	LOG NO: 1115	RD.
	ACTION: Alpo	
IINCO LTD.	FILE NO: 87 - 760 -	16570

Owner Operator: COM

WESTERN CANADA

EXPLORATION NTS 104K/12E

ASSESSMENT REPORT

GEOLOGY AND GEOCHEMISTRY OF THE THE TALON 1 and 2 MINERAL CLAIMS TULSEQUAH PROPERTY

ATLIN M.D.

LONGITUDE 133°35'W 2°

LATITUDE 58°**41**^TN *40'24"*

WORK PERFORMED:

JUNE 15 to SEPTEMBER 25, 1987

GEOLOGICAL BRANCH ASSESSMENT REPORT

5.5/1

SEPTEMBER, 1987

FILMED

T.J. TERMUENDE

TABLE OF CONTENTS

	<u>Page</u>
SUMMARY	1
INTRODUCTION	1
LOCATION AND ACCESS	2
PHYSIOGRAPHY AND CLIMATE	2
CLAIM STATUS	3
HISTORY	4
1987 PROGRAM	5
REGIONAL GEOLOGY	5
PROPERTY GEOLOGY AND MINERALIZATION Sparling Showing Banker Showing Felsic Volcanics	6 7 9 11
GEOCHEMISTY	11
CONCLUSION	11
RECOMMENDATIONS	12
REFERENCES	12
APPENDICES: Appendix A - Statement of Expenditures Appendix B - Statement of Qualifications Appendix C - Affidavit - T.J. Termuende Appendix D - Soil and Rock Geochemical Analyses Appendix E - 1964 Drill Logs - New Taku Mines L	td.
FIGURES:	

1.	Location Map
2.	Claim Map
3.	Property Geology Map
4.(i)	Sparling Showing - Trench and Sample Location Map
5.(i)	Banker Showing - Trench Locations and Detailed Geology
5.(11)	Banker Showing - 1964 Drill Hole Location Map
6.(1)	Soil Geochemistry - Contoured Data (Au)
6.(ii)	Soil Geochemistry - Contoured Data (Ag)
6. (iii)	Soil Geochemistry - Contoured Data (As)
6. (iv)	Soil Geochemistry - Contour Sampling Map (Au, Ag, As)

COMINCO LTD.

EXPLORATION NTS 104K/12 WESTERN CANADA 24 September 1987

ASSESSMENT REPORT

GEOLOGY AND GEOCHEMISTRY OF THE TALON 1 and 2 MINERAL CLAIMS TULSEQUAH PROPERTY

SUMMARY

The Silver Talon property, located within the Atlin mining district at latitude 58°41'N, longitude 133°35'W consists of an intermediate to felsic volcanic package overlying pre-Permian limestones, and offset by the Tulsequah Chief Fault.

The property contains two significant mineral showings, namely the Sparling and Banker. These areas have received considerable attention since their discoveries earlier in the century, including mapping, geochemical sampling, trenching and drilling.

The Sparling showing consists of mineralization within narrow parallel shears offshooting from the Tulsequah Chief Fault. While generally yielding little gold, the area shows encouraging concentrations of lead and zinc.

The Banker showing, located within brecciated limestones near a sedimentary/volcanic contact, shows significant gold, silver, lead and zinc concentrations. Trenches have in the past produced samples of extraordinarily high silver content, in addition to anomalous gold and base metal values. The area surrounding the Banker showing is low-lying and swampy, hindering geological and geophysical prospecting in the past, and causing some uncertainty as to the true size of the mineralized zone.

The felsic volcanic package on the east side of the property reveals an Au-anomalous area near an andesitic/dacitic contact, and may show some promise with respect to a volcanogenic massive sulphide target.

INTRODUCTION

The property, consisting of 14 Crown granted claims and 29 modified grid system claims, is owned by Silver Talon Mines Ltd. of Vancouver, British Columbia, and was evaluated in June and July, 1987. The property shows significant mineral concentrations, primarily in the area known as the Banker showing. Two other areas of anomalous mineralization include the Sparling showing, and a felsic volcanic package located on the east side of the property. A joint venture program between Cominco Ltd. and Silver Talon Mines Ltd. saw the placement of a small crew consisting of a geologist and geological assistant, with the objective being to extend the existing soil survey coverage, provide a detailed geologic map of the property, and to evaluate and interpret known showings for their economic potential. Over the course of the program, the above objectives were completed. A 1983 report by G. Salazar was the source of some assay and geochemical data, while a 1986 report prepared by E. Ostensoe provided some information. Further work by Payne (1987) and Kerr (1948) was referred to regarding local geology.

This report provides information as to the location, history and geology of the property.

LOCATION AND ACCESS see Map, Figure 1

The property is located at the base of Mount Manville in the Atlin mining district, at latitude $58^{\circ}41^{\circ}N$, longitude $133^{\circ}35^{\circ}W$, on NTS map sheet 104K/12E. Its area spans the Tulsequah River near the confluence of the Taku and Tulsequah rivers. The area is within the Coast Mountains, approximately 8 km east of the B.C./Alaska border. The nearest supply points are Juneau, sixty km to the west, and Atlin, one hundred km to the northeast. The property is suitable for access by float or wheel equipped aircraft, or by helicopter or river boat. Mining operations have traditionally relied upon river access for heavy freighting requirements. During the 1987 field season however, brush clearing was completed on a one mile long gravel airstrip located on the west side of the Tulsequah River, enabling DC-3/Caribou-sized aircraft access to the area. The strip itself is located 1.5 km from the Banker showing, and is within the property boundary.

The property lies within elevations 90 to 400 m, and is free of snow from mid-May to October.

PHYSIOGRAPHY AND CLIMATE

The property, while situated at low elevations (90-400 m), is surrounded by glacier-capped 2000-2800 m peaks in all directions. The vegetation is dense with numerous fast running streams present in early summer.

To the southwest, and partially within the property boundary is the 12 km^2 Flannigan Slough. The confluence of the Tulsequah and Taku rivers lies 5 km to the south.

The area is subjected to typical coastal climates. F.A. Kerr reported annual precipitation between 1.91 and 3.81 metres, average snowfall as much as 2.9 metres, and winter temperatures between -3° and -5° C. Mines in the area generally operated year-round, with minor shut-downs in the summer during the flood season.

The Tulsequah River originates twenty kilometers to the north from the Tulsequah Glacier, a ten kilometer long valley glacier flowing to the southeast. The river flows in a low angle gravel-filled valley one to two kilometers wide. Normally the river is comparatively wide and stays within numerous channels along the flood plane. During the summer however, rising water levels in Tulsequah Lake cause a breach of ice dams, and drainage of the lake occurs rapidly, causing a valley-side flood for a period of roughly one week. During this time, the river is reported to rise twelve feet.

CLAIM STATUS see Figure 2

43 claims make up the property, with 18 of those being Crown Granted Mineral Claims (CG) and 29 being Modified Grid System (MGS) Mineral Claims, subjected to yearly assessment requirements. Assessment requirements were met and reports submitted for those MGS claims which would have expired August 1, 1987, securing them until August 2, 1993. Table 1, below summarizes existing claims and their status.

<u>Claim</u>	Туре	<u>Record (Lot) No</u> .	<u>Expiry Date</u>	<u>No. Of Units</u>
Vega No. 1	CG	6155	N/A	1
Vega No. 2	11	6156	11	· 1
Vega No. 3	88	6157	11	1
Vega No. 4	18	6158	12	1
Vega No. 5	11	6159	u	ī
Janet No. 1		6160		1
Janet No. 2	H	6161	tt	1
Janet No. 3	. 8	6162	11	1
Janet No. 4	н	6163	H	1
Janet No. 5	1	6164	lt .	1
Janet No. 6	1ł	6165	H	1
Janet No. 7	u	6166	II	1
Janet No. 8		6167		1
Joker	II II	6168	u	1
Talon No. 1	MGS	1979	August 2, 1993	20
Talon No. 2	18	1980		_9
			TOT	AL: 43

TABLE 1 SILVER TALON CLAIM STATUS

HISTORY (excerpted from Mason, 1986; Salazar, 1983; Canadian Mining Journal, 1954)

Interest in the area dates back to 1923, when W. Kirkham of Juneau examined the rusty cliffs on the east wall of the Tulsequah Valley and discovered silver, lead, zinc and copper showings which he staked as the "Tulsequah Chief" claim. The same year the Alaska Juneau Gold Mining Company bonded the property, but dropped the option after a limited tunnelling program. Sporadic work was complete until 1946, when Cominco gained interest and carried out extensive work which saw production in 1951 of the Tulsequah Chief Mine. The mine, in operation until 1957, produced 1,029,089 tons of massive sulphide ore that yielded 94,254 ounces Au; 3,400,773 ounces Ag; 13,603 tons Cu; 13,463 tons Pb; 62,346 tons Zn and 227 tons Cd (Souther, p. 52).

Another nearby mine, the Polaris Taku or Whitewater Mine, is located 0.5 km west of the Tulsequah River, 3 km from the property boundary. During its period of operation, from 1937 to 1957, 231,000 ounces Au were removed from 719,336 tons of arsenopyrite ore extracted from sheared and carbonatized volcanic rocks (Hodgson, 1982).

During their periods of operation, ore from the Tulsequah Chief Mine was transported across the river and milled in the Polaris-Taku facility.

The discovery of the Banker and Sparling showings occurred in 1929, when some forty prospectors were attracted to the region by the Tulsequah Chief discovery. The Crown grants were staked in 1929 and optioned to the Alaska Juneau Gold Mining Company, who dropped them after a year's work had been done. During that period, a fifty foot tunnel, twenty foot shaft and several hand trenches were completed in the area of the Banker showing. J. Mason makes reference to a shallow 180 foot adit being completed on the claims at this time, but is not specific as to location.

The property lay idle until the late 1940's, when it was taken over by the Polaris-Taku Mining Co., a Rembrandt Gold Mines Ltd. predecessor and from whom Silver Talon Mines Ltd. acquired the property. Cominco optioned the property in 1957 and drilled three holes through the north end of the Sparling showing for a total of 1472 feet of drilling.

In 1964, a syndicate made up of New Taku Mines Ltd., Howe Oil Ltd. and the Homestake Mining Co. undertook further exploration of the Banker showing. The old trenches were blasted and deepened four or five feet and a number of short x-ray drillholes (5/8" core) were drilled near the original trenches. Total footage was of the order of 400 feet. According to Mason, this work proved that high grade mineralization, though erratic, continued to a depth of better than 30 feet.

In 1966, the New Taku Syndicate conducted an electromagnetic and self potential survey over the Banker and Sparling areas and determined a number of strong anomalies. Further work saw bulldozer stripping of the Banker area, but deep overburden and equipment problems hampered operations.

In 1983, G. Salazar and Associates were contracted, and a 5400 m flagged and blazed grid was completed with soil samples taken at 10 m intervals along crosslines. An 1140 m long baseline at 334° Az was cleared and flagged. These samples were analyzed for gold, silver, lead and zinc, with anomalous areas coinciding with Banker and Sparling showing locations. Further trench sampling was completed on the Banker showing, with 67 chip samples collected and assayed for gold, silver, lead and zinc.

1987 PROGRAM

The summer, 1987 program consisted of field work carried out by Cominco under agreement with Silver Talon Mines. The program ran from June 19 to July 31 and included detailed geological mapping of the Banker-Sparling areas, a northward extension of the soil grid, detailed mapping and sampling of the Banker trenches, systematic sampling of the Sparling trenches, and contour geochemical sampling of the felsic volcanics to the east of the Sparling showing.

REGIONAL GEOLOGY (excerpted from Canadian Mining Journal, 1954)

The Tulsequah area is on the eastern flank of the Coast Range batholith and is underlain by a thick succession of Paleozoic and Mesozoic volcanic and sedimentary rocks intruded by granitic outliers of the main batholith. The intrusive rocks have given rise to a diverse series of differentiates, including basic, intermediate and acid dykes and felsic injections. Sulphide deposition in the area, together with its accompanying siliceous and alkaline rock alteration, is also attributed to these intrusives. The Polaris-Taku and Tulsequah Chief deposits are located within the older core of a regional structural arch, near and between several large granitic batholiths. The underlying rocks consist of a thick series of pre-Permian and Permian limestone and schist, overlain conformably by the lower Triassic Stikine volcanics.

Ore deposits occur in these Mesozoic volcanic rocks which consist mainly of andesitic and rhyolitic flows and fragmentals and thin banded tuffs. The rocks are compressed into tight north-trending folds, which are revealed by elongated areas of the Permian and pre-Permian formations which represent the core of eroded anticlines. Two main systems of transcurrent faults occur, one set striking north, parallel to the Tulsequah valley, and the other northeast paralleling the Taku valley.

PROPERTY GEOLOGY AND MINERALIZATION see Figure 3

Detailed mapping of the property geology revealed that the property consists of a volcanic pile with narrow, discontinuous lenses of limestone suggested by Souther (1971) and Kerr (1948) to predate the Stikine volcanics which occur throughout the area. There also exists a series of faults of varying magnitude which are oriented generally north/south. The most significant and recent of these faults is the Tulsequah Chief Fault (formerly Big Bill), revealed by Payne (1987) to be continuous for a distance of over seven kilometers, visible as far north as the Tulsequah Chief workings, between the 5200 and 5400 adits. The fault is a major structural feature and serves to separate lithologies within the property, with dacites and rhyodacites to the east, and andesites and pyroxene/augite porphyry to the west. Further, less significant faulting is evidenced throughout the property area in the form of troughs and depressions, and are oriented in a north or northeastward direction, roughly parallel to the Tulsequah and Taku lineaments. These minor faults do not display significant displacements, and are truncated by the Tulsequah Chief Fault.

Throughout the property area are a series of felsite and specifically quartz monzonite dykes. These dykes appear to be Triassic or later in age, and invariably occur within fault zones and as fracture fillings.

Structurally, at least three phases of folding are evidenced in the andesites west of the Tulsequah Chief Fault. A tight fold nose is apparent north of the creek along crossline 7+00N. This nose is defined by a folded foliation, which itself shows minor crenulations. The orientation of fold axes of the most recent phase is found to be approximately 60 degrees toward 320 Az. These folds may be interpreted to be minor folds on the flank of a larger regional strucure. The fold axis orientations support this suggestion, as they agree with the trend and plunge of larger structures mapped by Payne (1987) and Kerr (1948).

Limestone is exposed on either side of the Tulsequah Chief Fault in limited exposures. To the southwest of the property, it hosts the Banker mineralization, and is massive or banded grey to white coloured, and locally sideritic. Due to deep overburden, its extension north or south cannot be determined, though there is a suggestion that it may be related to limestones discovered to the north near the Tulsequah Chief workings, or eastward, across the Tulsequah Chief Fault. It is impossible to ascertain however, without further palaeontological investigation. Located to the east of the "Banker" limestone is a thin argillaceous mudstone. This unit shows bedding attitudes similar to the limestone, and is interpreted to be a facies variation in the sediments. Tops were not determined. Andesite mapped in the area is generally fine grained and massive, with some pyroxene and hornblende phenocrysts 3-10 mm in size, found in irregular distributions throughout the property. In some areas, phenocryst size and abundance is such that an intrusive character is suggested, though contacts are invariably gradational. The andesites are locally subjected to alteration, usually resulting in calcareous or siliceous overprinting. It has been observed that a siliceous alteration post-dates that responsible for the carbonatization, though the latter may be inherent to the rock itself. Apparently contemporaneous with the siliceous alteration is the placement of finely disseminated pyrite, which is visible throughout the area. The andesite generally shows a prominent foliation, most obvious towards the south end of the property.

Dacites, found only to the west of the Tulsequah Chief Fault, are generally fragmental in origin and grade locally to more felsic rhyodacitic compositions. There is a suggestion by Payne (1987) that these rocks are similar to those which host the Tulsequah Chief mineralization six kilometers to the north. Disseminated pyrite is common throughout the property area, but rarely in significant quantities, with the exception of minor shear zones, where sulphides are seen to occur in small veinlets. There exists a zone of more massive, aphanitic dacitic flows within the fragmentals, thought to be resultant of depositional factors. Alteration generally consists of carbonatization and silicification, again evidently in that order.

The Felsite dykes represent the latest rock units, and are generally of a quartz monzonite composition, with textures varying from finely crystalline to coarse-grained. Flow banding is visible in many exposures, as well as prominent jointing, generally in an orientation parallel to that of the dyke itself. It is suggested that the dykes predate or are contemporaneous with the latest phase of deformation, as evidenced by their curviplanar orientation seen throughout the Sparling area.

Significant mineralization within the property seems to be limited to the Sparling and Banker showings, though the dacitic pile to the east of the Tulsequah Chief Fault may hold some potential for a volcanogenic deposit. The mineralization found in the Banker and Sparling showings is of differing nature, therefore the geology of each will be treated separately.

SPARLING SHOWING

The Sparling showing is located near the top of a north/south oriented ridge between the Tulsequah River valley and the Tulsequah Chief Fault (see Figure 3). It represents a vein-type deposit within a shear zone system. Lithologies generally consist of massive to porphyritic andesite and coarse grained pyroxene/hornblende porphyry (gabbro). Felsite dykes are frequent throughout the area and in some places occur directly adjacent to mineralization. The Sparling area lies at elevation 160-190 m, 70 m higher Prospect pits and trenches are and 600 m northeast of the Banker showing. distributed in a north-south orientation, over an area roughly 300 m x 100 m, and are numerous and easily recognized (see Trench Location Map, Figure 4(i). Mineralization is limited to a north/south trending shear zone 25 m wide, which fingers into smaller individual shears over 200 m to the south. The zone is thought to represent a splay related to the Tulsequah Chief Its greatest width is observed proximal to the fault itself. Fault. Mineralization is found in both the massive andesites and the pyroxene/gabbro units (see Figure 3), suggesting that the mineralization event is contemporaneous with later faulting, and is not syn-genetic with the volcanic event responsible for the andesites.

Strong mineralization is found within a sericitic foliated, boudined quartz vein 20-50 cm in width within the shear zone. Sulphides include pyrite, galena, sphalerite, arsenopyrite and stibnite? in order of abundance. The vein appears continuous over 40 m, and forms a resistant spine where exposed in trenches. Mineralization occurs in bands 1-3 cm wide, parallel to walls. Samples taken from this vein showed values of 222 ppb Au and 24.5 ppm Ag, 518 ppm Pb, 10,250 ppm Zn and 632 ppm Cu. Twenty metres eastward in Trench 17, much higher values were seen: 2820 ppb Au, 510 ppm Ag, 66000 ppm Pb, 28800 ppm Zn and 309 ppm Cu. This vein is similar in appearance and orientation to veins throughout the showing area.

Systematic sampling was carried out in an attempt to determine continuity and location of significant mineralization. While Figure 4(i) reveals trench and sample locations, Appendix D shows analytical values. Results show that the Sparling trenches, while generally anomalous in Au, Ag, Pb, Zn and Cu concentrations, yield encouraging results only over narrow, sporadic intervals, confirming that mineralization is vein related, and is generally not continuous.

Cominco, in 1957 drilled three holes from the top of the Sparling ridge at locations indicated on Figure 4(i). These holes were drilled from the west bearing 77° east with inclinations between -32° and -38°. The drilling objective was to test the mineralization at shallow depths. Each hole was roughly 450 feet long, with a total footage of 1,472 feet for the program. The northernmost hole was intended to test the area of alteration in the vicinity of the intersection of the Tulsequah Chief Fault and another north/south oriented fault. The two more southerly holes also tested the downward projection of mineralization on the west side of the main draw. The drilling confirmed the presence of a shear zone with associated sericite and quartz sericite alteration beneath the general area of the main draw. The zones of alteration were however, not accompanied by significant sulphide The drilling did not indicate a downward extension of the mineralization. mineralization exposed in the trenches.

BANKER SHOWING see Figure 5(1), 5(11)

The Banker showing is located adjacent to low marshy ground along the floodplain of the Tulsequah River, one hundred metres from its most easterly channel. It consists of seven 2-3 m deep trenches 10-20 m long, oriented 040°, located on the grid between lines 2+80N and 3+40N. It sits at elevation 90 m, along a densely foliated road running northwest.

Banker mineralization occurs within silicified, thinly bedded grey and white limestone. Bedding strikes from 130° to 170° and dips 70°SW to 60°NE. An exception to this occurs in a rusty weathering limestone outcrop sixty metres to the southeast, near some old equipment. In this single exposure, attitudes of 090/80N were measured, suggesting that the Banker mineralization occurs near the nose of a synformal structure. Kerr (1948) suggested that the Banker mineralization was confined to the crest of an anticline plunging gently to the southeast. If this is correct, the deposit has been eroded to the northwest but should plunge beneath younger (?) volcanics to the southeast.

The limestone in the area is considered by previous workers to be Permian in age. Payne (1987) assigns a Pennsylvanian-Permian age to the unit. Conformably overlying the limestone is an argillaceous mudstone layer, located in a single outcrop exposure thirty five metres east of the trenches within a small creek draw. The nature of the contact with the volcanics is unclear due to limited outcrop exposure in this area.

The presence of an adit is suggested in Trench "C" along the eastern wall. Numerous old timbers litter the floor of the trench, and some hanging wall braces are in place in what appears to be a portal (sloughing of material makes it difficult to conclude with certainty). It is possible that the trench itself was at one time a shallow adit, and has since collapsed and been cleared during subsequent work.

All mineralization in the Banker area is related to a quartz flooded shatter zone within the bedded limestone. Ore mineralization consists of mainly galena and sphalerite, with arsenopyrie, pyrite, tetrahedrite, chalcopyrite, and bornite occurring in minor proportions. Later pyrite and arsenopyrite occur in veinlets crosscutting earlier mineralization. Mineralization is restricted to a limestone breccia whose clasts range in size from 5 to 20 cm. There has been obvious rotation of blocks within the zone. A 20 cm wide, siliceously altered light green coloured, mariposite-rich dyke occurs 35 m to the southeast (see Figure 5(i)) and trends directly toward the trench area. Clasts of this same material are invariably associated with mineralization within the limestone breccia, suggesting that the dyke may be in part responsible for the mineralization itself. Mineralization in the trenches appears to surround these clasts in many instances, suggesting that the resistant fragments provided open spaces, facilitating the movement of mineralized solutions through the brecciated zone.

Significant to the understanding of the nature of the mineralization is the consideration of the numerous faults clearly evident in the trench area. Slickenslide examination, coupled with visible offsets, indicates that the area of the showing has experienced extensional strain in a southeast/ northwest direction. There also appears to be strike-slip movement perpendicular to trench orientation, further offsetting mineralization.

Samples of Banker mineralization assay as high as 871.6 oz Ag/ton (Mason, 1983). Recent work by Salazar (1983) included collecting 63 rock chip samples from the trenches, from which the highest silver assays obtained were 87.02 and 64.42 oz/ton, with widths 0.25 m and 1.25 m respectively. Samples collected during the 1987 program indicate that mineralization is fault controlled. Assay results show that while trenches "C" and "D" yield vield anomalous Au, Ag, Pb, Zn and Cu values (up to 5920 ppb, 1460 ppm, 27000 ppb, 95500 ppm and 11470 ppm respectively), trenches further to the northwest show considerably lower concentrations. It is suspected that the extensional fault visible in trench "D" saw the downdropping of the mineralized zone northwestward, beneath the marsh. It may be significant to note the presence of a gossan on the gravel banks of the Tulsequah River 1 km to the northwest. adjacent to the marsh. This gossan may represent mineralization at depth which could be related to an extension of the Banker zone.

It is important to note that no reference is made to the presence of faults in the 1964 drill logs (see Appendix E). This implies that the geologists responsible for the spotting of the holes did not recognize the importance of faulting in their drilling decisions. This is reflected in the drill hole locations (see Figure 5(ii)). Drilling proved extension of mineralization to shallow depths only in a limited area. It is therefore possible that some aspects of the mineralization geometry have been overlooked or left unexamined.

The size of the Banker mineralization is unknown. Thick overburden to the north, west and south of the trenches has so far inhibited surficial and geophysical examination. Salazar's 1983 geochemical survey outlines a gold-, silver-, lead- and arsenic-anomalous area of size considerably greater than that seen in the trench area (see Figures 6(i), 6(ii), 6(iii)). Barren, bedded limestone occurs 60 m to the north and 5 m to the southeast of the trenches. There is evidence in trench "C" that a horizontal, near surface fault displaces the mineralization to the southeast, with the possibility of another downward extension of the body in that direction. There does exist a strong possibility that mineralization could continue to the northwest. This suggestion has not been adequately explored.

FELSIC VOLCANICS (East Side of Tulsequah Chief Fault)

This package was prospected and sampled in an attempt to evaluate its potential as a "Tulsequah Chief" type volcanogenic deposit. It consists primarily of dacites and rhyodacties cut by later felsite dykes and overlain by andesites. 59 soil sample were collected along contours at 200 m and 300 m elevations. These samples were analyzed for gold, silver and arsenic content. Results showed that the package is generally barren of auriferous material, with the exception of an anomalous zone near an andesite/dacite flow contact along the 300 m contour. Subsequent surface examination was not carried out during this field season.

Elsewhere within the package, surface mapping has revealed pyrite is present throughout the package, but in very low concentrations (generally less than 2%).

GEOCHEMISTRY

The existing grid was reflagged and the baseline extended to 1900N. Crosslines were established at 30 m intervals along the baseline from 1280N to 1490N and from 1780N to 1900N in hopes of recognizing an extension of Sparling mineralizaton to the north. A total of 82 samples were collected at 25 m intervals. Contoured results may be seen in Figures 6(i), 6(ii) and 6(iii), and data in Appendix D.

As well, contour soil sampling was completed along 200 m and 300 m contour intervals within the felsic volcanic package to the east of the Tulsequah Chief Fault. As a result, an Au anomaly was detected along the 300 m interval near an andesitic/dacitic contact (see Figure 6(iv)).

CONCLUSION

Clearly the greatest potential of the property lies with the Banker showing mineralization. It has yielded consistantly encouraging assay values, and has not been adequately explored with respect to its true size at depth. The felsic volcanic package to the east of the Tulsequah Chief Fault has shown an anomalous area in a preliminary soil sampling program, and warrants further investigation. The Sparling showing, though yielding spectacular samples, appears narrow and discontinuous.

RECOMMENDATIONS

Additonal geophysical work should be carried out in the area northwest and southeast of the Banker showing. Due to the presence of swampy ground, the work should be carried out in late fall or winter, using a horizontal loop-EM technique. If encouraging results are obtained, drilling should be carried out using a portable, light weight drilling apparatus capable of reaching depths to 150 m, with the objective being to define the zone boundary to the northwest and southeast. Further work may be warranted within the felsic package to the west of the Tulsequah Chief Fault, in order to evaluate the Au anomaly discovered along the 300 m contour level.

REFERENCES

Canadian Mining Journal, May, 1954, Tulsequah Mines Limited, Ch. 11, pp. 180-186.

Hodgson, C. Jay and others, 1982,

"Application of Exploration Crieteria for gold Deposits in the Superior Province of the Canadian Shield to Gold Exploration in Cordillera" in <u>Precious Metals in the Northern Cordillera</u>, editor A.A. Levinson, Assoc. of Exploration Geochemists, publishers: Univ. Chicagp Press, Chicago, U.S.A.

Kerr, F.A., 1948,

Taku River Map-Area, British Columbia, Geol. Surv. Can., Mem 248.

Mason, J.D., 1983,

Report on the Banker Silver Property, Tulsequah, B.C.

Ostensoe, E.A., 1984,

Report on Banker-Sparling Prospects, Tulsequah Mining District, Northwestern British Columbia for Silver Talon Mines Limited, Vancouver, B.C.

Payne, J.G. and Sisson, W.G., 1987, Geological Report on the Tulsequah-Taku Property, private Cominco report.

Salazar, G., 1983,

"Property Report: Banker-Sparling Group of Claims," private report to Directors, Silver Talon Mines, Ltd.

Souther, J.G., 1971,

Geology and Mineral Deposits of the Tulsequah Map-Area, British Columbia, Geol. Surv. Can., Mem 362.

Se Reported by: (nno T.J. Termuende Geologist

Endorsed by:

M.J. Casselman Project Geologist

Approved for release:

N.Y. N

W.J. Wolfe Manager, Exploration - Western Canada

TJT/jd

Distribution:

APPENDIX "A"

STATEMENT OF EXPENDITURES

Salaries		
T.J. Termuende – field June 18 – July 3	30 @ \$110/day	\$4730.00
August 10-14, 1	7-21 @ \$110/day	1100.00
R. Cameron - field June 18 - July 3	30 @ \$92.40/day	3973.20
Geology Miscellaneous		1537.00
Camp Cost (stayed at Cominco camp @ \$85/manday		7310.00
Helicopter (15 hours @ \$450/hour - Jet Ranger 2	206B	6750.00
Fixed Wing		5000.00
Geochemistry (soil and rock)		2100.00
Line cutting - helicopter pads and 3 km lines - 2 men @ \$500/day for 3 days	cut and blazed	1500.00
	TOTAL	\$34,000.20

APPENDIX "B"

STATEMENT OF QUALIFICATIONS

I, TIMOTHY J. TERMUENDE of Hwy 93, Fort Steele, in the Province of British Columbia, hereby certify:

- (1) THAT I am a geologist residing at Hwy 93, Box 7, Fort Steele, British Columbia.
- (2) THAT I graduated with a B.Sc. (Geol.) degree from the University of British Columbia, in April, 1987.
- (3) THAT I have practiced field Geology since 1976, specifically as a Cominco Geologist since May, 1987.

SIGNED:

T.J. Termuende Geologist

September 24, 1987

APPENDIX "C"

IN THE MATTER OF THE B.C. MINERAL ACT AND THE MATTER OF A GEOLOGICAL PROGRAMME CARRIED OUT ON THE SILVER TALON PROPERTY, NOTABLY THE TALLON 1 AND 2 CLAIMS LOCATED AT LATITUDE 58°41'N, LONGITUDE 133°35'W IN THE ATLIN MINING DISTRICT OF THE PROVINCE OF BRITISH COLUMBIA, MORE PARTICULARLY NTS 104K/12E.

AFFIDAVIT

I, TIMOTHY JAY TERMUENDE, of Hwy 93, Fort Steele in the Province of British Columbia, make oath and say:

- (1) THAT I am employed as a Geologist by Cominco Ltd. and, as such have a personal knowledge of the facts to which I hereby depose;
- (2) THAT annexed hereto is a true copy of expenditures incurred on a geological survey on the Tallon claims;
- (3) THAT the said expenditures were incurred between June 15 and September 25 for the purpose of mineral exploration of the above noted claims.

SIGNED:

T.J. Termuende Geologist

September 24, 1987

APPENDIX "D"

SOIL AND LITHOGEOCHEMICAL ANALYTICAL DATA

SILVER TALON-WD

JOB V 87-02775

REPORT DATE 6 AUG 1987.

		**********		******				**)TU	 UTNTU	C1 64			 Ar	 A		
MBER	ricla Mi	NAP ZONE	EAST	NORTH	+ NAT'L ORIG	SITE	COLOUR	\$1ZE	ORG	HET O	- 1 R 211	SLOPE	HORIZ	PPT	۶H	700 701	PP4	GRAN	85 77%
		******					· • • • • • • • • • • • • • • • • • • •										•• = • • • , • •		*******
04400	55670		+275	+1870	SOIL	Dev	GAY-LIGHT	CLAY		Bay 1	0	Lee	1		•	(.4	10	10	14
04401	55091		+250	+1870	SOIL	Bay	RY-LIGHT	CLAY		D hy	8	LOW	1		•	(.4	14	10	1
04402	55092		+225	+1870	Sorl	Day	GRY-LIGHT	CLAY		Dery 1	5	LON	1		•	(.4	(10	10	S
04403	55073		+290	+1870	Sott	Day	TRY-LIGHT	CLAY		Dev 7	25	NED	1		٠	(,4	10 .	10	1
04404	55094		+290	+1840	SOIL	Jay	Энн-нев	SILT		Day 2	20	iles .	1		٠	(.4	(10	10	Z
04405	55095		+225	+1840	SOIL	Bay	GRY-LIGHT	CLAY		H'st 1	0	Low)		•	(.4	(10	10	
04406	55076		+250	+1840	Sort	Dav	Den-DARK	SILT		N'ST I	10	Low			•	٨.4	(10	10	3
04407	55097		+275	+1840	SOIL	Ja y	GAY-LIGHT	CLAY		Bay 2	5	le)	8		•	(.4	(10	10	9
'04408	550 98		+300	+1840	SOIL	Bay	JUN- LIGHT	SILT		Day 2	20	ile)	1		•	۲.4	<10	10	11
04409	\$5099		+325	+1840	SOIL	Dev	BAN-LEMIT	SILT		Day 2	5	STEEP	3		•	(.4	(10	10	9
04419	55100		+375	+1840	SOLL	J ay	BRN~BARK	SILT		N'st 5	5	STEEP	3		•	(.4	<10	10	38
04411	55101		+350	+1 B1 0	SOIL	Bry	бау-мер	SILT		Dry 1	0	Steep	3			(.4	(10	10	3
04412	55102		+325	+1810	Serl	Dev	BRY-LIGHT	SILT		WST 2	20	STEEP)		•	(.4	(10	10	9
94413	55103		+300	+1810	SOIL	De v	Rea-nea	SILT		Dry 2	5	Lov	3		•	(.4	(10	10	29
04414	55104		+275	+1810	SOIL	Dev	GRY-LIGHY	SILT		hey 2	5	Yest	B			۲.۱	(10	5	4
04415	35 105		+250	+1810	SOIL	In r	GRY-LIGHT	SILT		Bey 1	0	Xeu	3		٠	.4	10-	10	•
04416	55106		+225	+1814	SOIL	Inv	GRY-NES	SILT		N'st 1	0	Lew	3		•	(.4	{10	10	6
04417	55107		+200	+1B10	SOIL	Bay	B RY-HEB	CLAY		N'st 2	0	Low	B			(.4	(10	10	3
04418	55100		+250	+1430	SOIL	Bay	JAN-HEN	SELT		Day 2	5	NE3	8		•	.5	(10	10	9
04419	55109		+275	+1430	SOIL	Вач	BRN-LEGNT	SILT		Day 1	5	Nex	3		•	2.8	(10	10	71
04420	\$5110		+300	+1430	Soci	her	BRH-JARK	SILT		WST 1	0	Low]			۲.۷	20	10	31
04421	55111		+200	+1790	SOIL	BRY	BRN-MED	SILT		Day 2	0	Lev	2			(.4	10	10	24
04422	55112		+225	+1790	SOIL	hy	Ban-NES	SILT		N'st 1	5	LOW)		•	۲.4	. (10	10	4
04423	55113		+250	+1790	SOIL	I ey	BAN-JARK	SILT		lav 2	0	Nex	Ì			(.4	(10	10	13
04424	55114		+275	+1780	Sori	hey	Ban-MED	SILT		Bay 1	•	FLAT	1	<u> </u>	•	(.4	(10	10	5
84425	\$5115		+300	+1790	SOTI	Jey	RESTRES	SILT		Day 1	5	FLAT	1		•	(.4	(1)	10	25
04426	55116		+325	+1780	Son	Bay	Ban-MED	SELT		N'sy 2	5	Nea	B			2.1	12	10	22
04427	55117		+341	+1780	SOIL	Day	BEY-LIGHT	CLAY		N'st 3	0	NE)	1		•	(.4	10	10	3
64428	55121		+200	+1400	Soti	hr	GAY-LIGHT	SILT		Day 1	0	KED			•	.6	(10	10	168
04479	55122		+225	+1400	SOIL	ley	BRY-LIGHT	SILT		Bay 1	5	Lev	B			6.4	(10	10	12
04434	55123		+250	+1400	SOTL	hay	SAY-LISHT	CLAY		hy 1	0	ON	Ī			(.4	(10	10	7
94431	55124		+275	+1400	SOIL	ley	RED-LIGHT	SILT		И'sт 1	5	liet	Ĵ			.8	(10	10	303
04437	55125		+300	+1400	Son	hey .	Ran-seer	SILT		н'ят 1		STEEP	Ĩ			(.4	(10	10	4
	UUTTO		- 444	· • •		-	Sector Supply	344.1			-	e i telef	-		•		***	**	•

87-92775 PAGE 2

	ETEI 1		******				,,	****	*****	 B	FPTH	UTBTH	F1 04			Ac				
TBER		NAP ZONE	EAST	NORTH	# MAT'L	ORIG SITE	COLOUR	SIZE	ORS	WET	CN	SLOPE	HORIZ	PPT	PH		P78	58AN	<u>P</u> PM	
)4 433	55128		+200	+1900	SOIL	Bay	GRY-LIGHT	SILT	HIGH	Bax	20	Nea	1		•	۲.4	C160	10	2	
34 434	55129		+225	+1900	Soil	Day	Rex-mex	SIL7	Nep.	J RY	25	Law)		•	K.4	(10	10	17	
)4435	55130		+250	+1900	SOIL	Day	Res-mes	SILT	Ned	N'st	25	FLAT	B		•	.5	(10	10	11	
}44 36	55131		+275	+1900	SDIL	Bay	DRIE-NES	SILT	NIGH	H'st	30	Low	<u> </u>				(10	10	8	
14437	55132		+300	+1900	Sori	Buv	SRY-LIGHT	SILT	HISN	Jav	20	Low			•	K.4	16	10	4	
)4438	35133		+325	+1900	SOIL	Bav	BAN-NES	GRAVE L	HIGH	N'st	20	NED)		•	.6	14	10	156	
)4439	55134		+344	+1700	SOIL	ACTIVE	BRY-LIGHT	SILT	nteh	H'st	20	FLAT	1			<.4	(10	10	14	
)4440	55135		+356	+1900	SOIL	Suame	Dan-Nea	SAND	HIGH	N'st	10	FLAT	1				(10	10	35	
)4441	55136		+373	+1900	SOIL	Bav	Ban-Nes	SELT	HIGH	BRY	20	STEEP	1		٠	C.4	(10	10	2	
<u>H442</u>	55137		+375	+1870	Sail	Bay	YEL-LIGHT	SILT	HIGH	Day	15		<u>}</u>		t	(.4	(10			
)4443	55138		+356	+1870	SOIL	SUAM	Ban-Bank	SILT	HIGH	HET	30	FLAT	J		•	.5	(10	10	50	
H 444	55139		+344	+1870	SOIL	Sunn	Ban-JAAK	SILT	HIGH	HET	20	FLAT			•	.9	(10	10	20	
14445	55140		+525	+1870	SOIL	JAY	BRY-LIGHT	SILT	HIGH	HAY	13	NED	J		٠	(.4	(10	10	5	
14446	30141		+300	+1870	SOIL	M LY Dec	KED-MED	SANS	ne i	DRY	29	LOW	8		•	1.4	{ [U /1A	19	24	
74447	33126		+294	+1450	301L		KED-NED	SILT			10	LOW			•		(10	10	232	
)444U	33127		+223	+1430	SOIL	- DRY	KEB-NEB	SILT		MAY	20	Terr	. J 5			·1	(10	10	10	······
14447	33142		+200	+1479	SOIL		KED-MED	SAND	NICH	DRY Dave	2V 15	LON	2		٠	۰ <i>۲</i>	(10	10	72	
3440V	33143		*223	+1470	SOIL Dear	BR Y	KEJ"NEJ		MIGH	PKT Dav	10	Luw	-		•	17	/10	10	54	
14421	20144		1/200	+L47V	Solt	Barr		2448	New	MLT HJan	27	LUW			•	. 113 1	/18	10		
2440Z	33143		+2/3	+1479	SOIL	Ber y	RED-LIGHT	2010		R. St.	34 76	NE.F	-		•	۵. ۲	/18	18	44	
79903	00146		1399	*147V	30 <u>51</u> , Casu	BRY	RED-NED	2011	ALCH	URT Miler	45		*			49 14	/14	14	00 14	
14434	3314/		+320	+1470	SOIL		JAN-NED	SILT	WIGN	11.21	70		<u>p</u>			- 1.7	/14	18	17	
14433	2214R		+320	*1460	30 IL 6	No. Y		SILT	INC.	1.21 1.21	2V 25	NE.B Mara	р Ъ		•	•/ ን /	(10	10	30	
14430			100T	11110	JUIL Com	Jac V.	REA-MEN	2488	iiica Mes	an r Bay	23	file.a	*		•	2:4	21A	10	74	
14437	22736		*2/J	T1409	Suit.	Dit t	RES-RES Reambra		ing a	Dat.	15	lau			•	 20	(10	18		
14490	55152		+725	11440	Son			SAMB	tie a	Dev.	25	Low	í		•		(10	14	31	
14446	55177		4264	11178	South				lau	1 mov	20	1 nu	i		•	R	(10	10	114	
JAAT	55171		+200	41770	SATI	- Dav	RED-I TENT	SAND		Nov.	25	1.04	<u>,</u>		_ <u>•</u>	1.5	(16	10	11	
14447	55174		+725	+1370	Sati	Day	Rea-mea	SAND	Men	hey .	18	HER	1		:	1.3	(10	10	32	
14463	55175		+250	+1370	San	Bay	REP-LIGHT	SAND	Men	Day	35	1.64	1			1.5	(10	10	70	
H464	55174		+275	+1370	SOIL	Dav	RED-LIGHT	SILT	HEI	Bay	30	HET	Ĵ		-	3.5	(10	10	119	
14445	55177		+300	+1370	SOIL	Dev	RED-LIGHT	SAND	Hen	Inv	20	STEEP	3		•	1.8	16	10	132	
14466	55178		+320	+1370	SOIL	Jay	Ban-ney	SILT	HER	₩'st	20	KED	1			(.4	10	10	22	
14467	55179	,, _	+320	+1340	SOIL	ACTIVE	Jon-JAAK	SILT	HIGH	N'st	25	Low	1			2.1	26	10	267	
)4468	55180		+295	+1340	SOIL	Day	ites-nes	SAND	Nex	J RY	40	STEEP				3	(10	7.5	434	

				********						***									
LAB	FIELD	ŧ								1	iept)	I HIDTN	FLON			M 6	Au	Ht Au	As
MBER	NO	IMP ZONE	EAST	NORTH	• NATYL O	RIS SITE	COLOUR	SIÆ	ORG	Æ	l cu	SLOPE	HORIZ	PP T	PH		<u> </u>	GRAN	PPN
·	3518 1	***	+275	+1340	SetL	Bay	RED-LEGHT	SANE	Neo	Jny	40	Nes	3			1	20	10	37
44470	55182		+250	+1340	SOTL	Day	REB-LEGHT	SAND	HIGH	Bay	44	NER	3		•	.5	(10	10	15
04471	55183		+225	+1340	Sati	Day	RED-LIGHT	SAND	NED	hy	25	NEB	Ē		•	(.4	(10	10	17
04472	55184		+200	+1340	Seri	Day	RED-NED	SANE	TED.	Bay	25	Low	Ĵ		•	1.1	(10	10	215
04473	55185		+200	+1310	SOIL	Day	Res-nes	SILT	He a	DRY	25	Low	1		•	1.5	(10	10	39
04474	55186		+225	+1310	Soll	Bay	RES-LIGHT	SAND	Nea	Day	20	FLAT	3		•	.4	(10	10	78
64475	55187		+250	+1310	SOIL	Buy	Res-nes	SAND	HER	Day.	30	Low	3		•	1	(10	10	74
04476	55188		+275	+1310	SOL	Dav	RED-LIGHT	SAND	Nex	Bay	25	HEB	3		•	2.5	<10	10	348
94477	551B9		+300	+1310	SOIL	Dav	RED-LIGHT	SAND	HE D	B RY	30	FLAT]		٠	1.1	(10	10	524
04478	55190		+325	+1310	SOIL	Day	Dag-men	SILT	NIGH	ff*s1	r 25	Low	1		•	.4	<10	10	10
04479	55191		+325	+1290	SOIL	Bay	JAN-LIGHT	SILT	NIGH	Bry	20	STEEP	3		•	.5	(10	10	16
04480	55192		+300	+1290	SOIL	Dav	RES-NES	SAND	i i co	Bay	20	Leu			•	1.7	<10	10	314
04481	\$5193		+275	+1280	Seri	Bay	Rea-nea	SAILE	Nea	Dev	40	Hea			•	.4	(10	10	114
94482	55194		+250	+1280	SOIL	Day	RES-SARK	SILT	Hea	J ay	33	Low			•	5.1	20	10	1424
94483	55195		+225	+1280	SOIL	Bay	Red-lixent	SAKE	Nex	Dry	30	Nes			•	.6	(10	10	278
94484	55196		+200	+1290	SOIL	Bay	RES-LIGHT	SANE	NIGH	Bay	20	Low				.5	(10	10	•

SUFFICIENT SAMPLE X-SHALL SAMPLE E-EXCEEDS CALIBRATION COMEING CHECKED R-REVISED

REQUESTED ANALYSES ARE NOT SHOWN PRESULTS ARE TO FOLLOW

LYTICAL NETHODS

AG 20% HHO3 DECOMPOSITION / AAS

AU AQUA REGIA DECORPOSITION / SOLVERT EXTRACTION / AAS

IT ALL THE WEIGHT OF SAMPLE TAKEN TO AMALYSE FOR BOLD (GEOCHEN)

AS PYROSULPHATE FUSION / COLORIMETRIC

JANET-VEGA

JOB V 87-0276R REPORT BATE 7 AUG 1987

LAB NO	FIELD NUMBER	Au	Nr Au	Å¢	Pa	Zw	Cu
•		PPS	SBAN	PPN	PPN	PPN	PPR
PR706911	1-0.0-1.0		5	2.2	103	186	230
PR706912	1-1.0-2.0	(10	5	6.5	378	471	232
28706913	1-2.0-3.0	(18	5	3.7	212	173	269
RR706914	1-3.0-4.0	40	5	11.4	617	201	204
RR706915	3-0.0-2.0	(10	5	.6	6	128	73
RR706916	5-0.0-0.5	(10	5	.5	- ii	120	135
RR706917	5-9.5-0.7	1326	5	E436	E93500	E32200	2260
R8706918	5-6.0-8.0	(10	5	.5	89	140	64
R8706919	5-8.0-10	(10	5	1.4	266	131	101
R8706920	6-0.0-2.5	20	5	.9	44	156	106
R8706921	10-9-9.9	<19	5	2.9	164	122	284
R8706922	10-10.9-11.3	122	5	E248	E16900	5730	900
R8706923	10-11.3-13.3	62	5	3.5	212	2760	111
R8706924	10-13.3-13.8	386	5	19.6	2190	409	62
R8706925	10-14.5-16.5	52	5	13.9	814	455	114
88 706926	10-16.5-17	140	5	71	6460	1430	187
R870692 7	10-17.0-17.6	<10	5	.7	14	2050	82
R8 706928	11-4.0-6.0	(10	5	.7	40	37	25
R8706929	11-6.0-8.0	<10	5	.5		53	.45
R8706930	12-3.1-3.8	102	5	E165	E25200	E21500	2480
R8706931	13-0.0-1.0	<10	5	۲.4	11	85	116
R 8706932	13-1.0-1.8	20	5	9	65	156	178
R8706933	13-1.8-2.3	222	5	24.5	.518	E10250	632
R8706934	13-2.3-2.8	40	5	6.7	526	3690	271
R8706935	13-2.8-3.3	32	5	2.8	244	1070	221
R8706936	13-3.3-3.8	48.	5	4.5	291	674	211
P8706937	13-3.8-4.3	20	5	.5		116	87
R8 706938	15-1.0-3.0	22	5	2.9	269	133	118
P8706939	15-3.0-5.0	(10	5	.7	14	95	99
R8706940	15-20-22	(10	5	(.4		83	48
P870 6941	17-0	124	5	106	E13200	4700	390
R8706942	17-5	2829	5	E570	E66000	E28800	168
RB706943	17-10	1912	5	132	7000	2240	309
R8706944	17-15	664	5	27.2	408	1990	513
R8706945	17-20	<10	5	1.2	65	117	138
R870 6946	19-1.0-2.0	56	5	14.7	1630	588	242
R8706947	19-2.0-3.0	40	5	36.8	5160	1540	259
R8706948	20-2.0-3.0	312	5	19.7	2160	2120	475
R8706949	20-3.0-4.0	776	5	92	7400	7340	830
KU706950	20-4.0-5.0	64	5	23.9	2590	2140	612
R8706951	51-17-1	3600	2	E248	E20000	703	124
KB 706952	51-46	(10	5	1.4	104	79	42
R8706953	51-74	(10	5	1.3	86	64	10
K8109424	51-85	646	5	E420	E98000	£32200	3820
R8706955	51-85	.344	2	E184	E25500	E37400	961
R8706956	ST-156	176	5	2.4	267	234	26
r8706957	ST-22-1	1604	5	E246	E11300	1530	325

I=INSUFFICIENT SAMPLE X=SMALL SAMPLE E=EXCEEDS CALIBRATION C=BEING CHECKED R=REVISED IF BEQUESTER ANALYSES ARE NOT SHOWN /RESULTS ARE TO FOLLOW

ANALYTICAL METHODS

AU ABUA REGIA DECOMPOSITION / SOLVENT EXTRACTION / AAS NT AU THE WEIGHT OF SAMPLE TAKEN TO AMALYSE FOR SOLD (SEOCHEM) JANET/VEGA

.

JOB V 87-0311R REPORT SATE 7 AUG 1987

LAB NO	FIELD MADER	Å 13 1798	NT AU GRAN	A6 1711	Pa Pra	Zn ppn	Cu PPN
P8708116 C	-6-7	52	5				
R8708117 C	-7-8	(10	5				
R8708118 C	-8-7	{10	5				
R879 8119 C	-9-10	(10	5				
R8708128 C	-10-11	29	5				
R8708121 C	-11-12	(10	5				
R8708122 C	-12-13	36	5				
R 8708123 C	-13-14	46	5				
R8708124 C	-14-15	34	5				
RB70 8125 C	-15-16	1336	5				
R8708126 C	-14-06	3400	5				
R8708127 C	-166-1.6	- 484	5				
R8708128 C	-16-1.4-2.6	1062	5				
RB 708129 C	-16-17	1152	5				
R 8708130 C	-17-18	388	5				
R8708131 C	-18-19	40	5				
P8708132 C	-19-20	60	5				
R8708133 J	-9-10	(10	5				
P8708134 D	-10-11	1426	5				
R8708135)	-11-12	2000	5				
RB708136 B	-12-13	2110	5				
1870 8137 D	-13-14	5920	5				
R8708138 D	-14-15	314	· 5				
R8708139 D	-15-16	3000	5				
R8708140 B	-16-17	4200	5				
18708141 B	-17-18	2950	5				
R8708142 B	-18-19	24	5				
28708143 B	-19-29	1306	5				
R8708144 🕽	-20-21	3210	5				
18708145	-21-22	2090	5				
R8708146 B	-5.4-6	32	5				
R8708147 G	-6-6.8	20	- 5				
R8708148 S	-6.8-7	24	. 5				
R 8708149 G	-7-8	{10	5				
R8708150 F	-4-5	<10	5				
R8 708151 F	-5-6	(10	5				
R8708152 F	-6-7	32	5				
R8708153 F	-7-8	30	5				
R8708154 F	-8-9	240	5				
R8708155 F	-9-10	356	5				•
R8708156 F	-9-09	1.66	5				
R9708157 F	-99-2	170	5				
R87081 58 E	-7-8	(10	5	: .			
R870 8159 E	-8-7	20	5				
RB708160 E	-7-10	<10	5				
R8708161 E	-10-11	22	5				
R8708162 E	-11-12	(10	5				
R 8708163 S	1253	20	5				
R8708 164 S	1257	<10	5				
R8708 165 S	T259	24	5				
R708146 S	T213	226	5				

AG AQUA REGIA BECOMPOSITION / AAS PB AQUA REGIA BECOMPOSITION / AAS ZN AQUA REGIA BECOMPOSITION / AAS CU AQUA REGIA BECOMPOSITION / AAS

APPENDIX "E"

1964 DRILL LOGS - BANKER SHOWING

DIAMOND DRILL HOLE No.____Z___ SHEET NO. ______ Time #1 B1 + 50.5 LAT. LOCATION: DEP. 26 Aug 1967 26 Aug 1967 ELEVATION OF COLLAR _______ BI = 150.0 STARTED ... COMPLETED ____ ULTIMATE DEPTH 10:0 0 DIRECTON AT START PROPOSED DEPTH 90 . ANALYSIS SAMPLE REMARKS (LOG) FEET TOTAL CORE AU. AG. | PB. ZN. | SB. | AS. FEET NUMBER AU. 3.6. | PB. 2N. DATE DEPTH FROM 10 DRILLED flat lying stingers inter barded to & gues alt. barded inflicts in the -gues may write iltration 5 5.0 2822 16.1 4.3 8 A.12 26 Aus 10 10 0.12 7/2 13 0.7 5.0 2823 5 10 lost at 10 due to shifting of drill leb ١ ____ . 1 . • -1 . 0.1 1. 1. 8 · · · · · · · 4.4.1 • ·

P

DIAMOND DRILL HOLE No.	<u></u>				
LAT. Trench 3	•		SHEET NO.		7
LOCATION: DEP BI + 5/10	STARTED	27 Lug	1967.		
REVATION OF COLLAR	COMPLETED	-28 14	1967		 ,
	PROPOSED DEPTH	7%	······	· · · ·	
Dr		· .	•	• •	

1.1.1

				1.1.1	SA	MPLE	· · · ·	ANALYSIS										
	DATE	ORILLED	DEPTH	FROM	то	FLET	NUMBER	AU.	8L 7.6.	UDGÉ	ZN.	AU.	AG.	C PD.	ZN.	58.	A8.	REMARKS (LOG)
F				۵.	5	5.0	2831					.06	15.0	3.13	10.75			fair mineralization
				5	10	5.0	2833		1			109	6.0	1.8:	1.00			
╟				10	14	4.0	2825					.08	1.12	0.2	0.1			cilicitied to fine mineralization FoS & PAS
				14	17	3.0	28.26					.07	3.%	0.3	0.5		<u> </u>	· extend ·
				17	20.5	3.5	2827					·07	0.28	il	inil			chiefent zos material becerated , Heavy Fo.S.
				20.5	25.5	5.0	2836					.10	2.0	t	./2			
				25.5	30.0	4.5	2839			· ·		10	4.2	t	122		 	por nivelication
1				30	37	7.0	2832					102	61	.57	.30			spitty 4
			•	37	42				ļ									undtoud linestone
		~		·	·	·												· · · · · · · · · · · · · · · · · · ·
Γ																		
														•				
t			· .															
	1						·								•			
																		· ·
		- *																
						Ļ												•
												1						
									•	•								
												•						
										· ·						·		
										÷								$\sum_{i=1}^{n} e_i \leq e_i < e_i $
													- 1		·			
\vdash																		· · · · · · · · · · · · · · · · · · ·
			•															
┢														-				
₽-					<u>´</u>													

DIAMOND DRILL HOLE No.	4		
T. 0 1/2 1	•	SHEET NO	
LOCATIONI DEP. BI + SI	STARTED	28 Aug 1967	`
ELEVATION OF COLLAR		28 Aug 1967	
BEARING <u>N 39°E</u>		36	
Direction At START Dir		· _ ·	· · · · · · · · · · · · · · · · · · ·

١

•

1				-	MPLE						ANALY	615					÷
DATE	DRILLED	DEPTH	FROM	то	FEET	NUMBER	AU.	30.	UDGE	ZN.	AU.	AG.	C	ZN.	1 88.	A.	REMARKS (LOG)
	24	2/		17	1	1021			<u> </u>	† È		200					
28 Aug	a6	36		6	0.0	2037					6.70	1.	0.74	1.	1	1	1 't
	<u> </u>	<u> </u>		10	7.0	1025			┼──	 ,	P	2.1	0.21	0.07	1		teary agus
		<u> </u>	ide .	17.5	1.0	4827		1	 	\rightarrow	1	0.0	Z	7	†	 	link tour division bit
	<u> </u>		11.	110	6.	1030			†—	<u> </u>		6.2	Ŧ	27			and a second a second
			76.0	200	2.0	2000		<u> </u>			1	4	+				the left is a list
			21.0	25.7	4.7	2645		 			0.01	111	100	0.17	 		25.6 - a had a inder and the
	 			30,7	3.6	2075		1			0.00	2		130			25. Card lind and hour grade
H								1			1			 			20-1-20 reasons superior superior
			2	-/	<i>c</i> .2	0012		<u> </u>					+				Lo- string in the string
	<u> </u>	 	40.7	36.0		2074		<u> </u>			0.0/	0.7	~	6.13			Cause remembers, menor spherence eningen
	;													-			· · · · · · · · · · · · · · · · · · ·
<u> </u>																	· ·
 						·		<u> </u>									
ļ																	
														•			
																	· · ,
				· ·									·	·			•
								·									
· .																	
						· .										<u> </u>	•
		•															
											·					•	
		•															
						· T											
· · · ·												·					
						I			[-		-1	
					+						+	-+	-+				

	(· · · ·	
										VEW	TAK	N U	INES	En			
DATE OTAL CALLED CALE CALE CALE		. V			LOCATH ELEVATI DATUM DIRECTO	LAT. DEP. ION OF CO	LLAR BEARIP	D1/ For 	MON L 1/2 15-2 15-2 - 30		, ,	HOL	E No.		FARTED ONPLET LTIMATE	ED E DEPTH D DEPTH	SHEET NO. <u>14</u> 27 <u>Aug 1967</u> <u>20'</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		n					WPLE	·····	1	_		ANAL	Y615				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DATE	PEET ORILLED	TOTAL DEPTH	PROM		FEET	NUMBER	AU.	SLUDO	3£ 18. ZN.		. AG.]	C01	IE ZN. S	D. AS.	REMARKS (LOG)
		27 Aug	20	20	0	2.5	2.5	2871				1.06	7.1	太	.97		narrow strugger in FW of fractions
	1	ļ			2.5	20	17.5										linectore.
							· · ·				-1-						
												<u> </u>					
		· · ·											<u> · · </u>	_+	+		
												1				+	
																<u> </u>	
	.]												$\left - \right $	_			
											+-	1	+	-			
									. ·								
				· · ·	· · · · ·	·							┨┨	_			
	1							· · · · · · · · · · · · · · · · · · ·				<u> </u>	+				· · · · · · · · · · · · · · · · · · ·
	ł																
	1																i
	1							·····					$\left - \right $		-		
		·		· ·		<u> </u>											
	1														-		
		∦}	· · · · · · · · · · · · · · · · · · ·								-	·	┝──┠╸	+	+		
	1				-			·									
								·									
		┠		\rightarrow								·	 		+-	<u><u></u>↓ · </u>	· · · · · · · · · · · · · · · · · · ·
	1	┠						l									

i i i DIAMOND DRILL HOLE No. ۍ SHEET NO. _____ Trench Nº 2 B 10 + 48.5 fi Aug 1964 Aug 1964 OC AT M 29 DEP. STARTED 148 ELEVATION OF COLLAR COMPLETED 30 B1 = 150' ULTIMATE DEPTH 47 DATUM AT STARTS DIP BEARING PROPOSED DEPTH Ventical

1	1			841	APLE						ANALY	SIS					
DATE	DRILLED	TOTAL DEPTH	FROM	70	FEET	NUMBER	AU.	SLI	PB.	ZN.	AU.	AG.	P8.	J ZN.	58.	A5.	REMARKS (LOG)
												\mathbf{T}	 				margonite alter ation slight mineralisation
29 Hug	30	30	0	2			I—					1					in altered lineedone
30 trug	/7	47	2	29	21							†	1				some alteration in linestone
			~1	- 47	_/0												29.7 - tight hacture, some orides @ 30° to core
 								1							·		35.5 " " " " 20" " "
}			20	17	2			 				1				·	unaltered linectore
<u>`</u>			67_	7/								1					
										·							· ·
												1	<u> </u>				
 				 								1	1				
 	<u> </u>		· · · · · ·									1					
ll	 											<u> </u>					
J	[·	[
ļ	 					·		 				1					
				<u>_</u>					<u> </u>			<u> </u>					
J									——								
L				·				 									
	L											<u> </u>					
	·											 					
	· · · · · ·															• • • • • •	
<u></u>																	
											•						
·								·									
									·								
								·									
. ·																	
																	· · · · · · · · · · · · · · · · · · ·
						• .											
H	<u> </u>																

DIAMOND DRILL HOLE No. SHEET NO. Trench Nº 2 LAT. B 10 + +7.7 fe 1964 LOCATION DEP. STARTED 1967 ELEVATION OF COLLAR COMPLETED (A) <u>, 1</u> 150 ULTIMATE DEPTH DATUM 390 0 DIRECTON AT START BEARING PROPOSED DEPTH - 70 *

n				SAI	MPLE						ANALY	515					
DATE	PERT	TOTAL.	FROM	то	FEET	NUMBER	AU.	5L	PB.	ZN.	AU.	AG.	C(ZN.	58.	A.	REMARKS (LOG)
	DRILLED			10	1.0					<u>├</u> ──	1		· ·				linectore, 6.8 = fracture at 50° to eve
J				6.8	0.0			<u> </u>				<u> </u>					ausprite alteration
ļ			6.8	<i>8.0</i>	1.2	17		┼──							[lingtone
	<u> </u>		11.5	13	1.5										'		manpointe attractions facture at 11.5 (50°)
 			/3	25	12												unaltered lineatone
∦						- ·	-		Ī								·
	<u> </u>																:
J	l		i	1	1	1	, I	VEN	1.	Anc) _{MII}	423		۶.	I		

7 DIAMOND DRILL HOLE No ._

Tweek Nº 2 LOCATION: DEP. 57 fu 148 ELEVATION OF COLLAR 1 = 150 DATUM N.39.E BEARING DIRECTON AT START: - 750 Due

SHEET NO. 1964 STARTED + 1964 ন্য COMPLETED 38 ULTIMATE DEPTH PROPOSED DEPTH

1.11

ANALYSIS SAMPLE REMARKS (LOG) TOTAL CORE AU. AG. | PB. ZN. | SB. | AS. FEET SLUDGE AU. AG. PB. ZN. FEET NUMBER DATE то DEPTH FROM DRILLED thered linectone 8.5 0 racture @ 750 theation 4.5 3.5 45 8.6 .08 947 9.97 11.5 lisation 1.7 2876 8.6 10.0 spaadic atteratio 38 10 facture 250 to come or idied . 36.1 5-

DIAMOND DRILL HOLE No. SHEET NO. Trench Nº 2 LOCATION: DEP. 79 1967 1967 * STARTED ELEVATION OF COLLAR COMPLETED DATUM 33 ULTIMATE DEPTH BEARING 37*6 PROPOSED DEPTH DIRECTON AT START: -65-Dæ

(· · · ·		1	-	MPLE						ANALY	\$1\$					
DATE	DRILLED	DEPTH	FROM	то	PEET	NUMBER	AU.	SLL	DOGE PB.	ZN.	AU.	AG.	C	ZN.	58.	A.	REMARKS (LOG)
1 Sept	.5-	5	0	3.2													altered linesfore, traces of mineral
2 Soot	28	33	3.2												·		3 harture at 150
			3.2	5.5	2.3	2811					8	0.5	太	.07			quit & PbS. ZaS in linestone
			5.5		-												fracture at 150
			5.5	16.5	-												inaltered linesform
			16.8	19													green alteration in limetore
			19	28	-			••									linestone
	1																·
1															/		
li	l							NEV	v 1	AK	им	NE	S LI	υ.		11	

DIAMOND DRILL HOLE No.

Trench Nº 2 AT. LOCATION + 50.7 DEP. 10 ELEVATION OF COLLAR 148 = 150 N +2°E - 75° DATUM BEARING DIRECTON AT START: DıP

SHEET NO. _ 3 Sept 1967 3 Sept 1967 STARTED COMPLETED ULTIMATE DEPTH PROPOSED DEPTH

,

		70741		S A	MPLE						ANALY	615					•
DATE	DRILLED	DEPTH	FROM	то	FEET	NUMBER	AU.	5LL	PB.	ZN.	AU.	AG.	P8.	ZN.	\$B.	A8.	REMARKS (LOG)
Sect	20	20	0	20	20	-											linetone, shift traces of alteration.
				16.5													"" stringer of sphalerite
				19.3													1/2° - at 25°
	-				·					·							
				ľ í											Ċ		· · ·
																•	
								1									

11 DIAMOND DRILL HOLE No. 141 SHEET NO. ch Nº 6 Sept 1964 LAT LOCATION +56 Dep. STARTED $\frac{B1 = 160}{-60^{\circ}}$ ELEVATION OF COLLAR COMPLETED DATUM ULTIMATE DEPTH 121 BEARING PROPOSED DEPTH DIRECTON AT START DIP

		1					ľ				ANALY	615					
	FEET	TOTAL			I	1	1	SLL	JDGE		I		C	ORE			REMARKS (LOG)
DATE	DRILLED	DEPTH	FROM	то	FEET	NUMBER	AU.	%G.	PB.	ZN.	AU.	AG.	P8.	ZN.	\$D.	A6.	
6 Sect	13	12	0	2	_	L				1		[1			bally boken ground, sparse mineralization
- e sopi		- <u>/</u> -/	2	3	-	+	I —				1						over attraction in lingetone.
			3.0	3.15	0.15	1858				1	124	176	12%	2.10			2° selections stringer at 35° to one
		· · · · · · · · · · · · · · · · · · ·	210	1.7						1							aver altered lineeting
			4.7		A.R	1861					.23	india	100	5112			Prove selectife stringer in lingetore
			77	4.2									-				link. dialt minulistic
			3.3	9.5	3.2	2864					9	180	7.4 R	0.26			fin minelistin in white linestone
			4.00	12.0	<u> </u>	<u> </u>					-97						brun listo come alteration.
			7'\$	7.3.0		<u> </u>	1	i									
	J			1		1	• •	NEW	t	Άκυ	MI	VES	יג ו	<i>Ь</i> . '			

DIAMOND DRILL HOLE No .. 10

Tranch Nº LOCATION 34.3 fe B1 * DEP. 152 ELEVATION OF COLLAR BI =150 DATUM N 57°E - 75° BEARING DIRECTON AT STARTS DIP

SHEET NO. _ 1 4/ Sopt 1964 STARTED COMPLETED 5 -ULTIMATE DEPTH 37.5

PROPOSED DEPTH

	,		•														
H	1	1		SAL	APLE						ANALY	615					
1 ·	FEET	TOTAL			1	1		SL	UDGE			_	C	ORE			REMARKS (LOG)
DATE		DEPTH	FROM	то	FEET	NUMBER	AU.	76.	PB.	ZN.	AU.	AG.	P8.	ZN.	SB.	AS.	
	DRILLED				 	{			 —		{		<u> </u>	1		1	A. A. P. D Det in
1.Sect	5	5	æ	R.2				ļ	[<u> </u>	ļ			ļ		linestere with accessional montal antipe
-T-OF		22.5		11	•				1		1	1					several multo shears at 150
5 Sept	32.5	17.5	6.0			E						1	. I	1	1	1	l'acter in il recessional étimiser el subplicke
								<u> </u>		I	 		<u> </u>	<u> </u>		<u> </u>	it 5 8 AP I d
	T		16.0	21.0	5.0	2860		.	.		0.12	8.16	1.0	0.67	[<u> </u>	pyre and the and
li	+			31	C	50%	1			1 ·	0.20	9.2	1.1	Z		1	provinted linsetone crattered subplies
		Į	21.0	20.0	10.0	2002		<u> </u>	·		† =	1.3		1			l'ut l'hi indelistor
	r.	1	26.0	30.1	4.1	2863			ļ		0.21	32.12	16.80	375	ļ		gicy constrains fair management
			20.1	209		!	1		1		1		1	1			barren linestone
L		 							1			10-	20	-			ift fich envire PhS and Zas
			30.9	32.5	1.6	2857	ļ	ļ		ļ	0.11	477	1-2-10	5.23			were mining early the
1	4	1		25.00		+		[1				1	1			Show at 60° some alleration
J	- <u>+</u>		h	1 vinite	t	1	1	1	1	1	1			T			lu l'ite
1	P		32.5	37.5					1	<u> </u>		<u> </u>					Dalles Line Hone

DIAMOND DRILL HOLE No ._ 12 SHEET NO. 141 25' South of Treach #1 B 11 + 18 first 6 -Sept 1967 LOCATION: DEP. STARTED COMPLETED B1 = 150 DATUM ULTIMATE DEPTH 48 N.SO'E BEARING PROPOSED DEPTH DIRECTON AT START: - 70 . DIP

1	1		1	\$A1	MPLE						ANALY	518					
DATE	FEET	TOTAL					-	SLI	UDGE	1		1 40	C	ORE	1 68	1 48	REMARKS (LOG)
	DRILLED	DEPTH	PROM	10	FEES	NUMBER	<u>^U</u> .	×0.	F0 .	214.	~~.			210.	•••	ļ	
1/2 Sent	48	48	0	78													linestre.
				19.2								•					fischus 150
l	1			19.0													/ 4 35°
· ·				22.0													250
	、 、		· ·	24.0													450
	1.		·	26													Several fractiones
 				+2													fractions at bo
			1														
¥	ł	 		ti		 		NEV	V I	AD	U MI	INES		ע.		·	

DIAMOND DRILL HOLE No. _____

Vorth of Trynches LOCATION: +5- Jut \$160 kW ELEVATION OF COLLAR B1 + 150 DATUM N 16.E BEARING DIRECTON AT START: -.30 0 Due

SHEET NO. _____ 7 Sept 1967 STARTED 8 Sept 1964 COMPLETED 45-1 ULTIMATE DEPTH PROPOSED DEPTH

12

_____ PR

ANALYSIS SAMPLE PEET TOTAL REMARKS (LOG) SLUDG COR DATE NUMBER DEPTH FROM то PEET AU. 3G. 1 PB. AU. AG. ZN. | SB. | AS. DRILLED 30 ٥ lineto 18 29 -43.5 lick 39 A 1 10. Itr. lineto 73.5 44 · . . . 44 15 . hole staged due to lack of hose and rode

	60		
	9b		
2b			
	1 1		
	20	m ~	
		$\left\{ \right.$	
	at t		
	4		
48/ 75_7 (10020)	3		
	78 70 4	Ż	
60			
M+			
	NI TO THE		
	´* Py,As,Gn / `` Sp,Cp,Tt,(Sb)		
	<u>anker Showing</u> ee Detailed Trench Map		
t t	I:100 scale		
			TENTIADY
			90 Quartz k-Feldspar Dacite or Quartz Monzonite
•			9b Quartz Eye Porphyry
			9c Felsite Dyke
			Basaltic Dyke
			PRE-TERTI-RY INTRUSIVES
			7a Hornblende/Augite Porphyry
			7 D Pyroxenite/Gabbro
			4 Clastics-Argillaceous Mudstone; Very Fine Grained; Non-Ca
		[-	3 Limestone - Grey, White, Massive or Bedded; Some Calcite
	1		Veins; Locally Sideritic
			DACITE
			 Plows - Massive, Aphanitic, Some Disseminated Pyrit Pragmentals - Tuffs, Lappillistone Tuffs
			2c Rhyodacite - Cream Coloured, Siliceous, Some Dissen
			Pyrite
		Γ	IQ Flows - Massive, Aphanitic, Pyroxene or Augite Pher
			Often Calcareous
			A Altered Material; Bleached, Silicified, Weakly Pyritized, Relic Textures
			M Mineralized Zone - Py, Gn, Sp, As, Tt Within Silicified S
			(Banker)
			MAP SYMBOLS
		· · · · · · · · · · · · · · · · · · ·	
			20 Vein Attitude
			25 Bedding
		-	17 Foliation
		\sim	ン N N Fault, Inferred
		=	≩26 SLickensides
		` 	>> Lineation
			· · · · · ·
	n an	,	
		GEOI	OGICAL BRANCH
		ASSE	ESSMENT REPORT
		₹	
			h h $/11$
			し、ノノし
			Silver Talon Project
00 300 metres	i	Drawn by: TIT Traced	by: a.m.b.
		Revised by Date Revised b	Property Ger
			Scale
		Ⅰ ↓ ↓	Augus
		<u> </u>	

2b

D

lcareous Stringers, ninated nocrysts, No Shear Zones ne Breccias Diamond Drill Hole Cliff Escarpment Stream Cominco 104 K/12 ology FORM 210 0670

