LOG NO: 1210 RD.

ACTION:

FILE NO: 87-867-16606

A Report on Geological and Geochemical Surveys

on the McNiel Creek Group

including Mineral Claims RAM 1, RAM 2 and MAR 3

situated in

the Fort Steele Mining Division

NTS 82F/8Eand 82G/5W

Latitude 49° 21'25'

Longitude 115° 59'40"

EOLOGICAL BRANCH SSESSMENT REPORT

७ <

Registered Owner and Operator: Ed Frost

Consultant and Authour: Frank O'Grady, P.Eng.

Statement of Exploration and Development Submitted: September 8, 1987

Report Submitted: December 7, 1987

TABLE OF CONTENTS

	PAGE
INTRODUCTION	. i
GEOLOGICAL SURVEY	. з
GEOCHEMICAL SURVEY	. 4
ITEMIZED COST STATEMENT	. 6
AUTHOUR'S QUALIFICATIONS	. 7

LIST OF MAPS

Мар	1	Location Map	from B.C. road map	•
Map	2	Claim Map	1:50,000	82F/8 and 82G/5
Map	3	MCNiel Creek	Geology Map	1:5,000
Мар	4	McNiel Creek	Pb Geochem Map	1:5,000
Мар	5	McNiel Creek	Zn Geochem Map	1:5,000

LIST OF APPENDICES

Appendix	1	Certificat	e of	Analysis	A8615486
Appendix	2	Certificat	e of	Analysis	A8619544
Appendix	3	Vancouver	Petro	ographics	Report

INTRODUCTION

The McNiel Creek Group consists of 3 claims constituting 24 units, as follows:

NAME	RECORD #	MONTH	UNITS
RAM 1	1730	November	4
RAM 2	1731	November	8
MAR 3	765	September	12

The registered owner and operator of the property is Ed Frost of Box 53, Fort Steele, B.C. VØB 120.

This claim group is situated approximately 13.5 Kilometers northwest of the town of Moyie, B.C. at longitude 115° 59'W, latitude 49° 21'N. It is located on NTS map sheets 82F/8 and 82G/5. Map 1 is a general location map and Map 2 is the McNiel Creek Group claim map.

The group is on the east slope of the McNiel Creek valley. The elevation ranges from 1600 meters above sea level at McNiel Creek to 1930 meters above sea level along the eastern boundary of the claim group.

Access to the property is by proceeding south of Cranbrook on Highway 3 a distance of 12 Kilometers to the Lumberton Road, also Known as the Moyie River Road. This road is followed west a distance of 13 Kilometers to the junction with the Semlin Creek

Road. The Semlin Creek Road is followed south to the 4 km sign, during which the Moyie River is crossed. The McNiel Creek Road is then followed to the south a distance of 9 kilometers. The 9 km sign on the McNiel Creek Road is approximately the midpoint of several shear zones exposed on the property.

Pb and Zn mineralization was initially discovered by prospector Ed Frost in 1978. During the next few years a considerable amount of trenching was carried out on the shear zones to better expose them. Also, in 1979 the St. Eugene Mining Company conducted a geochemical survey on the property.

Assessment Report 7660 covering this survey was submitted by John R. Wilson on October 30, 1979.

The rocks underlying this claim group are of the Aldridge formation. Geological evidence indicates the rocks underlying the claim group are at a similar stratigraphic horizon to the Sullivan Mine at Kimberley, B.C., 35 Kilometers due north. In addition to the potential for stratobound massive sulphides, there is a potential for an economic deposit in the shear zones exposed on the McNiel Creek Road.

During November 1986 a program of linecutting, geological mapping and soil sampling was conducted. Six Kilometers of blaze and chain line was established. A total of 1.8 square Kilometers was geologically mapped at a scale of 1:5,000 (1 cm = 50 m). 108 soil samples and 11 sediment samples were collected and analysed for Pb and Zn.

GEOLOGICAL SURVEY

The rocks underlying the claim group consist of the Aldridge formation.

The sedimentary outcrops mapped along the McNiel Creek logging road and in the trenches are thin bedded quartzites. Concretions were present in most of the quartzite outcrops. The quartzite beds strike at an azimuth of 340 degrees and dip easterly at 15 degrees.

The intrusive rock mapped on the cliam group is a diorite. It is the authour's opinion that this unit represents the Hiawatha Sill. The intrusive is exposed in one of the lower trenches and in several locations below the road in areas of steeper topography. The quartz vein crosscutting the sill was mapped in two different locations. It is shown on the McNiel Creek Geology Map, Map 3.

Five shear zones were mapped along the McNiel Creek logging road. The shear zones contain galena, pyromorphite, minor sphalerite, well formed quartz crystals and some garnets.

Examination of float along McNiel Creek revealed argillites, quartzites, phyllites, conglomerates and minor tourmalinite. A thin section analysis of the tourmalinite forms Appendix 3 of this report.

GEOCHEMICAL SURVEY

In preparation for a geochemical survey, a total of six Kilometers of grid was established by compass and chain utilizing blazes and survey flagging. 108 soil samples were then taken at 50 meter intervals along lines of 250 meters separation. Each sample came from the B Horizon at depths of 6 cm to 18 cm, but usually at about 15 cm. In addition, 11 sediment samples were taken where the lines crossed springs seeping from the hillside. Grub hoes were used to recover the samples which were then placed in paper envelopes.

The samples were sent to Chemex Labs of North Vancouver,

B.C. for soil preparation, and Pb and Zn analysis. The -80 mesh

fraction was analysed by normal geochemical techniques. The

certificates of analysis from Chemex form Appendix 1 and Appendix

2 of this report. Map 4 is the Pb Geochem Map and Map 5 is the

Zn Geochem Map.

The geochemical survey was conducted between the McNiel Creek logging road to the east and McNiel Creek to the west.

The contact between the upper part of the lower Aldridge and the lower part of the middle Aldridge is believed, by the authour, to cross this area.

Two anomalous Pb-Zn areas were encountered:

- 1. Near the McNiel Creek logging road, and
- 2. Below the mapped diorite sill.

The first anomaly, near the McNiel Creek logging road, is probably a result of the Pb-Zn mineralization contained in the shear zones exposed along the road.

The second anomaly, below the mapped diorite dyke, may be the result of either mineralization in the shear zones under the overburden or massive sulphides laying conformably within the Aldridge sediments. The area containing the anomaly is completely covered by overburden.

In addition, a weak geochemical anomaly is present near McNiel Creek on the east side of the creek. This could be a result of transport of material from upslope or an anomaly from bedrock with the low values a function of increased overburden.

Ŧ	TEM	т.	76	n /	70	oT.	CT	Δ.	76	NE:	N.FT	-
1		4	~ =		JU	- 1	3 1	7	1 5	ı, IC		

TOTAL COST

Linecutting (as per contract), Nov. 19-22, 1986 6 km @ \$300/km

\$1,800.00

Geological & Geochemical Surveys Frank O'Grady, P.Eng. Nov. 13-23, 1986 5 days @ \$300/day

1,500.00

Transportation, four-wheel drive Nov. 19-23, 1986 5 days @ \$50/day

250.00

Soil Sampler, Brian Bapty Nov. 22 & 23, 1986 2 days @ \$50/day

100.00

Soil & Sediment Sample Analysis 119 samples @ \$3.95/sample analysed for Pb and Zn

470.05

Delivery

25.45

Supplies - soil sample bags, flagging

43.73

Petrographic Report

57.00

Report Preparation Frank O'Grady, P.Eng. Sept. 10-11, 1987 2 days @ \$300/day

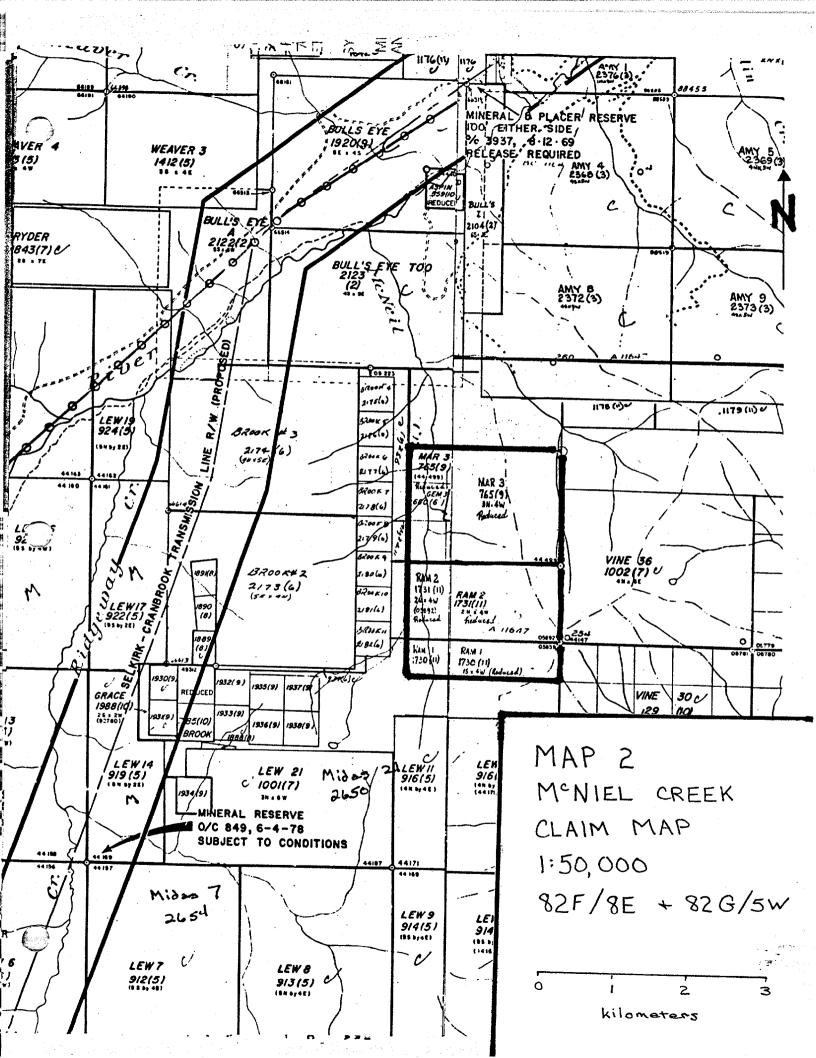
600.00

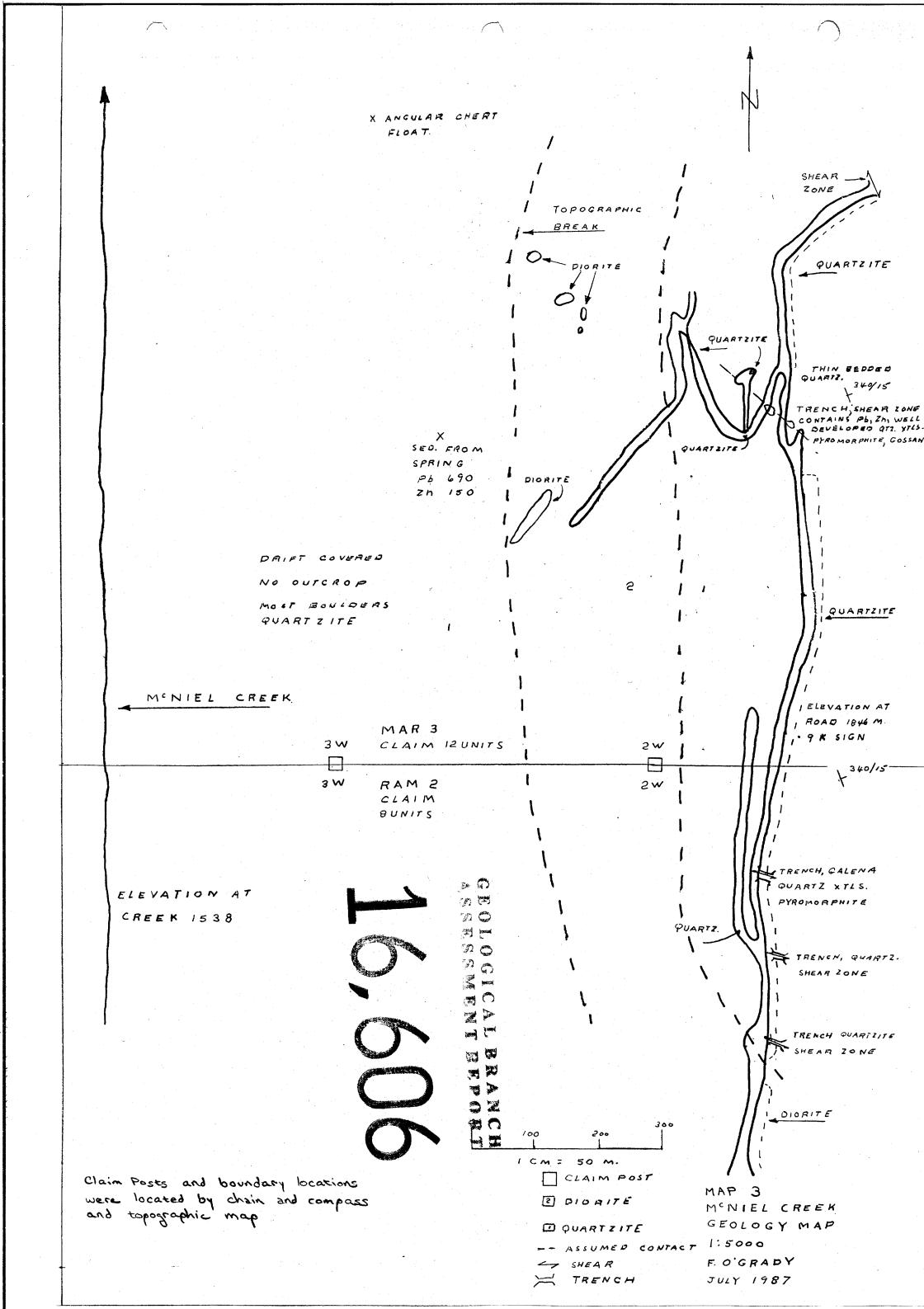
Typing

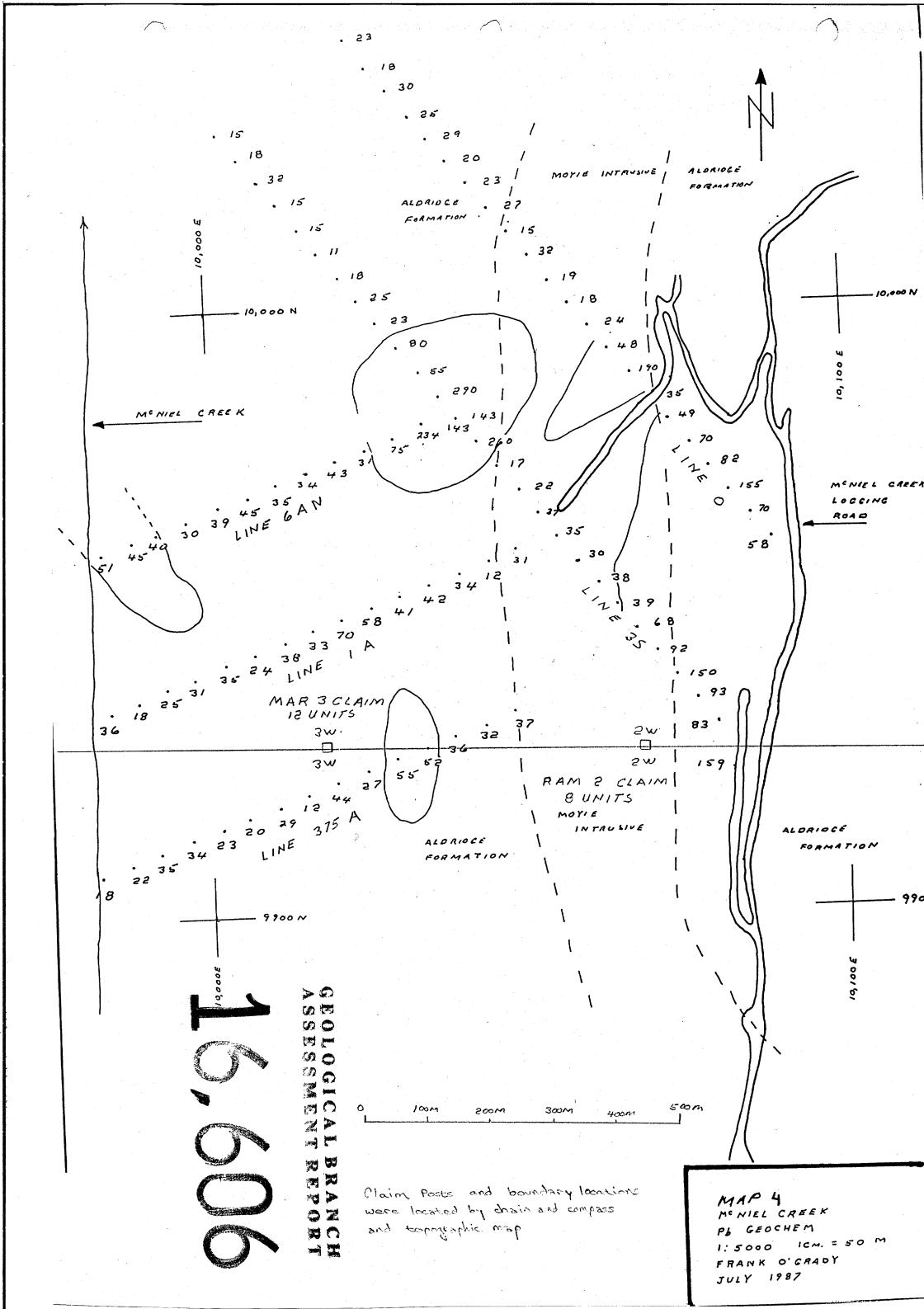
20.00

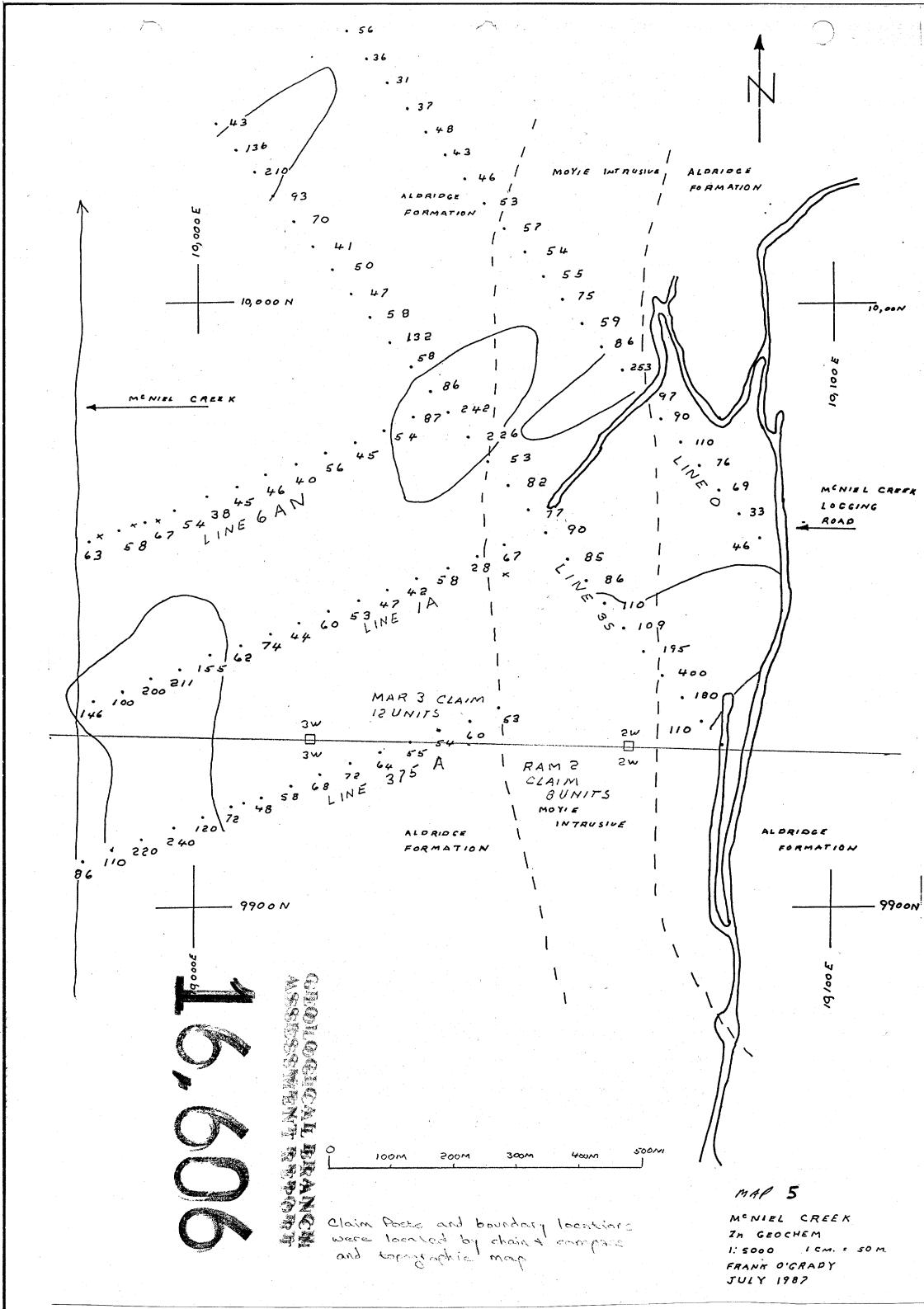
Office Expenses copying, postage, report binders

12.68


AUTHOUR'S QUALIFICATIONS


I, Frank O'Grady, address Box 56, Kimberley, B.C., 604-427-5670, hereby certify that:


- I am a graduate of the University of British Columbia,
 B.Sc. in Geology 1969.
- 2) I am a graduate of the University of Missouri Rolla (Missouri School of Mines), B.S. in Mining Engineering 1977.
- 3) I am a registered Professional Engineer in the province of British Columbia since 1978.
- 4) I have practiced my profession as a Geologist since 1969 and as a Geologist-Mining Engineer since 1977.


Frank @ Grady P.Eng.

December 4987

212 Brooksbank Ave. North Vancouver, B.C.

V7J 2C1

Phone: Telex:

(604) 984-0221 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : O'GRADY , MR. FRANK , P. ENG.

CERT. #

: A8615486-002-A

BOX 56

INVCICE # : 18615486 DATE : 30-NOV-86

KIMBERLEY. B.C.

V1A 2Y5

P.C. # : NONE

CC: ED FROST

Sample	Ргер	Pb	Zn			
description	code	ppm	ppm			
L3S 3+00W	201	68	109			
L3S 3+50W	201	39	110			
L3S 4+00W	201	38	86			
L3S 4+50W	201	30	85			
L3S 5+00W	201	35	90			
L3S 5+50W	201	37	7 7	-		
L3S 6+00W	201	22	82			
L3S 6+50W	201	17	53			
L3S 7+00W	201	26C	220			
L3S 7+50W	201	193	142			 (
L3S 8+00W	201	435	148			 ,
L3S 8+00W SEC	201	690	150			
-3S 8+50W	201	55	58			
-L3S 9+00W	201	80	132	-		
L3S 9+50W	201	23	58		· 	
L3S 10+0CW	201	25	47			
L3S 10+50W .	201	18	50			
L3S 11+00W	201	11	41			
L3S 11+5CW	201	15	70	·		
L3S 12+00W	201	15	93			
L3S 12+50W	201	32	210		·	
L3S 13+00W	201	18	136			
L3S 13+50W	201	15	43			
L3S 13+75W SED	201	21	42			
L3S 14+00W	201	22	38			
L3S 14+0CW SED	201	20	36			
L3S 14+50W	201	36	115			
L3S 15+00W	- 201	21	80			
L3S 15+50W	201	11	45			
L3S 16+00W	201	31	53			
					•	

VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1

Canada

(604) 984-0221

Phone: Telex:

043-52597

Analytical Chemists •

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

O'GRADY , MR. FRANK , P. ENG.

: A8619544-001-A

BOX 56

DATE

INVOICE # : 18619544 : 27-DEC-86

KIMBERLEY. B.C.

P.C. #

: NGNE

V1A	2Y5			

 CC: ED FROST	cc:	SAVIN (DIROM				A
Sample	Prep	Pb	Zn				
description	code	ppm	ppm				
BLA 1+50 SED	201	50	90				
30N-1	217		42				
10N-2	201		34	,			
L1A 0+00	203	31	67				
L1A 0+50	217	12	28		·		
L1A 1+00	201	34	58				
L1A 1+50	201	42	42				
L1A 2+C0	- 201	41	47		, 		
L1A 2+50	201	58	53				
L1A 3+00	201	70	60				
L1A 3+50	201	33	44	-			
_L1A 4+00	201	38	74				
1A 4+50	201	24	62		***		
L1A 5+00	201	35	155				
L1A 5+50	201	31	211				
L1A 6+00	201	25	200				
L1A 6+50	201	18	100			*	
L1A 7+00	201	36	145			-	
L6AN 0+00	201	290	86		480 440		
L6AN 0+50	201	234	87				
L6AN 1+00	201	75	54				
L6AN 1+50	201	31	45				
L6AN 2+00	201	43	56			·	
L6AN 2+50	201	34	40		-		
L6AN 3+00	201	35	46				
L6AN 3+50	201	45	45				***
L6AN 4+00	201	39	38		***		
L6AN 4+50	201	30	54				
L6AN 5+00	201	40	67				
L6AN 5+50	201	45	53		-		
L6AN 6+00	201	51	63		**************************************		
L6AN 1+25W SED	201	38	40				
LGAN 5+00W SED	203	52	46				
L6AN 5+25W SED	201	46	60				
L6AN 5+75W SED	201	50	61	 .	-		
 L375A 0+00	201	37	53		two of the second	— — —	
L375A 1+00	201	36	54			·	
(A),375A 1+50	201	52	55	·			
L375A 2+C0	201	55	64				
L375A 2+50	201	27	72	- 			
 			1 %				

VOI rev. 4/85

Certified by HartBichler

212 Brooksbank Ave. North Vancouver, B.C.

Canada

V7J 2C1

Phone: Telex:

(604) 984-0221 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

: A8619544-002-A

BOX 56

: I8619544 INVOICE # DATE : 27-DEC-86

KIMBERLEY, B.C.

V1A 2Y5

P.C. # : NGNE

CC: ED FROST	cc:	GAVIN D	IROM			
Sample	Prep	Pb	Zn			
description	code	mag	ppm			
L375A 3+00	201	44	68			
L375A 3+50	201	12	58	-		
L375A 4+00	201	29	48			
L375A 4+50	201	20	72			 ·
L375A 5+00	201	23	120			
L375A 5+50	201	34	240			
L375A 6+00	201	35	220			
L375A 6+50	201	22	110			
L375A 7+00	201	18	86		"	
L375A 0+50W	201	32	60			
L375A 4+35WSL	201	19	120			

Certified by HartBichler

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph.D. Geologist
A.L. LITTLEJOHN, M.Sc. Geologist
JEFF HARRIS, Ph.D. Geologist

P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

PHONE (604) 888-1323

July 24th, 1987

Report for:

Frank O'Grady,

c/o Terra Mines Ltd.,

Box 670, SALMO, B.C. VOC 1ZO

Samples:

2 thin sections, numbered B-1 and D-1 respectively, for petrographic examination.

Summary:

Slide B-1 is a micritic carbonate rock veined by coarser carbonate with quartz and fluorite.

Slide D-1 is a fine-grained, tourmaline-bearing, biotitic quartzite in which the dark colour is caused by dense, laminar impregnations of micron-sized opaque material.

Individual petrographic descriptions are attached.

J.F. Harris Ph.D.

Sample D-1 TOURMALINE-BEARING, BLACK LAMINATED QUARTZITE

Estimated mode

Quartz	45
Biotite	6
Sericite	2
<pre>Epidote(?)</pre>	7
Tourmaline	14
Granular opaques	1
Micron-sized opaques	25

This rock is essentially a rather even-grained siltstone or fine wacke, of grain size 0.03 - 0.07mm. Its original clastic texture has been modified by metamorphic crystallization and now consists of a rather diffuse-margined mosaic. It appears to consist predominantly of quartz, though it could very well contain a significant component of untwinned feldspar.

Biotite forms rather evenly disseminated, randomly oriented, stubby flakes, 0.05 - 0.1mm in size. Sericite forms much smaller, intergranular flecks.

Another accessory occurs as equidimensional patches of minutely fine-grained, sub-opaque material, similar in size to the biotite. It has somewhat the aspect of leucoxene but sometimes shows signs of having a rather strong, partly anomalous birefringence. It is believed to be epidote. Rare grains of better crystallized, more recognizable epidote are also seen.

Tourmaline is a prominent constituent, as evenly disseminated, individual, prismatic euhedra, mostly in the size range 0.05 - 0.2mm, but occasionally as longer, slender crystals.

Minor opaques (sulfides?) occur as scattered, small, anhedral individuals.

The black colour of the rock is caused by concentrations of micron-sized, opaque material of unknown composition - probably carbonaceous. This forms more or less dense, locally disrupted, laminar, varve-like zones on the scale 0.2 - 2.0mm. In these zones the opaque dust pervades and more or less obscures the normal crystalline fabric of the rock. These are intercalated with less common, opaque-free laminae.

The tourmaline occurs evenly throughout the rock, independent of the distribution of the opaque dust, and is clearly granoblastic. Sometimes slender tourmaline prisms pass uninterrupted from clear to essentially opaque laminae.

The microcrystalline epidote appears to be the latest component to form. It is sometimes seen partially enveloping tourmaline and biotite.

The rock shows no oriented fabric and the recrystallization and metamorphic mineral growth may be dominantly a thermal effect.

Although this rock is rich in accessory tourmaline, it is not a tourmaline 'chert' of the classic Aldridge type (in which wholesale replacement by minutely fine-grained tourmaline needles causes the dark colour, without admixture of opaque dust).

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists •

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

: O'GRADY , MR. FRANK , P. ENG.

BOX 56

KIMBERLEY. B.C.

V1A 2Y5

CERT. # : A8615486-001-A

INVOICE # : 18615486 : 30-NOV-86

P.C. # : NONE

CC: ED FROST

CC: EU FROST			<u></u>				
Sample	Prep	Pb	Zn		****		
description	code	mag	maa				
LO 0+50W	201	58	46				
LO 1+00W	201	70	33				
LO 1+50W	201	155	69				
LO 2+00W	201	82	76		·		
LO 2+50W	201	70	110	· 			
LO 3+00W	201	49	90				
LO 3+50W	201	35	97				
LO 4+00W	201	490	253				
LO 4+50W	201	4.8	86		`		
LO 5+00W	201	24	59				·
LO 5+50W	201	18	7 5	·			
_ LO 6+00W	201	19	55	-			
6-10 6+50W	201	32	54				
-LO 7+00W	201	15	57				-
LO 7+50W	201	27	53	·			
LO 8+00W	201	23	46				
LO 8+50W	201	20	43				
LO 9+00W	201	29	48				
LO 9+50W	201	25	37				
LO 10+00W	201	30	31				
LO 10+50W	201	18	36				
LO 11+00W	201	23	56				
LO 11+50W	201	1.8	58				
LO 11+70W SED	201	19	31				
LO 12+00W	201	18	31				
LO 12+50W	201	25	43				
LO 13+00W	201	25	77:				
LO 13+50W	201	28	68				
LO 14+GOW	201	25	49				
LO 14+50W	201	26	71				
LO 15+00W	201	23	65				
LO 15+50W	201	2 C	53				
LO 16+00W	201	40	63				
LO 16+00W SED	201	18	45		-		
L-3S 0+50W	201	159	73			- - ·	
L3S 1+00W	201	83	110		***		_
L3S 1+50W	201	93	180				
35 2+COW	201	15C	400		- <u>-</u> -		
L3S 2+50W	201	92	195	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			
L3S 2+50W SED	201	117	195		-		

VOI rev. 4/85

Certified by HartBichler...