LOG NO: 1221
ACTION:
FHE NO: $87-915-16653$

ASSESSMENT REPORT ON

GEOLOGICAL and GEOCHEMICAL SURVEYS

ON THE

JOLLY PROPERTY
(AH, CH, Ho, Mineral Claims, Lemon, Old England, Victoria, Snowden Crown Granted Mineral Claims)

GREENWOOD MINING DIVISION, B.C.

NES:	$82 \mathrm{E} / 3 \mathrm{E}$
Latitude:	$49^{\circ} 06^{\prime} \not \mathrm{F}^{\prime \prime}$ North
Longitude:	$119^{\circ} 08^{\prime \prime \prime \prime}$ West
Owner:	Art Hook \& Cyril Heady
Operator:	Discovery Consultants
Consultant:	B. W. Kyba
Author:	September 09,1987
Date:	

TABLE OF CONTENTS

INTRODUCTION Page 1
LOCATION, ACCESS, TOPOGRAPHY Page 2
PROPERTY Page 3
HISTORY Page 4
GEOLOGY Page 5
GEOCHEMICAL SURVEY Page 12
CONCLUSIONS AND RECOMMENDATIONS 14
REFERENCES 15
STATEMENT OF COSTS 16
STATEMENT OF QUALIFICATIONS Page 17
APPENDIX A - Rock Sample Descriptions and Analytical Results
LIST OF ILLUSTRATIONS
Figure 1 Location Map Following Page 2
Figure 2 Claims 1:50,000 Following Page 3
Figure 3 Geology and Rock Sample Location Map in pocket 1:5000

INTRODUCTION

The Jolly property between Oliver and Rock Creek, B. C., covers several old gold, silver showings discovered at the turn of the century. Limited detailed geological mapping and rock sampling were done on the property to evaluate its potential to host an economic gold deposit.

The results were encouraging and further exploration is recommended.

The JOLLY property is located on the south side of Rock Creek approximately 5.5 km east of Camp McKinney on the far southeastern slope of Mount Baldy. The village of Oliver is 40 km to the west of the property and the Rock Creek Bridge on highway 3 is 13 km to the south south-west (figure l).

The National Topographic System reference is 82E/3E and the co-ordinates of the center of the AH claim is $49^{\circ} 06.5^{\prime}$ north and $119^{\circ} 08^{\prime}$ west. The legal corner post is 2.4 km at 235° azimuth from the south end of Little Fish Lake at an elevation of 1155 m and 400 m at 235° azimuth from the Jolly Lake access road from a point, 460 m northwesterly, from where the road crosses Rock Creek.

Access to the center of the property is provided by trails leading from the Mt. Baldy ski access road at km 13 from the Rock Creek Bridge on highway 3. Access can also be gained via the 01 iver-Mt. Baldy ski road from Oliver. Oliver is the nearest major centre 40 km to the west of the propert.y.

The property is located on the low southeastern slope of Mt. Baldy (2300 m). The claim is cut by Rock Creek which flows year round in a narrow canyon from its headwaters on Mt. Baldy tó its junction with the Similkameen River at the hamlet of Rock Creek. Elevations on the property range from 1060 m to 1200 m above sea level.

PROPERTY

Brican Resources Ltd. optioned the JOLLY property from Art Hook and Cyril Headey in July of 1987 and has the right to acquire a 100% interest in the property (figure 2).

The property is comprised of the following claims:

CROWN GRANTS

Claim Name

Victoria
L218
Snowden
L 583
Old England L658
Lemon

LOCATED CLAIMS

Claim Name	$\begin{gathered} \text { Record } \\ \text { No. } \end{gathered}$	Units	Record Date	Owner	Expiry Date
CH	1329	6	Oct. $4 / 78$	Cyril Headey	Oct゙.4/88
AH	1350	15	0ct.4/78	Art Hook	Oct.4/87
STAN	2897	3	0ct.9/81	Cheshire Exp.	Oct.9/87
STAN \#4	2898	1	Oct.9/81	Cheshire Exp.	Oct.9/87
STAN \# 5	2899	1	Oct.9/81	Cheshire Exp.	Oct.9/87
HO	4572	16	May 7/86	Art Hook	May 7/89

HISTORY

Gold was discovered in the canyon of Rock Creek in 1860 by prospectors travelling north from the gold fields of California. Initially a placer district, lode deposits were found in the area of the JOLLY property in 1884 . These were the first lode deposits in the area, and predate the discovery and development of the well known McKinney Camp 5.5 km to the west. One shipment of hand selected vein material made from the Victoria \#1 tunnel, located on the Victoria Crown Grant, in the mid $1880^{\prime} \mathrm{s}$, averaged 2.15 opt gold and 5.2 opt silver.

Camp McKinney to the west of the property, has produced 82,000 ounces of gold from 137,000 tons of ore (0.6 opt gold) over the past century of intermittent production.

The JOLLY property lies within the Intermontane Belt of southern British Columbia. Regionally, the area is underlain by Permo-Triassic volcanic and sedimentary rocks of the Anarchist Group. These rocks have been intruded by Cretaceous stocks and plutons. Tertiary stocks and volcanics, of intermediate and syenitic composition, intrude and overlie older rocks over a large area and form a distinct alkalic province in South Central B.C.

On the property, the Anarchist rocks form a volcanosedimentary sequence over 1000 m thick. Greenstones and diorite of map unit $1 b$ grade upwards through a sedimentary sequence (map unit 2) which in turn grades upwards to a tuffaceous sedimentary sequence (map unit lc Figure 3).

Cretaceous intrusive rocks are limited to the
northeastern portion of the property. The central portion of the property is underlain by Tertiary rocks of syenitic to quartz latite composition.

One large fault and several smaller subparallel fault zones trend north north-easterly through the property.

Alteration and mineralization on the property is of two types. A fissure vein filling type, of historic significance, and a second type, occurring over a wide zone of sheared and altered volcanic rock that is parallel to and includes the vein type, has been the focus of the most recent exploration.

Greenstone (map unit la)

Map unit la occurs in the central portion of the property and was mapped as a distinct unit on the basis of alteration and deformation of what was originally map unit lb.

Greenstone of la is light to dark green, fine to very fine grained, calcareous, highly sheared and schistose and talcose in part. The unit occurs within a wide north northeast trending fault zone and several smaller subparallel fault zones and includes blocks (?) of less altered greenstone that have locally a well developed porphyritic texture. In outcrop, the sheared greenstone is very pale green, highly fractured and platy weathering in part. Contacts with less altered sediments and greenstones (map units $1 b$ and 2) are sharp faults:

Greenstone (map unit 1b)
Map unit $1 b$ occurs to the east of Rock Creek and north of Stanhope Creek over large areas.

Greenstone of lb varies from light and dark green, fine crystalline tuffaceous greenstone to dark green, massive, fine to medium crystalline hornblende porphyritic diorite. Textures vary over individual outcrops and the unit may be a dyke or sillike intrusion or flow. Weakly developed foliations in greenstone trend northeasterly and dip at a low angle to the northwest.

Contacts between 1 a and surrounding units are most commonly faults. In the canyon of Rock Creek, greenstone appears to be gradational to tuffaceous greenstone with argillite and limy interbeds (map unit $1 c$).

Greenstone (map unit 1c)

Map unit lc occurs in the western half of the property . over a large area.

Greenstone of lc is light green and dark brown, fine crystalline, calcareous, argillaceous and contains minor marble bands. In outcrop it is blocky jointed and massive.

A weak foliation that parallels bedding (?) trends
northeast and dips at low angles to the northwest.

Contacts to map unit 2 appear to be irregular but are poorly exposed.

Argillite (map unit 2)

Map unit 2 is exposed only in the canyon of Rock Creek and occurs as narrow lenses within greenstone.

Argillite and quartz mica schist are not common, but in the area east of Rock Creek chert beds are common.

The argillite is dark brown and blocky.
Quartz mica schist is dark brown with elongate white quartz knots, commonly to 10% of the rock. Foliation varies from north northwest to northeast and dips to the west.

Chert is light brown to buff, microcrystalline and forms narrow beds up to 6 cm thick. Beds trend north northeasterly and dip steeply to the west.

In outcrop the unit is blocky.

Marble (map unit 3)

Map unit 3 outcrops in the north eastern part of the property.

Marble is light brown, tan, medium to coarse crystalline, argillaceous in part and massively bedded. Weak foliation along argillaceous bands trends north north east and dips west.

In outcrop, marble is rubbly and cavernous weathering in part.

Orthogneiss (map unit 4)

Map unit 4 outcrops in the far northeastern corner of the property.

Orthogneiss is well developed along fault contacts to older marble (map unit 3) and grades(?) to light grey foliated hornblende granodiorite away from the marble contact areas.

Strike of foliation varies from eastwest to northwest and dips vary from steep north to steep southwest. Quartz latite (map unit 5)

Map unit 5 outcrops along the Little Fish Lake access road in the east central area of the property.

Quartz latite is tan and light buff, medium to fine crystalline with rare, rounded quartz eyes to 2 mm across. In outcrop it is platy weathering with an earthy texture.

Buff, coarse grained arkose with poorly developed graded bedding occurs as minor interbeds (?) with the latite flows. Trachyandesite/syenite (map unit 6)

Large outcrops of map unit 6 occur over a large area in the central portion of the property.

Biotite, feldspar, trachyandesite is dark brown-red to brown, microcrystalline and grades to red-brown and pink, medium crystalline biotite syenite.

The unit weathers to pocketed rounded outcrops.

Faults, Alteration and Mineralization

Two distinct ages and sets of faults are present on the JOLLY property and have been the main areas of later alteration and mineralization.

The largest fault zone trends 010° and dips 80° east. It is 100 m wide and can be traced through the canyon of Rock Creek along strike, for over 600 m . Several smaller fault zones parallel this major fault to the west and north. In each case, these faults have sheared and brecciated the greenstone to such a high degree that a mappable unit has been identified (map unit la).

A second set of faults trending 070° and dipping 65° North offsets shears and gouge zones of the main fault zone and further brecciates map unit la.

Alteration within the fault zones is of several ages. Associated with the main fault zone and subparallel north northeast trending faults is a pervasive chloritization of greenstone. A less well defined but common alteration is secondary calcite as disseminated grains and veins and rare fissure filling quartz veins. The 070° younger faults appear to have a separate weak silicification, hematite and locally apple green clay alteration association.
Mineralization in the 010° trending fault zones occurs as weak pervasive pyrite, rare chalcopyrite and gold in sheared and chloritized greenstone, and banded fine to medium crystalline pyrite, arsenopyrite, galena, sphalerite and chalcopyrite with gold and silver values in fissure filling quartz veins. The younger fault set contains quartz veins and silicified zones, with finely banded and disseminated pyrite, that have associated gold and silver values. (See Appendix A.)

Rock Sample Survey

Operations

Ninety-two rock chip samples were collected from outcrops on the JOLLY property. The location of all rock samples are shown on figure 3. Descriptions of all rock samples are presented.in APPENDIX A of this report.

The rock chip samples were collected in plastic sample bags and shipped to Bondar-Clegg for analysis. Eighty-two were analysed for gold by the fire assay/atomic absorption method using a 30 gram split of -150 mesh fraction using aqua regia solution and by the D. C. Plasma-Atomic Emission Spectroscopy method for Ag, $\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Sb}, \mathrm{Ba}, \mathrm{Co}$, and T . Ten samples were assayed for gold and platinum. Analytical results for all samples are presented in APPENDIX A.

Discussion of Results

Gold
Select samples of narrow fissure filling sulphide banded quartz veins returned the highest values for gold. Sample W G 284 assayed 1.743 opt gold and several other samples of vein material contained greater than 0.1 opt gold. Chip samples of altered greenstone with disseminated pyrite from the main fault zone contained erratically distributed anomalous gold values. Sample WG275, a 3 m chip of altered greenstone assayed 0.075 opt gold. From the same outcrop eight samples over 14.3 m contained a weighted average of 0.042 opt gold. (WG275 to 284). A one meter chip (281-87bk-13) of altered greenstone from a small north
northeast trending fault zone east of the main fault zone contained 340 ppb gold. Chip samples across the younger northeast trending fault zones of silicified and clay altered greenstone also contained anomalous gold values. Sample 281-87bk-21 contained 4100 ppb gold and was taken across 1.5 m .

Silver

Highest value for silver was 15.0 ppm from a select sample off the dump of an old adit on the western boundry of the property (281-87bk-35).

The fissure type quartz veins contained weakly anomalous amounts of silver. All other rock samples contained trace values.

Other Metals

The fissure type veins contained anomalous amounts of copper, lead and zinc.

Altered greenstone from the main fault zone and from the younger fault zones contained weakly anonalous amounts of copper.

Values for all other metals were low.
$\therefore \because$

The JOLLY property overlies a large zone of intensely faulted altered and mineralized tuffaceous greenstone of the Permo-Triassic Anarchist Group.

Within fault zones narrow fissure filling quartz veins contain significant gold values and altered greenstone contains anomalous gold values over significant widths.

A detailed exploration programe to determine the full
extent of the mineralized greenstone is recommended.

Cockfield, W.E., 1935 . Lode Gold Deposits of Fairview Camp, Camp McKinney and Vidette Lake Area, and the Dividend-Lakeview Property near Osoyoos, B.C. Geol. Survey Canada, Memoir 179.

Hedley, M. S., 1940 Geology of Camp McKinney and of the CaribouAmelia Mine, B. C. Dept. of Mines, Bulletin No. 6.

Little, H. W., 1957 G.S.C. Map 6-1957.
Little, H. W., 1961 G.S.C. Map 15-1961.
Report of the Minister of Mines, 1891-1903 and 1925-1935.

Nesbitt, B. I. 1948 . Report of the Old England Group, Camp McKinney. British Columbia Ministry of Mines, Assessment Report.

Peatfield; G., 1978. The Boundary District Unpublished Ph. D. Thesis, University of British Columbia.

Norwest Resource Consultants Ltd., 1981 , Summary Report on Exploration on the Alt-Clt Claims in the Camp McKinney Area, private report.

Wilmott, A. D., 1986 , Mineral Properties of Cyril Heady and Art Hook, private report.

STATEMENT OF COSTS

1). Professional Services

```
K.L. Daughtry
    -field work
        August 2l, 1987 l day @ \(\$ 350 /\) day \(\$ 350.00\)
    W.R. Gilmour
    -field work
        October 8, 19861 day @ \(\$ 300 /\) day 300.00
    B.W. Kyba
    -field work
        June 29,30 1987
        July 1,2,3,13,14 1987
        August 21, 19878 days @ \(\$ 300 /\) day 2400.00
    -Data compilation,
        Report writing 3 days @ \(\$ 300 /\) day 900.00
```

2) Contracting Services
D.E. MacKenzie
-Field work
July 13,14 19872 days @ $\$ 200 /$ day 400.00
S. Maltby
-Drafting 336.00
R. Ryziuk
-Drafting
450.00
```
$4250.00
```

3). Geochemical Analysis
Au geochem + 10 element D.C.P. 82 @ 13.50 11107.00
$\mathrm{Au} \& \mathrm{Pt}$ assays 10 @ 25.00
Sample Preparation 92 @ \$3.25 299.00
4). Transportation

$$
4 \text { x } 4 \text { truck } 9 \text { days @ \$70/day } 630.00
$$

5). Accommodation, meals
6). Maps, Printing expense
7). Office Expense 175.00
8). Secretarial Report preparation

I, B.W. KYBA of R.R.l, Falkland, B.C., DO HEREBY CERTIFY THAT:

1. I am a Consulting Geologist in the mineral exploration business and am employed by Cedar Hill Gold Corporation, Falkland, B.C.
2. I have been practising my profession in British Columbia, Alberta, Saskatchewan, the Yukon Territory, Colorado and Nevada for 13 years.
3. I am a graduate of the University of Alberta with a Bachelor of Science degree in geology.
4. I am a Fellow of the Geological Association of Canada, a Professional Geologist of Alberta, and member of the Canadian Institute of Mining and Metallurgy.
5. This report is based upon knowledge of the JOLLY property gained from exploration work on the property.

Vernon, B.C.
October 19, 1987

APPENDIX A

ROCK SAMPLE DESCRIPTIONS

AND ANALYTICAL RESULTS

Collector:	HRG
Project:	283
Hap Ref.:	BASEMAP
Scale:	$1: 5000$
Date:	OCTOBER 8, 1987
Area:	JOLLY PROPERTY

Sample Number	Location/Description			
		Sample ID	Au	Pt
WG 275	rock o/c in Rock Creek canyon: "serpentine" +/- pyrite, calcite veinlets over 3.0 i.	W6275	0.075	-0.002
276	3.0 echip as above	W6276	0.009	-0.002
277	3.0 chip as above	W6277	0.004	-0.002
278	0.6 chip serpentine w/more alteration (lighter colour) pyrite to 1-2\%	W6278	0.005	-0.002
279	0.9 chip grey siliceous rock with brecciated quartz vein, green clay minerals with pyrite e 3\%	W6279	0.023	-0.002
280	1.8 chip "talc" feeling greenstone, green clay minerals, quartz vein stockwork with pyrite, galena and quartz stringers	W6280	0.006	-0.002
281	1.0 chip of grey gouge with green clays and quartz veining with 5% sulphides (true width of shear $(0.4$ -)	W6281	0.28	-0.002
282	grab sample select sample of rusty small quartz veins with 10\% pyrite	W6282	0.233	-0.002
283	serpentine chip over 1.0 with talc surfaces on frattures	W6283	0.015	-0.002
284	select grab of quartz vein with 5-10\% pyrite	W6284	1.743	-0.002

09 very select grab of white bx'd gtz vn with veakly developed banded sulphides of nediu xtalline pyrite, aspy, galena \& sphal? (hdspe)

10 very select grab froe dump of Virtoria \#1 adit area, of white "crackled" quartz vein with bands of eediue xtalline pyrite, galena, cpy, aspy 4 sphal?

113 chip over chl schist at portal of Victoria \#1 giner quartz veining and calcite veining, shearing post veining
120.5 chip across rusty quartz vein in sheared chl schist above partially caved adit, vein with fine ktalline galena, py, aspy \& trace cpy as discontinuous stringers and bands

131 whip across quartz veined light green, chl schist, veining uith medius xtalline pyrite and trace galena as discont, bands and stringers in vein, veins up to $l^{\prime \prime}$ wide e $2 /$ m

14 grab froe dump in Creek of bright, or ange-red, brown, clay gouge, argillized pyritic shl schist? or seds seds/chl schist contact - clay filled fault zone?

153 chip across 3 wide quartz vein "crackled" with winor Cu stn'g and pyrite "knots" - old standard Gold adit area below falls in Rock Creek --south side

16 i chip of footwall, pyritic blk argillites with quartz veining, to quartz vein of $\$ 15$, grades to nica/quartz schist away from fault contact
170.5 chip of "highgrade" adit vein in fault " zone of intensely shattered \& Fe , stn'd quartz and chl, schist

182 chip across footwall of vein in light green chl. schist

Cu	Pb	In	Mo	$A g$	Co	Bi	As	Sb	I1	Au
505	692	2708	2	2.5	5	-2	139	-5	-9	4900
433	4121	12981	4	8.5	9	7	266	5	-9	7900
94	133	344	2	-0.5	18	-2	-5	-5	-9	100
477	5308	6493	3	9	15	5	343	-5	-9	6400
57	639	698	1	-0.5	7	-2	42	-5	-9	340
30	247	372	-1	-0.5	32	-2	343	-5	-9	25
2125	133	339	1	0.5	5	-2	31	5	-9	55
156	67	183	2	-0.5	10	-2	74	-5	-9	25
271	328	1650	2	-0.5	18	-2	259	-5	-9	1150
29	26	177	1	-0.5	17	-2	15	-5	-9	5

192 chip across hanging wall of vein in light green chl. schist.

20 0-5 of light and dark green mottled, highly sheared chl-tale schist with ainor white quartz veinlets to 5 across, trace disseminated pyrite and rare visible gold??-CHALCOPYRITE?? (handspecimen)

21 5-6.5 (1.5 m) bright apple green stn'd siliceous talc - chlorite schist, with broken white quartz/calc veinlets to 2 mm , with fine grained pyrite to 0.25% in veins and schist, highly altered rock

22 .6.5-11.5 (5m) chip of Lt grn/dark green mottled, highly sheared calc-tale schist with 5-10 a quartz calcite veinlets, trace pyrite

23 11.5-16.5 (5in) as above, blocky jointed
24 16.5-21.5 (5m) dark green mottled light green ipt, talc-chl schist/greenstone? with/trace trace disseminated fine grained pyrite and minor white quartz calcite veinlets to 2 mim across

25 21.5-26.5 (5in) as above
26 select grab from duap of Victoria adit $\$ 2$ downstream of grey argillized greenstone or clay? - very old trench ared?

27 2n chip across seall shear zone in dark green talc-chlorite-schist, trace disseminated pyrite, rare quartz-calcite fragments of vein aaterial in fault zone
$28 \quad 1.5$ echip across bedding of lin stained
argillite, shattered throughout with ninor calcite veining - grades to greenstone

29 3e chip across strike of sheared and Fe stained argillite in greenstone, with graditional contacts

302 chip of brecciated, dark green greenstonel fine grained hornblende diorite, grades to blocky jt'd, assive greenstone over several feet

31 randon chip from outcrop of dark grey, brown biotite feldspar trachyandesite-lava?
blocky, ipt, platy in part - Tertiary rocks
323 chip from Mn stn' d_{3} fine grained, chloritized hornblende diorite, hanging wall of vein showing in power line right-of-way

33 I wide chip across intensely Fe stained, altered diorite and 0.2 vide white quartz vein with medium xtalline pyrite, aspy, common to 2% as vuggy fillings, stringers, blebs

34 3n chip from footwall of vein of 33 , of Min stn'd hornblende diorite, fine grained, grades to greenstone in part

35 "Ecquador" CG area or test grid area of NorWest, select sample of dump from old adit of quartz vein in siliceous greenstone with strong foliation \& 90° to vein with cpy, py, aspy and sphal.

36 outcrop chip of Fe stained, blocky jointed dark green, wottled brown, argillaceous greenstone near diorite contact a head of Stanhope Canyon

37 chip frow outcrop of old open cut across sreek from Lemon workings of sheared hem. stn'd greenstone cut by hornblende diorite dykes

38 2 chip of hanging wall, of hem. stained, shattered, arg greenstone at adit of lemon workings
390.5 macross fault gouge in back of Lemon portal, "crushed" arg greenstone and greenstone

40 2n of footwall of Lemon vein? of bx'd dayk green greenstone
$\mathrm{Cu} \mathrm{Pb} \quad \mathrm{In}$ Mo $\mathrm{Ag} \quad \mathrm{Co} \quad \mathrm{Bi} \quad \mathrm{As} \quad \mathrm{Sb} \quad \mathrm{Tl}$ Au
$\begin{array}{lllllllllll}12 & 11 & 114 & 3 & -0.5 & 29 & -2 & 14 & -5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}82 & 96 & 184 & 1 & -0.5 & 13 & -2 & 11 & 5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}40 & -5 & 92 & 2 & -0.5 & 33 & -2 & -5 & -5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}25 & 29 & 78 & 2 & -0.5 & 18 & 5 & -5 & 20 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}33 & -5 & 71 & 2 & -0.5 & 24 & 2 & -5 & -5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}353 & 14 & 13 & 3 & 1.2 & 7 & -2 & -5 & 7 & -9 & 5\end{array}$
$\begin{array}{lllllllllll}31 & -5 & 48 & 2 & -0.5 & 6 & -2 & -5 & 5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}762 & 661 & 11883 & -1 & 15 & 47 & 10 & 942 & -5 & -9 & 80\end{array}$
$\begin{array}{lllllllllll}73 & 43 & 788 & 2 & -0.5 & 16 & 7 & 48 & -5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}74 & 16 & 305 & 1 & -0.5 & 19 & -2 & 12 & -5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}28 & 13 & 49 & 0 & -0.5 & 17 & 8 & 38 & 1 & -9 & 15\end{array}$
$\begin{array}{lllllllllll}11 & 10 & 53 & 2 & -0.5 & 17 & -2 & -5 & -5 & -9 & -5\end{array}$
$\begin{array}{lllllllllll}17 & 8 & 38 & 1 & -0.5 & 15 & 2 & -5 & -5 & -9 & -5\end{array}$

Sample Nunber Location/Description
3. chip across zone of shattered argillaceous greenstone with hewatite stain'g and bands of pyritic hfls - pyrite disseminated and on fractures, hard dense rock, pyrite to 0.5% frow outcrop on Stanhope Creek at end of old sloughed cat road
0.2 of dayk grey, green, clay gouge and bx'd greenstone, talc-chlorite schist, developed along numerous small shears
grab from resistant outcrop of argillaceous calcareous greenstone and limy argillite with dis5eminated and fracture fine grained pyrite and aspy to 0.25\%

44 grab from road outcrop of white/buff fine to mediu xtalline quartz latite flow? - GSC mapped this as sediments at base of Tertiary?

45 grab from outcrop of coarse crystalline? broken quartz F latite - tuff?

46 grab from small outcrop of fine grained biotite, weakly calcerous, weakly sheared greenstone, near Tertiary surface here

47 I chip from very old cut of bx'd sheared, argillite marble, fe stained and brown orange weathering, silicified in part
480.5 chip from outcrop of Fe stained argillaceous marble and medium grey and white banded warble - chip acyoss old test pit

49 grab frow outcrop of dark green strongly foliated, greenstone, calcareous greenstone, trace dis5eminated pyrite

Cu	Pb	In	Ho	Ag	Co	Bi	A5	$5 b$	11	Ali
52	11	81	1	-0.5	31	-2	-5	-5	-9	-5
19	36	151	1	-0.5	19	-2	-5	-5	-9	-5
12	5	137	2	-0.5	27	-2	-5	-5	-9	-5
-1-1	21	41	-1	-0.5	3	-2	-5	-5	-9	-5
	21	27	-1	-0.5	2	-2	-5	-5	-9	-5
18	24	108	-1	-0.5	17	-2	-5	-5	-9	-5
2	7	16	-1	-0.5	53	-2	-5	-5	-9	-5
55	5	93	1	-0.5	20	-2	-5	-5	-9	-5
117	15	83	1	-0.5	22	-2	-5	-5	-9	-5

Sample Number	Location/Description											
--"		Cu	Pb	2 n	Ho	$A g$	Co	Bi	A5	$5{ }^{\text {b }}$	11	All
50	0.3 white, shattered quartz vein with chlorite bands and blebs of bright yellow red xtalline pyrite and pyrite paint from 10^{\prime} deep pit	17	10	24	1	-0.5	3	-2	-5	-5	-9	-5
51	1 chip frow hanging wall of 350 vein, rusty, Fe stained metaargillite, argillaceous greenstone	37	11	18	-1	-0.5	2	-2	-5	6	-9	-5
52	select from dump of 8 deep pit of quartz vein, bx'd, with meta-argillite fragments, heavy Fe , staining	80	11	19	3	-0.5	4	-2	-5	7	-9	35
53	grab from outcrop at Rock Creek Bridge of dark green, strongly foliated greenstone with minor quartz-calcite knots and veinlets with trace pyrite	51	-5	93	3	-0.5	34	-2	-5	-5	-9	-5
54	e quartz mica schist and greenstone contact, grab of quartz mica schist with minor quartz veinlets with trace pyrite and fine crystalline galena?	33	6	90	1	-0.5	38	-2	64	-5	-9	-5

```
Collector: BHK, EM
    Project: 283
    *ap Ref.: Base Map
wop Scale: 1:5000
    Date: July 13-14
    Area:. Victoria $2 adit
```


56	3-6 as above	23	-5	53	3	-0.5	28	-2	11	-5	-1	45
57	6-9 © as above	5	-5	55	2	-0.5	26	-2	-5	5	-1	15
58	9-12 as above	47	-5	48	2	-0.5	24	-2	-5	-5	-1	5
59	12-15 as above	35	-5	60	3	-0.5	26	-2	51	-5	-1	15
60	15-18 a a above	22	-5	53	2	-0.5	27	-2	114	-5	-1	5
61	18-21 a above	54	-5	74	2	0.5	30	-2	6	-5	-1	-5
62	21-24 as above	23	-5	66	2	-0.5	27	-2	8	-5	-1	10
63	24-27 as above	92	-5	61	2	-0.5	32	-2	-5	-5	-1	10
64	27-30 a as above	22	-5	63	2	-0.5	23	-2	40	-5	-1	-5
65	30-33 as above	14	-5	46	3	-0.5	24	-2	16	6	-1	-5
66	33-36 m as above	13	-5	51	2	-0.5	19	-2	16	11	-1	-5
67	36-39 as above	35	-5	46	2	-0.5	26	-2	6	-5	-1	-5
68	39-42 as above	44	-5	64	2	-0.5	32	-2	38	-5	-1	35

