- Gewargis Geological Consulting Inc. -

86-968-16362

GEOPHYSICAL REPORT

ON THE

CEDAR MINERAL CLAIMS PROPERTY

LITTLE FORT, BRITISH COLUMBIA

AND F	PETRALEC	네 원	ESOURCES	
Rec'd	FEB	6	1987	
SUB	JECI _			
FILE				
۱	ANCOU	VEn,	B.C.	

Owner(s): N.B. De Bock

E.A. De Bock

Estry Agencies Ltd.

FILMED

Z¢;

1 3

et ∓

CH (M) CH (M) CH (M)

1

्यः _{(१२} स्त्र (१ २२ - २ **MINISTRY OF ENERGY, MINES**

Kamloops Mining Division British Columbia N.T.S. Map 92-P/8¥9¥ Latitude: 51°15'N Longitude: 120°28'W

FOR

Operator: Craven Resources Inc. P.O. Box 10019, Pacific Centre 3050 Toronto Dominion Bank Tower Vancouver, B.C. V7Y 1A1

CONSULTANTS:

Gewargis Geological Consulting Inc. 405 - 595 Howe Street Vancouver, B.C. V6C 2T5 Tel: (604) 687-6245

Author:

Wilson A. Gewargis, B.Sc., F.G.A.C. 💭 🛵

Dated:

January 1987

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Location, Access and Topography1.2 Property Description1.3 Mining History	1 4 4-6
2.0	GEOLOGY	
	2.1 Regional Geology2.2 Property Geology2.3 Mineralization	6-7 7-8 9
3.0	GEOPHYSICAL SURVEY	9
	 3.1 Introduction VLF-EM Survey 3.2 Results and Interpretation VLF-EM 3.3 Magnetic Survey 3.4 Results and Interpretation 	10 10-11 11-12 12-13
4.0	SUMMARY AND CONCLUSIONS	14
5.0	RECOMMENDATIONS	14
	5.1 Cost Estimate	15
6.0	BIBLIOGRAPHY	16

Gewargis Geological Consulting Inc.

ILLUSTRATIONS AND APPENDIX

PAGE

ILLUSTRATIONS:

Figure 1:	Property Location Map	2
Figure 2:	Topography Map	3
Figure 3:	Claim Map	5
Figure 4:	- Grid Map	Attached
Figure 5:	VLF Fraser Filter Profile Map	Attached
Figure 6:	VLF Fraser Filter Contour Map	Attached
Figure 7:	Magnetic Profile Map	Attached
Figure 8:	Magnetic Contour Map	Attached

APPENDICES

Appendix A:	Cost of the Program
Appendix B:	Statement of Qualifications
Appendix C:	Geophysical Survey Data
Appendix D:	Instrument Manual

-1-

1.0 INTRODUCTION

Gewargis Geological Consulting Inc., were engaged by Craven Resources Inc., to conduct a Geophysical Survey on the Cedar Claims located in Little Fort, British Columbia. The survey was conducted between October 22 to 31, 1986.

The program included the VLF-EM and Magnetic Survey. The Magnetic Survey was conducted by G. Bensmore, Geologist and the VLF Survey by P. Elkins, Geologist. This report discusses the results of the geophysical work performed on the property.

1.1 Location, Access and Topography (Figures 1 & 2)

The Cedar Claims are centered approximately 8 kms northwest of the town of Little Fort, British Columbia, and 100 kms north of the City of Kamloops, British Columbia.

The property can be reached most directly by a secondary road which runs west from Little Fort, up Eaken Creek, and passes through the claims area to Bridge Lake and eventually joins Highway 97 some 15 kms south of 100 Mile House. Several forestry and logging roads connect to the property, making the claims easily accessible.

The property topography is characterized by an area of moderate to rugged terrain with elevations ranging from 610m to 1220m (2,000 ft - 4,000 ft) Figure 2. The most extreme topographic relief occurs in the deeply incised v-shaped valleys of Eakin and Nehaliston Creek.

Vegetation on the property varies, but it is mainly fir timber cover with light to moderate undergrowth.

-4-

1.2 Property Description

The Cedar Property comprises five (5) mineral claims (75 units) for a total of 1,875 hectares (4,633 acres) and is recorded in the Kamloops Mining Division on Claim Map N.T.S. 92-P/8,9. These claims were staked in the fall of 1983 by Messrs. Neil DeBock and Elmer DeBock. The geographic coordinates of the property are Latitude 51°15'N and Longitude 120°28'W.

The Cedar Property consists of the following claims (Figure 3).

CLAIM NAME	<u>UNIT</u>	RECORD NO.	EXPIRY DATE
Cedar 1	20	5351	December 1987
Cedar V	20	5429	January 1988
Cedar VII-XVIII	12	5929-5940	November 1987
Cedar X1X	15	5978	November 1987
Cedar XX	8	5979	November 1987
TOTAL:	<u>75 Units</u>		

The writer was unable to visit all the claim lines and posts during his examination, however, those examined appear to have been staked in accordance with the Claims Act of British Columbia. The property is owned by Neil and Elmer DeBock, and was optioned to Craven Resources Inc., in July 1984.

1.3 Mining History

The history of the Cedar Claims property has been adequately described in previous reports by C.K. Ikona, P.Eng dated January 1985: The essential details are as follows:

1920-1923: Placer Claims were staked and interest in placer gold deposits was generated. Coarse gold was found.

Early lode exploration led to the discovery of the Lakeview

property approximately 14 kms due west of Mount Olie. This group is bordered by the northwest portion of the Cedar Claims. A hand-speciman sample of arsenopyrite assayed 12.3 oz/ton gold from the Lakeview Property (B.C. Ministry of Mines Report, 1930 (Pages A191-A192).

1960's-early Exploration work within this period was mainly oriented toward the
1970's search for porphyry copper deposits. Several claim groups were staked and follow-up exploration was carried out.

In the Fall of 1983, N. and E. De Bock staked the Cedar Claims and carried out a prospecting program which led to the discovery of four mineral occurrences.

- July 1984: Craven Resources Inc., optioned the Cedar Claims and carried out a reconnaissance geological and geochemical survey in October 1984.
- Oct.1986: Craven Resources Inc., conducted a follow-up geophysical survey which included both Magnetic and VLF-EM Surveys.

2.0 GEOLOGY

2.1 Regional Geology

The general geology of the area has been described in a number of publications. The most recent description is that by R.B. Campbell and N.W. Tipper (1965) in their Geological Survey of Canada Memoir No. 363.:

The Cedar claims are underlain primarily by a northwest trending belt of the Upper Triassic Nicola group andesites, tuffs, argellites, greywacke, and limestone, in generally faulted contact with Permian sediments and volcanics of the Eagle Bay Formation. These are in contact with lower to mid-Jurassic sediments which occupy the northeastern portion of the claim group. -7-

Mineralization in the area is characterized as structurally controlled massive sulphide mineralization carrying precious metal values.

2.2 Property Geology

The general geology of the property has been adequately summarized in the report by R. Yorston, and C.K. Ikona, P.Eng. (1985) on the Cedar Mineral Claims as follows:

"The claims are underlain by the Eagle Bay Formation which is bounded on the west by the Nicola volcanics and on the east by Jurassic volcanics and sediments.

Several northwest trending faults occur within the Eagle Bay Formation near or at the contact with the Nicola andesite. In one location, on the new Highway #24 road cut near the northwest corner of the Cedar Claims, the main fault structure is exposed for 20m wide and dips 75° to the west.

The Nicola volcanic rock unit immediately to the west shows some shattering and shearing associated with limonite staining and minor mineralization.

The hanging wall of the fault consists of a diagnostic white limestone and chert marker horizon that can be intermittently traced for several kilometers, and is again well exposed 4 kms to the southeast on the old Highway 24 road cut. The limestone is folded and warped with the axis generally parallel to the northwest trend of the fault.

The footwall of the fault is composed of an intermediate recrystallized and silicified volcanic unit believed to be also of the Eagle Bay Formation. This unit hosts the most significant mineralization discovered to date.

On the old Highway 24 road cut where the white limestone chert horizon is again exposed, the rocks are severely contorted by several stages of folding and faulting. It is likely that the main fault exposed on the new Highway 24 also passes through this area.

-8-

Light brown and lesser light grey phyllite to schist rocks are exposed to the west of the white limestone horizon on the old Highway 24 road cut. The schistosity parallels the northwest trending structural pattern.

A medium grained diorite is exposed within the grid a few hundred meters to the north of the old Highway. The diorite has intruded within the white limestone horizon and has produced skarn zones with exposed skarn widths of at least 2 meters. The diorite has been subsequently shattered, probably by later movements along the main fault structure.

Reconnaissance geological mapping by R. Yorston (1985), north of new Highway 24 and north of the Nehaliston Creek canyon reveals that the limestone-chert horizon continues on strike with the trend established in the grid mapping.

It appears that the main fault is to the east of and approximately parallel to the grid baseline."

On Line 3+00NW 2+50E - 3+00E, there are outcrops of andesite with strong faults that trend 80° to 160° . These faults are chloritized associated with quartz veining in the centre. In some of these quartz veins, the chloritic gouge is silicified and the wall rocks appear to be unaltered. A trace of pyrite and a dark grey minerals are associated with the quartz veins.

On Highway 24A, there are a series of faults trending north/south where high gold and silver values in the soil samples were located. These values appear to be associated with mafic lamprophyre dyke system. These dykes are distinct due to their red-orange gossan color.

A drag fold was observed within the limestone unit exposed on Highway 24A road cut near Line 1+00S. This fold indicates a possibility of recumbant to overturned fold sub-parallel to the baseline with axial plane dipping to the east."

On Line 2+00S 0+25E, there is a brecciated unit with more than one type of clast, mainly silicification and chert.

2.3 Mineralization

Surface mapping (1984) on the property by C.K. Ikona, P.Eng and R. Yorston revealed the following features about the mineralization:

- 1) Precious metals are associated with sulfide mineralization.
- 2) Two sulfide zones exist within silicified andesite zone on the footwall side of the fault structure. In general, the sulfide mineralization is associated with a fault zone.
- 3) Sulfide mineralization comprising pyrite, pyrrhotite, and chalcopyrite.
- Sulfide exists as a vein, lenses, and dissemination within the andesite rock unit.
- 5) Minor chalcopyrite occurs within the hangingwall limestone.
- 6) Chalcopyrite coating occurs within the fractured diorite north of the old Highway 24.

3.0 GEOPHYSICAL SURVEY

A grid area totalling 21 kms was subject to a geophysical survey and the following instruments were used:

- 1) Portable Proton Magnetometer (Scintrex Model MP-2).
- 2) Sabre Model 27 VLF-EM Receiver tuned to VLF Station, Seattle.

Readings were taken from the above surveys at 25 meter intervals and the field data for both surveys is presented in Appendix "C". The VLF Survey was conducted by P. Elkins, Geologist and the Magnetometer Survey by G. Benmore, Geologist.

3.1 VLF Survey (Figures 5, 6)

The VLF survey was conducted using the Sabre Model 27 to trace the mineralized structure on the property. A Sabre VLF Receiver was employed with the Jim Creek (Seattle, Washington) Station, (48°12'N, 121°55'W) and was used as the transmitter with Azmith of 357°. This transmitter station provided a good alignment with the known mineralized trend on the property. Two readings, the dip angle degree and field strength percentage, were taken at each station. Filtering was carried out on the dip angle data using the Fraser Filter Method in order to transform the zero crossings to peaks for contouring purposes and reduce the geological noise. The resultant profile and contour patterns are shown in (Figures 5,6). The profile maps show the VLF response produced by the mineralized structure, geological features, and topographical effects.

3.2 Results and Interpretation VLF-EM)

The VLF survey detected six anomalous areas on the property. The Fraser Filter amplitude character varies up to 47°. The anomalies vary from narrow (i.e. a few stations) to broad features in excess of 100 meters wide. The anomalies are interpreted to reflect a number of northwest-southwest conductors.

From the magnetic, geochemical and geological interpretation in conjunction with the VLF survey the above anomalies or trends could reflect a geological trend with metallic bearing lithological horizon.

In summary, the most important trends are as follows:

Trend #1: This trend represents a conductive zone running parallel to the baseline between Line 4+00SE 1+25E to 2+75E, and Line 4+00NW 2+50E to 4+00E. The Fraser Filter amplitude ranges between 10° to 47°. This trend coincides with geochemical, and magnetic anomalies.

Trend #2: Located at Line 10+00NW 0+75E and, Line 15+00NW 2+75E to

3+50E and coincides with a magnetic high and geochemical anomalies.

Trend #3: Located between Line 8+00NW 1+40W to 2+50W and Line 12+00NW 2+50W to 2+00W. This trend coincides with the magnetic trend and isolated geochemical anomalies ranging between 30 to 70 ppb.

- Trend #4: Located between Line 18+00NW 2+50E to 2+75E and, Line 24+00NW 2+00E to 2+50E. Fraser Filter amplitude ranging between 10° to 34°.
- **Trend #5:** This trend is located between Line 24+00NW 1+25W to 1+50W and Line 36+00NW 1+25W to 2+75W to 2+75W with Fraser Filter amplitude ranging between 10° to 49°. This trend coincides with magnetic anomalies mainly at Line 36+00NW and isolated geochemical gold anomalies at Line 30+00NW and Line 32+00NW.
- Trend #6: Located between Baseline 31+00NW and Line 36+50NW 1+25E to 1+75E with Fraser Filter amplitude ranging between 8° to 40° and coincides with the magnetic trend and geochemical anomalies in the area of Lines 36+00NW to 37+00NW in the eastern portion.

3.3 Magnetic Survey (Figures 7, 8)

A Portable Proton Magnetometer, Scintrex Model MP-2 was used for this survey. This model is a self-contained 1.0 gamma accuracy proton magnetometer, and was used to achieve the high order of accuracy considered necessary.

Readings were taken at 25 meter intervals along the baseline and crosslines. Loops were run on several lines and corrections made for diurnal variations accordingly. The variations in most of the surveys were minimal, therefore further looping was not required for the remainder of the grid.

Several readings were taken at each station and average readings were plotted at

-12-

100 gamma contour intervals and the results are plotted on (Figure 8). A 50,000 gamma regional gradient was removed from all the readings.

3.4 Results and Interpretation (Magnetic Survey)

The survey has detected a number of anomalies which have northwest – southeast trends. High magnetic readings are scattered throughout the grid area whereas the low readings occur on Line 34+00NW 1+25E.

The high readings coincide with VLF-EM and geochemical trends, therefore represents the rock type, mineralization and structural features.

The following are some of the linear high readings. (Figure 8)

Trend #1:	This trend is located between Line 33+00NW 1+00E to 2+25E and, Line 36+00NW 2+00E to 2+50E with values ranging between 5,275 to 58,700 gammas.
Trend #2:	High readings located at Line 28+00NW 3+00W to 3+50W.
Trend #3:	High readings located at Line 15+00NW 5+25E to 5+75E.
Trend #4:	High readings located between Line 11+00N 0+50E to Line 15+50NW to 0+50E.
Trend 5,6,9:	High readings located between Line 2+00NW 1+50E to 3+00E and Line 8+00NW 0+75E to 1+00E.
Trend #7:	High readings located at Line 8+00NW 3+00E.
Trend #8:	High readings located at Line $4+00NW$ $4+25E$ to $5+00E$.
Trend #10:	High readings located at Line 2+00NW 2+50E to 3+00E.

Irend #11: figh readings located at Line 4+000 w 14	end #11:	High readings located at Line 4+00NW
--	----------	--------------------------------------

Trend #12: High readings located at Line 36+00NW 0+25W.

Trend #13: High readings located at Line 15+00NW 3+00W.

- Trend #14: High readings located between Line 35+00NW 1+50W and Line 36+00NW 1+75W.
- Trend #15: High readings located at Line 28+00NW 2+00E to 3+00E.

Trend #16: High readings located at Line 15+50NW 1+75E.

Trend #17: High readings located between Line 35+00NW 2+75 to 3+00W to Line 36+00NW 2+25W to 3+00W.

-14-

4.0 SUMMARY AND CONCLUSIONS

The essential features of the Cedar Claims can be summarized as follows:

- 1. The property was previously prospected by the owners, and from the 1984 field season indications are that copper mineralization and anomalous gold and silver values occur within a large northwest trending fault system.
- 2. The fault zone appears to be 5 kms long and is associated with mineralization mainly in the area where the limestone-cherty unit is exposed.
- 3. Several anomalous high values for both VLF-EM and Magnetic with a northwest trend has been outlined by the 1986 Geophysical Survey. These trends possibly represent fault zones associated with mineralization.
- 4. Though general zones of mineralization can be identified there is as yet insufficient data for establishing the potential of these zones. These should be established during the proposed program.

5.0 RECOMMENDATIONS

The objective of the proposed work program is to establish the economic potential and control of the mineralized zone on the property. The above objectives can be met by implementing the following work program.

- 1. Detailed mapping of the geochemical, geophysical anomalous areas to outline drilling targets.
- 2. Percussion drilling of the selected target area.

5.1 Cost Estimate

Percussion drilling 304m (1000 ft) at \$35.00/m	\$10,640.
Mob and Demob of drilling crew and equipment	2,000
Site preparation, 25 hours at \$100/hour	2,500
Assaying 200 samples at \$20/sample	4,000
Project supervision	4,000
Room and Board	2,000
Transportation	2,000
Field Project Management	. 3,500
Report	4,000
Sub Total:	\$34,640
Contingency:	\$ 5,360.
TOTAL:	\$40,000.

Respectfully submitted

en ju. Scup RSIS

Wilson A. Gewargis, B.Sc., F.G.A.C Consulting Geologist

6.0 **BIBLIOGRAPHY**

B.C. Minister of Mines Report (1930):

Pages A1 91 - A1 92.

R.B. Campbell and N.W. Tipper (1965):

Geological Survey of Canada Memoirs 363.

R. Yorston and C.K. Ikona, P.Eng. (1985):

Geological Report on the Cedar 1 to VI Mineral Claims.

APPENDIX "A"

STATEMENT OF COSTS

• •

Gewargis Geological Consulting Inc.	
STATEMENT OF COSTS FOR OCTOBER 1986:	
(Appendix "A")	
Pre-Programming:	
Senior Geologist 2 days at \$275.00/day	\$,550
Senior Geologist: W. Gewargis, B.Sc., F.G.A.C.	1,100
Magnetic Survey:	
P. Elkins, B.Sc., Geologist conducted magnetic Survey	1,560
VLF-EM Survey	
G. Bensmore, B.Sc., Geologist conducted VLF-EM Survey	1,560
Transportation	
From Vancouver to property and on-site including insurance and fuel	1,300
Room and Board:	87 <i>5</i>
Instrument Rental:	850
Report:	
Report writing, drafting, printing of maps, word processing, xeroxing, report covers, binding	2,500
Filing Assessment Fees:	385
TOTAL:	\$10,680

The above are geophysical costs on the Cedar Claims and \$7,500.00 was applied for assessment work on the mineral claims.

APPENDIX "B"

CERTIFICATE OF QUALIFICATIONS

CERTIFICATE OF QUALIFICATIONS (Appendix "B")

I, Wilson A. Gewargis, B.Sc., F.G.A.C., of 4811 Dunfell Road, Richmond, British Columbia, hereby certify as follows:

- 1. I am a Consulting Geologist with an office at Suite 405, 595 Howe Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of Mosul in Iraq (1970) and hold a Bachelor of Sciences degree in Geology and Geophysics. In addition, I spent two years of post graduate studies at the University of Stuttgart in West Germany.
- 3. I have engaged in mineral exploration work and studies for 16 years in Canada, United States of America and Europe.
- 4. I am a Fellow of the Geological Association of Canada, a member of the Society of Mining Engineers of AIME, and a member of the B.C. & Yukon Chamber of Mines.
- 5. The work described herein was conducted by P. Elkins, Geologist and G. Bensmore, Geologist under my supervision.

Dated at Vancouver, British Columbia, this 30th day of January, 1987.

S, w. SE-ARSis

Wilson A. Gewargis, B.Sc., F.G.A.C. Consulting Geologist

Gewargis Geological Consulting Inc. -

CERTIFICATE OF QUALIFICATIONS (Appendix "B)

I, George Benmore of 4388 Hobson Road, Kelowna, British Columbia, hereby certify as follows:

- 1. I am a graduate of the University of British Columbia (1980) and hold a Bachelor of Applied Science in Geological Engineering, Exploration Option.
- 2. I have engaged in mineral exploration work during and after graduation for 4 years in Canada and Australia.
- 3. I conducted the Magnetometer Survey on the Cedar Claims, Little Fort, B.C. during the period of October 22 to October 31, 1986.

Dated at Vancouver, British Columbia, this 30th day of January 1987.

Benmore

George Bennfore, B.A.Sc., Geologist

CERTIFICATE OF QUALIFICATIONS (Appendix "B")

I, Paul R. Elkins of 146E Carisbrooke Road, North Vancouver, British Columbia, hereby certify as follows:

- 1. I am a graduate of the University of British Columbia (1985) and hold a Bachelor of Science in Geology.
- 2. I have engaged in mineral exploration work during and after graduation for six years in British Columbia, Yukon, and the N.W.T.
- 3. I conducted the VLF-EM Survey on the Cedar Mineral Claims, Little Fort, British Columbia during the period October 22 to October 31, 1986.

Dated at Vancouver, British Columbia, this 30th day of January 1987.

Paul R. Elkins, B.Sc., Geologist ------Gewargis Geological Consulting Inc. ------

APPENDIX "C"

GEOPHYSICAL SURVEY DATA

PROJECT Cedar

VLF-EM SURVEY

Oct. 23, 1986

T		Dip			1.	l. ^{Dip}				77 4 7 4 4 4 4
	Line	Angle	F.S.	Fraser Filter	Line,	Angle,	F.S.		Fraser	Filter
	BL	-9	55	-11	132 8+25N	72	75	-9		
Γ	0+75N	-10	51	+7	8FSON	-10	74	-5		
Ĩ	OFSON	-1	53	+,	BATSN	-7	73	-5		
le	D+75N	-9	50	-6	GHOON.	-6	74			
ľ	HOON	-9	48	ירי רי	9+25N	-6	74	-4		
1	H25N	-7-	47	-)	9+50N	-2	75	+		
	1+500	-2	50	+6	9+75N	- 2	77	+3_		
	1+75N	-2	53	+7	10700N	-2	79	±5		
L	2toon	-4	56	<u>+5</u>	10+25N	-3	75	+6		
	2.+75N	-6	55	-0	IOTSON	-4	73	+5		
-	150N	-7	53		IDH75N	-6	79	±.[
Ľ	2+750	-8	53	+4	11HOON	-7 .	78	-7		
1	3toon	-5	55	+9	(IFZSN	-8	73			
Ŀ	3+250	-8	52	+4	11500	-6	72	-4_		
	3+50N	-12	55	t.	11+750	-2	70	+4		
ŀ	3+75N	- 10	48	-5	12ton	-1	62	+1		P-1
ß	HOON	-14	43	-9	12+UN	-3	61	-4		·
4	+25N	-11	42	-3	12+501	, -4	66			
4	+501	-8	43	+2	12+752	, -1	69	-1		
4	++75N	-8	42	Ξζ	13toon	-2	66	. ()		
	FOOL	-8	47	t.	13+25N	0	64	-3_		
2	715 N	-10	49	-5	BHSON	-2	66	-3	1	······································
-	StSON	-11	45	0	13+75	0	58	-7		
	5+75N	-8	42	+9	14 +00N	+1	61	-6		
4	stoor	-8	50	+5	19+25N	Ö	65	-5	و هموا د و د الله المانية موارد و المحكمة مارو و د د الله	n a su a anno 1960 ann 1888 a la s
j	6+25N		50	-0	14+50N	+3	63	-3		
4	6+50N	-14	45	+5	14+752	+4	66	4		
4	6+75N	-10	42	+4	15toon	+4	65	<u> </u>		
Ŀ	HOON	-15	55	-3	15+25N	1+6	66	t.		
	7+25N	-14	34	-5	15+50h	1+6	65	-2		1
ŀ	7+500	-15	55		15+73N	1+5	61	-4		
1.	7775N	-11	73		16toon	+6	61	_+(
4	Stoon	-13	71	-8				•		
1					1					

PROJECT Cedar

GEWARGIS GEOLOGICAL CONSULTING INC. VLF-EM SURVEY O of 23, 1986

, 			+					
Li	.ne,	Dip Angle	F.S.	Fraser Filter	Line	Dip Angle	F.S.	Fraser Filter
B	L	47	Ta		BL		1 4.	
	LSN COL	+0	64		74+20		60	
10T	271	+4	60		72001	+ F	100	-13
174	<u>ni</u> l	+4	60		DEDEN		60	
17+		+6	61	4	151251	+ 4	60	-6
ha	SV SV	+6	66		75+201		61	4
174	HI)	<u> </u>	65	<u></u>	2/4000		61	
1B4	DN NN	0	61		101-274		10	<u> -2</u>
19+7	751	0	T S		LET CON	<u>FID</u>	77	<u>++24</u>
10.0	<u>_</u>	+r		- <u> </u>	Lorson	+8	43	+2.
1012	51	+6	27		767FD		07	
1940	200	+ 5	<u> </u>		KHOON	<u>+5</u>	64	-15
KID	50	. 7	101	<u>+ </u>	1274251		61	-5
19+3		<u> </u>	06	-1-3	772.751	$\frac{1}{1}$	17	+4
19+3	25A	<u>+ 6</u>	63	- "	79,00	10	65	-/
nord	210	+8	60	- 4	20000		77	-6
2047			65	+5	LOTISM	112	76	+ 10
7041	219	+ 0	75	-+13	Køtsor	+10	+4	+22
201		<u> </u>	79	+\$4	201751		75	+16
204	BM		+0	+5	Lettoon		+0	+6
2110	ю <u>и</u>		\$0	+2.	129+254	0	. 6.8	-7
2172	<u>s/u</u>	- 13 4	65	+3	29+50N	0	66	-9
4150	2M	-2-	60	+7	29+75	+1	_64	-4
274	<u>3M</u>	<u>1945</u>	<u> 584 *</u> T G	+1	307001	/ +2	68	-2
2010	OM EN	-72 E	57	-9	125729	_+3	65	+1
7717	214	6 -7	59	7	301501	+2	69	-3
7742	LTA I	9-	50 100	#b	50775N	+2	70	-2
7220	214	-1	(n)	+1	STECON	+6	+1	+/6
2212		-2	60	-+5	3/+25U	0	+5	+22
2274	<u>5M</u>		01	-12	31+50N	-8	72	±/2
25+5	ON		<u>6 þ</u> .	-\$\$-3	31+75N	-8	71	+7
13+7	БЦ.	~3	63	-+6	32+001	-12	71	+3
74+C	201	0	6	-3	32+25N	-11	70	+
24+2	5M_	0	62	-1	BZ+SON	-12	68	+/+
		ł			1	· .	1	

PROJECT Cedar

VLF-EM SURVEY

3 of 22 0 et 24, 1986

Line	Dip Angle	F.S.	Fraser Filter	Line	Dip	F.S.	Fraser Filter
BL	-1/	15		BL		<u> </u>	
32+73M	16	65	+5	0100	-9	TE	
33+00N		66	-/	OPISS	+117	57	-37
33TUSN	12	12	⁺ -3	07505		6.4	79
33+SON	-14	03	-4	0+755	+0	2+	-3
33+15M	-12	63	-6	1tons	<u>t12</u>	60	+5
34+CON	-10	65	-6	1+255	+//	59	+(
9475N	-10	64	-8	11505	+4	56	
GISON	-6	07	-6	1+755	+0	56	-4
34775N	-6	64	-7	2:005	+ 3	56	-7
35+001	-4	65	-10	2+255	+8	56	-//
35725N	-1	64	=10	2+505	+15	54	-7
35t50N	+(63	-10	2+755	+12	53_	
35775N	+4	65	-6	3+005	+18	52	-5
36tar	+ 6	69	+/	3+255-	+19	54	+ 7
36F25N	+5	71	+6	3+505	+16	55	-/
SETSON	+3	70	+6	37755	+14	51	-16
36775N	+2	-74	±2	4+005	+22	51	
37100M	0	76	-4		724	57	
37+725N	+3	74	++	+ 541	+ Stat	ions	
37+501	+3	75	+4	ΰλ	e(i) liv	e down	
37-75N	-1	78					
38+001	+3	77			·		
·							
							-
	· }						
	-						
	[ļ	4				1

PROJECT Cedar

VLF-EM SURVEY

(1) of (2) Oct 26, 1986

	Dip		1	[]	Dip		
Line	Angle	F.S.	Fraser Filter	Line,	Angle	F.S.	Fraser Filter
1381001	4			136000		Q I	
0100	<u> </u>	77		2+000	- 2	01	D
OF25E	-4	69		1+751	+1	79	+12
O+SOE	-2	79		1150W	-2_	87	+31
				1+250	#12	87	+74
L37+50N	+ -	75		Loou	-70	79	L7
000		LI		n.70.	0	21	·
OFUE	<u> </u>		+3	OFTO		10	<u> </u>
OBDE	0	64	+/	prow	-/7	74	-14
0+75E	- 4	60		0+254	-13_	70	- 14
1+00Ē	-1	61		0100	-8	69	-9
				OF25E	-8	69	-/2
L37400N 0400	-5	77		OHENE	-4	69	- , ,
0+750	-6	75		7+753	0	69	
0.00	+ 2	70	-14	0172	+ 7	71	H
UTSOL	· <u> </u>	70	3	THUCE	<u> </u>	77	-2
0+75e	+1	49	- + /	1+25 B	+ 5	70	+/8
1+00E	0	80		1+50E	-1	81	+23
IFZSE	+2	81		1+75B	-10	77	±5
1+50E	+4	80		2+006	-9	61	70
				2+75F	-7	59	
L36+50N	-1	70		2.500	-7	60	
0100	- 1 	+0		LISUE		61	-2
0+25E	-8	36		2755	- 2	61	n - 1 1 an an an t- 1 an 1 an 1 an 1 an
OHSOE	-1	66	-17	3reoE	-5	60	
0+75E	+2	55	- 13			÷	
1+00E	+6	62					
HDSE	+93	72	+ [
HEDP	+/	IL					· · · · · · · · · · · · · · · · · · ·
iLTTE	<u> </u>	7 1.	125				
TTSE	-0	<u>+0</u>	+5				an a
LHOE	-8	70					
Z+75E	-4	68				··	
12/1							
3+00W	+3	78					
7+7511	+4	79					
7.00	+ 6	81	······································				
LIJUW	17	Q11	+//				
2725W	TL	OT	++0				
1				k			

PROJECT Cedar

VLF-EM SURVEY

Bof 22 <u>a+26</u>,1986

,	Dip				Dip	T. C	Energy Dilton
Line	Angle	F.S.,	Fraser Filter	Line	Angle	F.S.	Fraser Filter
135,00N 3,00W	0	67		0100	+4	63	
2+75 W	-1	65	<i>t</i> /	OF25E	+7	66	-6
ZTSOW	-3	68	-8	OTSOE	+8	66	
2+254	+1	64	-3	D+75E	+9	68	+13
ZIODU	+3	65	÷ (0	HOUE	+7.	75	+7.7
1+75W	-2	73	+14	1+25E	-3	81	+24
INOW	-3	72	+ (5	1+SOE	-4	70	120
1+25W	-8	72	+13	IL75E	-16	68	-9
1+000	-14	65	-7	ZHODE	-11	58	-20
0+754	-17	62	-1 4	2+256	0	58	-17
0+5DW	-8	63	-1-1	7. SOC	+3	63	16
0+75W	- 4	64		2+754	-7	65	••••••••••••••••••••••••••••••••••••••
0+00	+ 1	65	-4	3KOE	-4	38	
0+75E	+ (65	-2	т	·		
OTSOE	+ 7	67	-/				
0+25E	+ 5	67	6				
HODE	+4	72	+ 27				
14750	- 5	17	105				
IFRE	-8	71	+ (
117	-195	69	<u>-</u> /				
TTDG		66	6				
LAUE	-R	60	-19				
CFDE	2	17	=11				
2.750	-5	67	-1				
34000	-4	67					
20-0	-7	67					
3ton	+3	63					
2 WE	· /		1		·		
-							
							an a
			1	·			
·	····						
1		L	l	U	L		

PROJECT Cedar

GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

00722 Oct26,1986

	Dip	—		₋ .	Dip		
1 L1n	e Angle	F.S.	Fraser Filter	Line	Angle	F.S.	Fraser Filter
3+00	W +18	82		Brow	+9	69	
2+752	1+5	87	+11	2+756	+3	74	ŦĠ
2+50	w + 7	87	+/	ZTOW	+3	89	+8
2+25	N +5	84		2+250	6	89	+5
2+00	v + 1	85	tKx	2000	-2	1 71	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1+750	10	84	+14	1+75W	0	89	
1500	1-8	82	-7	IBOW	_	-	
1+250	1-3	69	-16	1+75W	-8	64	·
1+000	v -1	69		itond	-4	64	
0+750	1+3	67	+7	0+752/	0	58	
0500	1+7	66	- ,	0+501	+2	53	=#
0+251	1-7	67	- 27	0+254	+4	$\frac{1}{6}$	
DHOU	+/3	(7	- 17	DECO	+7	71	++
0+75	EFIC	17		000		70	+12
DEDI	< + Q	75	F	OF DC		67	+8
0.200		I.L.	-7	0 SOE		17	+8
UT DU			-5	OFFSB	L	EJ E1	±#
TW		70	+16	1+002	<u> </u>	57	±5
1 123E	+7	<u>+9</u>	+40	1+25E	-6	76 E1	6
1+50E	-17	77	+ 7	It50E	-8	26 F-	-5
1+75E	-11	71	=+4	1+75E	-5	52	-+0
Zaor	-6	69	-10	ZHODĒ	-3	44	-6
2+256	-8	68	-13	Z+25E	0	42	+6
2+50E	+1	$\frac{+5}{-70}$	+7	2+500	-2	46	+/6
2+750	-2	+9		2775E	-7	42	
3+000	-8	77		3+00E	-11	43	
	_						-
· · · · · · · · · · · · · · · · · · ·							
]					na mangana kana ana ang ang ang ang ang ang ang ang
				· · ·			
				·			
						•	

<u>GEWARGIS GEOLOGICAL CONSULTING INC.</u> Dof D <u>VLF-EM SURVEY</u> <u>OLT 26</u>,1986

PROJECT Cedar

Line	Dip Angle	F.S.,	Fraser Filter	Line,	Dip Angle,	F.S.,		Fraser	Filter
L31+DON	-2	11		120taon	-1	76			
0.00		12		STUD	··	72			
0+ZSE	-8-	63	-4	2+130		71	1		
07500	-5	17	0	2.25.1	6	77	-3		
UTFE	-7	62	-3	D CAU	-9	74	+19		
1+00E		66	-5	LEEW		ID	±≠		
HOE	-7:	60	+6	IT DW	-5	68	-12-		
1+2515	-7	65	±4	1175.1	-3	68	-11-		
TIPE	-5	64	-8	11 Ord	-7	73	8		
GOOG		17	-8	1700	47	73	-5-		
27250	-1	12	0	0++56	-7	ZQ	+9		
ZISOE		19	±6	OFSOW	-7	70	+12		
ZHBE	- 5	75	+15	OF DW	+5	10	-5		
STOOE	- T	80	+/7	0100	+1	76	70		
3+250	-13	77		0700	-7	00	±6_		
STOR	12			0.770	-7	74	+/2		
·		·		UFFSE		19	+4		
				HOOR		17	-6		
				1FDE	- <i>+</i>	72	71-		
				ITSUE	-7	74	+2		
				1+75E	-0	00	+13		•
				200E	-0	10	+6		anna da ay a mar at antis d'ha a su a sha har a d
				2+25E	0	79.	+/		
·				2+505	-0	78	+8_		
				Z+BE		+9 7 1			
•			Velik dimensional da avante dala a a a a a statistica energene a da fan de sente terme a a gen a an anna terme	3+00E	-13	+ 7		n sana ah antaratikan kapantan ka a anakis	1971 - Maria Andrea, a guint Anno 1970 - Anno 1970 - Anno 1
									18 a ik upan u u bis k k k k k i i
		•							
					1,000 mar 1,000 m 1,1,2 0 martinity (1,1,1)				
									1 0. 10. 1 1. 1 1. 1 1. 1 1 . 1 . 1 . 1
	-		and general a hyperbolic general general second state and a state of the point of the point and a point second a se		· · · · · · · · · · · · · · · · · · ·	· · · · ·			
1		I	I	N			·		

projectCedar

GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

807 20 <u>Qtz6</u>,1986

,1	Dip	1	l	1	, Dip	1	1
Line	Angle	F.S.	Fraser Filter	Line,	Angle	F.S.	Fraser Filter
L28+01	-5	67		427101	U +7	90	
5500	-6	57		2+7-4	-1	88	
210011	-7	61	~10	7+5014	-1	88	t 4
2,77	+1	64	-72	7+7d	-7	90	+4
2	+3	62	<u>+2</u>	7+11	_9	00	+15
2,750		16	<u>+/7</u>	7+200	-9:	29	+4
2400	- 7	66	+9	473	-6	70	=6
11254		62	~7	IT SO W	-6	170	-5
100		12	-14	IFZSW	- //	72	
17SW		65	-9	Itour		$\frac{1}{1}$	+2
1+256	+(63	~2	0+75u	5	64	+2
1+00W	+2_	65	+7	OFEQU		68	+
0+75W	+1	71	+(8	0+25W	-4	65	and and management is they are the second state of the st
Otsow	-5	71	+18	0+00	-9	73	
0+25w	-10	67	+10	7			
0100	-12	68	+-3				
0+25E	-13	63	-8				
OFSOE	-/2	59	-14				
OF75E	-5	62	-9				
HOOE	-6	62	-7				
1425E	-3	67	+0				
ITSDE	-6	72	. 17				
HASE	-11	68	+ 7				
2+00E	-10	68	+ 3	}			
2+25E	-10	67	t 4				
2+50P	-14	60					
2+75E	70	57	Ъ		· · · · · · · · · · · · · · · · · · ·		
31002	- 8	57					
21-02					· · ·		· · · · · · · · · · · · · · · · · · ·
							Nannanaffahlu an anna anna mannanafaan anna ann ann ann ann ann ann
	:			· · ·			
		la	[]				

PROJECT Cedar GEWARGIS GEOLOGICAL CONSULTING INC.

@ of D Oct 26, 1986

Line	Dip Angle	F.S.,	Fraser Filter	Line,	Dip Angle	F.S.		Fraser	Filter
425+00	V FI	10		126+00	-16	61			<u> </u>
2+75/1	+1	54	+0	0.00	-13	59	-1		
2+524	-4	52	+0	OtSD D	-12	60	~		
7+750	-2	59	+12	0+75E	-/z	62	-7	_	
2+004	-10	56	A	1+700	10	65	-4		
1+75W	-8	62	-4	1+25E	-7 :	68	-7		
1+50W	-4	61	+13	ITSOE	-11	64	-17		······································
1+25W	-10	56	t13	1+75E	-2	65	-7		
HOON	-15	56		LOOE	-4	68	+1		
0+75W	-12	58	-7	2+25E	-7	70	+5		
0+50W	-12	57	-19	2-30E	-5	71	+-1-1	·	
DFISW	-8	59	·	2+758	-6	71			
0+00	+3	59		3400E	- 12	70			
				F				·····	
	•		; 		•				
·									
					·				
									9. 8 a a fina an i an i an i an i an i an i
					· · · · · · · · · · · · · · · · · · ·				••••••••••••••••••••••••••••••••••••••
						·			
<u> </u>									
1									
 							<u></u>		
						,			

PROJECTCedan

GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

0 of D Oct 28, 1986

Time	Dip	FC	Enciron Filton	Tino	Dip	ъч	· .	Frecor	Filton
LINE	i Angre	F . D .		LITE	V	F.D.		Flaber	T. TT 061
3+000	+3	61		3toour	-1	34			
27350	+3	65	+9	2+75W	-4	51	-8		
2+500	-1	66	+6	2+50W	0	47	-1_	. <u> </u>	
2+251	-7	63	+1	2+250	+3	53	48		
2+000	-2:	65	+2	2+000	-6	61	tig		
1+75W	-2	70	+9	1+75W	-9	60	+10		
1500	-4	67	+/-3	itsou	-13	56	+7		
1725W	-9	63	+4	1+25W	-12	56	1		
1toow	-10	59	-4	itoow	-13	59	-,4		
0+75W	-7	58	-7	0+752	-8	49	-19		
OBOW	-8	57	-8	0+504	-3	56	-10	·······	
0+25W	-6	60	~/ 7	0+254	1+1	50	-1-0		
0400	-1	62	-F	0+00	+6	59	-1-6		
OTISE	+4	62	+14	0+25E	+8	63	-		
050E	-6	69	+10	Ursoe	+6	65	+11		
OFTSE	-7	64	-	0+75E	+3	69	·++		
ITOUE	-6	62	-/	1+00E	0	70			
1+25E	-7	62	6	1+756	+1	65	+ (
HSOF	-5	63	<i>O</i>	ItENE	+/	65	-7		ann an fe de 1. F. Me alex a a rear de area de
1417 5	-3	65	<i>O</i>	1475F	+6	67	Ŧ	,	
7+130	-4	68	<u>+4</u>	THOF	+.3	ZA	÷-2	·····	
7+75-	-8	69	#/3	71755	47	74	+/5		
7+500	-17	63	+10	21505	- 2	7 4	+3/		tan. 19. Mendeland Alexandra, salami, salari .
2 255	-10	LE	=2	2.752	-0		+78		
2+000	-8	63	······	ZODE	-16	76			
				siac		01			
									· · · · · · · · · · · · · · · · · · ·
					i		÷		
				······					••••••••••••••••••••••••••••••••••••••
			1991 - 1912 - 201 <u>- 1</u> 997 - 199						

Oct	28	,1	986
		-	

Line	Dip Angle	F.S.	Fraser Filter	Line	Dip Angle	F.S.		Fraser	Filter
2000	N -10			LIBEC	<u>80 _</u>	6	<u> </u>		
3 took	10	76		31004	-3	59			
2+754	1-12	+	-4	2730	1-6	57	++-		
2+500	10	60	-8	risou	-6	54	-6-		
2+250	-8	63	-6	2+252	-4	56	-3		
2+604	-6	60	7	ZHOOW	1-Z	58	+4_		
1+75W	-6	59	-1	H75W	-5	62	<u>+4</u>		
1+50W	-7	59	- <u>q</u>	ITSOW	-5	64	+1_		
H25W	-4	58	- 7	1+25W	-6	61	-2_		
1+00W	0	62	+3	HOOW	-5	62	-7		
0+750	-4	67	+3	O+75W	4-4	60	-,		
OtSOW	-3	63	+7	OFSOW	-6	59	-0		
0+25W	-4	66	+10	0725W	-2	60	0		
0400	-10	60	-2	Otou	0	61	12		an baa maasay ka ka madaala ka ka ka ka ka ka ka
OFEE	-7	57	5	OFISE	+4	66	-10		
OTOE	-1	56	-/	OFSOE	+4	68		<u> </u>	
0+75E	-3	58		OTTSE	+3	19	<u>`</u>		
HODE	+1	54		1+ODE	+ 3	19			
1+75E	+7	63		1+75	+4	20			
1+50-5	0	64	<u> </u>	INDE	+5	79	-2		anna an an an t- A fan anna a staan an anna an an t- an t-
H75 F	{ 7	67	6	1+757	+ 24	QE	+4-	· · · · · · · · · · · · · · · · · · ·	naraalaan oo ah balan oo dhaxay tarahan sadahaya
HOPE	+ (<u> </u>	+4	7400-	<u> </u>	01	±-7		·
7+75 F	-8	<i>Q</i> 7	+34	27000	<u> </u>	01	+3		
2+607	-10	00	+25	LTLSE	+(00	+5		
2000	-9	50 57	-4	2+500	+/	81	+10		
CABC	-17	2 T 50		UHE	- 4	84			
SHUE	16	20		3HOC	-4	87			
	[t to an
							÷		
								·····	
ĺ									
						· ·	_		

PROJECT Cedar

Line	Dip	F.S.	Fraser Filter	Line	Dip Angle	F.S.	F	raser	Filter
LITIO	ov -4	60	<u>1</u>	LI6+00	4 -6	65	<u> </u>		
0+25	4	65		OTOO	<u> </u>	69			
ists of	-3	40	-6	OFSNE	-7	In	0		
0+750	++1	64	-13	0+756	-4	69	-7		
IHDOE	+5	65	-7	ITOE	-1	68	-9		
1+25E	+5	69	->	1+25E	0	70	-9		
ItSOE	+6	69	3 //	11500	+3	63	-4		
1+75E	+7	63	+6	ittse	+4	73	· +4		
200Ē	+4	75	+ 4	2+00E	+3	72	+8		
<u>2055</u>	+3	75	-4	2+250	0	75	+7		
2+50E	+4	73	+2	2+505	-1	78	-7		
2+750	+7	75		2775E	+2	75	6		
3tore	-2	75		3100E	+(81			
[
							·		·····
		·	· · · · · · · · · · · · · · · · · · ·						
					·····				
						····			· · ·
								rie admittations a an , yarar	
•									
						••	<u> </u>		
		,	a a series de la construir de l						
			an a						
							ann an an an Annaich an		
						· · ·			
					(

PROJECT Ledar

GEWARGIS GEOLOGICAL CONSULTING INC. (3. f 2) VLF-EM SURVEY Oct 28, 1986

	Dip		1		ı Dip	1	
Line	Angle	F.S.	Fraser Filter	Line,	Angle	F.S.	Fraser Filter
LI51001	2			LISTOL	N	7-	
3+00W	+4	72		5+25E		72	-4
2+750	+5	74	+9	5+50E	-10	72	-8
2,500	0	72	0	SHISE	-7	73	
2+250	6	74	+15	6tODE	-6	76	
ZHOOW	-5	75	+0				
1+75W	-10	65	70		:		
1+50W	-3	64	~7				
1+25W	-2	66	+ 4				
1+00W	-9	70	*/ +/				
OH75W	-10	65	+7				
OtSOW	- 14	59	-15	. *			
OtZSW	-7	64	-7.0				
0+00	-2	65	-/7				
OTZSW	+1	68	-1	T			
OFSOW	+7	68	+ 14				
0+75E	-2	74	+18				
:HOOE	-9	71	±-7			•	
1+25E	-9	66	-/-				
1+30Ē	-4	66	-7 A				
17750	+ 3	66	- <u>q</u>				
LOOE	<i></i> ₩-4	70					
2+25E	+ 4	74	++			÷	
ZIJOE	+4	76	+4				
ZTTSE	+3	77	+/				
3+QOE	+ (84	+7,				
3+25E	-6	80	±17				
3450E	-10	76	-O				
3+75E	-7	76	t 7			•	
9tooz	-9	79	+3				
4+25E	-10	75	<u>+</u>				
4+30E	-9	76	+7				
4+75E	-11	74	47				
SPOE	-10	73	2				

PROJECT Cedar

GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

	-	Dip	1	 	1	Dip		
	Line	Angle	F.S.	Fraser Filter	Line	Angle	F.S.	Fraser Filter
1	L14+00 3t00W	βN-2.	76		11000	-2		
	2+75W	-1.	76	<u>^</u>	0+736	-4		+1
	ZISOW	-2:	76	+6	Orson	-5		-9
	275W	-/·	76	+8	OTZEW	-2		-15
	2+002	-8	72	-3	0+00	+2	66	-11
ŀ	1+75W	-3 .	70	~	0+25E	+6	66	-3
.	IHOW	43	70	±9	Ot5OE	+5	71	+2
ŀ	1+25W	13-6	68	+7	0+75E	+6	73	+(0
ŀ	1toow	18-8	66	+4	1+OUE	+3	73	tin
ļ	DF75W	1400 8	67	±./	1+25 <u>1</u> =	-2	73	-7
4	OtSOW	1 10	63	-6	ITSOE	+1	69	-10
ŀ	0+25W	1/2 -7	61	-17	(+75E	+ 3	64	-3
ļ	0+00	19 -5	61	-15	2+002	+6	79	+77
4	DAZSE	173 0	62	-8	2+25E	+1	94	+16
4	DTJOE	69 +3	64	+3	2+JOE	-5	84	+5
ļ	OF75E	120	69	+7	2+75E	- 4	81	
ر آ	140E	1/4 0	71	t4	3+00E	-5	82	
-	1+25E	Ø 4	70	=/				
4	IBOE	180	69	-19			 	
ļ	1475E	-17 +8	70					
-	2+002	the +7	77	+/g		•	ļ	
-	ZHZSE	1/1 +2	82	+20				
ŀ	Z+JOE	-13-5	82	±//				
- -	2+75E	# -6	78			·		
ŀ	81000	-8	+8					
-								
	-							
						1	1	

PROJECT (edar <u>GEWARGIS GEOLOGICAL CONSULTING INC</u>. <u>VLF-EM SURVEY</u>

3 of 2 <u>Qtz8</u>,1986

Line	Dip Angle	F.S.	Fraser Filter	Line	Dip	F.S.	Freser Filton
L12+00				LI1+00			
13tou	+10	92		1+254	73	61	4
2+75W	73	88	F10	1400W	, -4	69	-0
2+500	+3	86	+8	0+754	-6	76	
2+250	0	89	+4	DESOL	-3	69	-10
2+ar	-2	84	0	0+254	+Z	74	
1+75W	+1	84	18	0400	+7	78	+
1+50W	-3	84	+8	OFZSE	+8	81	+
17254	-6	83	+6	OFE	+4	88	+
11000	-4	82	+15	OTTSE	0	88	+
0+75W	-1/	89	+/	HODE	0	89	toll in to
OFSOW	-14	71	-19	1725E	-2	97	
0+25W	-7	63	+72	ITSOE	-10	86	++++++++++++++++++++++++++++++++++++++
0+00	+1	67	-19	1+75E	-12	85	
0+25E	+5	65	- <u>R</u>	2HOOE	-17	76	411 -1
0+50E	+6	71	-1	2+25E	-/z	71	
0+75E	+8	76	+10	2+50E	-16	72	
HOOE	+4	76	+14	2+75E	-11	72	
1+25E	0	79	<i>t /</i> ₇	3toq=	-9	70	
1+50E	-Z	81	+6				
HTJE	-6	76	-7				
Ztooe	-2	76	+ε		•		
2725E	-4	77	+17				
2+50E	-9	75	+/				
2+750	-10	74	0				
3700E	-9	69					
	· -						
							

PROJECT Golar

GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

6 of 1 Octra __,1986

Line	Dip Angle	F.S.,	Fraser Filter	Line,	Dip Angle	F.S.	Fraser	Filter
LIDHON		7(Laton	-70	ZG	· · · · · · · · · · · · · · · · · · ·	
31004	-2	01		(+000	-15	81		
2+75W	0	61		DECKL	() -7	70	23	
2+500	-	Ge	+23	Ursow	-6	70	-17	
2+250		97	+ 29	OTISU	<u>, ,</u>	10		
Ztabu	10	06	+ 13	0+00		10		
1+75W	-20	56	<u>↓</u>					
1+50W	-20	66	-5			[
1+25W	[9]	66	-21					
1+00W	-16	61	-33					
O+75W	-2	68	15					
0+50W								
0+256	0	77	-5					
0+00'	-3	79	=15					
OtZSE	6	79	-9	+				
OFE	+6	81	+5					
0475E	+6	87	±77					1978-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
1tove	-+1	66	+79			•		
1725E	-11	84	+5					
1+502	-11	72	-15					
1+75E	-4	69	-7					
LEOE	-3	68	+7		•			
2+252	-10	69	-0					
ZTODE	-4	64	-0					
2+755	-(64	-0			· · · · · · · · · · · · · · · · · · ·		
3+00t	-5	70						na managanan managana sa kupaté sa sa
							-	
		· · · · · · · · · · · · · · · · · · ·						
						···	<u> </u>	
								••••••••••••••••••••••••••••••••••••••
<u>├</u>								······
, 					<u></u>			
				·				

PROJECTCedar

GEWARGIS GEOLOGICAL CONSULTING INC. VLF-EM SURVEY () of 21) Oct 29, 1986

Line	Dip Angle	F.S.	Fraser Filter	Line,	Dip Angle	F.S.	Fraser Filter
18+001	-7	70		67+000	-6	55	
2.75		70		1000	-10	$\overline{\Omega}$	
24507	-5	69	+5	DEDW	-9	58	<u>+-7/</u>
24750 4	 ,			UTSUU	+4	5,	32
LICSU	-7	70	+18	OF/SW	+9	55	
2+004	-7/	$\frac{+0}{70}$	+34	0400		27	
17BW	-75	+0	+/7				
1500	-74	60	-10			·	
100	-11	10	-14				
14000	-16	60	-14				- · · ·
0+750	-/3	0 +	-73				
Ot50W) - 4	b +	-26				
0+25W	-/	68	-18		L		
otoo	+5	71	~9				
0+25E	+5	86	<i>.ø</i>				
OTSOE	+8	78	+8				
0+75E	+2	77	+4				
1100E	+3	79	-7				
ITESE	+3	80	-4				
IBOE	+3	79	-10			·	
1+75E	+7	79					
LHOOE	+9	78	-/		•		
ZIJE	+8	84	-1-7				
ZKOĽ	+ 14	85	+ 7				
275E	+15	89	7				
3tooe	0	92					
							in the second
				†			
]						

PROJECT Cedar

GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

(B) of (D) Oct 29, 1986

Dip Dip Line Angle F.S. Fraser Filter Line, Angle F.S. Fraser Filter LETOON 14+00A -19 47 -3 Btoow 70 3tooW 48 -4 2+752 12 2750 77 -7 +6 49 -6 -11 ZHOW 2+50W 65 +2 +6 48 -13 2+25W -7 2+250 61. \mathcal{O} +1 76 47 47 2+00W -6 7+000 -17 -9 -93 493 48 -8 7175W 1+75W -6 -74 46 -9 1+50W 53 ItSOW +Z +3 76 46 -9 1+25W 47 +8 1725W ±h ±1 95 71 ITOOW 49 +8+2 HOOW +7 45 73 0475W 51 +1 UT75W 70 -6-45 0+50W 70 59 OTSOW + R -15 -3 46 0+250 -4 58 +7 0+25W -74 6 50 -4 0100 45 0+00 +5 -4 18 49 0+25E +6 46 Or25E +16 +1 -6. 47 -5 OFSOE 50 +14-16 OTJOE -3-OH75E --------OTTSE +13 47 -12 49 0+00E +6 HODE +20 45 -R -.7 +5 1FISE 52 1+25E +20 44 +2 +21 1750E 47 50 47 1+50E +20 -10 =6 48 IHTSE +6 94 1+75E +16 76 +1 51 200E 43 +11 2+00E +18 <u>-5</u> -7 54 2+75E +13 2+252 +17 95 +4-/5 55 2+SOE +9 2+500 +25 45 = 3 -Ē 2ttse 57 +11 46 2+75E +26 1-19 59 3+00E +14 57 3+00E +21 +34-----63 2+25E +11 ±79 64 47 3+50E ±17. 59 +1 3+75E +9 66 Ô 4tode + 14 -6 54 TT25E +13 -7-50 4KOT +7 -12 4+75E 53 -8 4 tOOE 50

PROJECT Cedar GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

Tino	Dip	ΨC	Encon Filton	Tino	Dip	T C	Fracor Filton
3+OON	AUGTO	<u> </u>		Litur	Angre	F.D.	
0+00	+9	55		3+000	<u>v -11</u>	53	
OFISE	+11	501	-7	2+75u	-16	44	-75
OFSOE	T/2	55		27500	-6	42	-17
UT75E	+15	55	/	2+254	+4	48	-7
HODE	+18	55	- 	2000	+1	50	-5
1+23E	+17	56	+2	2+750	+4	55	6
1+50E	+16	57	-5	itzow	+6	57	+14
1+7JE	4/6	59	-9	1+ISW	~1	57	+9
ZHOUE	+22	57	<u>+7</u>	1tow	-3	55	
2+25E	+18	59	+70	Or75W	0	56	+5
ZTOE	+18	59	+20	DTSOW	-5	57	-/
2+75E	+2	59	+0	0+2500	-3	57	-7 /
3+00E	+6	59	-/	00+0	+4	56	70
3+25E	46	59	<u>+</u>	0+23E	+9	53	-0
3TSOE	+3	59	· /	0+50E	+10	60	0
7+755	-12	60	+11	0+75E	+11	61	-7
9+00E	0	66	H	HOOE	+15	59	
4125E	-6	66	+9	1+25E	+//	53	0
4+50E	-6	64	+1	INSOE	+15	61	-/->
4+75E	-9	56	6	INSE	+ 18	62	-r
3+00E	-9	60		ZHOOE	+70	6z	
				THE	+19	70.	1. -
				2+501=	+14	67	<u>-</u>
				2+75/=	+19	74	
		1		3tone	+16	77	
•				3+755	+4	74	+2+
				3BRE	+4	64	
				3+75E	+7	67	
				Atone	+4	67	+ +
				4+75=	0	61	+12
				41505	-/	58	-#10
				41755	-5	61	*/0
				SHOPE		63	
				2,202			

PROJECT (edar

GEWARGIS GEOLOGICAL CONSULTING INC.

VLF-EM SURVEY

00+ 21 0ct31, 1986

	Dip	1	1			, Dip		1		
Line	Angle	F.S.	Fraser	Filter	Line	Angle	F.S.	1	Fraser	Filter
7600 10600	+8	55			LZ+00.	+10	56			
0175E	+11	56		<u> </u>	0+250	+10	57	-0		
D+SOG	+11	58			DISOE	+16	57	+0		dia amin' dia kaominina dia mampina dia kaominina dia mampina dia kaominina dia mampina dia kaominina dia kaomini
0175G	+6	57			O+BE	+12	56	+17		anna agus an 1992 an 1992 anns an Ghalan an Anns
1+00E	+8.	56			1+000	+6	35	40		
1+25E	417	59			INSE	+5	57	-7		
ITJOE	+16	60			1+50E	+10	57	+8		
IT ISE	+22	64			ITBE	+6	55	+15		
2+00E	+10	89			LADE	+1	50	+7		
URSE	-7	76			2+250	0	48	-3		
2+50E	+2	67			RESOE	6	42	-2		
U7JE	0	61			2THE	+4	44			
3tODE	+1	63			3toof	6	53	ļ		
					F			 	· · · · · · · · · · · · · · · · · · ·	
								•		
						-				
								-		
. <u>.</u>										

							•			
			and a start of the start of the start of the start start and the start of the start							······································
									an an channaicheachan so bh than a' dao s	
										······································
					·					
[

PROJECT Cedar

GEWARGIS GEOLOGICAL CONSULTING INC. VLF-EM SURVEY €) of E) Oct 31, 1986

	Dip		ſ		1	, Dip	1		
Line	Angle	F.S.,	Fraser Filter		Line,	Angle	F.S.	Fraser	Filter
9+005 10+00	+24	57							
1.7513	+19	67	+0						
OT CIE	+14	61	-7						
01700	+7.	EG							
UTTSE	120	121	-11		<u> </u>				
TTUDE	7/9	57	-20					-	·····
1+25E	+26	76	-12						
1450E	7 33	67	+19						
1775E	+ 24	69	+33						
HOOE	+16	76	+33				[
2+25E	+8	76	+27						
2+502	-1	70	+7						
2+75E	+1	66							
3+00E	-1	63							
					Ŧ				
							;		
						<u></u>			
	·					•	<u> </u>		
		······					÷		
			·						
·									
							<u> </u>		
		L		!!				L	

PROTECT

MAGNETOMETER SURVEY

PROJECT MAGNETOMETER SURVEY					RVEY	2 <u>2/CCT</u> , 1989	
Line	Mag Rdg Gamma	Time	Cort	rected ling	Line	Mag Rdg Gamma	Corrected Reading
BASE.	LINE						
0+00NW	57,475	12:08 PM	+0¥=	57,475)			
0125	465	12:11		465			
0450	492	12:13		492			
0+75	445	1215		445			
1+00	387	12:17		387			
J+25	410	12:19		410			
1+50	345	12 23		¥6			
1+75	263	12:25	+ p =	283			
2100	360	12.28	+1	361			and a second
2+25	457	12:30		458			
2+50	513	12:32		514			
2+75	528	12:34		529			
3+00 C+20	556	12.36		557			
3125	554	12 38		555			
3150	572	12.42		573			
3+75	553	12:43		554			
4+00	550	12.46.	4-12	551			
4+25	541	12:48	+2=	543			
4+50	593	12:51		595			
4+75	749	12:57		751			
5100	512	12.59		5/4			
5+25	561	101		.563			
5+50	597	1.04	and a second	596			
5775	578	1:06	+27	580			
6+00	585	1:08	+3=	588			
G+25	603	1:12		606			
6+50	628	1:14		(3)			
6+75	. 640	1.16		643	-		
7+00	675	1:18		678			
7725	739	1:20		742		a land a second a se	A CONTRACTOR OF
7+50	736	1:23		737			
7175	779	1:24	+3=	782			
RtAA	736	1:27	14 =	740			
0+00	471	1:46	+4 =	57.475 }			

(

	PROJECT			MAGNETOME	TER SU	JRVEY			23/OCT, 1986 MAGE 1/3
BASE UNE Line	Mag Rdg Gamma	Time	Corr Read	ected ing	<i>B4£4№</i> Line	Mag Rdg Gamma		Cor Rea	rected ding
8+00NW	57,754 8	9:32 AM	14 X=	57,740 <i>8</i>	14+88 M	57,6488	11:17	A.M. +362	1=57,684 X
8+25	712	9:36	-128=	700	14+94	643	11:18	+35	= 668
8+50	721	9:39	-10 =	7/1	15+00	672	11:20		707
8+75	738	9:41	-9=	729	15+25	671	11:22	+35	= 706
9+00	735	9:43	-8	727	15+50	680	11:24	+34	714
9+25	714	9:45	-7	707	15+75	640	11:27		674
9+50	719	9:47	-6	713	16+00	626	11:29	+ 34	660
9+75	712	9:49	-5	707	16+25	634	11:31	+33	667
10+00	705	9:51	-4	70/	16t50	627	11:33	+33	660
10+25	694	9:53	-3	691	16+75	630	11:35	+32	662
10+50	703	9:55	-2	701	17+00	626	11:36		658
10+75	713	9:57	-1	712	17+25	627	11:37		659
11+00	728	9:59	+0	728	17+50	661	11:40	+32	693
11+25	712	10:01	+1	713	17+75	GAÖ	11:42	+31	671
11+50	708	10:03	+2	710	18+00	620	11:44		651
11+75	689	/0:05	+3	692	18+25	616	11:46	+31	647
12+00	680	10:67	+4	684	18+50	627	11:48	+30	657
12+25	663	10:09	+5	665	18+75	629	11:50		659
12+25	650	10:11	+6	656	19+00	624	11.52	+30	654
12+50	651	10:13	+7	658	19+25	630	11:54	+29	659
12+75	654	10:14	+7	661	19+50	623	1:55		652
1.3+00	650	10:16	+8	658	19+75	610	11:57	+29	639
13+25	645	10:18	+9	654	20+00	622	11:59	+28	650
13+50	613	10:20	+10	62.3	14+50	675	12:14P.	M+248=	57,6998
13+75	617	10:22	+11	628	20+00	57,6318	12:49F	<u> 98 + 198 =</u>	57,6508
14+00	618	10:24	+12	630	20+25	633	12:52		652
14+25	609	10:26	+13	622	20150	608	12:53		627
14+50	685	10:29	7 <u>5</u>	699	20+75	611	12:56		630
Broo	· 717	10:47	+238 =	57,7408	21+00	618	12;58		637
14+50	57,663 d	11:06A.M	+368 =	57,6998	21+25	635	1:00		654
14+56	691	11:09		7:27	ZI+50	642	1:02	+ 198 =	661
114462	740	11:10		776	21+75	651	1:05	+#207=	671
14+68	730	11:12		769	22+00	677	1:07		697
14+75	739	11:B		715	22+25	710	1:09		730.
14+82	688	jį 15		724	22+32	683	1:12		703

PROJECT

5

MAGNETOMETER SURVEY

	PROJECT			MAGNETOM	ETER SU	JRVEY		23/0CT; 1986
<i>BASEUNE</i> Line	Mag Rdg Gamma	Time	Cor Rea	rected ding	<i>₽A€CINE</i> Line	Mag Rdg Gamma	Co Re	orrected eading
22+38NU	57,6428	1:14 P.M.	+218	= 57,663 8	29H25Nbu	57,6630	2:58PM. +178	= 57,6808
22+50	640	1:16		661	294.50	635	3:00	652
22+75	641	1:18		662	29+75	641	3:01	658
23+00	648	1:20	<u> </u>	669	30700	637	3:02 +178	654
23+25	661	1:23	+21=	682	30+25	634	3:04 +Kað	650
23+50	653	1:26	+22=	675	Bot 50	636	3:07	652
23+62	763	1:28		725	30+75	624	3:08 + <i>16</i> 8	640
23+75	706	1:30		728	31+00	620	3:11 +158	635
23+80	738	1:33	+22 =	760	31+25	608	3:13	623
23+87	923	1:35	+23 =	746	31+50	615	3:14+158	630
23+92	9,65	1:37		988	31+75	622	3:167148	636
24+00	851	1:39		874	32+00	625	3:18+HX	639
24+12	739	1:40		762	25+00	636	3:33 +10)= .	576468
24+25	716	1:42		739	32100	57,6338	3:51P.M.+68 =	57,6398
24+50	698	1:44	+23=	721	32t25	625	3:53	631
24+75	673	1:46	+24	697	32+50	637	3:55	633
25400	622	1:49	+24=	646	32+75	640	3:57	646
20+00	624	2:01	+268-	57,6508	33+00	635	3:59	641
25+00	57,624 8	2:29.PM	+22/=	57,6468	33t25	640	4:01	646
25+25	637	2:31		659	33+50	651	4:03+68=	656
25+50	631	2:32		653	33+75	656	406 +5	66)
25+75	653	2:34	t228	675	33+87	675	4:08	680
26100	660	2:35	+218	681	34+00	691	4:10	696
26+25	648	2:38		669	34+12	669	4:12	674
26+50	651	2:40	+218	672	34+25	671	4:14 +5	676
26+75	657	2:42	+208	677	34150	632	4:16 +4	637 636
27400	650	2:44		670	34+75	649	4:19	654 653
27+25	656	2:45	+201	676	35+00	672	4:21	677 676
27450	. 665	2:46	+198	684	35+12	693	4:23	698 697
27+75	651	2:47		610	35+25	659	4:25	66A 663
28100	652	2:49		671	35+50	642	4:26+4	647 646
28-125	655	2:50		674	35+75	610	4:28 +3	615 -6146
28+50	659	2:52	+198	678	36700	640	4:30	645 643
28+75	660	2:54	+188	618	36+12	670	4:32	673 .
29+00	660	2:56	+18¥	678	36+25	630	1:34	633

.

PROJECT

MAGNETOMETER SURVEY

2<u>30CT</u>, 1986

BASE LINE	Mag Rdg	1	Corrected	1	Mag Rd	g Corrected
Line	Gamma	Time	Reading	Line	Gamma	Reading
36+37Nu	57,6058	4:36PM	+38 = 57,6088			
36+42	562	4:38	+38= 565			
36+50	481	4:40	$+2\partial^{=}$ 483			
36+50	460	4:41	462			
36†62	495	4:42	497		_	
36767	567	4:43	569			
36+75	585	4:44	587			
36+82	617	4:45	619			
36+88	652	4:46	654			
37+00	665	4:47	667			
37+06	714	4:48	716			
37+12	696	1:49	698			
37+18	697	4:50	699			
31+25	719	<i>‡:5</i> /	+28= 721			
37+31	664	<i>1:53</i>	HIX= 665			
37+38	645	4:54	646			
37+44	639	<i>‡55</i>	640			
37+50	630 -	<i>1:5</i> 6	631			
37+75	673 (4:57	674			
37+82	690	£:58	691			
37+88	732 <	1:59	733		······································	
37490	634 1	5:00	635			
37495	651	5:01	652			
38+00	651	5:02 +	-18 = 652		*******	
32+00	639	5:14 1	08=57,6398			
					-	
						· · · · · · · · · · · · · · · · · · ·
-						
						· · · · · · · · · · · · · · · · · · ·

-

Nug Rdg Gamma Time Corrected Reading Line Gamma Corrected Reading PASE LINE Stank +50 574753 Horse Horse Reading PASE LINE Stank +50 574753 Horse Horse Reading PASE LINE Gamma Horse Horse Horse Horse Horse Reading PASE LINE Gamma Horse		PROJECT			MAGNETOME	TER SI	URVEY	A STA	ALL	24/OCT, 1986
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Line	Mag Rdg Gamma	Time	Corr Read	rected ling	Line	Mag Rdg Gamma	4.4 × 10	Cor Rea	rected ding
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BASE OHOONW	STADY	9:53A.M.	+58 =	57,4758	H25NE	57,633 8	11:16A	.M. +268	= 57,6598
6+50 511 $7:57$ 45 516 175 670 1122 729 639 $6+75$ 554 $9:59$ 16 560 200 6.38 $11:23$ 129 667 $0+16$ 509 $10:01$ $t6$ 515 225 635 $11:26$ $t30$ 665 $0+16$ 457 $10:02$ $t77$ 4425 2175 624 $11:28$ $t31$ 655 $0+07$ 448 $0+03$ $t7$ 425 2175 624 $11:29$ $t31$ 655 $0+07$ 448 344 $0+024$ $t33$ 650 1239 574755 $0+07$ 48 3622 $2+025$ 577477 $11:514.01.489$ 5774153 $0+00$ 820 1238 $12:01$ 79 406 1152 11.52 11.52 $0+07$ 18 362 $0+26$ $0+75$ 558 $12:05$ 11 516 1123 150 <t< td=""><td>0125SE</td><td>473</td><td>9:55</td><td>+5</td><td>478</td><td>14.50</td><td>687</td><td>11:18</td><td>+27</td><td>714</td></t<>	0125SE	473	9:55	+5	478	14.50	687	11:18	+27	714
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0150	511	9:57	+5	516	1475	618	11:22	+29	639
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0+75	554	9:59	16	560	2100	638	11:23	+29	667
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0+01	509	10:01	+6	515	2+25	635	11:26	+30	665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0+84	457	10:02	+7	464	2450	610	11:27	· +31	641
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0487	418	10:03	+7	425	2+75	624	11:28	+31	655
0:43 336 $0:06$ 18 344 $0:001$ 436 $11:50$ $139 = 57,4757$ $0:471$ 354 $0:07$ 18 362 $0:002$ $57,4757$ $11:514,M+88 = 57,4158$ $0:00$ 280 $0:28$ 16 388 $0:2516$ 977 $12:01 + 9$ 406 100 280 $0:28$ 16 488 $0:50$ 452 $12:05 + 10$ 462 112 397 $0:b0$ 19 406 $0:53$ $12:01 + 9$ 406 112 397 $0:b0$ 19 406 $0:53$ $12:01 + 13$ 516 112 397 $0:b1$ 19 300 125 561 $12:20 + 11$ 567 113 360 $10:3$ 19 390 1125 561 $12:20 + 114$ 515 1175 472 $10:4$ 411 483 2100 563 $12:27 + 1/6$ 599 2100 403 $10:23$ 112 415	0190	345	10:05	+7	352	3+60	659	11:29	+31	690
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0193	336	10:06	+8	344	BASELINE	436	11:50	+39=	574758
HOO 380 1028 HB 388 HE 977 12.61 $t 9$ 406 HOE 400 10.09 HB 448 Otso 452 12.65 $t 10$ 462 HIZ 377 10.16 $t 9$ 406 Orts 558 12.09 $t 11$ 564 HIB 368 10.12 $t 9$ 371 Hoo 503 12.17 $t 13$ 516 H25 361 10.13 $t 9$ 370 Hots 561 12.20 $t 14$ 575 H37 390 10.15 $t 10$ 400 Hso 5712 (2.23 $t 15$ 587 H50 413 10.17 $t 10$ 423 Hto 503 12.27 $t 16$ 618 1175 472 101 423 Hto 533 12.27 $t 16$ 618 1175 472 1028 $t 13$ 408 200 583 12.23 $t 17$ 643 2100 403 1024 $t 13$	0191	354	10:07	+8	362	BASELING	57,407%	11:51A	M+8x=	57A158
HC6 400 b:09 $t8$ 448 otso 452 12:05 $t10$ 462 HI2 397 b:b $t9$ 406 otrss 558 12:09 $t11$ 569 HI8 368 $b:l2$ $t9$ 371 Hco 503 12:17 $t13$ 516 H25 381 $b:l3$ $t9$ 370 Hzs 561 12:20 $t14$ 575 H37 390 10:15 $t10$ 400 Htsp 572 12:23 $t15$ 587 H30 413 $bir7$ $t10$ 423 Htsp 562 12:20 $t14$ 575 H40 483 100 H53 512 12:27 $t16$ 618 H17 $t10$ 423 Hzp 200 583 12:27 $t16$ 599 2100 403 1023 $t12$ 413 200 531 12:29 $t17$ 548 2125 391 1024 13 420 213	1100	380	10:08	+8	388	OT25NE	397	12:01	+9	406
HIZ 397 b:b t9 406 orts 558 $12:09 + 11$ 569 HIB 368 10:12 t9 371 Hto 563 $12:17 + 13$ 516 H25 361 10:13 t9 390 H25 E61 $12:20 + 14$ 575 H37 390 10:15 t10 400 H50 572 $12:23 + 15$ 587 H50 413 10:17 t10 423 H75 602 $12:25 + 116$ 618 H75 472 10:19 +11 483 2100 563 $12:27 + 16$ 599 2400 403 10:23 +12 415 2100 5031 $12:29 + 17$ 548 2425 395 10:26 +13 408 2109 486 $12:30 + 17$ 603 245 417 10:28 +13 400 214 416 $12:31 + 17$ 433 2475 390 031 +14 404 214 409 $12:32 + 18$ 427	HOG	400	10:09	+8	408	0150	452	12:05	+10	462
HB 368 $10:12$ $1-9$ 371 1400 503 $12:17$ $1:3$ 516 H25 361 $10:15$ $1-9$ 390 1425 561 $12:20$ 114 575 H37 390 $10:5$ $t10$ 400 1450 572 $12:23$ $t15$ 587 H50 413 $0:7$ $t10$ 423 $1+75$ 602 $12:25$ $t16$ 618 $1+75$ 412 $10:9$ $t11$ 483 2100 563 $12:27$ $t16$ 599 2100 403 $10:23$ $t1/2$ 915 2106 531 $12:29$ $t-17$ 548 2125 395 $b26$ $t13$ 408 2109 486 $12:30$ $t17$ 603 2155 417 $b28$ $t13$ 420 2412 416 $12:31$ $t17$ 433 2155 417 $b28$ $t13$ 420 2412 416 $12:32$ $t18$ 427 375 330 $n31$ $t14$ 404 2415 409 $12:32$ $t18$ 427 375 417 $b32$ $t15$ 434 248 372 $12:34$ $t18$ 427 375 431 $b42$ $t17$ 448 2425 461 $12:34$ $t18$ 479 375 431 $b42$ $t17$ 448 2425 461 $12:34$ $t18$ 479 375 432 $b44$ 417 <	H12	397	10:10	+9	406	OFTS	558	12:09	+11	569
H25 38 10:13 H9 390 H25 561 12:20 414 575 H37 390 10:15 H0 400 H50 572 12:23 H15 587 H50 413 10:17 H0 423 H75 602 12:25 H16 618 H75 472 10:19 H11 483 2400 583 12:27 H16 599 2400 403 10:23 H12 415 2406 531 12:29 H17 548 2425 395 10:26 H3 408 2409 486 12:30 H17 603 2425 395 10:28 H3 430 242 416 12:31 H17 433 2455 417 10:28 H3 430 2415 409 12:32 H18 427 370 10:37 H14 404 2415 409 12:32 H18 427 370 10:34 H4 404 245 461 <t< td=""><td>HIB</td><td>368</td><td>10:12</td><td>79</td><td>371</td><td>1400</td><td>503</td><td>12:17</td><td>+13</td><td>516</td></t<>	HIB	368	10:12	79	371	1400	503	12:17	+13	516
H37 390 10:15 $t10$ 400 H50 572 12:23 $t15$ 587 H50 413 10:17 $t10$ 423 H75 602 12:25 $t16$ 618 1+75 472 10:19 $t11$ 483 2400 583 12:27 $t16$ 599 2400 403 10:23 $t12$ 412 415 2406 531 12:27 $t16$ 599 2400 403 10:23 $t12$ 415 2406 531 12:29 $t-17$ 548 2425 395 $b26$ $t13$ 408 2409 486 12:30 $t17$ 603 2455 417 $b28$ $t13$ 430 2415 409 12:32 $t18$ 427 3700 031 $t14$ 404 2415 409 12:32 $t18$ 427 3700 031 $t14$ 404 2415 409 12:33 $t18$ 427 3700 032 $t16$ 42	1+25	381	ID:B	+9	390	1+25	561	12:20	+14	575
H50413 $ b:17 $ $+10$ 423 $ +75 $ 602 $ 2:25 + 16$ 618 $1+75$ 472 $ 0:9 $ $+11$ 483 2400 583 $12:27 + 16$ 599 2400 403 $10:23 + 17$ 415 2406 531 $12:29 + 17$ 548 2425 395 $b:26$ $+13$ 408 $2t09$ 486 $12:30 + 17$ 603 2450 417 $b:28$ $+13$ 430 242 416 $12:30 + 17$ 603 2450 417 $b:28$ $+13$ 430 242 416 $12:30 + 17$ 433 2475 390 031 $+14$ 404 245 409 $12:32 + 18$ 427 3460 419 $b:32$ $+15$ 424 246 372 $12:33 + 18$ 390 3425 444 $b:39$ $+16$ 460 2421 387 $12:34 + 18$ 405 3431 $b:42$ $+17$ 448 2425 461 $12:34 + 18$ 419 3475 430 $b:44$ $+17$ 447 228 568 $12:35 + 19$ 587 4405 $b:46$ $+18$ 440 243 690 $12:35 + 19$ 109 3475 430 $b:44$ $+17$ 447 228 568 $12:35 + 19$ 709 44055 $57,475$ 2435 $57,974$ $12:36 + 19 = 57,993$ 93 242506 497 $11:04$ 423 515 <	1+37	390	10:15	+10	400	1450	572	12:23	+15	587
1+75 472 $10!9$ $+11$ 463 2100 583 $12:27$ $+16$ 599 2400 403 $10:23$ $+12$ 415 2106 531 1229 $+17$ 548 2425 395 $b:26$ $+13$ 408 2109 486 $12:30$ $+17$ 603 2425 395 $b:26$ $+13$ 408 2109 486 $12:30$ $+17$ 603 2455 417 $b:28$ $+13$ 430 2112 416 $12:31$ $+17$ 433 2475 390 031 $+14$ 404 2145 409 $12:32$ $+18$ 427 3406 419 $b:32$ 414 639 116 440 248 372 $12:34$ $+18$ 405 3455 431 $b:42$ $+17$ 448 2425 461 $12:34$ $+18$ 479 587 3450 $b:44$ $+17$ 447	H50	413	10:17	+D	423	H75	602	12:25	tig	618
2400 403 1023 $+12$ 415 2106 531 1229 $+17$ 548 2425 395 $b26$ $+13$ 408 2409 486 $12:30$ $+17$ 663 2455 417 1628 $+13$ 430 2412 446 $12:31$ $+17$ 433 2475 390 031 $+14$ 404 2415 409 $12:32$ $+18$ 427 3466 419 $6:36$ $+15$ 474 2418 372 $12:33$ $+18$ 390 3425 444 $6:39$ $+16$ 440 2421 387 $12:34$ $+18$ 405 3455 431 $0:42$ $+17$ 448 2425 461 $12:34$ $+18$ 405 3475 430 $b:44$ $+17$ 441 228 568 $12:35$ $+19$ 587 44055 422 $b:46$ $+18$ 440 2430 690 $12:35$ $+19$ 587 44055 422 $b:46$ $+18$ 440 2430 690 $12:35$ $+19$ 587 44055 422 $b:46$ $+18$ 440 2430 690 $12:35$ $+19$ 93 2450 697 $12:36$ $+19$ $57,993$ 793 793 793 793 44055 $57,4758$ 2432 825 $12:36$ $+19$ $58,923$ 2450 494 1104 123 515 2437	1+75	472	10:19	+11	483	2100	583	12:27	+16	599
2425 395 $b26$ $+B$ 408 2409 486 $12:30$ $+17$ 603 2450 417 $b28$ $+13$ 430 242 416 $12:31$ $+17$ 433 275 390 $b31$ $+14$ 404 245 409 $12:32$ $+18$ 427 3400 419 $b:32$ $+15$ 474 248 372 $12:33$ $+18$ 360 3425 444 $b:39$ $+16$ 460 2421 387 $12:34$ $+18$ 405 3425 444 $b:39$ $+16$ 460 2421 387 $12:34$ $+18$ 405 3425 431 $b:42$ $+17$ 448 2425 461 $12:34$ $+18$ 405 3475 430 $b:44$ $+17$ 447 228 568 $12:35$ $+19$ 587 $440bsse$ 422 $b:46$ $+18$ 440 2430 690 $b:35$ $+19$ 587 $440bsse$ 422 $b:46$ $+18$ 440 2430 690 $b:35$ $+19$ 587 $440bsse$ 422 $b:46$ $+18$ 440 2430 690 $b:35$ $+19$ 587 $440bsse$ 422 $b:46$ $+18$ 440 2430 690 $b:356$ $+19$ 844 $570,474$ $1:01$ 421 $57,4758$ 2432 825 $12:36$ $+19$ $58,323$ 6450 487 1	2+00	403	10:23	+12	415	2106	531	12:29	+17	548
21504171028+13430241241612:31+1743324753901031+1440424540912:32+18427340041910:36+1542424837212:33+18390342544410:39+1646024238712:34+18405345043110:42+17448242546112:34+18405345543110:42+17448242546112:34+18479347543010:44+1744722856812:35+1958744005542210:44+1744724256812:35+1958744005542210:44+1744724256812:36+1958744005542210:44+1744724252512:36+1958744005542210:44+1844024369012:35+1958744005542710:01+218 = 57,4758243282512:36+1957,939324251757,4751243557,97412:36+1958,32314424001847711:04+23515243758,30412:31+1958,32324251750011:00425554244259,42512:39+2059,445 <td>2+25</td> <td>395</td> <td>10.26</td> <td>+13</td> <td>408</td> <td>2+09</td> <td>486</td> <td>12:30</td> <td>+17</td> <td>603</td>	2+25	395	10.26	+13	408	2+09	486	12:30	+17	603
275 390 1031 114 404 215 409 1232 118 427 3100 419 1036 $t15$ 424 216 372 1232 $t18$ 427 3100 419 1036 $t15$ 424 218 372 1233 $t18$ 390 3125 444 1039 $t16$ 460 2121 357 1234 $t18$ 4055 3130 10.42 $t17$ 448 2125 461 1234 $t18$ 479 3175 430 10.44 $t17$ 447 228 568 1235 $t19$ 587 410055 422 10.46 $t18$ 440 2130 690 1235 $t19$ 587 410055 422 10.46 $t18$ 440 2130 690 1235 $t19$ 587 410055 422 10.46 $t18$ 440 2130 690 1235 $t19$ 93 41055 422 10.46 $t18$ 440 2130 690 1235 $t19$ 93 410055 422 10.46 $t18$ 440 2130 690 1235 $t19$ 93 41055 $57,4758$ 2135 $57,9744$ 1236 $119 = 57,9933$ 933 21236 $119 = 58,323$ 4125 494 1104 $t23$ 515 2437 $58,901$ 1238 $t19 = 58,920$ 4125 457 11	2+50	417	10:28	+13	430	2+12	416	12:31	+17	423
3to 419 636 $t15$ 474 $2t8$ 372 $12:33 + 18$ 360 $3t25$ 444 639 $t16$ 460 $2t21$ 387 $12:34 + 18$ 4055 $3t35$ 431 $10:42$ $t17$ 448 $2t25$ 461 $12:34 + 18$ 4055 $3t75$ 430 $10:44$ $t17$ 447 228 548 $12:35 + 19$ 587 $4t055$ 430 $10:44$ $t17$ 447 228 548 $12:35 + 19$ 587 $4t055$ 422 $0:44$ $t18$ 440 $2t30$ 690 $12:35 + 19$ 109 $4t055$ 422 $0:44$ $t18$ 440 $2t30$ 690 $12:35 + 19$ 109 $4t055$ 422 $0:44$ $t18$ 440 $2t30$ 690 $12:35 + 19$ 109 $4t055$ $57, 454$ $11:01$ $12:18 = 57, 4758$ $2t32$ 8255 $12:36 + 19 = 57, 993$ $6t50$ 487 $11:04$ $t23$ 515 $2t35$ $57,974$ $12:36 + 19 = 57, 993$ $6t50$ 487 $11:04$ $t23$ 515 $2t37$ $58,304$ $12:31 + 19 = 58, 323$ $6t50$ 487 $11:07$ $2t3$ 516 $2t40$ $58,901$ $12:38 + 19 = 58, 920$ $6t75$ 530 $11:10$ 25 554 $2t42$ $59,425$ $12:39 + 20 = 59, 445$ $6t7$ $11:12$ $t25$ 624 $2t47$ $59,937$ $12:42 + 21 = 59, 958$ $6t7$	275	390.	10:31	+14	404	2+15	409	12:32	+18	427
3+25 444 $b:39$ $t16$ 460 $2t21$ 387 $12:34$ $t18$ 465 $3+50$ 431 $b:42$ $t17$ 448 $2t25$ 461 $12:34$ $t18$ 479 $3t75$ 430 $b:44$ $t17$ 447 $2t28$ 568 $12:35$ $t19$ 587 44055 422 $b:46$ $t18$ 440 $2t30$ 690 $12:35$ $t19$ 587 44055 422 $b:46$ $t18$ 440 $2t30$ 690 $12:35$ $t19$ 709 $5400NW$ 454 $11:01$ $t218 = 57, 4758$ $2t32$ 825 $12:36$ $t19 = 57, 993$ $57, 454$ $11:04AH$ $t218 = 57, 4758$ $2t35$ $57,9744$ $12:36$ $t19 = 57, 993$ $5425NE$ 494 1104 $t23$ 515 $2t37$ $58,304$ $12:31$ $t19 = 58, 323$ $0t50$ 487 $11:01$ $t25$ 554 $2t42$ $59,425$ $12:39$ $t20 = 59, 445$ $0t75$ 500 $11:10$ $t25$ 554 $2t42$ $59,425$ $12:39$ $t20 = 59, 445$ $0t87$ 547 $11:12$ $t25$ 624 $2t47$ $59,937$ $12:42$ $t21$ $=59, 958$ $1t12$ 617 $11:14$ $t25$ 642 $2t47$ $59,937$ $12:42$ $t21$ $=59, 958$ $1t12$ 617 $11:14$ $t25$ 642 $2t46$ $59,754$ $12:44$ $t21$ $=59, 958$	3+00	419	10:36	+15	424	2+18	372	12:33	+18	300
3+50 431 10.42 $+17$ 448 $2+25$ 461 $12:34$ $+18$ 479 $3+75$ 430 $10:44$ $+17$ 447 $2t28$ 568 $12:35$ $+19$ 587 $4+0055$ 422 $10:46$ $+18$ 440 $2t30$ 690 $12:35$ $+19$ 709 $2+0055$ 422 $10:46$ $+18$ 440 $2t30$ 690 $12:35$ $+19$ 709 $2+0055$ 422 $10:1$ $+218 = 57, 4758$ $2t32$ 8255 $12:36 + 19$ 844 $2+0050100$ 454 $11:01$ $+218 = 57, 4758$ $2t35$ $57, 974$ $12:36 + 19 = 57, 9933$ $2+25015$ 494 $11:04$ $t23$ 515 $2t37$ $58, 304$ $12:31 + 19 = 58, 323$ $2+25015$ 494 $11:04$ $t23$ 515 $2t47$ $58, 901$ $12:38 + 19 = 58, 920$ $2+25015$ 487 $11:01$ 25 554 $2t42$ $59, 425$ $12:39 + 20 = 59, 445$ $2+50$ $59, 425$ $12:39 + 20 = 59, 445$ $59, 602$ $11:10$ 25 554 $2t42$ $59, 937$ $12:42 + 21 = 59, 958$ $2+00$ 599 $11:13$ 125 624 $2t47$ $59, 937$ $12:42 + 21 = 59, 958$ $1+12$ 617 $11:14$ 125 642 $2t50$ $59, 754$ $12:44 + 721 = 59, 958$	3+25	444	10:39	+16	460	2+21	387	12:34	+18	405
3+75 430 $10:44$ $+17$ 447 $2t28$ 568 $12:35$ $t19$ 587 $4+00.5E$ 422 $10:46$ $+18$ 440 $2t30$ 690 $12:35$ $t19$ 109 $4+00.5E$ 422 $10:46$ $+18$ 440 $2t30$ 690 $12:35$ $t19$ 109 $4+00.5E$ 454 $11:01$ $1218 = 57, 4758$ $2t32$ 825 $12:36 + 19$ 844 45520166 454 $11:0141$ $+218 = 57, 4758$ $2t35$ $57, 974$ $12:36 + 19 = 57, 993$ $2+2517E$ 494 1104 123 515 $2t37$ $58, 304$ $12:31 + 19 = 58, 323$ $2+2517E$ 494 1104 123 515 $2t37$ $58, 901$ $12:38 + 19 = 58, 920$ $0+25$ 554 $2t42$ $59, 425$ $12:39 + 20 = 59, 445$ $0+75$ 550 $11:10$ 25 554 $2t42$ $59, 425$ $12:39 + 20 = 59, 445$ $0+87$ $11:12$ $t25$ 572 $2t45$ $57, 582$ $12:41 + 20 = 59, 602$ $1+00$ 599 $11:13$ $t25$ 624 $2t47$ $59, 937$ $12:42 + 21 = 59, 958$ $1+12$ 617 $11:14 + 125$ 642 $2t50$ $59, 754$ $12:44 + 721 = 59, 958$	3450	431	10:42	+17	448	2+25	461	12:34	+18	479
4400 SE 422 $b:46$ $+18$ 440 $2t30$ 690 $b:35$ $t19$ 709 $0400 NW$ 454 $11:01$ $f218 = 57, 4758$ $2t32$ 825 $12:36 + 19$ 844 $345EUNE$ $57, 454$ $11:014.14$ $t218 = 57, 4758$ $2t35$ $57,974$ $12:36 + 19 = 57, 993$ $0400 NW$ $57, 454$ $11:014.14$ $t218 = 57, 4758$ $2t35$ $57,974$ $12:36 + 19 = 57, 993$ $0450 NW$ $57, 454$ $11:014.14$ $t23$ 515 $2t37$ $58,304$ $12:31 + 19 = 58, 323$ 0450 494 $11:04$ $t23$ 515 $2t47$ $58,901$ $12:38 + 19 = 58, 920$ 0450 487 $11:07$ $t24$ 510 $2t42$ $59,425$ $12:39 + 20 = 59, 445$ 0457 550 $11:10$ $t25$ 554 $2t42$ $59,425$ $12:39 + 20 = 59, 445$ 0467 $11:12$ $t25$ 572 $2t45$ $57,582$ $12:41 + 20 = 59, 602$ 1400 599 $11:13$ $t25$ 624 $2t47$ $59,937$ $12:42 + 21 = 59, 958$. 1412 617 $11:14$ $t25$ 642 $2t50$ $59,754$ $12:44 + 721$ $= 59,758$	3175	430	10:44	+17	447	2428	568	12:35	+19	587
OHDONIUL 454 11:01 $f21 \ 8 = 57, 475 \ 8 2432$ 825 12:36 + 19 844 SASELINE 57, 454 11:014.14 $+21 \ 8 = 57, 475 \ 8 2432$ 57, 974 12:36 + 19 = 57, 993 OHDONUUL 57, 454 11:014.14 $+21 \ 8 = 57, 475 \ 8 2435$ 57, 974 12:36 + 19 = 57, 993 OHDONUUL 494 11:04 $+21 \ 8 = 57, 475 \ 8 2435$ 54304 12:31 + 19 = 58, 323 OHDONUL 494 11:04 $+23$ 515 2437 58,304 12:33 + 19 = 58, 323 OHDONUL 487 11:07 $+24$ 510 2440 58,901 12:38 + 19 = 58, 920 OHTS 530 11:10 425 554 2442 59,425 12:39 + 20 = 59, 445 OHTS 530 11:10 425 572 2445 573,582 12:41 +20 = 59, 602 OHTS 547 11:12 +25 624 2+47 59,937 12:42 + 21 = 59,958 12:42 + 21 = 59,958 HOO 599 11:18 +25 642 2+50 59,754 12:44 + 721 = 59,758 12:44 + 721 = 59,755 <td>400SE</td> <td>422</td> <td>10:46</td> <td>+18</td> <td>440</td> <td>2+30</td> <td>690</td> <td>12:35</td> <td>+19</td> <td>709</td>	400SE	422	10:46	+18	440	2+30	690	12:35	+19	709
ABELINE 57, 454 II: OUAN +218 = 57,4758 2+35 57,974 12:36 +19 = 57,993 OHDO NUU 494 II:04 +218 = 57,4758 2+35 57,974 12:36 +19 = 57,993 OHDO NUU 494 II:04 +23 515 2+37 58,304 12:31 +19 = 58,323 OHSO 487 II:07 +24 510 2+40 58,901 12:38 +19 = 58,920 OHSO 487 II:07 +24 510 2+40 58,901 12:38 +19 = 58,920 OHSO 487 II:07 +24 510 2+40 58,901 12:38 +19 = 58,920 OHSO 487 II:10 +25 554 2+42 59,425 12:39 +20 = 59,445 OH87 547 II:12 +25 572 2+45 57,582 12:41 +20 = 59,602 H00 599 II:18 +25 642 2+47 59,937 12:42 +21 = 59,958 IH2 617 II:14 +25 642 2+50 59,754 12:44 +21 = 59,755 <td>CHODNW</td> <td>454</td> <td>11:01</td> <td>+218=</td> <td>57.4758</td> <td>2+32</td> <td>825</td> <td>12:36</td> <td>+19</td> <td>844</td>	CHODNW	454	11:01	+218=	57.4758	2+32	825	12:36	+19	844
2+25NE 4.94 11.04 $t.23$ 515 $2t.37$ $58,304$ $12:31$ $t.19 = 58,323$ $0t50$ 487 $11:07$ $t.24$ 510 $2t40$ $58,901$ $12:38$ $t.19 = 58,920$ $0t75$ 550 $11:10$ $t.25$ 554 $2t42$ $59,425$ $12:39$ $t.20 = 59,445$ $0t87$ 530 $11:10$ $t.25$ 554 $2t42$ $59,425$ $12:39$ $t.20 = 59,445$ $0t87$ 547 $11:12$ $t.25$ 572 $2t45$ $57,582$ $12:41$ $t.20 = 59,602$ 1400 599 $11:13$ $t.25$ 624 $2t47$ $59,937$ $12:42 + 21 = 59,958$ 1412 617 $11:14$ $t.25$ 642 $2t50$ $59,754$ $12:44 + 721 = 59,958$	BASELINE OTOD NW	57, 454	11:01AM	+218=	574751	2+35	57,974	12:36	+19= 5	7.993
0150 487 $11:07$ 124 510 2140 $58,901$ $12:38$ $1/9$ $=$ 58,920 0175 500 $11:10$ 125 554 2142 $59,425$ $12:39$ 120 $=$ 59,445 0175 500 $11:10$ 125 554 2142 $59,425$ $12:39$ 120 $=$ 59,445 0187 547 $11:12$ 125 572 2145 57582 $12:41$ $+20$ $=$ 59,602 1400 599 $11:13$ 125 624 2147 $59,937$ $12:42$ $+21$ $=$ 59,958. $14/12$ 617 $11:14$ 125 642 2150 $59,754$ $12:44$ $12:44$ 121 $=$ 59,775	0+25NE	494	1104	+23	515	2437	58,304	12:31	+19 =	58.323
0475 500 $11:10$ 125 554 242 $59,425$ $12:39$ $+20$ $=59,445$ 0487 547 $11:12$ $t25$ 572 2445 $59,582$ $12:39$ $+20$ $=59,445$ 0487 547 $11:12$ $t25$ 572 2445 $59,582$ $12:41$ $+20$ $=59,602$ 1400 599 $11:13$ $t25$ 624 2147 $59,937$ $12:42$ $+21$ $=59,958$ 1412 617 $11:14$ $+25$ 642 2150 $59,754$ $12:44$ $t21$ $=59,775$	OFFO	487	11:57	124	510	2140	58,901	12:38	+19 =	58 920
0+87 547 $11:12$ $t25$ 572 $2t45$ $57,582$ $12:41$ $t20$ $= 59,602$ $1+00$ 599 $11:13$ $t25$ 624 $2t47$ $59,937$ $12:42$ $t21$ $= 59,958$ $1+12$ 617 $11:14$ 125 642 $2t50$ $59,754$ $12:44$ $t21$ $= 59,775$	0+75	50	11:10	125	554	2+42	59,425	12:39	+20 =	59.445
H00 599 $11:13$ $t25$ 624 $2t47$ $59,937$ $12:42$ $t21$ $= 59,958$ $1t/12$ 617 $11:14$ $t25$ 642 $2t50$ $59,754$ $12:42$ $t21$ $= 59,958$	0187	547	11:12	125	572	2145	59,582	12:41	+20 =	59 602
1+12 617 11:14 +25 642 250 59,754 12:44 +21 = 59 775	1+00	599	11:13	+25	624	2+47	59,937	12:42	+21 =	59 9 58
	1+12	617	11:14	125	642	2450	59,754	12:44	+Z1 =	59 775

PROTECT

	PROJECT		MAGNETOME	<u>24/0CT</u> , 1986 PAGE Z/2				
Line	Mag Rdg Gamma	Time	Corrected Reading	Line	Mag Rdg Gamma		Corr Read	ected ing
2400 SE 2453 NE	58,7268	12:46 P.M	+227 = 58,748	BASELINE 41005E	57,4128	Z:34 P.M.	†28¥=	57,4408
2+55	58,319	12:47	+22 = 58,341					
2+58	58,124	12:49	+23 = 58,147					
2460	58,179	12:50	+23 = 58,202					
2470	58,225	12:52	+23 = 58,248					
2175	55,135	12:53	+24 = 58,159					
2+80	58,375	12:54	+24 = 58,399					
2485	58,417	12:55	+24 = 58,443					
2190	58,240	12:56	+25 = 58,265					
2+95	51,882	12:56	+25 = 57 907		•		9 6 6 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 	anna a mailtean ann abhliomhlion ann a g-st-ta
3100	57,751	12:58	125 = 57,776	1				······································
2700 SE	57,383	1:23	+321 = 57.4157				<u> </u>	<u></u>
BASELING 4100 SE	57A128	1:34 P.M	+288 = 57,4408					
0+25NE	394	1:31	422					
0+50	404	1:38	432-				<u></u>	
0+75	478	1:43	506			•		
1100	650	1:52	678					
1+25	450	1:58	478					
1+50	354	2:01	382					
1+60	649	2:03	671			••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·
1+70	57,616	2:04	57,644		······································	Tinn (1997) (1997) (1997) (1997) (1997)		
1+75	58,061	2:06	58,089					
1+80	57,802	2:07	57,830					
HBS	782	2:08	810					
1+90	730	2:10	758					
1+95	712	2:11	740					
2+00	562	2'12	590					
2705	5/4	z:4	542					
2+10	485	2:15	513					
2+15	480	2:16	508				•	
2125	494	2:16	522					
2+50	462	2:17	490					
2175	477	2:18	505					
2482	525	2:19	553					
3100	579	2:22	607					

PROJECT

ſ

25/00T,	1986

	1		4				·····	PAGE 1/34
Lino	Mag Rdg	Time	Corre	ected	Line	Mag Rdg Gamma		Corrected Reading
LINE 3RHON	Gamma	1 TTWE	neau.		37+00NW			
BASELINE	57,6678	9:06A.M	- 158 =	57,6528	BASELINE	57,6658	10:34 A.M. t	20 = 57,6678
0+05NE	694	9:07	-15	679	BASELINE	57,672	10:42-298	r = 57,6438
0+10	736	9:08	-14	722	OT25NE	604	10:44-28	576
0+15	769	9:09	-14	755	0150	609	10:46 -27	582
0+20	760	9:10	-13	747	0+75	654	10:48-26	628
0+25	729	9:11	-12	717	1+00	649	10:50 -24	625
0+32	689	9:12	-12	677	1+25	622	10:53 -22	600
0+50	684	9:14	-10	674	1450	629	10:54-72	607
1400NE	667	9:24	-4-4	663	H75	658	10:56 -20	638
0+75	616	9:28	-1	615	2+00	693	10:58 - 19	674
0+50	626	9:29	+0	626	2125		11:00 -18	731
0+25	603	9:31	+1	604	2+32	186	11:03 -16	770
318+00 NW BASELINE	649	9:34	+3χ= !	57,6528	2:36	843	11:04 -15	828
37+00 NW BASELINE	676	9:37	- 98=	57,6678	2+38	887	11:05 -14	873
O+12NE	669	9:42	-9	660	2+40	907	11:06 -14	893
0+18	633	9:46	- 8	625	2+45	929	11:07 -13	916
0+25	593	9:47	-8	585	2+50	868	11:08 -12	856
0+32	581	9:48	-7	574	35+00NW 3+50NE	749	11:15 -8	741
0+36	639	9:49	-7	632	314Z	672	11:19 -6	666
0+50	632	9:52	-7	625	3+37	655	11:20 -4	651
0+75	616	9:54	-6	610	3+31	632	11:281 -4	628
0+95	673	9:55	-6	667	3+25	580	11:243-2	578
1+00	729	9:57	-6	723	3+18	625	11:24 -Z	623
1+25	653	9:59	-5	648	3+12	684	11:26 +0	684
1+50	612	10:01	-5	607	3+10	793	11:27 +0	793
36+50NW 2+25NE	784	10: IZ	~3	781	3105	776	11:28 +1	<u>777 ×</u>
2+12	727	10:14	-2	725	3+00	89 X	11:29 +1	892 x
2+00	700	10:15	-Z	698	2+94	794	11:30 +2	796 X
1+75	690	1D:20	-1	689	2+88	754759	11:31 +3	762 X
1+50	644	10:22	-1	641	2+81	729	11:32 13	14 733
1+25	657	10:24	10	657	2+75	694	11:33 +4	698
1+00	648	10:26	+0	648	2769	663	11:34 +5	668
0+75	CA6	10:28	+0	CA 6	2+63	665	11:35 +6	671
0150	615	10:29	+0	615	2+56	689	11:36 +6	695
0+25	596	10:31	41	597	2+50	783	11:36 +6	789 X

PROJECT

Line	Mag Rdg Gamma	Time	Corrected Reading	L	ine	Mag Rdg Gamma		Corrected Reading	
35100NW	57.731 2	11:274 M	+71 = 57738	/ Ot	37.Sin	57.860 8	12:55	P.M. +72	= 57,867
2171M	\$78	11:37	+7 885		43	636	12:56	+7	643
2+37	58,105	11:38	+8 = 58.113	ot.	<u>.</u> 50	596	12:57	+7	603
2+25	57,921	11:39	+8 = 57.929	Ôt.	75	651	1:01	+9	960660
2+19	824	11:40	+9 833	IH	50	678	1:03	+9	687
2+15	760	11:41	+10 770	I+	12	534	1:04	+9	543
2+12	664	11:42	+10 674	17.	25	570	1:05	+10	580
2+06	738	11:43	+11 749	H	50	639	1:10	+/	650
2+00	700	11:44	+12 712	Ke	1462	57,678	1:1Z	+12	57,690
1+94	676	11:45	+12 688	1+1	65	5B,003	1:13	+12	ER 015
1+87	892	11:46	+13 905	1+	70	58,469	1:14	+12	58,481
1+81	703	11:47	+14 717	1+	75	57,889	1:15	+12	\$8.57,901
1+75	674	11:47	<i>t14 688</i>	[]+	BI	454	1:16	+13	467
1+73	633	11'48	ty 647	1+	87	584	1:17	+B	597
1+71	714	11:49	+15 729	21	00	629	1:18	+/3	642
1+69	614	11:50	HG 630	21	46	719	1:20	+14	<i>73</i> 3
1+62	607	11:51	+16 623	21	-12	749	1:21	+14	763
H-50	620	11:52	+17 637	24	48	691	[:23	+4	705
H37	591	1:53	+17 608	24	25	656	1:24	+15	671
1+25	646	11:54	+18 664	21	131	749	1:25	+15	764
1+00	629	11:56	+19 648	24	37	781	1:26	+15	796
0775	614	11:57	+20 634	21	43	831	1:32	+17	848
0+50	640	/1:58	+21 661	2+	90	810	1:33	+17	827
0+25	573	11:59	+21 594	24.	56	57,926	1 34	+17	57, 943
0+19	826	12:01 PM	+23 849	210	62	58,002	1:35	+18	58,020
OHZ	642	12:02	+23 665	2+	67	57,945	1.36	+18	57,963
0+06	626	12:03	+23 649	27	+75	929	1:37	+18	57,947
36t00 NW BASELINE	620	12:07	+23 = 57,643	240	81	986	1:40	+19	58,005
36-100 NW BASELINE	57,6388	12:46PM	+ 5}= 57,643	31	00	795	1:41	+19	58,014
0togsw	623	12:48	+5 628	3710	25W	58,013	2:01	+25	56,038
0417.	884	12:50	t6 B 90	2+	94	58,055	2:02	+25	58,080
0+15	972	12:51	+6 978	24	87	57,918	203	+25	57,943
0+18	9,35	12:52	+6 941	2+	81	606	2:04	t26	632
0+22	854	12:53	+6 860	2+	75	533	2:05	+7.6	559
0+25	743	1z:54	+7 750	2+	50	572	2:07	+26	598

PROJECT

25/0CT,	198€
01003	161

									TRUE SIST
,	Line	Mag Rdg Gamma	Time	Corre Readi	ected Lng	Line	Mag Rdg Gamma	Cor Rea	rected ding
35	2 +00 SW	57,618 X	2:08P.M	+278=	57,645	34100 NBU 2162 NE	57,8017	3:18 P.M.+78 =	= 57.808Y
	1+87	534	2:10	+27	561	2+75	870	3:19 +7	877
	1+75	573	2:11	+27	50 0	2182	969	3:21 +6	975
	1+62	648	2:12	†28	676	2+88	986	3:22 +6	992
	1+50	755	2:13	+28	783	2+92	787	3:23 +6	793
	1+47	57,882	2:14	+28	57,910	3100	655	3:24 +6	661
	1+44	58172	2:15	+29	58,201	33tCONW 3tcone	870	3:42 +5	875
	1+41	58,360	216	+29	58,389	2194	772	3:43+5	777
	1+37	58,151	2:17	+29	58,180	2187	736	3:44 +5	741
	1+34	57,768	2'18	+29	57,797	2182	712	3:44 +5	717
	1+31	552	2'19	+30	582	2+75	705	3:45 +5	710
	1+28	548	2:20	+30	578	2+67	663	3:46 +5	668
	1+25	553	2:21	+30	583	27.50	676	3:47 +5	681
	1+00	615	2:22	+30	645	2+25	656	3:48 +5	661
	0+75	609	2:24	+31	EA6	2+18	624	3.51 +5	629
	0+50	636	2:27	+31	667	2+12	57,974	3:52 +5	57,979
	0+25	660	2:28	+32	692	2+09	58,687	3:53 +4	58,691
	BASELINE	57,688	2:番P.M.	+33)=5	7,6A3 Y	2106	58,525	3:54 +4	58,529
-	BASELINE	57,6888	2:48 P.M	187 = 5	1,6968	2+00	57,694	3:55 +4	57,698
	OTOBNE	57,511	2:49	18	519	1+87	728	3:56 +4	732
	046	610	2:51	+8	618	1+75	57,785	3:59 +4	57,789
	0+25	647	2:53	1 8	655	1+62	58,083	4:00 +4	58,087
	0+50	645	2:54	+8	653	H56	58,378	4:01 +4	58,382
	0+75	622	2:57	+8	630	1+50	58,684	4:02 19	58,688
	1+00	633	2:59	+8	641	1+44	56,143	4.03 -19	56,47
	1+25	642	3:01	+8	650	1+37	52,267	4:05 +9	53,271
	1+50	656	3:02	1 8	CCA	1131	55,805	4:07 74	55,809
	1462	682	3:06	+7	689	1+25	57,147	4:08 +4	57,151
	1+68	. 742	3:07	+7	749	1+19	· 417	4:11 +3	420
	1+75	919	3:08	+7	926	1+12	672	4:12 +3	675
	1+82	750	3:09	+7	757	1100	651	4:13 +3	654
1	1+88	705	3:11	+7	712	0+87	645	4:14 +3	648
	2+00	670	3:13	+7	677	0+75	629	4:16 +3	632
	2+25	658	3:14	+7	665	0+50	644	4:17 +3	647
ļ	2+50	735	3:16	+7	742	6+25	659	4:20 +3	662

PROJECT

25/0CT,	198€
- 1 - 1	11

1	Mag Rdg	<u>†</u>	Corrected		Mag Rdg	Corrected
Line	Gamma	Time	Reading	Line	Gamma	Reading
33100 NIL	57,6938	4:24P.M	+38=57,6968	1+7554	57,8588	5:24-2 = 57,8568
BASELINE 33+00 NU	57,6528	4:32PM	-118=57,6418	H62	703	5:26 -2 701
0+255W	679	4:33	-11 668	1+50	662	5:27-2 660
6450	681	4:35	-11 670	1+25	750	5:29-1 749
0175	656	4:37	-11 645	1+00	664	5:32-1 663
1+00	700	4:38	-10 690	075	687	5:36 to 687
H19	717	4:41	-10 707	0+50	655	5:37 +0 655
H25	415	4:42	-10 405	0+25	642	5:39+1 643
1+37	675	4:43	10 665	BASELINE 33100NU	57,640	5:43+18=57,6418
1+50	663	4:45	-9 654			
1175	733	4:46	-9 724			
1+87	789	4:47	-9 780			
2100	715	4:48	-9 706			
2+12	858 858	4:49	-8 650			
2+18	644	4:51	-8 636			
2121	824	4:52	-8 82816			
2125	468	4:53	-8 *460			
2+28	857	4:54	-8 849			
2+37	685	4:55	-7 678		·	
2+50	624	4:56	-7 617			
2175	582	4:59	-7 575			
3+00	627	502	-6 621		ŕ	
32100 UW	638	5:10	-5 633			
2+75	668	5:12	-4 664			
2+50	769	5:13	-4 765			•••••
2+37	770	5:16	-4 766			
2+31	805	5:17	-3 802			
2+25	839	5:18	-3 836			
2+19	· 884	5:18	-3 881			
2+12	689	5:19	-3 686			
2106	645	5:20	-3 642			
2100	726	5:20	-3 723			
1+94	787	5:21	-3 784			· · · · · · · · · · · · · · · · · · ·
1487	834	5:22	-2 832			
1481	781	5:23	-2 785	[

PROJECT

í

MAGNETOMETER SURVEY

<u>26/0CT</u>, 1986 PAGE 1/3

Line	Mag Rdg Gamma	Time	Corrected Reading	Line	Mag Rdg Gamma	Corrected Reading		
BASELINE	57,6308	855AM	+51=576358	1+7554	57,624 N	11:08A.M. +17	X= 57.641 X	
0+25NF	637	857	642 862	2+00	596]]:)] +r	613	
01.50	650	8:59	655	2+25	555	11:15 +16	571	
0+75	649	9:00	654	2+37	584	11:17	600	
1+00	665	9:01	670	2143	564	11:18	580	
1+25	679	9:05	+5' 684	2450	727	11.19	843	
1750	717	9:07	+4 721	2+56	745	11:21	761	
1+62	767	9:09	771	2+62	460	11:22	476	
1+75	837	9:11	741	2+68	461	11:23 +16	477	
1+87	801	943	8 05	2+75	57,954	11:24 +15	= 57,969	
2+00	774	9:14	778	2+81	58,115	11:26	58,130	
2+25	719	9:17	+4 723	2+87	58,168	11:27	58, 183	
2+50	726	9:19	t3 730	2.194	58,038	11-28	58,053	
2+75	736	9:21	733 734	3+00	57,862	11:29	57,877	
3+00	793	9:23	796	3+06	943	11:30	958	
32+00NU	826	9:27	829	3+/Z	955	11.31 +15	51970	
2+75	757	9:29	+3 760	3+18	987	11:32 +14	58,001	
2+50	744	9:31	tz 746	3+25	914	11:33	57.979	
2+25	723	9:32	725	3+31	868	11:34	883	
2+00	717	9:34	719	3+37	827	11:37	841	
1+75	747	9:37	749	3+42	762	11:38 +14	776	
1+50	723	9:39	725	3+50	718	11:44 +13	731	
1+25	670	9:42	+2 672	30100 NIC. 3700541	531	11:53 +12	543	
1+00	644	9:43	+1 645	2+75	528	11:54 +12	540	
0+75	654	9:46	655	2150	580	11:56 +12	592	
0+50	642	9:47	643	2+25	592	11:58 +11	603	
0125	641	9:49	+1 642	2+00	623	11:59	634	
BASELINE	57,834	9:54	+18=57,6358	1+75	633	12:00 P.M.	644	
BASELINE 28+00NW	57,6518	10:41AM	+201=57,671 X	1+50	612	12:01	623	
0+25 <i>SW</i>	657	10:43	+20 677	1+25	638	12:03	649	
0+50	650	10:52	+19 669	1+00	664	12:05 +11	675	
p+75	636	10:54	+19 655	0+75	636	12:06 +10	646	
1+00	626	10:59	+18 6A4	0+50	640	12:08 +10	650	
1+25	621	11:02	+18 639	0+25	619	12:09 +10	629 .	
14.50	615	11:05	+18 633	BASELINE 204000	661	12:13 +108=57	16718	

		PROJECT			MAGNETC	METER S			260CT, 1986	
(Line	Mag Rdg Gamma	Time	Co Re	rrected ading	Line	Mag Rdg Gamma		Cor Rea	rected
-	BACELINE	57,6608	1:07PM	+118=	= 57,6718	27504	57,7818	2.44P	M.+57	=57,786 d
	OH25NE	694	1:09		705	2+44	776	2:45	$+5\lambda$	781
	0+50	716	1:13		727	2+37	755	2:47	+48	76759
	0175	71B	1:15		729	2+31	757	2:47		761
	1+00	734	1:16		745	2+25	867	2:48		871
	1+25	794	[:19		805	2+19	814	2.49		818
	1+50	855	1:21	+11	866	2+12	788	2:51		792
	1+62	882	1:24	+1D	892	2+06	813	2:52		817
	1+75	57,947	1:26		57, 957	2+00	816	2:54		820
	1+87	58,059	1:28		58,069	1+94	787	2:55		791
	2700	58,076	1:29		58,086	1+87	791	2.55	**	795
	2706	58,147	1:31		58,157	1+75	778	2:57		782
	2+12	58,171	1:32		58,181	H50	733	258	_	737
	2+18	58,194	1:33		58,204	1+25	715	259+	48	719
	2+25	58,268	1:34	+16	58,278	1+00	682	3:01 +	38	685
	2431	58,370	2:H	+7	58,377	0+75	654	3:03		657
	2+31	58,560	2:15		58,567	0+50	660	3:04		663
	2+44	58,788	2:16		58,795	0+25	659	3:05		662
	2+50	99,079	2:17	+7	59,086	BASECINE 28-00110	57,6688	3:13+	38= E	7,6718
	2+56	59,231	2:19	+6	59),231	BASELINE 25+00NW	57,6248	3:31P.M.	+ 228=	= 57,6468
	2+62	59,301	2:21		59,307	0+255W	651	3:36 -	+22	679
	2+68	59,374	2:22		59,380	0+50	652	3:37	+21	673
	2475	59,218	2:23		59,224	0+75	637	3:38		658
	2+81	59,166	2:24		59,170	1+00	608	3:39		629
	2+87	58,000	2:24		58,006	1+25	625	3:40 +	-21	646
:	2+94	57,547	2:25		57,553	1450	618	3:42 7	-20	638
	3100	495	Z:26	+6	501	1+75	618	3:44		638
=	30100NUO 3100NE	959	2:36	+5	964	2+00	610	3:46 1	-20	630
	2194	. 922	2:37		927	2+25	631	3:48 -	+19	650
	2+87	871	2:38		876	2+50	629	3:51 +	\$19	648
	2+81	837	2:39		642	2+75	585	3:53 +	18	603
	2+75	817	2:40		822	3+00	560	3:59 t	-17	577
	2+69	809	2:41		814	3toSW	615	4:08 +	-15	630
	2+62	806	242		811	2+75	662	4:24 -	+12	674
ļ	2+57	790	2:43		795	24:50	632	4:27 +	-12	644

PROJECT

MAGNETOMETER SURVEY

26/0CT, 198E

	+	t	+	-+		1402-5/3
Line	Mag Rdg Gamma	Time	Corrected Reading	Line	Mag Kdg Gamma	Corrected Reading
27+00NW 2+25SW	57,6087	4:28 P.M.	+118=57,6198			
2+00	627	4:29	638			
1+75	606	4:30	617			
1+50	613	4:31	624			
125	616	4:32	+11 627			
1100	628	4:34	+/0 638			
0475	627	4:35	637			1
0450	648	4:36	658			
0125	641	4:37	+10 651			
25toc NW	57,6378	4:43P.M.	+98= 57,6468			
(
					· · · · ·	
					•	
						a an faiste anning, 21K. 2020. An fairt a san taon ag 20 tao 2
					t na saran saman i pranyakto na ang atantan	
			······			
•						
			······································	·		
	1919 - 1919 - 2019					
•••••••••					·	
						ana ang ang ang ang ang ang ang ang ang
					; 	· · · · · · · · · · · · · · · · · · ·
		4		1		

		PROJECT			MAGNETOME	TER SU	JRVEY	<u>27/027</u> , 1986 PAGE 1/3		
	Line	Mag Rdg Gamma	Time	Corr Read	ected ling	Line	Mag Rdg Gamma		Corre Read:	ected ing
	24+00NE	57,7760	9:19A.M	+988	= 57,8748	24+50NU 1750NE	57,7028	11:06,	4.M. +758 =	57,7778
	0+065W	712	9:23	+96	808	1+75	685	11:10	+74	759
	0+12	583	9:24	+96	679	2100	711	11:13	+73	784
	0+18	566	9:25	+985	661	2+25	76D	11:14	+73	833
	0+25	559	9:26	t95	654	2+50	713	11:16	772	785
	0+50	556	9.28	+94	650	2+75	701	11:18	+72	773
	0+75	529	9:31	+92	621	3+00	762	11:21	+71	833
	HOO	525 0	7:35	+90	615	26100N10 3125NE	801	11:52	+63	864
	1+25	528	9:37	+90	618	3+00	761	11:54	+63	824
	1450	498	9:40	+88	586	2+75	684	11:58	+62	746
	H75	504	9:43	+87	591	2+50	705	12:03	+60	765
	2+00	524	9:44	+86	610	2+25	710	12:05	+60	770
	2+25	512	9:46	+85	597	2+00	731	12:07	+60	791
	2+50	564	10:04	+77	641	1+75	711	12:08	+59	770
	2+75	475	10:06	+76	551	1+50	712	12:09	+59	771
	3+00	521	10:07	+75	596	1+25	707	12:11	+59	766
~	22+00 NW.	532	10:14	+72	604	1+00	680	12:12	+58	7.38
	2+75	565	10:16	+71	636	0475	672	12:13	+58	7.30
	2+50	509	10:17	+70	579	0450	657	12:14	+58	715
	2+25	549	10:19	+70	619	0+25	647	12:16	+57	704
	2700	557	10:21	+68	625	24150Ma BASELING	57,6658	12:23	P.M. +568 :	= 57,7218
	1+75	589	10:23	+68	657	BASELINE 20100NW	57,6358	1:14P	M.+158=	57,6507
	1450	564	10:24	+67	631	0+25NE	715	1:16 -	415	7.36
	1+25	533	10:32	+63	596	0450	684	1:17	+15	799
	1+05	580	10:34	+62	642	075	688	1:19	+16	704
	0+75	607	10:36	+61	668	1+00	621	1:22	+17	638
	0450	619	10:37	+61	680	1+25	625	1:24	+17	GA 2
	0+25	636	10:38	+60	696	1+50	670	1:27	+18	688
	24+00NW BASELINE	57,8168	10:44AM	+588=	57,8748	1+75	743	1:31	+ 19	762
	24+50 NU	57,6438	10:51AM	+788=	57,7218	2100	682	1:32	+20	702
	0+25NE	581	10:54	+78	659	2106	741	1:36	+21	762
	0+50	601	10:59	+77	678	2+12	868	1:37	121	889
	0+75	656	11:00	+76	742	2+18	901	1:39	+22	923
	1+00	663	lid	+76	739	2+25	849	1:40	+22	871
	1+25	682	11:03	+76	758	2+31	773	1:41	+22	795

......

PROJECT

MAGNETOMETER SURVEY

2<u>7/0CT</u>, 1986

			ŧ	+	· · · · · · · · · · · · · · · · · · ·			T	PAGE2/3
-	Line	Mag Rdg Gamma	Time	Corr Read	ected ing	Line	Mag Kdg Gamma	Co Re	rrected ading
	20+00 NW 2+37 NE	57,758X	1:42P.M	+23γ=	57,7818	1000NW 2tetsw	57,582	3:24 +18X=	57,6008
	2+44	753	1:43	+23	176	3+00	598	3:26 +17	615
	2+50	723	1:44	+23	746	20+00 Nu	729	3:39 +13	742
	2+62	720	1:46	+24	744	2+75	726	3:40 +12	138
	2+75	733	1:47	+24	757	2+62	581	3:43 +11	592
4	3+00	793	1:50	+25	818	2+50	641	3:44 +11	652
	3+00NE	778	2:01	+28	806	2+37	685	3:45 +h	695
	2+75	752	2:02	+29	781	2+25	626	3:47 +10	636
	2+50	689	2:03	+29	718	2100	587	3:48 +9	596
	2+25	718	2:06	+30	748	1+75	556	3:49 +9	565
	2+00	701	2:09	+31	762732	1+50	566	3:51 +8	574
	1+75	674	2:13	+32	706	1725	576	3:53 +8	584
	H50	650	2:14	+32	682	1+00	587	3:54 +7	594
	1+25	615	2:16	+33	648	0+75	615	3:57 +6	621
	1700	625	2:24	+35	660	0+50	604	3:58 +6	610
- ۲ ا	0+75	638	2:26	136	674	0+25	644	4.01 +5	649
	0+50	636	2:28	+36	672	BASELINE	67,648	4:08 P.M. +32 =	= 57,651
	0+25	646	2:29	+37	683	BASELINE	645	4:12	648
	BASELINE	57,6138	2:33P·M	+378 =	576508	0+25NE	644	4:13	647
Ē	BASELINE BHOONW	57,6198	2:41P.M.	+328=	57,6518	0+50	649	4:14	652
	0+255W	624	2:44	131	655	0+75	665	4:16	668
1	0+50	613	2:47	+30	643	0+87	701	4:17 + 3	704
l	5+75	595	2:48	+30	625	1+00	782	419+4	785786
	1+00	574	2:53	t28	602	i+12	724	4:20	728
Ţ.	1+25	596	2:56	+27	623	1+25	681	4:23	685
	1750	617	2:58	+27	644	1450	713	4:24	717
	1+75	640	2:59	+26	666	H75	ÊOO	4:25 +4	804
	2+00	592	3:06	+24	616	1+87	733	4:28 +5	738
	2+12	. 529	3:08	+23	552	2700	677	4:29	682
	2+25	427	3:09	+23	450	2+25	728	4:30	733
	2+37	590	3:16	+20	EIO	2+50	714	4:31	719
	2+44	975	3:17	+20	940	2+75	739	4:32	744
	2+50	890	3:18	+20	910	3700	704	4:35 + 5	709
	2+62	EEE	3:21	+19	905 =	18tochiu	740	440+6	746
	2+75	458	3:23	1 18	476	2+75	7.58	4:42 +6	-71.4

PROJECT

_	Line	Mag Rdg Gamma	Time	Corrected Reading	Line	Mag Rdg Gamma	Corrected Reading
\mathcal{C}	18700NW 12750NE	57,7498	4:47p	+78= 57,7568			
	2+25	706	4:48	713			
	2+00	689	4:50	696			
	1+75	760	4:52	767			·
	1+62	791	4:54	+7 804			
	1+50	750	4:55	+8 758			
	H25	750	4:56	758			
	H00	685	4:58	693			
	0+75	681	4:59	689			
	0+50	613	5:01	681		· · ·	
	0+25	658	5:0Z	666			
	18+00NWO RASELINE	643	5:03	+88=57,6518			
					•		
مرد مر. مراجع							
				·····			•
-						· · · · ·	
					• • • • • • • • • • • • • • • • • • • •		·····
							••••••••••••••••••••••••••••••••••••••
			·				
	;						
	-						
					·		
		·····					
	••• ••• ••• ••					·····	
	·						

MAGNETOMETER SURVEY

	PROJECT		MAGNETOM			JRVEY	2 <u>8/007</u> , 1986 PAGE 1/4		
l Tino	Mag Rdg	Time	Cor	rected	Line	Mag Rdg Gamma		Corre Readi	ected ng
BASEUM	Gamma	a and			15+0014		14.4.	A DA LOR Y	
BASELINE	51,6831	9.29A.1	1+24)	= 51,7078	H5690	51,514	10:48	4.M. 1350 -	57,6078
14+00 NW	57,597	9:33	124	621	1+50	500	10:41		615
0+2504	580	9:36	+25	665	1+25	591	10.43		674
0+50	553	9:39	+25	5/8	1700	584	10:44	<u>t35</u>	617
0+75	580	9:43	+26	606	0+75	596	10:46	+36	631
1400	590	9:46	126	616	0+50	662	10:48	+36	597
1+25	636	9:49	+27	663	Ot25	626	10:50	+36	661
1+37	608	9:53	+27	635	15toonw	57,6718	10:50 A	.M.+ 368	= 57,7078
1+44	667	9:54	+28	695	15+50NW	57,6828	10:56+	A.M +36	718
1+50	746	9:55	+28	764	0+25NE	57,697	10:58	+36	733
H56	738	9:56	+28	756	0131	758	10:59	+36	794
1+62	625	9:58	+28	633 653 643	0+37	57864	11:00	+37	57,901
1+75	718	10:02	+29	747	0144	58,094	11:01		58,131
1+87	605	10:04	+29	634	6450	58004	11:02		58,041
2100	663	10:05	+29	632	0456	58.065	11:03		58,102
2+25	625	10:07	+30	655	0462	57,938	11:03		57,977
2+50	629	10:08	+30	659	0467	846	11:04		883
2+75	620	10:11	+30	650	07B	794	11:06	***************************************	831
3+00	57,581	10:13	+30	57,611	0+81	747	11:07	همی برد از میکند این از میکند با این از میکند. این از میکند این از میکند این از میکند این	784
15100 NW 3100 SW	58,146	10:22	+32	58,178	0+87	GGA	11:07		701
2194	57,915	10.'24	+32	57,947	0194	661	11:08		698
2+187	575	10:25	+32	607	1+00	626	11:09	+37	663
2181	556	10:26	<i>†3</i> 3	589	1+25	686	11:12	+38	724
2175	460	10:27	+33	493	1+37	698	11:13		736
2+62	579	16:28		612	1+44	652	11:14		698
2+50	624	10:30		657	H50	585	11:16		623
2+37	652	<i>(0:32</i>		685	H62	448	11:17		48,6
2+25	729	10:32	+33	762	1+68	57,791	11:18	+38	57,829
2+12	· 654	10:33	t 34	688	H75	58,238	11:19	+39	58,277
2.100	608	10:34		GA2	HBI	57,952	11:20		57,991
1+87	645	10:35		679	1487	721	11:2]		760
1481	758	10:36		792	H94	734	11:23		773
HT5	798	10:37		832	2+00	610	11:23		649
1+68	706	10:38	+34	740	2+25	678	11:24		717
H62	631	10:39	+35	666	2450	638	11:28	+39	677

PROJECT

CONTRACTOR OF

	PROJECT			MAGNETOM	ETER SI	URVEY		2 <u>8/0CT</u> , 1986 PAGE 2/4
Line	Mag Rdg Gamma	Time	Corr Read	ected ing	Line	Mag Rdg Gamma	Con Rea	rrected ading
16+50 NW 2+75 NE	57,6338	11:294.M	+407=	57,6738	15toon14 3t25NE	57,7628	12:43 P.M. +4	78=57,8098
2+87	642	11:31		682	312	796	12:45 +41	843
2194	573	11:32		613	3100	819	12:46 +48	867
3100	434	11:33	+401	474	2+75	764	12:47	812
ETOONE	696	12:09 P.M	+44	740	2+62	693	12:48	741
5+94	57,685	12:10		57, 729	2150	709	12:49	757
5187	58,803	12:12		58, 847	2+25	705	12:51	753
5+81	58,295	12:13		58,339	2100	686	12:52	734
5+75	58,057	12:14		58,101	1+75	662	12:54 +48	710
5+69	57,938	12:15		57,982	1450	639	12:55 +49	687
5162	989	12:16	+44	58,033	1125	621	12:56	669
5457	872	12:17	+45	57,917	1+00	610	12:57	658
5450	876	12:17		941	6+75	662	12:58	710
5+44	816	12:19		861	0+62	696	12:59	742
5+37	153	z:2		198	OtSE	843	1:00	891
5+31	634	12:22		679	0+50	804	1:66	852
5+25	761	12:23		806	8+44	690	1:01	738
5+12	760	12:23		805	8+25	667	1:02 + 10	715
5100	724	12:24		769	BASECINE 15tonnw	658	1:04 + 49% =	57.7078
4+75	734	12:25	+45	779	BASELINE 13tooluo	57,6448	1:44P.M.+ 148=	57.658X
4168	670	12:27	146	716	Ot25UE	689	1:45 +14	703
4162	363	12:28		429	0t37	729	1:46	743
4456	265	12:29		311	0144	874	1:47	888
4150	473	12:30		519	6450	925	1:48	939
4144	367	2:31		413	0+56	971	1:49+14	985
4137	219	12:32		265	0+62	887	1:51 +15	904-90
4+3/	378	12:33		424	0+67	805	1:52	819 82
4+25	474	12:34		520	075	975	1:53	989 99
4+19	599	12:34 -	146	GA5	0+81	57,981	1:53	57.995.57
4+12	677	12:36	\$41	723	0+81	58,028	1:54 +15	58,042,58,0
4100	725	12:37		771	0194	58,056	1:55 +16	58,070 5B.C
3+87	785	12:37		831	1+00	58,058	1:56	58,074
3+75	767	1238		813	HOG	57,900	1:56	57,916
3+62	782	2:40		828	1+12	858	1:57	<u>874</u>
3+50	759	12:42		805	1+18	918	1:59	934

PROJECT

MAGNETOMETER SURVEY

		•	•						11000/4
Line	Mag Rdg Gamma	Time	Cor: Rea	rected ding	Line	Mag Rdg Gamma		Corre Readi	ng
13+00N60 1425 NE	57,9568	2:00 PM	+168=	57,9728	14400.040 0431.NE	57,7268	2:55	P.M. +278=	57,7538
1+31	830	2:01	+17	847	0125	694	z:55	+27	721
1+37	615	2:02	+17	632	BASELINE	57,631	2:59	+ 278 = 51	1,6588
1+50	660	2:05	+17	677	BASELINE	57,6948	3:07P.	M.+347= 5	7,7288
1+62	580	2:06	+1B	598	OT25NE	716	3:09		756
HTS	637	2:07		655	0450	757	3:10		791
2+00	685	2:08		703	0+75	749	3:12	·	783
2+25	639	2:09		657	1+00	673	3:14		707
2450	683	z:11	+18	701	1+25	644	3:15		678
2+62	750	2:13	tŋ	768 769	1+50	634	3:16		668
2+35	804	2: <i>[G</i>	+19	822.823	1475	634	3:17		668
3+00	784	2:17	+20	802804	2+00	591	3:18		627
3+00NE	694	2:28	+22	716	2+25	644	3:19		678
2+75	705	2:31	+22	727	2+50	563	3:21		597
2+50	649	2:33	+23	672	2+57	687	3:23		721
2+25	629	2:34		652	2+62	698	3:23		732
2100	676	2:36		709 699	2+68	688	3:24		722
1+75	636	2:37		659	2+75	691	3:24		625725
1+62	609	2:38	+23	632	2+81	710	3:26		744
1+50	563	2:38	+23	586	2+87	638	3:27		672
1+25	653	2:40	+24	-677	3+00	647	3:28	nan maryan na mangang na mangang ng kan	681
1+19	57,891	2:43	+24	57,91 5	12+00NG	638	3:30	**********	672
1+12	58,102	2:44	+25	58,127	2+75	687	3:32	+34	721
1406	58,258	2:44		58,283	2+50	671	3:33	+33	710
1100	58,111	2:45		58,136	zt25	637	3:34		670
0194	58,039	2:46		58,0CA	2+00	671	3:35		704
0+87	57, 9 87	2:47		58,012	1+75	608	3:37		641
0181	962	2:48	+25	58,57,987	1+50	615	3:38		GA8
0+75	· 959	2:48	+25	984	1+25	641	3:39	, , , , , , , , , , , , , , , , , , ,	674
0468	931	2:49	† 26	957	1+00	706	3:41		739
0+61	794	2:50		820	0+87	850	3:45		883
0456	701	2:51		727	0481	905	3:46		938
0150	859	2:53		885	0+75	884	3:47		917
0+44	814	2:54		840	0168	57,945	3:48	~~~~ (프레이아이프웨어) 및 약 (프레이지 프레기 및 전공)에서 시작	57,978.
0+37	778	2:54	t26	804	0+62	58,001	3:49		58,034

3.8° -

PROJECT

÷,

MAGNETOMETER SURVEY

Line	Mag Rdg Gamma	Time	Corrected Reading	Line	Mag Rdg Gamma	Corrected Reading
12+00 NW OTBENG	57,9588	3:49P.M	+338=57,9918			
0+50	959	3:50	992		•	
6+44	868	3:51	901			
0+37	846	3:51	879			
0+31	803	3:52	836			
0+25	711	3:53	744			
0+19	665	3:54	698			۲.
BASELINE	57,6958	3:57P.M	+338= 57,728X			
BASELING 12+00NW	57,6658	3:55PM	+198 = 57,6848			
DF255W	6 55	4:06	+17 672			
0+50	656	4:08	+1,6 672			
0+75	641	4:14	+15 656			
1+00	638	4:20	+13 651			
1+25	605	4:24	+12 62617			
H50	583	4:28	+11 594			
1+75	589	4:29	+11 600			
2+00	601	4:31	+10 611			
2+25	583	4:32	+10 593			
2450	587	4:35	+9 596			
2+75	584	4:38	+8 592			-
3+00	578	4:39	+8 586			
12+00NW 3+00 SW	604	4'47	+6 610			
2+75	614	4:49	+5 619			
2+50	616	4:51	+5 621			
2+25	648	4:53	+4 652			
2100	633	4:54	+4 637			
H75	613	4:54	+4 617			
1+50	630	4:55	+4 634			·
H25	616	4:56	+3 619	•		
1400	659	4:57	+3 662			
0+75	639	4:58	+3 642			
0450	632	5:00	+2 634			
0+25	648	5:0Z	+2 650			
BASELINE 12t00NW	682	5:04	+21 = 57,6848			

...

PROJECT

MAGNETOMETER SURVEY

29/0CT, 1986 FAGE 18

Line	Mag Rdg Gamma	Time	Cor: Rea	rected ding	Line	Mag Rdg Gamma		Corr Read	ected ing
BASE LINE	57,6727	8:55A.M	1-148=	= 57,65 8 8	8+00.000 2+251	57,6988	K.14A	M. +18=	57,699
0+255W	619	8:58	- 78=	612	2+50	692	10:15	+2	694
0+50	586	8:59	-5 =	581	2+62	791	10:16	+3	794
0+75	580	9:02	+2	582	2+75	57,887	10:17	+3	57,870
1100	626	9:03	+4	624	2+81	58,055	10:18	+4	58,059
BASE LINE 13toonw	643	9:08	+158=	57,6588	2+87	58,395	10:19	+4	58,399
BASELINE	57,703	9:16	+258 =	57,7288	2+94	57,891	10:20	+5	57,896
0+255W	684	9:18	+248	709	3+00	869	10:21	+6	875
0+50	641	9:20	+2224	665	10+00NW 3+00NE	696	10:29	+1)	707
0+75	656	9:22	+2823	679	2+75	764	10:32	+13	777
1700	635	9:24	+22	657	2+50	689	10:33	+4	703
1+25	607	9:27	+2021	628	2+25	723	10:43	+21	744
BASELING 11+00 NW	710	9:34	F188=	57,7288	2100	733	10:44	+21	75A
BASELING B+00NW	57,720	9:44	-198=	57,7018	H75	696	10:45	+22	718
0+25NE	715	9:46	-18	691	1+50	652	10:46	+23	675
0750	648	9:48	-16	632	1+25	661	10:47	+23	684
0+75	57,684	9:51	74	57,670	1400	684	10:48	+24	708
0+81	58,193	9:53	-13	58,180	6475	673	10:50	125	698
0187	58,020	9:54	-12	58,008	0450	696	10:51	t26	722
0194	58,137	9:55	-12	58,125	0125	683	10:53	+27	710
1700	58,353	9:56	-11	58,342	BASE4N 10+00NW	674	10:54	+278=5	7,7018
1+06	58,006	9:57	-10	57,996	BASELINE BHOONW	57,709	10:59	+318=	57,7408
1+12	57,548	9:58	-10	538	0+255W	671	11:13		702
1+ 18	610	9:59	-9	601	0+50	656	11:17		687
1+25	658	10:02	-7	651	0+75	642	11:19		673
1+37	695	10:03	-6	689	1+00	593	11:23		724
1450	771	10:04	-6	765	BASELINE BHOONW	709	11:34	+318=	57,7408
1+56	.889	10:06	-4	885	6+255W	57,530	11:44 -	130	560
1+62	· 832	10:07	-4	828	0+50	514	11:46		544
1+67	854	10:08	-3	851	0+75	509	11:51 +	-36	539
1+75	767	10:09	-2	765	1100	481	11:56 +	29	561 510
1+82	B21	10:10	-2	819	1+25	558	11:58	+29	587
1+88	745	10:11		744	1+50	473	12:01 P.1	1.+29	502
1+94	783	10:12	+0	783	1+75	454	12:04	+28	582
2+00	702	10:13	+0	702	2+00	458	12:06		486

PROJECT

MAGNETOMETER SURVEY

Line	Mag Rdg Gamma	Time	Corr Read	rected ling	Line	Mag Rdg Gamma		Corrected Reading
GTOONW CHES	57,5221	17:0801	+201=	575508	4+0010	57,6418	2:46 P.M	+218 = 57 (72)
2+50	482	12:12	+28	510	2100	786	2:48	817
2+75	478	12:15	+21	505	2106	716	2:49	747
3100	481	12:18	+27	514	2412	57,7.53	2:50	57,784
B +00NW	548	12:42	+25	573	2+19	58,034	2:52	E8,065
2+75	554	12:43	+24	578	2125	57,894	z:53	57,925
2+50	563	12:46		587	2+37	58,003	2:56	58,034
2725	554	12:48		578	2+44	58,198	2'57	58,229
2700	555	12:50		579	2+50	58,296	2:58	58,327
1+75	524	12:52	+24	548	2+56	58,192	2:59	58,223
1+50	563	12:54	+23	586	2+62	58,282	3:00	58,323313
1+25	535	12:57	+23	558	2468	57,889	3: <u>0</u> 1	57,920
1+00	545	1:00	+23	568	2+75	832	3:02 +318	863
0+75	566	1:03	+22	588	2487	842	3:06 + 30X	873 E
0+50	580	1:07	+22	602	3100	871	3:07	9629
0+37	680	1:16	+21	\$ 701	3+12	856	3:09	886
0+25	701	1:M		722	3+25	850	3:12	880
0+12	729	1:19		750	3+37	722	3:1 4	152
BASELINE Błodnu	57,7198	1:22P.M	+218=	57,7408	3450	738	3:17	768
BASELINE 7+00 NW	57,6678	1:52m	+118=.	57,678X	3+75	721	3:19	75
0+2554	601	1:54	+11	612	4+00	761	3:21	791
0+50	560	1:57	+13	573	4+25	639	3:22 +308	699
6+75	522	1:59	+14	536	4+31	946	3:26 +298	975
1100	526	2:02	+15	541	4137	872	3:27	901
BASELINE 7toonw.	660	2:10	+188 =	= 57,6788	4+44	812	3:27	841
BASELINE 4400NUS	57,5198	2:27 P.M.	+32) =	57,5518	4450	86	3:28	839
O+25NE	589	2:29		621	4 t62	832	3:28	861
0437	640	2:31		672	4+75	882	3:29	911
0+50	· 668	2:32		700	4 †87	800	3:30	829
0475	688	2:33		720	5+00	949	3:31 + 298	978
1+00	590	2:35		622	STOONE	719	3:46 +288	748
1+25	609	Z:37		641	2+75	863	3:49	892
1450	540	2:41		572	2+50	778	3:52	807
1+62	503	2:43		535	2+25	740	3:54	769 .
H75	576	2:44	+32	608	2+12	641	3:56	676

PROJECT

È

MAGNETOMETER SURVEY

<u>29/0CT</u>, 1986

1	Mag Rdg	1	Corrected	1	Mag Rdg	Corrected
Line	Gamma	Time	Reading	Line	Gamma	Reading
2+00NE	57,6578	3:57 P.M.	+281 = 57,6 8 58			
1+75	739	3:58	767	ļ		
1162	636	3: <i>5</i> 9	+288 664			
1+50	E 30	3:59	+298 658	 		
1+37	651	4:00	+217 684			
1+31	694	4:01	721			
1+25	904	4:02	931			
1+19	679	4:03	706			
1+00	651	405	678			
0+81	720	4:06	747			
0475	803	4'07	830			
0+62	716	4:08	743			
0+50	637	<i>4:09</i>	664			
0+37	578	4:10	605			
0+25	577	4:11	604			
BASELINE 4+00NW	57,5248	4:18P.M.	+278 = 57,5518			•
						· · · · · · · · · · · · · · · · · · ·
			······································		· · · · · · · · · · · · · · · · · · ·	

				· ·		ναι το του το παλαβορια στημεροματική τη Νετάλ _α , τι 2 / δ - 10 τη παζητητιζή το 1999 (πρόμαρηση το ποιοποιοποιοποιοποιοποιοποιοποιοποιοπο
			en far men með henni far að af Hinn Fördaldada ga galar a glað skanna kum menna verk af 1974 að	• • • • , • • • • • • • • • • • • • • •	**************************************	

		.				
		I				
	· ·					
			-			· · · ·

• .

	PROJECT	MAGNETOMETER SURVEY					3	000T, 1986	
1	Mag Rdg	1	Ca	prrected		Mag Rdg	1	Corr	ected
Line	Gamma	Time	Re	ading	Line	Gamma		Read	ing
BASELING	57,3528	8:23A.1	+91	1=57,3618	2+00NG 4+75NE	57,7808	9:46A	M. +268	= 57,8068
OHIZNE	405	826	1 9	414	5+00	852	9:47	+26	878
0+25	516	8:27	+9	525	3+50N	665	10:12	+32	697
0+50	565	8:29	+10	575	3144	502	10:13	+72	534
0162	643	8:31	+10	653	3+37	604	10:14	+32	636
0+75	607	8:32	+10	617	3+25	642	10:16	+33	675
1100	572	8:33	+11	583	3+00	584	10:18	+33	617
1+12	663	8:36	<u>+11 °</u>	674	2+75	612	10:20	+33	645
H35	697	838	+12	709	2462	731	10:21	+34	765
1+50	683	8:42	+13	696	2+50	701	10:22	+34	735
1+62	719	8:44	+13	732	2+25	789	10:23	+34	823
1+75	57818	8:4E	+13	= 57, 831	2100	780	10:26	+35	815
1+87	58,059	8:48	† 14	- 58,073	1+87	848	10:21	+35	883
/194	57,955	8:52	+15	= 57,970	1481	57,893	10:28	+35 =	-57, 928
2+00	927	8:56	+16	943	1+75	58,164	10:29	+35 =	- 58,199
2406	842·	8:58	+1G	858	1+69	57,953	10:30	+36 =	- 57,989
2+12	57,603	9:00	H6 _	= 57619	1+62	686	10:31	+36	122
2+18	58,022	9:02	+17 =	= 58,039	1+57	631	10:32	+36	667
2+25	57,766	9:03	+17 =	= 57, 783	1+50	628	10:33	+36	664
2+37	E 84	9:07	+18	902	1+25	551	10:34	+36	587
2+50	949	9:09	+18	967	1100	56Z	10:36	+37	599
2457	609	9:16	+20	629	0+75	541	10:31	+37	578
2463	57,949962	9:17	+2D	= 57,982	0+50	531	10:38	7.37	568
2+69	58,689376	9:18	+2D	= 58,396	0+25	552	10:40	+38	590
2+75	57,397	9:20	+21	= 57, 418	BASELINE 2+00NW	57,323X	10:44 A.	M.+ 388	= 57.3618
2+81	660	9:21	+21	681					<u> </u>
2+87	678	9:23	+21	699				tan ganta da	
3400	806	9:24	+21	827					
3+12	. 190	9:26	+22	812	· · · · · ·				
3+25	724	9:28	+22	746				· · · · · · · · · · · · · · · · · · ·	
3+50	769	9:31	+23	79:2			******************		
3+75	730	9:33	†23	753					
4100	712	9:41	125	737			<u></u>		
4+12	841	9:43	+26	867					، در باین می این این این این این این این این این ای
4+25	805	9:44	126	831				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
4+50	807	9:45	+26	833					

3100

456

10:04

+12

MAGNETOMETER SURVEY

•	PROJECT			MAGNETOME	<u>31/007</u> , 1986 PAGE 1/1		
Line	Mag Rdg Gamma	Time	Co: Rea	rrected ading	Line	Mag Rdg Gamma	Corrected Reading
BASELINE OtOONW	57,4568	8:42 A M	+198=	57,475X	BASELING	57,4638	10:08A.M.+ 128=57,4758
2+00 NW	456	8:59	+18	474			
2+75	417	9:01	+18	435			
2+50	415	9:03	+18	433			· · · · · · · · · · · · · · · · · · ·
2+25	406	9:06	+17	417			
2+00	391	9:08	+17	408			
1+75	452	9:09	+17	469		· · · · · · · · · · · · · · · · · · ·	
1450	365	9:11	+17	382			
1+25	389	9:13	+17	406		,	
1+19	530	9:14	+17	547			-
1+12	520	9:15	H6	536			
1406	493	9:16	+16	509			
1700	486	9:17	+16	502			
0+87	426	9:18	+16	442			
0+75	437	9:19	+K	453			
0+50	433	9:20	+16	449			•
0+25	421	9:22	416	437			
4tOONW OTZ5 SW	542	9:29	<i>+15</i>	557			
0150	511	9:32	+15	526			
0+62	543	9:34	+15	558			
Oteb	452	9:35	+15	467			
0475	420	9:36	+14	434			
0+87	475	9:38	+14	489			
1+00	476	9:39	+14	490			
1+12	559	9:41	+14	573			
l+25	524	9.46	+14	439538			
1+37	443	9:48	+13	456			
+50	406	9:49	f13	419			
l+75	. 390	9:5A	+13	403	·		
2+60	855	9:56	+13	868			
2+25	632	9:5B	+12	644			
2+50	531	9:59	+12	543			
2475	547	9.10:00	+12	559			
2+87	604	10:02	tlZ	516			

568
APPENDIX "D"

INSTRUMENT MANUAL

VLF SURVEY PROCEDURE

The instrument was operated as follows:

- With the instrument held horizontal in front of the operator, turn around until a null appears on the field strength meter. You should now be facing the station.
- 2) With the receiving still facing the station, lift it to the vertical position and rotate it slightly in the vertical plane to your right or left until the best null appears on the field strength meter. Record the angle on the inclinometer at which the null appears, this is the DIP ANGLE (Positive or Negative).
- 3) Return the instrument to the horizontal plane and turn around until the field strength meter is at its maximum reading. Set this maximum reading at 100 on the meter and record the reading on the gain control dial. This is the Field Strength Reading.
- 4) Repeat Steps 1, 2 and 3 at each station.

ł

5) To test the batteries turn the power switch on and push the test button. The Field Strength meter should read above the red mark. Battery life is approximately 200 hours, and if the instrument is turned off between readings, the batteries should last for an entire season.

NOTE: An alternative way of measuring Field Strength is as follows:

Proceed as in Step 3, setting the meter to 100. Now push the Field Strength button (marked FS) and the meter will read 50%. (If it doesn't, adjust the gain control slightly.) Leave the Gain Control setting where it is and take comparative Field Strength reading at each station by pressing the Field Strength button and reading the meter reading, which will vary from its Base Station Reading as you pass over conductive zones.

SCINTREX MP-2 Portable Proton Precession Magnetometer

Function

The MP-2 is a portable one gamma proton precession magnetometer for field survey or base station use. The optimized design of sensor and circuitry using the latest COS/MOS components has resulted in a very light weight, low power consumption, rugged and reliable magnetometer.

Light emitting diodes coupled with an ingenious optically polarized reflector combine solid state reliability with easy reading even in bright sunlight.

Coupled with a module into which the MP-2 is easily inserted, the magnetometer can be used as a base station unit for analogue or digital recording. Full details of the MBS-2 Magnetic Base Station are available on another Scintrex specification sheet.

The noise-cancelling dual-coil sensor and electronics have been so designed as to effectively eliminate reading problems due to virtually all magnetic gradients which may be encountered in field survey conditions.

Features

1 gamma sensitivity and accuracy over range of 20,000 to 100,000 gammas.

Operates in very high gradients, to 5000 gammas per meter.

Ultra small size and weight.

Up to 25,000 readings from only 8 D cells.

Battery pack isolated from electronics for corrosion protection.

Battery pack easily extended for winter use.

Light emitting diode digital display, with complete test feature

Unique no-glare polarized reflector permits easy reading in bright sunlight.

Indicator light warning of excessive gradient, ambient noise or electronic failure.

Digital readout of battery voltage.

Rugged all metal housing for rough field use at all temperatures.

Automatic recycling or external trigger features permit ready conversion to base station use.

Short reading time.

Broad operating temperature range.

MP-2 console.

MP-2 in operation with Staff Sensor.

Technical Description of the MP-2 Portable Proton Precession Magnetometer

MBS-2 Magnetic Base Station.

MP-2 in operation with Back Pack Sensor.

Resolution	1 Gamma
Total Field Accuracy	±1 Gamma over full operating range
Range	20,000 to 100,000 gammas in 25 overlapping steps
Internal Measuring Program	Reading appears 1.5 seconds after depressing Operate Switch, stays on for 2.2 seconds, for a total of 3.7 seconds per single reading.
External Trigger	External trigger input permits use of sampling intervals longer than 1.5 seconds
Readout	5 digit LED (Light Emitting Diode) readout displaying total magnetic field in gammas or normalized battery voltage
Digital Output	Multiplied precession frequency and gate times
Base Station Mode	MP-2 console slips into a base station module which provides external triggering as well as digital and analogue outputs. The complete unit is called the MBS-2 Magnetic Base Station
Gradient Tolerance	Up to 5000 gammas/meter
Power Source	8 alkaline "D" cells provide up to 25,000 readings at 25°C under reasonable signal/ noise conditions (less at lower temperatures). Premium carbon-zinc cells provide about 40% of this number
Sensor	Omnidirectional, shielded, noise-cancelling dual coil, optimized for high gradient tolerance
Harness	Complete for operation with staff or back pack sensor
Operating Temperature Range	-35°C to +60°C
Size	Console, with batteries: 80 x 160 x 250mm Sensor: 80 x 150mm Staff: 30 x 1550mm (extended) 30 x 600 mm. (collapsed)
Weights	Console, with batteries: 1.8 kg Sensor: 1.3 kg Staff: 0.6 kg
Standard Accessories	Sensor, Staff, Cable, Harness, Carrying Case, Manual
Shipping Weight	Approximately 9.5 kg
Optional Accessory	Cold weather battery pack.

222 Snidercroft Road Concord Ontario Canada L4K 1B5

Telephone: (416) 669-2280 Cable: Geoscint Toronto Telex: 06-964570 Geophysical and Geochemical Instrumentation and Services

> SCINTREX 17 - 7449 Hume Ave. Delta, B.C. V4G 1C3 Tel. (604) 946-4312

· - ·

Ì.

.

.

.

