LOG NO: 1124 RD. **ACTION:** FILE NO: 87-789

16472

SOIL AND ROCK GEOCHEMICAL

AND GEOLOGICAL INVESTIGATION

MERIT ET AL. MINERAL CLAIMS

SLOCAN MINING DIVISION

McGUIGAN CREEK, ZINCTON, B.C.

NTS 82 K/3 E

LATITUDE 50°01'N, LONGITUDE 117°13'W

FILMED

Prepared for

TROVE RESOURCES LTD.

SUB-RECORDER RECEIVED

AUG 1 3 1987

VANCOUVER, B.C.

ARCTEX ENGINEERING SERVICES

Locke B. Goldsmith, P.Eng. **Consulting Geologist**

> Paul Kallock **Consulting Geologist**

> > August 4, 1987

S 0

Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TYPE OF REPORT/SURVEYIS	TOTAL COST
Soil & Robe Geocremoter (Scalablate)	26400.57
AUTHOR(S) LOCKE B. COLISMITH SIGN	NATURE(S) Sand Kallock
DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILE	
PROPERTY NAME(S) MERIT, RICH, MERIT COURCE,	Kore, Meson, Trove, Meron My
COMMODITIES PRESENT	
B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN	
MINING DIVISION . Scorer	NTS . & Z.K. 3.E.
LATITUDE 50°01'NLON	GITUDE
NAMES and NUMBERS of all mineral tenures in good standing (when work (12 units); PHOENIX (Lot 1706); Mineral Lease M 123; Mining or Certified (Mining Lease ML 12 (claims involved)]:
MARIT M. 4159(11) MERIT, 4194(10)	Meer Cerre 4100(11)
MANT M. 4159(11); MERIT, 4194(10), KATE, 4460(9); RICH, 9787(9); A	Ameri Fr. 4481(9); MEGAN, 4224(2),
TROVE, 5167(1)	• • • • • • • • • • • • • • • • • • • •
OWNER(S)	·
(1) TROVE RESOURCES LTD (2)	
••••••	••••••
MAILING ADDRESS	
705-543 GRANDILLE ST	
VANCOUNER, BC	
OPERATOR(S) (that is, Company paying for the work)	
(1) L. L. COLDSMITH (2)	
•••••	
MAILING ADDRESS	
301-1855 SALSAM ST	
VANCOUNEE BIC.	
SUMMARY GEOLOGY (lithology, age, structure, alteration, mineralization,	, size, and attitude):
Clastic and Carlongte Siden	······································
Louis Junes Stangung	
and digher bedding and foll	
dip in varying attituder . Orela.	
funding sky to secumbert for	1. Usinto Silver. geochemical
a nemalier in sub have not get be	
REFERENCES TO PREVIOUS WORK Sec KLIFEREN.	es the w Kerin.

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
LOCATION MAP	3
CLAIM MAP	4
GEOLOGY	5
MINERALIZATION AND R	OCK GEOCHEMISTRY 7
SOIL GEOCHEMISTRY	. 9
CONCLUSIONS	12
RECOMMENDATIONS	14
COST ESTIMATE	14
PROFESSIONAL CERTIFIC	ATES 16
REFERENCES	18
COST STATEMENT, 1987 F	PROGRAMME 19
APPENDIX:	Analytical Procedures Geochemical Analyses
MAPS:	(Pocket inside back cover)
Kate Mineral Claim, C Kate Mineral Claim, S Maps: Pb, Zn, Ag Merit Center Mineral Pb, Zn, Ag Merit M Mineral Claim Merit M Mineral Claim Western Merit Mineral Western Merit Mineral	Geology Map Soil Geochemical Map, Pb, Zn, Ag Geology Map Soil Geochemical Claim, Geology Map Claim, Soil Geochemical Map,

SOIL AND ROCK GEOCHEMICAL AND GEOLOGICAL INVESTIGATION MERIT ET AL. MINERAL CLAIMS SLOCAN MINING DIVISION MCGUIGAN CREEK, ZINCTON, B.C.

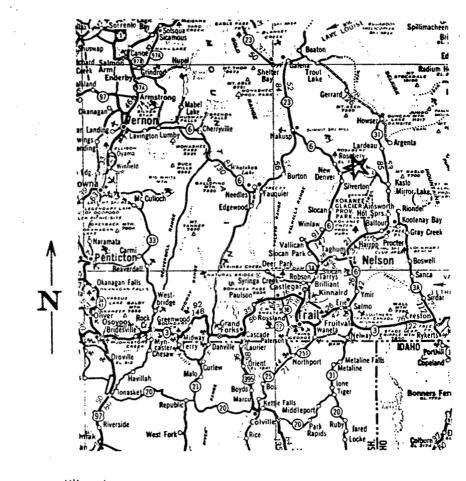
SUMMARY

The Merit mineral claim group consists of seven claims and a fractional claim, totalling 17.5 units or approximately 437.5 hectares. The claims are located in the vicinity of Seaton and McGuigan Creeks near the abandoned mining camp of Zincton, B.C. The nearest commercial centre is New Denver, B.C., 13 km to the west. During July 1987, broad-spaced soil geochemical sampling and geochemical sampling were carried out on two of the claims while more detailed sampling and mapping were undertaken on parts of three other claims. A total of 575 soil samples on 21.65 km of grid line was collected. Two areas of the soil survey contain anomalous silver values. They are underlain by argillite, phyllite, and limestone of the upper Triassic-lower Jurassic Slocan Group. Dozer trenching was also undertaken on eastern Merit and Rich claims where previous soil sampling had revealed anomalous silver. Quartz-pyrite veins hosted in calcareous siltstones and slaty argillite which have been intruded by pyritiferous granitic dykes and sills have been exposed in several of the bulldozer excavations. Additional detailed geological mapping, rock and/or soil geochemical sampling are to be undertaken over the new soil anomalies and in the dozer trench area. Results will be documented in a later report. Trenching and/or diamond drilling may be warranted at a cost of \$105,400.00.

INTRODUCTION

The property is located approximately 1.5 km south of the formerly productive Lucky Jim mine at Zincton in southeastern British Columbia. Highway 31A, which joins the towns of New Denver and Kaslo, crosses the west-central portion of the claims. The nearest centre of population where basic services can be obtained is New Denver, some 13 km to the west. A dirt road which departs southerly from Highway 31A some 1.5 km west of Zincton and ascends the east side of the valley of McGuigan Creek provides access to the Kate, Merit Center and Merit M claims and to the southwest corner of the Merit claim. A new road provides access to the Rich claim. The Famous Fraction claim is reached by foot. Highway 31A passes through the Trove claim. The Megan claim is situated on the steep slopes to the north of Highway 31A. Elevations range from 1975 m (3200') on the highway to 2100 m (6900') in the east portion of the Rich claim.

Claim Name	Units	Record Number	Recording Date
Merit M	4	4159(11)	Nov. 29, 1983
Merit	4	4144(10)	Oct. 31, 1983
Merit Center	4	4160(11)	Nov. 29, 1983
Kate	4	4480(9)	Sept. 4, 1984
Rich	2	4787(9)	Sept. 3, 1985
Famous Fraction	<1	4481(9)	Sept. 4, 1984
Megan	2	4224(2)	Feb. 14, 1984
Trove	4	5167(1)	Jan. 5, 1987


Total land holding is 24 units and one very small fraction, amounting to some 600 hectares less approximately 6.5 units (162.5 hectares) in pre-existing bounding claims, for a net of 17.5 units in 437.5 hectares. Various claim posts and boundaries were observed. The claims are situated in the Slocan Mining Division, NTS Map Sheet 82 K/3 E.

History of production in the surrounding area was reviewed in a recent report (Tully, 1984) and is not repeated herein.

Geological mapping and soil geochemical sampling have been conducted on the property in 1985 and 1986. The 1987 programme included additional mapping and sampling in anomalous areas which were detected during the previous surveys. Extensive sampling was also

TROVE RESOURCES LTD. MERIT CLAIM GROUP

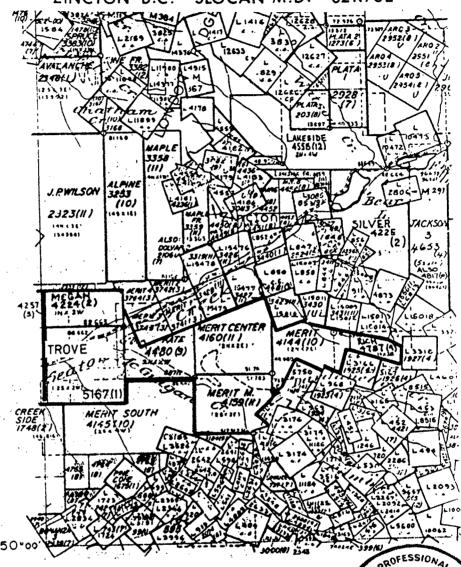
ZINCTON B.C. SLOCAN M.D. 82K/3E

Kilometres

0 12 24 48

PROPERTY LOCATION MAP

ARCTEX ENGINEERING SERVICES


Locke B. Goldsmith, P.Eng. Consulting Geologist

Paul Kallock Consulting Geologist

August 1987

TROVE RESOURCES LTD. MERIT CLAIM GROUP

ZINCTON B.C. SLOCAN M.D. 82K/3E

Claim Map

TO ACCOMPANY REPORT BY

LOCKE B. GOLDSMITH, P. Eng. CONSULTING GEOLOGIST

PAUL KALLOCK
CONSULTING GEOLOGIST

HOLINCE OF ONTRE

0 500 1000 metres 1:50,000

ARCTEX ENGINEERING SERVICES JULY 1987

carried out at the Merit M and Trove claims. Dozer trenching with geological mapping was undertaken at the Merit and Rich claims.

Trove Resources Ltd. has spent \$65,287.24 on exploration to date. Former operators conducted work on the Merit M claim (\$1646.03) and Trove (formerly Merit West) claim (±\$8000.00) for a total of approximately \$9650.00. Staking, acquisition, and option payments made by Trove Resources Ltd. amount to \$25,545.00 cash and \$7500.00 in stock. The above items represent a total direct expenditure of \$107,982.24 on the property.

GEOLOGY

Rocks exposed within the claims and in the surrounding area belong to the upper Triassic to lower Jurassic Slocan Group, a suite of argillite, phyllite, quartzite and limestone, with occasional tuffaceous horizons. Granitic dykes, sills and stocks of variable composition are emplaced into all older strata. A more detailed description of the individual claims surveyed during 1987 follows.

Trove Mineral Claim

The Trove mineral claim (formerly the Merit West claim) straddles Highway 31A and Seaton Creek. The survey grid area covers the slopes on the south side of Seaton and McGuigan creeks which also encompasses part of the Kate and Merit South mineral claims. Part of the old K&S Railroad grade bisects the Trove claim.

Metasedimentary rocks which belong to the upper Triassic-lower Jurassic Slocan Group are the most abundant rock types found on the claim. They included grey to black argillite and slaty argillite, and lesser phyllite. At one location near the middle of the claim banded light grey and black argillites have been metamorphosed to resemble a stretched pebble conglomerate.

The metasediments display a northwest strike and a moderate to steep southwest dip of foliation. In a few locations bedding was seen to parallel the foliation. And at one location (25+00W 2+20N) graded bedding revealed that the beds were overturned. Folds were not observed.

Granitic dykes or sills were noted at 24+00W 1+50N and at 21+50W 8+20N. Large (greater than 4 m thick) granitic sills also intrude argillite along the lower reaches of McGuigan Creek.

Kate and Merit South Claims

A small grid area was surveyed at the southern Kate claim to focus on anomalous silver in soils detected in 1985 (Goldsmith, 1985). The Kate/Merit South claim line was found and measurements from a prominent tributary of McGuigan Creek has lead to a refinement of the location of the previous grid and claim boundaries as shown on the maps included in the pocket of this report.

West- to northwest-trending argillite underlies the grid area. Bedding dips moderately to the south. As at the Trove claim, granitic dykes are also present.

Merit Center Claim

East-west trending, moderately southward dipping argillite was seen at the Merit Center grid area. Outcrops are small and sparse due to a relatively thin veneer of overburden and abundant vegetation.

Merit M Claim

Black argillite, slate and shale with lesser siltstone and phyllite are most abundant at the Merit M claim. Limestone is present in sub-horizontal beds near the road at 1+00N 5+00N and in folded beds along Dardanelles Creek at 1+00S 3+00W. A biotite granodiorite dyke was seen at 1+00S 2+00W.

Generally the metasediments trend northwesterly, however folding and faulting have disrupted the beds in several localities. At 1+25S 2+25W a recumbent anticlinal fold plunges gently to the northwest. Slightly upstream, the folded area has been faulted and beds have been greatly distorted. Faulting along bedding planes was seen at 0+50S 7+00W indicating normal dip-slip movement.

Western Merit Claim

A detailed grid was established in the western part of Merit claim. Occasional outcrops of argillite were found. Beds dip steeply to the southwest. At 4+50N 2+25E dark grey limestone with interbedded argillite was seen which trends northwesterly as nearly vertical beds.

32275

Old exploration pits and trenches are present near 4+00N 1+75E. Argillite hosts a 1.0 m quartz vein in one of the pits.

Rich and Eastern Merit Claims

In 1986 a detailed soil and rock geochemical sampling programme was conducted in the eastern part of the Merit and the Rich claims. During the 1987 exploration programme a Caterpillar D6D bulldozer was used to excavate across areas of anomalous silver in soils which had been obtained in the 1986 survey. From 6+25N 13+00E to 7+50N 7+50E, 1.35 km of dozer road trenching was undertaken. In addition, over 1.0 km of road from the Dardanelles drainage basin was constructed to gain access to the area. A 1:1250 scale map of the road-trench area is included in the pocket of this report.

The accompanying geology map shows that the detailed grid area is underlain primarily by slaty argillite of the Slocan Group. The metasediments trend northwesterly but have been folded and faulted, and dips of bedding vary from horizontal to vertical.

Limestone is interbedded with the argillite. Near the surface it weathers to a black, soft, carbonaceous rock. Width of beds varies from a few centimetres to several metres. Fist-size limestone balls or lenses were also seen within the argillite.

Cross-cutting and parallel dykes and sills of fine- to medium-grained granite intrude the metasediments between 13+00E and 10+50E. The dozer roads have clearly exposed the same dykes along several switchbacks. These intrusives range from 0.1 to 1.5 m in width. They are composed of abundant fine-grained quartz and lesser feldspar. Mafic minerals are not common. Pyrite is ubiquitous, accounting for 3-5% of the rock. Attitude of the dykes ranges from horizontal to near vertical.

MINERALIZATION AND ROCK GEOCHEMISTRY

Trove Claim

Sulphide mineralization was seen in black argillite at the old adit portal at 3+90N 29+80W. Two to three percent disseminated pyrite and intense brown limonite occur along numerous parallel fractures which trend N70°W 50-55°N. A 1.0 m chip sample across 8 of these fractures contained 2 ppm Pb, 860 ppm Zn, 0.4 ppm Ag, and <5 ppb Au. The adit is more

than 12 m long. Fallen timbers beyond 5.5 m from the portal prohibit further examination. The adit appeared to be driven along the zone of strongest fracturing.

Approximately 30 m southeast of the adit a 3 m long pit or trench has been excavated in black shaly argillite which contains 2% fine-grained pyrite. Foliation of the argillite trends N75°W 52°S. A 2.0 m chip sample across the south face of the pit at 3+80N 29+50W contained 5 ppm Pb, 400 ppm Zn, 0.7 ppm Ag, and <5 ppb Au.

Phyllite and argillite in talus near 8+00N 24+90W contain irregular pyrite veinlets. Outcrops along the old railroad grade above this area displayed bull quartz veins. A rock sample of the talus float contained 117 ppm Pb, 63 ppm Zn, and 8.2 ppm Ag.

Kate and Merit South

Most outcrops in the Kate/Merit South grid area display irregular limonite or iron oxide staining. Near 4+50N 17+75W small patches of quartz with traces of disseminated pyrite were noted.

During ingress to the grid area a cobble of massive galena was seen in the creek which flows northward into McGuigan Creek at 4+50N 15+10W. Source of the galena must be toward the south in the steep north-facing slopes of the Merit South claim or possibly from the old St. Keverne Mine which lies above the Merit South at 1830 m (6000') elevation. It is noteworthy that in the early 1900s, 16 tons of silver-lead ore was shipped from the St. Keverne Mine which averaged 144 oz Ag/ton and 78% lead (Cairnes, 1935).

Merit Center

Minor disseminated pyrite was seen in argillite at 8+85N 7+25W. At 10+00N 6+80 to 6+95W black platy argillite outcrops show weak pyrite coatings on fractures. Toward the northeast, along line 10+50N, float cobbles of aplite or fine-grained granite were seen to contain minor quartz veins and disseminated pyrite.

42.5

Merit M Claim

Occasional quartz veins are present in argillite near the Dardanelles-McGuigan Creek confluence. The veins are vertical and strike northeasterly. Further to the east, near 1+25S 2+00W, quartz veins are concentrated on the footwall side of a northwest-trending fault. The

veins diminish 1-2 m from the fault. Slightly upstream a biotite granodiorite shows traces of disseminated pyrite.

In the north-central part of the claim, near 0+00 5+25W, outcrops of phyllite and calcareous siltstone protrude through the talus. These outcrops contain up to 2% disseminated pyrite and locally strong hematite and orange-brown limonite. No mine waste or contaminants were seen on the slopes above line 0+00 in this area.

Western Merit Claim

The old exploration pits and trenches near 4+00N 1+75E were sampled in 1985 and found to be relatively barren. No other quartz veins or sulphides were seen in outcrop in the grid area.

Near 3+00N 0+00E float cobbles of porous calcareous sandstone (?) with strong limonite were seen. A diligent search for similar material upslope toward the northeast did not locate mineralization in outcrop.

Rich and Eastern Merit Claims

Strong quartz and limonite-pyrite mineralization is present in at least four areas in the Rich/Merit detail grid area. These include 6+72N 12+40E, 7+10N 11+70E, 7+50N 11+75E, and 7+25N 10+50E. Each area is similar in that slaty argillite and/or limestone host quartz-limonite-pyrite veins near granitic dykes or sills. The granitic intrusions also contain disseminated pyrite and occasional quartz veinlets.

Elsewhere in the grid area, slates and argillites are iron-stained, and quartz veining is irregular and sporadic.

SOIL GEOCHEMISTRY

A total of 575 soil samples were analysed for silver, lead, and zinc. Analytical procedure is included in the Appendix. Soils were collected with a narrow, elongate spade from 30 to 45 cm below organic debris. Coverage was directed toward resampling three areas on the Kate, Merit Center and Merit claims where highly anomalous silver and zinc values had been obtained during the 1985 survey. Broader coverage was also undertaken at the Trove and Merit M claims.

The following table shows the results of lognormal probability graphs which are used to segregate populations of metal values and thus determine background, threshold, and anomalous values of silver, lead, and zinc in soils overlying Slocan Group rocks. These plots have been derived from years of cumulated data.

	Ag, ppm	Pb, ppm	Zn, ppm
Background	<2.3	<38	Possibly two
Threshold	2.3 to 4.9	38 to 150	populations
Anomalous	>4.9	>150	>980

Trove Mineral Claim

From the Trove claim grid area, 171 soil samples were collected. Values of lead range from 6 to 88 ppm, zinc ranges from 140 to 5000 ppm, and silver from 0.1 to 10.0 ppm.

No anomalous lead values were obtained. High geochemical levels which were reported previously (Verzosa, 1984) were not duplicated in the present work. Fifteen soil samples contained more than 980 ppm Zn. Two of the anomalous zinc samples occur below the old adit at 3+90N 29+80W. Zinc mineralization is probably present within the pyritiferous slaty argillites at this area.

The remaining anomalous zinc values are scattered in the southeast part of the Trove claim and adjoining Kate and Merit South claims. Iron-stained pyritiferous metasediments are also common in the area.

One anomalous silver value was acquired from soils at the east boundary of the grid area at 5+00N 20+00W. Here, 10.0 ppm silver is present along with 1000 ppm Zn. This sample lies within the Kate claim and is part of a broader anomalous silver zone as will be described in the following section.

Kate and Merit South Claims

In the Kate grid area south of McGuigan Creek, 44 soil samples were collected. Values of lead range from 12 to 91 ppm, zinc ranges from 123 to 2180 pm, and silver from 0.2 to 6.3 ppm.

No anomalous lead values are present in the soils. Thirteen soil samples contain over 980 ppm Zn. Five of those samples are clustered in the northwest part of the grid where anomalous silver is also present. Here, a group of five samples contains between 5.0 and 6.3 ppm silver. Black argillite is exposed in cliffs south of (above) these samples.

Merit Center Claim

In the Merit Center grid area, 122 soil samples were collected. Values of lead range from 1 to 65 ppm, zinc ranges from 78 to 4900 ppm, and silver from 0.1 to 4.9 ppm.

No anomalous lead values were encountered in the grid area. Ten samples contain over 980 ppm Zn, and one sample was anomalous in silver with 4.9 ppm.

The high zinc values are scattered across the entire grid area. The few outcrops which were mapped show argillite which trends west to northwest. Slope direction and drainage are also downward to the northwest.

Merit M Claim

One hundred and forty-two soil samples were collected from the Merit M grid area. Values of lead range from 7 to 3700 ppm, zinc ranges from 88 to 9000 ppm, and silver from 0.5 to 88.0 ppm.

Seven soil samples contain more than 150 ppm lead. Five of these samples are contiguous and are located on line 0+00. Anomalous values of zinc and silver are also present in these samples. At 0+00 5+50W soils contained 3700 ppm Pb, 5000 ppm Zn, and 88.0 ppm Ag. The area below this sample shows signs of past activity such as old cut stumps and an old pack trail. However no disturbance is seen above (northeast of) the sample until the road is reached at 1+00N 4+00W. No mine waste or ore which may have been dumped or lost was seen on these slopes.

At other locations anomalous samples may be attributed to contamination from roads or old workings. At 0+00 2+00W an old tram line may have dropped ore. At 2+00N 5+50W and 6+00W debris from the road may have fallen down the bank. Similar contamination may have occurred at 2+00N 9+50W and 1+00N 8+50W. At 4+00S 10+00W, 9000 ppm Zn was recovered near a stream. Contamination from mine workings to the southwest may have reached this area.

At 1+00S 3+00W, 6.8 ppm silver is present in soils. No contamination is expected in this area. Limestone and argillite outcrop in the creek to the southeast.

Western Merit Claim

In the western part of the Merit claim 96 soil samples were collected. Values of lead range from 5 to 120 ppm, zinc from 47 to 980 ppm, and silver from 0.1 to 8.8 ppm.

No anomalous lead values were received. One anomalous zinc value of 980 ppm was returned from the north-central part of the grid.

Five samples contain more than 4.9 ppm Ag. Three noncontiguous samples occur in the old exploration trench area. They cannot be tied to a particular mineralized vein or zone. Two samples along the baseline contain anomalous silver (>4.9 ppm). No source for such values was seen.

CONCLUSIONS

Extensive soil geochemical sampling and broad geological mapping indicate that several areas of the Trove claim group require more detailed geochemical sampling and geological mapping. Other areas appear less attractive as potential mineralized targets and do not warrant further exploration at this time.

A summary of the results from work on each claim are as follows.

Trove Claim

High zinc values are associated with pyritiferous black slaty argillite near the adit and pit area at 3+90N 29+80W. Northwest-trending fractures and small shears are not hosted in competent or brittle rock.

Scattered high zinc in soils is also present in the southeast part of the claim. These are not accompanied by anomalous silver. Zinc is attributed to high background levels inherent in the pyritiferous slate.

Kate Claim

The southwest corner of the Kate claim (depicted on the Trove and Kate grid maps) contains numerous soil samples with anomalous silver ranging from 4.9 to 10.0 ppm and zinc up to 2040 ppm. Outcrops of iron-stained slaty argillite are present in the area. Source of metals is unexplained.

Merit Center Claim

In the Merit Center grid area scattered anomalous zinc values were returned from the soil sampling. No particular source or definite target area can be delineated from the sparse outcrop area. Only one soil sample contained anomalous silver of 4.9 ppm. It was not accompanied by significant base metals.

Merit M Claim

Contamination from human activity along roads, old trails, tram lines and mine dumps has caused several apparent soil anomalies on the Merit M claim. Two areas which display high silver values that may not be caused by contamination occur on the north side of McGuigan and Dardanelles creeks.

On line 0+00 from 5+00 to 7+00W anomalous lead, zinc and silver values (up to 3700, 5000, and 88.0 ppm, respectively) are present in soils in an area where weakly pyritiferous phyllite and limestone are present.

A single soil anomaly of 6.8 ppm Ag at 1+00S 3+00W also remains to be fully explained.

Merit Claim - West Grid

In the western part of the Merit claim, detailed sampling over previously detected soil anomalies confirmed silver values up to 8.8 ppm. However, other anomalous soil samples are scattered and not accompanied by significant base metals. A single exploration target is not apparent.

Merit and Rich Claims

Dozer excavating in the areas of anomalous silver detected in the previous soil geochemical surveys was successful in expressing mineralized bedrock. Quartz-pyrite veins within limestone and slaty argillite, intruded by pyritiferous granitic dykes and sills, have been exposed in numerous dozer cuts. A source of metals is not yet apparent.

RECOMMENDATIONS

No additional work is recommended on the Trove, Merit Center or western part of the Merit claims at this time.

Detailed soil and rock geochemical sampling in addition to geological mapping is warranted at the southwestern part of the Kate claim. Similar methods should be used at the Merit M claim to explain or pinpoint the source of high lead, zinc and silver in soils on line 0+00. If results are favourable trenching to expose bedrock could begin. A dozer or backhoe could reach the Merit M grid area quite easily. However, pick and shovel trenching are more logical in the steep and relatively less accessible parts of the upper Kate claim.

Rock chip and soil samples will be collected from the Merit/Rich dozer trench area to aid in locating a source of metals. Although no lead, zinc or silver minerals were seen in outcrop, it is expected that these samples may help explain the anomalous soil values.

COST ESTIMATE

Phase 2

3000

Detailed som and rock goodiennear sampling, goodgreat mapping, and a	il and rock geochemical sampling, geological mapping, and trenc	hing.
--	---	-------

Geological mapping	\$ 2,500
Soil and rock geochemical sampling, hand trenching	3,000
Geochemical analyses	1,500
Dozer or backhoe trenching	4,000
Food and lodging	400
Transportation	600

Engineering and supervision	1,000	
Reporting	_1,000	
Contingencies @ 10%	14,000 	
Total, Phase 2	15,400	\$ 15,400

Phase 3

Diamond drilling, one area, allow 250 m @ \$120/m

35,000

Phase 4

Diamond drilling, possibly 2 areas, allow 500 m @ \$120/m

Total, Phases 2, 3, and 4

55,000

\$105,400

Results of Phase 2 should be compiled into an engineering report; continuance to Phase 3 should be contingent upon favourable conclusions and recommendations from an Engineer.

Respectfully submitted,

Locke B. Goldsmith, P.Eng. Consulting Geologist

Paul Kallock

Consulting Geologist

Vancouver, B.C. August 4, 1987

ENGINEER'S CERTIFICATE LOCKE B. GOLDSMITH

- 1. I, Locke B. Goldsmith, am a registered Professional Engineer in the Province of Ontario and the Northwest Territories, and a Registered Professional Geologist in the State of Oregon. My address is 301, 1855 Balsam Street, Vancouver, B.C.
- 2. I have a B.Sc. (Honours) degree in Geology from Michigan Technological University, a M.Sc. degree in Geology from the University of British Columbia, and have done postgraduate study in Geology at Michigan Tech and the University of Nevada. I am a graduate of the Haileybury School of Mines, and am a Certified Mining Technician. I am a Member of the Society of Economic Geologists, the AIME, and the Australasian Institute of Mining and Metallurgy, and a Fellow of the Geological Association of Canada.
- 3. I have been engaged in mining exploration for the past 28 years.
- 4. I have authored the report entitled, "Soil and Rock Geochemical and Geological Investigation, Merit et al. Mineral Claims, Slocan Mining Division, McGuigan Creek, Zincton, B.C.", dated August 4, 1987. The report summarizes three of my previous reports which were based upon fieldwork and research supervised on the property by the author.
- 5. I have no ownership in the property, nor in the stocks of Trove Resources Ltd.
- 6. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds.

Respectfully submitted,

Locke B. Goldsmith, P.Eng. Consulting Geologist

Vancouver, B.C. August 4, 1987

GEOLOGIST'S CERTIFICATE PAUL KALLOCK

I, Paul Kallock, do state: that I am a Geologist with Arctex Engineering Services, 301 - 1855 Balsam Street, Vancouver, B.C.

I Further State That:

- 1. I have a B.Sc. degree in Geology from Washington State University, 1970. I am a Fellow of the Geological Association of Canada.
- 2. I have engaged in mineral exploration since 1970, both for major mining and exploration companies and as an independent geologist.
- 3. I have authored the report entitled, "Soil and Rock Geochemical and Geological Investigation, Merit et al. Mineral Claims, Slocan Mining Division, McGuigan Creek, Zincton, B.C." The report is based on my fieldwork carried out on the property and on previously accumulated geologic data.
- 4. I have no direct or indirect interest in any manner in either the property or securities of Trove Resources Ltd., or its affiliates, nor do I anticipate to receive any such interest.
- 5. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds.

Paul Kallock Geologist

tallack

Vancouver, B.C. August 4, 1987

REFERENCES

- Cairnes, C.E. 1935. Description of Properties, Slocan Mining Camp, B.C. GSC Memoir 184.
- Chung, P.P.L. 1986. Geological and Geophysical Report, Merit M Claim, Slocan Mining Division. Private report for Murjoh Resources Inc.
- Goldsmith, L.B. 1985. Geology and Soil Geochemistry, Merit et al. Mineral Claims, Slocan Mining Division, McGuigan Creek, Zincton, B.C. Private report for Trove Resources Ltd.
- Goldsmith, L.B. 1986. Detailed Geology and Soil Geochemistry, Merit and Rich Mineral Claims, Slocan Mining Division, McGuigan Creek, Zincton, B.C. Private report for Trove Resources Ltd.
- Tully, D.W. April 3, 1984. Report on the Merit Mineral Claim, Seaton Creek-McGuigan Creek-Zincton Area, Slocan Mining Division, Sandon, B.C. Private report for Trove Resources Ltd.
- Tully, D.W. 1985. Report on the Smoke 1-4, Silver and Merit M Mineral Claims, Seaton Creek-McGuigan Creek-Zincton Area, Slocan Mining Division, Sandon, B.C. Private report for West Columbia Energies Inc.
- Verzosa, R.S. 1984. Geochemical Soil Survey and VLF-Electromagnetic Survey on the Merit West Mineral Claim, Slocan Mining Division. Assessment report for Aegis Resources Ltd.

COST STATEMENT, 1987 PROGRAMME

W	a	gε	25	:
* *	ч		- 5	

L.B. Goldsmith, 1/2 June 23, 1/2 24 1/2 July 21, 1/2 22, 1/2 31, 1/2 August 2, 1/2 3, 4, total 4-1/2 days @ \$400/day	\$ 800		
P. Kallock, 1/4 June 15, 23, 24, 25, July 6, 7, 1/4 8, 9, 29, 30, 31, August 1, total 10-1/2 days @ \$330/day	3,465		
A. Charest, June 23-25, July 6-10, August 2, total 9 days @ \$230/day	2,070		
M. Beaupre, June 23-25, July 6-10, August 2, total 9 days @ \$230/day	2,070		
P. Malkin, July 6-10, total 5 days @ \$230/day	1,150		
G. Bennett, 1/2 June 23, 24, 1/2 29, July 2-8, total 9 days @ \$230/day			\$12,625.00
	12,023		\$12,023.00
Accommodation, Food, Supplies:			
\$1,955.87 divided by 47 man days = \$41.61/man/day			1,955.87
Transportation:			
4x4 vehicles, 10 days @ \$45/day 1598 km @ \$0.30/km Gas Air fare	450.00 479.40 133.50 <u>104.80</u> 1,167.70	my	
\$1,167.70 divided by 10 days = \$116.70/day			1,167.70

Analyses:

575 soil samples cost \$3018.75 = \$5.25/sample

3,018.75

Dozer Trenching:

D6D Cat, 51 hr @ \$82.50/hr Lowered transport, 7 hr @ \$65/hr

4,156.50 <u>455.00</u> 4,606.50

4,606.50

Report:

Drafting, photocopying, typing, materials

3,026.75

TOTAL:

37773

\$26,400.57

APPENDIX

Analytical Chemists • Geochemists • Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

A8718092

Comments: CC: PAUL KALLOCK

CC: ARCTEX ENG. SERV.

CERTIFICATE A8718092

ARCTEX ENGINEERING

PROJECT : MERIT WEST

P.O.# : NONE

Samples submitted to our lab in Vancouver, BC. This report was printed on 22-JUL-87.

	SAMP	LE PREPARATION
CODE CODE	NUMBER SAMPLES	DESCRIPTION
2 0 1 2 0 3	1 5 7	Dry, sieve -80 mesh: soil, sed. Dry, sieve -35 mesh and ring

ANALYTICAL PROCEDURES

	NUMBER SAMPLES		DESCR I PT 10			i	METHOD	DETECTION LIMIT	UPPER LIMIT	
5	1 5 8 1 5 8 1 5 8	Zn	ppm:	HNO3-aqua HNO3-aqua HNO3-aqua	regia	digest			1 1 0.1	10000 10000 200
									f	

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C.

V6K 3M3

Project : MERIT WEST

Comments: CC: PAUL KALLOCK

CC: ARCTEX ENG. SERV.

Page No. :1 Tot. Pages:1

Date : 30-JUL-87 Invoice #: I-8718093

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8718093

SAMPLE DESCRIPTION	PRE			Zn ppm		Au ppb FA+AA					
3+80N 29+50W 3+90N 29+80W	205 205		5 2	400 860	0 . 7 0 . 4	< 5 < 5					
								:			
								:			
		-				,					
			·								
							 		-1-1	LR ' 6	

CERTIFICATION: 1 tent buchler

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT WEST

Comments: CC: ARCTEX, SILVERTON, BC

Page No. :1 Tot. Pages:1

Date : 27-JUL-87 Invoice #: I-8718200

P.O. # :NONE

CC: PAUL KALLOCK

CERTIFICATE OF ANALYSIS A8718200

SAMPLE DESCRIPTION	PRE	Pb ppm	Zn ppm	Ag ppm Aqua R					
MW 8+00N 24+90W	205	 117	63	8.2				·	
							-		
						·			
	1							,	
					To the state of th				
					,				

CERTIFICATION : 1 Start Suchler

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER.
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Comments: CC: PAUL KALLOCK

CC: ARCTEX ENG. SERV.

A8718093

CERTIFICATE A8718093

ARCTEX ENGINEERING

PROJECT : MERIT WEST

P.O.# : NONE

Samples submitted to our lab in Vancouver, BC. This report was printed on 30-JUL-87.

	SAMP	PLE PREPARATION
	number Samples	DESCRIPTION
205	2	Rock & core: Ring
•		

			A	NALY	TICAL	PROCE	DURE:	S	
CODE	NUMBER SAMPLES			DESC	RIPTION	METHOD		DETECTION LIMIT	UPPER LIMIT
4 5 6 1 0 0	2 2 2 2 2	Zn Ag	ppm:	HNO3-aqua HNO3-aqua HNO3-aqua Fuse 10 s	regia dige regia dige	est AAS		1 1 0 . 1 5	10000 10000 200 10000

			,						

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 ~ 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT M

Comments: CC: ARCTEX - SILVERTON, BC CC: PAUL KALLOCK

Page No.:1 Tot. Pages: 4 Date::27

Date :27-JUL-87 Invoice #:I-8718231 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8718231

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
MS 0+00 0+00 MS 0+00 0+50W MS 0+00 1+00W MS 0+00 1+50W MS 0+00 2+00W	201 201 201 201 201	2 1 2 3 2 0 3 7 6 2 0	430 830 335	2 . 7 2 . 5 1 . 8 1 . 7 8 . 0			,	
MS 0+00 2+50W MS 0+00 3+00W MS 0+00 3+50W MS 0+00 4+00W MS 0+00 4+50W	201 201 201 201 201	46 46 60 49 115	620 510 520 560 670	2 . 3 1 . 8 1 . 1 0 . 9 3 . 8				
MS 0+00 5+00W MS 0+00 5+50W MS 0+00 6+00W MS 0+00 6+50W MS 0+00 7+00W	201 201 201 201 201	310 3700 2100 270 580	3800 5000 4750 850 2800	9.0 88.0 45.0 5.0 18.5				
MS 0+00 7+50W MS 0+00 8+00W MS 0+00 8+50W MS 0+00 9+00W MS 0+00 9+50W	201 201 201 201 201	2 2 1 1 4 4 1 5 9	700 560 1000 212 102	2 . 0 1 . 9 2 . 4 2 . 2 0 . 7				
MS 0+00 10+00W MS 1+00N 0+00W MS 1+00N 0+50W MS 1+00N 1+00W MS 1+00N 1+50W	201 201 201 201 201	17 35 38 61 24	188 800 660 485 930	0 . 8 1 . 1 4 . 0 1 . 2 3 . 9				
MS 1+00N 2+00W MS 1+00N 2+50W MS 1+00N 3+00W MS 1+00N 3+50W MS 1+00N 4+00W	201 201 201 201 201	31 35 30 46 22	760 250 670 550 550	2 . 8 1 . 3 3 . 6 2 . 6 3 . 6				
MS 1+00N 4+50W MS 1+00N 5+00W MS 1+00N 5+50W MS 1+00N 6+00W MS 1+00N 6+50W	201 201 201 201 201	2 3 1 3 5 4 6 2 2 2 8	470 250 325 600 480	0 . 8 3 . 6 0 . 7 1 . 9 0 . 8				
MS 1+00N 7+00W MS 1+00N 7+50W MS 1+00N 7+90W MS 1+00N 8+50W MS 1+00N 9+00W	201 201 201 201 201	19 25 39 27	380 465 455 2400 1300	1 · 4 2 · 3 1 · 0 2 · 5 1 · 2				

CERTIFICATION : _

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT M

Comments: CC: ARCTEX - SILVERTON, BC CC: PAUL KALLOCK

Page No. :2 Tot. Pages: 4

Date : 27-JUL-87 Invoice #: I-8718231

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8718231

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
MS 1+00N 9+50W MS 1+00N 10+00W L 1+00S 1+00W L 1+00S 1+50W L 1+00S 2+00W	201 201 201 201 201	44 20 115 38 19	760 134 390 630 470	2 · 0 4 · 4 2 · 3 1 · 3 2 · 4			. ,	
L 1+00S 2+50W L 1+00S 3+00W L 1+00S 3+50W L 1+00S 4+00W L 1+00S 4+50W	201 201 201 201 201	11 20 30 32 23	1 1 1 3 8 0 2 8 7 1 8 0 6 0 0	0.9 6.8 2.0 2.3 1.4				
L 1+00S 5+00W L 1+00S 5+50W L 1+00S 6+00W L 1+00S 7+00W L 1+00S 7+50W	201 201 201 201 201	18 33 63 29 19	317 455 490 435 710	1 · 5 1 · 6 2 · 2 2 · 3 2 · 3				
L 1+00S 8+00W L 1+00S 8+50W L 1+00S 9+00W L 1+00S 9+50W L 1+00S 10+00W	201 201 201 201 201	32 22 17 11 25	450 213 230 100 209	1 . 0 0 . 9 0 . 5 3 . 2 1 . 9				
L 2+00N 0+50W L 2+00N 1+00W L 2+00N 1+50W L 2+00N 2+00W L 2+00N 2+50W	201 201 201 201 201	2 4 2 1 1 8 1 7 1 8	600 620 440 500 500	2 · 5 3 · 1 4 · 1 4 · 3 1 · 9				
L 2+00N 3+00W L 2+00N 3+50W L 2+00N 4+00W L 2+00N 4+50W L 2+00N 5+00W	201 201 201 201 201	15 21 17 17 18	490 500 360 263 412	1 · 4. 0 · 7 1 · 9 4 · 6 1 · 8				
L 2+00N 5+50W L 2+00N 6+00W L 2+00N 6+50W L 2+00N 7+00W L 2+00N 7+50W	201 201 201 201 201	23 24 25 30 17	900 1110 375 820 1120	5.0 5.4 1.1 1.3 0.8				
L 2+00N 8+00W L 2+00N 8+50W L 2+00N 9+00W L 2+00N 9+50W L 2+00N 10+00W	201 201 201 201 201	17 15 18 255 26	430 310 540 1600 190	1 · 0 3 · 4 2 · 4 7 · 4 4 · 4	•			

CERTIFICATION : __

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE , NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C.

V6K 3M3 Project : MERIT M

Comments: CC: ARCTEX - SILVERTON, BC CC: PAUL KALLOCK

Page No. : 3 Tot. Pages: 4

Date :27-JUL-87

Invoice #:I-8718231 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8718231

SAMPLE DESCRIPTION	PREP CODE	4	Zn ppm	Ag ppm Aqua R				
L 2+00S 2+00W L 2+00S 2+50W L 2+00S 3+00W L 2+00S 3+50W L 2+00S 4+00W	201 201 201 201 201	39 22 26 19 16	500 530 780 1650 170	4.0 2.8 4.0 3.0 0.6				
L 2+00S 4+50W L 2+00S 5+00W L 2+00S 5+50W L 2+00S 6+00W L 2+00S 6+50W	201 201 201 201 201	23 138 19 18 20	450 720 485 474 244	1 . 2 3 . 3 2 . 6 1 . 9 1 . 4				
L 2+00S 7+00W L 2+00S 7+50W L 2+00S 8+00W L 2+00S 8+50W L 2+00S 9+00W	201 201 201 201 201	1 7 1 9 1 8 2 7 1 6	2 2 1 1 7 1 2 4 5 4 9 0 1 6 5	2 · 8 0 · 9 2 · 0 1 · 8 2 · 0				
L 2+00S 9+50W L 2+00S 10+00W L 3+00S 3+00W L 3+00S 3+50W L 3+00S 4+00W	201 201 201 201 201	1 1 1 0 1 4 6 7 2 0	1 90 99 95 3 50 2 5 5	1 · 1 0 · 9 1 · 0 2 · 3 1 · 7				
L 3+00S 4+50W L 3+00S 5+00W L 3+00S 5+50W L 3+00S 6+00W L 3+00S 6+50W	201 201 201 201	3 4 1 7 2 0 1 5 1 4	225 145 420 295 106	1 . 3 1 . 3 0 . 9 1 . 6 1 . 9				
L 3+00S 7+00W L 3+00S 7+50W L 3+00S 8+00W L 3+00S 8+50W L 3+00S 9+00W	201 201 201 201	2 2 1 7 1 1 1 1 1 2	176 194 115 333 160	1.0 1.1 1.5 1.0				
L 3+00S 9+50W L 3+00S 10+00W L 4+00S 3+00W L 4+00S 3+50W L 4+00S 4+00W	201 201 201 201 201	9 7 19 19	165 228 311 322 88	1 . 1 0 . 9 1 . 4 1 . 8 0 . 6				
L 4+00S 4+50W L 4+00S 5+00W L 4+00S 5+50W L 4+00S 6+00W L 4+00S 6+50W	201 201 201 201	1 2 2 4 1 4 2 3 · 1 9	166 300 172 313 185	1 · 3 1 · 5 2 · 5 1 · 5 0 · 9				

CERTIFICATION: Start Buchler

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1
PHONE (604) 984-0221

To : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT M

Comments: CC: ARCTEX - SILVERTON, BC CC: PAUL KALLOCK

Page No.: 4 Tot. Pages: 4

Date :27-JUL-87 Invoice #:I-8718231 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8718231

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R					7
L 4+00S 7+00W L 4+00S 7+50W L 4+00S 8+00W L 4+00S 8+50W L 4+00S 9+00W	201 201 201 201 201	1 2 1 2 1 3 9 1 1	96 136 150 157	1 . 6 1 . 3 0 . 9			. `		1
L 4+00S 9+50W L 4+00S 10+00W L 5+00S 3+00W L 5+00S 3+50W L 5+00S 4+00W	201 201 201 201 201	1 1 2 7 2 0 1 8 2 3	214 9000 320 281 570	1 . 9 2 . 9 1 . 2 1 . 8 3 . 4					
L 5+00S 4+50W L 5+00S 5+00W L 5+00S 5+50W L 5+00S 6+00W L 5+00S 6+50W	201 201 201 201 201	37 21 12 19 30	780 225 180 465 430	2.0 1.3 1.8 0.6 2.7					
L 5+00S 7+00W L 5+00S 7+50W L 5+00S 8+00W L 5+00S 8+50W L 5+00S 9+00W	201 201 201 201 201	2 2 1 5 3 1 2 7 2 4	490 157 540 730 410	1 . 5 0 . 6 1 . 8 1 . 8 3 . 5					7
L 5+00S 9+50W L 5+00S 10+00W	201	2 8 1 6	460 470	3 . 2 1 . 4					-
				,					

CERTIFICATION: StartBuckley

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT WEST

Comments: CC: ARCTEX, SILVERTON, BC CC: PAUL KALLOCK

Page No. :1 Tot. Pages:1

Date :27-JUL-87 Invoice #:I-8718199 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8718199

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
MW 8+00N 20+50W MW 8+00N 21+00W MW 8+00N 21+50W MW 8+00N 22+00W MW 8+00N 22+50W	201 201 201 201 201	1 3 1 5 1 1 2 4 1 9	1 455	0.9 0.4 0.1				
MW 8+00N 23+00W MW 8+00N 23+50W MW 8+00N 24+00W MW 8+00N 24+50W MW 8+00N 25+00W	201 201 201 201 201	1 1 1 1 1 5 1 7 1 6	415 460 500	0.5 1.0 0.5				
MW 8+00N 25+50W	201	25	300	1.2				

CERTIFICATION: HouthBuchler

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER.
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT WEST

Comments: CC: PAUL KALLOCK

CC: ARCTEX ENG. SERV.

Page No. :1 Tot. Pages: 4

Date :22-JUL-87 Invoice #:I-8718092

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8718092

N 2+00N 20+00W	SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
LN 2+00N 23+50W 201 14 215 1.6 LN 2+00N 23+50W 201 14 215 1.6 LN 2+00N 24+50W 201 14 215 1.6 LN 2+00N 25+50W 201 17 110 0.8 LN 2+00N 25+50W 201 14 200 0.1 LN 2+00N 25+50W 201 14 200 0.1 LN 2+00N 25+50W 201 14 200 0.1 LN 2+00N 26+50W 201 14 200 0.1 LN 2+00N 27+50W 201 14 200 0.1 LN 2+00N 27+50W 201 14 200 0.1 LN 2+00N 27+50W 201 12 200 0.1 LN 2+00N 27+50W 201 12 200 0.1 LN 2+00N 28+50W 201 18 200 0.7 LN 2+00N 29+50W 201 18 200 0.7 LN 2+00N 29+50W 201 33 3 285 0.7 LN 2+00N 30+50W 201 33 3 285 0.7 LN 2+00N 30+50W 201 34 205 1.4 20	LN 2+00N 20+50W LN 2+00N 21+00W LN 2+00N 21+50W	201 201 201	2 8 3 6 1 8	515 570 1030	1 · 3 0 · 8 2 · 7			,	
LN 2+00N 26+50W 201	LN 2+00N 23+00W LN 2+00N 23+50W LN 2+00N 24+00W	201 201 201	14	205 215 243	1.5				
LN 2+00N 28+50W 201	LN 2+00N 25+50W LN 2+00N 26+00W LN 2+00N 26+50W	201 201 201	17 14 14	310 325 200	0 . 8 0 . 6 0 . 1				
LN 2+00N 30+50W 201 14 205 1.4 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	LN 2+00N 28+00W LN 2+00N 28+50W LN 2+00N 29+00W	201 201 201	1 5 2 8 1 4	508 280 245	0 · 4 0 · 7 0 · 4				
LN 3+00N 21+00W 201 16 365 0.6 LN 3+00N 22+50W 201 22 940 2.0 LN 3+00N 22+50W 201 18 225 0.7 LN 3+00N 23+50W 201 15 360 1.3 LN 3+00N 23+50W 201 22 295 0.5 LN 3+00N 24+00W 201 15 400 1.1 LN 3+00N 24+50W 201 15 500 1.9 LN 3+00N 25+50W 201 15 500 1.9 LN 3+00N 25+50W 201 16 380 1.3 LN 3+00N 25+50W 201 22 210 0.7 LN 3+00N 26+50W 201 22 210 0.7 LN 3+00N 26+50W 201 16 380 1.3 LN 3+00N 26+50W 201 16 250 0.5	LN 2+00N 30+50W LN 2+00N 31+00W LN 2+00N 31+50W	201 201	1 4 9 1 1	205 197 210	1.4				
LN 3+00N 23+50W 201 22 295 0.5 LN 3+00N 24+50W 201 15 400 1.1 LN 3+00N 25+50W 201 17 770 2.2 LN 3+00N 25+50W 201 16 380 1.3 LN 3+00N 26+50W 201 22 210 0.7 LN 3+00N 26+50W 201 22 210 0.7 LN 3+00N 26+50W 201 16 250 0.5 LN 3+00N 27+00W 201 16 250 0.5	LN 3+00N 21+00W LN 3+00N 21+50W LN 3+00N 22+00W	201 201	1 4 1 6 2 2	790 365 940	1.4				
LN 3+00N 26+00W 201 22 210 0.7 LN 3+00N 26+50W 201 10 160 1.8 LN 3+00N 27+00W 201 16 250 0.5	LN 3+00N 23+50W LN 3+00N 24+00W LN 3+00N 24+50W	201 201 201	2 2 1 5 1 5	295 400 500	0.5 1.1 1.9				
	LN 3+00N 26+00W LN 3+00N 26+50W LN 3+00N 27+00W	201 201 201	2 2 1 0 1 6	2 1 0 1 6 0 2 5 0	0.7 1.8 0.5				

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCIEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT WEST

Comments: CC: PAUL KALLOCK

CC: ARCTEX ENG. SERV.

Page No. :2

Tot. Pages: 4
Date : 22-JUL-87
Invoice #: I-8718092
P.O. #: NONE

CERTIFICATE OF ANALYSIS A8718092

SAMPLE DESCRIPTION	PREP CODE	Рь ppm	Zn ppm	Ag ppm Aqua R					
LN 3+00N 28+00W LN 3+00N 28+50W LN 3+00N 29+00W LN 3+00N 29+50W LN 3+00N 30+00W	201 201 201 201 201	9 1 5 1 9 1 0 1 9	155	1 . 6 1 . 1 0 . 5 1 . 4 0 . 9			,		
LN 3+00N 30+50W LN 3+00N 31+00W LN 3+00N 31+50W LN 3+90N 26+00W LN 3+90N 26+50W	201 201 201 201 201	1 4 2 0 1 6 2 8 1 0	495	0 . 3 2 . 1 0 . 7 0 . 7 0 . 5					
LN 3+90N 27+00W LN 3+90N 27+50W LN 3+90N 28+00W LN 3+90N 28+50W LN 3+90N 29+00W	201 201 201 201 201	13 30 10 13 19		0 · 3 1 · 0 0 · 5 0 · 2 0 · 4					
LN 3+90N 29+50W LN 3+90N 30+00W LN 3+90N 30+50W LN 3+90N 31+00W LN 3+90N 31+50W	201 201 201 201 201	1 9 1 0 3 0 2 4 1 3	840 5000 2180 390 225	1 · 2 1 · 3 1 · 5 0 · 4 0 · 5					
LN 4+00N 20+50W LN 4+00N 21+00W LN 4+00N 21+50W LN 4+00N 22+00W LN 4+00N 22+50W	201 201 201 201 201	1 4 1 2 1 3 1 7 1 3	1 0 8 0 5 0 5 4 2 0 2 9 5 0 2 0 3 0	3 · 7 1 · 6 3 · 5 3 · 9 0 · 1					
LN 4+00N 23+00W LN 4+00N 23+50W LN 4+00N 24+00W LN 4+00N 24+50W LN 4+00N 25+00W	201 201 201 201 201	1 4 1 9 1 4 1 2 1 5	270	0.5 0.5 0.5 1.5 0.7					
LN 4+00N 25+50W LN 4+00N 26+00W LN 4+00N 26+50W LN 4+00N 27+00W LN 4+00N 27+50W	201 201 201 201 201	1 4 1 2 1 6 1 9 1 2	250 325	0.7 1.2 0.9 0.7 0.3					
LN 4+00N 28+00W LN 4+00N 28+50W LN 4+00N 29+00W LN 4+00N 29+50W LN 4+00N 30+00W	201 201 201 201 201	6 9 1 2 1 2 1 4	200 162 200 250 390	0 · 4 1 · 0 1 · 6 1 · 4 1 · 2				•	

CERTIFICATION: Tout Buchler

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0121

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT WEST

Comments: CC: PAUL KALLOCK

CC: ARCTEX ENG. SERV.

Page No. :3 Tot. Pages: 4

Date :22-JUL-87 Invoice #:1-8718092

P.O. # : NONE

CERTIFICATE OF ANALYSIS A8718092

	REP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
LN 4+00N 31+00W 20 LN 4+00N 31+50W 20 LN 5+00N 20+00W 20	01 — 01 — 01 — 01 —	1 6 1 1 1 3 3 5 1 2	275 192 225 1000 215	1 . 8 1 . 2 1 . 9 10 . 0 0 . 9				
LN 5+00N 22+00W 20 LN 5+00N 22+50W 20	01 01 01 03 01	19 14 11 11	688 690 335 365 390	1 . 1 0 . 3 0 . 2 0 . 6 1 . 2				
LN 5+00N 24+50W 20 LN 5+00N 25+00W 20	01	1 2 2 1 2 0 1 4 1 6	580 1100 448 340 435	0.3 0.4 0.5 0.8 0.3				
LN 6+00N 21+50W 20 LN 6+00N 22+00W 20	01	13 15 17 19 16	145 363 610 430 162	1 . 3 1 . 1 0 . 6 0 . 3 1 . 3				
LN 6+00N 23+00W 20 LN 6+00N 23+50W 20 LN 6+00N 24+00W 20 LN 6+00N 24+50W 20 LN 6+00N 25+00W 20	01 — 01 — 01 —	6 14 14 17 58	280 400 525 2130 1730	0 . 8 1 . 1 0 . 9 1 . 5 2 . 2				
LN 6+00N 25+50W 20 LN 6+00N 26+00W 20 LN 6+00N 26+50W 20 LN 6+00N 27+00W 20 LN 6+00N 27+50W 20	01 01 01	1 4 2 1 1 6 1 0 8	295 390 287 178 315	0.5 0.6 0.6 0.7 2.2				
LN 6+00N 28+00W 20 LN 6+00N 28+50W 20 LN 6+00N 29+00W 20 LN 6+00N 29+50W 20 LN 6+00N 30+00W 20	01	23 14 12 12 15	240 355 183 238 240	0.7 0.5 0.9 1.4 0.8				
LN 6+00N 30+50W 20 LN 6+00N 31+00W 20 LN 6+00N 31+50W 20 LN 7+00N 20+00W 20 LN 7+00N 20+50W 20	01	23 16 13 25 15	275 440 220 1450 880	0.3 3.6 0.8 1.5			de	

CERTIFICATION:

212 BROOKSBANK AVE. NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : MERIT WEST

Comments: CC: PAUL KALLOCK CC: ARCTEX ENG. SERV.

Page No. :4 Tot. Pages: 4

Date : 22-JUL-87 Invoice #: I-8718092

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8718092

SAMPLE DESCRIPTION	PREP CODE		Zn ppm	Ag ppm Aqua R					
LN 7+00N 21+00W LN 7+00N 21+50W LN 7+00N 22+00W LN 7+00N 22+50W LN 7+00N 23+00W	201 201 201 201 201	1.4 1.3 6 9 1.5	620 470 150 255 2200	0 . 3 1 . 2 0 . 2 0 . 2 1 . 2			. `		
LN 7+00N 23+50W LN 7+00N 24+00W LN 7+00N 24+50W LN 7+00N 25+00W LN 7+00N 25+50W	201 201 201 201 201	12 13 12 8 35	805 930 1250 370 1500	1 . 3 0 . 5 1 . 7 1 . 2 2 . 8					
LN 7+00N 26+00W LN 7+00N 26+50W LN 7+00N 27+00W LN 7+00N 27+50W LN 7+00N 28+00W	201 — 201 — 201 — 201 — 201 —	44 14 18 24 19	505 128 470 310 268	0.9 0.6 0.2 1.8 0.6					
LN 7+00N 28+50W LN 7+00N 29+00W LN 7+00N 29+50W LN 7+00N 30+00W LN 7+00N 30+50W	201 201 201 201 201	19 12 10 13	393 323 408 170 310	0.5 0.4 1.9 0.8 1.9					
LN 7+00N 31+00W LN 7+00N 31+50W LN 7+50N 30+00W LN 7+50N 30+50W LN 7+50N 31+00W	201 201 201 201 201	12 19 12 15	368 260 170 258 320	1.0 0.7 0.8 0.7 0.3					
LN 7+50N 31+50W LN 9+00N 20+50W LN 9+00N 21+00W LN 9+00N 21+50W LN 9+00N 22+00W	201 201 201 201 201	16 88 12 11 8	335 670 320 310 300	0.2 1.9 0.3 0.7 0.5					
LN 9+00N 22+50W LN 9+00N 23+00W LN 9+00N 23+50W LN 9+00N 24+00W LN 9+00N 24+50W	201 201 201 201 201	16 15 17 24 25	360 178 353 238 300	0.9 0.2 0.4 0.1					
LN 9+00N 25+00W LN 9+00N 25+50W LN 9+00N 26+00W	201 201 201	16 17 34	195 215 140	0 . 1 0 . 4 0 . 1				_	

tout Bichler CERTIFICATION : .

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : TROVE

Comments: CC: ARCTEX ENGINEERING CC: PAUL KALLOCK

Page No.: 1 Tot. Pages: 4

Date : 7-JUL-87 Invoice #: I-8717061

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8717061

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R					
L07+50N 07+50W L07+50N 07+75W L07+50N 08+00W L07+50N 08+25W L07+50N 08+50W	201 201 201 201 201	4 2 2 5 1 9 3 1 2 1	590 280 334 1040 430	3 · 1 2 · 2 1 · 8 2 · 2 2 · 0					
L07+50N 08+75W L07+50N 09+00W L07+50N 09+25W L07+50N 09+50W L07+50N 09+75W	201 201 201 201 201	2 4 1 8 1 6 1 7 1 2	300 350 78 165 270	0.9 2.2 0.1 0.4 2.3					
L07+50N 10+00W L08+00N 07+50W L08+00N 07+75W L08+00N 08+00W L08+00N 08+25W	201 201 201 201 201	1 6 2 3 2 5 2 5 2 0	225 650 840 500 1000	1 · 0 2 · 2 4 · 9 3 · 8 2 · 3					
L08+00N 08+50W L08+00N 08+75W L08+00N 09+00W L08+00N 09+25W L08+00N 09+50W	201 201 201 201 201	2 7 1 9 1 7 1 3 2 0	500 500 500 265 455	0.6 1.0 1.9 0.6				`	
L08+00N 09+75W L08+00N 10+00W L08+50N 07+50W L08+50N 07+75W L08+50N 08+00W	201 201 201 201 201	1 5 2 0 1 7 1 3 2 0	500 300 500 490 1600	0.5 1.5 1.0 0.5					
L08+50N 08+25W L08+50N 08+50W L08+50N 08+75W L08+50N 09+00W L08+50N 09+25W	201 201 201 201 201	16 26 17 21 19	440 715 320 500 350	0 · 2 2 · 8 1 · 0 1 · 8 2 · 0					
L08+50N 09+50W L08+50N 09+75W L08+50N 10+00W L09+00N 06+75W L09+00N 07+00W	201 201 201 201 201	15 18 16 31 39	380 550 520 905 1015	0.9 1.7 1.0 3.4 2.1					
L09+00N 07+25W L09+00N 07+50W L09+00N 07+75W L09+00N 08+00W L09+00N 08+25W	201 201 201 201 201	2 0 2 8 3 0 2 6 2 4	2000 2850 700 2200 940	2 · 0 2 · 9 2 · 3 1 · 7 0 · 6	·			•	

CERTIFICATION : _

Analytical Chemists • Geochemists • Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : TROVE

Comments: CC: ARCTEX ENGINEERING CC: PAUL KALLOCK

Page No. :2 Tot. Pages: 4

Date : 7-JUL-87 Invoice #: I-8717061 P.O. #: NONE

A8717061 CERTIFICATE OF ANALYSIS

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
L09+00N 08+50W L09+00N 08+75W L09+00N 09+00W L09+00N 09+25W L09+00N 09+50W	201 201 201 201 201	2 3 1 9 1 8 2 0 2 0	500 565 380 445 340	1 · 2 0 · 7 0 · 2 0 · 5 1 · 6			, `	
L09+00N 09+75W L09+00N 10+00W L09+50N 05+00W L09+50N 05+25W L09+50N 05+50W	201 201 201 201 201	13 22 17 11 16	310 390 330 220 250	1 . 7 0 . 4 3 . 5 2 . 2 3 . 8				
L09+50N 05+75W L09+50N 06+00W L09+50N 06+25W L09+50N 06+50W L09+50N 06+75W	201 201 201 201 201	15 22 20 18 24	385 500 540 475 930	1 . 6 1 . 8 1 . 5 2 . 2 1 . 7				
L09+50N 07+00W L09+50N 07+25W L09+50N 07+50W L09+50N 07+75W L09+50N 08+00W	201 201 201 201 201	22 30 23 24 15	570 4900 600 720 470	2 . 8 2 . 0 0 . 9 0 . 8 0 . 4				
L09+50N 08+25W L09+50N 08+50W L09+50N 09+00W L09+50N 09+25W L09+50N 09+50W	201 201 201 201 201	22 23 24 14 9	350 430 650 405 365	1 . 0 0 . 5 0 . 7 0 . 4 0 . 3				
L09+50N 09+75W L09+50N 10+00W L10+00N 04+75W L10+00N 05+25W L10+00N 05+75W	201 201 201 201 201	11 65 18 21 14	270 300 440 460 190	1 . 7 1 . 2 1 . 1 2 . 4 0 . 6				
L10+00N 06+25W L10+00N 06+75W L10+00N 07+25W L10+50N 02+50W L10+50N 02+75W	201 201 201 201 201	24 19 15 16 24	470 430 900 370 320	2 . 4 0 . 5 3 . 6 1 . 3 1 . 2				
L10+50N 03+00W L10+50N 03+25W L10+50N 03+50W L10+50N 03+75W L10+50N 04+00W	201 201 201 201 201	15 13 14 12 10	320 300 310 170 305	0 · 4 2 · 5 4 · 0 0 · 9 1 · 2				

CERTIFICATION :

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : TROVE

Comments: CC: ARCTEX ENGINEERING CC: PAUL KALLOCK

Page No.: 3 Tot. Pages: 4

Date : 7-JUL-87 Invoice #: I-8717061 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8717061

SAMPLE DESCRIPTION	PREP CODE	1 - 1	Zn ppm	Ag ppm Aqua R				
L10+50N 04+25W L10+50N 04+50W L10+50N 04+75W L10+50N 05+00W L10+50N 05+25W	201 201 201 201 201	1 4 1 4 1 5 1 8 1 7	200 310 345 1050 490	1 . 8 3 . 3 1 . 6 3 . 2 2 . 8			 ·	
L10+50N 05+50W L10+50N 05+75W L10+50N 06+00W L10+50N 06+25W L10+50N 06+50W	201 201 201 201	20 13 19 13 21	465 255 305 260 370	0.9 0.5 0.8 0.8				
L10+50N 06+75W L10+50N 07+00W L10+50N 07+25W L10+50N 07+50W L11+00N 02+25W	201 201 201 201 201	16 13 11 17 13	770 550 174 1200 245	3.3 3.1 0.5 1.6				
L11+00N 02+50W L11+00N 02+75W L11+00N 03+00W L11+00N 03+25W L11+00N 03+50W	201 201 201 201	12 11 12 13 14	200 280 290 160 235	0 · 3 2 · 2 2 · 3 0 · 9 1 · 2				
L11+00N 03+75W L11+00N 04+00W L11+00N 04+25W L11+00N 04+50W L11+00N 04+75W	201 201 201 201	15 16 21 1 20	400 235 275 5 310	0.5 0.3 0.8 0.1				
L11+00N 05+00W L11+00N 05+25W L11+00N 05+50W L11+00N 05+75W L11+00N 06+00W	201 201 201 201	2 2 1 7 1 2 1 6 1 2	340 180 400 315 355	1.5 0.5 0.5 0.4 0.2				
L11+00N 06+25W L11+50N 02+50W L11+50N 02+75W L11+50N 03+00W L11+50N 03+25W	201 201 201 201 201	3 2 1 8 1 7 1 4 1 2	2 9 0 1 6 5 2 3 0 1 9 0 1 5 0	0.3 0.1 1.2 0.4 0.4				
L11+50N 03+50W L11+50N 03+75W L11+50N 04+00W L11+50N 04+25W L11+50N 04+50W	201 201 201 201	1 3 1 6 1 2 8 1 5	250 280 185 370 485	0 · 1 0 · 2 0 · 1 0 · 8 1 · 3	:		•	

CERTIFICATION : .

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C.

V6K 3M3 Project : TROVE

Comments: CC: ARCTEX ENGINEERING CC: PAUL KALLOCK

Page No. :4
Tot. Pages:4
Date : 7-JUL-87
Invoice #:I-8717061

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8717061

SAMPLE DESCRIPTION	PRE	Рь ppm	Zn ppm	Ag ppm Aqua R					
L11+50N 04+75W L11+50N 05+00W	201 201	 1 6 1 9	350 210	2 · 2 0 · 3					
							,		
·									
		,				,		1.12.0	

tout sichler CERTIFICATION : _

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : TROVE

Comments: CC: ARCTEX ENG. CC: PAUL KALLOCK

Page No. :1 Tot. Pages: 3

Date : 2-JUL-87 Invoice #: I-8716859

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8716859

SAMPLE DESCRIPTION	PREP CODE	1	1	Ag ppm Aqua R					
TR 3+00S 0+25E TR 3+00N 0+75E TR 3+50N 0+00E TR 3+50N 0+25E TR 3+50N 0+50E	201 201 201 201 201	18 16 14 19	590 510 430 455 590	1.0 2.1 5.2 1.5			. ,		
TR 3+50N 0+75E TR 3+50N 1+00E TR 3+50N 1+25E TR 3+50N 1+50E TR 3+50N 1+75E	201 — 201 — 201 — 201 — 201 —	1 3 1 0 1 2 1 8 1 5	460 458 500 422 580	1 . 6 1 . 7 1 . 1 1 . 7 1 . 4			!		
TR 3+50N 2+00E TR 4+00N 0+25E TR 4+00N 0+75E TR 4+00N 1+25E TR 4+00N 1+75E	201 201 201 201 201	1 4 1 8 1 2 1 3 1 3	486 510 410 660 300	1 . 6 3 . 8 2 . 6 2 . 8 2 . 0					
TR 4+00N 2+25E TR 4+00N 2+75E TR 4+00N 3+25E TR 4+50N 0+00E TR 4+50N 0+25E	201 201 201 201 201	30 10 10 12 15	207 300 450 205 270	6 · 2 1 · 7 0 · 1 3 · 8 2 · 6				,	
TR 4+50N 0+50E TR 4+50N 0+75E TR 4+50N 1+00E TR 4+50N 1+25E TR 4+50N 1+50E	201 201 201 201 201	1 4 1 2 1 2 1 2 0 1 5	182 426 133 300 238	0 · 2 1 · 1 0 · 2 8 · 8 1 · 5					
TR 4+50N 1+75E TR 4+50N 2+00E TR 4+50N 2+25E TR 4+50N 2+50E TR 4+50N 2+75E	201 201 201 201 201	1 6 1 4 2 0 1 0 1 7	250 407 200 295 230	1.7 5.8 4.0 0.9 1.6			:		
TR 5+00N 0+00E TR 5+00N 0+25E TR 5+00N 0+50E TR 5+00N 0+75E TR 5+00N 1+00E	201 201 201 201 201	40 8 18 19 6	246 127 155 205 47	2 . 0 0 . 4 0 . 7 1 . 4 1 . 0					
TR 5+00N 1+25E TR 5+00N 1+50E TR 5+00N 1+75E TR 5+00N 2+00E TR 5+00N 2+25E	201 201 201 201 201	15 22 18 -25 5	190 156 395 393 87	0 · 7 2 · 2 2 · 0 1 · 7 0 · 3				•	

CERTIFICATION: Hartoschler

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE , NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : TROVE

Comments: CC: ARCTEX ENG. CC: PAUL KALLOCK

Page No. :2 Tot. Pages: 3

Date : 2-JUL-87 Invoice #: I-8716859

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8716859

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
TR 5+00N 2+50E TR 5+00N 2+75E TR 5+50N 0+00E TR 5+50N 0+25E TR 5+50N 0+50E	201 — 201 — 201 — 201 — 201 —	5 1 1 1 7 1 3 1 1	60 158 253 135 300	0.3 0.5 1.5 0.9			, ,	
TR 5+50N 0+75E TR 5+50N 1+00E TR 5+50N 1+25E TR 5+50N 1+50E TR 5+50N 1+75E	201 201 201 201 201	1 6 2 0 1 7 9 1 5	355 425 167 217 335	1 . 1 3 . 5 1 . 6 1 . 1 1 . 2				
TR 5+50N 2+00E TR 5+50N 2+25E TR 5+50N 2+50E TR 5+50N 2+75E TR 6+00N 0+25E	201 201 201 201 201	6 14 12 14 11	115 345 129 72 510	0.4 0.2 1.9 0.2 3.0				
TR 6+00N 0+75E TR 6+00N 1+25E TR 6+00N 1+75E TR 6+00N 2+25E TR 6+00N 2+75E	201 — 201 — 201 — 201 — 201 —	1 1 2 1 1 2 1 2 1 2	364 420 491 240 480	0.7 4.0 2.5 1.0 2.5				
TR 6+50N 0+00E TR 6+50N 0+25E TR 6+50N 0+50E TR 6+50N 0+75E TR 6+50N 1+00E	201 201 201 201 201	3 3 9 1 4 1 0 1 7	760 160 500 300 310	7.2 1.2 1.6 2.4				
TR 6+50N 1+25E TR 6+50N 1+50E TR 6+50N 1+75E TR 6+50N 2+00E TR 6+50N 2+25E	201 201 201 201 201	1 4 1 0 1 3 1 2 2 4	341 510 180 450 720	4.5 1.2 1.1 2.0 4.2				
TR 6+50N 2+50E TR 6+50N 2+75E TR 7+00N 0+25E TR 7+00N 0+75E TR 7+00N 1+25E	201 201 201 201 201	1 6 8 2 0 1 5 8	500 365 500 980 124	2.5 1.0 0.8 1.5 0.4				
TR 7+00N 1+75E TR 7+00N 2+25E TR 7+50N 0+00E TR 7+50N 0+25E TR 7+50N 0+50E	201 201 201 201 201	9 1 4 2 4 .1 4 1 5	440 720	0.6 0.8 2.4 1.2 0.8				

CERTIFICATION: tartoschler

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : TROVE

Comments: CC: ARCTEX ENG. CC: PAUL KALLOCK

Page No. :3 Tot. Pages:3 Date : 2-JUL-87 Invoice #:I-8716859 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8716859

SAMPLE DESCRIPTION	PREP CODE	1		Ag ppm Aqua R				
TR 7+50N 0+75E TR 7+50N 1+00E TR 7+50N 1+25E TR 7+50N 1+50E TR 7+50N 1+75E	201 201 201 201 201	1 7 1 7 2 0 2 3 1 6	495 500 417 510 450	0.9 1.3 0.4 1.4			,	
TR 7+50N 2+00E TR 7+50N 2+25E TR 7+50N 2+50E TR 7+50N 2+75E TR 7+50N 2+75EA	201 201 201 201	8 2 2 1 6 1 7 1 4	325 520 590 400 590	0.5 0.3 2.2 3.7 2.6				
TR 8+00 0+25E TR 8+00 0+75E TR 8+00 1+25E TR 8+00 1+75E TR 8+00 2+25E	201 201 201 201	19 12 15 18 15	510 290 320 200 500	0.5 0.3 0.7 1.4 0.7				
TR 8+00 2+75E	201	1 2	400	0.5				·
						·		

CERTIFICATION: Start Sichler

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C.

V6K 3M3 Project : TROVE

Comments: CC: ARCTEX ENGINEERING

CC: PAUL KALLOCK

Page No.:1 Tot. Pages:2 Date::04 :04-JUL-87 Invoice #:I-8717060 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8717060

SAMPLE DESCRIPTION	PREP CODE	Pb ppm	Zn ppm	Ag ppm Aqua R				
L3+50N 17+50W L3+50N 17+75W L3+50N 18+00W L3+50N 18+25W L3+50N 18+50W	201 201 201 201 201	2 4 2 8 2 2 1 8 3 9	123 236 144 300 840	0 . 8 0 . 9 0 . 2 0 . 4 5 . 5				
L3+50N 18+75W L3+50N 19+00W L3+50N 19+25W L3+50N 19+50W L3+50N 19+75W	201 201 201 201 201	2 0 2 0 1 4 2 1 1 2	451 570 540 620 740	0.5 1.8 0.6 2.1 0.7				
L3+50N 20+00W L4+00N 17+50W L4+00N 17+75W L4+00N 18+00W L4+00N 18+25W	201 201 201 201 201	19 30 17 34 14	430 570 610 940 830	1 . 9 4 . 1 4 . 4 2 . 2 2 . 2				
L4+00N 18+50W L4+00N 18+75W L4+00N 19+00W L4+00N 19+25W L4+00N 19+50W	201 201 201 201 201	32 19 17 18 17	1 0 0 0 7 6 0 1 0 6 0 6 9 0 5 7 0	1 · 2 2 · 3 1 · 8 1 · 7 0 · 5				
L4+00N 19+75W L4+00N 20+00W L4+50N 17+50W L4+50N 17+75W L4+50N 18+00W	201 201 201 201 201	19 13 39 21 18	930 1270 720 1100 600	3.3 1.3 2.2 4.3 1.3		·		
L4+50N 18+25W L4+50N 18+50W L4+50N 18+75W L4+50N 19+00W L4+50N 19+25W	201 201 201 201	17 22 22 20 28	1 1 7 0 1 0 0 0 7 5 0 8 7 0 1 1 7 0	2 · 1 3 · 9 2 · 7 1 · 4 3 · 1				
L4+50N 19+50W L4+50N 19+75W L4+50N 20+00W L5+00N 17+50W L5+00N 17+75W	201 201 201 201 201	15 16 23 24 36	950 750 870 760 1340	5 . 1 5 . 7 5 . 3 1 . 0 2 . 9				
L5+00N 18+00W L5+00N 18+25W L5+00N 18+50W L5+00N 18+75W L5+00N 19+00W	201 201 201 201 201	38 37 21 91	900 2180 480 490 790	2 · 2 1 · 4 0 · 4 1 · 3 2 · 1				

Analytical Chemists • Geochemists • Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

Project : TROVE

Comments: CC: ARCTEX ENGINEERING

CC: PAUL KALLOCK

Page No. :2 Tot. Pages: 2

Date :04-JUL-87 Invoice #:I-8717060

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8717060

SAMPLE DESCRIPTION	PRE		Pb ppm	Zn ppm	Ag ppm Aqua R				
L5+00N 19+25W L5+00N 19+56W L5+00N 19+75W L5+00N 20+06W	201 201 201 201	==	36 40 47 19	1 2 4 0 1 7 0 0 2 0 4 0 2 0 0 0	3 · 5 5 · 0 4 · 6 6 · 3			,	
			·	`				·	
				·					
		:							

CERTIFICATION: Hart Bichler

OLD FLAG ON OLD MAP 4+00N 10+00W 26 | 2+00 N OLD CLAIM FLAG MERIT SOUTH MERIT M LINE 1+00 N L2S 0+00E OLD MINE BUILDING THRESHOLD: 38-150 P.P.M. ------25 | 1+00 S 2+00 S OLD FLAG L4S 1+00E 3+005 5+00S 1:2500

CONTOURS

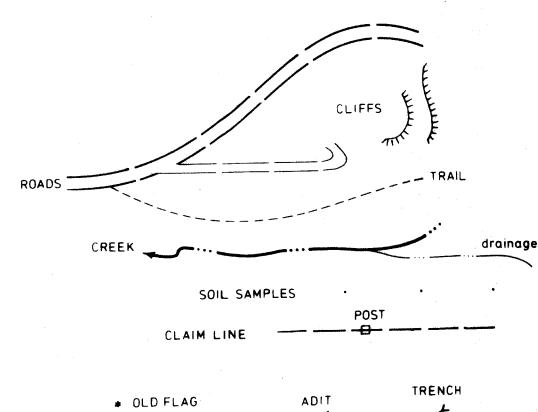
ANOMALOUS: > 150 P.P.M.

5+00W CLAIM POST GEOLOGICAL BRANCH ASSESSMENT REPORT

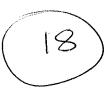
TROVE RESOURCES LTD. MERIT CLAIM GROUP

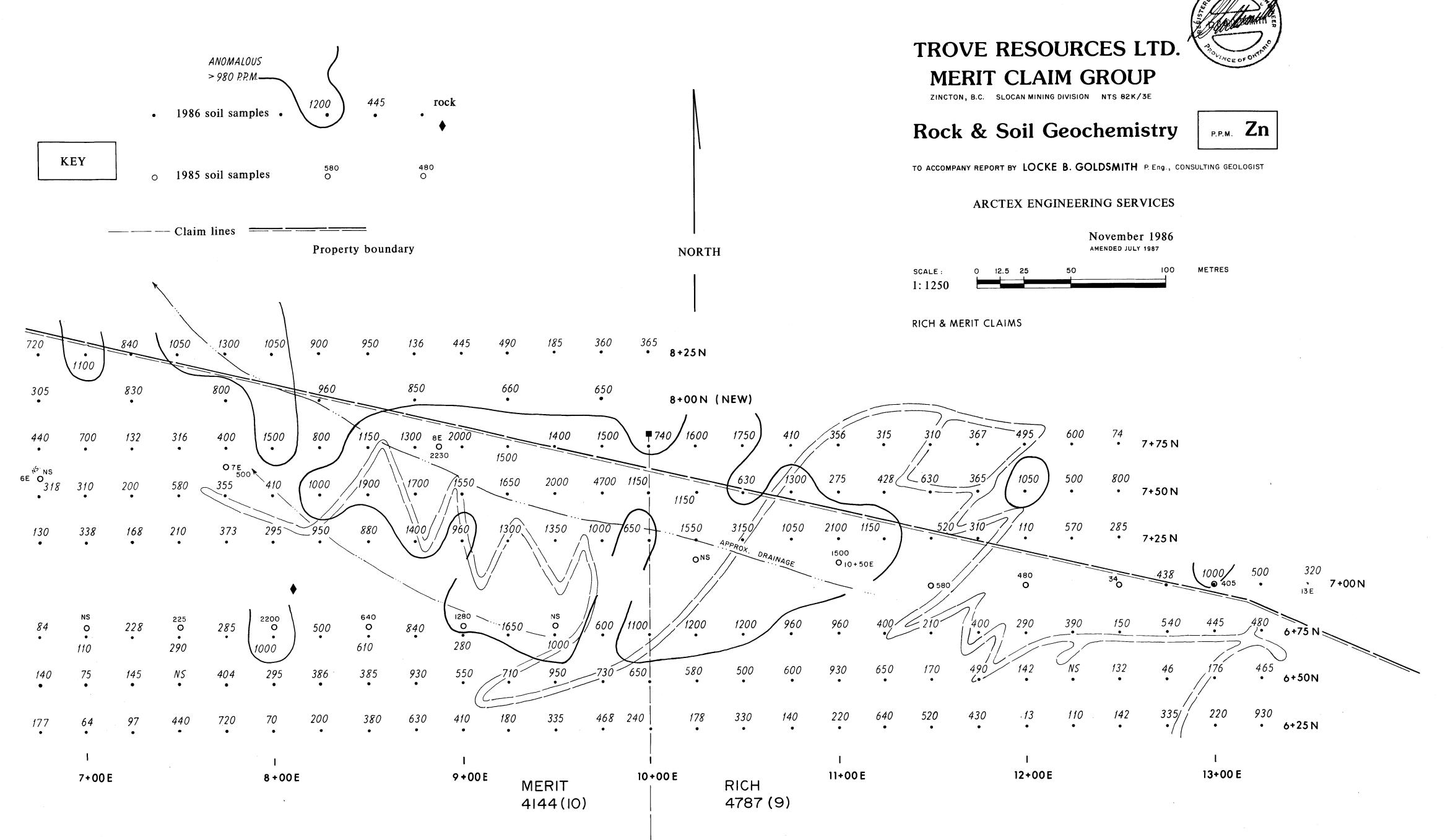
ZINCTON B.C. SLOCAN M.D. 82K/3E

4159 (11) MERIT M CLAIM

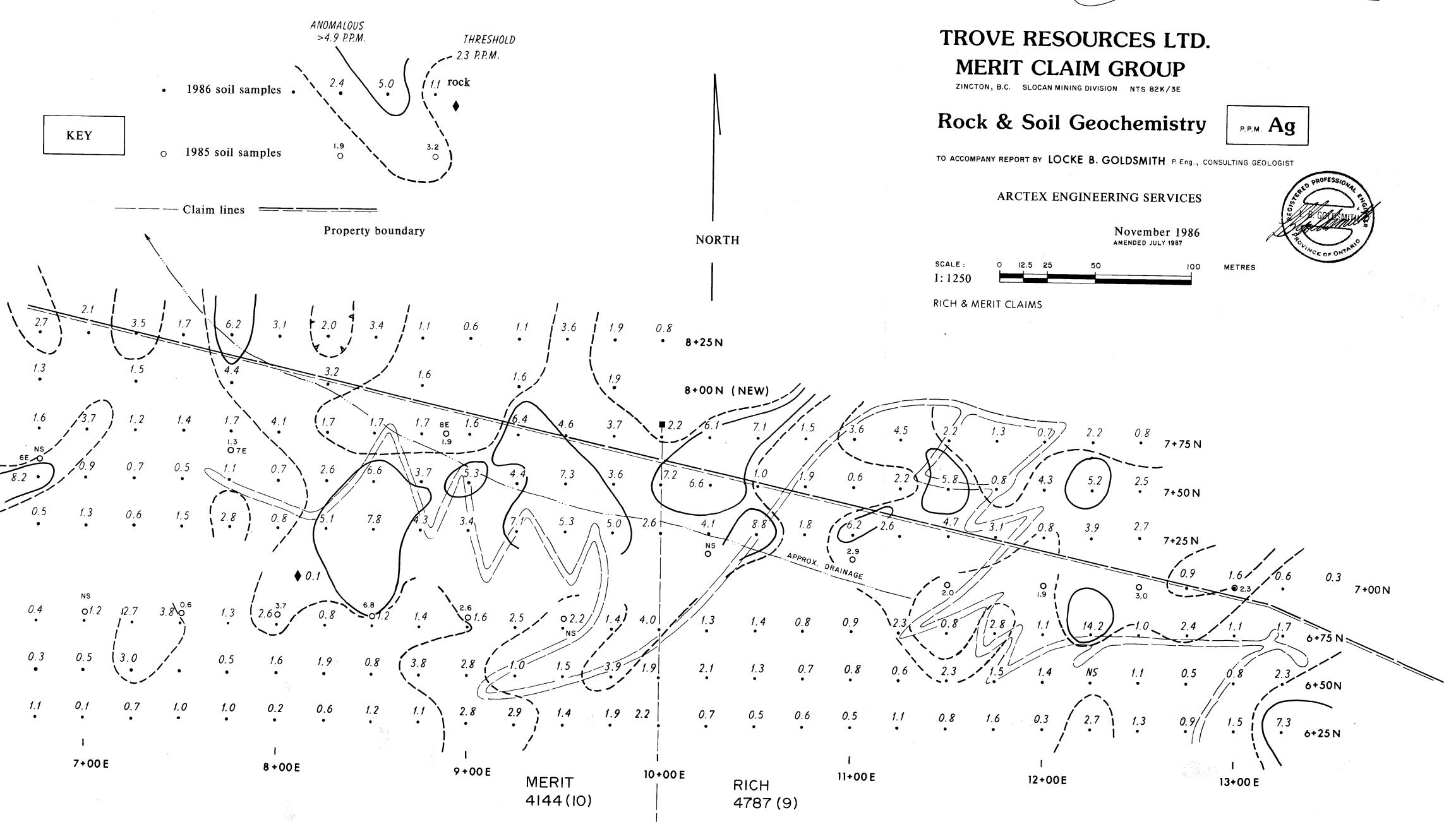

SOIL GEOCHEMISTRY

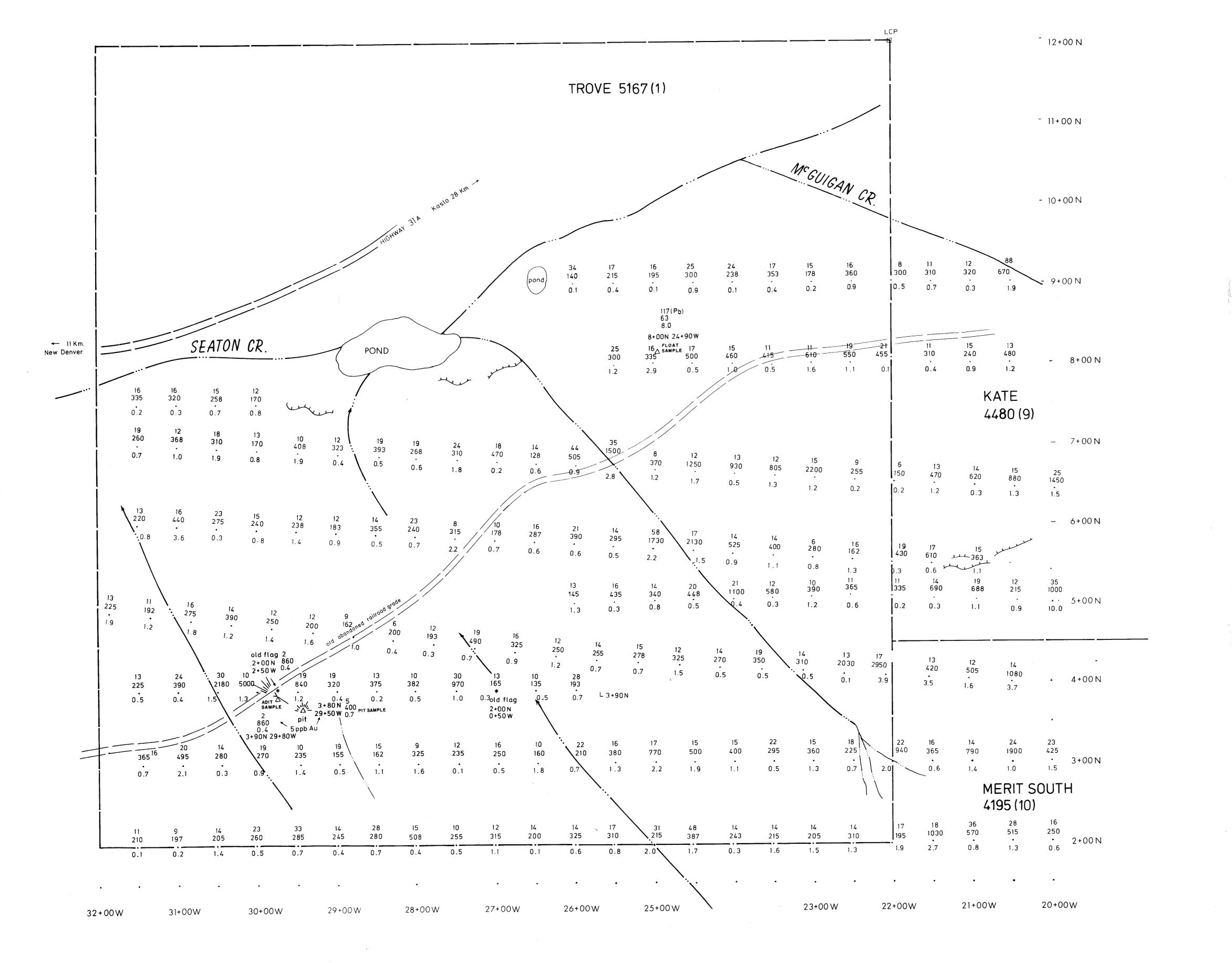
Pb p.p.m.


TO ACCOMPANY REPORT BY


LOCKE B. GOLDSMITH, P. Eng. CONSULTING GEOLOGIST

PAUL KALLOCK CONSULTING GEOLOGIST




16,472

SCALE
0 25 50 100 200

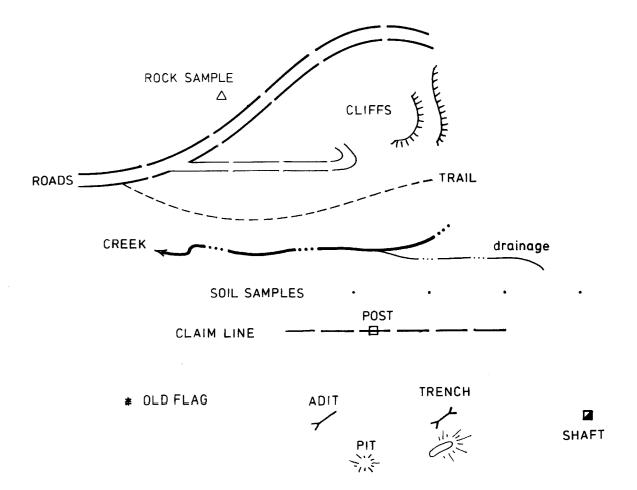
metres
1: 2500

TROVE RESOURCES LTD.

MERIT CLAIM GROUP

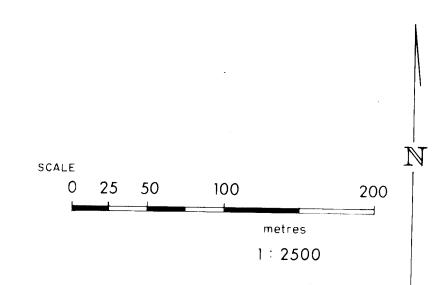
ZINCTON B.C. SLOCAN M.D. 82K/3E

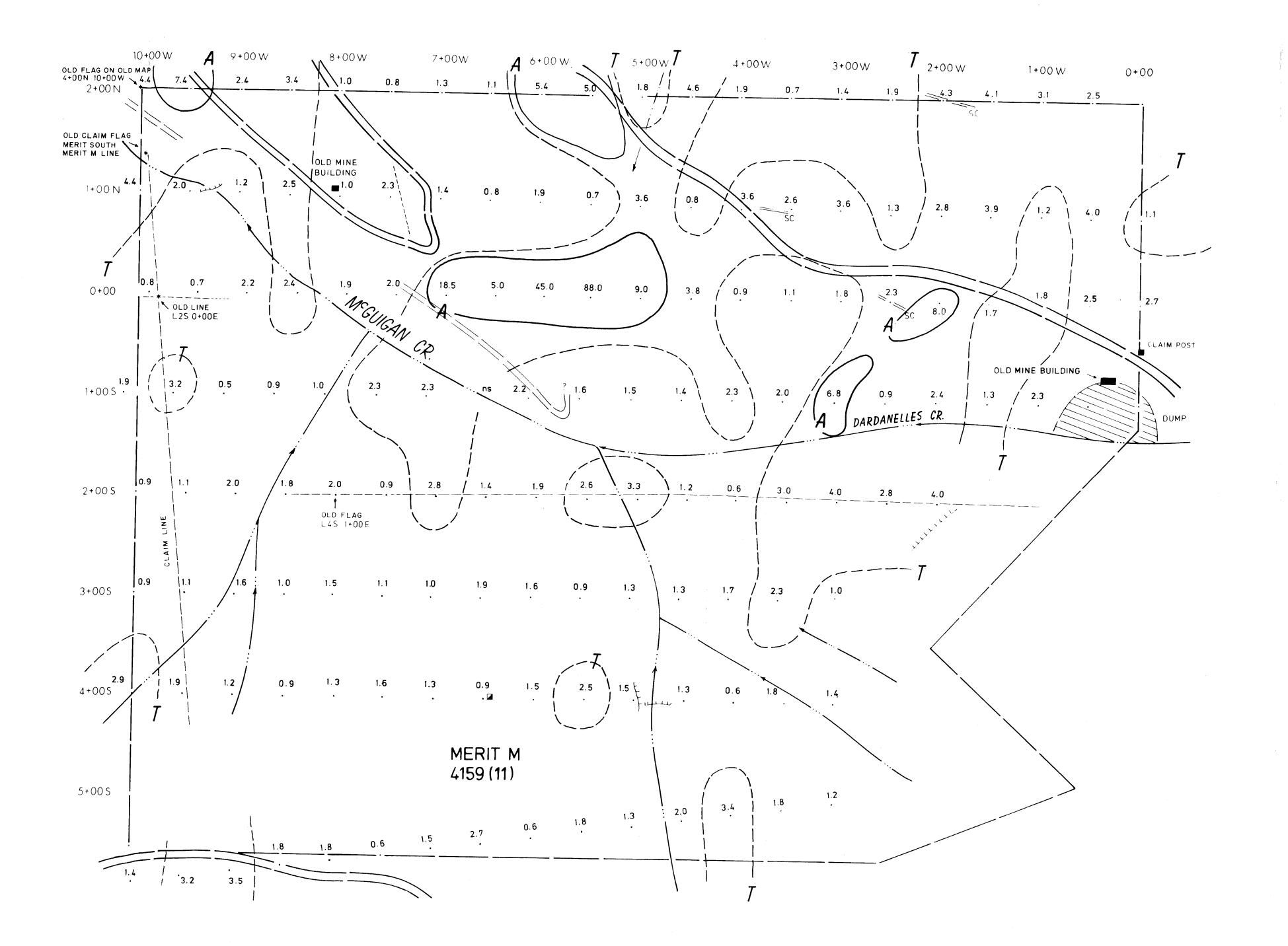
TROVE CLAIM 5167(1)

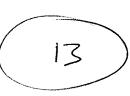

ROCK & SOIL GEOCHEMISTRY 1: 2500

Pb Zn • P.P.M. Ag L. B. D. D. MINITER AND TO LINCE OF ONTARIO

REPORT


TO ACCOMPANY REPORT BY

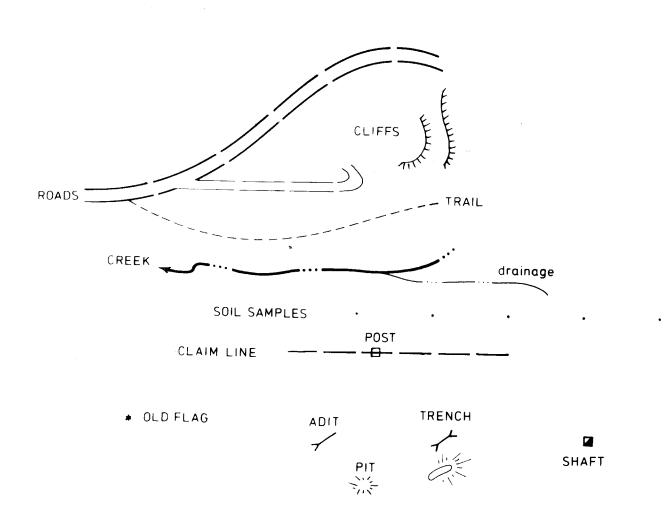

LOCKE B. GOLDSMITH, P. Eng. PAUL KALLOCK
CONSULTING GEOLOGIST CONSULTING GEOLOGIST

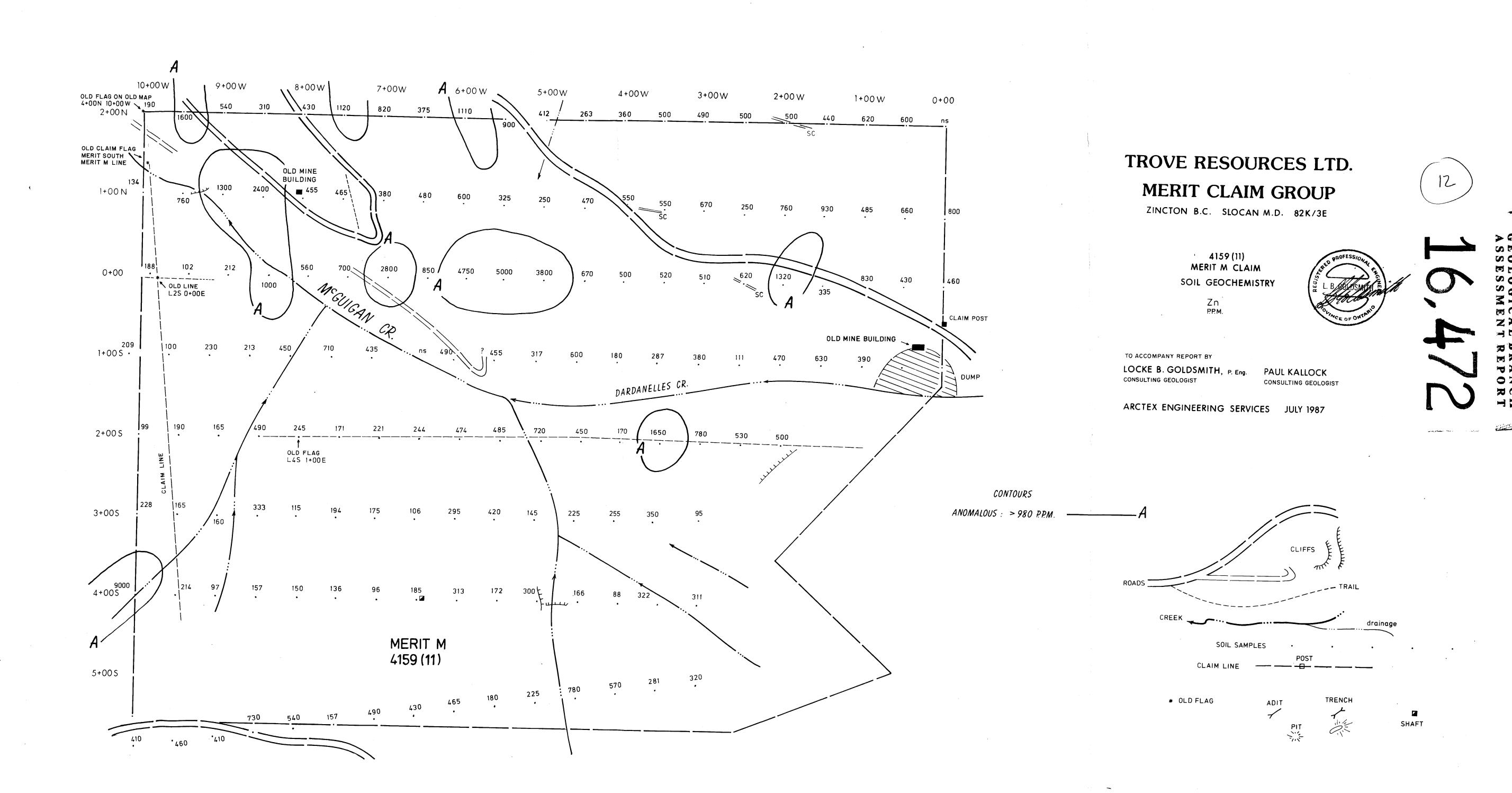

CONTOURS

ANOMALOUS : >4.9 P.P.M. ———— THRESHOLD: 2.3 P.P.M.- 4.9 P.P.M.

TROVE RESOURCES LTD. MERIT CLAIM GROUP

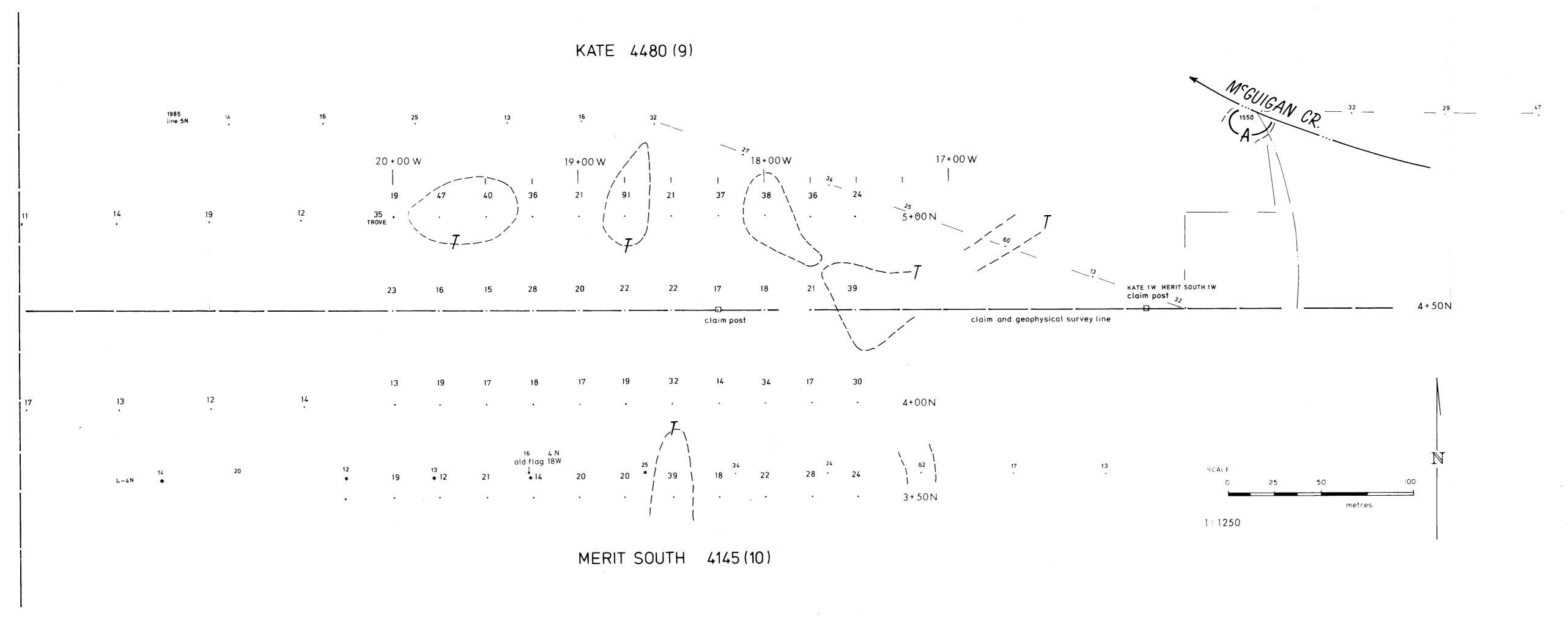
ZINCTON B.C. SLOCAN M.D. 82K/3E


4159 (11) MERIT M CLAIM SOIL GEOCHEMISTRY


Ag p.p.m.

TO ACCOMPANY REPORT BY LOCKE B. GOLDSMITH, P. Eng. CONSULTING GEOLOGIST

PAUL KALLOCK


CONSULTING GEOLOGIST

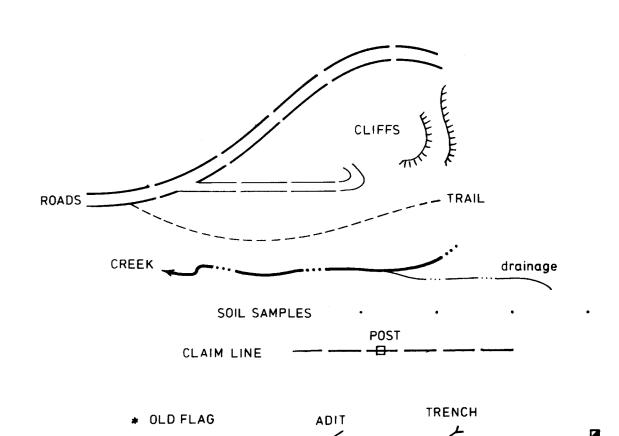
SCALE
0 25 50 100 200

metres
1: 2500

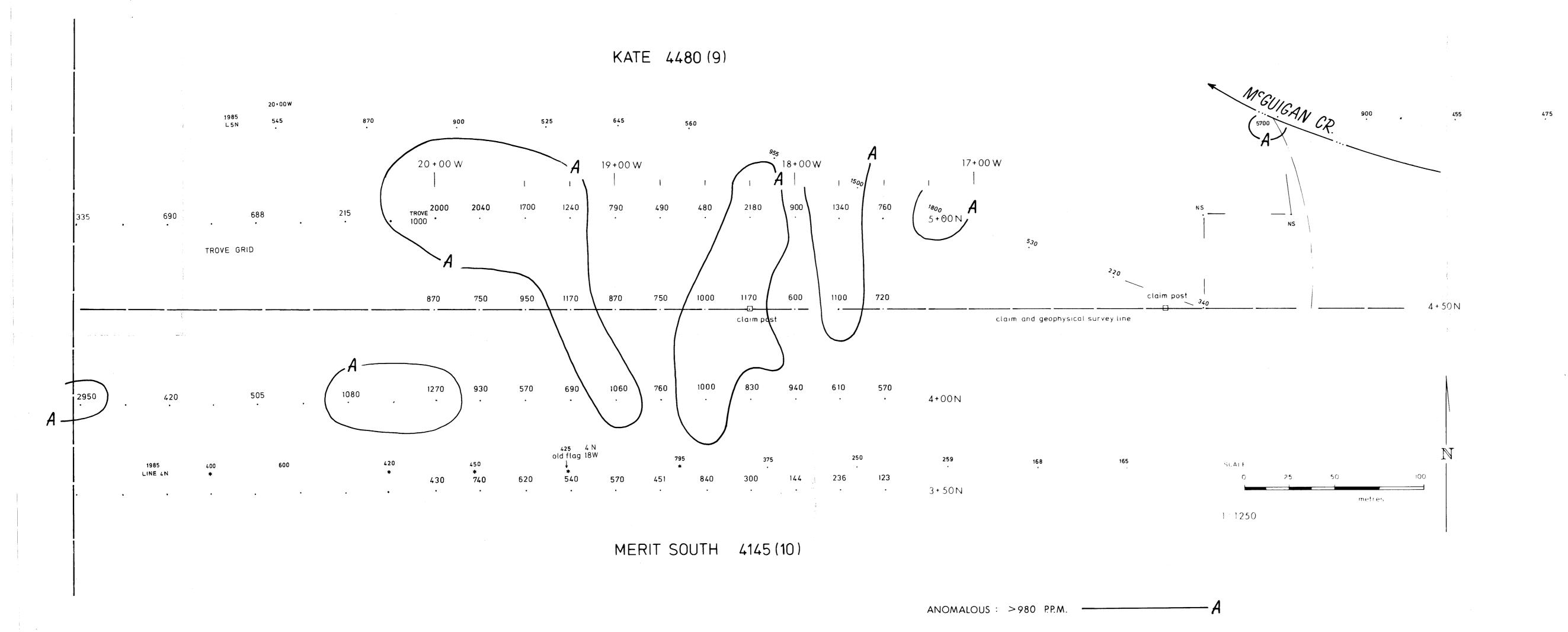
TROVE RESOURCES LTD. MERIT CLAIM GROUP

ZINCTON B.C. SLOCAN M.D. 82K/3E

4480 (9)
HEMISTRY


KATE CLAIM 4480 (9 SOIL GEOCHEMISTRY 1: 1250 Pb ppm.

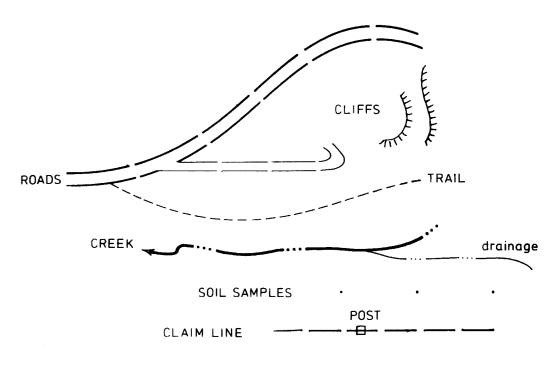
TO ACCOMPANY REPORT BY

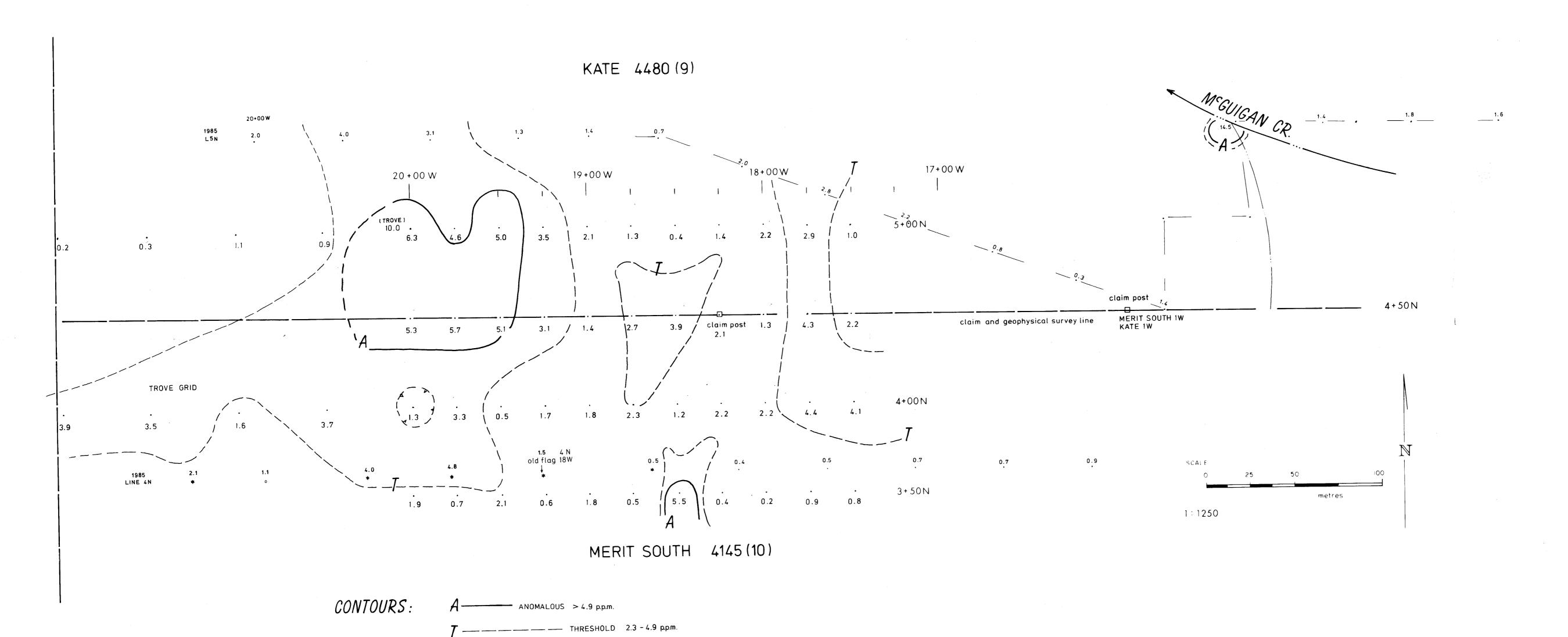

LOCKE B. GOLDSMITH, P. Eng. CONSULTING GEOLOGIST

PAUL KALLOCK

ARCTEX ENGINEERING SERVICES JULY 19

HRESHOLD: 38 - 150 ppm ---------


TROVE RESOURCES LTD.


MERIT CLAIM GROUGEOLOGICAL BRANCH ZINCTON B.C. SLOCAN M.D. 82K/3EASSESSMENT REPORT

KATE CLAIM 4480(9) SOIL GEOCHEMISTRY Zn PPM.

TO ACCOMPANY REPORT BY

LOCKE B. GOLDSMITH, P. Eng.

TROVE RESOURCES LTD. MERIT CLAIM GROUP

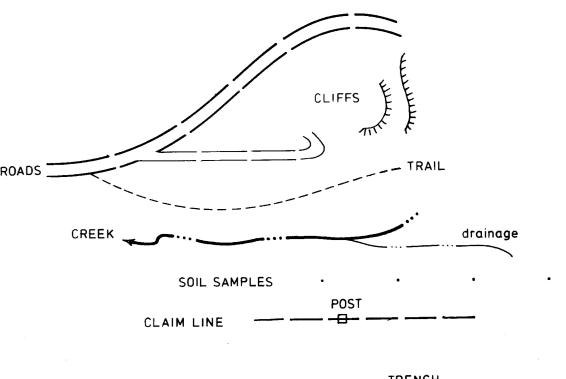
ZINCTON B.C. SLOCAN M.D. 82K/3E

ESSMENT REPOR

SOIL GEOCHEMISTRY

1: 1250

P.P.M.


TO ACCOMPANY REPORT BY

LOCKE B. GOLDSMITH, P. Eng.

CONSULTING GEOLOGIST

PAUL KALLOCK CONSULTING GEOLOGIST

ARCTEX ENGINEERING SERVICES JULY 1987

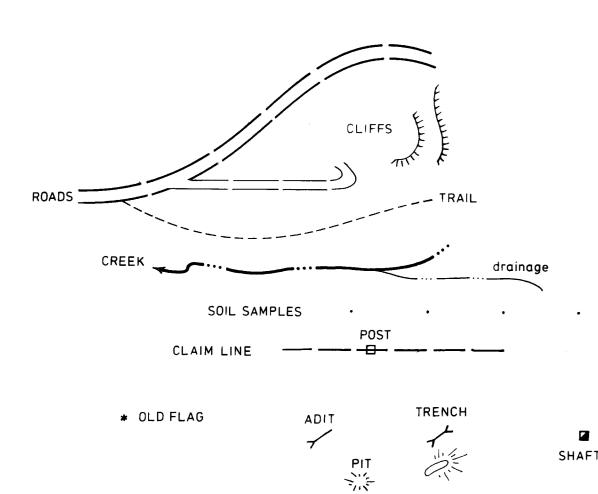
OLD FLAG

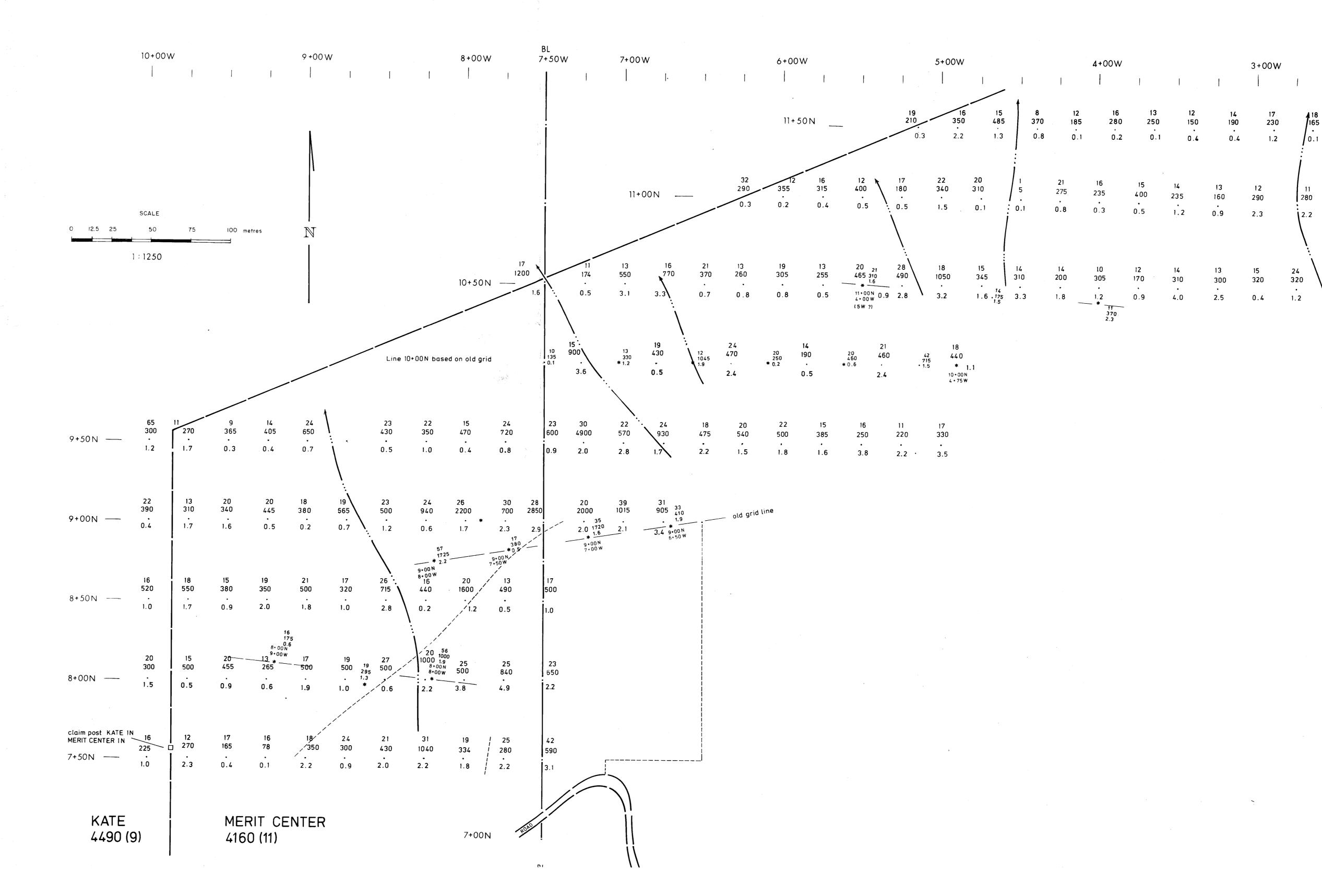
PIT

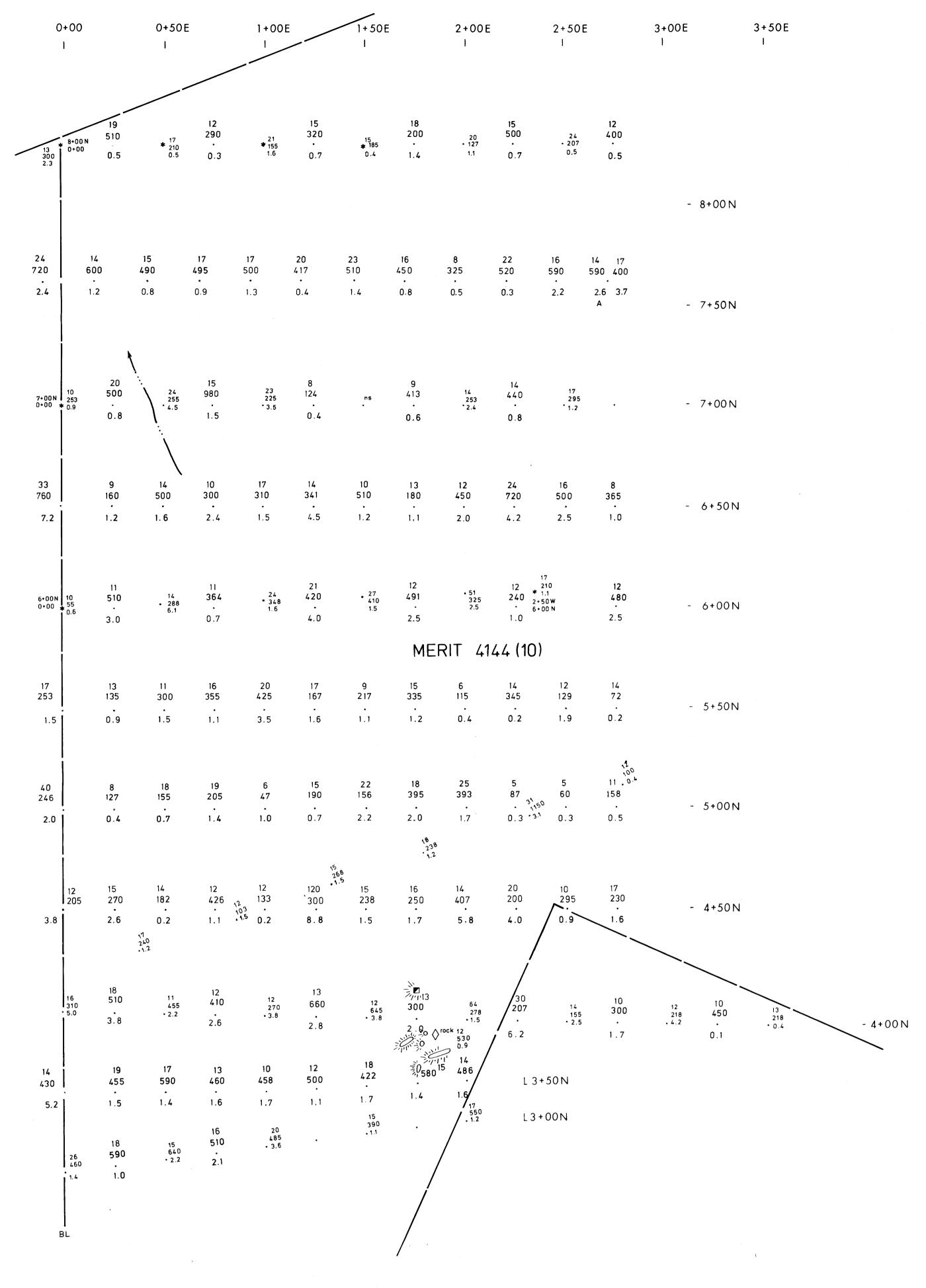
SHAF

TROVE RESOURCES LTD. MERIT CLAIM GROUP

ZINCTON B.C. SLOCAN M.D. 82K/3E


GEOLOGICAL BRANCH ASSESSMENT REPORT


MERIT CENTER CLAIM SOIL GEOCHEMISTRY



TO ACCOMPANY REPORT BY

LOCKE B. GOLDSMITH, P. Eng. PAUL KALLOCK

SCALE

50

1:1250

 \mathbb{N}

100 metres

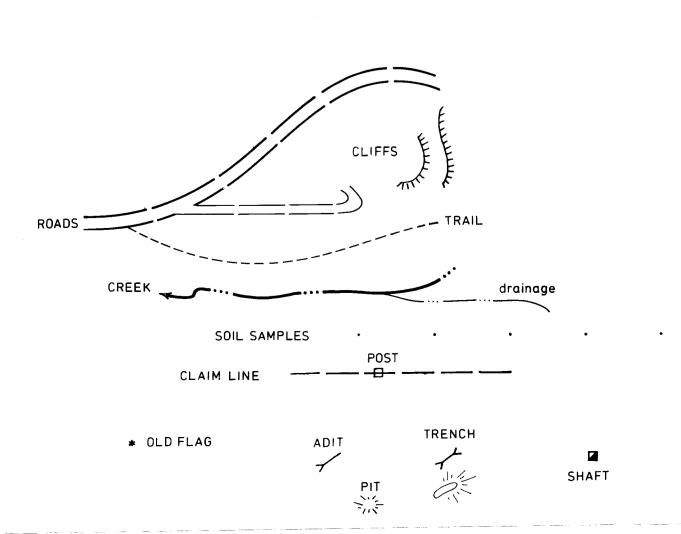
TROVE RESOURCES LTD.

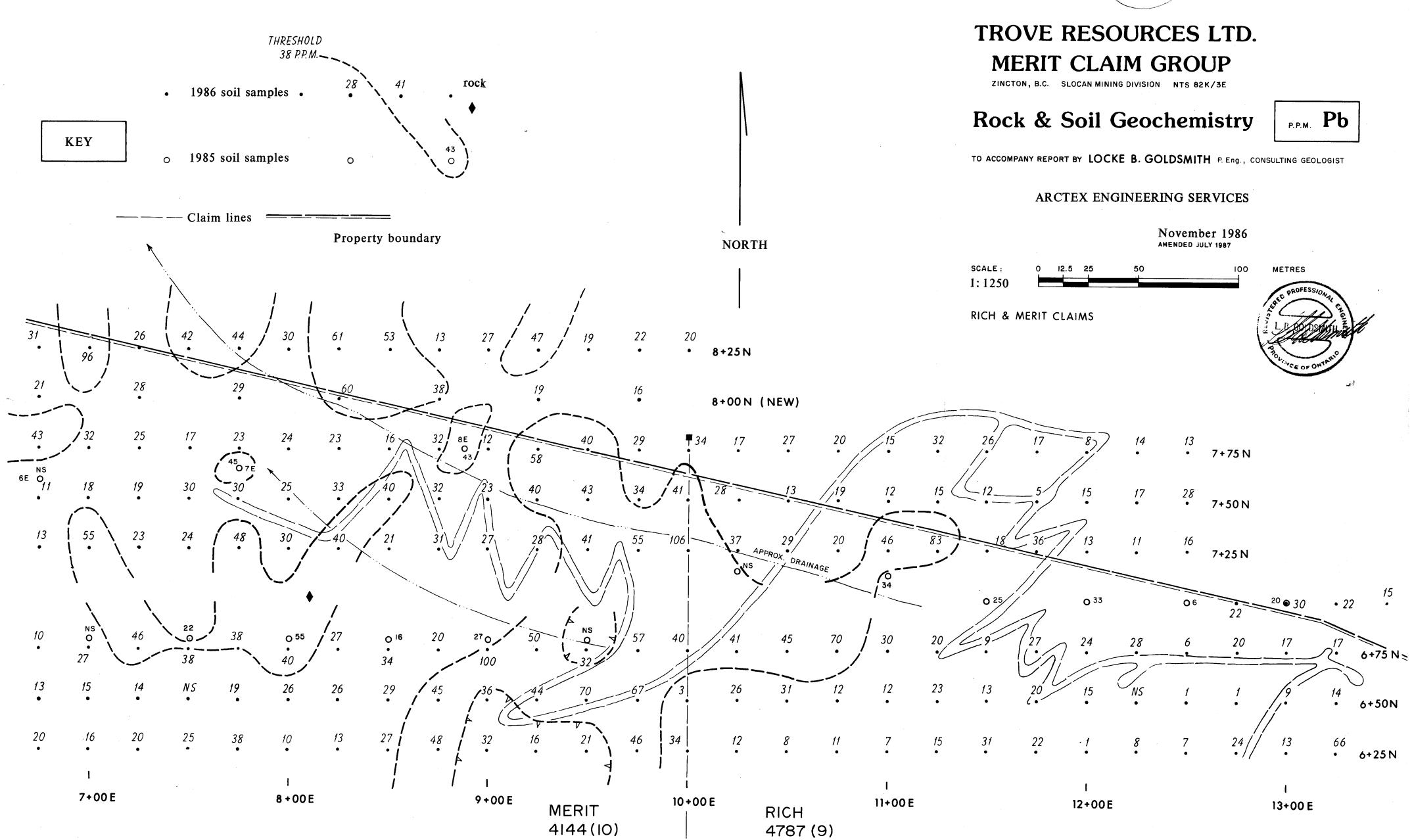
MERIT CLAIM GROUP

ZINCTON B.C. SLOCAN M.D. 82K/3E

SOIL GEOCHEMISTRY

MERIT CLAIM 4144(10)

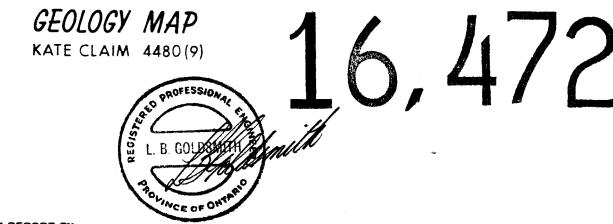

Ag


TO ACCOMPANY REPORT BY

LOCKE B. GOLDSMITH, P. Eng. CONSULTING GEOLOGIST

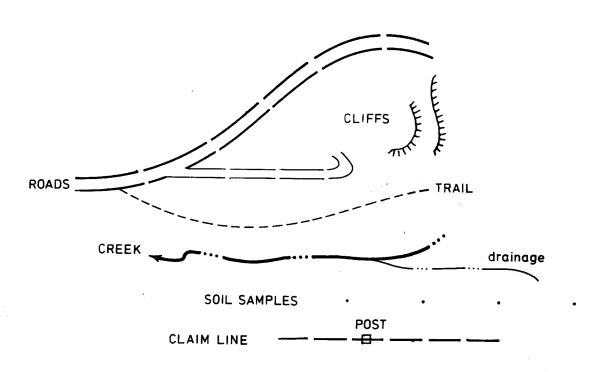
PAUL KALLOCK
CONSULTING GEOLOGIST

16,472

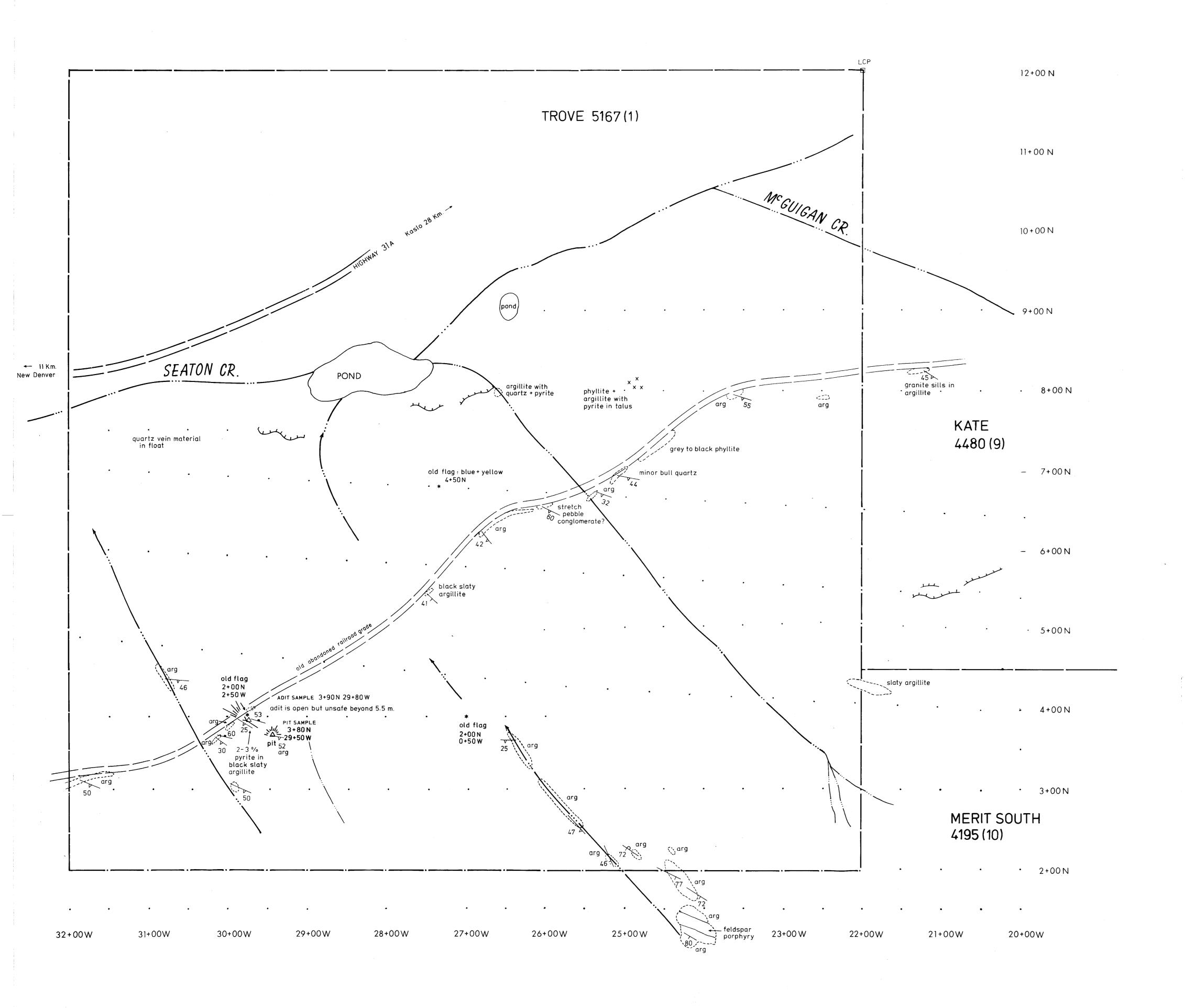

KATE 4480 (9) GRANITIC DYKES, SILLS OR SMALL STOCKS includes feldspar porphyry, aplite and pegmatite; may be related to Early to Late Jurassic Nelson Batholith or to Tertiary plutonism. Upper Triassic to Lower Jurassic SLOCAN GROUP argillite, phyllite, slate or quartzite; locally with interbedded limestone or tuffaceous horizons. 20 + 00 W 17+00 W argillite, phyllite or slate limestone quartzite trend of vein = or dyke ____18 0.5 m. granite dyke bedding attitude tops of beds known to be up overturned beds ____60 claim post MERIT SOUTH 1W KATE 1W claim and geophysical survey line massive galena
in quartz float joint or major fracture pattern in creek argillite with local quartz lenses, tr. pyrite fault zone www.t fold, showing plunge of axis and dip of axial plane foliation 40 1:1250 MERIT SOUTH 4145 (10)

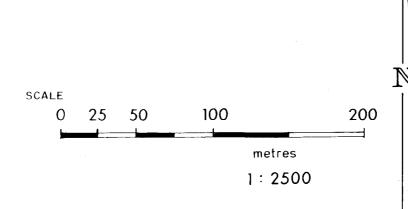
TROVE RESOURCES LTD.

MERIT CLAIM GROUP


ZINCTON B.C. SLOCAN M.D. 82K/3EASSESSMENT REPORT




TO ACCOMPANY REPORT BY


LOCKE B. GOLDSMITH, P. Eng. PAUL KALLOCK CONSULTING GEOLOGIST

CONSULTING GEOLOGIST

GEOLOGICAL BRANCH ASSESSMENT REPORT

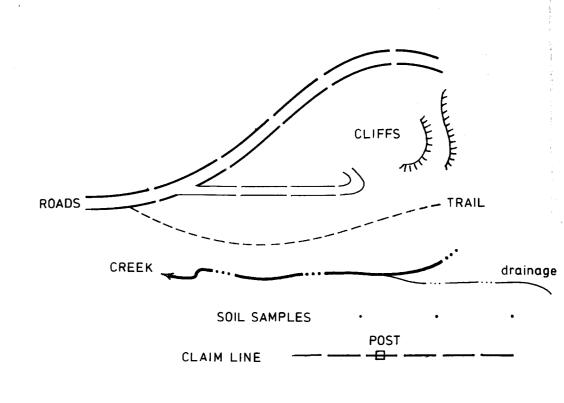
TROVE RESOURCES LTD.

MERIT CLAIM GROUP

ZINCTON B.C. SLOCAN M.D. 82K/3E

GEOLOGY MAP

TROVE CLAIM 5167 (1)



TO ACCOMPANY REPORT BY

CONSULTING GEOLOGIST

LOCKE B. GOLDSMITH, P. Eng. PAUL KALLOCK CONSULTING GEOLOGIST

ARCTEX ENGINEERING SERVICES JULY 1987

★ OLD FLAG ADIT GRANITIC DYKES, SILLS OR SMALL STOCKS includes feldspar porphyry, aplite and pegmatite; may be related to Early to Late Jurassic Nelson Batholith or to Tertiary plutonism.

Upper Triassic to Lower Jurassic SLOCAN GROUP argillite, phyllite, slate or quartzite, locally with interbedded limestone or tuffaceous horizons.

argillite, phyllite or slate limestone quartzite

trend of vein _____ or dyke ___180

bedding attitude tops of beds known to be up overturned beds ____60

joint or major fracture pattern

fault zone www.t

fold, showing plunge of axis and dip of axial plane

foliation ____40

TROVE RESOURCES LTD.

MERIT CLAIM GROUP

ZINCTON B.C. SLOCAN M.D. 82K/3E

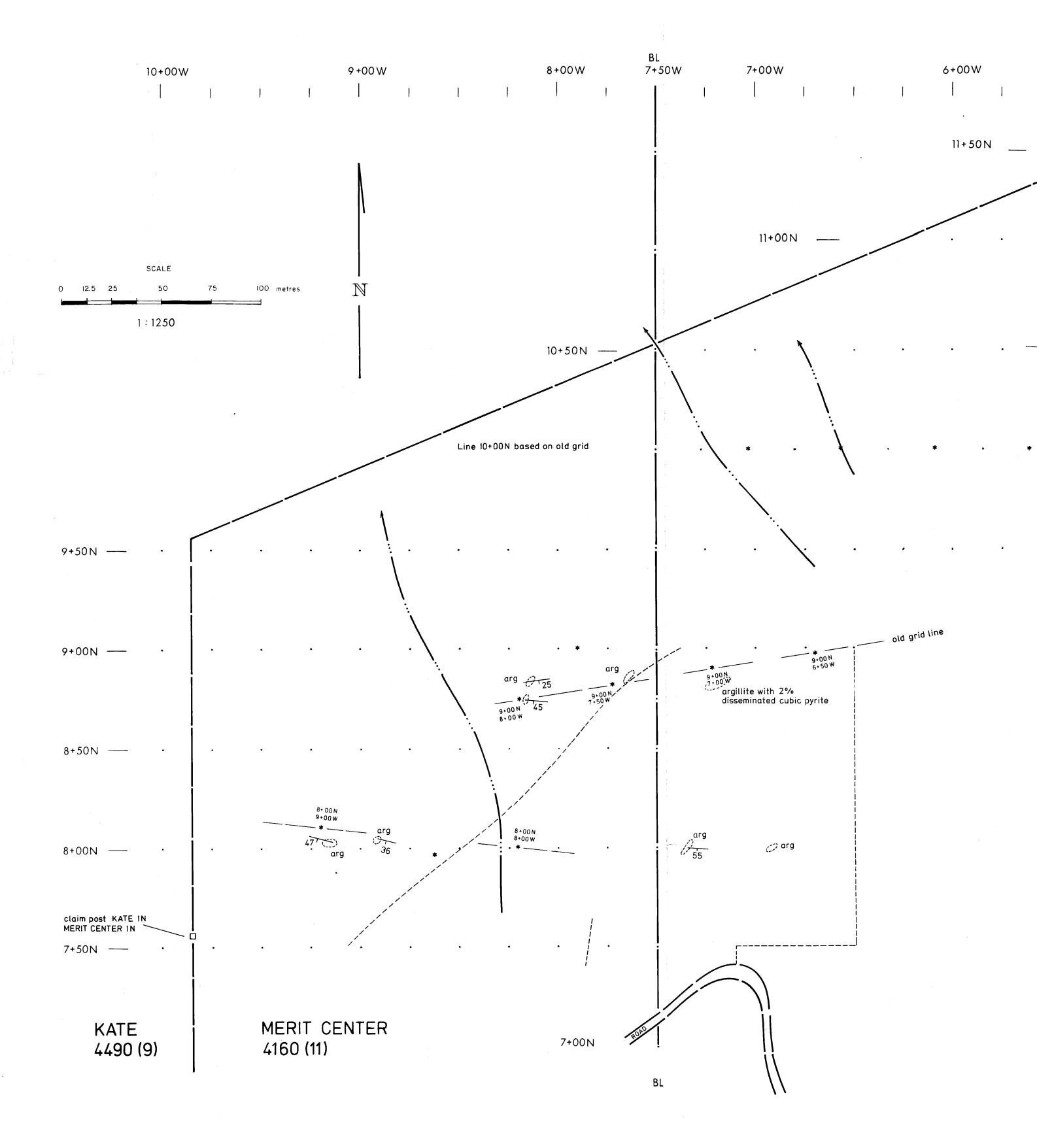
GEOLOGY MAP MERIT CENTER CLAIM 4160 (11)

TO ACCOMPANY REPORT BY LOCKE B. GOLDSMITH, P. Eng.

GRANITIC DYKES, SILLS OR SMALL STOCKS includes feldspar porphyry, aplite and pegmatite; may be related to Early to Late Jurassic Nelson Batholith or to Tertiary plutonism.

Upper Triassic to Lower Jurassic SLOCAN GROUP argillite, phyllite, slate or quartzite, locally with interbedded limestone or tuffaceous horizons.

* OLD FLAG


argillite, phyllite or slate limestone quartzite

or dyke ____18 bedding attitude —— tops of beds known to be up overturned beds ____60

joint or major fracture pattern fault zone www.

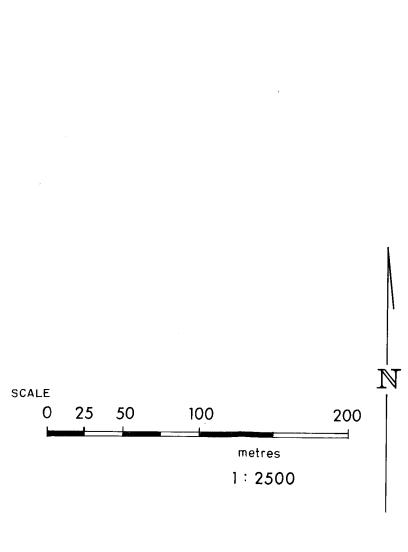
fold, showing plunge of axis and dip of axial plane foliation 40

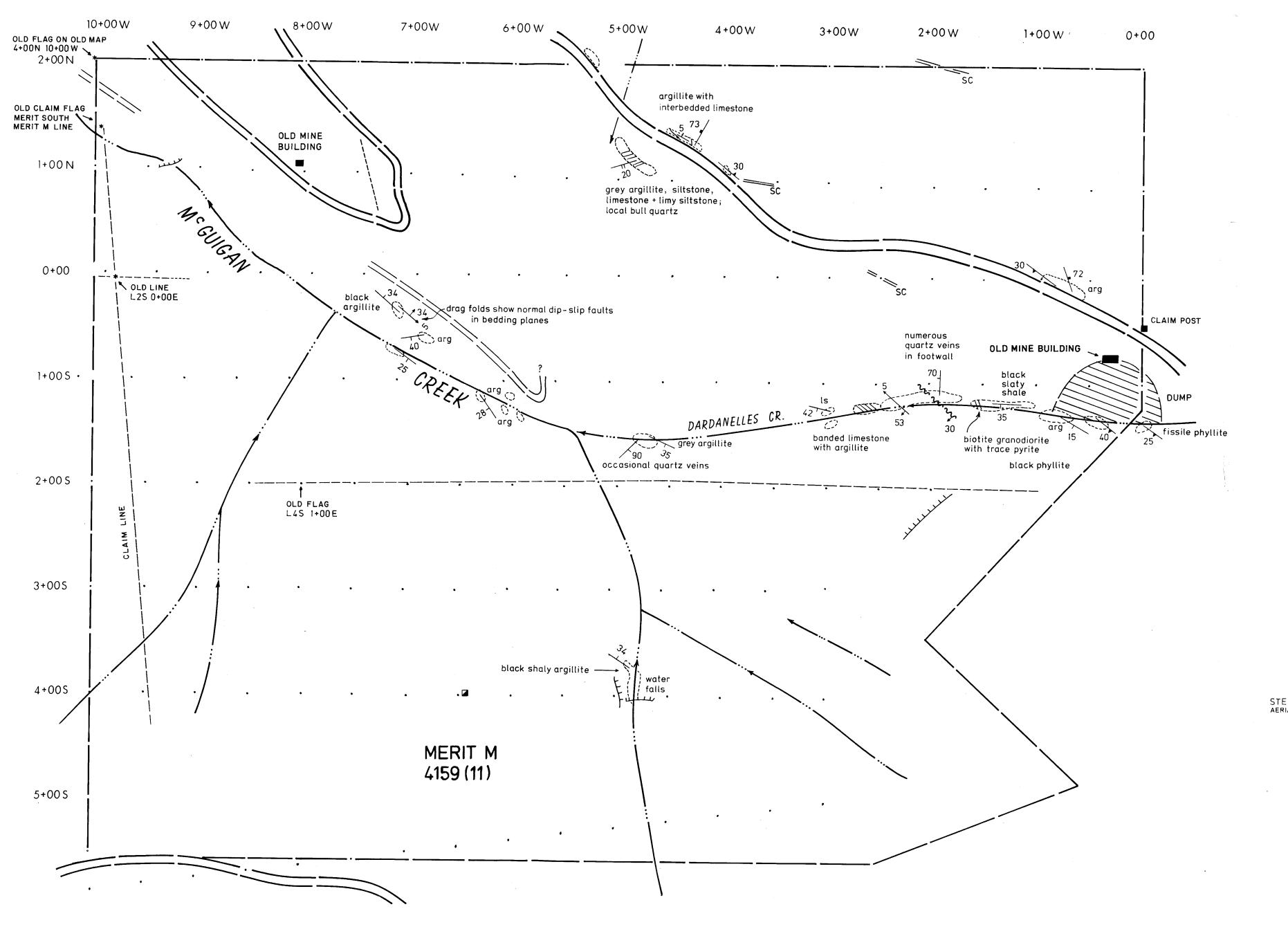
outcrop /

GRANITIC DYKES, SILLS OR SMALL STOCKS includes feldspar porphyry, aplite and pegmatite; may be related to Early to Late Jurassic Nelson Batholith or to Tertiary plutonism.

Upper Triassic to Lower Jurassic SLOCAN GROUP argillite, phyllite, slate or quartzite, locally with interbedded limestone or tuffaceous horizons.

argillite, phyllite or slate limestone quartzite


joint or major fracture pattern


fault zone www.th

fold, showing plunge of axis and dip of axial plane

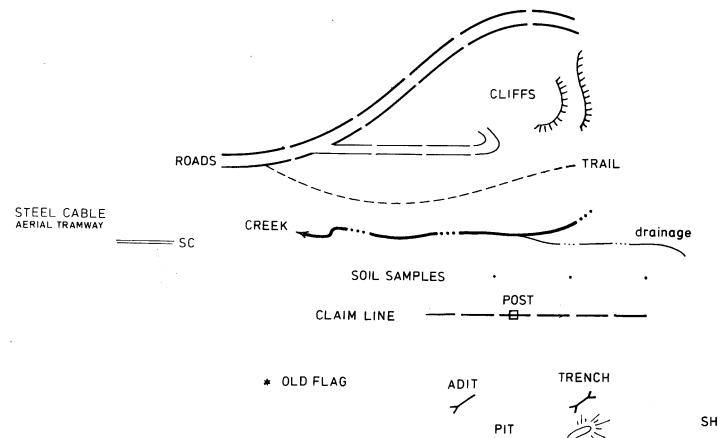
foliation ____4

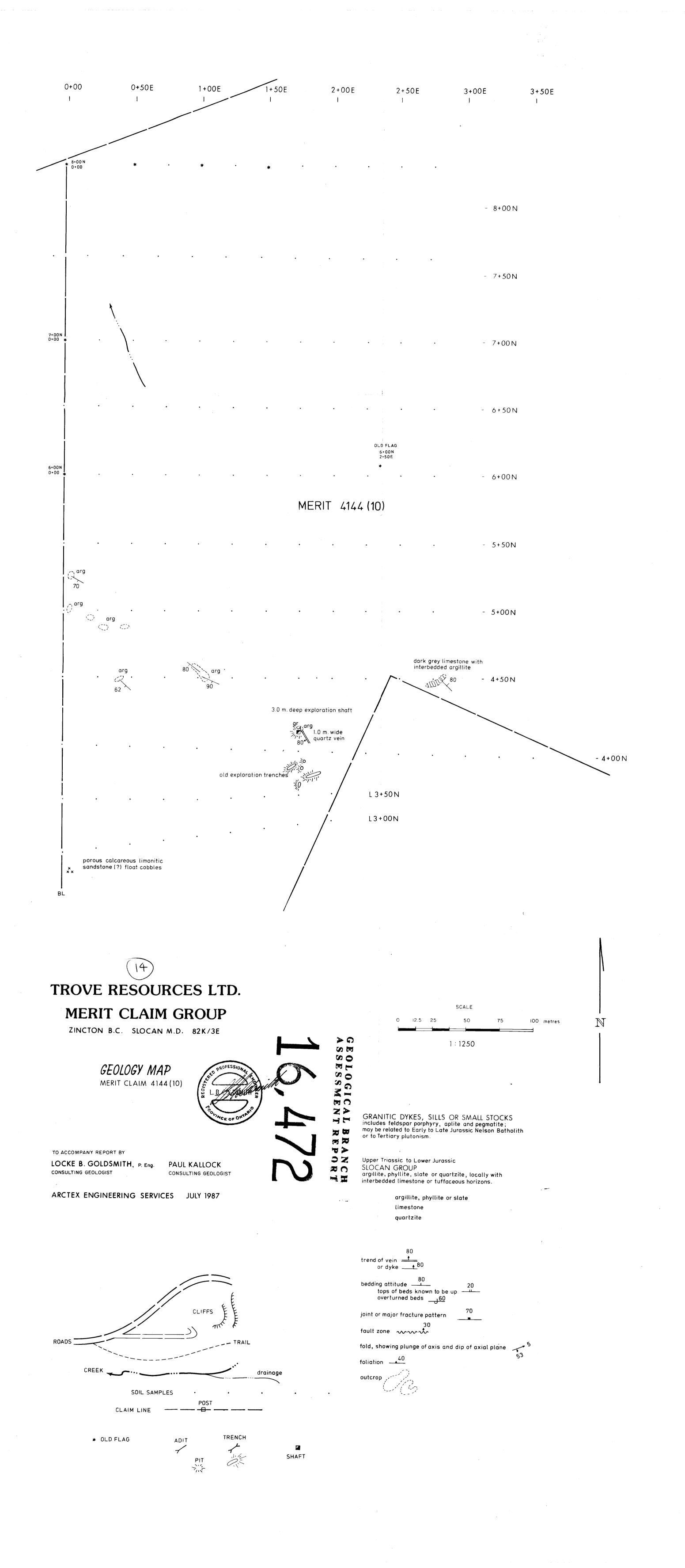
outcrop

TROVE RESOURCES LTD. MERIT CLAIM GROUP

ZINCTON B.C. SLOCAN M.D. 82K/3E

GEOLOGY MAP


MERIT M CLAIM 4159 (11)

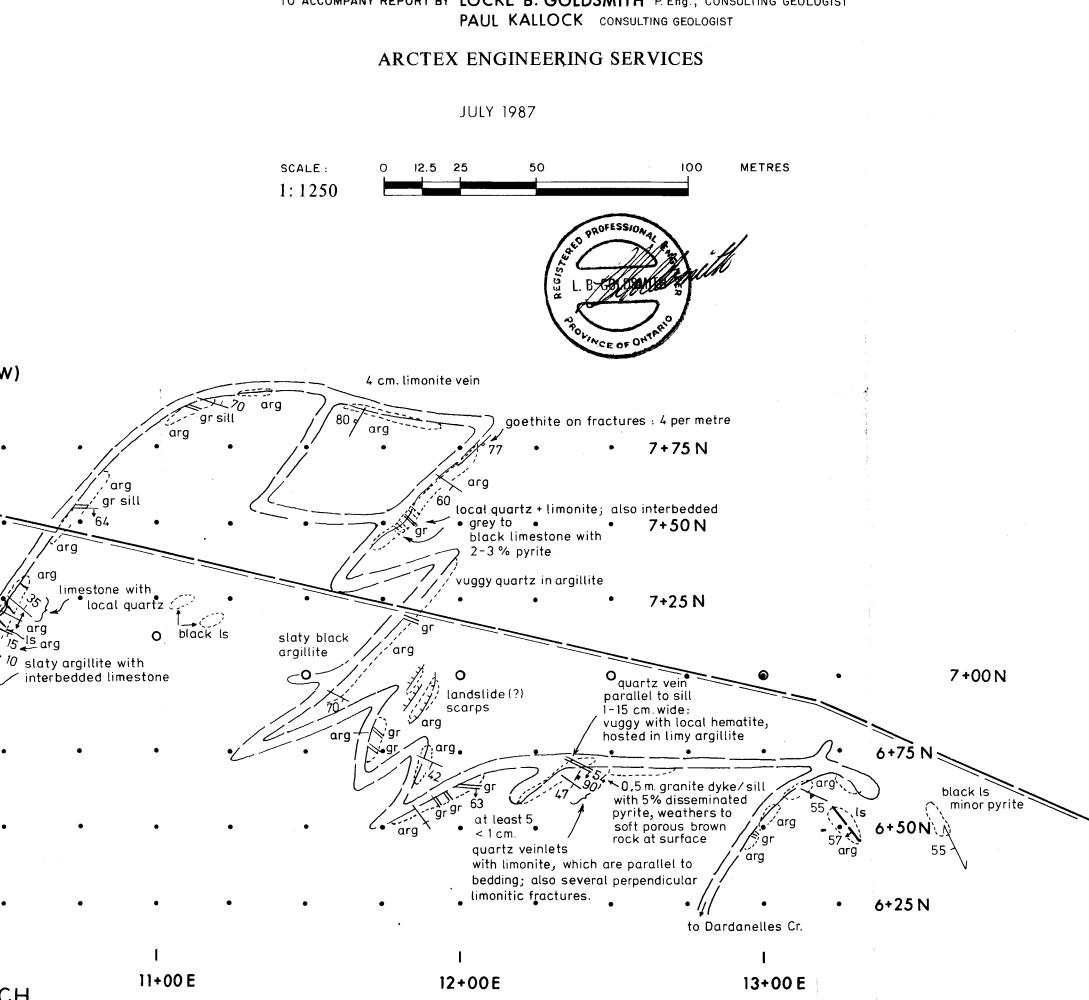


TO ACCOMPANY REPORT BY

LOCKE B. GOLDSMITH, P. Eng. CONSULTING GEOLOGIST

PAUL KALLOCK
CONSULTING GEOLOGIST

GEOLOGICAL BRANCH ASSESSMENT REPORT


TROVE RESOURCES LTD. MERIT CLAIM GROUP

ZINCTON, B.C. SLOCAN MINING DIVISION NTS 82K/3E

GEOLOGY MAP

RICH & MERIT CLAIMS

TO ACCOMPANY REPORT BY LOCKE B. GOLDSMITH P. Eng., CONSULTING GEOLOGIST

gr GRANITIC DYKES or SILLS: generally less than 1.0 m. wide, often contain abundant fine-grained disseminated pyrite. Weather to soft, porous brown rock at surface. UPPER TRIASSIC TO LOWER JURASSIC SLOCAN GROUP arg ARGILLITE PHYLLITE or SLATE ls LIMESTONE

• 1986 soil samples •

1985 soil samples

• • • • • •

Property boundary

argillite

fissile shale 🔨 with

\occasional limestone.

NORTH

8+00N (NEW)

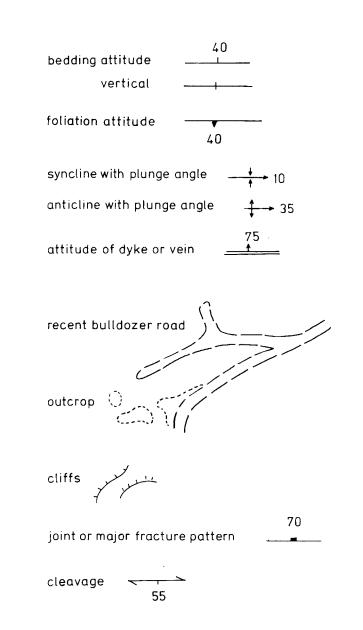
granite

4787 (9)

iron-stained outcrops

strong iron-stained

slaty argillite


4144(10)

KEY

6E O

7+00E

JURASSIC TO TERTIARY

