| <b>١</b> ₽. |
|-------------|
|             |
|             |
|             |
|             |

# WESTERN CANADIAN MINING COMPANY

A Geological, Geochemical, Geophysical

and Drilling Report

on

The Kerr Project

NTS 104 B/8W

Skeena Mining Division

OWNER Operator: Western Canadian Mining Corporation

١.

ŧ.

١.

•

1**9**87

| Authors:     | J.M. Kowalchuk & M. Jerema |
|--------------|----------------------------|
| Commodities: | Au, Ag, Cu                 |
| Date:        | December, 1987             |
| NTS:         | 104 B/8₩                   |
| Latitude:    | 56° 28′″North              |
| Longitude:   | 130° 16% West              |
| Report No.:  | 996 FILMED                 |

C 29 8 8 8 0 7 Z C -

#### SUMMARY

Exploration on the Kerr property in 1987 was successful in locating significant amounts of gold-copper mineralization in three areas. Three different modes of precious metal mineralization were recognized.

•

.

ы.

**-** -

Ľ.

٤

ŝ.

٩.

×.

Drilling and trenching on the A Zone intersected a sulphide filled breccia which contains up to 2.027 oz/t Au, 135.56 oz/t Ag and 13.48% Cu. This goldsilver-copper mineralization was intersected in three diamond drill holes and in several lines of chip samples.

Drilling of a large geophysical anomaly in the B Zone intersected 61.7 m (202.4 ft) of 1.11% Cu and 0.012 oz/t Au in a large disseminated porphyry copperporphyry-type deposit.

Drilling and trenching in the C Zone and trenching in the L Zone has located up to 0.989 oz/t Au in quartz veins and silica-cemented breccias.

The above metal zoning is reflected by an alteration zoning from chloritesericite alteration in the A Zone through sericite alteration in the C Zone to silica-sericite alteration in the L Zone. A porphyry copper-gold model of metal zoning around a symple stock is suggested as a guide towards directing further exploration on the property.

Detailed soil geochemistry was successful in defining the shape of the various mineralized structures.

An intensive program of detailed diamond drilling, surface blasting and trenching, and detailed structural geological mapping is proposed to outline economic amounts of gold, silver, copper mineralization.

# TABLE OF CONTENTS

# SUMMARY

**F** 

. **b**o-

**.**....

**b**...

-

•

÷

-

•

٠

.

٠

•

.

P - -

.

P ··

.

•

•

-

•

•

•

**P**=---

•

----

•

| 1.0  | INTRODUCTION                     | 2  |
|------|----------------------------------|----|
| 1.1  | LOCATION AND ACCESS              | 2  |
| 1.2  | TOPOGRAPHY AND VEGETATION        | 2  |
| 1.3  | PROPERTY STATUS                  | 2  |
| 1.4  | HISTORY                          | 4  |
| 1.5  | 1987 EXPLORATION PROGRAM         | 5  |
| 2.0  | GEOLOGY AND MINERALIZATION       | 5  |
| 2.1  | REGIONAL GEOLOGY                 | 5  |
| 2.2  | PROPERTY GEOLOGY                 | 7  |
|      | 2.2.1 GENERAL                    | 7  |
|      | 2.2.2 LITHOLOGY                  | 7  |
|      | 2.2.3 ALTERATION                 | 9  |
|      | 2.2.4 STRUCTURE                  | 9  |
|      | 2.2.5 MINERALIZATION             | 11 |
| 3.0  | 1987 FIELD PROGRAM               | 12 |
| 3.1  | SURVEYING                        | 12 |
| 3.2  | GEOPHYSICS                       | 12 |
|      | 3.2.1 GENERAL                    |    |
|      | 3.2.2 VLF EM                     | 12 |
| 3.3  | SOIL GEOCHEMISTRY                | 13 |
|      | 3.3.1 GENERAL                    | 13 |
|      | 3.3.2 SAMPLING PROCEDURES        | 13 |
|      | 3.3.3 RESULTS                    | 13 |
|      | 3.3.4 DISCUSSION                 | 14 |
| 3.4  | TRENCHING AND ROCK CHIP SAMPLING | 15 |
| 3.5  | DIAMOND DRILLING                 | 19 |
|      | 3.5.1 GENERAL                    | 19 |
|      | 3.5.2 RESULTS                    | 21 |
| 4.0  | DISCUSSION                       | 23 |
| 5.0  | CONCLUSIONS AND RECOMMENDATIONS  | 24 |
| 6.0  | REFERENCES                       | 26 |
| 7.0  | STATEMENT OF EXPENDITURES        | 27 |
| 8.0  | STATEMENT OF QUALIFICATIONS      | 28 |
| APPE | NDIX A                           |    |

DIAMOND DRILL SECTIONS

.

# APPENDIX B

DIAMOND DRILL LOGS

Page

# TABLE OF CONTENTS (cont'd)

APPENDIX C

ANALYTICAL RESULTS

# APPENDIX D

.

---

**.**...

....

۰.

ъ.

-

Ł.

-

.

-

•

•

4

•

i.

-

•

۰.

•

r -

.

.

р. -Ц

.

.

PETROGRAPHIC DESCRIPTIONS

## APPENDIX E

AN EXAMINATION OF DUPLICATE ASSAYS ON ROCK AND DRILL CORES

# APPENDIX F

VLF-EM - RAW DATA

LIST OF TABLES

| TABLE 1 | - | CLAIM STATUS           | 2  |
|---------|---|------------------------|----|
| TABLE 2 |   | LITHOGEOCHEMISTRY      | 17 |
| TABLE 3 |   | DRILL HOLE SURVEY DATA | 20 |

| FIG. 1  | PROPERTY LOCATION                         |
|---------|-------------------------------------------|
| FIG 2   | CLAIM STATUS                              |
| FIG. 3  | REGIONAL GEOLOGY                          |
| FIG. 4  | PROPERTY GEOLOGY                          |
| FIG. 5  | GEOLOGICAL CROSS SECTION X-X <sup>1</sup> |
| FIG. 6  | ALTERATION AND METAL ZONING               |
| FIG. 7  | VLF-EM SURVEY                             |
| FIG. 8  | SOIL GEOCHEMISTRY - GOLD                  |
| FIG. 9  | SOIL GEOCHEMISTRY - SILVER                |
| FIG. 10 | SOIL GEOCHEMISTRY - COPPER                |
| FIG. 11 | TRENCH LOCATION MAP - A ZONE              |
| FIG. 12 | TRENCH LOCATION MAP - C ZONE              |
| FIG. 13 | TRENCH LOCATION MAP - L ZONE              |
| FIG. 14 | DRILL HOLE SECTION K87-1, 2               |
| FIG. 15 | DRILL HOLE SECTION K87-3                  |
| FIG. 16 | DRILL HOLE SECTION K87-4                  |
| FIG. 17 | DRILL HOLE SECTION K87-5                  |
| FIG. 18 | DRILL HOLE SECTION K87-6, 7               |
| FIG. 19 | DRILL HOLE SECTION K87-8                  |
| FIG. 20 | DRILL HOLE SECTION K87-9                  |
| FIG. 21 | DRILL HOLE SECTION K87-10                 |
| FIG. 22 | DRILL HOLE SECTION K87-11, 12             |
| FIG. 23 | DRILL HOLE SECTION K87-13, 14             |
| FIG. 24 | COMPILATION MAP                           |

-

. •

-

ы.

•

ż.

.

.

.

.

~

.

- -

•

.

•

.

Г .

.

.

**\*** --

•

.....

•

ь.

Page 1 3 6 in pocket in pocket 10 in pocket in pocket in pocket in pocket in pocket in pocket 16 APPENDIX A APPENDIX A

in pocket

WESTERN CANADIAN MINING CORPORATION SULPHURETS CREEK & ISKUT RIVER GOLD CAMPS, B.C. N.T.S. 104B 82)-11VIng WOLVERINE ZONE + 11 River SNEPAKER STEWART APPROX 65 MILES (105 Km) Δ NEWHAWK/ PYRAMID ZONE **BITN** LACANA/ GRANDUC SULPHURETS GOLD SKYLINE CORDERATIONS 20,000,000 tons of Shippaker 0.08 oz/ton Gold SNOWFIELD GOLD ZONE Austrio 25,000,000 tons of 0.08 oz/ton Gold Potential LAKE ZONE LΠ STONEHOUSE GOLD DEPOSIT BRUCEJACK GOLD ZONE 938,466 tons of 1,584, 145 Tons of 0,73 oz/ton Gold. KHYBER PASS 0.336 oz/ton Gold, 22.86 oz/ton Silver 0.85 oz/ton Silver 56\*30 Sulanurels Cree GOLD ZONE 130\*30' PROPOSED ALL WEATHER ROAD TO CASSIAR -STEWART HIGHWAY GOSSAN PROPERTY 9 U<sup>n</sup> Bowser PROPERTY LOCATIONS Lake KERR 5 H KERR GOLD TEWART PROPERTY Rive ZONE Bowsel PRINCE FIG. 1 Ŵ IO MILES 1 2 3 4 5 10 Km VANCOUVER 5

A T A F A F

and the second states we wanted a set

Ţ.

1

۳.

2

#### 1.0 INTRODUCTION

#### 1.1 LOCATION AND ACCESS

The Kerr Property is situated at the eastern edge of the Northern Cordillera, approximately 65 km north of Stewart, B.C. at  $56^{\circ}28'$  north latitude and  $130^{\circ}16'$  west longitude, in the Skeena Mining Division (NTS 104B/8, FIG. 1, FIG. 2). The property lies 45 km west of the Bell Irving #2 crossing on the Stewart Cassiar Highway. The closest road access is the Tide Lake airstrip at the end of the Stewart-Granduc Road, which lies only 30 km south of the property.

In 1987 access to the property was by fixed wing aircraft (either charter or daily scheduled flight to Snippaker airstrip) and then helicopter to the property. The drill and camp were mobilized by helicopter from the Stewart Cassiar Highway and demobilized to Tide Lake strip.

#### 1.2 TOPOGRAPHY AND VEGETATION

The claims lie in mountainous terrain on the south side of Sulphurets Creek, east of the confluence of Sulphurets Creek and the Unuk River. The Sulphurets Glacier borders the property to the south, east, and northeast. Most of the property is above tree line, with vegetation consisting of grasses, lichen and various small alpine flowers. At lower elevations dwarf birch and spruce make traversing difficult. Elevations on the property range from 600 metres to 1900 metres. Work concentrated above the 1500 metre level.

#### 1.3 PROPERTY STATUS

The claims comprising the Kerr property are listed below in Table 1. The claim location is shown on FIG. 3.

| Claim Name | Record No. | Units | Hectares      | Expiry Date  |
|------------|------------|-------|---------------|--------------|
| Kerr 7     | 3662       | 6     | 150           | Dec. 17,1997 |
| Kerr 8     | 3663       | 16    | 400           | Dec. 17,1997 |
| Kerr 9     | 3664       | 10    | 250           | Dec. 17,1997 |
| Kerr 10    | 3665       | 9     | 225           | Dec. 17,1997 |
| Kerr 12    | 3666       | 20    | 500           | Dec. 17,1997 |
| Kerr 15    | 3669       | 16    | 400           | Dec. 17,1997 |
| Kerr 41    | 3697       | 20    | 500           | Dec. 17,1997 |
| Kerr 99    | 4690       | 20    | 500           | Oct. 30,1997 |
| Kerr 100   | 6286       | 10    | 250           | July 17,1997 |
| TOTAL      |            | 127   | 3175          |              |
| . *        |            |       | (7,845 acres) |              |

## TABLE 1



The property is owned 70% by Western Canadian Mining Corporation and 30% by Sulphurets Gold Corporation in a joint venture agreement. Western Canadian is the operator. Work applied in 1987 will keep all claims in good standing until 1997.

# 1.4 HISTORY

Interest in the area dates back to the 1880's and early 1900's when extensive placer prospecting was done on the Unuk River and Sulphurets In 1905 F.E. Wright of the USGS reported on the placer potential Creek. of Sulphurets Creek as well as the presence of well mineralized veins bearing Au. Ag and Pb. In the 1930's more placer mining was attempted: however, prospectors were discouraged by the remoteness of the area, In 1959, Newmont Mines difficulty of access and severity of weather. carried out airborn and ground geophysical and geological surveys, leading to the staking of the Sulphurets claims near Brucejack Lake for Granduc Mines Ltd. Newmont and Granduc carried out property work throughout the 1960's. Phelps Dodge Corp. (1962) of Canada and the Meridian Syndicate (1965) were also active in the area. In 1979 the Sulphurets property was optioned to Esso Resources Canada Limited, who spent over \$2 million on precious metals exploration over the next five years. In 1985 Newhawk Gold Mines Ltd. and Lacana Mining Corporation optioned the Sulphurets claims from Granduc Mines and for the past three years have performed an aggressive surface and underground exploration program. Drill indicated and inferred reserves (Drown, 1987) on the Sulphurets property are as follows:

| West Zone            | 1.0 million tons | 0.33 oz/t Au  | 21 oz/t Ag  |
|----------------------|------------------|---------------|-------------|
| Shore Zone           | 0.5 million tons | 0.263 oz/t Au | 27 oz/t Ag  |
| Gossan Hill          | 27,000 tons      | 0.19 oz/t Au  | 3.3 oz/t Ag |
| Sulphurets Gold Zone | 20 million tons  | 0.08 oz/t Au  |             |
| Snowfield Gold Zone  | 25 million tons  | 0.08 oz/t Au  |             |

On November 18, 1987 Newhawk Gold Mines Ltd. announced that they hope to be producing gold from the West zone by late 1988.

Catear Resources Ltd.', in the immediate area, has been mining the Goldwedge Zone which is reported to contain 1 million tons of reserves containing 0.5 oz/t Au and 4 oz/t Ag.

The Kerr Claims were originally staked by the Alpha Joint Venture in 1982, covering a large gossan adjacent to the Sulphurets property. Anomalous gold geochemical values in 1983 prompted Brinco Limited to option the property in 1984. In 1985, a comprehensive exploration program consisting of geological mapping, geochemical sampling, hand trenching and sampling, and diamond drilling was successful in locating four areas of extremely high gold geochemistry (>1,000 ppb Au) in soil and talus. In 1986 a limited systematic exploration program was completed confirming the presence of soil anomalies first sampled in 1985 and locating some extremely high gold values (up to 2.58 oz Au/t) in rock chip samples. The 1986 program consisted of soil and rock chip geochemistry, geophysics and geological mapping performed on a 100 metre by 25 metre grid established for control. The results of this program provided an excellent data base for the 1987 program.

In 1986 Brinco Limited transferred their 70% interest in the Kerr property to Western Canadian Mining Corporation. In 1987, the Alpha Joint Venture transferred their 30% interest to Sulphurets Gold Corporation.

#### 1.5 1987 EXPLORATION PROGRAM

The field program for 1987 was designed to test the four geochemical target areas (A, B, C and L), locate the mineralization causing these and, if possible, determine anomalies the dimensions of the mineralization. This aspect of the program was performed using diamond drilling (1604 m of NQ size core drilling in 14 holes), trenching (500 metres by excavator) and rock chip sampling (548 samples). The dimensions of the target areas were further defined by detailed soil sampling within and around the anomalous zones. A total of 505 soil samples were taken. Along with this surface work and geochemical sampling, 10 km of geophysical surveys, both IP (Induced Polarization) and VLF-EM, were performed. The geophysical surveys were designed to locate drill targets within the larger geochemically anomalous zones.

### 2.0 GEOLOGY AND MINERALIZATION

### 2.1 REGIONAL GEOLOGY

The Kerr property is adjacent to the eastern margin of the Coast Plutonic Complex, near the western edge of the Bowser Basin (FIG. 4). Grove (1986) refers to the large pile of sedimentary and volcanic rocks along this margin as the Stewart Complex. Locally the region is underlain by Jurassic Hazelton Group rocks. Lower Jurassic crystal and lithic tuff of the Unuk River Formation is unconformably overlain by Middle Jurassic siltstone, greywacke and sandstone. Regionally the Stewart Complex dips beneath the middle to Upper Jurassic Bowser Group and forms an integral part of the Bowser Basin.

The stratigraphy is intruded by subvolcanic intrusives and by mid to late Mesozoic and Cenozoic plutonic rocks. These include stocks and dykes of granodiorite, quartz monzonite, syenodiorite and feldspar porphyry.

Large areas of hydrothermally altered, bleached and gossanned schist and phyllite, occur along major north south structures in the region.



# 2.2 PROPERTY GEOLOGY

# 2.2.1 General

Field work was concentrated in the zone previously mapped as sericite schist. Diamond drilling and surface mapping were both used to define a geological section within this area of intensely altered volcanic rocks. Volcanic textures and compositions were best observed in drill core. Weathering of the altered outcrops often made primary textures difficult to recognize. Emphasis in surface mapping was placed on structural measurements rather than stratigraphy.

## 2.2.2 Lithology

The following geological section was largely obtained from the observation of drill core. It is used as the primary guide in the drill hole sections. In the property geology map (FIG. 4), volcanics are often undifferentiated and either described as dacitic tuff or as quartz-sericite, pyrite schist. Several samples were sent to Vancouver Petrographics for microscopic descriptions of rock and mineral textures. These descriptions lie in the Appendix D. A hypothetical cross section X - X is sketched as Figure 5.

The volcanic and sedimentary rocks are as follows:

### CRYSTAL TUFF (Unit 5)

A coarse-grained equigranular rock, generally massive in texture. dacitic in composition, the rock is generally a grey to greenishgrey in colour. Feldspar crystals which make up 80% of the rock range from 0.5 to 2.0 mm in grain size. The feldspars are often altered to a pale green sericite and a green clay mineral. Quartz grains are anhedral and similar in size to the feldspars. The greenish colour is usually as a result of alteration of the feldspar to sericite and epidote. Some crystal tuffs are quite a dark green in colour due to chlorite alteration. This usually occurs adjacent to a mafic dyke. This rock may be the extrusive equivalent either as a flow or tuff of the Feldspar Porphyry.

## LAPILLI TUFF (Unit 4)

This rock of generally dacitic composition usually has a fine grained grey to green ground mass containing lithic fragments ranging from 5 mm to 50 mm in size. The lithic fragments are usually crystal tuff; however, they can vary from chert to ash tuff to lapilli tuff. Quite often the lapilli tuff are interlaminated with ash tuff (Units 3/4) and sometimes lapilli occur sporadically

## ASH TUFF (Unit 3)

collared from the same location.

A very fine-grained buff to beige coloured rock, this unit can be massive in appearance or laminated. It is sometimes interlaminated with crystal tuff and occasionally with lapilli tuff. Certain outcrops of the ash tuff in the L-Zone are extremely siliceous and resemble buff coloured chert. The chert might be an original chemical sediment or a silicified ash tuff. The unit, while generally buff to pink coloured, can become a pale pistachio green from extensive epidote alteration.

#### SANDSTONE (Unit 2)

Medium grained gritty rock, grey to brown in colour, often interlaminated with silty sediments and mudstones, with occasional cross lamination was observed in core.

#### SHALE (Unit 1)

A fine-grained black mudstone, this unit becomes slatey in places. It is often interlaminated with siltstone and in some case, sandstone.

### MASSIVE SULPHIDE (Unit M)

In the A-Zone, drilling encountered 2 metres of massive chalcopyrite, pyrite, quartz mineralization in brecciated ash tuff. The mineralization appeared stratabound.

### MAFIC INTRUSIVE (Unit 7)

The dykes, sills and possibly flows are primarily andesitic in composition. They are a fine to medium-grained, dark green rock, often with extensive chlorite alteration. The texture is slightly porphyritic with small plagioclase lathes and black acicular hornblendes occurring in a dark green to grey groundmass.

Two, possibly three types of andesitic intrusion are present. Some dykes were obviously quite altered by the hydrothermal event which introduced the copper-gold mineralization. A second period of intrusive activity occurred along crosscutting fractures or normal faults. A unique late stage andesite dyke, possibly related to Cenozoic volcanism, contains 5-10% calcite in amygdules. All of these mafic dykes occurred after the structural deformation and are unfoliated. This unit is monzonitic to symiltic in composition. The textures range from medium-grained equigranular to porphyritic. The porphyritic phase consists of large white orthoclase phenocrysts in a fine-grained green groundmass. Phenocrysts range from 4mm to 150 mm in length.

#### 2.2.3 Alteration

The alteration varies in intensity across the property. Rapid changes in alteration are a result of localized variations in intensity of shearing. A general alteration zoning pattern was observed in spite of these local variations. The pattern from west to east is as follows:

A Zone - Quartz - chlorite - sericite - pyrite - carbonate
B Zone (west) - Chlorite - sericite - pyrite - quartz (Epidote)
B Zone (east) - Sericite - pyrite - quartz (chlorite)
C Zone - Quartz - sericite - pyrite (Epidote - chlorite)
L Zone - Quartz - sericite - carbonate

This zoning is shown on Figure 6.

### 2.2.4 Structure

The structure on the property is controlled by the large northsouth faults along the eastern and western boundaries of the large gossan zones. Few bedding measurements were possible within this area, being completely destroyed by the strong shear foliation throughout the area. Along the eastern boundary in the L Zone most of the foliation measurements strike  $160^{\circ} - 170^{\circ}$  and dip very steeply east or west.

The same generally applies within the central sericite alteration zone with the dominant foliation direction at about  $160^{\circ}$ . In the A zone the structural picture becomes quite complex as two large cross faults, bearing about  $290^{\circ}$ , disrupt the north-south pattern of foliation. The presence of large bodies of feldspar porphyry in the A Zone has also disrupted much of the foliation as the intrusive has domed the volcanics above it. In the pyramid north of the A and C Zones, several structural measurements suggest an east-west feature. No explanation for the east-west trend can be made at present.



Soil geochemistry suggests a secondary northeast-southwest trend across the property. Occasional shear foliation measurements also reflect this trend. Many of the quartz veins mapped on the property strike N  $30^{\circ}$  E and may represent an en echelon dilation feature created by left lateral movement in a transverse fault. The large north-south structure may be a set of such transverse faults.

## 2.2.5 Mineralization

Gold occurs in several different manners on the property. In the C zone, gold occurs in narrow (less than 50 cm wide) quartz-pyrite veins which appear to be "sweated out" from the surrounding quartz-sericite-pyrite schist along the main foliation direction. In drilling, this type of mineralization ranged up to 3500 ppb Au (0.1 oz/t Au) over 1.5 metres. This type of mineralization occurs as a migration of quartz, pyrite and gold into zones of lower pressure subparallel to the main structural direction. The surrounding quartz-sericite pyrite schist carries 200 to 800 ppb Au throughout so a concentration factor of five to 10 times is required.

In the B Zone, gold occurs within chalcopyrite grains. The area contains a large stockwork of pyrite-chalcopyrite. Diamond drill hole K87-8 intersected 61.5 metres averaging 1.11% Cu and 0.013 oz/t Au. A rough paragenesis of the metal introduction is possible since the chalcopyrite fills fractures within the pyrite and the gold occurs as discrete exsolution (?) blebs within the chalcopyrite. The porphyry copper-gold mineralization has been traced by geophysics. This geophysical anomaly is elongate north-south, open at each end and has dimensions of 600 metres by 200 metres. Surface sampling and prospecting beyond the limit of the IP suggests that the mineralization may extend up to 1000 m in length.

Gold mineralization in the L Zone occurs in quartz-cemented breccia in silicified ash tuff to cherty tuff. Few sulphides are noted in this area. The gold probably occurs as free gold or electrum within the quartz stockwork breccia matrix.

To date, the most important gold mineralization noted is that which occurs in the A Zone. Gold occurs within a chalcopyrite-pyritequartz flooded brecciated ash tuff. The breccia is about two metres thick. Drill holes K87-6 and K87-7 intersect this mineralization. The mineralized breccia trends parallel to the bedding and may be stratiform. This zone has been traced by surface sampling and mapping for over 200 metres. The mineralization has been severely broken up and shifted around by several east-west faults.

### 3.0 1987 FIELD PROGRAM

# 3.1 Surveying

For control of geophysical, geochemical and geological surveys and for location of drill holes and trenches, a 100 x 25 metre grid was located on the property. Using the 1634 height of land as the origin (10,000 N, True north was determined 10,000 W) a north-south baseline was located. The baseline was established using a transit for using a sun shot. directional control. The east-west lines were turned off at 90° to the baseline using the same transit. Lines were 100 metres apart. Stations were 25 metres apart. In areas of anomalous geochemistry, intermediate lines were located. The baseline was marked by 4 foot high pickets with aluminum tags indicating locations. The pickets along the lines were 2 feet high and were marked with plastic dymo tape. The bearing of the 1987 baseline was 4° off of that for 1986. On comparing locations of stations to topography, the 1986 baseline is thought to be bearing at 180°, and the 1987 baseline to be at 176°.

These grids have been adjusted on the Figures, to accommodate these different bearings.

#### 3.2 Geophysics

### 3.2.1 General

On the 1987 grid, a 12-line km proton magnetometer survey and a 12 line-km VLF EM Survey were completed. A 10 km IP Survey was also performed on the grid. The magnetometer survey was without relief and was not successful in mapping geology. It will not be discussed in this report. The VLF EM Survey located several conductors. The IP Survey was performed by a contractor and will be discussed in an accompanying report (Walcott 1987). Reference to the IP will be made throughout this report.

### 3.2.2 VLF EM

A VLF EM Survey was performed over much of the gossan area. A total of 12 line-km was surveyed. A Geonics EM 16 unit was used. Seattle Washington (NLK) was the transmitting station. All readings were taken facing west. The data was filtered using a technique developed by Fraser in 1967. The raw data is located in Appendix F.

The Fraser filtered data (FIG. 7) located several weak, north-south conducting structures generally running the length of the property. A few of these conductors, i.e. the one located from 10,600 W to 10,700 W represented geological contacts. Some may represent topography, i.e. 9,400 N, 10,500 W and 9,500 N, 10,280 W. The rest represent conductive structures, possibly water filled fault zones. The conductor paralleling the base line represents the fault zone intersected in hole K87-4. The conductor at 9,700 N, 10,125 W reflects the large fault zone intersected in hole K87-8. Other VLF conductors have not been explained; however, their similar response to those conductors tested suggests a similar explanation for the conductor.

## 3.3 SOIL GEOCHEMISTRY

#### 3.3.1 GENERAL

A total of 505 soil samples were taken in 1987. These samples supplement the surveys performed in 1985 and 1986. Areas at the ends of lines, where geochemical anomalies were still open, were sampled in an attempt to complete the sampling and close off these anomalies. Detailed sampling (50 metre line spacing) was performed within anomalous areas (primarily Zones A and L) to facilitate the contouring of geochemical data.

#### 3.3.2 SAMPLING PROCEDURES

A composite of "C" horizon soil material was taken from three sites within 3 metres of the sample site. In areas of deep talus, samples were taken at 50 cm depth. Normal sample depth was 20 - 30cm. About 500 grams of fine material was placed in a kraft sample bag and left to dry in camp. The dried samples were sent to Vangeochem Lab Ltd. in Vancouver where the -80 mesh sieved fraction was analyzed for gold and 30 element ICP (Inductively Coupled Plasma Emission Spectroscopy).

#### 3.3.3 RESULTS

The soil data has been combined from 1985, 1986 and 1987 results. Gold, silver and copper, maps have been produced as Figures 8, 9, and 10. Discussion on the geochemistry follows.

### Gold (FIG. 8)

The gold geochemistry has been contoured at intervals of 100, 400 and 700 ppb. The detailed sampling in the A, B, C and L Zones has confirmed the presence and continuity of these gold anomalies. Geochemically, the C and L Zones are the same and should now be referred to as Zone C-L.

The detailed sampling has also defined the shapes of the anomalies within these areas. The shapes of the +700 ppb Au areas is particularly significant in the C-L Zone where several north-east trending bands have been defined within the broader north-south trend of the zone. Sampling in the north end of the property has expanded and further defined Zone D and has located a new zone referred to as the P zone (Pyramid Zone).

## Silver (FIG. 9)

The contour intervals for the silver geochemistry maps are 3 ppm, 8 ppm and 13 ppm Ag. The silver anomalies correlate well with the gold geochemistry; however, they are more restricted in extent. The most significant silver zone lies within the A Zone where one sample has greater than 100 ppm Ag and two adjacent samples run 66.5 and 30.3 ppm Ag. Silver anomalies greater than 8 ppm are located within Zones A, B, C-L, D, and E. The P Zone is not significantly anomalous in silver.

#### Copper (FIG. 10)

The copper geochemistry was contoured at 200 ppm, 400 ppm and 700 ppm Cu. Zones A and C-L both contain significant areas anomalous in copper. Zone B is mildly anomalous. The copper anomaly from Zone L extends to the south as a broad copper zone. Prospecting in this zone found malachite-stained volcanic and intrusive rocks. Assays values up to 0.5% copper exist. No significant gold or silver geochemistry was located in this southern zone.

#### Other Elements

Arsenic correlates well with the gold geochemistry in the A, B, and C-L Zones. Like the copper geochemistry, the arsenic response extends south of the L Zone.

The lead geochemistry is very strong in the C-L and F Zones. The anomaly is quite broad and several samples are over 1000 ppm Pb. Zones A and B are slightly anomalous in lead.

The zinc geochemistry is very strong in the C-L and F Zones. The A and B Zones are slightly anomalous in zinc.

The manganese geochemistry also outlines the L, C and F Zones. A significant feature of this geochemistry is that it does not appear to be associated with secondary manganese deposited in drainage areas. Manganese is at background levels wherever ferricrete deposits were located.

#### 3.3.4 DISCUSSION

The soil geochemistry suggests a zonation of mineralization with different elemental signatures. The C-L and F Zones are represented by significantly anomalous gold, silver, copper, arsenic, lead, zinc and manganese values. Zone F may be a faulted off section of C-L. Zone A and possibly D suggests a gold, silver, copper zone. This area is slightly anomalous in the other elements but not to the extent of the C-L and F Zones. The B and P Zones suggest an area of disseminated copper, gold mineralization.

#### 3.4 TRENCHING AND ROCK CHIP SAMPLING

Surface mineralization and soil geochemical anomalies were tested by several lines of rock chip samples. A total of 548 samples were taken. Where the bedrock was covered in talus and till, a small diesel-powered Kabota excavator was used to reach bedrock. This excavator could produce a 1 metre wide trench up to 3 metres deep. When bedrock was reached, the surface was swept clean and the rock was chip sampled using 2 metre sample intervals. The excavator was used to dig 420 metres of trench. Most of this trenching was done in the C Zone (FIG. 12); however, a one hundred and twenty-five metre trench ("Water Pump Trench") was dug across the valley and another trench, "the IP Trench" was dug along line 9,700N to test a large IP anomaly. Where possible, bedrock was chip sampled over continuous 2 metre chips. Most continuous 2 metre rock chips of outcrop material were taken in a line across the direction of foliation. Several samples were taken in the L Zone (FIG. 13) where the anomalous Trench T5 had been located. Chip samples taken in the A Zone (FIG. 11) attempted to trace the gold mineralization at surface.

Other chip sample lines are plotted on the property compilation map (FIG. 24).

All rock chip samples were assayed for gold and analyzed by 30 element ICP. Irregularities in the repeatability of the high gold assays caused some concern for the validity of the gold assays. Independent study of the assays demonstrated a significant metallic gold constituent in the sample which caused a significant nugget effect in high grade samples. The study (included as Appendix E) recommended analyzing for metallics in all future assaying.

### RESULTS

Highlights of trench sample assay results are given in Table 2. The C Zone trenches confirmed the results of trenching done in 1985. Several samples assayed between 1000 and 6000 ppb Au. These can be aligned in several ways on the trench map in order to produce three or more mineralized horizons. Diamond drilling (DDH K87-1, and K87-2) generally confirm these zones, but the gold assays are lower (500 - 3000 ppb Au). No clear orientation of mineralization was determined.

The Water Pump Trench and IP Trench produced negative results. In both cases, the talus was deep and bedrock was reached in only a few places.

Trenching in the L Zone (FIG. 13) defined one or more north-east trending mineralized structures approximately 2 metres thick. This mineralization occurs in a silicified, brecciated ash tuff or chert. The mineralization carries up to 0.85 oz Au/t and 0.5 oz Ag/t. Other than arsenic, no other



elements were noted, therefore suggesting that gold occurs primarily as native gold or electrum.

The similar chemistry of C and L Zone trenches support the argument of this being one zone, C-L.

Trenching in the A Zone (FIG. 11) confirmed the high gold-silver-copper mineralization located drilling. Surface values were generally lower than in drill sections; however, the mineralization was recessive, and not well exposed. Chip sampling and grab samples north of the A Zone (FIG. 11) demonstrated continuation of the mineralization, at least 100 m to the north of drill holes K87-13 and 14.

#### TABLE 2

LITHOGEOCHEMISTRY

| Zone | A |
|------|---|
|------|---|

| Sample No. | <u>Au (oz/t)</u> | Ag (oz/t) | <u>Cu (%)</u> | REMARKS                        |
|------------|------------------|-----------|---------------|--------------------------------|
| 4202       | 0.137            | 5.34      | 2.96          | <b>`</b>                       |
| 4203       | 0.100            | 1.34      | 0.11          | North Trench                   |
| 4204       | 0.133            | 0.40      | 0.04          | 1                              |
|            |                  |           |               | MEYER'S SHOWING                |
| 4205       | 0.314            | 0.29      | 0.10          |                                |
| 4206       | 0.454            | 187.97    | 0.43          | South Trench                   |
| 4207       | 0.188            | 12.64     | 0.07          | )                              |
| 4208       | 0.102            | 2.86      | 0.07          |                                |
| 4209       | 0.036            | 8.20      | 0.29          | ) Surface                      |
| 4213       | 0.056            | 6.77      | 0.29          | Expression                     |
| 4215       | 0.046            | 0.48      | 0.14          | of                             |
| 4218       | 0.033            | 0.90      | 0.20          | Zone A                         |
| 4219       | 0.093            | 0.44      | 0.19          | ) Mineralization               |
| 16539      | 1.522            | 3.00+     | 0.44          | Grab - A Zone<br>MIKE'S TRENCH |
| 16548      | 0.193            | 0.95      | 0.01          | 2 m chip A Zone                |
| 4223       | 0.035            | 0.36      | 0.63          | 2 m chip N of A Zone           |
| 4234       | 0.041            | 15.95     | 2.11          | Grab - N of A Zone             |
| 4235       | 0.039            | 0.10      | 0.07          | Grab - N of A Zone             |
| 4236       | סא               | 0.51      | 1.23          | 0.5 m chip N of A Zone         |
| 4237       | 0.053            | 0.15      | 0.39          | 1 m chip N of A Zone           |
| 4238       | 0.180            | 241.74    | 7.33          | Float N of A Zone              |
| 4239       | 0.038            | 2.10      | 1.11          | Grab N of A Zone               |
| 4241       | 2.220            | 9.13      | 0.80          | l m chip N of A Zone           |
| 4244       | 0.063            | 0.21      | 0-82          | Grab N of A Zone               |

|           |                     | -                                    | 18 -                             |                              |             |
|-----------|---------------------|--------------------------------------|----------------------------------|------------------------------|-------------|
|           | TABLE 2 (cont'd)    |                                      |                                  |                              |             |
| Sample No | . <u>Au (oz/</u>    | t) Ag (oz/t                          | :) <u>Cu (%)</u>                 | REMARKS                      |             |
| Zone C-L  |                     |                                      |                                  |                              |             |
| Trench C1 | ,                   |                                      |                                  |                              |             |
| 16801     | 0.048               | 0.166                                | 0.03                             | 0-2 m alo                    | ng trench   |
| 16802     | 0.055               | 0.053                                | 0.02                             | 2-4 m alo                    | ng trench   |
| 16803     | 0.047               | 0.131                                | 0.02                             | 4-6 m alo                    | ng trench   |
| 16804     | 0.079               | 0.108                                | 0.02                             | 6-8 m alo                    | ng trench   |
| 16805     | 0.171               | 0.128                                | <0.01                            | 8-10 m al                    | ong trench  |
| 16806     | 0.054               | 0.090                                | <0.01                            | 10-12 m a                    | long trench |
| 16808     | 0.034               | 4 0.131                              | 0.02                             | 30-32 m a                    | long trench |
| 16846     | 0.031               | 0.079                                | 0.01                             | 46-48 m a                    | long trench |
| A weighte | d average is        | 0.076 oz/t Au, a                     | ind 0.113 oz/t                   | Ag over 12 m.                |             |
| Trench C2 |                     |                                      |                                  |                              |             |
| 16823     | 0.095               | 0.140                                | 0.01                             | 26-28 m a                    | long trench |
| 16824     | 0.080               | 0.201                                | <0.01                            | 28-30 m a                    | long trench |
| 16825     | 0.089               | 0.233                                | <0.01                            | 30-32 ша                     | long trench |
| 16826     | 0.089               | 0.149                                | 0.01                             | 32-34 m a                    | long trench |
| 16827     | 0.077               | 0.251                                | 0.01                             | 34-36 m a                    | long trench |
| 16828     | 0.163               | 0.327                                | 0.02                             | 36-38 ша                     | long trench |
| 16829     | 0.090               | 0.298                                | 0.03                             | 38-40 m a                    | long trench |
| 16830     | 0.074               | 0.093                                | <0.01                            | 40-42 m a                    | long trench |
| 16831     | 0.080               | 0.201                                | <0.01                            | 42-44 m a                    | long trench |
| A weighte | d average is        | 0.093 oz/t Au &                      | 0.210 oz/t Ag                    | over 18 m.                   |             |
| Trench C3 |                     |                                      |                                  |                              |             |
| 16666     | 0.080               | 0.053                                | <0.01                            | 20-22 ша                     | long trench |
| 16667     | 0.037               | 0.057                                | <0.01                            | 22-24 п а                    | long trench |
| 16670     | 0.098               | 0.131                                | <0.01                            | 46-48 m a                    | long trench |
| 16671     | 0.065               | 0.114                                | <0.01                            | 48-50 m a                    | long trench |
| 16672     | 0.033               | 0.061                                | <0.01                            | 50-52 m a                    | long trench |
| Weighted  | averages are<br>and | 0.059 oz/t Au an<br>0.082 oz/t Au an | d 0.055 oz/t /<br>d 0.123 oz/t / | Ag over 4 m.<br>Ag over 4 m. |             |
|           |                     |                                      |                                  |                              |             |

<u>T6</u>

•

| 16788 | 0.085 | 0.215 | 0.01 | 0.15 m along trench    |
|-------|-------|-------|------|------------------------|
| 16789 | 0.143 | 0:312 | 0.02 | 1.5 - 3 m along trench |
| 16796 | 0.201 | 0.134 | 0.02 | 20 cm Qtz vein in trch |

A weighted average is 0.114 oz/t Au & 0.264 oz/t Ag over 3 m.

| - | 19 | - |
|---|----|---|
|---|----|---|

# TABLE 2 (cont'd)

| Sample No.    | Au (oz/t) | Ag (oz/t) | <u>Cu (%)</u> | REMARKS                |
|---------------|-----------|-----------|---------------|------------------------|
| Zone L        |           |           |               |                        |
| <u>T5</u>     |           |           |               |                        |
| 16786         | 0.061     | 0.119     | 0.02          | 1.5-3.0 m along trench |
| 16787         | 0.639     | 0.779     | 0.01          | 3.0-4.5 m along trench |
| Trench Ll Eas | <u>it</u> |           |               |                        |
| 16860         | 0.846     | 0.012     | <0.01         | 0-1.5 m along trench   |
| 16861         | 0.101     | 0.073     | <0.01         | 1.5-3.0 m along trench |
| 16862         | 0.090     | 0.044     | <0.01         | 3.0-4.5 m along trench |
| 16864         | 0.108     | 0.073     | <0.01         | 6.0-7.5 m along trench |
| Trench Ll Nor | th        |           |               |                        |
| 16868         | 0.140     | 0.090     | 0.02          | 0-1.5 m along trench   |
| Trench L3     |           |           |               |                        |
| 16913         | 0.125     | 2.232     | 0.80          | 1 m chip sample        |
| Trench L5     |           |           |               |                        |
| 16919         | 0.034     | 0.032     | 0.02          | 0-1 m along trench     |
| 16920         | 0.230     | 0.125     | 0.01          | 1-2 m along trench     |
| 16921         | 0.038     | 0.008     | 0.01          | 2-3 m along trench     |
|               |           |           |               |                        |

A weighted average is 0.101 oz/t Au and 0.063 oz/t Ag over 3 m.

# 3.5 DIAMOND DRILLING

### 3.5.1 General

During 1987, Fourteen NQ core drill holes totalling 1604 m were completed by Advanced Drilling of Surrey, B.C. A Longyear 38 drill was used. Drill sites were constructed by hand or with the Kabota excavator. A Hughes 500 D helicopter was used to move the drill.

The drilling was distributed among the four target zones with 3 holes (464.57 metres) drilled in Zone C; 3 holes (295.65 metres) drilled in Zone L; 6 holes (467.61 metres) drilled in Zone A and 2

holes (376.12 metres) drilled in Zone B. The drill hole collars are located on FIG.'s 4 and 24. Sections of drill holes are located in Appendix A as FIGURES 14-23. The drill hole logs are located in Appendix B. The drill survey data is listed on Table 3. \_\_\_\_\_\_\_The hole is stoved on the property of the Ronapsite .on top of a fidge.

# TABLE 3

# DRILL HOLE SURVEY DATA

| Drill<br>Hele | Latitude | Departure | Elevation    | Azimuth          | Dip                          | Length |
|---------------|----------|-----------|--------------|------------------|------------------------------|--------|
| EOT 6         |          |           | (ш)          |                  |                              | (w)    |
|               |          |           |              |                  | 0                            |        |
| <b>K87-</b> 1 | 10,181N  | 10,031W   | 1599         | 0620             | -450                         | 145.09 |
| K87-2         | 10,181N  | 10,031W   | 1599         | 062 <sup>0</sup> | -70                          | 135.94 |
| K87-3         | 10,267N  | 9,954W    | 1600         | 250 <sup>0</sup> | -45 <sup>0</sup>             | 183.54 |
| к87-4         | 9,705N   | 10,062W   | <b>160</b> 1 | 090 <sup>0</sup> | -45 <sup>0</sup>             | 97.54  |
| к87-5         | 9,742N   | 10,290W   | 1726         | 60 <sup>0</sup>  | -60 <sup>0</sup>             | 228.90 |
| к87-6         | 9,738N   | 10,654W   | 1795         | 69 <sup>0</sup>  | -46 <sup>0</sup>             | 194.16 |
| K877          | 9,738N   | 10,654W   | 1795         | 69 <sup>0</sup>  | -70 <sup>0</sup>             | 66.75  |
| к87-8         | 9,686N   | 10,166W   | 1638         | 90 <sup>0</sup>  | -58 <sup>0</sup>             | 147.22 |
| к87 <b>-9</b> | 9,961N   | 9,967W    | 1623         | 122 <sup>0</sup> | -45 <sup>0</sup>             | 106.67 |
| к87-10        | 9,902N   | 9,971W    | 1624         | 90 <sup>0</sup>  | -60 <sup>0</sup>             | 91.44  |
| к87-11        | 9,669N   | 10,658W   | 1792         | 103 <sup>0</sup> | -45 <sup>0</sup>             | 35.97  |
| к87-12        | 9,669N   | 10,658W   | 1792         | 103 <sup>0</sup> | -70°                         | 41.45  |
| к87—13        | 9,757N   | 10,676W   | 1800         | 70 <sup>0</sup>  | -45 <sup>0</sup>             | 70.10  |
| к87-14        | 9,757N   | 10,676W   | 1800         | 70 <sup>0</sup>  | <del>~</del> 70 <sup>0</sup> | 59.44  |

# 3.5.2 Results

The diamond drilling was designed to test, at depth, the surface gold mineralization, soil geochemical anomalies, and IP anomaly. In Zones A, B and C it was successful in explaining the anomalies. In Zone L the gold mineralization suggested by surface samples was not intersected at depth.

#### ZONE A

In testing high gold geochemistry in soils, drill hole K87-6 (FIG. 18) intersected a pyrite-chalcopyrite cemented breccia zone which assayed 0.573 oz Au/T over 2 metres. Drill hole K87-7, drilled underneath hole K87-6, also intersected this zone. Drill holes K87-11 and K87-12 (FIG. 22) were drilled along strike, 70 metres to the south of K87-6 and 7. K87-11 intersected a dyke at the projected depth of mineralization. K87-12 intersected the zone. Drill holes K87-13 and K87-14 (FIG. 23) were drilled to test this same horizon, 25 metres to the north. These two holes were terminated before reaching the mineralization. A summary of the A Zone drill results follows:

| DRIĹL   | FROM       | то       | INTERVAL       | GOLD       | SILVER        | COPPER |
|---------|------------|----------|----------------|------------|---------------|--------|
| HOLE    | <u>m</u> e | etres    | metres         | oz/ton     | <u>oz/ton</u> | %      |
|         | 10.0       | 10.0     | • •            | 0 -70      |               |        |
| K87-6   | 46+0       | 48.0     | 2.0            | 0.5/3      | 38+01         | 4.81   |
| K87-7   | 50.5       | 52.5     | 2.0            | 0.375      | 6.33          | 0.91   |
| к87-11  | Zone       | not inte | ersected due t | o presence | of dyke.      |        |
| к87—12  | 28.5       | 32.0     | 3.5            | 0.100      | 1.81          | 1.44   |
|         | 33.0       | 34.0     | 1.0            | 0.353      | -             | -      |
| K87-13  | Hole       | did not  | reach Zone     |            |               |        |
| *K87-14 | 50.0       | 52.0     | 2.0            | 0.234      | 0.32          | -      |
| * Hole  | did not    | reach Zo | one.           |            |               |        |

The intersection in hole K87-14 represents a second mineralized zone not previously known.

#### ZONE B

Drill holes K87-5 (FIG. 17) and K87-8 (FIG. 19) were drilled within Zone B. K87-5 was supposed to test anomalous (gold, silver and copper) soil geochemistry; however, due to an error in re-picketing of the grid line, the hole was collared east of the soil anomaly and drilled away from it. K87-8 was drilled to test a strong Induced Polarization (resistivity low, chargeability high) anomaly. It intersected sufficient pyrite-chalcopyrite mineralization to explain the geophysical anomaly. K87-5 also intersected the flanks of this large anomaly. Highlights of this copper-gold mineralization are as follows:

| DRILL<br>HOLE | FROM <u>met</u> | T0<br>res | INTERVAL<br>metres | GOLD<br>oz/ton | COPPER<br>Z |
|---------------|-----------------|-----------|--------------------|----------------|-------------|
| к87-5         | 14.8            | 34.4      | 19.6               | 0.025          | 0.70        |
| incl.         | 28.3            | 29.9      | 1.6                | 0.117          | 0.52        |
|               | 143.0           | 224.0     | 81.0               | 800.0          | 0.61        |
| incl.         | 149.0           | 167.0     | 18.0               | 0.013          | 1.01        |
| K87-8         | 28.4            | 90.1      | 61.7               | 0.012          | 1.11        |
| incl.         | 46.9            | 77.1      | 30-2               | 0.013          | 1.42        |
|               | 90.1            | 115.1     | 25.0               | 0+008          | 0.54        |

Note: Silver assays were all less than 0.5 oz/ton.

#### Zone C

Diamond drill holes K87-1, 2 and 3 (FIG. 14, 15) were drilled to test the tenor and orientation of gold mineralization encountered in trenches excavated in 1985 and 1987. The 1985 trenches did not reach bedrock and were discounted as possible transported soil anomalies. Trenching in 1987(Cl) suggested two and possibly three north-south mineralized beds containing 0.05-0.18 oz Au/t (Table 2). Drill hole K87-1 intersected mineralized beds which could be the down dip extension of the beds located in Trench Cl. A comparison of the trench and drill hole values follows:

| <u></u>   | <u>K87-</u> | 1             |            | Trenched Equivalents(C1) |
|-----------|-------------|---------------|------------|--------------------------|
| From (m)  |             | <u>To (m)</u> | Length (m) |                          |
| 15.0-16.5 | -           | 0.075 oz/t Au | 1.5        | 0.074 oz/t Au over 2 m   |
| 38.0-39.5 | -           | 0.102 oz/t Au | 1.5        | 0.105 oz/t Au over 2 m   |
|           |             | 0.055 ().1    |            | 0.155 oz/t Au over 2 m   |
| 6/.5-69.0 | -           | 0.055 oz/t Au | 7•2        | 0.041 oz/t Au over 2 m   |

Drill hole K87-2 intersected similar mineralization; however, the gold values were much lower. The mineralization was not easily identified in the core. A slight increase of sulphides and quartz veining was the only indication of increased gold values.

Drill hole K87-3 intersected gold mineralization near the surface (34.5 m - 36.0 m - 0.109 oz/t Au). This zone does not correlate with any of the trenching. K87-3 did not intersect any of the mineralized zones located in Trench C-2. The mineralized structures are dipping steeply to the west and K87-3 was drilled in the same direction as these dipping structures.

Zone L

Diamond drill holes K87-4 (FIG. 16), K87-9 (FIG. 20) and K87-10 (FIG. 21) were drilled to test the L Zone soil geochemical This soil geochemistry coincided with a belt of very anomalies. high resistivity located by the geophysical surveys. Trenching (T5 and L1) over one soil anomaly located north-south trending gold mineralization within the zone. The rocks are quite contorted and surface structural measurements are varied. None of the three holes intersected any mineralization to explain this multi-element K87-9, drilled under the L Zone mineralized soil anomaly. trenches, did not intersect any mineralization similar to that in Drill hole sections suggest a change in dip of the trenches. quartz veining in the core from westerly near the top of the holes to easterly near the bottom of the holes. This change in dip is also hinted in geological mapping of the L Zone. Assuming that there is a change in dip of north-south structures from east to west, none of the drill holes would have reached the mineralization. This may be the reason for the lack of mineralized intersections in all three holes.

## 4.0 DISCUSSION

Three distinct metal zones have been recognized as forming north-south trending belts on the Kerr property. The three zones are the A-D Zone, the B-P Zone and the C-L-F Zone. Within each zone similar styles of mineralization, metal content and alteration assemblages exist. A compilation map (FIG. 24) shows these zones and their spatial relationships. The alteration zoning (FIG. 6) also shows this metal zoning. These features can be tabulated as follows:

| Zone  | Style of<br>Mineralization           | Metals   | Geochemical<br>Signature               | Alteration<br>Assemblage           |
|-------|--------------------------------------|----------|----------------------------------------|------------------------------------|
| A-D   | Cp-Py-Qtz-filled<br>breccia, massive | Au-Ag-Cu | High-Au, Ag,<br>Cu, As<br>Minor-Pb, Mn | Qtz-Chl-Ser-<br>Py-Carb            |
| B P   | Cu Stockwork                         | Cu-Au    | High-Au<br>Minor-Pb, As                | Chl-Ser-Py-<br>Qtz                 |
|       |                                      |          |                                        | Ser-Py-Qtz<br>Chl                  |
| C-L-F | Quartz veins                         | Au-Ag    | High Au,Ag,<br>Cu,Pb,Zn<br>As,Mn       | Ser-Qtz-Py<br>(Ep)<br>Qtz-Ser-Carb |

These three belts of mineralization are primarily controlled by the northsouth regional set of shearing. The B-P belt lies along a major mineralized structure indicated by the intense IP resistivity low and chargeability high. A possible model of zoning around this structure similar to that of the porphyry copper model might be used, however, the classical zoning around the intrusive as in the Lowell and Guilbert model can not be used since the main intrusive body outcrops in a north-east pattern across the property and not solely in a central location under the copper deposit or under the A Zone mineralization.

If one assumes that the feldspar porphyry outcrops are just large dykes coming up along zones of weakness from the main body below the A Zone and B Zone fault, one can then set up a metallogenic zoning model similar to the classical porphyry copper model. A geological cross section A-A' (FIG. 5) makes this assumption. Metallogenic zoning then appears similar to that found at Battle Mountain in Nevada where a large linear coppergold deposit flanks the east side of an intrusive; further out from the copper-gold zone (approximately 400 m from the edge of the intrusive), one This situation is analogous to the Kerr style finds a gold-silver zone. of zoning with the B-Zone Cu-Au mineralization being flanked by the C-L The A Zone Au-Ag-Cu mineralization may be Zone Au-Ag mineralization. unique, lying immediately above the intrusive.

### 5.0 CONCLUSIONS AND RECOMMENDATIONS

Exploration in 1987 has located three distinct types of mineralization. The A Zone contains a massive sulphide type of gold-silver-copper mineralization within a brecciated ash tuff unit. Within the B Zone, a thick section of disseminated pyrite-chalcopyrite mineralization assays more than 1% copper and contains significant gold. This porphyry copper mineralization flanks the diorite stock underlying the A Zone. Peripheral to the porphyry copper-gold, quartz veins hosting significant gold and silver values were located. This metallogenic zoning should be used in directing further exploration on the property.

One should concentrate on the outer flanks of the porphyry copper-gold mineralization. High grade, gold-silver-copper mineralization in the A Zone should not be ignored; however, the underlying intrusive may limit the potential tonnage of any deposit.

Further exploration of Zones A, B, and C-L is necessary. In the A Zone, lines of surface trenches should be blasted in the bedrock and talus to better expose the A Zone mineralization. Drill holes K87-13 and K87-14 should be extended until they reach the mineralized zone. A fence of short diamond drill holes every 20 metres should be used to extend the mineralization to the north and south.

The IP Survey located a narrow belt of high resistivity and moderate chargeability. This geophysical response indicates an area of intense silicification. One or two drill holes into this area, where anomalous gold geochemistry occurs, is required to properly test the IP response. The B Zone copper-gold mineralization underlies an area covered by extensive talus. This can only be tested by fences of drill holes through the zone. The IP locates the mineralization quite well and should provide excellent drill targets. The original gold, silver, copper soil geochemical anomaly on the B Zone remains to be tested. Significant metal zoning may occur on the immediate flanks of the porphyry copper deposit.

The C-L Zone has been further defined by detailed soil geochemistry. Short drill holes into detailed anomalies should be effective in testing this zone. The dip and orientation of the mineralization should be further defined by prospecting and surface trenching, utilizing explosives to expose fresh rock. The 1987 drill holes in the L Zone may all have been too short since the dip of the structure is not westerly as was expected.

Preliminary geological mapping suggests that the structural history of the property is extremely complex. Since the mineralization appears to be structurally controlled, good knowledge of the detailed geology, both stratigraphy and structure, is required. A geologist should be contracted for the sole purpose of mapping the properties and clarifying the stratigraphic and structural picture.

Large gaps in the IP coverage resulted from extensive snow cover at the time of the survey. An IP survey crew should be contracted to complete the IP coverage over the property.

While the geophysical crew is on the property, they might try a Vertical Loop, EM orientation survey over the A Zone mineralization in order to see if this mineralization gives an EM response. If so, the massive sulphide mineralization in the A Zone should be traced with a detailed EM survey.

Ih Kowalchuk

# - 26 -

#### REFERENCES

- Epp, W.R. 1985. Geochemical, Geological, Trenching and Diamond Drilling on the KERR Claims, Skeena Mining Division. Assessment Report No. 14614 for Brinco Mining Limited. Brinco Report No. 847.
- Graf, C. 1984. Assessment Report No. 13369, on the Kerr 7, 8, 9, 10, 12, 15, 41, 99 Claims.
- Grove, E.W. 1971. Geology and Mineral Deposits of the Stewart Area, British Columbia. B.C. Department of Mines and Petroleum Resources, Bulletin 58.
- King, G.E. 1935. Report of Exploration Activities for 1934. Unpublished Report for the Unuk River Gold Syndicate.
- Kirkham, R.V. 1963. The Geology and Mineral Deposits in the Vicinity of the Mitchell and Sulphurets Glaciers, Northwest British Columbia. Unpublished M.Sc. Thesis, U.B.C.
- Meyers, R.E. 1986. Assessment Report, 1986 Geological Mapping, Geochemical and Geophysical Surveys on the Kerr Claim Group #1866.
- Schroeter, T.G. 1983. Brucejack Lake (Sulphurets) Prospect (104 B/8). in Geological Fieldwork 1982, B.C. Department of Energy, Mines and Petroleum Resources.
- Walcott, P. 1987. An Induced Polarization Survey on the Kerr Property for Western Canadian Mining Corporation.

# STATEMENT OF EXPENDITURES

| Salaries                                | \$<br>133,654.63 |
|-----------------------------------------|------------------|
| Aircraft (fixed wing)                   | 44,293.89        |
| Aircraft (helicopter)                   | 137,476.42       |
| Assaying/Geochemical Expense            | 33,415.52        |
| Claim Fees                              | 6,395.00         |
| Consulting (geological and geophysical) | 10,487.27        |
| Drilling                                | 159,963.54       |
| Expediting                              | 3,350.00         |
| Field Equipment Rental and Purchase     | 26,631.82        |
| Freight/Communications                  | 4,219.09         |
| Room and Board                          | 16,873.33        |
| Surveying/Map Making/Drafting           | 4,426.52         |
| Travel Expense                          | 4,923.30         |
| Trenching Expense                       | 19,535.00        |
| Vehicle Expense                         | 3,343.09         |
| Subtotal:                               | \$<br>608,988.42 |
| Management Fees (10%)                   | 60,898.84        |
|                                         | \$<br>669,787.26 |

# PERSONNEL

1

**.**....

| A.A | . Burgoyne   | - | Vice President 2     |   | Total   | less   | than   | 60   | days |
|-----|--------------|---|----------------------|---|---------|--------|--------|------|------|
| R.9 | . Hewton     |   | Exploration Manager) |   |         |        |        |      |      |
| J.M | i. Kowalchuk | - | Project Manager      | - | April - | - Dece | mber,  | 19   | 987. |
| М.  | Jerema       | - | Senior Geologist     | - | June -  | - Dece | mber,  | - 19 | 987. |
| H.  | Holm         |   | Prospector/Draftsman |   | July -  | - Dece | mber,  | - 19 | 987. |
| D.  | Kozak        | - | Geologist            | - | June -  | - Augu | ist,   | 19   | 987. |
| G.  | Almeida      | - | Field Assistant      | - | June -  | - Sept | :ember | ,19  | 87.  |
| Μ.  | Saunders     | _ | Field Assistant      | - | June -  | - Sept | :ember | ,19  | 987. |
| D.  | Forrestal    | - | Field Assistant      | - | June -  | - Sept | ember  | ,19  | 987. |

# CONTRACTORS

k

| Peter Walcott and Associates, Coquitlam, B.C.      | - Geophysical Contractor |
|----------------------------------------------------|--------------------------|
| Vancouver Petrographics, Langley, B.C.             | - Petrography            |
| Alta Engineering, Burnaby, B.C.                    | - Trenching              |
| Advanced Drilling Ltd., Surrey, B.C.               | - Diamond Drilling       |
| Vangeochem Labs Ltd., North Vancouver, B.C.        | — Assaying               |
| Northern Mountain Helicopters, Prince George, B.C. | - Helicopter Support     |
| Trans Provincial Airways, Terrace, B.C.            | - Fixed Wing Costs       |

#### - 28 -

### STATEMENT OF QUALIFICATIONS

- I, John M. Kowalchuk, do hereby certify that:
- I am a Consulting Geologist resident at 3086 Mariner Way, Port Coquitlam, 1. British Columbia.
- I am a graduate of McMaster University in Hamilton, Ontario, with a B.Sc. 2. (1970) in geology.
- I am a fellow of the Geological Association of Canada. 3.
- I have practised my profession in eastern and western Canada over the past 4. seventeen years.
- I personally supervised all of the field work performed in 1987, and take 5. responsibility for the content of this report.

John Kowalchuk

Vancouver, B.C. December 1987

# APPENDIX "A"

<u>ب</u>

.

•

•

. .

.

۳ ۲

.

e - 1

\*

÷ .

•

-

۴

-

.....

۰.

.

-

•














APPENDIX "B"

i.

.

•

| •                                |                 |              |              |           |              |
|----------------------------------|-----------------|--------------|--------------|-----------|--------------|
| •                                |                 |              |              |           |              |
|                                  | PROJECT         | KERR PROJECT |              |           | Page: 1 of 7 |
| D.                               | D. HOLE No.     |              |              |           |              |
|                                  |                 |              | Depth 102.4m | Dip 37.50 | Azimuth      |
| cation Zone C                    |                 |              | Collar Lat.  |           | 10,181 N     |
|                                  |                 |              | Dep.         | ······    | 10,031 W     |
| le Started <u>17 July 1987</u>   |                 |              | Elev.        |           | 1,599 M      |
| le Completed <u>19 July 1987</u> |                 |              | Azimut       | h         | 0620         |
| re Recovery                      |                 |              | Dip.         |           | 450          |
| illed ByAdvanced Drilling        | <u> </u>        |              | Length       | l         | 145.09       |
| Logged by John Kowalchuk         |                 |              | Hor. Froj    | •V        | ert. Proj    |
| jective: Intersect gold minerali | zation in T85-1 | 4            |              |           |              |

•

ţ

+

the second se

.

•

° 1

۴.

#### PROPERTY Kerr project

•

•

٠

•

.

٦

.

1 1 F

1

SHEET NO. 2 of 7

| METER | S    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAM                                        | PLING                                                   |                                                          |                                        | Au                                                   | Ag                                     | Cu                                                   | Zn                                                         |
|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------------|
| From  | То   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spl.#                                      | From                                                    | То                                                       | m                                      | Rec % ppb                                            | ppm                                    | ppm                                                  | ppm                                                        |
| 0.    | 2.15 | Overburden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1701                                       | 2.15                                                    | 3.5                                                      | 1.35                                   | 120                                                  | 0.1                                    | 161                                                  | 1732                                                       |
| 2.15  | 5.0  | Fine Grained Lapilli Tuff - Medium grey,<br>deformed elongate to foliation. Fine<br>Grained matrix. Fragments to 40mm in<br>length 20mm wide. 10% calcite as irregular<br>veinlets and patches and diss. in matrix.<br>Trace amounts of green mica as patches.                                                                                                                                                                                                                                                                                                                             | 2 3                                        | 3.5<br>4.5                                              | 4.5                                                      | 1.0                                    | 190<br>100                                           | 0.1<br>0.1                             | 209<br>166                                           | 1713<br>708                                                |
| 5.0   | 13.2 | Crystal Lapilli Tuff - Light to medium<br>grey. Medium to coarse grained matrix,<br>lapilli fragments as above trace of green<br>mica around lapilli sulphides occur<br>principally as disseminations but<br>occasionally as wisps and stringers.<br>Principal sulphide is pyrite - up to 20%<br>where banded 10% where just diss.<br>6.30- foliation about 40° to core axis<br>crystal lapilli tuff.<br>9.45 - Foliation varies extensively up to<br>60° to core axis.<br>12.70 - foliation 45°.<br>11.9 - Some extensive contortion of beds.<br>fine grain Lapilli fragments - 50 x 30mm | 1704<br>5<br>6<br>7<br>8<br>9<br>1710<br>1 | 5.5<br>6.5<br>7.5<br>8.5<br>9.5<br>10.5<br>11.5<br>12.5 | 6.5<br>7.5<br>8.5<br>9.5<br>10.5<br>11.5<br>12.5<br>13.5 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 140<br>140<br>350<br>1100<br>240<br>270<br>20<br>180 | 0.1<br>0.1<br>5.5<br>0.7<br>1.4<br>0.1 | 150<br>123<br>200<br>652<br>472<br>289<br>219<br>192 | 880<br>544<br>1243<br>1436<br>2217<br>2289<br>2314<br>3008 |

.

1

1 r

#### PROPERTY Kerr project

SHEET NO. 3 of 7

•

| METE | RS   | DESCRIPTION                                 | SAM   | PLING |      |     | Au /        | Ag  | Cu  | Zn   |
|------|------|---------------------------------------------|-------|-------|------|-----|-------------|-----|-----|------|
| From | То   |                                             | Spl.# | From  | То   | m   | Rec % ppb 1 | ppm | ppm | pm   |
| 13.2 | 14.9 | Crystal Tuff - Coarse grained xtals. Dark   | 17012 | 13.5  | 14.5 | 1.0 | 260         | 0.3 | 258 | 4958 |
|      |      | grey to buff - trace green mica             | 3     | 14.5  | 15.5 | 1.0 | 360         | 0.1 | 385 | 584  |
|      |      | saussuritized and foliated 50° to core      |       |       |      |     |             |     |     |      |
|      |      | axis.                                       |       |       |      |     |             |     |     |      |
|      |      | 8-10% pyrite as disseminations some calcite |       |       |      |     |             |     |     |      |
|      |      | veinlets 1~5cm across.                      |       |       |      |     |             |     |     |      |
| 14.9 | 26.0 | Lapilli Tuff - Light to medium grey very    | 17014 | 15.5  | 16.5 | 1.0 | 2575        | 2.8 | 577 | 472  |
|      |      | fine grained lapilli fragments - 50 x 30mm  | 5     | 16.5  | 17.5 | 1.0 | ND          | 2.3 | 933 | 1415 |
|      |      | sulphides cement fragments. Laminated in    | 6     | 17.5  | 18.5 | 1.0 | 840         | 2.5 | 643 | 1 41 |
|      |      | places with graded lamination.              | 7     | 18.5  | 19.5 | 1.0 | 260         | 5.1 | 859 | 798  |
|      |      | 16.38 - 65° foliation. 15% carbonate as     | 8     | 19.5  | 20.5 | 1.0 | 140         | 0.1 | 214 | 1929 |
|      |      | veinlets and dissem.                        | 9     | 20.5  | 21.5 | 1.0 | 160         | 0.1 | 641 | 515  |
|      |      | 17.0 - Silicification increases.            | 17020 | 21.5  | 23.5 | 2.0 | 3 80        | 1.6 | 828 | 236  |
|      |      | 15.04-19.0 - Quartz carb. veining - breccia | 1     | 23.5  | 25.5 | 2.0 | 540         | 7.2 | 541 | 547  |
|      |      | zone. Fine grained sections are green-      | 2     | 25.5  | 26.3 | 0.8 | 250         | 1.8 | 185 | 446  |
|      |      | (epidote).                                  |       |       |      |     |             |     |     |      |
|      |      | 16.7 - Green epidote alteration starts-     |       |       |      |     |             |     |     |      |
|      |      | increases downward to below 19.0 - 50% rock |       |       |      |     |             |     |     |      |
|      |      | is green.                                   | ļ     |       |      |     |             |     |     |      |
|      |      | 21.1-25.8 - Core broken 1-2% green mica.    |       |       |      |     |             |     |     |      |
|      |      | Sulphides at bottom contact 55°.            | l     |       |      |     |             |     |     |      |
| 26.0 | 30.1 | Crystal Lapilli Tuff - Coarse grained-      | 17023 | 26-3  | 27.0 | 0.7 | 430         | 7.1 | 339 | 1866 |
|      |      | green-beige in colour. 10% quartz carb.     | 4     | 27.0  | 28.0 | 1.0 | 120         | 0.1 | 225 | 2668 |
|      |      | veinlets along foliation 55°.               | 5     | 28.0  | 29.5 | 1.5 | 420         | 6.7 | 497 | 2671 |
|      |      |                                             | 6     | 29.5  | 30,5 | 1.0 | 170         | 0.4 | 125 | 3115 |

\_

## SHEET NO. 4 of 7

| METERS     | DESCRIPTION                                                                                                                                                                                                                                                                                                        | SAM                      | PLING                        |                              |                          | Au                    | Ag                       | Cu                       | Zn                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|-----------------------|--------------------------|--------------------------|---------------------------|
| From To    |                                                                                                                                                                                                                                                                                                                    | Sp1.#                    | From                         | То                           | n                        | Rec % ppb             | ppm                      | p pm                     | ppm                       |
|            | 10% py mainly as dissem but also forming<br>foliation bands.<br>29.0-29.25 - Py band 40% py.                                                                                                                                                                                                                       | T<br>†<br>1<br>1         |                              | :                            | ų                        |                       |                          |                          |                           |
| 30.1 36.3  | Crystal Tuff (Ash Tuff) - Fine grained,<br>green colour, low sulphides. Local lapilli<br>fragments, interlaminated fine-med grained,<br>locally graded lamination. 1-2% calcite as<br>veinlets.                                                                                                                    | 17027<br>8<br>9<br>17030 | 30.5<br>32.0<br>33.5<br>35.0 | 32.0<br>33.5<br>35.0<br>36.5 | 1.5<br>1.5<br>1.5<br>1.5 | 110<br>50<br>40<br>35 | 0.4<br>0.1<br>0.1<br>0.1 | 165<br>107<br>114<br>125 | 1044<br>632<br>278<br>368 |
| 36.3 40.7  | 3 Lapilli Tuff - fine grained, greenish grey<br>colour; laminated; trace -1% green mica.<br>37.95 - Foliation 37° to core axis.<br>38.7 - Quartz-carb vein 15° to core axis,<br>5cm thick. Sulphide content mainly as<br>pyrite in discontinuous bands parallel to<br>lamination Extensive sericite<br>alteration. | 17031<br>2<br>3          | 36.5<br>38.0<br>39.5         | 38.0<br>39.5<br>41.0         | 1.5<br>1.5<br>1.5        | 380<br>3500<br>240    | 0.2<br>13.6<br>0.1       | 157<br>546<br>302        | 1598<br>1696<br>914       |
| 40.73 44.6 | 8 Crystal Tuff - Coarse grained massive-<br>grey-green colour. Feldspars are<br>saussuritized - equigranular; dissem py 5%                                                                                                                                                                                         | 17034<br>5<br>6          | 41.0<br>42.5<br>44.0         | 42.5<br>44.0<br>45.5         | 1.5<br>1.5<br>1.5        | 60<br>120<br>100      | 0.1<br>0.1<br>0.1        | 137<br>86<br>119         | 1387<br>973<br>1993       |

# Kerr project

#### PROPERTY

ł,

#### PROPERTY Kerr project

• •

SHEET NO. 5 of 7

| METERS | 5     | DESCRIPTION                                | SAI    | PLING |      |     | Au        | Ag  | Cu  | Zn   |  |
|--------|-------|--------------------------------------------|--------|-------|------|-----|-----------|-----|-----|------|--|
| From   | То    |                                            | Sp1.∦  | From  | To   | m   | Rec % ppb | ppm | ppm | ррш  |  |
| 44.68  | 48.73 | Lapilli Tuff - Medium grained (may be      | 17037  | 45.5  | 47.0 | 1.5 | 360       | 0.1 | 259 | 968  |  |
|        |       | fragmental breccia); fragments of crystal  | 8      | 47.0  | 48.5 | 1.5 | 240       | 0.1 | 238 | 423  |  |
|        |       | tuff. 2-5% green mica-grey to grey-green   | 1      |       |      |     |           |     |     |      |  |
|        |       | colour.                                    | l<br>t |       |      |     |           |     |     |      |  |
|        |       | 44.6-44.8 - 10% green mica. 5% py as wisps |        |       |      |     |           |     |     |      |  |
|        |       | and patches. Some fragments are            | 1      |       |      |     |           |     |     |      |  |
|        |       | silicified.                                | 1      |       |      |     |           |     |     |      |  |
|        |       | 45.0-46.2 - Some interbeds of laminated    | <br>   |       |      |     |           |     |     |      |  |
|        |       | tuff.                                      |        |       |      |     |           |     |     |      |  |
|        |       | 46.2 - Foliation 60° to core axis. Totally | ŧ<br>1 |       |      |     |           |     |     |      |  |
|        |       | sericitic altered.                         | 1      |       |      |     |           |     |     |      |  |
|        |       |                                            |        |       |      |     |           |     |     |      |  |
| 48.73  | 65.20 | Crystal Tuff - Coarse grained, medium grey | 17039  | 48.5  | 50.0 | 1.5 | 195       | 0.3 | 211 | 510  |  |
|        |       | colour – occasional lapilli frag.          | 17040  | 50.0  | 51.5 | 1.5 | 180       | 0.1 | 157 | 517  |  |
| · •    |       | gradually changes to monotonous massive    | 1      | 51.5  | 53.0 | 1.5 | 460       | 7.3 | 712 | 449  |  |
|        |       | coarse grained crystal tuff, buff to pale  | 2      | 53.0  | 54.5 | 1.5 | 200       | 0.1 | 229 | 1803 |  |
|        |       | green - grey. Feldspars saussuritized-     | t<br>I |       |      |     |           |     |     |      |  |
|        |       | uniform texture.                           | 1      |       |      |     |           |     |     |      |  |
|        |       | 58.74- foliation to core axis 70°; 5% pyr  |        |       |      |     |           |     |     |      |  |
|        |       | as dissem and foliation. <5% calcite in    |        |       |      |     |           |     |     |      |  |
|        |       | veinlets, negligable qtz veining.          |        |       |      |     |           |     |     |      |  |
|        |       |                                            |        |       |      |     |           |     |     |      |  |
| 65.20  | 67.5  | Lapilli Tuff - Fine grained matrix - Fg-mg | 17043  | 66.0  | 67.5 | 1.5 | 160       | 3.9 | 176 | 514  |  |
|        |       | lapilli. Lapilli frag. can be large - up   | 1      |       |      |     |           |     |     |      |  |
|        |       | to 30 x 70mm grey coloured.                | 1      |       |      |     |           |     |     |      |  |

·. •

SHEET NO. 7 of 7

#### PROPERTY Kerr project

F.

Zn METERS DESCRIPTION SAMPLING Au Ag Cu Spl.# From Rec % ppb From To To m ppm ppm ppm 89.07 95.0 90.5 1.5 Lapilli Tuff - Fine med grained groundmass; 17048 80 87 587 89.0 0.1 f-mg. lapilli (20 x 70mm); up to 1% green 90.5 0.1 73 787 92.0 1.5 110 0.1 mica; lapilli fragments are fine grained 17050 92.0 93.5 1.5 60 103 334 material; beige colour; 7-8% py as wisps 93.5 95.0 1.5 55 0.1 91 282 1 patches, bands, veinlets and dissem; pyrite salvages around fragments. 94.09 - Pyrite band 50° to core axis. 95.0 99.22 Lapilli Tuff - very coarse grained crowded 17052 95.0 0.1 65 224 96.5 1.5 70 (ie: lapilli support each other); orange 0.1 96.5 98.0 1.5 66 168 100 3 calcite central to white patches; locally 4 98.0 99.0 1.0 125 0.1 120 328 abundant carbonate - near 20% toward end of section: carbonate occurs as veinlets. patches and part of matrix chlorite content increases toward end of section 99.22 145.09 Andesite Dyke - Slightly porphyritic; grey-17055 118.0 120.0 2.0 250 0.1 89 335 green colour; first 1.22 metres - altered by country rock: white acicular crystals-6 139.5 141.0 1.5 360 6.2 95 218 plag.?; 7% carbonate as wisps and veinlets - 2-10mm; veinlets occur at random angles; 3-5% fine pyrite - dissem throughout. @117.7m-145.09 - 1st appearance of greyblack material, possibly chlorite? - fills fine fr's and dendritic like patches <2mm square. 145.09 ------End of Hole-----

#### PROPERTY Kerr project

Ţ

.

SHEET NO. 6 of 7

| METER | S     | DES                                                                                     | DESCRIPTION                                                                     |                                                |                                                   |                                                      | SAM   | PLING |      |     | 1   | Au    | Ag   | Cu    | Zn   |
|-------|-------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------|-------|------|-----|-----|-------|------|-------|------|
| From  | То    | <b>-</b>                                                                                |                                                                                 |                                                |                                                   |                                                      | Spl.# | From  | То   |     | Rec | % ppb | ppm  | ppm { | P Pm |
| 67.5  | 75.83 | Lapilli                                                                                 | Tuff (Cry                                                                       | stal T                                         | 1ff) -                                            | Medium                                               | 17044 | 67.5  | 69.0 | 1-5 |     | 1900  | 14.6 | 343   | 2261 |
|       |       | grained                                                                                 | crystalli                                                                       | ne gro                                         | oundmase                                          | s small                                              | 5     | 69.0  | 70.5 | 1.5 |     | 730   | 3.8  | 227   | 2927 |
|       |       | uniform                                                                                 | lapilli;                                                                        | grey-be                                        | coming                                            | epidote                                              | 6     | 70.5  | 72.0 | 1.5 |     | 690   | 5.1  | 293   | 2604 |
|       |       | green; 10%                                                                              | مtz carb،                                                                       | veinlet                                        | s - hig                                           | her % of                                             | 7     | 72.0  | 73.5 | 1.5 |     | 130   | 3.2  | 328   | 1436 |
|       |       | qtz than j                                                                              | previous.                                                                       | 20cm sec                                       | tion of                                           | vein mg                                              | !     |       |      |     |     |       |      |       |      |
|       |       | near top                                                                                | of zone. 5%                                                                     | ζруав                                          | dissemi                                           | nations-                                             |       |       |      |     |     |       |      |       |      |
|       |       | some nar                                                                                | row veins;                                                                      | trace o                                        | f green                                           | mica in                                              | !     |       |      |     |     |       |      |       |      |
|       |       | zone; some                                                                              | e sericite                                                                      | alterati                                       | lon.                                              |                                                      | i     |       |      |     |     |       |      |       |      |
| 75.85 | 84.0  | Crystal To<br>coloured;<br>80.6-83.7<br>alteration<br>veins.<br>80.6 - In<br>trace gree | uff - Mediu<br>large bomb<br>- Quartz<br>n envelope:<br>ncrease chl<br>en mica. | m-coarse<br>s (+250<br>carb v<br>s. Inc<br>sec | e graine<br>mm).<br>reins wi<br>reased<br>hole 2  | d; beige<br>th chl.<br>py with<br>; 75.0m,           |       |       |      |     |     |       |      |       |      |
| 84.0  | 85.5  | Lapilli                                                                                 | Tuff -                                                                          | F–ng n                                         | atrix;                                            | crowded                                              | •     |       |      |     |     |       |      |       |      |
|       |       | lapilli-s                                                                               | nall-med i                                                                      | ln size                                        | e; gray                                           | 7 green                                              |       |       |      |     |     |       |      |       |      |
|       |       | colour; gi                                                                              | reen mica;                                                                      | dark gre                                       | een lapi                                          | 111.                                                 | 1     |       |      |     |     |       |      |       |      |
| 85.5  | 89.07 | Crystal<br>large bom<br>Tuff);<br>local gre<br>wisps; 3<br>carbonate                    | Tuff - coa<br>bs (bombs<br>grey-green<br>een mica;<br>% - Qtz<br>s.             | nrse gr<br>may con<br>colour<br>5% py<br>-carb | ained;<br>sist of<br>; seri<br>- prima<br>veins - | contains<br>lapilli<br>citized-<br>rily in<br>mostly |       |       |      |     |     |       |      |       |      |

| FROM          | то             | INTERVAL | CORE         | PERCENT  |
|---------------|----------------|----------|--------------|----------|
|               |                | LENGTH   | LENGTH       | RECOVERY |
| 0.15          | 2 040          | 0.00     | 00           | 100      |
| 2.15          | 3.048          | 0.90     | •90          | 100      |
| 3.048         | 3.00           | 0.012    | •00          | 100      |
| 3.00          | 0+/L<br>0.1/   | 3+05     | 2+91<br>0-25 | 12       |
| 6./1          | 9-14           | 2-43     | 2.35         | 97       |
| 9-14          | 12-19          | 3.05     | 3.00         | 100      |
| 12-19         | 15-24          | 3.05     | 2.82         | 92       |
| 15.24         | 18.29          | 3.05     | 2.90         | 95       |
| 18.29         | 21.32          | 3.05     | 2.92         | 96       |
| 21.34         | 23.47          | 2.13     | 1.13         | 53       |
| 23.47         | 25.30          | 1.83     | •41          | 22       |
| 25.30         | 28.35          | 3.05     | 2.83         | 93       |
| 28.35         | 29.57          | 1.22     | •84          | 69       |
| 29.57         | 32.61          | 3.04     | 2.92         | 96       |
| 32.61         | 35.66          | 3.05     | 2.83         | 93       |
| 35.66         | 37.08          | 1.42     | 1.42         | 100      |
| 37.08         | 38.71          | 1.63     | 1.51         | 93       |
| 38.71         | 41.76          | 3.05     | 2.92         | 96       |
| 41.76         | 44.81          | 3.05     | 3.05         | 100      |
| 44.81         | 47.85          | 3.04     | 2.97         | 98       |
| 47.85         | 50 <b>.9</b> 0 | 3.05     | 2.74         | 90       |
| 50 <b>.90</b> | 53.95          | 3.05     | 2.86         | 94       |
| 53.95         | 57.00          | 3.05     | 3.06         | 100      |
| 57.00         | 60.05          | 3.05     | 3.08         | 101      |
| 60.05         | 63.09          | 3.04     | 3.05         | 100      |
| 63.0 <b>9</b> | 66.14          | 3.05     | 2.89         | 95       |
| 66.14         | 69.19          | 3.05     | 3.05         | 100      |
| 69.19         | 72.24          | 3.05     | 3.05         | 100      |
| 72-24         | 75.29          | 3.05     | 3.05         | 100      |
| 75.29         | 78.33          | 3.04     | 2.64         | 88       |
| 78.33         | 80.77          | 2.44     | 2.80         | 115      |
| 80.77         | 81.38          | •6       | - 41         | 67       |
| 81.38         | 84-27          | 2.89     | 3.01         | 104      |
| 84.27         | 87.17          | 2.90     | 3.00         | 103      |
| 87.17         | 90.22          | 3.05     | 3.06         | 100      |
| 90.22         | 91.74          | 1.52     | 1.07         | 70       |
| 91.74         | 94.79          | 3.05     | 3.01         | 99       |
| 94.79         | 97.84          | 3.05     | 3.02         | 99       |
|               |                |          |              |          |

.

-----

| FROM   | TO         | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
|--------|------------|--------------------|----------------|---------------------|
|        |            |                    |                |                     |
| 97.84  | 99.97      | 2.13               | 2.16           | 101                 |
| 99.97  | 102.72     | 2.75               | 2.04           | 74                  |
| 102.72 | 103.94     | 1.22               | 1.02           | 84                  |
| 103.94 | 105.46     | 1.52               | 1.12           | 74                  |
| 105.46 | 108.51     | 3.05               | 2.76           | 90                  |
| 108.51 | 110.34     | 1.83               | 1,98           | 108                 |
| 110.34 | 111.86     | 1,52               | 1.46           | 96                  |
| 111.86 | 114.91     | 3.05               | 3.12           | 102                 |
| 114.91 | 117.96     | 3.05               | 3.05           | 100                 |
| 117.96 | 121.01     | 3.05               | 3.04           | 99                  |
| 121.01 | 123,75     | 2.74               | 2.70           | 99                  |
| 123.75 | 124,66     | .91                | .77            | 85                  |
| 124.66 | 127.10     | 2.44               | 2.55           | 105                 |
| 127.10 | 129.54     | 2.44               | 2.24           | 92                  |
| 129.54 | 130.15     | .61                | 0.56           | 92                  |
| 130.15 | 131.98     | 1.83               | 1.87           | 102                 |
| 131.98 | 133.20     | 1.22               | 1.27           | 104                 |
| 133.20 | 136.25     | 3.05               | 2.91           | 95                  |
| 136.25 | 138.68     | 2.43               | 2.48           | 102                 |
| 138.68 | 139.14     | •46                | .36            | 78                  |
| 139.14 | 142.04     | 2,90               | 3.02           | 104                 |
| 142.04 | eoh 145.09 | 3.05               | 3.05           | 100                 |

.

|                            | PROJECT                  | KERR PROJECT 9101 |                |                                       | Page: <u>1 of 13</u> |
|----------------------------|--------------------------|-------------------|----------------|---------------------------------------|----------------------|
|                            | D.D. HOLE No.            | K87-2             |                |                                       |                      |
|                            |                          | Dep               | th <u>118m</u> | Dip65-5 <sup>0</sup>                  | Azimuth              |
| Location Zone C            |                          | Co                | llar Lat.      |                                       | 101 + 81 N           |
|                            |                          |                   | Dep.           |                                       | 100 + 30 W           |
| Hole Started 19 July 1     | 987                      |                   | Elev.          | ·                                     | 1599 M               |
| Hole Completed 23 July 1   | 987                      |                   | Azimuth _      |                                       | 062 <sup>0</sup>     |
| Core Recovery See attache  | d sheet                  |                   | Dip            | <u></u>                               | -70°                 |
| Drilled By Advanced Drilli | ng Ltd.                  |                   | Length         | · · · · · · · · · · · · · · · · · · · | 135.94               |
| Logged by: M. Jerema       |                          |                   | Hor. Proj.     | V                                     | ert. Proj            |
| Objective: Same as 87-1 t  | o undercut 87-1 at steep | per angle         |                |                                       |                      |

.

. .

-

# PROPERTY Kerr Project

SHEET NO. 2 of 13

| METER | S     | DESCRIPTION                                   | SAM         | PLING |      |      |     | Au    | Ag   | Cu   | Zn       |
|-------|-------|-----------------------------------------------|-------------|-------|------|------|-----|-------|------|------|----------|
| From  | То    |                                               | Spl.#       | From  | To   | M    | Rec | % ppb | ppm  | ррш  | <u> </u> |
| 0.    | 2.31  | Overburden & Casing                           |             |       |      |      |     |       |      |      |          |
| 2.31  | 18.35 | light grey lapilli Tuff to Tuff Breccia       | 17057       | 2.31  | 4.5  | 2.17 |     | 120   | 0.1  | 263  | 2429     |
|       | ·     | - with some intercalated fine grained tuff    | 8           | 4.5   | 5.5  | 1.0  |     | 190   | 0.1  | 206  | 747      |
|       |       | or tuff matrix void of large clasts.          | 9           | 5.5   | 6.5  | 1.0  |     | 105   | 0.1  | 218  | 2404     |
|       |       | - Clasts up to 30mm angular and flattened     | 17060       | 6.5   | 7.5  | 1.0  |     | 100   | 0.1  | 118  | 901      |
|       |       | with core axis approx $50^{\circ}$ .          | 1           | 7.5   | 8.5  | 1.0  |     | 210   | 0.1  | 210  | 3018     |
|       |       | - Contains upwards of 10% carbonate as        | 2           | 8.5   | 9.5  | 1.0  |     | 280   | 0.8  | 298  | 3456     |
|       | 1     | random 2-3mm veinlets patches and wisps and   | 3           | 9.5   | 10.5 | 1.0  |     | 250   | 0.8  | 100  | 1111     |
|       |       | disseminated in matrix.                       | 4           | 10.5  | 11.5 | 1.0  |     | 340   | 1.5  | 222  | 935      |
|       |       | - matrix and clasts are variably silicious:   | 5           | 11.5  | 12.5 | 1.0  |     | 180   | 0.1  | 247  | 3 528    |
|       |       | little to no quartz veining.                  | i i         |       |      |      |     |       |      |      |          |
|       |       | - Pyrite occurs as dissem cubic grains        | ļ           |       |      |      |     |       |      |      |          |
|       |       | throughout: approx 10% and as bands and       | Ì           |       |      |      |     |       |      |      |          |
|       |       | wisps where it occurs as much as 20%.         |             |       |      |      |     |       |      |      |          |
|       |       | - Foliation 50° core axis 6.5 and 9.0 M.      | i           |       |      |      |     |       |      |      |          |
|       |       | - Appears sheared and brecciated in places    | ł           |       |      |      |     |       |      |      |          |
|       |       | with abundant (20%) carbonate infilling       | 17066       | 12.5  | 13.5 | 1.0  |     | 140   | 0.1  | 238  | 3510     |
|       |       | fractures & spaces and occurring as blebs     | 7           | 13.5  | 14.5 | 1.0  |     | 200   | 0.8  | 237  | 3083     |
|       |       | and patches & wisps.                          | 8           | 14.5  | 15.5 | 1.0  |     | 5     | 1.7  | 606  | 3071     |
|       |       | - Upwards of 20% pyrite occurring in same     | 9           | 15.5  | 16.5 | 1.0  |     | 260   | 0.3  | 370  | 1978     |
|       |       | manner as in above unit.                      | 17070       | 16.5  | 17.5 | 1.0  |     | 160   | 0.1  | 207  | 205      |
|       |       | - A 20cm gtz-pyrite vein containing 50% pyr   | 1           | 17.5  | 18.5 | 1.0  |     | nd    | 21.1 | 5571 | 307      |
|       |       | at 18.3m.                                     |             |       |      |      |     |       |      |      |          |
|       |       | - Foliated bands of pyr at 15.7m approx.      | 1<br> <br>} |       |      |      |     |       |      |      |          |
|       |       | 16.7%<br>Existed hands of our at 14 km approx | 1           |       |      |      |     |       |      |      |          |
|       |       | 1 Potracea Danas or pyr at 14.4m approx       |             |       |      |      |     |       |      |      |          |
|       |       | (16.3 to 17.4) - Chlorite & green mica        | 1           |       |      |      |     |       |      |      |          |
|       |       | occurs as wisps, bands and blebs              | į           |       |      |      |     |       |      |      |          |
|       |       | throughout.                                   | i           |       |      |      |     |       |      |      |          |
|       |       | • -                                           |             |       |      |      |     |       |      |      |          |

:

i

PROPERTY Kerr Project

SHEET NO. 3 of 13

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAM                  | PLING                        |                              |                          | Au                      | Ag                        | Cu                        | Zn                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|------------------------------|--------------------------|-------------------------|---------------------------|---------------------------|----------------------------|
| From To     | T<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spl.#                | From                         | To                           | M                        | Rec % ppb               | ppm                       | ppm                       | ррш                        |
|             | (27.1M) - Minor angular monolithic breccia<br>fragments up to 70mm wide.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                    |                              |                              |                          | · · ·                   |                           |                           |                            |
| 18.35 23.26 | Crystal Tuff - Medium grained grey tuff<br>(possibly a crystal tuff) occasional<br>lapilli.<br>- Has equigranular massive appearance<br>possibly intrusive.<br>- Significant reduction in carbonate &<br>pyrite.<br>- 1-5% carbonate in matrix and as qtz carb<br>stringers, blebs, wisps and fracture<br>fillings.<br>- Approx 5% disseminated cubic pyrite and<br>occasional aggregates of pyrite throughout.<br>- Minor traces green mica as blebs and<br>stringers.<br>- Weakly foliated with 44° core axis at<br>23.0M. | 17072<br>3<br>4<br>5 | 18.5<br>19.5<br>21.0<br>22.5 | 19.5<br>21.0<br>22.5<br>24.0 | 1.0<br>1.5<br>1.5<br>1.5 | 540<br>280<br>nd<br>180 | 15.6<br>0.1<br>0.6<br>1.1 | 3297<br>350<br>433<br>288 | 266<br>464<br>1665<br>3132 |
| 23.26 24.8  | Fine Grained Grey Green Lapilli Tuff<br>- Occasional bombs of ash tuff in coarse<br>grained matrix.<br>- Massive appearance.<br>- Minor carbonate approx 1 to 5% as<br>stringers wisps and in matrix 24.2 M - 20<br>cms of brecciated tuff with 10% pyrite and<br>qtz carbonate.<br>- Minor ghosts lapilli fragments at 24.65m.<br>- Approx. 5-7% disseminated cubic pyrite<br>throughout.                                                                                                                                   | 17076                | 24.0                         | 25.5                         | 1.5                      | 5                       | 0.1                       | 232                       | 892                        |

PROPERTY Kerr Project

,

1

SHEET NO. 4 of 13

ĩ

| METERS   | METERS DESCRIPTION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | MPLING               |                      |                   | Au               | Ag                 | Cu                 | Zn                   |  |
|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|----------------------|-------------------|------------------|--------------------|--------------------|----------------------|--|
| From   T | ro i               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spl.#               | From                 | To                   | M                 | Rec % ppb        | ppm                | ppm                | р рт                 |  |
| 24.85 2  | 26.6               | Lapilli Tuff Dacite Tuff<br>- Intercalated, with some thinly laminated<br>sections, medium to fine grained, green-<br>grey dacitic tuff.<br>- 5 to 10% qtz-carbonate as stringers wisps<br>blebs and infilling fracture as some<br>carbonate in matrix. 25.5 to 26.6 m-<br>intense brecciation with 20% qtz carb<br>stringers veinlets with 44° core axis with<br>approx 20% pyrite as disseminated cubes and<br>aggregates aligned parallel to foliation.<br>25.1m - 39° bedding plane core axis.<br>Traces green mica all foliation planes.<br>- 5 to 7% disseminated cubic pyrite and<br>variably silicious matrix throughout. | 17077               | 25.5                 | 26.6                 | 1.1               | 310              | 0.3                | 322                | 892                  |  |
| 26.6     | 28.4               | Fine Grained Green Dacitic Tuff (Ash Tuff)<br>- Massive, with 1% carbonate and 5%<br>disseminated cubic pyrite. Same as above<br>unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17078               | 26.6                 | 28.0                 | 1.4               | 60               | 0.1                | 173                | 2552                 |  |
| 28.4     | 33.0               | Intercalated Very Fine and Medium Grained<br>Dacitic Tuff (Ash Tuff)<br>- Grey and white thinly laminated very fine<br>grained tuffs intercalated with more<br>massive green medium grained tuffs. 1%<br>green mica.                                                                                                                                                                                                                                                                                                                                                                                                              | 17079<br>17080<br>1 | 28.0<br>30.0<br>31.5 | 30.0<br>31.5<br>33.0 | 2.0<br>1.5<br>1.5 | 120<br>400<br>nd | 0.6<br>10.1<br>0.1 | 441<br>2030<br>502 | 1002<br>3655<br>1173 |  |

•

-

## HOLE NO. \_\_\_\_\_\_

PROPERTY Kerr Project

## SHEET NO. 5 of 13

| METERS    | TERS DESCRIPTION SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                                      |                                      |                          |     | Au            | Ag                                          | Cu                              | Zn                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|--------------------------------------|--------------------------|-----|---------------|---------------------------------------------|---------------------------------|------------------------------------|
| From ! To |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spl.#F                    | ron                                  | То                                   | M                        | Rec | % ppb         | p pm                                        | ppm                             | ppm                                |
|           | <ul> <li>29.9m - 360° core axis; 39° core axis in laminae (slumpfold).</li> <li>30.3m - 27° core axis in laminae.</li> <li>28.4 to 30.5 - thinly laminated section.</li> <li>Unit variably silicious, chloritic with little to no carbonate and scattered blebs and wisp of green mica.</li> <li>Some very minor brecciation and or lapilli fragments throughout.</li> <li>3 to 5% pyrite in med grained tuffs increasing to 5 to 7%. Disseminated cubic pyrite in thinly laminated section with aggregates aligned parallel to foliation.</li> <li>(31.3m &amp; 32.0m laminations suggest that unit is dipping near vertical trending towards the southwest and that they strike approx 120° core axis at 32.0m - 30°.)</li> </ul> |                           |                                      |                                      |                          |     |               |                                             |                                 |                                    |
| 33.0 40.7 | Medium Grained Grey Crystal Tuff<br>-Dacitic, equigranular,, massive resembles<br>intrusive.<br>- Weakly to moderately foliated with crysts<br>aligned to foliation.<br>- 5 to 7% dissem cubic pyrite throughout<br>with some aggregates of pyrite forming thin<br>bands and masses aligned with foliation.<br>- 1-5% 11 quartz carb veinlets throughout<br>increasing to 20% in brecciated sections;<br>little to no carb in matrix.                                                                                                                                                                                                                                                                                               | 17082<br>3<br>4<br>5<br>6 | 33.0<br>34.5<br>36.0<br>37.5<br>39.0 | 34.5<br>36.0<br>37.5<br>39.0<br>40.5 | 1.5<br>1.5<br>1.5<br>1.5 |     | 1<br>16<br>35 | 0 3.7<br>d 0.5<br>50 3.1<br>50 8.3<br>5 4.5 | 211<br>57<br>143<br>1287<br>700 | 2280<br>1807<br>2905<br>881<br>561 |

## HOLE NO. \_\_\_\_\_\_

PROPERTY Kerr Project

## SHEET NO. 6 of 13

| METERS                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMP                                                   | LING                                                                         |                                                                              |                                                                    | ļ   | Au                                                      | Ag                                                                 | Çu                                                               | Zn                                                                       |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-----|---------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| From To               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spl.# F                                                | ron                                                                          | To                                                                           | M                                                                  | Rec | % ppb                                                   | ppm j                                                              | ppm                                                              | bbm                                                                      |  |
| From To<br>40.7 54.56 | <ul> <li>Unit variably silicious minor chlorite present.</li> <li>Stringers blebs and 'Crysts' of green mica ubiquitous through unit</li> <li>Brecciated Zone containing approx. 50% sericite 20-25%. pyrite and 20% quartz.</li> <li>Carbonate occur at: 33.86 to 34.80m, with fol. c.a. = 49°.</li> <li>38.33 to 38.82m with fol. c.a. = 45°.</li> <li>39.75 to 40.17m with fol. c.a. = 37°.</li> <li>Other fol. c.a. at 36.3m = 42°.</li> <li>37.2m = 50°.</li> </ul> Coarse Grained Green Dacitic Crystal Tuffs <ul> <li>Dark green lath like crysts (saussuritized plagioclase?) set in light green groundmass; unit variably silicious. <ul> <li>Significant reduction of quartz carbonate veining to approx. 1%.</li> <li>Disseminated cubic pyrite to 5% is ubiquitous but grains are aligned parallel to foliation.</li> <li>Minor changes in colour and cryst sizes suggest the presence of separate tuff beds but composition and texture are constant throughout the unit.</li> <li>Some lapilli sized ghost frags. and the odd oversized (<len) are="" but<="" cryst="" li="" present=""> </len)></li></ul></li></ul> | 17087<br>8<br>9<br>17090<br>1<br>2<br>3<br>4<br>5<br>6 | 40.5<br>42.0<br>43.5<br>45.0<br>46.5<br>48.0<br>49.5<br>51.0<br>52.0<br>53.5 | 42.0<br>43.5<br>45.0<br>46.5<br>48.0<br>49.5<br>51.0<br>52.0<br>53.5<br>55.0 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 |     | 70<br>10<br>140<br>80<br>140<br>30<br>200<br>110<br>200 | 0.1<br>0.1<br>2.9<br>0.5<br>0.1<br>0.1<br>2.9<br>1.7<br>0.1<br>0.1 | 252<br>189<br>337<br>140<br>96<br>137<br>133<br>237<br>95<br>164 | 651<br>763<br>1434<br>1122<br>338<br>1023<br>1772<br>1220<br>888<br>1872 |  |

٠

#### PROPERTY Kerr Project

۳

1

#### SHEET NO. 7 of 13

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLING                                                                                         |                                                                                              |                                                                                              |                                                                                  |       | Au                                                                       | Ag                                                                        | Çu                                                                           | Zn                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| From To     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sp1.#                                                                                            | From                                                                                         | То                                                                                           | M                                                                                | Rec 7 | (¦ppb                                                                    | ppm i                                                                     | ppm_                                                                         | bbur                                                                              |
|             | - Foliation core angles at $41.56m = 40^{\circ}$<br>42.3m = 45°, 43.0m = 54°, 45.0m = 45°,<br>48.36m = 45°, 51.47m = 47°, 52.7m = 53°<br>- Minor brecciated sections contains <50%<br>sericite, 20% qtz-carb >20% pyrite at:<br>43.6m, 46.7 to 47.06m, 51.1 to 51.9m.<br>- 1cm pyrite-qtz-carb 'vein' with 22° c.a.<br>at 47.13m.                                                                                                                                                                                                                                                                                                                                                                                   | 7<br>2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |                                                                                              |                                                                                              |                                                                                  |       |                                                                          |                                                                           |                                                                              |                                                                                   |
| 54.56 73.46 | Intercalated F.G. Laminated and Coarse<br>Grained Green Tuffs<br>- Thinly laminated tuffs are fine to med.<br>grain, light to moderate green in colour,,<br>and range from aphanitic to phaneritic and<br>porphyritic in texture and andesitic to<br>dacitic in composition. They range in<br>thickness from 1 to 100 mm.<br>- Replacement chlorite, some green mica and<br>pyrite mimic bedding planes and approx. 1<br>to 5% qtz carb veinlets are found<br>throughout. Trace to 1% carbonate in<br>matrix.<br>- The same ubiquitous.<br>- Coarse grained tuffs are massive<br>equigranular andesitic in composition with<br>little qtz-carbonate veining or alteration.<br>Beds are generally 100mm to 1000mm in | 17097<br>8<br>9<br>17100<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                 | 55.0<br>56.5<br>58.0<br>59.5<br>61.0<br>62.5<br>64.0<br>65.5<br>67.0<br>68.5<br>70.0<br>71.5 | 56.5<br>58.0<br>59.5<br>61.0<br>62.5<br>64.0<br>65.5<br>67.0<br>68.5<br>70.0<br>71.5<br>73.0 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 |       | 80<br>90<br>200<br>160<br>370<br>5<br>105<br>50<br>70<br>5<br>200<br>160 | 0.1<br>0.1<br>2.7<br>0.6<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 46<br>122<br>178<br>178<br>309<br>99<br>169<br>75<br>93<br>104<br>263<br>266 | 773<br>809<br>824<br>389<br>369<br>545<br>709<br>544<br>869<br>604<br>711<br>1410 |

## PROPERTY Kerr Project

· •

•

**N P** 

· ·

.

٠

.

.

.

r

1

SHEET NO. 8 of 13

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAM    | LING         |              |            |      | Au         | u Ag ( |           | Zn          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--------------|------------|------|------------|--------|-----------|-------------|
| From To     | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sp1.#1 | rom          | To           | MR         | ec 🗶 | <u>ppb</u> | ppm    | ppm       | ppa         |
| <u></u>     | Foliation core AnglesBedding Core Angles $53.8m = 44^{\circ}$ $56.9m = 45^{\circ}$ $54.2m = 59^{\circ}$ $58.2m = 46^{\circ}$ $71.0m = 32^{\circ}$ $60.0m = 45^{\circ}$ $64.0m = 26^{\circ}$ to $35^{\circ}$ $67.15m= 32^{\circ}$ to $37^{\circ}$                                                                                                                                                                                                                           |        |              |              |            |      |            |        |           |             |
|             | <ul> <li>5 to 7% ubiquitous cubic pyrite and minor pyrite banding more often associated with qtz-carb veining.</li> <li>Random breccia fragments throughout.</li> <li>Very minor faults at 61.9m and 65.4m.</li> <li>Minor fault zone between 71.0m to 71.8m.</li> <li>(Rocks becoming more chloritic down section)</li> <li>Contact at 73.46m ≈ 40° core angle.</li> <li>Flame structures in laminated tuffs suggests unit youngs eastward (tops to the east).</li> </ul> |        |              |              |            |      |            |        |           |             |
| 73.46 76.24 | <ul> <li>Coarse Grained Crystal Tuff <ul> <li>Medium to dark green massive;</li> <li>equigranular; andesitic composition.</li> <li>300mm laminated section with 10% banded pyrite.</li> <li>5% qtz-carb veinlets; trace carb in matrix.</li> <li>5-7% ubiquitous cubic pyrite.</li> <li>Chlorite phenocrysts.</li> </ul></li></ul>                                                                                                                                         | 17109  | 73.0<br>74.5 | 74.5<br>76.0 | 1.5<br>1.5 |      | 170<br>100 | 0.1    | 248<br>67 | 1288<br>335 |

PROPERTY Kerr Project

the property of the second second second second

7

- i -

SHEET NO. 9 of 13

| METER | RS 1  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAM        | PLING        |              |     | Au        | Ag             | Cu        | Zn           |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------|-----|-----------|----------------|-----------|--------------|
| From  | To    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spl.#1     | From         | То           | M   | Rec % ppt | ppm            | ppm       | ррт          |
| 76.24 | 78.40 | Dacitic Lapilli - Tuff to tuff-Breccia<br>-Grey to green in colour.<br>-polymictic at least four different<br>fragment compositions dacitic to andesitic.<br>- Fragments angular; flattened, with about<br>5% qtz-carbonate veinlets, wisps & fracture<br>fillings.<br>- 5 to 7% ubiquitous cubic pyrite and<br>approx. 55 wisps and blebs of green mica<br>(spotted); some chloritic sections.<br>- Foliations: 76.53m = 57° 77.5m = 47°<br>- Flags vary from 1mm to 40mm. | 17111<br>2 | 76.0<br>77.5 | 77.5<br>79.0 | 1.5 | 18        | 0 0.1<br>0 0.1 | 167<br>85 | 1585<br>1042 |
| 78.4  | 80.5  | Fine Grained Light Green Dacitic Tuff - Ash<br>Tuff<br>- Weak to moderately foliated, massive.<br>- Almost white to light green in colour.<br>- 5-7% ubiquitous pyrite trace carbonate.<br>- Contains some ghost lapilli sized<br>fragments foliations 79.2m-0° c.a. & 81.2m<br>= 48° c.a.                                                                                                                                                                                  | 17113      | 79.0         | 81.0         | 2.0 |           | i0 0.1         | 73        | 1666         |

# HOLE NO. \_\_\_\_\_K87-2\_\_\_\_

PROPERTY Kerr Project

۲

SHEET NO. 10 of 13

| METE | RS                                        | DESCRIPTION                                 | SAI             | PLING |      |           | Au   | Ag   | Cu   | Zn   |
|------|-------------------------------------------|---------------------------------------------|-----------------|-------|------|-----------|------|------|------|------|
| From | To                                        |                                             | Spl.# From To M |       | M    | Rec % ppb | ррш  | ppm  | ppm_ |      |
| 80.5 | 93.0                                      | Dacitic Tuff Breccia (Breccia Zone)-        | 17114           | 81.0  | 82.5 | 1.5       | 180  | 0.1  | 234  | 2748 |
|      |                                           | Lapilli Tuff                                | 5               | 82.5  | 83.5 | 1.0       | 370  | 3.5  | 1456 | 372  |
|      |                                           | - Angular to rounded, dark grey to cherty   | 6               | 83.5  | 85.0 | 1.5       | 330  | 1.3  | 495  | 1402 |
|      |                                           | grey lapilli to breccia sized clasts set in | 7               | 85.0  | 86.5 | 1.5       | 1950 | 22.1 | 1300 | 595  |
|      |                                           | a medium gray, med grained tuffaceous       | 8               | 86.5  | 88.0 | 1.5       | 440  | 0.1  | 158  | 1521 |
|      |                                           | matrix.                                     | 9               | 88.0  | 89.5 | Ì.5       | 110  | 0.1  | 1 28 | 818  |
|      |                                           | - Abundant wisps blebs stringers and        | 17120           | 89.5  | 91.5 | 2.0       | 80   | 0.1  | 272  | 2364 |
|      |                                           | patches (sometimes resembling clasts) of    | 1               | 91.5  | 93.0 | 1.5       | 180  | 4.0  | 191  | 1727 |
|      |                                           | pistachio coloured ('green') mica gives the | i<br>I          |       |      |           |      |      |      |      |
|      | unit a distinct characteristic green-grey |                                             |                 |       |      |           |      |      |      |      |
|      |                                           | mottled appearance.                         | 1               |       |      |           |      |      |      |      |
|      |                                           | - 5 to 7% ubiquitous cubic pyrite           | 1               |       |      |           |      |      |      |      |
|      |                                           | throughout.                                 |                 |       |      |           |      |      |      |      |
|      |                                           | - Upwards of 25% pyrite as patches and      | 1               |       |      |           |      |      |      |      |
|      |                                           | stringers is associated with 10-20%.        | )               |       |      |           |      |      |      |      |
|      |                                           | Quartz carbonate veining throughout,        | 1               |       |      |           |      |      |      |      |
|      |                                           | especially 85.7 to 86.5m and 92.0 to 92.7m. | )<br>I          |       |      |           |      |      |      |      |
|      |                                           | - Abundant light grey rounded clasts with a | l<br>I          |       |      |           |      |      |      |      |
|      |                                           | chert-like appearance; angular clasts have  | 1               |       |      |           |      |      |      |      |
|      |                                           | a more med grained tuffaceous composition.  | 1<br>I          |       |      |           |      |      |      |      |
|      |                                           | - Foliation core angles: 53° at 81.6m, 53°  | 1               |       |      |           |      |      |      |      |
|      |                                           | at 84.1m, 58° at 88.0m, 59° at 89.5m, 53°   | l               |       |      |           |      |      |      |      |
|      |                                           | at 92.0m.                                   | 1               |       |      |           |      |      |      |      |

PROPERTY Kerr Project

1

٠

٦

•

4

٦

٠

٠

• 1

SHEET NO. 11 of 13

| METE | RS    | DESCRIPTION                                    | SAM                   | PLING        |              |     | Au        | Ag  | Cu   | Zn      |  |
|------|-------|------------------------------------------------|-----------------------|--------------|--------------|-----|-----------|-----|------|---------|--|
| From | То    |                                                | Spl.#                 | From         | To           | M   | Rec % ppb | ppn | ppm_ | p pm    |  |
| 93.0 | 93.7  | Light Green Medium Grained Dacitic Tuff-       | 17122                 | 93.0         | 94.5         | 1.5 | 50        | 0.1 | 192  | 2748    |  |
|      |       | Crystal Tuff                                   |                       |              |              |     |           |     |      |         |  |
|      |       | - Massive equigranular with 5% ubiquitous      |                       |              |              |     |           |     |      |         |  |
|      |       | pyrite, moderately foliated 44° c.a. little    |                       |              |              |     |           |     |      |         |  |
|      |       | qtz carbonate veining no carbonate in          |                       |              |              |     |           |     |      |         |  |
|      |       | matrix.                                        |                       |              |              |     |           |     |      |         |  |
| 02 7 | 117 5 | Internal at al Desite in Courtal Wiffs and Ash | 171 00                | 0/ 5         | 96 0         | 1 6 | 1 50      | 0.1 | 104  | 713     |  |
| 93+1 | 11/.3 | Tuffe                                          | 11/123                | 94+2<br>06 A | 20+V<br>07 5 | 1 5 | 1.60      | 0.1 | 107  | 607     |  |
|      |       | Light to modium groop coloured fine-           | 1 <del>4</del><br>1 5 | 90.0         | 97.5         | 1 5 | 340       | 0.1 | 143  | 643     |  |
|      |       | arainad matrices with souscuritized?           |                       | 00 0         | 100 0        | 1.0 | 290       | 1.8 | 163  | 862     |  |
|      |       | Plagiocless and chloritized? hornhlands        | 1 7                   | 100.0        | 101.5        | 1.5 | 840       | 2.4 | Q5   | 1697    |  |
|      |       | 'rimmed' phenocrysts lum to 3mm in size.       | , ,<br>,              | 101.5        | 103-0        | 1.5 | 100       | 0.1 | 31   | 404     |  |
|      |       | - near to moderately foliated. bedg vary       | 0<br>  9              | 103-0        | 104.0        | 1.0 | 70        | 0.1 | 38   | 384     |  |
|      |       | from 2cm to approx 1m in width with some       | 17130                 | 104.0        | 105.5        | 1.5 | 80        | 0.1 | 56   | 635     |  |
|      |       | 'tuff beds' resembling volcanic equivalents    | 1                     | 105.5        | 107.0        | 1.5 | 520       | 1.7 | 1 62 | 1953    |  |
|      |       | of feldspar porphyry.                          | 2                     | 107.0        | 108.5        | 1.5 | 130       | 0.1 | 105  | 1256    |  |
|      |       | - Ghost lapilli fragments occur                | 3                     | 108.5        | 110.0        | 1.5 | 140       | 0.1 | 107  | 1 4 4 1 |  |
|      |       | sporadically.                                  | 4                     | 110.0        | 111.5        | 1.5 | 520       | 0.1 | 134  | 1356    |  |
|      |       | - Minor blebs of green mica throughout.        | 5                     | 111.5        | 113.0        | 1.5 | 420       | 1.1 | 192  | 2065    |  |
|      |       | - 1 to 5% qtz carbonate veining, random        | 6                     | 113.0        | 114.0        | 1.0 | 580       | 3.1 | 320  | 1542    |  |
|      |       | angles.                                        | 7                     | 114.0        | 115.5        | 1.5 | 160       | 0.1 | 149  | 1326    |  |
|      |       | - 5% ubiquitous cubic pyrite.                  | 8                     | 115.5        | 117.0        | 1.5 | 140       | 0.5 | 197  | 1658    |  |
|      |       | - Minor sericite, qtz-carbonate breccia        | Ì                     |              |              |     |           |     |      |         |  |
|      |       | zones with <20% pyrite at 99.0 to 99.7m and    | 1                     |              |              |     |           |     |      |         |  |
|      |       |                                                | -                     |              |              |     |           |     |      |         |  |

ورينية معدمهم مثاله

A CALENCE AND A CONTRACT FOR

#### PROPERTY Kerr Project

•

ł

## SHEET NO. 12 of 13

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLING                                                  |                                                                                        |                                                                                        | 1                                                           | Au  | Ag                                                        | Cu                                                                  | Zn                                                                 |                                                                        |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|-----|-----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|
| From To     | +<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spl.#                                                  | From                                                                                   | To                                                                                     | M                                                           | Rec | % ppb                                                     | ppa                                                                 | ppm                                                                | ppm                                                                    |
| 117.5 132.1 | 113.0 to 114.0m.<br>- Foliation core angles: 9.8m = 48°,<br>105.0m = 60°, 109.0m = 48°, 110.0 = 40°,<br>114.2 = 44°, 117.0 = 49°.<br>- Minor bed of tuff breccia at 109.5 to<br>110.9m.<br>- 8cm qtz-carb vein at 94.8m.<br>- Minor chlorite.<br>- Green mica and pyrite has replaced some<br>of the more mafic crysts<br><u>Intercalated Med. Grain Green Crystal Tuffs</u><br>and Minor Black Carbonaceous Sediments<br>- Rather massive, equigranular green tuffs<br>with 2mm to 20cm bands of carbonaceous<br>sediments (water lained).<br>- Minor quartz-carb veining, some 3cm<br>veinlets.<br>- Usual 5% ubiquitous pyrite with some<br>bedding planes replaced by pyrite.<br>- 1-2% cpy between 118.5 to 118.6m.<br>- 10cm of gray fault gouge at 120.05.<br>- Bedding plane core angles: 114.8=50°<br>(foliation?) 122.0=33° | 17139<br>17140<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 117.0<br>118.5<br>120.0<br>121.5<br>123.5<br>125.0<br>126.5<br>128.0<br>129.5<br>131.0 | 118.5<br>120.0<br>121.5<br>123.5<br>125.0<br>126.5<br>128.0<br>129.5<br>131.0<br>132.5 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 |     | nd<br>25<br>100<br>nd<br>40<br>30<br>45<br>45<br>nd<br>10 | 6.5<br>11.5<br>2.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 555<br>3458<br>214<br>104<br>161<br>129<br>139<br>120<br>78<br>110 | 787<br>4382<br>1566<br>581<br>362<br>306<br>1097<br>1128<br>180<br>176 |

•

(87–2\_\_\_\_

SHEET NO. 13 of 13

| METE     | RS     | DESCRIPTION                                                                                                                                                                                                                                                              | SAMPLING |                |                 |             |     | Au       | Ag         | Cu        | Zn          |
|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------------|-------------|-----|----------|------------|-----------|-------------|
| From     | To     |                                                                                                                                                                                                                                                                          | Spl.#    | From           | To              | M N         | Rec | % ppb    | ppm        | ppm_i     | <u>b bu</u> |
| <u> </u> |        | (Bedding), 123.6=31 <sup>0</sup> Bedding.<br>124.1 to 129.0 - Rather massive section of<br>med grained green tuff with minor qtz<br>veining.                                                                                                                             |          |                |                 |             |     |          |            |           |             |
| 132.1    | 135.94 | Intercalated Dark Grey Wacke and Black<br>Carbonaceous Sediment<br>- Well preserved bedding c.a. = 22 to 25°<br>at 132.2m.<br>- Extensive parallel fractures filled with<br>qtz-carb and orientated 43° to 55° to c.a.<br>(tension gashes).<br>- Micro faulting in core. | 17149    | 132.5<br>134.0 | 134.0<br>135.94 | 1.5<br>1.94 |     | 10<br>25 | 0.1<br>0.3 | 140<br>93 | 216<br>349  |

#### PROPERTY Kerr Project

•

1

#### and a second distance is a linear second second

|       |       | Core Recove | ry K87-2 |          |
|-------|-------|-------------|----------|----------|
| FROM  | то    | INTERVAL    | CORE     | PERCENT  |
|       |       | LENGTH      | LENGTH   | RECOVERY |
| 0.    | 3.05  | 3.05        | 0.74     | 24       |
| (BOB) |       |             |          |          |
| 3.05  | 3.96  | •91         | • 32     | 35       |
| 3.96  | 5.18  | 1.22        | -87      | 71       |
| 5.18  | 8.23  | 3.05        | 2.83     | 93       |
| 8.23  | 11.28 | 3.05        | 3.00     | 98       |
| 11.28 | 14.33 | 3.05        | 3.02     | 99       |
| 14.33 | 17-37 | 3.04        | 2.93     | 96       |
| 17.37 | 20.42 | 3.05        | 3.45     | 113      |
| 20.42 | 22.40 | 1.98        | 1.96     | 99       |
| 22.40 | 25.60 | 3.20        | 2.94     | 92       |
| 25-60 | 27.43 | 1.83        | 1.87     | 102      |
| 27.43 | 29.57 | 2.14        | 1.42     | 66       |
| 29.57 | 30.18 | .61         | . 59     | 97       |
| 30.18 | 32.61 | 2.43        | 2.41     | 99       |
| 32.61 | 32.92 | .31         | .30      | 97       |
| 32.92 | 34.14 | 1.22        | 1.00     | 82       |
| 34.14 | 35.66 | 1.52        | 1.52     | 100      |
| 35.66 | 38.56 | 2.90        | 2.79     | 96       |
| 38.56 | 41.15 | 2.59        | 2.55     | 98       |
| 41.15 | 44.20 | 3.05        | 3.03     | 99       |
| 44.20 | 44.50 | .30         | •27      | 90       |
| 44.50 | 46.33 | 1.83        | 1.85     | 101      |
| 46.33 | 47.85 | 1.51        | 1.51     | 100      |
| 47.85 | 50.90 | 3.05        | 3.10     | 102      |
| 50.90 | 53.66 | 2.76        | 2.60     | 94       |
| 53-66 | 56.71 | 3.05        | 3.12     | 102      |
| 56.71 | 59.76 | 3.05        | 3.05     | 100      |
| 59.76 | 63.09 | 3.33        | 2.82     | 85       |
| 63.09 | 65.85 | 2.76        | 2.81     | 101      |
| 65.85 | 68-14 | 2.29        | 2.33     | 102      |
| 68.14 | 71.34 | 3.20        | 2.65     | 83       |
| 71.34 | 74.09 | 2.75        | 7.61     | 58       |
| 74.09 | 77 13 | 3.04        | 3.05     | 100      |
| 77.13 | 79.88 | 2.75        | 2.73     | 99       |

r renterente en la construction de la const

|        |        | Core Recove:       | ry K87-2       |                     |
|--------|--------|--------------------|----------------|---------------------|
| FROM   | ТО     | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
| 79.88  | 82.93  | 3.05               | 3.05           | 100                 |
| 82.93  | 85.98  | 3.05               | 3.10           | 102                 |
| 85.98  | 88.11  | 2,13               | 2.02           | 95                  |
| 88.11  | 91.16  | 3.05               | 3.03           | 99                  |
| 91.16  | 93.57  | 2.41               | 2.39           | 99                  |
| 93.57  | 96.62  | 3.05               | 3.11           | 102                 |
| 96.62  | 99.67  | 3.05               | 3.11           | 102                 |
| 99.67  | 102.41 | 2.74               | 2.60           | 95                  |
| 102.41 | 103.94 | 1.53               | 1.40           | 92                  |
| 103.94 | 105.77 | 1.83               | 2.00           | 109                 |
| 105.77 | 108.81 | 3.04               | 3.06           | 100                 |
| 108.81 | 111.86 | 3.05               | 3.08           | 101                 |
| 111.86 | 114.91 | 3.05               | 3.0            | 98                  |
| 114.91 | 117.96 | 3.05               | 2.97           | 97                  |
| 117.96 | 120.70 | 2.74               | 2.54           | 93                  |
| 120.70 | 121.01 | .31                | •40            | 130                 |
| 121.01 | 124.05 | 3.04               | 2.94           | 97                  |
| 124.05 | 127.10 | 3.05               | 3.05           | 100                 |
| 127.10 | 130.15 | 3.05               | 3.00           | 98                  |
| 130.15 | 133.20 | 3.05               | 3.05           | 100                 |
| 133.20 | 135.94 | 2.74               | 2.48           | 91                  |

.

| PROJEC<br>D.D. HOLE No               | T KERR PROJECT |                             | Page: <u>1 of 12</u> |
|--------------------------------------|----------------|-----------------------------|----------------------|
|                                      | I              | <br>Depth <u>183.54</u> Dip | 36.0° Azimuth        |
| Location Zone C                      |                | Collar Lat.                 | 10,267 N             |
|                                      |                | Dep                         | 9,954 W              |
| Hole Started 25 July 1987            |                | Elev                        | 1,600 m              |
| Hole Completed 27 July 1987          |                | Azimuth                     | 2500                 |
| Core Recovery As per attached sheets |                | Dip                         | -450                 |
| Drilled By Advanced Drilling         |                | Length                      | 183.54               |
| Logged by: Mike Jerema               |                | Hor. Proj                   | Vert. Proj           |

Objective: To intersect mineralization and trench along strike in Zone C.

#### PROPERTY Kerr Project

SHEET NO. 2 of 12

| METER | IS   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                       | SAM                       | PLING                                |                                      | · · · · · · · · · · · · · · · · · · | Au                           | Ag                              | Cu                              | Zn                               |
|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|--------------------------------------|-------------------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------------|
| From  | To   | -                                                                                                                                                                                                                                                                                                                                                                 | Spl.#;                    | From                                 | То                                   | m                                   | Rec % ppb                    | ppm                             | ppm                             | ppm                              |
| 0.    | 2.03 | Rubble, Overburden. Casing to 12 ft.                                                                                                                                                                                                                                                                                                                              |                           |                                      |                                      |                                     |                              |                                 |                                 |                                  |
| 2.03  | 17.0 | Andesite Dyke - Feldspar Porphyry<br>- 1 to 5% coarse euhedral 'feldspar'                                                                                                                                                                                                                                                                                         | 17.51                     |                                      |                                      | à r                                 | 1.0                          |                                 |                                 |                                  |
|       | Ĩ    | fine grained (soft) andesitic? matrix. 3-<br>5% some dark green hornblende crysts.<br>- Ubiquitous cubic pyrite (up to 5%) and                                                                                                                                                                                                                                    | 1/151                     | 4.)                                  | 6.0                                  | 1.5                                 | 40                           | 0.1                             | 1 42                            | 676                              |
|       |      | sericite present.<br>- Little to no qtz-carbonate veining<br>however large 'feldspar' grains have been<br>replaced by carbonate and there is about 1<br>to 5% carbonate in matrix.<br>- Weak to non Foliated.<br>- Porphyritic feldspar grains up to 8mm<br>rhombohedrons.                                                                                        | 17152                     | 11.0                                 | 12.5                                 | 1.5                                 | 10                           | 0.1                             | 59                              | 433                              |
| 17.0  | 26.3 | Coarse Dacitic Crystal Tuff.<br>- Sericitized saussuritized? 2-3mm<br>'plagioclase' crysts set in a mottled blue<br>gray matrix of quartz sericite and pyrite.<br>- 5 to 7% pyrite as ubiquitous cubic pyrite<br>and very minor blebs, wisps, bands,<br>stringers or aggregates.<br>- Unite is weakly foliated with core angles<br>of 60° at 23.5m, 44° at 24.3m. | 17153<br>4<br>5<br>6<br>7 | 17.0<br>18.5<br>20.0<br>21.0<br>22.5 | 18.5<br>20.0<br>21.0<br>22.5<br>24.0 | 1.5<br>1.5<br>1.0<br>1.5<br>1.5     | 90<br>30<br>180<br>90<br>140 | 1.1<br>0.2<br>1.4<br>0.6<br>1.5 | 192<br>109<br>491<br>149<br>260 | 484<br>1075<br>344<br>122<br>326 |

#### PROPERTY Kerr Project

•

.

SHEET NO. 3 of 12

| METERS    | DESCRIPTION                                                                                                                                                                                                                                       | SAM        | PLING        |              |            | Au           | Ag         | Cu         | Zn         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------|------------|--------------|------------|------------|------------|
| From To   |                                                                                                                                                                                                                                                   | Sp1.#      | From         | То           | m          | Rec % ppb    | ppm        | ppm        | ррm        |
|           | - 20.65m - 8cm band of <50% massive pyrite.<br>- Little to no qtz-carbonate veining, or<br>carbonate in matrix.                                                                                                                                   | 17158<br>9 | 24.0<br>25.5 | 25.5<br>27.0 | 1.5<br>1.5 | 80<br>1060   | 1.3<br>2.7 | 219<br>204 | 453<br>87  |
| 26.3 28.6 | Brecciated Dacitic Crystal Tuff<br>- Same as above unit but with breccia or<br>lapilli fragments, 50% qtz-carb-pyr veining<br>and some pervasive green mica. Py<br>weathered out along 2mm veinlets at 26.1m-<br>3%. Porph feld grains? at 28.0m. | 17160<br>1 | 27.0<br>28.0 | 28.0<br>30.0 | 1.02.0     | 1230<br>1980 | 2.0<br>4.1 | 232<br>709 | 85<br>617  |
| 28.6 33.3 | Coarse Grain Crystal Tuff<br>-As above unit pale blue green colour<br>massive.<br>- Weak to mod foliated with c.a. of 44° at<br>30.1m.<br>- Minor fault/fracture at 27.2m and 7% Py<br>wisp at 34.2.<br>- Core angle of 45° at, 32.5m.            | 17162<br>3 | 30.0<br>31.5 | 31.5<br>33.0 | 1.5        | nd<br>1500   | 0.2        | 245<br>209 | 857<br>530 |
| 33.3 34.6 | Brecciated Dacitic Crystal Tuff (lapilli-<br>tuff)<br>- As described in above 26.3 to 28.6m.<br>33.4m and 34.4m - grey clay fault gouge.<br>34.5m - fault contact approx 22.5°.                                                                   | 17164      | 33.0         | 34.5         | 1.5        | 960          | 2.9        | 265        | 313        |

.

HOLE NO. K87-3

# SHEET NO. 4 of 12

| METER | S     | DESCRIPTION                                                                                          | SÁI    | MPLING       | · · · ·      |       | Au          | Ag         | Cu   | Zn    |  |
|-------|-------|------------------------------------------------------------------------------------------------------|--------|--------------|--------------|-------|-------------|------------|------|-------|--|
| From  | То    | <u> </u>                                                                                             | Spl.#  | From         | То           | L III | Rec % ppb_  | ppm        | ррш  | ррш   |  |
| 34.6  | 37.5  | Medium grain 'Dacitic' crystal tuff                                                                  | 17165  | 34.5         | 36.0         | 1.5   | 3050        | 3.5        | 342  | 613   |  |
|       | . 1   | - Pale green grey massive tuff with                                                                  | 17166  | 36.0         | 37.5         | 1.5   | 685         | 0.1        | 88   | 888   |  |
|       | 1     | sericitized plagioclase grains. Non                                                                  | 03630  | 37.5         | 39.0         | 1.3   | 365         | 0.1        | 202  | 874   |  |
|       | 1     | foliated. 5% ubiquitous cubic pyrite.                                                                |        |              |              |       |             |            |      |       |  |
| 27 55 | 73 06 | Course Crained Desitie Crustel Tuff                                                                  | 17167  | 20 A         | 41.0         | 2.0   | 3.80        | 0 1        | 96   | 603   |  |
| 21.22 | 13.90 | - Polo blue eres colour modium to coorne                                                             | 1/10/  | JJ.0<br>/1 0 | 41+0         | 2.0   | 120         | 0.1        | 74   | 202   |  |
|       |       | - rate blue grey corour medium co coarse                                                             | 103031 | 41.0         | 43.0<br>/5 D | 2.0   | 200         | 0.1        | 27   | 1060  |  |
|       |       | - Minor atz carb voining                                                                             | 17160  | 43.0         | 470          | 2.0   | 250         | 0.1        | 122  | 703   |  |
|       |       | - minor que carb verning                                                                             | 03633  | 43.0         | 47.0<br>70 0 | 2.0   | 345         | 0.1        | 105  | 614   |  |
|       |       | anoreostes                                                                                           | 03634  | 47.0         | 51.0         | 2.0   | 242         | 0.3        | 136  | 780   |  |
|       |       | - Minor 17 plac, phenographic (2-8mm)                                                                | 17169  | 51.0         | 53.0         | 2.0   | 1330        | 2.1        | 236  | \$67  |  |
|       |       | hetween 40.8, 41.5m                                                                                  | 03635  | 53.0         | 55.0         | 2.0   | 1550<br>650 | 0.7        | 106  | 773   |  |
|       |       | - Weakly foliated with c.a.'s of 40° at                                                              | 03633  | 55.0         | 57 0         | 2.0   | 335         | 1 2        | 70   | 605   |  |
|       |       | $38.7m \cdot 43^{\circ}$ at $69m - 44^{\circ}$ at $52m \cdot 52^{\circ}$ at $57.0m \cdot 10^{\circ}$ | 17170  | 57-0         | 59.0         | 2.0   | 1330        | 2 1        | 236  | 719   |  |
|       |       | $51^{\circ}$ at $47.25m \cdot 45^{\circ}$ at $61m$ .                                                 | 03638  | 59.0         | 61 0         | 2.0   | 135         | 2.1<br>0 4 | 200  | 719   |  |
|       |       | - 5% ubiguitous cubic pyrite                                                                         | 03630  | 61.0         | 63.0         | 2.0   | 1 69.0      | 3.4        | 189  | 1.230 |  |
|       |       | - Otz-carb in 2cm 'shear' with 3 <sup>0</sup> core svis                                              | 17171  | 63.0         | 65.0         | 2.0   | 2050        | 2++<br>8_3 | 1055 | 307   |  |
|       |       | at 47.0m                                                                                             | 03640  | 65-0         | 67.0         | 2.0   | 2050        | 1.6        | 117  | 1278  |  |
|       |       | - 4cm pyrite yein 80% at 64.4m.                                                                      | 03641  | 67.0         | 69.0         | 2.0   | -00         | 0.2        | 83   | 1326  |  |
|       |       | tem firste teste don me ottetmi                                                                      | 17172  | 69.0         | 71.0         | 2.0   | 60          | 0.7        | 1 61 | 1161  |  |
| 73.96 | 75.2  | 'Brecciated' thinly laminated tuffs.                                                                 |        |              | 1110         | 2.0   |             | 0.,        | 1 01 | 1101  |  |
|       |       | - 2~5mm laminae tuffs bands partially to                                                             | 17173  | 73.0         | 74.0         | 1.0   | 70          | 0.7        | 172  | 824   |  |
|       |       | completely brecciated throughout pale to                                                             | 17174  | 74.0         | 75.5         | 1.5   | 140         | 0.4        | 326  | 399   |  |
|       |       | med green in colour                                                                                  |        |              |              | ***   | 1.40        | 0.4        | 540  |       |  |
|       |       | - a fine black pyrite mass has replaced                                                              |        |              |              |       |             |            |      |       |  |
|       |       | approx 10% of frags.                                                                                 | ļ      |              |              |       |             |            |      |       |  |
|       |       | - Upper contact c:a: = $43^{\circ}$                                                                  | ļ      |              |              |       |             |            |      |       |  |
|       |       | - Lower contact gradational to lapilli tuff                                                          | ļ      |              |              |       |             |            |      |       |  |
|       |       | <b> 0</b>                                                                                            | •      |              |              |       |             |            |      |       |  |

.

PROPERTY Kerr Project

`**,** 

#### PROPERTY Kerr Project

.

٩

.

٠ .

the first state of the first sta

SHEET NO. 5 of 12

| METE | RS   | DESCRIPTION                                       | SAM   | PLING |      |     | Au        | Ag  | Cu   | Zn   |
|------|------|---------------------------------------------------|-------|-------|------|-----|-----------|-----|------|------|
| From | To   | -                                                 | Spl.∦ | From  | То   | i u | Rec % ppb | bbm | ррш  | ppm  |
| 75.2 | 76.5 | Pale green grey lapilli tuff. (10 cm qtz          | 17175 | 75.5  | 77.0 | 1.5 | 1 20      | 2.0 | 391  | 534  |
|      |      | vein @ 46.5)                                      | 17176 | 77.0  | 79.0 | 2.0 | 100       | 0.8 | 150  | 2384 |
|      |      | - 5% ubiquitous cubic pyrite, 1-5% milky          | 1     |       |      |     |           |     |      |      |
|      |      | white pyritic qtz                                 | t     |       |      |     |           |     |      |      |
|      |      | - Approx 1% med green lapilli size                | 1     |       |      | •   |           |     |      |      |
|      |      | subangular frags set in a fine to medium          | ĺ     |       |      |     |           |     |      |      |
|      |      | grained tuff matrix. Frags have                   | 1     |       |      |     |           |     |      |      |
|      |      | - 5% hairline fractures filled with fine          |       |       |      |     |           |     |      |      |
|      |      | black pyrite CA range from 15 <sup>0</sup> to 31. |       |       |      |     |           |     |      |      |
| 76.5 | 88.5 | Fine to Coarse Grained Dacitic Tuffs              | 17177 | 85.5  | 87.0 | 1.5 | 200       | 0.9 | 1 61 | 2384 |
|      |      | - Pale green grey massive tuff with               | 8     | 87.0  | 88.5 | 1.5 | 1 50      | 1.8 | 209  | 860  |
|      |      | sericitized plagioclase crysts.                   | 1     |       |      |     |           |     |      |      |
|      |      | - 5% ubiquitous cubic pyrite as well as up        | 1     |       |      |     |           |     |      |      |
|      |      | to 7% pyrite as wisps and stringers.              | ļ     |       |      |     |           |     |      |      |
|      |      | Pyrite stringers have on average are nearly       | Í     |       |      |     |           |     |      |      |
|      |      | parallel to core axis.                            |       |       |      |     |           |     |      |      |
|      |      | - minor 2cm stringers of qtz-carb-py at           | •     |       |      |     |           |     |      |      |
|      |      | 82.3m and 84.5m. Trace to no carbonate in         | ł     |       |      |     |           |     |      |      |
|      |      | matrix.                                           | 1     |       |      |     |           |     |      |      |
|      |      | - Unit weak to mod foliated with following        | 1     |       |      |     |           |     |      |      |
|      |      | core angles 44° at 83.5m 43° at 87.0m.            | 1     |       |      |     |           |     |      |      |
|      |      |                                                   |       |       |      |     |           |     |      |      |

1 7 1

#### PROPERTY Kerr Project

۰ ۰

**`** 

Υ.

.

1 / 1 / 1 / 1 / 1

.

\* \* \* \* \* \* \*

| SHEET NO. | 6 of | 12 |
|-----------|------|----|
|-----------|------|----|

| From         To         Spl.#         From         To         m         Rec %         ppb         ppm         ppm         ppm         ppm         ppm         p           88.5         93.1         Brecciated Massive Dacite Tuff/Laminated         17179         88.5         90.0         1.5         180         2.4         259         10           Tuff         17180         90.0         91.5         1.5         290         2.6         135         26           - A zone of brecciated med to coarse         1         91.5         93.0         1.5         240         2.0         233         25           grained massive tuffs with some thinly         1aminated tuff at 90.4 to 90.7m.         -         10         to 15% as wisps batches sometimes         1         91.5         93.0         1.5         240         2.0         233         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m<br>13<br>17<br>12 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 88.5       93.1       Brecciated Massive Dacite Tuff/Laminated 17179       88.5       90.0       1.5       180       2.4       259       10         Tuff       17180       90.0       91.5       1.5       290       2.6       135       26         - A zone of brecciated med to coarse       1       91.5       93.0       1.5       240       2.0       233       25         grained massive tuffs with some thinly       1aminated tuff at 90.4 to 90.7m.       -       -       10       to 15% as wisps batches sometimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>7<br>!2        |
| Tuff       17180       90.0       91.5       1.5       290       2.6       135       26         - A zone of brecciated med to coarse       1       91.5       93.0       1.5       240       2.0       233       25         grained massive tuffs with some thinly       1aminated tuff at 90.4 to 90.7m.       10       10       15%       as wisps batches sometimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i7<br>!2            |
| - A zone of brecciated med to coarse 1 91.5 93.0 1.5 240 2.0 233 25<br>grained massive tuffs with some thinly<br>laminated tuff at 90.4 to 90.7m.<br>- 10 to 15% as wisps batches sometimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                  |
| grained massive tuffs with some thinly<br>laminated tuff at 90.4 to 90.7m.<br>- 10 to 15% as wisps batches sometimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| laminated tuff at 90.4 to 90.7m.<br>- 10 to 15% as wisps batches sometimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| - 10 to 15% as wisps batches sometimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| replacing fragments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| - Clasts up to 3cm angular and flattened,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| parallel to fol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| - Variably siliceous up to 50% with no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| associated carbonate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| - 5% green mica at 93.0m, traces chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| elsewhere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| - Core angles: Bedding Breccia Fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| $V^{-}$ at $92 \cdot V \equiv 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| - 5-7% ubiquitous pyrite throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| $\begin{bmatrix} 1 \\ 0.2 \\ 1 \\ 10.3 \\ 5 \\ 1 \\ 10.3 \\ 5 \\ 1 \\ 1 \\ 10.3 \\ 5 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 1 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\ 10.3 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                  |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | 76                  |
| - Massive blue-prev coarse tuff weakly 17184 96.0 97.5 1.5 nd 8.8 981 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                   |
| foliated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79                  |
| 1- interval appears to have intersected a: 6 99.0 100.5 1.5 250 2.4 269 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                  |
| 'narrow' milky white guartz vein with A~0°! 7 100.5 102.0 1.5 260 1.6 137 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76                  |
| core axis (ie rock has been drilled down 8 102.0 103.5 1.5 295 2.6 253 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38                  |
| the dip of the vein) No carbonate present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
.

Ì

#### Kerr Project PROPERTY

1 . T

SHEET NO. 7 of 12

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAM                           | PLING                                     |                                           |                          |       | Au                            | Ag                              | Cu                              | Zn                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------------------|--------------------------|-------|-------------------------------|---------------------------------|---------------------------------|-----------------------------------|
| From To     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spl.#                         | From                                      | То                                        | 111                      | Rec % | <b>ppb</b>                    | ppm                             | ppm                             | ppm                               |
| 103.5 113.1 | <ul> <li>The quartz is in 1 to 3cm stringers and<br/>is contorted and patchy. Patches of pyrite<br/>are common along the outside edges of the<br/>veining and qtz patches.</li> <li>5% ubiquitous cubic pyrite pervasive in<br/>tuff material and 1-3% pyrite is actually<br/>found in the qtz itself.</li> <li>97.6 to 100.4m is 'unsilicified' or<br/>veined.</li> <li>100.6 to 102.2m contain - 70% qtz 20% py<br/>10% sericite.</li> <li>Core angle = 27° at 100.0m.</li> <li>Unidentifiable dark grey mineral at 102.4</li> <li>Very fine grain pyrite?</li> <li>Coarse Grained Blue Grey Crystal Tuff</li> <li>Same as above unit with no qtz veining</li> <li>Contains same ubiquitous cubic pyrite as<br/>well as numerous wisps and patches of<br/>brassy black pyrite parallel to foliation.</li> <li>No carbonate veining or in matrix.</li> <li>Sericitized plag. crysts throughout.</li> <li>With 1% plagioclase phenocrysts up to 5mm<br/>between 110.0m to 111.6m.</li> <li>Weak to mod foliated with core angles of:<br/>24° at 105.5m, 31° at 107.2m, 33° at 109.5,<br/>42° at 111.5.</li> <li>4cm pyrite-qtz band at 106.5 with 37°<br/>core angle.</li> </ul> | 17189<br>17190<br>1<br>2<br>3 | 103.5<br>105.0<br>106.5<br>108.0<br>109.5 | 105.0<br>106.5<br>108.0<br>109.5<br>111.0 | 1.5<br>1.5<br>1.5<br>1.5 |       | 250<br>180<br>150<br>nd<br>nd | 3.4<br>1.4<br>0.7<br>1.3<br>0.1 | 210<br>180<br>177<br>159<br>215 | 1173<br>731<br>843<br>1976<br>827 |

## PROPERTY Kerr Project

SHEET NO. 8 of 12

|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                         | •                       |                   |     |                   | T :               | 1                |                      |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|-------------------------|-------------------|-----|-------------------|-------------------|------------------|----------------------|
| METE  | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAM                 | PLING                   |                         |                   | ļ   | Au                | Ag                | Cu               | Zn                   |
| From  | To    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sp1.∦               | From                    | То                      | 1 11              | Rec | % ppb             | ppm               | ppm              | ppm                  |
| 113.1 | 116.2 | Intercalated Fine to Coarse Grained<br>Laminated Tuffs<br>- Thinly laminated very fine grained tuff<br>(2-20mm) intercalated with thicker (10 to<br>100cm) more massive coarse tuff.<br>- Andesitic to dacitic in composition;<br>light to med green colour.<br>- Little to no qtz carb veining; no carb in<br>matrix.<br>- Bedding core angles 41° at 113.2m, 36° at<br>115.1m.<br>- 1-3% ubiquitous cubic pyrite with minor<br>wisps and stringers of pyrite aggregate<br>masses. |                     |                         | <u>.</u>                |                   |     |                   |                   |                  |                      |
| 116.2 | 120.6 | Coarse Grained Dacitic Tuff.<br>- Blue grey colour; weak to mod foliated;<br>massive.<br>- Qtz carb stringer near parallel to core<br>axis with some brecciation at 119.0 to<br>119.6m and at 120.3m<br>- 5% ubiquitous pyrite some aggregate<br>pyritic masses.<br>- Some 2-5mm sericitized plag? crysts and<br>blebs of green mica at 118.6m and 120.3m<br>and 117.4m.<br>- Core angles: 49° at 117.4, 44° at<br>120.2m.                                                          | 17194<br>17195<br>6 | 116.0<br>117.5<br>119.0 | 117.5<br>119.0<br>120.5 | 1.5<br>1.5<br>1.5 |     | 280<br>400<br>225 | 2-8<br>0.4<br>0.2 | 345<br>260<br>57 | 1744<br>1751<br>2541 |

.

## PROPERTY Kerr Project

.

SHEET NO. 9 of 12

| METE   | ERS      | DESCRIPTION                                                                             | SAN    | <b>PLING</b> |       |     | Au        | Ag  | Cu   | Zn    |
|--------|----------|-----------------------------------------------------------------------------------------|--------|--------------|-------|-----|-----------|-----|------|-------|
| From   | То       |                                                                                         | Spl.#  | From         | То    | , m | Rec % ppb | ppm | ppm  | p pm  |
| 120.6  | 146.25   | Intercalated Very Fine to Coarse Grained                                                | 17197  | 120.5        | 122.0 | 1.5 | 9430      | 0.1 | 122  | 1981  |
|        |          | Laminated Tuffs                                                                         | 8      | 122.0        | 123.5 | 1.5 | 1 40      | 0.1 | 210  | 635   |
|        |          | - Light to dark green to grey very fine to                                              | 9      | 123.5        | 125.0 | 1.5 | 90        | 0.1 | 131  | 811   |
|        |          | coarse grained laminated tuffs intercalated with more massive and coarser grained tuffs | 17200  | 125.0        | 126.5 | 1.5 | 80        | 0.1 | 84   | 944   |
|        |          | with or without occasional lapilli frags.<br>- As described in 113.1 - 116.2.           | 17201  | 132.5        | 134.5 | 2.0 | 155       | 0.1 | 1 41 | 755   |
|        |          | - Bedding core angles: 44 <sup>0</sup> at 122.5m, 46 <sup>0</sup><br>at 125.0.          | 17202  | 137.0        | 139.0 | 2.0 | 120       | 0.1 | 118  | 1128  |
|        |          | Bedding Core Angles:                                                                    | 17203  | 140.0        | 144.0 | 2.0 | 40        | 0.1 | 131  | 3 5 1 |
|        |          | 43° at 125.5m; 44° at 128.0m; 37° at                                                    |        |              |       |     |           |     |      |       |
|        |          | 129.5m; 50° at 133.5m; 44° at 135.2m; 52°                                               | i      |              |       |     |           |     |      |       |
|        |          | at 140.0m; 51° at 141.2m; 53° at 143.4m;                                                | i<br>I |              |       |     |           |     |      |       |
|        |          | 50° at 142.0.                                                                           | i i    |              |       |     |           |     |      |       |
|        |          | - 143.0m minor breccia 20cms                                                            | Í      |              |       |     |           |     |      |       |
|        |          | - Qtz-carb veinlets at 136.9m, 138.4m and 142.0m.                                       |        |              |       |     |           |     |      |       |
|        |          | - Minor qtz-carb throughout 1-3%.                                                       |        |              |       |     |           |     |      |       |
| 146.25 | 5 160.15 | Intercalated Very Fine to Coarse Grained                                                | 17204  | 146.0        | 147.5 | 1.5 | 60        | 0.1 | 154  | 2530  |
|        |          | Laminated Tuffs and Lapilli Tuffs.                                                      | 5      | 147.5        | 149.0 | 1.5 | 55        | 0.9 | 206  | 582   |
|        |          | - 151.0 to 152.5 med green very coarse grained (3mm) tuff.                              | 6      | 149.0        | 150.5 | 1.5 | 5         | 4.9 | 524  | 623   |
|        |          | - Laminated tuffs at 147.8 to 148.67m,                                                  | 17207  | 154.0        | 155.5 | 1.5 | 80        | 0.1 | 116  | 2138  |
|        |          | 153.5 to 153.75m 158.0 to 158.3m.                                                       | 8      | 155.5        | 157.0 | 1.5 | 130       | 1.0 | 144  | 3699  |
|        |          | - Distinct pistachio coloured lapilli tuff                                              | 9      | 157.0        | 158.5 | 1.5 | 50        | 0.1 | 160  | 2004  |
|        |          | between 154.6 to 155.8m from blebs and<br>wisps of green mica.                          | 17210  | 158.5        | 160.0 | 1.5 | 50        | 0.1 | 92   | 696   |

1

HOLE NO. \_\_\_\_\_ K87-3

PROPERTY Kerr Project

ŗ

:

SHEET NO. 10 of 12

| From       To       spl.#/From       To       m ;Rec % ppb       ppm       ppm </th <th>METE</th> <th>RS</th> <th>DESCRIPTION</th> <th>SAM</th> <th>PLING</th> <th></th> <th></th> <th>I<br/>1</th> <th colspan="2">Au Ag</th> <th>Cu</th> <th>Zn</th> | METE  | RS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAM   | PLING |       |     | I<br>1 | Au Ag |     | Cu  | Zn   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-----|--------|-------|-----|-----|------|
| <ul> <li>Approx 6 small but distinct lapilli tuff<br/>units separated by thinly laminated, very<br/>fine to coarse grained tuff and massive<br/>tuffs (2nm to 40mm fragments).</li> <li>- Compositionally the unit is dacitic to<br/>andesitic.</li> <li>- At least 4 distinct rock fragments are<br/>present.</li> <li>- Most fragments are angular but rounded<br/>frags are not uncommon. Pyrite aggregates.</li> <li>- Very minor carb in matrix and qtz-carb<br/>stringers.</li> <li>Bedding Core Angles: 40° @ 148.3m; 45° @<br/>150.73m, 47° @ 149.7m, 53° @ 151.4m 47° @<br/>155.5m, 45° @ 153.5m, 48° @ 154.15m 45° @<br/>158.8m.</li> <li>160.15 167.1 Intercalated Fine to Coarse Tuffs and 17211 166.0 167.5 1.5 110 0.1 99 637<br/>Laminated Tuff</li> <li>- Light to med green, dacitic to andesitic,<br/>very fine to very coarse tuff intercalated<br/>with very fine light green thinly laminated<br/>tuff i to 5%. Lapilli size fragments found<br/>throughout.</li> <li>- 5% ubiquitous cubic pyrite.</li> </ul>                                                                                                                                                                                                                                                  | From  | То      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spl.# | From  | To    | l m | Rec 7  | Гррр  | ppm | ррш | p pm |
| matrix.<br>- Bedding Core Angles: 46° @ 162m, 46° @<br>163.8m, 46° @ 166.3m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160.1 | 5 167.1 | <ul> <li>Approx 6 small but distinct lapilli tuff<br/>units separated by thinly laminated, very<br/>fine to coarse grained tuff and massive<br/>tuffs (2mm to 40mm fragments).</li> <li>Compositionally the unit is dacitic to<br/>andesitic.</li> <li>At least 4 distinct rock fragments are<br/>present.</li> <li>Most fragments are angular but rounded<br/>frags are not uncommon. Pyrite aggregates.</li> <li>Very minor carb in matrix and qtz-carb<br/>stringers.</li> <li>Bedding Core Angles: 40° @ 148.3m; 45° @<br/>150.73m, 47° @ 149.7m, 53° @ 151.4m 47° @<br/>155.5m, 45° @ 153.5m, 48° @ 154.15m 45° @<br/>158.8m.</li> <li>Intercalated Fine to Coarse Tuffs and<br/>Laminated Tuff</li> <li>Light to med green, dacitic to andesitic,<br/>very fine to very coarse tuff intercalated<br/>with very fine light green thinly laminated<br/>tuff 1 to 5%. Lapilli size fragments found<br/>throughout.</li> <li>5% ubiquitous cubic pyrite.</li> <li>Minor qtz-carb stringer, trace carb in<br/>matrix.</li> <li>Bedding Core Angles: 46° @ 162m, 46° @<br/>163.8m, 46° @ 166.3m.</li> </ul> | 17211 | 166.0 | 167.5 | 1.5 |        | 110   | 0.1 | 99  | 637  |

PROPERTY Kerr Project

SHEET NO. 11 of 12

| METE   | RS      | DESCRIPTION                                                                                                                                                       | SAM             | SAMPLING |       |     |     | Au    | Ag  | Cu  | Zn           |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-------|-----|-----|-------|-----|-----|--------------|
| Ton    | То      | -                                                                                                                                                                 | Spl.#           | From     | То    | m   | Rec | % ppb | ppm | ppm | ppm          |
| 167.1  | 169.1   | Brecciated Coarse Grained Andesitic Tuff<br>- Brecciated and qtz carb veining with 23°<br>core angles.<br>- Some possible lapilli fragments; origin<br>uncertain. | 17212           | 167.5    | 169.0 | 1.5 |     | 220   | 1.7 | 410 | 1288         |
|        |         | - 5-10% ubiquitous pyrite and abundant<br>chlorite, sericite.<br>- Qtz-carb approx 10-30%.                                                                        |                 |          |       |     |     |       |     |     |              |
| 169.1  | 185.0   | Intercalated Andesitic to Dacitic Lapilli-                                                                                                                        | 17213           | 169.0    | 170.5 | 1.5 |     | 160   | 0.9 | 270 | 105 <b>9</b> |
|        |         | Tuff, Fine to Very Coarse Tuff and thinly                                                                                                                         | 17214           | 170.5    | 172.0 | 1.5 |     | 105   | 0.9 | 143 | 2084         |
|        |         | Laminated Tuffs                                                                                                                                                   | 17215           | 172.0    | 173.5 | 1.5 |     | 120   | 0.2 | 201 | 1190         |
|        |         | - As described in 146.25 to 160.15m                                                                                                                               | 6               | 173.5    | 175.0 | 1.5 |     | 100   | 0.1 | 154 | 1951         |
|        |         | interval                                                                                                                                                          | 7               | 175-0    | 176.5 | 1.5 |     | 100   | 0.1 | 95  | 1135         |
|        |         | - Approx 1% carbonate in matrix and<br>fragments.                                                                                                                 | 8               | 176-5    | 178.0 | 1.5 |     | 110   | 0.1 | 153 | 1813         |
|        |         | - Lapini core Angres Bedding core Angres                                                                                                                          | 1               |          |       |     |     |       |     |     |              |
|        |         | 44° @ 109•9m                                                                                                                                                      | Ì               |          |       |     |     |       |     |     |              |
|        |         | 45° @ 175.85m                                                                                                                                                     |                 |          |       |     |     |       |     |     |              |
|        |         | - Laminated section at 172.65 to 173.4m.                                                                                                                          | ļ               |          |       |     |     |       |     |     |              |
|        |         | - Minor qtz-carb veining.                                                                                                                                         | Í               |          |       |     |     |       |     |     |              |
|        |         | - 5% ubiquitous cubic pyrite.                                                                                                                                     | 1<br> <br> <br> |          |       |     |     |       |     |     |              |
| 178.25 | 5 183.0 | Intercalated Fine to Coarse Grained Massive                                                                                                                       | 1               |          |       |     |     |       |     |     |              |
|        |         | Tuffs and Minor Thinly Laminated Tuffs.                                                                                                                           | 1               |          |       |     |     |       |     |     |              |
|        |         | - Andesitic to dacitic composition light to                                                                                                                       | ł               |          |       |     |     |       |     |     |              |
|        |         | med green.                                                                                                                                                        | i               |          |       |     |     |       |     |     |              |

| PROPERTY | Kerr Project |  |
|----------|--------------|--|
|          |              |  |

SHEET NO. 12 of 12

. .

| METERS                 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLING    |             | Ац        | Ag  | Cu  | Zn   |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------|-----|-----|------|
| From To                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spl.# From  | To m        | Rec 🗶 ppb | ppm | ppm | p pm |
|                        | <ul> <li>Largest laminated section from 178.25 to<br/>178.7m</li> <li>Minor lapilli fragments throughout.<br/>Bedding Core Angles: 54° @ 178.65m; 50° @<br/>181.5m; 52° @ 179.9m.</li> <li>Both gradational and sharply graded<br/>bedding contacts.</li> <li>I to 3% qtz carb stringers and minor carb<br/>in matrices.</li> <li>5% ubiquitous cubic pyrite; 2cm qtz vein<br/>with 35° c.a.</li> <li>Traces green mica and approx 10% pyrite<br/>at 181.6m.</li> </ul> |             |             |           | ,   |     |      |
| 183.0 183.54<br>183.54 | Dacitic Lapilli Tuff<br>- 5% cherty grey subangular lapilli<br>fragments set in med to coarse grained and<br>other wisp massive green tuff.                                                                                                                                                                                                                                                                                                                             | 17219 182.0 | 183.54 1.54 | 5         | 0.1 | 213 | 536  |

|                |       |                    |                 | 4                   |
|----------------|-------|--------------------|-----------------|---------------------|
|                |       | Core Recove        | <b>ry K87-3</b> |                     |
| FROM           | TO    | INTERVAL<br>LENGTH | CORE<br>LENGTH  | PERCENT<br>RECOVERY |
| <sup>,</sup> 0 | 3.96  | 3.96               | 1.93            | 49                  |
| 3.96           | 4.27  | .31                | ,19             | 61                  |
| 4.27           | 7.01  | 2.74               | 2.37            | 86                  |
| 7.01           | 8.53  | 1.52               | 1.62            | 107                 |
| 8.53           | 9.60  | 1.07               | 1.08            | 101                 |
| 9.60           | 10.67 | 1.07               | •76             | 71                  |
| 10.67          | 11.13 | • 46               | • 53            | 115                 |
| 11.13          | 12.8  | 1.67               | 1.78            | 107                 |
| 12.8           | 13.72 | •92                | •91             | 99                  |
| 13.72          | 15.54 | 1.82               | 1.86            | 102                 |
| 15.54          | 18.44 | 2.90               | 2.66            | 92                  |
| 18.44          | 19.66 | 1.22               | 1.13            | 93                  |
| 19.66          | 22.71 | 3.05               | 2.97            | 97                  |
| 22.71          | 25,91 | 3.2                | 2.98            | 93                  |
| 25.91          | 28.65 | 2.74               | 2.26            | 82                  |
| 28.65          | 31.7  | 3.05               | 2.57            | 84                  |
| 31.7           | 33.68 | 1.98               | 1.94            | 98                  |
| 33.68          | 35.05 | 1.37               | •96             | 70                  |
| 35.05          | 38.10 | 3.05               | 3.05            | 100                 |
| 38.10          | 41.15 | 3.05               | 2.98            | 98                  |
| 41.15          | 44.2  | 3.05               | 3.03            | 99                  |
| 44.2           | 47.24 | 3.04               | 2.96            | 97                  |
| 47.24          | 50.29 | 3.05               | 2-81            | 92                  |
| 50.29          | 53.34 | 3.05               | 3.02            | 99                  |
| 53.34          | 56.39 | 3.04               | 2.84            | 93                  |
| 56.39          | 59.44 | 3.05               | 2.89            | 95                  |
| 59.44          | 62.48 | 3.04               | 3.06            | 101                 |
| 62.48          | 65.53 | 2.85               | 1.54            | 54                  |
| 65.53          | 68.58 | 3.05               | 3.06            | 100                 |
| 68.58          | 71.63 | 3.05               | 2.80            | 92                  |
| 71.63          | 74.68 | 3.05               | 3.12            | 102                 |
| 74.68          | 76.50 | 1.82               | 1.68            | 92                  |
| 76.50          | 77.72 | 1.22               | 1.28            | 105                 |
| 77.72          | 80.77 | 3.05               | 3.00            | 98                  |
| 80.77          | 83.82 | 3.05               | 3.05            | 100                 |

.

.

|               | Core Recove | ry K87-3     |          |
|---------------|-------------|--------------|----------|
| FROM TO       | INTERVAL    | CORE         | PERCENT  |
|               | LENGTH      | LENGTH       | RECOVERY |
| 83.82 86.87   | 3.05        | 2.88         | 94       |
| 86.87 89.92   | 3.05        | 2.85         | 93       |
| 89.92 92.96   | 3.04        | 2-87         | 94       |
| 92.96 96.01   | 3.05        | 3.03         | 99       |
| 96.01 98.76   | 2.75        | 1.59         | 58       |
| 98.76 100.58  | 1.82        | 1.71         | 94       |
| 100.58 102.11 | 1.53        | 1.64         | 107      |
| 102.11 103.94 | 1.83        | 1.83         | 100      |
| 103.94 104.55 | .61         | • 56         | 92       |
| 104.55 107.59 | 3.04        | 3.06         | 101      |
| 107.59 110.79 | 3.20        | 2.95         | 92       |
| 110.79 114.0  | 3.21        | 3.04         | 95       |
| 114.0 117.2   | 3.20        | 2.94         | 92       |
| 117.2 117.9   | .70         | .75          | 107      |
| 117.9 120.4   | 2.5         | 2.25         | 90       |
| 120-4 123.44  | 3.04        | 2.99         | 98       |
| 123.44 125.88 | 2.44        | 2.24         | 92       |
| 125-88 128-6  | 2.72        | 2.72         | 100      |
| 12000 12000   | 2002        | 2-72         | 100      |
| 125.88 128.93 | 3.05        | 3.05         | 100      |
| 128.93 129.42 | .49         | • 41         | 84       |
| 129.42 132.59 | 3.17        | 3.11         | 98       |
| 132.59 135.67 | 3.08        | 3.03         | 98       |
| 135.67 138.72 | 3.05        | 2-89         | 95       |
| 138.72 141.77 | 3.05        | 3.41         | 112      |
| 141.77 144.21 | 2.44        | 2.31         | 95       |
| 144.21 145.73 | 1.52        | 1.33         | 88       |
| 145.73 147.87 | 2.14        | 1.92         | 90       |
| 147.87 150.91 | 3.04        | 3.00         | 99       |
| 150.91 153.96 | 3.05        | 3.01         | 99       |
| 153.96 157.01 | 3.05        | 2.90         | 95       |
| 157.01 160.06 | 3.05        | 3.09         | 101      |
| 160.06 162.65 | 2.59        | 2.72         | 105      |
| 162.65 165.85 | 2 20        | <b>A A Z</b> |          |
|               | 3-20        | 3+05         | 95       |

.

. .

|        |            | Core Recove        | ry K87-3       |                     |
|--------|------------|--------------------|----------------|---------------------|
| From   | TO         | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
| 167.83 | 170.88     | 3.05               | 3.08           | 101                 |
| 170.88 | 172,26     | 1.38               | 1.15           | 83                  |
| 172.26 | 173.43     | 1.17               | 1.03           | 88                  |
| 173.43 | 175.30     | 1.87               | 1.85           | 99                  |
| 175.30 | 178.35     | 3.05               | 3.05           | 100                 |
| 178.35 | 180.49     | 2.14               | 2.23           | 104                 |
| 180-49 | 183.54 eoh | 3.05               | 2.98           | 98                  |

•

.

2 •

х х

· .

|                  | PRO                      | ECT KERR PROJEC  | 77                                    | Page: 1 of 7                 |
|------------------|--------------------------|------------------|---------------------------------------|------------------------------|
|                  | D.D. HOLE                | No. <u>K87-4</u> | · · · · · · · · · · · · · · · · · · · |                              |
|                  |                          |                  | Depth 95.7m                           | Dip 39° Azimuth              |
| Location Zon     | e L                      |                  | Collar Lat                            | 9,705 N                      |
|                  | · • ·                    |                  | Dep.                                  | 10,062 W                     |
| Hole Started     | 29 July 1987             |                  | Elev.                                 | 1,601                        |
| Hole Completed   | 31 July 1987             |                  | Azimuth                               | 0900                         |
| Core Recovery S  | ee attached sheets       |                  | Dip                                   | <del>~</del> 45 <sup>0</sup> |
| Drilled By Advan | ced Diamond Drilling     |                  | Length                                | 97.54                        |
| Logged by John K | owalchuk                 |                  | Hor. Proj                             | Vert. Proj                   |
| Objective: Test  | silica boxworks zone and | geochem anomaly  |                                       |                              |

•

à.

HOLE NO. \_\_\_\_\_ K87-4

#### PROPERTY Kerr Project

, , , , , , ,

•

.

•

•

• •

.

.

\$

SHEET NO. 2 of 7

| METERS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAM                                                                  | LING                                                                                       |                                                                                             |                                                                            |       | Au                                                           | Ag                                                                               | Cu                                                                                    | Zn                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|--------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| From To   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spl.#1                                                               | rom                                                                                        | To                                                                                          | Ш                                                                          | Rec 2 | ppb                                                          | ppm                                                                              | bbm                                                                                   | p bw                                                                           |
| 3.30 4.92 | Tuff<br>- Fine grained - dark green colour,<br>- Unaltered - chloritic.<br>- slightly laminated 61° to core axis.<br>- Interbedded with sericitic altered tuff.<br>4.27-8cm qtz vein at 61° to core axis.<br>- May be boulders and not in place tr Py.                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17220                                                                | 3.30                                                                                       | 4.90                                                                                        | 1.60                                                                       |       | nd                                                           | 0.1                                                                              | 80                                                                                    | 156                                                                            |
| 4.92 23.0 | Altered Tuff<br>- Light grey-fine to medium grained<br>sericitized and foliated.<br>- Schistize 5-10% Py along foliation flain.<br>- Py rusty down to 14.0 meters very<br>sericitized - up to 50% up to 12.0 metres.<br>- Below rock fresher.<br>7.3m - Foliation 58°.<br>11.1m - Foliation 57°.<br>- Crystal.<br>13.6 - Rock less sericitized.<br>- Becomes buff coloured.<br>- Extensive carbonate veining - 5mm in<br>thickness - 20 veins/metre.<br>- Qtz-carb veins contain Py run parallel to<br>foliation.<br>- Tuff is med grained containing some<br>lapilli.<br>13.95m - Foliation at 60°<br>14.17m - Foliation at 60°<br>17.45m - Foliation at 60°<br>19.8m - Foliation at 63° | 17221<br>2<br>3<br>4<br>5<br>17226<br>7<br>8<br>9<br>17230<br>1<br>2 | 4.90<br>6.0<br>8.0<br>10.4<br>11.9<br>13.4<br>14.9<br>16.4<br>17.9<br>19.4<br>20.9<br>22.6 | 6.00<br>8.0<br>10.4<br>11.9<br>13.4<br>14.9<br>16.4<br>17.9<br>19.4<br>20.9<br>22.6<br>23.1 | 1.10<br>2.0<br>2.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.7<br>0.5 |       | nd<br>220<br>95<br>nd<br>nd<br>180<br>nd<br>110<br>90<br>160 | 0.4<br>1.3<br>0.8<br>0.7<br>1.0<br>0.1<br>0.1<br>0.2<br>0.1<br>0.9<br>1.0<br>1.7 | 155<br>1479<br>368<br>720<br>1463<br>1513<br>1047<br>792<br>579<br>1280<br>783<br>685 | 36<br>261<br>39<br>46<br>217<br>133<br>1462<br>430<br>127<br>352<br>286<br>323 |

# PROPERTY Kerr Project

SHEET NO. 3 of 7

| METE | ETERS DESCRIPTION |                                                                                                                                                                                                                                                                                                                                       | SAMPLING |      |      |       |     | Au    | Ag           | Cu          | Zn   |
|------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|-------|-----|-------|--------------|-------------|------|
| From | To                |                                                                                                                                                                                                                                                                                                                                       | Sp1.#    | From | То   | T TAL | Rec | % ppb | ppm          | <u>p</u> pm | p pm |
|      |                   | <ul> <li>Increase in qtz and silicification as go down hole.</li> <li>21.34 - Foliation 61<sup>o</sup> - dissem cpy in rock.</li> <li>22.55 - Foliation 40<sup>o</sup>.</li> <li>Bottom 30cm - 20<sup>o</sup>-30<sup>o</sup> qtz carb veining.</li> </ul>                                                                             |          |      |      |       |     |       |              |             |      |
| 23.0 | 42.4              | Crystal Tuff                                                                                                                                                                                                                                                                                                                          | 17233    | 23.1 | 24.6 | 1.5   |     | 30    | 1.0          | 500         | 237  |
|      |                   | - Medium to coarse grained.                                                                                                                                                                                                                                                                                                           | 17234    | 24.6 | 26.1 | 1.5   |     | 140   | 4.0          | 883         | 435  |
|      |                   | - Silicified - massive.                                                                                                                                                                                                                                                                                                               | 5        | 26.1 | 27.6 | 1.5   |     | nd    | 4.9          | 778         | 406  |
|      |                   | - Several chalcedonic veins throughout.                                                                                                                                                                                                                                                                                               | 6        | 27.6 | 29.0 | 1.4   |     | 15    | 0.8          | 402         | 370  |
|      |                   | - Very little sericite alteration.                                                                                                                                                                                                                                                                                                    | 7        | 29.0 | 30.0 | 1.0   |     | 20    | 1.5          | 438         | 211  |
|      |                   | - Generally < 5% pyrite throughout.                                                                                                                                                                                                                                                                                                   | 8        | 30.0 | 30.7 | 0.7   |     | nd    | 3.2          | 614         | 170  |
|      |                   | - Chalcedonic veins about 1cm thick. 10                                                                                                                                                                                                                                                                                               | 9        | 30.7 | 31.8 | 1.1   |     | 60    | 2.6          | 575         | 315  |
|      |                   | veins/m. 10-25% chalcedony                                                                                                                                                                                                                                                                                                            | 17240    | 31.8 | 33.3 | 1.5   |     | 5     | 2.2          | 548         | 265  |
|      |                   | 24.6 - 26.6 - >50% silica as both pervasive                                                                                                                                                                                                                                                                                           | 1        | 33.3 | 34.4 | 1.1   |     | nd    | 1.8          | 470         | 2578 |
|      |                   | and vein silicification. Texture gone as                                                                                                                                                                                                                                                                                              | 2        | 34.4 | 35.4 | 1.0   |     | nd    | 3.9          | 781         | 391  |
|      |                   | silica floods in. 5% sulphides as py. Tr                                                                                                                                                                                                                                                                                              | 3        | 35.4 | 36.4 | 1.0   |     | 180   | 10 <b>.9</b> | 1849        | 148  |
|      |                   | сру                                                                                                                                                                                                                                                                                                                                   | 4        | 36-4 | 37.4 | 1.0   |     | 240   | 4.1          | 854         | 153  |
|      |                   | 24.6 - Qtz vein 52°.                                                                                                                                                                                                                                                                                                                  | 5        | 37.4 | 38.9 | 1.5   |     | 15    | 1.8          | 50 <b>9</b> | 583  |
|      |                   | 26.0 - Qtz veins 64°.                                                                                                                                                                                                                                                                                                                 | 6        | 38.9 | 40.4 | 1.5   |     | 25    | 2.2          | 599         | 253  |
|      |                   | 26.5 - Py on frs. 30°.                                                                                                                                                                                                                                                                                                                | 7        | 40.4 | 41.9 | 1.5   |     | nd    | 3.1          | 700         | 330  |
| •    |                   | <pre>29.0-30.0 &gt; 50% silica as veins. 10% Py.<br/>28.6 - 35° qtz vein.<br/>30.7 - 31.8 - &gt;50% silica as chalcedony<br/>veins. Tr Py.<br/>30.1 - qtz vein 450.<br/>34.4-37.4 - Extremely brecciated cemented<br/>by qtz (chalcedony). Light grey colour-<br/>tuff texture some Py and cpy on fractures.<br/>10% py tr cpy.</pre> | 8        | 41.9 | 43.4 | 1.5   |     | nđ    | 2.7          | 692         | 240  |

•

.

#### PROPERTY Kerr Project

SHEET NO. 4 of 7

| METERS     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                              | SAM            | PLING                 |                      |                   |       | Au              | Ag                | Cu                 | Zn                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|----------------------|-------------------|-------|-----------------|-------------------|--------------------|--------------------|
| From To    |                                                                                                                                                                                                                                                                                                                                                                                          | Sp1 #          | From                  | To                   | i m               | Rec % | ppb             | i p pa            | p pm i             | ррш                |
|            | 31.6 - Qtz veins 60° c/a<br>34.0 - Qtz veins 60° c/a<br>37.0 - Py and qtz - 25° c/a.<br>37.4-42.4 - Back to silified xtal tuff-                                                                                                                                                                                                                                                          |                |                       |                      |                   |       |                 |                   |                    |                    |
|            | 10% qtz veins at $60^\circ$ .                                                                                                                                                                                                                                                                                                                                                            | 17249<br>17250 | 43.4<br>44.9          | 44.9<br>46.4         | 1.5<br>1.5        | 1     | nd<br>15        | 2.0<br>1.2        | 829<br>494         | 297<br>4537        |
| 42.4 44.07 | Thinly laminated cherty tuff. Buff<br>coloured - slightly jasperoid. 5% qtz<br>veins. <5% Py along fractures and veins.<br>Bedding and lamination 45° to core axis.                                                                                                                                                                                                                      | 1<br>2<br>3    | 46.4<br>47.9<br>49.4  | 47.9<br>49.4<br>50.9 | 1.5<br>1.5<br>1.5 |       | 160<br>40<br>35 | 6.0<br>2.3<br>1.8 | 1446<br>588<br>430 | 1042<br>279<br>396 |
| 44.07 50.1 | Medium to coarse grained crystal tuff<br>contains many lapilli.<br>- Buff coloured.<br>46.0-48.0 - Becomes quite siliceous with<br>many qtz-chalcedony veins 550 and 25°<br>cemented with chalcedony and Py. Tr cpy-<br>some other sulphide or sulphosalt.<br>- Generally less than 5% sulphides except<br>for above section.<br>48.0-50.1 - Generally > 2% sulphides. 10%<br>qtz veins. | 17254          | 50 <b>.</b> 9<br>52.4 | 52.4                 | 1.5               |       | nđ<br>80        | 4.0               | 992                | 1740<br>5054       |
| 50.1 55.4  | Thinly laminated tuff - Quite cherty. Some<br>interbedded crystal tuff. Buff to purple<br>coloured - jasperoid approx 5% sulphides as<br>Py in fractures- tr cpy - 2-5 narrow (1cm)<br>qtz veins/metre<br>5151.6 - Section of 10% sulphides.                                                                                                                                             | 6              | 53.9                  | 55.4                 | 1.5               |       | 30              | 0.8               | 405                | 2838               |

-

.

i.

## PROPERTY Kerr Project

SHEET NO. 5 of 7

| METER | IS    | DESCRIPTION                                                                                                                                                                                                                                                                             | SAM                      | PLING                        |                              |                          | [<br> | Au                    | Ag                       | Cu                         | Zn                        |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|-------|-----------------------|--------------------------|----------------------------|---------------------------|
| From  | To    | -                                                                                                                                                                                                                                                                                       | Sp1.# I                  | From                         | То                           | m                        | Rec   | %¦ррЪ                 | ppm i                    | ppm                        | ppm                       |
| 50.1  | 55.4  | Thinly laminated cherty.<br>50.1 - 30° narrow qtz vein.<br>51.5 - 60° Py vein 5mm.<br>53.0 - 30° Py vein 1cm.<br>54.0 - 35° qtz filled fracture                                                                                                                                         |                          |                              |                              |                          |       |                       |                          |                            |                           |
| 55.4  | 58.65 | Crystal lapilli tuff - grey to buff colour.<br>Core blocky.<br>10% carbonate throughout as pervasive<br>flooding.<br>2% qtz carbonate veins as 5mm veinlets.<br>Tr to 2% sulphides.<br>55.8 - Py filled fr. 35°.<br>47.8 - Qtz-carb veins 55°<br>Tuff showing some biotite hornfelsing. | 17257<br>8               | 55.4<br>56.9                 | 56.9<br>58.6                 | 1.5<br>1.7               |       | 45<br>380             | 1.0<br>2.1               | 333<br>525                 | 2362<br>289               |
| 58.65 | 61.90 | Fault Zone<br>- Rusty leached brecciated tuff.<br>- Some sand.<br>- Limonitic and porous.<br>- Large fragments show extreme shearing and<br>brecciation.<br>60.35 - 1cm Py vein at 50°.                                                                                                 | 17259<br>17260<br>1<br>2 | 58.6<br>59.7<br>61.9<br>63.4 | 59.7<br>61.9<br>63.4<br>64.9 | 1.1<br>2.2<br>1.5<br>1.5 |       | 60<br>25<br>nd<br>100 | 1.3<br>0.9<br>0.1<br>0.1 | 1138<br>3088<br>469<br>407 | 342<br>1150<br>610<br>470 |
| 61.9  | 64.3  | Crystal - lapilli tuff.<br>- med to coarse grained.<br>- Quite calcareous containing carbonate<br>filled fractures.<br>- Less than 1% sulphides along fracture<br>planes.                                                                                                               |                          |                              |                              |                          |       |                       |                          |                            |                           |

.

## PROPERTY Kerr Project

•

SHEET NO. 6 of 7

| METE | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                          | SA              | MPLING               |                      |                   | Au              | Ag                | Cu                 | Zn                  | Ĩ |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|----------------------|-------------------|-----------------|-------------------|--------------------|---------------------|---|
| From | To    |                                                                                                                                                                                                                                                                                                                                                                                                      | Sp1.#           | From                 | То                   |                   | Rec % ppb       | mada              | ppm                | ppm                 | _ |
| 61.9 | 64.3  | Crystal tuff.<br>63.4 - Carbonate sulphide veins 60° and 35°<br>- some biotite metasomatism no siliceous.                                                                                                                                                                                                                                                                                            |                 |                      |                      | L                 |                 |                   |                    |                     |   |
| 64.3 | 69.8  | Fault Zone — rusty and fractured.<br>Sulphides leached out of crystal tuff.<br>65.0-67.0 — Py boxworks — 10% recovery.                                                                                                                                                                                                                                                                               | 17263<br>4<br>5 | 64.9<br>67.4<br>68.9 | 67.4<br>68.9<br>70.4 | 1.5<br>1.5<br>1.5 | nd<br>nd<br>170 | 0.7<br>0.4<br>2.0 | 1688<br>548<br>995 | 330<br>1790<br>2196 |   |
| 69.8 | 75.9  | Lapilli - xtal tuff - med grained<br>Very calcareous - many carbonate stringers<br>at 30° to core axis.<br>Grey colour<br>Slight biotite hornfelsing<br>69.8 - 30cm sheared zone containing qtz and<br>Py - shearing at 20° to core axis.<br>70.3 - 2 Py veins 5cm across 20° to core<br>axis.<br>76.7m - 2cm chert beds at 40° to core axis.<br>72.6-73.6 - Broken rusty core. Small fault<br>zone. | 17266<br>7<br>8 | 70.4<br>71.9<br>73.4 | 71-9<br>73.4<br>75.4 | 1.5<br>1.5<br>2.0 | 40<br>nd<br>130 | 0.1<br>0.1<br>2.8 | 300<br>337<br>567  | 593<br>464<br>584   |   |
| 75.9 | 77-85 | Carbonate Breccia Zone -Light grey colour<br>50° carbonate cementing fragments and as<br>stringers.<br>5% Py along fr plane.<br>Main fr. direction 70°.                                                                                                                                                                                                                                              | 17269<br>17270  | 75.4<br>76.6         | 76.6<br>77.8         | 1.2<br>1.2        | 60<br>nđ        | 3.4<br>4.1        | 1064<br>1143       | 400<br>514          |   |

## PROPERTY Kerr Project

SHEET NO. 7 of 7

| METER | S     | DESCRIPTION                                        | SAI   | MPLING |      |     | Au        | Ag  | Cu    | Zn   | - |
|-------|-------|----------------------------------------------------|-------|--------|------|-----|-----------|-----|-------|------|---|
| From  | То    |                                                    | Spl.# | From   | To   | m   | Rec % ppb | ppm | b bur | ррш  |   |
| 77.85 | 91.9  | Tuff - Crystal and lapilli                         | 17271 | 77.8   | 79.8 | 2.0 | nd        | 1.4 | 491   | 179  |   |
|       |       | - Interbedded crystal and some cherty.             | 2     | 79.8   | 81.8 | 2.0 | nd        | 0.4 | 310   | 225  |   |
|       |       | - Laplli of chert in crystal tuff.                 | 3     | 81.8   | 83.8 | 2.0 | 30        | 0.7 | 534   | 282  |   |
|       |       | - Medium to coarse grained,.                       | 4     | 83-8   | 85.8 | 2.0 | 60        | 0.9 | 692   | 156  |   |
|       |       | - 5% qtz - Carbonate veinlets at 60° to            | 5     | 85.8   | 87.8 | 2.0 | 20        | 0.1 | 326   | 107  |   |
|       |       | core axis - enveloped by Py. Several               |       |        |      |     |           |     |       |      |   |
|       |       | fractures cemented by carbonate.                   |       |        |      |     |           |     |       |      |   |
|       |       | 80.2 - 20cm monzonite dyke 45° to core             | 17404 | 87.8   | 89.8 | 2.0 | nd        | 0.1 | 170   | 134  |   |
|       |       | axis. Minor chlorite and epidote                   | 5     | 89.81  | 91.8 | 2.0 | nd        | 0.1 | 227   | 188  |   |
|       |       | alteration.                                        |       |        |      |     |           |     |       |      |   |
|       |       | Total sulphides tr - 1%.                           |       |        |      |     |           |     |       |      |   |
|       |       | $82.6 - 5mm$ qtz-carb-Py vein - $45^{\circ}/c.a.$  |       |        |      |     |           |     |       |      |   |
|       |       | $84.6 - 2$ cm qtz-carb-Py vein - $45^{\circ}/c.a.$ |       |        |      |     |           |     |       |      |   |
|       |       | 89.6-90.5 - broken and rusty core                  |       |        |      |     |           |     |       |      |   |
|       |       | 90.7-90.8 - broken and rusty core. Broken          |       |        |      |     |           |     |       |      |   |
|       |       | and rusty core.                                    |       |        |      |     |           |     |       |      |   |
| 91.9  | 97.54 | Laminated fine grained ash tuff.                   | 17406 | 91.8   | 93.3 | 1.5 | 15        | 0.1 | 233   | 256  |   |
|       |       | Cherty in places.                                  | 7     | 93.3   | 94.8 | 1.5 | 85        | 0.6 | 526   | 889  |   |
|       |       | Very broken - rusty fractures.                     | 8     | 94.8   | 96.3 | 1.5 | 70        | 0.5 | 643   | 1537 |   |
|       |       | Skarnified in places.                              | 9     | 96.3   | 97.5 | 1.2 | 34        | 0.1 | 716   | 636  |   |
|       |       | No carbonate.                                      | -     |        |      |     |           |     |       |      |   |
|       |       | Siliceous sections contain traces of               | ł     |        |      |     |           |     |       |      |   |

•

÷

.

•

Core Recovery K87-4 INTERVAL CORE PERCENT FROM τo RECOVERY LENGTH LENGTH 4.27 4.27 .92 22 .45 .38 84 4.27 4.72 54 4.72 6.10 1.38 .75 .91 •86 95 6.10 7.01 96 7.01 7.92 •91 -87 7.92 10.36 2.44 1.07 44 1.53 1.34 88 10.36 11.89 11.89 1.30 86 13.41 1.52 13.41 3.05 3.05 99 16.46 16.46 19.51 3.05 3.05 100 19.51 21.34 1.83 1.62 89 21.34 •92 87 22.40 1.06 22.40 23.47 1.07 1.03 96 98 23.47 24.69 1.22 1.20 24.69 .91 .89 98 25.60 2.9 2.71 25.60 28.5 93 28.5 31.55 3.05 2.95 97 31.55 33.53 1.98 1.74 88 33.53 34.75 1.22 1.33 109 34.75 37.03 2.28 2.08 91 37.03 2.59 2.36 39.62 91 39.62 40.54 .92 •90 98 40.54 41.45 .91 .79 87 41.45 42.06 .61 •66 108 42.06 42.67 .61 • 58 95 42.67 43.89 1.22 1.20 90 43.89 2.44 2.45 46.33 100 2.74 93 46.33 49.07 2.56 49.07 50.60 1.53 1.99 130 •91 •98 50.60 51.51 108 51.51 53.04 1.53 1.15 75 53.04 54.86 1.82 1.95 107 .61 •40 66 54.86 55.47 55.47 56.08 .61 •56 92

.61

- 52

85

56.69

56.08

.

r 1 r

.

Core Recovery K87-4 INTERVAL CORE PERCENT FROM ΤO RECOVERY LENGTH LENGTH .43 93 57.15 •46 56.69 100 •46 •46 57.15 57.61 90 1.10 57.61 58.83 1.22 46 .91 •42 58.83 59.74 73 .15 .11 59.74 59.89 52 59.98 60.35 •46 •24 40 •43 60.35 61.42 1.07 .93 88 1.06 61.42 62.48 .92 •86 93 62.48 63.40 .77 85 63.40 64.31 1.91 .16 26 64.31 64.92 •61 17 .42 64.92 67.36 2.44 ٠55 45 67.36 68.58 1.22 1.26 103 1.22 68.58 69.80 2.96 97 69.80 72.85 3.05 76 72.85 73.91 1.06 •81 84 2.45 73.91 76.81 2.90 91 2.23 76.81 79.25 2.44 81.08 1.83 1.54 84 79.25 99 81.08 82.60 1.52 1.51 93 2.74 2.55 82.60 85.34 85.34 86.41 1.07 1.09 102 112 86.41 2.13 2.38 88.54 92 1.55 1.42 88.54 90.09 90.83 .74 .73 99 90.09 1.27 1.22 104 92.05 90.83 1.02 84 1.22 92.05 93.27 • 50 82 93.27 93.88 .61 •91 1.08 120 94.79 93.88 •25 81 •31 94.79 95.10 .15 .15 95.10 95.25 100 95.71 •46 •46 100 95.25 95.86 +15 .15 100 95.71

+15

95.86

96.01

.15

100

and the second of the second

 
 FROM
 TO
 INTERVAL LENGTH
 CORE LENGTH
 PERCENT RECOVERY

 96.01
 96.62
 .61
 .16
 26

 96.62
 96.93
 .31
 .17
 55

 96.93
 97.54
 .61
 .46
 75

The transformer and the second second

| PROJECT                              | KERR PROJECT |             |                 | Page: <u>1 of 12</u> |
|--------------------------------------|--------------|-------------|-----------------|----------------------|
| D.D. HOLE No.                        | к87-5        |             |                 |                      |
|                                      |              | Depth 219.5 | Dip <u>-480</u> | Azimuth              |
| Location Zone B                      |              | Collar Lat. |                 | 9,742 N              |
|                                      |              | Dep.        |                 | 10,290 W             |
| Hole Started 1 August 1987           |              | Elev.       |                 | 1,726                |
| Hole Completed 8 August 1987         |              | Azimuth     |                 | 60 <sup>0</sup>      |
| Core Recovery As per attached sheets |              | Dip.        |                 | -60 <sup>0</sup>     |
| Drilled By Advanced Drilling         |              | Length .    |                 | 228.90               |
| Logged by: John Kowalchuk            |              |             |                 |                      |

a state a state of the state of

a construction of the test the test

.

Objective: To test geochemical high, if highs and stratigraphy - zone B

-

.

-

.

.

۲ T

## PROPERTY Kerr Project

SHEET NO. 3 of 12

| METERS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                        | SAM                                          | LING                                                         |                                                              |                                               | 1   | Au                                              | Ag                                                                                                                                                      | Cu                                                           | Zn                                                   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| From To   | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                              | Spl.# H                                      | rom                                                          | To                                                           |                                               | Rec | % ppb                                           | ppm                                                                                                                                                     | ррш                                                          | ppm                                                  |
|           | Veinlets and foliation planes<br>Occasional lapilli and crystalline section<br>15% qtz along with Py in veinlets.<br>10.5m Py stringers (several 10-20/20cm<br>section at 25/c.a.)<br>13.1 - qtz Py veins at 50-55° - Chl-qtz at<br>(-45°)<br>14.2 - 40cm laminated tuff - pale green<br>14.6- broken rusty core for 50cm.<br>- fractures down core axis.<br>14.8- qtz-Py veins 35° to core axis<br>3-4 cm across - containing Py. |                                              |                                                              |                                                              |                                               |     |                                                 |                                                                                                                                                         |                                                              |                                                      |
| 15.9 28.3 | Lapilli Tuff - Crystalline<br>Medium to coarse grained<br>First 2.0 metres quite chloritic becoming<br>sericitic as you go down the hole.<br>Foliation of 45° shown by Py.<br>Fillings - 10-15% Py in zone.<br>top 70cm - contain about 5% epidote<br>alteration.<br>Tr - 1% Cpy along fractures sub parallel to<br>core axis.<br>16.3 - 1cm qtz Py vein 50° to core axis                                                          | 17287<br>8<br>9<br>17290<br>1<br>2<br>3<br>4 | 16.3<br>17.8<br>19.3<br>20.8<br>22.3<br>23.8<br>25.3<br>26.8 | 17.8<br>19.3<br>20.8<br>22.3<br>23.8<br>25.3<br>26.8<br>28.3 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 |     | 75(<br>105)<br>16(<br>10)<br>284(<br>90)<br>42( | 0       4.7         0       4.0         0       2.0         0       2.6         5       2.5         5       3.0         0       3.5         0       2.9 | 9491<br>8209<br>5104<br>6718<br>6582<br>6338<br>6602<br>7032 | 761<br>557<br>258<br>194<br>308<br>498<br>275<br>234 |

3 7 3

| HOLE | NO. | к87-5 |
|------|-----|-------|
|      |     |       |

٩

PROPERTY Kerr Project

# SHEET NO. 2 of 12

| METERS | 1    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                   | SAMP                 | LING                         |                              |                          |     | Au                       | Ag                       | Cu                            | Zn                         |  |
|--------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|------------------------------|--------------------------|-----|--------------------------|--------------------------|-------------------------------|----------------------------|--|
| From   | To   | -                                                                                                                                                                                                                                                                                                                                             | Spl.# F              | rom                          | To                           | m                        | Rec | % ppb                    | p pm                     | ppm                           | ppm                        |  |
| 0.     | 1.02 | Overburden - Casing                                                                                                                                                                                                                                                                                                                           |                      |                              |                              |                          |     |                          |                          |                               |                            |  |
| 1.02   | 2.29 | Fine Grained Tuff<br>Chloritic<br>Dark green colour                                                                                                                                                                                                                                                                                           | 17276<br>7<br>8      | 1.02<br>2.3<br>3.8           | 2.3<br>3.8<br>5.3            | 1.21<br>1.5<br>1.5       |     | 200<br>360<br>200        | 1.6<br>0.7<br>0.1        | 3732<br>1980<br>469           | 371<br>279<br>341<br>257   |  |
|        | 1    | 2.20- Qt Py veins at 50° to core axis.<br>20% chlorite<br>10% sulphides                                                                                                                                                                                                                                                                       | 17280<br>1           | 5.3<br>6.8<br>8.3            | 6.8<br>8.3<br>9.3            | 1.5                      |     | 60<br>60<br>nd           | 0.1                      | 234<br>246<br>443             | 193<br>274                 |  |
| 2.29   | 10.8 | <pre>Veins every 5cm. Lapilli Crystal Tuff - Sericitic Pale green colour changing to green - Med to coarse grained30% sericite -5-10% chlorite. 5% carbonate as veinlets. 10-15% sulphides (Py) as fol. and veinlets - mainly in sericitic parts. 4.3m - Py on fr. 60°. 6.3m - Py on fol55° Sericitic zone better fol. at 55° cont. Py.</pre> | 2                    | 9.3                          | 10.3                         | 1.0                      |     | 180                      | 0.4                      | 638                           | 264                        |  |
| 10.8   | 15.9 | Ash Tuff - Fine Grained - Dark Green<br>Coloured<br>Very chloritic<br>10-15% sulphides (Py) as fracture filled                                                                                                                                                                                                                                | 17283<br>4<br>5<br>6 | 10.3<br>11.8<br>13.3<br>14.8 | 11.8<br>13.3<br>14.8<br>16.3 | 1.5<br>1.5<br>1.5<br>1.5 |     | 380<br>350<br>230<br>700 | 2.1<br>1.5<br>2.5<br>5.4 | 5261<br>3901<br>5089<br>11467 | 440<br>563<br>1080<br>3029 |  |

.

.

-

.

.

.

.

#### PROPERTY Kerr Project

**,** .

•

.

.

.

.

.

1

• •

. . . .

## SHEET NO. 4 of 12

| METE | RS   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                               |                                        |                                              |                                              | 1                               | Au       | Ag                                   | Cu                                     | Zn                                           |                                        |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------|--------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|
| From | То   |                                                                                                                                                                                                                                                                                                                                                           | Spl.#1                                 | From                                         | То                                           | <u> </u> m                      | Rec 🕺    | ppb                                  | ppm                                    | ъbш                                          | ррш                                    |
|      |      | Lapilli Tuff - grey- 20% Py tr other<br>sulphides<br>approx 30 Py veinlets/m - each veinlet 2mm<br>across.<br>22.4 - veinlets along fol. plane 30°/c.a.<br>23.62 - 1cm qtz Py vein 20°/core axis<br>25.0-27.0 - extensive vuggy qtz veining<br>subparallel to core axis<br>Veins contain some Py and chlorite.<br>27.2 - qtz along fol. at 35°/ core axis |                                        |                                              |                                              |                                 | <u>.</u> |                                      |                                        |                                              |                                        |
| 28.3 | 29.9 | Fault or Fracture Zone<br>Rusty and lapilli tuff - broken with qtz<br>Py veins along core axis<br>sericitic<br>up to 20% Py on fractures and fol. planes.                                                                                                                                                                                                 | 17295<br>6<br>7<br>8<br>17299<br>17300 | 28.3<br>29.9<br>31.4<br>32.9<br>34.4<br>35.9 | 29.9<br>31.4<br>32.9<br>34.4<br>35.9<br>37.4 | 1.6<br>1.5<br>1.5<br>1.5<br>1.5 |          | 4010<br>nd<br>150<br>90<br>125<br>80 | 2.4<br>3.9<br>3.6<br>2.7<br>1.2<br>0.7 | 5192<br>5887<br>6151<br>6735<br>4061<br>2498 | 219<br>535<br>399<br>467<br>465<br>206 |
| 29.9 | 44.5 | Lapilli Tuff<br>- med - coarse grained<br>Chloritic and sericitic - some epidote<br>-pale green colour<br>Pyrite and quartz along foliation planes<br>40° to core axis<br>30.5m - 3cm qtz vein 65° to core axis<br>32.2 - 5cm qtz-Py zone - 65° to core axis<br>tr Cpy.<br>33.0- 5cm qtz-Py zone 45° to core axis<br>33.8 - qtz.                          | 1<br>2<br>3<br>4<br>5                  | 37.4<br>38.9<br>40.4<br>41.9<br>43.4         | 38.9<br>40.4<br>41.9<br>43.4<br>44.9         | 1.5<br>1.5<br>1.5<br>1.5<br>1.5 |          | 110<br>100<br>50<br>110<br>120       | 2.0<br>1.6<br>1.0<br>0.6<br>0.8        | 2186<br>5142<br>4054<br>3184<br>2696         | 1444<br>354<br>103<br>146<br>97        |

PROPERTY Kerr Project

.

\*

۳.

Г 1 F

,

.

SHEET NO. 5 of 12

. . . . . . . . . .

| METE         | RS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                   | SAM                            | PLING                                        |                                              |                                               | 1     | Au                                     | Ag                                            | Cu                                                   | Zn                                           |
|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-------|----------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|
| From         | То      |                                                                                                                                                                                                                                                                                                                                                                               | Sp1.#1                         | From                                         | To                                           | m                                             | Rec % | ppb                                    | ppm                                           | ррш                                                  | թթա                                          |
|              |         | Lapilli tuff<br>Medium - coarse grained<br>Pale green colour - slightly chloritic<br>35.4-35.8 - several slightly sericitic.<br>5cm massive Py beds 55°/ca<br>total interval 20% Py - tr Cpy.<br>- Generally 10-15% Py as veinlets/to fol.<br>38.4-38.7 - 2cm of calcite veining and<br>flooding. 50° to ca some Py-Cpy with Chl.<br>41.4- qtz vein cutting 10° to core axis. |                                |                                              |                                              | -                                             |       |                                        |                                               |                                                      |                                              |
| 44.5         | 45.1    | Fault Zone- Lapilli Tuff<br>Rusty-sericitic very sheared<br>Shear directions 55 <sup>0</sup> /core axis<br>Tr Py - bleached                                                                                                                                                                                                                                                   | 17306<br>7<br>8<br>9<br>17310  | 44.9<br>46.4<br>47.9<br>49.4<br>50.9<br>52.4 | 46.4<br>47.9<br>49.4<br>50.9<br>52.4<br>53.9 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5               |       | 145<br>150<br>140<br>80<br>220<br>75   | 1.1<br>2.2<br>0.4<br>0.5<br>1.4<br>0.6        | 3653<br>5299<br>3198<br>3203<br>5553<br>1965         | 1042<br>3725<br>273<br>95<br>475<br>85       |
| 43.1<br>52.5 | 7 69.60 | Broken-<br>Light grey colour<br>contains 5-10% sulphides as pyrite.<br>49.0- 65° Py vein 2cm thick<br>foliation generally 55°<br>Lapilli Tuff                                                                                                                                                                                                                                 | 17312<br>3<br>4<br>5<br>6<br>7 | 53.9<br>55.4<br>56.9<br>58.4<br>59.9<br>61.4 | 55.4<br>56.9<br>58.4<br>59.9<br>61.4<br>62.9 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 |       | nd<br>70<br>5<br>15<br>40<br>460<br>20 | 0.7<br>0.8<br>0.2<br>0.4<br>1.3<br>1.2<br>0.4 | 2514<br>2535<br>2008<br>2556<br>3056<br>2763<br>1628 | 88<br>109<br>30<br>130<br>372<br>3309<br>202 |
|              |         | Grey to green in colour<br>coarse to fine grained<br>chloritic- sericitic<br>Py varies from 5-15% - with chloritic<br>section up to 15%                                                                                                                                                                                                                                       | 8<br>9<br>17320<br>1<br>2      | 62.9<br>64.4<br>65.9<br>67.4<br>68.9         | 65.9<br>67.4<br>68.9<br>69.6                 | 1.5<br>1.5<br>1.5<br>0.7                      |       | 45<br>140<br>110<br>940                | 0.3<br>0.5<br>1.0<br>0.9                      | 2289<br>2176<br>3538<br>3010                         | 122<br>177<br>873<br>569                     |

. . .

. .

٠

SHEET NO. 6 of 12

| METERS     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAMP           | LING         |              |            | 1   | Au       | Ag  | Cu         | Zn                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------|------------|-----|----------|-----|------------|--------------------|
| From To    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spl.#F         | 'rom         | То           | щ          | Rec | % ppb    | ppm | ppm        | ррш                |
|            | <pre>sulphides occur primarily along fol.<br/>planes.<br/>Trace of calcite in some qtz veins.<br/>53.5 - Py vein 40° to c.a.<br/>54.7 - fol. 45° to core axis.<br/>55 - 58.5 - sericitic section - grey colour<br/>56.8 - fol. 40° to core axis.<br/>59.0 - more chloritic<br/>15% sulphide both disseminated and along<br/>fol. planes.<br/>61.0 - Py along fol. 35° core axis<br/>64.0 - fol. 30° to core axis.<br/>62.52 - 69.60 extensive chlorite alteration<br/>very fine grained thermally altered by<br/>dyke.<br/>Some green clay mineral.<br/>Contact with dyke - 40°</pre> |                |              |              |            |     |          |     |            |                    |
| 69.60 81.1 | Monzonite Dyke – medium grained-<br>equigranular<br>qtz-plag. amphibole rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17323<br>17324 | 69.6<br>76.6 | 71.2<br>77.6 | 1.6<br>1.0 |     | 60<br>20 | 0.1 | 322<br>285 | 51 <b>7</b><br>408 |
|            | pale green grey colour<br>5-10 at 55° 0.5cm qtz calcite veins every<br>metre.<br>- some chlorite in veins along same trend<br>Rust covered fractures.<br>Tr. of Py on fractures                                                                                                                                                                                                                                                                                                                                                                                                       | 5              | 77.6         | 79.7         | 2.1        |     | 170      | 0.1 | 221        | 212                |

.

PROPERTY Kerr Project

.....

•

۰.

and the second sec

PROPERTY Kerr Project

 $(\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}$ 

.

.

.

.

SHEET NO. 7 of 12

| METE | RS   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                 | SAMP                                                   | LING                                                                         |                                                                              |                                                             | Au                                                         | Ag                                                          | Cu                                                                          | Zn                                                                 |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
| rom  | To   | -                                                                                                                                                                                                                                                                                                                                                                                                           | Spl.#F                                                 | rom                                                                          | To                                                                           | <u> </u>                                                    | Rec % ppb                                                  | ppm                                                         | ppm                                                                         | ppm                                                                |
|      |      | slight chlorite alteration. otherwise quite<br>fresh looking.<br>76.6-79.0 - very block containing rust<br>covered fractures - vuggy qtz.<br>Fractures of 20° to core axis.<br>77.7-79.7 - bleached zone - silicified<br>- 1-2% sulphides Py and Cpy.<br>bottom contact 80° to core axis                                                                                                                    |                                                        |                                                                              |                                                                              |                                                             |                                                            |                                                             |                                                                             |                                                                    |
| 81.1 | 96.0 | Lapilli Tuff - Chloritic<br>fine grained near dyke contact<br>5-15% sulphides primarily as Py<br>up to 2% Cpy in narrow sections<br>Tr to 1% Cpy throughout.<br>Massive - very weak foliation.<br>81.4-82.0 - several qtz-carb veinlets at<br>75° to core axis.<br>Bottom 15cm - pale green and bleached<br>Sulphides disseminated and in fractures<br>also as pods.<br>94.80- fol. 50 shown by Py on plane | 17326<br>7<br>8<br>9<br>17330<br>1<br>2<br>3<br>4<br>5 | 81.0<br>82.5<br>84.0<br>85.5<br>87.0<br>88.5<br>90.0<br>91.5<br>93.0<br>94.5 | 82.5<br>84.0<br>85.5<br>87.0<br>88.5<br>90.0<br>91.5<br>93.0<br>94.5<br>96.0 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | 70<br>100<br>90<br>50<br>110<br>nd<br>80<br>75<br>nd<br>40 | 0.1<br>0.7<br>0.8<br>0.7<br>0.9<br>0.7<br>0.7<br>0.6<br>0.1 | 1309<br>1526<br>3766<br>5190<br>4285<br>4650<br>3829<br>4134<br>3578<br>853 | 1333<br>422<br>229<br>221<br>250<br>279<br>196<br>296<br>259<br>85 |
| 96.0 | 97.4 | Fine Grained Tuff - Very Chloritic<br>dark green colour<br>-calcareous - contains carbonate spots<br>throughout.<br>upper contact 30° to core axis<br>lower contact 40° to core axis<br>Unit is calcareous - may be skarnified<br>no apparent sulphides.                                                                                                                                                    | 17336                                                  | 96.0                                                                         | 97.4                                                                         | 1.4                                                         | 10                                                         | 0.1                                                         | 453                                                                         | 353                                                                |

1

\* \* \* \* \* \*

# PROPERTY Kerr Project

.

7 1

r 1

2

SHEET NO. 8 of 12

| MET  | ERS   | DESCRIPTION                                 | SAL   | PLING         |       |     | Au        | Ag    | Cu           | Zn          |
|------|-------|---------------------------------------------|-------|---------------|-------|-----|-----------|-------|--------------|-------------|
| From | То    |                                             | Sp1.# | From          | To    | m   | Rec % ppb | ррш   | ppm          | ppm         |
| 97.4 | 99.20 | Lapilli Tuff - Sericitic                    | 17337 | 97.4          | 99.0  | 1.6 | 40        | 0.1   | 678          | 135         |
|      |       | - medium to coarse grained                  | 8     | 99.0          | 100.5 | 1.5 | 90        | 0.1   | 77 <b>7</b>  | 67          |
|      |       | - well fol. sericite schist                 | 9     | 100.5         | 102.0 | 1.5 | 40        | 0.1   | 561          | 71          |
|      |       | - approx 5% sulphides - all Py              | 17340 | 102.0         | 103.5 | 1.5 | nd        | 0.1   | 1062         | 363         |
|      |       | 100.3-100.8 - qtz-carb vein- 70° to core    | 1     | 103.5         | 105.0 | 1.5 | 160       | 0.1   | 153 <b>9</b> | 132         |
|      | ,     | axis                                        | 2     | 105.0         | 106.5 | 1.5 | nd        | 0.1   | 1778         | 315         |
|      |       | vein carries no apparent sulphides.         | 3     | 106.5         | 108   | 1.5 | 15        | 0.1   | 1243         | 53          |
|      |       | 101.0- fol. 60° to core axis                | 16344 | 108 <b>.0</b> | 109.5 | 1.5 | 15        | 0.1   | 1346         | 124         |
|      |       | $108.3 - fol. 50^{\circ}$ to core axis      | ¦ 5   | 109.5         | 111.0 | 1.5 | 40        | 0.1   | 2263         | 126         |
|      |       | 111.6 - fol. 50 <sup>0</sup> to core axis   | 6     | 111.0         | 113.0 | 2.0 | nd        | 0.1   | 1276         | 169         |
|      |       | <b>I</b>                                    | 7     | 113.0         | 115.0 | 2.0 | 65        | 0.2   | 1307         | 328         |
| 99.2 | 142.5 | Lapilli Tuff - Sericitic                    | 8     | 115.0         | 117.0 | 2.0 | 35        | 0.4   | 587          | 786         |
|      |       | Some laminated tuff at 119.0                | 9     | 117.0         | 119.0 | 2.0 | 80        | 0.3   | 1721         | 119         |
|      |       | lam. at 119.0 -65°                          | 17350 | 119.0         | 121.0 | 2.0 | nd        | 0.1   | 1253         | 115         |
|      |       | grey colour - sericite up to 50%            | 1     | 121.0         | 123.0 | 2.0 | nd        | 1.6   | 1981         | 485         |
|      |       | 121.0-slightly broken bull qtz vein 25%     | 2     | 123.0         | 125.0 | 2.0 | 245       | 4.0   | 1845         | 77          |
|      |       | c.a.                                        | 3     | 125.0         | 127.0 | 2.0 | · 110     | · 0.7 | 1268         | 123         |
|      |       | Py decreases to 2-4%                        | 4     | 127.0         | 129.0 | 2.0 | 160       | 0.8   | 1002         | 138         |
|      |       | 123.0-126.0- ground core                    | ¦ 5   | 129.0         | 131.0 | 2.0 | 20        | 0.1   | 324          | 162         |
|      |       | very sheared                                | 6     | 131.0         | 133.0 | 2.0 | 90        | 1.1   | 743          | 1 <b>97</b> |
|      |       | fol. 11 to core axis                        | 7     | 133.0         | 135.0 | 2.0 | nd        | 2.6   | 1140         | 188         |
|      |       | 128.3 - fol. $60^{\circ}$ to core axis      | 8     | 135.0         | 137.0 | 2.0 | 15        | 0.2   | 592          | 571         |
|      |       | $133.5 - fol. 60^\circ$ to core axis        | 9     | 137.0         | 139.0 | 2.0 | 200       | 11.3  | 2692         | 1013        |
|      |       | 138.0 - fol. 55° to core axis               | 17360 | 139.0         | 141.0 | 2.0 | 150       | 1.7   | 2136         | 136         |
|      |       | 143.0 - Py vein $60^{\circ}$ to core axis.  | 1     | 141.0         | 143.0 | 2.0 | 440       | 4.2   | 2551         | 257         |
|      |       | 146.8 - Py vein along fol. 65° to core axis | }     |               |       |     |           |       |              |             |
|      |       | 138-141.5 - very broken core                | 1     |               |       |     |           |       |              |             |
|      |       |                                             | -     |               |       |     |           |       |              |             |
|      |       |                                             |       |               |       |     |           |       |              |             |

## HOLE NO. \_ K87-5\_

7

r 1

1 K 1

•

PROPERTY Kerr Project

,

•

.

,

۰,

# SHEET NO. 9 of 12

| METE  | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAM           | PLING |       |     | Au        | Ag  | Cu    | Zn   |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------|-----|-----------|-----|-------|------|
| From  | To    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sp1.#         | From  | To    | m   | Rec % ppb | ppm | ppm   | ppm  |
| 142.5 | 165.3 | 142.5 - Py increases to 20% - less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27462         | 143.0 | 145.0 | 2.0 | 560       | 2.8 | 4676  | 193  |
|       |       | sericitic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3             | 145.0 | 147.0 | 2.0 | 425       | 4.3 | 4083  | 216  |
|       | 1     | - slightly more chloritic - Tr Cpy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4             | 147.0 | 149.0 | 2.0 | 420       | 2.4 | 3254  | 380  |
|       |       | becoming coarse grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5             | 149.0 | 151.0 | 2.0 | 620       | 3.9 | 10167 | 618  |
|       |       | Crystalline - Lapilli tuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6             | 151.0 | 153.0 | 2.0 | 520       | 3.8 | 11513 | 535  |
|       | •     | 156.0 - fol. 50 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7             | 153.0 | 155.0 | 2.0 | 540       | 3.9 | 11617 | 1367 |
|       | !     | 158.0 - broken core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8             | 155.0 | 157.0 | 2.0 | 450       | 5.9 | 9937  | 612  |
|       |       | 165 fol. 65 <sup>0</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9             | 157.0 | 159.0 | 2.0 | 520       | 2.6 | 8105  | 568  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17370         | 159.0 | 161.0 | 2.0 | 485       | 1.6 | 9599  | 302  |
| 165.3 | 171.4 | Sheared - Lapilli Tuff - Less Crystalline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1             | 161.0 | 163.0 | 2.0 | 470       | 1.8 | 8561  | 525  |
|       |       | Very sericitic some chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17372         | 163.0 | 165.0 | 2.0 | 330       | 3.5 | 12609 | 456  |
|       |       | coarse grained - slightly less Py -5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17373         | 165.0 | 167.0 | 2.0 | 195       | 2.7 | 8984  | 348  |
|       |       | very soft core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4             | 167.0 | 169.0 | 2.0 | 160       | 1.6 | 2739  | 221  |
|       |       | 170.8 – fol. 60 <sup>0</sup> / core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5             | 169.0 | 171.0 | 2.0 | 270       | 2.4 | 7576  | 525  |
| 171 / | 176 0 | Mali Rol Crustal Lapilli Tuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17376         | 171 0 | 173.0 | 2 0 | 320       | 4.4 | 16706 | 789  |
| 171•4 | 1/4+2 | Serialtized - grou colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7             | 173 0 | 175 0 | 2.0 | 130       | 2.0 | 5534  | 545  |
|       |       | $\int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t} dt = \frac{\partial F}{\partial t} \int \frac{\partial F}{\partial t$ |               | 113.0 | 175.0 | 2.0 | 0.11      | 2.0 | 7724  | 747  |
|       |       | $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1}$ $ _{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | í<br>I        |       |       |     |           |     |       |      |
|       |       | lapilli muff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ł<br>I        |       |       |     |           |     |       |      |
|       |       | 1 april III<br>159 culphidog (Pr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>I        |       |       |     |           |     |       |      |
|       |       | j sulphides (iy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1             |       |       |     |           |     |       |      |
| 174.2 | 178.3 | crystal Lapilli Tuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17378         | 175.0 | 177.0 | 2.0 | 560       | 7.1 | 6516  | 687  |
|       |       | sheared and broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9             | 177.0 | 179.0 | 2.0 | 285       | 3.0 | 7217  | 499  |
|       |       | Sericitic (40% ser) 10% chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ì             |       |       |     |           |     |       |      |
|       |       | fine to coarse grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i<br>I        |       |       |     |           |     |       |      |
|       |       | Fol. 45° to core axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1             |       |       |     |           |     |       |      |
|       |       | Bottom 1.5 metres very chloritic to contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1             |       |       |     |           |     |       |      |
|       |       | with dyke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b><br>1 |       |       |     |           |     |       |      |
|       |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |       |       |     |           |     |       |      |

#### Kerr Project PROPERTY

.

## SHEET NO. 10 of 12

| METERS |       | DESCRIPTION                              |          | PLING |       |     | 1   |       | Au Ag |             | Zn         |
|--------|-------|------------------------------------------|----------|-------|-------|-----|-----|-------|-------|-------------|------------|
| From   | To    |                                          | Spl.#    | From  | То    | m   | Rec | %¦ppb | ppm   | ppm.        | <u>ppm</u> |
| 178.3  | 185.2 | Feldspar Porphyry Dyke - medium grained  | 17380    | 179.0 | 181.0 | 2.0 |     | 10    | 0.1   | 1706        | 232        |
|        |       | Contact with tuff 50 <sup>0</sup>        | 1        | 181.0 | 183.0 | 2.0 |     | 5     | 0.1   | 229         | 138        |
|        |       | no sulphides                             | 2        | 183.0 | 185.0 | 2.0 |     | nd    | 0.1   | 51 <b>8</b> | 259        |
|        |       | very chloritic top 1.5 metres green      |          |       |       |     |     |       |       |             |            |
|        |       | very strong foliation 60° to core axis   |          |       |       |     |     |       |       |             |            |
|        | •     | several qtz-carb veins lcm thick -35° to |          |       |       |     |     |       |       |             |            |
|        |       | core axis                                |          |       |       |     |     |       |       |             |            |
|        |       | feldspars saussuritized - euhedral       |          |       |       |     |     |       |       |             |            |
|        |       | 1.5 metres - quite chlorite -green       | 1        |       |       |     |     |       |       |             |            |
|        |       | Central portion of dyke slightly purple  | 1.<br>I  |       |       |     |     |       |       |             |            |
|        |       | 180.44 - rusty qtz carb veining broken   |          |       |       |     |     |       |       |             |            |
|        |       | 185.0-185.25 - qtz vein along contact    |          |       |       |     |     |       |       |             |            |
|        |       | rusty – vuggy                            |          |       |       |     |     |       |       |             |            |
|        |       |                                          |          | 100 0 |       |     |     |       |       | 1 ( 1 0 0   |            |
| 185.0  | 212.0 | Crystal Lapilli Tuff                     | 17383    | 185.0 | 187.0 | 2.0 |     | 310   | 0.6   | 16430       | 166        |
|        |       | very sericitic - 40-50% sericite         | i 4      | 18/.0 | 189.0 | 2.0 |     | nd    | 0.3   | 3820        | 53         |
|        |       | quite sheared in places with even more   | 1 5      | 189.0 | 191+0 | 2.0 |     | 250   | 0.6   | 4627        | 117        |
|        |       | sericite.                                | 6        | 191.0 | 193.0 | 2.0 |     | nd    | 0.5   | 3616        | 100        |
|        |       | up to 55 Py along fol. planes.           | 7        | 193.0 | 195.0 | 2.0 |     | 300   | 0.7   | 3939        | 89         |
|        |       | $185.4 - fol. 35^\circ$ to core axis     | 8        | 195.0 | 197.0 | 2.0 |     | 340   | 0.5   | 3750        | 99         |
|        |       | 186-189.28 - very contorted and sheared  | <u> </u> | 19/.0 | 199.0 | 2.0 |     | 310   | 0.6   | 3893        | 250        |
|        |       | fol.varies from 11 to /0° to core axis.  | 17390    | 199.0 | 201.0 | 2.0 |     | 300   | 0.3   | 3905        | 84         |
|        |       | 190.8 - 191.22 - sheared core fol.       |          | 201.0 | 203.0 | 2.0 |     | nd    | 0.1   | 1156        | 160        |
|        |       | contorted.                               | 2        | 203.0 | 205.0 | 2.0 |     | 330   | 1.1   | 4/44        | 33         |
|        |       | 191.8 - Fol 600 to core axis             | 3        | 205.0 | 207.0 | 2.0 |     | 330   | 1.2   | 5936        | 38         |
|        |       | $194.5 - 10160^{\circ}$ to core axis     | 4        | 207.0 | 209.0 | 2.0 |     | 260   | 1.1   | 3/84        | 161        |
|        |       | 198.9 - IOL60° TO COTE ax1s              |          | 209.0 | 211.0 | 2.0 |     | 320   | 0.2   | 998         | 1/5        |
|        |       | 201.1-203.2 - sheared and contorted very | i 6      | 211+0 | Z13+0 | 2.0 |     | 300   | 1.0   | /110        | 162        |
|        |       | sericitic.                               |          |       |       |     |     |       |       |             |            |

.

3 5 3

.

The state of the s

HOLE NO. \_ \_ \_ K87-5

# PROPERTY Kerr Project

SHEET NO. 11 of 12

| METER | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                             | SAM                                     | PLING                                                       |                                                             |                                        | 1   | Au                                         | Ag                                            | Cu                                               | Zn                                          |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-----|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------|
| From  | Тο    | -                                                                                                                                                                                                                                                                                                                                                                                       | Spl.# 1                                 | From                                                        | To To                                                       | <u>,</u> m                             | Rec | % ppb                                      | ppm                                           | <u>bb</u> m                                      | <u>bb</u> m                                 |
|       |       | 203.7-205 - sheared and contorted - very<br>sericitic flood. varies from 60° to 0".<br>207m - fol. 55° to core axis.<br>210m - fol. 70° to core axis<br>2-5% Py dissem along fol. planes<br>bottom 1 metre - 5-10% chloritic alt.<br>211.25-21153 - (possible dyke) dark green<br>andesitic<br>Very chloritic<br>Contact 60° to core axis                                               |                                         |                                                             |                                                             | ·                                      |     |                                            |                                               |                                                  |                                             |
| 212.0 | 227.7 | Lapilli Tuff<br>sericitic - crystalline in places<br>sheared in places 2-5% Py.<br>212=219.8 - sheared and broken core<br>very contorted<br>foliation varies from 60° to 0°<br>Minor chlorite alteration<br>50% sericite.<br>221.3-224.5 - very chloritic<br>slight increase in pyrite - tr Cpy<br>222.7 - fol 60° to core axis<br>224.5 - sericitic to end of lapilli tuff<br>section. | 17397<br>8<br>9<br>17400<br>1<br>2<br>3 | 213.0<br>215.0<br>220.0<br>222.0<br>224.0<br>226.0<br>227.7 | 215.0<br>220.0<br>222.0<br>224.0<br>226.0<br>227.7<br>228.9 | 2.0<br>5.0<br>2.0<br>2.0<br>1.7<br>1.2 |     | 430<br>200<br>250<br>28<br>nd<br>300<br>10 | 1.7<br>1.1<br>1.2<br>0.3<br>1.2<br>2.9<br>3.7 | 9071<br>4254<br>4190<br>3580<br>78<br>827<br>960 | 44<br>56<br>151<br>60<br>1454<br>884<br>381 |

# HOLE NO. \_\_\_\_\_K87-5\_\_\_\_

PROPERTY Kerr Project

,

٠

٣

.

\* \* \* \* \* \*

SHEET NO. 12 of 12

| METERS |       | DESCRIPTION           | SAMPLING                              |    |     | Au        | Ag  | Cu  | Zn  |
|--------|-------|-----------------------|---------------------------------------|----|-----|-----------|-----|-----|-----|
| From   | To    | T<br>1                | Spl.# From                            | То | j m | Rec % ppb | ppm | թեա | ррш |
| 227.7  | 228.9 | Fine Grained Ash Tuff | · · · · · · · · · · · · · · · · · · · |    |     |           |     |     |     |
|        |       | Dark green colour     |                                       |    |     |           |     |     |     |
|        |       | massive               | l<br>l                                |    |     |           |     |     |     |
|        |       | fol. 55 <sup>0</sup>  | 1<br>1                                |    |     |           |     |     |     |
|        |       | 5% Py and tr Cpy      |                                       |    |     |           |     |     |     |
|        | 228.9 | End of Hole           |                                       |    |     |           |     |     |     |

5

٠

۰, r

|       |                  | Core Recove        | ry K87-5       |                     |
|-------|------------------|--------------------|----------------|---------------------|
| FROM  | то               | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
| 0     | 2.29             | 2.29               | 1.27           | 55                  |
| 2.29  | 3.05             | •76                | •35            | 46                  |
| 3.05  | 3.96             | .91                | .63            | 69                  |
| 3.96  | 4.57             | .61                | 1.11           | 182                 |
| 4.57  | 5,49             | .92                | .73            | 79                  |
| 5.49  | 6.71             | 1.22               | 1.14           | 93                  |
| 6.71  | 8.08             | 1.37               | 1.73           | 126                 |
| 8.08  | 9.30             | 1.22               | .76            | 62                  |
| 9.30  | 11.28            | 1.98               | •70<br>2.10    | 111                 |
| 11.28 | 12.05            | 1.50               | 2 • 1 5        | 111                 |
| 12.95 | 15.85            | 2 00               | 2 0/           | 7J<br>101           |
| 15.85 | 16 76            | 2.50               | 2 • 74         | 101                 |
| 16 76 | 10-70            | • 91               | 1 • 24         | 130                 |
| 18 20 | 20 12            | 1 00               | 1.40           | 97                  |
| 10.29 | 20+12            | 1.03               | 1./2           | 94                  |
| 20+12 | 21.49            | 1.3/               | 1.31           | 96                  |
| 21.49 | 23.62            | 2.13               | 2.20           | 103                 |
| 23.62 | 25.60            | 1.98               | 1.87           | 94                  |
| 25.60 | 28.04            | 2.44               | 2.45           | 100                 |
| 28.04 | 30.48            | 2.4                | 2.41           | , 99                |
| 30.48 | 32.31            | 1.83               | 1.75           | 96                  |
| 32.31 | 34.90            | 2.59               | 2.69           | 103                 |
| 34.90 | 37.64            | 2.74               | 2.52           | 92                  |
| 37.64 | 38.40            | •76                | •80            | 105                 |
| 38.40 | 41.45            | 3.05               | 2.94           | 96                  |
| 41.45 | 44.5             | 3.05               | 2.77           | 91                  |
| 44.5  | 45.11            | •61                | .69            | 113                 |
| 45.11 | 46.32            | 1,21               | 1.0            | 83                  |
| 46.32 | 47.54            | 1,22               | 1.08           | 80                  |
| 47.54 | 48.00            | .46                | .66            | 1/3                 |
| 48.0  | 49,07            | 1.07               | •00            | 14J<br>Q2           |
| 49.07 | 49.68            | 41                 | • 7 4          | 00<br>114           |
| 49.68 | 50 00            | *01<br>1 00        | •/1            | 110                 |
| 50.90 | 51 51            | -1 • 22            | •99            | 01<br>00            |
| 51 51 | フェ・フェ<br>5 5 5 7 | 1 04               | • 24           | , 40                |
| 57 57 | J4+J1<br>51 06   | 7 + A Ø            | 1+10           | 4                   |
| 16.26 | 24.00            | 2.29               | 2.30           | 100                 |
|       |                  |                    |                |                     |
|       |                  |                    |                |                     |

.

Core Recovery K87-5 CORE FROM то INTERVAL PERCENT LENGTH RECOVERY LENGTH 56.69 59.59 2.90 2.77 96 59.59 62.63 3.04 3.20 105 62.63 64.31 •68 1.66 99 64.31 67.06 2.75 2.80 102 67.06 67.97 .91 1.16 127 •91 .97 67.97 68.88 107 68.88 2.44 2.41 99 71.32 99 71.32 74.07 2.75 2.73 74.07 75.29 1.22 1.05 86 75.29 76.05 •76 •62 82 76.05 77.42 1.37 1.40 102 77.42 79.55 2.13 1.90 89 79.55 80.47 •92 •96 104 80.47 81.08 •61 •66 108 81.08 83.06 2.02 1.78 88 83.06 84.12 1.06 .95 90 84.12 87.17 3.05 3.05 100 87.17 89.76 2.59 2.59 100 89.76 •92 •92 90.68 100 90.68 93.27 2.59 2.54 98 93.27 94.64 1.37 1.37 100 94.64 96.62 1.98 1.87 94 96.62 98.60 1.98 1.85 93 98.60 101.50 2.90 2.73 94 101.5 103.02 1.52 1.38 91 103.02 104.24 1.22 1.15 94 104.24 106.07 1.83 1.54 84 106.07 108.36 2.29 2.29 100 108.36 111.56 3.20 3.03 95

3.04

3.05

1.22

•92

.15

1.52

3.04

2.80

•87

•80

•14

1.44

100

92

71

71

93

95

111.56

114.60

117.60

118.87

119.79

119.94

114.60

117.60

118.87

119.79

119.94

121.46

. . . . . . . . . .

| Core | Recovery | K87-5 |
|------|----------|-------|
|------|----------|-------|

•

. . . . . . . .

| FRO   | M TO                                      | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
|-------|-------------------------------------------|--------------------|----------------|---------------------|
| 121.4 | 6 123                                     | .44 1.98           | 1.72           | 87                  |
| 123.4 | 4 124                                     | .82 1.38           | 1.19           | 86                  |
| 124.8 | 32 125                                    | .27 .45            | .49            | 109                 |
| 125.2 | 27 126                                    | .19 .92            | 1.06           | 115                 |
| 126.1 | 9 127                                     | .25 1.06           | -90            | 85                  |
| 127.2 | 25 128                                    | .32 1.07           | .74            | 69                  |
| 128.3 | 129                                       | .08 .76            | •51            | 67                  |
| 129.0 | 8 130                                     | .61 1.53           | 1.73           | 113                 |
| 130.6 | 51 131                                    | .82 1.21           | 1.22           | 101                 |
| 131.8 | 32 132                                    | .89 1.07           | 1.03           | 96                  |
| 132.8 | 39 134                                    | .26 1.37           | 1.44           | 105                 |
| 134.2 | 26 135                                    | .64 1.38           | 1.32           | 96                  |
| 135.6 | 54 136                                    | •25 •61            | •52            | 85                  |
| 136.2 | 25 137                                    | .01 .76            | • 56           | 74                  |
| 137.0 | )1 138                                    | .68 1.67           | 1.53           | 92                  |
| 138.6 | 8 139                                     | .45 .77            | • 26           | 34                  |
| 139.4 | 5 140                                     | .21 .76            | .45            | 59                  |
| 140.2 | 141                                       | .27 1.06           | •93            | 87                  |
| 141.2 | 27 142                                    | .30 1.03           | 1.03           | 100                 |
| 142.3 | 30 143                                    | .26 .96            | .91            | 95                  |
| 143.2 | 26 146                                    | .30 3.04           | 2,98           | 98                  |
| 146.3 | 30 148                                    | •14 1.84           | 1.66           | 90                  |
| 148.1 | 4 149                                     | .35 1.22           | 1.33           | 109                 |
| 149.3 | 35 152                                    | .10 2.75           | 2.33           | 85                  |
| 152.1 | 0 153                                     | .62 1.52           | 1.64           | 108                 |
| 153.6 | 52 156                                    | .67 3.05           | 2.98           | 98                  |
| 156.6 | 57 157                                    | . 28 . 61          | -74            | 121                 |
| 157.3 | 28 150                                    | 11 1.83            | •/4            | 77                  |
| 159.1 |                                           | 63 1.52            | 1.41           | 00                  |
| 160-6 | 3 163                                     | 37 2 74            | 2.50           | 86                  |
| 163-3 | 164 I I I I I I I I I I I I I I I I I I I | -90 1.53           | 1 28           | 00<br>9.4           |
| 164.0 | 20 166<br>20 166                          | ·/·· 1.50          | 1.20           | 04<br>/0            |
| 166.4 | 100 100                                   | .64 1.22           | •75            | 40                  |
| 167.6 | 2 107<br>34 170                           | .69 3.05           | •/U<br>1 00    | ۸۵<br>۱۲            |
| 170.4 | 59 173                                    | .43 2.74           | 1.09           | 40<br>70            |
| 1.010 |                                           | 2.74               | 1.70           | 14                  |

Core Recovery K87-5

۳

.

.

7

.

Ţ

**7 1 7** 

ļ

| FROM           | TO     | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |     |
|----------------|--------|--------------------|----------------|---------------------|-----|
| 173.43         | 174.65 | 1.22               | .92            | 75                  |     |
| 174.65         | 175.56 | •91                | •22            | 24                  |     |
| 175.56         | 177.09 | 1.53               | •90            | 59                  |     |
| 177.09         | 178.16 | 1.07               | .65            | 61                  |     |
| 178.16         | 180.44 | 2.28               | 2.23           | 98                  |     |
| 180.44         | 181.66 | 1.22               | 1.18           | 97                  |     |
| 181.66         | 184.71 | 3.05               | 2.88           | 94                  |     |
| 184.71         | 187.76 | 3.05               | 1.23           | 40                  |     |
| 187.76         | 189.28 | 1.52               | •53            | 35                  |     |
| 189.28         | 190.35 | 1.07               | •87            | 81                  |     |
| 190.35         | 191.26 | .91                | -69            | 76                  |     |
| 191.26         | 191.72 | •46                | •37            | 80                  |     |
| 191.72         | 193.85 | 2.13               | 1.78           | 84                  |     |
| 193.85         | 196.90 | 3.05               | 2.46           | 81                  |     |
| 196.90         | 198.88 | •98                | 1.88           | <b>9</b> 5          |     |
| 198.88         | 201.02 | 2.14               | 1.88           | 88                  |     |
| 201.02         | 202.54 | 1.52               | 1.29           | 85                  |     |
| 202.54         | 203.15 | •61                | •30            | 49                  |     |
| 203.15         | 203.76 | .61                | • 58           | 95                  |     |
| 203.76         | 205.13 | 1.37               | •88            | 64                  |     |
| 205.13         | 206.65 | 1.52               | •88            | 58                  |     |
| 206.65         | 208.94 | 2.29               | 1.69           | 74                  |     |
| 208.94         | 211.53 | 2.59               | 2.12           | 82                  |     |
| 211.53         | 212.90 | 1.37               | •67            | 49                  |     |
| 212.90         | 215.79 | 2.89               | .73            | 25                  |     |
| 215.79         | 219.71 | 3.92               | -19            | 5 lost (            | ore |
| <b>219.7</b> 1 | 221.28 | 1.57               | 1.55           | 99                  |     |
| 221.28         | 224.33 | 3.05               | 2.54           | 83                  |     |
| 224.33         | 225.55 | 1.22               | 1.16           | 95                  |     |
| 225.55         | 227.68 | 2.13               | -76            | 37                  |     |
| 227.68         | 228.44 | •76                | •66            | 87                  |     |
| 228.44         | 228.90 | • 46               | • 24           | 52                  |     |

| PROJECT                              | KERR PROJECT |             |                | Page: <u>1 of 13</u> |
|--------------------------------------|--------------|-------------|----------------|----------------------|
| D.D. HOLE No.                        | к87-6        | <u>,,</u>   |                |                      |
|                                      |              | Depth 194   | Dip <u>380</u> | Azimuth              |
| Location Zone A                      |              | Collar Lat. |                | 9,738 N              |
|                                      |              | Dep.        | <u> </u>       | 1,654 W              |
| Hole Started 10 August 1987          |              | Elev.       |                | 1,795                |
| Hole Completed 10 August 1987        |              | Azimuth     |                | 6 9 <sup>0</sup>     |
| Core Recovery As per attached sheets |              | Dip         | <u></u>        | -46 <sup>0</sup>     |
| Drilled By Advanced Drilling         |              | Length      |                | 194.16 m             |
| Logged by: John Kowalchuk            |              |             |                |                      |

. . . . . . . . .

,

ΪA.

.

Objective: Geochemistry and trench anomalies

•

.

1 1

,

F
#### PROPERTY Kerr Project

n production and a production of the second se

SHEET NO. 2 of 13

| METERS   |           | DESCRIPTION                                | SAMP    | LING |           | Au        | Ag  | Cu   | Zn   |
|----------|-----------|--------------------------------------------|---------|------|-----------|-----------|-----|------|------|
| From ! 1 | <u>[0</u> |                                            | Spl.# F | rom  | To m      | Rec % ppb | ppm | ppm  | p pm |
| 1.73     | 2.10      | Fine to medium grained sandstone dark grey | 17410   | 1.73 | 2.10 2.10 | nd        | 0.1 | 75   | 71   |
|          |           | to black colour.                           | 1       | 2.10 | 3.90 3.90 | nd        | 0.1 | 91   | 80   |
|          |           | - May be graphite siltstone tr dissem Py.  | 2       | 3.90 | 5.40 5.40 | nd        | 0.1 | 111  | 70   |
|          |           |                                            | 3       | 5.40 | 6.61 6.61 | nd        | 0.1 | 1 48 | 71   |
| 2.10     | 3.90      | Black and mudstone.                        |         |      |           |           |     |      |      |
|          |           | Very fine grained - Chloritic?             |         |      |           |           |     |      |      |
|          |           | Contains several qtz-carb veinlets         | i<br>I  |      |           |           |     |      |      |
|          |           | Trace of sulphides - Py dissem             |         |      |           |           |     |      |      |
|          |           | Broken core                                |         |      |           |           |     |      |      |
|          |           | Otz veins - 30° to core axis.              | l       |      |           |           |     |      |      |
|          |           |                                            | 1       |      |           |           |     |      |      |
| 3.90     | 6.61      | Crystal Tuff (Ash tuff) (Massive)          |         | ,    |           |           |     |      |      |
|          |           | fine grained - pale green colour.          | 1       |      |           |           |     |      |      |
|          |           | Slightly silicified - Chloritized.         | İ       |      |           |           |     |      |      |
|          |           | Shot through with narrow qtz carb veins    |         |      |           |           |     |      |      |
|          |           | which are sometimes rimmed with pyrite.    | 1       |      |           |           |     |      |      |
|          |           | Some Py on fractures and dissem.           |         |      |           |           |     |      |      |
|          |           | 2-5% Py - qtz vein stockwork.              | 1       |      |           |           |     |      |      |
|          |           | 10-15% qtz-AsPy veins. 3 directions 40,-   | 1       |      |           |           |     |      |      |
|          |           | 20,-70 to core axis.                       | 1       |      |           |           |     |      |      |
|          |           |                                            | 1       |      |           |           |     |      | _    |
| 6.61     | 8.50      | Crystal - Lapilli Tuff                     | 17414   | 6.61 | 8.5 1.9   | 50        | 0.2 | 143  | 118  |
|          |           | Very strongly sheared - almost a mylonite  |         |      |           |           |     |      |      |
|          |           | shearing 80° to core axis.                 | 1       |      |           |           |     |      |      |
|          |           | Dark green colour.                         | ļ       |      |           |           |     |      |      |
|          |           | lapilli and crystals are broken and        |         |      |           |           |     |      |      |
|          |           | elongated.                                 | \$<br>1 |      |           |           |     |      |      |

١

1 7

1 1 7 1

### PROPERTY Kerr Project

٠

.

.

SHEET NO. 3 of 13

| METE                                  | RS    | DESCRIPTION                                                                       | SAM            | PLING |      |     | Au        | Ag    | Cu         | Zn         |
|---------------------------------------|-------|-----------------------------------------------------------------------------------|----------------|-------|------|-----|-----------|-------|------------|------------|
| From                                  | To    |                                                                                   | Sp1 #          | From  | То   | Ē   | Rec % ppb | ppm   | ppm        | <u>ppm</u> |
| · · · · · · · · · · · · · · · · · · · |       | 2% Py along shear planes. Tr chalcopyrite<br>Small stockwork of narrow qtz veins. |                |       |      |     |           |       |            |            |
| 8,50                                  | 26.37 | Crackle breccia -                                                                 | 17415          | 8.50  | 11.0 | 2.5 | 50        | 3.7   | <b>294</b> | 75         |
|                                       |       | Crystal and ash tuffs (may also be some                                           | i 6            | 11.0  | 12.5 | 1.5 | 270       | 0.4   | 100        | /0         |
|                                       |       | lapilli turr interlaminated)                                                      |                | 12.5  | 14.0 | 1.5 | 80        | 1 1   | 104        | 00         |
|                                       |       | Rock preculated and sealed with qtz.                                              | j 8<br>  17/10 | 14.0  | 12.2 | 1.5 | 40        | 1.2   | 150        | 140        |
|                                       |       | journ to grey coloured, becoming greener                                          | 117690         | 13+5  | 10 5 | 1+0 | 100       | 1.2   | 103        | 52         |
|                                       |       | iwith depth.                                                                      | 11/420         | 10 5  | 20.0 | 1.5 | 40        | 0.1   | 136        | 68         |
|                                       |       | A weak Stock works of quartz-carponate                                            | 1 I<br>1 2     | 20.0  | 21.5 | 1.5 | 50<br>70  | 0.1   | 130<br>97  | 82         |
|                                       |       | veine with a sciong stockwork of micro                                            | 1 2            | 20.0  | 21.0 | 1.5 | 70<br>nđ  | 0.1   | 100        | 70         |
|                                       |       | Main sulphide is pyrite dissem throughout                                         | <br>           | 23.0  | 22.5 | 1.5 | 20        | 0.1   | 155        | 64         |
|                                       |       | at 105. Trace of Cov along sheared areas.                                         | 5              | 24.5  | 26.0 | 1.5 | nd        | 0.1   | 150        | 331        |
|                                       |       | Possible moly in gtz veins.                                                       | -              |       | 2010 |     |           | • - • |            | •••        |
|                                       |       | Quartz veinlets at 60 and 30°.                                                    |                |       |      |     |           |       |            |            |
|                                       |       | 15.0- Quartz vein $\sim 2$ cm across 35° to core                                  | 1              |       |      |     |           |       |            |            |
|                                       |       | axis.                                                                             | 1              |       |      |     |           |       |            |            |
|                                       |       | 15.0-21.8                                                                         | j<br>1         |       |      |     |           |       |            |            |
|                                       |       | Crystal Tuff - Massive                                                            |                |       |      |     |           |       |            |            |
|                                       |       | Grey-green colour - medium grained                                                | i<br>1         |       |      |     |           |       |            |            |
|                                       |       | Occasional cherty laminae less crackled                                           |                |       |      |     |           |       |            |            |
|                                       |       | in this interval.                                                                 | 1              |       |      |     |           |       |            |            |
|                                       |       | Crystal Tuff - Crackle breccia.                                                   | 1              |       |      |     |           |       |            |            |
|                                       |       | Grey colour - silicified in places.                                               | 1              |       |      |     |           |       |            |            |
|                                       |       | Destroying texture.                                                               | (              |       |      |     |           |       |            |            |
|                                       |       | $18.4m - Qtz$ veins $lcm - 65^{\circ}$ and $-35^{\circ}$                          | 1              |       |      |     |           |       |            |            |
|                                       |       | 18.5 - 10cm epidote altered zone 50° to                                           | ł              |       |      |     |           |       |            |            |
|                                       |       | core axis.                                                                        |                |       |      |     |           |       |            |            |

## PROFERTY Kerr Project

SHEET NO. 4 of 13

| METERS     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAME                                    | LING                                                         |                                                              |                                                      |       | Ău                                              | Ag                                                   | Cu                                                   | Zn                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| From To    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spl.# H                                 | rom                                                          | То                                                           |                                                      | Rec 🕺 | ppb                                             | ррш                                                  | ppm ¦                                                | ppm                                          |
|            | <pre>20.0 - Greener colour - chlorite altered<br/>Increase in crackling.<br/>5-10% qtz calcite as crackle fillings.<br/>Increase in sulphides to 10% py tr Cpy.<br/>Tr black metallic mineral (sphalerite?).<br/>21.8-22.6 - Green epidote altered zone,<br/>Intensely crackled.<br/>Finer grained - cherty.<br/>23.75-26.37 - Increase in brecciation<br/>- chloritize and epidote alteration<br/>- Pyrite dissem and or fractures.<br/>Qtz and calcite cemented fractures at -10<br/>+55° and +20°.<br/>Contact broken core.</pre> |                                         |                                                              |                                                              |                                                      |       |                                                 |                                                      |                                                      |                                              |
| 26.37 43.7 | Ash Tuff - Laminated<br>-Cherty in places - pale green -buff<br>coloured<br>Still crackled in places<br>Crackles cemented with calcite and some<br>quartz.<br>Ash Tuff - Interlaminated<br>Lamination 20° to core axis.<br>10-15% Py as fracture fillings and as<br>porphyroblasts along foliation direction<br>70° to core axis also dissem Py. Tuff is                                                                                                                                                                             | 17426<br>7<br>9<br>17430<br>1<br>2<br>3 | 26.0<br>28.0<br>31.0<br>33.0<br>35.0<br>37.0<br>39.0<br>41.0 | 28.0<br>31.0<br>33.0<br>35.0<br>37.0<br>39.0<br>41.0<br>43.0 | 2.0<br>3.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 |       | 590<br>60<br>690<br>100<br>nd<br>nd<br>10<br>nd | 0.4<br>0.1<br>0.2<br>0.3<br>0.1<br>0.1<br>0.1<br>0.2 | 275<br>165<br>157<br>233<br>105<br>210<br>164<br>136 | 90<br>76<br>48<br>53<br>42<br>50<br>53<br>51 |

i.

# HOLE NO. \_\_\_\_\_K87-6\_\_\_\_

and the second 
### PROPERTY Kerr Project

.

• •

. . .

.

.

,

•

• •

.

SHEET NO. 5 of 13

| METE | RS   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                               | SAN                  | PLING                        |                              |                   |     | Au                            | Ag                               | Cu                                | Zn                        |  |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|------------------------------|-------------------|-----|-------------------------------|----------------------------------|-----------------------------------|---------------------------|--|
| From | To   |                                                                                                                                                                                                                                                                                                                                                                                           | Spl.#                | From                         | То                           | [ m               | Rec | % ppb                         | ppm                              | <u>ppm</u>                        | <u>p</u> pm               |  |
|      |      | crackled cemented by calcite and quartz.<br>28.04-31.5 - Broken and ground core fault<br>zone.<br>Fractures subparallel to core axis.<br>Rock still primarily crackled scaled with<br>calcite, quartz and Py.<br>40.2 - Lamination 30° to core axis.<br>Rock quite broken and blocky throughout<br>primary sulphide - Py- trace amounts of<br>chalcopyrite and sphalerite.                |                      |                              |                              |                   |     |                               |                                  |                                   |                           |  |
| 43.7 | 46.0 | Crystal Tuff - grey coloured medium to<br>coarse grained feldspars saussuritized some<br>minor ash tuff lapilli and occasional<br>laminated of ash tuff weakly foliated 70°<br>to core axis. Contains 15-20% sulphides as<br>foliation planes primarily pyrite - tr<br>sphalerite and chalcopyrite. Quartz<br>carbonate filled fractures 60° and -30°                                     | 17434                | 43.0<br>45.0                 | 45.0<br>46.0                 | 2.0<br>1.0        |     | 130<br>85                     | 0.4<br>17.5                      | 142<br>1708                       | 93<br>113                 |  |
| 46.0 | 48.0 | Sulphide Filled Breccia Zone - Massive<br>chalcopyrite and sphalerite bands in a<br>brecciated ash tuff.<br>Bands parallel to foliation at 60° to c.a.<br>1st metre about 40% sulphides.<br>2nd metre about 25-30% sulphides<br>primarily Cpy, py, sphal, gal, other.<br>Sulphide bands enveloped by quartz. Tuff<br>extensively brecciated.<br>Alteration - chlorite-quartz-some kspars. | 17436<br>7<br>8<br>9 | 46.0<br>46.5<br>47.0<br>47.5 | 46.5<br>47.0<br>47.5<br>48.0 | 0.5<br>0.5<br>0.5 |     | 69050<br>2980<br>1850<br>4660 | >100.<br>>100.<br>>100.<br>>100. | 13.47%<br>22740<br>17682<br>17016 | 6266<br>495<br>688<br>518 |  |

4 

Ŧ

1

۲ ١ 1 1

### PROPERTY Kerr Project

SHEET NO. 6 of 13

| METE | RS   | DESCRIPTION                                            | SAI   | MPLING |      |     | Au        | Ag  | Cu  | Zn          |
|------|------|--------------------------------------------------------|-------|--------|------|-----|-----------|-----|-----|-------------|
| From | To   | -                                                      | Spl.# | From   | To   | m   | Rec % ppb | ppm | ppm | ppm         |
| 48.0 | 57.4 | Ash Tuff - Brecciated                                  | 17440 | 48.0   | 49.0 | 1.0 | nđ        | 8.7 | 576 | 142         |
|      | -    | Breccia fragments sealed with qtz-ct and               | 1     | 49.0   | 51.0 | 2.0 | 60        | 1.8 | 227 | 68          |
|      |      | Pv.                                                    | 2     | 51.0   | 53.0 | 2.0 | 170       | 0.7 | 189 | 53          |
|      |      | 10-15% sulphides primarily Py                          | 3     | 53.0   | 55+0 | 2.0 | 55        | 1.2 | 207 | 48          |
|      |      | Np to 1% Cpy - tr sphal                                | 4     | 55.0   | 57.0 | 2.0 | nd        | 0.1 | 112 | 156         |
|      |      | Black wisps may be pyrite or sphal minor               |       |        |      |     |           |     |     |             |
|      |      | silicification.                                        | i     |        |      |     |           |     |     |             |
|      |      | Crackle patterns 55 and $-35^{\circ}$ c.a.             | į     |        |      |     |           |     |     |             |
|      |      | lamination sub parallel to core axis.                  | i i   |        |      |     |           |     |     |             |
|      |      |                                                        |       |        |      |     |           |     |     |             |
| 57.4 | 66.1 | Crystal Tuff                                           | 17445 | 57.0   | 59.0 | 2.0 | 160       | 0.5 | 112 | 1 <b>26</b> |
| 2    | 0012 | Medium to coarse grained                               | 6     | 59.0   | 61.0 | 2.0 | nd        | 0.1 | 73  | 108         |
|      |      | Grev coloured.                                         | 7     | 61.0   | 63.0 | 2.0 | 15        | 0.1 | 84  | 64          |
|      |      | $161.8 - 1$ cm atz vein with PV core $45^{\circ}$ c.a. | 8     | 63.0   | 65.0 | 2.0 | 20        | 1.0 | 115 | 72          |
|      |      | Rock carries about 10% sulphide.                       | 9     | 65.0   | 66.0 | 1.0 | nd        | 0.1 | 43  | 43          |
|      |      | Small section from $62.5 - 64.0$ -                     | 1     |        |      |     |           |     |     | -           |
|      |      | Silicified.                                            | ļ     |        |      |     |           |     |     |             |
|      |      | 162.4 - 0tz vein 20° core axis 0.5cm                   | į     |        |      |     |           |     |     |             |
|      |      | 163.7 - 0uartz vein 0.3 cm 35° c.a.                    | ļ     |        |      |     |           |     |     |             |
|      |      | Slight increase in chlorite to bottom                  | 1     |        |      |     |           |     |     |             |
|      |      | approximate therease in chrotice to sollow             |       |        |      |     |           |     |     |             |
|      |      | leoncace.                                              |       |        |      |     |           |     |     |             |
|      |      | i                                                      | 1     |        |      |     |           |     |     |             |

#### PROPERTY Kerr Project

. . . .

· ·

1 1

· ·

• •

.

.

۴

SHEET NO. 7 of 13

,

-

| ME   | TERS | 5 ¦   | DESCRIPTION                                         | SAME          | PLING |      |     | Au        | Ag   | Cu   | Zn         |  |
|------|------|-------|-----------------------------------------------------|---------------|-------|------|-----|-----------|------|------|------------|--|
| From |      | To    |                                                     | Spl.#¦E       | rom   | То   | m   | Rec % ppb | ppm  | ppm  | <u>ppm</u> |  |
| 66.1 |      | 69.40 | Crystal Tuff - Dark Green                           | 17450         | 66.0  | 68.0 | 2.0 | nd        | 0.1  | 49   | 74         |  |
|      |      |       | Extensive chlorite alteration.                      | 1             | 68.0  | 69.4 | 1.4 | 445       | 80.9 | 1397 | 226        |  |
|      |      | Í     | Several small lapilli                               | 1             |       |      |     |           |      |      |            |  |
|      |      |       | Medium to coarse grained.                           | 1             |       |      |     |           |      |      |            |  |
|      |      |       | Contact sheared with qtz along shear planes         | 1             |       |      |     |           |      |      |            |  |
|      |      |       | Shear at 68 <sup>0</sup> to core axis               | 1             |       |      |     |           |      |      |            |  |
|      |      |       | 67.31 - 67.5 - broken core/small fault.             | }             |       |      |     |           |      |      |            |  |
|      |      |       | Occasional small bleached zones containing          | 1             |       |      |     |           |      |      |            |  |
|      |      |       | qtz veins and Py eg 68.80 55 <sup>0</sup> /c.a.     | 1             |       |      |     |           |      |      |            |  |
|      |      |       | 68.40-68.80 - zone of sulphide veining and          | ĺ             |       |      |     |           |      |      |            |  |
|      |      |       | qtz sulphides - primarily Py.                       | 1             |       |      |     |           |      |      |            |  |
|      |      |       | Bottom contact - 20° to core axis.                  | 1             |       |      |     |           |      |      |            |  |
|      |      |       |                                                     | 1             |       |      |     |           |      |      |            |  |
| 69.  | 40   | 76.55 | Ash Tuff - Well laminated                           | 17452         | 69.4  | 71.4 | 2.0 | 60        | 1.0  | 208  | 39         |  |
|      |      |       | buff to pale green in colour                        | 3             | 71.4  | 73.4 | 2.0 | nđ        | 0.2  | 141  | 63         |  |
|      |      |       | Chloritic near contact 1st metre.                   | 4             | 73.4  | 75.4 | 2.0 | 100       | 0.2  | 195  | 61         |  |
|      |      |       | Laminations 20° to core axis                        | 5             | 75.4  | 77.4 | 2.0 | 20        | 0.2  | 235  | 73         |  |
|      |      |       | Upper 4 metres quite crackled with qtz-             | <b>I</b><br>1 |       |      |     |           |      |      |            |  |
|      |      |       | carbonate filling crackles.                         | 1             |       |      |     |           |      |      |            |  |
|      |      |       | Py filling foliation planes - 60° to core           | 1             |       |      |     |           |      |      |            |  |
|      |      |       | axis                                                | l<br>l        |       |      |     |           |      |      |            |  |
|      |      |       | Generally less than 10% Py                          |               |       |      |     |           |      |      |            |  |
|      |      |       | Ash Tuff                                            | 1             |       |      |     |           |      |      |            |  |
|      |      |       | Qtz carb veins cont Py 50 <sup>0</sup> to core axis | 1             |       |      |     |           |      |      |            |  |
|      |      |       | 5- 0.4cm veins/metre.                               | 1             |       |      |     |           |      |      |            |  |
|      |      |       | 75.0-75.5 - Very chlorite containing 20%            | t<br>1        |       |      |     |           |      |      |            |  |
|      |      |       | euhedral pyrite along lamination planes.            |               |       |      |     |           |      |      |            |  |
|      |      |       | Some bleaching along laminations.                   | 1             |       |      |     |           |      |      |            |  |

-

٦

## PROPERTY Kerr Project

•

۳.

۰ ۲

٠.

SHEET NO. 8 of 13

| METER | RS    | DESCRIPTION                                 | SAN   | PLING |      |     | ļ   | Au    | Ag  | Cu  | Zn  |
|-------|-------|---------------------------------------------|-------|-------|------|-----|-----|-------|-----|-----|-----|
| From  | То    |                                             | Sp1.# | From  | То   | l m | Rec | % ppb | bbu | bbu | ррш |
| 76.55 | 92.1  | Crystal Tuff - Fine to medium grained       | 17456 | 77.4  | 79.4 | 2.0 |     | nd    | 0.1 | 181 | 111 |
|       |       | Grey coloured                               | 7     | 79.4  | 81.4 | 2.0 |     | nd    | 0.1 | 180 | 47  |
|       |       | Contains some ash tuff laminae has some     | 8     | 81.4  | 83.4 | 2.0 |     | 100   | 0.2 | 376 | 298 |
|       |       | thin gtz carb veins with pyrite lapilli.    | 9     | 83.4  | 85.4 | 2.0 |     | 140   | 0.1 | 131 | 87  |
|       |       | Sulphide contact 15% both as disseminations | 7460  | 85.4  | 87.4 | 2.0 |     | 20    | 2.6 | 132 | 105 |
|       |       | and as foliations.                          | 1     | 87.4  | 89.4 | 2.0 |     | 55    | 0.7 | 191 | 80  |
|       |       | 81.5 - Interbedded crystal tuff with ash    | 2     | 89.4  | 91.4 | 2.0 |     | nd    | 0.1 | 92  | 48  |
|       |       | tuff.                                       |       |       |      |     |     |       |     |     |     |
|       |       | Bedding 15% to core axis.                   | 1     |       |      |     |     |       |     |     |     |
|       |       | 88.0 - Laminae of ash tuff 50° to core axis | į     |       |      |     |     |       |     |     |     |
|       |       | 83.0-83.5 - Ash tuff crackled.              | ļ     |       |      |     |     |       |     |     |     |
|       |       | Sulphide content decreases to 5%.           | ļ     |       |      |     |     |       |     |     |     |
|       |       | 89.0-89.4 - Broken core axis.               | ļ     |       |      |     |     |       |     |     |     |
|       |       | 89.4 - Rock progressively more silicified   | i     |       |      |     |     |       |     |     |     |
|       |       | Becomes coarser grained.                    | i i   |       |      |     |     |       |     |     |     |
|       |       |                                             | į     |       |      |     |     |       |     |     |     |
| 92.1  | 98.1  | Crystal Tuff - Coarse grained-              | 17463 | 91.4  | 93.4 | 2.0 |     | 110   | 0.1 | 142 | 44  |
|       | • • • | Granodiorite?                               | 4     | 93.4  | 95.4 | 2.0 |     | 40    | 0.1 | 68  | 44  |
|       |       | Pale green- shot through with epidote       | 5     | 95.4  | 97.4 | 2.0 |     | 210   | 0.1 | 70  | 35  |
|       |       | veins.                                      | 6     | 97.4  | 99.4 | 2.0 |     | nd    | 0.1 | 85  | 46  |
|       |       | Pervasive epidote alteration.               | Í     |       |      |     |     |       |     |     | -   |
|       |       |                                             | •     |       |      |     |     |       |     |     |     |

. . . . . .

٠

٦ , 1 .

SHEET NO. 9 of 13

| METE        | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAM                          | PLING                           |                                  |                   | 1   | Au                   | Ag                | Cu                      | Zn                   |
|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|----------------------------------|-------------------|-----|----------------------|-------------------|-------------------------|----------------------|
| From        | То    | r<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spl.#                        | From                            | То                               | m                 | Rec | %¦ppb                | bbu               | ppm                     | ष्ट्रम्ब             |
|             |       | Feldspars kaolinized.<br>Massive texture.<br>Trace of pyrite disseminated throughout.<br>Occasional finer grained chloritic<br>sections.<br>narrow qtz-carbonate veins at 35° to core<br>axis.5 per metre - no sulphides with veins<br>Increase of sulphides to 5% in chloritic<br>sections.                                                                                                                                                                             |                              |                                 |                                  |                   |     |                      |                   |                         |                      |
| <b>98.1</b> | 107.0 | Crystal tuff - Fine grained<br>Grey - silicified - chloritic<br>Rock contains 5-15% sulphides<br>Mainly Py dissem evenly throughout<br>Relatively massive in texture<br>101-108 - Broken core - some highly<br>fractured core - across contact with ash<br>tuff<br>Ash tuff- well laminated very silicified-<br>cherty in appearance<br>Occasional interbeds of fine grained<br>crystal tuff.<br>Rock quite broken - some crackling 5-10%<br>sulphides as Py throughout. | 17467<br>17468<br>9<br>17470 | 99.4<br>101.4<br>103.4<br>105.4 | 101.4<br>103.4<br>105.4<br>107.4 | 2.0<br>2.0<br>2.0 |     | nd<br>65<br>nd<br>nd | 0.1<br>0.1<br>0.1 | 138<br>110<br>104<br>97 | 88<br>62<br>64<br>66 |

PROPERTY Kerr Project

\* \* \* \* \*

.

.

.

•

· ·

HOLE NO. \_\_\_\_\_K87-6

### PROPERTY Kerr Project

# SHEET NO. 10 of 13

Ì

| METE  | RS    | DE SCRIPTION                                                | SAI    | <b>PLING</b> |       |     | Au        | Ag   | Cu          | Zn          |
|-------|-------|-------------------------------------------------------------|--------|--------------|-------|-----|-----------|------|-------------|-------------|
| From  | То    |                                                             | Sp1.#  | From         | То    |     | Rec % ppb | իթթա | p pm        | ppm         |
| 107.0 | 131.0 | Ash Tuff - Silicified                                       | 17471  | 107.4        | 109.4 | 2.0 | nd        | 0.1  | 12 <b>9</b> | 67          |
|       |       | Qtz-Py veins at $20^{\circ}$ and $50^{\circ}$ to core axis. | 2      | 109.4        | 111.4 | 2.0 | 20        | 0.1  | 113         | 82          |
|       |       | Veins average 9/metre - approx 2-5cm thick.                 | 17473  | 111.4        | 113.4 | 2.0 | nđ        | 0.1  | 115         | 97          |
|       |       | 23.8-24.4 - pyritic crystal tuff - possible                 | 4      | 113.4        | 115.4 | 2.0 | 40        | 0.1  | 147         | 1591        |
|       |       | monz. dyke?                                                 | 5      | 115.4        | 117.4 | 2.0 | nd        | 0.1  | 117         | 1427        |
|       |       | Upper contact <50° to core axis                             | 6      | 117.4        | 119.4 | 2.0 | nd        | 0.1  | 102         | 114         |
|       |       | Bottom contact - sheared 60° to core axis.                  | 7      | 119.4        | 121.4 | 2.0 | nd        | 0.1  | 121         | 173         |
|       |       | Rock becomes buff to pink coloured with                     | 8      | 121.4        | 123.4 | 2.0 | 25        | 0.1  | 127         | 155         |
|       |       | Py sealing breccia fragments                                | ; 9    | 123.4        | 125.4 | 2.0 | 90        | 0.1  | 99          | 206         |
|       |       | Very siliceous.                                             | 7980   | 125.4        | 127.4 | 2.0 | 60        | 0.1  | 143         | 1 <b>97</b> |
|       |       | 127.9-128.5 - Broken and rusty core.                        | 1      | 127.4        | 129.4 | 2.0 | nd        | 0.1  | 124         | 185         |
|       |       | 128.9-129.4 - Basalt dyke or sill                           | 2      | 129.4        | 131.4 | 2.0 | nd        | 0.1  | 100         | 129         |
|       |       | Vesicular - calcite filling vesicles                        | 1      |              |       |     |           |      |             |             |
|       |       | Black-contact 1 to foliation - 60° to core                  |        |              |       |     |           |      |             |             |
|       |       | axis.                                                       | 1      |              |       |     |           |      |             |             |
|       |       |                                                             | 1      |              |       |     |           |      |             |             |
|       |       | 1                                                           | 1<br>L |              |       |     |           |      |             |             |
| 131.0 | 134.2 | Lapilli Tuff - Ash tuff with                                | 17483  | 131.4        | 133.4 | 2.0 | nd        | 0.1  | 117         | 86          |
|       |       | Lapilli or ash tuff and fine grained                        | 4      | 133.4        | 135.4 | 2.0 | nd        | 0.1  | 180         | 117         |
|       |       | crystal tuff                                                | 1      |              |       |     |           |      |             |             |
|       |       | - Occasional bombs of granodiorite                          |        |              |       |     |           |      |             |             |
|       |       | - Rock becomes contorted                                    | 1      |              |       |     |           |      |             |             |
|       |       | Foliation and lamination 40° to core axis                   |        |              |       |     |           |      |             |             |
|       |       | Chloritic in places.                                        | ļ      |              |       |     |           |      |             |             |
|       |       | Rock contains up to 10% Py                                  | l<br>I |              |       |     |           |      |             |             |
|       |       | Possibly volcanic breccia in places                         | 1      |              |       |     |           |      |             |             |
|       |       | silicified in a few places                                  | 1      |              |       |     |           |      |             |             |
|       |       | Grey to green coloured.                                     |        |              |       |     |           |      |             |             |
|       |       |                                                             |        |              |       |     |           |      |             |             |
|       |       |                                                             |        |              |       |     |           |      |             |             |

PROPERTY Kerr Project

the second secon

SHEET NO. 11 of 13

| METERS       | DESCRIPTION                                                                                                                                                                                                               | SAM                          | PLING                            |                                  |                          | Au                     | Ag                       | Cu                       | Zn                     |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|----------------------------------|--------------------------|------------------------|--------------------------|--------------------------|------------------------|
| From To      | -                                                                                                                                                                                                                         | Spl.#                        | From                             | To                               | m                        | Rec % ppb              | ppm                      | ppm                      | ррщ                    |
| 134.2 136.04 | Crystal Tuff - Fine to med grained.<br>Buff to grey coloured.<br>Possible occasional lapilli.<br>Contains 10-15% Py along fractures and<br>foliation planes<br>Relatively massive unit.                                   |                              |                                  |                                  |                          |                        |                          |                          |                        |
| 136.04 141.6 | Black and Buff Pyritic Ash Tuff<br>Well laminated.<br>Up to 20% pyrite along foliations and<br>laminations at 20 <sup>0</sup> to core axis.<br>Pyritic sections in black laminae.<br>Fine grained - Brecciated in planes. | 17485<br>6<br>7              | 135.4<br>137.4<br>139.4          | 137.4<br>139.4<br>141.4          | 2.0<br>2.0<br>2.0        | 10<br>200<br>nd        | 0.1<br>0.1<br>0.1        | 174<br>158<br>154        | 84<br>239<br>106       |
| 141.6 147.7  | Coarse - Medium Grained Crystal Tuff<br>Green and chloritic<br>Top metre sheared.<br>144.17- Foliation 60°<br>Occasional fine grained lapilli oriented<br>parallel to foliation.                                          | 17488<br>17489<br>17490<br>1 | 141.4<br>143.4<br>145.4<br>147.4 | 143.4<br>145.4<br>147.4<br>149.4 | 2.0<br>2.0<br>2.0<br>2.0 | 260<br>5<br>105<br>330 | 0.1<br>0.1<br>0.3<br>0.1 | 118<br>210<br>937<br>225 | 88<br>98<br>111<br>128 |

r

4

.

٠

. .

,

PROPERTY Kerr Project

### SHEET NO. 12 of 13

.

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAM                                                                                | PLING                                                                                                                      |                                                                                                                            |                                                                                  | Au                                                                                     | Ag                                                                                             | Cu                                                                                                    | Zn                                                                              |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| From To     | Ť<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¦Spl.#¦                                                                            | From                                                                                                                       | То                                                                                                                         | i m                                                                              | Rec % ppb                                                                              | p pm                                                                                           | bbm                                                                                                   | p pm                                                                            |  |
|             | Few narrow qtz carbonate veins.<br>144.4-145.24 - Sheared section very<br>sericitic approx 5% Py - tr Cpy.<br>Except for sheared areas - Generally<br>massive.<br>147.7-148.2 - Sheared and sericitic<br>section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |                                                                                                                            |                                                                                                                            |                                                                                  |                                                                                        |                                                                                                |                                                                                                       |                                                                                 |  |
| 147.7 167.8 | Crystal Tuff Coarse Grained.<br>Pale grey green colour<br>147.7-154.6- slightly sheared and sericitic<br>- Several qtz Py veins.<br>60° to core axis trace of chalcopyrite.<br>- Becomes quite chloritic - some ash tuff<br>lapilli.<br>154.6 - increase in Py content to 25% with<br>bands of massive Py.<br>Some trace amounts of chalcopyrite-bands of<br>massive pyrite start at 3cm thick and<br>thicker.<br>Bands are parallel to foliation 60°/c.a.<br>158.2-158.4 - Massive pyrite band<br>161.54-162.0 - 40% pyrite.<br>162.50-163.2 - 805 pyrite - 20° to core<br>axis.<br>Decrease in sulphides to 10.<br>Disseminated throughout.<br>Some sections slightly more chloritic. | 17492<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>17500<br>3501<br>2<br>3<br>3<br>4<br>5 | 149.4<br>151.4<br>153.4<br>155.4<br>156.4<br>157.4<br>157.4<br>159.4<br>160.4<br>161.4<br>162.4<br>163.4<br>164.4<br>166.4 | 151.4<br>153.4<br>155.4<br>156.4<br>157.4<br>158.4<br>159.4<br>160.4<br>161.4<br>162.4<br>163.4<br>164.4<br>166.4<br>168.4 | 2.0<br>2.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>2.0 | 270<br>65<br>50<br>140<br>190<br>170<br>nd<br>90<br>nd<br>35<br>220<br>100<br>40<br>20 | 2.5<br>0.1<br>1.3<br>0.4<br>0.1<br>0.5<br>0.6<br>0.6<br>0.6<br>0.4<br>0.5<br>0.1<br>0.1<br>0.1 | 5430<br>898<br>4918<br>2457<br>1287<br>2495<br>2106<br>413<br>478<br>583<br>375<br>666<br>1092<br>488 | 63<br>81<br>32<br>95<br>68<br>43<br>20<br>16<br>16<br>13<br>9<br>15<br>36<br>85 |  |

#### PROPERTY Kerr Project

.

SHEET NO. 13 of 13

| METE  | RS     | DESCRIPTION                                                         | SAM        | PLING |       |     |     | Au    | Ag  | Cu  | Zn  |
|-------|--------|---------------------------------------------------------------------|------------|-------|-------|-----|-----|-------|-----|-----|-----|
| From  | To     | -                                                                   | Spl.#      | From  | То    | m   | Rec | % ppb | ppm | ppm | ppm |
| 167.8 | 172.0  | 167.8-172.0 - Particulary coarse grained                            | 3506       | 168.4 | 170.4 | 2.0 |     | 40    | 0.1 | 121 | 143 |
|       |        | section - green chloritic porphyroblasts.                           | 7          | 170.4 | 172.4 | 2.0 |     | 100   | 0.1 | 463 | 103 |
|       | 1      | 5% pyrite.                                                          |            |       |       |     |     |       |     |     |     |
|       |        | 169.7 - 171.45 - Particularly broken                                |            |       |       |     |     |       |     |     |     |
|       |        | section.                                                            |            |       |       |     |     |       |     |     |     |
|       |        | Very green and chloritic at end                                     |            |       |       |     |     |       |     |     |     |
| 172.0 | 178.0  | Crystal Tuff - Medium grained.                                      | 3508       | 172.4 | 174.4 | 2.0 |     | 50    | 0.8 | 916 | 8   |
|       | i      | Grey coloured - siliceous.                                          | 9          | 174.4 | 176.4 | 2.0 |     | 105   | 0.6 | 757 | 5   |
| ·     | l      | Relatively massive.                                                 | 3510       | 176.4 | 178.4 | 2.0 |     | 145   | 0.2 | 474 | 11  |
|       | l      | Approx 5% pyrite.                                                   |            |       |       |     |     |       |     |     |     |
|       |        | 177-178- Extensive mesh of barren                                   | 5          |       |       |     |     |       |     |     |     |
|       |        | Qtz veins $10^{\circ}$ , $40^{\circ}$ , $-20^{\circ}$ to core axis. | 3511       | 178.4 | 180.4 | 2.0 |     | 85    | 0.1 | 147 | 48  |
|       |        |                                                                     | 2          | 180.4 | 182.4 | 2.0 |     | 80    | 0.1 | 183 | 65  |
| 178.0 | 194.16 | Crystal Tuff - Fine grained                                         | 3          | 182.4 | 184.4 | 2.0 |     | 115   | 0.2 | 405 | 67  |
|       |        | Dark Green - Chloritic.                                             | 4          | 184.4 | 186.4 | 2.0 |     | 200   | 0.3 | 698 | 60  |
|       |        | Carbonate diffused in microfracture.                                | 5          | 186.4 | 188.4 | 2.0 |     | 220   | 0.3 | 576 | 66  |
|       |        | Sand with qtz veins.                                                | 6          | 188.4 | 190.4 | 2.0 |     | 225   | 0.1 | 490 | 56  |
|       |        | Relatively massive                                                  | 7          | 190.4 | 192.4 | 2.0 |     | 340   | 0.4 | 998 | 64  |
|       |        | Less than 5% sulphides ~ mostly Py - tr                             | 8          | 192.4 | 194.2 | 2.0 |     | 90    | 0.1 | 684 | 76  |
|       |        | Cpy.                                                                |            |       |       |     |     |       |     |     |     |
|       |        | 180.4-180.0 - Broken core.                                          | Í          |       |       |     |     |       |     |     |     |
|       |        | 183.4 - Zucm broken core                                            | ,<br> <br> |       |       |     |     |       |     |     |     |
|       |        | 185.3 - 20 m proken core                                            |            |       |       |     |     |       |     |     |     |
|       |        | 187.3 - 30 hroken core                                              | i<br>I     |       |       |     |     |       |     |     |     |
|       |        | 187 6-and - narrow atgraarh voing - 5mm                             | 1          |       |       |     |     |       |     |     |     |
|       |        | $\frac{107.0}{200}$ end = narrow $\frac{102}{200}$ end = 5mm        | )<br>      |       |       |     |     |       |     |     |     |
|       |        | 15 veins/metre.                                                     |            |       |       |     |     |       |     |     |     |
|       |        |                                                                     | I          |       |       |     |     |       |     |     |     |
|       | 194.16 | End of HoleEnd of Hole                                              |            |       |       |     |     |       |     |     |     |

Core Recovery K87-6

٦

٠

. .

· ·

and the second 
t t t t t t t t t

۱

· ·

.

,

| FROM  | TO    | INTERVAL | CORE   | PERCENT    |
|-------|-------|----------|--------|------------|
|       |       | LENGTH   | LENGTH | RECOVERY   |
|       | 4.27  | 4.27     | 2.84   | 59         |
| 4.27  | 5.79  | 1.52     | 1.45   | 95         |
| 5.79  | 6.86  | 1.07     | .9     | 84         |
| 6.86  | 7.62  | •76      | •7     | 92         |
| 7.62  | 8.38  | .76      | • 52   | 86         |
| 8.38  | 10.52 | 2.14     | 2.04   | 95         |
| 10.52 | 12.04 | 1.52     | 1.42   | 93         |
| 12.04 | 13.72 | 1.68     | 1.57   | <b>9</b> 3 |
| 13.72 | 16.76 | 3.04     | 1.29   | 42         |
| 16.76 | 19.81 | 3.05     | 2.71   | 89         |
| 19.81 | 22.25 | 2.44     | 2.45   | 100        |
| 22.25 | 25.45 | 3.2      | 3.17   | 99         |
| 25.45 | 26.37 | •92      | •77    | 84         |
| 26.37 | 28.04 | 1.67     | 1.20   | 72         |
| 28.04 | 28.80 | .76      | •17    | 22         |
| 28.80 | 29.57 | .77      | .10    | 13         |
| 29.57 | 30.63 | 1.06     | •09    | 8          |
| 30.63 | 31.09 | •46      | •35    | 76         |
| 31.09 | 32.31 | 1.22     | 1.26   | 103        |
| 32.31 | 33.83 | 1.52     | 1.24   | 82         |
| 33.83 | 35.66 | 1.83     | 1.62   | 89         |
| 35.66 | 36.88 | 1.22     | 1.30   | 107        |
| 36.88 | 37.49 | -61      | •64    | 105        |
| 37.49 | 38.71 | 1.22     | 1.14   | 93         |
| 38.71 | 40.54 | 1.83     | 1.97   | 108        |
| 40.54 | 41.76 | 1.22     | 1.09   | 89         |
| 41.76 | 43.28 | 1.52     | 1.64   | 108        |
| 43.28 | 44.20 | •92      | -64    | 70         |
| 44.20 | 47.24 | 3.04     | 3.06   | 101        |
| 47-24 | 48.77 | 1.53     | 1.74   | 114        |
| 48.77 | 50-6  | 1.83     | 1.64   | 90         |
| 50.6  | 53.64 | 3.04     | 3.09   | 102        |
| 53.64 | 54.71 | 1.07     | 1.07   | 100        |
| 54.71 | 55.63 | .92      | 1.10   | 120        |
| 55.63 | 56.24 | .61      | •79    | 130        |

•

| FROM           | то     | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
|----------------|--------|--------------------|----------------|---------------------|
| 56.24          | 56.39  | .15                | .13            | 87                  |
| 56.39          | 57.91  | 1.52               | 1.37           | 90                  |
| 57.91          | 62.03  | 2.90               | 2.70           | 93                  |
| 62.03          | 63.70  | 1.67               | 1.76           | 105                 |
| 63.70          | 65.53  | 1.83               | 1.77           | 97                  |
| 65.53          | 66.6   | 1.07               | 1.14           | 107                 |
| 66.6           | 67.51  | .91                | •64            | 70                  |
| 67.51          | 69.34  | 1.83               | 1.67           | 91                  |
| 69.34          | 71.17  | 1.83               | 1.83           | 100                 |
| 71.17          | 73.15  | 1.98               | 1.72           | 87                  |
| 73.15          | 76.20  | 3.05               | 3.05           | 100                 |
| 76.20          | 77.72  | 1.52               | 1.54           | 101                 |
| 77.72          | 78.94  | 1.22               | 1.08           | 89                  |
| 78 <b>.9</b> 4 | 80.77  | 1.83               | 1.62           | 89                  |
| 80.77          | 83.21  | 2.44               | 2.30           | 94                  |
| 83.21          | 84.42  | 1.21               | •98            | 81                  |
| 84.42          | 86.86  | 2.44               | 2.04           | 84                  |
| 86.86          | 89.00  | 2.14               | 2.00           | 93                  |
| 89.0           | 89.91  | •91                | • 57           | 63                  |
| 89.91          | 92.96  | 3.05               | 2.92           | 96                  |
| 92.96          | 98.45  | 1.83               | 1.57           | 83                  |
| 98.45          | 100.80 | 2.35               | 2.20           | 94                  |
| 100.80         | 101.80 | 1.00               | -82            | 82                  |
| 101.80         | 102.71 | •91                | - 58           | 64                  |
| 102.71         | 104.08 | 1.37               | 1.12           | 82                  |
| 104.08         | 105.16 | 1.08               | 0.65           | 64                  |
| 105.16         | 106.07 | •92                | • 39           | 42                  |
| 106.07         | 107.89 | 1.82               | •34            | 19                  |
| 107.89         | 109.11 | 1.22               | •76            | 62                  |
| 109.11         | 110.03 | • 92               | • 55           | 60                  |
| 110.03         | 111.25 | 1.22               | +87            | 71                  |
| 111.25         | 112.77 | 1.52               | -60            | 39                  |
| 112.77         | 114.30 | 1.53               | 1.34           | 88                  |
| 114.30         | 116.40 | 2.1                | 2.04           | 97                  |
| 116.40         | 117.96 | 1.56               | 1.24           | 79                  |

# Core Recovery K87-6

|        |        | Core Recove:       | Core Recovery K87-6 |                     |  |  |  |
|--------|--------|--------------------|---------------------|---------------------|--|--|--|
| FROM   | TO     | INTERVAL<br>LENGTH | CORE<br>LENGTH      | PERCENT<br>RECOVERY |  |  |  |
| 117.96 | 119.48 | 1.52               | 1.66                | 109                 |  |  |  |
| 119.48 | 121.92 | 2.44               | 2.01                | 82                  |  |  |  |
| 121.92 | 122.68 | •76                | .49                 | 64                  |  |  |  |
| 122.68 | 123.14 | •46                | •36                 | 78                  |  |  |  |
| 123.14 | 124.36 | 1.22               | .99                 | 81                  |  |  |  |
| 124.36 | 124.97 | • 61               | •47                 | 77                  |  |  |  |
| 124.97 | 127.10 | 2.13               | 2.02                | 95                  |  |  |  |
| 127.10 | 128.32 | 1.22               | •97                 | 80                  |  |  |  |
| 128.32 | 129.74 | 1.42               | •73                 | 51                  |  |  |  |
| 129.74 | 131.06 | 1.32               | 1.28                | 97                  |  |  |  |
| 131.06 | 132.44 | 1.38               | 1.29                | 93                  |  |  |  |
| 132.44 | 135.64 | 3.2                | 2.91                | 91                  |  |  |  |
| 135-64 | 138.07 | 2-43               | 2.33                | 96                  |  |  |  |
| 138.07 | 139.6  | 1.53               | 1.23                | 80                  |  |  |  |
| 139.6  | 141.12 | 1.52               | 1.39                | 91                  |  |  |  |
| 141.12 | 142.5  | 1.38               | -89                 | 64                  |  |  |  |
| 142.5  | 144.17 | 1.67               | 1.43                | 86                  |  |  |  |
| 144.17 | 145.24 | 1.07               | •63                 | 59                  |  |  |  |
| 145-24 | 146.0  | •76                | .81                 | 107                 |  |  |  |
| 146.0  | 147.37 | 1.37               | 1.08                | 79                  |  |  |  |
| 147.37 | 148.74 | 1.37               | 1.08                | 79                  |  |  |  |
| 148-74 | 150.88 | 2.14               | 2.1                 | 98                  |  |  |  |
| 150.88 | 152.7  | 1.82               | 1.55                | 85                  |  |  |  |
| 152.7  | 153.62 | •92                | •82                 | 89                  |  |  |  |
| 153.62 | 155.45 | 1.83               | 1.62                | 89                  |  |  |  |
| 155-45 | 156.97 | 1.52               | 1.52                | 100                 |  |  |  |
| 156-97 | 159.41 | 2.44               | 2.29                | 94                  |  |  |  |
| 159.41 | 161.54 | 2.13               | 2.11                | 99                  |  |  |  |
| 161.54 | 164.59 | 3.05               | 3.03                | 99                  |  |  |  |
| 164.59 | 166.12 | 1.53               | 1.42                | 93                  |  |  |  |
| 166.12 | 168.5  | 2.38               | 2.02                | 85                  |  |  |  |
| 168.5  | 169.77 | 1.27               | 1.26                | 99                  |  |  |  |
| 169.77 | 170.38 | .61                | •32                 | 52                  |  |  |  |
| 170.38 | 170.69 | •31                | •31                 | 100                 |  |  |  |
| 170.69 | 171.45 | .76                | •76                 | 100                 |  |  |  |

.

|        |        | Core Recove        |                |                     |
|--------|--------|--------------------|----------------|---------------------|
| FROM   | TO     | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
| 171.45 | 172.52 | 1.07               | 1.07           | 100                 |
| 172.52 | 175.26 | 2.74               | 2.53           | 92                  |
| 175.26 | 178.31 | 3.05               | 3.02           | 99                  |
| 178.31 | 180.4  | 2.09               | 2.01           | 96                  |
| 180.4  | 181.4  | 1.00               | 0.94           | 94                  |
| 181.4  | 183.4  | 2.0                | 2.0            | 100                 |
| 183.4  | 184.3  | •90                | •90            | 100                 |
| 184.3  | 185.3  | 1.0                | •81            | 81                  |
| 185.3  | 187.3  | 2.0                | 1.65           | 83                  |
| 187.3  | 190,5  | 3.20               | 3.20           | 100                 |

| <br>                       | Page: <u>1 of 7</u> |
|----------------------------|---------------------|
|                            |                     |
| b _679 bt = 6              |                     |
| u <u>-0/-</u> pip <u>b</u> | 6.49m Azimuth       |
| llar Lat.                  | 9,738 N             |
| Dep.                       | 10,654 W            |
| Elev.                      | 1,795               |
| Azimuth                    | 0690                |
| Dip.                       | -70°                |
| Length                     | 66.75m              |
|                            | Dip                 |

Ċ

.

Objective: To intercept mineralization encountered in previous D.D.H. K87-6

K87-7 HOLE NO.

Cu

ppm

#### PROPERTY Kerr Project

.

То

m

٦ , . . . .

Casing/Overburden 2.5 2.5 Grey Black Lithic Arenite (Sandstone) 2.8 - Dark grey to black, massive to banded in places - Fine to medium grained - Some qtz carb veinlets, random angles. 2.8 4.5 Interlaminated Black Shale and Siltstone 03519 2.5 4.5 2.0 nd 0.1 93 187 - Alternating bands of grey siltstone and grey black graphitic mudstone or shale. - Stylolitic in appearance - Trace dissem. pyrite. - Qtz carb veinlets throughout approx 1% - Bedding core angles at:  $2.9m = 65^{\circ}$  $4.3m = 60^{\circ}$ 4.5 8.0 Fine to Medium Grained Green Tuff 03520 4.5 6.5 2.0 10 0.1 71 88 - Possibly waterlain or reworked tuff with 8.0 1.5 1 6.5 10 0.1 110 113 small section of contorted graphite chlorite and qtz-carb at 6.1 to 6.5m with a core angle of 66°. - Unit variably siliceous with much chlorite throughout.

SAMPLING

Spl.# From

- Some pyrite along fractures (broken core between 7 & 8m) - Qtz carb wisps and veinlets throughout

.

1

1

METERS

To

From

0.

P 7 P

DESCRIPTION

. . . .

1

some parallel and so core axis of approx! 650.

SHEET NO. 2 of 7

Ag

ppm

Au

Rec % ppb

Zn

ppm

۳.

#### PROPERTY Kerr Project

SHEET NO. 3 of 7

| METE | RS    | DESCRIPTION                                | SAM      | PLING |      |      | Au        | Ag  | Cu  | Zn   | , |
|------|-------|--------------------------------------------|----------|-------|------|------|-----------|-----|-----|------|---|
| From | То    |                                            | Sp1.#1   | From  | То   | 1 10 | Rec % ppb | ppm | ppm | p pm |   |
| 8.0  | 9.9   | Lapilli Tuff (Dacitic)                     | 03522    | 8.0   | 10.0 | 2.0  | 95        | 2.0 | 444 | 64   |   |
|      |       | - Fine to medium grained dark green grey   | 1        |       |      |      |           |     |     |      |   |
|      |       | matrix with 10 to 30mm lapilli fragments   |          |       |      |      |           |     |     |      |   |
|      |       | with approx 60 <sup>0</sup> core axis.     |          |       |      | •    |           |     |     |      |   |
|      |       | - Some 'ghost' fragments replaced by       |          |       |      |      |           |     |     |      |   |
|      |       | aggregate pyrite between 8.3 to 8.5.       |          |       |      |      |           |     |     |      |   |
|      |       | - Trace dissem Py with up to 5% Py         |          |       |      |      |           |     |     |      |   |
|      |       | replacing frags.                           |          |       |      |      |           |     |     |      |   |
| 9.9  | 12.4  | )<br>Medium Grained Grey Green Xtal Tuff   | 03523    | 10.0  | 12.0 | 2.0  | 275       | 0.7 | 478 | 47   |   |
|      |       | (Dacitic)                                  |          |       |      |      |           |     |     |      |   |
|      |       | - 10.78 to 11.6m subsection of coarse      | 1        |       |      |      |           |     |     |      |   |
|      |       | grained tuff with minor small (<10mm)      | 1<br>I   |       |      |      |           |     |     |      |   |
|      |       | lapilli fragments (uc 71°, 1c.62°).        |          |       |      |      |           |     |     |      |   |
|      |       | - 3 to 5% Py as disseminations, wisps and  |          |       |      |      |           |     |     |      |   |
|      |       | patches.                                   | l        |       |      |      |           |     |     |      |   |
|      |       | - Rather massive appearance                |          |       |      |      |           |     |     |      |   |
|      |       | Traces & wisps qtz-carb                    |          |       |      |      |           |     |     |      |   |
|      |       | - Dacitic Composition                      |          |       |      |      |           |     |     |      |   |
| 12-4 | 22.65 |                                            | 03524    | 12.0  | 14.0 | 2.0  | 120       | 0.1 | 218 | 58   |   |
|      |       | Interbedded Ash Turr Dacitic               |          | 14.0  | 16.0 | 2.0  | 45        | 0.2 | 153 | 119  |   |
|      |       | j- Fine to medium grained light green grey | i 0      | 10-0  | 18.0 | 2.0  | 40        | 0.3 | 253 | 111  |   |
|      |       | turr with some fine grained crystal turr   | j /      | 18.0  | 20.0 | 2.0  | 180       | 0.5 | 318 | 139  |   |
|      |       | and raphili fragments.                     | i o<br>I | 20.0  | 22.0 | 2.0  | 140       | 2.0 | 190 | 64   |   |
|      |       | processes such as small intervals of       | {        |       |      |      |           |     |     |      |   |
| •    |       | Intervals of a small intervals of          |          |       |      |      |           |     |     |      |   |
|      |       | laminae: rounding of crystal frage etc.    | I        |       |      |      |           |     |     |      |   |
|      |       |                                            |          |       |      |      |           | •   |     |      |   |

HOLE NO.

### SHEET NO. 4 of 7

and the second 
| METERS                 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAM                      | PLING                        |                              |                          |     | Au                             | Ag                                      | Cu                       | Zn                          |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|-----|--------------------------------|-----------------------------------------|--------------------------|-----------------------------|
| From To                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spl.#                    | From                         | To                           | m                        | Rec | % ppb                          | ppm                                     | <u>ppm</u>               | ppm                         |
| From To<br>22.65 29.28 | <ul> <li>- 1 to 5% pyrite as disseminations, wisps and patches.</li> <li>Numerous small fractures and 'tension' gashes filled with qtz-carbonate are found throughout the unit and makes up 1 to 5% of the core (70 to 80° core angles)</li> <li>Bedding core angles of 52° at 17.6 m.</li> <li>Unit has crackle breccia appearance as in K87-6 log.</li> <li>Light Grey Dacitic Ash Tuff</li> <li>Fine to very fine grained, appears laminated in places.</li> <li>Brecciated section between 28.88 to 29.28.</li> <li>Much of the unit is brecciated and possibly reworked by sedimentary processes.</li> </ul> | 03529<br>03530<br>1<br>2 | 22.0<br>24.0<br>26.0<br>28.0 | 24.0<br>26.0<br>28.0<br>30.0 | 2.0<br>2.0<br>2.0<br>2.0 | Rec | <u>%</u> ;ppb<br>15<br>4<br>16 | ppm<br>5 0.1<br>5 0.1<br>0 0.1<br>0 0.1 | 222<br>157<br>120<br>148 | ppm<br>80<br>67<br>46<br>55 |
|                        | <pre>(68° c.a. at 28.9) - 1 to 5% ubiquitous cubic pyrite throughout 1 to 3% qtz-carb filling small fractures and tension gashes Unit has crackle breccia appearance as in K87-6 Log</pre>                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                              |                              |                          |     |                                |                                         |                          |                             |

Kerr Project PROPERTY

· ·

1 1 1 T

• .

the provide state of the state

.

K87-7

### PROPERTY Kerr Project

SHEET NO. 5 of 7

| METER       | ls l | DESCRIPTION                                 | SAM        | PLING |      |     | [<br> | Au  | Ag         | Cu  | Zn  |
|-------------|------|---------------------------------------------|------------|-------|------|-----|-------|-----|------------|-----|-----|
| From        | To   | ÷                                           | Spl.#      | From  | To   | m   | Rec 🕺 | ppb | ppm        | bbu | bbw |
| 29.28       | 31.7 | Medium Grained Crystal Tuff (Dacitic)       | 03533      | 30.32 | 32.0 | 2.0 |       | 320 | 0.1        | 100 | 65  |
|             |      | - Grey green in colour, appears both        |            |       |      |     |       |     |            |     |     |
|             |      | massive and brecciated in places.           |            |       |      |     |       |     |            |     |     |
|             |      | - Some breccia frags resemble lapilli and   |            |       |      |     |       |     |            |     |     |
|             |      | there appears to be some saussuritized      | 2          |       |      |     |       |     |            |     |     |
|             |      | plagioclase crysts present.                 |            |       |      |     |       |     |            |     |     |
|             |      | - Tr pyrite as disseminations and along     | 1          |       |      |     |       |     |            |     |     |
|             |      | foliation planes.                           |            |       |      |     |       |     |            |     |     |
|             |      | - Same 1-3% qtz-carb filling fractures and  | 1          |       |      |     |       |     |            |     |     |
|             |      | tension gashes.                             |            |       |      |     |       |     |            |     |     |
| <b>41 7</b> | 50 F |                                             |            | 20.0  | 2/ 0 | 6 A |       | 1   | <u>0</u> 1 | 100 | c c |
| 31.7        | 50.5 | Light Grey Dacitic Ash Turr                 | 03534      | 32.0  | 34.0 | 2.0 |       | 100 | 0.1        | 198 | 22  |
|             |      | - As described previously                   |            | 34.0  | 36.0 | 2.0 |       | 10  | 0.1        | 197 | 40  |
|             |      | - Variety of laminae core angles from 3° to | ; 0        | 36.0  | 38.0 | 2.0 |       | 80  | . 0.1      | 101 | 50  |
|             |      | 65° 63° at 34.5m.                           | 1 7        | 38.0  | 40.0 | 2.0 |       | 40  | 0.1        | 1/5 | 60  |
|             |      | -1-5% pyrite as disseminations, wisps,      | 8          | 40.0  | 42-0 | 2.0 |       | 40  | 0.1        | 103 | 53  |
|             |      | patches and aggregates.                     | <b>j</b> 9 | 42+0  | 44+0 | 2.0 |       | 445 | 0.1        | 157 | 49  |
|             |      | - Kather massive appearance from 40.5 to    | 03540      | 44.0  | 40+0 | 2.0 |       | na  | 0.1        | 9/  | 42  |
|             |      |                                             |            | 46.0  | 48+0 | 2.0 |       | /5  | 0.1        | 119 | 39  |
|             |      | - 1-3% qtz carb veinlets with following     |            | 48+0  | 50.0 | 2.0 |       | nd  | 0.1        | 111 | 54  |
|             |      |                                             | i s        | 20+0  | 20+2 | 0+2 |       | 100 | 0.8        | 212 | 214 |
|             |      | 20° @ 38.0m, 18° at 41.5m, 22° at 44.0m     | İ          |       |      |     |       |     |            |     |     |
|             |      | 30° at 40.5m, 28° at 42.8m, 30° at 46.0m    | i          |       |      |     |       |     |            |     |     |
|             |      | Numerous tension gasnes with perpendicular  | į          |       |      |     |       |     |            |     |     |
|             |      | jand parallel core axis                     | i          |       |      |     |       |     |            |     |     |

i i

· · ·

#### Kerr Project PROPERTY

SHEET NO. 6 of 7

| MET  | ER. | S    | DESCRIPTION                                 | S/     | MPLING |      |     | 1   | Au    | Ag   | Cu    | Zn  |
|------|-----|------|---------------------------------------------|--------|--------|------|-----|-----|-------|------|-------|-----|
| From | 7   | То   |                                             | Spl.   | From   | То   | Ē   | Rec | %¦ppb | ppm  | p pm  | ppm |
| 50.5 | 5   | 55.0 | Sulphide Breccia Zone                       | 03544  | 50.5   | 51.5 | 1.0 |     | 20810 | >100 | 12189 | 865 |
|      |     |      | - Same light grey ash tuff shot through and |        | 51.5   | 52.5 | 1.0 |     | 3420  | >100 | 6041  | 281 |
|      |     |      | brecciated with numerous small qtz veinlets | 6      | 52.5   | 53.0 | 0.5 |     | 2050  | >100 | 3232  | 271 |
|      |     |      | and silicification containing disseminated  |        | 53.0   | 54.0 | 1.0 |     | 300   | >100 | 1059  | 335 |
|      |     |      | and massive bands of pyrite, chalcopyrite,  | ; 8    | 54.0   | 55.0 | 1.0 |     | 2600  | >100 | 26658 | 580 |
|      |     |      | sphalerite and possibly tetrahedrite.       | 1      |        |      |     |     |       |      |       |     |
|      |     |      | - 3 intervals containing approx 50%         | 1      |        |      |     |     |       |      |       |     |
|      |     |      | silicification with 5 to 50% sulphide       | }      |        |      |     |     |       |      |       |     |
|      |     |      | mineralization occur at:                    | [<br>[ |        |      |     |     |       |      |       |     |
|      |     |      | 59.9 to 51.3m                               |        |        |      |     |     |       |      |       |     |
|      |     |      | 51.5 to 52.8m                               |        |        |      |     |     |       |      |       |     |
|      |     |      | 54.2 to 54.8m                               |        |        |      |     |     |       |      |       |     |
|      |     |      | - Much of the pyrite has been altered to    |        |        |      |     |     |       |      |       |     |
|      |     |      | limonite                                    |        |        |      |     |     |       |      |       |     |
|      |     |      | - 52.6-53.0 Traces to 3% of a silvery and   | 1      |        |      |     |     |       |      | ÷.,   |     |
|      |     |      | black mineral possibly                      | 1      |        |      |     |     |       |      |       |     |
|      |     |      | -54.5-54.9 tetrahedrite associated          | 1      |        |      |     |     |       |      |       |     |
|      |     |      | with massive pyrite &                       | Į      |        |      |     |     |       |      |       |     |
|      |     |      | Chalcopyrite.                               | Į      |        |      |     |     |       |      |       |     |
|      |     |      | -54.5-54.9 - Band of 40% massive sulphide   | ļ      |        |      |     |     |       |      |       |     |
|      |     |      | with approx 20% Cpy and 20% pyrite much of  | 1      |        |      |     |     |       |      |       |     |
|      |     |      | which has been altered to limonite; lower   | 1      |        |      |     |     |       |      |       |     |
|      |     |      | contact = 65° core axis.                    | ļ      |        |      |     |     |       |      |       |     |
|      |     |      | - Qtz veinlets have following core axis:    | ļ      |        |      |     |     |       |      |       |     |
|      |     |      | 52° at 51.5m                                | 1      |        |      |     |     |       |      |       |     |
|      |     |      | 43° at 54.5m                                |        |        |      |     |     |       |      |       |     |
|      |     |      | ¦42° at 51.0m                               | i      |        |      |     |     |       |      |       |     |

• . •

.

•

\*

The second second second second second second second second second second second second second second second se

1

#### PROPERTY Kerr Project

SHEET NO. 7 of 7

| METERS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAM                                                    | PLING                                                |                                                       |                                                | Au                                         | Ag                                             | Cu                                             | Zn                                         |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|
| From : To | <del>- †</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spl.#                                                  | From                                                 | То                                                    | m                                              | Rec % ppb                                  | p pm                                           | bbm !                                          | ppm                                        |
| From To   | <ul> <li>- 52.8 to 54.2 unaltered but fractured section of ash tuff.</li> <li>- Malachite staining at 50.9m, 54.2 and 54.6m</li> <li>- Broken core from 52.8 to 53.3m</li> <li>75 Light to Medium Grey Dacitic Ash Tuff</li> <li>-As described previously very fine grained, waterlained.</li> <li>-Significant reduction in qtz-carb and fractures and tension gashes. Little to no qtz-carb veining</li> <li>- Unit has a rather massive appearance although some blocks of med grained tuff</li> </ul> | Spl.#<br>03549<br>03550<br>1<br>1 2<br>5 3<br>4<br>€ 5 | 55.0<br>56.0<br>58.0<br>60.0<br>62.0<br>64.0<br>65.0 | 56.0<br>58.0<br>60.0<br>62.0<br>64.0<br>65.0<br>66.75 | 1.0<br>2.0<br>2.0<br>2.0<br>2.0<br>1.0<br>1.75 | 680<br>680<br>140<br>50<br>nd<br>15<br>110 | 36.4<br>2.3<br>0.3<br>0.5<br>0.2<br>0.1<br>0.1 | 1718<br>427<br>158<br>145<br>154<br>110<br>143 | 158<br>133<br>59<br>96<br>153<br>113<br>95 |
| é         | and laminated tuff suggests sed. reworking<br>- 1 to 3% pyrite as disseminations and<br>wisps patches and aggregates.<br>Badly broken core at the following<br>intervals:<br>62.3 to 62.7m<br>64.0 to 66.40m = possible fault zone<br>- Abundant limonite at 66.1m<br>.75End of Hole                                                                                                                                                                                                                      |                                                        |                                                      |                                                       |                                                | ·                                          |                                                |                                                |                                            |

1

HOLE NO. K87-7

| FROM TO INTERVAL CORE PER<br>LENGTH LENGTH REC | RCENT<br>COVERY |
|------------------------------------------------|-----------------|
|                                                |                 |
|                                                |                 |
| 0. 2.5 casing                                  |                 |
| 2.5 3.7 1.2 1.2 10                             | 00              |
| 3.7 5.18 1.48 1.32 8                           | 39              |
| 5.18 6.1 .92 .85 9                             | 92              |
| 6.1 6.7 .6 .6 10                               | 00              |
| 6.7 7.62 .92 .80 8                             | 37              |
| 7.62 8.8 1.18 1.0 8                            | 35              |
| 8.8 9.6 .8 .76 9                               | 95              |
| 9.6 12.8 3.2 3.10                              | 97              |
| 14.3 15.1 .8 .62                               | 78              |
| 15.1 18.1 3.0 2.98                             | 99              |
| 18.1 21.0 2.9 2.9 10                           | 00              |
| 21.0 24.1 3.1 3.1 10                           | 00              |
| 24.1 27.1 3.0 3.0 10                           | 00              |
| 27.1 30.17 3.07 3.02                           | €8              |
| 30.17 31.69 1.52 1.49                          | ₽8              |
| 31.69 34.44 2.75 2.70                          | ₹8              |
| 34.44 38.55 4.11 3.19                          | 78              |
| 38.55 40.38 1.83 1.76                          | 96              |
| 40.38 44.80 4.42 2.19                          | 50              |
| 44.80 47.39 2.59 2.57                          | 99              |
| 47.39 49.37 1.98 1.91                          | 96              |
| 49.37 50.59 1.22 .65                           | 53              |
| 50.59 52.46 1.87 1.52                          | 31              |
| 52.46 53.64 1.18 .95                           | 31              |
| 53.64 55.77 2.13 1.84                          | 36              |
| 55.77 58.21 2.44 2.41                          | 99              |
| 58.21 61.26 3.05 3.05 1                        | 00              |
| 61.26 62.94 1.68 1.38                          | 82              |
| 62.94 63.65 .71 .49                            | 69              |
| 63.65 64.46 .81 .62                            | 77              |
| 64.46 65.07 .61 .50                            | 82              |
| 65.07 66.14 1.07 .55                           | 51              |
| 66.14 66.75 .61 .42                            | 69              |

•

.

•

•

| PROJECT                              | KERR PROJECT |                          | Page: <u>1 of 7</u> |
|--------------------------------------|--------------|--------------------------|---------------------|
| D.D. HOLE No.                        | K87-8        |                          |                     |
|                                      |              | Depth <u>147.22m</u> Dip | -60° Azimuth        |
| Location Zone B                      |              | Collar Lat.              | 9,686 N             |
|                                      |              | Dep.                     | 10,166 W            |
| Hole Started 23 August 1987          |              | Elev                     | 1,638.5             |
| Hole Completed 28 August 1987        |              | Azimuth                  | 900                 |
| Core Recovery As per attached sheets |              | Dip                      | 580                 |
| Drilled ByAdvanced Drilling          |              | Length                   | 147.22              |
| Logged by: J.M. Kowalchuk            |              |                          |                     |

-

Objective: \_ Test Ip anomaly ~ charge high - resist low

÷

SHEET NO. 2 of 7

| METER | S    | DESCRIPTION                                 | SAM    | PLING |      |     | 1     | Au          | Ag  | Cu           | Zn   |
|-------|------|---------------------------------------------|--------|-------|------|-----|-------|-------------|-----|--------------|------|
| From  | То   |                                             | Sp1.#1 | From  | To   |     | Rec 7 | ( ppb       | ppm | ppm          | p pm |
| 0.    | 2.73 | Overburden - Casing                         |        |       |      |     |       |             |     |              |      |
| 2.73  | 24.4 | Crystal Tuff - Very sericitic - 50-60%      | 3556   | 2.7   | 3.7  | 1.0 |       | 570         | 2.6 | 51           | 13   |
|       |      | sericite                                    | 7      | 3.7   | 4.7  | 1.0 |       | 180         | 2.2 | 70           | 14   |
|       |      | Very strong shear foliation - original      | 8      | 4.7   | 6.7  | 2.0 |       | 540         | 1.1 | 41           | 9    |
|       |      | textures largely destroyed - schistose.     | 9      | 6.7   | 7.7  | 1.0 |       | 420         | 1.6 | 52           | 17   |
|       |      | 0-7.5 - Mostly qtz veins material-          | 3560   | 7.7   | 9.7  | 2.0 |       | 670         | 0.7 | 35           | 6    |
|       |      | silicified                                  | 1      | 9.7   | 11.7 | 2.0 |       | 390         | 0.2 | 67           | 6    |
|       |      | 50% quartz veining.                         | 2      | 11.7  | 13.7 | 2.0 |       | 340         | 0.1 | 27           | 5    |
|       |      | Tr-5% pyrite along shear planes             | 3      | 13.7  | 15.7 | 2.0 |       | 240         | 0.1 | 11           | 8    |
|       |      | Rock guite broken with most of schist       | 4      | 15.7  | 17.7 | 2.0 |       | 210         | 5.5 | 44           | 9    |
|       |      | material removed.                           | 5      | 17.7  | 19.7 | 2.0 |       | 380         | 0.8 | 82           | 11   |
|       |      | A green clay material in among all the      | 6      | 19.7  | 21.7 | 2.0 |       | <b>29</b> 0 | 2.1 | 137          | 10   |
|       |      | quartz                                      | 7      | 21.7  | 24.4 | 2.7 |       | 230         | 0.5 | 374          | 24   |
|       |      | Otz veins are at 60% to core axis           | i      |       |      |     |       |             |     |              |      |
|       |      | Rock very sheared and broken                | i      |       |      |     |       |             |     |              |      |
|       |      | 9.4-10.36 - Ground core.                    | Ì      |       |      |     |       |             |     |              |      |
|       |      | 11.8-24.4 - Fault zone - Ground and sheared | ł      |       |      |     |       |             |     |              |      |
|       |      | core.                                       | į      |       |      |     |       |             |     |              |      |
|       |      | 21.5 - Shear foliation 40° to core axis     | i      |       |      |     |       |             |     |              |      |
|       |      | Otz vein material and possibly lapilli      | İ      |       |      |     |       |             |     |              |      |
|       |      | oriented along shear foliation              | Ì      |       |      |     |       |             |     |              |      |
|       |      |                                             | İ      |       |      |     | ÷     |             |     | -            |      |
| 24.4  | 29.9 | Feldspar Porphyry Dyke -                    | 3568   | 24.4  | 26.4 | 2.0 |       | 10          | 0.1 | 1313         | 195  |
|       |      | Green - medium grain size - chloritic       | 9      | 26.4  | 28.4 | 2.0 |       | nd          | 0.1 | 1287         | 217  |
|       |      | Porphyritic with large feldspar phenocrysts | 3570   | 28.4  | 29.9 | 1.5 |       | nd          | 0.1 | 305 <b>9</b> | 309  |
|       |      | up to 1cm across - feldspars are            | •      |       |      |     |       |             |     |              |      |
|       |      | orthoclase?                                 |        |       |      |     |       |             |     |              |      |
|       |      | •                                           |        |       |      |     |       |             |     |              |      |

.

•

#### Kerr Project PROPERTY

### PROPERTY Kerr Project

<u>,</u> .

ι

SHEET NO. 3 of 7

| METER | S    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAM                                                                       | PLING                                                                                        |                                                                                              |                                                                                         | 1   | Au                                                                                       | Ag                                                                                      | Cu                                                                                                         | Zn                                                                           |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| From  | То   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sp1.#1                                                                    | from                                                                                         | То                                                                                           |                                                                                         | Rec | % ppb                                                                                    | ppm                                                                                     | ppm                                                                                                        | <u>p</u> pm                                                                  |
|       |      | Upper contact of dyke is 30° to core axis<br>at 27.0 - Foliation is 50° to core axis<br>Several fractures 5mm-5cm across<br>Cut rock at 15-20° to core axis contain qtz<br>& Py.<br>Feldspar phenocrysts and groundmass<br>oriented along foliation planes.<br>near qtz veins dyke rock is bleached white.<br>This unit is blocky but not as sheared and<br>ground up like above sericite-quartz schist<br>Bottom contact no clear.                                                                                                                                                                        |                                                                           |                                                                                              |                                                                                              |                                                                                         |     |                                                                                          |                                                                                         |                                                                                                            |                                                                              |
| 29.9  | 57.9 | Fault Zone - Crystal or Lapilli Tuff<br>All volcanic textures gone<br>Now a qtz-sericite pyrite rock<br>40% ser 30% qtz - 20% Py.<br>10% chl in places.<br>Rock completely grounded up by faulting.<br>With in many places just qtz remaining<br>Significant part of sericite gone to clay<br>40% of pyrite main sulphide some Cpy.<br>Cpy increases with depth - may be some.<br>31.5-36.5 - 20-30% sulphides Sulphosalts.<br>Fault Zone - Sericite -Qtz-Py-Rock<br>Broken and sheared<br>47.0-Increases in chlorite content also<br>increase in Cpy.<br>51.8- Core is quite chloritic-running 5%<br>Cpy. | 3571<br>2<br>3573<br>4<br>5<br>6<br>7<br>8<br>9<br>3580<br>3581<br>2<br>3 | 29.9<br>31.9<br>35.9<br>37.9<br>39.9<br>41.9<br>44.9<br>46.9<br>48.9<br>51.9<br>54.9<br>56.9 | 31.9<br>33.9<br>37.9<br>39.9<br>41.9<br>44.9<br>46.9<br>48.9<br>51.9<br>54.9<br>56.9<br>57.9 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>3.0<br>2.0<br>3.0<br>3.0<br>2.0<br>1.0 |     | 180<br>340<br>nd<br>600<br>580<br>1060<br>660<br>850<br>300<br>130<br>440<br>580<br>1090 | 0.1<br>1.8<br>1.1<br>8.1<br>1.4<br>1.1<br>1.1<br>3.5<br>0.5<br>0.8<br>1.4<br>2.9<br>8.3 | 8840<br>16525<br>15884<br>6182<br>16387<br>8871<br>425<br>5194<br>15975<br>22989<br>29009<br>3807<br>21217 | 442<br>89<br>81<br>55<br>31<br>13<br>10<br>23<br>41<br>69<br>70<br>70<br>304 |

•

PROPERTY Kerr Project

\$

.

۰.

SHEET NO. 4 of 7

| METI | ERS  | DESCRIPTION                                                                                                                                                                                                                               | SAI   | PLING        |      |     | Au        | Ag  | Cu    | Zn             |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|------|-----|-----------|-----|-------|----------------|
| From | То   |                                                                                                                                                                                                                                           | Spl.∦ | From         | То   | , m | Rec % ppb | ppm | ppm   | ррт            |
| 57.9 | 58.1 | Sandy Tuff                                                                                                                                                                                                                                | 3584  | 57.9         | 59.9 | 2.0 | 360       | 2.9 | 14620 | 57             |
|      |      | - Dark grey coloured                                                                                                                                                                                                                      | 5     | 59.9         | 61.9 | 2.0 | 900       | 4.8 | 21341 | 53             |
|      |      | - No apparent sulphides                                                                                                                                                                                                                   | 6     | 61.9         | 63.9 | 2.0 | 640       | 4.4 | 21895 | 58             |
|      |      | Contains small vescicles and feldspar later,                                                                                                                                                                                              | 3587  | 63.9         | 65.9 | 2.0 | 465       | 2.4 | 17772 | 42             |
|      |      | may be a dyke.                                                                                                                                                                                                                            | 8     | 65.9         | 67.9 | 2,0 | 370       | 1.9 | 15080 | 57             |
|      |      |                                                                                                                                                                                                                                           | 9     | 67 <b>.9</b> | 69.9 | 2.0 | 460       | 1.9 | 14107 | 37             |
| 58.1 | 77.1 | Fault Zone - Sericite-Qtz-Py Rock                                                                                                                                                                                                         | 3590  | 69 <b>.9</b> | 71.9 | 2.0 | 630       | 5.1 | 24845 | 68             |
|      |      | Rock ground such that only sand remaining                                                                                                                                                                                                 |       | 71.9         | 73.9 | 2.0 | 420       | 2.2 | 14827 | 8 <del>9</del> |
|      |      | Strong shear foliation 60° to core axis.                                                                                                                                                                                                  | 2     | 73 <b>.9</b> | 75.9 | 2.0 | 360       | 2.2 | 11268 | 53             |
|      |      | 10-15% Py throughout along with qtz                                                                                                                                                                                                       | 3     | <b>75.9</b>  | 77.1 | 1.2 | 460       | 1.7 | 9820  | 42             |
|      |      | segregations in schistose rock<br>61.56-61.70 - remains of qtz vein.<br>64.46-65.8 - chloritic alteration<br>75.0- end - Rock much more competent.<br>76.2 - Rock becomes chloritic near contact<br>Foliation 60° to core axis<br>15% Py. |       |              |      |     |           |     |       |                |
| 77.1 | 80.1 | Andesite Dyke                                                                                                                                                                                                                             | 3594  | 77.1         | 78.6 | 1.5 | nd        | 0.1 | 1197  | 175            |
|      |      | - Very fine grained<br>-Green chloritic - slightly blocky<br>78.5 - Possible native copper in dyke-<br>probable<br>no apparent sulphides - trace pyrite<br>Unitform texture - Massive<br>Very chloritic.                                  | 5     | 78.6         | 80-1 | 1.5 | nd        | 0.1 | 2071  | 163            |

HOLE NO. K87-8

#### PROPERTY Kerr Project

•

.... .

.

· 1

٦

the stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand stand st

1

# SHEET NO. 5 of 7

| METI | ERS    | DESCRIPTION                                | SAM       | PLING |       |     | Au        | Ag  | Cu    | Zn    |
|------|--------|--------------------------------------------|-----------|-------|-------|-----|-----------|-----|-------|-------|
| From | To     |                                            | Spl.#     | From  | To    | Ĥ   | Rec % ppb | ррш | ppm   | p pm  |
| 80.1 | 94.8   | Fault Zone Sericite-Quartz-Pyrite+         | 3596      | 80.1  | 82.1  | 2.0 | 240       | 0.7 | 9165  | 125   |
|      |        | Chloritic Rock                             | 3597      | 82.1  | 84.1  | 2.0 | 280       | 1.1 | 10992 | 137   |
|      |        | Up to 20% sulphides primarily as pyrite    | - 8       | 84.1  | 86.1  | 2.0 | 2.20      | 1.5 | 11352 | 314   |
|      |        | also very sheared with strong foliation. A | 9         | 86.1  | 88.1  | 2.0 | 260       | 1.3 | 12280 | 94    |
|      |        | black crystal contorted and gouged in      | 3600      | 88.1  | 90.1  | 2.0 | 150       | 1.2 | 10362 | 43    |
|      |        | places. ?sphal? Tr Cpy                     | 1         | 90.1  | 92.1  | 2.0 | 140       | 0.7 | 7681  | 78    |
|      |        | Chloritic near top broken core to 87.3     | 2         | 92.1  | 93.6  | 1.5 | 225       | 2.4 | 6434  | 171   |
|      |        | Possible originally a lapilli tuff.        | . 3       | 93.6  | 94.8  | 1.2 | 2,70      | 8.0 | 6530  | 2005  |
|      |        | 87.3 - Rock becomes more competent         |           |       |       |     |           |     |       |       |
|      |        | foliation 55° to core axis.                |           |       |       |     |           |     |       |       |
|      |        | 90.46-90.74 - Green andesite dyke. Upper   |           |       |       |     |           |     |       |       |
|      |        | contact (85° to core axis)-very fine       | 1         |       |       |     |           |     |       |       |
|      |        | grained.                                   | ĺ         |       |       |     |           |     |       |       |
| · .  |        | 91.7-93.1 - Broken core.                   |           |       |       |     |           |     |       |       |
|      |        | 93.1 - Some blue clay minerals occurring   |           |       |       |     |           |     |       |       |
|      |        | 94.1 - Intense shearing stops              |           |       |       |     |           |     |       |       |
|      |        | Rusty - slightly sheared tuff to 94.8      |           |       |       |     |           |     |       |       |
| 94.8 | 115.12 | i<br>Crystal Lapilli Tuff - grey           | i<br>3604 | 94.8  | 96.8  | 2.0 | 370       | 4.8 | 3909  | 1313  |
| 2110 |        | Silicified - not nearly as much sericite   | 5         | 96-8  | 98.8  | 2.0 | 280       | 1.2 | 4832  | 211   |
|      |        | 20-25% Py up to 2% Cpy in places           | 6         | 98.8  | 100.8 | 2.0 | 470       | 1.7 | 3065  | 274   |
|      |        | Pyrite is dissem throughout with bandsd    | 7         | 100.8 | 102.8 | 2.0 | 230       | 2.3 | 3346  | 68    |
|      |        | parallel to foliation up to 10cm across    | 8         | 102.8 | 104.8 | 2.0 | 300       | 0.6 | 3028  | 65    |
|      |        | that run 40%.                              | 9         | 104.8 | 106.8 | 2.0 | 275       | 1.2 | 4218  | 196   |
|      |        | A black mineral occurs in places           | 3610      | 106.8 | 108.8 | 2.0 | 205       | 0.4 | 7031  | 133   |
|      |        | Several narrow atz-CO3 veins up to 1cm     | i 1       | 108.8 | 110.8 | 2.0 | 160       | 0.4 | 3365  | 3 53  |
|      |        | across                                     |           | 110.8 | 112.5 | 1.7 | 250       | 1.6 | 13309 | 739   |
|      |        | • •                                        | 3         | 112.5 | 115.1 | 2.6 | 280       | 2.0 | 5474  | 3 548 |

PROPERTY Kerr Project

**1** 7

т **г** 

1

.

Ń

the second second second second second second second second second second second second second second second se

1

.

т F

1

.

٦

1

SHEET NO. 6 of 7

| METH   | ERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAM            | PLING                   |                         |                   | · · · · · · | Au               | Ag                | Cu                   | Zn               | <u> </u> |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------|-------------------|-------------|------------------|-------------------|----------------------|------------------|----------|
| From   | То       | <b>r</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spl.#          | From                    | To                      | <u>, m</u>        | Rec         | % ppb            | ppm               | ppm                  | ррш              |          |
|        | 10       | Follow along the foliation.<br>These often have a core of pyrite<br>The feldspar in the rock are generally<br>saussuritized giving the rock an epidote<br>green colour in places Rock relatively<br>massive.<br>95.9 - Foliation 60°.<br>101 - Increae in silica and weakly foliated<br>pyrite. Several massive pyrite veins. 2-5cm<br>across running parallel to foliation<br>direction 60°.<br>105-115.1 - 30-35% pyrite in veins and<br>fractures<br>Tr Cpy and perhaps sphal - tetrahedrite<br>Tr native copper.<br>103.7 - Native gold. Cpy, Py, tetrahedrite<br>sample taken | opr • #        |                         |                         |                   |             |                  | I ħ ħæ            | Fo form              |                  |          |
| 115.13 | 2 116.35 | Andesite Dyke - Green<br>Fine grained - chloritic<br>Massive - contains several qtz-carb-chl<br>veins crossing at 60 <sup>0</sup> to core axis<br>Trace of pyrite.                                                                                                                                                                                                                                                                                                                                                                                                                 | 3614           | 115.1                   | 116.4                   | 1.5               |             | 10               | 0.1               | 464                  | 270              |          |
| 116.3  | 5 147.22 | Crystal Lapilli Tuff - Silicified<br>Sericitized<br>Grey-pale yellow-green<br>Feldspars saussuritized                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3615<br>6<br>7 | 116.4<br>118.4<br>120.4 | 118.4<br>120.4<br>122.4 | 2.0<br>2.0<br>2.0 |             | nd<br>150<br>200 | 0.1<br>0.1<br>0.8 | 2265<br>1620<br>2615 | 144<br>91<br>685 |          |

# HOLE NO. \_\_\_\_\_\_ K87-8

٦

### PROPERTY Kerr Project

٦

.

1 · · · ]

Program Barry Barry Barry

۰*۲* 

. .

· ·

SHEET NO. 7 of 7

| MET    | TERS | DESCRIPTION                                                                                                                                                                                                      | SAN   | PLING |       |     | Au        | Ag  | Cu                                    | Zn   |  |
|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-----|-----------|-----|---------------------------------------|------|--|
| From   | To   |                                                                                                                                                                                                                  | Sp1.# | From  | To    |     | Rec % ppb | ppm | b b b b b b b b b b b b b b b b b b b | ррш  |  |
|        | •    | 20-25% sulphides as pyrite both as dissem                                                                                                                                                                        | 3618  | 122.4 | 124.4 | 2.0 | 205       | 0.4 | 2192                                  | 346  |  |
|        |      | and as qtz carbonite veins.                                                                                                                                                                                      | 9     | 124.4 | 126-4 | 2.0 | 220       | 0.1 | 3448                                  | 172  |  |
|        |      | Tr Cpy and tetrahedrite and sphalerite.                                                                                                                                                                          | 3620  | 126.4 | 128.4 | 2.0 | nd        | 0.1 | 1569                                  | 70   |  |
|        |      | Veins criss-crossing at 60° and 30°.                                                                                                                                                                             | 1     | 128.4 | 130.4 | 2.0 | 150       | 0.1 | 2504                                  | 93   |  |
|        |      | Approx 40 veinlets each 5mm across/m                                                                                                                                                                             | 2     | 130.4 | 132.4 | 2.0 | 120       | 1.0 | 1615                                  | 136  |  |
|        |      | Some sericitic massive pyrite sections                                                                                                                                                                           | 3     | 132.4 | 134.4 | 2.0 | 145       | 0.6 | 1629                                  | 310  |  |
|        |      | 122.0- Native copper along fractues running                                                                                                                                                                      | 3624  | 134.4 | 136.4 | 2.0 | 110       | 0.4 | 949                                   | 447  |  |
|        |      | down core axis.                                                                                                                                                                                                  | 5     | 136.4 | 138.4 | 2.0 | 260       | 0.3 | 1490                                  | 235  |  |
|        |      | 126.4 - Py-qtz vein 70° to core axis                                                                                                                                                                             | 6     | 138.4 | 140.4 | 2.0 | 550       | 1.3 | 1266                                  | 156  |  |
|        |      | 135.0 - decrease in silicification                                                                                                                                                                               | 7     | 140.4 | 142.4 | 2.0 | 240       | 1.3 | 1228                                  | 1730 |  |
|        |      | - increase in chlorite alteration                                                                                                                                                                                | 8     | 142.4 | 144.4 | 2.0 | 320       | 0.9 | 717                                   | 2333 |  |
|        |      | <ul> <li>less quartz veining</li> <li>mostly carbonatees veining</li> <li>decrease in sulphide to 10%</li> <li>(Gradual Changes)</li> <li>decrease in sulphide to 10%</li> <li>becomes green coloured</li> </ul> | 9     | 144.4 | 147.2 | 2.8 | 310       | 3.9 | 591                                   | 3702 |  |
| 147.22 |      | 2Bnd of Hole                                                                                                                                                                                                     | 1     |       |       |     |           |     |                                       |      |  |

|       |                                                                                                                                                                                                                                                                                                             | Core Recover                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>ry K8/- 8</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROM  | то                                                                                                                                                                                                                                                                                                          | INTERVAL<br>LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                               | CORE<br>LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PERCENT<br>RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start | 3.05                                                                                                                                                                                                                                                                                                        | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.05  | 4.88                                                                                                                                                                                                                                                                                                        | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.88  | 5.79                                                                                                                                                                                                                                                                                                        | .91                                                                                                                                                                                                                                                                                                                                                                                                                                              | .20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5,79  | 6.86                                                                                                                                                                                                                                                                                                        | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                             | •64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.86  | 7.62                                                                                                                                                                                                                                                                                                        | .76                                                                                                                                                                                                                                                                                                                                                                                                                                              | •67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.62  | 8.84                                                                                                                                                                                                                                                                                                        | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                             | •39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.84  | 10.36                                                                                                                                                                                                                                                                                                       | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                             | •66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.36 | 11.88                                                                                                                                                                                                                                                                                                       | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                             | •38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11.88 | 13.72                                                                                                                                                                                                                                                                                                       | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13.72 | 15.54                                                                                                                                                                                                                                                                                                       | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | κ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.54 | 16.76                                                                                                                                                                                                                                                                                                       | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                             | .27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16.76 | 19.20                                                                                                                                                                                                                                                                                                       | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                             | .32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •••• ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19.20 | 20.12                                                                                                                                                                                                                                                                                                       | .92                                                                                                                                                                                                                                                                                                                                                                                                                                              | •46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20.12 | 21.03                                                                                                                                                                                                                                                                                                       | .91                                                                                                                                                                                                                                                                                                                                                                                                                                              | .73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8Ò                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21.03 | 22.4                                                                                                                                                                                                                                                                                                        | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22.4  | 23.16                                                                                                                                                                                                                                                                                                       | .76                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23.16 | 24,38                                                                                                                                                                                                                                                                                                       | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                             | •88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24.38 | 26.37                                                                                                                                                                                                                                                                                                       | 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26.37 | 27.58                                                                                                                                                                                                                                                                                                       | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                             | .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27.58 | 29.57                                                                                                                                                                                                                                                                                                       | 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29.57 | 30.33                                                                                                                                                                                                                                                                                                       | •76                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.33 | 31.55                                                                                                                                                                                                                                                                                                       | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                             | •65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31.55 | 32.46                                                                                                                                                                                                                                                                                                       | .91                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32.46 | 32.92                                                                                                                                                                                                                                                                                                       | .46                                                                                                                                                                                                                                                                                                                                                                                                                                              | •13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32.92 | 33.68                                                                                                                                                                                                                                                                                                       | .76                                                                                                                                                                                                                                                                                                                                                                                                                                              | .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33.68 | 34.75                                                                                                                                                                                                                                                                                                       | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                             | • 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34.75 | 36.58                                                                                                                                                                                                                                                                                                       | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                             | .22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36.58 | 37.8                                                                                                                                                                                                                                                                                                        | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                             | •40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37.8  | 38.4                                                                                                                                                                                                                                                                                                        | .6                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38.4  | 39.17                                                                                                                                                                                                                                                                                                       | .77                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ан ал ан ан ан ан ан ан ан ан ан ан ан ан ан                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39.17 | 41                                                                                                                                                                                                                                                                                                          | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41.0  | 41.76                                                                                                                                                                                                                                                                                                       | .76                                                                                                                                                                                                                                                                                                                                                                                                                                              | .22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41.76 | 44.5                                                                                                                                                                                                                                                                                                        | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                             | -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44.5  | 45.26                                                                                                                                                                                                                                                                                                       | .76                                                                                                                                                                                                                                                                                                                                                                                                                                              | -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | FROM<br>Start<br>3.05<br>4.88<br>5.79<br>6.86<br>7.62<br>8.84<br>10.36<br>11.88<br>13.72<br>15.54<br>16.76<br>19.20<br>20.12<br>21.03<br>22.4<br>23.16<br>24.38<br>26.37<br>27.58<br>29.57<br>30.33<br>31.55<br>32.46<br>32.92<br>33.68<br>34.75<br>36.58<br>37.8<br>38.4<br>39.17<br>41.0<br>41.76<br>44.5 | FROMTOStart $3.05$ $3.05$ $4.88$ $4.88$ $5.79$ $5.79$ $6.86$ $6.86$ $7.62$ $7.62$ $8.84$ $8.84$ $10.36$ $10.36$ $11.88$ $11.88$ $13.72$ $13.72$ $15.54$ $15.54$ $16.76$ $16.76$ $19.20$ $19.20$ $20.12$ $20.12$ $21.03$ $21.03$ $22.4$ $22.4$ $23.16$ $23.16$ $24.38$ $26.37$ $27.58$ $29.57$ $30.33$ $30.33$ $31.55$ $31.55$ $32.46$ $32.92$ $3.68$ $33.68$ $34.75$ $34.75$ $36.58$ $37.8$ $38.4$ $39.17$ $39.17$ $41.76$ $44.5$ $44.5$ $45.26$ | FROM         TO         INTERVAL<br>LENGTH           Start         3.05         4.88         1.83           4.88         5.79         91         5.79         6.86         1.07           6.86         7.62         8.84         1.22         8.84         1.22           8.84         10.36         1.52         10.36         1.88         1.52           10.36         11.88         1.3.72         1.84         13.72         1.84           13.72         15.54         1.6.76         1.22         16.76         1.920         2.44           19.20         20.12         .92         20.12         .92         20.12         .92           20.12         21.03         .91         21.03         .91         21.03         .91           21.03         22.4         1.37         .22         .438         1.22         .438         1.22           24.38         26.37         1.99         .26.37         .199         .26.37         .199           25.7         30.33         .155         1.22         .31.55         1.22           31.55         32.46         .91         .22.46         .292         .46           32.9 | Core Recovery K37- 8FROMTOINTERVAL<br>LENGTHCORE<br>LENGTHStart $3.05$ $4.88$ $1.83$ $1.30$ $4.88$ $5.79$ $91$ $20$ $5.79$ $6.86$ $1.07$ $64$ $6.86$ $7.62$ $.76$ $.67$ $7.62$ $8.84$ $1.22$ $.39$ $8.84$ $10.36$ $1.52$ $.666$ $10.36$ $11.88$ $1.52$ $.38$ $11.88$ $13.72$ $1.84$ $.222$ $13.72$ $15.54$ $1.82$ $.222$ $15.54$ $16.76$ $1.22$ $.27$ $16.76$ $19.20$ $2.44$ $.32$ $19.20$ $20.12$ $.92$ $.466$ $20.12$ $21.03$ $.91$ $.73$ $21.03$ $22.4$ $1.37$ $1.08$ $22.4$ $23.16$ $.76$ $.29$ $23.16$ $24.38$ $1.22$ $.88$ $24.38$ $26.37$ $1.99$ $1.83$ $26.37$ $27.58$ $1.21$ $.94$ $27.58$ $29.57$ $1.99$ $2.08$ $29.57$ $30.33$ $.76$ $.52$ $30.33$ $31.55$ $1.22$ $.65$ $31.55$ $32.46$ $.91$ $.58$ $32.46$ $32.92$ $.46$ $.13$ $32.92$ $3.68$ $.76$ $.50$ $33.68$ $37.8$ $1.22$ $.40$ $37.8$ $38.4$ $.6$ $.52$ $36.4$ $39.17$ $.77$ $.27$ $39.17$ <td< td=""><td>Core Recovery KB/- 8FROMTOINTERVAL<br/>LENGTHCORE<br/>LENGTHPERCENT<br/>RECOVERYStart<math>3.05</math><math>4.88</math><math>1.83</math><math>1.30</math><math>71</math><math>4.88</math><math>5.79</math><math>91</math><math>20</math><math>22</math><math>5.79</math><math>6.86</math><math>1.07</math><math>64</math><math>60</math><math>6.86</math><math>7.62</math><math>.76</math><math>.67</math><math>88</math><math>7.62</math><math>8.84</math><math>1.22</math><math>.39</math><math>32</math><math>8.84</math><math>10.36</math><math>1.52</math><math>.66</math><math>43</math><math>10.36</math><math>11.88</math><math>1.52</math><math>.38</math><math>25</math><math>11.88</math><math>13.72</math><math>1.844</math><math>.222</math><math>12</math><math>15.54</math><math>1.822</math><math>.22</math><math>12</math><math>15.54</math><math>1.822</math><math>.22</math><math>12</math><math>16.76</math><math>19.20</math><math>2.444</math><math>.32</math><math>13</math><math>19.20</math><math>20.12</math><math>.92</math><math>.466</math><math>50</math><math>20.12</math><math>21.03</math><math>.91</math><math>.73</math><math>80</math><math>21.03</math><math>22.4</math><math>23.16</math><math>.76</math><math>.29</math><math>38</math><math>22.16</math><math>.76</math><math>.29</math><math>38</math><math>23.16</math><math>24.38</math><math>1.22</math><math>.88</math><math>72</math><math>24.38</math><math>26.37</math><math>1.99</math><math>2.08</math><math>105</math><math>29.57</math><math>30.33</math><math>.76</math><math>.52</math><math>68</math><math>30.33</math><math>31.55</math><math>1.22</math><math>.65</math><math>53</math><math>31.55</math><math>32.46</math><math>.91</math><math>.58</math><math>64</math><math>32.46</math><math>32.92</math><math>.466</math><math>.13</math><math>28</math><math>33.68</math><math>.76</math><math>.50</math><math>66</math><math>33.68</math><math>37.8</math><math>1.22</math><math>.40</math><math>33</math><math>37.8</math></td><td>Core Recovery K8/- 8FROMTOINTERVAL<br/>LENGTHCORE<br/>LENGTHPERCENT<br/>RECOVERYStart<math>3.05</math><math>4.08</math><math>1.83</math><math>1.30</math><math>71</math><math>4.88</math><math>5.79</math><math>.91</math><math>.20</math><math>22</math><math>5.79</math><math>6.86</math><math>1.07</math><math>.64</math><math>60</math><math>6.86</math><math>7.62</math><math>.76</math><math>.67</math><math>88</math><math>7.62</math><math>8.84</math><math>1.22</math><math>.39</math><math>32</math><math>8.84</math><math>10.36</math><math>1.52</math><math>.66</math><math>43</math><math>10.36</math><math>11.88</math><math>1.52</math><math>.38</math><math>25</math><math>11.88</math><math>13.72</math><math>1.84</math><math>.222</math><math>12</math><math>13.72</math><math>15.54</math><math>1.82</math><math>.222</math><math>12</math><math>13.72</math><math>15.54</math><math>1.82</math><math>.22</math><math>12</math><math>10.36</math><math>21.03</math><math>.91</math><math>.73</math><math>80</math><math>20.12</math><math>20.12</math><math>.92</math><math>.46</math><math>50</math><math>20.12</math><math>21.03</math><math>.91</math><math>.73</math><math>80</math><math>21.03</math><math>22.4</math><math>1.37</math><math>1.08</math><math>79</math><math>22.4</math><math>23.16</math><math>.76</math><math>.29</math><math>38</math><math>23.16</math><math>24.38</math><math>1.22</math><math>.68</math><math>72</math><math>24.38</math><math>26.37</math><math>1.99</math><math>1.83</math><math>92</math><math>26.37</math><math>27.58</math><math>1.21</math><math>.94</math><math>78</math><math>27.58</math><math>29.57</math><math>30.33</math><math>.76</math><math>.52</math><math>68</math><math>30.33</math><math>31.55</math><math>1.22</math><math>.65</math><math>53</math><math>31.55</math><math>32.46</math><math>.91</math><math>.58</math><math>64</math><math>32.46</math><math>32.92</math><math>.46</math><math>.13</math><math>28</math><math>34.75</math><math>36.58</math><td>Elevery K3/- 8           FROM         TO         INTERVAL<br/>LENGTH         CORE<br/>LENGTH         PERCENT<br/>RECOVERY           Start         3.05         3.05         2.73         90           3.05         4.48         1.43         1.30         71           4.88         5.79         91         20         22           5.79         6.86         1.07         .64         60           6.86         7.62         8.84         1.22         .99         32           8.84         10.36         1.52         .66         43           10.36         1.52         .66         43           11.88         13.72         1.84         .22         12           15.54         1.82         .22         12        </td></td></td<> | Core Recovery KB/- 8FROMTOINTERVAL<br>LENGTHCORE<br>LENGTHPERCENT<br>RECOVERYStart $3.05$ $4.88$ $1.83$ $1.30$ $71$ $4.88$ $5.79$ $91$ $20$ $22$ $5.79$ $6.86$ $1.07$ $64$ $60$ $6.86$ $7.62$ $.76$ $.67$ $88$ $7.62$ $8.84$ $1.22$ $.39$ $32$ $8.84$ $10.36$ $1.52$ $.66$ $43$ $10.36$ $11.88$ $1.52$ $.38$ $25$ $11.88$ $13.72$ $1.844$ $.222$ $12$ $15.54$ $1.822$ $.22$ $12$ $15.54$ $1.822$ $.22$ $12$ $16.76$ $19.20$ $2.444$ $.32$ $13$ $19.20$ $20.12$ $.92$ $.466$ $50$ $20.12$ $21.03$ $.91$ $.73$ $80$ $21.03$ $22.4$ $23.16$ $.76$ $.29$ $38$ $22.16$ $.76$ $.29$ $38$ $23.16$ $24.38$ $1.22$ $.88$ $72$ $24.38$ $26.37$ $1.99$ $2.08$ $105$ $29.57$ $30.33$ $.76$ $.52$ $68$ $30.33$ $31.55$ $1.22$ $.65$ $53$ $31.55$ $32.46$ $.91$ $.58$ $64$ $32.46$ $32.92$ $.466$ $.13$ $28$ $33.68$ $.76$ $.50$ $66$ $33.68$ $37.8$ $1.22$ $.40$ $33$ $37.8$ | Core Recovery K8/- 8FROMTOINTERVAL<br>LENGTHCORE<br>LENGTHPERCENT<br>RECOVERYStart $3.05$ $4.08$ $1.83$ $1.30$ $71$ $4.88$ $5.79$ $.91$ $.20$ $22$ $5.79$ $6.86$ $1.07$ $.64$ $60$ $6.86$ $7.62$ $.76$ $.67$ $88$ $7.62$ $8.84$ $1.22$ $.39$ $32$ $8.84$ $10.36$ $1.52$ $.66$ $43$ $10.36$ $11.88$ $1.52$ $.38$ $25$ $11.88$ $13.72$ $1.84$ $.222$ $12$ $13.72$ $15.54$ $1.82$ $.222$ $12$ $13.72$ $15.54$ $1.82$ $.22$ $12$ $10.36$ $21.03$ $.91$ $.73$ $80$ $20.12$ $20.12$ $.92$ $.46$ $50$ $20.12$ $21.03$ $.91$ $.73$ $80$ $21.03$ $22.4$ $1.37$ $1.08$ $79$ $22.4$ $23.16$ $.76$ $.29$ $38$ $23.16$ $24.38$ $1.22$ $.68$ $72$ $24.38$ $26.37$ $1.99$ $1.83$ $92$ $26.37$ $27.58$ $1.21$ $.94$ $78$ $27.58$ $29.57$ $30.33$ $.76$ $.52$ $68$ $30.33$ $31.55$ $1.22$ $.65$ $53$ $31.55$ $32.46$ $.91$ $.58$ $64$ $32.46$ $32.92$ $.46$ $.13$ $28$ $34.75$ $36.58$ <td>Elevery K3/- 8           FROM         TO         INTERVAL<br/>LENGTH         CORE<br/>LENGTH         PERCENT<br/>RECOVERY           Start         3.05         3.05         2.73         90           3.05         4.48         1.43         1.30         71           4.88         5.79         91         20         22           5.79         6.86         1.07         .64         60           6.86         7.62         8.84         1.22         .99         32           8.84         10.36         1.52         .66         43           10.36         1.52         .66         43           11.88         13.72         1.84         .22         12           15.54         1.82         .22         12        </td> | Elevery K3/- 8           FROM         TO         INTERVAL<br>LENGTH         CORE<br>LENGTH         PERCENT<br>RECOVERY           Start         3.05         3.05         2.73         90           3.05         4.48         1.43         1.30         71           4.88         5.79         91         20         22           5.79         6.86         1.07         .64         60           6.86         7.62         8.84         1.22         .99         32           8.84         10.36         1.52         .66         43           10.36         1.52         .66         43           11.88         13.72         1.84         .22         12           15.54         1.82         .22         12 |

|                |       | Core Recover                | <u>у К87- 8</u> |                     |   |   |             |   |            |
|----------------|-------|-----------------------------|-----------------|---------------------|---|---|-------------|---|------------|
| FROM           | то    | I <b>NTE</b> RVAL<br>LENGTH | CORE<br>LENGTH  | PERCENT<br>RECOVERY |   |   |             |   |            |
|                |       |                             |                 |                     |   |   |             |   |            |
| 45.26          | 45.57 | .31                         | - 23            | 74                  |   |   |             |   |            |
| 45.57          | 45.72 | .15                         | •11             | 73                  |   |   |             |   |            |
| 45.72          | 46.33 | •61                         | .06             | 10                  |   |   |             |   |            |
| 46.33          | 47.09 | .76                         | .35             | 46                  |   |   |             |   |            |
| 47.09          | 48.92 | 1.83                        | .22             | 12                  |   |   |             |   |            |
| 48.92          | 50.6  | 1.68                        | .09             | 5                   |   |   |             | : |            |
| 50.6           | 51.82 | 1.22                        | .13             | 11                  |   |   |             |   |            |
| 51.82          | 53.64 | 1.82                        | .13             | 7                   | * |   |             |   |            |
| 53 64          | 54.86 | 1.22                        | .1              | 8                   |   |   |             |   |            |
| 5/ 86          | 55 78 | .92                         | .24             | 26                  |   |   |             |   |            |
| 55 78          | 56 69 | .01                         | .39             | 43                  |   |   |             |   |            |
| 56-69          | 58.22 | 1.53                        | .40             | 26                  |   |   |             |   |            |
| 58 22          | 60 35 | 2.13                        | 1.50            | 70                  |   |   |             |   |            |
| 60.35          | 61 /1 | 1.04                        | .74             | 70                  |   |   |             |   |            |
| 61.61          | 61.56 | -15                         | .09             | 60                  |   |   |             |   |            |
| 61 56          | 61 70 | 0.16                        | .09             | 63                  |   |   |             |   |            |
| 61.50          | 60 22 | 41                          | 42              | 67                  |   |   |             |   |            |
| 01-72          | 62+33 | +01                         | •42             | 72                  |   |   |             |   |            |
| QZ+33<br>(n n) | 63+24 | • 71                        | • 21            | 23                  |   |   |             |   |            |
| 62+24          | 64+00 | •/0                         | • 5 2           | 50                  |   |   |             |   |            |
| 64.0           | 04+40 | •40                         | • 25            | 20<br>50            |   |   |             |   |            |
| 04-40          | 62+83 | 1.3/                        | •/1             | 22                  |   |   |             |   |            |
| 02+83          | 66-25 | •44                         | . •30<br>/ E    | 26                  |   |   |             |   |            |
| 66.25          | 6/-51 | 1.20                        | •45             | 30<br>47            |   |   |             |   |            |
| 67.51          | 68+2/ | •/6                         | • 36            | 47                  |   |   |             |   |            |
| 68-27          | 68-88 | • 61                        | • 26            | 43                  |   |   |             |   |            |
| 68-88          | 69./9 | •91                         | • 24            | 26                  |   |   |             |   |            |
| 69.79          | 70.40 | -61                         | - 25            | 41                  |   | 4 |             |   |            |
| 70.40          | 71.32 | •92                         | •18             | 19                  |   | - | - <b></b> - |   | <b>.</b> . |
| 71.32          | 71.93 | •61                         | .37             | 61                  |   |   |             |   |            |
| 71.93          | 72.84 | •91                         | .30             | 32                  |   |   | н.<br>Т     |   |            |
| 72.84          | 73.45 | •61                         | • 25            | 41                  |   |   |             |   |            |
| 73.45          | 74.98 | 1.53                        | •95             | 62                  |   | , | •           |   |            |
| 74.98          | 76.20 | 1.22                        | •90             | 74                  |   |   |             |   |            |

|                |        | Core Recover       | <u>у К87- 8</u> |                     |   |             |
|----------------|--------|--------------------|-----------------|---------------------|---|-------------|
| FROM           | TO     | INTERVAL<br>LENGTH | Core<br>Length  | PERCENT<br>RECOVERY |   |             |
| 76.20          | 77.87  | 1.67               | 1.25            | 75                  |   |             |
| 77.87          | 78.63  | •76                | • 55            | 72                  |   |             |
| 78.63          | 79.71  | 1.08               | -69             | 64                  |   |             |
| 7 <b>9.7</b> 1 | 81.08  | 1.37               | • 51            | 37                  |   |             |
| 81.08          | 81.99  | •91                | •25             | 27                  |   |             |
| 81.99          | 83-82  | 1.83               | 1.36            | 74                  |   |             |
| 83-82          | 84.58  | •76                | •38             | 50                  |   |             |
| 84.58          | 85.83  | 1.25               | •39             | 31                  |   |             |
| 85.83          | 87.33  | 1.5                | •14             | 9                   |   |             |
| 87-33          | 90.22  | 2.89               | 1.37            | 47                  | Ŷ |             |
| 90.22          | 93.12  | 2.9                | 1.85            | 64                  |   |             |
| 93.12          | 94.03  | •91                | •75             | 82                  |   |             |
| 94.03          | 95.86  | 1.83               | 1.6             | 87                  |   |             |
| 95-86          | 98.76  | 2.9                | 2.86            | 99                  |   |             |
| 98.76          | 101.8  | 3.04               | 3.02            | 99                  |   |             |
| 101-8          | 102.4  | •6                 | • 56            | 93                  |   |             |
| 102.4          | 105.2  | 3.4                | 2.58            | 76                  |   |             |
| 105.2          | 108.2  | 3.0                | 2.66            | 89                  |   |             |
| 108.2          | 109.6  | 1.4                | - 96            | 69                  |   |             |
| 109.6          | 110.8  | 1.2                | 1.03            | 86                  |   |             |
| 110.8          | 112.5  | 1.7                | 1.17            | 69                  |   |             |
| 112.5          | 114.6  | 2.1                | 1.93            | 92                  |   |             |
| 114.6          | 115.8  | 1.2                | 1.14            | 95                  |   |             |
| 115.8          | 117.   | 1.2                | 1.2             | 100                 |   |             |
| 117.0          | 118.3  | 1.3                | .98             | • <b>75</b>         |   |             |
| 118.3          | 120.1  | 1.8                | 1.77            | 98                  |   |             |
| 120.1          | 122.8  | 2.7                | 2.08            | 77                  |   |             |
| 122.8          | 123.75 | .95                | .95             | 100                 |   |             |
| 123.75         | 124.05 | .30                | .30             | 100                 |   |             |
| 124.05         | 125.73 | 1.68               | 1.63            | 97                  |   |             |
| 125.73         | 126.34 | .61                | .47             | 77                  |   | . <b></b> . |
| 126.34         | 126.80 | -46                | .41             | 89                  |   |             |
| 126.80         | 129.54 | 2.74               | 2.64            | 96                  |   |             |
| 129.54         | 132.74 | 3.2                | 2.85            | 89                  |   |             |
| 132.74         | 133.96 | 1.22               | .84             | 69                  |   |             |

.

n de la desta de la construction de la construction de la construction de la desta desta de la desta de la desta

|        |        | OUTC RECOVEL       | <u>y kor- 0</u> |                     |
|--------|--------|--------------------|-----------------|---------------------|
| FROM   | то     | INTERVAL<br>LENGTH | CORE<br>LENGTH  | PERCENT<br>RECOVERY |
| 133.96 | 134.72 | .76                | .74             | 97                  |
| 134.72 | 135.33 | - 61               | •38             | 62                  |
| 135.33 | 136.25 | •92                | •65             | 71                  |
| 136.25 | 137.46 | 1.21               | 1.04            | 86                  |
| 137.46 | 138.99 | 1.53               | 1.53            | 100                 |
| 138.99 | 140.51 | 1.52               | -85             | 56                  |
| 140.51 | 141.43 | •92                | •84             | 91                  |
| 141.43 | 141.58 | .15                | .07             | 47                  |
| 141.58 | 142.04 | - 46               | -22             | 48                  |
| 142.04 | 143.56 | 1.52               | 1.12            | 74                  |
| 143.56 | 144.78 | 1.22               | 1.22            | 100                 |
| 144.78 | 146.46 | 1.68               | 1.55            | 92                  |
| 146.46 | 147.22 | •76                | • 52            | 68                  |

**،** ،

1 7

.

Core Recovery K87- 8

1

1

• •

.

.

.

.

. .

. .

- -

1 r

| PRO                                    | JECT KERR PROJECT |                         | Page: 1 of 5     |
|----------------------------------------|-------------------|-------------------------|------------------|
| D.D. HOLE                              | No. K87-9         |                         |                  |
| • .                                    |                   | Depth <u>106.0m</u> Dip | 43° Azimuth      |
| Location Zone L                        |                   | Collar Lat              | 9,961 N          |
|                                        |                   | Dep.                    | 9,967 W          |
| Hole Started 30 July 1987              |                   | Elev.                   | 1,623            |
| Hole Completed <u>3 September 1987</u> |                   | Azimuth                 | 122 <sup>0</sup> |
| Core Recovery As per attached sheets   |                   | Dip.                    | -450             |
| Drilled By Advanced Drilling           |                   | Length                  | 106.67m          |
| Logged by: John Kowalchuk              |                   |                         |                  |

.

.

•

Objective: To test high grade chip sample
### PROPERTY

Kerr Project

SHEET NO. 2 of 5

| METER | s     | DESCRIPTION                                 | SAM           | PLING |      |     | Au        | Ag  | Cu  | Zn   |
|-------|-------|---------------------------------------------|---------------|-------|------|-----|-----------|-----|-----|------|
| From  | То    |                                             | Spl.#         | From  | То   | 1 m | Rec % ppb | ppm | ppm | ррт  |
| 0.    | 1.4   | Casing Overburden                           | 3642          | 1.4   | 3.4  | 2.0 | 25        | 0.1 | 364 | 214  |
|       |       | 5                                           | 3             | 3.4   | 5.4  | 2.0 | 450       | 1.1 | 450 | 230  |
| 1.4   | 14.33 | Feldspar Porphyry - grey to green in colour | 4             | 5.4   | 7.4  | 2.0 | 90        | 1.0 | 457 | 138  |
|       |       | Very siliceous - extremely hard             | 5             | 7.4   | 9.4  | 2.0 | 30        | 0.2 | 370 | 127  |
|       | 1     | crowded feldspar phenocrysts in a siliceous | 6             | 9.4   | 11.4 | 2.0 | nd        | 0.4 | 308 | 131  |
|       |       | groundmass                                  | 7             | 11.4  | 13.4 | 2.0 | nd        | 0.3 | 328 | 114  |
|       | 1     | Contains 10-15% Py dissem throughout.       | 8             | 13.4  | 14.4 | 2.0 | 160       | 0.7 | 491 | 248  |
|       | 1     | Pyite is polished by the bit in places      |               |       |      |     |           |     |     |      |
|       |       | May contain electrum.                       |               |       |      |     |           |     |     |      |
|       |       | Tr Cpy and tetrahedrite                     |               |       |      |     |           |     |     | ,    |
|       |       | Feldspars are euhedral to subhedral         |               |       |      |     |           |     |     |      |
|       |       | Are slightly altered in places              | <b>(</b><br>1 |       |      |     |           |     |     |      |
|       |       | Ground mass is very fine grained            | l             |       |      |     |           |     |     |      |
|       |       | Rock possibly dacitic in composition        | 1             |       |      |     |           |     |     |      |
|       |       | Feldspars are 1-4mm in length               |               |       |      |     |           |     |     |      |
|       | ~~ ~~ |                                             |               | 111   |      |     | (0        |     | 507 | - 74 |
| 14.33 | 20.70 | Interlaminated Ash fuff with Fine Grained   | 3649          | 14-4  | 10-4 | 2.0 | 50        | 0.6 | 200 | 76   |
|       |       | Grystal Turr                                | 3650          | 10-4  | 18.4 | 2.0 | 150       | 0-8 | 510 | 217  |
|       |       | Grey coloured - silicified in places        |               | 18+4  | 20.4 | 2.0 | 465       | 0.2 | 210 | 442  |
|       |       | Gore broken inroughout - very rusty         | i 2           | 20.4  | 21.4 | 1.0 | 60        | 0.1 | 100 | 223  |
|       |       | weathering                                  | İ             |       |      |     |           |     |     |      |
|       |       | 15.4-20.6 - Fault zone                      | i<br>t        |       |      |     |           |     |     |      |
|       |       | -extensive fault gouge - core completely    | 1             |       |      |     |           |     |     |      |
|       |       | broken - occasional core fragments in a     | ļ             |       |      |     |           |     |     |      |
|       |       | gouged matrix                               | i             |       |      |     |           |     |     |      |
|       |       | -chloritic and limonitic.                   |               |       |      |     |           |     |     |      |
|       |       | various tuff compositions                   |               |       |      |     |           |     |     |      |
|       |       | Total section <5% Py and other sulphides    |               |       |      |     |           |     |     |      |

HOLE NO- <u>K87-9</u>

### PROPERTY Kerr Project

SHEET NO. 3 of 5

| METER | S     | DESCRIPTION                                                                                                                                                                                                                                                     | SAM                                      | PLING                |                      |                   | Au                | Ag                | Cu                | Zn             |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|----------------------|-------------------|-------------------|-------------------|-------------------|----------------|
| From  | То    |                                                                                                                                                                                                                                                                 | Sp1 #                                    | From                 | То                   | m                 | Rec % ppb         | ppm               | ppm               | p pm           |
| 20.70 | 21.4  | Monzonite Dyke - Dark Grey Coloured<br>Equigranular - plag and hbld or biot<br>Rock - medium grain size<br>Trace of sulphides<br>Lower contact 50° to core axis.                                                                                                | 3653<br>4<br>5                           | 21.4<br>23.4<br>25.4 | 23.4<br>25.4<br>26.7 | 2.0<br>2.0<br>1.3 | 180<br>235<br>160 | 0.3<br>0.7<br>0.1 | 278<br>166<br>149 | 48<br>14<br>31 |
| 21.4  | 26.67 | Interbedded - Laminated Ash Tuff<br>and Fine Grained Crystal Tuff<br>Core is broken throughout - very blocky<br>Laminations 10 <sup>0</sup> to core axis<br>5-10% pyrite in qtz veins at 60 <sup>0</sup> to core<br>axis.<br>Grey colour - silicified in places |                                          |                      |                      |                   |                   |                   |                   |                |
| 26.67 | 30.18 | Feldspar Porphyry - Like beginning of hole<br>Grey colour with two types of FSP<br>Phenocrysts in a fine grained groundmass<br>5% Py.                                                                                                                           | 3656<br>7                                | 26.7<br>28.7         | 28.7<br>30.7         | 2.0<br>2.0        | nd<br>5           | 0.5<br>0.5        | 148<br>157        | 32<br>23       |
| 30.18 | 30.65 | Ash Tuff - buff coloured<br>Cherty<br>Pyritic - 10-15%                                                                                                                                                                                                          | 1<br> <br> <br> <br> <br> <br> <br> <br> |                      | ·                    |                   |                   |                   |                   |                |
| 30.65 | 38.0  | Andesite Dyke - Dark green<br>Very fine grained -<br>chloritic<br>small fsp laths<br>several laths replaced by carbonate giving<br>a vesicular texture<br>Trace sulphides<br>Massive - good coring                                                              |                                          |                      |                      |                   |                   | ·                 |                   |                |

### PROPERTY Kerr Project

\*

1

•

5

SHEET NO. 4 of

METERS DESCRIPTION SAMPLING Ag Zn Au Cu Spl.# From To To Rec % ppb From ш ppm ppm ppm 38.0 47.8 Crystal Tuff Coarse Grained 3658 38.0 40.0 2.0 nd 0.1 40 55 contains large - fsp phenocrysts and small 9 40.0 42.0 2.0 0.1 nd 220 71 laths 3660 42.0 44.0 2.0 nd 0.1 212 234 Minor lapilli - dark grey to green colour 1 . 44.0 46.0 2.0 nđ 0.1 311 217 siliceous 5-10% pyrite 40.8 - 47.8 - Broken core - some ground core Several qtz-carb veins cutting across at 50° to core axis. 47.8 67.0 Tuff Breccia 3662 46.0 48.0 2.0 0.1 367 149 nď Fragments and lapilli of ash tuff and fine 3 48.0 50.0 2.0 nd 0.1 324 98 grained crystal tuff cemented with quartz 4 50.0 52.0 2.0 nd 0.1 235 129 and calcite 5 52.0 56.0 4.0 nđ 0.1 220 135 Light grey - buff coloured 6 56.0 58.0 2.0 nď 0.1 152 85 Very silicified 7 58.0 60.0 2.0 nđ 0.1 127 95 No good foliation - generally massive and 8 60.0 62.0 2.0 nđ 0.1 171 555 chaotic. 9 62.0 64.0 2.0 nd 0.1 236 431 Carbonate veinlets at 60° to core axis 3670 64.0 66.0 2.0 nd 0.1 185 1328 66.0 68.0 2.0 1 nd 0.1 115 246 67.0 106.67 67.0 - Becomes more massive less 2 68.0 70.0 2.0 nd 0.1 160 270 brecciated 3 70.0 72.0 2.0 nđ 0.1 141 558 -Grain size becomes more uniform 72.0 4 74.0 2.0 10 0.1 131 389 -Become fine grained crystal tuff

- - -

| + | • | × . |
|---|---|-----|
|   |   |     |

## PROPERTY Kerr Project

· · ·

SHEET NO. 5 of 5

| METERS . | DESCRIPTION                                                                                            | SAI         | MPLING |       |     | Au        | Ag   | Cu  | Zn   |
|----------|--------------------------------------------------------------------------------------------------------|-------------|--------|-------|-----|-----------|------|-----|------|
| From To  | •<br>•                                                                                                 | Sp1.#       | From   | То    | ; D | Rec % ppb | p pm | ppm | ppm  |
|          | Less silicified                                                                                        | 3675        | 74.0   | 76.0  | 2.0 | 175       | 0.1  | 160 | 724  |
|          | Narrow sulphides veinlets 45° to core axis                                                             | 6           | 76.0   | 78.0  | 2.0 | 520       | 0.1  | 151 | 5974 |
|          | sulphides are primarily Py tr Cpy and                                                                  | ¦ 7         | 78.0   | 80.0  | 2.0 | 170       | 0.1  | 140 | 1470 |
|          | sphal.                                                                                                 | 8           | 80.0   | 82.0  | 2.0 | nd        | 0.1  | 142 | 380  |
|          | Qtz along with sulphide                                                                                | 9           | 82.0   | 84.0  | 2.0 | nd        | 0.1  | 146 | 193  |
|          | Total sulphides become 10-15%                                                                          | 3680        | 84.0   | 86.0  | 2.0 | nd        | 0.1  | 135 | 121  |
|          | 71.00-71.55 - Zone of qtz-Py-Cp                                                                        | 1           | 86.0   | 88.0  | 2.0 | nd        | 0.1  | 153 | 134  |
|          | stringers                                                                                              | 2           | 88 0   | 90.0  | 2.0 | nd        | 0.1  | 138 | 121  |
|          | 25° to core axis                                                                                       | 3           | 90.0   | 92.0  | 2.0 | nd        | 0.1  | 124 | 105  |
|          | $75.5-76.0$ - Qtz-carb vein with Py $35^{\circ}$ to                                                    | t 4         | 92.0   | 94.0  | 2.0 | 50        | 0.1  | 163 | 104  |
|          | core axis                                                                                              | 3685        | 94.0   | 96.0  | 2.0 | 10        | 0.1  | 162 | 120  |
|          | 83.0 - Becomes even more massive >5%                                                                   | 6           | 96.0   | 98.0  | 2.0 | 30        | 0.1  | 155 | 229  |
|          | sulphides                                                                                              | 7           | 98.0   | 100.0 | 2.0 | 125       | 0.1  | 103 | 347  |
|          | 95.1-97.5 - Several qtz-carb veins - 1cm                                                               | 8           | 100.0  | 102.0 | 2.0 | 10        | 0.1  | 121 | 404  |
|          | thick 5-10° to core axis                                                                               | 9           | 102.0  | 104.0 | 2.0 | 5         | 0.1  | 106 | 295  |
|          | Also some at $-50^{\circ}$ to core axis – contain Py possibly sphal possibly few grains of <u>gold</u> | 3690        | 104.0  | 106.6 | 2.6 | 10        | 0.1  | 121 | 83   |
| 106.67   | End of Hole                                                                                            | 3<br>8<br>1 |        |       |     |           |      |     |      |

|       |       | Core Recover       | <u>y K87- 9</u> |                     |
|-------|-------|--------------------|-----------------|---------------------|
| FROM  | то    | INTERVAL<br>LENGTH | CORE<br>LENGTH  | PERCENT<br>RECOVERY |
| 1.52  | 1.98  | 0.46               | 0.10            | 22                  |
| 1.98  | 2.74  | .76                | -69             | 91                  |
| 2.74  | 3.05  | .31                | •15             | 48                  |
| 3.05  | 3.35  | .30                | .18             | 60                  |
| 3.35  | 3.96  | .61                | .15             | 25                  |
| 3.96  | 4.27  | .31                | •06             | 19                  |
| 4.27  | 6.10  | 1.83               | ۰52             | 28                  |
| 6.10  | 6.55  | •45                | .16             | 36                  |
| 6.55  | 7.01  | •46                | •32             | 70                  |
| 7.01  | 7.32  | •31                | •06             | 19                  |
| 7.32  | 7.92  | •60                | • 50            | 83                  |
| 7.92  | 8.08  | •16                | •09             | 56                  |
| 8.08  | 8.38  | •30                | •16             | 53                  |
| 8.38  | 9.14  | •76                | .16             | 21                  |
| 9.14  | 9.30  | .17                | .05             | 29                  |
| 9.30  | 10.36 | 1.06               | •20             | 18.8                |
| 10.36 | 10.97 | -61                | • 26            | 42.6                |
| 10.97 | 11.43 | .46                | •20             | 43.4                |
| 11.43 | 12.19 | .76                | •04             | •05                 |
| 12.19 | 12.65 | • 46               | .15             | 32.6                |
| 12.65 | 13.11 | •46                | •12             | 26                  |
| 13.11 | 13.41 | •30                | -15             | 50                  |
| 13.41 | 13.72 | •31                | -08             | 25.8                |
| 13.72 | 14.33 | -61                | •21             | 34.4                |
| 14.33 | 14.97 | .64                | .14             | 22.9                |
| 14.97 | 15.24 | •30                | •12             | 40                  |
| 15.24 | 16.31 | 1.07               | •63             | 58-8                |
| 16.31 | 16.76 | .45                | •18             | 40                  |
| 16.76 | 18.29 | 1.53               | .85             | 55.6                |
| 18.29 | 19.20 | •91                | •46             | 50.5                |
| 19.20 | 20.73 | 1.53               | •63             | 41-2                |
| 20.73 | 22.25 | 1.52               | 1.52            | 100                 |
| 22.25 | 23.77 | 1.52               | 1.52            | 100                 |
| 23.77 | 24.08 | •31                | •31             | 100                 |

~

÷

.

.

.

|                    |       | Core Recover       | <u>y K87- 9</u> |                     |
|--------------------|-------|--------------------|-----------------|---------------------|
| FROM               | то    | INTERVAL<br>LENGTH | CORE<br>LENGTH  | PERCENT<br>RECOVERY |
| 24.08              | 24.38 | .30                | .23             | 76.6                |
| 24.38              | 25.30 | .92                | -92             | 100                 |
| 25.30 <sup>-</sup> | 26.67 | 1.37               | 1.37            | 100                 |
| 26.67              | 27.74 | 1.07               | •97             | 90.7                |
| 27.74              | 28.03 | . 29               | . 29            | 100                 |
| 28.03              | 28.65 | .62                | -36             | 58                  |
| 28.65              | 29.72 | 1.07               | 1.07            | 100                 |
| 29.72              | 30.18 | • 46               | •46             | 100                 |
| 30.18              | 30.63 | .45                | •30             | 66.7                |
| 30.63              | 32.00 | 1.37               | 1.33            | 97                  |
| 32.00              | 32.91 | •91                | .91             | 100                 |
| 32.91              | 34.4  | 1.49               | 1.49            | 100                 |
| 34.4               | 35.4  | 1.0                | •97             | 97                  |
| 35.4               | 36.9  | 1.5                | 1.5             | 100                 |
| 36.9               | 38.1  | 1.2                | -67             | 55.8                |
| 38.1               | 39.6  | 1.5                | 1.34            | 89.3                |
| 39.6               | 39.9  | .3                 | • 28            | 93.3                |
| 39.9               | 40.8  | •9                 | ۰5              | 55.6                |
| 40.8               | 41.1  | •3                 | .3              | 100                 |
| 41.1               | 42.4  | 1.3                | -34             | 26.15               |
| 42.4               | 42.8  | .4                 | .4              | 100                 |
| 42-8               | 43.7  | .9                 | •67             | 74.4                |
| 43.7               | 44.0  | .3                 | •3              | 100                 |
| 44.0               | 45.1  | 1.1                | 1.01            | 91.8                |
| 45.1               | 46.2  | •5                 | •31             | 62                  |
| 46.2               | 46.9  | •7                 | •7              | 100                 |
| 46 <b>.9</b>       | 47.2  | •3                 | -25             | 83-3                |
| 47.2               | 47.4  | • 2                | - 2             | 100                 |
| 47.4               | 47.9  | .5                 | -43             | 86                  |
| 47.9               | 48.8  | .9                 | - 53            | 58-8                |
| 48 <b>.8</b>       | 50.0  | 1.2                | -92             | 76.6                |
| 50.0               | 51.5  | 1.5                | 1.42            | 94.6                |
| 51.5               | 51-8  | •3                 | •19             | 63.3                |
| 51.8               | 52.7  | •9                 | .34             | 37.7                |
| 52.7               | 54.3  | 1.6                | -25             | 15.6                |

| PDOM  | ቸሳ           | ተ እግሞድ ወ ነ/ ለ የ | CORF   | PERCENT  |   |   |
|-------|--------------|-----------------|--------|----------|---|---|
| FROM  | 10           | LENGTH          | LENGTH | RECOVERY |   |   |
| 54.3  | 54 <b>.9</b> | •6              | .23    | 38.3     |   |   |
| 54.9  | 55.8         | .9              | .9     | 100      |   |   |
| 55.8  | 56.7         | .9              | .9     | 100      |   |   |
| 56.7  | 57.9         | 1.2             | 1.2    | 100      |   |   |
| 57.9  | 58.8         | •9              | .9     | 100      |   |   |
| 58.8  | 59.1         | •3              | .3     | 100      |   |   |
| 59.1  | 60.4         | 1.3             | 1.3    | 100      |   |   |
| 60.4  | 61.6         | 1.2             | 1.2    | 100      |   |   |
| 61.6  | 62.8         | 1.2             | 1.2    | 100      |   |   |
| 62.8  | 64.3         | 1.5             | 1.5    | 100      |   |   |
| 64.3  | 65.8         | 1.5             | 1.5    | 100      |   |   |
| 65.8  | 67.3         | 1.5             | 1.5    | 100      |   |   |
| 67.3  | 68.4         | 1.1             | 1.1    | 100      |   |   |
| 68.4  | 69.95        | 1.55            | 1.55   | 100      |   |   |
| 69.95 | 71.47        | 1.52            | 1.50   | 98-6     |   |   |
| 71-47 | 72.9         | 1.43            | 1.43   | 100      |   |   |
| 72.9  | 74.07        | 1.17            | 1.02   | 87.2     |   |   |
| 74.07 | 75.13        | 1.06            | •96    | 90.5     |   |   |
| 75.13 | 75.2         | 0.07            | •07    | 100      |   |   |
| 75.2  | 76.2         | 1.0             | 1.0    | 100      | • |   |
| 76.2  | 77.4         | 1.2             | .9     | 0.75     |   |   |
| 77.4  | 78.6         | 1.2             | 1.2    | 100      |   |   |
| 78.6  | 79.2         | •6              | •6     | 100      |   |   |
| 79.2  | 80.7         | 1.5             | 1.5    | 100      |   |   |
| 80.7  | 82.3         | 1.6             | 1.56   | 97.5     |   |   |
| 82.3  | 83.8         | 1.5             | 1.5    | 100      |   |   |
| 83-8  | 85.3         | 1.5             | 1.5    | 100      |   |   |
| 85-3  | 86.9         | 1.6             | 1.57   | 98       |   |   |
| 86.9  | 88.0         | 1.1             | 1-1    | 100      |   |   |
| 88.0  | 89.5         | 1.5             | 1.14   | 76       |   |   |
| 89.5  | 90-8         | 1.3             | 1.3    | 100      |   |   |
| 90.8  | 92.4         | 1.6             | 1.32   | 82.5     |   |   |
| 92.4  | 93.57        | 1.17            | 1.17   | 100      |   | • |

Core Recovery K87- 9 CORE PERCENT TO INTERVAL FROM LENGTH RECOVERY LENGTH 75 1.14 95.10 96.62 1.52 100 96.62 97.84 1.22 1.22 •09 60 97.84 97.99 .15 92 98.76 .77 •71 97.99 89 98.76 100.28 1.52 1.36 •22 49 •45 100.28 100.73 67 1.02 100.73 102.26 1.53 102.26 102.41 .15 •04 27 70 102.41 103.63 1.22 •85 100 104.39 .76 •76 103.63 1.32 86 104.39 105.92 1.53 105.92 106.68 .76 • 55 72

٠

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

•

.

Page: 1 of 6 PROJECT KERR PROJECT **D.D. HOLE No.** K87-10 Depth 91.44 Dip 54° Azimuth 90 Collar Lat. 9,902 N Location Zone L Dep.\_\_\_\_\_ 9,971 W 1,624.5 Hole Started 5 September 1987 Elev. Azimuth 900 Hole Completed 8 September 1987 -60<sup>0</sup> Core Recovery As per attached sheets Dip. Drilled By Advanced Drilling 91.44 Length Logged by: John Kowalchuk

and a second a second a second a second a second second second second second second second second second second

Objective: \_\_\_\_Test Id chargeability high and resistivity high

HOLE NO. \_\_\_\_\_ K87-10

| PROPERTI VELL VELL | PROPERTY | Kerr | Project |
|--------------------|----------|------|---------|
|--------------------|----------|------|---------|

# SHEET NO. 2 of 6

| METE | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAM    | PLING |          |     | Au        | Ag      | Cu  | Zn          |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------|-----|-----------|---------|-----|-------------|
| From | То    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spl.#; | From  | To       | i m | Rec % ppb | ppm     | ррш | ppm         |
| 0    | 3.00  | Overburden - rounded boulders of tuff and<br>andesite dyke.                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       | <u> </u> |     |           | <u></u> |     |             |
| 3.00 | 3.53  | Lapilli, Crystal Tuff, Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |          |     |           |         |     |             |
|      |       | large fine grained ash tuff lapilli in a                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3691   | 3.0   | 5.0      | 2.0 | 25        | 0.1     | 214 | 264         |
|      |       | med. grained xtal matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2      | 5.0   | 7.0      | 2.0 | 5         | 0.1     | 15  | 1 <b>47</b> |
|      |       | Brecciated and sealed with silica and                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      | 7.0   | 9.0      | 2.0 | nd        | 0.1     | 17  | 151         |
|      |       | Pyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4      | 9.0   | 11.0     | 2.0 | 7 50      | 0.1     | 14  | 143         |
|      |       | Silicified in places                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5      | 11.0  | 13.0     | 2.0 | nd        | 0.1     | 14  | 161         |
|      |       | Narrow qtz veins 40° to core axis<br><5% Py.                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6      | 13.0  | 15.0     | 2.0 | 5         | 0.1     | 19  | 137         |
| 3.53 | 15.11 | Cherty Tuff - Dark green (flow?)<br>Silicified - massive - very fine grained<br>In place carries small feldspar lathes 1%<br>diss. Py throughout.<br>Some possible chert beds within it.<br>9.14-10.4 - possible extol tuff interbed.<br>May not be a dyke - may be a thick green<br>chert horizon<br>Contains several small qtz-calcite filled<br>blebs or vesicles.<br>Narrow qtz-carb veinlets - barren of<br>sulphides. up to 1% of total rock mass.<br>Lower contact 45°/c.a. |        |       |          |     | ·         |         |     |             |

## PROPERTY Kerr Project

SHEET NO. 3 of 6

| METE | RS    | DESCRIPTION                                          | SAN         | <b>TPLING</b> |      |          | Au        | Ag  | Cu    | Zn   |
|------|-------|------------------------------------------------------|-------------|---------------|------|----------|-----------|-----|-------|------|
| From | То    |                                                      | Spl.#       | From          | То   | <u> </u> | Rec % ppb | ppm | ppm ¦ | p pm |
| 15.1 | 19.9  | Crystal Lapilli Tuff                                 | 3697        | 15.0          | 17.0 | 2.0      | nd        | 0.1 | 507   | 71   |
|      |       | grey coloured                                        | 8           | 17.0          | 19.0 | 2.0      | nd        | 0.1 | 526   | 69   |
|      |       | Medium grained                                       | 9           | 19.0          | 21.0 | 2.0      | nd        | 0.5 | 402   | 80   |
|      |       | Brecciated and cemented with qtz and Py              | 1           |               |      |          |           |     |       |      |
|      |       | weakly foliated 45-60° to core axis                  |             |               |      |          |           |     |       |      |
|      |       | Chlorite altered                                     |             |               |      |          |           |     |       |      |
|      |       | 15.5 - fragments become cherty                       |             |               |      |          |           |     |       |      |
|      |       | 5% Py.                                               |             |               |      |          |           |     |       |      |
|      |       | Interbedded cherty and xtalline sections             |             |               |      |          |           |     |       |      |
|      |       | Cherty sections are chloritic and epidote            |             |               |      |          |           |     |       |      |
|      |       | altered.                                             |             |               |      |          |           |     |       |      |
|      |       | Becomes less brecciated.                             |             |               |      |          |           |     |       |      |
|      |       | 17.0- Rock goes back to being dark green chert tuff. |             |               |      |          |           |     |       |      |
|      |       | $18.4 - 1$ cm qtz Py vein $45^{\circ}/ca$            |             |               |      |          |           |     |       |      |
|      |       | 19.4 - 1cm qtz Py vein 35 <sup>0</sup> /ca           |             |               |      |          |           |     |       |      |
| 19.9 | 20.57 | Qtz Monzonite Dyke                                   | i<br>t<br>T |               |      |          |           |     |       |      |
|      |       | fine grained matrix with lcm long                    | t<br>t      |               |      |          |           |     |       |      |
|      |       | plagioclase laths. Sprinkled with smaller            |             |               |      |          |           |     |       |      |
|      |       | biotite xtals green epidote filling                  | 1           |               |      |          |           |     |       | •    |
|      |       | fractures                                            |             |               |      |          |           |     |       |      |
|      |       | Medium grained - porphyrite.                         |             |               |      |          |           |     |       |      |
|      |       |                                                      |             |               |      |          |           |     |       |      |
|      |       |                                                      |             |               |      |          |           |     |       |      |
|      |       |                                                      | 1           | •             |      |          |           |     |       |      |
|      |       |                                                      |             |               |      |          |           |     |       |      |

### Kerr Project PROPERTY

# SHEET NO. 4 of 6

| METER | S I   | DESCRIPTION                               | SAMP    | LING |              |     | T   | Au    | Ag  | Cu          | Zn   |
|-------|-------|-------------------------------------------|---------|------|--------------|-----|-----|-------|-----|-------------|------|
| From  | То    |                                           | Spl.# F | rom  | То           | i m | Rec | % ppb | bbw | ppm         | p pm |
| 20,57 | 36.30 | Cherty Tuff -Dark Green                   | 3700    | 21.0 | 22.5         | 1.5 |     | 10    | 0.1 | 515         | 57   |
| 20-57 |       | Very fine grained - chlorite altered      | 1       | 22.5 | 24.4         | 1.9 |     | nđ    | 0.1 | 710         | 65   |
|       |       | Siliceous - like above                    | 2       | 24.4 | 26.4         | 2.0 |     | nd    | 0.3 | 576         | 77   |
|       |       | $21.6 - 1$ cm gtz vein $50^{\circ}$ /ca   | 3       | 26.4 | 28.4         | 2.0 |     | nd    | 0.4 | 50 <b>9</b> | 52   |
|       |       | extensive epidote alteration along        | 4       | 28.4 | 30.4         | 2.0 |     | nd    | 0.1 | 810         | 55   |
|       |       | fractures                                 | 5       | 30.4 | 32.4         | 2.0 |     | nd    | 0.1 | 676         | 49   |
|       |       | Thin gtz stringers 40° to core axis       | 6       | 32.4 | 34.4         | 2.0 |     | nd    | 0.3 | 577         | 48   |
|       |       | 22.4-24.4 - Rusty and brecciated.         | 7       | 34.4 | 36.4         | 2.0 |     | nd    | 0.1 | 442         | 710  |
|       |       | -Pv-Mal along chlorite filled fractures   |         |      |              |     |     |       |     |             |      |
|       |       | 22.4 - numerous sulphide filled           |         |      |              |     |     |       |     |             |      |
|       |       | fractures - 40° to core axis              |         |      |              |     |     |       |     |             |      |
|       |       | Silicic - dark green                      |         |      |              |     |     |       |     |             |      |
|       |       | 27.44-27.74 - monzonite dyke like above   |         |      |              |     |     |       |     |             |      |
|       |       | dark green chlorite-silicified tuff       |         |      |              |     |     |       |     |             |      |
|       |       | continues numerous qtz filled fractures   |         |      |              |     |     |       |     |             |      |
|       |       | with Py                                   |         |      |              |     |     |       |     |             |      |
|       |       | 5-10% Py.                                 |         |      |              |     |     |       |     |             |      |
|       |       |                                           |         |      |              |     |     | / = 0 | ~ . |             |      |
| 36.3  | 56.60 | Ash Tuff                                  | 3708    | 36-4 | 38.4         | 2.0 |     | 470   | 0.1 | 500         | 211  |
|       |       | Brecciated cemented with Py+calcite       | 9       | 38.4 | 40.4         | 2.0 |     | nd    | 0.1 | 252         | 137  |
|       |       | 20% Pyrite                                | 3710    | 40.4 | 42-4         | 2.0 |     | nd    | 0.1 | 1/9         | 91   |
|       |       | Some sections less brecciated than others | 1       | 42.4 | 44.4         | 2.0 |     | nd    | 0.1 | 212         | 1022 |
|       |       | Tuff fragments are buff to grey coloured  | 2       | 44.4 | 46.4         | 2.0 |     | nd    | 0.1 | 295         | 313  |
|       |       | ash tuff                                  | 3       | 46.4 | 48.4         | 2.0 |     | nd    | 0.1 | 187         | 294  |
|       |       | rock is quite silicified - may be cherty  | 4       | 48.4 | 50-4         | 2.0 |     | nd    | 0.1 | 196         | 1090 |
|       |       | sulphides range from 5-10% in less        | 5       | 50.4 | 52.4         | 2.0 |     | 10    | 0.1 | 154         | 252  |
|       |       | fractured section to 25% in fractured     | 6       | 52.4 | 54.4         | 2.0 |     | nd    | 0.1 | 152         | 289  |
|       |       | section only sulphide seen in Pyrite.     | 7       | 54.4 | 56 <b>.6</b> | 2.0 |     | 10    | 0.1 | 185         | 177  |
|       |       | Main fracture directions 350 to core axis |         |      |              |     |     |       |     |             |      |
|       |       | and 60° to core axis.                     | 1<br>   |      |              |     |     |       |     |             |      |

٠,

HOLE NO. \_\_\_\_\_\_ K87-10

### PROPERTY Kerr Project

SHEET NO. 5 of 6

| METERS | S     | DESCRIPTION                                                                                                                                                                                              | SAM                             | PLING                        |                              |                          | Au                    | Ag                       | Cu                     | Zn                       |
|--------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|------------------------------|--------------------------|-----------------------|--------------------------|------------------------|--------------------------|
| From   | То    |                                                                                                                                                                                                          | Spl.#                           | rom                          | То                           |                          | Rec % ppb             | ppm                      | p pm_                  | ppm                      |
| 56.60  | 62.15 | Monzonite Dyke<br>Subhedral to euhedral feldspar<br>phenocrysts up to 1cm long in a fine to<br>medium grained ground mass.<br>grey - epidote alteration in places<br>5% Py on fractures                  | 3718<br>9<br>3720               | 56.6<br>58.2<br>60.2         | 58.2<br>60.2<br>62.2         | 1.2<br>2.0<br>2.0        | nd<br>nd<br>nd        | 0.2<br>0.5<br>0.1        | 79<br>220<br>62        | 206<br>1058<br>316       |
|        | ·     | small section chloritized below small fault<br>zone<br>58.2-60.4- Fault zone - completely gouged<br>and broken core<br>Limonitic and chloritic.                                                          |                                 |                              |                              |                          |                       |                          |                        |                          |
| 62.15  | 63.70 | Ash Tuff - grey silicified<br>Brecciated - breccia fragment<br>Cemented by Py, qtz-minor carbonate<br>one long fracture running down core axis-<br>10% Py.<br>Lower contact 12 <sup>0</sup> to core axis | 3721<br>2<br>3<br>4             | 62.2<br>63.7<br>65.2<br>66.5 | 63.7<br>65.2<br>66.5<br>68.5 | 1.5<br>1.5<br>1.3<br>2.0 | 25<br>50<br>80<br>165 | 0.1<br>0.1<br>0.1<br>0.1 | 403<br>48<br>43<br>182 | 430<br>200<br>186<br>740 |
| 63.70  | 66.45 | Andesite Dyke (possible flow or tuff)<br>Very fine grained dark green colour<br>Vesicular.<br>Qtz carb veinlets cutting across at 30 <sup>0</sup> /ca<br>5% Py - Diss. throughout.                       | ,<br>1<br>1<br>1<br>1<br>1<br>1 |                              |                              |                          |                       |                          |                        |                          |

÷

-----

PROPERTY Kerr Project

.

SHEET NO. 6 of 6

| METER | ۱S    | DESCRIPTION                                                                                                                    | SAL       | MPLING       |              |            | Au        | Ag         | Cu        | Zn         |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|------------|-----------|------------|-----------|------------|
| From  | To    |                                                                                                                                | Spl.#     | From         | To           | m          | Rec % ppb | ppm        | ppm       | p pm       |
| 66.45 | 80.1  | Crystal Tuff - fine grained                                                                                                    | 3724      | 66.5         | 68.5         | 2.0        | 165       | 0.1        | 182       | 740        |
|       | 1     | grey siliceous                                                                                                                 | 5         | 68.5         | 70.5         | 2.0        | 135       | 0.1        | 157       | 542        |
|       |       | 10% Py along qtz carb veins and diss.                                                                                          | 6         | 70.5         | 72:5         | 2.0        | 165       | 0.1        | 1 40      | 577        |
|       |       | Relatively massive - occasional qtz carb                                                                                       | 7         | 72.5         | 74.5         | 2.0        | 80        | 0.1        | 130       | 332        |
|       |       | veins                                                                                                                          | 8         | 74.5         | 76.5         | 2.0        | 10        | 0.1        | 194       | 954        |
|       |       | 74.4-76.3 - Broken - chloritic - limonitic                                                                                     | 9         | 76.5         | 78.5         | 2.0        | 160       | 0.1        | 126       | 754        |
|       |       | Becomes sericitic in places.                                                                                                   | 3730      | 78.5         | 80.1         | 2.0        | 110       | 0.1        | 121       | 472        |
| 80.1  | 84.1  | Andesite Dyke - dark green (possible flow                                                                                      | 3731      | 80.1         | 82.1         | 2.0        | 20        | 0.1        | 87        | 497        |
|       |       | or tuff)<br>Possible green ash tuff<br>Upper contact 15 <sup>0</sup> to core axis<br>Fine grained massive<br>5-10% Py.         | 2         | 82.1         | 84.1         | 2.0        | nd        | 0.1        | 22        | 462        |
| 84.1  | 87.20 | Crystal Tuff - Grey - medium grained<br>15-20% sulphides<br>Qtz-carb veins 35 <sup>0</sup> to core axis<br>Sericitic in places | 3733<br>4 | 84.1<br>86.1 | 86.1<br>88.1 | 2.0<br>2.0 | nd<br>105 | 0.1<br>0.1 | 110<br>82 | 756<br>661 |
| 87.20 | 89.76 | Andesite Dyke - Dark Green Possible Flow or<br>Ash Tuff<br>Very fine grained<br>Slightly amygdaloid                            | 3735      | 88.1         | 90.1         | 2.0        | 35        | 0.1        | 19        | 169        |
| 89.76 | 91.44 | Ash Tuff - Light Grey<br>Siliceous<br>5% sulphides<br>May be silicified Fsp. Phy                                               | 3736      | 90.1         | 91.4         | 1.3        | 5         | 0.7        | 12        | 152        |
|       | 91.44 | End of Hole                                                                                                                    | i         |              |              |            |           |            |           |            |

Core Recovery K87-10

| FROM    | TO    | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
|---------|-------|--------------------|----------------|---------------------|
| 1.0     | 1.22  | •22                | • 22           | 100                 |
| 1.22    | 1.83  | .61                | .43            | 78.7                |
| 1.83    | 2.44  | •61                | .43            | 70.5                |
| 2.44    | 3.96  | 1.52               | 1.49           | 98                  |
| 3,96    | 4.27  | .31                | •30            | 96.8                |
| 4.27    | 5.79  | 1.52               | 1.52           | 100                 |
| 5.79    | 7.32  | 1.53               | 1.47           | 96.1                |
| 7.32    | 7.92  | .69                | •59            | 85.5                |
| 7.92    | 8.84  | •92                | .84            | 91.3                |
| 8.84    | 9.14  | •3                 | • 29           | 96.7                |
| 9.14    | 10.67 | 1.53               | 1.50           | 98                  |
| 10.67   | 11.89 | 1.22               | 1.22           | 100                 |
| 11.89   | 13.41 | 1.52               | 1.43           | 94.1                |
| 13.41   | 14.48 | 1.07               | 1.00           | 93.5                |
| 14.48   | 15.86 | 1.37               | 1.37           | 100                 |
| 15.86   | 17.07 | 1.22               | 1.22           | 100                 |
| 17.07   | 18.59 | 1.52               | 1.40           | 92                  |
| 18.59   | 19.05 | •46                | •42            | 91.3                |
| 19.05   | 20.57 | 1.52               | 1.52           | 100                 |
| 20.57   | 21.64 | 1.07               | 1.07           | 100                 |
| 21.64   | 23.01 | 1.37               | 1.37           | 100                 |
| 23.01   | 24.69 | 1.68               | 1.68           | 100                 |
| 24.69   | 26.21 | 1.52               | 1.52           | 100                 |
| 26.21   | 27.74 | 1.53               | 1.53           | 100                 |
| 27.74   | 29-26 | 1.52               | 1.52           | 100                 |
| 29.26   | 30.78 | 1.52               | 1.12           | 73.6                |
| 30.78   | 32.31 | 1.53               | 1.52           | 99.3                |
| 32.31   | 33.68 | 1.37               | 1.37           | 100                 |
| 33.68   | 35.08 | 1.40               | 1.40           | 100                 |
| 35.08   | 36.27 | 1.19               | 1.18           | 99.2                |
| 36.27   | 37.80 | 1.53               | 1.37           | 89.5                |
| 37.80   | 38.86 | 1.06               | 1.06           | 100                 |
| 38 • 86 | 40-23 | 1.37               | 1.37           | 100                 |
| 40.23   | 41.00 | •77                | .77            | 100                 |
| 41.00   | 41.76 | •76                | .76            | 100                 |

| FROM   TO   INTERVAL<br>LENGTH   CORE<br>LENGTH   PERCENT<br>RECOVERY     41.76   42.67   .91   .91   100     42.67   44.20   1.53   1.53   100     44.20   45.42   1.22   1.15   94.26     45.42   46.33   .92   .82   89.13     46.33   47.40   1.07   1.07   100     47.40   48.77   1.37   1.30   94.9     48.77   49.02   .25   .20   80     49.02   49.68   .66   .50   75.8     49.68   51.21   1.53   1.53   100     51.21   52.73   1.52   1.52   100     54.25   54.25   1.52   1.52   100     55.21   52   1.52   1.52   100     56.39   57.00   .61   .61   100     57.00   58.52   1.52   1.52   1.02     60.35   62.03   1.68 <th></th> <th></th> <th>Core Recover</th> <th><b>y K87- 1</b>0</th> <th></th> |         |                | Core Recover       | <b>y K87- 1</b> 0 |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|--------------------|-------------------|---------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FROM    | то             | INTERVAL<br>LENGTH | Core<br>Length    | PERCENT<br>RECOVERY |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.76   | 42.67          | •91                | •91               | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.67   | 44.20          | 1.53               | 1.53              | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44.20   | 45.42          | 1.22               | 1.15              | 94.26               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.42   | 46.33          | •92                | •82               | 89.13               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.33   | 47.40          | 1.07               | 1.07              | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.40   | 48.77          | 1.37               | 1.30              | 94.9                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48.77   | 49.02          | • 25               | .20               | 80                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.02   | 49.68          | • 66               | .50               | 75.8                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.68   | 51.21          | 1.53               | 1.53              | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.21   | 52.73          | 1.52               | 1.52              | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52.73   | 54.25          | 1.52               | 1.52              | 100                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54.25   | 54.86          | .61                | .60               | 98.4                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54-86   | 56.39          | 1,53               | 1.53              | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56.39   | 57.00          | .61                | .61               | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.00   | 58.52          | 1.52               | 1.52              | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.52   | 60.35          | 1.83               | .90               | 49.2                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60-35   | 62.03          | 1.68               | 1.65              | 98.2                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.03   | 62.05          | .15                | 15                | 100                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.05   | 63.70          | 1 52               | 1 / 0             | 09                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.10   | 6/ 00          | 1.02               | 1.47              | 70<br>00 E          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01+CQ   | 04+74          | 1.22               | 1.00              | 00+3                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04•9Z   | 6C+C0          | -01                | • 29              | 90.7                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63+33   | 0/+U0<br>60 50 | 2.00               | 1 00              |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 67.00 | 00.00          | 1.52               | 1.28              | 84+2                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.58   | 69.8           | 1.22               | 1.3/              | 112.3               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.8    | /1-32          | 1-52               | 1.34              | 88-2                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /1.32   | /2.69          | 1.37               | 1.60              | 116.8               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72.69   | 74.37          | 1.68               | 1.63              | 97                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.37   | 74-83          | •46                | •61               | 132.6               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /4.83   | /6.2           | 1.37               | 1.04              | 75.9                |
| 76.66 77.72 1.06 1.14 107.5   77.72 79.25 1.53 1.58 103.3   79.25 80.01 .76 .87 114.4   80.01 81.38 1.37 1.29 94.2   81.38 82.14 .76 .76 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.2    | 76.66          | •46                | .43               | 93.5                |
| 77.72 79.25 1.53 1.58 103.3   79.25 80.01 .76 .87 114.4   80.01 81.38 1.37 1.29 94.2   81.38 82.14 .76 .76 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.66   | 77.72          | 1.06               | 1.14              | 107.5               |
| 79.2580.01.76.87114.480.0181.381.371.2994.281.3882.14.76.76100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.72   | 79.25          | 1.53               | 1.58              | 103.3               |
| 80.01   81.38   1.37   1.29   94.2     81.38   82.14   .76   .76   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.25   | 80.01          | •76                | •87               | 114.4               |
| 81.38 82.14 .76 .76 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80.01   | 81.38          | 1.37               | 1.29              | 94.2                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.38   | 82.14          | •76                | .76               | 100                 |

Core Recovery K87-10 FROM TO INTERVAL CORE PERCENT LENGTH LENGTH RECOVERY 82.14 83.52 1.38 1.37 99.3 83.52 83.82 •30 .16 53.3 83.82 84.12 •30 •25 83.3 84.73 •61 •50 82 135**.**9 84.12 84.73 85.65 •92 1.25 1.20 85.65 87.17 1.52 78.9 87.17 88.70 1.53 1.06 1.38 90.2 89.76 88.70 .88 83 89.76 91.29 1.53 1.16 75.8 91.29 91.44 .15 .18 120

1 T 1 T T T T T T 1 T 1

,

1 1 1 1

٦

٢

•

\* **\* \* \* \* \* \*** \* \* \*

.

| PROJECT                                     | KERR PROJECT |              | Page: 1 of 5     |
|---------------------------------------------|--------------|--------------|------------------|
| D.D. HOLE No.                               | K87-11       | <u></u>      |                  |
|                                             |              | Depth _30.48 | _ Dip420 Azimuth |
| Location Zone A                             |              | Collar Lat.  | 9,669 N          |
|                                             |              | Dep.         | 10,658 W         |
| Hole Started13 September 1987               |              | Elev.        | 1,792            |
| Hole Completed 14 September 1987            |              | Azimuth      | 103 <sup>0</sup> |
| Core Recovery <u>As per attached sheets</u> |              | Dip.         | -45 <sup>0</sup> |
| Drilled By Advanced Drilling                |              | Length       | 35.97            |
| Logged by: Mike Jerema                      |              |              |                  |

Objective: To intersect, at depth, massive sulphide mineralization on surface

.

### PROPERTY Kerr Project

۲

SHEET NO. 2 of 5

| METI | ERS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                  | SAMPI    | ING. |     |      | Au       | Ag    | Cu      | Zn    |
|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----|------|----------|-------|---------|-------|
| From | То     |                                                                                                                                                                                                                                                                                                                                                              | Sp1.# Fr | om l | То  | m    | Rec % pp | b ppm | ppm     | ppm   |
| 0.   | 1.75   | Overburden (Casing to 2.44m)                                                                                                                                                                                                                                                                                                                                 |          |      |     |      |          |       |         |       |
| 1.7  | 5 3.20 | Banded Dacitic Ash Tuff<br>-Very fine grained, grey green thinly<br>laminated ash tuff<br>-Well fractured, auto brecciated in places<br>-Silicified with 3 to 5% disseminated cubic<br>pyrite<br>-Fractures filled with qtz-carb, chlorite<br>and pyrite<br>-Some pyrite aggregates border angular<br>breccia fragments.<br>-Lamination core angle of 54° at | 3737     | 1.75 | 3.5 | 1.75 |          | 35 0  | ).1 208 | 134   |
| 3.2  | 0 4.70 | Patchy Chlorite Dacite Tuff<br>-Massive fine grained dark blue grey tuff<br>with disseminated angular patches (up to<br>10mm) of chlorite throughout (5%)<br>-Wisps & fracture fillings of up to 3% qtz-<br>carb throughout<br>-Up to 1% very fine disseminated cubic<br>pyrite.<br>-Foliation core angle of 56° at 4.5m 0<br>(weakly foliated) with         | 3738     | 3.5  | 5.0 | 1.5  | • ••     | 25 (  | 0.2 80  | 143   |
| 4.7  | 0 7.00 | Andesitic Tuff<br>-Massive (almost with an intrusive<br>appearance) pale olive green colour medium<br>grained tuff.                                                                                                                                                                                                                                          | 3739     | 5-0  | 7.0 | 2.0  |          | 40    | 8.4 16  | 5 159 |

HOLE NO. \_\_\_\_\_\_ K87-11

### PROFERTY Kerr Project

SHEET NO. 3 of 5

| METERS     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLING                                |                                                            |                                                             |                                        |     | Au                                              | Ag                                                   | Cu                                                   | Zn                                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-----|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| From To    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sp1.#                                   | From                                                       | To                                                          | m                                      | Rec | % ppb                                           | p pm.                                                | _ ppm                                                | ppm                                                 |
|            | -Some patches wisps and fracture fillings<br>of chlorite<br>-Some siliceous patches but complete<br>absence of qtz carb veining.<br>-Rock is quite weathered fractured and<br>vuggy with a low R.Q. index<br>-6.5-7.0m section is quite heavily<br>fractured and filled with chlorite giving a<br>brecciated appearance.                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                            |                                                             | ï                                      |     |                                                 |                                                      |                                                      |                                                     |
| 7.00 22.00 | Banded Dacitic Ash Tuff<br>-Intercalated to thinly laminated bands of<br>very fine to medium grained, pale-grey to<br>grey green coloured ash tuffs<br>-Quite fractured and brecciated in places<br>with qtz-carb up to 3% filling fractures<br>(random angles).<br>-1% disseminated very fine grained cubic<br>pyrite with some aggregated pyrite wisps<br>and patches.<br>-Some minor wisps and patches of chlorite.<br>-Bedding core angles:<br>36° at 7.1m 37° at 15.5m<br>76° at 8.6m 72° at 17.0m<br>47° at 10.0m 60° at 18.8m<br>47° at 10.0m 60° at 18.8m<br>-Core is badly fractured and rusty<br>weathered (possibly representing extensive<br>fracturing to surface as core recovery is | 3740<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 7.0<br>8.5<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0<br>20.0 | 8.5<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0<br>20.0<br>22.0 | 1.5<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 |     | 10<br>290<br>620<br>200<br>55<br>80<br>75<br>50 | 0.7<br>0.2<br>1.5<br>1.1<br>0.7<br>0.9<br>0.4<br>1.1 | 137<br>154<br>233<br>223<br>242<br>161<br>122<br>118 | 113<br>148<br>200<br>198<br>214<br>97<br>121<br>762 |

PROPERTY Kerr Project

the second to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

SHEET NO. 4 of 5

| METE  | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                             | SAME                            | LING                 |                      |                   | 1   | Au               | Ag                 | Çu                  | Zn                |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|----------------------|-------------------|-----|------------------|--------------------|---------------------|-------------------|
| From  | То    |                                                                                                                                                                                                                                                                                                                                                                                                                         | Spl.# I                         | rom                  | То                   | 121               | Rec | % ppb            | ppm                | ppma                | bba               |
| i     |       | at the following intervals: (10.2 to 11.8),<br>(12.1 to 12.7m), (13.3 to 16.1m), (20,83 to<br>21.55m).                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1 |                      |                      |                   |     |                  |                    |                     |                   |
| 22.0  | 22.80 | Oligoclase Porphyry Dyke?<br>-Badly fractured to brecciated section of<br>core making positive identification<br>difficult. Core has a mylonitic texture in<br>places<br>-Broken and brecciated core has rhombic<br>spaces resembling weathered out plagioclase<br>phenocrysts. Otherwise the core resembles<br>an altered grey massive dacitic tuff.<br>-Core badly broken from 21.85 to 26.0m                         | 3748                            | 22.0                 | 23.0                 | 1.0               |     | 250              | 3.9                | 1086                | 572               |
| 22.80 | 26.40 | Grey Dacitic Tuff<br>-Massive, very fine to medium grained pale<br>grey dacite Tuff (non porphyritic<br>equivalent to oligoclase porphyry?)<br>-Core largely broken fractured at altered<br>with limonitic and dendritic manganese<br>staining throughout.<br>-Malachite and azurite staining in minor<br>amounts at 23.05m and 23.35m. The stains<br>appear secondary to the limonite and<br>manganese oxide coatings. | 3749<br>3750<br>1               | 23.0<br>24.0<br>26.0 | 24.0<br>26.0<br>28.0 | 1.0<br>2.0<br>2.0 |     | 130<br>835<br>20 | 7.5<br>3.5<br>10.7 | 3042<br>1570<br>198 | 407<br>244<br>127 |

.

### PROPERTY Kerr Project

### SHEET NO. 5 of 5

| METER | S     | DESCRIPTION                                 | SAM           | PLING |      |     | 1   | Au    | Ag   | Cu   | Zn   |
|-------|-------|---------------------------------------------|---------------|-------|------|-----|-----|-------|------|------|------|
| From  | То    |                                             | Spl.#]        | From  | То   | TO. | Rec | % ppb | p pm | p pm | p pm |
| 26.40 | 35.97 | Oligoclase Porphyry                         | 3752          | 28.0  | 30.0 | 2.0 |     | 200   | 2.0  | 158  | 214  |
|       |       | -5 to 10mm oligoclase Phenocrysts 1 to 5%   | 3             | 30.0  | 32.0 | 2.0 |     | 25    | 0.6  | 28   | 84   |
|       | 1     | set in a groundmass of 1 to 5mm lath like   |               |       |      |     |     |       |      |      |      |
|       |       | hornblende phenocrysts 10 to 20% that have  | 2             |       |      |     |     |       |      |      |      |
|       |       | been altered to chlorite and an aphanitic   |               |       |      |     |     |       |      |      |      |
|       |       | grey blue dacitic material.                 | 1             |       |      |     |     |       |      |      |      |
|       |       | -Fractures with limonite and dendritic      | 1             |       |      |     |     |       |      |      |      |
|       |       | manganese oxide staining at 26.5m, 26.9m,   | 1             |       |      |     |     |       |      |      |      |
|       |       | 27.4m, 28.0 to 30m                          |               |       |      |     |     |       |      |      |      |
|       |       | -Minor (>2%) qtz-carb veinlet and wisps     | 1             |       |      |     |     |       |      |      |      |
|       |       | -Chlorite patches wisps and fracture        |               |       |      |     |     |       |      |      |      |
|       |       | fillings up to 1%                           | ĺ             |       |      |     |     |       |      |      |      |
|       |       | Oligoclase Porphyry                         |               |       |      |     |     |       |      |      |      |
|       |       | -Dykes of porphyritic hornblende altered to | 1             |       |      |     |     |       |      |      |      |
|       |       | chlorite (same rock type minus oligoclast   | 1             |       |      |     |     |       |      |      |      |
|       |       | Phenocrysts) at: (30.7 to 30.87m), 31.5 to  | l<br>l        |       |      |     |     |       |      |      |      |
|       |       | 33.9m (dark blue green colour).             | 1             |       |      |     |     |       |      |      |      |
|       |       | -Saussuratized oligoclase phenocrysts from  | 4<br>1        |       |      |     |     |       |      |      |      |
|       |       | 33.9 to 35.97 e.o.h. Section altered,       | 1             |       |      |     |     |       |      | ,    |      |
|       |       | fractured and is discoloured to a pale      | 1             |       |      |     |     |       |      |      |      |
|       |       | olive green                                 | 1             |       |      |     |     |       |      |      |      |
|       |       | -Nil to 2% very fine grained cubic pyrite   |               |       |      |     |     |       |      |      |      |
|       |       | disseminated and filling hairline fractures | 1             |       |      |     |     |       |      |      |      |
|       |       |                                             | <b>i</b><br>! |       |      |     |     |       |      |      |      |
|       | 35.97 | End of Hole                                 | ł             |       |      |     |     |       |      |      |      |

# Core Recovery K87-11

.

.

| FROM  | то             | INTERVAL   | CORE       | PERCENT  |
|-------|----------------|------------|------------|----------|
|       |                | LENGIH     | TENGIH     | RECOVERI |
| 0     | 1.75           | Overburden | (casing to | 2.44m)   |
| 1.75  | 2.44           | .69        | •69        | 100      |
| 2.44  | 3.05           | •61        | •60        | 98       |
| 3.05  | 4:57           | 1.52       | 1.51       | 99       |
| 4.57  | 5.79           | 1.22       | -87        | 71       |
| 5.79  | 7.32           | 1.53       | 1.53       | 100      |
| 7.32  | 8.38           | 1.06       | 1.01       | 95       |
| 8.38  | 9.30           | •92        | •81        | 88       |
| 9.30  | 9.75           | .45        | •62        | 138      |
| 9.75  | 11.58          | 1.83       | 1.33       | 73       |
| 11.58 | 11.89          | • 31       | •31        | 100      |
| 11.89 | 12.50          | •61        | •42        | 69       |
| 12.50 | 14.33          | 1.83       | 1.35       | 74       |
| 14.33 | 17.37          | 3.04       | 2.65       | 87       |
| 17.37 | 18 <b>.9</b> 0 | 1.53       | 1.42       | 93       |
| 18.90 | 20.42          | 1.52       | 1.53       | 101      |
| 20.42 | 21.95          | 1.53       | 1.23       | 80       |
| 21.95 | 23.62          | 1.67       | 1.30       | 78       |
| 23.62 | 24.08          | •46        | •42        | 91       |
| 24.08 | 26.06          | 1.98       | 1.58       | 80       |
| 26.06 | 26.52          | • 46       | •61        | 133      |
| 26.52 | 28.04          | 1.52       | 1.52       | 100      |
| 28.04 | 28 <b>.96</b>  | .92        | •71        | 77       |
| 28.96 | 30-48          | 1.52       | 1.40       | 92       |
| 30.48 | 31.55          | 1.07       | •97        | 91       |
| 31.55 | 33.07          | 1.52       | 1.55       | 102      |
| 33.07 | 33.99          | 0.92       | 1.07       | 116      |
| 33.99 | 35.97          | 1.98       | 1.15       | 58       |

PROJECT KERR PROJECT Page: 1 of 6 D.D. HOLE No. K87-12 Depth none Dip taken Azimuth 103 Location Zone A Collar Lat. 9,669 N Dep. 10,658 W Hole Started 14 September 1987 Elev. 1,792 Hole Completed 15 September 1987 103° Azimuth Core Recovery As per attached sheets -70° Dip. Drilled By Advanced Drilling Length 41.45 Logged by: Mike Jerema

a construction and a construction and the second second second second second second second second second second

Objective: As stated in K87-11 log

• •

.

1 1

r

.

### PROPERTY Kerr Project

## SHEET NO. 2 of 6

| METER | RS   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                      | S              | AMPLING        |            |            | A       | 1       | Ag         | Çu        | Źn         | Ĩ |
|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------------|------------|---------|---------|------------|-----------|------------|---|
| rom   | To   | -                                                                                                                                                                                                                                                                                                                                                                                                                                | Sp1.           | # From         | То         | n n        | Rec 🗶 p | b j     | ppm        | ppm       | ррш        | _ |
| 0     | 1.4  | Overburden (Casing to 1.83m)                                                                                                                                                                                                                                                                                                                                                                                                     | <br> <br> <br> |                | *          |            |         |         |            |           |            | - |
| 1.4   | 1.7  | Grey Dacite Tuff<br>-Massive medium grained grey-green dacitic<br>tuff with <1% very fine grained<br>disseminated cubic pyrite. Possibly a<br>boulder                                                                                                                                                                                                                                                                            | 375            | 6 1.4          | 2.0        | •6         |         | 65      | 1.0        | 405       | 319        |   |
| 1.7   | 4.94 | Brecciated Cherty Ash Tuff<br>-Highly fractured/brecciated grey to tan<br>coloured ash tuff<br>-Fine grained to chert-like in appearance<br>-Rhyodacitic composition<br>-1-5% disseminated very fine grained cubic<br>pyrite throughout<br>-(4.0 to 44m) extensive qtz-carb filling<br>fractures 5-10%<br>-Fragments appear partially laminated no<br>reliable measurements were noted.<br>->1% qtz-carb filling minor fractures | 375            | 7 2.0          | 4.0        | 2.0        |         | 55      | 0.3        | 207       | 121        |   |
| 4.94  | 7.40 | Patchy Chlorite Dacitic Tuff<br>-Rather massive medium to fine grained dark<br>blue grey dacitic tuff with scattered<br>angular patches (1-2cm) of chlorite up to<br>5%<br>-Qtz-carb. wisps patches and fracture<br>fillings up to 3%                                                                                                                                                                                            | 375            | 8 4.0<br>9 6.0 | 6.0<br>8.0 | 2.0<br>2.0 |         | 35<br>5 | 0.1<br>0.1 | 94<br>107 | 248<br>251 |   |

ţ

HOLE NO.\_\_\_\_\_K87-12

PROPERTY Kerr Project

SHEET NO. 3 of 6

| METER | S     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAM            | LING                 |                      |                   | Au               | Ag                | Cu                | Zn                |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|----------------------|-------------------|------------------|-------------------|-------------------|-------------------|
| From  | То    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spl.# H        | rom                  | To                   | m                 | Rec % ppb        | ppm               | ppm               | ррш               |
|       |       | -Less than 1% very fine grained cubic pyrite dissem. throughout.                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                      |                      |                   |                  |                   |                   |                   |
| 7.4   | 12.30 | Brecciated Massive to Laminated Pyritic<br>Andesitic Tuffs<br>-Medium to very fine grained andesitic tuff<br>with 1 to 5% v.f.g. to coarse grained cubic<br>pyrite (up 5mm) disseminated throughout<br>-Core is badly fractured broken and<br>weathered throughout unit<br>-Bedding core angles of:<br>38° at 9.2m, 38° at 11.5m                                                                                                                                                       | 3760<br>1      | 8.0<br>10.0          | 10.0<br>12.0         | 2.0<br>2.0        | 200<br>415       | 0.1<br>0.1        | 216<br>180        | 181<br>182        |
| 12.30 | 17.40 | Banded Dacitic Ash Tuff<br>-Intercalated to thinly laminated bands of<br>very fine to fine grained, pale grey to<br>dark grey-green ash tuffs<br>- Unit is quite fractured and brecciated in<br>places with up to 3% qtz-carb filling<br>fractures. Some massive sections<br>-Up to 1% disseminated fine grained cubic<br>pyrite as well as minor wisps, patches and<br>aggregates and some 2mm cubes.<br>-Bedding core angles: 35° at 13.5, 46° at<br>14.0m 46° at 16.0, 42° at 15.0m | 3762<br>3<br>4 | 12.0<br>14.0<br>16.0 | 14.0<br>16.0<br>18.0 | 2.0<br>2.0<br>2.0 | 180<br>125<br>75 | 0.1<br>0.1<br>0.1 | 214<br>169<br>191 | 140<br>117<br>140 |

## HOLE NO. \_\_\_\_\_ K87-12\_\_\_\_

PROPERTY Kerr Project

SHEET NO. 4 of 6

| METER | lS   | DESCRIPTION                                 | SAM    | PLING |      |     | Au        | Ag   | Cu   | Zn  |
|-------|------|---------------------------------------------|--------|-------|------|-----|-----------|------|------|-----|
| From  | То   |                                             | Sp1.#1 | From  | То   | m   | Rec % ppb | ppm  | ppm  | ррш |
| 17.40 | 22.5 | Fractured Massive to Laminated Pyritic      | 3765   | 18.0  | 20.0 | 2.0 | 60        | 0.1  | 254  | 238 |
|       |      | Andesitic Tuffs                             | 6      | 20.0  | 22.0 | 2.0 | 880       | >100 | 577  | 229 |
|       |      | -As described previously in unit 7.40m to   |        |       |      |     |           |      |      |     |
|       |      | 12.30m                                      |        |       |      | •   |           |      |      |     |
|       |      | -Unit may just be a highly altered and      |        |       |      |     |           |      |      |     |
|       |      | pyritized and less siliceous section of the |        |       |      |     |           |      |      |     |
|       |      | above banded dacitic tuffs and may be there |        |       |      |     |           |      |      |     |
|       |      | equivalent. No reliable core angles noted.  |        |       |      |     |           |      |      |     |
|       |      | -Unit is more massive looking and is almost |        |       |      |     |           |      |      |     |
|       |      | completely fractured and stained with       |        |       |      |     |           |      |      |     |
|       |      | limouite.                                   |        |       |      |     |           |      |      |     |
|       |      | Rusty Orange Fracture Zone (fault2)         |        |       |      |     |           |      |      |     |
|       |      | -core is badly broken and fractured with    |        |       |      |     |           |      |      |     |
|       |      | the biggest piece of core measuring only    |        |       |      |     |           |      |      |     |
|       |      | 8cm. All core is stained a rust orange      |        |       |      |     |           |      |      |     |
|       |      | colour from limonite originating from the   |        |       |      |     |           |      |      |     |
|       |      | weathering out of the coarse grained cubes  |        |       |      |     |           |      |      |     |
|       |      | of pyrite disseminated throughout the unit. |        |       |      |     |           |      |      |     |
|       |      |                                             |        |       |      |     |           |      |      |     |
| 22.5  | 28.6 | Banded Dacitic Ash Tuff.                    | 3767   | 22.0  | 24.0 | 2.0 | . 890     | 31.4 | 980  | 173 |
|       |      | -As described previously; section is more   | 8      | 24.0  | 26.0 | 2.0 | 70        | 3.8  | 1019 | 277 |
|       |      | badly altered and fractured                 | 9      | 26.0  | 28.0 | 2.0 | 20        | 0.1  | 147  | 94  |
|       |      | -Pale grey, tan grey in colour with more    | 3770   | 28.0  | 28.5 | 0.5 | 90        | 1.2  | 171  | 107 |
|       |      | massive sections.                           |        |       |      |     |           |      |      |     |
|       |      | -1-3% Qtz-carb material as veinlets and     |        |       |      |     |           |      |      |     |
|       |      | fracture fillings                           |        |       |      |     |           |      |      |     |
|       |      | Qtz vein core angles of 35° at 28.0m        |        |       |      |     |           |      |      |     |

.

PROPERTY Kerr Project

÷

### SHEET NO. 5 of 6

| METE | RS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLING             |                      |                      |                   | Au                   | Ag                   | Cu                     | Zn                |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|-------------------|----------------------|----------------------|------------------------|-------------------|
| From | То    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sp1.# I              | From                 | То                   | m                 | Rec % ppb            | ppm                  | ppm                    | <u>p b m</u>      |
|      |       | -Broken and weathered core (limonite and<br>dendritic manganese staining) from 23.2m to<br>26.4m. This interval contains abundant<br>weathered cubic pyrite up to 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                      |                      |                   |                      |                      |                        |                   |
| 28.6 | 30.50 | Qtz-Sulphide Rich Zone<br>-small interspersed sections of qtz<br>stockwork veining and massive pyrite<br>veining throughout the interval<br>-Traces Cpy and malachite at 28.6m with a<br>pyrite veinlet approx 3cm in width.<br>-A pervasive dark silver-grey discoloration<br>is present through the unit possibly<br>representing v.f.g. pyrite or some other<br>mineral (tetrahedrite?)<br>-15mm pyrite veinlet with approx 360° c.a.<br>(from 30.5 to 31.0m) with the silvery-grey<br>discoloration and malachite<br>-Interval contains from 1-10% pyrite as<br>diss & veinlets<br>-Half meter core missing (fault gouge)<br>between 31.0 to 31.5 m<br>Mineralized section has siliceous rhomb<br>shaped phenocrysts resembling orthoclase<br>phenocrysts therefore possibly small<br>Orthoclase Porphyry Dyke | 3771<br>3772<br>3773 | 28.5<br>29.5<br>30.5 | 29.5<br>30.5<br>32.0 | 1.0<br>1.0<br>1.5 | 5450<br>1060<br>1400 | 45.9<br>14.4<br>63.2 | 14003<br>1971<br>13273 | 494<br>242<br>600 |

.

HOLE NO. K87-12

### PROPERTY Kerr Project

SHEET NO. 6 of 6

| METERS    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLING               |                              |                               | <u> </u>                  | Au                     | Ag                 | Cu                     | Zn                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|-------------------------------|---------------------------|------------------------|--------------------|------------------------|----------------------|
| From To   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spl.# H                | ron                          | То                            | m                         | Rec % ppb              | ppm                | ppm                    | ppm                  |
| 30.5 31.0 | Orthoclase Porphyry Dyke (mineralized and silicified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                              |                               |                           |                        |                    |                        |                      |
| 31.0 34.  | Blue-Grey Hornblende Crystal Tuff (to<br>patchy chlorite tuff)<br>-Massive tuff with scattered patches and<br>wisps chlorite and minor (up to 1% only),<br>Qtz-carb veinlets and fracture fillings<br>possibly non porphyritic equivalent of 0.P.<br>-Equivalent to patchy chlorite dacitic tuff<br>as previously described in log<br>-tiny fleck of V.G. rimmed with an<br>aggregate of very fine grained pyrite and<br>adjacent qtz-carb filled fracture approx<br>2mm in width at 33.5m<br>-Fracture containing limonite malachite<br>with 40° c.a. at 34.1 to 34.2m adjacent to<br>2cm qtz veinlet with c.a. of 37°. | 3774                   | 32.0<br>33.0<br>34.0         | 33.0<br>34.0<br>34.5          | 1.0<br>1.0<br>0.5         | 785<br>12100<br>2845   | 0.1<br>1.6<br>14.5 | 311<br>73<br>1145      | 112<br>77<br>91      |
| 34.4 41.  | 45 Orthoclase Porphyry Intrusive<br>-5 to 20mm orthoclase phenocrysts (5-10%)<br>set in a blue-grey matrix of aphanitic<br>dacitic material and 1 to 5mm lath like<br>altered hornblende phenocrysts<br>-Weakly to non foliated with 37° c.a. at<br>39.0m of Hb phenocrysts<br>-1 to 4mm veinlets and fracture fillings of<br>qtz-carb scattered throughout<br>-Broken core and fracturing at 38.8m,<br>37.9m, 36.7m                                                                                                                                                                                                     | 3777<br>8<br>9<br>3780 | 34.5<br>36.0<br>38.0<br>40.0 | 36.0<br>38.0<br>40.0<br>41.45 | 1.5<br>2.0<br>2.0<br>1.45 | 60<br>240<br>250<br>10 | 0.1<br>0.1<br>0.1  | 208<br>52<br>128<br>17 | 88<br>75<br>74<br>72 |

.

Core Recovery K87-12

.

| FROM  | TO             | INTERVAL<br>LENGTH | CORE<br>LENGTH | PERCENT<br>RECOVERY |
|-------|----------------|--------------------|----------------|---------------------|
| 1 2   | 1 00           | 10                 | 4.0            | 100                 |
| 1+4   | 1.03           | .43                | +43            | 100                 |
| 1+83  | 2.44           | 10.                | •70            | 115                 |
| 2+44  | 3+00           | 1.2                |                | 91                  |
| 3.00  | 5+18           | 1.52               | 1.42           | 93                  |
| 5.18  | D+/1           | 1.53               | 1.50           | 98                  |
| 6./1  | 8+23           | 1.52               | 1.60           | 105                 |
| 8.23  | 9.75           | 1.52               | 1.54           | 101                 |
| 9.75  | 10.82          | 1.0/               | -62            | 58                  |
| 10.82 | 11.58          | .76                | 1.00           | 132                 |
| 11.58 | 12-19          | .61                | •44            | 72                  |
| 12.19 | 13.72          | 1.53               | 1.58           | 103                 |
| 13.72 | 15.09          | 1.37               | 1.07           | 78                  |
| 15.09 | 16.46          | 1.37               | 1.34           | 98                  |
| 16.46 | 17.37          | •91                | 1.01           | 111                 |
| 17.37 | 18.90          | 1.53               | 1.34           | 88                  |
| 18.90 | 19.51          | .61                | .49            | 80                  |
| 19.51 | 21.03          | 1.52               | 1.43           | 94                  |
| 21.03 | 21.95          | •92                | .68            | 74                  |
| 21.95 | 23.47          | 1.52               | 1.22           | 80                  |
| 23.47 | 24.38          | .91                | •41            | 45                  |
| 24.38 | 25.76          | 1.38               | 1.05           | 76                  |
| 25.76 | 26.52          | .76                | .54            | 71                  |
| 26.52 | 28.04          | 1.52               | 1.28           | 84                  |
| 28.04 | 28 <b>.9</b> 6 | •92                | .97            | 105                 |
| 28.96 | 30.48          | 1.52               | 1.38           | 91                  |
| 30.48 | 31.70          | 1.22               | 1.09           | 89                  |
| 31.70 | 33.07          | 1.37               | 1.21           | 88                  |
| 33.07 | 34.44          | 1.37               | 1.58           | 115                 |
| 34.44 | 35.97          | 1.53               | 1.56           | 102                 |
| 35.97 | 37.03          | 1.06               | 1.11           | 105                 |
| 37.03 | 38.56          | 1.53               | 1.59           | 104                 |
| 38.56 | 40.08          | 1.52               | 1.48           | 97                  |
| 40.08 | 41.45 eoh      | 1.37               | 1.56           | 114                 |

ŕ .

| PROJECT                                 | KERR PROJECT |             | Page: <u>1 of 7</u>   |
|-----------------------------------------|--------------|-------------|-----------------------|
| D.D. HOLE No.                           | K87-13       |             |                       |
|                                         |              | Depth       | Dip 39 30' Azimuth 70 |
| Location Zone A                         |              | Collar Lat. | 9,757 N               |
|                                         |              | Dep.        | 10,676 W              |
| Hole Started14 September 1987           |              | Elev.       | 1,800m                |
| Hole Completed <u>16 September 1987</u> |              | Azimuth _   | 070 <sup>0</sup>      |
| Core Recovery As per attached sheets    |              | Dip.        |                       |
| Drilled By Advanced Drilling            |              | Length      | 70,1                  |
| Logged by: M. Jerema                    |              |             |                       |

.

Objective: To intersect along strike gold mineralization located by DDHS K87-6 & 7

-. ,

### Kerr Project PROPERTY

SHEET NO. 2 of 7

•

| METER | s    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAM                      | PLING                            |                                  |                           | 1   | Au                   | Ag                       | Cu                             | Zn                              |  |
|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|----------------------------------|---------------------------|-----|----------------------|--------------------------|--------------------------------|---------------------------------|--|
| From  | To   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sp1 #                    | From                             | То                               | m                         | Rec | % ppb                | ppm                      | ppm                            | ppm                             |  |
| 0     | 0.92 | Overburden Casing to 1.22m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                  |                                  |                           |     |                      |                          |                                |                                 |  |
| 0.92  | 10.0 | Intercalated Black Shale/Mudstone and Green<br>Grey Siltstone and Sandstone<br>-Alternating beds and thin laminae of dark<br>grey green lithic siltstone, sandstone and<br>a black graphitic shale or mudstone.<br>-Beds are 3 to 20cm in thickness<br>-Laminae are distorted, brecciated and<br>sometimes stylolitic in appearance. Some<br>are truncated and displaced by erosion<br>slumpage and by post depositional micro<br>faulting and fracturing.<br>-Trace to nil disseminate pyrite.<br>-Unit is intensely fractured and brecciated<br>throughout with up to 10% qtz-carb as<br>veinlets and fracture fillings<br>-Scm dyke of coarse grained Oligoclase<br>Porphyry at 1.6m (boulders?)<br>-Badly broken core from 6.5 to 7.0m (small<br>fault?)<br>-Bedding core angles as follow: 34° at<br>1.3m, 32° at 2.1m, 45° at 3.1m, 53° at<br>7.4m, 58 <sup>1</sup> at 8.7m<br>-Lower contact = c.a. of 65° | 3781<br>2<br>3<br>4<br>5 | 0.92<br>3.0<br>5.0<br>7.0<br>9.0 | 3.0<br>5.0<br>7.0<br>9.0<br>11.0 | 2.11<br>2.0<br>2.0<br>2.0 |     | 10<br>nd<br>nd<br>nd | 0.1<br>0.1<br>0.1<br>0.1 | 111<br>125<br>90<br>108<br>106 | 149<br>138<br>137<br>115<br>120 |  |

:

### PROPERTY Kerr Project

SHEET NO. 3 of 7

| METERS |       | DESCRIPTION                                                                                                                                                                                                                                                                                                                    | SAM       | PLING        |              |     | Au        | Ag  | Cu           | Zn         |
|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|-----|-----------|-----|--------------|------------|
| From   | То    |                                                                                                                                                                                                                                                                                                                                | Sp1.#     | From         | To           | m   | Rec % ppb | ppm | ppm          | ррш        |
| 10.0   | 14.48 | Fine to Medium Grained Intermediate Green<br>Tuff<br>-Massive possibly waterlain tuff med. to                                                                                                                                                                                                                                  | 3786<br>7 | 11.0<br>13.0 | 13.0<br>15.0 | 2.0 | 5<br>50   | 0.1 | 202<br>335   | 109<br>111 |
|        |       | dark green in colour<br>-Unit variably siliceous with much<br>chlorite, intermediate composition<br>-Trace to nil disseminated pyrite<br>-Unit veined and fractured with up to 10%<br>qtz-carb.                                                                                                                                |           |              |              |     |           |     |              |            |
| 14.48  | 14.80 | Intercalated Black Graphitic Shale and<br>Green Int. Tuff.<br>-Small section of contorted graphitic<br>'shale', chloritic tuff and qtz-carb<br>(sedimentary sequence?)<br>-Bedding core angle of approx 52° at 14.5m<br>-Same as noted in log for k87-7.                                                                       |           |              |              |     |           |     |              |            |
| 14.80  | 18.55 | Dacitic Grey-Green Lapilli Tuff<br>-Medium grained dark green-grey matrix with<br>>4mm to 30mm lapilli fragments with a core<br>axis of approx 54°<br>-Nil to 1% qtz-carb veining<br>-1-5% disseminated and aggregate pyrite<br>throughout<br>-Lower contact 47° core axis<br>-(Unit has in places an intrusive<br>appearance) | 3788<br>9 | 15.0<br>17.0 | 17.0<br>19.0 | 2.0 | 120<br>60 | 0.8 | 1295<br>1492 | 81<br>38   |

PROPERTY Kerr Project

| SHEET | NO. | 4 | of | 7 |
|-------|-----|---|----|---|
|       |     |   |    |   |

|       |       |                                           |               |       |      |      |           | <b></b> |     |             | _ |
|-------|-------|-------------------------------------------|---------------|-------|------|------|-----------|---------|-----|-------------|---|
| METE  | RS    | DESCRIPTION                               | SAM           | PLING |      |      | Au        | Ag      | Cu  | Zn          |   |
| From  | То    | -                                         | Sp1.∦         | From  | То   | 1 11 | Rec % ppb | ррш     | ppm | <u>b</u> bm |   |
| 18.55 | 22.65 | Brecciated Fine grained Grey Dacitic Tuff | 3790          | 19.0  | 21.0 | 2.0  | 65        | 0.1     | 257 | 26          |   |
|       |       | -Massive gray tuff with numerous hairline | ; 1           | 21.0  | 23.0 | 2.0  | 90        | 0.1     | 175 | 55          |   |
|       | 1     | fractures throughout giving the unit a    | 1             |       |      |      |           |         |     |             |   |
|       | i     | brecciated appearance                     | Í<br>Í        |       |      |      |           |         |     |             |   |
|       |       | -Possibly a massive ash tuff; gradational |               |       |      |      |           |         |     |             |   |
|       | 1     | lower contact                             |               |       |      | •    |           |         |     |             |   |
|       |       |                                           | i<br>t        |       |      |      |           |         |     |             |   |
| 22.65 | 25,60 | Medium Grained Blue-Grey Tuff             | 3792          | 23.0  | 25.0 | 2.0  | 125       | 0.1     | 202 | 39          |   |
|       |       | -Massive blue grey tuff <1% qtz veinlets  | i ·           |       |      |      |           |         |     |             |   |
|       |       | -1 to 55 disseminated cubic pyrite        | Ì             |       |      |      |           |         |     |             |   |
|       |       | throughout                                | Ì             |       |      |      |           |         |     |             |   |
|       |       | -32° core angle for lower contact         | Ì             |       |      |      |           |         |     |             |   |
|       |       | -Dacitic composition                      | i<br>i        |       |      |      |           |         |     |             |   |
|       |       |                                           | <b>I</b><br>1 |       |      |      |           |         |     |             |   |
| 25.60 | 27.20 | Medium Grained Tan-Grey Tuff              | 3793          | 25.0  | 27.0 | 2.0  | 90        | 0.1     | 279 | 96          |   |
|       |       | -Massive dacitic tan-grey tuff <1% qtz    | 1             |       |      |      |           |         |     |             |   |
|       |       | veinlets                                  | 1             |       |      |      |           |         |     |             |   |
|       |       | -1% disseminated cubic pyrite             |               |       |      |      |           |         |     |             |   |
|       |       | -24 <sup>0</sup> lower contact core angle | <b>I</b>      |       |      |      |           |         |     |             |   |
|       |       | -Weathered out fractures and broken core  | 1             |       |      |      |           |         |     |             |   |
|       |       | from 25.60 to 26.5m                       | Í             |       |      |      |           |         |     |             |   |
|       |       | -Similar to the above and below units     | !             |       |      |      |           |         |     |             |   |
|       |       | except for colour                         |               |       |      |      |           |         |     |             |   |
|       |       |                                           | 1             |       |      |      |           |         |     |             |   |
| 27.20 | 36,75 | Medium to Fine Grained Blue-Grey Tuff     | 1             |       |      |      |           |         |     |             |   |
|       |       | -Massive and Homogeneous blue-grey tuff   | 1             |       |      |      |           |         |     |             |   |
|       |       |                                           |               |       |      |      |           |         | ÷.  |             |   |
|       |       |                                           |               |       |      |      |           |         |     | -           |   |

•

\_

## PROPERTY Kerr Project

1

# SHEET NO. 5 of 7

| METERS      | DESCRIPTION                                   | SAM    | LING |              |     | 1<br> | Au    | Ag   | Cu   | Zn         | - |
|-------------|-----------------------------------------------|--------|------|--------------|-----|-------|-------|------|------|------------|---|
| From To     |                                               | Sp1.#1 | From | То           | m   | Rec   | %¦ppb | ppm  | ррш  | ppm        |   |
|             | -approx 1% disseminated cubic pyrite and up   | 3794   | 27.0 | 29.0         | 2.0 |       | 100   | 0.1  | 199  | 39         |   |
|             | to 5% pyrite as aggregate patches and         | 5      | 29.0 | 31.0         | 2.0 |       | 140   | 0.1  | 89   | 21         |   |
|             | fracture fillings                             | 6      | 31.0 | 33.0         | 2.0 |       | 220   | 0.1  | 125  | 1 <b>9</b> |   |
|             | -Patches and wisps of chlorite sometimes      | 7      | 33.0 | 35.0         | 2.0 |       | 140   | 0.1  | 633  | 42         |   |
|             | outlining fractures to 1%.                    | 8      | 35.0 | 37.0         | 2.0 |       | 150   | 0.1  | 844  | 48         |   |
|             | -Some minor hairline fractures and veinlets   | 1      |      |              |     |       |       |      |      |            |   |
|             | of qtz-carb to 1%                             | j<br>I |      |              |     |       |       |      |      |            |   |
|             | -Unit becomes more chloritic, pyritic, and    | t<br>1 |      |              |     |       |       |      |      |            |   |
|             | brecciated towards the lower end of the       | 1      |      |              |     |       |       |      |      |            |   |
|             | unit. >                                       | }      |      |              |     |       |       |      |      |            |   |
|             | -Top of unit is more fractured and cut with   | 1      |      |              |     |       |       |      |      |            |   |
|             | qtz-carb.                                     |        |      |              |     |       |       |      |      |            |   |
|             |                                               | <br>   |      |              |     |       |       |      |      |            |   |
| 36.75 39.60 | Medium Grained Tan-Grey Tuff                  | 3799   | 37.0 | 39.0         | 2.0 |       | 300   | 0.1  | 491  | 90         |   |
|             | -Rather massive but weathered and broken      |        |      |              |     |       |       |      |      |            |   |
|             | dacitic tuff identical to that described in   | ]      |      |              |     |       |       |      |      |            |   |
|             | interval from 25.6 to 27.2m                   |        |      |              |     |       |       |      |      |            |   |
|             | -As previously described.                     | ļ      |      |              |     |       |       |      |      |            |   |
| 20 40 52 00 | i<br>Wedium to Fine Creined PluseCrew Decitie | 1 2900 | 30 0 | <u>/</u> 1 0 | 2 0 |       | 770   | 05   | 207  | 3.26       |   |
| 39+00 32+90 | medium to fine diathed bide-diey bacitic      | 1 3000 | 41.0 | 41.0         | 2.0 |       | . 740 | 11.9 | 300  | 667        |   |
|             | 1-20 providuely described in interval from    |        | 41.0 | 45.0         | 2.0 |       | 600   | 0.7  | 246  | 152        |   |
|             | 127 20 + 36.75m                               |        | 45.0 | 47.0         | 2.0 |       | 200   | 0.1  | 240  | 44         |   |
|             | -5% hairling fractures filled with atz-carb   |        | 47.0 | 49.0         | 2.0 |       | 125   | 0.1  | 197  | 91         |   |
|             | chi and pyrite from 39.6 to 43.4m some        | 5      | 47.0 | 51.0         | 2.0 |       | 220   | 0.1  | 304  | 59         |   |
|             | brecciated sections as well                   | 6      | 51.0 | 52.5         | 1.5 |       | 230   | 0.1  | 437  | 107        |   |
|             | -Mageive tuff with nil atz-carb or            |        | 51.0 | 3213         | *•2 |       | 2.50  |      | 7,71 | 107        |   |
|             | I mover out when his descare of               | 1      |      |              |     |       |       |      |      |            |   |

## PROPERTY Kerr Project

· ·

÷.

## SHEET NO. 6 of 7

| METERS     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAM                                                            | PLING                                                                                        |                                                                                              | ·                                                                  |     | Au                                                                          | Ag                                                                           | Cu                                                                                           | Zn                                                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| From To    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sp1.# 1                                                        | From                                                                                         | То                                                                                           | l m                                                                | Rec | % ppb                                                                       | ¦ppm                                                                         | ppm                                                                                          | p pm                                                                         |
|            | fractures from 43.4 to 45.0m.<br>-Approx 1% disseminated pyrite and patches<br>of 5 to 7% aggregate pyrite throughout.<br>-<1% qtz-carb<br>-Small mm lath-like patches of chlorite<br>resembling hornblende crystals replaced<br>throughout approx 1-2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |                                                                                              |                                                                                              |                                                                    |     |                                                                             |                                                                              |                                                                                              |                                                                              |
| 52.90 70.1 | 0 Brecciated Pyritic Blue-Grey Dacitic Tuff<br>-Compositionally identical to above unit<br>-Intensely brecciated medium to fine<br>grained blue-grey dacitic tuff. Brecciated<br>fragments are relatively in place and<br>annealed largely with aggregate pyrite<br>(from 1 to 10%) and minor chlorite.<br>-trace to nil qtz-carb as fracture<br>fillings, however a qtz-carb vein (08°<br>c.a.) with pyrite bordering host fragments<br>occurs at 58.0m to 58.5m<br>-Variably siliceous in places with some<br>siliceous 'knots' and qtz filling tensions<br>gashes approx 1cm wide at 66.0 & 69.0m<br>-Minor beds of fine grained massive tuff at<br>58.5 to 59.0m and 10cm bed at 63.3, both<br>with 23° core angles<br>-69.3 to 70.10m badly altered & broken core<br>to end of hole. Possible fault. Material<br>altered to clay & limonite | 3807<br>8<br>9<br>3810<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 52.5<br>54.0<br>55.5<br>57.0<br>58.5<br>60.0<br>61.5<br>63.0<br>64.5<br>66.0<br>67.5<br>69.0 | 54.0<br>55.5<br>57.0<br>58.5<br>60.0<br>61.5<br>63.0<br>64.5<br>66.0<br>67.5<br>69.0<br>70.1 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.1 |     | 350<br>300<br>970<br>270<br>220<br>145<br>250<br>365<br>900<br>1350<br>1230 | 2.6<br>3.4<br>5.2<br>1.5<br>0.6<br>5.0<br>4.8<br>5.7<br>98.0<br>64.2<br>54.1 | 4194<br>4033<br>3596<br>1420<br>983<br>10366<br>9570<br>6841<br>5471<br>7791<br>8275<br>6981 | 143<br>73<br>91<br>78<br>70<br>135<br>175<br>257<br>188<br>216<br>345<br>300 |
### PROPERTY Kerr Project

### SHEET NO. 7 of 7

| MET  | ERS   | DESCRIPTION                                                                                                                                                                                                                                                                                      | SAMPLING      | Au           | Ag  | Cu Zn   |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-----|---------|
| From | To    |                                                                                                                                                                                                                                                                                                  | Spl.# From To | m  Rec % ppb | ppm | ррш ррш |
|      | 2     | Pyrite only sulphide noted. Possible c.a.<br>for fault approx 10 <sup>0</sup><br>-Unit averages 5 to 7% pyrite as wisps<br>patches and mostly as fracture fillings<br>around brecciated fragments. Secondary<br>hairline fractures, crosscutting fragmented<br>host are also filled with pyrite. |               |              |     |         |
|      | 70.10 | host are also filled with pyrite.                                                                                                                                                                                                                                                                |               |              |     |         |

|                   |                | Core Recover       | y K87-13       |                     |
|-------------------|----------------|--------------------|----------------|---------------------|
| FROM              | то             | INTERVAL<br>LENGTH | Core<br>Length | PERCENT<br>RECOVERY |
| .92               | 2.74           | 1.82               | 1.82           | 100                 |
| 2.74              | 3.20.          | •46 ·              | .45            | 98                  |
| 3.20              | 4.11           | •91                | 1.13           | 124                 |
| 4.11              | 4.88           | .77                | •72            | 94                  |
| 4.88              | 5.49           | •61                | .15            | 25                  |
| 5 <b>.49</b>      | 7.01           | 1.52               | 1.62           | 107                 |
| 7.01              | 7.62           | •61                | •61            | 100                 |
| 7.62              | 9.14           | 1.52               | 1.40           | 92                  |
| 9.14              | 9.91           | .77                | .68            | 88                  |
| 9.91              | 11.58          | 1.67               | 1.56           | 93                  |
| 11.58             | 13.11          | 1.53               | 1.41           | 92                  |
| 13.11             | 14.63          | 1.52               | 1.55           | 102                 |
| 14.63             | 15.39          | .76                | .53            | 70                  |
| 15.39             | 17.06          | 1.67               | 1.37           | 82                  |
| 17.06             | 18.59          | 1.53               | 1.38           | 90                  |
| 18.59             | 19,96          | 1,37               | 1.52           | 111                 |
| 19.96             | 21.79          | 1,83               | 1.58           | 86                  |
| 21.79             | 23,01          | 1,00               | 1.40           | 116                 |
| 23.01             | 23.60          | 1.69               | 1.50           | 05                  |
| 25.60             | 26.06          | 1.27               | 1 71           | 195                 |
| 24+03<br>96 MG    | 20.00          | 16+1               | T•/T           | 123                 |
| 20.00             | 20.22          | •40<br>1 77        | •20            | 120                 |
| 20•32<br>27 71    | 4/+/4<br>20 24 | 1.50               | 1.00           | 09                  |
| 6/+/4<br>. 20. 26 | 27.20          | 1.52               | 1.02           | 107                 |
| 27.20             | 3U+18          | • 92               | 1.13           | 123                 |
| 21.10             | 31./0          | 1.52               | 1.57           | 103                 |
| 21.10             | 33.22          | 1.52               | 1.34           | 88                  |
| 33.22             | 34-75          | 1.53               | 1.55           | 101                 |
| 34.75             | 36.27          | 1.52               | 1.52           | 100                 |
| 36.27             | 37.80          | 1.53               | 1.98           | 129                 |
| 37.80             | 38.40          | •60                | .41            | 68                  |
| 38.40             | 39.93          | 1.53               | 1.63           | 107                 |
| 39.93             | 41.30          | 1.37               | 1.19           | 87                  |
| 41.30             | 42-82          | 1.52               | 1.42           | 93                  |
| 42.82             | 45-42          | 2.60               | 2.42           | 93                  |
| 45.42             | 46.94          | 1.52               | 1.58           | 104                 |

••

|       |       | Core Recover       | <u>y K87-13</u> |                     |
|-------|-------|--------------------|-----------------|---------------------|
| FROM  | то    | INTERVAL<br>LENGTH | CORE<br>LENGTH  | PERCENT<br>RECOVERY |
| 46.94 | 48.46 | 1.52               | 1.57            | 103                 |
| 48.46 | 49.99 | 1.53               | 1.46            | 95                  |
| 49.99 | 51.51 | 1.32               | 1.42            | 93                  |
| 51.51 | 53.04 | 1.33               | 1.31            | 86                  |
| 53.04 | 54.25 | 1.21               | 1.58            | 131                 |
| 54.25 | 55.17 | •92                | •89             | 97                  |
| 55.17 | 56.69 | 1.52               | 1.41            | 93                  |
| 56.69 | 58.22 | 1.53               | 1.57            | 103                 |
| 58.22 | 59.89 | 1.67               | 1.57            | 94                  |
| 59.89 | 61.11 | 1.22               | 1.42            | 116                 |
| 61.11 | 62.64 | 1.53               | 1.53            | 100                 |
| 62,64 | 64.16 | 1.52               | 1.46            | 96                  |
| 64.16 | 65.99 | 1.83               | 1.64            | 90                  |
| 65.99 | 67.21 | 1.22               | 1.42            | 116                 |
| 67.21 | 70.10 | 2.89               | 3.03            | 105                 |

| PROJECT                               | KERR PROJECT  |            | Page: <u>1 of</u> 7    |
|---------------------------------------|---------------|------------|------------------------|
| D.D. HOLE No.                         | <u>K87–14</u> |            |                        |
|                                       |               | Depth 59.4 | Dip 65° 30' Azimuth 70 |
| Location Zone A                       |               | Collar Lat | 9,767 N                |
|                                       |               | Dep.       | 10,676 W               |
| Hole Started <u>17 September 1987</u> |               | Elev.      | 1,800 m                |
| Hole Completed 20 September 1987      |               | Azimuth _  | 0700                   |
| Core Recovery As per attached sheets  |               | Dip.       |                        |
| Drilled By Advanced Drilling          |               | Length _   | 59.44                  |
| Logged by: Mike Jerema                |               |            |                        |

Objective:

.

•

1

•

### PROPERTY Kerr Project

SHEET NO. 2 of 7

| METERS                                                                                                                                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMP                   | LING                     |                          |                           | Au                   | Ag                       | Cu                       | Zn                     | - |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|--------------------------|---------------------------|----------------------|--------------------------|--------------------------|------------------------|---|
| rom To                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spl.#F                 | rom                      | То                       | [ m                       | Rec % ppb            | ppm                      | ррш                      | p pm                   |   |
| 0 0.72 Ove                                                                                                                                                      | erburden - Casing to 1.83m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                          |                          |                           |                      |                          |                          |                        |   |
| 0.72 8.85 Int<br>& G<br>-Al<br>pr<br>sha<br>sar<br>-La<br>slu<br>mic<br>-Tr<br>-Mi<br>Asp<br>tha<br>-Ur<br>fau<br>-10<br>f11<br>-Lo<br>-Bo<br>col<br>5.5<br>-Bo | tercalated Black Graphitic Shale/Mudstone<br>Grey green siltstone to sandstone<br>Iternating thin beds& laminae of<br>edominately black graphitic<br>ale/mudstone and greygreen siltstone to<br>ndstone.<br>aminae are somewhat distorted some times<br>umped and truncated by cross bedding and<br>cro faulting or fracturing.<br>races to nil disseminated pyrite.<br>inor needle like blades of (<1mm thick)<br>py? crystal between 5.4 to 5.7m, less<br>an 1% (Silver colour sulphide)<br>nit is intensely fractured and micro<br>ulted with up to<br>0% qtz-carb as veinlets and fracture<br>llings<br>ower contact approx 35° core angle<br>eds are between 2mm to 200mm. Bedding<br>re angles of 22° at 4.0m, 67° and 75° at<br>5m, 57°at 6.6m<br>recciated section with qtz-carb at 7.00 | 3819<br>3820<br>1<br>2 | .72<br>2.0<br>4.0<br>6.0 | 2.0<br>4.0<br>6.0<br>8.0 | 1.28<br>2.0<br>2.0<br>2.0 | 90<br>nd<br>15<br>30 | 2.0<br>0.3<br>0.3<br>0.7 | 406<br>135<br>114<br>118 | 1 49<br>92<br>91<br>98 |   |

#### ı

### PROPERTY Kerr Project

## SHEET NO. 3 of 7

| ME   | TER | S     | DESCRIPTION                                                      | SAN   | PLING |      |     | Au        | Ag   | Cu   | Zn       |
|------|-----|-------|------------------------------------------------------------------|-------|-------|------|-----|-----------|------|------|----------|
| From | 1   | То    | Ē                                                                | Spl.# | From  | To   | 1   | Rec % ppb | p pm | ppm  | _ ppm    |
| 8.8  | 85  | 12.65 | Fine to Medium Grained Intermediate Green                        | 3823  | 8.0   | 10.0 | 2.0 | 5         | 0.3  | 92   | 113      |
|      |     |       | Tuff                                                             | 4     | 10.0  | 12.0 | 2.0 | 10        | 0.1  | 104  | 158      |
|      |     |       | -Rather massive tuff (possibly a                                 | 5     | 12.0  | 14.0 | 2.0 | nd        | 2.8  | 1216 | 76       |
|      |     |       | volcanogenic sediment) med to dark green to                      |       |       |      |     |           |      |      |          |
|      |     |       | grey green in colour.                                            |       |       |      |     |           |      |      |          |
|      |     |       | -Unit variably siliceous with some chlorite                      |       |       |      |     |           |      |      |          |
|      |     |       | filling hairline fractures                                       |       |       |      |     |           |      |      |          |
|      |     |       | -Trace to nil pyrite                                             |       |       |      |     |           |      |      |          |
|      |     |       | -up to 15% qtz-carb as veinlets and                              |       |       |      |     |           |      |      |          |
|      |     |       | fracture fillings throughout the unit                            |       |       |      |     |           |      |      |          |
| - 0  |     | 17 00 |                                                                  | 2000  | 14.0  | 16.0 |     | 010       | 1 0  | 126  | <u> </u> |
| 12.  | 00  | 17.80 | Dacitic Grey-Green luir & Lapilli luir                           | 3820  | 14.0  | 10.0 | 2.0 | 210       | 2.0  | 230  | 109      |
|      |     |       | j-medium grained dark grey-green turracous                       | /     | 10.0  | 10.0 | 2+0 | 390       | 2.1  | 703  | 100      |
|      |     |       | juatrix with 74 to some lapilit tragments                        |       |       |      |     |           |      |      |          |
|      |     |       | Programments are subrounded and may in fact                      | 1     |       |      |     |           |      |      |          |
|      |     |       | 1-riagments are subrounded and may in fact                       | ł     |       |      |     |           |      |      |          |
|      |     |       | De Dieccia ilagments<br>Some ifracments: and fractures have been | 1     |       |      |     |           |      |      |          |
|      |     |       | replaced by aggregate pyrite throughout up                       |       |       |      |     |           |      |      |          |
|      |     |       | to 7%                                                            | ł     |       |      |     |           |      |      |          |
|      |     |       | -Minor disseminated pyrite                                       | 1     |       |      |     |           |      |      |          |
|      |     |       | -Gradational lower contact. Upper contact                        | ļ     |       |      |     |           |      |      |          |
|      |     |       | approx 75° c.a.                                                  | i     |       |      |     |           |      |      |          |
|      |     |       | - Unit has, in places an intrusive                               | ļ     |       |      |     |           |      |      |          |
|      |     |       | appearance                                                       | i     |       |      |     |           |      |      |          |
|      |     |       | -Trace malachite on fracture surface at                          | į     |       |      |     |           |      |      |          |
|      |     |       | 12.80m                                                           | İ     |       |      |     |           |      |      |          |

HOLE NO. \_\_\_\_\_ K87-14

### PROPERTY Kerr Project

SHEET NO. 4 of 7

| METH  | ERS     | DESCRIPTION                                 | SAM    | PLING |      |     | 1     | Au    | Ag     | Cu      | Zn   |  |
|-------|---------|---------------------------------------------|--------|-------|------|-----|-------|-------|--------|---------|------|--|
| From  | То      |                                             | Sp1.#  | From  | То   | m   | Rec 2 | ∛¦ppb | p pm ( | ppm     | p pm |  |
| 17.80 | 23.08   | Brecciated Pyritic Blue-Grey Dacitic Tuff   | 3828   | 18.0  | 20.0 | 2.0 |       | 200   | 8.6    | 3 5 5 3 | 779  |  |
|       |         | -Brecciated medium to fine grained blue     | 9      | 20.0  | 22.0 | 2.0 |       | 190   | 2.3    | 1976    | 63   |  |
|       |         | grey dacitic tuff this is compositionally   | 3830   | 22.0  | 24.0 | 2.0 |       | 200   | 2.0    | 456     | 304  |  |
|       |         | similar to above unit. Brecciated           |        |       |      |     |       |       |        |         |      |  |
|       |         | fragments are relatively in place and       |        |       |      |     |       |       |        |         |      |  |
|       |         | annealed largely with 1 to 10% aggregate    | (<br>( |       |      |     |       |       |        |         |      |  |
|       |         | pyrite. Some patches of chlorite from 1-35  |        |       |      |     |       |       |        |         |      |  |
|       |         | in places                                   |        |       |      |     |       |       |        |         |      |  |
|       |         | -Lower contact has a 37° core axis          |        |       |      |     |       |       |        |         |      |  |
|       |         | -Unit has an intrusive appearance in some   | 1      |       |      |     |       |       |        |         |      |  |
|       |         | places and some of the breccia fragments    |        |       |      |     |       |       |        |         |      |  |
|       |         | resemble lapilli fragments                  |        |       |      |     |       |       |        |         |      |  |
|       |         | -2 small dykes of blue grey coloured        |        |       |      |     |       |       |        |         |      |  |
|       |         | orthoclase porphyry with up to 8mm          |        |       |      |     |       |       |        |         |      |  |
|       |         | phenocrysts at 20.7 to 21.0m with 70° upper | 1      |       |      |     |       |       |        |         |      |  |
|       |         | contact - 75° lower contact and at 21.38 to | 1      |       |      |     |       |       |        |         |      |  |
|       |         | 21.65 with 70° lower contact.               |        |       |      |     |       |       |        |         |      |  |
|       |         | -A weak to mod. foliation of 47° is         | 1      |       |      |     |       |       |        |         |      |  |
|       |         | prevalent throughout the unit.              | 1      |       |      |     |       |       |        |         |      |  |
|       |         |                                             |        |       |      |     |       |       |        |         |      |  |
| 23.00 | 8 38.40 | Brecciated Tan-Grey Massive Ash Tuff        | 3831   | 24.0  | 26.0 | 2.0 |       | 230   | 0.9    | 271     | 36   |  |
|       |         | -fine to very fine grained, massive with    | 2      | 26.0  | 28.0 | 2.0 |       | 145   | 0.4    | 179     | 31   |  |
|       |         | brecciated sections, tan-grey dacitic ash   | 3      | 28.0  | 30.0 | 2.0 |       | 100   | 0.4    | 196     | 46   |  |
|       |         | tuff; non foliated                          | 4      | 30.0  | 32.0 | 2.0 |       | 45    | 0.3    | 178     | 27   |  |
|       |         | -Approx 1% qtz to qtz-carb filling          | 5      | 32.0  | 34.0 | 2.0 |       | 60    | 0.4    | 160     | 34   |  |
|       |         | fractures between breccia fragments along   | 6      | 34.0  | 36.0 | 2.0 |       | 45    | 0.4    | 185     | 66   |  |
|       |         | with minor amounts of chlorite and pyrite   | 7      | 36.0  | 38.0 | 2.0 |       | 80    | 0.4    | 151     | 86   |  |

### PROPERTY Kerr Project

SHEET NO. 5 of 7

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                               | SAM                         | PLING                                |                                      |                          | 1   | Au                           | Ag ¦                            | Cu                              | Zn                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|--------------------------------------|--------------------------|-----|------------------------------|---------------------------------|---------------------------------|-----------------------------|
| From To     |                                                                                                                                                                                                                                                                                                                                                                                                           | Spl.#                       | From                                 | То                                   | m                        | Rec | % ppb                        | ppm                             | ppm                             | ррш                         |
|             | <ul> <li>-1 to 55 disseminated cubic pyrite with up to 7% pyrite as angular patches and wisps in places.</li> <li>-Some possible bedding core angles of minor beds within the otherwise massive tuff: 50° at 32.0m , 32° at 36.5m</li> <li>-(35.5 to 38.4m) somewhat broken and rusty core.</li> </ul>                                                                                                    |                             |                                      |                                      |                          |     |                              |                                 |                                 |                             |
| 38.40 40.20 | Medium to Coarse Grained Grey Dacitic Tuff<br>(Intrusive?)<br>-Massive grey dacitic tuff or intrusive,-<br>minor xenolith or breccia fragment of grey<br>ash tuff at 38.9<br>-Non foliated: - 1% qtz-carb veinlets<br>throughout.                                                                                                                                                                         | 3838                        | 38.0                                 | 40.0                                 | 2.0                      |     | 45                           | 0.1                             | 177                             | 62                          |
| 40.20 50.0  | Brecciated Tan-Grey Massive Dacitic Ash<br>Tuff<br>-Predominately a fine to very fine grained<br>massive dacitic ash tuff with some small<br>distinguishable beds and brecciated<br>sections<br>-As described previously in 23.08 to 38.40<br>-Weak to moderately foliated with c.a. of<br>36° at 46.5m , 34° at 48.3m<br>-Minor bed at 41.7m with 44° c.a.<br>-Minor intrusive breccias with O.P. matrix | 3839<br>3840<br>1<br>2<br>3 | 40.0<br>42.0<br>44.0<br>46.0<br>48.0 | 42.0<br>44.0<br>46.0<br>48.0<br>50.0 | 2.0<br>2.0<br>2.0<br>2.0 |     | 45<br>110<br>80<br>85<br>120 | 0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 144<br>215<br>306<br>419<br>347 | 54<br>47<br>42<br>30<br>582 |

### PROPERTY Kerr Project

SHEET NO. 6 of 7

| METERS      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAM    | PLING        |              |            | l   | Au          | Ag          | Cu         | Zn         | _ |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--------------|------------|-----|-------------|-------------|------------|------------|---|
| From To     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spl.#  | From         | To           | m          | Rec | % ppb       | ppm         | ppm        | ррш        |   |
|             | at 42.5 to 42.9m and 47.6 to 50.0m (no<br>oligoclase phenocrysts present)<br>-1-3% disseminated cubic pyrite and patches<br>of aggregated pyrite cubics to massive<br>pyrite. Pyrite gives a spotted appearance<br>to core<br>-Minor qtz-carb as veinlets <1%                                                                                                                                                                                                                                                                                 |        |              |              |            |     |             |             |            |            |   |
| 50.0 54.70  | Brecciated Tan-Grey Banded Dacitic Ash Tuff<br>-As described above except rocks are thinly<br>bedded or banded and is moderately foliated<br>parallel to bedding.<br>-Brecciation is minor although present<br>throughout.<br>-Banding core angles as follows:<br>0° at 51.0m, 36° at 52.0m, 31° at 53.3m<br>-Pyrite as patches wisps fracture fillings<br>and disseminated fine cubic pyrite from 3<br>to 105 throughout.<br>-Minor qtz-carb veinlets and fracture<br>fillings <1%<br>-53.6 to 53.8m broken weathered core (small<br>fault?) | 3844   | 50.0<br>52.0 | 52.0<br>54.0 | 2.0        |     | 6300<br>260 | 11.1<br>0.3 | 274<br>175 | 346<br>158 |   |
| 54.70 57.45 | Medium to Coarse Grained Grey Dacitic Tuff<br>(Intrusive)<br>-As described in interval 38.40 to 40.20<br>-Massive grey med to coarse dacitic tuff;<br>possibly a qtz dioritic intrusive                                                                                                                                                                                                                                                                                                                                                       | 6<br>7 | 54.0<br>56.0 | 56.0<br>58.0 | 2.0<br>2.0 |     | 180<br>40   | 0.2         | 249<br>207 | 131<br>35  |   |

### PROPERTY Kerr Project

SHEET NO. 7 of 7

| METI | ERS     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAM   | PLING |                |      | I     | u  | Ag  | Cu  | Zn    |
|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------------|------|-------|----|-----|-----|-------|
| From | То      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sp1.# | From  | To             | TĽ   | Rec % | pb | ppm | ppm | b bar |
|      |         | -Lower contact has 52° core angle<br>-Disseminated chlorite patches resemble 1-<br>2mm hornblende phenocryst<br>-1-3% pyrite as disseminations wisps<br>patches and hairline fracture fillings<br>-1-2% qtz-carb veinlets and filling tension<br>fractures                                                                                                                                                                                                               |       |       |                |      |       |    |     |     |       |
| 57.4 | 5 59.44 | Fractured Grey-Green Cherty Ash Tuff<br>-Resembles "crackle breccia" mentioned in<br>previous logs<br>-Massive, very fine grained with a chert-<br>like appearance on broken surface;<br>rhyodacitic in composition<br>-Up to 3% disseminated 1-2mm cubic pyrite<br>throughout with some hairline fractures<br>replaced by pyrite.<br>-Unit is fractured into approx 2cm<br>rectangular fragments (in place) that are<br>annealed with qtz-carb to 3% and some<br>pyrite | 3848  | 58.0  | 59 <b>.</b> 44 | 1.44 |       | 45 | 0.2 | 188 | 26    |
|      | 59.44   | End of Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |       |                |      |       |    |     |     |       |

Core Recovery K87-14 FROM то INTERVAL CORE PERCENT LENGTH LENGTH RECOVERY 51.51 50.45 95 1.06 1.01 51.51 53.04 1.53 1.55 101 53.04 54.00 •96 •81 84 54.0 -86 -82 54.86 95 56.39 1.52 54.86 1.53 100 56.39 57.91 1.52 1.55 102 5**7.9**1 1.53 1.53 59.44 100







| LEGEND                                                                                     |
|--------------------------------------------------------------------------------------------|
| INTRUSIVE ROCKS                                                                            |
| 7 BASIC INTRUSIVE - Dark Green - Andesite -<br>Porphyritic (Flows, Sills, Dykes)           |
| 6 FELSIC INTRUSIVE - Monzonite - Syenite -<br>Porphyritic in Places, with Two Feldspars.   |
| VOLCANIC & SEDIMENTARY ROCKS                                                               |
| 5 CRYSTAL TUFF - Dacite - Medium to Coarse<br>Grained - Equigranular.                      |
| 4 LAPILLI TUFF - Dacite - Fine - Medium Grained<br>Groundmass.                             |
| 3 ASH TUFF - Dacite - Rhyolite - Very Fined Grained,<br>Cherty in Places Often Brecciated. |
| 2 SANDSTONE, SILTSTONE – Gritty – Some Greywacke<br>Interlaminated                         |
| I SHALE - Interlaminated with Sultstone                                                    |
| M MASSIVE SULPHIDE                                                                         |
| 5/4 CRYSTAL/LAPILLI TUFF - Other Tuff Mixtures Presented<br>In a Similar Fashion           |
| 世谷谷 BRECCIATION (In Ash Tuff)                                                              |
| FAULT ZONE (indicated by Shears)                                                           |
| QUARTZ/PYRITE VEINS OF FRACTURE FILLING                                                    |

### ABBREVIATIONS Chalcopyrite Chlorite Epidote Pyrite Quartz

Ser Sericite

Si Silicate

Ср

Chi

Εp

Ру

Qtz

# PART 1 OF 3 GEOLOGICAL BRANCH ASSESSMENT REPORT

16,616

WESTERN CANADIAN MINING CORPORATION 1987 KERR PROJECT

> D.D.H. K87 - 3 SECTION COLLAR:- 10,267N/9,954W

BEARING: 250° DIP=-36°

SCALE

1460m.

Figure No. 15





| ļ | BBREVIATIONS |
|---|--------------|
| С | halcopyrite  |
| С | hlorite      |
| E | pidote       |
| P | yrite        |
| Ç | Juartz       |
| ŝ | sericite     |
| 5 | Silicate     |

Ср

Chl

٤p

Py

Qtz

Ser

Si

PART 1 OF 3 GEOLOGICAL BRANCH ASSESSMENT REPORT

16,616

WESTERN CANADIAN

1987 KERR PROJECT

DDH K87-687 SECTION

COLLAR:~9738N/10654W BEARING: 69° DIP:~46°,-70°

SCALE

Figure No. 18

K87-6

E.O.H.= 194.16m.

1660m.\*