LOG NO: 1105	RD,
ACTION:	
FILE NO: 87-70:	3-16360

ASSESSMENT REPORT

GEOLOGY AND GEOCHEMICAL AND PHYSICAL WORK

BANDIT GROUP

TATSAMENIE LAKE AREA, B.C.

ATLIN MINING DIVISION (E, 1 W N.T.S. 104K/Tulsequah Sheet

Latitude 58°04'N

Longitude 132°16'W

OWNER: CHEVRON MINERALS LTD.

OPERATOR: CHEVRON CANADA RESOURCES LIMITED

Authors: Lorie Moffat Godfrey Walton

September 1987

FILMED

王下

CAL BRANC ENT REPOR

- 5

山 こ の に の に の に

54

TABLE OF CONTENTS

	Page
INTRODUCTION	4
LOCATION AND ACCESS	4
CLAIM STATUS	4
GENERAL GEOLOGY	6
LOCAL GEOLOGY	7
ALTERATION	10
WORK TO DATE	П
CONCLUSIONS AND RECOMMENDATIONS	13
REFERENCES	16
COST STATEMENT	17
STATEMENT OF QUALIFICATIONS	19
APPENDIX A- Geochemical Preparation and Analytical Procedure	20
- Assay Data	

TABLES

 Table 1 - Geological Descriptions of Channel Samples - Trench RR-17
 14

LIST OF FIGURES

		Page
Figure I:	LOCATION MAP (1:1,000,000)	5
Figure 2:	CLAIM LOCATIONS	6
Figure 3:	TRENCH LOCATION PLAN AND BULK TALUS FINES SAMPLE LOCATIONS (1:1,000)	in pocket
Figure 4:	TRENCH RR-17: DETAILED GEOLOGY AND SAMPLE LOCATIONS (1:100)	12

•

C

C

INTRODUCTION

Two trenches were blasted across a silicified, mineralized zone known as the RAM REEF on the BANDIT claims. Only one trench was able to be mucked down to bedrock and was subsequently mapped and channel sampled.

Bulk talus fines samples and regular talus fines samples were collected approximately 100 metres downslope of the RAM REEF and at a spacing of about 50 metres. The bulk samples were sieved on site down to 17 - 22 kg samples before being sent for analysis. Regular talus fines samples were collected from each of the bulk sample pits for comparison purposes. All of the samples were analyzed for gold.

LOCATION AND ACCESS

The BANDIT claims (Fig. 1) are located at latitude 58°04'N and longitude 132°16'W, 20 kilometers south of Tatsamenie Lake, in Northwestern British Columbia. These claim blocks are located in the southeastern corner of the Tulsequah mapsheet (104K/1W).

Access to the claims was by helicopter from an exploration base camp at Tatsamenie Lake. Provisions were flown into the base camp either from Atlin, 140 kilometers to the north or from Dease Lake, 150 kilometers to the east. Float equipped fixed wing aircraft are available in either location for charter.

CLAIM STATUS

The claims which comprise the BANDIT claim block are listed below with the pertinent information.

- 5 -

<u>Claim Name</u>	Record No.	Record Date	Expiry Date	No. of Units
BANDIT I	1486	August 21, 1981	August 21, 1987	20
BANDIT 2	487	August 21, 1981	August 21, 1987	20
BANDIT 3	1427	February 22, 1983	February 22, 1988	20
HIJACK I	1828	February 22, 1983	February 22, 1988	16

The claims configuration is outlined on Figure 2. The BANDIT claims cover an area of 1900 hectares.

GENERAL GEOLOGY

The area covered by the BANDIT claim block is part of Souther's (1971) geological map of the Tulsequah mapsheet. The main units exposed in this area are:

> Cretaceous-Tertiary: Triassic: Pre-Upper Triassic unit:

Sloko Group, rhyolite, trachite flows Granodiorite-foliated Greenstone, phyllite, limestone (Stikine Terrane)

The main unit in the area is the Pre-Upper Triassic assemblage which consists of greenstones, phyllites and limestones. This is the largest aerial extent of Pre-Upper Triassic assemblage on the Tulsequah mapsheet. The Pre-Upper Triassic assemblage is the basement unit in the area and is known as the Stikine Terrane. This terrane is allochthonous and was accreted to the North American craton in early Triassic time (Coney etal 1980, Souther 1977). After that time Triassic to Jurassic sedimentary, volcanic and volcaniclastic rocks were deposited on the Stikine Terrane. All of these rocks have been intruded by four distinct igneous events; one in the Triassic, one in the Jurassic, one in the Cretaceous Teritary and finally one in the Pleistocene period.

In the BANDIT area there are no units overlying the Stikine Terrane, however, the assemblage has been intruded by two igneous events. The oldest is a Triassic gran-

odiorite to diorite. This rock is easily identified in the field because it is well foliated unlike the other intrusive events.

The second igneous event is the Cretaceous to Tertiary Sloko group consisting of a series of felsic volcaniclastic and intrusive rocks. There is no indication of any definite volcanic centre in the area.

A main structure visible in the Landsat images is the northeasterly trending structure that is apparent for 30 kilometers. This structure is on the eastern side of the claim block and represents, in part, the contact between the Stikine Terrane and the Triassic diorite. A structure visible on the regional geological map (Souther, 1971) is a dyke swarm striking north-northwest. This dyke swarm is on the west side of the claim block.

A large alteration zone on the northwestern side of Tatsamenie Lake has been staked on several occasions and has been heavily prospected for a number of years especially during the height of the porphyry copper exploration. There are a number of copper showings in the general area; two have been classified as porphyry copper type occurrences. One is just east of the big bend in Tatsamenie Lake and the other is on the eastern edge of the 104 K map sheet. Both are fairly small. Some drilling was carried out in the early seventies on the southeastern shore of Tatsamenie Lake which is supposed to have intersected some porphyry style copper mineralization.

LOCAL GEOLOGY

The claim block is primarily underlain by the Pre-Upper Triassic Stikine Terrane greenstones and limestone. The stratigraphy within the Stikine assemblage has been unravelled by Chevron geologists' mapping elsewhere on the mapsheet. The basal unit is a limestone which is overlain by a phyllite suite which in turn is overlain by a tuffaceous package. The limestone does not outcrop on the BANDIT group. The overlying phyllite and greenstone outcrop on the property.

The phyllite package, elsewhere in the mapsheet, contains a number of marker horizons, one of which is a mafic flow of andesitic composition, another is a pink banded limestone. These marker units are separated by a great thickness of phyllitic siltstones, some of which are partially silicified. The phyllite package present on the BANDIT claims consists of very siliceous siltstones. Some of the phyllite could be interpreted as a phyllitic greenstone.

The phyllite is overlain, probably unconformably, by a package of volcanic and volcaniclastic rocks. The tuffaceous portion of the package is andesitic to basaltic in composition. The tuffs vary from fine greenish thinly bedded to lapilli tuffs (Walton, 1985).

An east-northeast striking zone, up to 50 meters wide, of altered volcanic rocks makes up the RAM REEF. It is sharply defined on the hanging wall by a well defined fault. The fault, observed in a few locations, is steeply dipping to the north and is defined by a gouge zone measuring 2 cm to 1 meter wide. On the footwall side of the fault the contacts between pervasively altered, volcanic rocks and fresh, unaltered rocks are transitional.

ALTERATION

The volcanic rocks in the area of detailed mapping have been subjected to varying degrees of alteration. Three separate alteration facies have been recognized and are briefly described as follows:

- (i) Fresh: minor carbonate and quart filled fractures, minor specularite;
- Propylitic: bleached, strong pervasive carbonate and clay (montmorillonite), weak pervasive silica, strong white carbonate veining, orange weathering.
- (iii) Silica: light to dark grey, weak to strong pervasive silica, minor quartz
 veining, 1 3% disseminated and minor pyrite veinlets.

Contacts between alteration facies are transitional. In general, the silica facies, in which anomalous gold mineralization has been found, has an orientation parallel to the east-northeast fault. Silicification is best developed where conjugate fracture jointing is strong.

The silica facies is widest in the central zone of mapping where it reaches a maximum width of 50 metres and a strike length of approximately 150 metres. To the west and east of the central zone silica, alteration narrows. Often found within silicification zones are narrow lenses of unaltered tuff.

Volcanic rocks from the east zone of the mapping area display intense propylitic alteration. The tuffs are also cut by irregular, narrow, less than I meter wide, vein-like and stockwork silica zones. Alteration within tuffs from the west zone of the map area are similar in character to the central and eastern zone except for a few minor differences. Silicified tuffs within the western zone contain small zones, only a few metres by one metre, of crackle breccia textured, white chalcedony veins and veinlets. These "crackle" zones contain finely disseminated pyrite mineralization up to 10% (Shaw, Thick, 1983).

WORK TO DATE

Work completed prior to the 1987 field season included geological mapping and prospecting, geochemical surveys of soils, silts and rocks and hand trenching.

Geological mapping was carried out at 1:10,000 scale and 1:1000 scale over the areas of interest. Grids were established on the claims and B-horizon soil and talus fines samples were collected. Soil sampling was also carried out on a regional scale. Rock samples were typically grab samples which represented the rock types in outcrop. A total of 16 trenches were blasted and channel sampled to get a continuous sample across measured widths.

In 1987, two trenches were blasted, across the RAM REEF silica zone, to straddle an area of anomalous gold values (Fig. 3). Only the eastern trench, RR-17, was able to be mucked down to bedrock. A day was spent mapping and channel-sampling the 25 metre long trench (Fig. 4). Mapping was completed at a scale of 1:100. Twenty-two channel samples were collected and have been summarized in Table 1. Approximately 100 metres downslope of the RAM REEF, bulk talus fines samples were collected at about 50 metre spacings. A total of 18 bulk samples, weighing from 25 - 55 kg each, were collected. These were sieved on site through a -6 mesh sieve down to samples weighing from 17 - 22 kg, then sent to Chemex Labs in North Vancouver to be

Tuff: massive, dark gray. Locally siliceous, Lapilif? Trace to minor disseminated 2019 ×. I - 12 Au (g/t) <u>'</u>2 120 0 Length (m) .°°.∖ 2 0.100.100.1 LM7T 1-001 - 002 - 003 - 005 - 006 - 006 - 008 - 008 - 009 - 010 - 010 ö 0 Sample No.

.

analyzed for gold by fire assay. Regular talus fines samples weighing up to 0.5 kg were collected from each of the bulk sample sites and analyzed for gold, arsenic, antimony and 24 other elements offered by Chemex as an ICP package. These samples were collected for comparison purposes. The assay results are in Appendix A.

CONCLUSIONS AND RECOMMENDATIONS

Results of the bulk talus fines sampling indicate a weakly anomalous zone (gold) from 2 + 00 W to 8 + 50 W, approximately 100 metres downslope of the baseline. Trenches RR-4, 5, 10, 17 and 18 and Panel 2 fall within this zone. The values from the regular talus fines samples tend to be higher than those for the bulk samples but still outline the same zone of anomalous gold. A couple of spot highs around 6 + 00 W and 0 + 50 W were also noted but are fairly weak.

The trenching results from past years indicate that the gold mineralization within the RAM REEF is structurally controlled. The mineralization is associated with silica zones but tends to be erratically distributed (Shaw, 1983) making it difficult to outline a zone with width potential in the trenches. A diamond drill hole approximately 120 metres deep would test the gold distribution at depth and would be helpful in assessing the potential for this area.

Table I

Geological Descriptions of Channel Samples - Trench RR-17

\$

Sample No	Sample Interval (m)	Sample Interval	Geological Description
LM7T1-001	2.0 - 3.0	J . 0 m	Brown weathered sfc, pink to gray fresh sfc. Aphanitic. Minor quartz veinlets. Extremely well-fractured to shattered. Silicified clots of fine sulphides to 0.03%. Dissem. pyrite locally to 0.1%.
LM7T-002	3.0 - 4.0	1.0 m	Medium gray to bleached on fresh sfc. Aphanitic. Limonitic stockwork. Extremely well-fractured to shattered. Silicified. Minor fine sulphides. Locally dissem. pyrite to 0.1%
LM7T1-003	4.0 - 5.0	1.0 m	Light-medium gray fresh sfc. Silicified. Extremely well-fractured. Minor quartz veinlets. Pyritic to 1.0%
LM7T1-004	5.0 - 5.7	0 . 7 m	Light-medium gray fresh sfc. Partially silicified. 1% pyrite.
LM7T1-005	5.7 - 6.4	0.7 m	Fault Zone: light-medium gray. Bleached. Brecciated. 2 - 6 cm gouge. Limonite on fractures. Possible fine sulphides.
LM7T1-006	6.4 - 7.4	1 . 0 m	Medium gray to pink fresh sfc. Very well- fractured. Possible fine sulphides.
LM7T1-007	7.4 - 8.4	1 . 0 m	Medium gray-green fresh sfc. Bleached. Locally silicified. Well-fractured. Possible dissem. pyrite.
LM7T1-008	8.4 - 9.4	1.0 m	Medium-dark gray. Aphanitic. Minor quartz veinlets. Dolomite on fractures. Locally pyritic to 1.0%.
LM7T-009	9.4 - 10.4	1.0 m	Medium-dark gray fresh sfc. Patchy silicification. Pyrite disseminated to 1.0%.
LM7T-010	10.4 - 11.5	l₊l m	Dark gray. Fine-grained. Very well fractured. Limonitic microfractures. Disseminated pyrite to 0.1%

,

	Sample No	Sample Interval	Sample Interval	Geological Description
-	LM7T1-011	1.5 - 12.5	1.0 m	Dark gray fresh sfc. Fine-grained. Dolomite crystals. Minor quartz veinlets. Limonite in microfractures. Dissem. pyrite to 0.1%. Possible dissem. fine sulphides.
	LM7T1-012	12.5 - 14.0	1 . 5 m	Medium-dark gray. Aphanitic. Limonitic microfractures. Dissem.pyrite to 0.1%.
	LM7T1-013	14.0 - 15.0	I₊0 m	Mottled green and white. Carbonatized. Fine to medium grained. Quartz veinlets to stockwork.
	LM7T1-014	5.0 - 6.0	1.0 m	Medium green to dark gray. Carbonate on fractures. Minor quartz veinlets. Limonitic microfractures. Possible trace fine sulphides.
	LM7T1-015	6 . 0 - 7 . 0	l.0 m	Dark gray with patches of green. Carbonate on fractures. Limonitic microfractures. Minor quartz veinlets. Trace dissem. pyrite.
	LM7T1-016	17.0 - 18.0	1.0 m	Medium-dark gray. Aphanitic, Limonite microveinlets. Quartz veinlets. Calcareous fracture coatings.
	LM7T1-017	18.0 - 19.0	1.0 m	Dark green mottled. White quartz veinlets. Weakly calcareous.
	LM7T1-018	19.0 - 20.0	l . 0 m	Dark gray with mottled green patches. Quartz veinlets. Calcareous fracture coatings.
	LM7T1-019	20.0 - 22.0	2.0 m	Medium-dark gray. Aphanitic. Local breccia: 2–8 mm fragments of white quartz. Dolomitized?
	LM7T1-020	22.0 - 23.0	l . 0 m	Medium-dark gray. Patchy silicification (weak). Minor quartz veinlets. Pyrite to 0.5%.
	LM7T1-021	23.0 - 24.0	1.0 m	Medium-dark gray-green. Weak silicifi- cation. Minor quartz veinlets. Pyrite to 0.5%.
	LM7T1-022	24.0 - 24.9	0 . 9 m	Medium-dark gray. Patchy silicification. Moderate calcite veining approaching stockwork locally. 0.5% dissem. pyrite.

C

.

LIST OF REFERENCES

- Coney, P.J.; Jones, D.L.; Monger, J.W.H. Cordilleran Suspect Terranes, Nature, Vol. 288, pp 329-333.
- Gray, M.; Walton, G. (1983). Geological and Geochemical Survey, HIGHLINER Group, Assessment Report, 10 p.
- Jones, D.L.; Cox, A.; Coney, P.; Beck, M. (1982). Scientific American, November, pp. 70–84.
- Souther, J.G. (1971). Geology and mineral deposits of Tulsequah map area, British Columbia. Geological Survey of Canada Memoir 362, 84p.
- Souther, J.G. (1977). Volcanism and Tectonic Environments in the Canadian Cordillera – a second look, Geol. Ass. of Canada, Special Paper, No 16., 24 p.
- Thicke, M.; Shaw, D. (1983). Structural, Geological and Geochemical Survey, BANDIT Group, Assessment Report, 13 p.
- Thicke, M.; Shannon, K. (1982). Geological and Geochemical Survey BANDIT 1 and 2 Claims, Assessment Report, 11 p.

Walton, G. (1985). Compilation Report, BANDIT Group. Chevron In-House Report, 27 p.

COST STATEMENT BANDIT

.

(I) Personnel

			Field Days	Office D	ays
	G. Walton L. Moffat J. Burrows T. Reeve B. Dunsterville	Supervisor Geologits Sampler Assistant Assistant	 4 7 5 <u>2</u> 19	 3 - - - 4	
	19 field days 4 office days	at \$110/day at \$210/day		\$ 2,090.00 <u>840.00</u>	
(2)	Camp cost			\$ 2,930.00	\$ 2,930.00
	Man days \$60/da includes blas	y x 35 days ters and helicopter	crew	2,100.00	2,100.00
(3)	Helicopter				
	16.3 hours at \$39 16.3 hours at 22	10/hour gal/hour x \$6.50/gal	•	\$ 6,357.00 2,330.90	
				\$ 8,687.90	8,687.90
(4)	Blasting Cost				
	Blasting crew – 2	2 men - \$550/day x 6	5 days	\$ 3,300.00	3,300.00
(5)	Drafting – 2 day	ys at \$150 .			300.00
(6)	<u>Assays</u>				
	22 trenches assa 18 bulk talus fine 18 soil at \$6.50	yed at \$6.50 es at \$25.		\$ 143.00 450.00 117.00	
				\$ 710.00	<u>\$ 710.00</u>
				TOTAL	<u>\$18,027.90</u>

(

STATEMENT OF QUALIFICATIONS

I, Lorie Moffat, graduated from the University of Alberta in 1981 with B.Sc., specialization in geology. I have worked in the mineral exploration field since graduation.

I am a member in good-standing of A.P.E.G.G.A.

LORIE MOR

September 1987

STATEMENT OF QUALIFICATIONS

l, Godfrey Walton, have worked as a geologist since 1974 in Alberta, British Columbia, Yukon, Northwest Territories and Ontario. I graduated in 1974 with a B.Sc. (Hons) degree from the University of Alberta and was awarded a M.Sc degree from Queens University in January 1978. I have been employed by Chevron on a permanent basis since 1976.

I am a member in good standing with the Canadian Institute of Mining and Metallurgy, the Society of Exploration Geochemists and the Mineralogical Association of Canada.

The work done on the BANDIT was done by me and under my supervision.

GODFREY WALTON

APPENDIX A

Geochemical Preparation and Analytical Procedures

Split core samples were crushed, pulverized and analysed by the following procedures:

- Multielement ICP

A 0.2 gram sample is digested to dryness in a perchloric-nitric hydrofluoric acid mixture to ensure total digestion. The sample is then taken up in dilute HCl and analyzed by ICP for the following elements, listed with their detection limits:

A 1	0.01 %	Cr	l ppm	Mn	l ppm	Na	0.01 %
Зα	l ppm	Co	l ppm	Мо	l ppm	Sr	l ppm
Зе	0.05 ppm	Cu	l ppm	Ni	l ppm	Ti	0.01 %
3i	2 ppm	Fe	0.01 %	Р	10 ppm	W	10 ppm
Cd	0.5 ppm	Pb	2 ppm	ĸ	0.01 %	V	l ppm
Ca	0.01 %	Mg	0.01 %			Zn	l ppm

- Silver (AAS)

Silver is analysed from the same solution used in the multielement ICP except the solution is analysed for Ag on an atomic absorption spectrophotometer to a detection limit of 0.5 ppm.

- Gold (FA + AA)

A 10 gram sample is used in a standard fusion with a basic litharge flux, inquarting with silver cupelation. The silver bead is digested in nitric acid followed by an aqua regia digestion in a hot water bath. The solution is diluted to volume and analysed for Au on an atomic absorption spectrophotometer to a detection limit of 5 ppb.

- Antimony (ppm)

A 2.0 gm sample digested with conc. HCl and potassium chloride in hot water bath. The iron is reduced to Fe $+^2$ state and the Sb complexed with I⁻. The complex is extracted with TOPO-MIBK and analyzed via A.A. Correcting for background absorption 0.2 ppm \pm 0.2. Detection limit: 0.2 ppm

- Arsenic (ppm)

A 1.0 gram sample is digested with a nitric-aqua regia mixture for 2 hours. The digested solution is diluted to volume and mixed. An aliquot of the digest is acidified, reduced with KI and mixed. A portion of the reduced solution is converted to arsine with NaBH₄ and the arsenic content determined using flameless atomic absorption. Detection limit: 1 ppm

Gold (Fire Assay)

High samples in Au are redone by standard fire assay techniques. 0.5 assay ton sub samples are fused in litharge, carbonate and siliceous fluxes. The lead button containing the precious metals is cupelled in a muffle furnace. The combined Ag & Au is weighed on a microbalance, parted, annealed and again weighed as Au. Detection limit is 0.003 oz/t.

(

		<u>г</u> т	······		·	r		 	
Page No. 1 Tot. PO. 1 Date O. 2 S-SEP-87 Invoice I. 1-872423 P.O. 2 :36892	A8722423								white lev
DN CANADA RESOURCES LTD. LS STAFF - 1055 W. HASTINGS ST. UVER, B.C. E9	RTIFICATE OF ANALYSIS								
To : CHEVRO MINERA MINERA MINERA MINERA 1900 - 1900 - 1900 - 1900 - 1900 - VANCOUVER V ANCOUVER V V7J-2CI 221	CEI								
ANK AVE . NOK MANK AVE . NOK MANK AVE . NOK MANK AVE . NOK		Au ppb Fataa	2000 2010 2010 2010 2010 2010 2010 2010	2590 2590 7800 1220	1 1 2 0 0 1 1 2 0 0 1 2 4 5 0 0 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	11 17 17 10 10 10 10 10	1002 1002	 	
		PREP CODE	 500555 500555 500555 500555 500555 500555 500555 5005 50055 50055 50050	205 205 205 205 205	 205 205 205 205 205 205 205 205 205 205	205 205 205 205 205 205 205 205 205 205	205	 	
		SAMPLE DESCRIPTION	LMT1-001 LMT1-002 LMT1-003 LMT1-003 LMT1-004 LMT1-005	LMT1-005 LMT1-007 LMT1-007 LMT1-008 LMT1-009 LMT1-009	LMT1-011 LMT1-012 LMT1-013 LMT1-013 LMT1-014 LMT1-015	LMTT -016 LMTT -017 LMTT -017 LMTT -018 LMTT -019 LMTT -020	LMT1-021 LMT1-022		

ł

To : CHEVRON CANADA RESOURCES LTD. MINERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Froject : M529 Comments: CC: PAT HENRY

A8721070
ANALYSIS
OF
CERTIFICATE

SAMPLE DESCRIPTION	PREP CODE	Au FA g/tonne	 	
JB7T5-001 JB7T5-002 JB7T5-003 JB7T5-003 JB7T5-004 JB7T5-005	207 207 207 207 207	0 0 0 4 1 0 4 1 0 5 5 0 4 8	 	
	207 207 207	0.96		
JB7T5-011 JB7T5-012 JB7T5-013 JB7T5-014 JB7T5-014 JB7T5-015	207 207 207 207	0 . 21 0 . 14 0 . 27 1 . 34	 	
JB/T5-016 JB/T5-017 JB/T5-018	2001 2001 2001	000		

,

-

 Θ

PHONE (604) 944-0221

To : CHEVRON CANADA RESOURCES LTD. MINERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Froject : M519 Comments: CC: FAT HENRY

CERTIFICATE OF ANALYSIS

	دو چ 10 ²)	8.22 9.26 9.62 9.47	9.22 9.16 8.05 7.79 7.45	7.54 7.43 7.77 7.27 8.32	7.79 8.02 8.02	
9534	Ba ppm I (ICP)	800014 800014 800014	8444 8444 8668 8668 8668 8668 8668 8668	444 866 866 87 87 87 87 87 87 87 87 87 87 87 87 87	\$889 666 60 60 60 60 60 60 60 60 60 60 60 60	
<u>A871</u>	Ni ppm (ICP)	178 72 888 158 158	138 103 103 120 111	93 96 131 87 103	0 4	Ĵ
SIS	Co ppm (ICP)	288894	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 28 28 88 87 88 98 88 84 98 98 98 98 98 98 98 98 98 98 98 98 98	28.8	Ċ,
NALY	Cd ppm (ICP)	00000 	~~~~~~ 00,000	w % 4 4 %	<i>と</i> 500 200	: NOITA
OF A	Bi ppm (ICP)	00000 00000	VVVVV 44444	VVVVV 44444	VVV 0000	CERTIFIC
ATE	Pb ppm (ICP)	81 17 17 17 0 0	10 33 16 16	10 14 12 20 20	7738 7408	
LIFIC	P pps (IQP)	1280 1050 1120 1040 1140	1040 990 1380 1460 1160	950 1010 1050 900 1220	080 064 00 00 00 00	
CER	Zh ppm (IQP)	171 140 133 1133 112	129 123 133 130	108 625 368 323 323 641	765 357 558	
	W PPB (ICP)	<u>999999</u> VVVVV	999999 VVVVV	00000 VVVVV	0000 VVV	
	Mo ppm (ICP)	00000	15 16 16	∧ ∧ 	V V	
	Au ppb F AIM A	9305 9305 1250 545	1000 905 1330 2700 650	365 265 265 265 265 265 200 320	390 570 350	
	Sb ppn	00.66	0.000 0.66 0.64		8000 1000	
	As Dim	19591	23.990 23.990	422880	82 828 1	
	REP ODE	2322 2322 2322 2322 2322 2322 2322 232	232 232 232 232 232	232 232 232 232 232 232	523 323 527	
	ΑU	201 201 201 201 201	201 201 201 201 201 201	201 201 201 201 201 201	201 201 201	
	SAMPLE DESCRIPTION	JB7T4-101 JB7T4-102 JB7T4-102 JB7T4-103 JB7T4-104 JB7T4-105	JB7T4-106 JB7T4-107 JB7T4-108 JB7T4-108 JB7T4-109 JB7T4-109	JB7T4-111 JB7T4-112 JB7T4-113 JB7T4-113 JB7T4-115 JB7T4-115	JB/T4-116 JB/T4-117 JB/T4-118	

,

Chemex Labs Ltd Analytical Chamists • Geochemists • Registered Assayers 212 BROCKSEANK AVE., NORTH VANCOUVER, BRITTISH COLUMBIA, CANADA V7J-1CI FHONE (604) 914-0121

IO : CHEVRON CANADA RESOURCES LID. MINERALS STAFF 1900 - 1055 W. HASTINGS ST. VANCOUVER, B.C. V6E 2E9 Project : M589 Comments: CC: PAT HENRY

4	ĺ
5	
5	
2	1
A8	
7 0	
SIS	
Z	
P	
AN	
للم	
0	
E	
R	
С С	
H	
5	ļ
Ē	
O	

			<u></u>	·	······································	- 1
	8 (D)	0.995 3580 3880 3880 3880 3880 3880 3880 388	0.95 0.95 0.95		000	
	Na % (1CP)	1.42 2.56 2.56	2.69 3.06 1.54	2.05 2.44 1.73 2.17 2.17		\int
	Sr ppm (ICP)	3445 3455 3455 3288 3288	243 294 670 611 306	411 318 462 462 341 341	N 2380	Q
	Ti % (ICP)	0.550	0.57 0.55 0.56 0.64	0.554 0.554 0.554 0.554 0.554	000 888	CATION :
	Ag ppm AAS	00111	1.0 0.5 0.5 0.5	00000 22222		CERTIFIC
	Cupper (ICP)	182 207 289 289 265	237 273 273 273 273 172	236 236 214 214 273 273	280	
	C % (1CP)	2.60 1.29 0.99 0.77	0.55 0.67 0.68 1.16	1.25 1.29 0.70 1.03	0.09 95 95 95	
	Be ppm (ICP)	0.5 0.5 1.0 2.0		2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	4.44 0.00	
	A1 % (ICP)	7.51 7.60 8.18 7.77 \$.64	8.14 7.70 7.70 8.22 7.76	7.75 7.54 7.46 7.36 8.11	8 79.12 2,001 2,000 2,001 2,001 2,0000 2,0000 2,000 2,000 2,0000 2,000 2,000 2,0000 2,0000 2,000	
	V ppm (ICP)	280 292 308 341	338 324 316 271 234	296 295 306 312 312	231	
	₩ 5 1 0 9 1 9 1 9 1 9 1 9 1 1 1 9 1 1 1 1 1	2.10 1.19 1.27 1.27	1.30 1.24 1.30 0.75	1.84 2.46 1.59 0.96 1.00	1.21	
	а 10 ² 10 ²	353 172 179 179 183 327	273 196 196 274 234 231	196 192 192 192 182	282	
		1 300 2340 2150 1820 2570	2590 2220 1545 1925 2310	1770 1930 1930 1975 1725	2590	
ſ	REP	2322 2322 2322 2322 2322 2322 2322 232	232 232 232 232 232 232 232 232 232 232	232 232 232 232 232 232	5335 5337	
4	д U	201 201 201 201 201	201 201 201 201 201	201 201 201 201 201	201 201	
	SAMPLE DESCRIPTION	JB7T4-101 JB7T4-101 JB7T4-102 JB7T4-103 JB7T4-104 JB7T4-104	JB7T4-106 JB7T4-107 JB7T4-107 JB7T4-108 JB7T4-109 JB7T4-109	JB7T4-111 JB7T4-112 JB7T4-112 JB7T4-113 JB7T4-114 JB7T4-115	JB7T4-116 JB7T4-117 JB7T4-118	

:

.

,

.

^ور <u>-</u>

OCATION	SAMPLE No.	Ag-9/1	<u>Au-g/t</u>	LOCATION	SANPLE NO.	<u>Ag-g/</u>
		2.0	< 0.1	TRENCH RR 8	234	5.6 A X
TRENCH RRI	151	0.3	≪ 0.1		230	03
	152	2.0	< 0.1		236	24
	153	0.7	<0.1		237	.5 2
	154	1.4	<0.i		238	4
	100	, Ç 4 t	<01		240	2 0
			< 0.1		241	03
	107	3.4	<01		242	1.4
	159	1.4	<01		243	20
	160	1.4	Q · I		244	o :
	161	2.7	<01		245	2.0
	162	0.3	≪0.1		246	34
TRENAM DR.	163	0.7	< 0.1		247	2.0
RENGA	164	2.0	< 0.1		248	10
	165	L. 7	0.3		249	10
	156	3.0	Q4		250	<u>70</u> 7
	167	0.3	0.5		25	0.3
	168	07	<0.5		252	4.0
TRENCH RR 3	169	0, 5	0.2		253	0.7
THERE AND	170	0.3	0 5		254	₫0.3
	171	07	<01		255	1.7
	172	0.7	< 0. 1		256	1.4
	174	06	6.0		257	19.6
TRENCH RR +	174	0.3	±.4		258	2.0
	175	37	1 🗰		<u>050</u>	21.6
	17#	20	35	TRENCH RRY	200	\$7.9
	176	₽.0 ₽.1	3.3		261	6.5
	175	1.0	0.4		282	7. i
	+ 7 •	3.1	1.0		263	3.6
	:80	0.3	£. 3		264	0.8
	101	1.0	4.4		266	3.5
	182	32	7.8		266	42.9
	/				267	44.£
TRENCH RR 4	281	2.8	5.4		268	56.B
(South Extention)	252	6.3	4.0		200	27
	283	55	2.7		203	2.0
	284	5.8	1.0		27 1	ί.4
	285	27	07		\$72	.34
	286	C 3	24		973	2.0
	287	4.U	0.3		213	5.5
	238	10	01		275	; 4
	203	23	25		275	34
	270	09	2.1		1.0	
	292	1 3	0.7	TRENCH RR 10	277	47
	293	3 1	03		278	4.6
	294	0.4	03		279	4.1
	295	0.3	1 !		280	20
	296	Q. 3	1 0			
	297	19 i	0.1	TRENCH RR (301	5.8 5.8
	296	43	0,6		302	26
	200	2.6	0,1		303	4.6
	300	5.6	01		304	26
			A 7		300	EL.8
TRENCH RR 5	L#\$	03	0.5		307	5.4
	184	07	27		308	60
	185	1.4 9.8	20		309	4,0
	185	2.0	4.0		310	26
		20	07		311	1.7
	122	E.V			312	:0.4
+		25	0.2			•
TRENCH RRS	224 908	13	е.	TRENCH RR 12	326	26
	228	0.3	< 0.1	··· · ·	327	6.6
	221	0.3	<0.1		328	4.0
	236	0-8	<0-1		32\$] 4.8
					330	5.5
териси ве 7	229	80	02		331	14.8
	250	25	D,2		* 7 &	5 Q
	231 8 232	2 B	0.1	TRENCH RR 13	552 212	34
	233	10.0	₹,u		2 <i>37</i> 18 <i>4</i>	13 5
					234	

• JB7T5-007 J87T4-107 ÷

• JB7T5-008 JB7T4 - 108

. Ag-g/t Au-g/t 0.2 0.1 0.3 18 4.7 z 4 0.3 24 12

5.2 2,0 0,2 46 1.4 41 2.0 2.5 13 5.8 2.4 51 1.**O** 6.7 Q.1 0.8 74 5.9 57 0,4 64 05 50 < 0 I 0.3 0, t 1.9 2.6 0 E 3,4 **≼**0,1 6,7 2,7 2 0 0,1 <01 <0) 2.100 2, 930 0.990 6.750 2.630 0.685 2.590 0.780 0.840 0 220 0 400 1 120 0.070 0 2**45** 0 155 0 115 0 045 0 065 0 070 0 110 0 055 0 100

1

LOCATION	SAMPLE
PANEL 3	313
	314
	315
	3186
	3.6
	319
	320
	321
	322
	323
	325
PANEL 4	356
	357
	359
	360
	361
	362
	364
	365
	366
	367
	345
TRENCH RR 17	LM7T1-001
TRENCH RR 17	LM7T1-001 002
TRENCH RR 17	LM7T1-001 002 003
TRENCH RR 17	LM7TI-001 002 003 004
TRENCH RR 17	LM7T1-001 002 003 004 005
TRENCH RR 17	LM7T(-00) 002 003 004 005 006
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 008
TRENCH RR 17	LM7T(-00) 002 003 004 005 006 007 008 009 010
TRENCH RR 17	LM7T(-00) 002 003 004 005 006 007 008 009 010 011
TRENCH RR 17	LM7T(-00) 002 003 004 005 006 007 008 009 010 011 012
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
TRENCH RR 17	LM7T1-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 016
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 014 012 013 014 015 016 016 016 017 018 019 020 021
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022
TRENCH RR 17	LM7TI-001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 016 017 018 019 020 021 022

TRENCH RR 14	335	2.6	0,1
IREAUN ARTS	336	20	0.7
	337	23	04
	475	13 3	E.8
	330	87	0, 9
	332	4.0	01
	341	2.7	<0!
	142	22	05
TRENCH RHID	342	 1.0	04
	590		01
	344	0. 4	0.1
	345	4.5	<01
	* 4 7	42	1,3
TRENCH RR 16	348	0.3	13
	349	37	2,5
	350	4.6	06
	351	2 7	1.4
	352	2 5	O . I
	353	i. 9	Q.1
	354	6 6	1 0
	355	S -1	< 0, 1
8495) I	189	0,3	04
FRAEL	19-0	3.9	Q.\$
	. 9. /	i 2	C.2
	- 4.2	03	0 1
	, o #	0.7	01
		0.3	< 0 1
			0.2
	190	3.7	0.7
	190	0.1	< 0.1
	197	03	
	198	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9
	991	1 6	12
	200	20	. 4
	201	20	01
	202	1.3	0.1
	203	03	03
	204	1.3	~ ~ ~
	205		0.5
	20 E	0 9 . •	
	2 0 7		20
	208		3.8
	209	2.4	1.4
	210	21	19
	2 1		03
	212		03
	213		0.0
	2!4	0.5	03
	215	0.7	29
	216	0.7	03
	217	U(7	02
	210	0.7	0.6
	219	~ 1 ~ 1	07
	220	Q. J A 7	. 3
	221	0.7	0.1
	222	0.7	03
	223	~ (
PANEL 2	369	3.6	12
	370	9.9 • 7	1 8
	371	0 (3 0	05
	372	£.6 4 3	0.7
	373	*	<u>.</u> .
	374		0.1
	375	0-1 2 %	0.1
	315	56	0.4
	417 278	4.9	0.3
	JIY		

4 + 00

∧ 00

• JB7T5 -012 JB7T4-112

•

JB7T5-0II JB7T4-+1II

 $f \rightarrow 0$

€ JB7T5-0Ю JB7T4-110

● JB7T5-009 JB7T4-109

SAMPLE No. Ag-g/t Au-g/t

LOCATION

0.6

-- •

<u>Au-g/t</u>

0.1

0.4

TRENCH - DRILLED AND BLASTED TO FRESH BEDROCK TALUS FINES AND BULK SAMPLE LOCATION . \succeq = _ - \prec - Trench - blasted, not mucked out

LEGEND

SCALE

Chevron Canada Resources Limited Minerals Staff						
	BANDIT	CLAIMS				
BUL	TRENCH LO	CATION PLAN AND S SAMPLE LOCAT	TIONS			
FIGURE No. 3		PROJECT No. M	-589			
DATE SEPT.1987	REVISIONS		SCALE 1:1,000			
NTS No.			FILE No.			
COMPILED BY			<u> </u>			