

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL

ASSESSMENT REPORT

ON THE

UREKA 1-13 AND OPUS 1-2 CLAIMS
ALBERTI MINING DIVISION URUS CREEK AREA, 92F/5E $49^{\circ} 22^{\prime} 24^{\prime \prime} 125^{\circ} 37^{\prime} 36^{\prime} 36^{\prime \prime}$
Owner: D.B. Forster for

FILMED
PACIFIC SENTINEL GOLD CORP. 1020-800 W. PENDER STREET VANCOUVER, BC.

V6C 2V6
(PROJECT BC - 04)
SUB-RECORER RECEDED
BY
J.T. Shearer, M.SC., FGAC. New Global Resources Ltd.
Ste. 726-815 W. Hastings street Vancouver, B.C.
... V6C 214
GEOLOGICAL BRANCH ASSESSMENT REPORT

August 24, 1987 Vancouver, B.C.

Fieldwork completed between 16. February 2 and February 13, 1987.

TABLE OF CONTENTS

PAGE
LIST OF ILLUSTRATIONS AND TABLES i
SUMMARY ii
INTRODUCTION 1
LOCATION AND ACCESS 2
PROPERTY; (List of Claims) 3
FIELD PROCEDURES 4
GEOLOGY 6
REGIONAL GEOLOGY 7
LOCAL GEOLOGY AND MINERALIZATION 11
GEOCHEMISTRY 20
GEOPHYSICS 24
CONCLUSIONS 25
RECOMMENDATIONS AND COST ESTIMATE FOR FUTURE WORK 26
REFERENCES 30
APPENDIX I COST STATEMENT FOR 1986-1987 WORK.APPENDIX II STATEMENT OF QUALIFICATIONSAPPENDIX III LIST OF PERSONNEL AND DATES WORKEDAPPENDIX IV ANALYTICAI PROCEDURES AND ASSAY CERTIFICATESAPPENDIX V SAMPLE DESCRIPTIONS

LIST OF ILLUSTRATIONS AND TABLES

		After Page
Figure 1	LOCATION MAP	2
FIGURE 2	TOPOGRAPHIC MAP	2
FIGURE 3	CLAIM MAP	3
FIGURE 4	LOCAL GEOLOGY	In Pocket
FIGURE 5	SILT GEOCHEMISTRY	14
FIGURE 6A	RECONNAISANCE BULK SAMPLE LOCATIONS	20
FIGURE 7	RECONNAISANCE SOIL/SILT SAMPLE LOCATIONS	
FIGURE 8	SOIL GEOCHEMISTRY	21
FIGURE 9	SOIL GEOCHEMISTRY 1:2,500	21
FIGURE 10	TOTAL FIELD MAGNETOMETER	In Pocket
FIGURE 11	UNFILTERED DIP ANGLE PROFILES	In Pocket
FIGURE 12	FRASER FILTERED DIP ANGLES	

TABLES

TABLE 1

TABLE 2 LIST OF CLAIMS 3

QUARTZ VEIN CONCENTRATION, TRENCH 114

1. The Ureka 1-13 and Opus 1 and 2 mineral claims are located along Ursus Creek approximately 35 km northwest of the Tofino-Ucluelet Airport. NTS - 92F/5E, coordinates 49° 23', $125^{\circ} 37^{\prime}$.
2. The claims are owned by D.B. Forster in trust for Pacific Sentinel Gold Corp. and were recorded on December 1, 1986. They total 200 modified grid units.
3. The area contains numerous gold showings which were first prospected in 1939 by B.H. Symns, J.W. Harvey, H.F. Martin, G.A. Williams and D.V. Evans around the junction of Ursus and Thunderbird Creeks.
4. The claims are underlain by mainly altered fine grained Karmutsen Formation volcanic rocks and coarse crystalline granodiorite to quartz diorite intrusives.
5. The entire area is cut by a major 112° trending regional fault structure. The main mineralized showings appear to be controlled by large scale faults or splays of the major shears.
6. Mineralization of interest is chalcopyrite-pyrite in quartz veinlets associated with relatively wide altered (sericitechlorite) zones containing finely disseminated
pyrite. Traces of sphalerite and galena have been observed.
7. Trench 1 (camp showing) has exposed an altered zone 12 meters long and 11 meters wide. Unfortunately, assay values for large channel samples are relatively low with an average of approximately $0.03 \mathrm{oz} /$ ton Au .
8. The Midpad Showing adjacent to the main Ursus Creek has assay values up to $0.202 /$ ton Au.
9. The Junction showing is of a different geological type. It is a cataclastic zone which lies along Ursus Creek which itself reflects a major regional fault structure. Complexity of history is indicated by the quartz veins which have been brecciated and incorporated into the mylonite, by the foliation and siliceous nature of the mylonite, by the fracture set which may be superimposed on the mylonite, and by the disseminated pyrite mineralization and associated gold values. Selected samples from this zone assayed up to 0.778 oz . gold per ton.
10. A program of stream geochemistry in the side drainages of Ursus Creek has also yielded a number of anomalies on which very little follow-up work has been done. Although outcrops
are abundant along many of the streams there are extensive areas of no exposure.
11. Some grid geochemical and geophysical work has been done in the vicinity of Thunderbird Creek, a small tributary from the south. This included soil geochemistry, a magnetometer survey, and some VLF-EM work. The geochemistry shows irregular areas of anomalous values in the vicinity of the Camp showing. This is included within a large area of erratic anomalous values that extends along the south side of Ursus Creek and encompasses several of the quartz veins.
12. Further work has been recommended to include follow-up on the stream geochemical anomalies and some mapping and sampling on the geochemically anomalous Junction showing.

The Ureka and Opus claims, owned by D.B. Forster, were staked in November 1986 to cover gold showings occurring mainly in altered granodiorite. An initial geological appraisal was completed between December 3 and December 14, 1986 by D.B. Forster, J. Shearer, D. Brown and S. Butler. Concurrently, a detail grid was established around Thunderbird Creek on Ureka 5, 6 and 8 claims by Chase \& Associates Ltd. Ground magnetometer VLFElectromagnetic, geological mapping and soil geochemical surveys were conducted over the detail grid. Reconnaissance prospecting on the Opus $1 \& 2$ and Ureka l-10 claims was done using a helicopter based in Ucluelet. The grid work was carried out from a tent camp near Thunderbird Creek. Subsequently a follow-up program of trenching, fill-in soil sampling, geological mapping and VLF-Electromagnetic surveying was completed between February 2 and February 13, 1987.

This report presents and discusses the data collected in a format acceptable for Department of Mines assessment requirements.

Claims were originally recorded in the Thunderbird Creek Area of the Ursus Creek Valley in May 1939. Several owners have in the past carried out a small amount of prospecting and trenching which outlined numerous showings containing low but consistent gold values. Considerable underground exploration was completed
on the nearby Muskateer, Buccaneer, Avon and Trophy groups. A small production of gold was realized in the 1940's from the narrow quartz-veins at the Muskateer and Others.

LOCATION AND ACCESS

The claims are located along Ursus Creek which flows westward into Bedwell River 3 km above the head of Bedwell Sound. Access to the claims was via helicopter from Ucluelet-Tofino Airport distance of 35 km . (Figure 1 and 2).

A more direct access can be used only on good weather days from a helicopter mobilization location on the Taylor River southwest of Port Alberni. The Thunderbird Creek Campsite is approximately 10 km west of the Taylor River road. This would be the best means of mobilizing a diamond drill.

Logging has taken place on the western edge of the claim group in the late 1960's although there are no roads present on the property. Access within the claims is by foot or helicopter. An old mining-logging road, now in disrepair, occurs along the Bedwell River, just west of the Ureka Claim Group. This road starts on the northwest side of the head of Bedwell Sound.

The claims are within Tree Farm Licence 20, Block 3 and are 1500m south of the southern boundary of Strathcona Provincial Park.
Pacific
ocean.

Recent proposed legislation may change the location of the south boundary of the Park in the near future. Extensive on-ground timber cruising was done in 1986 around Thunderbird Creek. It is strongly recommended that the Forest Company owning Tree Farm 20 be approached, concerning future harvesting plans. Logging road construction would be a great aid in future mining exploration.

The area is contained in N.T.S. $92 F / 5 \mathrm{E}$, centered at $49^{\circ} 23^{\prime}$ and $125^{\circ} 37^{\prime}$.

PROPERTY LIST OF CLAIMS
The Ureka 1-13 and Opus 1 and 2 claims are owned by D.B. Forster and total 200 units. The claims are listed in Table 1 and illustrated on Figure 3:

Claim Name	Record Number	Units	Size	Recording \qquad Date	Owner	Anniversary \qquad Date *
Ureka 1	3064	15	3N 5E	Dec.1,1986	D. Forster	Dec. 1,1989
Ureka 2	3065	15	3S 5E	Dec.1,1986	D. Forster	Dec. 1,1989
Ureka 3	3066	15	3S 5E	Dec.1,1986	D. Forster	Dec. 1,1989
Ureka 4	3067	10	2N 5E	Dec.1,1986	D. Forster	Dec. 1,1989
Ureka 5	3068	12	3N 4W	Dec.1,1986	D. Forster	Dec. 1,1989
Ureka 6	3069	12	3S 4W	Dec.1,1986	D. Forster	Dec. 1,1990
Ureka 7	3070	8	2N 4E	Dec.1,1986	D. Forster	Dec. 1,1989
Ureka 8	3071	20	5 S 4 E	Dec.1,1986	D. Forster	Dec. 1,1990
Ureka 9	3072	4	1N 4E	Dec.1,1986	D. Forster	Dec. 1,1990
Ureka 10	3073	20	5 S 4 E	Dec.1,1986	D. Forster	Dec. 1,1990
Ureka 11	3074	12	3N 4E	Dec.1,1986	D. Forster	Dec. 1,1990
Ureka 12	3075	12	3 S 4 E	Dec.1,1986	D. Forster	Dec. 1,1990
Ureka 13	3076	20	5S 4E	Dec.1,1986	D. Forster	Dec. 1,1990
Opus 1	3077	10	3N 5W	Dec.1,1986	D. Forster	Dec. 1,1989
Opus 2	3078	15	2S 5W	Dec.1,1986	D. Forster	Dec. 1,1989
200 Units Total						

$$
-4-
$$

Grouping for assessment purposes has been done as follows: (as outlined in Appendix l)

Group 1 Opus 1\&2, Ureka 1-5 and $7=100$ units
Group 2 Ureka 6 and Ureka 8-13 $=100$ units
Total 200 Units

Approximately 15% of the grid work plus most of the reconnaissance work can be applied to Group $1,7-1 / 2 \%$ of the grid work to Ureka 6 and the remainder of the grid work on Ureka 8.

FIELD PROCEDURES

The Ureka claims are covered by typical westcoast rainforest vegetation. In the grid area the forest is mainly mature Western Red Cedar, usually 2 to 3 meters in diameter, mixed with large Hemlock and a few Douglas Fir. The open forest floor vegetation consists of salal, ferns and minor immature Hemlock and Yew trees. Parts of the main Ursus Creek Valley bottom are a dense thicket of buck brush and devils club.

A chainsaw-cut baseline was established trending 104° from a zero point between trench 1 and 2 and extends to 1000 E and 800 W. Crosslines were run perpendicular to the baseline at 25
meter intervals to 400 E and 250 W and at 50 meter intervals along the remainder of the baseline. Crosslines were flagged in pink ribbons with stations in orange. Short, orange wireflags were commonly used to mark stations. The lines were slope corrected by means of a clinometer but mainly visual estimating in rough terrain. Most lines were established in pairs, first from the baseline and then the adjacent line by looping back. Commonly, the stations near the baseline are displaced on the looped lines. All distances were measured with a Hip Chain.

Soil samples were collected with a shovel and grub-hoe at lom intervals. Terrain and sample characteristics were noted at each site. Soil types are discussed in the Geochemistry Section. Usual sample depth was from 1 to 20 cm deep. The samples were placed in kraft sample bags and shipped to Acme Analytical Labs Ltd., 852 E. Hastings St., Vancouver B.C. Analytical procedures are contained in Appendix IV.

In the ground magnetic survey a Scintrex Ltd. MP-2, portable proton precession total field magnetometer was used with looping to sub-base stations for diurnal corrections. The station interval was 20 meters.

The VLF-Electromagnetic survey was carried out using two Phoenix Geophysics Ltd. VLF-2 model instruments, serial number

L1057 and Ll718 tuned mainly to the seattle (24.8 kH_{z}) station. Unfiltered dip angles were plotted and also the Fraser Filter values were calculated.

Hand trenching was done with an Atlas copco cobra gasoline drill, two foot steels, 75% Forcite dynamite, B Line detonating cord, Amex II explosives and standard fuse and cap assembly. Extra large samples were collected with a hammer and moil on completion of the trench excavation.

Geological mapping was correlated to the grid stations. An accurate orthophotograph should be constructed at an early stage of future work. The baseline and certain important tielines should be carefully measured with a Transit and Electronic Distance Meter (EDM) prior to any possible future drilling phase.

GEOLOGY

Much of the central part of Vancouver Island is underlain by Triassic strata, including the Karmutsen basaltic volcanics and the overlying Quatsino limestone. These are intruded by irregular batholithic plutons of the Island Intrusions, of Middle Jurassic age. Many of the irregularities in the distribution of the batholithic rocks are due to faulting.

REGIONAL GEOLOGY

The project area is structurally dominated by a large fault zone extending from Bedwell River in the west to Sproat Lake in the east. Abundant evidence of large scale shearing was noted along Ursus Creek during prospecting and mapping. The main direction of shearing observed in creek exposures was approximately 112°. This major regional shear zone cuts volcanic rocks of the Karmutsen Formation and granodiorite to quartz diorite stocks of the Island Intrusions.

Several gold-bearing quartz veins, found in the Bedwell River batholith, have been explored in the past by trenches and/or underground workings. One of these, the Musketeer property, has produced gold.

Many of the characteristics of the gold-bearing quartz veins along Bedwell River may be of value in the exploration along Ursus creek and therefore the geology of four of these properties, the Musketeer, the Buccaneer, the Trophy, and the Prosper will be briefly described, (taken largely from Woodcock 1987).

The Musketeer Group
The veins, which occur within the batholith, are about a mile from its western margin and occur in two complementary sets of
fractures along which there has been some shearing. The one group of fractures strikes 10° to 30° azimuth and dips steeply to vertical. In some places andesite dikes occur in fractures of similar attitude. The other group of fractures strikes northeast to east and dips northerly at angles from 45° to 75°.

At the Musketeer property, the Trail Vein strikes northerly and is offset by the fracture which contains the Musketeer Vein and which strikes easterly.

The quartz veins have sections which are ribboned and generally contain gouge along the walls. The veins are composed of quartz with some white carbonate and varying proportions of sulphides. The sulphides are distributed irregularly in the veins, comprising up to 15% combined sulphides including pyrite, galena, sphalerite, and chalcopyrite.

Pyrite alone is not a reliable indicator of gold; galena and perhaps sphalerite are usually observed with pyrite in vein matter that assays well in gold. Also the gold appears to be independent of the chalcopyrite content.

One of the characteristics of these veins is their very narrow width and their high gold content. A number of samples from the 1000-level of the Musketeer Vein presented by Sargent (1941, p. 40) shows that the highest gold values are generally
with the banded vein material and that a weighted average of ten samples, disregarding whether or not they are within ore shoots, is $1.48 \mathrm{oz} /$ ton Au across 5.4 inches (14 cm), with values up to $4.95 \mathrm{oz} /$ ton across 4.5 inches. Silver values are generally slightly less than the gold values.

Buccaneer Mines Ltd.

Two parallel veins have been explored at the Buccaneer property and both of these veins occur in branching fractures which are largely in or at the sides of altered, green andesite dikes. These dikes strike about $\mathrm{N} 25^{\circ} \mathrm{E}$ and dip steeply southeast. They have exposed widths from a few centimeters up to 7 meters, generally averaging about 2.5 meters. The veins can occur along one side of a dike and cross to the other side for an interval and in places can also cross to an adjacent dike.

The vein filling generally consists of quartz, in veins from 5 to 50 cm wide and generally having gouge at the walls. The quartz veins contain fragments of wall rock that are generally partly replaced by ankerite and chlorite. Some of the vein matter is ribboned by closely spaced fractures parallel to the walls.

In places along the veins the quartz can replace sheared wall rocks forming lenticular masses or irregular stringer zones.

These bodies are up to 1.3 meters wide but are generally barren of gold.

The primary sulphides include chalcopyrite, pyrite, galena and sphalerite, generally forming less than 1% of the vein. The gold distribution is irregular; it occurs in the gangue and in contact with or close to the sulphides. Although the gold values are highest where base metals are present, gold does also occur where no base metals are detectable by assays.

Widths of veins are again very narrow and gold values are quite high. A number of samples have been taken and presented by Sargent (1941, pp 56-60). The best values reported are from the 1600-level of the Craig Vein and 18 of these samples, regardless of sample locality, have a weighted average of 2.34 oz/ton Au across 8.2 inches (21 cm).

The Prosper Property

The Prosper property, lying near the northwest corner of Opus 1 mineral claim, is presently covered by the Bess claim (Record Number 43). The Bess claims were acquired in June of 1975 by Mr. Walter Guppy of Tofino and transferred on September 30, 1985 to Bermuda Resources Itd.

The property is an old one; some old adits and open cuts were made about 1903. In 1939 a group of people, including walter Guppy, recorded the Prosper 1 to 8 claims.

The mineral showings exposed by and near the workings occur in the Karmutsen volcanics close to the Penny Creek batholith. Mineralization is associated with fractures that strike about $070^{\circ} \mathrm{Az}$ and $\operatorname{dip} 65^{\circ}$ to 70° northerly. Shearing and chloritization has ocurred along these fractures and at some points quartz stringers with disseminated pyrite have been formed. The quartz is mineralized with pyrite and chalcopyrite and some free gold. Sargent (1940, p 24) reports a number of samples taken in trenches over a length of about 200 feet (60 $\mathrm{m})$. The weighted average of five sample sites is $0.38 \mathrm{oz} /$ ton Au over 13.6 inches (35 cm).

LOCAL GEOLOGY AND MINERALIZATION

Karmutsen volcanics on the Opus 1 and Ureka 1 claim consist of fine grained, commonly fragmental andesite. Alteration is mainly chlorite. The intrusive rocks are mainly fresh, medium crystalline biotite-hornblende granodiorite.

Several large outcrops of grey weathering marble occur on Ureka 2 claim. Intrusive rocks noted near the marble were mafic-rich
-12-
quartz diorite which suggests the presence of an intrusive border phase related to assimilation of the country rocks.

The grid area is shown on Figure 5, (in pocket) at a scale of $1: 2,500$. This is preliminary geological mapping to aid in the interpretation of the ground magnetics, VLF electromagnetic and soil geochemical surveys.

The area is dominated by numerous easterly trending fault (and shear zone) controlled linear depressions. Shear features such as; gouge filled fractures, rehealed brecciation and zones of shattered rock are abundant throughout the grid.

The property includes four showings of quartz mineralization, some of which carry gold values. These have been named the "Main" or "Camp Creek" showing which is at Line $0+00$ (Trench 1); the "Mid Pad" showing which is along Line $4+50$ E and occurs on the cliffs immediately south of Ursus Creek; the "Junction" (East) showing which occurs along the south side of Ursus Creek approximately 0.5 kms east of the Mid Pad, and the "Dike" showing which is about one km downstream from the "Main" showing. (For trench locations see Figure 5).

The Trench \#1 showing occurs adjacent to a strong shear zone which marks "Camp Creek". The main trends of the mineralized quartz stockwork range from 22° to 62° with southeasterly dips.

The main shearing in Camp Creek varies from 87° to 101° with steep. (83°) dips to the north. There are nine quartz vein types present in Trench \#1, these are shown in Table 2, (Page 14).

Mr. D.B. Forster took twelve grab samples from Trench \#l; the numerical average is 920 ppb Au. After additional trenching, a more detailed sampling program was undertaken for which the results average 550 ppb Au for five samples from the easterly vein. D. woodcock took two chip samples across the northwesterly striking vein, some of which had abundant chalcopyrite. These samples, both 20 centimeters long and one meter apart, returned assays of $245 \mathrm{ppb}(.007 \mathrm{oz} /$ ton $)$ and 780 ppb (. 02 oz/ton).

Basically, Trench 1 exposes a series of narrow quartz veins which have a wide (greater than 2.5 meter) thickness of disseminated pyrite in quartz stockwork in the footwall of the more defined quartz veins. Assays for similar type mineralization found elsewhere on the claims gave gold values up to $0.144 \mathrm{oz} . /$ ton Au. The host rock at Trench \#l is a highly altered (silicification, sericite and chlorite development) derivative of the surrounding granodiorite. The setting and style of mineralization is similar to the Kim Deposit on Banks Island (Shearer 1985).

- 14 -

TABLE 2

VEIN ORIENTATIONS AT TRENCH 1

vein	Description	Mineralization	Size	Orientation	
A	bluish grey quartz	diss. pyrite and chalcopyrite	7 cm	ranging from 22/38 ${ }^{\circ}$ SE t o	$\begin{aligned} & \text { "rotated" } \\ & 57^{\circ} / 44^{\circ} \text { SE } \end{aligned}$
B	Laminated grey quartz	barren	1.2 cm	$53 / 84^{\circ} \mathrm{SE}$	
C	Laminated grey quartz	barren	1. 1 cm	$62^{\circ} / 87^{\circ} \mathrm{SE}$	
D	vein swarm-stockwork	trace of pyrite	0.1 .04 cm	ranging from to 55/60 SE	02/62E
E	bluish quartz vein	diss. pyrite and chalcopyrite	11 cm	$73 / 84^{\circ} \mathrm{N}$	
F	white quartz	barren	0.5 cm	$68 / 82^{\circ} \mathrm{SE}$	
G	grey-white quartz	barren	1.8 cm	$08^{\circ} / 78^{\circ} \mathrm{E}$	
H	laminated grey quartz	barren	0.49 cm	$42 / 69^{\circ} \mathrm{SE}$	
1	white quartz, many generations of clear quartz veinlets	barren	ery wide s blocks	near outcrop	
NOTE: the main showing D. Forster using samp Angers, sample numbers:		1) has been sampled in detail by			
		numbers DF $7751.7771-\mathrm{UR}$ a		and S.E.	

$$
-15-
$$

The mineralization at Trench \#l occurs within approximately loom north of the intrusive contact between quartz monzonite and Karmutsen Volcanics. The main immediate Ursus Creek channel, marked by steep walled canyons, is about 100 north of Trench \#1.

The intrusive contact is marked by a medium to fine grained dark, mafic-rich "dioritic" phase which is cut by many dykes of leucocratic granodiorite. The Karmutsen Volcanics are fine grained to aphanitic, dark green "andesitic" varieties. Although only fine grained volcanic rocks were observed in outcrop on the Ureka Claims, the creek bars at the mouth of Ursus Creek contained many examples of diverse, coarse pyroclastics, bedded aquagene tuffs, pillow breccias and amygdaloidal lavas (all typical of the Kamutsen Volcanics elsewhere on Vancouver Island).

MAJOR ROCK TYPES ENCOUNTERED ON THE GRID ARE, Figure 4:
Map Unit 1. Granodiorite:
Light grey-buff weathering, greenish grey hypidomorphic granular texture, biotite \& hornblende present. No potassium feldspars determined.
la. Altered Granodiorite:
Usually rusty weathering, sheared and shattered, light greenish brown, relict quartz grains abundant, commonly micro veined by secondary silica, alteration mainly sericite but also minor chlorite, no primary mafic minerals remain.

Map Unit 2. Quartz Diorite:
Dark green coarse quartz grains, in a chloritic matrix, slight foliation. Some relict feldspars in most samples, commonly veined by calcite hairlines.

Map Unit 3. Karmutsen Volcanics:
"Andesite" - aphanitic to fine grained, dark green, occasionally layered - tuffaceous.

NOTE: NO potassium feldspar staining or thin-section examination has been done on rocks from this property during the 1986 - 1987 work program.

The Mid Pad Showing

The Mid Pad Showing includes a lensy quartz vein with associated quartz stringers that strikes 118° and dips 90°. It is exposed on the south side of Ursus Creek and can also be seen in the cliffs along the north side of the creek, about 20 meters away. However, the creek could not be crossed due to high water at the time of the visit and so this exposure on the north side of the creek could not be sampled.

Three sets of samples have been taken and reported for this showing. Samples reported by Virginia Kuran in Assessment Report 12,623 have been taken across the narrow quartz vein and the adjacent rock in three sites. Values and widths obtained are as follows:

Sample	Width (inches)	Au (oz/ton)
	20	0.027
95606	60	0.023
95605	18	0.001
95603	26	0.02
91336	6	0.015

A number of samples were taken by Mr . Doug Forster on December 4, 1986 and analyzed in the same laboratory. The results are considerably higher, with assays of selected mineralization up to 0.849 oz . per ton.
D. Woodcock (1987), using a hammer and moil, took four samples across the quartz vein area. The westerly sample, (Wl3), taken over 63 centimeters, included mainly quartz vein but also some adjacent altered wall rock with a few quartz stringers. A second set of samples were taken 4.3 meters to the east of this. This included a $38-\mathrm{cm}$ lens of quartz (W16) and a continuous 1-meter sample of wall rock to the south (Wl6). In addition a small lens or knot of quartz within a pinched part of the vein system was sampled (W15) across five centimeters. The results are as follows:

Sample No.	Width (cm)	Au Geochem (Fire Assay) (ppb)	Equivalent \qquad
W87-13 R	53	1950	. 057
W87-14 R	100	85	trace
W87-15 R	5	6700	0.197
W87-16 R	38	7350	0.216

The Junction (East) Showing

About two kilometers above the mouth of Thunderbird Creek is a major junction in Ursus Creek. The Junction showing is about 50 meters up the north branch from this junction and is exposed in the cliffs along the south side of the creek. Natural
scaling along major fractures that trend sub-parallel to the creek bed has created a cliff in which major fracture faces are interspersed with sharp small vertical steps or re-entrants. The fractures strike 120° azimuth and dip about 80° NE.

The rock is a hard greenish cataciastic, probably a mylonite, containing numerous subangular, elongate fragments of quartz ranging in size from five centimeters down to microscopic. Considerable calcite occurs in much of it. The hardness may be due to the fine-grained nature of the mylonite or due to some later silicification. The matrix is composed of quartz and sericite. The green colour may be imparted by a bright green muscovite and/or chlorite. The rock is probably a tectonically crushed granodiorite.

Fine-grained pyrite is dispersed in varying portions throughout much of this rock and assays indicate the presence of gold; although its association within the rock has not been determined. In places the fine-grained pyrite is of sufficient quantity to product limonite on oxidation and this is quire apparent in the reentrant at the discovery point.

Selected samples by D.B. Forster on his first examination of the property returned gold values of $0.169,0.496$ and 0.778 $0 z /$ ton. On April 19 and 20, D. Forster took more closely controlled chip samples. These included one moiled channel
sample (DF-123) across 1.2 meters which assayed 0.115 ounces over 0.5 meters and 0.065 ounces over 0.5 meters; several grab samples of the scaled rock debris that assayed 0.169, 0.142, 0.026 , and $0.142 \mathrm{oz} /$ ton and three chip samples were taken three to six meters easterly along the base of the cliff that returned values of $0.027,0.014$, and $0.015 \mathrm{oz} /$ ton.
D. Woodcock took a chip sample with a hammer across the site of DF-123 and got 1590 ppb (equivalent to $0.045 \mathrm{oz} /$ ton). The reason for the difference is not apparent; possibly the gold occurs in scattered thin pyritic seams. Three specimens were also submitted for assays. A piece of spalled rock with abundant quartz fragments and fine disseminated pyrite assayed 5600 ppb (0.154 oz/ton) gold; a high sericite rock with scattered pyrite crystals but no quartz fragments assayed 365 ppb gold; and a silicified rock with scattered pyrite and a few quartz fragments assayed 435 ppb . In addition, D. Woodcock took a rough grab sample from two outcrops of similar rock, about 200 meters further to the east. This sample assayed 415 ppb Au.

The fractures may be superimposed on the foliation at a very acute angle; however additional field work will be necessary to verify this. In any case, there are several descrete stages in a complex geological history. Certain structures were present for the initial quartz deposition which was subsequently

$$
-20-
$$

brecciated and drawn out into parallel elongated fragments in a cataclastic zone. The slight foliation may be related to this stage of the history. The fracturing was possibly superimposed on the mylonite. The gold mineralization was also superimposed on the mylonite, possibly controlled by the fracture zones.

The Dike Showing

At the Dike Showing, an exposure of buff-weathering granodiorite, occurs on the south side of Ursus Creek. A fracture zone, that strikes 116° azimuth and dips $80^{\circ} \mathrm{N}$, is silicified and cut by a few quartz stringers. This is mineralized with sparse disseminated pyrite and a few scattered specks of galena. A small grab sample of this altered rock analyzed 16 ppb Au .

The alteration lies north of a vertical basic dike that is ten meters wide and strikes 130° azimuth. A grab sample of the altered rock adjacent to the dike has $0.025 \mathrm{oz} /$ ton Au . Fresh granodiorite occurs on the south side of the dike.

GEOCHEMISTRY

Stream sediment, soil and rock samples, Figure 6, were collected in a reconnaissance fashion mainly along the lower elevations of Ursus Creek. Anomalous silt samples were found
in a major north flowing tributary (380 ppb.Au.) in Ureka 2 claim and two small south flowing streams in Ureka 7 and Ureka 8 claims. Reconnaissance soil samples, Figure 8, were generally low in gold content except for two samples in the southeast corner of Ureka 5 which subsequently were covered in detail by grid sampling west of 600 W . Geochemical rock sampling, Figure 7, focussed attention on several new mineralized and altered zones in Ureka 5, Ureka 8 and Ureka 10 claims.

Over 1230 soil samples were collected within the initial grid and additional soil samples were taken as follow-up work progressed. Soil characteristics vary considerably throughout the grid area. On steeper slopes only a thin soil development is present consisting of; a l-lom layer of moss and forest litter grading to rotted organics and humus and then a very thin layer of leached decomposed plutonic rock ("C" horizon) usually I to 5 cm thick. Flatter areas of the grid, most notably 600 W to 800 W , exhibit much thicker development of true soils with comparatively thick sections of orange-brown "B" horizon.

Results of the systematic soil sampling program are plotted in Figure 9 (in pocket).

$$
-22-
$$

The threshold for anomalous values is selected at 25 ppb Au; high anomalous values would be those that exceed 200 ppb Au. Values range up to 1090 ppb .

In general the map presents a picture of background gold values containing scattered anomalous values. In places the anomalous values are abundant enough to create continuous anomalous zones and these have been marked with contours at 25 ppb and 50 ppb . Most of these contoured anomalies occur in the vicinity of Thunderbird Creek and the largest one marks the little knoll that contains the Main showing. Outside of these contoured highs, the area has been divided into two geochemical zones including a southern zone in which most background values are above 5 ppb and up to 25 ppb . This "anomalous area" also has a greater abundance of scattered anomalous values between 26 ppb and 885 ppb .

The above technique of treating the geochemical values seems to give the most useful picture. Contouring individual anomalous values leaves an almost meaningless picture.

There are several factors which would attribute to the erratic nature of the geochemical map:

1. The highly anomalous values should be related to auriferous quartz veins and lenses.
2. The magnitude of the value will depend on the depth of the overburden. In places on high little knolls the weathered and disintegrated granitoid rock occurs at the surface just under the moss and, where this contains quartz lenses or quartz veins, anomalous values can occur. In places where the depth of overburden is quite deep such as in the bottom of Ursus Creek valley and Camp Creek, one should expect a much lower geochemical value.
3. A contribution of the small streams to the Ursus Valley would create erratic conditions if some of the soil samples were taken on the debris from these small streams.
4. Glacial movement in the area would also redistribute any auriferous rock or vein material. The glacial ice flow would have been down this steep-walled valley in a westward direction.

GEOPHYSICS

Ground magnetometer and VLF-Electromagnetic surveys were conducted over the detail grid. Results of the magnetometer survey are shown on Figure 10 (in pocket). Unfiltered dipangle profiles of the VIF-Electromagnetic survey are shown on Figure 11 and corresponding Fraser Filter results are illustrated on Figure 12 (in pocket).

The magnetometer map, (Figure 10), shows that the contours have a general trend in a southeasterly direction somewhat parallel to the base line. However, in the northwest part of the grid, over a width of seven cross lines, the values are generally higher and the southeasterly fabric is not apparent. Along the south edge of this higher west area is a magnetic high which has not been fully outlined.

In attempting to fit this magnetic picture with the geology one should note that, except for this western high area, there is a general decrease in magnetic intensity southerly along the grid lines and that the lowest values ($<55,800$ gammas) occur at the south end of the grid lines, generally in areas of mixed quartz diorite and granodiorite. This would also be in the area approaching the regional fault that separates the batholithic rocks from the Karmutsen volcanics to the south.

The reason for the western high is not apparent from the geological mapping to date; however the positive magnetic anomaly along the south side of this western high may correspond to areas of quartz diorite.

There is no apparent correlation of the magnetic pattern with the geochemical map or the known mineralization.

VLF-EM SURVEY

Parts of the grid have been surveyed by VLF-EM. The results add very little to the present picture.

CONCLUSIONS

Several important, low-grade to moderate-grade gold occurrences have been located along a major shear structure in Ursus creek. Pyrite and chalcopyrite containing gold values are found in discrete quartz veins but also in wide quartz stockworks in both the hangingwall and footwall of well defined veins. The quartz-sulfide zones appear to be related to 112° trending fault and shear structures. Of the known showings, Trench \#1 area now appears to be less important due to low gold content. The Mid Pad showing, where exposed, is of limited width and of moderate gold values.

The interesting Junction showing is a different geological type. It is not the usual conspicuous quartz vein. It is a cataclastic zone which lies along Ursus Creek, the trace of which is a major regional fault structure. Complex history is indicated by; the pre-cataclastic quartz veins which have been brecciated and incorporated into the mylonite, by the foliation and siliceous nature of the mylonite, by the fracture set which may be superimposed on the mylonite, and by the disseminated pyrite mineralization and associated gold which may be controlled by the fracture sets.

This is a somewhat unusual geological type of gold showing and it warrants additional exploration.

A program of stream geochemistry in the side drainages of Ursus Creek has yielded a number of anomalies on which very little follow-up work has been done. The area is of very steep topography and heavy forest with exposures largely limited to the sharp creek drainages. Although outcrops are abundant, there are extensive areas with no exposure.

RECOMMENDATIONS AND COST ESTIMATE FOR FUTURE WORK

1. The Junction showing should be mapped, trenched and sampled in detail with a good base control. It appears to be extensive and its distance to the north is obscured by
overburden. Surrounding unaltered outcrops should also be included in the map to establish the extent of the mylonite zone.
2. It is important to determine the gold association. If it is with the disseminated pyrite, induced polarization could be used to locate concentrations. A comparison of gold analyses with sulphur analyses should give the required information.
3. Further prospecting and mapping are necessary to determine the cause of the small stream anomalies. Detailed silt sampling along these drainages, possibly with samples at 100 meter intervals, will help pinpoint their sources.
4. Additional targets found in the prospecting, mapping, and detailed silt sampling should be explored by soil geochemistry and, if mineralized exposures are found, by trenching and sampling.
5. Because of the steep topography and the heavy mature timber, access is difficult and any drill program using a standard drill machine, would involve costly drill site preparation and mobilization. Therefore sufficient surface work should be done before mobilizing a drill for exploration Stage II.

The following staged program should be implemented:

PHASE I

a. Follow soil anomalies on west side of Thunderbird Creek.
b. Trench showings on west side of Thunderbird Creek.
c. Transit \& EDM traverse baseline \& tielines.
d. Trench Mid Pad showing at low water levels.
e. Construct helipad east of south Ursus Creek on Ureka 10 claim. (East Pad).
f. Construct tent frame on Ureka 10 near East Pad.
g. Trench East showing (Junction Showing), detail prospect and map entire eastern area.
h. Orthophotograph for entire claim block 1:5,000, detail portions of Ureka $5,6,7,8$ and 10 at 1:2,500 and $1: 1,000$.
i. Trenching at $50 \mathrm{E}+50 \mathrm{~N}$.
j. Orientation self potential survey
k. Prospecting on Ureka 10-13 claims.

1. Preliminary Petrology

If drill targets are defined by Phase I work, then a small Phase II drill program should be completed.

PHASE II
Drilling 30 days contract drilling plus 2 man crew of at least 1000 meters.

COST ESTIMATE

PHASE I Crew of 3 for 30 days (90 man days)

Phase I Grand Total
\$62,617

PHASE II CONTRACT DIAMOND DRILLING

Diamond Drilling l000m @ \$80. per meter Mobilization and Demob. Camp and supplies 175 man days @ $\$ 45$ per day Supervision, Geological Analytical and freight Helicopter 60 hours @ $\$ 550$. Drill site preparation Contingency (15\%)
$\$ 80,000$
10,000 7,875 15,000 7,500
33,000 5,000
24,206
Phase II Grand Total
$\$ 183,581$

Respectfunly submitted
J.T. Shearer, M.SC, FGAC

REFERENCES

Dolmage, V., 1920; West Coast of Vancouver Island Between Barkley Sound and Quatsino Sound. Geological Survey of Canada, Summary Report, 1920, Part A.

Kuran, V., 1984; Assessment Report on the Ureka and EL04 claims For Eldorado Minerals and Petroleum Corp. July 31, 1984, A.R. 12, 623, pp.8.

Lisle, T.E. 1979; Report on the ISOB vein, Bedwell River Area B.C. Dept. of Mines Assessment Report 7439, May 23, 1979.

Muller, J.E., 1971; Geological Reconnaissance Work of Vancouver Island.

Muller, J.E., and Carson, D.J.T., 1967 Geology and Mineral Deposits of Alberni Map Area, B.C. Geological Survey of Canada; Paper 68-50.

Muller, J.E. and Carson, D.J.T., 1987 Geological Survey of Canada, open File Map 61.

Sargent, H., 1940; Preliminary Report on Bedwell River Area B.C. Dept. of Mines, Bulletin No. $13, \mathrm{pp} 97$.

Sargent, H., 1940; Preliminary Report on Bedwell River Area: B.C. Department of Mines, Bulletin No. 8.

Sargent, H., 1941; Supplementary Report on Bedwell River Area: B.C. Department of Mines, Bulletin No. 13.

Shearer, J.T., 1985; Report on the Yellow Giant Project, Banks Island, Private report for TRM Engineering Ltd., February 15, 1985, 85 pp plus 101 figures.

Stevenson, J.S. 1946; Lode Gold Deposits of Vancouver Island, B.C. Department of Mines, Bulletin No. 20

Woodcock, J.R. 1987; The Ursus Creek Project Private Report for Pacific Sentinel Gold Corp. 21 pp. May ll, 1987.

```
    APPENDIX I
UREKA 1-13 AND OPUS 1 AND 2 CLAIMS
    COST STATEMENT
    for
    Assessment Work Requirements
    B.C. Department of Mines
        as compiled by
        R.A. DICKINSON, President, MBA
        PACIFIC SENTINEL GOLD CORP.
        WORK COMPLETED BETWEEN
December 3 to December 14, 1986
    and
February 2 to February 19, 1987
```


APPENDIXI

COST STATEMENT, Ureka $1 \cdot 13$ and Opus 1 and 2 claims

Proportional sub.

	Cost	Total	Group 1	Group 2
1 tem	Rate	Cost	(opus)	(Ureka)

WAGES AND BENEFITS

J.r. Shearer, geologist	26	days	-	$250 / \mathrm{day}$	$6,500.00$	2,675.00	3.825.00
D.f. Forster, geologist	12	days	a	$250 / \mathrm{day}$	$3,000.00$	2,000.00	1,000.00
B. Lennan, geologist	. 5	days	a	$201.25 / d a y$	100.63	-	100.63
D. Brown, geologist	6	days	a	184.00/day	1,104.00	920.00	184.00
S. Butler, geologist	22	days	a	149.50/day	3,289.00	493.35	2,795.65
S.E. Angus, blaster/prosp.	12	days	a	172.50/day	2.070.00	.	2.070 .00
		SUB		TAL.	16,063.63	6,088.35	9.975 .28

TRANSPORTATION

```
B.C. Ferry
Truck rental, Dec. & Feb.
Helicopter (Long Beach Helicopters Ltd.)
    Dec. 22.7 hours a 534.60/hour
    Feb. 8.9 hours a 534.60/hour
    High frequency phone calls
```

138.00	69.00	69.00
517.30	258.65	258.65
12.138 .67	7.955 .41	4.183 .26
4.757 .94	713.69	4.044 .25
30.00	15.00	15.00

CAMP AND HOTEL COSTS
Camp costs, feb. 36 man days a $17.64 / \mathrm{man} d a y$
635.04
794.8
407.06
1.408.29
203.53
794.81
Food
Hotel \& meals (Mob \& Demob) in Ucluelet
December hotel \& meals
CONTACT LINE CUTTING, Magnetometer Survey
Soil Sample collection and
VLf-Electromagnetometer Survey
W. Chase \& Associates invoice

APPENDIX 1 (continued)
COST STATEMENT, Ureka 1-13 and Opus 1 and 2 claims

Proportional sub.

APPENDIX II
 STATEMENT OF QUALIFICATIONS
 J.T. SHEARER, M.SC., FGAC
 UREKA 1-13 AND OPUS 1 AND 2 CLAIMS URSUS CREEK AREA

Fieldwork completed between December 3 to 14,1986 and February 2 to 19, 1987

STATEMENT OF QUALIFICATIONS

I, John T. Shearer of the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

1. I graduated in Honours Geology (B .Sc. 1973) from the University of British Columbia and the University of London, Imperial College (M.Sc. 1977).
2. I have practiced my profession as an Exploration Geologist continuously since graduation and have been employed by such mining companies as McIntyre Mines Ltd., J.C. Stephen Explorations Ltd., Carolin Mines, and TRM Engineering Ltd. I am presently employed by New Global Resources Ltd.
3. I am a fellow of the Geological Association of Canada. I am also a member of the Canadian Institute of Mining and Metallurgy, the Geological Society of London and the Mineralogical Association of Canada.
4. I have personally conducted detail geological mapping and general exploration field work on the Ureka claims, Ursus Creek area. This report is an interpretation of the data obtained.

Vancouver, B.C.

August 24, 1987
APPENDIX III
LIST OF PERSONNEL AND DATES WORKED
UREKA 1-13 AND OPUS 1 AND 2 CLAIMS
Fieldwork completed between December 3 to 14, 1986 and February 2 to 19, 1987

APPENDIX III

LIST OF PERSONNEL AND DATES WORKED


```
Days Worked
December 7-15, 1986
January 28-29, 1987
February 2-27, 1987
=28 days
December 3-12, 1986
January 5-20, 1987
-12 days
December 7-12, 1986
=6 days
February 12, 1987
= 1/2 day
December 7-15, 1986
January 30, 1987
february 2-13, 1987
=22 days
February 2-13, 1987
= 12 days
```


APPENDIX IV

ANALYTICAL PROCEDURES AND ASSAY CERTIFICATES

UREKA 1-13 AND OPUS 1 AND 2 CLAIMS

ACME ANALYTICAL LABORATORIES LTD.
852 E. Hastings St. Vancouver, B.C.

Dean Toye, Chief Assayer

EEOCHEMICAL IGF AMALVSIS

. 500 gham Sample is digested with 3ml 3-1-2 hCl-hmoj-h20 at 95 deg. C for one hour and 15 diluted to 10 ml with water. THIS LEACH IS PARTIAL FOR MN.fE.CA.P.CR.MG.BA.TI.B.AL.NA.K.H.SL.IR.CE.SN.Y.N日 AND TA. AU DETECTION LINIT BY ICP IS 3 PPH.

SAMPLE TYPE: P1-SOILS F2-3 ROCKS AUI ANALYSIS BY AA FROM 10 GRAM SAKPLE.

SAMPLE	Ho	Cu	Pb	In	Ag	Ni	Co	4	Fe	As	4	Aus	Th	Sr	cd	56	$8 i$	v	Ca	p	La	Cr	ng	Ba	Ti	B	Al	Na	k	k	Rut	
	PPM	PPM	PPM	PPK	PPM	PPM	PPM	PPM	2	PPM	PP\%	PPM	4	2	PPA	PPM	4	PPM	2	PPH	2	2	$\%$	PPH	PPB							
DF-55-001	3	10	7	25	. 2	1	4	167	2.53	8	8	ND	3	3	1	3	2	17	. 04	. 016	8	5	. 22	33	. 01	4	2.00	. 02	. 07	1	53	
DF-55-002	6	8	2	15	. 1	2	3	101	2.20	3	5	*	1	4	1	2	2	31	. 03	. 006	7	6	. 19	22	. 01	2	. 90	. 02	. 04	1	275	
DF-7751-UR		13965	6	1	19.6	1	2	25	2.74	23	10	2	1	1	1	34	2	1	. 01	. 003	2	2	. 01	9	. 01	2	. 07	. 01	. 0 ?	8	530	
OF-7752-UK		10763	2	1	16.5	2	2	23	2.69	22	9	ND	1	1	1	32	2	1	. 01	. 002	2	4	. 01	10	. 01	2	. 05	. 01	. 03	6	1070	
DF-7753-UR	5	9740	7	1	11.1	2	7	24	3.05	24	5	ND	1	1	1	41	2	1	. 01	. 004	2	9	. 01	11	. 01	ε	. 06	. 01	. 03	5	1170	
UF-7754-UR	6	4788	6	1	14.1	1	3	23	3.28	19	7	ND	1	1	1	25	2	1	. 01	. 007	2	2	. 01	43	. 01	2	.13	. 02	. 07	3	1380	
bF-7755-uk	6	10369	2	1	35.9	1	3	22	3.39	23	5	ND	1	1	1	35	2	1	. 01	. 006	2	3	. 01	33	. 01	2	. 10	. 02	. 05	6	280	
DF-7756-UR	7	1781	3	2	3.1	1	3	37	2.16	8	9	MD	1	1	1	10	3	1	. 02	. 011	3	1	. 01	34	. 01	5	. 15	. 03	. 08	1	750	Cost
DF-7757-UR	8	417	5	2	2.1	1	9	20	1.39	5	17	2	2	1	1	5	5	1	. 01	. 009	6	3	. 01	26	. 01	4	. 14	. 03	. 09	1	530	
DF-7758-UR	5	8862	4	1	17.6	2	5	18	2.51	10	5	ND	1	1	1	17	3	1	. 01	. 001	2	10	. 01	11	. 01	2	. 05	. 01	. 02	4	1170	$\pm \underline{1}$
DF-7759-UR	7	74	6	3	. 3	1	6	34	1.88	4	8	MD	1	2	1	2	3	1	. 02	. 027	3	1	. 01	36	. 01	3	. 19	. 02	. 11	1	340	
BF-7760-UR	8	1223	5	2	3.0	1.	2	25	2.41	2	7	ND	1	2	1	2	2	1	. 02	. 016	3	4	. 01	37	. 01	5	. 17	. 02	. 09	1	950	
DF-7761-UR	9	636	3	3	2.0	2	2	41	2.26	2	5	2	1	2	1	3	2	2	. 02	. 022	6	4	. 01	39	. 01	4	. 21	. 02	. 11	1	1240	
OF-7762-UR	9	57	11	4	. 6	1	4	39	2.46	5	7	2	3	2	1	3	2	2	. 03	. 027	8	3	. 01	50	. 01	3	. 25	. 02	. 14	1	1620	
DF-7763-UR	2	15	3	2	. 1	1	3	34	1.50	2	5	ND	1	1	1	2	2	1	. 01	. 014	5	2	. 01	40	. 01	5	. 20	. 03	. 11	1	250	
DF-7764-UR	3	18	8	1	. 1	1	3	37	1.32	2	5	MD	1	1	1	2	2	2	. 03	. 026	4	3	. 01	37	. 01	4	. 25	. 03	. 10	1	67	
DF-7765-UR	2	16	3	1	.4	1	4	15	1.07	4	10	ND	2	1	1	2	2	1	. 02	.006	6	1	. 01	27	. 01	2	. 12	. 03	. 08	1	49	
DF-7766-UR	3	14	2	2	. 1	1	2	27	1.28	2	5	ND	1	1	1	2	2	1	. 02	. 014	5	4	. 01	35	. 01	5	. 16	. 03	. 08	1	96	
bF-7767-8k	3	6	4	2	. 3	1	4	20	1.59	2	10	ND	3	2	1	2	3	2	. 02	. 016	4	2	. 01	46	. 01	3	. 21	. 03	. 14	1	185	
DF-7768-UR	3	5	3	2	. 1	1	2	17	1.34	J	5	N	1	2	1	2	2	1	. 02	. 016	5	2	. 01	40	. 01	2	. 17	. 03	. 11	1	150	
DF-7769-UR	4	52	6	2	. 2	1	3	16	1.98	6	5	ND	1	2	1	2	4	1	. 02	. 009	4	4	. 01	43	. 01	4	. 21	. 03	. 12	1	320	
DF-7770-UR	3	45	6	5	. 5	2	5	16	2.76	12	5	ND	1	2	1	9	2	2	. 01	. 013	3	2	. 01	44	. 01	10	. 23	. 02	. 12	1	405	
DF-777!-UR	3	6	3	2	. 1	1	2	16	1.19	3	6	ND	1	2	1	2	2	1	. 02	. 016	1	3	. 01	36	. 01	6	. 18	. 03	. 11	1	47	
DF-7772-UR	5	6579	7	1	9.8	1	6	16	2.10	6		ND	2	1	1	11	2	1	. 01	. 002	2	5	. 01	11	. 01	5	. 06	. 01	. 04	4	480	
DF-7773-UR	1	19	17	32	. 1	1	4	406	1.77	9	5	ND	2	22	1	2	2	8	1.82	. 033	5	J	. 34	54	. 01	4	. 55	. 03	. 12	1	5	
DF-7774-UR	3	36	4	2	1.2	1	2	30	1.72	2	9	4	1	,	1	2	2	1	. 01	. 007	3	6	. 01	18	. 01	5	. 12	. 03	. 05	1	3600	
DF-7775-ur	5	14	12	5	. 1	1	2	108	2.36	3	8	ND	3	2	1	2	2	3	. 02	. 017	5	3	. 01	33	. 01	6	. 20	. 03	. 09	1	335	
OF-7776-UR	3	77	5	1	. 1	1	2	24	. 65	2	5	ND	1	1	1	2	2	1	. 01	. 004	2	4	. 01	11	. 01	3	. 06	. 01	. 03	1	350	
DF-7777-UR	3	105	9	1	. 3	1	3	54	1.71	4	5	ND	1		1	3	2	2	. 01	. 012	4	4	. 01	22	. 01	3	. 16	. 02	. 05	1	1680	
DF-7778-UR	3	36	8	4	. 9	1	2	119	1.71	4	5	2	2	1	1	3	2	2	. 01	. 006	2	5	. 01	10	. 01	2	. 09	. 01	. 03	1	2150	
DF-7779-UR	3	21	3	9	. 1	1	2	152	. 93	3	5	ND	1	1	1	2	2	2	. 02	. 012	5	4	. 08	41	. 01	3	. 30	. 02	. 07	1	79	
DF-7780-UR	4	70	3	1	. 1	1	1	26	. 55	2	5	ND	1	1	1	2	2	1	. 01	. 002	2	5	. 01	1	. 01	2	. 05	. 01	. 01	1	39	
DF-7781-UR	J	14	20	37	. 1	1	6	316	1.95	3	5	No	3	2	1	2	2	9	. 07	. 030	9	2	. 24	41	. 01	6	. 62	. 03	. 12	3	11	
DF-7782-UR	3	8	3	27	. 1	1	4	813	1.88	2	10	ND	3	25	1	2	4	6	1.25	. 033	7	2	. 32	44	. 01	5	. 41	. 03	. 11	1	12	
DF-7783-UR	8	4	3	2	. 1	1	1	23	1.36	3	5	ND	1	6	1	2	6	1	. 02	. 017	3	1	. 01	36	. 01	2	. 17	. 03	. 10	1	175	
DF-7784-UR	5	5	6	32	. 1	1	4	399	1.99	13	5	ND	2	1	1	2	3	5	. 20	.033	7	2	. 18	49	. 01	4	. 57	. 02	. 13	1	605	
SID C/All-R	19	55	42	140	6.9	64	27	952	3.95	37	20	6	30	45	16	15	20	59	. 48	. 095	33	55	. 88	168	. 08	38	1.72	. 06	. 12	13	510	

SAPPLE TYPE：P！－Z ROCYS PJ－SOLLS
Aut－ 10 gh．ignited．hot houa regia leached．hibk extraction．aa analysis．
qu：\＃by FIRE ASSAY
fggAyEF

WIGH D＇OR DEVELOFMENT

 \(\cdots+\therefore \therefore \quad \therefore i=i+i\)
 Alu＊ oob oz／t

9	\cdots
195	－
350	\ldots
－5	－
\％16	\cdots
395	－
809	\cdots
2110	.089
116	－
1	

Alı放
$\begin{array}{rr}90 & - \\ 195 & - \\ 305 & - \\ -90 & - \\ 395 & - \\ 995 & - \\ 110 & -089 \\ 116 & - \\ 1 & -\end{array}$
$\begin{array}{rr}96 & \ldots \\ 195 & - \\ 20 & - \\ 05 & - \\ 610 & - \\ 295 & - \\ 196 & - \\ 110 & -089 \\ 116 & - \\ 1 & -\end{array}$
$\begin{array}{rr}96 & \ldots \\ 195 & - \\ 06 & - \\ -65 & - \\ 616 & - \\ 295 & - \\ 906 & - \\ 2110 & -089 \\ 116 & - \\ 1 & -\end{array}$
$\begin{array}{rr}96 & \ldots \\ 195 & - \\ 20 & - \\ 05 & - \\ 610 & - \\ 295 & - \\ 196 & - \\ 110 & -089 \\ 116 & - \\ 1 & -\end{array}$
15 -
I
1 -
10
$\begin{array}{ll}615 & - \\ 460 & - \\ -65 & -\end{array}$
$\begin{array}{rr}295 & - \\ 20 & 0-5\end{array}$
$!$
$1 \pm$ -
18
685 -
298 -
215
$45 \quad-$
10 -
$1 \quad-$
1

1	\ldots
1	-
1	-
	-
	-1

 G5 6561
 \(26 E+12 M\)
 $\rightarrow 296$
52929
99050
ル 2 － 1
il 2902
1229 O
－
？
$\because \cdots$
，
－2901
-592
3924
$\therefore 29 \%$
；29๙6
$2 ¢ 27$
FFOUECT EC－O4（UFGUS CFEEF）
$\begin{array}{rr}16 E & - \\ 315 & - \\ 9 & - \\ 1 & - \\ 1 & - \\ 615 & - \\ 460 & - \\ 255 & - \\ 20 & - \\ 1180 & 0-\end{array}$
90尔安

2942－
2943－
の日名
SE 6551
5 S 6 B
5 E 65ct
$6 \mathrm{EB6} 64$
SE 6EE
GE 6G6
SE 6567

GB 6E020
SE 6 65
SB GB6O
G5 6561

$26 O E+12 N$

HIGH D'OF DEVELDFMENT FFOJECT EC-O4 (UFSUS CFEEF)

SAMPIE	All* anb	$\begin{aligned} & \text { Aul** } \\ & a z / t \end{aligned}$
$3006+206$	59	\ldots
$\triangle 50 E+3 O N$	2	-
-75E+109	25	.--
388E+255	2250	. 045
400E+1.10s	5ro	-18?
$450 E+805$	56	-
945Ex-65	1	-
15-29	15	--
V6-30	1	-
GFAE FiS AF.ELAST	12	-

DATE FECEIVED: DEC 181986 DATE FEFOFT MAILED: D2CC $24 / 86$ ASSAYEF. ARMP/4... DEAN TGYE. CEFTIFIED F.C. ASSAYEF.
HIGH D'OR DEVELOPMENT FFIOJECT - EC-04 FILE \# 86-4019

SAMPLEE	Mc	Cu	Pb	ln	AO	Ni	Co	Mn	Fe	As	u	Au	Ith	Sr	cd	Sb	Pi	v	Ca	\uparrow	La	Cr	Mo	Ba	Ti	B	Al	Na	1	N	Aul
	PPM	PPM	PPM	PPH	PPM	PPM	PPY	PPM	$\%$	PPM	PPF	PPM	2	\%	PPH	PPM	2	PPM	4	PPM	2	\downarrow	2	PPH	PPP						
DE 2851-Uk	1	7	3	18	. 1	18	t	153	1.54	t	5	ND	1	1	1	2	2	37	. 0	. 002	2	26	. 59	1	. 09	2	. 64	. 02	. 0 ?	1	39
DB-2852-UR	4	7	14	19	. 3	1	1	246	. 73	12	5	ND	7	27	1	2	2	1	. 97	. 009	14	1	. 07	34	. 01	3	. 21	. 07	. 14	1	6
DB 2853-UR	2	J	5	25	. 3	2	6	412	2.45	37	5	ND	2	31	1	2	2	7	1.42	. 045	7	3	. 33	43	. 01	3	. 36	. 06	. 14	1	22
DB 2854-UR	2	4	5	13	. 2	2	1	198	. 66	88	5	ND	1	53	1	2	2	1	1.92	. 008	2	3	. 02	12	. 01	2	. 08	. 04	. 04	1	54
DE 2855-UR	2	4	7	4	. 1	2	14	32	3.96	6	5	No	1	2	1	2	2	1	. 05	. 002	2	4	. 01	24	. 01	3	. 15	. 01	. 08	1	155
D8 2856-UR	1	4	8	39	. 3	2	4	538	2.14	12	5	ND	2	17	1	2	2	44	5.14	. 042	6	2	. 43	116	. 13	7	3.42	. 06	. 13	1	2
DE 2857-UR	1	5	7	40	. 3	2	4	620	1.71	17	5	ND	3	76	1		2	6	3.39	. 042	8	4	. 35	63	. 01	5	. 46	. 06	. 21	1	27
08 2858-UR	2	3092	11	26	10.0	4	31	565	4.71	2	5	18	2	24	1	2	2	2	1.09	. 015	2	1	. 22	28	. 01	3	. 25	. 04	. 10	1	25700
D8 2859-UR	1	10	7	28	. 2	1	4	399	1.62	27	5	N0	3	4	1	,	2	3	. 22	. 034	8	1	. 03	86	. 01	3	. 32	. 03	. 19	1	39
DB 2860-UR	2	27	5	3	. 1	2	5	29	2.50	2	5	ND	2	2	1	2	2		. 04	. 022	6	1	. 02	53	. 01	3	. 25	. 02	. 14	1	220
DR 2861-UR	1	6	128	18	. 2	2	2	190	. 91	32	5	ND	3	4	1	2	2	8	. 21	. 030	5	2	. 17	59	. 08	7	. 78	. 02	. 28	1	4
DE 2862-UR	2	3	6	18	. 2	2	2	907	1.40	6	5	ND	3	125	1		2	3	5.97	. 026	8	1	. 36	90	. 01	3	. 35	. 07	. 07		12
DE 2863-UR		17	22	57	. 4	2	5	240	2.14	27	5	N	3	195	1	2	2	32	1.57	. 026	14	4	. 61	3555	. 01	21	4.59	. 13	. 91	1	25
D8 2864-UR	1	4	16	44.	. 4	2	5	855	2.09	11	5	ND	3	169	1	2	2	7	5.92	. 046	12	1	. 55	359	. 01	4	1.27	. 06	. 22	1	21
DE 28t5-UR	2	33	11	13	. 3	2	4	782	1.49	10	5	ND	4	5	1	2	4	3	. 11	. 035	13	2	. 06	127	. 01	4	. 60	. 03	. 18	1	13
D8 2866-UR	1	34	8	68	. 2	9	15	1555	4.77	2	5	ND	1	88	1	2	2	26	3.56	. 038	4	12	1.55	78	. 01	2	1.21	. 07	. 15	1	8
DF 2001-UR	1	2	6	28	. 2	2	3	256	1.81	2	5	N0	5	4	1	2	2	1	. 16	. 029	13	1	. 08	50	. 01	3	. 41	. 04	. 13	1	14
DF 2002-UR	3	7	11	8	. 2	1	1	195	. 75	4	5	NI	,	18	1		2	1	. 95	. 010	16	3	. 02	42	. 01	4	. 24	. 04	. 12	,	19
DF 2003 - UF	1	5	4	29	. 1	2	4	351	2.23	40	5	NI	4	5	1	2	2	9	. 37	.036	11	2	. 23	25	. 01	4	. 57	. 06	. 09	1	11
DF 2004-UR	1	2	4	1	. 2	1	1	703	. 23	2	5	N0	1	415	1	2	5	1	25.95	. 001	2	4	. 04	5	. 01	2	. 05	. 07	. 01	1	10
DF 2005-4t	1	4	3	29	. 2	2	4	414	2.08	5	5	0	4	5	1	2	2	9	. 31	. 033	12	4	. 37	45	. 01	4	. 84	. 05	. 12	1	7
DF 2006-4R	1	1	5	1	. 4	1	1	1067	. 26	2	5	ND	1	365	1	3	7		36.91	. 001	2	5	. 04	6	. 01	2	. 02	. 08	. 01	1	157
DF 2007-UR	1	3	6	1	. 2	2	1	38	1.37		5	$N 0$,		1	2	2	,	. 23	. 012	4	2	. 01	14	. 01	3	. 15	. 03	. 05	1	43
Df 2008-UR	1	3	5	40	. 1	2	3	302	1.91	2	5	N0	3	26	1	2	2	7	1.96	. 021	11	1	. 41	40	. 01	3	. 87	. 05	. 10	3	23
DF 2009-UR	1	148	846	368	8.6	3	2	233	1.52	120	5	13	1	29	14	1	2	1	1.38	. 015	3	1	. 06	20	. 01	2	. 20	. 04	. 08		12660
DF 2010-UR	1	211	1290	256	14.4	3		254	2.05	152	5	22	,	38	10	1	2	2	1.84	. 018	2	3	. 07.	23	. 01	3	. 23	. 05	. 09		23800
DF 2011-UR	1	190	1630	357	14.5	3	5	495	2.89	205	5	20	1	51	14	2	2	4	2.53	. 039	2	4	. 33	29	. 01	2	. 44	. 06	. 13		25900
DF 2012-UR	2	109	278	275	6.0	5	7	567	2.90	183	5	12		56	10		2	6	2.87	. 041	2	2	. 12	28	. 01	3	. 54	. 06	. 13		10360
DF 2013-UR	2	11	23	24	. 9	2	4	927	2.03	66	5	2	2	156	1	2	2	4	8.81	. 032	3	4	. 40	26	. 01	3	. 52	. 07	. 12	1	2590
DF 2014-UR	1	4	8	2	. 2	4	1	149	. 65	15	5	ND	1	11	1	2	2	1	. 49	. 005	2	6	. 05	6	. 01	2	. 09	. 02	. 03	7	530
DF 2015-UR	1	32	21	18	. 9	2	2	601	. 92	38	5	ND	,	165	1	2	2	2	9.39	. 018	3	1	. 11	18	. 01	2	. 23	. 06	. 09	76	1660
DF 2016-UR	1	56	50	148	1.7		3	999	1.68	59	5	1	1	146	6		2		6.98	. 029	2	1	. 46	21	. 01	2	. 25	. 06	. 11	93	2560
DF 2017-UR	1	138	145	217	2.5	2	3	923	1.42	48	5	4	2	204	8	2	2	2	8.95	. 025	3	2	. 33	21	. 01	2	. 27	. 07	. 12	81	3730
DF 2018-UR	1	29	72	71	1.8	2	3	712	1.50	67	5	3	2	160	3	2	2	2	7.97	. 030	2	2	. 32	23	. 01	2	. 29	. 06	. 12	51	2370
DF 2019-uR	1	4	,	19	. 1	2	4	253	2.15	2	5	ND	3	12	,	2	2	17	. 70	. 037	5	3	. 52	68	. 10	3	. 76	. 06	. 13	1	12
DF-2020-UR	5	5	5	17	9	2	3	356	1.73	2	5	ND	3	9	1	2	2	6	. 39	. 029	10	2	. 17	92	. 01	3	. 49	. 06	. 11	1	23
STD C/AU-R	$2!$	58	39	132	7.0	67	27	911	3.91	39	17	I	31	44	$1)$	15	19	60	. 48	. 100	37	53	. 88	162	. 08	36	1.73	. 08	. 12	13	510

SAMPLE:
 Ba
PPM $\begin{array}{cc}\text { if } & \text { B } \\ 4 & \text { PPH }\end{array}$ $\mathrm{Al} \quad \mathrm{Na}$
2 $\begin{array}{cc}W & \text { AUZ } \\ \text { PPN } & \text { PPB }\end{array}$

DF 2021-UF	14	4	3	13	. 2	5	$?$	241	1.49	3	5	N0	4	14	1	2	2	10	. 17	. 026	13	5	. 20	186	. 01	3	. 47	. 05	. 10	1	26
DF 2022-UR	3	5	4	9	. 2	3	4	328	1.55	3	5	ND	6	5	1	2	2	3	. 16	. 026	15	5	. 03	77	. 01	3	. 30	. 04	. 11	1	10
DF 2023-uf	43	2	7	20	. 4	?	8	205	3.65	3	5	ND	3	14	1	2	2	24	. 41	. 039	9	6	. 79	75	. 01	2	1.19	. 06	. 09	1	6
DF 2024-uR	5	3	4	16	. 1	2	5	169	2.13	2	5	ND	3	7	1	2	2	15	. 18	. 020	11	3	. 20	47	. 01	2	. 55	. 05	. 07	1	18
DF 2025-UR	5	3	2	6	. 2	1	3	423	1.46	5	5	ND	?	13	1	?	2	?	. 73	. 028	9	1	. 06	93	. 01	2	. 28	. 05	. 13	1	33
DF 2026-UR	7	3	4	12	. 1	2	6	77	2.35	2	5	ND	2	4	1	2	2	7	. 04	. 031	10	3	. 08	84	. 01	2	. 42	. 04	. 08	1	118
DF 2027-UF	2	3	5	35	. 2	4	5	422	2.19	2	5	ND	3	26	1	2	2	17	1.05	. 042	7	7	. 18	110	. 01	3	. 79	. 07	. 11	1	12
DF 2031-UR	2	3	2	12	. 2	2	7	156	2.03	2	5	ND	1	17	1	2	2	16	. 28	. 042	8	3	. 39	117	. 08	2	. 65	. 05	. 15	1	2
DF 2032-UR	1	2	2	9	. 1	1	5	102	2.79	2	5	ND	3	6	1	2	2	12	. 11	. 038	5	2	. 36	45	. 05	2	. 57	. 04	. 15	1	3
DF 2033-UR	5	2	4	18	. 2	3	1	912	1.85	4	5	MD	3	20	1	2	2	4	1.27	. 036	9	5	. 12	40	. 01	2	. 36	. 05	. 11	1	5
DF 2034-UR	17	4	4	8	. 2	3	3	237	2.19	5	5	ND	3	5	1	2	2	3	. 09	. 038	12	5	. 09	45	. 01	2	. 39	. 03	. 11	1	69
DF 2035-UR	10	6	7	6	. 3	2	2	130	2.79	10	5	$N D$	3	5	1	2	2	3	. 05	. 041	16	3	. 06	38	. 01	3	. 45	. 02	. 12	1	139
DF 2036-UR	$!$	1	4	19	. 2	1	2	757	1.62	2	5	ND	2	34	1	2	2	8	2.84	. 012	7	1	. 21	34	. 01	2	. 24	. 04	. 07	4	8
DF 2037-UR	1	3	5	10	. 1	1	2	160	1.73	92	5	ND	3	2	1	2	2	3	. 04	. 030	11	2	. 02	42	. 01	3	. 28	. 01	. 14	1	185
DF 2038-UR	1	2	2	2	. 1	2	2	144	1.12	24	5	ND	2	1	1	2	2	3	. 03	. 015	8	3	. 01	31	. 01	2	. 18	. 01	. 11	1	13
OF 2039-UR	2	1	2	16	. 1	1	1	140	. 63	4	5	ND	1	3	1	2	2	1	. 07	. 017	13	1	. 11	61	. 01	3	. 61	. 03	. 19	1	1
DF 2040-6R	2	2	2	48°	. 2	2	6	574	2.37	8	5	N0	2	32	1	2	2	23	. 50	. 035	9	2	. 74	81	. 01	2	1.29	. 06	. 09	1	1
0F 2041-UR	1	1	7	40	. 1	1	5	400	2.35	2	5	MD	2	1	1	2	2	29	. 08	. 035	11	1	. 15	42	. 01	3	. 67	. 04	. 06	2	1
DF 2042-UR	1	1	3	21	. 2	1	1	274	1.02	2	5	ND	2	4	1	2	2	3	. 16	. 019	15	1	. 20	41	. 01	2	. 57	. 05	. 12	1	1
DF 2043-UR	1	2	5	35	. 2	1	2	386	1.43	2	5	ND	1	8	1	2	2	3	1.79	. 021	10	1	. 05	57	. 01	5	. 35	. 06	. 14	1	1
DF 2044-UR	1	2	3	19	. 1	2	1	123	1.00	6	5	N0	1	3	1	2	2	4	. 07	. 027	17	2	. 18	53	. 01	4	. 58	. 05	. 12	1	2
DF 2045-UR	1	8	6	53	. 3	2	6	580	2.28	6	5	ND	1	54	1	2	2	13	3.90	. 032	8	1	. 51	72	. 01	4	. 38	. 07	. 13	1	1
Df 2046-UR	1	1	2	16	. 1	1	1	108	. 72	1	5	ND	1	3	1	2	3	4	. 04	. 019	15	1	. 14	45	. 01	3	. 54	. 05	. 12	1	1
DF 2047-UR	11	2	4	5	. 1	2	2	132	1.91	3	5	ND	3	13	1	2	2	13	. 33	. 048	3	2	. 45	127	. 07	4	. 71	. 06	. 14	1	1
DF 2048-UR	1	35	6	1	. 2	!	1	41	. 53	2	5	ND	1	1	1	2	2	1	. 01	. 001	2	4	. 01	12	. 01	2	. 07	. 01	. 03	1	1410
DF 2049-UR	3	3	3	2	. 1	2	2	204	1.39	2	5	W0	3	1	$!$	2	2	3	. 01	. 010	6	2	. 01	34	. 01	2	. 23	. 03	. 09	1	4
DF 2050-Uk	1	4	4	1	. 3	3	1	36	. 72	2	5	ND	1	1	1	2	2	1	. 01	. 003	2	5.	. 01	11	. 01	2	. 08	. 01	. 03	1	1090
Of 2151-UR	1	2	6	17	. 4	1	2	1415	2.13	5	5	ND	3	228	1	2	2		10.76	. 032	6	1	. 93	32	. 01	2	. 23	. 09	. 03	1	15
DF 2152-UR	2	2	19	24	. 5	3	3	3075	3.02	7	5	ND	2	668	1	2	3		26.07	. 024	14	1	1.52	15	. 01		. 23	.10	. 03	2	12
DF 2153-UR	2	1	24	20	. 4	1	3	2569	2.58	5	5	ND	2	658	1	2	3		26.06	. 027	11	2	1.03	35	. 01	2	. 24	. 10	. 03	2	7
DF 2154-UR	2	1	23	16	. 4	3	2	2265	1.98	3	5	ND	1	650	1	2	4		25.00	. 027	10	5	. 72	24	. 01	2	. 23	. 10	. 04	1	9
DF 2155-UR	1	5	6	17	. 2	5	5	729	2.26	7	5	ND	2	86	1	2	2	7	4.86	. 030	6	4	1.37	35	. 01		. 34	. 07	. 14	1	70
Df 2156-UR	1	1	2	9	. 2	1	2	1029	1.64	9	5	ND	2	49	1	2	2	3	3.32	. 046	10	1	. 58	52	. 01	2	. 24	. 07	. 11	1	31
DF 2157-UR	5	5	15	56	. 3	1	1	643	1.26	8	5	ND	3	7	1	2	2	7	. 28	. 020	6	1	. 28	31	. 07	2	. 61	. 06	. 10	1	2
DF 2158-UR	5	16	15	184	. 3	2	1	846	1.17	5	5	ND	3	5	3	2	2	5	. 23	. 017	5	1	. 22	49	. 05	2	. 53	. 05	. 11	1	1
DF 2159-un	7	10	17	110	. 2	2	1	649	1.23	4	5	ND	3	5	1	2	2	6	. 22	. 019	5	1	. 26	56	. 05	2	. 57	. 05	. 10	1	1
STD C/AU-K	21	60	37	135	7.2	69	28	960	3.95	39	18	7	34	48	18	7	16	64	. 48	. 103	36	56	. 88	179	. 08	37	1.73	. 09	. 13	14	505

SAMPLE\#	Ho	Cu	Pb	2π	Ho	N_{1}	Ce	M_{r}	Fe	As_{5}	4	fu	Th	5 r	Cd	Sb	H_{1}	v	Ca	p	La	Cr	Mo	Ba	ii	B	A1	Na	1.	W	Aut
	PPM	PPM	PPM	PPH	PPM	PFM	PPM	PPH	$\%$	PPM	PPA	PPM	2	2	PPM	PPK	4	PPM	2	PPM	$\%$	\%	4	PPM	PPB						
DF $2160-\mathrm{Jk}$	2	1	15	11	. 5	2	6	425	1.77	63	5	:	2	7	1	2	2	3	. 15	. 026	7	3	. 15	36	. 01	2	. 43	. 02	.1!	1	5690
DF 2161-UR	1	4	11	7	1.4	2	4	406	1.36	54	5	11	1	37	1	4	2	2	1.18	. 020	4	2	. 10	20	. 01	2	. 29	. 04	. 09	1	5600
DF 2162-UR	1	4	6	3	2.0	2	?	282	1.12	41	5	20	1	2	$!$	2	2	1	. 03	. 012	3	4	. 04	15	. 01	2	. 18	. 01	. 06	1	24900
DF 2163-UR	2	6	J	34	. 1	1	2	351	1.37	7	5	ND	2	18	1	2	2	4	2.03	. 029	17	1	. 27	153	. 01	3	. 69	. 07	. 17	1	57
DF 2165-UR	1	6	8	19	. 2	2	5	217	1.57	2	5	ND	4	5	1	2	2	6	. 11	.04?	15	1	. 02	$30 ?$. 01	2	. 32	. 04	. 17	1	36
DF 2166-UR	$!$	3	6	32	. 2	1	4	461	1.80	2	5	ND	4	39	$!$	2	2	8	4.96	. 043	13	1	. 37	34	. 01	3	. 60	. 07	. 08	1	7
DF 2951-UR	2	3	4	24	. 1	1	3	683	1.56	2	5	ND	1	19	$!$	2	2	5	1.24	. 035	13	1	. 24	107	. 01	3	. 36	. 07	. 11	1	5
dF 2952-UR	1	14	5	48	. 1	2	3	630	1.38	3	5	HD	4	39	1	2	2	2	1.61	. 044	12	3	. 23	100	. 01	3	. 29	. 05	. 22	1	3
DF 2953-UR	1	7	3	6	. 1	2	2	44	1.40	4	5	ND	3	2	1	2	2	4	. 08	. 039	10	4	. 04	87	. 01	3	. 25	. 02	. 14	1	5
DF 2954-UR	1	28	9	6	. 1	1	1	49	1.35	5	5	No	4	3	1	2	2	3	. 07	. 045	10	3	. 04	74	. 01	3	. 32	. 03	. 16	1	26
DF 2955-Uk	1	6	6	3	. 2	2	?	58	1.27	6	5	No	4	2	!	2	2	3	. 06	. 041	7	3	. 02	61	. 01	4	. 28	. 02	. 15	1	15
OF 2956-UR	1	4	10	28	. 1	3	4	164	1.91	2	5	ND	2	2	1	2	2	9	. 02	. 008	7	5	. 34	55	. 01	3	. 82	. 05	. 13	1	62
DF 2957-UR	1	11	8	9	. 1	2	2	68	1.39	6	5	ND	5	1	1	3	2	4	. 03	. 036	23	1	. 08	67	. 01	2	. 45	. 02	. 18	1	20
DF 2958-UR	1	5	3	10	. 1	2	3	224	1.51	2	5	ND	5	2	1	2	2	b	. 05	. 032	14	1	. 08	43	. 01	2	. 34	. 03	. 11	1	34
DF 2959-UR	1	9	2	18	. 1	2	3	194	1.56	3	5	ND	4	2	1	2	2	6	. 04	. 034	13	1	. 18	19	. 01	3	. 54	. 03	. 14	1	185
DF 2960-UR	1	11	5	14	. 1	1	4	645	2.08	3	5	MD	5	2	1	2	2	6	. 06	. 028	10	1	. 03	63	. 01	3	. 32	. 02	. 10	1	20
DF 2961-UR	1	18	11	4	. 1	2	1	58	1.41	8	5	ND	5	2	1	2	2	4	. 04	. 044	11	2	. 03	68	. 01	3	. 29	. 03	. 14	1	17
OF 2962-UR	1	15	5	2	. 1	1	1	41	1.30	15	5	ND	11	2	1	2	2	3	. 05	. 053	22	3	. 01	44	. 01	4	. 26	. 04	. 13	1	2
DF 2963-UR	1	12	5	2	. 1	1	1	26	1.34	9	5	ND	9	2	1	3	2	2	. 04	. 046	11	2	. 01	51	. 01	2	. 25	. 03	. 15	1	1
DF 2964-UR	2	88	18	167	. 5	6	13	874	5.08	24	5	ND	2	20	1	2	2	77	. 95	. 074	4	5	1.39	108	. 27	6	2.07	. 12	. 09	1	1
DF 2965-UR	1	15	9	63	. 2	9	13	580	5.77	15	5	ND	3	5	1	2	2	87	. 19	. 080	11	11	1.47	7	. 08	2	1.97	. 07	. 03	1	26
DF 2966-UR	1	4	20	21	. 2	$!$	3	435	1.29	10	5	ND	2	432	1	2	2	3	9.74	. 030	2	4	. 28	19	. 01	2	. 15	. 08	. 06	1	49
DF 2967-UR	1	5	6	19	. 3	1	2	426	1.16	5	5	ND	7	45	1	2	2	5	1.32	. 021	32	1	. 24	57	. 01	3	. 26	. 06	. 12	1	210
DF 2968-UR	1	2	4	29	. 1	1	3	694	1.71	2	5	ND	4	7	1	2	2	3	1.07	. 037	12	1	. 04	59	. 01	3	. 30	. 05	. 16	1	11
DF 2969-UR	1	3	8	44	. 3	2	5	612	2.11	6	5	MD	3	32	1	2	2	2	1.74	.041	8	1	. 33	53	. 01	2	. 24	. 05	. 16	2	660
DF 2970-UR	1	2	7	33	. 1	1	4	546	1.77	4	5	N0	4	34	1	2	2	4	1.55	. 043	9	1.	.11	37	. 01	2	. 27	. 06	. 13	1	15
BF 2971-UR	1	3	5	24	. 2	1	3	536	1.42	3	5	ND	4	33	1	2	2	4	1.59	. 038	11	1	. 29	41	. 01	3	. 26	. 06	.13	1	23
DF 2972-UR	1	3	11	46	. 6	1	4	480	1.70	5	5	ND	3	26	1	2	2	2	1.27	. 035	6	1	. 23	38	. 01	3	. 18	. 05	. 11	1	360
DF 2973-UR	1	3	94	124	. 3	2	4	429	1.7!	9	5	ND	3	29	1	2	2	3	1.35	. 038	7	1	. 26	41	. 01	2	. 22	. 06	. 13	1	445
DF 2974-UR	1	3	8	68	. 2	2	4	54.	1.83	5	5	ND	3	35	1	2	2	2	1.85	. 042	10	1	. 10	54	. 01	3	. 26	. 05	. 17	1	34
DF 2975-UR	1	3	25	50	. 4	2	1	$45 ?$	1.78	9	5	ND	3	40	1	2	2	3	2.10	. 041	7	1	. 34	41	. 01	2	. 22	. 05	. 15	1	650
DF 2976-UR	1	4	8	17	. 1	2	1	207	. 95	2	5	ND	1	14	1	2	2	6	. 22	. 011	5	1	. 22	165	. 12	3	. 57	. 05	. 09	1	67
DF 2977-UR	1	89	18	138	. 6	71	26	1227	9.31	18	5	KD	1	12	1	2	2	252	1.17	. 077	4	122	3.55	7	. 62	2	3.83	. 08	. 01	1	45
OF 2978-UR	10	3	7	3	. 1	2	1	50	. 69	4	5	$N 0$	6	2	1	2	2	2	. 02	. 011	16	4	. 02	29	. 01	3	. 19	. 04	. 10	1	68
DF 2979-UR	13	4	8	4	. 1	2	1	46	. 64	4	5	ND	6	3	1	2	2	4	. 03	. 012	17	5	. 04	33	. 01	5	. 27	. 04	. 11	1	58
DF 2980-uR	1	2	12	11	. 1	1	1	70	. 27	2	5	ND	1	1	1	2	2	1	. 01	. 002	2	2	. 01	2	. 01	2	. 02	. 01	. 01	48	36
DF 2981-UR	2	5	9	21	. 2	3	3	182	1.81	4	5	ND	4	2	!	2	3	2	. 02	. 020	11	1	. 02	32	. 01	3	. 23	. 03	. 10	1	55
STD C/AU-R	21.	62	41	135	7.0	68	29	989	3.97	39	19	7	35	50	19	16	20	65	. 48	. 106	37	57	. 88	187	. 08	35	1.73	. 10	. 14	13	515

> HIGH D'OR DEVELOPMENT wFOTEET . U世 id :HE 日 :

FAGE 4

QF 2982-uF	1	75	2	2	. 3	2	1	50	. 83	2	5	ND	1	1	1	2	2	$!$.91	. 007	2	5	. 61	8	. 01	5	. 04	. 01	. 02	1	495
DF 2983-4R	1	66	2	1	. 2	2	1	68	. 51	2	5	ND	1	1	1	2	2	1	. 11	. 002	2	2	. 011	8	. 01	5	. 15	. 01	. 02	1	38
IS 2901-UR	4	152	2	138	. 2	68	33	1012	6.98	18	5	ND	1	38	1	2	2	151	3.14	. 053	1	79	3.41	7	. 37	2	3.32	. 08	. 01	1	3
JS 2902-UR	1	5	2	33	. 1	2	5	370	1.69	2	5	ND	4	?	1	2	2	12	. 19	. 028	6	2	. 56	56	. 01	3	. 70	. 04	. 10	1	1
JS 290?-UR	1	3×9	2	53	. 3	26	16	386	3.22	2	5	ND	1	30	!	2	2	99	1.58	. 098	4	59	. 78	5	. 42	2	1.22	. 07	. 01	$!$	2
JS 2904-UR	1	5	3	37	. 1	1	4	283	2.31	2	5	ND	1	8	,	2	2	15	. 26	. 037	7	2	. 48	7	. 13	1	. 84	. 09	. 03	1	1
JS 2905-UR	1	3	2	2	. 2	1	1	115	. 18	6	5	$N 0$	1	168	1	2	2	1	37.16	. 006	2	4	2.32	3	. 01	18	. 03	. 10	. 01	2	1
JS 2906-UR	1	6	6	13	. 2	5	3	436	1.13	13	5	ND	1	747	1	2	2	9	22.55	. 014	2	1	. 41	32	. 01	13	. 36	. 07	. 03	1	34
JS 2907-UR	6	157	6	64	. 2	20	17	195	3.06	2	5	ND	1	24	1	2	2	111	8.29	. 337	5	15	. 62	2	. 11	7	2.65	. 08	. 01	1	4
3S 2908-UR	1	12	2	37	. 1	6	2	829	. 65	34	5	ND	1	12	1	2	2	6	. 57	. 012	2	6	. 12	10	. 01	310	. 15	. 02	. 02	3	103
JS 2909-UR	1	13	9	50	. 3	10	4	765	1.29	34	5	ND	1	20	1	2	2	29	3.63	. 068	6	23	. 58	11	. 07	17	2.14	. 04	. 03	4	5
Js 2910-UR	1	13	10	343	. 2	18	7	490	. 82	23	5	ND	1	21	2	2	,	19	4.64	. 093	6	18	. 14	4	. 07	481	1.04	. 04	. 01	1	1
JS 2911-UR	1	4	2	11	. 1	11	3	148	. 91		5	ND	1	J	1	2	2	21	. 73	. 003	2	19	. 40	4	. 03	8	. 43	. 03	. 01	1	1
JS 2912-UR	1	6	9	15	. 2	8	10	210	7.38	2	5	ND	2	2	1	2	2	82	. 13	. 092	2	14	. 87	23	. 35	6	. 88	. 05	. 13	1	1
JS 2913-UR	3	107	10	45	. 3	30	16	802	5.43	14	5	ND	3	19	1	2	2	162	1.76	. 231	9	67	2.28	12	. 25	2	2.46	. 08	. 03	1	2
JS 2914-UR	2	1154	10	40°	4.0	51	25	320	4.31	214	5	ND	1	56	1	2	2	16	1.41	. 086	2	22	. 15	3	. 06	2	. 58	. 04	. 02	1	245
JS 2915-UR	1	305	2	61	. 5	35	15	563	2.55	2	5	N0	1	162	,	2	2	87	4.87	. 047	2	25	1.11	7	. 63		1.59	. 07	. 02	1	5
JS 2916-UR	2	46	3	83	. 2	14	17	1059	5.29	4	5	ND	1	11	1	2	2	151	2.76	. 060	3	26	2.06	14	. 22	3	3.42	. 08	. 03	1	6
JS 2917-UR	1	87	2	36	. 2	30	12	554	3.18	2	5	N0	1	9	,	2	2	75	. 68	. 053	3	44	1.44	21	. 18	3	1.61	. 09	. 06	2	9
JS 2918-UR	1	6	4	36	. 1	1	6	445	2.50	2	5	ND	4	4	1	2	2	18	. 16	. 049	13	1	. 70	26	. 01	3	1.20	. 06	. 88	1	2
JS 2919-UR	1	3	6	44	. 1	1	4	393	1.77	2	5	ND	4	22	!	2	2	11	1.26	. 042	11	1	. 44	52	. 01	4	. 82	. 06	. 16	2	1
JS 2920-UR	9	21	3	12	. 1	2	6	540	1.70	2	5	ND	4	2	1	2	2	1	. 04	. 036	11	2	. 02	38	. 01	5	. 25	. 03	. 09	1	1050
SB 2051-UR	1	2	2	8	. 1	1	2	82	1.05	2	5	N0	2	1	.	4	2	5	. 02	. 011	8	3	. 08	21	. 01	5	. 26	. 03	. 05	1	7
SE 2052-UR	1	6	3	2	. 1	4	1	84	. 68	2	5	ND	1	1	$!$	2	2	4	. 02	. 004	7	5	. 02	40	. 01	6	. 17	. 03	. 09	1	1
SE 205\%-UR	1	2	3	29	. 1	2	3	245	2.02	2	5	ND	5	9	1	2	2	8	. 31	. 032	12	3	. 33	31	. 01	3	. 77	. 06	. 07	1	2
SE 2054-UR	2	1	7	25	. 1	3	4	135	2.97	2	5	ND	2	5	1	2	2	10	. 06	. 057	10	3	. 30	18	. 01	2	. 71	. 05	. 06	2	4
SB 2055-4R	2	6	3	12	. 2	3	4	229	2.12	9	5	$N \mathrm{~N}$	2	5	1	3	2	7	. 03	. 012	12	,	. 02	36	. 01	4	. 43	. 04	. 12	1	635
SR 2056-UR	2	4	5	11	. 1	3	2	91	1.31	4	5	ND	4	2	1	2	2	4	. 03	. 011	15	1	. 02	33	. 01	5	. 23	. 04	. 10	1	32
SE 2057-UR	1	4	2	6	. 1	3	1	74	. 72	3	5	ND	1	1	1	2	2	5	. 01	. 004	6	6	. 01	18	. 01	5	. 13	. 01	. 06	1	2
SB 2058-UR	2	3	8	31	. 4	2	2	1306	2.31	2	5	2	1	92	1	2	2	5	5.61	. 008	2	1	. 89	26	. 01	2	. 09	. 05	. 04	1	325
SE 2059-UR	2	65	2	71	. 2	45	19	844	4.72	17	5	ND	2	215	1	2	2	123	2.66	. 067	1	51	1.91	12	. 4 ?	3	2.98	. 06	. 01	$!$	2
582060-UR	1	38	3	68	. 2	45	19	785	6.02	2	5	ND	1	10	1	2	2	176	1.31	. 054	2	86	2.21	10	. 41	2	2.75	. 08	. 03	1	1
58 2061-UR	14	9	5	3	. 2	2	1	114	. 60	3	5	ND	6	9	1	2	2	3	. 26	. 008	15	5	. 03	29	. 01		. 21	. 03	. 09	$!$	$!$
S8 2062-UR	3	5	6	5	. 2	1	2	144	. 84	2	5	ND	6	2	1	2	2	3	. 03	. 008	20	4	. 03	30	. 01	5	. 30	. 04	. 10	1	16
SE 2063-UR	1	4	6	45	. 1	2	5	721	2.47	2	5	ND	3	10	1	2	2	15	. 6 ?	. 045	12	2	. 64	37	. 01	3	1.02	. 07	. 10	1	2
58 2064-UR	6	4	26	5	. 1	2	1	160	. 64	2	5	ND	2	2	1	2	3	1	. 02	. 006	6	4	. 01	20	. 01	6	. 23	. 02	. 05	1	1
SID C/AU-R	23	61	43	139	7.3	70	29	980	3.96	42	16	θ	35	49	18	16	19	65	. 48	. 107	37	57	. 88	184	. 08	36	1.73	. 09	. 14	13	485

HIGH DPOR DEVELOFMENT PFOTETT ETM. FILE \# Bowind
AGE $=$

DATE RECEIVED DEC 181986 date reports mailed Dec 24166

GEOCHEMICAL ASSAY CERTIFICATE
SILTS
SAMPLE TYPE : SOILS -80 MESH $P=$ Pulverized
au* - 10 bm, ignited, hot ague regina leached, ib extraction, at analysis.
assayer.

DEAN TOME . CERTIFIED BC. ASSAYER:
HIGH D ${ }^{\text {PR }}$ DEVELOPMENTS
FFOTECT EC-O4
FILE\# 86-4016
FACE\# 1

SAMPIE Au*opt
$7+5042+70 \mathrm{~N}$ 2
$7+50 \mathrm{~N} 2+6 \mathrm{NN}$ 14
$7+50 \mathrm{~N}+50 \mathrm{~N}$ 15
$7+50 \mathrm{~N} 2+40 \mathrm{~N}$ 7
$7+50 \mathrm{w}$ 2+30N 1
$7+50 \mathrm{OW} 2+10 \mathrm{~N}$ 25
$7+6042+00 \mathrm{~N}$ 19
$7+50 \mathrm{~N} 1+50 \mathrm{~N}$ 19
$7460 \mathrm{n} 1+80 \mathrm{~N}$ 1
$7+5 \mathrm{OW} 1+7 \mathrm{ON}$ 1
$7+50 \mathrm{~F} 1+6 \mathrm{ON}$ 2
$7+5 \mathrm{OW} 1+5 \mathrm{ON}$ 1
$7+50 \mathrm{FW} 1+40 \mathrm{~N}$ 1
$7+50 \mathrm{~W} 1+3 \mathrm{ON}$ 2
$7+50 \mathrm{H} 1+20 \mathrm{~N}$ 1
$7+50 \mathrm{~W} 1+10 \mathrm{~N}$ 1
$7+50 \omega 1+00 N$ 1
$7+50 \mathrm{OH} \mathrm{OHON}$ 2
$7+5040+8014$ 1
$7+$ OOW $\mathbf{7}+6 \mathrm{ON}$ $\underset{\Xi}{-}$
$7+00 \mathrm{E}+5 \mathrm{FO}$ G
$7+0$ OW $3+40 \mathrm{~N}$ 1
$7+0013+30 N$ 4
$7+00 W \mathrm{OHON}$ 30
$7+00 \omega \mathrm{x}+1 \mathrm{ON}$ 10
$7+00 W \quad \mathrm{OHON}$ 14
$7+0002+70 \mathrm{~N}$ E
$7+0 \mathrm{OW} 2+80 \mathrm{~N}$ 1
$7+00 \mathrm{~N} 2+70 \mathrm{~N}$ 1
$7+0 \mathrm{OW} 2+6 \mathrm{ON}$ 玉
$7+0062+40 \mathrm{~N}$
$7+00 \mathrm{OH} 2+3 \mathrm{ON}$ 70
$7+6042+20 \mathrm{~N}$ 1
$7+00 \mathrm{~W} \quad 2+1 \mathrm{ON}$ 6
$7+$ OOW $2+00 N$ 1
$7+00 \mathrm{~W} 1+90 \mathrm{~N}$ 1
GAMFIE Ali*pob
$7+00 \mathrm{~N} \quad 1+80 \mathrm{~N}$ 26
$7+$ OON $1+70 \mathrm{~N}$ 2
$7+0041+60 \mathrm{~N}$ 6
$7+0$ OW $1+5 \mathrm{SN}$ 1
$7+$ OOW $1+40 \mathrm{M}$ 1
$7+00 \mathrm{~W} 1+30 \mathrm{~N}$ 1
$7+00 \mathrm{~N} 1+2 \mathrm{ON}$ 3
$7+0 \mathrm{OW} 1+1 \mathrm{ON}$ 1
$7+60 \mathrm{~W} 1+0 \mathrm{ON}$ 7
$7+0 \mathrm{OW}$ 0+9ON 1
 1
$7+0 \mathrm{OW} \quad 0+7 \mathrm{ON}$ 1
$7+00140+60 \mathrm{~N}$ 87
$6+5 \mathrm{OW} \quad \mathrm{F}+4 \mathrm{ON}$ 3
$6+5063+30 N$ 2
$6+500 \mathrm{E}+20 \mathrm{~N}$ 2
6+5OW $\mathrm{E}+10 \mathrm{~N}$ J
$6+5043+00 N$ 4
$6+5062+90 N$ 5
$6+50 \mathrm{~W} 2+8 \mathrm{ON}$ 5
$6+50 \mathrm{~W} 2+70 \mathrm{~N}$ 1
$6+5 \mathrm{OW} 2+6 \mathrm{ON}$ 1
$6+50 \mathrm{~N} 2+50 \mathrm{~N}$ 2
$6+50 \mathrm{~W} 2+4 \mathrm{ON}$ 1
$6+50 \mathrm{~W}$ 20W 1
$6+50 \mathrm{~W} 2+20 \mathrm{~N}$ 25
$6+50 \mathrm{~W} 2+10 \mathrm{~N}$ 5
$6+5 \mathrm{OW} 2+\mathrm{ON}$ $\underset{\sim}{3}$
$6+5011+80 N$ 29
$6+5 \mathrm{OW} 1+70 \mathrm{~N}$ 7
$6+50121+60 \mathrm{~N}$ 27
$6+50 \mathrm{~W} \quad 1+5 \mathrm{ON}$ 21
$6+50 \mathrm{~N} 1+40 \mathrm{~N}$ 15
$6+5 \mathrm{OW} 1+\mathrm{BON}$ 1
6+50W $1+20 \mathrm{~N}$ 1
$6+50 \mathrm{~N} \quad 1+1 \mathrm{ON}$ 1
GAMPLE Aurロ口b
$6+50 \mathrm{~W} 1+00 \mathrm{~N}$ 2
$6+50 \mathrm{~N} 0+90 \mathrm{~N}$ 295
$6+00 \mathrm{~W} 2+90 \mathrm{~N}$ $?$
$6+00 \mathrm{OH} 2 \mathrm{BON}$ 12
$6+00 \mathrm{~N}+70 \mathrm{~N}$ 11
$6+00 \mathrm{~W} 2+6 \mathrm{ON}$ 10
$6+00 \mathrm{~N}+\mathrm{OH}$ 6
$6+00 W 2+40 \mathrm{~N}$ 1
$6+00 \mathrm{~W} 2+30 \mathrm{~N}$ 269
$6+00 \mathrm{~W} 2+2 \mathrm{ON}$ Ξ
$6+00 \mathrm{w}+60 \mathrm{~N}$ 59
$6+\mathrm{OW} 1+9 \mathrm{ON}$ 31
$6+00 \mathrm{~N} 1+80 \mathrm{~N}$ 2
$6+0$ OW $1+7 \mathrm{ON}$ \because
$6+0001+60 N$ 26
© $+00 \mathrm{WW} 1+5 \mathrm{ON}$ 5
$6+00 \mathrm{~W} 1+40 \mathrm{~N}$ 198
$6+O O W 1+3 O N$ 7
$6+00 \mathrm{OH} 1+20 \mathrm{~N}$ 17
$6+O O W 1+10 \mathrm{~N}$ 2
$6+0060+60 \mathrm{~N}$ 2
$6+00 \mathrm{O}$ O +8 ON 7
$6+00 \omega 6+70 \mathrm{~N}$ 1
$6+0 \mathrm{OW}$ © +6 ON 4.
$6+60 \omega 0+50 N$ 1
$6+0 \mathrm{OW} 0+40 \mathrm{~N}$ 2
$6+00 W 0+30 N$ 1
$6+00 \mathrm{OH}$ OON 1
6+0OW $9+10 \mathrm{ON}$ 1.
$\epsilon+O O W$ O+OOEL 2
6+001 64106 1
$6+00 \mathrm{~W} 0+20 \mathrm{O}$ 1
$6+0060+308$ 1
$6+00 W$ 0+40S 1
$6+0$ OW $0+506$ 2
$6+00 \mathrm{~W} ~ 0+605$ 14

SAMPLE		Ali*
		pob
$5+006$	$0+406$	12
$5+\mathrm{OW}$	0+506	4
5+00w	$0+698$	13
$5+\mathrm{OOW}$	$0+705$	5
5tow	$0+805$	15
$5+001$	$9+605$	13
5+0\%	$1+008$	2
$5+\mathrm{OW}$	$1+105$	ت
4+50W	$1+0 \mathrm{ON}$	12
$4+50 \mathrm{~W}$	O+90N	7
4+506	$0+\mathrm{OON}$	17
$4+5 \mathrm{OW}$	O+70n	20
$4+600$	2+6ON	26
$4+50 \mathrm{~W}$	O+50N	18
4+80w	$0+40 \mathrm{H}$	36
$4+5 \mathrm{OW}$	$\mathrm{O}+\mathrm{SON}$	15
4+50w	$\mathrm{O}+2 \mathrm{~N}$	4
$4+5 \mathrm{OW}$	$\mathrm{O}+1 \mathrm{ON}$	28
4+50w	0+00BL	$日$
$4+5 \mathrm{OW}$	$0+106$	12
4+50w	$9+208$	1.
4+50W	0+80S	8
4+50W	$0+496$	5
$4+5 \mathrm{OW}$	\% +506	6
$4+60 \mathrm{~W}$	$0+608$	7
$4+50 \mathrm{~W}$	0+709	58
4+50w	$0+805$	18
$4+50 \mathrm{~W}$	0+906	34
$4+5 \mathrm{OW}$	$1+009$	4
$4+50 \mathrm{~W}$	$1+108$	11
4+50w	$1+205$	12
4+50w	$1+305$	15
4+50w	$1+409$	1
$4+50 \mathrm{~W}$	$1+505$	\%
$4+50 \mathrm{w}$	$1+608$	2
4+50W	$1+709$	10

HIGH D'OR DEVELOFMENTS FFOJECT BC-04
FILE种 86-4018
FAGE\# 9

GAMPLE		Au*
$3+000$	9+20n	15
- +ow	$0+10 \mathrm{~N}$	14
+roow	O+90日	250
Stoow	$0+10 \mathrm{~S}$	7
$3+004$	$0+268$	4
$\mathrm{E}+\mathrm{OOW}$	$0+306$	1
+row	$0+40 \mathrm{~g}$	21
B+00W	0+508	10
+ocw	0+606	1
उ+00W	$0+705$	\square
5wow	$9+806$	1
$2+50 W$	$0+40 \mathrm{~N}$	1
$2+50 \mathrm{w}$	O+SON	25
$2+50 W$	O+2ON	ε
$2+504$	$0+10 \mathrm{~N}$	117
$2+50 \mathrm{~W}$	O+OOEL	12
$2+500$	O+OOE1.A	11.
$2+506$	$0+105$	255
$2+506$	$0+109 A$	95
$2+50 \mathrm{~W}$	$0+208$	155
$2+500$	9+209	111
$2+506$	Q+30S	1
2+50w	0+309A	850
2+50w	$0+405$	6
$2+504$	$9+40 \mathrm{~A}$	4
$2+50 \mathrm{~W}$	$0+505$	27
$2+506$	$0+5054$	3
$2+50 \mathrm{~W}$	$0+605$	1
2+50w	$0+609 \mathrm{~A}$	4
$2+50 \mathrm{~W}$	$0+705$	7
2+60w	0+806	1
2+50W	$0+805 \mathrm{~A}$	1
2+50w	$0+906$	1.
$2+50 W$	$1+008$	1
$2+50 \mathrm{w}$	$1+10 \mathrm{C}$	1
$2+50 \mathrm{~W}$	$1+206$	1

GAMPLE		Au*
$2+504$	$1+305$	2
$2+50 \mathrm{~W}$	$1+405$	9
$2+$ EW	$0+10 \mathrm{~N}$	177
2+25w	O+10s	11
2+25M	$0+208$	83
2+25w	$0+305$	102
$2+25 W$	$0+405$	35
2+25W	0+50s	69
$2+$ 25u	0+609	10
2+25W	0+70s	צ
2+25w	$0+805$	6
2+25w	0+90s	4
$2+254$	$1+005$	3
$2+25 \mathrm{~W}$	$1+105$	4
2+25w	$1+208$	10
2+oow	O+30N	19
$2+$ oow	$\mathrm{O}+2 \mathrm{ON}$	20
$2+\mathrm{OWN}$	$\mathrm{O}+10 \mathrm{~N}$	51
$2+000$	$0+0 \mathrm{OEL}$	49
2+00W	$0+10 \%$	12
$2+000$	$0+205$	17
$2+$ OW	$0+305$	18
2+00w	$0+408$	101
$2+\mathrm{ow}$	0+5os	48
$2+00 \mathrm{w}$	0+609	2
$2+$ oow	0+709	8
$2+000$	0+809	10
2+oow	$0+909$	6
1+750	0+008I.	55
1+75w	$0+40 \mathrm{~s}$	31
1+754	$0+805$	5
$1+750$	$0+605$	6
1+75w	0+705	1.
1+755	$0+805$	53
$1+750$	$0+909$	5
1+75w	$1+\infty 05$	15

SAMPLE	Aus
1＋50w $0+509$	5
$1+5040+605$	7
$1+002+40 \mathrm{~N}$	6
$1+00+30 N$	14.3
$1+00$ O20N	175
$1+006+10 \mathrm{~N}$	121
$1+00$ O＋008L	119
$1+000+105$	385
$1+000+509$	ご
$1+000+405$	$1 \underset{-}{3}$
$1+600+509$	6
$1+000+605$	12
$1+090+709$	\cdots
$1+000+305$	28
$1+009+96$	Y
$1+001+005$	16
$1+001+108$	7
$1+001+205$	13
$1+001+309$	4
$1+001+405$	6
$1+001+509$	15
$1+001+605$	14
$1+001+706$	9
$0+2 \mathrm{SE} 0+5 \mathrm{ON}$	96
$0+25 E 0+40 \mathrm{~N}$	61
9＋25E O＋SON	46
$0+25 E 0+20 N$	10
$0+25 E \quad 0+10 \mathrm{~N}$ $0+2=E \quad 0+60 日 1$	52
$0+2 \mathrm{EE} 0+10 \mathrm{~S}$	610
$0+25 E 0+205$	720
0＋25E 0＋305	81
$0+2 E E 0+409$	29
$0+25 E 0+505$	17
$0+2560+609$	16
$0+25 E 0+705$	4

Aus
apb
5
7
6
143
175

121
119
365
2．
13

6
12
．
28
\because
16
7
13
6
12
14
．
61

46
10
52
68.5

610
720
81 29
17 16
GAMPLE Au*ロpb
$0+26 E 0+805$ 2
$0+25 E \quad 0+908$ 32
$0+2051+009$ 36
$0+25 E 1+105$ 63
$0+251+209$ 15
O+2EE $1+305$ 5
$0+2 \mathrm{EE} 1+40 \mathrm{~S}$ 3
$0+2 \mathrm{EE} 1+50 \mathrm{~S}$ 41
$0+25 E 1+605$ 2
O+25E 1+8OS 1
$0+25 E \quad 1+909$ 6
$0+25 E \quad 2+005$ 4
$0+25 E \quad 2+256$ 1
O-5OE EL 69
$9+50 E 0+109$ 5
0+5OE 0+205 20
$0+50 \mathrm{E} 0+505$ 2
$0+5 \mathrm{OE} 0+40 \mathrm{O}$ 1
$0+50 \mathrm{O}$ 0-505 24
$0+5 \mathrm{OE} 0+6 \mathrm{O}$ 40
$0+50: 0+709$ 26
O+6OE O+80S $5 \pm$
0+50E 0+905 YG
0+5OE O+1005 72
$0+50 E 0+1109$ 5
$0+5 \mathrm{OE} 0+12 \mathrm{OS}$ 1
$0+50 E 0+1305$ 1
$0+5 \mathrm{OE} 0+140 \mathrm{~S}$ 8
$0+50 E \quad 0+1509$ 10
$0+50 E 0+1605$ 57
$0+50 E \quad 3+009$ 2
$0+75 \mathrm{E} \quad 0+705$ 46
$0+75 E 0+805$ 31
$0+75 E$ O+9OS 29
$0+7 \mathrm{GE} \quad 0+1705$ 2
$0+75 E O+1806$ 7

GAMPLE	Au. ${ }^{\text {c }}$
0+75E 0+1905	4
O+75E O+2005	1
0+75E 0+2255	29
O+75E O+2505	1.
$0+75 E=0+2755$	16
O+75E O+SOOS	24.
$0+75 E 1+005$	82
0+75E 1+10S	2
O+7EE $1+205$	
O+75E 1+30S	1
0+75E 1+405	
O+75E 1+508	
$0+75 E 1+605$	
$1+$ OOE O+OOEL	6
$1+0060+10 \mathrm{~N}$	12
$1+\mathrm{OE}$ O+2ON	17
$1+O O E \quad 0+3 O N$	6
$1+\mathrm{OE}$ O+4ON	8
$1+2 \mathrm{EE}=1+00 \mathrm{~N}$	121
$1+25 E \quad 0+9 \mathrm{ON}$	12
1+2EE 0+8ON	30
$1+25 E \quad 0+7 \mathrm{ON}$	45
$1+2 \mathrm{EE} 0+60 \mathrm{~N}$	45
$1+25 E 0+50 \mathrm{~N}$	17
$1+25 E 0440 \mathrm{~N}$	13
$1+25 E 0+30 \mathrm{~N}$	31
$1+2 \mathrm{mE} 042 \mathrm{ON}$	11
$1+25 E \quad 0+10 \mathrm{~N}$	3
$1+2 \mathrm{EE} 0+00 \mathrm{BL}$.	10
$1+25 E 0+205$	8
$1+25 E 0+305$	4
$1+25 E$ O+4OS	4
1-25E 0+50s	
$1+25 E 0+605$	16
1+2GE 0+70s	10
$1+25 E 0+805$	

GAMFIE
$1+266 \quad 0+909$
$1+2 \mathrm{CE} \quad 1+0 \mathrm{O}$
$1+25 E \quad 1+108$
$1+2 \mathrm{CE} 1+2 \mathrm{O}$
$1+2$ OE $1+309 \quad 18$
$1+2 \mathrm{EE} \quad 1+40 \mathrm{O}$
$1+2 \mathrm{EE} 1+509 \quad 1$!
$1+2 E E 1+605 \quad 6$
$1+25 E$ 1+709 5
$1+2 \mathrm{EE} 1+6 \mathrm{OS} 4$
$1+25 E 1+909 \quad 10$
$1+2 \mathrm{EE} \mathrm{2+OOG}$ 25
$1+25 E 2+2 \mathrm{E} \quad 2 \mathrm{E}$
$1+2 \mathrm{EE} 2+5 \mathrm{O} \quad 16$
$1+25 E 2+756$
$1+2 \mathrm{E}+6 \mathrm{O} \quad 15$
$1+50 E 1+00 \mathrm{C}$
$1+5 \mathrm{FE}+5 \mathrm{ON} \quad 19$
$1+60 E O+80 N$
$1+\mathrm{EEE} O+7 \mathrm{OH} 11$
$1+50 \mathrm{E} 0+6 \mathrm{ON}$
$1+5 \mathrm{EE}+5 \mathrm{CN} \quad 141$.

$1+5 \mathrm{OE} O+\mathrm{ON} \quad 17$
$1+60 \mathrm{E} 0+2 \mathrm{ON}$
$1+\mathrm{FOE} O+10 \mathrm{~N}$
$1+60 \mathrm{O}$ O+OOBL 2 B
$1+5 O E O+106 \quad 8$
$1+60$ O $0+2 \mathrm{O} P$
$1+\operatorname{GE} O+\mathrm{OOS} \quad \Xi$
$1+5080+508 \quad 3$
$1+5$ OE $0+605 \mathrm{P} \quad 7$
$1+50 \mathrm{OH}$ O $708 \quad 16$
$1+6 \mathrm{OE}$ O+808 10
$1+90 E 0+908 \quad 日$
$1+50 E O+1005 \quad 165$

Aut
opb
$1+25 E 0+906 \quad 4$
$1+2 \mathrm{SE} 1+0 \mathrm{O}$
$1+2 \mathrm{BE} 1+1.09 \quad 7$
$1+2 \mathrm{EE} 1+206$ b
$1+2 \mathrm{GE} 1+50 \mathrm{O} \quad 18$
$1+2 \mathrm{EE} 1+40 \mathrm{O}$
$1+25 E 1+609 \quad 11$
$1+2 \mathrm{EE} 1+605 \quad 6$
$1+2561+705$
$1+2 \mathrm{EE} 1+8 \mathrm{O} \quad 4$

10
25
21
16
54

15
$1+50 E 1+00 \mathrm{C}$
$1+5 \Phi \mathrm{OE}+5 \mathrm{ON} \quad 15$
$1+\mathrm{EE} 9+7 \mathrm{OH} \quad 11$
$1+50 \mathrm{E} 0+6 \mathrm{ON}$
$1+\mathrm{EOE}+5 \mathrm{ON} \quad 14 \mathrm{~J}$ ．
1．+ EOE $0+40 \mathrm{~N}$
$1+5 O E O+\square O N \quad 17$
$1+6050+20 \mathrm{~N}$
$1+50 \mathrm{E} O+10 \mathrm{~N}$
$1+6 O E O+O B L \quad 28$
$1+5 O E O+10 \mathrm{C} \quad \mathrm{C}$
$1+5 \mathrm{EE} O+\mathrm{OS} \quad \Xi 2$
$1+5080+508$
$1+5$ OE $0+605 \mathrm{P} \quad 7$
$1+50 E 0+708 \quad 16$
$1+50 \mathrm{O}+80 \mathrm{O} \quad 10$
$1+90 E 0+908 \quad 日$
$1+50 E O+1005 \quad 165$
GAMFIEE
$1+50 E \quad 1+109$
$1+5 \mathrm{OE} 1+206$
$1+60 E 1+506$
$1+5 \mathrm{OE} \quad 1+40 \mathrm{~S}$
$1+5021+509$
$1+50 E 1+605$
$1+50 \mathrm{E} 1+70 \mathrm{~g}$
$1+50 \mathrm{E} 1+805 \quad 1$
$1+50 E 1+9081$
$1+5 \mathrm{OE} 2+\mathrm{OOS} 1$
$1+60 E 2+250 \quad 17$
$1+50 \mathrm{E} 2+405 \quad 1$
$1+50 E 2+508 \quad 3$
$1+50 \mathrm{E} 2+755 \quad 16$
$1+75 E \mathrm{E}$ +8ON 13
$1+75 E O+70 \mathrm{~N} \quad 10$
$1+75 E 0+60 \mathrm{~N} \quad 1$
$1+75 \mathrm{E} O+5 \mathrm{ON} \quad 185$
$1+75 E 0+40 \mathrm{~N} \quad 1$
$1+75 E O+\operatorname{ON} \quad 6$
$1+75 E 0+20 \mathrm{~N} \quad 1$
$1+75 E O+10 \mathrm{~N} \quad 5 \mathrm{~S}$
$1+75 E 0+00 \quad 15$
$1+75 E 0+105 \quad 7$
$1+75 E 0+209 \quad 18$
$1+75 E 0+305 \quad 35$
$1+7$ EEE $0+409 \quad 10$
$1+75 E 0+505 \quad 12$
$1+75 E 0+608$ - 1
$1+75 E 0+705 \quad 1$
$1+75 E \sigma+806 \quad 2$
$1+75 E 0+905 \quad 1$
$1+75 E 1+00 S$ - 1
$1+75 E 1+105 \quad 1$
$1+75 E 1+205 \quad 1$
$1+75 E 1+308 \quad 1$

GAMPIL		Aus
1+75E	$1+496$	1.
$1+75 E$	$1+505$	2
$1+76 \mathrm{E}$	$1+608$	1
$1+75 E$	$1+708$	1
$1+756$	$1+809$	1
$1+7 \mathrm{EE}$	$1+906$	1
1+75E	$2+99$	1
$1+75 E$	$2+256$	1
$1+75 \mathrm{E}$	$2+509$	1
$2+005$	$0+80 \mathrm{~N}$	\pm
$2+60$	0+70N	15
$2+$ OE	6+60N	7
2+00E	O+50N	5
$2+005$	$0+40 \mathrm{~N}$	12
2+00E	$0+50 \mathrm{~N}$	26
$2+0 \mathrm{OE}$	$9+20 N$	6
2+OE	$0+10 \mathrm{~N}$	1.
2+OOE	O+OOEL	26
2+OQE	$0+199$	2
2+00E	O+206	60
2+90E	1+398	1.
2+OOE	$0+405$	15
2+00E	$0+506$	14
$2+0 \mathrm{OE}$	$0+606$	2
$2+00 \pm$	$9+79$	18
$2+\mathrm{OCE}$	$0+805$	15
$2+601$	$0+909$	4
2+OCE	$1+006$	17
2+OOE	$1+108$	7
$2+00 \mathrm{O}$	$1+205$	24
2+00E	$1+509$	5
$2+O$ OE	$1+406$	1
$2+00 \mathrm{E}$	$1+508$	$\underline{3}$
$2+\mathrm{OOE}$	$1+605$	1
$2+00 \mathrm{E}$	$1+796$	2
$2+\mathrm{OE}$	$1+808$	1

SAMPLE Aい*pob
$2+0051+905$ 34
$2+00 \mathrm{E} 2+005$ 2
$2+00 E 2+25$ $?$
$2+00 E 2+506$ 1
2+OOE $2+756$ 4
$2+00 E 3+005$ 11
$2+2 \mathrm{EE} \quad 1+00 \mathrm{~N}$ 62
$2+25 E \quad 0+80 \mathrm{~N}$ उe
$2+25 E 0+70 \mathrm{~N}$ 1.7
$2+25 E 0+60 \mathrm{~N}$ ≤ 0
$2+25 E 0+50 \mathrm{~N}$ 4.3
$2+25 E 0+40 \mathrm{~N}$ 153
$2+25 E 0+3 O N$ 2b
$2+25 E O+2 O N$ 33
$2+25 E \operatorname{OH}+10 \mathrm{~N}$ $\Xi 1$
$2+25 E$ O+00EL 6.
$2+25 E 0+108$ 30
$2+25 E \quad 0+205$ 16
$2+25 E 0+305$ 36
2+25E 0+405 122
$2+25 E 0+505$ 4
$2+25 E 0+605$ 1.2
$2+25 E 0+705$ 1.2
$2+25 E \quad 0+805$ 5
$2+25 E 0+905$ 12
$2+25 E 1+005$ 2
$2+50 E \quad 0+7 O N$ 10
$2+50 E \quad 0+80 \mathrm{~N}$ 41
$2+50 E=0+7 O N$ 150
$2+50 \mathrm{E} 0+6 \mathrm{ON}$ 26
$2+60 E O+5 O N$ 3
$2+50 E 0+40 \mathrm{~N}$ 17
$2+6 O E O+3 O N$ 39
$2+50 E \quad 0+20 \mathrm{~N}$ 2
$2+80 E 0+10 \mathrm{~N}$ 7
$2+50 E O+O O R L$ 27

FILE\# $66-4016$
FAGE\# 19

SAMPLEE	$\begin{aligned} & \text { Au* } \\ & \text { deb } \end{aligned}$
$3+0060+204$	12
Y+OOE O+10N	6
Y+OOE O+OOEL	9
$\mathrm{S}+\mathrm{OE} \mathrm{O}+10 \mathrm{~S}$	205
S+OOE oteos	175
B+OOE O+SOS	2
+400E $0+408$	1
TOOE O+5OS	11
$3+00804606$	25
S+OOE O+70s	E
+60E $0+608$	14
$5+00 E 0+905$	2
\%+00E 1+00	2
$3+25 E 0+6 \mathrm{ON}$	\pm
3+96E $0+6 \mathrm{ON}$	5
$3+25 E 0+40 \mathrm{~N}$	1
-2mE $9+50 \mathrm{~N}$	日
T-25E O+2ON	13
$3+25 E 0+10 \mathrm{~N}$	2
Y +2SE O+OOEL	1
$3+2680+206$	7
+25E $0+305$	23
5425E 04406	4
T+2EE $0+508$	31
+406E 0 +609	24
3+25E 0+705	3
O+2 EE 0+808	5
T+25E 0+905	1
S+2以E 1+009	6
T+25E $1+105$	1
T+2EE 1+209	1
$3+25 E 1+305$	\pm
$3+2 \mathrm{EE}$ 1+498	2
$3+25 E 1+505$	1
$3+251+608$	1
$3+25 E 1+705$	2

FILEA $86-4018$

SAMPIE Aus
$5+75 E 0+40 \mathrm{~N}$opb
T+75E O+SON7
10
$3+75 E 6+20 N$ 1
$\mathrm{B}+7 \mathrm{SE} 0+1 \mathrm{ON}$ 1
5+75E 0+605 3
$3+75 E 0+105$ 885
$3+75 E 6+205$ 18
$3+75 E \quad 0+305$ 12
$3+70180+408$ e

- +75 E 0+50s 1
3+75E 0+605 13
-47EE 0+795 51
$3+7560+805$ 12
उ $+75 E$ O +96 4
$5+75 \mathrm{E}$ 1.409 16
$3+75 E 1+105$ 11
$3+75 E 1+308$ 4
$8+75 E \quad 1+406$ 7
$3+75 E 1+606$ 5
$3+75 E 1+705$ 15
$3+75 \mathrm{E} \quad 1+809$ 2
$4+0 \mathrm{OE} \mathrm{O} \mathrm{CON}$ θ
$4+00 \mathrm{E}=6 \mathrm{ON}$ 7
$4+0 \mathrm{OE}$ O+ ON 120
$4+00 \mathrm{E}$ 0 OON 3
$4+\mathrm{OQE} \mathrm{O}+10 \mathrm{~N}$ 182
$4+00 E$ O+OOBL 16
4+OOE O+3OG 12
$4+00 \mathrm{E} 0+40 \mathrm{~S}$ 13
$4+00 E \quad 0+505$ 8
$4+0060+606$ 9
$4+$ OOE $0+705$ 1
$4+0050+809$ 3
$4+0 \mathrm{OE} \mathrm{O} 905$ 2
$4+0061+005$ 1
$4+0 \mathrm{OE} \quad 1+10 \mathrm{~s}$ 1010

GAMPIE	ALt
4＋00E： $1+209$	1.4
$4+\mathrm{OEE} 1+\mathrm{OS}$	14
$4+00 \mathrm{E}$ 1＋408	4
4＋OOE $1+508$	20
4＋OOE $1+605$	4.4
4＋OOE $1+70 \mathrm{~S}$	1
4＋00E $1+809$	7
$\theta+00 E \quad 0+70 \mathrm{~N}$	10
8＋00E 0＋6ON	4
$8+\mathrm{OE}$ O＋5ON	1
8＋00E 0＋40N	1.
8＋OOE O＋SON	10
日＋00E 0＋20N	11
S＋OOE O＋1ON	27
日＋60E 9＋6ON	102
$8+50 \mathrm{E}$ O＋50N	\pm
8＋5OE 0＋40N	3
$8+50 \mathrm{OE}$ O＋3ON	1
8＋50E Or2ON	1
$8+50 \mathrm{OE}$ O＋10N	5
8＋30E 9＋00N	1
$9+O \mathrm{OE}$ O＋1ON	2
9＋00E 0＋008L	10
$9+O \mathrm{OE} \mathrm{O}+10 \mathrm{~S}$	4
$9+00 E 0+309$	4
$9+00 \mathrm{O}$ O＋40S	15
$9+0060+509$	17
$9+00 E$ O＋609	1
9＋00E 0＋709	82
$9+O$ OE O＋8OS	1
9＋00E 0＋905	2
9＋OOE 1＋00S	77
$9+00=1+109$	4
$9+00 E 1+209$	2
$9+0061+205 \mathrm{~A}$	2
Q＋OOE $1+306$	1

SAMPIE	Aus opD
$9+5050+40 \mathrm{~N}$	9
¢+SOE O+SON P	1
9+5OE 0+2ON	1
$9+50 \mathrm{O}$ O+10N	1
$9+60 E \quad 0+00 \mathrm{LL}$	56
$9+50 E O+10 S$	27
$9+5050+209$	3
9+5OE O+ZOE	4
$9+5050+409$.L 1
$9+50 \mathrm{O}$ O+5OG	1
7+50E 9+609	8
$9+50 E 0+705$	4
$9+50 \mathrm{E}$ 9+809	1
$9+50 \mathrm{O}$ O+905	1
$9+5081+909$	1.
$9+50 \mathrm{E} \quad 1+105$	6
$9+6$ EE $1+209$	$\underline{3}$
\%+5OE $1+\mathrm{TOS}$	1
7+6OE 1+406	4
$9+50 \mathrm{E}$ 1+5OS	17
$9+6051+609$	θ
¢+5OE $1+705$	9
$9+6051+806$	4.4
Fr-me $1+905$	21
$9+5052+009$	1.
\%+50E $2+105$	1
9+6OE $2+2$ OS P	1.
$10+\mathrm{OOE} 0+4 \mathrm{ON}$	1
$10+00 E$ Ot20N	3
$10+0 \mathrm{EE} \mathrm{O+10N}$	1
$10+0080+0081$	27
$10+0$ E $0+105$	1
$10+00 E 0+209$	1.
10+OOE O+30S	1
$10+60 E 0+498$	1.
$10+$ OOE O+50S	1

GAMPIE	Au* anb
$10+006$-696	14
$10+O O E \quad 0+708$	1
$10+0 \mathrm{E}$ O+6OS	1
$10+O O E \quad 0+908$	5
10+00E $1+005$	4
$10+0 \mathrm{OE} \quad 1+106$	1
10+90E $1+206$	1
$10+O \mathrm{E}$ E $1+\mathrm{OS}$	1
10+00E $1+405$!
1 O+OOE 1+50S	1
10+00E 1+606	$\underline{\square}$
$10+O O E 1+708$	1
10+0OE $1+805$	2
$10+$ OE $1+906$	1
10400E 2+009	\sim
$10+0062+108$	\pm
10+00E 2+206	2
$10+O O E \quad 2+308$	1

GAMPLE	Aus ロロロ
D8－55－601	θ
DE－55－002	20
DB－65－003	1.4
DE－5S－O04	16
DE－5S－606	95
DE－SE－006	5
DE－S5－007	34
DE－5G－006	30
08－65－009	14
DE－56－010	1
DB－95－011	7
DE－56－012	15
DB－6S－013	6
DE－55－014	2
DE－－95－015	65
DE－55－016	118
DE－55－－917	27
DE－55－018	144
DE－98－01． 9	22
DE－55－020	16
DE－69－921	19
DE－55－022	27
DE－6S－920	13
DE－55－024	21
DE－－59－028	0
DE－65－626	2
DE－6S－627	21
DE－55－026	6
DE－95－629	15
DE－55－0．0	1
DB－5S－6S1	0
DE－55－082	1
D8－69－0．5	22
DE－55－054	2
DE－68－085	\square
DE－5s－0才6	Ξ

Au＊ ロロロ
θ
DE－55－002 20
DB－5S－00Z 1.4
DE－GS－004 $\quad 16$
DE－5S－906 56
$\mathrm{DE}-5 \mathrm{~S}-000 \quad$ E
$-5 . \cdots-00$
$0 \mathrm{O}-65-009 \quad 14$
DE－5S－010 1

DB－GS－011 7
DE－55－012 15
DB－SS－013 6
DE－55－014 2
DE－5SM015 65
15－55－016 118
DE－－9ら－－917 27
DE－ $55-0183144$
DB－69－019 22

DE－6S－－92 10
DE－55－022 27
DE－6G－92工 18
DE－SS－024 21
DE－Sc－62世 ？
DE－ 5 －-20 2
DB－69－02？ 21
D2－－5S－02
－B－$-9-02 \div \square$

DE－65－0玉2 1

DE－55－034 2
$\mathrm{DE}-5 \mathrm{~S}-\mathrm{OS} 6 \quad \Xi$
GAMPLE: Au*
ppo
1.
DE-65-0. 7

$$
D E-5 s-056
$$

$$
\text { De- }-5 \mathrm{se-geg}
$$

$$
\mathrm{DE}-5 \mathrm{~S}-040
$$

$$
\mathrm{DE}-\operatorname{sc}-041
$$

DE--SS-042

$$
D F-5 s-008
$$

$$
D F-5 S-004
$$

$$
\mathrm{DF}-\mathrm{se-005}
$$

$$
\text { DF- }-5 S-006
$$

$$
\mathrm{pF}-\mathrm{-s}-\mathrm{s}-007
$$

$$
\mathrm{DF}-5 \mathrm{~S}-008
$$

$$
\mathrm{DF}-\mathrm{-5s-009}
$$

$$
\mathrm{DF}-\mathrm{SS}-010
$$

DF--6c-011

$$
D F-59-012 \quad 12
$$

$$
\text { DF- - } 85-013
$$

$$
D F-5 S-014
$$

$$
D F-95-01=
$$

$$
D F-5 S-016
$$

$$
D F--5 S-017
$$

$$
\mathrm{DF}-\mathrm{SS}-018
$$

$$
\text { DF- }-65-019
$$

$$
\mathrm{DF}-\mathrm{sc}-020
$$

$$
\mathrm{DF}-\mathrm{SS}-021
$$

$$
\mathrm{DF}-59-022 \quad 32
$$

$$
\text { DF- }-58-923 \quad 20
$$

$$
\mathrm{DF}-55-024 \quad 6
$$

$$
D F-6 \mathrm{G}-025 \quad 144
$$

$$
D F-5 S-026 \quad 230
$$

$$
D F-5 S-020 \quad 143
$$

$$
\mathrm{DF}-55-050 \quad 11
$$

$$
\text { DF-65-031 } 72
$$

$$
\mathrm{DF}-55-032 \quad 34
$$

$$
0 F-69-95
$$

DF-SS-034 20
GAMPLE Au*
a口b
DF--36-036 9
DF--5S-0.6 2
DF--6e-087 3
35-65-001 4
15-65-002 10
35-55-003 Ξ
15-65-004 12
15-55-005 15
15-69-006 13
J5-65-007 25
J0-85-008 11
45-6S-009 7
15-5S-010 2
]5-65-011 ©
J5-5S-01. 1
J5-65-015 4
19-85-014 2
15-65-015 6
ग9-55-016 $?$
39-95-017 6
Js-6s-018 $?$
J5-58-019 1
J5-95-020 1
35-55-021 4

GEDCHEMICAL ASSAY CEFTIFICATE
SAMPLE TYPE：SOLLS－80 MESH $P=$ Pulverized

ASGAYER
－ 1 DEAN TOYE ．CEETIFIED $\mathrm{B} \cdot \mathrm{C}$ ASGAYEF

HIGH D＇OF DEVELDFMENT
FILE壮 86－4070
FAGE掛 1
SAMMLE

Aut opb
$2+2506+00$ 5
$2+20 \mathrm{OH}+7 \mathrm{ON}$ 1
$2+20 W$ otcon 13
$1+75 \mathrm{~W} 0+7 \mathrm{ON}$ 6
$1+7500+60 \mathrm{~N}$ 4
$1+75 \mathrm{~W}$ O＋5ON 28
$1+7510+40 \mathrm{~N}$ 16
$1+50 \mathrm{~W} 0+70 \mathrm{~N}$ 11
$1+60 \mathrm{~F} 0+60 \mathrm{~N}$ 4
$1+50 \mathrm{CH} 0+5 \mathrm{ON}$ 5
$1+50 \mathrm{~W} 0+40 \mathrm{~N}$ 21
$1+50 \mathrm{~W} \quad+\mathrm{BON}$ 7
$1+25 \mathrm{~W} 0+70 \mathrm{~N}$ 11.
$1+25 \mathrm{~W} \quad 0+60 \mathrm{~N}$ 48
$1+25046+50 N$ 22
$1+25 \mathrm{w} \quad \mathrm{O}+4 \mathrm{ON}$ 192
$1+2502+30 \mathrm{~N}$ 126
$1+25 \mathrm{~W} \quad 0+2 \mathrm{ON}$ θ
$1+25 \mathrm{FW} 0 \mathrm{OH}$ 6
$1+00 \mathrm{~N}$ o +80 N 1
$1+00 \mathrm{~N} \quad 0+70 \mathrm{~N}$ 1.
$1+00 W \mathrm{O}+6 \mathrm{ON}$ 1
$1+00 \mathrm{~W}+\mathrm{BON}$ 29
$1+$ OOW $O+40 \mathrm{~N}$ 4
$1+00 \mathrm{~W} ~ \mathrm{O}+\mathrm{BON}$ $\underset{ }{3}$
$1+0 \mathrm{ON} \quad \mathrm{O}+2 \mathrm{~N}$ 25
$1+00 \mathrm{~N} 0+10 \mathrm{~N}$ 54
$1+60 \mathrm{~W} 0+00$ 185
$1+0040+105$ E
$1+$ OOW $0+205$ 1
$1+0040+305$ 1.
$0+75 \mathrm{~W} \quad \mathrm{o}+50 \mathrm{~N}$ 7
$0+750 \mathrm{O}+40 \mathrm{~N}$ 1.
$0+75060+30 \mathrm{~N}$ 26
$0+7540+20 N$ 123
$2+7506+10 \mathrm{~N}$ 108
GAMPIE Au* apb
$0+7 \mathrm{Bn} 0+69$ E2
$0+7$ 헤 $0+10 \mathrm{~S}$ 1
$0+7$ 步 $0+20 \mathrm{c}$ 2
$0+7500+305$ 3
04 \%W 0+40G 3
$0+75 W 0+505$ 120
$0+7506+609$ 1
$\because+75 W 0+708$ \because
$0+7560+808$ $\underset{ }{3}$
$0+75 W 0+905$ 2
$6+5010+50 \mathrm{n}$ 1.
$3+5 \mathrm{OW} 0+4 \mathrm{ON}$ 45
O+50w otson 113
$2+50 \mathrm{O}+2 \mathrm{ON}$ 107
$9+50 \omega 6+10 \mathrm{~N}$ 190
$9+5040+60$ 10%
$0+50 \omega 6+106$ 725
$0+50 \mathrm{~N}$ o+20S 2
$0+50 W 6+50 \mathrm{o}$ 1
$0+5 \mathrm{OW} 0+40 \mathrm{O}$ 675
$0+5040+509$ 4
$0+50 W$ ot 605 5
$0+50 \mathrm{w}$ 0+799 3
9+50W 0+80s 2
$0+50 \omega 6+90 \mathrm{c}$ 3
$0+50 \mathrm{w} 1+005$ 7
0+504 $1+10 \mathrm{c}$ 1
$0+50 \mathrm{~W} 1+20 \mathrm{C}$ 1
$0+5041+305$ 1
o+EOW $1+406$ 5
$0+2 \mathrm{EW} 0+40 \mathrm{~N}$ 75
$0+25 \mathrm{~N} \quad \mathrm{O}+\mathrm{ON}$ ε
$0+25 \mathrm{O}$ O+2ON E
$2+25 W$ O+10N 20
$0+3 \mathrm{~B} 日+00$ 97
$9+25 \omega 6+105$ 124
GAMPIE Ali*
opt
$0+2060+208$ 3
$0+25 W 0+305$ 8
$0+250$ 94 405 3
$0+2 \mathrm{EW} 0+50 \mathrm{~S}$ 12
$0+25 \omega 6+605$ 7
$2+25 \mathrm{w}+705$ 11
$0+2540+805$ 4
$0+25 W$ o+906 6
$0+2501+005$ 2
$0+2 \mathrm{EW} 1+10 \mathrm{~S}$ 30
0+25W 1+205 1.
0+25W 14305 5
0+26u1+40日 1
$0+5 \mathrm{OE} 0+6 \mathrm{ON}$ 16
O+5OE 0+5ON 1099
O+FOE O+4ON 27
$0+50 E 0+50 N$ $\theta 3$
$0+5 \mathrm{OE}$ O+2ON 16
$0+50=0410 N$?
$9+75 E \quad 9+70 \mathrm{~N}$ 5
$0+7560+60 \mathrm{~N}$ 48
$0+75 \mathrm{E}$ +50N 615
$0+75 E 0+40 \mathrm{~N}$ 24
$0+75 E \quad 0+30 \mathrm{~N}$ 39
$0+76 \mathrm{O}$ 9 ON 2
$0+75 E \quad 0+10 \mathrm{~N}$ 1
$0+7650+00$ 1
O+75E $0+105$ Ξ
$0+75 E$ 0+205 10
2+75E 0+3OS 101
$0+75 E 0+409$ 6
$0+75 E$ 0+50S 9
$0+75 E 0+605$ 158
$1+\mathrm{OE} \mathrm{O}+8 \mathrm{ON}$ 4
$1+0 \mathrm{E}$ O+7ON 5
$1+O 0 E O+6 O N$ 48

SAMP:E	ALI Dot
$4+6 \mathrm{EE}$-4-10M	33
$4+50 E \quad 9+10 N \mathrm{~A}$	1
$4+6 \mathrm{EE} 0+90$	4
$4+50 E 0+108$	1
4+50E 0+205	1
4+50E 0+306	2
$4+60 \mathrm{E}$ - 4 +408	7
$4+5 \mathrm{EE} 0+5 \mathrm{~S}$	65
$4+50 \mathrm{E}$ O+609	1
$4+5 \mathrm{OE}$ O+706	1
$4+5050+809$	860
4+5OE 0+965	137
4+50E 1+009	1.
$4+5 \mathrm{OE} 1+105$	1
4+5OE 1+209	1
$4+5 \mathrm{EE}$ 1+305	1
$4+50 \mathrm{E}$ 1+495	1.
$4+5 \mathrm{EE} 1+505$	195
4+50E 1+609	1
$4+\mathrm{EOE} 1+7 \mathrm{OS}$	1
$4+50151+805$	12
$4+50 \mathrm{E} \quad 1+905$	19
$4+5082+008$	9
$5+O 0 E \mathrm{O}+6 \mathrm{ON}$	23
5+0\%E 9+604	10
$5+O \mathrm{OE}$ O+4ON	11
B+OOE $9+50 \mathrm{~N}$	3
$5+O \mathrm{OE} \mathrm{O+2ON}$	36
$5+9060+10 \mathrm{~N}$	$7{ }^{7}$
E+OQE O+60	2
E+00E 0+109	1.
$5+O 0 E$ O+2OS	1
$5+00504308$	1
5+OOE 0+40S	E
E+00E 9+509	4
$5+00 E$ O+6OS	2

GAMFIEE Alu*
opt
$5+0050+700$ 1.
$5+00 E 0+805$ 14
G+00E 0400s r
5 $5+0 \mathrm{OE} 1+0 \mathrm{O}$ 2
S+00E $1+105$ 1
S+OOE $1+20 \mathrm{C}$ 1
S+00E $1+308$ 1.
$5+00 E 1+405$ 3
B+00E 1+505 16
$5+00 E 1+606$ 4
5+00E $1+705$ 0
E+00E $1+805$ 1
6+00E $1+909 \mathrm{P}$ 1.
E+OOE 2+00S 2
E+00E $2+105$ 1
$5+O O E 2+208$ 1
$5+50 E=0+70 \mathrm{~N}$ 3
$5+50 E 0+60 \mathrm{~N}$ 225
$5+50 E 0+5 O N$ 96
$5+50 E 0+40 \mathrm{~N}$ 91
$5+60 E 0+30 N$ 126
$5+50 E O+2 O N$ 4
$5+\operatorname{BOE} 0+10 \mathrm{~N}$ 10
$5+50 E 0+60$ 46
$5+50 E O+105$ 2 e
$5+50 E 0+205$ 10
8+50E 0+309 2?
$5+50 E \quad 0+405$ 22
$5+50 E 0+505$ 3
$5+50 E 0+606$ 1
5+50E 0+70s 11
$5+50 E \quad 0+805$ Ξ
5+50E 0+908 12
$5+$ EOE $1+005$ 1
$5+50 E 1+105$ 10
$5+50 E 1+206$ 4

SAMPIE	Au*
	Qut
E400E 1+809	3
$5+5 \mathrm{EE} 1+405$	1
E4EOE $1+505$	-29
$5+5 \mathrm{EE} 1+6 \mathrm{OS}$	1
\%+50E 1+709	3
5+50E 1+609	1
W+50E 1+605	2
$5+5$ E $2+005$	1
5+50E 2+108	1
S+5OE 2+20s	$\underline{\square}$
$6+60 \mathrm{E}$ 6+6M	1
$6+O \mathrm{OE}$ O+4ON	20
6+OOE O+50N	820
$6+0 \mathrm{OE}$ O+2ON	150
6+OOE O+10N	5
$6+O \mathrm{E}$ O $\mathrm{O}+\mathrm{O}$	37
6+90E $0+106$	11
$6+00 E$ O+20S	17
$6+00 E 0+309$	4.6
$6+O \mathrm{E}$ - $9+405$	1
$6+60 E$ 0, 908	1
$6+0 \mathrm{E}$ - 6 + 65	1
$6+906$ 0,798	6
6+OOE O+805	560
$6+0080+96$	\pm
$6+0 \mathrm{EE} 1+00 \mathrm{~S}$	2
6+00E 1+105	101
$6+$ OEE $1+20 \mathrm{~S}$	1
$6+00 E 1+305$	1
$6+$ OE 1+4OS	1
$6+00 E 1+509$	1
$6+$ OE $1+606$	1
¢+00E 1+70g	1
$6+$ OEE $1+805$	11
$6+5060+50 N$	2

Au* a口t

3
1
-9
1
3
1
1
5+50E $2+108 \quad 1$
$5+5 \mathrm{EE} \quad 2+20 \mathrm{O}$
$6+0 \mathrm{E}$: $0+\mathrm{OM} \quad 1$
$6+O \mathrm{OE}$ O+4ON 2 O
$6+O \mathrm{OE}+\mathrm{OON} \quad 820$
$6+0 \mathrm{OE} 0+2 \mathrm{ON} \quad 150$
3
59
11
17
4.6
1
1
1
6
560
1
2
101
1
1
1
$6+O O E 1+605 \quad 1$
6+60: 1+705
11
$6+50 \mathrm{E} 0+50 \mathrm{~N}$

GAMFIE	Al＊ oob
$6+6 \mathrm{EE} 0+40 \mathrm{~N}$	18
勺＋5OE O＋ZON	1
6＋60E 9＋20N	2
$6+5 \mathrm{OE}$ O＋10N	1
$6+60 E 0+00$	3
$6+50 E$ O＋106	1
$6+60 E 0+205$	6
$6+5 \mathrm{EE}$ O＋305	49
6＋6OE 0＋409	5
$6+$ OE O＋5OS	1
$6+5080+695$	1.
$6+6 \mathrm{EE}$ O＋705	3
$6+5020+809$	1.
$6+50 \mathrm{E}$ 9＋905	1
$6+5051+008$	9
$6+5 \mathrm{EE} 1+105$	1
$6+6051+209$	1.
$6+5 \mathrm{EE} 1+\mathrm{OC}$	$\underline{1}$
6＋60E 1＋408	1.
6＋5OE $1+506$	10
7＋00E 0＋304	1
$7+O \mathrm{OE}$ O＋20N	1
$7+0080+10 \mathrm{~N}$	2
$7+0 \mathrm{OE}$ O＋OQ	9
$7+00 E$ 9＋10¢	57
$7+$ OOE $0+20 S$	± 8
7＋006 0＋30S	6
$7+O Q E \quad 0+40 \mathrm{~S}$	17
$7+0050+505$	1.
$7+O O E O+609$	1
$7+90 E 9+709$	1.
$7+$ OOE 0＋80¢	1
$7+00 E 0+909$	1
$7+$ OOE $1+0 \mathrm{O}$	2
$7+60 E 1+108$	1
$7+$ OEE $1+206$	5

$7+00 E \quad 1+30 \mathrm{E}$ $\%$
$7+$ OOE $1+40 \mathrm{O}$ 2
7+6OE 1+608 1
$7+0 \mathrm{OE} 1+7 \mathrm{O} \mathrm{C}$ 1
740世 $1+60 \mathrm{O}$ 1.
$7+00 \mathrm{E} \quad 1+995$ 1
$7+0 \mathrm{O}$ 2+6め 1
$7+5 O E \quad$ +40N 48
$7+50 \mathrm{E}$ - FON 79
$7+\mathrm{GOE} \mathrm{O}+\mathrm{ON}$ \pm
$7+6060+164$ 1.
$7+$ EOE $0+\mathrm{OO}$ 4
$7+50 E 0+108$ 1
$7+5 O E \quad 0+205$ 1
$7+6050+609$ 1.
$7+5 \mathrm{OE} \quad 0+405$ 1
$7+60 E$ 0+50 1
$7+$ GE $0+606$ 1
$7+50 E 0+705$ 26
$7+50 E 0+808$ 1
$7+50 E \quad 0+909$ 1
$7+$ EOE $1+$ OOS 1
$7+50 E 1+105$ 1
$7+50 E 1+205$ 1
$7+50 E 1+606$ 1
$7+5$ OE $1+405$ 1
$7+50 E 1+508$ 2
$7+50 E 1+605$ $\underset{Z}{Z}$
$7+50 E 1+706$ 1.
$7+50 E 1+805$ 1
$7+508: 1+909$ 1.
$7+50 E \quad 2+005$ 1
$8+0060+105 P$ 1.
ब+OQE $0+20$ S P 2
8+OOE 9+GOE 1.
$8+$ OOE $0+408$ 290

SAMFILE		Aut oob
8400\%:	0469	\cdots
B+OOE	O+606	1
8400E	$0+708$	1
$8+$ OEE	9+806	6
Q+o)E	$9+909$	23
Q+90	$1+0 \mathrm{O}$	21.
8+00E:	1+106	1.
S+OOE	$1+208$	ε
B+00E	$1+308$	1.
उ+OOE	$1+405$	'
8+60E	$1+508$	2
Q+OOE	$1+605$	290
4+00E	$1+706$	1
$8+0$ OE	$1+906$	1
6+00E	$2+009$	1.
$8+505$	$0+105$	1
8+50E	$0+208$	2
S+5OE	$0+305$	1
Q+69E	$0+409$	370
$8+5 \mathrm{OE}$	O+505	2
$8+505$	$9+608$	1
6+5OE	9+705	1
9+60E	$0+809$	2
8+5OE	9+905	1.
8+50E:	$1+006$	1
8+50E	$1+105$	1
8+505:	$1+209$	13
$8+5$ OE	$1+305$	2
9+60E:	$1+406$	1
$8+\mathrm{GOE}$	$1+505$	10
8+506	$1+608$	5
$8+50$	$1+708$	1
8+50):	$1+809$	2
$8+5 \mathrm{SE}$	$1+905$	1
8+60E	$2+006$	1
$9+$ ¢OE	$1+406$	4

GAMPLE:	Aux
	onb
$9+001+508$	3
9+OQE $1+60 \mathrm{~S}$	89
$9+0051+709$	17
9+OOE $1+6$ OS	30
9+00E 1.790	T
$9+0 \mathrm{E}$ 2+00S	12

GEOCHEMICAL ASSAY CERTIFICATE
SAMPLE TYPE : SOLLS -80 MESH $P=$ Pulverized
Au* - 10 by. ignited. hot haul regia leached, hibk extraction: as analysis.
ASSAYER:
 DEAN TOYE , CERTIFIED
B.C. ASSAYER.

FILLE\# 836-4070
PAGE:\# 1

SAMFIEE Au* Qpb$0+75 W 0+00$E.2
$0+75 \mathrm{~W} 0+105$ 1$0+75 W 0+20 \%$
$2+75 W 0+30 S$$\Xi$
$0+75 W 0+409$ 3
$0+75 W 0+505$ 120
$0+75 W 0+605$ 1
$0+75 W 0+705$ 9
$0+75 W 0+809$ 3
$0+75 W 0+905$ 2
$0+50 W 0+50 N$ 1
$0+5 \mathrm{OW} 0+4 \mathrm{ON}$ 45
$0+50 W 6+30 \mathrm{~N}$ 113
0+50W O+2ON 107
$0+50 \mathrm{~W} 0+10 \mathrm{~N}$ 150
$0+50 W 0+00$ 103
0+50W 0+105 725
$0+50 W$ O+20S 2
$0+50 W 0+305$ 1
O+5OW O+4OS 675
$0+50 \mathrm{~W} 0+505$ 4
$0+50 \mathrm{~W} 0+605$ 5
0+50W 0+70s 3
0+50W O+80S 2
O+50W 0+905 3
$0+50 \mathrm{~W} 1+005$ 7
$0+50 \mathrm{~W} 1+105$ 1
0+50W $1+205$ 1
$0+50 W 1+305$ 1
$0+50 \mathrm{~W} 1+405$ 5
$0+25 W 0+40 N$ 5
$0+25 W \quad O+30 \mathrm{~N}$ 8
$0+25 W 0+20 N$ 3
$0+25 \mathrm{~W} ~ O+10 \mathrm{~N}$ 20
$0+203 \mathrm{~F} 0+00$ $\because 7$
O+25W O+10S 124

SAIPPLE ALI*
opb
$1+00 \mathrm{EO}$ O+50N
$1+\mathrm{OOE} \mathrm{O} \mathrm{C} 105 \quad 415$
$1+00$ OE $0+20 \mathrm{E}$
$1+O O E O+5 O S \quad 26$
$1+0$ OE $0+40$ S
$1+00 E \quad 0+505$
$1+00 E 0+605$
1 OOE O+7OS 2
$1+0$ OE O $+805 \quad 1$
$1+00 E O+505 \quad 15$
$1+00 E 1+005 \quad 735$
$1+00 E 1+105 \quad 1$
$1+00 \mathrm{E} 1+2051$
$1+$ OOE $1+305$ E
$1+00 \mathrm{E} 1+4051$
$1+0 \mathrm{OE} 1+50 \mathrm{~S} \quad 2$
$1+O$ OE $1+6 O G \quad 2$
$1+$ OOE $1+705 \quad 1$
$1+00 E 1+805$
$1+\mathrm{OOE} 1+905 \quad 8$
$1+00 \mathrm{E} 2+00 \mathrm{~S} \quad 1$
$1+0$ E $2+105$ 1
$1+00 E 2+2051$
$1+00 E 2+305$. 1
$1+00 E 2+405$ 5
$1+00 E 2+5051$
$1+00 E 2+605 \quad 9$
$1+00 E 2+705 \quad 34$
$1+00 E \cdot 2+805$ 16
$1+00 \mathrm{E} 2+905 \quad 4$
$1+00 E \quad 3+005 \quad 13$
$4+50 \mathrm{E} 0+6 \mathrm{ON} \quad 47$
$4+50 \mathrm{E} 0+5 \mathrm{ON} 11$
$4+50 \mathrm{E} 0+40 \mathrm{~N} \quad 560$
$4+50 \mathrm{E}$-20N 1
$4+50 \mathrm{E}$ O+2ON A 10

SAMPI.E Au* opb
5+90E 0+705 1
$5+00 E O+805$ 14
G+0OE 0+905 3
巨゙+OOE 1+OOS 2
$5+00 E 1+109$ 1
$5+00 E 1+205$ 1
$5+00 \mathrm{E} 1+30 \mathrm{~S}$ 1
$5+00 E 1+405$ 32
5+OOE 1+50S 16
$5+0 \mathrm{OE} 1+60 \mathrm{~S}$ 4
$5+00 E 1+705$ 9
$5+00 E 1+805$ 1
S+0OE $1+905$ 1
$5+00 E 2+005$ 2
$5+00 E 2+105$ 1
$5+00 E 2+205$ 1
$5+50 E \quad 0+70 \mathrm{~N}$ 38
$5+50 \mathrm{E} 0+6 \mathrm{ON}$ 225
$5+50 E 0+50 \mathrm{~N}$ 96
$5+50 E O+40 N$ 91
$5+50 E 0+30 N$ 126
$5+50 \mathrm{E} 0+2 \mathrm{~N}$ 4
$5+50 E 0+10 \mathrm{~N}$ 10
$5+50 E 0+00$ 46
$5+50 E 0+105$ 29
$5+50 E 0+205$ 10
$5+50 E 0+305$ 20
$5+50 E 0+405$ 22
15+50E 0+505 33
$5+50 E 0+605$ 1
$5+50 E 0+705$ 11
$5+50 E 0+805$ Ξ
5+50E 0+905 12
$5+50 E 1+005$ 1
S+50E $1+105$ 10
$5+50 E 1+205$ 4

GAMFI.E Al*nob
$7+00 E 1+309$ 3
$7+0 \mathrm{OE} 1+405$ ε
$7+00 E 1+605$ 1
$7+O O E 1+705$ 1
$7+00 E \quad 1+809$ 1
$7+00 E 1+909$ 1
$7+O O E 2+009$ 1.
$7+50 E \quad 0+40 \mathrm{~N}$ 48
$7+50 E 0+3 O N$ 79
$7+50 \mathrm{O}$ O+20N $\underset{Z}{Z}$
$7+50 E 0+10 \mathrm{~N}$ 1
$7+50 \mathrm{E} 0+\mathrm{OO}$ 4
$7+50 E 0+105$ 1.
$7+50 \mathrm{E} 0+205$ 1
$7+50 E 0+305$ 1
$7+50 E \quad 0+405$ 1
$7+50 E 0+505$ 1
$7+50 E \quad 0+605$ 1
$7+50 E 0+705$ 26
$7+50 E \quad 0+805$ 1
$7+50 E 0+905$ 1
$7+50 E 1+005$ 1
$7+50 E 1+105$ 1
$7+50 E 1+205$ 1
$7+50 E 1+305$ 1
$7+50 E 1+405$ 1
7+50E 1+505 2
$7+50$ E $1+605$ 3
$7+50 E 1+705$ 1.
$7+50 \mathrm{E} 1+805$ 1
$7+5012+705$ 1
$7+50 E 2+005$ 1
$8+000 \mathrm{E} 0+105 \mathrm{P}$ 1
$\xi+00 E 0+205 \mathrm{P}$ 2
$8+00 \mathrm{E} 0+30 \mathrm{~S}$ 1.
$8+00 E O+405$ 290

GAMFI.E		All oob
8+00E:	$0+605$	2
8+OOE	O+605	1
8+00E	$0+705$	1
$8+O O E$	$0+809$	6
8+OOE	$0+909$	23
$8+O \mathrm{OE}$	$1+005$	21
8+OOE	$1+109$	1
$8+O O E$	$1+205$	ε
8+OOE	$1+305$	1.
$8+00 \mathrm{E}$	$1+405$	\pm
B+OOE	$1+508$	2
8+OOE	$1+605$	290
B+OOE	$1+709$	1
$8+\mathrm{OOE}$	$1+905$	1
8+0)E	$2+009$	1
$8+50 \mathrm{E}$	$0+105$	1
8+505	$0+208$	2
$8+50 \mathrm{E}$	O+SOS	1
8+50F	$0+405$	370
8+50E	$0+505$	2
8+50E	$0+608$	1
$8+50 \mathrm{E}$	$0+705$	1
$8+505$	$0+809$	2
8+50E	$0+905$	1
$8+50$	$1+005$	1
$8+50 \mathrm{E}$	$1+105$	1
$8+505$	$1+205$	13
$8+50 \mathrm{E}$	$1+305$	2
$8+508$	$1+409$	1
$8+50 \mathrm{E}$	$1+505$	10
$8+508$	$1+609$	\underline{O}
$8+50 \mathrm{E}$	$1+705$	1
$8+50$	$1+805$	2
$8+50 \mathrm{E}$	$1+905$	1
$8+506$	$2+008$	1
$9+O O E$	$1+405$	4

SAMPLE:	Alu* oob
$9+0051+508$	3
$9+0061+605$	89
$9+O O E 1+709$	19
$9+00 E 1+805$	50
$9+00 \mathrm{E}$ 1+909	± 5
$9+00 \mathrm{E} 2+005$	12

TICME SNALYTICAL LABDRATORIES LTD. ©352 E. HASTINGS, VANCOLUER B.C. FH: (ó04)253-3158 COMPUTER LINE: 251-1011

DATE RECEIVED DEC 181986 date reforts mailed Dee $24 / 66$
GEDCHEMICAL ASSAY CERTIFICATE SILTS
SAMPLE TYPE : SOILS -80 MESH $P=$ Pulverized
Aut - 10 EM, IENITED, hot ADUA REEIA LEACHED, MIBK EXTRACTION, AA AMALYSIS.
ASSAYER
 DEAN TOYE . CEFTIFIED
B.C. ASSAYER

HIGH D'OR DEVELOPMENTS FROJECT EC-O4
FILE\# 86-4018
FAGE\# 1

SAMPLE		Au* opb
$7+00 w$	$1+80 \mathrm{~N}$	26
$7+00 W$	$1+7 \mathrm{ON}$	2
$7+0 \%$	$1+60 N$	6
$7+00 W$	$1+50 \mathrm{~N}$	1
7+00w	$1+40 \mathrm{~N}$	1
7+OOW	$1+\mathrm{SON}$	1
7+00w	$1+20 \mathrm{~N}$	3
$7+00 W$	$1+1 \mathrm{ON}$	1
$7+00 \mathrm{~W}$	$1+00 \mathrm{~N}$	7
$7+00 \mathrm{~W}$	$\mathrm{O}+9 \mathrm{ON}$	1
$7+00 w$	$0+80 \mathrm{~N}$	1
$7+00 W$	$\mathrm{O}+7 \mathrm{ON}$	1
7+00w	$0+60 \mathrm{~N}$	89
6+50W	$3+40 \mathrm{~N}$	35
6+50W	$3+30 N$	23
$6+50 \mathrm{~W}$	$3+20 N$	2
6+50W	$3+10 \mathrm{~N}$	3
$6+50 \mathrm{~W}$	$3+00 \mathrm{~N}$	4
$6+50 \mathrm{~W}$	$2+50 \mathrm{~N}$	50
$6+50 \mathrm{~W}$	$2+80 N$	5
6+50w	$2+70 \mathrm{~N}$	1
$6+50 W$	$2+60 \mathrm{~N}$	1
6+50W	$2+50 \mathrm{~N}$	2
6+50W	$2+40 \mathrm{~N}$	1
$6+50 \mathrm{~W}$	$2+30 N$	1
$6+50 \mathrm{~W}$	$2+2 \mathrm{NN}$	23
6+50W	$2+10 \mathrm{~N}$	5
$6+50 \mathrm{~W}$	$2+\mathrm{OON}$	3
6+50w	$1+80 \mathrm{~N}$	29
$6+50 \mathrm{~W}$	$1+70 \mathrm{~N}$	7
6+50W	$1+60 \mathrm{~N}$	27
$6+50 W$	$1+5 \mathrm{ON}$	21
$6+50 w$	$1+40 \mathrm{~N}$	15
6+50W	$1+\mathrm{SON}$	1
$6+50 \mathrm{~W}$	$1+20 \mathrm{~N}$	1
$6+50 \mathrm{~W}$	$1+1 \mathrm{ON}$	1

SAMPLE		Alu* opb
6+50w	$1+004$	2
6+50W	$\mathrm{O}+90 \mathrm{~N}$	295
$6+0$ ow	$2+90 \mathrm{~N}-$	9
$6+00 \mathrm{~W}$	$2+\mathrm{BON}$	12
6+00w	$2+70 \mathrm{~N}$	11
$6+00 \mathrm{~W}$	$2+60 \mathrm{~N}$	10
$6+00 w$	$2+50 \mathrm{~N}$	5
$6+00 \mathrm{~W}$	$2+40 \mathrm{~N}$	1
b+00w	$2+30 \mathrm{~N}$	265
$6+00 \mathrm{~W}$	$2+2 \mathrm{NN}$	\pm
	-	
6+00w	$2+00 \mathrm{~N}$	5
$6+00 \mathrm{~W}$	$1+90 \mathrm{~N}$	31
$6+00 \mathrm{~W}$	$1+80 \mathrm{~N}$	2
$6+00 \mathrm{~W}$	$1+70 \mathrm{~N}$	3
$6+00 \mathrm{~W}$	$1+60 \mathrm{~N}$	26
6+00w	$1+5 \mathrm{ON}$	5
$6+00 w$	$1+40 \mathrm{~N}$	195
6+00W	$1+3 \mathrm{ON}$	9
$6+00 \mathrm{~W}$	$1+20 \mathrm{~N}$	17
¢+OOW	$1+10 \mathrm{O}$	2
$6+00 \mathrm{~W}$	0.000 N	2
6+OOW	$\mathrm{O}+8 \mathrm{ON}$	7
$6+00 w$	$0+70 \mathrm{~N}$	1
6+00w	$\mathrm{O}+6 \mathrm{ON}$	4
$6+00 \mathrm{~W}$	$0+50 \mathrm{~N}$	1
6+00W	$\mathrm{O}+4 \mathrm{ON}$	2
6+00W	$0+30 \mathrm{~N}$	1
GroOW	$0+20 \mathrm{~N}$	1
6+00w	$0+10 \mathrm{~N}$	1.
6+OOW	O+OOEL	2
		-
$6+00 \mathrm{w}$	$0+105$	1
6+00W	$0+205$	1
$6+00 W$	$0+305$	1
6+00w	$0+405$	1
$6+006$	$0+505$	2
$6+00 W$	$0+605$	14

SAMPLEE		Alu* ODD
$6+00 \mathrm{w}$	$0+705$	1
$6+00 \mathrm{~W}$	0+805	1
6+00w	0+709	2
$5+50 \mathrm{~W}$	$\mathrm{S}+\mathrm{OON}$ -	19
E+50W	$2+50 \mathrm{~N}$	7
$5+50 \mathrm{~W}$	$2+8 \mathrm{ON}$	9
$5+50 \mathrm{~W}$	$2+70 \mathrm{~N}$	1
5+50W	$2+60 \mathrm{~N}$	2
5+50w	$2+50 \mathrm{~N}$	61
5+50W	$2+40 \mathrm{~N}$	21
5+50w	$2+30 \mathrm{~N}$	13
$5+50 \mathrm{~W}$	$2+20 \mathrm{~N}$	38
5+50w	$2+10 \mathrm{~N}$	14
5+50W	$2+\mathrm{OON}$	5
5+50w	$1+90 \mathrm{~N}$	19
5+50W	$1+80 \mathrm{~N}$	9
$5+50 \mathrm{~W}$	$1+70 \mathrm{~N}$	17
$5+50 \mathrm{~W}$	$1+60 \mathrm{~N}$	2
5+50\%	$1+50 \mathrm{~N}$	1
$5+50 \mathrm{~W}$	$1+40 \mathrm{~N}$	11
5+50w	$1+30 \mathrm{~N}$	1
5+50W	$1+20 \mathrm{~N}$	165
5+50w	$1+10 \mathrm{~N}$	19
5+50W	$1+\mathrm{OON}$	20
$5+50 \mathrm{~W}$	$0+90 \mathrm{~N}$	3
5+50W	$\mathrm{O}+\mathrm{ESON}$	27
5+50w	$0+70 \mathrm{~N}$	36
$5+50 \mathrm{~W}$	$0+60 \mathrm{~N}$	69
5+50w	$0+50 \mathrm{~N}$	7
$5+50 \mathrm{~W}$	$\mathrm{O}+4 \mathrm{ON}$	1
5+50w	$0+30 \mathrm{~N}$	20
$5+50 \mathrm{~W}$	$\mathrm{O}+2 \mathrm{~N}$	1
5+50w	$0+10 \mathrm{~N}$	99
5+50W	O+OOEL	1
5+50w	$0+105$	1
5+50W	O+20s	1

SAMPLE		Au*
5+50W	0+305	1
$5+50 \mathrm{~W}$	$0+405$	1
5+50w	$0+505$	1
5+50W	$0+605$	1
$5+50 \mathrm{~W}$	$0+705$	1
$5+50 \mathrm{~W}$	$0+805$	1
$5+50 \mathrm{~W}$	0+909	1
$5+00 \mathrm{~W}$	$2+50 \mathrm{~N}-$	22
5roow	$2+40 \mathrm{~N}$	5
$5+00 \mathrm{~W}$	$2+30 N$	49
$5+00 \mathrm{w}$	$2+20 \mathrm{~N}$	1
$5+00 \mathrm{~W}$	$2+10 \mathrm{~N}$	1
$5+00 \mathrm{~W}$	$2+00 \mathrm{~N}$	5
$5+00 \mathrm{~W}$	$1+90 \mathrm{~N}$	2
5 coow	$1+$ EON	6
$5+\mathrm{OOW}$	$1+70 \mathrm{~N}$	7
$5+00 \mathrm{~W}$	$1+60 \mathrm{~N}$	97
5+0OW	$1+50 \mathrm{~N}$	11
5+00W	$1+40 \mathrm{~N}$	14
$5+\mathrm{OOW}$	$1+3 \mathrm{ON}$	5
5+00w	$1+20 \mathrm{~N}$	1
$5+00 \mathrm{~W}$	$1+1 \mathrm{ON}$	3
$5+00 \mathrm{~W}$	$1+00 \mathrm{~N}$	1
5+00W	$\mathrm{O}+9 \mathrm{ON}$	1
$5+00 \mathrm{~W}$	$0+\mathrm{OON}$	4
$5+00 \mathrm{~W}$	O+70N	1
5+00w	$0+6 \mathrm{ON}$	1
5+00W	$\mathrm{O}+50 \mathrm{~N}$	1
$5+00 \mathrm{~W}$	$0+40 \mathrm{~N}$	1
5+00W	$\mathrm{O}+\mathrm{SON}$	1
$5+00 w$	$0+20 \mathrm{~N}$	1
$5+00 \mathrm{~W}$	$\mathrm{O}+1 \mathrm{ON}$	1
5+00w	$0+00 \mathrm{BL}$	1
5+00w	$0+105$	1
$5+0 \%$	$0+205$	1
$5+00 \mathrm{~W}$	$0+305$	1

SAMPLE AU* opb

12
$5+00 W 6+405$ 1. $5+$ OOW O+5OS 4 5+00W 0+6OS 13
$5+00 W$ 0+705 5
$5+00 \mathrm{~W} 0+30 \mathrm{~s} \quad 15$
$5+00 W 0+905 \quad 13$
$5+00 \mathrm{~W} 1+005 \quad 2$
$5+$ OOW $1+10 \mathrm{O}$
4+50W $1+00 \mathrm{~N}-\quad 12$
$4+50 \mathrm{~W} \mathrm{O} 0 \mathrm{CON} \quad 7$
$4+50 \mathrm{~W} 0+80 \mathrm{~N}: \quad 17$
$4+50 \mathrm{~W} 0+70 \mathrm{~N} \quad 20$
$4+50 \mathrm{~W} 0+6 \mathrm{ON} 26$
$4+50 \mathrm{~W} \mathrm{O}+5 \mathrm{ON} \quad 18$
$4+50 \mathrm{~W} 0+40 \mathrm{~N} \quad 36$
$4+50 \mathrm{~W} 0+30 \mathrm{~N} \quad 15$
$4+50 \mathrm{~W} 0+20 \mathrm{~N} \quad 4$
$4+50 \mathrm{~W} 0+10 \mathrm{~N} \quad 28$
$4+50 \mathrm{~W} 0+00 \mathrm{BL} 8$
$4+50 \mathrm{~W} 0+10$ S 12
4+50W 0+205 1
$4+50 \mathrm{~W} 0+30 \mathrm{~S} \quad 8$
$4+50 W$ 0+405 5
$4+50 \mathrm{~W} 0+50 \mathrm{~S} \quad 6$
$4+50 \mathrm{~W} 0+605 \quad 7$
$4+50 \mathrm{~W} 0+709 \quad 58$
$4+50 \mathrm{~W} 0+80 \mathrm{~S} \quad 18$
$4+50 \mathrm{~W} 0+905 \quad 34$
$4+50 \mathrm{~F} 1+005 \quad 4$
$4+50 W 1+10511$
$4+50 \mathrm{~W} 1+20 \mathrm{~S} \quad 12$
$4+50 W 1+30515$
$4+50 \mathrm{~W} 1+4051$
$4+50 W 1+505$
$4+50 \omega 1+6052$
$4+50 W 1+705 \quad 16$
$2=242$
$3=3345$
$4=302,101$
$5=0$
$6=0$
$7=0$
GAMFLLE Au*opb
$4+50 \mathrm{~F} 1+80 \mathrm{~s}$ 7
$4+50 \mathrm{~W} 1+905$ 21
$4+00 \mathrm{~W} 0+80 \mathrm{~N}$ 22
$4+0 \mathrm{OW} \mathrm{O}+7 \mathrm{ON}$ 25
$4+00 \mathrm{~W} 0+60 \mathrm{~N}$ 29
$4+00 \mathrm{~W} \quad 0+5 \mathrm{ON}$ 35
$4+00 \mathrm{~W} 0+40 \mathrm{~N}$ 24
$4+\mathrm{OOW} \mathrm{O}+\mathrm{SON}$ 12
$4+00 \mathrm{~W} 0+20 \mathrm{~N}$ 4
$4+\mathrm{OOW} \mathrm{O}+1 \mathrm{ON}$ 15
4+00W 0+00BL 8
$4+00 \mathrm{OW}$ O+10S 5
$4+00 \mathrm{~W} 0+20 \mathrm{~s}$ 9
$4+00 \mathrm{~W} 0+30 \mathrm{~S}$ 6
$4+00 \mathrm{~W} \mathrm{0}+40 \mathrm{~S}$ 1
4+00W 0+50S 7
$4+0010+605$ 8
$4+0 \mathrm{OW} 0+705$ 3
4+00W 0+805 7
4 +oOW 0+905 9
$4+00 \mathrm{~W} 1+005$ 1
$3+50 W \quad 0+30 N$ 28
3+50W 0+20N 12
$3+50 \mathrm{~W} 0+10 \mathrm{~N}$ 8
$3+50 W$ O+00BL 2
$3+50 \mathrm{~W} 0+10 \mathrm{~S}$ 10
$3+50 W 0+205$ 9
$3+50 \mathrm{~W} ~ 0+305$ 6
उ+50W 0+40S 7
$3+50 W$ O+505 4
3+50W 0.+60s 8
$3+50 W 0+705$ 6
3+50W 0+805 1
3+50W O+905 1
$3+00 \mathrm{~W} 0+40 \mathrm{~N}-$ 56
$3+00 W \quad 0+30 N$ 185
GAMPLE Au**oob
B+00W 0+2ON 15
3+OOW O+10N 14
I +oOW O+00BL 250
3+OOW O+10S 9
3+00W 0+20s 4
3+00W 0+30s 1
3+00w 0+40s 21
$3+00 W$ 0+50s 10
3+00W 0+60s 1
3+oow 0+70s $\underset{\square}{ }$
$3+00 \mathrm{~W} 0+805$ 1
$2+50 \mathrm{~W} \mathrm{O}+4 \mathrm{ON}$ 1
$2+50 \mathrm{~W} 0+30 \mathrm{~N}$ 25
$2+50 \mathrm{~W} \mathrm{O} 0+20 \mathrm{~N}$ 8
$2+50 \mathrm{~W} 0+10 \mathrm{~N}$ 117
2+50W O+00BL 12
$2+50 \mathrm{~W}$ O+00ELA 11
2+50W 0+10s 255
$2+50 \mathrm{~W} 0+105 \mathrm{~A}$ 95
$2+50 \mathrm{~W} 0+205$ 155
$2+50 \mathrm{~W} 0+205 \mathrm{~A}$ 111
$2+50 \mathrm{~W} 0+30 \mathrm{~S}$ 1
$2+50 \mathrm{~W} 0+305 A$ 850
$2+50 \mathrm{~W} 0+40 \mathrm{~S}$ 6
$2+50 W 0+405 A$. 4
$2+50 \mathrm{~W} 0+50 \mathrm{~s}$ 27
$2+50 W$ 04505A 3
$2+50 \mathrm{~W} 0+605$ 1
$2+50 \mathrm{~W} 0+605 \mathrm{~A}$ 4
$2+50 \mathrm{~W} 0+70 \mathrm{~s}$ 7
$2+50 \mathrm{~W} 0+\mathrm{BOO}$ 1
2+50W 0+80SA 1
$2+50 \mathrm{~W} 0+908$ 1
2+50W 1+00S 1
$2+50 \mathrm{~W} 1+10 \mathrm{~s}$ 1
2+50W 1+205 1

GAMPLE		Au* D D
2+50w	$1+305$	2
$2+50 \mathrm{~W}$	$1+40 \mathrm{~S}-$	9
$2+25 \mathrm{~W}$	$0+10 \mathrm{~N}$	177
$2+25 \mathrm{~W}$	$0+10 \mathrm{~s}$	11
$2+25 w$	$0+205$	8.3
$2+25 \mathrm{~W}$	$0+305$	102
2+25w	$0+405$	35
2+25w	0+50s	69
2+25W	$0+605$	10
2+25W	O+70s	Ξ
$2+25 W$	0+80s	6
$2+25 \mathrm{~W}$	0+905	4
$2+25 W$	$1+005$	5
2+25W	$1+105$	4
$2+25 w$	$1+205$	10
2+00W	$\mathrm{O}+3 \mathrm{ON}-$	19
$2+00 \mathrm{~W}$	$0+20 \mathrm{~N}$	20
2+oow	$\mathrm{O}+1 \mathrm{ON}$	51
$2+00 \mathrm{~W}$	$0+00 \mathrm{BL}$	40
2+00W	O+10S	12 :
$2+00 \mathrm{w}$	$0+205$	19
$2+00 \mathrm{~W}$	O+305	18
2+00w	$0+405$	101
$2+00 \mathrm{~W}$	O+505	48
$2+60 \mathrm{~W}$	$0+605$	21
$2+00 \mathrm{~W}$	0+70s	8
$2+00 \mathrm{~W}$	$0+805$	10
$2+00 \mathrm{~W}$	0+905 -	6
1+75w	$0+008 L$	55
1+75W	0+40s	31
1+75w	0+509	5
$1+75 \mathrm{~W}$	$0+605$	6
$1+75 \mathrm{~W}$	0+705	1
$1+75 \mathrm{~W}$	O+80s	53
$1+75 \mathrm{~W}$	0+70s	5
$1+75 \mathrm{~W}$	$1+005$	15

SAMPLE	Alu* ロpb
$1+50 \mathrm{~W} 0+50 \mathrm{~s}$	5
1+50W 0+605	7
$1+000+40 \mathrm{~N}$	6.3
$1+000+30 \mathrm{~N}$	143
$1+00 \mathrm{O}+2 \mathrm{ON}$	175
$1+000+10 \mathrm{~N}$	121
$1+000+00 \mathrm{EL}$	119
$1+000+105$	385
$1+000+305$	22
$1+000+405$	13
$1+000+505$	6
$1+000+605$	12
$1+000+705$	2
$1+000+805$	28
$1+000+905$	3
$1+001+005$	16
$1+001+105$	7
$1+001+205$	13
$1+001+305$	4
$1+001+405$	6
$1+001+505$	12
$1+001+605$	14
$1+001+705$	9
O+25E O+50N	90
$0+25 E 0+40 \mathrm{~N}$	61
O+25E O+SON	46
$0+25 E 0+20 \mathrm{~N}$	10
$0+25 E \quad 0+10 \mathrm{~N}$	52
O+25E O+OOBL	685
O+25E O+10S	610
O+25E 0+205	720
$0+25 E 0+305$	81
$0+25 E 0+405$	28
0+25E 0+50s	19
$0+25 E 0+605$	16
O+25E 0+70S	4

SAMPLE

Au*$0+25 E 0+805$$0+25 E$ O+9OS$0+25 E 1+005$$0+25 E 1+105$
opb
S6
32
s8
65

1

0

$$
0+25 E 1+205 \quad 15
$$

$$
0+25 E 1+305
$$

$$
0+25 E 1+405 \quad 3
$$

$$
0+25 E 1+505
$$

$$
0+25 E 1+605
$$

$$
0+25 E 1+805 \quad 1
$$

$$
0+25 E 1+905 \quad 6
$$

$$
0+25 E 2+005
$$

$$
0+25 E 2+255<\quad 1
$$

$$
0+50 \mathrm{EL} \quad 69
$$

$$
0+50 E 0+105
$$

$$
0+50 \mathrm{E} 0+205 \quad 20
$$

$$
0+50 E 0+305
$$

$$
0+50 E O+40 S
$$

$$
0+50 E 0+505
$$

$$
0+50 E 0+605
$$

$$
0+50 E 0+705 \quad 26
$$

$$
0+50 E 0+80 S
$$

$$
0+50 E 0+905
$$

$$
0+50 E 0+1005
$$

$$
0+50 \mathrm{E} 0+1105
$$

$$
0+5 O E O+12 O S \quad 1
$$

$$
0+50 E 0+1305 \quad 1
$$

$0+75 \mathrm{E} 0+70 \mathrm{~S}$? 46
$0+75 E 0+1705^{2}$ 2

$$
0+50 E 0+140 S^{\circ} 8
$$

$$
0+50 E 0+1505 \quad 10
$$

$$
0+50 E O+1605
$$

O+5OE $3+005$? 2
$0+75 \mathrm{E} 0+805 \quad \leq 1$
$0+75 \mathrm{E} 0+90 \mathrm{~S} \quad 29$
$0+75 E 0+180 S \quad 7$

SAMPLE		Al.t* pob
$0+75 E$	$0+1705$	4
O+75E	$0+2005$	1
$0+75$	$0+2255$	2
O+75E	$0+2505$	1
0+75E	$0+2755$	16
O+75E	$0+3005$	24
$0+75 \mathrm{SE}$	$1+005$	82
O+75E	$1+105$	2
0+75E	$1+205$	1
O+75E	$1+305$	1
0+75E	$1+405$	1
O+75E	$1+505$	1
$0+75 E$	$1+605$ -	3
$1+\mathrm{OOE}$	O+OOEL	6
$1+00 \mathrm{E}$	$0+10 \mathrm{~N}$	1.2
$1+$ OOE	$0+20 \mathrm{~N}$	17
$1+O O E$	$0+3 \mathrm{ON}$	6
$1+O O E$	$\mathrm{O}+4 \mathrm{ON}$	8
$1+25 E$	$1+\mathrm{OON}$	121
$1+25 E$	O+90N	12
$1+25 E$	$0+80 \mathrm{~N}$	30
$1+25 E$	O+70N	45
1+25E	$0+60 N$	45
1+25E	O+50N	17
$1+255$	$0+40 \mathrm{~N}$	13
1+25E	$\mathrm{O}+3 \mathrm{ON}$	31
1+25E	$0+20 \mathrm{~N}$	11
$1+25 \mathrm{E}$	$\mathrm{O}+1 \mathrm{ON}$	E
$1+25 E$	$0+00 \mathrm{BL}$	10
$1+25 E$	$0+205$	8
1+25E	$0+305$	4
$1+25 E$	$0+405$	4
1+25E	9+505	1
$1+25 E$	$0+605$	18
$1+25 \mathrm{E}$	$0+705$	10
$1+25 E$	$0+805$	1

SAMPIEE		Au*
		apb
1+25E	0.005	4
$1+25 E$	$1+005$	9
$1+256$	$1+109$	7
$1+25 \mathrm{E}$	$1+205$	6
$1+25 E$	$1+305$	18
$1+25 E$	$1+405$	\square
1+25E	$1+509$	11
$1+25 E$	$1+605$	6
$1+25 E$	$1+705$	5
$1+25 E$	$1+8305$	4
$1+255$	$1+905$	10
$1+25 E$	$2+005$	25
1+25E	$2+255$	21
$1+25 E$	$2+505$	16
$1+25 E$	$2+755$	54
$1+25 E$	$3+005$	15
$1+50 \mathrm{E}$	$1+00 \mathrm{~N} /$	8
$1+50 \mathrm{E}$	O+90N	19
1+ちOE	$0+80 \mathrm{~N}$	9
$1+50 \mathrm{E}$	$\mathrm{O}+70 \mathrm{~N}$	11
$1+505$	$0+60 N$	1.35
$1+50 \mathrm{E}$	$\mathrm{O}+5 \mathrm{ON}$	141
1+50E	$0+40 \mathrm{~N}$	43
$1+50 \mathrm{E}$	OHSON	17
$1+506$	$0+20 \mathrm{~N}$	22
$1+50 \mathrm{E}$	$\mathrm{O}+1 \mathrm{CN}$	9
1+50E	$0+10 \mathrm{BL}$	28
$1+50 \mathrm{E}$	$0+105$	8
1+5OE	$0+205 \mathrm{P}$	5
$1+50 \mathrm{E}$	$0+305$	32
1+5OE	$0+505$	34
$1+50 \mathrm{E}$	$0+605 \mathrm{P}$	7
1+5OE	$1+705$	16
1+50E	O+80	10
1+50E	0.4905	g
$1+50 \mathrm{E}$	$0+1005$	165

SAMPLEE	Au*
$1+50 E 1+105$	1
$1+50 \mathrm{E} \quad 1+205$	185
$1+50 E 1+305$	2
$1+5 \mathrm{OE} 1+40 \mathrm{~S}$	1
$1+50 E 1+505$	1
$1+50 \mathrm{E} \quad 1+60 \mathrm{~S}$	1
$1+50 E 1+705$	2
$1+50 \mathrm{E} 1+805$	1
1+50E 1+.905	
$1+50 \mathrm{E} 2+005$	1
1+50E 2+25s	17
$1+50 \mathrm{E} 2+405$	1
$1+50$ E 2+505	3
1+50E 2+75s	16
$1+75 E 0+80 \mathrm{~N}$	13
1+75E O+70N	10
$1+75 E 0+60 \mathrm{~N}$	1
$1+75 \mathrm{E} \quad 0+50 \mathrm{~N}$	185
1+75E O+40N	1
$1+75 E 0+30 \mathrm{~N}$	6
1+75E O+20N	1
$1+75 E \quad 0+10 \mathrm{~N}$	53
1+75E 0+00	15
$1+75 E \quad 0+105$	7
$1+75 E 0+205$	18
1+75E O+30S	35
1+75E 0+405	10
1+75E O+50S	12
1+75E 0+605	1
$1+75 \mathrm{E} \quad 0+705$	1
1+75E 0+805	2
1+75E 0+905	1
1+75E 1+005	1
$1+75 \mathrm{E} \quad 1+10 \mathrm{~S}$	1
1+75E $1+205$	1
$1+75 \mathrm{E} 1+305$	1

SAMPLIE		Au*
		吅口
1+75E	$1+409$	1
$1+75 E$	$1+505$	2
$1+75 E$	$1+605$	1
$1+75 E$	$1+705$	1
1+75E	$1+805$	1
1+75E	$1+905$	1
$1+75 E$	$2+005$	1
1+75E	$2+255$	1
1+75E	$2+505$	1
$2+O O E$	$\mathrm{O}+80 \mathrm{~N}$	\leq
$2+00 \mathrm{E}$	$0+70 \mathrm{~N}$	15
$2+00 E$	$0+6 \mathrm{ON}$	7
$2+00 \mathrm{E}$	$0+50 N$	5
$2+O O E$	$\mathrm{O}+4 \mathrm{ON}$	12
$2+00 \mathrm{E}$	$0+30 \mathrm{~N}$	26
$2+O O E$	$0+2 \mathrm{ON}$	6
2+00E	$0+10 \mathrm{~N}$	15
$2+O O E$	O+OOEL	26
$2+00 E$	$0+105$	2
$2+00 E$	$0+205$	60
$2+00 \mathrm{E}$	$0+305$	1
2+OOE	$0+405$	15
$2+0$ OE	$0+505$	14
$2+\mathrm{OOE}$	$0+605$	2
$2+005$	$0+705$	18
2+OOE	O+80S	15
$2+00 \mathrm{E}$	$0+905$	4
$2+O O E$	$1+005$	17
$2+00 \mathrm{OE}$	$1+105$	7
$2+O O E$	$1+205$	24
$2+000$	$1+305$	52
$2+\mathrm{OOE}$	$1+405$	1
$2+00 \mathrm{E}$	$1+505$	3
$2+$ OOE	$1+605$	1
$2+00 \mathrm{E}$	$1+709$	2
$2+O O E$	$1+805$	1

HIGH D'OR DEVELOPMENTS FROJECT BC-O4
FILE\# 86-4018
FAGE\# 17

SAMPLE	Au*
2+00E $1+005$	34
2+OOE 2+00S	2
2+00E $2+255$	9
2+00E 2+50S	1
$2+00$ E $2+755$	4
$2+00 E 3+005$	11
$2+25 E \mathrm{E}$ 1+60N	62
2+25E O+80N	36
$2+25 E 0+70 \mathrm{~N}$	17
$2+25 E 0+60 \mathrm{~N}$	30
2+25E $0+50 \mathrm{~N}$	4.3
$2+25 \mathrm{E} 0+40 \mathrm{~N}$	153
2+25E 0+30N	26
2+25E O+20N	35
$2+25 E 0+10 \mathrm{~N}$	$\Xi 1$
2+25E O+OOBL	65
$2+25 E 0+105$	30
2+25E 0+20S	16
2+25E 0+305	36
$2+25 E 0+405$	122
2+25E 0+505	4
$2+25 E 0+605$	132
$2+25 E 0+705$	12
2+25E 0+805	5
2+25E 0+905	1.2
2+25E 1+005 -	2
$2+50 \mathrm{E}$ O+90N	10
$2+50 E \quad 0+80 \mathrm{~N}$	41
2+50E 0+70N	179
$2+50 \mathrm{E} 0+60 \mathrm{~N}$	26
2+50E O+50N	3
$2+50 \mathrm{E} 0+4 \mathrm{ON}$	17
2+50E 0+30N	39
$2+50 \mathrm{E} 0+20 \mathrm{~N}$	2
$2+50 \mathrm{E} 0+10 \mathrm{~N}$	7
$2+50 E \quad 0+00 \mathrm{EL}$	27

SAMPLEE	Au*
2+50E O+OOBLA	55
$2+50 E 0+105$	127
$2+50 E 0+205$	20
$2+50 E$ O+30S	1
$2+50 E \quad 0+405$	1
2+50E 0+505	6
$2+50 E 0+605$	1
$2+50 \mathrm{E} \quad 0+705$	1
$2+50 E 0+805$	32
$2+50 E 0+905$ -	3
$2+75 E 0+90 \mathrm{~N}-$	25
2+75E O+80N	6
$2+75 E 0+70 \mathrm{~N}$	11
$2+75 \mathrm{E} \quad 0+6 \mathrm{ON}$	15
$2+75 E 0+50 \mathrm{~N}$	1
2+75E O+4ON	18
$2+75 E 0+30 \mathrm{~N}$	1
2+75E O+20N	1
2+75E O+10N	1
2+75E O+OOBL	12
2+75E: $0+105 \mathrm{P}$	1
2+75E O+205	34
$2+75 E 0+305$	11
2+75E O+405	2
2+75E 0+50s P	9
2+75E 0+605	12
$2+75 E 0+705$	1
2+75E 0+805	1
$2+75 E 0+905$	1
2+75E 1+005	2
$2+75 E 1+105-$	1
$3+\mathrm{OOE} \mathrm{O}+7 \mathrm{ON}$ -	39
$3+00 E 0+60 \mathrm{~N}$	20
$3+O O E \quad 0+50 \mathrm{~N}$	5
$3+00 E 0+40 \mathrm{~N}$	6
$3+O O E \quad O+3 O N$	2

SAMPLE AいDob
12
$3+00 E 0+20 N$
3+OOE O+1ON 6
3+OOE O+OOBL 8
$3+O O E \quad 0+105$ 205
T+00E 0+205 195
Z OOE O+SOS 2
$3+00 E 0+405$ 1
$3+O O E \quad 0+505$ 11
3+0OE 0+605 25
3+OOE O+70S 3
$3+00 E 0+605$ 14
$3+O O E \quad 0+905$ 2
3+00E $1+005$ 2
$3+25 E \quad 0+60 N$ 1
3+25E 0.5ON 5
$3+25 E \quad 0+40 \mathrm{~N}$ 1
$3+25 E 0+30 \mathrm{~N}$ 8
3+25E O+2ON 13
$3+25 E 0+10 N$ 22
$3+25 E \quad 0+O O E L$ 1
3+25E 0+205 7
$3+25 E 0+305$ 23
3+25E 0+405 4
3+25E 0+505 31
3+25E 0+605 34
$3+25 E \quad 0+705$ 3
$3+25 E 0+805$ 5
3+25E 0+905 1
3+25E $1+005$ 6
$3+25 E 1+10 S$ 1
3+25E $1+205$ 1
3+25E $1+305$ $\underset{\sim}{3}$
3+25E 1+409 2
$3+25 E 1+505$ 1
$3+25 E 1+609$ 1
$3+25 E 1+705$ 2

SAMPLE		Au*
3+25E:	$1+809$	1
T+25E	$1+905$	5
3+2SE	$2+005$	1.
\% +25 E	$2+255$	1
3+2GE	$2+509$	1
$3+50 E$	$0+60 \mathrm{C}$	1
3+50E	$0+50 \mathrm{~N}$	4
S+50E	$\mathrm{O}+4 \mathrm{ON}$	21
3+5OE	$0+30 \mathrm{~N}$	185
$3+50 E$	$0+2 \mathrm{ON}$	46
3+50E	$0+10 \mathrm{~N}$	4
$3+50 E$	O+OOEL	132
3+50E	$0+105$	28
$3+50 \mathrm{O}$	$0+205$	5
3+50E	$0+309$	10
3+5OE	O+40s	8
$3+50 E$	$0+505$	1
S+50E	$0+605$	2
3+50E	$0+705$	5
3+5OE	$0+805$	13
3+50E	$0+905$	22
S+5OE	$1+005$	15
$3+50 E$	$1+105$	5
$3+50 E$	$1+205$	58
3+50E	$1+405$	1
$3+50 E$	$1+605$	7
3+50E	$1+705$	2
$3+50 \mathrm{E}$	$1+805$	1
3+50E	$1+905$	1
$3+50 E$	$2+005$	1
3+50E	$2+25$	1
צ+50E	$2+505$	-
3+50E	$2+759$	1
$3+50 \mathrm{E}$	$5+005$	12
3+75E	$0+60 \mathrm{~N}$	22
$3+75 E$	$0+50 \mathrm{~N}$	1

SAMPI_E Au*
ppb
$3+75 E 0+40 \mathrm{~N}$ 7
$\mathrm{S}+75 \mathrm{E} 0+3 \mathrm{ON}$ 10
3+75E 0+20N 1
$3+75 E \quad 0+10 \mathrm{~N}$ 1
$3+75 E 6+005$ 3
$3+75 E 0+105$ 885
3+75E 0+205 18
3+75E 0+30S 12
$3+75 E 0+405$ 日
3+75E O+505 1
$3+75 E 0+605$ 13
3+75E 0+70S 51
3+75E 0+80 12
3+75E 0+905 4
3-75E $1+605$ 10
3+75E 1+105 11
3+75E $1+305$ 4
3+75E 1+405 7
3+75E $1+605$ 5
$3+75 E 1+705$ 15
3+75E 1+80S 2
$4+00 E \quad 0+60 \mathrm{~N}$ 8
$4+60 \mathrm{E} 0+50 \mathrm{~N}$ 7
$4+\mathrm{OOE}$ O+3ON 120
$4+00 \mathrm{E} 0+20 \mathrm{~N}$ 3
$4+O O E \quad 0+1 \mathrm{ON}$ 132
4+00E O+OOBL 16
4+OOE O+3OS 12
$4+00 E 0+405$ 13
$4+00 E$ O+50S 8
$4+00 E 0+605$ 9
$4+00 E$ O+7OS 1
$4+00 E 0+805$ 3
$4+00 E$ O+90S 2
$4+00 E$ 1+005 1
$4+$ OOE $1+10 \mathrm{~S}$ 1010

SAMPILE			Alu*
4+00E	$1+205$;	1.4
$4+0 \mathrm{OE}$	$1+\mathrm{SOS}$		14
$4+000$	$1+405$		4
$4+00 \mathrm{E}$	$1+505$		20
4+00E	$1+605$		4.4
$4+00 \mathrm{E}$	$1+705$		1
4+00E	$1+805$		7
$8+$ OOE	O+70N		10
$8+00 \mathrm{E}$	$0+60 \mathrm{~N}$		4
8+OOE O+5ON			1
8+00E	$0+40 \mathrm{~N}$		1
$8+00 E$	$\mathrm{O}+3 \mathrm{ON}$		10
$8+00 \mathrm{E}$	$0+20 \mathrm{~N}$		11
$8+00 \mathrm{E}$	O+10N		27
$8+505$	$0+60 \mathrm{~N}$		102
8+50E O+50N			3
$8+50 \mathrm{E}$	$0+40 \mathrm{~N}$		3
$8+50 \mathrm{E}$	O+30N		1
8+50E	$0+20 \mathrm{~N}$		1
$8+50 \mathrm{E}$	$\mathrm{O}+1 \mathrm{ON}$		5
8+50E	$0+00 \mathrm{~N}$,		1
9+OOE	$\mathrm{O}+1 \mathrm{ON}$		2
9+00E	$0+00 \mathrm{BL}$		19
$9+00 \mathrm{E}$	0+105		4
$9+00 E$	$0+305$		4
$9+00 E$	O+40s		15
9+00E	$0+505$		17
$9+00 \mathrm{E}$	$0+605$		1
9+00E	$0+705$		32
$9+00 E$	0+805		1
9+00E	0+905		2
$9+00 E$	$1+005$		77
$9+00 \mathrm{E}$	$1+105$		4
$9+\mathrm{OOE}$	$1+205$		2
$9+00 E 1+205 A$			20
$9+O O E$	$1+305$		

SAMPILE Au*opb
$9+50 \mathrm{E} 0+40 \mathrm{~N}$ 9
$9+50 E \quad O+3 O N P$ 1
$7+50 E 0+20 \mathrm{~N}$ 1
$9+50 \mathrm{E} 0+10 \mathrm{~N}$ 1
$9+50 E O+O O B L$ 55
$9+5$ OE $0+105$ 27
$9+50 E 0+205$ 5
$9+5$ OE $0+305$ 4
$9+50 E 0+405$ 11
$9+50 E \quad 0+505$ 1
$9+50 E 0+605$ 8
$9+50 E \quad 0+705$ 4
$9+50 E 0+805$ 1
$9+50 E \quad 0+905$ 1
$9+50 E 1+005$ 1
$9+50 E 1+105$ 6
$9+50 E 1+205$ 5
$9+50 E 1+305$ 1
$9+50 E 1+405$ 4
$9+50 E 1+505$ 17
$9+50 E 1+605$ 8
$9+50 E 1+705$ 9
$9+50 E 1+805$ 44
$9+50 E 1+905$ 21
$9+50 E 2+605$ 1
$9+50 E 2+105$ 1
$9+50 E 2+205 \mathrm{P}$ 1
$10+00 E \quad 0+40 \mathrm{~N}$ 1
$10+00 \mathrm{E} 0+20 \mathrm{~N}$ 3
$10+O O E O+10 \mathrm{~N}$ 1
$10+00 E 0+00 \mathrm{BL}$ 29
$10+O O E O+10 S$ 1
$10+00 \mathrm{E} 0+205$ 1
$10+00 E \quad 0+305$ 1
$10+00 E 0+405$ 1
$10+00 E$ O+50S 1

SAMPILE	Au* oob
10+00E 0+60s	14
$10+00 E 0+705$	1
$10+00 \mathrm{E} 0+805$	1
10+OOE O+90S	53
$10+100 E 1+005$	4
10+OOE $1+105$	1
$10+00 E 1+205$	1
10+OOE 1+3OS	1
$10+00 \mathrm{E} 1+405$	1
10+OOE 1+50S	1
10+00E 1+605	2
10+OOE $1+705$	1
$10+00 E 1+805$	2
$10+00 \mathrm{E} 1+905$	1
10+00E 2+00s	S
10+00E 2+105	1
10+00E $2+205$	2
$10+00 E 2+505$	1

oob
14
1
1
5
4
1
1
1
1
1

2
1
2
1
Z
1
2
1

APPENDIX V

ROCK DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

Camp Creek Showing

DF-7751
DF-7752
DF-7753
DF-7754
DF-7755
7.756 7757

DF-7758
7758
7759
7760
7761
7762
7763
DF-7764
DF-7765
7766
7767
7768
7769
7770
7771
7772 7773

DF-7774

DF-7775
7776
DF-7777
7778
DF-7779
7780
7781
7782
7783
DF-7784
grab, quartz vein with chalcopyrite grab, quartz vein with chalcopyrite grab, quartz vein with chalcopyrite and pyrite grab, wall rocks to quartz vein, altered granodiorite grabs, wall rock to quartz vein, argillically altered granodiorite
all grab samples of argillically altered granodiorite at contact of quartz veins. Trace to 2% pyrite in all samples.
grab, silicified granodiorite 1% disseminated pyrite
all grab samples of fresh to slightly argillicially altered granodiorite from Camp Showing, 1-2\% disseminated pyrite, no chalcopyrite visible silicification along l-2mm fractures is evident
grab, quartz vein with 5\% disseminated pyrite - quartz banded
grab, quartz veins with $<1 \%$ disseminated pyrite along fractures
grabs, quartz vein material with l-2\% disseminated pyrite and trace chalcopyrite
grabs, fresh to moderately altered granodiorite with no visible sulfides. Argillie alteration is most pronounced
grab, altered granodiorite with 2% disseminated pyrite

$\begin{array}{r} \mathrm{DF}-7785 \\ 7786 \end{array}$	grabs, fresh, unaltered granodiorite. No visible sulfides
DF-7787	grabs, quartz vein material with 2-3\% disseminated
7788	chalcopyrite and 1\% pyrite. Quartz is highly banded
7789	with l-2 mm lamellae.
DF-7790	grab samples of fresh to moderately altered
-7798	granodiorite, $1-2 \%$ disseminated pyrite no chalcopyrite. Granodiorite is slightly sheared, but alteration is
$\begin{array}{r} D F-2001 \\ -2008 \end{array}$	grab samples of unaltered granodiorite. No visible sulfides. Only minor fracturing.
Mid Pad Showing	
$\begin{array}{r} \mathrm{DF}-2009 \\ -2010 \end{array}$	grabs, quartz vein material with 2% disseminated galena and 1% disseminated pyrite.
DF-2011	grab, quartz vein stockwork with l-2\% disseminated galena and pyrite.
DF-2012	grab, quartz vein stockwork with 2% disseminated pyrite and trace galena.
$\begin{gathered} \mathrm{DF}-2013 \\ 2014 \end{gathered}$	grab, quartz vein with 2% disseminated pyrite. Quartz veins are somewhat banded and exhibit a layered texture.
DF-2015	grab, quartz vein with 1-2\% disseminated pyrite. Trace galena
DF-2016	Same as 2015
DF-2017	Same as 2015
DF-2018	grab, wall rock to quartz vein with up to 2% disseminated pyrite. High degree of fracturing is obvious in this sample.
$\begin{array}{r} \mathrm{DF}-2019 \\ 2020 \end{array}$	grab, wall rock to quartz veins unaltered, fresh granodiorite.
DF-2021	grab, unaltered granodiorite
$\begin{array}{r} \mathrm{DF}-2022 \\ 2023 \end{array}$	Same as 2021
DF-2024	grab, unaltered granodiorite

DF-2025	grab, unaltered granodiorite, no visible sulfides.
$\begin{array}{r} \mathrm{DF}-2026 \\ 2027 \end{array}$	grabs unaltered granodiorite with no visible sulfides.
DF-2031	grabs, relatively unaltered granodiorite with l-2\%
2032	disseminated pyrite. Rock is highly fractured.
2033	
DF-2034	grabs, relatively unaltered andesite with trace
2035	disseminated pyrite.
2036	
2037	
2038	
DF-2039	grab samples of fresh granodiorite. No visible
-2047	sulfides. No fracturing.
DF-2048	grab, quartz vein material with $1-2 \%$ disseminated pyrite.
DF-2049	grab, unaltered wall rock to quartz vein of 2048.
DF-2050	grab, quartz vein with 1% disseminated pyrite.
DF-2051	grabs, of relatively unaltered granodiorite.
-2053	silicification occurs along l-2 mm fracture sets.
DF-2054	grab samples of poorly altered granodiorite with 2\%
-2059	finely disseminated pyrite and trace pyrrhotite.

Junction Showing

DF-2160 grab, silicified, mylonitized granodiorite with 10% quartz augen and l-2\% disseminated pyrite.

DF-2161 grab samples of mylonitized granodiorite with $2-50 \mathrm{~mm}$ 2162 quartz augen and $1-2 \%$ disseminated very fine grained pyrite.

Reconnaissance Samples

DF-2163 grab samples of very fine grained, unaltered
-2166 granodiorite with 1-2\% disseminated pyrite.
DF-2951 grab samples of relatively unaltered granodiorite.
-2959 Pyrite occurs as disseminations along fracture planes.
DF-2860 grab samples of argillically altered granodiorite with
2866 with 1-2\% disseminated pyrite and trace chalcopyrite.

Dyke Showing

DF-2967 grab-highly sheared and silicified granodiorite with 2\% disseminated pyrite.

DF-2968 grab, relatively unaltered granodiorite
DF-2969 grab, silicified and highly sheared granodiorite with trace disseminated galena and 1% disseminated pyrite

DF-2970 grab, silicified and moderately well sheared
2971 granodiorite with 1\% disseminated pyrite.
DF-2972 grabs of silicified and quartz veined granodiorite with
2973 1\% disseminated pyrite, trace galena.
DF-2974 grab, unaltered granodiorite
DF-2975 grab, silicified and highly brecciated granodiorite with 1-2\% disseminated pyrite.

DF-2976 grabs of moderately well silicified and sheared
-2981 granodiorite with 3\% very fine grained pyrite.
DF-2982 grab sheared and silicified granodiorite, trace pyrite.
DF-2983 grab sheared and silicified granodiorite, no visible sulfides.

JS-1	fragmental andesite
JS-2902-VR	altered quartz diorite
2903	volcanic
2904	siliceous intrusive
2905	grey marble
2906	quartz carbonate
2907	volcanic
JS-6	mafic intrusive
2908	quartz vein
2909	vein wall rock
2910	shear breccia
2911	lom chip; quartz vein
2912	highly altered, (intrusive?)
2913	pyritic volcanic
2914	pyritic volcanic
2915	volcanic
025 E 090 S	chloritic quartz diorite
2916	fresh diorite
$075 \mathrm{E} 120 S$	fresh monzonite
2917	andesite
075 E 2755	diorite
2918	monzonite

```
SB-205l-VR lcm quartz veinlet, tr. sx.
    2052
    2 0 5 3
    2054
    2055
    2056
    2057
    2058
    2 0 5 9
    2060
    2061
    2062
    2063
    2 0 6 4
    2065
    2066
    2067
    2068
    2069
    2070
    2071
    2072
    2073
    2074
    2075
DB-2861-VR quartz vein, float
    2852
    2853
    2854
    2855
    2856
    2857
    2858
    2859
    * 2860
    2861
    2862
    2863
    2864
    2865
    2866
```

lcm quartz veinlet, tr. sx. quartz veinlets in monzonite altered quartz-monzonite sericite altered quart-monzonite quartz veinlets in quartz-monzonite sericitic and pyritic quartz-monzonite quartz vein; float quartz vein; to 25% sulfides pyritic, altered volcanic volcanic, minor sulfides silicified quartz-monzonite silicified and pyritic quartz-monzonite

" " "	"	"	"
"	"	"	"

pyritic granite silicified, pyritic sheared intrusive altered quartz monzonite; tr. py. siliceous altered quartz-monzonite? siliceous, sheared quartz-monzonite silicified shear zone siliceous intrusive 10 cm quartz vein
quartz vein, float volcanic, trace pyrite; float quartz monzonite? tr. py; float quartz vein, tr. py.; float quartz with disseminated py; float brecciated granodiorite, disseminated py. qz. - sericite altered granodiorite py. on fractures; float
pyritic granodiorite; float
limonitic sheared intrusive; float chalcedony veinlets, tr. py.; float mylonitic granodiorite mylonitic shear zone, qz. veinlets gouge from shear zone chloritic granodiorite sheared, altered granodiorite qz. vein in float

