2.37	5	5	ND	2	22	1	3	2	51	． 24	． 091	5	76	． 89	122	． 10	9	1.28	． 04	． 06	1	604	2	194
LITS 575M tc	1	9	6	54	． 1	291	13	211	2.50	3	5	NI	1	23	1	2	2	54	． 24	． 089	6	67	． $7 t$	157	． 12	1	1.72	． 04	． 04	$!$	14	2	155
L175 550\％CC	1	7	2	37	． 1	121	8	216	2.10	3	5	No	2	20	1	2	2	51	． 22	． 105	6	48	． 40	139	． 09	2	1.28	． 04	． 03	2	33	2	11%
1175 5254［¢	，	32	12	70	． 2	8.66	59	1437	J． 36	13	5	ND	1	81	1	5	3	27	． 61	． 075	2	393	7.67	212	． 05	28	． 96	． 07	． 06	1	1		1275
1175 500N CC	1	8	－	44	． 2	477	25	594	2.24	1	5	\boldsymbol{N}	3	28	1	2	2	32	． 20	． 041	6	171	1.82	119	． 10	10	1.6	． 05	． 03	2	1	5	317
1175 475N CC	2	8	7	51	． 2	457	25	371	2.39	10	5	N0	3	26	1	2	2	39	． 22	． 054	5	125	1.49	123	． 13	－	1.88	． 05	． 04	1	3	2	226
－175 450Y CC	1	8	－	59	． 1	291	16	331	2.34	1	5	ND	3	23	1	2	2	18	． 23	．074	5	92	． 78	154	． 12	4	1.70	． 04	． 05	1	10	2	173
LI75 425N CC	1	7	1	55	． 1	288	15	112	1.94	7	5	NG	2	19	1	2	2	36	． 16	． 043	4	80	． 54	156	． 14	4	1.11	． 04	． 05	1	10	2	126
Li7s 400N CC	1	4	3	35	． 1	391	17	148	1.66	3	5	ND	1	18	I	2	2	23	． 13	． 019	3	244	1.02	118	． 08	5	1.43	． 05	． 05	2	2	2	337
4175 375以 CC	1	9	，	52	1	305	15	160	2.29	5	5	ND	4	24	1	2	2	41	． 19	． 085	－	84	． 72	132	． 15	6	2.30	． 05	． 04	1	2	2	120
LI7S 350M CC	1	1	7	45	． 1	339	17	99	1.19	6	5	MD	2	21	1	2	2	29	． 15	．053		57	． 58	71	． 16	4	2.51	． 05	． 03	2	15	2	92
L175 325w CC	2	7	6	59	． 2	1132	57	583	3.62	9	5	WD	2	22	1	3	6	25	． 18	． 029	2	815	8． 12	110	． 01	52	1.67	． 06	． 04	1	31	2	991
L175 3001 CC	3	15	2	42	． 2	1518	85	780	4.96	17	7	HD	2	10	1	2	8	13	． 09	． 017	2	620	15.08	56	． 01	140	． 37	． 05	． 01	2	39	2	1540
L17S 275以 CC	1	5	3	45	． 1	547	18	160	2.00	2	5	ND	1	25	1	2	2	20	． 20	． 014	4	259	1.50	126	． 09	14	1.76	． 06	． 04	1	4	2	111
1175 2504 CC	2	7	20	78	.1	945	63	1271	3.10	15	5	ND	1	29	1		7	18	． 34	． 050	2	660	10.02	164	． 03	66	． 51	． 06	． 04	，	17	3	1241
Li7S 2254 CC	1	8	E	$5 t$	． 2	314	14	184	2.13	5	5	ND	3	19	1	2	2	40	． 17	． 103	3	57	． 64	132	． 14	5	2.10	． 04	． 08	1	10	2	124
LITS 200Y CL	1	10	E	40	． 2	117	9	141	2.18	2	5	HD	3	27	1	2	2	47	． 27	．043	7	42	． 39	133	． 14	4	1.93	． 05	． 07	2	6	2	105
L175 175\％C6	1	B	6	48	． 1	119	1	404	1.99	5	5	ND	2	32	1	2	3	40	． 29	． 150	4	41	． 31	218	． 10	5	1.58	． 04	． 07	2	5	2	96
LITS 150N CC	1	9	11	13	． 1	381	22	351	1.42	1	5	ND	1	43	1	2	2	19	． 29	． 077	4	154	． 17	166	． 07	7	1.17	． 06	． 05	1	4	2	194
L175 125M CC	1	10	1	50	． 1	185	11	158	2.57	5	5	HD	5	22	，	2	2	58	． 24	． 058	5	54	． 54	97	． 14	5	1.80	． 04	． 04	I	7	2	129
L175 100以 CC	1	7	10	64	． 1	212	12	251	2.52	8	5	MD	3	25	1	2	2	53	． 24	．083	1	67	． 6	112	． 13	6	1.71	． 05	． 05	1	2	2	146
Li75 754 CC	1	8	8	62	． 2	144	8	211	2.51	5	5	N2	3	25	1	2	1	60	． 28	． 0972	1	42	． 40	119	． 12	J	1.43	． 04	． 06	1	1	2	106
LITS 50M CC	1	11	11	62	． 1	［17	10	323	2.33	6	5	ND	4	27	1	3	2	49	． 26	． 077	8	41	． 49	174	． 15	5	1.97	． 05	． 07	1	15	2	79
L17S 251 CC	1	11	9	63	． 1	99	8	359	2.79	3	5	N0	4	22	1	2	2	4	． 24	． 126	5	41	． 47	110	． 15	2	2.04	． 04	． 00	：	2	2	114
L17S JOE CC	1	15	9	50	． 2	17	1	121	2.12	2	5	KD	4	23	1	2	5	46	． 26	． 129	t	38	． 44	114	． 14	2	2.21	． 05	． 04	2	17	2	141
L175 25E C¢	1	13	7	51	． 2	63	7	393	2.37	2	7	N1	5	25	1	2	2	54	． 25	． 103	5	31	． 33	138	． 14	4	2.03	． 05	． 06	1	11	2	8x
LI7S 50E CC	1	18	7	60	． 2	40	5	223	1.74	3	5	ND	2	3	．	2	2	32	． 26	． 113	7	21	． 25	118	． 12	4	2.05	． 05	． 06	1	6	2	60
LI7S 75E CC	1	11	11	$5 t$	． 1	163	8	240	1.71	5	5	ND	3	28	1	2	2	29	． 19	． 105	6	46	． 36	146	． 12	3	2.03	． 05	． 05	1	1	2	77
LI7S SOEE CC	1	45	11	88	． 1	296	19	441	2.40	7	5	H9	2	32	1	2	2	42	． 26	． 135	6	112	1.02	197	． 11	b	1.51	． 05	． 08	1	1	6	211
STD C／Fe－5x	2！	$5 ?$	42	134	7.0	70	28	1014	J． 97	40	14	8	33	47	18	17	21	54	48	． 10	35	50	8！	177	． 08	3	1.71	．	．	12	$10:$	100	

SAMPLET	Kn	Cu	Pb	In	Ao	K_{2}	c	Hin	se	AE	${ }^{\prime}$	fus	ih	Sr	Ed	ct	B_{1}	"	Cz	\&	t2	Sr	Mo	78	${ }^{1}$	F	A:	4	r	-	4011	f17	Cri
	PPr	PPM	PPM	PPK	DPh	DPM	PPM	PPM	2	PPM	PPH	PPM	fPK	PpM	PPM	PPF	PPM	PPK	z	7	PPM	P9\%	I	PPK	z	PPH	2	\%	2	PPr	PF4	PPI	PPh
L175 125E EC	2	10	13	7^{0}	. 1	369	26	57 t	3.25	15	5	n ${ }^{\text {b }}$	3	$2{ }^{6}$:	:	$?$	49	. 25	. 0 ¢ 7	3	278	2.68	145	. 12	:	1.44	. 05	. 6	!	!	$?$	$\underline{195}$
LI7S 150E CC	1	14	12	6	. 1	164	12	351	2.63	2	5	ND	4	28	1	2	2	58	. 28	. 101	5	60	. 77	103	. 14	3	1.94	. 04	. 08	2	8	2	139
LITS 175E [C	2	13	14	125	. 1	18.	18	1256	2.12	10	5	w	?	25	1	2	2	45	. 21	. 046	2	141	1.00	279	. 11	t	1.11	. 04	. ${ }^{\text {星 }}$!	:	2	257
LI7S 200E CC	1	13	13	83	. 1	130	14	1149	2.08	16	5	HI	2	37	1	2	2	45	. 35	. 134	5	64	. 55	242	. 08	2	1.18	. 04	. 07	1	2	2	120
LI7S 225E CC	2	14	21	78	.1	215	16	847	2.43	12	5	NE	3	45	1	2	2	50	. 44	. 051	2	72	. 68	197	. 11	1	1.54	. 04	. 0°	:	2	?	157
L.175 250E CC	1	16	B	70	. 1	435	27	457	2.38	15	5	ND	3	32	1	2	2	47	. 33	. 064	4	71	. 99	132	. 11	5	1.68	. 04	. 10	1	1	2	161
LITS 275E CC	2	17	10	87	. 1	507	41	660	2.98	21	5	ND	1	28	1	2	2	55	. 31	. 080	7	218	1.83	128	. 12	14	2.02	. 05	. 07	$?$	9	2	365
LITS 300E CC	2	13	14	78	. 1	639	71	977	2.57	34	5	HD	3	24	1	2	2	36	. 26	. 070	3	317	3.77	130	. 08	24	1.57	. 05	. 06	2	11	2	510
L175 325E [C	1	20	10	65	. 1	483	43	637	2.82	21	5	MJ	4	30	1	2	2	50	. 27	. 056	9	221	1.61	162	. 13	16	2.30	. 05	. 10	1	2	2	373
L175 350E CC	2	33	13	17	. 1	811	61	1078	3.90	30	5	HD	5	86	1	2	2	45	. 56	. 110	7	441	4.72	234	. 10	40	1.96	. 07	. 11	1	3	3	813
LI75 375E CC	2	15	11	80	. 1	214	16	407	2.87	10	5	ND	1	26	1	2	2	57	. 27	. 089	-	95	. 97	197	. 16	6	2.41	. 04	. 07	1	12	2	193
LI75 400E CC	2	14	-	63	. 2	245	14	293	2.32	12	5	MD	4	20	1	2	2	43	. 18	. 094	5	53	. 6	136	. 15	3	2.45	. 04	. 07	1	8	2	146
LI7S 425E CC	1	24	10	74	. 2	473	24	13!	2.19	22	5	NiJ	7	25	1	2	2	35	. 19	. 111	4	79	. 95	224	. 13	5	1.92	. 04	. 07	1	546	2	141
LITS 450E CC	1	168	11	66	. 1	493	20	218	3.04	14	5	ND	4	19	1	2	2	58	. 16	. 030	6	150	1.39	82	. 15	8	2.05	. 04	. 07	1	6	2	316
L175 475E CC	2	250	25	90	. 1	683	$5!$	1192	3.30	38	5	ND	3	25	1	2	2	47	. 23	. 099	4	232	2.57	151	. 12	21	2.22	. 05	. 07	1	2	2	453
L17S 500E EC	1	344	10	62	. 1	370	27	656	3.21	12	5	WD	4	31	1	2	2	60	. 29	. 054	14	139	1.23	170	. 16	11	2.61	. 05	. 11	1	18	2	295
LI7S 5258 CC	2	505	15	52	. 1	1052	63	785	3.45	36	5	ND	3	26	1	9	5	29	. 24	. 050	3	661	9.54	121	. 06	87	1.26	. 06	. 07	1	1	J	1503
L175 550E CC	1	434	15	55	. 1	456	44	715	2.43	14	5	ND	3	34	1	2	2	39	. 32	. 075	8	195	1.78	156	. 10	11	1.87	. 05	. 08	2	5	2	285
L215 350E CC	2	14	18	64	. 1	1075	59	961	3.61	6	5	NI	2	27	1	6	5	24	. 24	. 043	5	699	10.26	199	. 05	77	1.13	. 06	. 04	1	6	3	1122
L.215 375E CC	1	15	16	77	. 1	436	30	1093	2.31	5	5	ND	2	46	1	2	2	35	. 42	. 140	5	181	1.48	249	. 10	10	1.55	. 05	. 06	1	3	2	353
L215 400E CC	,	15	11	69	. 1	342	19	616	2.77	2	5	N0	2	31	1		2	61	. 36	. 074	1	128	1.08	137	. 11	7	1.41	. 05	. 06	$!$	t	$?$	278
1215 425E CC	1	12	1	67	. 1	293	17	463	2.48	1	5	ND	,	38	1	2	2	51	. 36	. 117	3	144	. 90	224	. 10	4	1.24	. 05	. 07	1	9	2	250
L2IS 450E CC	1	7	6	16	. 1	$15!$	10	219	1.82	2	5	H2	2	$2!$	1	,	2	3	. 21	. 034	3	11	. 67	107	. 09	4	1.13	. 04	. 05	2	1	2	198
1215 475E CC	1	11	10	76	. 1	590	22	465	2.54	4	5	N0	4	38	1	2	2	41	. 33	. 110	1	168	1.21	222	. 12	8	2.07	. 05	. 10	1	1	2	278
L2IS 500E CE	1	11	8	41	. 2	244	14	285	2.76	2	5	N0	3	31	1	2	2	59	. 30	. 095	5	110	. 75	114	. 11	6	1.58	. 04	. 09	3	1	2	237
L21S 525E EC	1	20	13	37	. 2	272	13	216	1.8日	10	5	ND	3	41	1	2	2	29	. 42	. 051	6	146	1.49	108	. 09	13	1.26	. 06	. 10	5	5	2	257
L215 550E EC	1	1	16	38	. 1	118	10	173	1.87	6	J	ND	2	24	1	,	2	35	. 21	. 067	2	71	. 54	120	. 10	2	1.43	. 05	. 06	2	1	2	141
L215 575E CC	1	10	8	38	. 1	90	9	140	2.14	6	5	HI		27	1	2	2	45	. 23	. 074	7	62	. 44	102	. 10	3	1.43	. 04	. 05	2	111	2	144
L215 600E CC	1	20	3	45	. 2	128	8	187	1.83	3	5	ND	4	36	1	2	2	35	. 27	.03E	7	63	. 51	109	. 10	3	1.51	. 06	. 05	1	3	2	129
L215 625E CC	1	62	,	40	. 3	132	\dagger	186	1.87	7	7	ND	4	23	1	2	2	34	. 20	. 022	5	62	. 51	12	. 11	3	1.67	. 05	. 06	1	35	2	133
L215 650E CE	1	19	5	45	. 2	156	11	495	1.87	1	5	ND	3	31	1	2	2	32	. 27	. 027	8	73	. 69	${ }^{\text {BJ }}$. 11	2	1.64	. 01	. 07	3	4	3	148
L215 675E CC	1	13	6	63	. 1	205	12	304	1.98	8	5	ND		$3!$	1	2	2	32	. 21	. 171	7	6	. 62	121	. 12	4	2.04	. 05	. 06	1	1	2	131
L215 700E CC	1	11	4	57	. 3	110	12	276	1.97	t	5	H0	4	27	1	2	3	34	. 23	. 130	6	74	. 70	115	. 11	2	1.68	. 05	. 08	2	2	2	140
L21S 725E C¢	1	11	7	63	. 2	112	1	356	2.06	6	5	MD	4	34	1	2	2	40	. 32	.188	5	63	. 50	128	. 11	2	1.65	. 05	. 07	1	7	2	138
L215 750E LC	1	12	4	51	. 1	104	1	372	2.10	6	5	NS	3	35	1	2	3	40	. 30	. 244	6	62	. 47	134	.11	3	1.46	. 05	. 09	1	5	2	16
L2IS 775E CC	1	11	6	48	. 1	13	6	344	1.18	5	7	ND	4	31	1	2	2	37	. 29	. 123	7	48	. 37	138	. 10	3	1.55	. 04	. 08	2	36	2	131
SID C/FA-5I	22	57	39	135	7.1	70	29	1020	3.94	41	15	ε	34	47	11	17	21	64	. 48	.10?	32	58	. 85	177	. 08	33	1.72	. 09	. 14	12	9	4	-

SAMPLEA	Mc	iu	Pt	In	fo	H_{1}	[c	Mn	Fe	H5	U	H0	In	58	Cd							Er	μ_{N}		i:		F:	N_{2}		PPK	nult	ctt	Crt
SRITE	PPK	PPM	PPR	PPM	PPK	PDH	PPM	PPK	2	PP\%	PPH	PPM	PPK	PPK	PPM	fPM	PPM	PPM	2	\pm	PPM	PPK	2	PPM	,	PPK		1		PPK	PPB		
L215 100E CC	1	20	9	87	. 1	171	11	411	3.03	7	5	H0	5	40	1	2	2	60	. 410	. 218	12	96	. 59	159	. 14	6	2.41	. 05	. 12	1	18	2	177
L215 825E CC	1	16	;	76	. 1	21	5	589	1.79	6	5	HD	3	28	1	2	2	32	. 25	. 077	5	16	. 35	335	. 11	2	1.12	. 05	. 10	1	15	2	36
L219 bsos Cc	1	18	-	102	.	46	8	1041	2.80	9	5	Nil	1	60	1	2	2	47	. 39	. 181	5	77	. 53	361	. 12	2	2.17	. 05	. 14	1	9	2	23
L215 875E EC	2	40	26	141	. 3	33	11	2754	3.04	9	5	HD	2	110	1	2	2	53	. 73	. 219	4	39	. 97	544	. 16	2	2,45	. 06	. 24	1	2	2	77
L21S 900E CC	2	20	16	86	. 2	45	12	1353	3.23	6	5	ND	2	39	1	2	2	64	. 37	.10\%	12	44	. 33	260	. 16	J	2.53	. 05	. 18	!	t	2	142
L2IS 525E CE	2	19	14	85	. 3	88	11	1689	2.18	9	5	ND	3	61	1	2	2	56	. 52	. 117	7	61	. 58	352	. 12	2	2.20	. 04	. 14	1	9	2	163
L215 950E CC	!	16	7	69	. 1	86	9	692	2.47	15	5	ND	4	$3!$	1	2	2	49	. 22	. 118	t	55	. 5 !	199	. 12	2	2.11	. 04	.13	$!$	18	2	116
L215 975E CL	1	21	13	59	. 1	84	10	504	2.61	7	5	HD	5	33	1	2	2	51	. 27	. 085	8	54	. 54	192	. 15	2	2.66	. 05	. 10	1	18	2	105
L21S 1000E CC	1	23	12	57	. 1	61	1	1067	2.39	1	5	NT	4	30	1	2	2	41	. 24	. 116	8	39	. 48	234	. 15	2	2.71	. 05	. 08	1	18	2	94
1100511001 C	1	15	8	100	. 2	21	5	53:	1.02	6	5	H0	5	29	1	3	2	35	. 25	. 246	6	20	. 23	193	. 13	3	2.19	. 05	. 14	1	15	2	66
L100S 1075以 C	1	19	4	129	. 1	23	1	512	1.93	7	5	KD	5	29	1	2	2	38	. 22	. 282	7	20	. 27	218	. 12	3	1.96	. 05	. 15	1	14	2	$5!$
LIOOS 1050, C	1	13	8	94	. 3	19	5	557	1.90	8	5	ND	4	29	1	2	3	36	. 24	. 141	6	18	. 22	194	. 13	2	1.96	. 04	. 11	1	1	2	50
Ll005 1025以 C	1	15	7	103	. 3	20	1	337	2.04	3	5	MD	1	39	1	2	2	42	. 35	. 219	8	21	. 25	140	. 13	2	2.09	. 05	. 14	1	1	2	54
L1005 1000\% [1	14	6	93	. 1	17	6	492	2.32	6	5	ND	4	26	1	2	2	54	. 28	. 220	6	25	. 28	171	. 13	2	2.01	. 04	. 11	1	7	2	63
Lioos 975M C	1	10	11	145	. 1	13	6	780	2.38	4	5	ND	3	22	1	2	2	50	. 21	. 262	6	27	. 28	249	. 14	2	1.60	. 04	. 10	1	2	2	69
L100S 9504 C	1	17	7	89	:3	20	6	295	2.02	3	5	ND	3	23	1	2	2	44	. 25	. 108	g	20	. 28	158	. 13	3	2.04	. 05	. 10	1	1	2	60
L1005 925\% C	1	14	7	67	. 1	18	6	335	2.20	1	5	N0	4	27	1	2	2	50	. 29	. 125	t	23	. 27	130	. 13	2	1.97	. 05	. 07	1	2	2	71
Lloos 900N C	1	13	,	143	. 2	12	8	934	2.85	2	5	MD	3	31	1	2	2	51	. 30	. 265	4	16	. 27	229	. 16	2	2.07	. 04	. 11	1	1	2	47
L100S 1754 C	1	16	10	76	. 1	15	t	535	2.23	5	5	WD	4	28	1	2	2	54	. 32	. 137	?	24	. 33	149	. 13	2	1.93	. 04	. 10	1	2	2	70
Lloes asol c	1	12	9	91	. 1	16	6	502	2.33	3	5	ND	4	27	1	2	2	53	. 30	. 228	6	26	. 32	177	. 13	2	1.93	. 04	. 09	1	3	2	74
L100S 825W C	1	15	8	86	. 1	14	5	286	1.93	3	5	ND	4	20	1	2	2	42	. 21	. 183	6	23	. 24	147	. 12	2	1.75	. 04	. 018	1	275	2	49
L1005 8001 C	1	9	10	87	.1	14	5	315	1.73	2	5	ND	3	21	1	2	,	37	. 18	. 165	4	19	. 19	188	. 11	2	1.44	. 04	. 09	1	3	2	52
Lloos 775M C	2	15	9	63	.4	19	6	359	2.19	6	5	ND	5	27	1	2	2	53	. 27	. 086	9	28	. 29	154	. 13	2	1.83	. 04	. 10	1	$?$	2	66
LIOOS 7504 C	1	12	16	15	. 1	12	6	951	2.29	4	5	ND	2	32	1	2	2	54	. 37	. 130	6	23	. 34	180	. 13	3	1.55	. 03	. 10	1	6	2	68
Lloos 7251 ${ }^{\text {C }}$	1	13	7	46	. 1	14	5	424	2.21	2	5	ND	4	23	1	2	1	56	. 26	. 099	1	25	. 24	129	. 12	2	1.76	. 03	. 08	1	3	2	64
LIO0S 7001 C	1	13	7	73	. 1	15	6	717	2.19	2	5	ND	4	25	1	2	2	51	. 29	. 142	7	25	. 30	193	. 12	2	1.96	. 04	. 04	1	1	$?$	67
41005 675M C	1	13	8	64	. 1	15	6	44	2.33	7	5	ND	3	21	1	2	2	57	. 24	. 157	8	24	. 26	154	. 12	2	1.88	. 03	. 07	1	4	2	60
41005 6501 C	1	13	11	64	. 1	15	b	400	2.34	5	5	HD	3	17	1	2	2	59	. 23	. 146	7	25	. 26	115	. 12	2	1.12	. 03	. 07	1	3	2	77
L1005 6254 C	1	21	9	69	. 1	19	1	367	2.78	3	5	NI	5	17	1	2	2	64	. 21	. 128	16	29	. 28	124	. 14	3	2.43	. 04	. 08	1	4	2	77
Lloos 600k C	1	14	10	55	. 2	16	6	403	2.31	5	5	HD	5	23	1	2	2	56	. 24	. 082	0	26	. 26	124	. 14	3	2.06	. 04	. 07	1	2	2	60
L100S 5751 [1	17	E	71	. 1	19	7	297	2.35	5	5	ND	t	30	1	2	3	49	. 35	. 052	11	24	. 31	92	. 16	2	2.33	. 05	. 08	1	1	2	66
Lloos 5504 C	1	18	10	64	. 1	16	7	497	2.30	4	5	ND	6	27	1	2	2	52	. 27	. 152	,	24	. 26	121	. 13	2	2.19	. 04	. 08	1	5	2	$5!$
Li00S 5251 [1	20	5	104	.1	17	7	619	2.45	5	5	ND	5	19	1	2	2	52	. 21	. 229	8	25	. 36	218	. 16	1	2.52	. 04	. 12	1	2	2	62
LIOOS 5001 C	1	17	10	70	. 2	17	6	345	2.40	2	5	ND	6	22	,	4	2	56	. 27	. 122	11	25	. 30	118	. 14	2	2.23	. 04	. 10	1	4	2	57
LIOOS 475\% C	1	17	9	117	. 2	18	6	4818	2.23	4	5	ND	4	32	,	2	2	45	. 27	. 155	8	20	. 30	193	. 14	2	2.30	. 04	. 12	1	2	2	$5!$
LIOOS 550N C	1	II	3	34	. 1	10	6	241	2.47	2	5	HD	5	26	1	2	2	75	. 47	. 097	16	33	. 34	58	. 13	3	. 96	. 04	. 16	1	3	2	\$2
STO C/FA-5x	21	58	39	137	7.3	69	29	1035	3.95	38	17	,	36	48	18	16	20	65	. 48	. 104	35	60	. 88	182	. 08	37	1.72	. 09	. 15	:	95	100	-

SHANGRI-LA MINERALS EFOIECT - ENSTLE FILE IF De: : ! -

5AMPLEI	Ke	Su	Pb	In	Ag	H_{1}	[0			As			Th	Sr	Cd	ch	${ }^{\text {B1 }}$	V	[2	I	L:	Sr	4	H2	':	$\underset{\text { PPM }}{\text { E }}$	i!	4		StM	-11	PP!	¢rt
Sart	-PM	PPK	PPM	PPH	PPM	PPM	PFK	PPM	z	PPM	PPM	PFK	PFM	PrH	PPM	PPK	PPM	PPM	2	I	PPM	PPM	2	PFM	\%		-	2			-Ft		
LIOOS 425V C	1	7	12	$6]$. 2	It	5	304	2.14	§	6	ND	4	22	$!$	3	2	52	. 26	. 100	1	28	. 25	108	.12	4	1.19	. 14	. ${ }^{\prime}$:	E	:	50
L1005 4004 6	1	7	14	78	. 1	10	4	235	1.66	2	7	HD	4	16	1	2	2	33	. 15	. 233	5	16	. 18	146	. 11	2	1.34	. ${ }^{3}$.16	:	3	$?$	49
21005 3754 [1	10	B	87	. 5	15	5	$59 ?$	1.73	2	E	N:	5	33	1	2	2	33	. 22	. 282	8	16	. 26	201	.1!	:	1.80	. 14	絓	:	"	?	42
Lloos 3501 C	1	P	25	156	. 1	17	5	436	1.80	2	5	HD	3	55	1	2	2	36	. 21	. 356	9	21	. 21	366	. 10	3	1.51	. 14	. ${ }^{\mathbf{N}}$	1	1	2	45
L1005 325M [1	10	19	III	. 3	$1 t$	4	665	1.67	4	10	N0	5	32	1	?	2	31	.2!	. 291	8	17	.1?	$21 t$. $1:$	5	1.8	. 04	.	*	,		75
LIVOS 3004 C	1	14	16	4	. 1	15	5	801	2.09	3	5	HD	5	36	1	2	2	46	. 27	.181	11	23	. 25	180	. 13	3	1.85	. 04	.07	1	2	2	43
Lloos 275M	1	14	17	88	. 1	15	5	586	2.29	2	5	ND	1	39	1	2	2	52	. 35	. 228	9	28	. 27	156	. 11	2	2.64	. 04	. ${ }^{(1)}$:	3	?	59
:1005 250K C	1	17	15	169	. 3	9	5	2036	1.46	1	5	HD	1	47	1	2	2	33	. 36	. 106	5	17	. 15	216	. 07	2	. 75	. 03	. 0	$?$	3	2	45
Liots 225w [1	7	8	70	. 2	15	5	426	2.40	2	5	ND	4	33	1	2	2	60	. 40	. 189	11	29	. 28	140	. 11	2	1.31	. 04	.	:	1	2	65
LIO0S 2001	3	26	25	149	. 2	54	16	748	4.18	11	5	ND	5	50	1	2	2	79	. 45	. 302	6	29	. 77	275	. 12	3	1.90	. 05	. 12	!	5	2	70
LIOOS 175K C	1	12	10	79	. 2	383	20	501	2.55	2		ND		31	1	2	2	44	. 35	. 093	5	148	. 95	150	. 12	$\underline{7}$	1.65	. Ot	. 03	:	2	2	519
L1005 1504 C	1	17	17	116	.1	28	10	187	3.70	2	5	HD	5	43	1	2	2	79	. 11	. 062	11	32	. 17	148	. 15	3	2.38	. 05	. 08	1	1	2	73
L100S 1251 C	1	13	22	134	. 1	19	,	1075	3.76	2	5	ND	3	2 L	1	2	2	76	. 30	.061	4	$2!$. 85	132	. 13	2	2.20	. 05	. 09	:	2	2	5
1.10051001 C	1	11	9	149	. 2	23	6	323	2.43	2	5	ND	5	22	1	2	2	60	. 34	. 049	8	29	. 36	69	. 14	4	1.57	. 04	. 10	1	1	2	69
L1005 75w	1	12	14	142	. 3	18	1	514	2.36	2	5	ND	5	24	1	4	3	56	. 26	. 157	9	27	. 29	160	. 13	3	1.63	. 04	. 07	!	?	2	66
L100S 501 C	1	13	15	87	- 2	16	6	888	2.17	1	5	ND	4	35	1	3	3	50	. 37	. 159	11	22	. 31	164	. 12	3	1.79	. 04	. 08	1	2	2	60
Lloos 25N C	1	16	\%	11	. 1	15	7	122	2.36	2	5	1 N	5	34	1	2	2	49	. 33	. 154	7	21	. 31	141	. 15	6	2.2 t	. 05	. 07	$!$	1	2	54
L100S OON C	1	26	19	177	. 1	14	1	1312	2.76	4	5	no	2	53	1	2	2	55	. 44	. 077	5	14	. 55	129	. 11	2	1.8	. 04	. 09	i	1	2	12
L400S 1100 LC	2	23	16	111	. 3	18	1	883	2.54	13	8	ND	5	49	1	5	2	51	. 39	. 145	10	18	. 45	182	. 16	7	2.53	. 05	. 15	2	4	2	50
L400S 1075 C	2	25	14	124	. 3	20	11	175	3.15	5	5	No	6	46	1	2	2	78	. 34	. 107	10	25	. 61	202	. 19	4	2.73	. 05	. 25	1	3	2	11
L400S 105011 C	1	20	22	142	. 4	15	9	1030	2.73	12	5	NB	3	57	1	2	2	62	. 41	. 093	4	22	. 50	259	. 16	5	2.55	. 04	. 32	;	3	2	44
LeOOS 1025M C	2	29	9	107	. 1	18	10	417	3.58	30	5	M ${ }^{\text {d }}$	5	55	1	2	2	92	. 42	. 073	10	28	. 64	197	. 20	2	2.95	. 05	. 40	1	2	2	41
L400S 1000k C	3	29	14	136	. 4	18	10	490	3.76	36	5	ND	5	52	1	3	2	98	. 44	. 049	4	26	. 72	172	. 20	2	2.79	. 05	. 44	1	1	2	50
L4005 975 C	1	14	10	239	. 3	13	1	1265	2.52	20	5	N0	2	35	1	2	2	55	. 25	.188	3	21	. 35	222	. 11	1	1.04	. 04	. 21	1	3	2	40
L4005 950\% [2	17	12	171	. 2	16	8	146	2.45	15	5	ND	4	51	1	2	2	52	. 42	. 174	B	20	. 37	243	. 13	4	2.13	. 05	. 17	1	?	2	52
L400S 525 C	1	16	1	177	. 3	15	7	638	2.06	9	5	MD	4	38	1	2	2	42	. 32	. 172	6	17	. 28	135	. 11	4	1.89	. 04	. 10	2	1	2	52
L4005 900N C	1	17	11	112	. 2	14	6	402	2.15	14	5	ND	4	35	1	2	2	47	. 32	. 152	7	21	. 27	150	. 12	J	1.93	. 04	. 10	$!$	4	2	52
L4005 175w C	1	17	10	92	. 2	15	7	477	2.26	8	5	HD	5	35	1	2	2	53	. 31	. 119	7	22	. 32	143	. 12	2	1.10	. 04	. 12	1	15	2	64
400585014	1	21	8	124	. 2	16	8	534	2.77	12	5	KD	1	38	1	2	2	63	. 30	. 123	8	23	. 37	133	. 13	3	2.34	. 04	. 15	!	"	2	5
L.4005 125M C	1	20	11	118	. 2	17	8	534	2.70	10	5	H	4	43	1	2	2	62	. 38	. 104	8	22	. 36	145	. 13	3	2.18	. 04	. 16	1	1	2	76
L.4005 5001 C	2	16	7	103	. 2	15	7	595	2.29	5	5	ND	4	34	1	2	2	51	. 34	. 102	5	22	. 33	132	. 11	2	1.76	. 04	. 12	!	$?$	2	46
L4005 775 [2	19	12	168	. 2	17	8	623	2.50	5	5	MD	4	44	1	2	2	54	. 31	. 142	5	24	. 31	182	. 11	3	1.75	. 04	. 16	1	1	2	62
L4005 75011 C	2	22	15	123	. 2	19	9	683	2.78	4	5	H0	4	41	1	2	2	64	. 42	. 172	7	25	. 43	176	. 13	4	2.04	. 04	. 25	;	1	2	64
L4005 725	1	19	15	129	. 2	19	1	632	2.51	3	5	ND	4	52	1	2	2	59	. 52	. 205	7	26	. 37	205	. 12	4	1.83	. 05	. 18	1	1	2	62
L4005 7003 C	1	16	9	83	. 3	21	7	616	2.43	2	5	K1	4	41	1	2	2	57	. 44	. 118	7	36	. 34	201	. 13	5	1.79	. 05	.i?	2	6	2	6
14005 675\% C	1	15	4	90	. 3	19	6	569	2.11	2	5	KD	6	32	1	2	2	49	. 33	. 184	12	27	. 29	195	. 11	7	1.57	. 04	. 14	1	1	2	62
STD C/FA-5Y	22	57	36	134	7.1	69	28	1014	3.96	38	18	7	34	48	12	15	18	64	. 48	. 102	35	61	. 88	479	. 08	3	1.7\%	. 09	.!	$!7$	99	9	-

SHANGRI－LA MINERALS FFOJECT ，PGETIF LIIE H Rac．－r．f
－Ar）

SAMPLEI	Hc	C：	Pt	In	40	N	cc	Mn		As		4u	in	57	Cd	Sb	8	V	Ca	f	La	［r	\％	Ea	1	I	4	Ma	！	N	Ayl1	「：1t	Cr：
	DPM	PPM	PPM	PPH	FPM	DPM	PPM	PPM	1	PPr	PPM	z	z	PPM	PPM	2	PPK	7	PPR	2	2	2	PPM	PFP	PP9	Pr							
L400s 650N C	：	16	？	75	．？	20	6	447	2.32	4	5	w 1	4	37	1	2	2	54	． 39	． 121	11	2	． 32	139	． 12	？	1.71	． 04	． 2	！	$!$	：	98
－ 40 ys 625x C	1	18	：	74	． 2	21	7	542	2.17	6	7	H0	5	38	1	2	2	57	． 44	． 156	11	32	． 35	170	． 12	3	1.83	． 05	． 12	1	7	2	75
L4005 600k C	：	20	13	83	．	19	7	595	2.39	3	5	ND		51	1	2	2	54	． 55	．155	10	27	． 39	180	．17	1	2.07	．05	． 14	：	：	：	36
L4005 575M：	$!$	19	18	44	． 1	19	7	799	2.25	5	5	ND	3	74	1	2	2	48	． 69	． 195	13	24	． 35	228	． 12	5	1.79	． 05	． 12	1	1	2	69
L400：5504 ¢	1	$2!$	6	76	．	19	8	367	2.96	2	5	NJ	5	34	1	4	：	75	． $3 t$	． 176	！5	37	． 43	129	． 15	4	2.13	． 04	． 16	i	！	：	75
L490S 525u［	1	23	\bigcirc	77	． 2	20	7	349	2.71	2	5	ND	5	36	1	2	2	69	． 45	．088	15	35	． 41	116	． 14	3	1.89	． 85	． 15	1	8	2	84
L400s 500M $¢$	：	23	11	90	．2	17	8	555	2.84	2	5	ND		40	1	2	2	69	． 47	． 069	14	27	． 60	114	． 15	4	2.13	． 06	． 2	1	：	2	70
－4005 475K C	1	29	6	84	． 1	21	1	319	3.26	7	5	ND	4	31	1	2	2	86	． 37	． 132	15	36	． 53	91	． 15	4	2.44	． 04	． 12	1	2	？	79
L400S 450N C	1	16	11	Et	． 1	23	8	595	2.91	5	5	ND	4	33	1	2	2	72	． 42	． 112	11	42	． 50	151	． 15	6	2.20	． 04	． 14	：	！	2	105
L4005 425\％C	1	14	$!$	97	． 2	10	z	933	2.20	6	6	H0	2	33	1	2	3	40	． 28	． 183	7	20	． 26	143	． 11	4	1.65	． 04	． 07	1	1	2	47
L4005 40014 C	1	16	10	73	． 1	17	7	559	2.52	8	5	ND	1	33	1	2	2	59	． 31	． 136	11	27	． 40	172	． 14	3	2.21	． 04	． 11	1	！	2	$7!$
L400S 3751 5	，	15	11	10	． 2	11	7	692	2．58	4	5	ND	6	32	1	2	2	61	． 35	． 115	10	32	． 10	193	． 14	4	1.97	． 04	.10	1	J	2	61
L400S 3501 C	1	13	8	102	． 1	17	7	995	2.57	5	5	ND	4	37	1	2	2	56	． 34	． 198	10	29	． 37	253	． 14	3	1.84	． 04	． 08	1	！：	2	£
－4005 325\％［	1	13	10	87	． 1	17	7	905	2.57	5	5	HD	3	32	1	2	2	63	． 41	． 080	7	29	． 38	162	． 13	3	1.66	． 04	． 10	1	1	2	－0
L4005 300N C	1	16	14	78	． 1	17	7	609	2.59	4	6	NJ	4	29	1	2	2	62	． 34	． 118	12	31	． 3	173	． 14	5	1.95	． 04	．1！	$!$	4	2	7
14005 275以 C	1	16	1	48 ${ }^{\text {a }}$	． 2	18	7	44	2.62	2	7	ND	6	34	1	2	2	63	． 39	． 101	13	34	． 31	181	． 14	3	2.00	． 04	． 10	1	1	2	77
L4005 2501 C	1	16	10	80	． 1	15	6	440	2.05	2	5	no	4	46	1	2	2	42	． 37	．133	1	22	． 32	220	． 13	3	1.96	． 04	．1！	！	1	2	44
L400S 225u C	1	20	14	179	． 1	18	10	1481	2.22	4	5	Ho	2	69	1	2	2	42	． 60	． 254	7	22	． 37	330	． 12	6	1.78	． 05	． 13	1	2	2	57
14005 2001 C	1	16	11	77	． 1	18	7	723	2.73	7	5	HD	1	30	，	2	2	65	． 34	． 082	11	29	． 40	122	． 14		2.10	． 04	． 10	1	2	2	69
14005 775M C	$!$	14	7	94	． 1	16	6	970	2.31	5	5	HD	2	54	1	2	2	47	． 41	． 120	8	21	． 38	205	． 15	3	2.11	． 05	． 14	1	1	2	61
$14005150 \mid \mathrm{C}$	2	20	38	82	． 1	8	，	1963	1.43	t	5	ND	1	39	1	4	Ξ	32	． 32	． 074	4	14	． 18	131	． 08	2	． 92	． 04	． 07	$!$	2	2	31
L400S 125\％C	1	13	24	94	． 2	14	8	1285	2.26	3	5	KD	2	42	1	2	2	49	． 44	． 073	8	20	． 33	174	． 12	5	1.78	． 04	. .10	1	3	2	55
¢4005 1004 C	1	17	12	63	． 1	12	5	651	1.99	2	5	ND	3	24	1	2	2	41	． 2	． 081	6	16	． 25	136	． 14	5	2.36	． 04	． 07	1	1	2	39
L4005 75\％C	1	12	9	129	． 1	14	6	818	2.61	5	5	NJ	3	39	，	2	2	52	． 37	．181	6	26	． 42	240	． 14	4	1.92	． 04	． 12	1	，	2	64
L400S 50k C	1	14	10	66	． 1	14	5	110	1.91	2	5	ND	？	33	1	2	2	39	． 37	． 084	11	19	． 28	107	． 54	3	2.33	． 05	． 07	$!$	2	2	47
140057514 C	1	14	10	59	． 2	16	5	381	1.97	1	5	ND	4	33	1	2	2	40	． 33	． 064	11	20	． 29	123	． 14	2	2.25	． 05	． 04	1	2	2	45
L4005 00N C	1	13	－11	105	． 2	12	5	195	1.99	2	6	ND	3	38	，	2	2	41	． 35	． 142	8	20	． 25	244	． 12	3	1.87	． 04	． 09	1	1	2	57
L5005 1100V 1R－15 CC	1	32	7	98	.1	22	11	453	3.10	3	5	ND	3	38	，	2	2	81	． 30	． 062	8	23	． 73	178	． 21	3	3.02	． 05	． 13	1	3	2	53
L5005 1075 mb－15 CC	1	38	$1:$	154	． 2	20	11	718	3.07	13	5	ND	4	47	1	2	2	70	． 38	． 154	7	23	． 63	237	． 19	6	2.97	． 05	． 17	$!$	2	2	47
L5005 10504 BR－15 CC	1	25	7	134	． 1	18	9	635	2.73	12	5	N0	4	37	1	2	2	60	． 33	． 040	7	25	． 40	175	． 14	5	2.32	． 04	． 13	1	2	2	62
L5005 1025N BR－15 CC	1	22	11	170	． 1	18	9	630	2.64	21	5	ND	こ	5	2	2	2	56	． 53	．183	10	23	． 42	194	． 14	6	2.47	． 05	． 17	$!$	30	2	$5:$
L5005 1000N JR－15 CC	1	25	7	135	． 2	15	8	607	2.51	26	5	HD	4	52	1	3	2	55	． 40	． 150	9	19	． 38	160	． 14	B	2.58	． 05	． 17	1	54	2	90
L5005 9754 3R－10 CC	1	24	12	117	． 2	15	8	022	2.47	29	7	ND	3	34	1	2	2	52	． 30	． 137	10	17	． 35	159	． 15	6	2.13	． 04	． 13	1	3	2	44
L500S 950 ${ }^{\text {SR－5 CC }}$	1	20	20	247	.1	21	11	1795	3.02	25	5	HD	1	56	2	2	2	67	． 47	． 133	4	22	． 41	255	． 12	5	2.27	． 05	． 12	1	J	2	41
L500S 925M 3R－10 CC	2	21	10	132	． 2	19	1	528	2.70	21	4	ND	4	34	1	3	2	12	． 27	． 103	7	23	． 41	152	． 14	3	2.56	． 04	． 15	1	5	2	47
2500S 900以 $\mathrm{RD-10}$ CC	1	23	6	152	． 1	18	1	593	2.68	18	5	\＄0	2	37	1	2	2	60	． 21	． 121	8	20	． 40	141	． 13	2	2.43	． 03	．13	1	6	2	57
STD C／FA－5y	2 i	55	36	！ 3	6.8	69	28	1009	3.95	35	17	7	32	47	17	15	19	6 ？	． 48	． 100	36	60	． 88	176	． 02	35	1.72	． 09	． 12	13	45	$10{ }^{1}$	－

SAMPLEt	Mo	CL	Pb	3 r	Go	41	\because	H_{5}	Ff	Hs	$:$	fur	7	Sr	${ }_{\text {c }}$	St	E:	V	[a	F	L*	Cf	${ }_{3}$	F:	\bullet	f	F	vi	'	λ	Hैडt?	Ftit	Cr
	DPM	PPM	PPK	HPM	Sc\%	DF\%	spp	PPM	:	DPM	Pph	PPM	PPr	PPK	PPM	PPK	PPM	PPM	2	2	PPM	PPM	;	DPK	z	DPM	2	2	2	PPR	DP9	PPP	PPM
L5005 8754 BR-15 CC	2	27	14	146	.	20	E	435	3.19	14	E	N	:	45	1	2	2	77	. 29	. 04 ?	1	25	. 55	$15:$. 17	5	2.57	. 012	. 28	:	9	2	$4 t$
L5009 8501 ${ }^{\text {c }}$	2	31	15	278	.	17	1)	188e	2.92	15	5	His	3	¢8	2	2	2	62	. 50	. 323	6	2	. 52	415	. 15	4	2.65	. 05	.23	2	3	2	55
L500S 825)	2	25	1?	125	.!	26	9	533	2.94	16	5	N1	4	37	1	2	2	$7!$. 49	. 065	8	24	. $5:$:2:	. 1	:	2.41	. 0 E	. 27	!	2	:	?
L500s soour C	2	23	15	13 n	:	23	1i)	59:	2.85	15	5	45	5	41	1	2	2	69	. 11	. 102	7	33	. 51	158	. 15	3	2.45	. 04	. 21	1	1	2	99
L5005 7754 [?	25	15	150	.?	22	11	745	3.19	i	0	NL	5	45	!	?	4	$7!$. 25	. 122	7	3	. 19	144	. 12	:	2.54	. 04	. $2 i$	2	$1!$	2	$2 ?$
L50us 7504 C	1	22	7	102	. 4	19	8	49	2.55	7	5	ND	4	43	1	2	2	60	. 52	. 091	9	25	. 42	120	. 13	6	1.85	. 05	. 27	1	19	2	2e
L500S 725以 C	1	14	8	14.	. 1	15	7	803	2.22	7	5	NE	:	$3 ?$!	2	2	49	. 30	.14t	6	22	. 21	195	.!:	4	1.66	. 04	.1?	!	4	2	78
15005 700\% [1	13	9	69	. 1	14	5	325	1.87	2	5	\%	3	21	1	2	2	45	. 24	. 077	7	22	. 24	82	. 18	3	1.24	. 03	. 12	1	3	2	77
L500S 675\% [1	17	7	80	. 2	26	7	351	2.50	2	5	N0	3	33	1	2	\pm	57	. 36	. 100	8	26	. 33	141	. 12	T	1.89	. 04	. 1 ?	1	9	2	9\%
L5005 650W C	1	14	9	91	. 1	: 8	6	514	2.27	2	5	NT	4	31	1	2	2	53	. 35	. 131	10	26	. 30	183	. 11	4	1.57	. 04	. 11	1	1	2	89
L500S 625\% C	1	13	11	70	. 1	12	t	4 I !	2.49	2	5	N0	3	39	1	2	$?$	62	. 16	. 156	9	28	. 29	150	. 16	6	1.51	. 05	. 5	1	2	2	78
!5005 6001 C	$!$	12	0	46	. 2	16	5	215	2.38	7	8	HD	1	29	$!$	3	2	64	. 36	. 089	9	33	. 29	90	. 11	4	1.32	. 04	. 15	3	2	2	87
L500S 575	1	13	7	8!	:	$1 t$	t	354	2.27	2	t	NJ	4	34	1	2	4	56	. 40	. 154	10	26	. 28	154	.1!	2	1.37	. 05	. 12	1	10	2	77
L5005 550M E	1	15	9	98	.!	18	t	435	2.32	4	5	ND	4	37	1	2	2	51	. 39	. 148	10	26	. 30	167	.! 2	4	1.74	. 04	. 13	1	2	2	67
L500S 525M C	1	14	10	62	. 1	45	b	217	2.50	2	5	ND	5	31	1	2	2	70	. 40	. 084	11	33	. 34	72	.1!	4	1.17	. 04	. 12	1	5	2	90
L500S 5001 C	1	31	15	77^{\prime}	. 4	22	7	473	2.56	5	B	ND	5	38	1	2	2	56	. 49	. 047	17	25	. 34	97	. 15	5	2.32	. 01	. 12	1	2	2	62
L5005 4754 C	1	38	14	63	. 2	18	7	259	2.24	11	5	ND	5	41	,	2	2	S2	. 55	. 023	15	29	. 37	90	. 16	5	2.33	. $0 t$. 10	1	1	2	64
L500S 450N C	1	21	10	93	. 1	18	7	553	2.47	2	5	ND	4	46	1	2	2	52	. 46	.171	13	27	. 39	162	.13	d	1.99	. 05	. 19	1	1	2	69
15005 425M C	2	17	9	128	.	18	7	578	2.40	5	5	ND	5	48	1	2	2	53	. 40	. 207	12	27	. 36	193	. 11	5	1.62	. 04	. 12	3	$?$	2	67
L500S 400M C	1	16	12	105	. 1	15	6	580	2.23	4	5	H\%	4	36	1	2	2	49	. 32	. 222	9	25	. 35	198	. 12	1	1.87	. 04	. 11	1	1	2	70
L5009 375w C	2	18	11	89	.	17	8	579	2.62	6	5	NI	5	34	1	2	2	62	. 34	.193	10	27	. 45	175	. 14	4	2.18	. 04	. 13	1	1	2	62
L500S 350N C	1	18	12	78	. 1	18	7	494	2.42	2	5	HI	5	40	1	2	2	55	. 36	. 116	12	27	. 40	200	. 14	5	2.05	. 05	. 14	2	1	2	75
L500S 325í c	2	16	10	101	. 1	24	10	517	2.76	4	5	KL	5	40	1	2	2	63	. 34	. 187	11	31	. 45	180	. 15	5	2.03	. 04	. 13	1	4	2	77
L5005 3001 C	1	21	16	74	. 1	19	1	373	2.87	4	5	HD	6	38	,	2	2	61	. 34	. 137	14	31	. 55	135	. 16	3	2.43	. 04	. 16	2	6	2	91
L500S 275M C	1	12	26	94	. 1	15	1	100	2.15	3	5	WD	3	49	1	2	2	45	. 41	. 089	8	26	. 40	248	. 12	6	1.82	. 0	. 13	1	1	2	$7!$
L5005 2504 C	2	13	9	76	. 1	17	7	521	2.49	2	5	H0	4	18	1	2	2	54	. 37	. 170	9	28	. 42	123	. 14	4	2.17	. 04	. 10	1	,	2	77
L500S 225k C	2	14	13	80	. 2	18	7	527	2.78	2	6	Ni	5	32	1	2	2	67	. 32	. 095	10	33	. 49	144	. 16	2	2.17	. 04	.13	1	7	2	83
L500S 20014 C	2	11	21	94	. 1	15	6	664	2.21	b	5	HD	4	34	1		2	51	. 34	. 125	8	27	. 33	216	. 12	3	1.73	. 04	. 09	1	2	2	65
L5005 175\% ${ }^{\text {c }}$	1	12	11	69	.?	12	5	630	1.84	5	5	N®	5	35	1	2	2	38	. 28	. 136	6	19	. 27	217	. 12	5	1.16	. 04	. 10	2	4	2	47
L5005 125M C	1	15	13	89	. 1	17	6	550	1.95	3	5	NIJ	4	71	1	2	2	36	. 45	. 218	7	18	. 36	295	. 12	6	2.02	. 05	. 15	1	11	2	49
L5005 100M C	1	23	14	141	.4	21	10	1732	2.84	4	5	ND	5	155	1	2	2	55	. 75	. 295	8	26	. 63	447	. 15	8	2.69	. 05	. 24	1	2	2	61
L500S 75N C	1	32	12	95	. 3	24	12	518	3.31	6	8	HD	6	78	1	2	2	70	. 49	. 141	11	31	. 60	163	. 18	6	3.45	. 05	. 19	1	3	2	63
L500S 50W C	1	25	23	113	. 3	24	11	1253	2.56	5	5	ND	4	112	1	2	2	55	. 5	. 156	11	28	. 52	217	. 12	4	2.48	. 05	. 16	1	2	2	63
2500S 25M C	1	15	17	104	. 1	14	6	588	2.01	5	5	:15	1	73	1	3	2	44	.5!	. 153	8	22	. 33	200	. 11	7	1.44	. 05	. 12	1	1	2	57
L600S 1075以 RD-10 CC	1	26	16	11!	. 3	18	8	1045	2.65	4	5	ND	4	44	1	2	2	57	. 40	. 227	E	22	. 32	193	. 14	7	2.38	. 04	.1?	$!$	49	2	68
L6005 505014 R0-15 CC	2	21	11	87	. 1	18	7	530	2.76	2	5	HD	4	27	1	2	2	63	. 32	. 118	1	22	.43	123	. 15	3	2.36	. 04	. 11	$!$	9	2	81
SID C/FA-5	22	59	39	135	6.9	62	29	999	?.95	77	16	e	34	47	12	17	19	63	. 18	. 101	37	57	. 89	17t	. 08	37	1.72	. 19	. 14	13	! 0	92	

Sample	Mc	Eu	Pb	In	Ag̣	${ }_{H}$	Co	Mn	Fe	As	U	Au	th	Sr	cd	Sb	El_{1}	\%	C_{2}	F	Li	fr	nc	8	i_{1}	5	A!	N	1	H	Auts	Ptts	Cri
	PFS	PPK	PPK	PPM	PPM	PP\%	PPR	PPM	2	PPK	PPM	PPK	PPM	Prg	PPM	P9\%	PPM	PFK	2	z	PPM	PPM	\geq	PPG	$!$	PPM	1	z	1	PPM	PP9	PPR	PPM
L6005 1025K EP-10 CC	1	24	12	102	. 1	19	E	990	2.89	10	5	Ho	3	35	1	2	;	62	. 39	. 113	10	22	. 45	151	. 15	4	2.45	.05	.1!	1	1	75	65
L600S 10vol 8 R-10 CC	1	17	9	111	. 1	18	7	635	2.58	9	5	HD	3	26	1	2	7	55	. 28	. 084	8	20	. 40	117	. 14	3	2,16	. 04	. 12	1	3	2	70
L600S 975\% EF-5 CC	$!$	21	10	166	. 1	19	-	1520	3.16	,	5	ND	3	12	1	2	6	60	. 36	. 241	7	22	. 47	179	. 14	3	2.45	. 04	. 13	2	2	4	6?
L600S 950M PD-15 CC	2	25	7	97	. 1	18	1	544	3.10	11	5	HD	1	34	1	2	4	. 7	. 36	. 079	12	25	. 49	118	. 17	1	2.60	. 05	. 16	1	1	51	60
L6005 925M RD-15 CC	1	19	5	72	. 1	16	7	516	2.56	t	5	ND	1	32	1	2	4	57	. 30	. 067	E	19	. 40	105	. 15	2	2.01	. 64	. 14	2	!	2	68
1600s 900\% PR-15 CC	1	23	1	100	. 1	19	8	649	3.13	5	5	ND	4	38	1	2	4	69	. 38	. 107	10	24	. 50	129	. 15	2	2.33	. 05	. 16	1	5	2	62
L600S 675: RD-15 CC	1	25	3	115	. 1	19	9	64?	3.33		1	HJ	4	46	1	2	3	74	. 43	.104	,	21	. 54	143	. 15	2	2.35	. 05	.21	1	2	2	53
L600S 5501 DR-15 CC	1	22	7	130	. 2	16	-	539	2.95	b	5	ND	1	33	1	2	2	63	. 46	. 069	9	19	. 46	137	. 15	2	2.20	. 06	. 17	1	1	2	70
L6005 825\% RD-15 CC	1	25	8	111	. 2	16	9	545	4.01	1	7	ND	3	43	1	2	1	95	. 42	. 060	7	21	. 70	146	. 20	2	2.65	. 05	. 39	1	1	2	42
L600S 300N AR-10 CC	1	22	11	105	.2	14	9	770	3.70	5	9	Nפ	4	43	1	2	,	86	. 42	. 059	6	19	. 68	195	. 18	3	2.18	. 05	. 46	2	10	7	53
16005 TISN MR-15 CC	1	20	5	107	. 1	16	8	621	2.97	10	5	ND	4	36	1	2	2	65	. 3 t	. 133	10	23	. 44	179	. 13	4	1.99	. 05	. 21	1	17	6	52
L6005 7504 JR-15 CC	1	19	6	51	. 1	17	7	489	2.80	8	,	HD	4	35	1	2	,	63	. 45	. 093	10	25	. 11	133	. 12	3	1.81	. 05	.19	1	1	2	64
L6005 725K BR-15 CC	1	19	4	69	. 1	15	1	419	2.94	7	5	ND	4	31	1	2	2	73	. 42	. 047	9	31	. 42	95	. 13	2	1.52	. 05	. 20	1	2	2	74
L600S 700N ER-10 CC	1	18	8	82	. 2	18	7	556	2.92	5	5	ND	5	30	1	5	3	69	. 40	. 089	11	31	. 35	131	. 11	6	1.53	. 04	. 21	2	1	2	78
L6005 675U DR-15 CC	1	17	11	47	. 1	16	8	481	2.84	d	5	N0	3	41	1	2	2	4	. 51	. 068	9	25	. 40	137	. 14	2	1.74	. 05	. 30	$!$	5	55	66
460056504	,	22	6	100°	. 1	19	1	473	3.02	11	5	ND	4	39	1	2	3	70	. 45	. 101	11	27	. 45	160	. 15	2	2.06	. 06	. 21	2	19	20	60
6005 625M PR-15 C	1	21	5	112	. 2	18	8	538	2.81	12	6	WD	4	46	1	2	2	6 6	. 41	. 167	10	21	. 39	175	. 13	3	2.00	. 05	. 21	1	11	2	73
$16005600 \mathrm{HCC}-15 \mathrm{C}$	1	20	6	99	. 2	18	6	275	2.43	16	7	HD	2	56	1	2	4	43	1.02	. 027	8	22	. 41	79	. 13	2	1.85	. 08	. 0	1	7	2	66
16005 5754 C	1	21	8	72	. 2	14	6	320	2.60	16	5	NO	4	45	1	2	2	69	. 51	. 048	10	29	. 37	87	. 12	3	1.45	. 05	. 18	2		2	87
!6005 5501 C	1	17	1	135	.1	16	6	459	2.31	13	5	HD	4	37	1	2	5	51	. 33	. 191	8	23	. 32	123	. 10	3	1.11	. 04	. 12	2	2	2	52
L600S 525\% C	1	15	8	110	. 1	14	1	447	2.17	9	5	ND	2	37	1	3	4	44	. 37	. 244	9	20	. 27	161	. 10	5	1.90	. 04	. 07	2	2	2	42
60055001 C	1	15	0	127	.1	11	7	538	2.17	8	5	ND	1	45	1	2	2	51	. 41	. 171	9	26	. 35	181	. 11	4	1.81	. 04	. 12	1	1	2	72
16005 4754 C	1	32	4	193	. 2	35	14	461	3.45	15	5	N0	5	56	1	2	4	65	. 49	. 212	12	26	. 52	132	. 14	5	2.60	. 05	. 15	1	4	2	61
L600S 450\% C	1	17	11	141	. 1	14	1	130	2.37	9	5	HD	3	35	,	2	2	45	. 31	. 251	7	17	. 37	206	. 14	3	2.4	. 04	. 10	1	5	2	31
18005 425M C	1	14	10	112	. 2	18	6	443	2.14	9	5	no	4	33	1	2	3	13	. 31	. 156	,	19	. 30	177	. 13	,	2.11	. 05	. 10	1	21	2	48
40054001 C	1	13	4	161	. 2	18	1	446	2.01	9	5	ND	1	35	1	2	2	39	. 26	. 222	8	19	. 30	163	. 13		2.16	. 05	. 10	1	1	2	40
26005 5754 C	1	14	9	94	. 1	23	9	422	2.18	7	5	kD	4	35	,	2	2	42	. 31	. 135	10	22	. 37	157	. 15	4	2.13	. 05	. 13	2	2	2	47
160053501 C	1	15	5	106	. 1	23	7	366	2.12	7		HD	5	42	1	2	2	51	. 38	.130	1	18	. 36	147	. 13	4	1.86	. 05	. 13	1	1	2	49
L600S 325\% C	1	15	9	122	. 2	19	7	618	2.62	6	5	VII	4	52	1	2	2	53	. 35	. 180	9	23	. 39	204	. 13	3	2.10	. 05	. 14	2	$!$	2	57
L6005 300W [1	12	7	94	. 1	11	5	461	1.74	6	5	HD	3	39	$!$	2	3	33	. 25	. 207	6	14	. 24	192	. 07	2	1.52	. 04	. 09	2	4	2	49
L6005 2754 C	1	16	?	126	. 1	15	6	437	2.32	1	5	ND	4	33	1	2	2	41	. 26	. 146	10	19	. 31	190	. 17	2	2.25	. 05	. 07	1	1	2	47
L6005 2501 C	1	21	5	9	. 1	16	6	358	2.42	3	5	KD	5	33	1	2	3	50	. 30	. 099	9	17	. 32	148	. 15	2	2.92	. 05	. 09	1	2	2	34
L600S 2254 C	1	16	1	98	. 1	15	6	371	2.10	9	5	ND	1	34	1	2	2	41	. 36	. 196	11	19	. 30	214	. 12	3	2.16	. 05	. 09	1	3	2	43
16005 2001 MR-15 CC	1	14	19	106	. 1	14	5	735	1.97	7	5	ND	4	16	1	2	2	39	. 15	. 196	7	10	. 27	223	. 11	3	1.80	. 05	. 10	1	4	7	36
L600S 1754 RD-15 CC	1	15	10	71	. 1	17	7	500	2.16	1	5	ND	6	30	1	2	5	48	. 29	. 147	10	23	. 39	197	. 14	2	2.21	. 05	. 16	1		2	43
L600S 1501 RD-15 CC	1	17	7	105	. 2	17	6	510	2.32	3	5	ND	5	35	1	2	2	45	. 31	. 183	13	20	. 33	223	. 13	3	2.22	. 05	. 11	1	1	2	16
STD C/FA-5X	21	56	38	129	7.0	67	27	974	$3 . \%$	36	18	6	33	46	IE	16	21	61	. 48	. 085	37	53	. 日B $^{\text {d }}$	171	. 08	33	1.72	. 09	. 17	12	102	98	46

5AMPLE:

L600S 125 MRD -15 CC
26905 1004 sD -15 CC
Lu00S 75\% 3R-10 CC
2600 504 8D-15 [C
l600S 250 RD-1S CC
L6005 $00 \mathrm{RD}-15 \mathrm{CC}$
L7005 975 DR-15 CC
27005 950ㅐ 1R-10 CC
L7005 925 BR-10 CC
L7005 875 PR-10 CC
17005 850N DR-10 CC
L7005 825 BR-10 CC
17005 500Y 3R-10 CC
L700S 775H
L7005 750M 3R-15 CC
L700S 725Y BR-15 CC
L7005 700\% RD-IS CC
L7005 675 ND -15 CC
L700S 650M 1R-15 CC
L700S 625M PR-15 CC
L7005 600 $18 \mathrm{R}-10$ CC
L700S 575M RD-15 CC
L700S 550M RD-10 CC
L700S 525M RD-15 CC
L700S 500 PR-15 CC
L700S 4754 RD-15 CC
L700S 450H 1R-15 CC
L700S 4254 8R-15 CC
L700S 400\% 18-10 CC
L7005 375M 1R-15 CC
L700S 350Y RD-15 CC
L700S 325M RD-10 CE
L7005 300\% $\mathrm{RE-10}$ [C
L7005 275M.RD-15 CC
L700S 250M RD-10 CC
STO C/FA-5X

3	3
2	2
2	2
2	2

$$
\begin{array}{lll}
18 & .29 & .137 \\
41 & .30 & .187 \\
37 & .41 & .261 \\
41 & .36 & .232 \\
43 & .35 & .192
\end{array}
$$

9
10
9
9

$$
\begin{array}{ll}
24 & 3 \\
20 & 3 \\
23 & 3 \\
20 & 3 \\
37 & .
\end{array}
$$

$$
\begin{array}{ll}
.35 & 228 \\
.30 & 203 \\
.30 & 26 \\
.32 & 24 \\
.36 & 196
\end{array}
$$

$$
\begin{array}{ll}
28 & .12 \\
03 & .12 \\
165 & .11 \\
40 & .12 \\
96 & .12
\end{array}
$$

$$
\begin{array}{llll}
5 & 1.72 & .04 & . .2 \\
2 & 2.03 & .05 & .11 \\
3 & 1.82 & .05 & .12 \\
2 & 2.03 & .05 & .11 \\
3 & 1.82 & .04 & .14
\end{array}
$$

$$
\begin{array}{lllllllll}
2 & 11 & .51 & .051 & 8 & 33 & .74 & 156 & .20 \\
2 & 57 & .62 & .087 & 6 & 20 & .53 & 383 & .15
\end{array}
$$

14
87
16
49
64 $\begin{array}{ll}51 & .142 \\ 40 & .047 \\ 12 & .117 \\ 42 & .162\end{array}$

11

$$
\begin{array}{llll}
2 & 2.26 & .05 & .17 \\
2 & 2.2^{7} & .05 & .2 \\
4 & 1.88 & .04 & .09 \\
2 & 2.62 & .04 & .14 \\
2 & 2.33 & .05 & .11
\end{array}
$$

$$
\begin{aligned}
& .17 \\
& . \therefore 1 \\
& .09 \\
& .11 \\
& .11
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& 4 \\
& 5 \\
& 8 \\
& 8
\end{aligned}
$$

$$
\begin{array}{r}
49 \\
72 \\
108 \\
77 \\
65
\end{array}
$$

$$
\begin{array}{rr}
2 & 78 \\
2 & 108 \\
2 & 77
\end{array}
$$

26
5
3
4
4
31
28
29
21
27.72
.72
.72
.10
.45$\begin{array}{ll}195 & . \\ 224 & .22 \\ 150 & .21 \\ 181 & . \\ 228 & .\end{array}$$\begin{array}{llll}2 & 3.61 & .05 & .27 \\ 4 & 2.50 & .05 & .26 \\ 3 & 2.17 & .05 & .34 \\ 2 & 2.36 & .04 & .24 \\ 2 & 239 & .05 & 36\end{array}$
22.97 $\begin{array}{ll}2 & 2.97 \\ 2 & 2.59 \\ 2 & 4.11 \\ 2 & 1.93 \\ 3 & 1.94\end{array}$.05
.05
.06
.05
.05 .31
$.5 t$
.36
.20
.2161
59
44
34
73
74
63
57
69
63 .033
.043
.133
.096
.126 $\begin{array}{rrrr}29 & .44 & 74 & .16 \\ 25 & .11 & 94 & .16 \\ 22 & .31 & 165 & .13 \\ 26 & .16 & 145 & .15 \\ 23 & .49 & 146 & .14\end{array}$ $\begin{array}{ll}2 & 1.83 \\ 2 & 1.96 \\ 4 & 2.09 \\ 4 & 2.42\end{array}$.22
.22
.20
.16
.16
24
263
73
52
62
52
64
67
67
49
70 $\begin{array}{ll}.99 & .137 \\ .60 & .121 \\ .49 & .074 \\ .49 & .121 \\ .49 & .086\end{array}$ 22
24
35
22
26 $\begin{array}{rr}.18 & 125 \\ .45 & 98 \\ .43 & 122 \\ .36 & 156 \\ .43 & 79\end{array}$$\begin{array}{lll}41 & .45 & .053 \\ 57 & .41 & .187 \\ 54 & .28 & .115 \\ 47 & .31 & .095\end{array}$
9
6
6
7
11
56
62

* . NT \quad.

It	$\cdots \mathrm{c}$	S	\square_{1}	ir	42	k_{1}	[m	${ }_{5}$	As	$!$	8u	Th	$5{ }^{5}$	[d			V	Cl^{2}	5	Le	Sr	M_{0}	Pa	$\begin{aligned} & 1 \\ & I \end{aligned}$		$4!$	Na	?	PPY	Put1	CP!	Cri
-	2P\%	PFM	DPK	DP\%	PFK	DPM	PPM	PPM	2	PPM	PPK	PPM	PPK	PPM	PPM	PPK	PPM	PPM	Y	?	PPK	PPM	4						$?$	PPY			
															1	2	:	4	. 30	.15:	7	14	.	:5!	. ${ }^{\text {? }}$	5	2.34	. 04	. 09	1	$!$	2	41
L700¢ 295M RD-15 CC	1	18	!	1:5	.	$1 t$	6	541	2.28	10	5	N0	4	34	1	2	2	46	. 29	. 102	7	20	. 31	130	. 13	5	2.22	. 05	. 09	1	1	2	55
	1	24	11	176	. 2	16	7	395	2.32	1	5	ND	4	31	1	2	2	16	. 46	. 019	11	7	. 15	75	.17	3	1.49	. 07	. 0	!	!	2	20
L7005 175 N 6Y-20 [C	1	30	7	24	. 2	12	2	44	. 81	7	5	NO	2	52	!	2	2	28	. 75	. 028	13	14	. 24	43	. 11	4	1.97	. 07	. 04	2	1	6	36
L7005 150k PR-10 EC	1	46	!	42	. 3	19	5	292	1.75	16	5	ND	3	30	1	4	2	$4!$. 29	. 027	E	21	. 27	70	. 14	4	2.19	. 05	. 0	:	$!$	2	62
L7005 125il Ri-so CC	!	20	7	t	. 1	15	6	219	2.16	20	5	KD	3	30	1	1	2	4															
										10	8		4	37	1	2	2	45	. 29	. 051	\%	18	. 29	118	. 14	5	2.25	. 05	. 10	1	1	2	54
Lions lown kn-15 CC	1	18	11	150	. 4	16	8	378	2.25	10	8	Nil	4	38	$!$	2	2	54	. 30	. 092	e	21	. 3	[29	. 13	4	2.32	. 0^{2}	. 16	:	$!$	2	57
L7005 75M BP-15 CC	1	19	10	!15	.:	16	7	447	2.64 2.40	11	5	N10	3	42	1	2	2	50	. 33	. 137	7	18	. 35	135	. 11	4	2.04	. 04	. 10	1	2	2	74
LTOOS 50N 8R-15 cc	1	17	11	131	. 1	15	7	497	2.40	11	5	H	1	46	1	2	2	47	. 34	. 171	7	20	. 34	156	. 12	5	2.19	. 04	.1:	;	$!$	2	57
L700S 25: ER-15 CC	1	19	15	142	.2	15	7	591	2.38	10	5	ND	3	4	1	3	2	46	. 35	. 165	,	16	. 33	150	. 12	7	2.11	. 04	. 11	1	1	2	53
17005 00 3R-15 CC	1	17	12	137	. 1	15	6	572	2.31	14	5	HD	3		1	3																	
							9	417	2.78	11	5	KD	1	44	1	2	2	55	. 42	. 114	13	24	. 40	120	. 14	6	2.54	. 05	. 11	$!$	3	2	54
L7005 25E	1	26	11	190	- 4	1		17	2.76		5	ND	3	70	1	2	2	54	. 47	. 189	7	18	. 37	155	. 11	4	1.98	. 04	. 11	1	1	2	12
L7005 50E RD-15 CC	1	17	14	118	. 1	15	8	574	2.55	12	5	RD	4	39	1	2	2	68	. 35	. 071	7	21	. 46	121	. 13	3	2.38	. 04	. 1 t	1	4	2	62
L700S 75E DR-15 CC	!	17	11	130	. 1	17	8	401	2.94	16	5	RD	4	47	1	2	2	69	. 37	. 095	7	20	. 46	132	. 12	2	2.35	. 03	. 15	1	7	2	60
L7005 100E RD-15 CE	1	20	13	134	. 3	16	8	511	3.03	15	5	ND	4	47	1	2	2	t3	. 40	. 093	11	23	. 43	123	. 13	3	2.35	. 04	. 13	1	1	2	43
L700S [25E 1R-15 CC	2	20	11	117	. 2	15	1	150	2.86	13	5	HD	4	45	1	2	2	E	.														
													4	33	1	2	2	54	. 30	. 153	10	21	. 36	137	. 13	6	2.15	. 04	. 14	1	2	2	64
L700S IS0E RD-15 CC	1	15	5	105	.1	15	7	500	2.57	5	5	ND	4	21	1	2	2	41	. 32	. 139	10	25	. 31	174	. 13	4	1.74	. 04	. ${ }^{12}$	$!$	$!$	2	66
L700S 175E DR-15 CC	1	13	8	87	. 1	15	6	446	2.34	5	5	ND	1	30	1	2	2	51	. 33	. 105	1	23	. 38	165	. 13	3	1.61	. 04	. 17	1	7	2	61
L7005 200E RD-15 CC	1	12	11	84	. 1	16	b	340	2.35	10	5	ND	3	32	1	2	2	51	. 32	. 141	7	25	. 37	154	. 12	5	1.66	. 04	. 13	1	1	2	56
L700S 225E RD-15 CC	1	10	-	77	. 1	17	6	322	2.36	1	5	ND	3	32	1	2	2	47	. 33	.188	,	18	. 35	154	. 12	4	1.87	. 04	. 14	1	3	2	55
L700S 250E RD-15 CC	1	13	b	87	. 1	15	6	345	2.31	6	5	NJ	3	34	1	2	2	4	. 3	. 118	,	18	. 3										
												ND	2	36	1	2	2	41	. 28	. 181	7	17	. 31	170	. 11	5	1.86	. 04	. 11	1	1	2	44
L7005 275E RD-15 CC	1	14	9	$10 ?$. 1	14	5	476	2.10	9	5	HD	4	40	1	2	2	18	. 33	. 199	11	21	. 35	199	. 13	4	2.27	. 04	. 12	1	1	2	46
L7005 300E R6-10 CC	1	18	7	120	. 1	15	6	426	2.44	10	5	ND	3	48	1	2	2	40	. 37	. 233	6	17	. 31	254	. 12	5	2.08	. 04	. 14	1	1	2	44
17005 325E RD-15 CC	1	16	6	128	. 1	15	6	731	2.17	3	5	H	3	38		3	2	4	. 32	. 192	9	18	. 33	186	. 12	4	2.16	. 04	. 12	1	1	2	47
27005 350E RD-15 CC	1	17	11	113	. 2	14	6	533	2.32	10	5	ND	4	38	1	2	2	49	. 40	. 155	7	17	.34	193	. 13	2	2.07	. 04	. 11	1	!	2	56
L700S 375E RD-15 CC	1	14	9	110	. 2	15	6	531	2.37	9	5	N0	4	45	1	2																	
												ND	3	38	1	2	2	48	. 31	. 173	9	11	. 34	169	. 13	3	2.14	. 04	. 12	1	1	2	49
L7005 400E RD-I5 CC	1	18	7	104	1	15	6	539	2.37	12	5	ND	3	31	1	2	2	51	. 25	. 184	6	19	. 38	139	. 13	5	2.20	. 03	. 12		21	2	44
L700S 425E RD-15 CC	1	15	12	89	. 1	11	6	605	2.41	14	5	ND	1	57	1	2	2	57	. 51	. 178	6	22	. 43	195	. 14	6	2.35	. 04	. 17	1	1	2	53
LTOOS 450E RD-15 CC	1	19	11	126	. 2	15	7	1041	2.69	6	5	ND	3	41	1	2	2	56	. 33	. 048	9	23	. 42	153	. 13	5	2.13	. 04	. 16	2	2	2	58
L700S 475E DR-10 CC	1	17	12	104	. 1	15	7	681	2.62	12	5	ND	3	45	1	2	2	58	. 39	. 114	9	26	. 41	169	. 13	4	1.90	. 04	. 16	1	1	2	12
L7005 500E RD-15 CC	1	12	10	114	. 1	15	6	639	2.61	5	5	NO	3	45	1	2	2	5	. 3	.114													
					. 1	12	8	672	3.49	9	5	ND	2	82	1	2	2	75	. 56	.110	4	17	. 59	132	. 13	2	2.38	. 04	. 19		2	2	54
L7005 525E $\mathrm{BR}-10 \mathrm{CL}$	2	20	8	155	1		9	1649	3.00	11	5	ND	3	43	1	2	2	61	. 49	. 203	6	23	. 43	154	. 12	5	2.21	. 04	. 15	1	I	2	64
17005 550E 3R-15 CC	1	17	11	195	1	16	8	1092	3.08	1	5	ND	2	72	1	2	2	65	. 62	. 155	11	23	. 46	153	. 12	6	2.27	. 04	. 19	d	1	2	85
L700S 575E DR-15 CC	1	20	14	128	.1	14	8	1092	3.08 2.62	8	5	MD	3	67	1	3	2	52	. 45	. 161	5	19	. 40	157	. 12	3	2.15	. 04	. 15		1	2	66
L700S 600E BR-15 CC	1	17	16	120	.1	14	7	66	2.62	11	5	HD	3	67 55	1	2	2	48	. 34	. 217	8	15	. 38	157	. 12	4	2,13	. 04	. 16	1	1	2	41
L700S 625E RD-15 CC	1	18	12	112	. 1	12	7	702	2.47	11	5	HO	3	55	1	2	2	4															
			7				7	626	2.70	5	5	HD	3	47	1	2	2	58	. 37	. 118	11	23	. 37	162	. 13	3	1.91	. 04	. 15	13	5	${ }^{3}$	47
STO CIFA-5y	21	56	41	129	6.7	67	27	96	3.95	43	16	7	32	45	17	17	21	11	. 48	. 098	23	54	. 8	171	. 08	37	1.72	. 08	.12	13	0:	9	

-AGE : -

S4METV

27005 -75E E9-15 c Lioms Tarie pa-15 CC L700 $725 E$ RO-10 CC Linjs 750E JR-15 CC L700S 775E RD-15 CC
. 7095 gine Rr-15 C LTOOS 650E RI-10 CC LT005 875 RD -15 CC LTOOS GOOE RD-10 TC Lg00S A5OH RD-10 CL

L9005 825M IR-10 CL L9005 800K DR-10 CC 19005775 ND R-15 CC L900S 7504 RD-5 CC L9005 725N TR-5 CC

L900S 7001 RD-10 CC L9005 62SW BR-10 CC L9005 600 N (R-15 CC L900S 575: RD-10 CC 2005 550M PR-10

L9005 500 MRD-15 CC L9005 475M BR-10 CC L9005 450K RR-5 CL L900S 425N BR-10 CC LfoOS 4001 DR-20 CC

L900S 375W RD-15 CC L900S 3501 BR-5 CC L900S 250Y RD-5 CC
L900S 2254 BR-10 CC L9005 200N RD-10 CL

Ls00S 1751 1R-15 CC L900S 150M JR-15 CC L9005 :1254 BR-10 C L900S 100M JR-10 CC L9005 754 3n-15 CC

L300S 50V RD-10 CC STD C/FA-5X
 Ca
2 i PPK 11 $\begin{array}{rrrrrr}1 & 24 & 12 & 05 & .7 & 14 \\ 1 & 13 & 10 & 129 & .1 & 16 \\ 1 & 17 & 8 & 183 & .3 & 1 t \\ 1 & 19 & 10 & 117 & .1 & 27 \\ 1 & 16 & 14 & 12 t & .7 & 14\end{array}$

7	590	2.54
8	541	2.99
11	1142	3.44
9	690	3.75
7	500	2.79

$\begin{array}{llll}5 & \text { NT } & 5 & 45 \\ 6 & \text { HD } & 4 & 30 \\ 5 & \text { ND } & 3 & 50 \\ 5 & \text { HD } & 3 & 55 \\ 7 & \text { NI } & 3 & 40\end{array}$

$$
7 \quad 109 \quad .
$$

$$
\begin{array}{ll}
.! & 1 \\
.! & 1 \\
.! & 1
\end{array}
$$

$$
\begin{array}{rrr}
t & 565 & 2.38 \\
7 & 542 & 2.74 \\
9 & 640 & 3.13 \\
7 & 477 & 2.62 \\
20 & 1245 & 4.61
\end{array}
$$

$$
\begin{array}{r}
9 \\
6 \\
11 \\
7 \\
17
\end{array}
$$

$$
\begin{array}{ll}
5 & 4 D \\
5 & \text { ND } \\
5 & H 0 \\
5 & \text { ND } \\
5 & \text { HD }
\end{array}
$$

$$
\begin{array}{llll}
7 & 48 & 1 & 2 \\
7 & 41 & \vdots & 2 \\
1 & 54 & 1 & 2 \\
1 & 38 & 1 & 2 \\
4 & 77 & 1 & 2
\end{array}
$$

$$
\begin{array}{rrrr}
2 & 49 & .53 & .202 \\
? & 57 & .38 & .102 \\
5 & 64 & .46 & .103 \\
3 & 55 & .47 & .141 \\
2 & 106 & .69 & .060
\end{array}
$$

$$
\begin{array}{lllll}
12 & 16 & .33 & 172 & .12 \\
11 & 20 & .39 & 135 & .14 \\
11 & 20 & .45 & 136 & .15 \\
11 & 23 & .34 & 131 & .15 \\
12 & 32 & 1.04 & 239 & .25
\end{array}
$$

$$
\begin{array}{llll}
2 & 1.99 & .05 & .12 \\
2 & 2.22 & .05 & .17 \\
6 & 2.48 & .06 & .17 \\
7 & 1.95 & .05 & .17 \\
5 & 4.01 & .08 & .64
\end{array}
$$

$$
\begin{array}{cccc}
2 & 91 & .44 & .080 \\
2 & 120 & .63 & .131 \\
2 & 149 & .54 & .144 \\
2 & 116 & .79 & .084
\end{array}
$$

$$
\begin{array}{lllll}
1 & 2 t & .74 & 161 & .19 \\
6 & 30 & .94 & 179 & .20 \\
5 & 31 & 107 & 919 & 77
\end{array}
$$

$$
\begin{array}{llll}
2 & 2.85 & .08 & .34 \\
7 & 3.80 & .08 & .42 \\
5 & 2.45 & .09 & .65 \\
3 & 2.96 & .11 & .24 \\
1 & 2.53 & .05 & .20
\end{array}
$$

$$
\begin{array}{ll}
1 & 12 \\
1 & 16 \\
1 & 32 \\
1 & 25 \\
1 & 11
\end{array}
$$

$$
\begin{array}{llll}
6 & 3.21 & .07 & .25 \\
2 & 2.02 & .06 & .10 \\
7 & 3.63 & .06 & .32 \\
3 & 3.45 & .07 & .47 \\
5 & 2.33 & .07 & .21
\end{array}
$$

$$
\begin{array}{rr}
38 \\
1 & 2 \\
1 & 14 \\
1 & 74
\end{array}
$$

$$
\begin{array}{r}
56 \\
26 \\
84 \\
194 \\
47
\end{array}
$$

$$
\begin{array}{rr}
2 & 56 \\
2 & 26 \\
2 & 84 \\
7 & 194 \\
2 & 47
\end{array}
$$

26	12	115	.1	18	9	742	2.80
24	9	135	.2	20	9	164	3.42
25	12	117	.3	18	1	152	2.88
24	11	154	.2	17	8	1378	2.74
24	12	100	.4	20	9	768	3.11

$$
25
$$

$$
\begin{array}{ll}
5 & \text { ND } \\
5 & \text { ND } \\
7 & \text { ND } \\
5 & \text { ND } \\
6 & \text { ND }
\end{array}
$$

	1	2
1	2	
1	2	
1	2	
	1	2

$$
\begin{array}{lll}
56 & .41 & .124 \\
75 & .59 & .080 \\
58 & .86 & .197 \\
56 & .74 & .131 \\
70 & .61 & .044
\end{array}
$$

$$
\begin{array}{rr}
9 & 19 \\
10 & 31 \\
7 & 25 \\
9 & 22 \\
10 & 28
\end{array}
$$

$$
\begin{array}{llll}
9 & .52 & 131 & .18 \\
1 & .66 & 187 & .20 \\
5 & .55 & 171 & .16 \\
2 & .46 & 267 & .16 \\
8 & .53 & 139 & .17
\end{array}
$$

$$
\begin{array}{llll}
5 & 3.22 & .06 & .1 \\
4 & 3.48 & .05 & .3 \\
4 & 2.61 & .05 & .1 \\
7 & 2.51 & .06 & .1 \\
4 & 3.05 & .05 & .1
\end{array}
$$

$$
\begin{aligned}
& .15 \\
& .33 \\
& .19 \\
& .16 \\
& .17
\end{aligned}
$$

$$
\begin{aligned}
& 51 \\
& 82 \\
& 58 \\
& 53 \\
& 75
\end{aligned}
$$

$$
\begin{array}{r}
9 \\
12 \\
12 \\
10 \\
15
\end{array}
$$

$$
.2 \quad 14
$$

$$
\begin{array}{ccc}
6 & 726 & 2.17 \\
9 & 483 & 3.21 \\
9 & 1211 & 3.28 \\
9 & 148 & 3.18
\end{array}
$$

$$
\begin{array}{ll}
5 & \text { ND } \\
5 & \text { ND } \\
5 & \text { HD } \\
5 & \text { ND } \\
5 & \text { ND }
\end{array}
$$

$$
\begin{array}{ll}
2 & 52 \\
1 & 79 \\
1 & 10 \\
4 & 50 \\
5 & 43
\end{array}
$$

1	2
1	2
1	3
1	2
1	2

$$
\begin{array}{lll}
39 & .40 & .141 \\
69 & .49 & .060 \\
72 & .52 & .081 \\
72 & .40 & .077 \\
85 & .45 & .122
\end{array}
$$

$$
\begin{array}{rrrrr}
9 & 12 & .33 & 152 & .13 \\
7 & 22 & .62 & 154 & .21 \\
11 & 34 & .80 & 221 & .11 \\
11 & 30 & .52 & 186 & .16 \\
13 & 37 & .61 & 179 & .19
\end{array}
$$

$$
\begin{array}{llll}
4 & 2.43 & .05 & .1 \\
4 & 3.31 & .06 & .2 \\
3 & 3.25 & .05 & .2 \\
2 & 2.45 & .04 & .2 \\
4 & 2.88 & .06 & .3
\end{array}
$$

$$
\begin{aligned}
& .12 \\
& .24 \\
& .26 \\
& .28 \\
& .33
\end{aligned}
$$

1	2
1	2
1	7
1	4
1	6

$$
\begin{array}{lllllllll}
1 & 18 & 9 & 110 & .2 & 20 & 7 & 168 & 2.68 \\
1 & 14 & 8 & 128 & .1 & 20 & 7 & 619 & 2.55
\end{array}
$$

$$
\begin{array}{rcccccc}
9 & 110 & .2 & 20 & 7 & 168 & 2.68 \\
8 & 128 & .1 & 20 & 7 & 619 & 2.55 \\
11 & 113 & .1 & 17 & 6 & 521 & 2.20 \\
6 & 94 & .1 & 18 & 7 & 305 & 2.69 \\
6 & 13 & .1 & 17 & 6 & 359 & 2.17
\end{array}
$$

$$
\begin{aligned}
& 5 \\
& 1 \\
& 8 \\
& 6 \\
& 8
\end{aligned}
$$

1	13	1	13	.1	17	6	359	2.17
1	15	12	86	.3	17	6	350	2.17
21	57	42	132	6.7	69	28	998	3.97

SAKPLEE

L900S 25w 3R-10 CC	!	16	6	11%	. 1	17	6	505	2.12	9	5	ND	1	40	1	2	2	51	. 38	. 232	11	26	. 8 B	175	.:	=	:. ${ }^{5}$. 05	. 10	1	3	2	67
L9005 00 8D-15 CC	1	21	3	110	. 1	20	e	369	2.76	-	5	ND	1	30	1	2	J	60	. 36	. 180	9	26	. 36	of	. 14	5	2.00	. 05	. 11	1		2	77
L900S 25E RD-10 EC	1	18	$1 t$! 3	. 1	17	ε	620	2.37	13	5	NO	3	32	1	2	2	48	. 39	. 212	1	21	. 36	112	.12	4	1.49	. 05	. 10	2	29	2	60
19005 50E JR-5 CC	1	22	8	111	. 1	15	6	654	2.03	7	5	ND	2	40	1	2	2	14	. 64	. 050	1	15	. 29	64	. 14	3	2.00	. 07	. 09	1	2	2	41
L900S 75E RD-15 CC	1	18	7	137	. 1	18	7	604	2.38	4	5	ND	1	31	1	1	2	50	. 36	. 98	5	25	.t!	175	. 12	2	1.94	. 05	. 18	2	3	2	73
L900S 100E RD-15 CC	1	23	7	97	. 2	19	1	573	2.88	4	5	HD	5	35	1	2	2	65	. 42	. 092	8	26	. 43	121	. 15	2	2.20	. 05	. 13	1	3	2	71
L900S 125E RD-15 CC	1	23	2	90	. 1	19	8	569	2.97	5	5	WD	5	İ	1	2	2	70	. 36	.112	10	30	. 44	122	. 14		2.21	. 05	. 12	1	6	2	97
19005 150E BR-15 CC	1	20	4	79	. 2	16	7	666	2.42	6	5	H0	5	43	1	2	2	52	. 39	. 170	10	23	. 36	180	.15	5	2.28	. 05	. 13	1	1	2	62
L4005 175E RD-15 CE	1	17	2	85	. 1	16	6	622	2.40	6	5	ND	4	35	!	2	2	49	. 29	. 227	\&	2%	. 31	!9!	.!	8	2.39	. 05	. 08	1	$!$	2	61
L9005 200E PD-15 [C	1	19	5	90	. 2	16	6	443	2.18	6	5	HO	4	39	1	2	2	43	. 32	. 144	10	19	. 27	194	. 13	5	2.36	. 06	. 09	1	2	2	42
L9005 22SE BR~10 CC	1	17	5	83	. 2	14	6	161	2.18	6	5	ND	4	48	1	2	2	43	. 44	. 203	8	16	. 27	216	. 12	6	2.23	. 05	. 10	1	1	2	55
L9005 250E RD-15 CC	1	23	6	110	. 2	18	8	940	2.86	7	5	ND	4	51	1	2	2	58	. 42	. 175	8	21	. 41	202	. 14	5	2.54	. 06	. 13	1	1	2	48
$19005275 E$ RD-10 CC	1	19	6	129	. 2	$2!$	1	1002	2.74	4	5	ND	5	35	1	2	2	60	. 39	. 099	ε	25	. 38	138	. 14	5	2.19	. 05	. 11	1	62	2	68
: PVOS 300E RD-15 CC	1	19	6	131	. 3	18	7	481	2.51	13	5	HD	5	32	1	2	2	51	. 32	. 088	10	21	. 35	147	. 15	4	2.15	. 05	. 11	1	1	2	61
L900S 325E RD-15 CC	1	20	7	108	. 1	14	t	626	2.21	6	5	ND	1	45	1	2	2	43	. 44	. 197	8	20	. 31	176	. 33	3	2.2B	. 05	. 08	1	1	2	49
L900S 350E RD-15 CC	1	21	4	14	. 2	11	7	576	2.61	8	5	HD	5	40	1	2	2	57	. 37	.13!	11	25	. 41	14	. 13	4	2.08	. 05	. 12	1	6	2	70
L9005 375E RD-10 CC	1	17	7	111	. 2	24	8	752	2.87	6	5	ND	4	41	1	2	2	63	. 37	. 222	1	34	. 47	182	. 13	4	2.06	. 04	. 10	1	4	2	90
L9005 400 E RD-15 CC	1	19	6	99.	. 2	22	8	721	2.83	4	7	ND	5	38	1	2	4	64	. 36	. 161	9	32	. 46	181	. 15	4	2.16	. 04	. 12	2	4	2	76
L9005 425E BR-5 CC	1	14	15	160	. 4	16	8	1310	2.60	1	5	ND	2	50	1	2	2	55	. 39	. 205	8	30	. 36	302	. 11	T	1.66	. 04	. 10	1	3	2	68
L9005 450E RD-10 CC	1	17	6	44	. 1	19	7	46	2.47	7	5	HD	4	30	1	2	3	49	. 37	. 136	10	23	. 36	104	. 14	4	2.22	. 06	. 01	1	1	2	101
L9005 475E RD-15 CE	1	20	4	113	. 1	16	7	936	2.32	9	5	WD	4	24	1	2	3	43	. 28	. 164	10	19	. 28	149	. 14	5	2.44	. 05	. 06	1	1	2	47
L9005 500E RD-15 CC	1	15	4	120	. 1	14	7	1201	2.34	6	5	ND	3	52	1	2	2	46	. 47	. 298	5	21	. 30	246	. 11	3	1.97	. 05	. 07	1	2	2	57
L.9005 525E RD-15 CC	1	22	10	83	. 4	16	7	698	2.34	14	5	ND	4	44	1	5	3	46	. 34	. 227	11	It	. 31	225	. 15	5	2.76	. 05	. 09	2	1	13	47
L900S 550E BR-10 [C	1	16	11	205	. 1	13	8	2153	2.47	16	5	ND	1	56	1	2	3	40	. 42	. 270	6	19	. 31	404	. 13	3	1.95	. 05	. 10	1	1	2	40
L900S 575s Br-5 CC	2	H	11	269	. 2	21	14	3269	3.48	15	5	ND	3	75	1	2	2	50	. 66	. 423	5	22	. 52	403	. 13	4	2.85	. 08	. 15	1	6	2	55
19005600 E RD-10 CC	1	21	8	59	. 2	14	7	661	2.21	1	5	N1	5	34	1	2	2	46	. 29	. 117	10	16	. 32	100	. 16	4	2.95	. 05	. 07	2	3	2	43
L9005 625E PR-15 CC	1	22	13	91	.1	11	1	1112	3.01	6	5	ND	6	38	1	2	2	70	. 45	. 116	7	30	. 46	178	. 14	5	2.21	. 04	. 10	1	J	2	73
L9005 675E BL-5 CC	1	28	12	139	. 2	20	12	2059	3.45	10	5	ND	2	99	1	2	2	72	. 88	. 161	7	32	. 74	230	. 16	3	2.56	. 06	. 23	1	2	2	70
L4005 700E RD-10 CC	1	38	20	240	. 4	24	12	2270	3.30	9	5	HD	4	106	1	2	2	57	. 60	. 446	8	37	. 60	257	. 15	4	2.47	. 05	. 14	1	1	2	111
L9005 725E RD-5 CC	1	21	20	129	. 2	20	5	1047	3.58	9	5	HD	4	62	1	2	2	76	. 49	. 197	1	30	. 57	166	. 16	5	2.50	. 05	. 13	1	2	2	111
L900S 750E RD-5 CC	1	22	7	113	. 3	20	10	P34	3.78	1	5	ND	4	51	.	2	2	87	. 42	. 151	11	30	. 70	173	. 11	J	2.70	. 05	. 19	$!$	3	2	77
L900S 775E 8R-15 CC	1	24	17	$13!$. 3	21	10	1044	3. 65	I	5	ND	4	62	1	2	2	79	. 50	. 240	6	31	. 62	263	. 15	4	2.49	. 05	. 23	1	2	2	86
L9005 800E RD-15 CC	1	23	23	115	. 2	18	8	791	2.81	1	5	ND	4	12	1	2	2	59	. 64	. 184	10	25	. 49	259	. 13	5	2.18	. 05	. 17	1	3	2	61
L9005 $825 E$ RD-15 CC	1	20	11	98	. 2	17	7	44	2.57	9	7	ND	5	51	1	3	3	54	. 45	. 210	9	25	. 40	220	. 12	6	2.00	. 05	. 15	1	3	2	92
L900S 150E RD-15 CC.	1	16	8	92	. 1	17	4	415	2.54	7	5	ND	5	45	1	2	2	55	. 39	. 177	10	25	. 31	220	. ${ }^{3}$	3	1.98	. 04	. 14	1	9	2	57
L900S 175E PR-15 CC	1	17	8	95	. 2	16	6	399	2.40	2	5	HD	4	50	1	3	2	51	. 42	. 153	10	23	. 37	211	. 13	4	2.00	. 05	. 12	1	1	2	55
STD C	21	58	38	135	6.8	68	27	989	3.95	39	15	7	34	47	17	15	19	63	. 48	. 098	35	59	. 88	178	. 08	33	1.71	. 09	. 12	12	100	97	-

SAMF: Et

9005 900E RP-10 CC oryes g25e ap-15 CC L900 920E PR-10 CC 9005 975E RIT-10 CC Lecos looke pr-15 CC
-900 $10255 \mathrm{RD}-15 \mathrm{CC}$ L10005 1000H RR-15 CC Llooes 975N RD-5 CC
L1000S 9501 RD-5 CC
LIOOOS 9254 ER-10 CC
1000S 9004 RD-10 CL L10005 875: RD-10 CC L10005 85OU 1R-10 CE LIOOOS 825M BR-10 CC LIOOOS BOOH 3R-15 CC

L10005 775以 BR-15 CC 10005 750M JR-10 CL Looos 725N RR-15 CC
LIO00S 700N BR-10 CL 10005 675\% Bh-10 CC

L10005 650 K B -10 CE leoos 625H RD-10 CC L10005 600M RD-15 CC 10005 575N 1R-15 CC LI000S 550N DR-15 CC
looos 525M 1R-15 CC LOOOS 5001 DR-15 CC 1000S 475N DR-10 CC L10005 450N RD-15 CC . 10005 425H RD-10 CC

L10005 400N RD-15 CC LIO00S 375M RD-20 CC L1000S 3501 RD-10 CC IOODE 325M 3R-10 CC L10005 3004 BP-15 CC

L0005 2754 1P-10 CC STD C/LR-5X $\begin{array}{cc}\mathrm{N}_{\mathrm{L}} & \mathrm{CO} \\ \text { OPM }\end{array}$

1	15	10	92	.1	16
1	10	9	105	.2	16
1	15	0	89	.1	17
1	40	10	96	.2	18
1	24	0	90	.3	17

| 571 | 2.32 |
| :--- | :--- | :--- |
| 569 | 2.11 |
| 553 | 2.47 |
| 531 | 2.72 |
| 536 | 2.67 |

2.32
2.11
2.47
2.72
2.67

10
5
5
5
e
HD
HD
HJ
HI
NE
$\begin{array}{ll}5 & 69 \\ 5 & 56 \\ 1 & 47 \\ 5 & 41 \\ 5 & 41\end{array}$
$\begin{array}{lll} & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 2\end{array}$
$\begin{array}{lll}53 & .51 & .153 \\ 53 & .41 & .254 \\ 59 & .40 & .203 \\ 63 & .39 & .130 \\ 61 & .43 & .165\end{array}$
25
26
28
28
27
.76
.38
.75
.41
$.4!$
245
250
211
200
199
.14
.13
.12
.15
.15
$\begin{array}{lll}t & 1.94 & .05 \\ 5 & 2.02 & .05 \\ 7 & 1.74 & .05 \\ 5 & 2.26 & .05 \\ z & 2.25 & .06\end{array}$
.15
.15
.$:$
.17
.$:$
b iult : 011
1
2
1
2
2
$\begin{array}{rrrrrrr}2 & 35 & 15 & 115 & .2 & 25 & .16 \\ 1 & 91 & 13 & 121 & .2 & 26 & 22 \\ 1 & 81 & 17 & 128 & .2 & 2 t & 2 \\ 1 & 49 & 5 & 114 & .1 & 33 & 15 \\ 1 & 45 & 10 & 115 & .2 & 28 & 14 \\ 1 & & & & 131 & 177 & .3 \\ 1 & 37 & 36 \\ 1 & 41 & 14 & 106 & .1 & 26 & 15 \\ 1 & 151 & 22 & 138 & .2 & 31 & 2 \\ 2 & 220 & 21 & 145 & .3 & 45 & 5 \\ 2 & 206 & 8 & 170 & .4 & 45 & 45\end{array}$
$\begin{array}{rrr}8 & 633 & 2.56 \\ 40 & 1675 & 5.28 \\ 21 & 1150 & 4.32 \\ 32 & 1058 & 5.14 \\ 26 & 1332 & 4.16\end{array}$
2
7
7
4
13

$\begin{array}{cc}4 & 41 \\ 4 & 94 \\ 1 & 79 \\ 5 & 83 \\ 5 & 108\end{array}$

	2	4
2	2	
2	2	
1	2	2
1	2	2

52
96
69
108
92
$\begin{array}{ll}.40 & .249 \\ .81 & .189 \\ .56 & .133 \\ .44 & .110 \\ .71 & .097\end{array}$
24
25
27
32
30
.41
.92
.02
1.00
.88 $\begin{array}{ll}211 & . \\ 143 & . \\ 143 & . \\ 146 & . \\ 177 & .\end{array}$ $\begin{array}{lllll}.15 & 7 & 2.42 & .00 & .16 \\ .15 & 9 & 3.05 & .67 & .15 \\ .18 & 6 & 2.56 & .07 & .23 \\ .22 & 8 & 3.10 & .07 & .26 \\ .19 & 7 & 3.14 & .07 & .25\end{array}$.16
.15
.23
.26
.25 1

\vdots
3
1
1
3 55
55
65
65
10

\(\begin{array}{ll}1 \& 7
1 \& 4
1 \&
1 \&
1 \& \end{array}\)

$9 \quad 13$

$$
\begin{array}{r}
10 \\
11 \\
1 \\
4 \\
4
\end{array}
$$

1
9
16
20
26
22

6
7
10
6
17
$52 \quad 32$

958	4.24	
1331	3.33	
1516	3.51	
	953	3.13
923	3.52	
105	5.04	
5	942	3.59
	1665	5.22
	2125	5.89

	2
3	6
3.	11
3	13
	10
	10
5.89	14
	11

$\begin{array}{ll}5 & \text { ND } \\ 5 & \text { ND } \\ 6 & \text { ND } \\ 6 & \text { ND } \\ 5 & \text { ND }\end{array}$
$\begin{array}{rr}1 & 126 \\ 3 & 103 \\ 2 & 109 \\ 3 & 51 \\ 4 & 62 \\ 3 & 250 \\ 4 & 53 \\ 4 & 83 \\ 4 & 95 \\ 3 & 125\end{array}$
2
2

$$
\begin{array}{rrrrr}
2 & 117 & .69 & .115 & 10 \\
2 & 68 & .86 & .135 & 6 \\
4 & 62 & .93 & .146 & 11 \\
2 & 75 & .53 & .082 & 10 \\
2 & 84 & .64 & .082 & 10 \\
2 & 36 & 2.45 & .789 & 8 \\
2 & 74 & .50 & .075 & 14 \\
2 & 93 & 1.13 & .114 & 13 \\
2 & 94 & .72 & .130 & 15 \\
2 & 48 & 1.07 & .337 & 10
\end{array}
$$ 30

20
18
26
29
10
31
27
30
14 1.25
.71
.54
.60
.55

.32
.54
.72
.67
.36 194
154
186
128
169

313
136
122
119
123 .24
.14
.14
.14
.15
.06
.17
.16
.17
.12
$\begin{array}{rrr}16 & 2.59 & .09 \\ 9 & 2.05 & .07 \\ 12 & 2.04 & .08 \\ 6 & 1.97 & .06 \\ 8 & 2.26 & .06\end{array}$
.39
.22
.11
.22
.35
$\begin{array}{rrr}9 & 1.86 & .13 \\ 1 & 2.59 & .06 \\ 7 & 2.17 & .07 \\ 10 & 3.40 & .07\end{array}$ $\begin{array}{ll}.13 & .12 \\ .06 & .32 \\ .07 & .26 \\ .07 & .2 t \\ .07 & .15\end{array}$ \qquad

34 34
70
72
75
38

$$
\begin{aligned}
& .08 \\
& .08 \\
& .06 \\
& .06 \\
& .05
\end{aligned}
$$

$$
03 \text {; }
$$

$$
\begin{aligned}
& .96 \\
& .63 \\
& .48 \\
& .48 \\
& .39 \\
& .26 \\
& .34 \\
& .42 \\
& .33 \\
& .56
\end{aligned}
$$

$$
\begin{aligned}
& 17 \\
& 22 \\
& 31 \\
& 33 \\
& 23 \\
& 21 \\
& 28 \\
& 27 \\
& 36 \\
& 32
\end{aligned}
$$

$$
\begin{aligned}
& 159 \\
& 176 \\
& 174 \\
& 139 \\
& 156 \\
& 163 \\
& 157 \\
& 203 \\
& 170 \\
& 229
\end{aligned}
$$

1

1
21

12	
16	
17	
27	1
37	1

6	812	2.03
8	500	2.61
9	668	2.67
10	449	3.01
10	987	2.53

$$
23
$$

$$
\begin{array}{ll}
34 & 1 \\
42 & 1 \\
57 & 1 \\
42 & 1 \\
69 & 1
\end{array}
$$

$$
\begin{array}{lll}
2 & 3 & 40 \\
2 & 2 & 69 \\
2 & 2 & 77 \\
2 & 2 & 78 \\
2 & 3 & 48 \\
2 & 2 & 46 \\
2 & 2 & 65 \\
2 & 2 & 68 \\
2 & 2 & 73 \\
2 & 3 & 56
\end{array}
$$

$$
\begin{aligned}
& .352 \\
& .266 \\
& .210 \\
& .097 \\
& .091 \\
& .084 \\
& .080 \\
& .143 \\
& .109 \\
& .123
\end{aligned}
$$

$$
\begin{aligned}
& .37 \\
& .58 \\
& .61 \\
& .56 \\
& .39 \\
& .34 \\
& .40 \\
& .49 \\
& .57 \\
& .44
\end{aligned}
$$

$$
\begin{aligned}
& .10 \\
& .16 \\
& .18 \\
& .19 \\
& .15 \\
& .14 \\
& .17 \\
& .15 \\
& .18 \\
& .13
\end{aligned}
$$

$$
\begin{array}{ll}
0 & 2.30 \\
1 & 2.23 \\
& 2.67 \\
& 1.90 \\
& 1.75
\end{array}
$$

$$
\begin{aligned}
& .18 \\
& .22 \\
& .25 \\
& .21 \\
& .21
\end{aligned}
$$

1
1
1
1
1
1
21 24
20
36
67
25
21
60 12
11
12
15
13
9
41

4	1.51	.05	.20	1	1	2	40
7	1.85	.05	.22	1	5	2	66
6	1.82	.05	.14	1	1	2	62
6	2.10	.04	.25	1	1	2	125
4	1.62	.05	.10	1	1	2	130

45
17
23
25
20
39
60

\qquad 142
239
387
329
402
92
186 .13
.12
.14
.15
.13
.14
.09

1	1.96	.06	$.1 t$
7	2.53	.06	.12
5	2.21	.06	.24
6	2.94	.07	.20
6	2.39	.06	.14
3	1.30	.06	.14

7	2	134
1	2	45
1	2	62
2	2	47
1	2	68
1	2	105
9	$10!$	-

:1060s 25ju Re-15 :		:	$\underline{9}$	15.	. 4	?	c	¢9*	2.02	t	5	HL	7	50	1	:	:	4	. 65	. 2 '	-	\cdots	$\therefore:$	224	. 15		:. 76	.0e	.:			2	14
	,	24	:	64	. 2	3	8	417	3.12	3	5	MJ	5	43	1	2	2	84	.70)	. 124	18	${ }^{-}$. 6	79	. 10	4	1.30	. 07	. 23	1	9	2	114
: 00005 2004 18-15 CC	:	!	$:$	122	.2	:	\vdots	110	2.05	ミ	5	ND	2	$3!$	1	2	2	4	. 49	. 36	7	:	\therefore	184	. 12	4	1.51	. 05	. 8	!	8	:	74
	$!$	$1{ }^{7}$	-	!2\%	. 2	17	6	347	2.30	3	5	HI	3	24	1	2	2	50	. 36	.lva	8	25	$\therefore 2$	76	. 15	4	2.39	. 05	. 07	1	3	2	63
LIOGOS 125K RR-29 CC	!	2	14	\because	. 5	26	t	6061	2.25	2	5	Ni	2	53	1	2	2	43	1.11	.055	16	29	. \because	57	.1?	6	2.14	. 08	. 08	1	2	2	E
!1000S !ayh mr-15 CC	2	76	12	104	. 6	29	7	667	2.67	2	5	\%10	5	50	$!$	2	2	51	. 95	. 035	!2	32	. 41	61	. 15	t	2.35	. 08	. 10	2	3	2	60
L1000 75 LKD -25 CE	1	18	11	109	. 2	2\%	7	591	2.39	1	5	NE	3	33	1	$?$	2	44	. 43	. 275	10	$2 ?$. 30	114	. 12	5	2.18	. 06	. 00	!	?	2	5
11000S 50M RJ-20 cc	$!$	18	11	125	. 2	18	6	3 Bi	2.37	4	5	HD	3	27	1	2	2	51	. 34	. 218	8	23	. 29	86	. 12	5	2.16	. 05	. 08	1	2	2	59
L!0005 25M RD-15 CC	1	23	10	92	. 3	22	7	414	2.75	4	5	Nid	4	3 E	1	2	2	ds	. 55	.038	12	$3!$. 42	72	. 15	5	2.01	. 06	. $:$	1	1	2	68
S1000 s 0 RD-10 CC	1	14	11	74	. 1	14	6	311	2.46	4	5	HD	2	27	1	2	2	59	. 32	. 160	0	3	. 31	116	. 10	4	1.41	. 04	. 86	1	2	2	86
LIPOOS OO BR-10 [C	1	11	15	4 E	. 1	79	7	308	2.12	:	5	WII	J	28	1	2	2	47	. 28	. 130	E	37	. 36	173	. 12	5	1.75	. 04	. 05	2	1	2	22
:1800S 25E RD-15 CC	1	22	7	45	. 1	203	12	270	2.98	5	5	No	5	21	1	2	2	71	. 30	. 124	10	87	. 32	48	. 14	8	2.18	. 04	. 07	3	6	2	164
LIB00S 50E RD-10 CC	1	11	11	82	. 2	105	9	434	2.26	1	5	ND	3	22	1	3	2	45	. 23	. 197	6	48	. 39	174	. 13	4	1.92	. 04	. 06	1	5	2	95
LIb00S 75E RD-10 CC	1	15	7	57	. 2	110	9	303	2.69	5	5	MD	3	33		2	2	43	. 31	. 103	7	51	. 45	150	. 13	b	1.82	. 05	. 07	1	20	2	115
L18005 125E IR-10 CE	2	14	$1 t$	92	.1	216	- 17	845	2.29	7	5	N0	3	41	1	2	2	48	. 11	. 098	5	77	. 82	274	. 11	11	1.40	. 05	. 08	2	?	2	148
L1800S 150E RD-10 CC	1	16	10	55	. 2	123	10	389	2.59	4	5	ND	1	34	1	2	2	61	. 36	.088	1	55	. 53	139	. 12	5	1.77	. 04	. 08	1	4	2	114
LIB00S 175E RD-10 CC	1	16	15	58	. 1	102	9	436	2.41	5	5	ND	4	29	1	2	2	52	. 29	. 128	6	44	. 46	14	. 14	5	2.29	. 04	. 06	1	3	2	89
L18005 225E BR-10 CC	1	17	17	58	. 1	141	14	620	2.10	6	5	HD	1	39	1	2	7	43	. 39	. 078	4	78	. 69	151	. 14	6	1.89	. 04	. 15	1	7	2	148
L1800S 250E DR-15 CC	1	25	32	83°	. 3	224	26	833	3.17	6	5	ND	J	49	1	2	2	65	. 53	. 089	8	175	1.21	181	. 12	9	1.96	. 04	. 19	1	7	2	287
L19005 275E AR-I0 CC	1	18	9	80	. 2	92	10	552	2.35	6	5	HD	3	46	1	2	2	47	. 31	.113	8	63	. 52	25%	. 12	7	1.71	. 04	. 15	1	7	2	107
L1200S 300E JR-10 CC	1	11	8	46	. 1	108	23	415	1.83	3	5	ND	2	27	1	2	2	26	. 25	. 049	3	162	1.83	196	. 08	16	1.14	. 05	. 67	2	11	2	$21 \times$
L.1900S 325E 3R-10 CC	1	11	15	55	.1	710	45	532	2.24	11	5	ND	3	29	1	2	2	$2 b$. 27	. 045	2	269	2.79	173	. 08	24	1.55	. 06	. 07	1	4	2	394
L1800S 350E DR-10 CC	2	11	: 0	56	. 1	962	89	852	2.55	20	5	NC	2	25	1	2	2	28	. 23	. 047	2	238	4.18	118	. 0 ?	38	1.59	. 06	. 08	1	78	2	362
LIPOOS 3İEE PR-10 EC	2	16	17	57	.1	871	95	1098	2.68	39	5	ND	1	43	1	9	2	23	. 41	. 060	2	317	6.13	140	. 06	49	1.08	. 06	. 06	2	10	2	588
LI900S 400 E BR-10 CL	1	11	23	56	. 1	315	23	493	2.20	13	5	N0	3	38	1	2	2	39	. 35	. 027	6	145	1.11	166	. 13	10	1.63	. 05	. 08	.	6	2	203
L1800S 425E 8R-10 CC	1	13	'	53	. 1	530	42	551	2.63	15	5.	HD	2	31	1	2	2	36	. 33	. 049	6	318	2.72	144	. 09	22	1.62	. 05	. 10	2	1	2	473
L1100S 450 ER -10 CC	1	16	4	57	. 1	427	27	385	3.30	3	5	ND	3	22	1	2	2	63	. 27	. 052	6	227	1.84	136	. 14	13	1.75	. 05	. 07	1	37	J	255
LIB00S 475 ER -10 CC	1	17	15	57	. 1	468	31	527	2.72	3	5	ND	4	31	1	2	2	45	. 41	. 049	9	156	1.44	192	. 14	12	2.23	. 06	. 11	1	5	2	247
LIB00S 500E 3R-15 CC	1	20	12	53	.1	415	38	613	2.97	7	5	ND	3	32	1	2	2	51	. 32	. 070	13	204	1.95	137	. 12	15	1.91	. 68	.13	1	45	2	315
-1800S 525E SR-15 CC	1	16	17	68	. 1	620	46	815	3.29	10	5	HD	1	28	1	2	2	$5 t$. 27	. 062	12	258	3.03	176	. 13	25	2.14	. 06	. 13	2	82	2	367
LIE00S 600E AR-10 CC	1	12	17	t5	1	342	24	626	3.25	8	5	ND	1	33	$!$	2	2	60	. 34	. 061	7	182	1.39	151	. 17	9	2.06	. 05	. 10	1	7	2	328
L18005 625E AR-10 CC	1	14	11	59	. 2	457	30	479	3.13	10	5	ND	5	25	1	2	2	55	. 25	. 042	11	205	1.70	103	. 13	15	1.95	. 05	. 09	2	1	2	304
L18005 650E BR-15 CL	1	17	11	69	. 1	597	41	599	2.73	7	5	ND	3	36	1	2	2	37	. 27	. 089	9	196	1.65	234	. 11	11	1.94	. 05	. 06	.	15	2	298
L.800S 675E JR-15 CC	1	10	9	46	. 2	240	15	235	2.01	6	5	HD	3	29	1	2	2	36	. 23	. 059	6	82	. 61	147	. 11	b	1.78	. 04	. 07	3	7	2	234
LIA00S 700E BR-10 CL	!	It	6	55	-1	224	12	629	1.51	7	5	ND	1	32	1	2	3	25	. 26	. 039	J	76	. 73	75	. 08	-	1.32	. 05	. 06	1	J	2	165
$118005725 E$ JR-10 CL	2	10	13	82	. 1	1229	76	1097	4.23	46	5	HD	3	49	1	$!$	2	26	. 36	. 059	3	631	9.49	178	. 06	48	1.21	. 07	. 09	1	54	5	1087
STD CJFA-5X	$2!$	50	46	136	6.9	6 ?	28	997	3.94	39	18	8	32	$4 E$	18	15	18	63	. 48	. 101	34	60	. 86	17 l	. 08	36	1.72	. 09	.17	12	98	95	-

LIE00S 750E 8r-10 CC	1	15	?	69	. 2	704	34	724	2.73	18	5	:15	2	38	1	:	2	42	. 34	. 042	9	188	1.30	199	. 11	15	1.81	. 05	. 0 e		!:	2	294
-1800S 775E ER-5 CC	2	13	19	68	. 1	722	00	1188	4.13	194	5	H5	1	24	1	2	2	39	. 20	. 111	7	359	2.74	137	. 09	22	1.76	. 05	. 05	1	55	2	159
LIT00S 825E IR-15 CL	1	23	15	71	1	304	20	685	3.16	2	5	ND	?	49	i	2	2	49	. 43	. 052	7	200	1.40	178	. 17	11	1.48	. 05	. 17	!	10	2	375
-18jos bjoe gr-15 CC	1	20	16	76	. 3	326	18	434	2.68	3	5	nis	4	45	1	2	2	44	. 34	. 040	E	117	1.04	137	. 11	10	2.20	. 06	. 15	1	3	2	211
LIPOSE 875E PR-15 CC	!	22	14	85	. 1	289	!	575	3.34	2	5	NJ	:	42	1	2	2	$5 t$. 34	. OL E	11	125	1.22	100	. 12	10	1.84	. 05	. 12	:	$\underline{6}$	2	?27
LIEOOS 900E PR-15 CC	1	13	13	70	. 1	188	11	423	2.43	1	5	40	3	35	1	2	2	41	. 29	. 049	7	93	. 87	106	. 10	is	1.51	. 05	. 10	1	3	2	220
L1005 925E ER-15 CC	2	18	17	114	. 2	207	13	556	3.01	2	5	Hit	3	10	1	2	2	51	. $3 t$.043	1	115	1.05	98	. 11	14	1.55	. 05	. 12	!	3	2	290
L18005 950E RD-10 CC	1	19	23	223	. 1	382	$3!$	1643	3.08	12	5	M 1	1	48	1	2	2	29	. 25	.163	2	160	1.21	216	. 04	10	1.09	. 05	. 07	1	3	2	309
L1800 S IOOOE AR-10 CC	1	$3 t$	2?	96	. 2	719	42	922	3.75	2?	5	HE	2	68	1	2	2	43	. 35	.078	10	167	2.04	142	.11	20	1.68	. 05	. $0 \leq$	1	6	2	386
LI800S 1025E BL-5 CC	1	25	39	122	. 2	162	41	1817	2.90	9	5	ND	1	78	1	2	2	37	. 56	. 120	1	177	1.75	278	. 09	17	1.21	. 06	. 08	1	1	2	399
L1800S 1050E 1R-10 CC	1	13	13	56	. 1	277	13	404	2.09	7	5	ND	2	36	1	2	2	33	. 26	. 156	6	69	. 74	134	. 11	12	1.84	. 05	. 07	1	25	2	154
L1800S 1075E 3R-10 CC	1	13	13	52	. 1	286	11	357	1.79	9	5	ND	2	41	1	2	2	29	. 33	. 055	6	43	. 70	75	. 10	10	1.74	. 06	. 08	1	4	2	114
L1800S 1100E 1R-15 CC	$!$	14	17	72	. 1	201	11	435	1.77	8	5	ND	3	10	1	2	2	27	. 26	. 162	7	55	. 59	124	. 10	11	1.76	. 05	. 08	!	2	2	112
L1800S [125E RD-15 CC	1	11	17	59	.1	170	1	408	1.79	5	5	Hs	2	27	1	2	2	31	. 20	. 085	8	47	. 17	103	. 10	9	1.68	. 05	. 06	1	1	2	116
L18005 1150E RD-10 [C	1	14	7	55	. 1	139	10	477	2.48	6	5	KD	3	37	1	2	2	41	. 31	.143	6	63	. 62	141	. 12	11	1.94	. 05	. 08	1	1057	2	204
L1900s 3LOOE ER-15 CC	1	0	9	37	. 1	165	9	193	1.78	2	5	ND	4	22	1	2	2	32	. 20	. 016	6	39	. 39	111	. 12	7	2.05	. 04	. 05	2	3	2	88
LT9005 25E DR-10 cc	2	1	30	66°	. 1	426	27	1051	2.08	12	5	ND	,	40	1	2	2	21	. 38	. 048	5	397	4.21	260	. 05	60	. 72	. 05	. 07	1	5	3	802
LI900S 50E 6R-10 CC	1	6	13	26	. 1	104	12	434	1.32	4	5	HD	1	29	1	2	2	19	. 24	. 033	4	79	. 60	109	. 07	12	1.03	. 04	. 07	2	2	2	130
L14005 75E BR-5 CC	1	9	21	44	.1	575	38	746	2.62	2	5	Ni	3	30	1	2	2	33	. 31	. 047	7	301	4.02	135	. 01	43	1.68	. 06	. 08	2	232	2	517
119005 I50E 8R-5 CC	1	11	26	54	. 3	52	57	1057	2.27	4	5	ND	3	37	1	2	2	31	. 39	. 038	6	122	3.50	208	. 08	34	1.37	. 05	. 07	2	226	2	287
L19005 175E BR-5 CC	1	13	11	56	. 1	405	24	J82	3.02	2	5	ND	5	29	1	2	2	65	. 48	. 128	16	153	2.15	142	.23	22	¢.77	.0t	. 13	1	7	2	321
LI900S 200E ER-10 CC	1	12	18	44	. 2	696	55	721	2.36	2	5	HO	3	27	1	2	2	31	. 28	. 030	9	230	2.12	152	. 10	37	1.81	. 06	. 09	2	30	2	350
L1900S 225E IR-10 [C	1	14	12	49	. 2	530	38	621	2.97	9	5	ND	5	26	1	2	2	49	. 24	. 055	13	221	2.29	169	. 14	27	2.46	. 05	. 13	3	3	2	397
LI900S 250E BR-5 CC	1	15	18	59	. 1	620	52	807	3.01	5	5	HD	4	21	1	2	2	47	. 21	. 060	12	197	2.77	167	. 13	34	2.45	. 05	. 12	2	4	2	340
L19005 275E 3R-2 [C	1	16	15	71	. 1	257	24	726	3.09	9	5	ND	3	24	1	2	2	61	. 27	. 093	8	111	1.10	137	. 14	14	2.39	. 04	. 12	\vdots	7	2	224
LI900S 325E IR-15 CE	1	17	13	50	. 1	518	34	491	2.47	3	5	ND	3	39	1	2	2	40	. 42	. 045	5	251	2.04	204	. 09	21	1.47	. 05	. 09	1	3	2	451
119005 350E ER-15 CC	1	21	12	52	. 3	$34 t$	33	462	2.59	3	5	KD	2	18	1	2		49	. 57	. 085	6	136	1.21	231	. 11	19	1.54	. 05	. 13	$!$	7	2	255
Li900S 375E 6R-10 CC	1	17	4	45	. 1	219	22	416	2.74	2	5	ND	2	41	1	2	2	56	. 44	. 066	8	103	. 11	151	. 13	12	1.76	. 05	. 06	1	8	2	257
LIT00S 400E BR-10 CC	1	20	9	59	. 1	619	48	693	2.67	7	5	ND	2	43	1	2	2	13	. 16	. 084		162	1.46	206	. 11	15	2.10	. 05	. 07	-	19	2	268
LI900S 425E BR-10 CL	1	17	7	47	. 1	311	29	496	3.42	2	5	Wi	4	21	1	2	2	69	. 32	. 158	8	184	1.36	113	. 13	1	1.88	. 05	. 15	1	6	2	339
L1900S 450E PR-2 CC	1	16	24	74	. 1	595	53	1091	2.14	11	5	N5	2	40	1	2	2	40	. 42	. 123	9	151	2.32	234	. 12	21	2.21	. 05	. 09	!	E	2	248
L1900S 475E ER-10 CC	1	19	16	83	. 1	539	43	937	2.96	8	5	MD	2	52	1	2	2	41	. 52	. 158	6	253	2.32	24	. 11	15	1.85	. 06	. OB	1	4	2	407
LI9OOS 500E BR-5 CE	1	19	20	76	. 1	619	51	167	3.55	8	5	HE	3	40	1	2	2	50	. 47	. 092	6	239	2.37	173	. 11	15	2.00	. 05	. 10	1	5	2	425
LI900S 550E ER-10 CC	1	18	9	60	. 4	532	41	639	3.24	日	5	KD	3	29	1	2	2	56	. 31	. 077	12	214	2.20	139	. 13	17	2.14	. 05	. 10	1	10	2	Jbl^{1}
L1900S 575E JR-10 EC	1	14	18	69	. 2	652	44	757	3.11	24	5	H5	3	20	1	2	2	57	. 24	. OBO	1	240	3.27	122	. 12	22	2.01	. 05	. 07	1	25	2	422
L1900S 625E DR-10 CC	2	18	14	70	. 2	507	38	785	3.85	19	5	MD		29	I	2	2	63	. 30	. 082	13	235	2.49	148	. 14	19	2.28	. 05	. 09	1	7	2	413
LI900S 650E JR-10 CC	1	15	10	67	. 4	550	39	771	4.19	21	5	ND	3	24	1	2	2	43	. 25	. 077	13	316	2.67	121	. 12	20	2.05	. 05	. 0	1	9	-	544
STD C/FA-5X	21	58	38	233	6.9	6	27	980	3.94	37	19	6	32	14	17	15	20	61	. 48	. 100	37	57	. 88	171	. 08	36	1.71	. 09	. 12	13	96	$10!$	-

5A4DIES	He	Cut	Fo	In	40	H_{1}	Cc	Mis	Fe	As	!	Ru	Th	\underline{s}	[d	$5 b$	Fl	$\stackrel{\square}{1}$	Ca		La	[r	40	Pa	${ }^{1}$	F	$4!$	Na		k	Hut1	P:18	Er
	DP\%	PPM	PPM	PP\%	PPi	PP\%	DPk	PPM	2	PPK	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPH	2	I	PPM	PPR	7	PPM		DPH	I	?	q	PPK	PFE	P9P	DPP
117005675 E PP-2 CC	:	18	8	76	. 1	541	41	962	3.3	18	5	NJ	2	27	!	2	3	51	. 27	. 119	10	291	2.80	155	. 10	2	1.75	. 05	. 0	1	i	$=$	495
L190SS 709E DR-2 CC	1	21	15	71	. 1	393	26	754	3.17	10	5	HD	4	40	1	2	3	65	. 37	. 084	12	177	1.44	162	. 15	12	1.95	. 04	. 11	1	1	2	326
LI900S 750E BR-10 CC	1	13	t	56	. 1	292	19	396	2.73	5	5	HD	4	37	1	2	2	49	. 28	. 044	8	136	1.08	85	. 12	16	1.69	. 04	. 09	!	54	2	$27 \pm$
-190)S 775E BR-10 CC	1	20	*	56	. 1	212	11	475	1.80	7	5	ND	3	47	1	2	2	30	. 34	. 066	11	59	. 66	93	.11	-	1.69	. 6	. 07	1	43	2	123
LJ909S 800E RR-10 CC	$!$	15	. 4	79	. 1	22:	16	635	2. 5	t	5	NE	:	49	1	2	2	37	. 32	. 119	8	78	. 67	132	.1:	7	1.74	. 05	. 07	:	$!$	2	1:2
L19005 125E ER-10 [C	1	15	1	68	. 1	201	11	525	1.93	6	5	MD	4	41	1	2	2	31	. 27	. 084	8	47	. 51	68	. 11	¢	1.87	. 15	. 37	1	2	2	112
LITOOS 850E OR-15 CC	1	12	4	132	. 1	95	8	704	2.05	4	5	ND	3	$5 b$	1	2	2	38	. 28	. 278	9	50	. $4 ?$	206	. 11	t	1.5]	. 04	. 07	:	!	2	14:
L1900S 875E DR-15 CC	1	14	5	59	. 1	124	9	470	2.31	3	5	ND	4	43	1	2	2	48	. 28	. 139	9	78	. 64	115	. 11	9	1.54	. 04	. 09	1	:	2	155
LI900S 900E RD-15 CC	1	41	43	176	1.2	30	8	3247	5.27	24	5	N0	4	45	1	2	2	56	. 27	. 110	13	24	. 37	147	.ds	6	1.02	. 04	. 09	:	-	2	51
119005925E OR-15 CC	1	12	9	69	. 1	152	9	44	3.01	2	5	MD	3	31	1	2	2	65	. 30	. 026	10	105	. 75	75	. 14	8	1.61	. 04	. 17	1	13	2	224
LI900S 950E JR-5 CC	1	22	87	242	. 1	36	5	2732	1.53	1	5	ND	1	[13	4	2	2	23	. $\% 8$. 189	9	19	. 24	424	. 07	7	: 1.11	. 05	. 17	1	4	2	44
LI900S 975E [R-85 CC	1	9	6	57	. 1	207	10	405	1.97	3	5	ND	2	43	1	2	2	36	. 29	. 045	6	102	. 76	148	. 10	8	1.25	. 04	. 08	1	3	2	267
L1900S 1000E DR-15 CC		14	t	73	. 1	184	12	289	2.30			NJ	3	34	1	2	2	42	. 24	. 116	7	78	. 70	124	.II	5	1.72	. 04	. $0 \leq$	1	851	2	198
Lig00S 1025E 3R-15 CC	1	12	5	62	. 1	130	10	303	2.20	4	5	HD	4	31	1	2	2	39	. 20	. 133	1	61	. 56	151	. 12	5	1.99	. 05	. 07	1	6	2	142
L1900S 1050E ER-15 CC	1	11	t	$9!$. 1	150	12	339	2.51	2	5	WD	3	34	1	2	2	49	. 25	. 135	8	71	. 65	103	. 12	8	1.80	. 04	. 06	1	4	2	200
LI900S 1075E ER-15 CC	1	15	5	$4{ }^{\circ}$. 1	122	9	523	2.45	2	5	HD	1	19	1	2	2	43	. 31	. 104	10	56	. 55	177	. 12	5	1.94	. 05	. 06	1	77	2	126
L1900S 1100E DR-15 CC	1	31	7	74	. 1	287	11	1043	2.08	4	5	ND	2	51	1	2	2	36	. 39	. 053	17	57	. 65	86	. 10	6	1.74	. 06	. 05	1	21	2	118
LIgOeS 1125E ER-15 CC	1	12	8	60	. 1	235	14	361	2.59	3	5	MD	3	47	1	2	2	50	. 34	. 078	10	105	. 84	135	. 12	7	1.59	. 05	. 09	1	7	2	291
L1900S ILS0E 5R-15 CC	1	10	7	46	. 1	215	13	379	2.54	3	5	ND	3	34	1	2	2	51	. 31	. 043	6	100	. 10	110	. 11	7	1.27	. 05	. 09	:	7	2	338
LIYOOS 1175E JR-5 CC	1	28	30	121	. 4	1007	58	2022	3.88	15	5	ND	1	100	1	2	3	21	. 54	. 137	3	213	4.46	364	. 04	17	. 61	. 06	. 06	1	9	2	492
L1900S 1200E DR-10 CC	1	16	20	72	. 1	1327	78	1177	4.62	15	5	MD	1	84	1		2	18	. 32	. 053	2	241	10.24	113	. 03	26	. 62	. 06	. 04	1	19	2	1457
L2000S O0 DR-5 CC	1	11	8	59	. 1	320	13	390	2.30	2	5	ND	3	36	1	2	2	38	. 33	. 058	5	101	. 88	147	. 13	5	1.74	. 05	. 13	,	2	2	172
L20005 25E 3R-10 CC	1	1	7	62	. 1	715	37	526	2.11	7	5	WD	3	41	1	2	3	27	. 32	. 055	5	213	1.54	143	. 10	14	1.63	. 05	. 07	,	5	2	383
L20005 100E 3R-15 CC	1	7	5	42	. 1	453	19	251	2.12	2	5	ND	2	37		2	2	31	. 29	. 029	4	174	1.18	146	. 10	14	1.47	. 05	. 06	2	1	2	324
:2000 5 125E 1R-15 CC	1	10	1	47	.2	399	19	340	2.15	2	5	ND	5	45	1		2	37	. 28	. 081	5	127	. 17	210	. 14	9	2.15	. 06	. 06	$!$	2	2	200
L2000S 150E RD-10 CC	1	11	1	41	. 1	201	12	274	2.50	2	5	ND	3	30	1	2	2	52	. 27	. 072	11	45	. 72	116	. 14	7	2.07	. 05	. 05	1	2	2	181
L2000 S 775 ER -5 CC	1	9	6	59	. 1	246	13	26	2.55	4	5	ND	3	42	1	2	2	53	. 37	. 100	7	94	. 74	117	. 11	,	1.41	. 04	. 04	1	4	2	208
L20005 200E 9R-10 CC	1	12	5	56	.1	361	20	286	2.17	2	5	ND	4	26	1	2	2	61	. 26	. 061	5	142	1.21	107	. 13	7	1.77	. 05	. 05	1	1	2	282
L2000S 225E 1R-15 CC	1	10	12	74	. 1	495	23	365	2.74	8	5	ND	1	31	1	2	2	45	. 27	. 077	d	172	1.68	163	. 13	16	2.08	. 05	. 67	!	80	2	277
L2000S 250E 9R-10 CC	1	17	10	52	. 1	271	20	412	2.11	4	5	KD	3	35	1	2	2	34	. 30	. 043	12	132	1.30	138	. 12	9	2.01	. 05	. 08	1	1	2	233
L20005 300E \%L-5 CC	1	18	13	86	. 1	380	42	1455	2.13	2	5	ND	1	36	1	2	2	41	. 32	. 045	5	274	2.26	245	. 09	12	1.39	. 05	. 05	:	:	2	408
L20005 325E 1R-5 CC	1	14	15	59	. 1	172	12	460	1.90	3	5	M 1	1	41	1	2	2	35	. 38	. 133	5	84	. 74	213	. 10		1.56	. 05	.88	1	2	2	189
L2000 350E PP-10 CC	1	19	11	116	. 3	354	34	1054	2.46	2	7	HD	2	47	1	2	2	31	. 40	. 094	3	211	1.51	397	. 10	11	1.30	. 05	. 10	:	$2:$	2	304
L20005 375E RD-10 CC	1	7	5	25	. 3	104	7	157	1.55	2	5	ND	2	29	1	2	2	25	. 23	. 102	4	47	. 36	156	. 10	7	1.72	. 05	. 06	.	1	2	92
L2000S 400E JR-15 CC	1	13	6	41	. 1	$29 t$	18	492	2.24	3	5	ND	3	37	1	2	2	33	. 38	. 048	9	161	1.51	154	. 12	20	1.87	. 07	. 07	:	-	2	179
120005 425E RD-10 CC	1	13	12	54	. 1	165	30	467	3.27	6	5	ND	1	27	1	2	2	55	. 25	. 041	8	222	1.43	104	. 13	13	1.95	. 05	.19	1	2	2	411
575 C	22	5	40	155	7.0	69	29	1027	3.95	38	16	7	34	48	18	15	20	64	. 42	. 103	37	57	. de $^{\text {d }}$	190	. OE	36	1.72	. 09	. $1:$	$!$	9	10?	-

 L2000 S50E IR-5 CC

L2000S 575E RD-5 CC L2000S 600 ERD -10 CC L2000S 62SE IR-15 CC
120005 S50E AR-10 CC L20005 650E DR-10 CC L2000S 750E BR-15 CC
L2000S 775E RD-15 CC
L2000S B00E AR-15 CC
L2000S 825E BR-15 CC
L2000S B50E BR-10 CC

L2000s 175E IR-15 CC

 L20005900E RR-10 CC L20005 925 RD-L2000S 950E IR-15 CC L2000S 975E DR-10 CC

L2000S 1000E DR-15 CC L2000S 1025E BR-15 CC L20005 1050E BR -15 CC L20005 1075E RD-15 CC L2000S 1100E RD-15 CC

STD C/FA-5X

1	17	5	40	.!	503	3t	62(2.65	14	c	N[:	27	1	2	2	47	. 25	. 060	10	134	1.62	135	. 12	3	1.91	. 0	.1:	$!$	-		2!
1	11	1	59	. 1	306	26	696	3.27	17	5	ND	j	38	1	2	2	47	. 40	. 085	13	227	1.58	122	. 12	10	1.94	. 16	. 12	1	210	2	41.4
1	13	4	44	. 1	189	16	409	2.81	t	5	Ni	?	?!	-	2	3	5	. 34	. 057	8	143	2.65	109	. 11	9	1.48	.	.12	;	3	?	2:1
2	24	9	66	. 1	645	62	1594	2.79	15	5	NTI	2	34	1	4	3	36	. 33	. 116	10	312	J. 87	192	. 29	36	1.72	. 06	. 0^{4}	$!$?	2	798
$!$	21	10	52	.!	586	46	1122	4.04	$1 ?$	5	KJ	2	24	1	5	4	45	. 28	.073	8	448	3.5E	9	.0	22	!.78	. 0 S	. 97	1	: 4	2	20\%
1	16	10	61	. 1	413	10	955	3.12	9	5	NI	4	24	1	2	3	48	. 26	. 081	8	271	2.35	102	. 13	19	2.14	. ${ }^{1}$. 10	1	4	2	359
1	12	6	47	. 1	164	!!	321	2.82	8	5	WJ	3	28	1	2	2	62	. 32	. 102	7	85	. 64	179	. $1:$	5	: 1.78	. 05	. 10	:	C	2	194
1	9	4	40	. 1	90	8	205	2.54	2	8	NJ	3	29	1	2	5	55	. 32	. 077	9	72	. 50	91	. 10	5	1.42	. 04	. 07	2	3	2	164
1	18	5	54	. 1	206	14	723	2.47	10	7	ND	3	34	1	2	3	57	. 35	.053	6	107	. 92	117	. 10	7	1.52	. 05	. 08	1	16	2	218
1	8	5	28	. 1	127	7	154	1.93	6	5	HE	3	24	1	2	3	38	. 20	. 095	5	49	. 39	98	. 11	3	1.61	. 04	. 06	1	4	2	106
1	16	8	41	. 1	91	8	273	1.95	6	5	ND	3	35	1	2	2	38	. 24	. 141	6	57	. 35	138	. 13	4	2.17	. 05	. 5	:	E	2	98
1	13	7	54	. 1	149	- 11	462	2.49	5	5	HD	4	40	1	2	3	51	. 32	. 131	8	61	. 52	193	. 12	4	1.83	. 05	. 19	1	3	2	140
1	12	8	55	. 1	278	15	623	2.27	4	6	ND	2	51	1	5	2	44	. 31	. 089	5	76	. 55	248	. 09	4	1.30	. 05	. 08	:	1	2	152
1	1	7	52	. 1	411	17	466	1.91	10	5	H2	2	75	1	2	2	34	. 37	. 080	6	60	. 69	176	. 09	7	1.32	. 05	. 08	1	9	2	120
1	13	19	52	. 1	603	23	308	3.73	34	5	NJ	3	49	1	2	2	57	. 31	. 043	1	163	1.64	91	. 13	8	1.70	. 06	. 16	:	44	2	44
1	17	18	54°	. 1	331	24	639	3.57	17	5	ND	4	42	1	2	2	74	. 38	. 062	10	148	1.13	118	. 13	8	1.65	. 05	. 14	1	10	2	326
1	17	16	65	. 1	613	4	1034	3.28	36	5	ND	2	87	1	2	2	42	. 45	. 070	7	233	1.14	181	. 11	12	1.84	. 05	. 09	1	9	2	507
1	12	7	62	. 2	280	17	635	2.59	7	5	3id	3	43	1	2	2	49	. 28	. 060	\%	135	. 85	193	. 11	8	1.53	. 05	. 13	1	67	2	307
1	15	12	${ }_{6} 3$. 2	168	12	471	2.30	11	7	ND	3	48	1	2	3	44	. 42	. 158	9	70	. 52	184	. 11		1.74	. 05	. 13	1	4	2	184
1	10	9	50	. 1	101	10	334	2.69	1	5	ND	2	33	1	2	2	42	. 38	. 044	7	95	. 68	113	. 14	3	1.26	. 05	. 14	1	5	2	232
2	11	8	66	. 4	41	B	417	2.53	5	5	3	3	32	1	2	3	55	. 35		4	67	. 50	176	. 13	5	1.55	. 05	. 16	1	3	2	209
1	16	5	50	. 1	74	1	359	2.48	4	5	HD	3	34	1	2	2	54	. 39	. 105	7	48	. 15	144	. 12	4	1.54	. 05	. 15	1	2	2	132
1	12	9	73	. 1	125	,	314	2.39	8	5	ND	2	39	,	3	2	48	. 30	.14!		60	. 51	217	. 13	5	1.79	. 05	. 09	$!$	2	2	259
1	15	9	60	. 2	211	14	504	2.45	1	5	HD	1	51	1	2	2	41	. 36	. 136	8	102	. 60	213	. 11	4	1.67	. 05	. 12	1	4	2	112
1	15	6	57	. 3	103	-	359	2.08	12	5	ND	1	32	1	2	2	41	. 26	. 156	7	54	. 41	144	. 11	5	1.80	. 05	. 08	1	さ	2	173
		9									8	33	47										177	08	33	172	09	14	13	99	93	

 SAMPLE TTPE: ROCK CHIPS RUIt PTIt BY FA-NS.
DATE FECEIVE[: NOY 21191 DATE REFORT MAILED: DECS/86 ASSAYER.. AS.... TDEAN TOYE. CERTIFIED E.C. ASSAYER.
SHANGRI-LA MINERALS FFROJECT - CASTLE FILE * B6-378E
PAGE 1
SAMPLEI

C5-22	1	51	3	98	. 4	1	15	970	5.31	19	7	ND	1	37	1	2	2	137	. 71	. 074	4	28	1.47	74	. 08	2	2.42	. 11	. 14	1	1
[6-52	5	2	3	13	. 4	1649	59	500	3.24	35	16	KD	1	2	1	5	2	2	. 07	. 006	2		18.38	1	. 01	349	. 04	. 01	. 01	1	1
C6-54	1	26	6	59	. 3	207	18	688	3.81	6	9	HD	2	145	1	2	2	9	2.85	. 090	2	53	3.43	541	. 13	49	1.98	. 14	1.02	b	21
C6-55	1	11	11	38	. 1	16	5	202	1.69	2	5	ND	t	70	1	2	4	26	. 75	. 050	22	21	. 68	201	. 09	3	. 13	. 07	. 27	1	1
C6-58	2	19	8	74	. 3	12	1	336	4.30	13	5	NG	1	22	1	2	2	50	. 20	.074	5	10	. 78	136	. 04	3	1.11	. 04	.19	1	7
C6-5]	2	112	7	62	. 2	27	25	952	4.82	18	6	ND	5	11	1	2	2	14	4.69	. 192	11	11	. 59	32	. 06	7	1.07	. 06	. 31	1	14
CE-58	1	112	2	50	. 3	14	18	1095	4.06	3	5	ND	3	101	1	2	2	90	2.77	. 146	11	18	1.82	145	. 13	2	1.89	. 04	. 41	1	5
C6-59	1	651	9	69	1.1	1.	19	702	4.50	40	5	ND	2	77	1	2	2	57	1.35	. 115	7	15	. 95	242	. 01	4	1.43	. 01	. 25	2	24
CE-60	1	2\%	3	24	. 1	5	5	250	1.25	3	5	KIJ	1	41	1	2	5	37	1.42	. 034	4	8	. 52	25	. 05	2	. 52	. 03	. 04	1	1
C6-61	1	8	3	24	. 1	1	J	237	1.26	3	5	NB	1	36	1	2	3	20	. 87	. 029	2	4	. 32	35	. 3 J	2	.69	. 06	. 26	1	1
C6-62	1	69	6	80	. 3	5	12	1356	4.09	2	5	Ni	4	49	1	2	2	69	2.14	. 089	19	4	. 92	270	. 01	2	1.72	. 08	. 74	1	22
C6-63	1	58	13	104	. 1	38	12	1725	4.59	23	5	ND	1	25	1	5	2	35	. 38	. 090	11	9	. 78	71	. 01	5	1.67	. 02	. 14	1	224
C5-64	1	7	9	68	. 3	15	5	375	1.80	12	-	ND	$\stackrel{ }{ }$	13	1	2	3	15	. 19	. 065	38	1	. 06	23	. 01	2	. 55	. 01	. 08	1	1
CC-65	1	3	15	105	. 2	9	5	418	1.95	2	5	ND	11	116	,	2	2	21	2.17	. 064	48	15	. 37	25	. 01	2	. 39	. 04	. 07	1	1
C5-66	1	46	5	70	. 4	5	15	797	5.18	4	6	NO	4	79	1	2	2	6	. 41	.128	16	7	. 95	532	. 11	2	2.33	. 16	1.03	1	12
C6-67	2	69	9	28	. 4	2	10	67	6.40	95	5	2	5	10	1	6	2	22	. 05	. 026	23	5	. 10	101	. 01	4	. 72	. 01	. 25	1	1841
C6-68	1	37	20	122	. 2	44	16	311	4.66	92	5	ND	7	14	1	5	2	46	. 20	. 154	53	$4)$. 35	27	. 01	2	1.71	. 01	. 01	1	24
C5-69	3	3	4	6	. 2	213	27	507	2.92	5	7	ND	1	26	1	5	2	1	. 17	. 002	J	377	9.\%	5	. 01	3	. 07	. 01	. 01	1	5
C5-70	19	567	1	72	2.1	7	11	470	4.49	12	5	ND	4	98	1	6	2	49	3.05	. 084	4	1	1.17	67	. 07	5	2.35	. 26	. 81	396	673
C5-71	1	4	5	72	. 1	22	14	715	4.59	3	5	NO	J	154	1	2	2	144	3.89	. 114	1	4	2.01	476	. 20	2	2.83	. 27	1.51	9	12
C6-72	4	2	2	15	. 3	1455	10	556	4.69	6	-	NO	1	1	1	6	2	6	. 02	. 004	2	366	14.53	1	. 01	76	. 05	. 01	. 01	1	?
C6-73	1	15	$1!$	66	. 3	15	12	944	4.60	7	5	ND	3	102	1	2	3	111	3.64	. 086	5	17	1.14	351	. 16	2	1.88	. 21	. 11	1	14
CH-23	1	9	1	49	. 2	17	9	370	2.92	2	5	ND	10	142	,	2	2	76	1.38	. 191	27	49	1.09	209	. 25	2	1.66	. 20	. 42	2	1
Ch-24	1	5	1	59	. 1	J0	9	377	3.24	4	5	ND	5	59	1	2	2	15	.t1	. 151	17	41	1.51	105	. 26	5	1.46	. 14	. 47	1	1
CH-25	1	20	6	38	. 3	5	5	246	3.40	1	5	MD	2	38	1	2	2	124	. 44	. 079	7	22	1.02	484	. 28	2	1.54	. 12	. 71	2	5
Ch-26	1	4	2	42	. 2	2	5	546	2.62	4	5	ND	7	34		2	4	42	. 51	. 079	13	9	. 66	74	. 11	3	1.21	. 09	. 36	1	19
Ch-27	1	52	5	50	. 3	1	9	495	2.87	3	5	N0	1	61	1	2	2	67	1.13	. 139	1	5	. 71	44	. 17	2	1.56	. 18	. 14	1	3
CH-28	1	27	3	43	. 1	1	6	267	2.5\%	4	5	ND	2	17	1	2	2	75	. 71	. 105	8	7	. 63	140	. 16	5	1.01	. 15	. 35	1	1
CH-29	1	4	2	76	. 3	3	5	557	2.72	2	7	NO	9	51	1	2	2	50	. 62	. 080	15	9	. 79	53	. 18	2	1.55	. 15	. 39	1	1
CH-JO	1	7	8	104	. 2	12	12	721	4.91	4	1	ND	1	105	1	2	2	90	1.25	. 071	5	12	1.36	105	. 23	2	2.67	. 39	. 93	1	1
Ch-30A	1	29	2	80	. 1	9	9	80B	3.84	4	5	ND	1	54	1	2	2	101	. 93	. 087	6	13	. 88	90	. 23	4	1.36	. 14	. 41	1	3
Ch-31	1	20	6	92	. 3	12	11	555	5.01	5	5	ND	2	71	1	2	2	138	. 90	. 078	6	15	1.45	496	. 22	2	2.52	. 20	1.02	1	2
Ch-314	1	45	10	112	. 2	42	15	819	4.83	3	5	W ${ }^{\text {d }}$	2	77	1	2	2	154	1.35	. 104	1	69	2.19	309	. 28	2	3.12	. 51	2.10	1	6
CH-32	1	7	3	66	. 1	31	7	415	2.62	2	5	HD	4	60	1	2	3	51	. 68	. 134	15	40	1.22	250	. 27	2	1.46	. 11	. 54	1	1
CH-34	3	3	24	9	. 2	3	1	33	. 11	2	5	KD	1	4	1	2	2	2	. 04	. 013	2	4	. 04	43	. 01	3	. 17	. 04	. 11	1	1
STD C/FA-5x	20	55	36	121	6.9	63	21	991	3.95	31	17	8	33	47	16	15	20	60	. 41	. 096	37	50	. 88	175	. 08	35	1.72	. 07	. 13	13	98

SARPLEI	Ho	[P3	In	Ag	K	Co	Hn	$F \mathrm{~F}$	4s	い	Hu	Th	Sr	cos	$5 b$	E:	1	[d	F	12	ir	Ho	88	T:	E	Al	Nz	1	k	Autt	Plit
	DPM	PPM	PPF	PPM	PPM	PPM	PPM	PPM	2	PPM	PPK	PPM	PPM	PPK	PPR	PPM	PPM	PPM	2	2	PPK	PPK	\%	PPM	1	PFM	2	2	2	PPH	PPB	PH
Ca-35	$!$?	2	32	. 1	2	4	454	2.00	2	5	KI	1	70	1	2	3	14	1.12	. 065	2	?	. ${ }^{4}$	45	.0!	2	1.48	. 13	. 16	1	1	2
Ch-36	3	2	2	15	. 2	1340	55	489	3.31	23	5	NJ	1	3	1	,	2	8	. 20	. 064	2	506	14.25	5	.01	124	. ${ }^{4}$. 01	. 01	1	2	2
CH-36	1	2	3	14	. 2	879	50	361	4.08	76	5	NJ	1	3	1	5	2	11	. 06	. 004	2	759	17.60	2	. 01	248	. 11	. 01	. 01	1	1	13
[C - 37	1	1	2	19	. 2	1454	65	642	3.50	36	5	KD	1	9	1	5	2	11	. 4	. 062	2	743	21.50	3	. 01	122	. 11	. 01	. 01	1	2	3
CK-38	5	:	5	It	.3	1402	62	406	3.53	102	5	HE	1	14	1	7	4	10	. 21	. 004	2	744	21.71	5	. 01	220	. 07	. 01	. 01	1	1	1
CM-39	1	28	4	117	. 3	25	13	743	4.44	3	5	N(2	29	1	2	2	129	. 68	.090	2	23	1.72	659	. 25	3	2.03	. 07	1.24	1	4	2
CM-43	1	11	l	74	. 1	35	14	654	4.08	7	5	ND	2	61	1	,	2	104	. 81	. 120	5	51	1.94	61	. 17	6	1.85	. 08	. 12	1	1	2
CH-43f	1	29	B	88	.1	63	18	414	4.45	3	5	HD	5	106	J	2	2	99	2.09	. 126	8	177	2.74	35	. 18	2	2.18	. 07	. 10	1	1	2
CH-41	1	6	5	95	. 2	6	14	658	6.42	3	5	ND	2	32	1	2	4	155	. 55	. 049	1	t	1.42	335	. 29	2	2.52	. 16	1.71	1	3	5
CH-44A	1	14	3	69	. 1	46	13	427	J. 50	2	5	ND	5	171	1	2	2	79	1.17	. 126	7	127	1.81	470	. 33	2	2.26	. 27	1.15	1	1	2
Ch-45	1	14	9	99	. 1	17	13	442	4.6?	2	5	ND	2	26	1	2	2	86	. 53	.011	5	17	1.18	12	. 08	2	1.92	. 01	. 21	1	18	2
CH-45A	1	15	9	102	. 1	17	13	384	4.55	3	5	MD	3	20	1	2	2	75	. 18	. 081	3	17	1.11	75	. 08	2	1.6	. 05	. 18	1	1	2
CH-46	1	4	2	42	. 1	6	4	392	2.14	2	5	Nid	1	29	1	2	3	28	. 22	. 059	3	3	. 13	21	. 02	3	1.09	. 14	. 03	1	1	2
[$\mathrm{C}-47$	1	1	7	81	.1	3	6	733	2.47	2	8	ND	3	385	1	2	3	36	3.37	. 054	2	4	1.15	36	. 01	3	4.45	. 41	. 14	1	1	2
CK-48	4	1	2	$1 t$. 3	968	53	484	3.28	41	5	No	1	21	1	5	2	11	. 04	. 002	2	505	18.13	2	. 01	90	. 12	. 01	. $0!$	1	19	5
CH-49	5	1	2	15	$\cdot .2$	1357	41	546	4.66	37	5	ND	1	7	J	5	2	15	. 40	. 002	2	1495	19.53	1	. 01	203	. 20	. 01	. 01	2	78	11
CM-50	2	12	2	12	. 2	309	8	715	. 46	7	5	ND	1	56	1	2	12	14	1.34	. 001	2	5513	5.31	5	. 01	29	. 90	. 01	. 01	1	303	6
CK-51	2	16	2	19	. 2	1250	51	546	3.94	16	5	ND	,	11	,		2	13	. 38	. 004	2	112	11.86	10	. 01	114	. 19	. 01	. 01	1	20	9
Ch-52	1	3	2	16	. 2	1296	60	536	4.07	19	5	MD	1	3	1	5	2	12	. 18	. 004	2	1353	15.52	1	. 01	200	. 15	. 01	. 01	3	20	1
CH-53	1	32	5	80	.1	84	19	730	5.00	5	5	ND	3	121	1	2	2	125	2.40	. 141	8	116	2.54	725	. 36	-	2.51	. 22	1.68	1	2	2
CM-54	1	5	9	94	. 1	20	10	1078	3.70	2	1	ND	6	119	1	2	2	95	7.24	. 068	3	75	1.19	195	. 15	3	2.16	. 28	. 57	1	1	2
[Cr -55	3	2	2	14	. 2	1321	58	586	4.07	23	5	NO	,	6	1		2	5	. 05	. 015	3	186	15.15	8	. 01	129	. 01	. 01	. 01	2	1	7
Ch-56	1	12	7	74	. 1	32	14	536	4.13	6	9	N0	2	1935	1	2	2	107	1.68	. 089	3	17	1.17	513	. 16	2	2.59	. 29	1.12	1	1	2
Ch-5tA	1	6	4	36	. 1	25	4	241	1.64	4	5	HD	8	95	1	2	2	23	. 89	. 057	36	25	. 84	33	. 01	2	. $\%$. 04	. 08	1	1	45
$\mathrm{CH}-51$	1	26	13	113	. 2	23	8	172	4.15	16	5	HD	2	51	1	3	2	55	1.76	.04日	4	25	2.05	116	. $0 t$	3	2.06	. 01	. 50	1	3	,
CR-58A	1	1	8	18	. 1	61	19	142	d. 41	29	5	HD	2	60	1	3	2	143	2.10	. 064	9	18	4.10	143	. 05	2	3.64	. 02	. 61	1	2	2
CR-59	1	7	4	35	. 1	12	5	196	1.76	2	5	ND	7	41	,	2	2	27	. 72	. 057	22	26	. 72	143	. 10	3	. 23	. 05	. 19	1	1	2
Ch-60	1	10	10	83	. 2	13	13	646	4.43	4	5	ND	5	230	1	2	2	42	2.14	. 208	23	27	2.34	1189	. 11	2	2.34	. 11	. 87	1	1	2
CM-6!	3	2	2	7	. 1	1251	41	510	3.96	43	5	NI	1	7	1	9	2	7	. 16	. 004	2	340	15.03	5	. 01	54	. 07	. 01	. 01	1	1	7
Ch-62	3	2	4	14	.1	1295	55	479	4.18	12	5	ND	1	3	1	5	2	8	. 07	. 004	2	271	11.54	11	. 01	33	. 07	. 01	. 01	1	1	10
CH-63	1	1	2	$2 t$. 1	19	4	121	1.55	5	5	ND	2	13	1	2	2	6	2.69	. 061	2	5	.72	51	.0]	2	. 98	. 04	. 12	1	1	52
CX-64	1	2	2	36	. 1	19	1	430	1.53	3	5	HD	1	46	1	2	3	13	. 47	. 066	2	J	. 80	48	. 04	2	1.28	. 07	. 07	1	1	2
CH-65	1	8	18	I3	. 1	4	1	291	. 55	4	5	WD	2	10	1	2	2	1	. 01	.02!	b	2	. 12	95	. 01	3	. 33	. 04	. 21	1	1	2
C.n-67	1	103	1	65	. 1	16	24	473	4.05	2	5	H	1	52	1	2	2	95	1.00	. 072	2	20	2.14	69	. 33	2	2.12	. 05	. 11	1	3	5
C.in-6\%	1	129	12	139	. 1	22	21	985	6.14	2	5	Ho	2	96	1	2	2	131	1.68	. 150	9	44	3.42	331	. 23	2	2.98	. 05	1.11	1	2	10
CW-70	1	31	23	132	. 2	16	16	557	4.10	1	5	W0	2	117	1	2	2	137	2.07	. 098	5	31	1.23	56	. 16	3	2.78	. 38	. 28	1	5	2
SID C/FA-5X	21	55	38	130	6.8	64	28	999	3.94	39	17	7	JJ	48	17	15	22	62	. 48	. 101	37	58	. 80	180	. 08	35	1.72	. 07	. 13	12	97	100

Shangri-la minerals project - castle file \# bo-zios
page 3

SAMPLEA	\%0	Cu^{4}	Pb	In	Ao	H_{1}	Co	Hn	fe	As	v	ku	Th	5 r	Cd	5 b	11	v	58	P	La	Cr	Ka	5	It	B	Al	Ha	k	N	AuII	Pt 11
	PFM	PPM	PPK	PPM	PPM	PPM	PPM	PPM	1	PPM	PFN	PPM	PPM	PPK	PPM	PPM	PPM	PPK	1	1	PPM	PPK	1	PPK	1	PPM	2	z	2	PPM	P93	P91
CM-72	1	27	7	62	. 2	57	20	413	3.80	7	6	ND	7	113	1	4	2	93	2.40	. 195	19	220	2.57	46	. 18	2	1.\%	. 10	. 08	1	1	2
Ch-73	1	13	6	34	. 7	2277	89	1091	5.02	75	9	NO	3	4	1	16	14	11	. 06	. 007	2	480	25.51	9	. 01	35	. 06	. 01	. 01	3	2	6
[$\mathrm{H}-74$	1	21	17	98	. 1	21	16	130	5.20	8	5	ND	4	125	1	J	2	134	1.40	. 234	13	15	1.98	45	. 19	2	2.28	. 10	. 10	1	2	2
¢K-75	1	5	4	16	. 5	1721	76	848	3.67	34	10	*D	1	4	1	14	6	6	. 15	. 003	2	196	21.65	2	. 01	84	. 05	. 01	. 01	1	2	2
Cr-7e	4	4	8	17	. 6	2102	11	892	4.06	195	10	ND	2	12	1	15	10	6	. 13	. 005	2	4	24.12	4	.0!	39	. 05	. 01	. 01	2	15	2
CK-77	1	13	11	104	.l	40	13	977	3.36	3	b	HD	5	93	1	2	2	104	2.11	. 082	3	25	1.28	93	. 19	2	2.03	. 30	. 35	1	2	2
CH-78	3	1	3	16	. 6	1859	69	648	3.14	47	b	ND	1	3	1	13	3	5	. 05	. 003	2	342	23.61	3	. 01	10	. 05	. 01	. 01	2	3	5
$\mathrm{CH}-79$	1	10	12	19	. 4	1306	51	468	3.64	65	5	ND	2	28	1	11	2	19	. 70	. 005	2	1211	15.85	3	. 01	105	. 18	. 01	. 01	2	5	24
$\mathrm{CK}-80$	3	11	2	24	. 6	1617	72	549	3.74	55	7	HD	2	3	1	17	3	E	. 09	. 001	2	653	22.22	1	. 01	90	. 07	. 01	. 01	1	9	7
[$\mathrm{M}-8 \mathrm{C}$	1	80	2	44	. 7	14	8	463	1.75	2	6	ND	1	13	1	2	2	20	. 6	. 070	2	13	. 97	17	. 06	2	. 99	. 07	. 04	2	9	2
CH-82	2	3	2	16	. 5	1527	55	402	3.9	23	5	ND	3	4	1	16	2	13	. 10	. 003	2	970	85.20	3	. 01	120	. 22	. 01	. 01	1	7	8
CH-S3	5	1	2	20	. 4	1411	65	504	4.09	114	5	ND	1	3	1	13	15	13	. 02	. 003	2	1345	20.03	3	. 01	161	. 09	. 01	. 01	2	3	1
CH-84	2	9	10	18	. 1	9	3	531	. 55	2	5	KD	6	120	1	2	2	3	1.46	.038	12	7	. 12	208	. 01	2	. 31	. 03	. 25	1		- 2
CH-05	1	6	6	28	. 1	9	5	441	1.73	4	5	M 1	4	161	1	2	2	15	2.34	. 06	5	10	. 74	95	. 05	2	1.49	. 20	. 47	2	,	2
CK-16	2	35	3	79	. 5	55	19	062	4.63	5	18	NIV	7	149	1	4	5	145	3.17	. 162	11	53	2.10	797	. 05	5	1.30	. 05	. 11	1		- 2
$\mathrm{CH}-87$	1	76	5	79	. 1	22	19	754	4.59	4	6	ND	2	89	1	3	2	108	1.42	. 170	11	80	1.97	321	. 40	2	2.14	. 16	1.34	1	$1-$	-2
CM-88	2	7	14	70	. 1	8	10	716	2.12	2		ND	1	50	1	2	2	4	. 54	. 081	2	10	1.45	205	. 15	2	1.52	. 06	. 67	1	20	2
[H -89	1	11	2	23	. 5	1851	71	140	4.21	54	8	ND	1	4	1	16	3	10	. 01	. 007	2	386	18.19	9	. 01	208	. 10	. 01	. 02	1	11	13
CH-90	1	5	2	41	.1	45	8	490	2.01	3	5	ND	1	52	1	2	2	27	. 60	. 075	3	12	1.10	95	. 09	6	1.25	. 07	. 43	2	1	2
CH-90A	1	7	2	36	. 1	18	7	376	1.63	2	5	ND	1	61	1	2	2	25	.51	. 076	2	9	. 7	133	. 11	2	1.20	. 01	. 44	1	1	2
Ch-91	1	46	17	75	. 1	42	21	501	4.01	2	5	ND	4	115	1	2	2	114	1.62	. 158	:	127	1.92	252	. 40	2	2.10	. 20	. 51	2	1	2
CH-92	1	6	4	31	. 1	13	12	596	2.66	2	5	ND	1	58	1	2	2	52	. 57	. 070	2	9	1.64	293	. 17	2	1.72	. 07	. 57	2	3	2
CH-924	1	30	9	11	. 1	34	13	791	3.96	J	5	N0	3	71	,	2	2	106	. 69	. 106	7	39	1.22	71	. 18	2	1.83	. 08	. 18	2	3	2
[$\mathrm{CH}-93$	1	1	J	37	. 2	7	11	481	1.89	4	7	MD	4	61	1	2	2	30	. 60	. 061	2	11	1.29	1	. 12	2	1.44	. 05	. 18	2	1	2
Ch-94	2	6	4	26	. 1	3	4	357	1.31	2	5	HD	2	54	1	2	2	14	1.10	. 061	2	b	. 59	37	. 06	2	. 93	. 07	. 10	2	1	2
CH-95	1	55	17	153	. 1	13	18	801	6.24	2	12	WD	1	71	1	3	2	146	1.02	. 100	3	10	1.81	75	. 20	2	3.12	. 31	. 74	2	1	2
Ch-95A	2	13	9	107	. 3	1	14	905	4.91	3	8	N0	4	02	,	2	2	120	2.05	. 017	3	17	1.49	99	. 16	2	2.32	. 23	. 28	1	2	2
CH-76	1	11	2	101	. 1	13	12	914	4.45	7	5	ND	3	109	1	3	2	119	2.49	. 101	3	12	1.25	215	. 21	2	1.70	. 13	. 41	1	6	2
Ch\%-97	2	13	6	32	. 1	2	3	409	1.50	2	5	N	1	33	1	2	2	21	. 43	. 088	2	4	. 57	130	. 10	3	. 61	. 11	. 30	2	1	2
STD C/FA-5y	22	4	41	133	7.1	74	32	1104	3.88	43	17	1	37	52	19	15	19	70	. 48	. 106	39	64	. 0	199	. 04	42	1.72	. 07	. 15	14	104	103

 IHIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.DA.TI.B.N. NA,K.N.SI.ZR.CE.SN.Y.NE AND TA. AU DEIECILOM LIMIT IY ICP IS 3 PPM - SATPLE TYPE: PULP AUI AMALYSIS IY AA FROH 10 GRAM SAMPLE

SHANGRI-LA MINERALS FROJECT - CASTLE FILE 87-0111
PAGE 1

SASPLE:	$\begin{gathered} \mathrm{KO}_{0} \\ \mathrm{PPK} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{PPK} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { In } \\ P P H \end{array}$	$\begin{gathered} \text { Ag } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{H}_{1} \\ \mathrm{PPH} \end{gathered}$	$\begin{gathered} \mathrm{C}_{0} \\ \text { PPM } \end{gathered}$	Mn PPH	$\begin{gathered} \mathrm{Fe} \\ \mathrm{I} \end{gathered}$	$\begin{gathered} \text { As } \\ \text { PPK } \end{gathered}$	$\underset{\text { PPK }}{\text { U }}$	$\begin{aligned} & \text { AU } \\ & \text { PPM } \end{aligned}$	Th	$\begin{gathered} \mathrm{Sr} \\ \mathrm{PrF} \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { PPK } \end{array}$	$\begin{aligned} & \mathbf{H} \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} Y \\ \text { PPR } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & p \\ & z \end{aligned}$	$\begin{gathered} \text { Ld } \\ \text { PF } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \text { PP月 } \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \dot{I} \end{gathered}$	$\underset{\text { Prin }}{\text { In }}$	$\begin{gathered} \mathrm{T}_{1} \\ \mathbf{Z} \end{gathered}$	$\begin{array}{r} 8 \\ P P R \end{array}$	$\begin{gathered} A! \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{Ma} \\ \mathrm{I} \end{gathered}$	X	MPM	Aut P1	PlIt Pl
LON 1100\%	1	17	1	42	. 1	12	8	307	2.78	2	5	ND	2	29	1	2	2	76	. 49	. 102	14	34	. 39	61	. 13	11	1.07	. 03	. 14	2	1	2
LON 1075	1	17	10	47	. 1	12	7	340	2.95	2	5	N0	3	34	1	2	2	71	. 56	. 100	16	36	. 47	73	. 14	2	1.19	. 03	. 17	1	1	2
LOM 10501	1	13	9	49	. 1	12	7	305	2.60	2	5	0	3	31	1	2		73	. 51	. 106	11	34	. 42	76	. 14	7	1.26	. 03	. 14	1	3	2
LON 1025	1	15	8	37	. 1	12	1	262	2.69	2	5	ND	3	26	1	2	2	76	. 51	.013	15	35	. 36	50	. 12	7	. 93	. 03	.13	1	4	2
LON 1000	1	17	10	46	. 1	12	6	277	2.74	2	5	KD	4	J1	1	2	2	74	. 47	. 084	17	35	. 46	71	. 15	11	1.21	. 03	.16		5	2
LON 9754	1	28	10	54	. 1	15	\%	382	3.01	2	5	\%	4	48	1	2	2	0	. 44	. 101	16	11	. 62	101	. 16	10	1.34	. 04	. 24	1	1	2
LOM 750M	1	20	8	4	. 1	20	7	217	2.60	2	5	ND	3	35	1	2	2	54	. 37	. 149	14	21	. 34	16	. 12	3	2.03	. 03	. 11	1	2	2
10\% 925\%	1	9	6	84	. 1	9	1	558	1.74	2	5	ID	1	47	1	2	2	32	. 34	. 11	6	18	. 17	287	. 18	11	1.64	. 03	. 08	1		2
LOM 9001	1	9	7	122	. 1	11	4	442	1.76	2	5	ND	1	34	1	2	4	33	. 30	. 213	6	12	. 18	2t!	. 10	7	1.53	. 03	. 07	1	1	2
LOM 875	1	13	4	65	. 1	14	4	203	2.37	3	5	ND	2	25	1	2	2	55	. 3	. 105	4	25	. 21	113	.11	6	1.53	. 03	. 11	1	J	2
LOM 550M	1	9	15	es	. 2	14	5	372	2.01	2	5	W	2	22	1	2	2	34	. 20	. 269	7	21	. 21	211	. 10	2	1.56	. 02	. 07	2	2	2
LON 825	1	1	4	110	. 1	12	5	685	2.06	2	5	10	J	24	1	2	4	42	. 21	. 246	,	22	. 20	270	. 10	1	1.63	. 03	. 10	1	,	2
LOM 8004	1	13	7	97	. 2	14	1	571	2.35		5	N	2	24	1	2	2	46	. 30	. 112	!	22	. 30	142	. 12	10	1.97	. 02	. 08	1	1	2
LOM 775	1	9	8	131	. 1	1	4	806	1.12	2	5	ND	2	27	1	2	2	5	. 32	. 214	7	17	. 19	379	. 11	2	1.55	. 03	. 09	2	1	2
L0N 7503	1	13	9	182	. 2	11	6	401	2.05	2	5	ND	2	39	1	2	2	37	. 41	. 294	7	21	. 24	253	. 12	2	1.9	. 03	. 09	1	,	2
LON 7254	1	-	14	124	. 2	10	6	427	1.96	2	5	M ${ }^{\text {d }}$	2	26	1	2	2	40	. 32	. 278	1	22	. 26	345	. 11	7	1.35	. 02	. 018	1	2	2
L0N 7001	1	9	15	84	.1	11	4	295	1.91	2	5	HD	2	27	1	,	2	42	. 29	. 140	7	21	. 24	111	. 11	9	1.20	. 02	. 07	1		2
L0N 675\%		13	14	45	. 3	13	4	338	1.65	2	5	ND	2	24	1	2	4	31	. 25	. 237	6	14	. 19	142	. 11	3	1.54	. 03	. 06	1	1	
LOW 650\%	1	7	2	27	.1	7	5	164	2.30	2	5	ND	2	23	,	2	2	15	. 50	. 098	14	29	. 26	37	.10	1	. 70	. 02	. 10	2	4	2
LON 625\%	1	11	14	122	. 2	12	5	766	1.39	2	5	NT	2	23	i	2	2	30	. 27	. 242	1	17	. 21	256	. 11	2	1.80	. 03	. 04	1	1	2
LON 6003	1	13	11	123	. 1	12	5	692	1.95	5	5	M ${ }^{10}$	1	25	1	2	4	31	. 23	. 250	7	11	. 21	210	. 11	2	1.95	. 03	. 07	1	2	2
LOK 5751	1	13	6	129	. 2	15	6	440	1.55	2	5	10	2	36	1	2	2	30	. 26	. 341	6	15	. 21	346	. 12	5	1.67	. 03	. 07	1	1	2
LON 550\%	1	11	9	143	. 4	12	7	469	1.92	2	5	10	2	29	1	2	4	31	. 29	. 383	7	15	. 20	250	. 11	9	2.07	. 03	. 07	1	1	3
LON 5254	1	16	2	201	.1	17	5	592	2.00	2	5	ND	1	29	1	2	2	36	. 24	. 212	1	20	. 23	175	. 12	1	2.06	. 03	. 04	1	1	2
LON 5004	1	9	4	8	. 1	9	4	270	1.97	2	5	ND	,	24	1	2	2	46	. 35	. 135	9	23	. 22	58	. 07	13	1.07	. 02	. 06	,	12	2
LON 475	1	20	14	85	. 2	14	4	276	2.16	2	5	nd	3	24	1	2	2	47	. 34	. 095	11	22	. 29	05	. 11	2	1.61	. 03	. 06	1	15	2
LOM 4501	1	20	4	11	.4	17	4	278	2.16	3	5	HD	3	24	1	2	2	47	. 34	. 095	11	26	. 30	97	. 11	4	1.60	. 02	. 06	1	1	2
LON 4254	1	27	17	75	. 2	22	$\stackrel{1}{1}$	338	2.64	2	5	HD	3	31	1	2		54	. 37	. 151	13	25	. 33	72	. 15	7	2.11	. 03	. 08	1	4	J
20N 4004	1	44	19	131	.1	36	7	196	2.23	5	5	N0	3	35	1	2	2	42	. 65	. 150	11	20	. 25	46	. 13	2	2.4	. 03	. 06	1	1	3
LON 375	1	9	1	81	. 1	13	5	405	2.15	3	5	MD	J	22	1	2	2	46	. 30	. 204	!	27	. 25	106	. 10	2	1.34	. 02	. 06	1	,	3
10\% 350\%	1	21	9	87	. 1	16	6	524	2.39	2	5	ND	3	21	1	2	2	47	. 40	. 074	18	25	. 33	102	. 15	18	2.21	. 04	. 08	1	1	2
LON 325\%	1	17	6	108	. 2	13	6	519	2.21	3	5	ND	2	26	1	2	2	43	. 3	. 149	11	22	. 25	108	. 13	6	2.16	. 03	. 01	1	1	2
LON 300\%	1	20	17	93	. 1	13	1	673	2.27	4	5	ND	1	39	1	2	2	48	. 42	. 100	13	25	. 31	201	. 12	2	1.99	. 02	. 04	1	2	2
LON 2754	1	13	10	63	. 1	16	7	391	2.42	2	5	KD		27	1	2	2	57	. 31	. 071	11	29	. 32	97	. 12	2	1.67	. 02	. 05	1	1	2
LON 2503	1	16	12	42	. 1	15	8	711	2.38	6	5	ND	3	27	1	3	2	51	. 35	. 206	11	29	. 34	176	. 12	5	1.76	. 02	. 07		1	
LON 2251	1	13	11	71	. 1	13	6	418	2.49	4	5	MD	3	27	1	2	6	54	. 43	.119	10	31	. 3	132	. 13	3	1.95	. 02	. 04	1	1	2
STD C/AU-S	19	57	37	129	6.9	65	27	945	3.92	37	15	7	32	46	15	15	20	61	. 18	. 092	35	58	. 11	110	. 09	36	1.71	. 07	. 15	12	49	101

SAMPLE $\begin{array}{lllllllll}\mathrm{Ho} & \mathrm{Cu} & \mathrm{Pb} & \mathrm{In} & \mathrm{Aa} & \mathrm{H}_{1} & \mathrm{Co} & \mathrm{Mn} & \mathrm{Fe}\end{array}$ PPK PPM PPM PPM PPM PPH PM PPM I

nommed	nenmer	MNNNN	nonmen	nment	numan	－nNon	No：
ーツーーー	\rightarrow－	$\rightarrow \mathrm{NaH}$	\simeq	の制がい	$\rightarrow \infty \rightarrow *$－	$\rightarrow m \mathrm{~N}$	－
ranmor	－NNーの	－nNmm	いーいいー	－－－－	－Mーー－	$\cdots \rightarrow+\cdots-$	－M
		容馬ニッ	ㄲํํッ		은듕	궁 5	$\because \geq$
Nㅡㅇ응웅	\％\％\％	¢M응웅	웅둥	\％MM	¢\％\％	MMMm	Mos
응 몽 쿡					두ํ ํㅗ 쿠 N～N Ni Ni		$\underset{\sim}{\text { ¢ }}$
$\infty+\rightarrow \infty$	NomNM	Moncon	－Mッツ	＊NMMN	Nomeromer	いがNom	\cdots
	구ำํㅜํ	\triangle	ロッツッツ		ツッッジ	ワキッツ	mos
＊号会尔禁							＊
		구ㄲㅜㅜำ	우ㅇㅜㅜ우ㅇㅜㅜ		NHm\％	～융N．	¢
が気式式		N二必が品	N以边	ボッ～ペ		スタミべ	ぶ
	$=$	꽆ํ응	ページ	$\cdots \cdots=0$	－ O $^{\circ}{ }^{\circ}$	－9＊－0＊	－\％
	กัำ＊	측클크ㅋㅡㅡㄹ					꿍
	戸フึ円フ			Пึึค\％		M式范？	\％
		だっご上に	が5が		\cdots 为 0		85
nenter	NNM－N	NNMNN	monnm	nemmen	nNmNo	NMNNN	$N=$
nomme	NNMMN	NNNMN	MNTNN	MNNmon	nNmmen	Nonmm	N』
－－－－－	－ッーが	ーツーいい	－ーーが	～ーがー	ーーツーが	－ーツーツ	－－
二N以N			盛盛			のがが円	A
MmMmN	NNM－M	$m+N+N$	MNMNN	NNMMm	mmmが	nmm＊r	$\sim \mathrm{N}$
웆웆뭊우ㄴㅗㅗ	빈붗잋요을						是
のひにが	のぃいぃい	のぃめが	のぃいが		がmいの	いロッが	$\cdots \sim$
－	＋	N	\cdots いが	Nコーが	$\because ッ *$－	のNがい	N
～N～N N	 	ががが		がロージッ N N N Ni	우ํํ우N 	ッヅッ゙か N～N NiN	円
品気氙客哭						寧号号号	¢
$\cdots \rightarrow \infty$	－がmN	orros	－＝＝	－以ハNッ		$0-\infty=\sim$	－ 2
	ㅇ․․a	コニニ9	ごの以ッ	二ツッツツ	－ロ＝¢ ¢		9
	$\because \rightarrow$ ¢	$\because \because ワ$	$\because \because \because マ$				－
ロッ゙心た			点里に品		Nに～ジさ	윽ㄸㅐㅒN	$9 \pm$
ローがペ	ニコロッツ		ここさが		$\because \sim \mathrm{HmN}$	ツッ＊＊＊	Nim
ツッニツニ	ッニロッニ	추N心	ニッポフ	$\rightarrow \pm \sim$ ¢	ペッロー		$\cdots 5$
－	ーーロー・	$\rightarrow-\rightarrow-$	いーーーツ	－ーツーい		$\cdots \rightarrow-\infty$	－${ }^{\text {a }}$
			峉宮㞸㞻落 资管架管			 어어엉먹	\％ \％ 号 \％ a

SHANGRI-LA MINERALS FROJECT - CASTLE FILE \# 87-0111
PAGE 3
5AMPLEA

L200S 7254	1	17	43	192	. 1	10	7	1516	2.21	5	5	ND	2	46	1	2	2	49	. 45	. 127	1	23	. 35	364	. 13	2	1.47	. 02	. 10	1	5	3
L200S 700:	1	21	13	73	. 2	17	8	472	2.72	4	5	KD	4	23	1	2	3	67	. 27	. 208	12	29	. 36	135	. 13	2	2.10	. 02	. 04	2	1	2
L2005 6751	1	13	7	79	. 1	12	b	583	2.26	5	5	WD	3	29	1	2	2	53	. 27	. 117	10	23	. 30	141	. 11	2	1.74	. 02	. 08	1	1	2
L200S 650 N	1	17	10	93	.1	15	6	573	2.3	8	5	ND	1	32	1	2	2	53	. 30	. 220	10	23	. 33	211	. 12	2	1.11	. 03	. 10	1	22	2
L200S 625\%	1	17	5	73	. 1	15	6	447	2.27	5	6	WD	3	32	1	2	3	52	. 31	. 168	9	23	. 33	178	. 12	2	1.83	. 03	. 04	1	36	2
12005 6004	1	17	11	86	. 2	10	7	4.4	2.24	38	5	M10	J	28	1	2	2	$5!$. 27	. 244	9	22	. 29	199	. 11	7	1.81	. 02	. 07	2	37	2
L200S 575\%	1	24	10	B	. 1	21	7	473	2.41	17	5	ND	3	34	1	2	2	53	. 33	. 197	12	21	. 32	122	. 13	3	2.57	. 03	. 11	2	4	2
12005550 N	1	17	4	77	. 1	12	5	49	2.23	9	5	ND	3	31	1	2	3	46	. 29	. $23!$	9	21	. 25	222	. 12	2	2.20	. 03	. 08	t	69	2
L200S 5254	1	17	15	4	. 9	12	6	431	1.95	4	26	ND		27	1	2	8	45	. 25	. 152	10	19	. 23	162	. 10	2	1.45	. 02	. 09	2	1	2
L2005 5003	1	15	8	75	. 1	23	4	411	2.37	4	5	MD	3	27	1	3	3	53	. 29	. 132	1	27	. 30	174	. 13	2	1.92	. 03	. 08	2	3	3
L2005 4751	1	17	9	58	. 1	16	d	409	2.48	4	5	N0		27	1	2	2	60	. 31	. 049	12	27	. 33	134	. 13	2	1.12	. 03	. 09	1	9	2
L200S 4501	1	21	1	76	. 1	16	9	632	2.03	1	5	V0	3	23	1	2	2	4	. 23	. 161	12	30	. 37	159	. 15	2	2.41	. 02	. 04	1	11	2
L2005 4251	1	24	3	5	. 1	1	11	1030	2.59	4	5	N0	1	31	1	2	2	53	. 35	. 168	7	15	. 21	14	. 10	2	1.55	. 02	. 09	1	16	2
L200S 400N	1	17	9	16	. 1	13	5	551	2.16	6	5	WD	3	21	1	2	2	4	. 29	. 142	1	21	. 21	197	. 12	2	1.73	. 03	. 04	1	5	2
L2005 575\%	1	20	4	49	. 1	16	8	451	2.54	3	5	M ${ }^{\text {I }}$	4	31	1	2	5	53	. 35	. 074	17	24	. 35	91	. 16	2	2.54	. 04	. 07	2	7	2
L200S 350H	1	19	5	116	. 2	18	7	677	2.57	3	5	MD	2	33	1	2	2	55	. 32	. 147	10	27	. 36	159	. 13	2	1.11	. 02	. 04	1	16	2
L2005 3251	1	17	13	17	. 2	17	6	419	2.62	3	5	NO	4	26	1	2	2	51	. 29	. 227	11	27	. 33	117	. 12	2	1.19	. 02	. 011	1	1	2
L200S 3004	1	19	15	77	. 1	17	6	69	2.52	4	5	No	3	$5!$	1	2	2	51	. 42	. 136	12	28	. 37	182	. 12	2	1.75	. 02	. 10	1	1	2
L200S 275	1	17	11	153	. 3	24	7	975	2.69	7	1	ND	3	71	1	2	2	46	. 59	. 361	8	22	. 42	389	. 13	2	2.22	. 02	. 16	1	3	2
L200S 250\%	1	10	I	69	. 1	15	4	417	2.06	10	5	ND	2	21	1	2	2	47	. 25	. 102	9	20	. 25	93	. 12	2	1.42	. 02	. 07	1	1	2
12005 2251	1	14	9	79	. 1	12	5	475	2.21	6	5	N0	J	24	1	2	3	41	. 26	. 142	10	21	. 31	117	. 13	2	1.90	. 03	. 11	2	1	2
L200S 200\%	1	14	14	78	.1	15	6	359	2.40	5	5	50	3	20	1	2	2	50	. 22	. 085	1	24	. 35	160	. 14	4	2.15	. 02	. 11	1	15	2
12005175	1	14	4	110	. 1	19	7	437	2.41	5	5	No	3	31	1	3	2	54	. 32	. 078	9	21	. 36	152	. 14	2	1.74	. 02	. 11	1	2	2
L200s 150N	1	14	5	116	. 1	27	7	206	2.01	1	5	10	3	24	1	2	5	40	. 21	.19t	,	23	. 33	225	. 13	1	1.93	. 03	. 04	1	,	2
L200S 125	1	14	4	79	. 1	147	E	232	2.12	3	5	ND	3	30	t	2	3	38	. 20	. 127	9	31	. 37	156	. 14	2	2.43	. 03	. 06	1	4	2
L200S 100N	1	8	7	49	. 1	142	13	518	1.50	5	5	HD	1	28	1	2	6	25	. 20	. 043	4	76	. 67	174	. 07	2	. 46	. 02	.06	3	3	2
L200S 7511	1	12	24	101	. 1	918	71	1171	5.48	27	5	ND	2	27	1	2	2	34	. 30	. 122	1	417	5.70	177	. 06	4	1.01	. 02	. 07	1	1	4
1200S 50\%	1	10	16	53	. 1	234	12	429	2.31	7	5	ND	2	20	1	2	2	44	. 21	. 043	7	131	. 61	158	. 12	2	1.34	. 02	. 06	1	6	2
L200S 254	1	16	16	80	. 2	504	43	1630	2.13	21	5	KD	,	41	1	2	2	21	. 41	. 063	5	352	$1 . \%$	372	. 07	1	1.03	. 03	. 05	1	4	3
L2005 01	1	15	41	92	. 2	446	34	1136	3.01	37	5	ND	,	32	1	3	2	44	. 34	.093	if	188	1.35	242	. 11	3	1.62	. 02	. 10	1		2
L200S 50E	1	13	12	45	. 3	465	31	665	4.15	22	5	ND	3	24	1	3	5	5	. 24	. 075	11	201	2.44	108	. 11	4	1.50	. 02	. 13	1	32	2
12005758	1	17	13	71	. 1	554	42	117	3.98	44	5	ND	3	34	1	2	2	$5!$. 36	. 092	11	171	2.19	153	. 11	2	1.62	. 02	. 11	1	18	2
L200S 100E	1	20	14	136	. 1	253	22	06	2.85	15	5	KD	3	71	1	2	2	46	. 48	. 133	8	69	1.04	276	. 11	2	1.61	. 02	. 13	1	61	2
L200S 125E	1	19	析	01	. 2	154	14	474	3.02	12	5	NO	3	36	1	2	2	63	. 34	. 085	11	62	. 13	152	. 13	2	1.40	. 02	. 11	1	67	2
L2005 150E	1	21	4	100	. 2	23!	21	121	3.72	20	5	KD	2	45	1	2	2	71	. 43	. 045	12	103	1.16	16	. 13	2	2.11	. 02	. 13	1	*	2
L200S 175E	1	24	1	108	. 1	340	21	1201	4.07	27	5	ND	2	46	1	3	2	72	. 50	. 086	11	121	1.35	149	. 12	2	2.14	. 02	. 13	15	12	2
STD C/Au-S	19		35								17		32	47	16	14	22	43	. 48	. 101	35	56	. 17	101	. 09	35	1.70	. 07	. 15	15	49	100

SAKPLEA	$\begin{gathered} \mathrm{Ko} \\ \mathrm{PPR} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{PPK} \end{gathered}$	$\begin{gathered} \text { Pb } \\ \text { PPH } \end{gathered}$	$\begin{array}{r} \text { ln } \\ \text { PPK } \end{array}$	$\begin{gathered} \text { Ag } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathrm{K}_{1} \\ \mathrm{PPK} \end{array}$	$\begin{gathered} \text { Co } \\ \text { PrR } \end{gathered}$		$\begin{gathered} \mathrm{Fe} \\ \mathrm{q} \end{gathered}$	$\begin{aligned} & \text { As } \\ & \text { PPM } \end{aligned}$	$\underset{\text { PPM }}{\text { U }}$	$\begin{gathered} A \\| \\ \text { PFM } \end{gathered}$	$\begin{gathered} \text { Th } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Sr } \\ \text { PPH } \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { PRK } \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { PPK } \end{gathered}$	$\begin{array}{r} \mathbf{h}_{1} \\ \text { PPH } \end{array}$	$\begin{array}{r} v \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{1} \end{gathered}$	$?$	$\begin{aligned} & \text { La } \\ & \text { PPM } \end{aligned}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{PPM} \end{gathered}$	$\underset{I}{M g}$	$\begin{gathered} \mathbf{1 2} \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \mathbf{T}_{\mathbf{2}} \\ \mathbf{Z} \end{array}$	$\begin{array}{r} \text { PPM } \end{array}$	$\begin{gathered} \mathrm{A} \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \mathrm{Ha} \\ \mathrm{I} \end{gathered}$	$\begin{gathered} K \\ Z \end{gathered}$	$\begin{gathered} \text { M } \\ \text { Pri } \end{gathered}$	$\begin{aligned} & \text { Aut } \\ & \text { PPI } \end{aligned}$	$\begin{gathered} \text { PtII } \\ \text { PIJ } \end{gathered}$
L200S 200E	1	20	19	93	. 1	349	28	909	4.17	27	5	ND	3	37	1	2	2	72	. 37	. 074	13	112	1.66	160	. 14	4	2.26	. 02	. 21	1	48	3
L200S 225E	1	23	35	113	. 4	275	27	1003	3.78	35	5	ND	2	50	2	2	2	61	. 45	. 137	10	108	1.45	183	. 11	5	2.05	. 02	. 19	1	1	3
L2005 2508	1	23	22	119	. 1	251	24	938	J. 59	29	5	ND	3	47	1	2	2	59	. 47	. 114	11	94	1.31	161	. 12	2	2.04	. 02	. 24	1	71	2
L200S 2755	1	20	10	139	. 1	169	17	465	2.10	20	5	Mo	2	48	1	2	2	48	. 39	. 070	1	56	. 81	168	. 11	4	1.76	. 02	. 17	1	15	2
L200S 300E	1	23	21	117	. 2	211	18	700	3.32	24	5	ND	3	59	1	2	2	59	. 41	.077	,	6	1.25	150	. 12	2	1.94	. 02	. 15	1	18	2
L200S 325E	1	20	18	96	. 2	372	25	649	3.55	30	5	ND	2	44	$!$	2	2	56	. 34	. 058	9	110	2.22	134	. 11	E	1.74	. 02	. 15	1	47	4
12005 J50E	1	16	12	132	. 1	314	23	770	3.06	23	5	ND	2	38	1	2	2	52	. 34	. 130	1	74	1.13	176	. 12	10	1.79	. 02	. 11	1	24	2
L200S 375E	1	13	15	94	. 1	318	19	390	2.15	11	5	N0	2	3	1	2	2	48	. 27	. 110	7	71	1.13	158	. 12	17	1.45	. 02	. 09	1	46	2
L200S 100 E	1	5	2	48	. 2	97	7	259	1.32	5	5	N0	2	16	1	2	3	25	. 14	. 043	3	33	. 34	85	. 06	2	. 1	. 02	. 04	1	23	2
L300S t1004	1	27	15	150	. 2	20	11	910	3.16	21	5	10	J	50	1	2	2	61	. 39	. 139	1	22	. 50	174	. 14	2	2.79	. 02	. 21	1	3	2
L300S 1075	1	20	15	114	. 1	11	7	619	2.04	18	5	60	2	46	1	2	3	41	. 33	. 166	7	16	. 31	193	. 11	4	1.91	. 03	. 13	1	1	2
L3005 10504	1	22	14	124	. 2	14	7	703	2.55	17	5	10	2	56	1	2	2	47	. 40	. 202	10	21	. 35	175	. 12	5	2.05	. 03	. 15	2	4	2
L300S 1025\%	1	23	10	110	. 2	19	8	532	2.52	1	5	ND	3	53	1	2	2	52	. 37	. 139	10	21	. 37	142	. 13	3	2.11	. 03	. 16	1	4	2
L3005 10004	1	25	10	19	. 2	17	¢	546	2.48	9	5	0	3	40	1	2	3	52	. 34	. 154	10	21	. 37	142	. 13	3	2.26	. 03	. 13	1	2	2
L300S 975M	1	27	17	183	. 3	17	11	907	2.95	14	7	KD	4	72	1	2	2	51	. 46	. 181	1	20	. 48	174	. 12	6	2.40	. 02	. 18	1	1	2
L3005 9501	1	11	18	114	. 1	17	7	1141	2.41	9	5	ND	1	54	1	2	3	51	. 42	. 276	7	24	. 35	207	. 12	2	1.11	. 02	. 12	1	4	2
L300S 925H	1	24	13	94	. 1	11	10	440	2.99	8	5	N0	3	52	2	2	2	40	. 43	. 151	10	32	. 46	160	. 14	2	2.25	. 02	. 16	1	3	2
L300S 9004	1	23	10	108	.1	15	1	472	2.13	14	5	ND	2	32	1	2	2	61	. 30	. 279	9	31	. 39	170	. 12	1	1.93	. 02	04	2	4	2
LJ00S 8754	1	27	7	69	. 1	16	1	417	2.66	1	5	ND	3	45	1	2	2	60	. 41	. 114	13	27	. 41	116	. 14	2	2.11	. 03	. 15	1	2	2
L300S 5504	1	23	15	97	. 2	15	9	1119	2.76	-	5	KD	2	51	1	2	2	60	. 48	. 141	9	23	. 42	131	. 13	2	2.21	. 02	. 16	1	2	2
L300S 8254	1	24	4	71	. 1	18	10	446	2.74	7	5	ND	3	42	1	2	2	4	. 42	. 018	11	21	. 45	101	. 15	4	2.17	. 03	. 13	1	1	2
13005 \$001	1	20	6	76	. 1	21	10	513	2.00	10	5	M	3	24	1	2	2	4	. 29	.114	10	30	. 45	143	. 14	6	2.08	. 02	. 17	1	2	2
L300S 7754	1	17	15	95	. 1	18	9	1250	2.57	10	5	ND	2	32	1	2	2	55	. 31	. 159	7	29	. 40	196	. 13	7	1.69	. 02	. 17	t	2	2
LJOOS 750M	1	17	1	6	.1	14	1	53	2.48	1	5	ND	3	27	1	2	2	57	. 27	. 110	9	23	. 39	181	. 13	2	1.13	. 02	14	1	2	2
L300S 7254	1	17	20	77	. 1	15	7	530	2.46	1	5	ND	2	37	1	2	2	55	. 34	. 157	9	25	. 39	142	. 13	3	1.97	. 02	. 14	$!$	1	2
L300S 7004	1	17	12	74	. 1	12	7	446	2.14	-	5	ND	3	22	1	3	4	45	. 22	. 111	1	21	. 33	153	.13	1	2.01	. 03	. 14	1	7	2
13005 675:	1	17	15	6	. 1	14	6	530	2.30	4	5	No	2	36	1	2	2	51	. 36	. 055	8	23	. 34	17.	. 13	2	1.61	. 03	. 13	1	4	2
L300S 6501	1	16	15	54	. 2	15	1	592	2.16	6	5	ND	2	30	1	2	2	48	. 32	. 071	7	24	. 32	159	. 12	2	1.70	. 02	. 11	1	4	2
130054251	1	13	28	94	. 1	11	6	857	2.05	5	5	ND	2	32	1	2	2	46	. 34	. 085	7	23	. 27	195	. 10	2	1.26	. 02	. 11	1	1	2
LJOOS 600 H	1	16	6	65	. 1	13	7	43	2.17	6	5	ND	2	33	1	2	1	4	. 32	. 117	9	23	. 27	145	. 11	2	1.63	. 03	. 09	1	2	2
L300S 575	1	16	15	74	. 1	14	7	475	2.21	3	5	KD	3	34	1	2	2	52	. 33	. 162	9	30	. 25	145	. 10	2	1.41	. 02	. 01	2	1	2
LJOOS 550ㅐ	1	16	12	69	. 1	17	7	367	2.49	8	5	KD	3	26	1	2	2	56	. 21	. 094	10	30	. 31	161	. 12	2	1.81	. 03	. 11	1	2	2
LJ00S 525\%	1	16	7	80	. 2	16	6	388	2.26	4	5	no	3	34	1	2	2	47	. 31	. 161	11	25	. 30	190	. 11	2	1.77	. 02	. 13	1	2	2
L300S 5004	1	15	15	10	. 1	19	7	442	2.27	5	5	ND	3	22	1	2	3	49	. 22	. 121	8	26	. 21	157	. 11	2	1.64	. 02	. 10	1	1	2
L3005 4731	1	20	+	59	. 1	14	1	295	2.14	4	5	ND	2	35	1	2	2	71	. 47	. 077	12	33	. 32	120	. 12	2	1.6	. 03	. 10	1	1	2
13005 4501	1	16	1	68	. 1	19	7	425	2.53	7	5	ND	3	34	1	2	3	56	. 31	. 124	10	29	. 33	172	. 12	2	1.17	. 02	. 12	1	1	2
SID C/Al-S	19	10	37	128	6.9	63	28	961	3.94	39	14	7	33	4	15	17	20	41	. 48	.071	35	55	. 84	179	. 09	37	1.71	. 07	. 16	15	51	9

13005 425 ${ }^{\text {2 }}$	1	18	20	85	. 3	11	7	461	2.49	5	5	ND	3	31	1	2	2	51	. 40	. 110	11	29	. 37	154	. 14		1.97	. 03	.13	1	2	2
1300S 4001	1	24	13	96	. 1	21	. 7	452	2.61	2	5	KD	3	31	1	2	5	54	. 39	. 117	15	28	. 41	124	. 15	2	2.30	. 03	. 11	1	1	2
L300S 375\%	1	11	14	12	. 1	16	6	462	2.43	2	5	ND	3	34	1	2	4	54	. 38	. 840	11	27	. 35	140	. 12	8	1.41	. 02	. 12	1	1	3
L300S 350\%	1	16	19	123	.1	9	4	1069	2.27	5	5	ND	1	36	1	2	2	45	. 36	. 191	1	23	. 30	263	. 11	2	1.45	. 02	. 10	1	4	2
[300S 325\%	1	16	19	67	. 1	14	6	481	2.39	3	5	N0	2	32	1	2	2	54	. 32	. 124	12	27	. 33	153	11	2	1.76	. 02	. 07	2	2	2
L3005 30011	1	16	15	101	. 1	14	d	120	2.29	4	5	ND	2	39	1	2	8	4	. 37	. 195	9	23	. 29	200	. 12	6	1.85	. 02	. 07	1	1	J
L300S 2754	1	16	9	1	. 1	11	5	595	2.39	J	5	NO	2	10	1	2	2	52	. 31	. 174	10	26	. 30	204	. 12	2	1.92	. 02	. 08	$!$	1	2
L3005 250M	1	20	11	64	. 1	16	6	457	2.37	5	5	MD	3	27	1	2	2	54	. 29	. 109	10	25	. 33	140	. 12	2	1.74	. 02	. 10	1	1	2
L300S 225H	1	22	12	67	. 1	18	7	408	2.51	2	5	ND	3	26	1	2	6	51	.23	. 117	12	21	. 37	164	. 15	2	2.37 1.45	. 02	. 10	1	4	2
L300S 200!	1	26	23	114	. 1	12	0	1130	2.20	5	5	ND	1	44	1	2	2	44	. 47	. 159	10	21	. 31	130	. 08	2	1.45	. 02	. 10	1	4	2
L300S 175【	1	13	20	80	. 1	19	1	560	2.36	2	5	ND	2	32	1	2	2	45	. 33	. 053	8	24	. 34	115	. 13	4	2.07	. 02	. 13	1	1	2
L300S 150 N	1	26	21	144	. 1	12	5	1223	2.21	6	5	ID	1	36	1	2	2	41	. 35	. 326	7	14	. 29	252	. 12	5	1.90	. 02	. 08	1	3	2
L300S 1254	1	16	13	93	. 1	19	1	561	2.36	5	5	10	2	24	1	2	2	49	. 28	. 149	10	24	. 34	158	. 13	6	2.07	. 02	. 01	1	1	2
L300S 100N	1	17	11	111	. 1	35	6	748	2.53	7	5	N0	3	43	1	2	2	51	. 35	. 199	11	27	. 37	224	. 14	4	2.11	. 02	. 12	1	1	3
L3005 75M	1	17	5	43	. 1	93	4	540	2.16	2	5	N0	2	30	1	2	2	60	. 30	. 151	11	37	. 47	159	.16	2	2.35	. 03	. 12	1	1	3
LJOOS 50M	1	1	10	58	. 1	314	25	526	2.17	4	5	WD	1	34	1	2	2	27	. 25	. 055	6	134	1.31	174	. 08	2	1.26	. 02	. 10	1	1	2
L300S 251	1	12	6	39	. 1	312	34	64	2.43	10	5	N0	1	13	1	2	7	35	.43	. 046	t	206	1.35	175	. 07	1	. 96	. 03	. 12	1	12	2
L300S 애	1	11	$2!$	50	. 1	436	45	929	2.09	12	5	vi	1	42	1	2	4	17	. 39	. 015	3	213	1.55	185	. 04	2	. 62	. 02	. 04	1	1	3
LJOOS OE	1	11	7	34	. 3	405	34	691	2.01	14	5	ND	1	33	1	2	2	15	. 30	. 042	3	211	1.16	143	. 04	11	. 5	. 02	. 06	2	1	3
LJOOS 25E	1	12	13	47	. 1	109	35	608	2.27	12	5	ND	1	10	1	2	2	24	. 21	. 047	6	76	1.74	209	. 07	8	1.21	. 03	. 08	1	1	2
LJ00S 50E	1	12	11	53	. 2	216	23	743	1.11	13	5	N0	1	47	1	2	5	29	. 33	. 057	6	50	. 87	237	. 09	2	1.23	. 02	. 11	$!$	35	3
L300S 75E	1	13	15	65	. 1	212	11	260	2.21	8	5	ND	4	34	1	2	2	40	. 22	. 171	1	36	. 56	195	. 13	6	2.03	. 02	. 10	1	12	2
L3005 100 E	1	16	5	17	. 3	78	7	470	1.95	5	5	N0	2	37	1	2	2	3	. 26	. 245	7	22	. 32	231	. 11	2	1.93	. 02	. 08	1	1	2
L300S 125E	1	16	5	92	.1	4	6	34\%	1.97	5	5	KD	3	36	1	2	2	57	. 28	. 136	1	22	. 21	169	. 12	9	1.84	. 03	. 14	1	2	2
L3005 150E	1	16	6	75	. 2	29	d	565	2.35	4	5	ND	2	29	1	2	2	4	. 24	. 14	12	25	. 3	160	. 12	-	2.12	. 2	. 1	1	1	2
L3005 175E	1	17	13	74	. 1	21	7	704	2.34	2	5	KD	3	33	1	2		48	. 27	. 139	10	23	. 35	115	. 14	1	2.35	. 02	. 07	1	1	3
L300S 200E	1	20	13	144	. 2	14	6	1153	2.28	6	5	ND	2	45	1	3	2	41	. 38	. 362	9	23	. 35	310	. 12	10	1.97	. 02	. 12	1	85	2
LJOOS 22SE	1	17	7	65	. 1	21	6	790	2.38	3	5	ND	3	33	1	2	6	4	. 24	. 078	10	22	. 37	14	. 14	10	2.31	. 02	. 09	1	5	2
L3005 250E	1	24	14	13	. 1	28	9	699	2.94	1	5	H	3	41	1	2	2	64	. 42	.131	13	35	. 43	155	. 14	10	2.56	. 02	. 12	1	8	2
L300S 275E	1	20	14	82	. 2	21	9	657	3.01	3	5	ND	3	10	1	2	2	67	. 40	. 139	13	33	. 45	101	. 14	6	2.55	. 02	. 15	1	d	2
L300S 300E	1	14	12	119	. 2	65	6	935	2.65	9	5	ND	2	50	1	2	4	49	. 50	. 100	1	26	. 52	278	. 12	9	2.23	. 02	. 22	1	3	2
L3C0S 325E	1	16	2	45	. 2	63	!	435	2.45	10	5	WD	2	39	1	2	,	47	. 35	. 113	8	27	. 50	181	. 31	6	2.14	. 03	. 14	1	42	2
L300S 350E	1	16	3	134	. 1	154	13	374	2.44	15	5	ND	3	J2	1	3	2	46	. 29	. 132	1	40	. 59	132	. 11	4	1.70	. 02	. 12	1	42	2
13005 375E	1	16	6	14	. 3	14	13	734	2.30	11	5	KD	2	29	1	2	4	44	. 23	. 134	7	42	. 57	201	. 09		1.35	. 02	- 12	1	2.	2
L300S 400E	1	20	4	88	. 1	250	15	358	2.89	14	5	KD	2	37	1	3	2	57	. 31	. 069	11	4	. 11	186	. 12	7	1.6	. 03	. 12	1	3	3
L300S 425 E	1	20	12	128	. 2	305	19	674	3.05	23	5	ND	2	42	1	2	2	50	. 38	. 151	1	73	1.03	192	. 12	6	1.4	. 02	. 11	1	56	3
STD C/AU-S	19	60	37	129	6.8	65	26	41	3.93	38	15	7	32	41	16	15	18	11	. 48	. 100	35	54	. 8	180	. 09	35	1.71	. 07	. 15	14	48	45

L3005 450 E	1	23	28	325	. 1	38	13	154	3.54	14	5	NO	1	90	1	2	6	48	. 55	. 325	7	21	. 45	447	. 11	13	2.01	. 03	. 14	1	12	2
L300S 475E	1	16	11	126	. 1	107	9	646	2.06	7	5	Ni	1	36	1	2	2	37	. 35	. 179	1	32	. 35	166	. 11	2	1.13	. 03	. 09	2	16	3
L300S 500E	1	16	12	149	. 1	97	11	581	2.63	12	5	ND	2	11	1	2	4	45	. 32	. 200	4	35	. 41	141	. 13	6	2.15	. 04	. 11	1	19	2
L400S 25E	1	20	22	62	. 1	11	4	556	2.39	2	5	HD	2	31	1	2	4	49	. 31	. 084	11	24	. 32	146	. 16	2	2.53	. 03	. 11	1	1	2
L4005 50E	1	17	19	61	. 1	13	7	502	2.36	3	5	KD	3	28	1	2	4	51	. 35	. 097	11	24	. 32	132	. 14	4	2.25	. 02	. 04	1	1	2
L400S 75E	1	17	24	78	. 1	21	8	882	2.59	5	5	ND	1	26	1	2	1	53	. 21	. 092	11	29	. 37	140	. 15	2	2.40	. 02	. 07	1	1	2
L4005 100E	1	20	19	134	. 2	16	10	1772	2.71	9	5	ND	1	35	1	2	2	57	. 35	. 140	10	21	. 37	168	. 14	10	1.78	. 02	. 11	2	J	2
140051255	1	20	25	90	. 2	13	6	1339	2.39	8	5	KD	1	45	1	2	2	50	. 10	. 118	10	23	. 34	248	. 13	7	2.16	. 02	. 10	1	1	2
L400S 150E	1	30	39	130	. 1	20	12	2215	2.68		5	ND	2	107	1	2	2	50	. 12	. 167	13	21	. 50	276	. 14	4	2.31	. 03	. 17	1	1	2
14005 1TSE	1	26	44	132	. 1	16	1	1993	2.51	6	5	KD	1	86	1	2	2	53	. 6	. 159	12	29	. 41	266	. 12	10	1.77	. 02	. 15	2	1	2
L400S 200E	1	27	20	114	. 1	16	9	1440	2.72	8	5	10	2	73	1	2	3	55	. 62	. 216	12	28	. 45	246	. 13	2	2.21	. 03	. 17	1	3	2
[4005 225E	1	23	17	102	. 2	17	10	1247	2.75	7	5	Nid	2	61	1	2	2	56	. 47	. 142	12	29	. 42	177	. 13	4	2.12	. 02	. 16	1	4	2
L4005 250E	1	23	23	96	. 2	17	\%	1127	2.05	7	5	ND	2	67	1	2	2	4	.4	. 097	12	24	. 49	216	. 13	5	2.19	. 02	. 17	1	22	2
L4005 275 E	1	23	28	44	. 1	11	9	1192	2.59	11	5	N0	2	60	1	2	2	51	. 62	. 066	12	23	. 44	198	. 13	4	2.05	. 02	. 16	1	1	1
L400S 300E	1	27	32	138	. 1	11	12	1193	3.44	15	5	ND	2	47	1	2	2	62	. 43	. 074	15	27	. 51	157	. 15	2	2.91	. 02	. 16	2	31	2
L4005 325E	1	34	53	245	. 1	1	10	2015	2.69	14	5	Vi0	1	127	2	3	2	4	1.14	. 273	6	16	. 38	405	. 11	2	2.01	. 03	. 17	1	33	2
L400S 350E	1	24	20	138	. 2	14	11	1005	3.15	11	5	NO	2	55	1	2	2	60	. 50	. 124	12	24	. 54	213	. 16	2	2.85	. 03	. 21	1	5	2
L400S 375E	1	26	23	155	. 1	13	10	69	2.98	9	5	H1	3	50	1	2	2	57	. 38	. 101	11	24	. 48	208	. 17	5	2.92	. 05	. 14	1	1	2
L400S 400E	1	20	6	136	. 1	11	1	456	2.97	4	5	ND	3	34	1	2	3	62	. 31	. 089	10	23	. 43	176	. 14	12	2.31	. 03	. 13	1	5	2
L400S 425E	1	20	11	169	. 1	13	10	1116	3.19	6	5	10	2	42	1	2	2	63	. 34	. 273	8	23	. 41	176	. 14	2	2.63	. 03	. 11	1	1	2
LA00S 450E	1	18	16	130	. 2	13	7	745	2.61	1	5	ND	2	49	1	2	4	53	. 43	. 144	9	21	. 36	161	. 12	6	2.13	. 03	. 12	1	1	4
L400S $475 E$	1	22	15	158	. 3	16	1	43	2.65	5	5	ND	2	37	1	2	4	50	. 30	. 179	1	17	. 37	158	. 14	1	2.46	. 03	. 12	1	1	2
L400S 500E	1	20	24	130	. 1	16	6	45	2.13	7	5	No	2	43	1	2	3	53	. 30	. 151	10	20	. 38	134	. 13	2	2.25	. 03	. 13	1	1	2
L400S 52SE	1	23	18	201	. 1	18	10	758	2.49	2	5	HD	3	41	1	2	5	57	. 35	.183	10	20	. 40	172	. 14	12	2.55	. 03	. 14	3	1	2
L4005 550E	1	16	17	180	. 1	11	1	474	2.40	7	5	No	2	39	1	3	2	46	. 30	. 115	9	20	. 34	162	. 12	2	2.10	. 03	. 12	2	2	2
L400S 575E	1	20	9	111	. 1	17	8	500	2.44	1	5	MD	2	40	1	2	2	55	. 34	. 130	10	23	. 38	155	. 12	2	1.71	. 03	. 13	1	6	2
14005600 E	1	23	8	131	.1	19	8	578	2.67	2	5	ND	3	29	1	2	2	53	. 27	. 112	10	22	. 38	150	. 14	2	2.41	. 03	. 11	1	1	2
L600S 25E	1	16	16	102	. 1	14	8	345	2.47	1		ND	3	46	1	2	2	50	. 27	. 186	10	23	. 42	166	. 13	9	2.17	. 03	. 11	1	$!$	2
L6005 50E	1	21	16	128	. 2	17	9	400	2.45	10	5	NJ	3	4	1	2	2	50	. 33	. 207	11	24	. 41	174	. 13	2	2.12	. 03	. 18	$!$	3	2
L600S 75E	1	20	8	124	. 1	16	8	355	2.60	1	5	N0	3	43	1	2	2	57	. 33	. 107	11	28	. 43	158	. 14	5	2.18	. 03	. 16	1	1	2
L600S 100E	1	20	12	141	. 1	12	9	567	2.52	7	5	ND	2	61	1	2	3	51	. 36	. 221	9	22	. 42	207	. 13	9	2.20	. 03	. 11	1	4	2
L600S 125E	1	20	7	[11	. 1	11	1	594	2.44	6	6	MD	2	45	1	2	2	50	. 31	. 175	9	19	. 31	186	. 13	7	2.11	. 03	. 17	1	1	2
L600S 150E	1	17	12	170	. 1	14	8	614	2.74	2	5	KD	2	57	1	2	2	53	. 39	. 207	9	26	. 44	241	. 14	2	2.32	. 03	-18	1	9	2
LU00S 175E	1	23	13	147	. 2	11	9	351	2.82	8	5	ND	3	60	1	2	2	59	. 39	. 073	10	23	. 41	179	. 14	2	2.45	. 02	. 17	2	1	2
L6005 200E	1	20	13	136	4	12	7	546	2.38	10	5	ND	J	57	1	3	2	41	. 39	. 149	11	19	. 39	185	. 13	4	2.32	. 03	. 17	1	4	2
L600S 225E	1	22	11	92	. 1	14	8	362	2.71	4	6	KJ	3	37	1	2	2	51	. 31	. 146	14	24	. 42	140	. 14	2	2.51	. 03	. 13	1	1	5
STD C/AU-S	19	57	38	128	6.7	64	29	969	3.93	37	20	7	32	47	16	15	19	41	. 48	.084	35	57	. 88	110	.04	38	1.73	. 07	. 16	13	51	101

L600S 250E	1	16	9	134	. 2	14	1	759	2.50	4	5	ND	2	52	1	2	3	50	. 38	. 234	10	24	. 34	242	. 12	6	2.11	. 03	. 14	1	1	3
L600S 275E	1	20	10	114	. 1	13	8	416	2.57	4	5	KD	2	39	1	2	5	51	. 30	. 173	11	25	. 38	201	. 15	2	2.51	. 03	. 15	1	1	2
160053005	1	16	4	124	. 1	14	7	740	2.21	4	5	ND	2	49	I	2	2	43	. 36	. 222	1	22	. 34	223	. 13	2	2.27	. 03	. 11	1	1	2
L600S 325E	1	16	9	143	. 3	14	6	870	2.36	7	5	ND	2	66	1	2	3	45	. 42	. 304	9	22	. 35	270	. 12	6	2.18	. 03	. 14	1	2	2
$16005350 E$	1	23	7	151	. 1	13	1	726	2.44	6	5	ND	2	46	1	2	2	52	. 35	. 194	11	24	.37	182	. 14	8	2.41	. 03	. 16	1	1	2
L400S 375E	1	20	2	156	. 3	14	9	963	2.75	7	5	ND	1	50	1	2	7	57	. 26	. 174	-	22	. 42	16	. 13	5	2.31	. 02	. 16	1	1	2
L6005 400E	1	11	1	170	. 1	14	10	1379	3.27	3	5	ND	1	58	1	2	2	70	. 41	. 160	8	21	. 50	145	. 14	2	2.52	. 02	. 11	1	1	2
$14005425 E$	1	19	25	252	. 3	16	10	2387	3.22	12	5	NTI	1	103	1	2	2	65	. 64	. 139	1	27	. 41	225	. 12	1	2.36	. 02	. 20	1	1	2
L6005 450 E	1	18	10	146	. 2	11	9	925	3.11	5	5	ND	2	66	1	2	2	65	. 44	. 085	8	22	. 49	149	. 14	2	2.31	. 03	. 22	1	2	2
ᄂ 4005475 E	1	20	\dagger	133	.1	9	1	547	3.04	6	5	WD	1	74	1	2	5	61	. 46	. 145	\dagger	22	. 50	151	. 14	3	2.58	. 03	. 25	1	1	2
L4005 500E	1	20	9	118	. 1	14	9	667	2.74	3	5	KD	2	59	1	2	2	54	. 35	. 149	9	21	. 40	168	. 13	7	2.14	. 03	. 16	1	1	2
L600S 525E	1	24	11	145	. 1	14	10	162	3.43	15	5	ND	3	51	1	2	3	70	. 36	. 169	10	27	. 50	165	. 15	2	2.69	. 03	. 21	1	1	2
L600S 550E	1	23	2	152	.1	14	11	839	3.56	7	5	ND	2	54	1	2	5	72	. 36	. 190	12	27	. 54	204	. 15	7	2.75	. 03	. 27	1	1	2
L4005 575E	1	23	10	119	. 1	13	,	41	2.80	2	5	ND	3	58	1	2	2	55	. 37	. 112	10	19	. 39	157	. 15	2	2.54	. 04	. 15	1	2	2
L400S 600E	1	23	-	136	.1	9	8	726	2.71	4	5	ND	2	4	1	2	4	52	. 41	. 201	10	21	. 40	194	. 14	2	2.12	. 03	. 1	1	2	2
L400S 6258	1	23	7	123	. 1	11	7	779	2.62	7	5	MD	1	44	1	2	4	53	. 27	. 14	9	23	. 51	183	. 14	2	2.26	. 03	. 15	1	2	2
L600S 6505	1	23	9	257	. 2	11	9	1221	3.06	6	5	KD	2	50	1	2	$\hat{}$	54	. 44	. 144	8	25	. 41	23	. 12	11	2.00	. 03	. 16	1	1	2
L6005 675E	1	27	4	201	. 1	16	10	1046	3.27	6	5	ND	2	50	1	2	3	65	. 47	. 129	11	23	. 46	155	. 16	1	2.39	. 03	. 20	1	1	3
Lu00S 700E	1	23	8	26	. 1	16	10	1303	3.14	10	5	HD	2	52	1	2	2	59	. 37	. 211	1	22	. 45	227	. 13	4	2.05		. 20	1	1	2
L600S 725E	1	22	7	165	. 1	12	10	580	3.47	3	5	ND	3	59	1	2	2	72	. 40	. 120	11	29	. 56	171	.16	E	2.37	. 03	. 32	1	1	2
L700S 25E	1	27	,	182	.1	17	9	454	2.74	13	5	KD	2	40	1	2	2	54	. 36	. 111	11	25	. 39	120	. 14	2	2.45	. 03	. 14	1	1	3
L700S 50 E	1	23	9	141	. 2	14	10	613	3.04	9	5	MD	2	44	1	2	2	65	. 45	. 149	11	26	. 43	162	. 13	6	2.26	. 03	. 11	1	1	3
L700S 755	1	23	13	150	. 1	16	10	595	3.14	11	5	KD	2	53	1	2	2	70	. 42	. 105	9	27	. 50	161	. 14	4	2.53	. 03	. 23	1	1	2
L7005 100E	1	23	3	143	. 3	19	10	492	3.26	9	5	ND	2	56	1	2	2	73	. 35	. 114	1	27	. 51	157	. 14	5	2.47	. 02	. 21.	1	1	2
L700S 125E	1	20	10	131	. 1	14	9	609	2.97	9	5	KD	2	56	1	2	2	4	43	. 122	10	26	. 44	153	. 14	-	2.37	. 0		1		
18005 875	1	25	1	137	. 2	17	10	1315	2.11	5	5	ND	2	51	1	2	2	5	. 50	. 062	10	28	. 51	174	. 15	2	2.37	. 04	. 23	1	5	2
LPOOS 850\%	1	20	8	121	. 1	11	1	979	3.47	2	5	KD	1	44	1	2	2	66	. 61	. 034	9	30	. 52	97	. 17	5	2.10	. 04	. 25	$!$	17	6
Ltoos 825M	1	42	2	102	. 4	17	12	112	4.21	2	5	ND	3	40	1	2	2	75	. 57	. 027	10	32	. 75	126	. 21	9	2.71	. 04	.	1	1	2
L8005 800N	1	40	29	135	. 1	14	9	1880	2.11	7	5	ND	2	93	2	2	2	57	. 97	. 062	${ }^{11}$	28	. 19	246	. 13	9	2.13	. 03	. 25	1	7	2
Lloos 775	1	31	19	46	.1	23	$1!$	161	3.61	7	5	NO	3	51	1	2	3	11	. 49	. 060	11	3	. 6	14	. 17	2	2.6	.	. 29	1	7	2
LP00S 75011	1	30	19	141	. 2	13	10	1709	3.29	10	5	N0	1	85	1	2	2	73	. 74	. 046	6	21	. 70	211	. 16	2	2.92	. 03	. 25	1	8	2
L800S 7251	1	39	16	121	. 4	16	12	1315	4.18	1	5	ND	2	68	1	2	5	93	. 53	. 065	11	31	. 10	169	.19	2	3.54	. 03	. 5	1	4	2
La00s 7004	1	44	12	130	. 2	20	14	906	5.15	2	5	ND	2	43	1	2	2	92	. 01	. 075	9	26	. 91	165	. 19	7	3.71	. 03	. 59	1	41	2
LR00S 675\%	1	49	$3!$	179	. 3	24	15	2023	4.50	6	5	N0	2	133	1	2	3	11	. 16	. 070	5	25	. 1.15	195	. 17	2	3.92	. 05	. 46	1	2	2
L800S 4504	1	30	5	134	. 2	38	14	1231	4.44	11	5	ND	2	90	1	3	2	100	. 3	. 135	5	5	1.15	27	.							
1 LOOS 6254	1	47	9	229	. 1	22	14	1088	3.19	3	5	ND	2	73	1	2	2	55	. 69	. 139	7	11	. 6	156	. 17	10	3.31	. 04	. 21	13	1	2
STD C/AU-S	11	59	35	121	6.9	66	28	96	3.93	36	18	7	33	47	16	17	19	${ }^{1}$. 41	. 096	35	40	. 18	179	. 09	36	1.70	. 07	. 16	13	53	103

SAMPLEI Mo
PPR $\begin{array}{llllllll}\mathrm{Mo} & \mathrm{Cu} & \mathrm{Pb} & \mathrm{In} & \mathrm{Ag} & \mathrm{Nt} & \mathrm{Co} & \mathrm{Mn}\end{array}$ L800S 6003 L800S 550N
LOOOS 525:
L800S 5001
L800S 475:

LIOOS 4501 L100S 4254 L800S 4004 L800S 3501

$$
\begin{array}{lll}
1 & 2 & 2 \\
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}
$$

$$
\begin{array}{ll}
3 & 48 \\
3 & 57 \\
3 & 62 \\
2 & 59 \\
3 & 42
\end{array}
$$

180053001
 L8005 250M
 L800S 2254 L8005 200 N

L800S 325E
STD C/AN-S

SHANGRI-LA MINERALS FROJECT - CASTLE FILE \# 87-0111
PAGE 9

SAMPLE:
 PPA PPK PPM PPK PPH PPK PPM PPM \& PPM PPM PPK PPH PPK PPM PPM PPM PPK

L800S 350E	1	20	12	160	. 2	17	10	1568	2.10	11	6	ND	3	71	1	2	2	56	. 51	. 271	10	24	. 47	339	. 13	4	2.35	. 02	. 15	2	1	2
LIOOS 375E	1	24	10	9	. 1	18	9	1030	3.09	11	5	N0	1	41	2	2	2	69	. 37	. 101	11	21	. 52	171	. 15	8	2.44	. 02	. 16	1	1	2
L800S 400E	1	21	20	152	. 1	13	11	2251	3.08	8	5	N0	1	11	1	2	2	65	.71	. 202	7	23	. 51	306	. 12	2	2.19	. 02	. 16	1	1	2
18005 425E	1	25	6	77	. 3	17	-	1085	2.97	8	5	WD	2	70	1	2	2	66	. 56	. 052	10	25	. 48	177	. 14	4.	2.50	. 02	. 11	1	1	2
L800S 450 E	1	24	14	109	. 2	21	9	1351	3.13	10	5	ND	2	40	1	2	3	74	. 47	. 226	9	28	. 57	212	. 16	-	3.27	. 02	. 11	1	J	2
L800S 475E	1	27	7	148	. 2	16	12	1236	3.47	11	1	ND	3	63	1	2	2	73	. 47	. 236	8	21	. 66	272	. 17	12	2.11	. 03	. 24	2	1	2
LGOOS 500E	1	27	13	119	. 1	15	,	784	3.01	12	5	ND	3	58	1	2	4	43	. 46	. 011	10	28	. 52	172	. 16	7	2.70	. 03	. 23	1	1	2
L1005 525E	1	23	12	112	. 1	16	1	655	2.78	5	5	ND	3	52	1	2	2	56	. 31	. 167	10	25	. 42	184	. 14	2	2.14	. 02	. 11	1	2	2
Lboos 550E	1	23	12	132	. 2	15	9	676	2.92	7	5	ND	3	47	1	2	2	61	. 42	. 076	12	27	. 46	172	. 15	2	2.32	. 03	. 22	1	1	2
L3005 575E	1	30	18	254	. 4	13	i)	2075	3.22	1	5	N	2	14	1	2	2	4	. 44	. 174	7	24	. 5	294	. 13	7	2.12	. 03	. 21	1	7	2
L800S 600E	1	27	12	140	. 1	13	9	729	3.13	4	5	H0	3	68	1	2	2	63	. 48	. 112	10	21	. 47	224	$\bullet .15$	2	3.24	. 03	. 27	1	6	2
L0005 625E	1	27	2	134	. 3	12	10	704	3.17	9	5	ND	3	66	1	2	2	${ }^{6} 1$. 46	. 154	10	26	. 46	187	. 14	10	2.31	. 03	. 25	1	1	2
Le00S 650 E	1	23	2	126	. 1	15	7	553	2.28	1	5	ND	2	71	1	2	2	41	. 44	.191	8	27	. 36	77	13	7	2.01	. 03	. 17	1	2	2
18005 675E	1	16	4	124	. 2	13	9	793	2.50	5	5	ND	2	59	1	2	2	4	. 44	.193	\%	25	. 39	257	. 13		2.04	. 03	. 19	1	7	2
18005 700E	1	13	20	147	. 1	18	7	495	2.58	1	5	ND	3	43	1	2	2	50	. 33	. 190	E	24	. 40	207	. 13	2	1.76	. 03	. 1	1		
LIOOS 725E	1	20	3	147	. 1	16	7	551	2.61	4	5	ND	3	49	1	2	2	52	. 38	. 106	10	26	. 40	192	. 14	9	1.92	. 03	. 22	1	3	2
L8005 750E	1	28	12	14	.1	16	9	523	2.92	1	5	ND	2	54	1	2	2	57	. 31	. 154	10	23	. 41	140	. 13	L	2.04	. 03	. 19	1	1	2
Lfo0s 735E	1	19	2	95	. 1	15	9	409	2.11	5	5	ND	2	42	1	2	2	65	. 53	. 145	12	31	. 40	12	. 12	2	1.73	. 03	. 14	1	1	2
21005 b00E	1	19	3	111	. 1	12	7	413	2.20	4	5	ND	3	67	1	2	3	4	. 50	. 202	10	22	. 31	204	. 11	2	1.15	. 03	. 14	2	1	2
L800S 125E	1	19	3	115	. 3	14	7	593	2.35	7	5	ND	2	55	1	2	2	47	. 39	. 191	8	23	. 32	24	. 11	6	1.71	. 03	. 14	1	1	2
L800S 850E	1	13	7	151	. 3	15	7	676	2.41	4	5	ND	2	47	1	2	4	51	. 45	. 109	f	24	. 35	176	. 12	1	1.59	. 03	. 15	1	1	2
18005 875E	1	16	2	96	. 2	15	7	45	2.82	1	5	ND	2	32	1	2	2	43	. 33	. 117	10	2	. 36	142	. 12	9	1.72	. 03	. 15	1	2	2
LIOOS P00E	1	16	2	90	. 1	12	7	531	2.43	7	5	40	3	52	1	2	2	50	. 50	. 132	10	22	. 31	186	. 12	2	1.92	. 03	. 12	1	1	2
1800S 925E	1	18	1	98	. 2	17	7	547	2.36	9	5	NiD	2	42	1	2	2	47	. 35	. 152	10	21	. 32	175	. 12	3	2.06	. 03	. 12	1	1	2
L100S 975E	1	20	2	78	. 1	15	8	502	2.38	9	5	NO	2	52	1	2	3	47	. 40	. 221	10	21	. 36	197	. 13	2	2.32	. 03	. 13	3	1	2
12005 1000E	1	19	13	77	. 2	17	7	271	2.42	3	5	10	2	40	1	2	2	51	. 39	. 133	11	7	. 31	111	. 11	3	1.71	. 03	. 11	1	1	2
L900S 1050E	1	10	8	112	. 1	23	E	591	2.47	5	5	ND	2	48	1	2	3	46	. 40	. 207	10	22	. 39	105	. 13	3	2.14	. 03	. 14	2	1	2
L900S 10755	1	19	6	118	. 2	15	6	650	2.26	5	5	ND	2	47	1	J	2	40	. 39	. 271	9	21	. 31	235	.ll	2	2.00	. 03	. 12	2	5	2
L900S 1100E	1	16	17	118	. 1	19	.	590	2.48	5	5	NO	2	52	1	2	3	48	. 42	. 244	10	27	. 37	231	.11	2	1.91	. 03	15	1	2	2
L1200S 300Y	1	20	14	107	. 2	17	8	1005	2.69	8	5	ND	1	41	1	2	4	60	. 41	. 157	8	31	. 43	226	. 15	2	2.34	. 02	. 10	1	2	2
L1200S 200N	1	20	16	95	. 1	20	!	646	2.15	5	5	ND	2	31	1	2	2	60	. 31	. 137	9	28	. 44	144	. 13	3	2,31	. 02	. 11	1	3	2
L1200S 1004	1	18	8	10	. 1	15	7	819	2.32	3	5	ND	2	30	1	2	3	46	. 28	. 192	!	20	. 32	102	. 12	2	2.11	. 03	. 07	1	1	2
L1200S 011	1	15	2	111	.1	18	8	142	2.54	5	5	ND	1	27	1	2	3	49	. 27	. 128	10	22	. 31	150	. 14	12	2.34	. 03	. 07	1	2	2
L2000S 1325	1	12	2	52	. 1	674	31	317	2.74	11	5	KD	3	30	1	2	2	40	. 20	. 024	10	191	2.14	154	. 13	12	2.51	. 03	. 04	2	3	2
L2000S 1300H	1	13	6	56	. 1	640	35	197	2.56	11	5	ND	2	27	1	2	6	42	. 23	. 040	7	134	1.56	147	. 13	2	2.14					
L2000S 1275	1	16	14	67	. 1	870	39	451	2.47	15	5	ND	2	35	1	2	2	35	. 29	. 049	7	159	2.01	123	. 13	2	2.16	. 03	. 04	13	1	2
STD C/AU-S	19	56	35	126	6.8	47	28	950	3.93	39	16	1	32	47	16	17	22	61	. 41	. 090	34	54	. 87	177	. 09	3	1.71	. 07	.	2	J	4

L2000S 1250 H	1	9	5	59	. 1	402	18	316	1.93	11	5	ND	2	21	1	2	2	29	. 29	. 093	5	115	. 99	211	. 11	3	1.71	. 03	. 09	2	3	2
L2000S 1225M	1	13	19	71	. 1	679	26	444	2.11	20	5	ND	2	31	1	2	2	21	. 24	. 046	7	141	1.32	196	. 12	7	1.97	. 03	. 06	2	1	2
L2000 S 1200k	1	13	11	74	.1	424	24	540	2.67	5	5	ND	3	28	1	2	3	45	. 26	.113	$1!$	124	1.25	191	. 14	9	2.34	. 02	. 06	2	2	2
L2000S 1175M	1	16	14	108	.1	239	23	1418	2.47	14	5	ND	2	34	1	2	5	31	. 34	. 117	7	132	1.10	268	.11	4	1.28	. 02	. 06	1	14	J
L2000S 1150\%	1	13	10	67	. 1	270	15	454	2.65	12	7	ND	3	27	1	2	3	47	. 24	. 069	9	89	. 94	207	. 13	2	1.98	. 02	. 08	1	1	2
L2000S 1125\%	1	7	15	47	. 2	275	11	173	1.37	3	5	ND	2	25	1	2	3	32	. 23	. 030	5	81	. 77	111	. 10	11	1.68	. 02	. 06	4	1	2
L2000S 11004	1	13	14	61	.1	397	17	365	2.41	2	5	No	3	33	1	2	2	40	. 35	.033	7	93	. 17	204	. 14	2	2.02	. 02	. 06	2	6	2
12000510754	1	13	17	62	. 1	739	37	505	2.50	19	5	ND	1	25	1	2	7	32	. 17	. 088	7	142	1.72	122	. 15	2	2.45	. 03	. 05	2	2	2
L2000S 10501	1	10	10	62	.1	513	23	27.	2.50	5	5	N	2	21	1	2		36	. 15	. 076	4	9	1.03	194	. 15	2	2.23	. 02	. 05	1	3	2
L2000S 1025\%	1	11	5	74	. 1	561	28	564	2.52	13	5	HD	2	27	1	2	4	36	. 20	. 061	5	151	1.33	229	. 10	3	1.44	. 02	. 06	1	1	2
12000510001	1	16	17	118	. 2	260	21	115	2.17	1	4	ND	2	26	1	2	2	41	. 24	. 218		145	1.19	300	213	2	1.90	. 02	. 08	2	3	2
L2000S 9754	,	16	6	11	. 1	263	18	677	2.71	8	5	H0	2	22	1	2	2	30	. 16	. 193	!	43	. 19	275	. 15	2	2.09	. 02	. 07	1	1	2
1200059501	1	9	6	53	. 2	474	21	328	1.98	7	7	KD	2	26	1	2	2	27	. 19	. 071	5	99	1.12	151	. 11	10	1.56	. 03	. 06	3	1	2
L2000S 925w	1	9	8	63	. 2	263	14	492	2.10	4	5	N0	2	24	1	2	2	30	. 16	. 123	5	70	. 64	229	. 12	2	1.10	. 02	. 05	2	3	2
L2000S 900\%	1	\dagger	12	92	. 1	300	19	1397	1.98	12	5	ND	1	27	1	2	3	27	. 24	. 138	6	71	. 65	294	. 10	2	1.35	. 03	. 06	2	2	2
L20005 375	,	16	11	87	. 1	505	36	1191	2.36	12	5	Nid	1	31		2	2	32	. 25	. 107	6	104	1.22	271	. 11	3	1.70	. 02	. 06	1	13	2
L20005 8504	1	13	4	4	. 1	240	15	30 L	2.29	6	9	ND	4	18	,	2	,	36	. 15	. 142	7	91	. 63	127	. 13	2	2.09	. 02	. 06	3	1	2
L2000S 8254	1	16	18	78	. 1	302	20	149	2.55	6	5	ND	2	32	1	2	2	38	. 24	. 153	8	112	. 17	273	. 13	2	1.77	. 02	. 01	2	1	2
L2000s F00\%	1	15	21	74	. 2	292	22	1594	1.90	8	5	W	1	35	1	2	2	29	. 32	. 064	5	141	1.03	203	. 08	1	1.20	. 02	. 07	1	1	2
L2000S 775\%	1	16	11	80	. 1	333	11	546	2.18	1	5	KD	2	20	1	3	5	48	. 19	. 052	6	157	1.17	193	. 12	2	1.70	. 02	. 04	1	23	2
L2000s 750W	1	23	10	71	. 1	332	15	450	2.95	4	5	ND	2	17	1	2	3	44	. 16	. 146	8	107	. 96	85	. 14	2	3.08	. 02	. 05	2	,	2
120005725 N	1	18	14	70	. 1	405	20	701	3.01	9	5	ND	4	30	1	2	2	45	. 21	. 056	13	119	1.07	202	. 17	2	3.10	. 02	. 06	1	1	2
L2000S 700M	$!$	19	10	72	. 1	747	36	1185	3.12	11	5	ND	1	46	1	2	4	32	. 37	. 081	d	371	3.43	200	. 10	11	1.79	. 02	. 07	1	1	2
L20005 675	1	9	7	55	. 1	270	13	213	2.14	2	5	N0	2	21	1	2	4	40	. 17	. 051	4	120	. 93	121	. 09	2	1.26	. 02	. 06	1	12	2
L2000S 6501	1	1	2	43	. 1	216	10	264	2.05	2	5	ND	1	21	1	2	2	3	. 19	. 044	4	130	. 13	116	. 08	2	1.28	. 02	. 03	1	15	2
L2000S 6254	,	9	6	35	. 2	190	10	113	2.36	2	5	ND	2	19	1	2	2	44	. 19	. 021	5	138	. 98	123	. 10	2	1.26	. 02	. 07	2	6	2
L20005 6001	1	9	13	42	.1	241	13	299	2.51	5	5	HD	1	22		2	2	43	. 21	. 021	5	204	1.35	96	. 09	5	1.22	. 02	. 08	1	J	2
L20005 575M	1	9	9	41	. 1	211	13	244	2.24	10	5	ND	2	23	,	2)	38	. 21	. 078	5	119	. 11	120	. 10	1	1.53	. 03	. 01	2	1	2
L2000S 550\%	1	8	12	50	. 1	379	17	244	2.61	17	5	ND	1	26	,	2	2	57	. 21	. 049	5	307	1.79	85	. 07	2	1.11	. 02	. 07	2	27	2
L2000S 525W	1	11	8	43	. 1	443	22	373	2.53	25	5	ND	1	27	1	2	3	28	. 21	. 137	6	213	1.35	109	. 88	3	1.62	. 02	.07	1	12	2
L2000S 500N	1	9	4	40	. 2	259	18	518	2.34	13	5	ND	1	J0	1	2	2	28	. 32	. 044	1	217	1.71	114	. 04	2	1.36	. 02	. 06	2	7	3
L2000S 4754		5	1	35	. 1	303	17	283	2.35	7	5	ND	3	23	1	2	2	32	. 21	. 036	5	249	1.63	105	. 08	2	1.11	. 02	. 08	1	24	2
L20005 4504	1	12	4	33	. 1	367	17	246	2.35	*	5	HD	2	23	1	2	2	34	. 21	. 025	7	255	1.74	72	. 09	15	1.37	. 03	. 09	1	3	2
L2000S 400M 〈A>	,	7	9	35	.1	194	11	250	1.12		5	ND	2	26	1	2	2	29	. 22	. 071	5	106	. 75	134	. 09	6	1.37	. 03	. 08	1	34	2
120005 4001	1	日	4	32	.1	166	,	218	1.81	5	5	ND	2	21	1	2	2	30	. 24	. 084	4	96	. 76	129	. 08	2	1.41	. 02	. 09	1	1	2
L2000S 375\%	1	12	11	59	. 1	177	10	235	1.85	4	5	ND	3	31	1	2	2	26	. 24	.169	5	85	. 80	229	. 09	2	1.52	. 03	. 10	2	1	2
STD C/AU-S	18	57	42	121	6.1	65	27	963	3.96	35	14	7	33	41	15	14	18	41	. 48	. 096	35	58	. 81	179	. 07	3	1.71	. 07	. 16	14	48	99

$$
\begin{aligned}
& \text { a }
\end{aligned}
$$ $\begin{array}{cc}\mathrm{T}_{1} & \mathrm{~B} \\ \mathbf{y} & \mathrm{PPK}\end{array}$ $\begin{array}{cc}\mathrm{Al} & \mathrm{Ha} \\ 2 & \end{array}$ k

\mathbf{I}

L20005 350M	1	9	10	41	. 1	196	12	337	1.96	1	5	ND	2	28	1	2	2	34	. 24	.113	1	93	. 70	166	. 10	5	1.51	. 03	. 04	3	1	2
L2000S 325w	,	9	8	71	. 1	133	9	555	1.67	8	5	ND	2	33	1	2	4	27	. 25	. 252	5	48	. 37	290	. 10	2	1.52	. 03	. 10	1	1	2
L2000S 300	1	12	5	53	. 1	146	11	205	2.09	4	5	ND	2	34	1	2	2	37	. 29	. 126	1	57	. 49	122	. 12	2	1.93	. 04	. 07	1	1	2
120005 2754	1	14	3	$5!$. 1	192	12	263	2.12	6	5	ND	1	35	1	2	4	40	. 31	. 129	7	79	. 64	126	. 10	2	1.48	. 03	. 07	1	1	2
2200052501	1	19	12	41	. 1	411	17	181	2.64	18	5	HD	4	43	1	2	2	37	. 31	. 184	9	127	1.04	157	. 13	2	2.47	. 04	. 14	2	1	2
L2000S 225V	1	10	6	41	. 1	373	19	224	2.41	11	5	ND	2	29	1	2	2	36	. 24	.028	7	178	1.56	4	. 11	2	1.68	. 03	. 12	1	2	2
L2000S 20011	1	12	13	34	. 2	526	29	710	2.97	12	5	ND	2	36	1	2	2	34	. 28	. 031	5	217	3.00	109	. 08	3	1.70	. 02	. 10	1	1	2
L20005 175\%	1	16	13	5	. 2	1253	54	630	3.53	7	5	N0	3	30	1	2	3	45	. 27	. 044	8	361	2.91	90	. 12	1	1.92	. 03	. 07	1	127	2
L2000S 150 H	1	12	11	51	. 1	589	29	704	2.71	6	5	ND	2	47	1	2	5	40	. 36	. 040	d	211	1.58	157	. 11	2	1.74	. 03	. 09	1	2	2
L2000S 125\%	1	26	2	56	1	375	11	417	2.74	8	5	KD	2	37	1	2	2	54	. 32	. 050	7	112	. 92	142	. 14	2	1.90	. 03	. 07	1	1	2
L20005 1001	1	11	27	78	. 2	226	12	603	1.51	6	5	ND	1	49	1	2	4	11	. 44	. 086	3	16	. 74	265	. 07	2	. 92	. 03	. 11	1	2	2
L20005 75\%	1	11	5	47	. 1	197	10	274	1.94	1	5	MD	2	29	1	2	2	34	. 25	. 047	7	54	. 45	146	. 14	2	2.11	. 04	. 10	2	1	2
L2000S 5014	1	16	7	43	. 1	229	15	324	2.73	1		ND	2	26	1	2	2	51	. 34	. 032	8	112	. 90	74	. 14	1	1.37	. 03	. 01	2	12	2
L20005 25\%	1	13	10	43	. 1	146	8	146	1.80	6	5	ND	2	37	1	2	2	27	. 21	. 093	\%	39	. 39	168	. 14	2	2.58	. 04	. 04	2	1	2
L21005 1300\|	1	16	9	52	. 1	614	38	56	2.97	20	5	ND	4	28	1	2	2	43	. 24	. 029	13	234	2.46	120	. 14	10	2.28	. 03	. 11	2	1	2
L2100S 1275	1	13	16	58	. 2	419	29	542	2.78	11	5	ND	3	35	1	4	5	45	. 28	. 032	13	146	1.54	161	. 14	,	2.56	. 03	. 10	1	4	2
12100S 1250N	1	19	20	69	. 1	532	43	156	2.46	11	5	ND	2	44	1	2	,	38	. 39	. 080	9	155	2.05	232	. 12	5	2.26	. 03	. 07	2	15	2
L2100S 12254	1	19	24	79	. 1	537	42	8B3	2.39	12	5	ND	1	52	1	4	2	36	. 46	.064	8	156	1.72	241	. 12	2	1.97	. 03	. 08	1	2	2
L21005 1200W	1	15	11	42	. 1	199	85	1061	2.33	21		KD	1	31	1	2	2	31	. 33	. 065	6	311	4.16	128	. 08	15	1.39	. 02	. 09	1	16	2
L2100S 1175	1	12	6	6	. 1	297	20	576	1.82	8	5	ND	2	14	1	2	2	23	. 39	. 167	7	154	1.59	241	. 10	5	1.60	. 03	. 11	1	1	2
L2100S 11504	1	16	15	57	. 3	417	26	494	2.11	14	5	ND	1	34	1	2	2	33	. 27	. 049	8	116	1.19	160	. 12	4	1.95	. 03	. 07	1	3	2
L2100S 11254	1	9	17	50	. 1	164	12	311	1.69	9	5	ND	1	26	1	2	3	27	. 22	. 022	5	70	. 61	147	. 01	2	1.34	. 02	. 08	1	11	2
L2100S 11000	1	14	16	75	. 1	410	30	639	2.54	13	5	ND	2	34	1	2	2	36	. 27	. 045	8	114	1.31	235	. 13	8	2.05	. 03	. 07	1	1	2
L21005 1075	1	11	7	74	. 1	388	23	588	2.47	16	5	10	2	3	1	2	2	39	. 27	. 0181	!	93	1.08	230	. 14	1	2.04	. 03	. 07	1	1	2
L21005 10504	1	25	16	19	. 1	443	52	1301	2.44	23	5	ND	1	57	1	4	2	21	. 50	. 140	1	225	2.39	283	. 07	17	1.40	. 03	. 07	1	19	2
L2100S 10251	1	7	8	38	. 1	186	13	161	1.53	4	5	ND	2	20	1	2	2	23	. 16	. 200	5	51	. 52	138	. 10	2	1.57	. 03	. 06	2	1	2
L21005 1000N	1	23	12	44	.3	1054	81	1474	3.02	25	5	ND	2	32	1	2	2	31	. 28	. 041	10	252	3.12	189	. 12	25	2.26	. 03	. 10	3	1	2
L2100S 975\%	1	17	6	4	. 2	570	32	739	2.58	14	5	ND	3	38	1	3	2	36	. 27	. 051	12	125	1.37	229	. 16	1	2.11	. 03	. 08	1	1	2
L21005 950%	1	13	13	61	. 3	581	33	106	2.29	,	5	ND	3	41	1	3	2	32	. 30	. 041	10	137	1.50	171	. 14	6	2.42	. 03	. 01	1	2	2
L2100S 9251	1	16	24	56	. 2	53%	28	792	2.44	14	5	KD	1	37	1	2	4	39	. 27	.085	12	118	1.13	179	. 15	3	2.62	. 02	. 08	1	2	2
L21005 900N	1	17	1	69	. 3	614	34	739	2.64	11	5	ND	2	40	1	2	2	3	. 32	. 077	11	122	1.24	187	. 16	1	2.70	. 03	. 06	1	5	2
121005 875	1	24	12	62	. 1	729	50	1s8	2.19	11	5	KD	2	62	1	2	2	24	. 5	. 046	7	139	2.68	27.	. 11	5	2.11	. 03	. 10	2	75	2
L2100S 85014	1	15	7	62	. 1	156	13	571	2.03	J	5	NE	1	35	1	2	2	34	. 35	.053	6	71	. 72	203	. 11	2	1.44	. 03	. 12	1	3	2
221005 525 W	1	12	3	41	. 1	122	11	352	2.15	2	5	N0	1	33	1	2	2	37	. 31	. 012	6	63	. 62	180	. 11	2	1.56	. 03	. 09	1	1	2
L2100S 100\%	1	12	9	55	. 2	109	10	429	2.00	7	5	ND	2	37	1	2	2	34	. 32	. 088	7	51	. 50	170	. 11	2	1.74	. 03	. 10	1	1	2
L2100S 775w	1	12	9	47	. 1	132	10	329	2.18	7	5	ND	2	27	1	2	2	39	. 21	. 050	8	66	. 67	138	. 12	3	1.73	. 03	. 07	1	1	2
STD C/AUS	18	59	37	126	6.7	65	28	454	3.91	31	17	7	32	46	16	16	20	60	. 41	. 095	34	57	. 88	176	. 09	35	1.71	. 07	. 15	15	52	16

L2100S 7504	1	32	42	137	. 3	541	75	2902	2.98	15	5	ND	1	90	1	2	2	20	. 82	. 113	4	399	2.89	414	. 04	14	. 83	. 02	. 07	1	1	2
12100S 7254	1	13	9	50	. 2	250	13	448	2.23	7	5	ND	3	36	1	2	2	10	. 21	. 124	4	102	. 84	151	. 10	4	1.79	. 03	. 13	1	1	2
L2100S 7001	1	11	6	47	. 3	273	12	354	1.97	7	5	no	2	33	1	2	2	34	. 31	. 044	4	117	. 88	156	. 04	5	1.37	. 02	. 04	1	2	2
L21005 6751	1	1	10	68	. 2	255	11	445	1.47	2	5	KD	1	30	1	2	5	20	. 19	. 143	3	138	. 76	240	. 08	2	1.15	. 03	. 07	1	1	2
L21005 650 H	1	11	8	4	. 3	233	14	346	2.39	6	5	HD	1	21	1	2	4	45	. 22	. 022	5	160	1.16	121	. 10	3	1.33	. 02	. 09	1	2	2
L21005 625	1	7	10	37	. 2	81	5	220	1.24	8	5	ND	1	27	1	2	3	15	. 27	. 310	3	50	. 21	204	. 10	2	1.82	. 03	. 05	1	1	2
L2100S 600I	1	8	6	62	. 3	221	13	314	1.87	2	5	N0	1	22	1	2	3	30	. 24	. 035	4	164	1.14	162	. 09	3	1.29	. 02	. 08	1	1	2
L21005 575	1	9	13	62	. 2	261	19	844	1.85	10	6	ND	1	32	1	2	3	\%	. 30	. 057	4	230	1.51	245	. 07	13	1.09	. 02	. 05	1	1	2
L2100S 550M	1	11	5	47	. 1	523	26	295	2.12	10	5	KD	2	18	1	2	2	46	. 18	. 025	,	328	3.27	73	. 04	23	1.16	. 02	. 03	1	2	2
L2100S 5254	1	7	10	47	. 2	274	14	357	1.5	7	5	10	2	26	1	3	2	23	. 20	. 070	4	111	. 15	221	. 10	3	1.56	. 02	. 07	2	1	2
12100S 500リ	1	7	6	38	. 3	152	9	240	1.24	10	6	ND	1	24	1	3	2	20	. 22	. 040	3	84	. 57	149	. 01	5	1.32	. 03	. 05	2	1	2
L2100S 475\%	1	7	8	41	. 1	91	6	425	1.04	4	5	ND	1	29	1	2	2	16	. 27	. 115	3	49	. 34	239	. 04	5	1.34	. 03	. 05	1	1	2
L2I00S 450Y	1	8	1	47	. 3	297	15	292	1.68	9	5	ND	1	24	1	2	3	24	. 22	. 044	3	153	1.04	178	. 01	1	1.41	. 03	. 08	1	1	2
L2100S 4254	1	5	4	46	. 1	220	12	347	1.54	5	5	ND	1	22	1	2	2	24	. 15	. 063	3	77	. 65	182	. 11	2	1.65	. 03	. 04	1	2	2
L21005 400才	1	6	14	47	. 1	321	15	272	1.79	1	5	ND	2	22	1	2	2	29	. 21	. 024	5	115	. 69	167	. 10	1	1.43	. 02	. 04	1	1	2
L2100S 375	1	5	12	4	. 1	268	12	393	1.58	1	5	KD	1	21	1	2	2	23	. 17	. 039	4	119	. 76	140	. 04	4	1.08	. 02	. 05	1	2	2
L2100S 3504	1	7	8	4	.1	99	8	345	1.58	5	5	ND	2	21	1	3	3	30	. 22	. 126	4	42	. 29	151	. 04	2	1.38	. 03	. 04	2	1	2
L21005 3291	1	8	9	61	. 2	111	1	341	1.72	7	5	ND	2	30	1	2	2	31	. 40	. 136	5	4	. 51	178	. 08	5	1.15	. 02	. 06	1	1	2
221005300%	1	7	1	50	. 1	114	11	349	1.72	3	5	ND	2	34	1	2	2	29	. 27	. 117	5	45	. 55	202	. 09	1	1.42	. 03	. 08	1	1	2
L21005 275	1	6	2	51	. 2	232	12	281	1.52	7	5	H0	1	29	1	2	2	23	. 29	. 092	3	90	. 77	207	. 10	4	1.63	. 03	. 06	1	1	2
L2100S 250Y	1	9	20	51	. 2	255	13	431	1.60	11	5	ND	1	40	1	2	3	23	. 45	. 0981	4	92	. 97	204	. 09	9	1.34	. 03	. 07	1	1	2
121005 225\%	1	10	17	4	.3	263	15	475	1.85	1	5	ND	2	39	1	2	2	29	. 31	. 059	4	142	1.00	191	. 01	9	1.23	. 05	. 11	1	2	2
L21005 2004	1	10	3	36	. 2	339	21	283	2.72	12	5	ND	3	24	1	2	2	50	. 32	. 027	8	245	1.76	57	. 04	18	. 91	. 03	. 08	1	11	2
L2100S 1754	1	1	8	44	1	262	13	174	1.60	1	5	ND	2	31	1	2	2	26	. 26	. 101	4	86	. 48	181	. 11	,	1.79	. 03	. 07	2	1	2
L2100S 1504	1	1	2	42	. 2	214	11	112	1.71	4	5	ND	2	21	1	2	2	27	. 23	. 032	4	117	. 60	127	. 08	5	1.10	. 02	. 08	1	1	2
L2100S 1254	1	11	8	47	. 1	198	-	243	1.19	7	5	ND	1	29	1	2	2	17	. 21	. 155	3	46	. 37	205	. 08	4	1.21	. 03	. 07	1	1	2
L21005 1004	1	10	1	48	. 1	165	,	331	1.16	6	5	ND	1	27	1	2	2	17	. 27	. 154	3	47	. 37	206	. 08	3	1.27	. 04	. 08	1	1	2
L21005 754	1	1	1	37	. 2	204	11	261	1.71	5	5	ND	1	28	1	2	2	27	. 27	. 022	3	103	. 85	117	. 04	3	1.37	. 03	. 09	1	+	2
1210055011	1	10	22	56	. 1	169	11	547	1.46	7	5	ND	1	48	1	2	3	30	. 39	. 072	5	4	. 50	267	. 07	6	1.43	. 03	. 06	1	1	2
121005 251	1	9	7	50	. 1	188	11	$35!$	1.72	10	5	N0	2	29	1	2	2	31	. 31	.11t	5	63	. 41	177	. 10	2	1.49	. 03	. 01	2	1	2
L2100S 아	1	9	1	34	. 1	183	10	171	1.74	5	5	ND	2	24	1	2	3	31	. 19	. 046	4	70	. 56	144	. 10	4	1.52	. 03	. 07	2	1	2
121005 25E	1	10	5	43	. 1	241	14	256	2.16	5	5	MD	2	21	1	2	2	40	. 23	.071	7	46	. 70	159	. 13	5	1.97	. 03	. 07	2	$!$	2
L2100S 50E	1	10	,	43	. 1	183	12	240	1.52	6	5	N0	1	24	1	2	4	23	. 19	. 162	1	35	. 31	252	. 11	2	1.52	. 03	. 05	1	7	2
L2100S 75 E	1	10	9	71	. 1	229	11	270	1.70	1	5	ND	1	28	1	2	2	28	. 26	. 115	4	64	.47	245	. 09	E	1.29	. 03	. 08	1	1	2
L2100S 100E	1	9	6	37	. 1	88	6	318	1.47	1	5	N0	1	33	1	2	2	22	. 24	.22!	4	30	. 23	222	. 11	3	1.69	. 04	. 07	1	1	2
L2I00S 125E	1	16	6	71	. 1	552	55	1206	2.49	1	5	HD	1.	52	1	2	2	32	. 58	. 051	5	253	2.81	343	. 10	17	1.54	. 04	. 12	1	28	2
STD C/AU-S	20	50	43	135	7.0	45	29	1016	3.97	30	17	7	34	50	17	15	18	65	. 48	. 100	36	51	. 87	188	. 09	37	1.71	. 07	. 16	13	51	100

L2100S 150E	1	10	1	58	.1	497	19	328	1.73	6	5	HD	1	43	1	2	2	22	. 33	. 044	4	145	1.40	168	. 10	16	1.72	. 04	. 06	1	1	3
L2100S 1758	1	11	¢	74	1	599	29	543	2.13	3	5	ND	2	52	1	2	2	30	. 40	. 185	7	116	1.12	278	. 12	16	1.87	. 04	. 10	1	1	2
L2100S 200 E	1	10	5	12	. 2	237	13	504	1.13	5	5	ND	1	39	1	2	2	25	. 21	. 061	1	$\%$. 69	214	. 04	7	1.32	. 04	. 09	1	1	2
L2100S 2255	1	10	6	34	. 1	216	12	161	2.51	4	5	KD	2	21	1	2	2	56	. 29	. 022	7	131	1.03	84	. 12	9	1.06	. 03	. 07	1	2	2
L2100S 250E	1	9	7	83	.1	413	22	J 2	2.55	7	5	ND	1	35	1	3	2	32	. 27	. 138	4	155	1.50	211	. 11	11	1.65	. 03	. 07	1	1	2
L2100S 275E	1	7	2	37	. 1	136	8	159	2.04	2	5	ND	1	25	1	2	2	40	. 24	.027	6	81	. 71	90	. 11	5	1.35	. 02	. 04	1	1	2
L2100S 300E	1	10	8	45	. 3	320	16	212	2.18	4	5	ND	2	26	1	2	2	37	. 25	. 054	7	121	. 97	178	. 13	1	1.88	. 03	. 07	1	1	2
L21005 325E	1	11	2	52	. 1	319	13	237	2.15	5	5	ND	2	29	1	2	2	34	. 23	. 014	7	93	. 2	213	. 15	1	2.54	. 03	. 08	1	1	3
L2200S 11504	1	22	19	41	. 2	560	50	1714	2.07	14	5	ND	,	40	1	2	2	22	. 36	. 057	5	137	1.35	146	. 07	5	. 3	. 03	. 04	2	12	2
L2200S 1125	1	11	10	41	. 3	184	12	249	2.21	6	5	KD	2	37	1	2	3	31	. 29	. 015	1	90	. 56	121	. 12	2	1.10	. 03	. 06	2	1	2
L2200S 1100H	1	19	11	51	. 2	701	48	067	2.16	12	5	ND	2	40	1	2	2	24	. 30	. 041	1	159	2.09	139	${ }^{\circ} 10$	12	1.16	. 03	. 09	1	7	2
L22005 1075	1	13	11	57	1	581	30	739	2.29	10	5	KD		34	1	2	2	24	. 29	. 048	8	164	1.52	160	. 10	11	1.93	. 03	. 07	1	5	2
L2200S 10501	1	17	11	67	. 1	936	50	475	2.97	14	5	NO	2	36	1	2	2	35	. 32	. 085	11	194	1.79	197	. 12	14	2.11	. 03	. 08	1	34	2
L22005 1025	1	21	21	86	. 2	721	51	1111	2.75	15	5	N0	1	38	1	3	2	20	. 37	. 088	5	239	4.35	204	. 05	32	. 93	. 02	. 05	1	1	2
L2200S 1000	1	19	10	79	. 2	581	43	136	3.09	16	5	N0	3	30	1	3	2	46	. 23	. 065	13	176	1.63	196	. 14	15	2.64	. 02	. 09	1	1	2
L2200S 975	1	17	1	52	. 2	33	24	616	2.63	11	5	ND	3	36	1	2	2	39	. 27	. 060	10	137	1.19	178	. 14	5	2.32	. 02	. 12	1	1	2
L22005 95011	1	25	11	91	. 2	414	32	1016	2.27	12	5	ND	2	49	1	2	2	33	. 35	. 112	10	111	1.08	253	. 11	10	1.93	. 02	. 09	1	2	2
L2200S 9251	1	11	2	40	. 1	131	10	324	1.04	6	5	ND	2	39	1	2	3	31	. 31	. 125	7	55	. 49	155	. 10	6	1.50	. 03	. 10	1	4	2
12200590011	1	12	\%	51	. 2	239	14	314	2.09	9	5	ND	2	35	1	2		35	. 27	. 077	1	76	. 69	134	. 12	6	1.71	. 03	. 09	1	1	2
1220051754	1	10	4	47	. 1	178	12	497	1.97	6	5	M0	2	34	1	2	2	33	. 28	. 084	1	63	. 4	128	. 11	4	1.72	. 03	. 11	1	1	2
L2200S 8501	1	10	1	31	. 1	164	11	J0t	1.80	6	5	ND	2	28	1	3	3	31	. 25	. 017	6	52	. 55	132	. 11	6	1.76	. 03	. 07	2	1	2
1220051254	1	16	13	65	. 1	375	22	658	2.55	12	5	N0	3	30	1	3	2	43	. 27	. 088	1	114	1.05	179	. 13	7	1.75	. 02	. 09	1	2	2
222005 2004	1	16	3	55	. 1	277	19	518	2.65	6	J	ND	1	27	1	2]	44	. 23	. 035	11	133	1.04	151	. 13	2	2.04	. 02	. 01	1	1	2
L22005 755\%	1	14	7	66	. 1	423	30	740	2.51	1		Ng	2	34	1	2	2	35	. 28	. 122	1	217	1.49	187	. 11	7	1.17	. 02	. 05	1	2	2
$\underline{12005} 7504$	1	-	11	51	. 1	187	12	474	1.06	E	5	N0	2	23	1	2	3	31	. 23	. 034	7	49	. 62	97	. 10	7	1.47	. 03	. 07	1	1	2
122005 7254	1	11	7	64	. 1	139	10	429	1.17	10	5	ND	1	31	1	2	2	16	. 17	. 137	3	61	. 24	158	. 09	2	1.29	. 03	. 06	1	1	2
422057001	1	7	6	32	. 2	277	7	98	1.12	6	5	KD	1	43	1	2	,	15	. 28	. 151	3	63	. 32	132	. 10	5	1.47	. 04	. 05	1	1	2
1220056751	1	8	7	49	. 1	1088	37	103	2.57	5	5	ND	2	55	1	2	2	20	. 40	. 042	6	557	2.87	132	. 09	13	2.12	. 03	. 01	2	$!$	2
222005 6504	1	10	7	49	. 3	1204	38	450	2.47		5	KD	2	43	,	J	2	24	. 30	. 037	6	550	3.46	114	. 11	19	2.27	. 04	. 01	2	1	2
12200S 625	1	10	5	48	. 1	453	16	346	2.07		5	ND	2	32	1	2	2	$3!$. 21	. 045	7	150	. 6	212	. 13	1	2.31	. 03	. 06	1	1	2
L2200S 600H	1	9	3	42	. 1	319	18	329	2.29	8	5	ND	3	24	1	3	2	37	. 21	. 027	7	197	1.21	126	. 11	11	1.56	. 02	. 01	2	1	2
L2200S 5754	1	9	P	48	. 2	444	23	449	2.49	6	5	ND	2	27	1	2	2	39	. 25	. 042	7	24	1.95	102	. 10	5	1.47	. 02	. 07	1	32	3
L22005 5504	1	10	1	47	. 2	244	16	419	2.06	6	5	WD	2	22	1	2		34	. 19	. 032	5	180	1.27	137	. 04	5	1.26	. 02	. 06	2	2	2
L2200S 5254	1	1	8	55	. 1	158	11	428	1.48	4		N0	1	31	1	2	J	23	. 27	. 072	4	109	. 02	230	. 01	6	1.19	. 03	. 06	1	2	2
L22005 5001	1	9	2	47	. 1	334	13	174	1.98	5	5	ND	2	21	1	2	2	27	. 11	. 124	5	118	. \square_{6}	223	. 12	2	2.16	. 03	. 08	1	1	2
L2200S 4754	1	9	2	60	. 2	371	19	345	2.34	4	5	ND	2	24	1	2	2	39	. 18	. 042	6	149	1.32	238	. 13	8	2.01	. 02	. 08	1	2	2
STD C/AU-S	19	56	37	131	6.7	4	27	963	3.95	36	15	7	33	48	16	15	20	43	. 48	. 101	35	55	. 89	181	. 09	33	1.71	. 07	. 16	13	47	104

SHANGRI-LA MINERALS PROJECT - CASTLE FILE \# B7-0111 F
FAGE 14

L2200S 4501	1	9	9	56	. 1	27.	16	297	1.75	1	5	ND	1	26	1	2	J	28	. 20	. 040	5	110	. 12	19	. 11	8	1.60	. 03	. 04	1	3	2
L2200S 4251	1	11	10	47	. 1	346	17	224	2.16	10	5	NT	2	23	1	2	3	37	. 17	. 105	6	128	1.02	176	. 14	1	2.18	. 03	. 09	1	1	2
1220054001	1	9	12	52	. 1	556	26	342	2.67	6	5	ND	2	50	1	2	2	43	. 25	. 024	7	263	2.37	102	. 13	15	1.63	.03*	. 09	1	1	J
L22005 375\%	1	4	8	48	.1	248	11	313	1.91	6	5	ND	1	23	1	2	2	34	. 23	. 026	6	151	1.08	101	. 12	5	1.15	. 02	. 07	1	2	2
12200S 3501	1	1	13	54	.I	234	14	333	1.82	11	5	NO	2	32	1	2	2	27	. 26	. 131	5	105	. 78	179	. 11	1	1.62	. 03	. 07	1	3	3
L2200S 3251	1	1	1	41	. 1	166	10	380	1.15	7	5	ND	1	30	1	2	3	27	. 17	. 125	5	77	. 56	118	.11	12	1.74	. 03	. 06	1	2	2
L22005 3004	1	30	19	41	. 1	203	14	321	1.13	10	5	ND	1	28	1	2	2	2	. 20	. 209	4	81	. 80	216	. 11	7	2.01	. 03	. 05	1	1	2
L2200S 2754	1	9	8	55	. 1	457	22	379	2.44	7	5	ND	1	26	1	2	3	39	. 24	. 022		244	1.90	94	. 04	4	1.02	. 03	. 05	1	2	3
L22005 2501	1	11	11	49	. 1	258	12	112	1.70	11	5	ND	2	33	1	2	5	28	. 23	.158	-	73	. 46	128	. 14	7	2.35	. 04	. 05	1	1	2
L2200S 225\%	1	8	7	18	. 1	304	14	284	1.82	7	5	10	1	32	1	2	2	32	. 22	. 044	7	108	. 12	175	. 13	4	1.tid	. 04	. 06	1	1	2
L22005 2001	1	7	12	45	. 2	159	4	302	1.49	9	5	Nit	2	24	1	2	2	22	. 15	. 206	4	47	. 32	182	. 12	16	2.09	. 04	. 06	1	1	2
L2200S 175\%	1	7	12	51	.1	264	14	554	2.08	7	5	NJ	1	26	1	2	3	29	. 22	. 036	5	193	1.53	133	. 08	12	. 12	. 03	. 07	1	1	6
127005 1501	1	8	13	48	. 1	398	17	291	1.86	1	5	HD	1	26	1	2	2	26	. 20	. 056	4	132	1.07	204	. 10	12	1.54	. 03	. 09	1	5	3
L2200S 125M	1	9	7	47	.1	401	14	172	1.72	9	5	N0	2	32	1	2	2	25	. 21	. 070	5	135	1.09	213	. 10	10	1.61	. 03	. 07	1	2	2
22200S 1001	1	9	2	41	.1	474	25	282	2.83	10	5	KD	2	25	1	2	2	49	. 25	. 027	7	278	2.31	70	. 12	14	1.16	. 03	. 09	1	9	4
L2200S 75\%	1	1	6	48	. 1	427	21	426	2.85	11	5	N0	1	34	1	2	2	42	. 53	. 044	t	297	2.00	136	. 11	20	1.22	. 03	. 13	1	490	3
L22005 5014	1	8	10	34	.1	381	13	210	1.58	5	5	KD	1	21	1	2	2	22	. 20	. 012	5	107	. 14	116	. 10	7	1.42	. 03	. 69	1	1	2
L22005 254	1	9	21	52	. 1	471	25	829	1.73		5	泪	,	55	1	2	3	14	. 34	. 107	4	154	1.55	244	. 05	17	. 74	. 03	. 08	1	1	2
122005 OH	1	9	9	31	.1	553	23	253	2.38	7	5	KD	2	25	1	2	2	37	. 24	. 014	7	202	1.82	51	. 11	17	1.22	. 03	. 06	1	3	2
L2200s 25E	1	9	12	54	. 1	282	13	428	1.33	7	5	ND	1	41	1	2	2	19	. 27	. 101	4	72	. 51	217	. 09	15	1.26	. 03	. 08	1	1	3
L22005 50E	1	12	1	40	. 1	317	17	249	2.57	5	5	ND	2	30	1	2	2	57	. 21	. 027	5	227	2.14	12	. 01	11	1.52	. 03	. 11	1	1	2
L2200S $75 E$	1	10	1	50	. 1	200	9	261	1.46	6	5	相	1	32	,	2	2	24	. 21	. 047	1	48	. 12	143	. 11	5	1.61	. 04	. 08	1	2	2
1220051005	1	5	8	40	. 1	148	7	217	1.26	5	5	MD	1	22	1	2	2	14	. 10	. 030	3	51	. 43	43	. 08	3	1.31	. 03	. 01	1	1	2
L2200S 125E	1	13	18	75	. 1	1193	36	212	2.31	9	5	ND	1	64		2	2	22	. 48	. 041	5	156	2.67	144	. 11	21	2.04	. 04	. 10	1	1	2
L2200S 150E	1	14	27	72	. 1	44	19	506	2.59	11	5	N0	2	38		2	2	3	. 32	. 032	7	158	1.34	250	. 13	1	1.74	. 03	. 10	1	1	2
122005•175E	1	10	11	57	. 1	795	38	570	2.99	7	5	kD	2	28	1	2	2	25	. 21	. 027	5	455	6.19	163	. 01	45	1.42	. 03	. 07	1	4	2
1220052005	1	10	10	89	. 2	495	30	839	2.71	10	5	N	2	41	1	2	3	3	. 30	.073	9	334	2.02	146	. 12	11	1.93	. 03	. 09	1	1	3
1220052255	1	11	12	7	.1	562	34	715	2.50	7	5	ND	2	49	,	2	2	31	. 45	. 073	1	174	1.56	166	. 11	12	1.43	. 03	. 12	1	1	2
L22005 250E	1	10	11	52	. 1	337	20	470	2.25	7	5	N0	2	24	1	2	2	33	. 23	. 029	7	158	1.03	122	. 11	7	1.38	. 02	. 09	1	2	2
L2200S 2755	1	18	11	76	. 1	481	34	66	3.56	16	5	KD	1	21	1	2	3	59	. 22	. 060	16	244	2.16	187	. 19	9	2.96	. 03	. 10	1	1	2
L22005 300E	1	24	12	65	. 1	538	45	1068	3.12	12	5	0	3	29	1	2	2	4	. 2 t	. 040	15	277	2.14	108	. 13	1	2.14	. 02	. 09	1	1	3
L22005 325E	1	22	11	76	.1	364	31	EI	2.92	1	5	ND	3	40	1	2	2	52	. 7	. 077	12	181	1.24	174	. 13	8	1.76	. 02	. 14	1	2	2
122005350 E	1	18	23	45	.1	426	33	770	3.33	13	5	KD	3	27	1	2	2	4	. 29	. 081	13	214	1.50	123	. 13	10	1.11	. 02	. 14	1	7	2
L2200S 375E	1	19	13	51	.1	424	24	56	3.07	10	5	NO	3	26	1	2	2	57	. 32	. 072	14	207	1.72	70	. 12	16	1.72	. 02	. 07	1	1	3
L2200S 400E	1	10	6	39	. 1	231	14	228	2.20	5	5	ND	2	22	1	2	2	42	.20	. 027	1	139	1.07	40	. 12	4	1.26	. 03	. 07	1	8	2
122005 425E	1	16	12	41	. 1	435	33	846	2.18	9	5	ND	3	33	1	2	2	48	. 30	. 041	12	268	1.16	129	. 13	12	1.76	. 02	. 13	1	2	2
STD C/Au-S	20	60	37	136	6.9	41	30	1029	3.99	41	17	7	34	50	14	15	20	6	. 40	. 103	37	59	. 88	181	. 04	35	1.71	. 07	. 17	13	50	101

SHANGRI-LA MINERALS FF:DJECT - CASTLE FILE \# 87-0111
FAGE 15

SAXPLE:	Ho	Cu	Pb	In	A	H1	Co	Mn		As		Au										cr	M!	H2	I	B	Al	Nz	k		Aut	Ptit
Samb	PPM	PPM	PPM	PPM	PPh	PPA	PPR	PPM	2	PPM	PPK	PR	PPK	PPM	PPM	PPM	PPH	PPK	2	2	PPK	PPK	I	PPM	1	PPK	1	I	1	PPh	PF3	PP1
L2200S 450 E	1	17	13	84	. 2	487	25	362	2.13	7	5	HD	3	36	1	2	2	41	. 27	. 290	10	141	1.30	240	. 14	3	2.16	. 03	. 06	1	3	2
L2200S 475 E	1	39	8	136	. 3	523	72	3193	3.53	17	5	ND	1	81	1	2	2	33	. 73	. 196	d	492	2.54	485	. 06	12	1.00	. 02	. 08	1	2	2
L2200S 500E	1	12	12	42	. 1	267	19	417	2.51	3	5	HD	3	33	1	2	2	47	. 29	. 034	9	143	1.11	111	. 13	-	1.65	. 03	. OH	2	3	2
L2200S 525E	1	9	7	40	. 2	233	15	487	1.92	3	5	ND	2	26	1	2	2	34	. 23	. 034	6	111	. 13	158	. 11	5	1.45	. 03	. 06	1	1	2
L.22005 550E	1	10	11	39	. 1	299	14	231	1.57	3	5	ND	2	J8	1	2	2	22	. 28	. 060	6	121	. 68	201	. 10	9	1.60	. 03	. 07	」	1	2
L2200S 575E	1	1	5	36	. 2	130	15	203	1.11	4	5	ND	1	25	1	2	2	29	. 24	.076	3	60	. 42	111	. 11	4	1.52	. 03	. 06	1	2	2
L22005 600 E	1	10	10	38	. 1	110	9	140	1.90	7	5	H0	2	21	1	2	2	34	. 17	. 041	4	54	. 41	96	. 14	8	1.90	. 03	. 05	1	2	2
L2200S 625 E	1	23	6	40	. 1	72	7	313	1.14	3	5	y0	1	201	1	2	2	17	1.68	. 024	6	41	3.33	140	.05	21	1.05	. 07	. 04	1	7	2
122005450 E	1	10	13	43	. 1	$13!$	-	414	2.13	2	5	0	3	26	1	2	3	42	. 25	. 103	1	72	. 51	15%	. 13	3	1.84	. 03	. 05	1	4	2
L22005 675 E	1	11	10	56	. 2	274	17	342	2.12	4	5	N	1	4	1	2	2	33	. 27	. 088	6	167	. 97	200	. 10	10	1.41	. 03	. 06	1	2	2
L2200S 700E	1	10	12	47	. 1	201	13	42	2.27	4	5	ND	2	34	1	2	2	44	. 31	. 072	9	124	. 77	137	. 12	5	1.50	. 03	. 10	1	2	2
$\underline{52005} 7255$	1	10	7	36	. 3	84	9	297	2.01	4	5	ND	3	36	1	2	2	31	. 37	. 017	10	61	. 63	74	. 12	8	1.44	. 05	. 08	1	1	2
L22005 750 E	1	11	8	35	. 2	80	8	364	2.01	4	5	ND	3	46	1	2	2	32	. 41	. 012	10	60	. 40	113	. 12	10	1.31	. 05	. 01	1	2	2
12200S 7755	1	10	6	73	.1	236	14	296	2.18	13	5	ND	2	48	1	2	2	36	. 29	. 159	6	121	. 61	206	. 11	3	1.44	. 03	. 09	1	1	2
L2200S 800E	1	16	7	56	. 1	6	8	521	1.12	5	5	ND	3	34	1	2	2	30	.25	. 123)	47	. 52	203	. 14	4	2.14	. 04	. 09	1	19	2
L22005 325 E	1	16	13	153	. 2	44	7	2376	1.49	14	5	\$1	1	55	1	2	2	29	. 47	. 111	6	43	. 31	473	. 08	5	1.25	. 03	. 01	1	1	2
L2200S 150E	1	13	8	53	. 2	103	10	441	2.07	7	7	ND	3	29	1	2	2	39	. 27	. 103	10	70	. 41	156	. 12	6	1.71	. 03	. 10	1	1	2
$122005975 E$	1	13	6	55	. 1	14	7	417	1.50	4	5	N	2	44	1	2	2	31	. 36	. 160	9	56	. 43	211	. 11	7	1.65	. 03	. 11	1	3	2
L2200S 900 E	1	19	11	63	. 1	101	10	572	2.17	1	5	ND	3	42	1	2	,	39	. 39	. 146	10	51	. 54	205	. 14	2	2.19	. 04	. 13	1	2	2
L2300S 1075M	1	17	7	48	.1	888	12	480	2.49	10	5	KD	4	41	1	2	2	35	. 29	. 032	11	123	2.26	141	. 14	14	2.23	. 04	. 04	1	1	2
L2300S 1050k	1	17	12	58	. 1	454	26	445	2.16	8	5	ND	4	46	1	2	2	46	. 32	. 031	14	116	1.25	241	. 11	7	2.76	. 04	. 12	1	1	2
L2300S 1025\%	1	26	19	82	. 1	410	37	451	2.71	24	5	10	3	38	1	2	2	41	. 36	. 120	10	126	1.31	258	. 13	10	2.77	. 02	. 11	1	43	2
L2300S 1000	1	19	21	69	.1	433	J5	815	3.06	6	5	N	3	38	1	2		48	. 35	. 054	12	156	1.29	1%	. 13	7	2.05	. 02	. 10	1	3	2
L23005 9754	1	20	15	57	.1	577	52	925	2.57	16	-	10	3	52	1	3		29	. 53	.073	0	129	1.35	164	. 09	1	1.41	. 03	. 07	1	1	2
L23005 950N	1	16	11	69	. 1	411	41	167	2.68	10	5	ND	2	35	1	2	2	37	.3	. 010	8	129	1.74	155	. 11	9	1.70	. 03	.08	1	3	2
L2300S 925	1	17	13	64	. 1	614	40	770	2.81	6	5	ND	2	26	1	2	2	39	. 20	. 051	11	140	1.40	173	. 13	6	2.12	. 02	. 07	1	15	2
L2300S 9001	1	17	11	43	. 1	731	45	75i	3.46	7	5	WD	4	27	1	2	2	46	. 21	. 039	14	193	1.76	170	. 15	1	2.41	. 02	. 07	1	2	3
L23005 875\%	1	17	18	74	. 1	578	40	44	2.85	7	5	ND	3	39	1	2		39	. 31	. 068	10	169	1.53	214	. 12	5	1.70	. 02	. 04	1	11	2
L2300S 850 H	1	16	12	79	. 1	617	5	965	2.55	12	6	HD	3	34	1	2	2	32	.24	. 0.93	.	124	1.86	176	. 13	10	1.96	. 03	. 08	1	2	2
1230058254	1	17	4	57	.1	298	17	303	2.44	1	5	ND	J	31	1	2	2	41	. 24	. 107	8	13	. 73	169	. 15	5	2.49	. 03	. 08	1	7	2
L23005 800才	1	18	16	62	. 1	294	21	630	2.97	6	5	\% 6	4	36	1	2	2	53	. 31	. 054	12	155	1.12	183	. 16	7	2.16	. 02	. 11	1	4	2
L23005 775	1	17	14	61	. 1	332	24	634	3.24	11	5	KD	3	35	1	2	4	58	. 32	. 065	13	175	1.55	151	. 15	13	2.01	. 02	. 11	1	11	2
235005 73011	1	14	7	78	. 2	325	21	476	2.92	,	4	ND	4	33	1	3	2	49	. 29	. 132	12	157	1.22	136	. 14	4	2.24	. 02	. 01	1	3	2
L2300S 7254	1	13	3	19	. 1	176	11	223	2.71	5	5	KD	3	38	1	2	2	54	. 35	. 015	11	104	. 77	167	. 15	2	1.74	. 03	. 12	1	7	2
L2300S 7001	1	9	7	43	.1	174	10	363	1.37	10	5	ND	1	34	1	2	2	22	. 19	. 178	4	78	. 42	186	. 09	3	1.23	. 03	. 09	1	5	2
L2300S 675	1	11	10	57	. 1	246	12	578	1.46	3	5	N0	2	17	1	2	2	24	. 31	. 119	5	17	. 62	244	. 09	4	1.24	. 03	. 11	1	3	3
SID C/AU-S	20	5	39	135	6.9	66	30	1023	3.98	36	16	7	34	50	17	17	20	65	. 48	. 103	37	40	. 88	119	. 09	41	1.71	. 07	. 17	12	47	99

SHANGRI-LA MINERALS PROJECT - CASTLE FILE B7-0111 R
PAGE 16
SAMPLE:
 Cz
Z P
2 LAM \quad Pr $\begin{array}{cc}\mathrm{Ho} & \mathrm{Ba} \\ \mathrm{I} & \mathrm{PPK}\end{array}$ $\begin{array}{ll}\text { II } \\ 2 & \\ 2\end{array}$ Al
I K
\mathbf{I} $\begin{array}{lr}K & \text { Y } \\ \text { I } & \text { PPM }\end{array}$ Aut Ptt
PPI PPI

1230056501	1	9	6	50	. 2	204	9	229	2.03	3	5	MD	2	35	1	2	2	35	. 25	. 129	5	46	. 59	171	. 10	\leqslant	1.67	. 02	. 05	1	1	2
L2300S 625Y	1	10	6	44	. 2	144	9	26!	1.60	7	5	HD	2	26	1	2	2	26	. 20	. 114	5	51	. 37	125	. 11	4	1.90	. 03	. 06	1	1	2
1230056001	1	9	6	53	. 2	261	10	199	1.57	4	5	ND	2	32	1	2	3	22	. 24	. 152	4	19	. 45	169	.11	5	1.82	. 03	. 09	1	1	2
L2300S 575M	1	10	E	66	. 2	393	11	769	1.76	4	5	MD	2	37	1	2	3	25	. 30	. 114	4	110	. 43	$26!$. 10	5	1.50	. 03	. 10	1	2	2
\$23005 5501	1	9	5	54	. 1	404	13	262	1.33	7	5	KD	1	35	1	2	2	19	. 23	. 044	4	4	. 66	117	. 10	B	1.52	. 04	. O	1	1	2
L2300S 5254	1	1	4	51	. 2	297	14	227	1.84	4	5	ND	2	28	1	2	2	21	. 11	. 032	5	85	. 68	197	. 11	5	1.98	. 02	. 06	1	1	2
L2300S 500k	1	9	1	52	. 1	625	32	409	2.21	'	5	ND	1	32	1	2	2	32	. 23	.041	5	195	1.69	176	. 11	11	1.41	. 03	. 07	1	2	2
L23005 475w	1	10	16	65	. 2	284	17	44	2.10	7	5	ND	1	21	1	2	2	35	. 16	. 050	5	114	. 84	156	. 13	7	1.45	. 02	. 05	1	35	2
L2300S 4501	1	10	1	61	. 1	408	20	490	2.20	4	5	N0	2	28	1	2	2	33	. 23	. 126	7	124	. 17	183	. 14	12	2.10	. 02	. 05	1	35	2
L2300s 425M	1	10	6	46	. 3	334	15	285	1.75	2	5	ND	3	24	1	2	2	26	. 16	. 061	5	109	. 79	272	. 12	10	1.89	. 03	. 07	1	1	2
123005 400H	1	10	3	11	. 3	343	29	331	3.04	7	5	ND	1	19	1	2	3	43	. 18	. 070	5	286	1.84	169	. 12	15	1.30	. 02	. 06	1	1	2
L2300S 375\%	1	9	6	45	. 2	301	14	191	1.89	7	5	MD	2	17	1	2	2	29	. 13	. 105	5	16	. 54	147	. 14	7	2.J3	. 03	. 05	3	1	2
1230053504	1	10	10	45	. 2	265	14	345	1.84	2	5	ND	2	26	1	2	2	29	. 19	. 067	7	94	. 69	188	. 14	10	2.20	. 03	. 06	2	2	2
1230053254	1	11	6	49	.1	356	19	371	2.09	2	5	ND	2	26	1	2	2	32	. 19	.031	5	181	1.26	192	. 10	8	1.50	. 02	.06	2		
1230053004	1	12	8	59	. 2	705	46	649	3.33	1	5	ND	1	27	1	2	2	47	. 24	. 027	4	385	3.40	12	. 10	13	1.17	. 02	. 05	1	1	3
1230052751	1	15	7	59	. 1	111	57	415	4.52	12	5	MD	2	27	1	3	2	27	. 24	.04	1	442	5.03	141	. 07	19	1.42	. 02	. 04	1	2	3
L2300S 250U	1	13	7	60	. 1	444	33	1019	2.01	2	5	ND	1	41	1	2	3	19	. 11	. 067	4	493	2.40	345	. 07	25	1.21	. 03	. 01	1	1	2
L23005 2251	1	1	5	42	. 1	170	10	304	1.41	2	5	10	1	31	1	2	2	21	. 22	.071	5	69	. 46	193	. 11	5	1.5	. 03	. 05	1	2	2
L23005 2001	1	8	3	39	. 1	324	16	308	1.75	2	5	N0	2	24	1	2	2	26	. 16	. 061	5	112	. 73	13	. 13	13	1.97	. 03	. 06	1	1	3
12300S 175	1	1	7	42	. 1	316	17	247	1.74	2	5	NT	1	19	1	5	2	24	. 15	. 041	4	4	. 72	123	. 11	10	1.74	. 03	. 04	1	1	2
L23005 1501	1	5	9	31	. 1	543	17	116	1.51	2	5	NO	1	35	1	2	2	16	. 19	. 044	3	119	. 31	146	. 12	16	2.19	. 04	. 04	1	1	2
L23005 1254	1	7	4	31	. 1	456	24	261	2.16	2	5	WD	1	29	1	2	2	16	. 22	. 025	3	27	1.11	134	. 06	11	1.47	. 03	. 06	2	1	2
L2300S 1004	1	1	6	45	. 1	507	20	174	1.77	2	5	HD	1	22	1	2	2	18	. 15	.023	4	183	1.15	95	. 09	11	1.75	. 03	. 01	2	3	2
L23005 754	1	9	b	69	. 1	474	27	546	2.04	2	5	ND	2	30	1	2	3	20	. 26	. 059	4	223	1.25	249	. 01	12	1.31	. 03	. 09	1	1	2
L2300S 501	1	8	6	50	. 2	228	10	227	1.44	2	5	HD	1	30	1	2	2	21	. 20	. 126	4	61	. 50	174	. 10	7	1.52	. 03	. 07	1	1	2
L2300S 25\%	1	\dagger	8	58	. 1	521	22	322	2.13	5	5	ND	1	34	1	2	2	31	. 27	. 043	4	155	1.26	203	. 10	10	1.47	. 03	. 07	2	1	2
123005 On	1	9	3	3	. 1	314	17	234	2.24	4	5	ND	2	23	1	2	3	31	. 20	. 017	5	173	1.15	100	. 10	12	1.25	. 02	. 05	2	2	3
L23005 25 E	1	9	9	33	. 2	215	15	174	2.37	3	5	ND	2	20	1	2	2	44	. 16	. 013	5	163	1.24	95	. 10	14	1.36	. 02	. 5	1	34	2
L2300S 505	1	1	3	35	. 1	189	12	14.	2.12	4	5	W10	1	21	1	2	2	41	. 18	. 035	5	114	. 84	151	. 09	1	1.24	. 02	. 04	2	4	2
L2300S 75E	1	5	7	27	. 1	124	1	149	1.91	3	5	ND	1	19	1	2	2	39	. 19	. 024	5	4	. 67	94	. 08	1	. 4	. 02	. 05	1	3	2
L23005 100	1	9	7	44	. 2	147	10	315	1.73	6	J	KD	2	35	1	2	2	31	. 26	. 128	4	68	. 51	192	. 10	3	1.41	. 03	. 01	2	21	2
L2300S 125 E	1	0	5	35	. 1	227	13	237	2.04	4	5	N0	2	26	1	2	2	37	. 22	.026	5	114	. 13	121	. 10	-	1.25	. 03	. 07	2	1	2
L2300S 150 E	1	9	10	41	.	209	14	442	1.91	4	5	WD	1	26	1	2	2	30	. 24	. 027	4	157	. 14	128	. 07	6	. 7	. 03	. 07	2	1	2
L2300S 175E	1	13	12	6	. 1	12.	49	93	2.55	6	5	NO	1	39	1	2	2	31	. 35	. 050	5	216	2.32	235	. 08	17	1.57	. 03	, 07	1	2	2
L23005 200E	1	11	11	69	. 1	592	31	425	3.24	2	5	KD	1	33	1	2	2	30	. 30	. 043	5	215	1.9	167	. 08	16	1.2	. 03	.			
L23005 225E	1	10	16	56	. 1	390	23	563	2.32	7	5	ND	2	35	1	2	2	33	. 31	. 093	6	165	1.46	213	. 11	9	1.50	. 03	. 06	1	1	2
STD C/AU-S	20	59	39	135	6.9	47	29	1022	3.97	37	16	7	33	49	17	11	20	65	. 48	. 107	36	51	. 81	189	. 09	35	1.71	. 07	. 16	13	5	9

Shangri-la minerals froject - Castle file \# 87-0111
PAGE 17

SAMPLE	Mo PPM	Cu	Pb	In	${ }^{\text {Ag }}$		Co	Mn		As		Au	Ih		Cd	Sb	1	$\stackrel{\text { V }}{ }$	Ca	P	La	Cr	Mg	D2	11	${ }^{8}$	Al	Nz	K	4	1	Ptat
	PPM	PPM	PPM	PPM	Pri	PPK	PPA	PPH	1	PPM	PP\%	PPM	PPM	PPM	PPM	PPM	PPM	PPM	1	1	PPM	PPK	2	PPM	1	PPM	1	1	1	PPH	PP3	PrI
L2300S 250E	1	15	17	103	. 2	569	30	843	3.19	3	4	ND	2	43	1	2	2	24	. 35	. 055	4	173	1.87	297	. 07	18	1.09	. 02	. 10	1	1	3
L2300S 275E	1	10	11	107	. 1	221	13	714	1.10	4	6	ND	2	13	1	2	3	23	. 35	. 261	5	100	. 69	458	. 09	13	1.55	. 03	. 06	1	1	7
L2300S 300E	1	11	2	40	. 1	90	6	2 t 7	1.07	4	5	ND	1	35	1	2	2	15	. 23	. 108	4	33	. 30	142	. 01	10	1.39	. 04	. 04	1	11	2
L2300S J25E	1	12	11	71	.1	154	10	540	1.57	5	5	ND	2	43	1	2	2	23	. 35	. 173	6	60	. 59	$23!$. 09	12	1.51	. 03	. 10	1	1	2
123005350 E	1	10	5	46	. 1	171	10	466	1.69	4	5	ND	2	40	1	2	2	27	. 39	. 063	5	77	. 57	185	. 08	10	1.20	. 03	. 11	1	3	2
L2300S 375E	1	1	6	49	. 1	254	13	309	2.02	4	5	WD	2	36	1	2	2	32	. 31	. 040	5	106	. 33	141	. 09	18	1.29	. 03	. 11	1	1	21
L2300S 400E	1	11	3	34	. 1	2 B	15	271	2.27	6	5	ND	3	32	1	2	2	35	. 35	. 029	7	147	1.09	85	. 10	20	1.26	. 03	. 10	1	2	2
L2300S 425E	1	12	5	42	. 1	586	23	254	2.12	9	5	HD	3	25	1	2	2	41	. 24	. 044	10	190	2.04	57	. 11	25	1.33	. 03	. 09	1	3	2
L2300S 450 E	1	14	12	45	. 1	451	34	433	2.71	15	5	KD	J	29	1		2	40	. 23	. 044	10	217	2.25	105	. 11	34	1.97	. 03	. 10	2	51	15
L2300S 475E	1	18	13	60	. 1	431	34	813	3.11	7	5	HD	3	44	1	3	2	50	. 41	. 069	12	220	1.58	174	. 12	1	1.79	. 02	. 15	1	15	2
123005 500E	1	17	10	51	. 1	333	26	533	2.13	10	5	ND	3	30	1	2	2	49	. 33	. 044	11	152	1.30	122	10	17	1.53	. 02	. 15	1	46	2
L2400S 12001	1	41	28	216	. 3	65	14	1701	2.79	14	5	WD	2	76	1	2	2	11	. 82	. 159	,	27	. 56	264	. 01	13	2.10	. 02	. 15	1	2	2
L2400S 1175M	1	15	5	122	. 2	135	11	531	2.21	5	5	ND	2	32	1	3		28	. 26	. 109	7	27	. 50	144	. 11	22	2.36	. 04	. 14		1	2
L2400S 11501	1	25		174	. 2	123	12	121	3.05	10	5	NB	3	54	1	2	2	4	. 51	. 146	15	41	. 51	187	. 12	19	2.14	. 03	. 19	1	1	2
L24005 11254	1	11	8	63	. 2	257	14	398	2.35	5	5	10	3	28	1	3	2	35	. 37	.05\%	12	41	. 55	71	. 13	23	2.32	. 04	. 13	1	4	2
L2400S 11004	1	14	13	74	. 1	945	24	365	3.11	35	5	ND	J	45	1	2	2	32	. 33	. 116)	137	2.75	189	. 14	20	2.11	. 03	. 07	1	15	2
L24005 1050 ${ }^{1}$	1	11	11	47	. 1	1215	49	1155	4.09	20	5	ND	2	39	1	2	,	13	. 39	. 033	1	379	1.96	143	. 04	56	. 92	. 02	. 04	2	1	2
124005 10254	1	13	7	53	. 1	979	73	B14	2.88	10	5	10	2	35	1	2	2	29	. 35	.033	6	170	3.85	111	. 08	33	1.38	. 03	. 11	1	3	2
L24005 1000	1	16	5	45	. 2	969	64	094	3.17	18	6	ND	1	31	1	2	2	15	. 43	. 039	3	418	7.75	147	. 03	65	. 57	. 03	. 07	2	40	7
L24005 7754	1	14	14	54	.1	942	15	937	3.09	14	5	ND	2	32	1	2	2	20	. 37	. 029	5	343	4.73	118	. 06	50	1.03	. 03	. 09	1	3	2
124005950 H	1	17	13	0	. 1	1025	12	704	3.14	15	5	ND	2	34	1	2	2	26	. 39	. 033	8	274	5.06	118	. 04	45	1.70	. 03	. 09	1	5	2
L2400S 725N	1	15	12	48	. 1	1139	55	613	2.93	15	5	ND	2	37	,	2	2	22	. 27	. 050	6	212	2.76	167	. 11	20	2.25	. 04	. 10	1	1	2
L2400S 9004	1	17	14	4	. 1	840	60	873	2.54	12	5	ND	2	25	1	2	2	25	. 26	. 057	1	195	3.46	127	. 01	24	1.40	. 04	. 07	1	J	2
124005 875\%	1	1	15	59	. 1	1059	46	453	3.24	15	1	ND	2	24		2	2	12	.29	.023	2	511	9.05	4	. 02	4	. 37	. 02	. 04	1	1	6
L2400S 4504	1	32	12	59	.2	3 3 5	14	605	1.68	4	5	N0	1	41	1	2	2	23	. 46	.05t	11	75	1.51	92	. 06	15	1.34	. 05	. 09	1	2	5
L2400S 825\%	1	17	19	48	. 2	241	14	511	1.73	5	5	ND	2	27	1	2	2	25	. 25	. 036	5	71	. 64	124	. 08	11	1.08	. 02	. 06	,	J	2
L2400S 600 H	1	25	14	62	. 2	890	66	1134	3.17	15	5	ND	2	68	1	2	2	21	. 49	. 103	8	212	2.75	221	. 08	25	1.73	. 02	. 014	1	,	2
L24005 7754	,	21	10	64	. 2	746	36	1180	2.97	13	5	ND	3	41	1	2	2	42	. 34	. 101	10	149	1.61	176	. 12	14	1.97	. 02	. 08	1	6	2
1240057501	1	20	18	57	. 1	1178	51	1336	5.27	13	6	HD	1	137	1	2	2	14	. 47	. 044	2	432	b.41	407	. 02	43	. 3	. 01	. 06	1	1	6
124005725%	1	1	7	39	. 1	185	11	229	1.83	3	5	ND	2	29	1	2	2	32	. 24	. 012	5	75	. 44	110	. 10	7	1.50	. 02	. 04	1	-	2
L2400S 7001	1	9	9	47	. 1	184	10	191	1.99	5	5	ND	3	35	1	2	2	32	. 25	. 061	5	63	. 59	243	. 12	-	2.14	. 03	. 05	1	3	2
1240056754	1	1	5	45	. 2	153	6	148	1.30	8	5	KD	2	33	1	2	2	16	. 24	. 204	3	44	. 21	199	. 10	1	1.79	. 03	. 09	1	1	2
L24005 650H	1	1	12	45	. 1	343	14	212	2.27	3	5	KD	2	31	1	2	2	34	. 21	. 030	6	183	. 98	144	. 11	8	1.63	. 02	. 06	1		2
L2400S 6254	1	15	12	54	. 1	346	14	249	2.24	1	5	ND	2	33	1	2	2	35	. 27	.183	5	113	. 88	134	. 13	7	2.24	. 03	. 08	1	2	2
224005 600M	1	,	5	50	. 2	135	7	291	1.54	2	5	No	2	33	1	2	2	20	. 24	. 184	6	57	. 28	137	. 12	7	2.55	. 04	. 07	1	1	2
124005 5754	1	12	9	47	. 2	316	14	254	2.06	4	5	ND	3	41	1	2	3	30	. 23	. 056	7	112	. 72	336	. 12	4	2.25	. 03	. 06	1	1	2
STD C/AU-S	19	50	38	127	6.7	67	27	946	3.94	35	14	7	32	47	16	14	20	61	. 48	. 099	34	57	. 81	178	. 08	35	1.71	. 07	. 15	13	50	103

SHANGRI-LA MINERALS FROJECT-CASTLE FILE \# 87-0111 F
PAGE 18

SAMPLEI	$\begin{gathered} \text { Ho } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \text { In } \\ P P M \end{array}$	$\begin{gathered} \text { Ag } \\ \text { PPM } \end{gathered}$	PPM	C0	$\begin{gathered} \text { Mn } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{I} \end{gathered}$	$\begin{array}{r} \text { A5 } \\ \text { PPH } \end{array}$	$\begin{gathered} \mathrm{U} \\ \text { PPR } \end{gathered}$	$\begin{gathered} \text { AU } \\ \text { PPK } \end{gathered}$	$\begin{gathered} \text { Th } \\ \text { PP! } \end{gathered}$	$\begin{gathered} \text { Sr } \\ \text { Pr月 } \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { PFM } \end{gathered}$	$\begin{array}{r} \mathbf{f}_{1} \end{array}$	$\begin{array}{r} V \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{I} \end{gathered}$	q	$\begin{aligned} & \mathrm{Lz} \\ & \mathrm{PF} \end{aligned}$	$\begin{gathered} \text { Cr } \\ \text { PRM } \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{Z} \end{gathered}$	$\begin{aligned} & \mathrm{B}_{2} \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} 11 \\ I \end{array}$	$\begin{array}{r} \text { E } \\ \text { PPM } \end{array}$	$\begin{gathered} A! \\ Z \end{gathered}$	$\begin{gathered} \mathrm{Ma} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & k \\ & z \end{aligned}$	HPH	Aut PH:	Ptit PPI
L24005 550Y	1	,	9	52	1	175	9	251	1.62	3	5	KD	1	30	1	2	2	27	. 19		4											
L2400S 5254	1	6	6	44	. 1	119	7	325	1.49	2	5	ND	1	43	1	2	2	20	. 21	. 201	5	14	. 47	224	. 11	6	1.62 2.07	. 03	. 05	$!$	3	2
124005 S00k	1	11	10	43	. 2	525	24	353	2.65	2	5	ND	2	50	1	2	2	46	. 44	. 087	5	222	1.37	224	. 11	8	2.07 1.02	. 03	. 07	2	3	2
L2400S 4754	1	12	8	37	. 1	390	13	235	1.29	2	5	ND	1	56	1	2		18	. 32	. 110	4	11	. 60	134	. 01	9	1.05	. 03	. 08	1	1	2
L2400S 4501	1	8	15	33	. 1	154	θ	227	1.54	8	5	HD	2	42	1	2	2	22	. 33	. 138	7	38	. 2	94	. 16	12	2.90	. 04	. 09	1	1	2
L24005 4251	1	16	16	57	. 2	712	23	276	2.34	3	5	ND	2	40	1	2	4	35	. 27	. 081	6	140	1.05	196	. 16	7	2.55	. 03	. 08	1	1	2
L2400S 4004	1	10	14	45	1	253	11	590	1.50	2	5	N	2	30	1	2	2	23	. 19	. 060	5	6	. 38	251	. 11	3	1.70	. 03	. 07	2	1	2
L2400S 3754	1	9	8	3	. 2	222	10	219	1.50	3	5	WD	1	33	1	2	2	22	. 20	. 074	1	47	. 16	192	. 12	5	1.83	. 03	. 05	1	2	2
L2400S 3504	1	9	15	43	. 1	269	14	211	2.04	2	5	ND	2	30	1	,	2	27	. 19	. 035	6	153	. 6	236	. 12	3	2.05	. 03	. 06	1	1	2
L24005 325!	1	1	2	32	. 1	142	9	676	1.08	4	5	ND	1	30	1	2	2	17	. 21	. 044	3	49	. 35	208	. 07	7	. 97	. 03	. 06	1	3	2
1240053004	1	1	12	38	. 2	724	29	244	1.99	5	5	$N \mathrm{~N}$	2	38	1	2	4	21	. 21	. 085	4	117	1.63	149	. 10	17	2.13	. 04	. 10	1	1	2
L2400S 2751	,	9	11	50	. 1	540	21	26	1.42	3	5	H0	2	55	1	2	2	17	. 45	. 143	5	87	. 14	165	.11	15	2.13 1.77	. 05	. 06	1	1	2
L24005 2501	1	10	20	55	. 1	946	46	488	2.97	5	J	M 1	2	36	,	2	3	26	. 29	. 031	1	241	2.95	113	. 11	29	2.05	. 03	. 07	1	1	2
L2400S 225N	1	1	13	41	. 1	655	35	352	2.79	2	5	ND	2	36	1	2	3	26	. 28	. 017	4	241	1.8i	162	. 10	18	1.85	. 03	. 07	2	17	2
L2400S 175W	1	15	41	43	. 2	1102	90	102	3.48	5	6	No	2	23	,	2	2	29	. 25	. 030	5	667	1.25	63	. 07	67	1.29	. 03	. 10	1	56	2
L2400S 1504	1	16	10	42	. 1	${ }^{1294}$	120	871	3.51	7	5	ND	2	24	1	2	2	20	. 27	. 024	5	791	10.00	104	. 05	85	1.15	. 02	. 07	1	12	3
L24005 1254	1	13	9	31	. 1	1175	9	770	3.26	1	5	10	2	23	1	2	2	18	. 17	. 024	J	572	7.42	120	. 01	67	1.46	. 04	. 10	1	10	2
1340051004	1	18	12	40	. 1	1079	58	141	3.011	6	6	NID	3	25	1	2	2	31	. 21	. 027	9	467	5.34	105	. 10	30	1.89	. 03	. 08	2	46	2
L2400S 751	1	28	14	46	. 2	954	52	601	2.41	9	5	ND	1	42	1	2	2	19	. 33	. 035	7	417	4.13	141	. 01	31	1.81	. 03	. 08	1	132	2
124005 501	1	13	12	42	. 2	531	3	887	2.31	2	5	N0	2	3	1	2		17	. 23	. 038	5	377	2.24	(6)	. 07	16	1.57	. 03	. 08	2	6	2
L24005 251	1	6	6	31	. 1	244	13	361	1.79	2	5	KD	1	18	1	2	4	21	. 14	. 022	4	194	. 95	87	. 07	1	. 11	. 02	. 07	1	4	2
L2400S OH	1	8	9	29	. 1	162	9	213	1.26	2	5	\%	1	27	1	2	3	11	. 11	. 041	4	68	. 50	159	. 10	4	1.59	. 03	. 08	1	1	2
L2400S 255	1	8	7	37	. 1	165	11	280	1.36	4	5	K0	1	24	1	2	2	19	. 17	. 072	1	71	. 55	197	. 09	E	1.49	. 03	. 06	1	3	2
L2400S 50E	1		4	57	. 2	157	10	252	1.40	3	5	N0	1	23	1	2	2	20	. 20	. 058	4	16	. 48	150	. 017	5	. 1.47	. 02	. 05	1	4	2
L2400S 755	1	9	5	56	. 2	93	7	207	1.37	10	5	no	1	37	1	2	2	18	. 31	. 235	3	34	. 27	197	. 11		2.13	. 03	. 06	1	5	2
L2400S 100 E	1	8	7	33	. 1	125	1	148	1.35	8	5	N0	1	22	1	2	2	20	. 15	. 084	4	43	. 34	131	.11	1	1.93	. 03	. 06	2	1	2
L2400S 125E	1	7	5	46	. 1	367	14	255	1.60	5	5	NO	1	26	1	2	3	22	. 15	. 040	4	154	1.34	173	. 09	10	1.31	. 03	. 06	1	1	2
L2400S 1505	,	7	8	41	.1	220	11	155	1.19	4	5	ND		25	1	2	2	15	. 17	. 143	3	71	. 56	202	. 07	6	1.10	. 03	. 07	2	2	2
L2400S 175E	1	7	9	33	. 2	402	21	246	2.42	2	5	N0	1	22	1	2	5	31	. 11	. 018	4	280	2.05	71	. 08	12	1.04	. 03	. 01	1	46	2
L2400S 200E	1	9	7	34	. 1	386	19	256	2.31	3	5	H	2	21	1	2	3	$3!$. 24	. 024	5	233	$1 . \%$	111	. 10	12	1.52	. 03	. 11	1	1	2
L24005 225E	1	9	5	34	. 1	250	15	257	1.tif	1	5	10	3	19	1	2	3	27	. 16	. 019	5	173	1.29	88	. 09	6	1.11	. 02	. 06	1	4	2
L2400S 250E	1	8	7	33	. 1	304	20	241	2.12	3	5	ND	2	$2!$	1	2	3	31	. 17	. 014	5	212	1.46	70	. 10	1	1.21	. 02	. 05	1	1	2
L24005 275E	1	1	1	45	. 1	339	22	532	2.35	3	5	N0	1	26	1	2	2	31	. 21	. 021	5	250	1.72	164	. 07	13	1.05	. 02	. 05	2	5	2
124005300 E	1	17	9	37	. 1	366	24	337	2.41	3	5	N0	2	21	1	2	2	34	. 17	. 019	6	254	2.08	92	. 10	14	1.34	. 03	. 05	1	4	2
L2400S 325E	1	13	7	43	. 1	246	18	371	1.74	5	5	10	2	24	,	2	2	24	. 21	. 056	5	155	1.32	207	. 09	8	1.54	. 03	. 05	2	1	2
L2400S 350E	1	13	11	54	. 2	430	28	502	2.50	4	5	ND	2	J3	1	2	2	34	. 26	. 040	6	244	2.28	150	. 09	14	1.12	. 03	. 06	1	了	2
STD C/All-S	20	59	38	134	7.1	64	21	1017	$3 . \%$	37	16	7	34	50	17	18	20	65	. 48	. 103	36	51	. 8	288	. 09	35	1.71	. 07	. 16	14	51	9

Shangri-la minerals pfoject - castle file a 87-0111
FAGE 19

SAMPLEA

L2400S 375E	1	8	1	34	. 1	449	19	337	1.75	5	5	H0	1	49	1	2	2	21	. 42	. 057	3	201	1.47	211	. 08	5	1.10	. 03	. 05	1	5	2
124005400 E	$!$	9	1	43	. 3	270	15	364	1.65	8	5	ND	1	34	1	2	4	23	. 24	. 076	4	130	1.05	204	. 09	g	1.40	. 03	. 08	2	1	2
L25005 11004	1	37	14	150	. 2	55	10	1120	2.38	9	5	ND	2	61	1	3	2	44	. 75	. 150	10	21	. 47	197	.13	6	1.89	. 04	. 12	1	7	2
L2500S 10754	1	23	11	76	.1	45	1	619	2.05	3	5	HD	2	33	1	2	2	39	. 34	. 079	10	24	. 38	122	. 12	2	1.78	. 03	. 10	1	1	2
L2500S 10501	1	27	7	78	. 3	41	10	573	2.51	4	5	ND	3	37	1	2	2	50	. 39	. 069	14	$3!$.45	136	. 14	2	2.25	. 04	. 11	1	1	2
L25005 1025	1	40	13	131	. 1	127	15	907	2.17	12	5	MD	4	47	1	2	2	56	. 63	. 135	13	43	. 67	143	. 15	4	2.16	. 04	. 13	1	1	2
L2500S 10001	1	$3!$	11	134	. 2	123	14	476	2.45	12	5	ND	3	52	1	2	3	41	. 77	. 151	10	31	. 57	157	. 14	10	2.36	. 04	. 12	1	1	2
L2500S 975	1	46	20	136	1	146	16	162	2.33	8	5	ND	1	67	1	2	,	37	. 81	. 076	9	27	. 51	166	. 11	3	1.99	. 03	. 10	1	1	2
L25005 9501	1	36	14	84	. 3	231	18	701	2.71	8	5	ND	2	62	1	2	2	54	. 78	. 110	E	71	. 80	216	. 12	-	1.18	. 04	. 23	1	5	2
L25005 925	1	33	10	6	.1	160	15	490	2.9	6	5	ND	3	42	1	2	2	60	. 45	. 078	11	56	. 89	136	. 15	2	1.76	. 03	. 24	1	2	2
L25005900Y	1	30	8	81	. 2	201	11	445	1.99	6	5	KD	2	29	1	2	2	31	. 29	. 087	8	39	. 50	131	. 11	5	1.58	. 03	. 11	1	1	2
125005 1751	1	31	7	120	. 3	123	9	199	1.34	5	5	ND	2	50	1	2	3	18	. 32	. 247	5	26	. 32	299	. 01	7	1.47	. 03	. 08	1		2
L25005 5501	1	12	12	43	.1	339	11	493	2.04	7	5	no	2	37	1	2	3	29	. 25	. 071	!	13	. 80	214	211	5	1.76	. 03	. 12	2	1	2
L2500S 8254	1	26	9	64	. 2	495	21	1156	2.15	11	5	KD		60	1	2	2	30	. 43	. 131	6	113	1.19	321	. 09	3	1.34	. 03	. 12	1	1	2
L25005 8001:	1	28	27	58	. 1	142	12	1235	2.30	8	5	KD	2	41	1	2	2	31	. 52	. 027	9	92	. 11	18.	. 09	7	1.43	. 03	. 18	1	1	2
L2500S 7754	1	19	9	41	. 1	167	10	397	1.76	9		MD	2	44	,	2	3	25	. 44	. 042	7	53	. 47	141	. 12	1	2.18	. 04	. 13	1	4	2
L25005 7504	1	69	19	17	. 1	42	4	706	1.35	8	5	ND	2	42	,	2	3	27	. 35	. 089	5	16	. 24	255	. 11	6	1.78	. 04	. 13	1	1	2
L2500S 7254	1	16	19	51	. 1	144	10	466	2.23	7	6	ND	3	46	1	2		31	. 30	. 071	7	68	. 67	220	. 14	8	2.18	. 04	. 11	1	1	2
L25005 700H	1	9	6	34	.1	26t	12	238	2.07	7	5	KD	2	34	1	2	3	27	. 28	. 022	6	91	. 71	126	. 13	9	1.03	. 03	. 12	1	2	2
125005 6754	1	15	21	58	. 1	550	28	449	2.31	10	5	ND	1	56	1	2	2	22	. 42	. 044	4	140	1.45	277	. 09	11	1.50	. 04	. 11	1	1	2
L2500S 6501	1	11	12	53	. 1	796	53	110	4.31	10	5	WD	2	54	1	2	4	24	. 49	.03B	4	341	2.90	202	. 09	19	1.26	. 03	. 14	2	1	2
L25005 625 W	1	43	12	40	. 1	614	36	322	3.00	9	5	KD		25	1	2	2	23	. 22	. 011	4	269	3.01	65	. 07	21	. 82	. 03	. 06	2	11	2
L2500S 4001	1	16	15	44	.2	169	31	317	3.71	4	5	ND	,	40	1	2	3	51	. 37	. 027	7	259	2.01	54	. 13	1	1.34	. 04	. 11	2	12	3
1250055754	1	25	9	56	. 1	760	32	354	2.84	7	5	HD		62	1		3	42	. 40	. 049	12	156	1.51	110	. 16	t	2.54	. 04	. 07	,	2	2
L2500S 550	1	22	20	56	. 1	289	15	736	2.22	7	5	ND	3	42	1	2	4	39	. 31	. 091	8	79	. 73	193	. 14	3	1.99	. 03	. 11	1	1	2
125005 525*	1	244	13	50	. 1	225	17	501	1.86	5	5	KD	3	32	1	2	2	29	. 22	.013	9	58	. 52	144	. 13	3	2.15	. 03	. 09	1	1	2
L25005 4754	1	40	12	92	. 1	44	7	1706	1.71	7	5	K/		183	1	2	2	22	1.06	. 508	1	22	. 27	499	. 10	9	1.19	. 04	. 09	1	1	2
L2500S 4501	1	26	34	129	. 1	93	8	3165	2.19	15	5	MD	2	125	1	2	2	31	. 80	. 170	9	45	. 51	440	. 10	11	2.15	. 03	. 11	1	3	2
L25005 4254	1	17	15	77	. 2	232	15	1495	2.73	10	5	ND	4	52	1	3	3	43	. 41	. 083	1	98	. 80	185	. 13	6	2.51	. 02	. 10	1	2	2
125005 400H	1	18	12	60	. 1	115	9	1210	1.\%5	16	5	ND	2	21	1	2	3	32	. 17	. 005	7	41	. 45	169	. 12	4	2.06	. 03	. 06	1	1	2
L25005 3754	1	23	17	65	. 1	110	9	810	2.50	9	5	ND	4	87	1	2	3	31	. 50	. 230	11	50	. 54	195	. 14	7	2.67	. 03	. 13	1	8	2
L25005 350ㅔ	1	57	10	59	. 1	97	8	46	1.46	9	5	M	2	40	1	2	4	21	. 27	. 189	5	27	. 24	259	. 12	2	1.76	. 04	. 08	1	1	2
L25005 3254	1	21	7	59	. 1	340	15	345	2.16	4	5	N0	3	43	1	2	2	33	. 27	. 057	7	105	. 74	271	. 12	8	1.90	. 04	. 10	1	2	2
L2500S 30011	1	16	11	63	. 1	373	17	126	2.03	1	5	ND	2	39	1	2	4	30	. 31	. 151	7	45	. 60	291	. 11	3	1.47	. 03	. 09	1	1	2
L25005 2754	1	19	9	50	. 1	426	20	438	2.21	8	5	ND	2	33	1	2	3	28	. 24	. 066	8	150	1.01	252	. 11	12	1.90	. 03	. 10	1	1	2
L2500S 25011	1	15	8	42	. 1	239	12	467	1.59	4	5	ND	1	34	1	2	4	22	. 27	. 072	5	16	. 61	211	. 09	10	1.50	. 03	. 12	1	1	2
STD C/AU-S	21	60	38	135	6.9	70	J0	1022	3.99	39	16	1	31	50	16	15	20	65	. 48	. 100	57	59	. 11	190	. 09	38	1.71	. 07	. 16	13	50	100

L26005 625\%	1	13	3	46	. 1	852	57	752	2.99	3	5	ND	2	11	1	2	2	33	. 42	. 019	6	170	2.63	141	. 11	20	1.54	. 04	. 10	1	1	2
L26005 6001	1	12	23	45	. 1	311	22	966	1.82	3	5	HD	2	57	1	2	2	21	. 31	. 034	5	79	1.01	348	. 07	10	. 86	. 03	. 04	1	2	2
L2600S 5751	1	7	9	36	. 1	299	15	496	1.54	2	5	ND	2	31	1	2	2	24	. 21	. 014	5	64	. 13	192	. 08	12	1.25	. 03	. 05	1	1	2
L26005 5501	1	9	10	6	. 1	186	19	248	1.74	3	5	ND	2	46	1	2	2	17	. 23	. 068	4	144	1.05	236	. 09	17	1.60	. 04	. 10	1	1	2
L26005 5251	1	10	17	47	. 1	445	16	397	1.40	6	5	KD	2	43	1	2	2	26	. 23	. 011	5	74	. 41	194	. 11	11	1.54	. 03	. 10	2	1	2
L2600S 5001	1	10	8	43	. 2	388	18	345	1.75	5	5	ND	3	42	1	2	2	25	. 23	. 168	6	70	.63	257	. 11	11	1.13	. 03	. 07	1	2	2
L26005 4751	1	9	5	66	. 1	378	11	607	2.12	3	5	KD	J	38	1	2	2	32	. 23	. 109	7	97	. 13	232	. 12	10	1.69	. 03	. 04	1	1	2
L26005 450 H	1	10	12	90	. 1	295	16	812	1.55	4	5	ND	2	54	1	2	2	23	. 35	. 178	4	52	. 56	292	. 10	11	1.42	. 03	. 11	1	1	2
L2600S 4251	1	10	16	41	. 1	213	13	431	2.26	3	5	ND	3	38	1	2	2	35	. 27	. 032	8	103	. 13	113	. 11	2	1.63	. 05	. 13	1	1	2
L2600S 400 H	1	16	12	51	.2	116	9	754	1.84	2	6	ND	3	44	1	2	3	30	. 26	. 077	1	42	. 16	174	. 13	3	2.22	. 03	. 09	1	2	2
L2600S 375V	1	19	15	75	. 3	113	10	1426	2.41	2	5	ND	1	108	1	2	2	36	. 34	. 144	11	46	. 54	307	. 15	2	3.01	. 03	. 13	1	1	2
L26005 3501	1	17	20	63	. 1	105	10	1623	2.10	7	5	KD	3	59		2	2	34	. 51	. 087	9	44	. 42	221	. 14	5	2.26	. 03	. 12	1	1	2
L26005 32514	1	16	15	70	. 2	95	8	962	2.43	7	5	. 10	1	55	1	2	2	37	. 35	. 066		39	. 56	201	. 14	5	2.11	.03	. 13	1	15	2
L2600S 3001	1	13	8	72	. 2	261	16	124	2.12	23	5	HD	3	58	1	2	2	37	. 21	. 093	1	74	. 12	288	. 10	3	2.33	. 03	. 10	1	4	2
L26005 275\%	1	10	1	53	. 2	111	4	453	1.33	6	5	N0	2	45	1	3	2	19	. 28	. 249	8	36	. 24	197	. 11	2	2.08	. 04	. 07	1	1	2
L2600S 2504	1	13	1	45	. 1	133	10	312	2.17	3	5	10	3	41	1	2	3	31	. 21	. 119	10	67	. 57	148	. 12	7	1.76	. 03	. 06	1	2	2
L2600S 225"	1	9	8	44	. 1	118	9	434	1.52	7	5	ND	2	27	1	2	3	23	. 15	. 151	5	51	. 38	255	. 09	7	1.54	. 02	. 07	1	1	2
L26005 200W	1	13	19	53	. 1	267	13	548	1.44	4	5	KD	1	25	1	2	2	21	. 19	. 017	4	85	. 59	116	. 09	4	1.18	. 03	. 07	1	1	2
L2600S 175	1	1	4	38	. 1	293	13	496	1.65	5	1	ND	2	30	1	2	2	21	. 24	. 075	5	93	. 52	234	. 10	6	1.42	. 03	. 10	1	1	2
L2600S 150 H	1	9	1	49	. 1	183	11	462	1.99	6	5	\%	3	28	1	2	2	32	. 16	. 122	6	92	. 61	179	. 10	2	1.40	. 02	. 07	1	2	2
L2600S 125K	1	10	13	48	. 2	141	8	517	1.49	8	5	ND	3	34	1	2	2	22	. 24	. 197	7	42	. 31	250	. 11	4	1.72	. 03	. 09	1	1	2
L2600S 100以	1	12	7	67	. 1	122	9	949	1.69	7	5	ND	3	38	1	2	3	26	. 16	. 210	7	51	. 41	307	. 11	6	1.75	. 03	. 10	1	1	2
L24005 754	1	10	7	38	. 1	355	17	367	2.25	5	5	10	2	32	1	2	2	35	. 20	. 049	5	160	. 95	171	. 10	3	1.54	. 03	. 04	1	1	2
L2600S 5014	1	9	9	49	. 1	173	10	625	1.80	4	5	ND	2	35	1	2	2	27	. 26	. 084	5	10	. 59	233	. 10	3	1.52	. 02	. 11	1	1	2
L26005 251	1	13	8	49	. 1	332	21	617	2.71	7	5	ND	3	40	1	2	4	47	. 29	. 032	9	192	1.21	126	. 12	4	1.77	. 02	. 12	1	1	2
L2600S OH	1	13	10	44	. 1	320	24	765	3.04	8	5	ND	3	37	1	2	2	47	. 31	. 043	9	179	1.37	112	. 11	6	1.76	. 02	. 10	2	$!$	2
L2600S $25 E$	1	10	8	47	. 1	260	15	589	2.49	6	5	ND		31	1	2	2	36	. 26	. 029	6	187	1.16	161	. 10	4	1.22	. 02	. 11	2	2	2
L28005 50E	1	8	7	46	. 1	147	d	502	1.37	9	5	HD	2	33	1	2	2	21	. 23	. 117	5	48	. 34	255	. 10	4	1.43	. 03	. 07	1	1	2
L2600S 75E	1	11	6	39	. 2	232	11	412	1.58	6	5	ND	2	30	1	2	2	24	. 22	. 077	6	4	. 53	216	. 12	3	1.92	. 04	. 07	1	1	2
L24005 100E	1	13	17	62	. 1	231	15	1354	1.97	1	5	HD	2	43	1	2	2	29	. 30	. 055	6	129	. 17	324	. 04	4	1.31	. 03	. 07	1	1	2
L2400S 125E	1	10	8	39	. 1	322	16	248	2.20	6	5	ND	3	35	1	2	2	31	. 22	. 067	7	154	1.20	200	. 11	5	1.92	. 03	. 09	1	1	2
L2600S 150 E	1	9	7	40	. 1	211	12	329	1.09	5	5	ND	2	29	1	2	2	2	. 18	. 101	5	115	. 11	179	. 09	1	1.62	. 03	. 07	1	2	2
L26005 175E	1	11	2	43	. 1	304	13	196	1.16	3	5	ND	2	29	1	2	2	27	. 17	. 029	5	121	. 93	171	. 09	4	1.31	. 03	. 01	1	1	2
L2600S 200E	1	8	2	28	. 1	349	16	274	1.01	2	5	HD	2	24	1	2	3	25	. 19	. 022	4	159	. 95	95	. 04	7	1.23	. 03	. 10	1	$!$	2
L24005 225E	1	9	7	41	. 1	429	16	282	1.77	7	5	ND	2	42	1	2	2	23	. 23	. 191	5	115	. 92	294	. 10	5	1.47	. 04	. 08	1	3	2
L2600S 250E	1	10	6	65	. 1	929	42	590	2.15	7	5	HD	3	29	1	2	2	34	. 17	. 072	7	279	2.32	122	. 11	16	1.81	. 03	. 06	1	1	2
STD C/All-S	21	12	36	139	7.2	67	30	1052	3. 98	38	16	\bullet	36	52	16	15	21	67	. 48	. 106	38	61	. 18	185	. 10	35	1.71	. 07	. 17	13	49	98

SHANGRI-LA MINERALS FROJECT - CASTLE FILE \# 87-0111
PAGE 22

SAMPLEI	Ho	Cu	Pb	7 n	Ang	H_{1}	Co	Xn	fe	As	V	Aut	Th	Sr	Cd	Sb	B1	V	Ci		12	Gr	Mg	Da	It	1	Al	Na	K	,	Aut	Pttt
	PPM	PP\%	PPM	PPM	PP\%	PPM	PPM	PPM	1	PP\%	PPM	PPK	P9\%	PPK	PM	PPH	PPM	PPK	1	1	PPM	P\%	1	PPK	2	PPM	2	2	2	PFM	PPI	PPE
L2t00S 275 E	1	9	7	38	. 1	368	17	248	2.21	3	5	nd	2	26	1	2	2	33	. 17	. 031	4	159	1.24	145	. 11	9	1.65	. 03	. 07	1	J	2
L26005 300E	!	9	!	29	. 2	194	11	37.	1.50	5	6	KD	2	26	1	2	2	27	. 20	. 025	5	135	. 94	120	. 09	9	1.16	. 03	. 09	1	20	2
L2700S OE	1	!	9	31	. 1	201	12	311	J. 67	6	5	NB	2	42	1	2	2	25	. 23	. 034	6	51	. 55	224	. 12	6	2.04	. 04	. 05	1	1	2
L2700S 25E	1	17	12	115	. 1	162	11	1410	2.24	5	5	ND	2	57	1	2	2	31	. 42	. 287	9	54	. 56	420	. 12	5	2.11	. 03	. 12	1	1	2
L2700S 50E	1	15	14	62	.1	102	9	547	2.22	5	7	MD	4	21	1	2	2	31	. 23	. 232	11	31	. 37	183	. 18	12	3.65	. 03	. 07	1	2	2
l27005 75E	1	13	16	173	. 1	31	6	1913	1.54	8	5	nd	1	41	1	2	3	25	. 33	. 204	5	17	. 20	402	. 11	5	1.25	. 03	. 09	1	1	2
[2700S 100E	1	13	11	4	. 1	111	8	678	2.06	5	6	KD	3	38	1	2	2	30	. 27	.113	10	58	. 49	218	. 15	1	2.72	. 04	. 01	1	4	2
$127005125 E$	1	9	10	11	. 1	192	10	737	1.81	9	5	HD	2	47	1	2	2	25	. 33	. 206	6	6	. 56	341	. 11	1	1.87	. 03	. 11	1	1	2
L2700S 150 E	1	19	7	51	. 2	300	17	332	2.36	6	6	KD	3	35	1	2	2	37	. 21	. 112	9	114	1.24	90	. 13	4	2.57	. 03	. 06	1	69	2
L2700S 175E	1	9	15	40	. 3	183	10	783	1.11	6	5	N0	2	34	1	2	2	27	. 23	. 157	7	55	. 59	237	. 11	6	2.10	. 02	. 07	1	3	2
L2700S 200 E	1	8	9	59	. 1	253	13	53	1.10	4	5	ND	2	39	1	2	2	25	. 24	. 126	6	75	. 12	220	. 11	5	1.93	. 03	. 07	1	2	2
L2700S 225E	1	9	1	57	. 1	187	10	357	1.73	5	5	ND	2	29	1	2	2	25	. 20	. 158	5	58	. 49	172	. 11	7	1.92	. 03	. 04	1	1	2
L2700S 250 E	1	7	10	45	. 1	179	1	411	1.51	7	5	ND	2	29	1	2	2	21	. 22	. 151	4	47	. 47	149	. 10	4	1.60	. 03	. 04	2	2	2
127005275 E	1	5	7	37	.1	232	12	442	2.16	6	5	NO	1	29	1	2	2	31	. 18	. 031	5	127	1.07	122	. 09	g	1.00	. 02	. 05	1	4	2
L2700S 300E	1	10	12	44	. 1	218	12	552	1.75	5	5	KD	2	45	1	2	2	25	. 28	. 139	6	79	. 77	203	. 10	9	1.41	. 03	. 09	1	1	2
L2700S 3255	1	11	10	43	.2	99	7	501	1.45	5	5	N0	2	29	1	2	2	20	. 15	. 250	5	43	. 40	197	. 11	6	2.10	. 04	. 05	1	1	2
L2700S 350 E	1	10	7	39	. 1	135	9	401	1.58	7	5	ND	2	57	1	2	2	24	. 22	. 155	6	74	. 57	221	. 09	7	1.51	. 04	. 01	1	1	2
L2700S 3758	1	9	14	53	. 1	167	9	486	1.70	9	5	ND	2	33	1	2	2	25	. 23	. 163	5	72	. 65	197	. 10	8	1.60	. 03	. 0 여	1	10	2
L2700S 400E	1	!	5	46	. 1	214	12	461	1.63	9	5	ND	1	41	1	2	2	25	. 32	.129	5	75	. 61	229	. 69	7	1.35	. 03	. 08	1	2	2
L27505 4000\|	1	9	9	50	. 1	6	6	285	2.20	2	5	HD	1	14	1	2	2	52	. 15	. 050	3	7	. 20	63	. 15	2	1.92	. 03	. 04	1	b	2
L27505 39501	1	6	4	37	. 2	6	5	215	1.84	2	5	M 1	1	43	1	2	2	35	. 31	.029	5	9	. 16	155	. 12	6	2.39	. 05	. 05	1	3	2
L2750S 3900H	1	10	4	42	. 1	5	7	174	2.34	3	5	WD	2	16	1	2	2	51	. 20	. 051	4	9	. 21	6	. 16	2	2.43	. 04	. 05	1	1	2
L2750S 3150M	1	9	7	25	. 1	4	5	312	1.96	2	5	ND	1	24	1	2	2	41	. 24	. 017	4	6	. 10	143	. 12	3	2.22	. 04	. 05	1	3	2
L2750S 38001	1	9	6	34	. 1	7	6	119	1.98	2	5	ND	2	14	1	2	2	43	. 12	. 053	3	9	. 13	44	. 15	2	2.56	. 04	. 05	1	1	2
L2750S 37501	1	10	3	47	. 1	6	5	195	1.78	J	5	N0	2	13	1	2	2	37	. 15	. 082	4	!	. 13	80	. 14	2	2.25	. 04	. 04	1	3	2
127505 37001	1	11	4	60	. 1	6	7	290	2.66	4	5	ND	2	13	1	3	2	60	. 17	. 067	3	9	. 25	70	.16	3	2.70	. 04	. 05	1	1	2
12750536501	1	9	5	31	. 1	4	4	75	1.61	2	5	N0	1	12	1	2	2	33	. 11	. 087	3	7	. 07	49	. 13	2	2.46	. 03	. 02	1	11	2
L2750S 3600	1	9	1	31	. 1	4	4	65	2.05	3	5	ND	2	14	1	2	2	41	. 11	. 083	3	10	. 09	48	. 12	2	2.99	. 04	. 03	1	4	2
$\underline{27505} 3550 \mathrm{H}$	1	10	3	29	. 1	3	3	191	1.90	3	5	ND	2	9	1	2	2	36	. 07	.138	3	$!$. 06	52	. 14	1	3.23	. 03	. 03	1	15	2
L2750535004	1	14	9	52	. 2	7	7	242	2.62	5	6	MD	2	15	1	2	2	55	. 11	. 100	5	9	. 31	67	. 15	5	2.79	. 03	. 05	1	6	2
L2100S OE	1	12	8	59	. 1	137	7	119	1.51	9	5	N0	2	67	1	2	3	19	. 40	. 317	6	52	. 35	347	. 13	9	2.10	. 04	. 10	1	1	2
L2t00S 25E	1	9	,	47	. 1	91	7	465	1.34	1	5	ND	1	37	1	2	2	21	. 21	. 178	5	34	. 32	252	. 09	1	1.31	. 03	. 10	1	1	2
L2900S 50E	1	9	9	56	. 1	147	9	381	1.71	5	5	ND	1	32	1	2	2	29	. 21	. 111	6	57	. 51	222	. 10	8	1.40	. 03	. 08	1	1	2
L2100S 75E	1	9	8	50	. 1	251	13	488	1.69	10	5	ND	2	28	1	2	1	25	. 18	.041	5	46	. 74	203	. 09	8	1.34	. 03	. 013	1	2	2
L2800S 100E	1	9	5	49	. 1	160	10	347	1.60	5	5	ND	2	33	1	2	2	23	. 23	. 081	6	11	. 54	217	. 11	d	1.68	. 03	. 08	1	1	2
L2100S 125E	1	7	6	54	. 1	427	30	466	2.88	1	5	ND	2	35	1	2	2	32	. 26	. 030	6	117	1.12	170	. 10	14	1.31	. 03	. 08	1	1	2
STO C/AUl-S	20	62	36	135	6.9	65	30	1022	J.96	38	17	1	34	50	17	15	21	65	. 18	. 094	37	59	. 88	190	. 09	J3	1.71	. 07	. 16	13	49	97

SHANGRI-LA MINERALS FROJECT - CASTLE FILE \# 87-0111

SmPLEI	Ho	Cu	Pb	In	A0	H_{1}	Co	Mn	Fe	As	U	Hu	Ih	5 r	cd	Sb	p_{1}	4	Ca	P	La	cr	Mo	13	It	$\stackrel{\text { 『 }}{ }$	$\mathrm{Al}^{\text {l }}$	${ }_{3}$		\%		
	PPK	PPM	PPM	PPM	PPM	PPK	PPM	PPM	1	PPM	PPM	PPM	PPM	PPM	PP\%	PFM	PPK	PPM	2	2	PPM	PPK	2	PM	1	PPM	1	$\underline{1}$	1	PPr	PPI	PPI
L2B00S 150E	1	10	13	41	. 1	301	16	312	2.14	9	5	no	2	24	1	2	4	32	. 18	. 125	6	79	. 91	229	. 12	7	1.\%	. 03	. 08	2	18	2
L2400S 175E	1	1	10	47	. 2	198	12	461	1.82	6	5	KD	2	33	1	2	5	27	. 22	. 121	6	57	. 31	196	. 11	2	1.80	. 03	. 01	2	2	2
L28005 2005	1	10	10	48	. 1	300	12	421	1.11	7	5	ND	1	40	1	2	4	24	. 26	. 138	5	67	. 72	223	. 10	1	1.64	. 03	. 09	1	1	2
L28005 225E	1	10	11	38	. 1	292	14	351	2.16	2	5	ND	2	30	1	2	3	32	. 23	. 032	5	97	1.03	141	. 10	3	1.42	. 03	. 07	1	1	2
L2100S 250E	1	6	13	41	. 1	248	12	336	2.13	4	5	ND	1	27	1	2	3	33	. 21	. 043	5	16	. 87	150	.10	8	1.11	. 02	. 07	1	160	2
L2800S 275 E	1	7	14	76	. 1	153	9	637	1.47	1	5	ND	1	24	1	2	4	24	. 19	. 061	4	46	. 53	149	. 09	2	1.09	. 03	. 07	1	2	2
L2B00S 300E	1	1	1	49	. 1	302	15	443	2.15	3	5	WD	2	35	1	2	2	29	. 21	. 044	6	94	1.03	241	.11	10	1.84	. 03	. 01	1	1	2
L2800S 325 E	1	9	9	31	. 1	380	20	398	2.73	5	5	ND	3	27	1	2	3	39	. 22	. 037	7	$15!$	1.75	112	. 11	1	1.45	. 03	. 01	2	5	2
L28005 350E	1	11	10	49	. 4	298	17	648	2.13	5	5	ND	3	37	1	2	2	30	. 27	. 094	4	92	1.09	213	. 10	5	1.77	. 03	. 12	2	1	2
L2I005 375 E	1	10	12	41	. 1	197	12	465	1.83	3	5	ND	2	32	1	2	3	27	. 22	. 078	7	71	. 75	187	. 10	4	1.73	. 03	. 09	1	1	2
L2900S 400E	1	12	9	38	. 1	365	17	550	2.38	2	6	ND	2	30	1	2	3	30	. 22	. 025	4	114	1.55	116	. 89	t	1.05	. 03	. 01	1	3	2
L2800S 425E	1	12	16	45	. 3	261	14	499	2.11	7	5	No	3	45	1	2	2	29	. 29	. 114	7	76	. 79	224	. 12	-	2.13	. 04	. 10	1	1	2
L2800S 450E	1	,	7	35	. 1	591	19	210	2.37	2	5	ND	3	33	1	2	3	24	. 22	. 025	7	107	1.35	120	. 12	11	2.04	. 04	. 04	1	1	2
128005475 E	1	6	4	36	. 1	432	17	318	1.58	2	5	ND	2	30	1	2	5	19	. 22	.058	4	58	. 71	179	. 10	9	1.53	. 04	. 11	2	1	2
L29005 500E	1	17	17	47	. 2	685	29	573	3.08	8	6	ND	4	37	1	2	2	35	. 26	. 032	14	151	2.41	178	. 15	18	2.56	. 03	. 11	1	1	2
L2900S OE	1	17	17	50	. 1	631	31	459	2.95	7	5	ND	4	37	1	2	2	41	.29	. 034	12	142	1.71	132	. 14	23	2.01	. 03	. 14	2	1	2
L29005 25 E	1	29	24	54	. 3	479	23	537	3.13	5	5	ND	5	33	1	2	1	41	. 29	. 030	15	132	1.93	152	. 14	10	2.01	. 03	. 15	1	2	2
L29005 50E	1	25	6	52	.2	518	24	509	2.85	1	5	ND	4	38	1	2	2	40	. 35	. 056	11	119	1.41	192	. 13	14	2.09	. 03	. 11	1	1	2
L2900S 755	1	28	17	56	. 2	439	23	717	2.68	6	5	ND	4	39	1	2	2	40	. 31	. 074	10	103	1.16	237	. 13	7	2.17	. 03	. 16	1	3	2
L2900S 100E	1	36	15	50	. 1	401	23	622	2.67	4	5	MD	4	40	1	2	2	38	. 30	.031	11	106	1.28	214	. 33	10	1.89	. 03	. 16	2	1	3
L2900S 125E	1	25	13	41	. 1	306	16	356	2.22	6	5	N0	3	36	1	2	2	32	. 27	. 041	9	74	. 94	156	. 12	12	1.79	. 03	. 14	1	1	2
L29005 175 E	1	36	7	40	. 2	397	18	262	2.21	5	5	ND	3	29	1	2	3	32	. 23	. 026	6	110	1.53	106	. 11	7	1.54	. 03	. 11	1	2	2
L2700S 200E	1	14	10	45	.1	313	16	327	2.25	5	5	ND	3	35	1	,	2	34	. 27	. 045	8	85	1.03	188	. 12	7	1.92	. 03	. 07	2	1	2
229005 225E	1	11	3	45	. 1	422	22	524	2.69	4	5	MD	3	33	1	2	2	36	. 24	. 034	1	128	1.56	150	. 12	9	1.47	. 03	. 04	1	1	2
L29005 250E	1	12	8	36	.1	292	14	522	2.20	4	5	0	3	36	1	2	3	30	. 28	. 036	1	6	. 98	173	. 11	1	1.59	. 03	. 12	1	1	2
L2900S 275E	1	13	1	50	. 1	255	16	127	2.06	6	5	KD	2	41	1	2	2	21	. 35	. 059	6	11	. 95	241	. 10	11	1.55	. 03	. 14	1	1	2
129005 300E	1	13	11	39	. 1	384	23	744	2.67	2	5	ND	3	47	,	2	2	35	. 41	. 046	9	124	1.41	183	. 11	14	1.55	. 03	. 17	2	1	2
L2900S 325E	1	10	6	32	. 2	255	16	439	1.8t	5	5	MD	2	24	1	2	2	25	. 21	. 029	4	17	1.03	99	. 01	6	1.22	. 02	. 01	1	1	2
L29005 350E	1	17	13	49	. 1	407	24	569	2.91	4	5	ND	3	34	1	2	3	41	. 30	. 042	9	135	1.47	159	. 33	10	1.72	. 03	. 11	1	1	2
L2900S 375E	1	12	8	46	. 1	433	26	655	2.27	3	5	N	2	31	1	2	3	30	. 26	. 041	+	100	1.30	157	. 09	10	1.47	. 02	. 09	1	1	2
L2900S 400E	1	17	10	52	. 1	569	34	692	3.19	9	5	NO	3	30	1	2	4	42	. 25	. 041	11	159	2.14	123	. 13	1	1.95	. 02	. 09	1	1	2
129005425 E	1	34	9	88	. 2	1098	75	1776	3.89	14	5	HD	1	81	1	2	2	20	. 73	. 097	5	202	2.65	354	. 06	27	. 95	. 03	. 10	1	10	2
L2900S 450E	1	13	11	39	. 1	357	22	622	2.45	4	5	ND	2	35	1	2	2	31	. 24	. 027	1	119	1.37	156	. 10	4	1.51	. 02	. 08	1	2	2
L29005 475E	1	20	24	60	. 1	423	39	1026	3.35	10	5	ND	3	36	1	2	2	31	. 35	. 072	10	173	2.31	204	. 11	14	2.12	. 02	. 17	2	1	2
L2900S 500E	1	11	12	49	. 1	536	32	790	2.91	5	5	ND	3	37	1	2	5	35	. 30	. 045	11	142	1.93	111	. 12	11	2.06	. 02	. 13	2	5	2
L2900S 525E	1	19	15	53	. 1	589	37	830	3.14	!	5	ND	4	42	1	2	2	37	. 35	. 052	10	140	2.05	197	. 12	14	1.98	. 02	. 14	1	1	2
SID C/AU-S	20	60	40	133	6.9	4	29	1005	3.96	37	18	1	33	50	16	16	19	64	. 48	. 101	36	58	. 41	187	. 09	36	1.71	. 07	. 17	13	49	101

SAMPLE:

L2900S 550E	1	19	13	60	. 1	504	32	854	2.62	10	5	KD	3	44	1	2	3	33	. 33	. 075	14	77	1.07	227	. 13	11	2.34	. 02	. 07	1	1	2
129005575 E	1	17	20	55	. 1	545	38	1013	3.12	10	5	HD	3	49	1	2	2	37	. 29	. 046	14	138	1.71	208	. 12	16	2.24	. 02	. 13	1	2	2
L2900S 600 E	1	20	15	64	. 1	451	$3!$	881	3.02	1	5	N0	3	4	1	2	2	36	. 35	. 082	11	14	1.62	172	. 10	12	1.19	. 02	. 15	1	4	2
L3000S OE	1	11	15	38	. 1	24	14	681	1.67	11	5	ND	1	38	1	2		20	. 26	. 095	b	53	. 18	245	. 11		2.03	. 03	. 07	3	1	2
L3000S 25E	1	9	7	37	. 1	273	14	350	1.11	8	5	NO	2	30	1	3	4	19	. 19	. 124	5	53	. 47	165	. 12	7	2.04	. 03	. 07	2	1	2
L3000S 50E	1	9	13	45	. 1	376	23	599	2.44	12	5	ND	1	33	1	3	2	29	. 22	. 049	6	108	1.10	226	. 11	9	1.98	. 02	. 12	1	1	2
LJ000S 75E	1	10	13	44	. 2	501	15	338	1.19	15	5	ND	3	55	1	2	3	25	. 40	. 195	7	57	. 55	165	. 14	12	2.49	. 03	. 08	2	1	2
L3000S 100E	1	12	15	46	. 1	318	13	371	1.92	20		ND	1	25	1	2	2	21	. 14	. 137	5	5	. 51	227	. 12		2.03	. 03	. 06	3	1	2
L3000S 125E	1	\%	9	4	. 2	462	19	575	2.46	12	5	HD	J	37	1	2	3	35	. 23	. 073	8	81	. 54	247	. 13	12	2.15	. 02	. 09	3	520	2
L30005 150E	1	12	11	73	. 1	253	12	76	1.53	8	5	ND	1	40	1	2	4	20	. 23	. 146	4	33	. 45	332	. 09	5	1.19	. 02	. 09	1	1	2
L3000S 175 E	1	26	33	80	. 1	744	41	1301	2.11	23	5	ND	1	68	1	2	4	19	. 34	. 121	5	84	1.68	382	. 07	26	1.15	. 03	. 08	1	76	2
L3000S 200E	1	20	20	36	. 2	548	33	1117	2.12	9	5	ND	2	76	1	3	2	21	. 56	. 034	4	134	2.01	399	. 09	21	1.65	. 02	. 12	2	4	2
LJ000S 225E	1	12	12	45	. 1	$11 \% 2$	$6 J$	550	2.92	0	6	ND	3	38	1	2	2	22	. 26	.02t	11	13\%	3.27	209	. 11	32	2.16	. 03	. 12	2	1	2
L3000S 250E	1	13	13	37	. 1	881	41	611	2.36	1	5	ND	2	45	1	2		20	. 32	. 050	7	12	1.53	203	.10	14	2.02	. 03	.08	2	1	2
L3000S 275E	1	16	13	40	. 1	761	42	605	3.01	9	5	NO	5	37	1	2	2	32	. 32	.028	10	141	2.24	14	. 11	24	1.08	. 03	. 11		1	2
L3000S 300E	1	17	13	41	. 1	507	39	1113	2.76	11	5	KD	1	36	1	2	2	24	. 32	. 061	5	111	1.77	235	. 08	14	1.21	. 02	. 07	1	1	2
LJ000S 325E*	1	20	13	48	. 1	772	46	811	3.33	5	5	KD	3	46	,	2	2	30	. 31	. 040	9	202	2.39	254	. 12	16	2.01	. 02	. 18	1	1	2
LJ000S 350E	1	11	15	33	. 1	271	19	547	1.83	2	5	HD	2	42	1	2	2	21	. 26	. 022	1	98	1.43	189	. 10	4	1.21	. 01	. 11	1	1	2
$130005375 E$	1	13	8	40	. 1	445	30	926	2.66	4	5	N8	3	44	1	2	2	29	. 40	. 029		155	1.59	204	. 08	11	1.18	. 02	. 12	2	10	2
L3000S 400E	1	10	6	38	. 1	578	33	572	2.18	7	5	ND	3	36	1	2	2	24	. 31	. 034	1	133	1.53	115	. 10	18	1.69	. 02	. 12	2	1	2
$130005425 E$	1	15	8	19	. 1	1011	52	639	3.42	7	5	M ${ }^{\text {d }}$	4	34	,	2	3	29	. 28	. 035	10	112	3.25	146	. 10	28	1.02	. 02	. 17	2	2	2
LJO00S 450 E	1	16	21	45	. 1	588	40	142	2.97	g	5	KD	2	31		2	2	30	. 33	. 039	6	160	2.18	143	. 01	16	1.16	. 02	. 13	2	1	2
L30005 475E	1	13	11	42	.1	5%	34	546	3.11	9	5	WD	1	29	,	2	2	36	. 26	. 022	11	142	2.23	148	. 12	19	1.81	. 02	. 07	1	3	3
L3000S 500E	1	19	11	41	. 1	987	55	802	3.81	14	5	ND	2	27	1	2	2	32	. 25	. 039	7	250	4.39	113	. 07	30	1.39	. 02	. 09	3	1	2
L30005 525E	1	13	9	38	. 1	561	37	493	2.97	10	5	ND	J	29	1	2	4	29	. 26	. 033	1	162	2.06	127	. 09	15	1.37	. 02	. 13	1	1	2
L3000S 550E	1	14	10	41	. 1	710	37	641	3.35	7	5	ND	4	37	1	2	7	31	. 27	. 022	10	195	2.66	165	. 11	11	1.96	. 02	. 15	2	29	2
LJ000S 575E	1	12	8	63	. 2	394	17	729	1.73	4	5	HD	1	46	1	2	2	19	. 30	. 072	5	109	. 81	293	. 08	7	1.26	. 02	. 11	1	1	2
L3000S 600E	1	12	7	48	. 1	318	18	672	1.97	3	5	N	2	21	1	2	3	20	. 14	. 044	4	94	. 93	198	. 08	5	1.37	. 02	. 07	1	1	2
SID C/AU-S	20	59	40	135	6.9	69	29	1022	3.99	39	19	7	34	50	17	16	18	45	. 48	. 104	36	59	. 88	190	. 09	37	1.72	. 07	. 16	13	52	95

Y

