\square
GEOPHYSICAL REPORT
FILE NO: 87.90916482
PACIFIC GEOPHYSICAL LTD.

ON THE
INDUCED POLARIZATION AND RESISTIVITY SURVEY
ON THE
TIA PROPERTY

KAMLOOPS MINING DIVISION BRITISH COLUMBIA

FOR

NU CROWN RESOURCES INC.

LATITUDE: $51^{\circ} 33^{\prime}$ LONGITUDE: $119^{\circ}{ }^{5} 0^{\prime}$.

N.T.S. 82M/12

CLAIMS: TIA 1- TIA 14
$\dot{6} 4 \operatorname{li}^{2}$
OHNER/OPERATOR: NU CROWNARSOURCES INCGYMTM

AND

MICHAEL J. CORMIER, B.Sc. GEOPHYSICIST

DATED: November 24, 1987
PAGE
PART A REPORT

1) Introduction 1
2) Description of Claims 2
3) Description of Geology 2
4) Presentation of Data 3
5) Discussion of Results 5
6) Summary and Recommendations 8
7) Assessment Details 10
8) Statement of Cost 11
9) Certificate: Paul A. Cartwright, P.Geoph 12
10) Certificate: Michael J. Cormier, B.Sc 13
11) Certificate: Martin M. Makulowich 14
PART B ILLUSTRATIONS
Plan Map (in pocket). Dwg.No. I.P.P.-4153
IP Data Plots (pseudosection) Dwg. Nos. I.P.-5882-1 to 11
Location Map Figure 1
Claim Map Figure 2

PART A REPORT

1) Introduction

An induced polarization and resistivity survey has been completed on the Tia Property, Kamloops Mining Division, B.C. on behalf of Nu Crown Resources Incorporated.

The property is located approximately 100 kilometers north-northeast of Kamloops, B.C. and 6 kilometers southeast of the Village of Birch Island, B.C. Access is via 10 kilometers of gravel road along the south side of the North Thompson River from the North Thompson Highway at Birch Island to the Jones Creek Forest access road. The Jones Creek road and its spurs provide access to the eastern and southern parts of the claim block.

Previous work on the property has included geological mapping, geochemical soil and silt sampling, VLF-EM surveys, induced polarization surveys and a limited diamond drilling program. This latter work reportedly outlined three sulphide bearing horizons.

The objective of the present IP and resistivity survey was to test for the presence of metallic sulphides in areas of known VLF-EM anomalies.

A Phoenix model IPV-1 induced polarization and resistivity receiver unit was used, together with a Phoenix Mode1 IPT-1 IP and resistivity transmitter powered by a 1 kw motor-generator. IP effects were recorded as Percent Frequency Effects (P.F.E.) at operating frequencies of 4.0 Hz and 0.25 Hz , while apparent resistivity values were normalized in units of ohm-meters. Dipole-dipole array was utilized to make all of the measurements, using an interelectrode distance of 25 meters. Four dipole separations were recorded in every case.

Field work took place during the period October 3 to October 11, 1987 under the supervision of Martin M. Makulowich, geophysical party leader. His certificate of qualifications is included in this report.

2) Description of Claims

The Tia Property consists of 13 contiguous claims.

Claim No. Record No. Tag No. Expiry Date

Tia 1	5879	90609	11 September 1990
Tia 2	5880	90610	11 September 1990
Tia 3	5881	599045M	11 September 1990
Tia 4	5882	599081M	11 September 1990
Tia 5	5883	599082M	11 September 1990
Tia 6	5884	599083M	11 September 1990
Tia 7	5885	599084M	11 September 1990
Tia 8	5886	599085M	11 September 1990
Tia 9	5887	599086M	11 September 1990
Tia 10	5888	599087M	11 September 1990
Tia 11	6258	90603.	18 June 1990
Tia 12	6419	90606	14 November 1986
Tia 14	6420	90605	14 November 1986

Nu Crown Resources Inc. is the owner of the Tia group of claims.

3) Description of Geology

The following geological description of the property has been taken from a report written for Nu Crown Resources Inc. by James M. Dawson, Dawson Geological Consultants Ltd., and dated July 16, 1986.
"The Tia Property is underlain by rocks of the Eagle Bay Formation of probable Upper Paleozoic: age. This unit consists of a strongly deformed, volcanosedimentary package which has been regionally metamorphosed to lower greenschist facies. The rocks consist primarily of intermediate to felsic fragmental volcanics with lesser amounts of intercalated sediments. Most rock types are
characterized by a prominent foliation. The lowest (structurally) part of the succession exposed on the property is a sequence of lustrous quartz-sericite, quartz-sericite-chlorite and minor graphitic phyllite. This unit is host to the nearby Harper Creek copper deposit and is found primarily east of Baker Creek as well as along the western edge of the claim block.

Locally overlying the phyllites is a thin(?) section of mafic volcanic rocks. On the subject property, they outcrop near, and at, the south and southeast boundary. Here they consist of dark green, meta-andesite as well as chloritic fragmental rocks containing variable amounts of lithic clasts.

Overlying the mafic volcanics is a felsic volcanic pile which covers most of the property and which can be broadly subdivided into two units: (a) a sequence of crystal and lapilli tuffs with minor amounts of included volcanoclastic sediments; and (b) a coarse agglomerate which closely resembles 'mill rock'. The majority of the felsic rocks are dacitic to rhyodacitic in composition, but rhyolite is locally abundant.

The Eagle Bay Formation is host to numerous polymetallic volcanogenic sulphide deposits, some of which, for example, Rea Gold and Homestake, contain significant precious metal values. In the vicinity of the Tia Property, a number of significant showings are known and have been developed to varying degrees."

4) Presentation of Data

The induced polarization and resistivity results are shown on the following data plots in pseudo-section format.

Line	Electrode Interval	Dwg. No.
$28+00 \mathrm{E}$	25 meters	IP-5882-1
$22+00 \mathrm{E}$	25 meters	IP-5882-2
$22+00 \mathrm{E}$	25 meters	IP-5882-3

$20+00 \mathrm{E}$	25 meters	IP-5882-4
$20+00 \mathrm{E}$	25 meters	IP-5882-5
$18+00 \mathrm{E}$	25 meters	IP-5882-6
$18+00 \mathrm{E}$	25 meters	IP-5882-7
$16+00 \mathrm{E}$	25 meters	IP-5882-8
$16+00 \mathrm{E}$	25 meters	IP-5882-9
$14+00 \mathrm{E}$	25 meters	IP-5882-10
$14+00 \mathrm{E}$	25 meters	IP-5882-11

Also enclosed with this report is Dwg. No. I.P.P. -4153 , a $1: 10,000$ scale plan map of the Tia Property. The definite, probable and possible IP anomalies are indicated by bars, in the manner shown on the legend, on this plan map. These bars represent the surface projection of the anomalous zones as interpreted from the location of the transmitter and receiver electrodes when the anomalous values were measured.

Since the induced polarization measurement is essentially an averaging process as are all the potential methods, it is frequently difficult to pinpoint the source of an anomaly. Certainly, no anomaly can be located with more accuracy than the electrode interval length; i.e., when using a 25 meter electrode interval, the position of a narrow sulphide body can only be determined to lie between two stations 25 meters apart. In order to definitely locate, and fully evaluate a narrow shallow source, it is necessaary to use shorter electrode intervals. In order to locate sources at some depth, larger electrode intervals must be used, with a corresponding increase in the uncertainties of location. Therefore, while the center of the indicated anomaly probably corresponds fairly well with the source, the length of the indicated anomaly along the line should not be taken to represent the exact edges of the anomalous material.

The grid information shown on Dwg. No. I.P.P.-4153 has been provided by the staff of Nu Crown Resources Inc.

5) Discussion of Results

Anomalous zones have been observed on all of the line segments tested by the present IP and resistivity survey on the Tia Property grid. These zones are illustrated on Dwg. No. I.P.P.-4153, and are discussed below on a line-by-line basis. In particular, their possible relationships to the previously interpreted VLF anomalies are presented.

Line $14+00$ E

On the southern segment of Line 14+00 E, two weakly polarizable zones are interpreted to be present. While the southernmost anomaly (Station 1350 N to Station 1375 N) appears to outline more polarizable material, it is felt that both anomalies reflect changes in the type and depth of bedrock in the area, rather than possibly economic amounts of sulphide mineralization.

The northern part of the line has also yielded two features of interest. The first of these, starting at Station 2350 N and continuing open-ended to the north, is weakly anomalous. It appears to be a near-surface feature which is coincident with the center of VLF anomaly \#6. The second zone is more interesting in that it yields high PFE values as well as having a low apparent resistivity. The anomalous region, centered at Station 2175 N is indicated to be less than 25 meters in width and appears to be caused by a near-vertical body, the top of which is within 25 meters of the surface. This particular anomaly could represent a far western extension of VLF-EM Zone \#15.

Line $16+00 \mathrm{E}$

On the southern section of Line $16+00 \mathrm{E}$, the IP and resistivity survey has resulted in what appears to be a fairly broad zone of anomalous values with endpoints at Station 250 N and Station 400 N . The causative source is interpreted to be a steeply-dipping body which comes to within 25 meters of
surface and which is most anomalous between Stations 300 N and 325 N . Both very high PFE values and very low apparent resistivity values are observed in this region. The zone is coincident with the location of VLF Anomaly \#13.

On the northern part of Line $16+00 \mathrm{E}$, two anomalies are interpreted to be present. The southernmost of the pair has its endpoints at Stations 1775 N and 1850 N . This anomaly is characterized by fairly high IP effects (PFE values) and fairly low apparent resistivity values. The heart of the feature is centered at Station 1825 N and again appears to be caused by a steeply dipping body, the top of which is close to surface (less than 25 meters). It is possible that this anomaly is a western extension of VLF Zone \#15. The second region of interest on this line segment starts at Station 1925 N and ends at Station 2075 N . The core of the anomaly goes from Station 1975 N to Station 2062.5 N and displays very high IP effects combined with very low apparent resistivities. These results appear to be caused by the presence of a steeply dipping body which also may be a western extension of VLF Zone \#15.

Line $18+00 \mathrm{E}$

The data from the southern part of Line $18+00 \mathrm{E}$ is dominated by a broad anomaly stretching from Station 300 N to Station 450 N . In this case, two narrow, vertical bodies appear to be present, one centered at Station 362.5 and the other at Station 412.5 N . In both cases, moderately high PFE values and low apparent resistivity values have been recorded. Both sources appear to come to within one dipole length (25 meters) of surface and are probably responsible for the anomalous VLF-EM response identified as Zone \#13. At the extreme northern end of this line segment, a possible anomaly has also been identified. It is a narrow zone with fairly high PFE values and relatively low apparent resistivities. The depth to the top of the zone is felt to be between 25 meters and 35 meters. The location of this zone coincides with that of VLF Zone \#14.

On the northern segment of Line $18+00 \mathrm{E}$ the survey has revealed the presence of a very weakly polarizable zone associated with generally higher than background apparent resistivity values. There is, however, a single, near-surface, lower resistivity value located at Station 1162.5 N which may represent a western extension of VLF Zone \#17.

Line 20+00 E

The survey data from the southern part of Line $20+00 \mathrm{E}$ appears to indicate the presence of a narrow (up to 25 meters), near-surface, vertical body located at Station 550 N . The zone is characterized by high PFE values and relatively low apparent resistivities. Its plotted position (Dwg. No. I.P.P.-4153) indicates that it may represent a link between VLF Zone \#18 to the east and either VLF Zone \#13 or \#14 to the west.

The survey coverage of the northern segment of Line $20+00 \mathrm{E}$ has resulted in the selection of two weakly polarizable zones that are accompanied by slightly depressed apparent resistivity values. The first of these is a 50 meter wide, near-surface feature centered at Station 1325 N and may represent a western extension of VLF Zone \#16. The second anomaly is again near the surface (less than 25 meters to the top), starting at Station 1475 N and ending at Station 1500 N , and does not appear to be related to any previously interpreted VLF-EM anomalies.

Line $22+00 E$

One anomaly has been interpreted to be present on the southern part of Line $22+00 \mathrm{E}$. It is felt to be caused by a steeply dipping body which comes to within 25 meters of surface between Station 600 N and Station 625 N , giving rise to moderately high PFE values and fairly low apparent resistivities. The zone appears to be offset to the south of VLF Zone \#18 by between 25 and 50 meters and it is unknown whether a relationship exists between the two.

Virtually the full length of the northern segment of Line $22+00 \mathrm{E}$ appears to be underlain by polarizable material. The depth to the top of this material varies, but appears to be at a minimum (less than 25 meters) in two locations - between Station 1100 N and Station 1150 N , and a 25 meter interval centered at Station 1262.5 N . The anomalous zones are characterized by a moderately high IP response and by fairly low apparent resistivity measurements. The southernmost of the two is felt to be related to VLF Zone \#17, while the northern anomaly may be a western extension of VLF Zone \#16.

Line $\mathbf{2 8 + 0 0} \mathrm{E}$

Three weakly anomalous features have been interpreted as being present on Line $28+00 \mathrm{E}$. In all three cases, it is felt that relatively minor changes in the sulphide content of the rock may be responsible. None of the three anomalies are coincident with previously defined anomalous VLF-EM zones.

6) Summary and Recommendations

An induced polarization and resistivity survey has been carried out on the Tia Property, Kamloops Mining Division, B.C. on behalf of Nu Crown Resources Inc.

Various anomalies have been interpreted to be present and some of these correlate well with the presence of previously identified VLF-EM conductor axes. In these instances (IP anomalies correlating with VLF-EM anomalies), an increased probability of the presence of metallic sulphides is suggested. On the other hand, VFL anomalies without associated IP anomalies are often attributable to noneconomically interesting phenomena such as the presence of barren faults.

Therefore, it is recommended that a drill program be considered to further test the sources of these anomalies. The following list of grid coordinates indicate the surface expressions of suggested drill targets. They are listed going
from higher to lower priority.

1) Line $16+00 \mathrm{E}$, Station 1975 N to Station 2062.5 N .
2) Line $16+00 \mathrm{E}$, Station 300 N to Station 325 N .
3) Line $20+00 \mathrm{E}$, Station 537.5 N to Station 562.5 N .
4) Line $18+00 \mathrm{E}$, Station 350 N to Station 425 N - the source in this instance is felt to be two parallel, near vertical bodies.
5) Line $16+00 \mathrm{E}$, Station $18+00 \mathrm{~N}$ to Station 1850 N .
6) Line $22+00 \mathrm{E}$, Station 1100 N to Station 1150 N .
7) Line $22+00 \mathrm{E}$, Station 1250 N to Station 1275 N .
8) Line $14+00 \mathrm{E}$, Station 2162.5 N to Station 2187.5 N .
9) Line $22+00 \mathrm{E}$, Station 600 N to Station 625 N .

In all cases, the anomalies are thought to be caused by near-vertical bodies, no more than 25 meters from the surface. Drill sites should be chosen according to terrain restrictions and taking into account the geometrical considerations put forth above.

PACIFIC GEOPHYSICAL LIMITED

Dated: 24 November 1987
7) Assessment Details

Property: Tia Property Mining Division: Kamloops
Sponsor: Nu Crown Resources Inc. Province: British Columbia
Location: 100 km N.N.E. of Kamloops, B.C.
Type of Survey: Induced Polarization and Resistivity
Operating Days: 8.75 Date Started: October 3, 1987
Equivalent 8 hr. Man Days: 39.5
Consulting Man Days: 4 Number of Stations: 249
Drafting Man Days: 3 Number of Readings: 1332
Total Man Days; 46.5 Km of Line Surveyed: 5.95
Consultants:
P.A. Cartwright, 4238 West 11th Avenue, Vancouver, B.C.
M.J. Cormier, 2242 Stephens Street, Vancouver, B.C.

Field Technicians:
M.Makulowich, 669 Valdes Drive, Kamloops, B.C.
R. Bulger, 224 17th Street, North Vancouver, B.C.
J. Hudyma, 146 Thor Drive, Kamloops, B.C.

Draughtsman:
B. Counts, 4131 West 16th Avenue, Vancouver, B.C.

PACIFIC GEOPHYSICAL LIMITED
Pail A. Cantiminit
Paul A. Cartwright, P.Geoph. Geophysicist.

Dated: 24 November 1987.

8) Statement of Costs

Nu Crown Resources Inc.

Induced Polarization and Resistivity Survey - Tia Property, Kamloops Mining Division, British Columbia

Period: 3 October 1987 to 11 October 1987

Crew: M.Makulowich, R.Bulger, J. Hudyma

$$
\begin{array}{ll}
8 \text { 3/4 Operating Days @ \$1,200.00/day } & \$ 10,500.00 \\
\text { Mobilization-Demobilization } & 1,500.00
\end{array}
$$

\$ 12,000.00
===========

PACIFIC GEOPHYSICAL LTD.
Pall Calumet
Paul A. Cartwright, P.Geoph. Geophysicist.
9) Certificate

I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify:

1. I am a geophysicist residing at 4238 W. 11th Avenue, Vancouver, B.C.
2. I am a graduate of the University of British Columbia, with a B. Sc. Degree (1970)
3. I am a member of the Society of Exploration Geophysicists, the European Association of Exploration Geophysicists and the Canadian Society of Exploration Geophysicists.
4. I have been practising my profession for 17 years.
5. I am a Professional Geophysicist licensed in the Province of Alberta.
6. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Nu Crown Resources Inc.
7. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

DATED AT VANCOUVER, BRITISH COLUMBIA this 24th day of November 1987.

Paul A. Cartwright, P.Geoph.
10) Certificate

I, Michael J. Cormier, of the City of Vancouver, Province of British Columbia, do hereby certify:

1. I am a geophysicist residing at 2242 Stephens Street, Vancouver, British Columbia.
2. I am a graduate of McGill University, Montreal, Quebec with a B. Sc. Degree (1981).
3. I have been practising my profession for 6 years.
4. I have no direct or indirect interest, nor do I expect to receive any interest, directily or indirectly, in the property or securities of Nu Crown Resources Inc.
5. The statements made in this report are based on a study of published geological literature and unpublished private reports.
6. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

DATED AT VANCOUYER, B.C. this 24th day of November 1987.

11) Certificate

I, Martin Makulowich, of the City of Kamloops, Province of British Columbia, do hereby certify:

1. I am a geophysical crew leader residing at 669 Valdes Drive,Kamloops, British Columbia.
2. I am presently employed by Pacific Geophysical Ltd. of 224 - 744 West Hastings Street, Vancouver, B.C.
3. I have been practising my vocation about four years.

DATED AT VANCOUVER, BRITISH COLUMBIA this 24th day of November 1987.

$$
\frac{\text { Martin Makulowich }}{\text { Martin Makulowich. }}
$$

HEH CROWH RESOURCES
tia group

KAMLODPS M.D.BC

LINE HO. - zetabe

surface projection of fhomalous zone
DEFIMITE
PROEABLE
OHHEGA
PROSABLE BLE OHGOK
frequelicy (hektz)
HML H4.-1 F -58日2-1
$40: 0.25$
contours
AT LOGARITHMIC
INTERUALS 1,15
$-2,-3,-5,-7,-10$
GATE SURVEYED.OCT 19ET apprisueo MJ C DATE Nov. 23/87

PACIFIC GEGPHYSICAL LTE habuced folmeization aho resistivity survey


```
    NEW CROWN TIA L28+0日E X=25M METAL FACTOR
```



```
N=1
N=6
N-2,0,
```

tia graup

KAMLOOPS M.D.IB.C.

LIME NO.-22+6OE

surface projection of fingmalous zohe
definite
progrele

FREGUENCY (HEFIZ) $4.0 ; 0.25$	UHL HO - - F -5892-z
contours	date singveredoct 19
at logarithmic	APPROUED MJC
InTERUALS. ${ }^{1,-1,5}$	APPRE NoV 23/87

PACIFIC GEOPHYSICAL LTO inducee folfrizftion fhe resistivity sufuey

NEW CROWN TIA L22+BBE $\quad \mathrm{X}=25 \mathrm{M}$ PFE									
$\mathrm{N}=1$									
$\mathrm{N}=2$									
$\mathrm{N}=3$									
$\mathrm{N}=4$									
$\mathrm{N}=5$									
$\mathrm{N}=6$									

tif Group

KAMLODPS M.D.;B.C

LINE NO.-22+00E

surface projection of andmalous zone
DEFINITE ROK......:
PROBABLE ATHANH:

FREQUENCY (HERTZ)
4.0.6.25,

CONTOURS
AT LOGARITHMIC
INTERUALS. $1,-1,5$
$-2,-3,-5,-7,5,-10$

OWG HO.-1.F -5882-3 DATE SURUEYEO:OCT 1987 approved MJC DATE NOV 23/87

NEW CROWN TIA L22+0日E X 25 (RHO (OHM-M)															
$\mathrm{N}=2$															
$\mathrm{N}=3 \quad 1747$ 1215															
Nas															
$N=6$															

tif group

KAMLOOPS M.D.I8.C.

LINE NO. -20+00E

SURFACE PROJECTION OF ANOMALOUS ZONE
 POSBIBLE ERHOM

$\begin{gathered} \text { FREGUENCY } \\ 4.0: 0.25 \end{gathered}$	DWG H0,-1.P.-5882-4
contours	Ofte surveyed: oct 1987
at logrrithmic	APPROUED MJE
INTERUALS, ${ }_{-2,-3,-5,-7,5}$	DRTE NOV 23/87

PACIFIC GEOFH'SIEjAL LTD induced polarization and resistivity survey

INTERPEETATIOH									
$\mathrm{N}=5$									
$\mathrm{N}=6$									

ita Group

surface projection of ahomalous zone
DEFINITE
PROBABLE
POSSIBLE MOMOH

$\begin{gathered} \text { FREGUEHCY (HERTZ) } \\ 4.0: 0.25 \end{gathered}$	dhg ham 1 f. 5agz-5
contours	DATE SURVEYED:OCT 19
At logarithmic	APPROUEOMTC
INTERUALS, ${ }_{-2,-3,-5,-7,5}$	DATE NOV 23

FACIFIC GEOPHYSICAL LTO
induceo folarizatian and resistivity survey

25 M netal factor										
 INIERPRETATIOH										
$\mathrm{H}=1$										
$\mathrm{N}=2$										
$\mathrm{N}=3$										
$\mathrm{N}=$										
$\mathrm{N}=5$										
$\mathrm{H}=6$										

HEM CROWH RESOURCES

tia group

KGML OOPS M O.iBC
line no -libabe

urface projection of anohalous zone
DEFINITE

$4.0: 0.25$	
cantaurs	bite shrveyerabit 198\%
at lagarithilc	HifPFouta MJC
	nite NOY 23

PACIFIC GEOPHYSICAL LTG mouceo folakization fato fesistivity sufvey

NEW CROWN TAALI8+日日E X \quad 25M METAL FACTOR																	
 UMTERPRETQU1Q																	
INTERPRETGILON																	
H 2 2																	
$\mathrm{H}=3$. 2.5 . 8 , 18 287 1478																	
$\mathrm{H}=5$																	
$\mathrm{N}=6$																	

NEW CROWH RESOURCES

tia group
kamloofs h.o.ibe.

LINE NO - -18+00E

surface projection of anomalous zone

> DEFINITE
> PROBABLE THOH:AB

$\begin{aligned} & \text { FFEQUEHCY (HERTZ) } \\ & \text { 4:0; } 25 \end{aligned}$	[W6 HG - 1 F -5882-7
contours	ohte surveyeg.oct 1987
At Logarithmic	hafroued MJC

PACIFIC GEOFH'SIIOAL LTO
induceg polfrization aho resisiluity survey

HEW CROMH RESOURCES

tia group

KAMLOOFS H.D.B. C

LINE NO - -16+00E

SURFRCE PROJECTION of GNOMALOUS zONE
BEFINITE
PROBABLE
PGBR....
PROBABLE
POSSIGLE
OVI....

FACIFIC GEOPHYSICAL LTD. induced pidatazation hato resistivity survet

NEW CROWN TIA LIG+e日E \quad X=25M METAI. FACTOR											
$\mathrm{H}=1$											
Na 2											
$=3$											
N=4											
$\mathrm{N}=5$											
$\mathrm{N}=6$											

HEA CROWH RESOURCES

tif group

KAMLUOPS M.O.,日.C

GINE NO.-16+00E

surface projection of anomalous zohe
definite

frequency (hertz)
40:0.25
THG $1 \mathrm{HO}-1$ P $-5882-9$

CONTOURS
GT LOGARITHIIC
INTERUALS. $1,-1,5$
$-2,-3,-5,-7,5,-10$
date surveyed:oct 19é apfrgued MJC DATE NOV $23 / 87$

PGCIFIC GEDFHYSICHL LTD. induceo polakization fito resistivity survey

NEH CROWN TIA LIG+60E X \quad ESEM RHO (OHM-M)													
$\mathrm{N}=5 \mathrm{~s}$													

NEW CROWN TIA LIG+60E X259M PFE															
$\begin{aligned} & \mathrm{N}=1 \\ & \mathrm{~N}=2 \\ & \mathrm{~N}=3 \\ & \mathrm{~N}=4 \\ & \mathrm{~N}=5 \\ & \mathrm{~N}=6 \end{aligned}$															

HEN CROWH RESOURCES

tif group
a bilomps m．0．，g．c．

LIHE NO．－14＋00E

surface projection of anomalous zone
definite
PRO日R PLE ARTOUNO
［1415 HO－1 F－588を－10

OATE SURVEYEO：OGT 198 fiPFRIVEDMJC ORTE NOV 23／87

PACIFIC GEGFHYSICAL LTD induced polfrization and resistivity survey

NEW CROWN TIA L14＋0日E K＝25M RHO（OHM－M）															
COORDINATE $1325 \mathrm{~N} \quad 1375 \mathrm{~N} \quad 1425 \mathrm{H} \quad 1475 \mathrm{~N} \quad 1525 \mathrm{~N} \quad 1575 \mathrm{~N} \quad 1625 \mathrm{~N}$															
$\mathrm{H}=31 \begin{array}{llllllll} & 1326 & 1241 & 1239 & 1797 & 2664 & 2766 & 3433\end{array}$															
$\begin{array}{llllllllllllllll}N=4 & 1091 & 1225 & 1241 & 1779 & 2022 & 2476 / 5115\end{array}$															
$\mathrm{N}=5$															
$\mathrm{N}=6$															

HEW CROWH RESOURCES
tiagroup

KAMLOOPS M.D.sB.C

LIME NO - -19+00E

Surface projection of fingmalous zone
DEFINITE
PROBABLE MBCOBR

$\begin{aligned} & \text { FREQUENCY GHERTZ; } \\ & \text { 4.0:0.25 } \end{aligned}$	[1uG 10 - 1 F.-5882-11
cantours	date surveyea:act 198
at logakithmic	approved MJC
INTERUALS, 1, -1, ${ }_{-2,-5}$	NOV $23 / 87$

PACIFIC GEOPHYSIC'AL LTD induced polarization amd kesistivity survey

