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PART A REPORT

1) INTRODUCTION

- A Controlled Source Audio Magnetoteﬂuri’c (CSAMT) survey has been
completed on the Bar Property on behalf of John:M. Leask - in Fort Steele
Mining Division, British Columbia. ' o o [

The property is located approximately 13 km southwest of Cranbrook, B.C.
Access is by wheeled vehicle over a system of logging roads leading east from the
Crowsnest Highway at Lumberton, B.C.

The CSAMT technique is a relatively new method used to map the resistivity
configuration of the earth. Part C of this report describes the method in some
detail and also provides some case histories. ‘

The objective of the CSAMT survey was to evaluate the property for zones of
low resistivity which could be indicative of the presence of conductive sulphide
mineralization similar to the lead-zinc ore of the Sullivan Mine Tocated 30 km north
at Kimberley, B.C.

A Phoenix Model V-3 CSAMT receiver unit was used to make the geophysical
measurements in conjunction with a Phoenix IPT-1/AC3004 transmitter powered by a 3
kw motor generator. A copper wire approximately 4 km in Tength and grounded at both
ends was used as the transmitter dipole, as illustrated on Figure 3, a 1:50,000
location map showing the survey lines and the transmitter wire.

Six electric field measurements and one magnetic field measurement were
made simultaneously at each setup. The electric field measurements used an
interelectrode spacing of 200 meters along the survey lines, while a horizontal
magnetic measurement was made perpendicular to the line at 1200 meter intervals.
Data was recorded at 15 fkequenc‘ies ranging in binary steps from 4096 Hz to 0.25 Hz.
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Field work took place during late September and early October, 1987 under the
supervision of Paul A. Cartwright, P. Geoph., whose certificate of qualification is
included in this report. -

2) - CLAIM INFORMATION

The Bar Claim Group consists of 15 contiguous claims totalling 106 units as
well as 2 Crown Grants.

CLAIM NAME UNITS RECORD NO. RECORD DATE

Vine 55 18 : 1871 July 18, 1983
Bar 1 20 2015 November 10, 1983
Bar 6 16 2028 December 14, 1983
Bar 7 6 2029 December 14, 1983
Bar 8 1 2164 “July 3, 1984
Bar 9 1 2165 July 3, 1984
Bar 10 1 2166 July 3, 1984

~ Bar 11 1 2167 July 3, 1984
Bar 12 18 2168 July 3, 1984
Bar 13 0 2169 | July 3, 1984
Bar 14 1 2170 July 3, 1984
Bar 15 1 21711 July 3, 1984
Bar 16 1 2172 - July 3, 1984
Bar 17 6 2354 February 20, 1985
Bar 18 3 2355 February 20, 1985
Belleville Crown Grant | |

Lookout .. Crown Grant
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3. DESCRIPTION OF GEOLOGY
The geology of the Bar Claim Group is illustrated on the GSC map 11-1960

The property is underlain by the Aldridge Formation which is a Precambrian
massive grey quartzite and siltstone with thinly laminated argillites and
siltstones dominating the upper part.

Structurally, the property is part of a major thrust block. To the
Southeast, the block is bounded by the northeasterly striking Moyie reverse fault
that dips steeply to the northwest. The block is bounded in the north west and the
north similary by the Palmer Bar fault and the Cranbrook fault respectively.

The sulphide potential of the Aldridge Formation is i1lustrated 30 km to the
north at Kimberley where Sullivan mine ore is mined at the middle-lower Aldridge
horizon.

4. PRESENTATION OF DATA

The CSAMT resistivity results are displayed on the data plots as apparent
resistivity vs. frequency pseudo-sections. It should be made clear that this
presentation cannot be viewed as a true section of earth resistivity, particularly
in the vertical direction, i.e. top of section to bottom of section, as the depth of
penetration 1is dependent upon the resistivities encountered as well as the
frequency employed to make the measurement.

Drawing No. 5887-1 shows the CSAMT resistivity data that has been corrected
for the position of the transmitter wire relative to the survey lines (near field
correction). Dwg. No. 5887-2 illustrates the uncorrected CSAMT resistivity data.

Also enclosed with this report is Dwg. No. A.M.T. 2020, a plan map of the Bar
Property CSAMT grid at a scaleof 1:10,000. The definite, probable, and possible
CSAMT conductivity anomalies are indicated by bars, in the manner shown in the
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legends, on this plan map as well as on the corrected CSAMT pseudo-section, Dwg. No.
5887-1. These bars represent the interpreted surface projection of the deep
anomalous zones.

5. DISCUSSION OF RESULTS

Two separate zones of anomalously high conductivity are interpreted to be
present in the area evaluated by the present Controlled Source Audio
Magnetotelluric (CSAMT) survey. These features are marked in plan formon Dwg. No.
A.M.T. - 2020, and in pseudo section form on Dwg. No. 5887-1. Each trend is
discussed separately below.

ZONE A

This zone is interpreted to strike across both Line 0 and Line 1000N, in the
area just east of theBaseline00. Width of the feature is thought to be in the order
of 700 meters to 900 meters.

One dimensional computer inversions have been used to better estimate the
depth to the conductive source, which is indicated to be relatively flat lying.
Prior to calculating the inversions, data was first corrected for the position of
the transmitter wire (near-field correction), and then "static shifted" tominimize
the effect of near surface conductivity variations. This Tatter operation used the
data recorded over Zone B as a guide, in that the source of Zone B is thought to have
been tested by a previously drilled hole located south of Line 0. Conductive
metallicmineralization was encountered in this diamond drill hole at approximately
1500 meters sub surface.

Figure 5 and Figure 6 show inversion outputs utilizing data recorded over
Zone A on Line 0 and Line 1000N respectively. The former calculation estimates a
depth of approximately 1500 meters to the target conductor, while the latter, more
northerly inversion, returns a depth of approximately 1650 meter subsurface. It
should be noted that one would expect a somewhat greater depth than 1650 meters to
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the conductor under Line 1000N due to a combination of a shallow northerly dip, and
rising topography towards the north. A possible cause of this descrepancy is
uncorrected near surface resistivity variations, or the fact that the target is not
really a one dimensional body.

ZONE B

Zone B is interpreted to only underlie Line 0, with the response being
centered at approximately Station 1100W.

As was mentioned above, a previously completed vertical diamond drill hole,
located roughly 700 meters south of the position of Zone B on Line 0, has intersected
relatively conductive metallic mineralization at a depth of 1500 meters below the
surface. This mineralization occurs at or just below the Sullivan mine horizon,
and is probably the source of CSAMT Zone B.

Inversion of the near field corrected and static shifted data from Station
1100W on Line 0 is illustrated by Figure 4. A depth of approximately 1550 meters is
calculated to the source of Zone B. This same inversion suggests that the Zone B
cenductor is not as conductive and/or thick as the source of Zone A.

SUMMARY OF RESULTS AND RECOMMENDATION

A controlled source audio magnetotelluric (CSAMT) survey has been carried
out over the southern portion of the Bar Property, located approximately 12
kilometers southwest of Cranbrook, B.C. Two roughly east-west striking lines were
traversed, as illustrated by Figure 3.

The CSAMT method is a technique whereby the resistivity of the earth can be
determined by measuring horizontal and orthogonal electric and magnetic fields at a
relatively large distance away from a long, grounded wire carrying an alternating
current. Penetration depth is varied by changing the frequency of the transmitted
signal. By selecting a suitably low range of frequencies, one can detect large
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conductors buried at great depths.

In the case of the Bar Property, two deep seated zones of enhanced
conductivity can be seen in the CSAMT data sections. The locations of the zones are
marked on Figure 3. Zone B, the less anomalous of the two trends, is detected only
under Line 0, at a point roughly 700 meters north-northwest of a deep drill hole that
reportedly encountered the target Sullivan horizon at approximately 1500 meters
downhole. As this depth is consistant with the interpreted burial depth of the
source of Zone B, it is possible that this part of the CSAMT data is outlining the
moderately conductive, but uneconomic metallic mineralization intersected just
below the Middle Aldridge-Lower Aldridge conformity (Sullivan horizon) by the
previously mentioned drill hole.

The source of Zone A is indicated to be buried at a similar depth as that
which gives rise to Zone B, however, the source of CSAMT Zone A appears to be a more
conductive and/or thicker target.

In addition, this latter trend exhibits greater apparent width and length,
with the zone being detected under both survey lines.

Therefore, CSAMT Zone A could represent the surface expression of a large,
deeply buried sulphide body, and diamond drilling is recommended to physically test
the source of the CSAMT response. A verticaldrill holecollared northofline0, in
the center of Zone A, should be considered.

PACIFIC GEOPHYSICAL LIMITED

Paul A. Cartwright, P. Geoph.
Geophysicist.

Dated: January 15, 1987
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7. ASSESSMENT DETAILS
Property: Bar Claim Group Mining Division: Fort Steele
Sponsor: JowN M. LEASK : : Province: British Columbia

Location: 13 km. southwest of Cranbrook, B.C.

Type of Survey: Controlled Source-Audio Magnetotelluric (CSAMT)

Operating Man Days: 38 ‘ Date Started: September 23, 1987
Consdlting Man Days: 8 Dated Finished: October 2,>1987
Drafting Man Days: 4 Number of Stations: 4

Total Man Days: 50 Number of Reading: 615
Consultant: Km of Line SurQeyed: 8.2

P.A. Cartwright, 4238 West 11th Avenue, Vancouver, B.C.
Field Technicians:

R. Bulger, 224 - 17th Street, North Vancouver, B.C.

P. Mullan, 1440 Sandhurst Place, West Vancouver, B.C.
B. Counts, 4131 West 16th Avenue, Vancouver, B.C.
Draughtsman

B. Counts, 4131 West 16th Avenue, Vancouver, B.C.

PACIFIC GEOPHYSICAL LIMITED

RAA (. m//

Paul A. Cartwright, P. Geoph.
Geophysicist

Dated: January 15, 1988
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Dated:

Controlled Source Audio Magnetotelluric Survey
Bar Property, Cranbrook, British Columbia

Period: September 23, 1987 to October 2, 1987

Crew: P. Cartwright, B. Counts, R. Bulger, P. Mullan

9 1/2 Operating Days @ $1,450.00 $13,775.00

Mobilization-Demobilization 2,500.00

Report Preparation 2,000.00
$18,275.00

=========

PACIFIC GEOPHYSICAL LTD.

/ ’ // 1 /'
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Paul A. Cartwright, P. Geoph.
Geophysicist.

January 15, 1988
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CERTIFICATE

I, Paul A. Cartwright, of the City of Vancouver, Province of British
Columbia, do hereby certify:

I am a geophysicist residing at 4238 W. 11th Ave., VancouVer, B.C.

{ am a graduate of the University of British Columbia, with a B.Sc. Degree
1970).

I am a member of the Society of Exploration Geophysicists, the European
Association of Exploration Geophysicists and the Canadian Society of
Exploration Geophysicists.

I have been practising my profession for 17 years.

I am a Professional Geophysicist licensed in the Province of Alberta.
I have no direct or indirect interest, nor do I expect to receive any
interest, directly or indirectly, in the property or securities of Tectono
Resources Ltd., Therm Resources Ltd. or any affiliates.

Permission is granted to use in whole or in part for assessment and
qualification requirements but not for advertising purposes.

DATED AT VANCOUVER, BRITISH COLUMBIA this 15th day of January, 1988.
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Paul A. Cartwright, P. Geoph.
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ABSTRACT 1&i%

A Controlled Source Audio-frequency Magneto-telluric (CSAMT) system has
been successfully developed utilizing initially, a Phoenix 6-channel,
IPV~3 spectral IP receiver and IPT-1 (AC3003 model) transmitter. The
CSAMT system now manufactured by Phoenix includes the microprocessor
controlled V4, 8-channel receiver, with magnetic sensor coil and IPT-1
(AC3004 model) DC-10 kHz transmitter. The system has been used
successfully in several test surveys and numerous field surveys.

In standard operation, six E-field magnitudes and one H-field magnitude
are simultaneously measured at 16 binary related frequencies (0.25 to
8192 Hz). The controlled signal source is the IPT-1 transmitter, which
drives current through a grounded, long-wave bipole. This generates an
electromagnetic field at the same frequencies. The transmitter bipole
is located several kilometers from the area to be surveyed. A large
trapezoidal survey area, on either side of the transmitter bipole, can
be covered from a single transmitter setting. This makes the CSAMT
technique very cost-effective for mapping.

Apparent resistivities are calculated in real time for the six E-dipole
sounding locations, at each of the 16 frequencies. All the measured and
calculated data are stored in RAM memory, listed on a pocket printer,
through a parallel 1/0, and/or transferred to a mass storage device
through a RS232 serial 1/0, at the measuring site. Phase, E-field,
H-field and the standard deviations are also measured and stored.

Later in a field base camp, the data are dumped into a field computer
and processed automatically to generate an apparent resistivity
pseudo-section plot. A near-field correction is also applied. A 1-D
inversion program has also been developed for the field computer.
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INTRODUCTION

The CSAMT method was introduced by Goldstein (1971) and Goldstein and
Strangway (1975) to overcome problems encountered by the Audio
Magnetotelluric (AMT) and Magnetotelluric (MT) methods.

The MT method is a well known exploration technique, used widely in
hydrocarbon and geothermal exploration. MT measures fluctuations in the
earth's natural electric and magnetic fields, in a broad range of
frequencies between about .0001 Hz and 100 Hz. When the measurements
are made in the audio-frequency range (10 Hz to 20 kHz) the method is
known as Audio-frequency Magnetotellurics (AMT). Neither MT nor AMT
requires a man-made power source. However, these advantages are often
negated by the low magnitude and high variability of the natural
signals.

The advantages of the controlled source method are several:

1. Signals are stronger, therefore the sensing equipment
does not need to be as sensitive as that for MT or AMT.

2. Because of the coherent signal, the usual signal pro-
cessing and enhancement technique are far more effective.

3. Thus CSAMT surveys can be much faster than AMT surveys.

One disadvantage with respect to the natural field mode is the nearness
of the signal source. In the natural field methods, the signal source
is, in effect, infinitely distant. This "plane wave" assumption
simplifies both the mathematics of the technique and the interpretation
of AMT/MT data. When a controlled source is used, the "plane wave"
assumption is no longer true (at least not close to the transmitter),
and the calculated apparent resistivity must be corrected for the
"near-field" effect. ‘

This system, fully utilizing the multi-channel, multi-frequency,
microprocessor controlled instrumentation technology developed by
Phoenix, results in rapid data acquisition as well as producing a CSAMT
system that has improved further on the above CSAMT advantages.

SYSTEM CONCEPTS

1)  CSAMT Parameters Measured and Calculated

Both the electric field (E-field) and the magnetic field (H-field)
are measured, at the frequency transmitted from the remote transmitter
bipole source. The magnitudes of both the E-field and H-field are
determined, as well as their relative phase. The measured data are
digitally stacked, filtered and processed in real-time; the apparent
resistivity is also calculated at each frequency. This calculation is
made using the following Cagniard equation and the phase difference.
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where FG is apparent resistivity in ohm-m; f is frequency in Hz; Ex is

the E~field magnitude, in mv/km, parallel to the transmitter dipole; Hy (g}
is H-field magnitude perpendicular to the E-dipole in gammas; is

phase difference in radianms; is E~field phase and is H-field

E H

phase.

In addition to the parameters mentioned above, the standard deviations
of each parameter,lExLIHyl,/% ’ ¢2 and#%, are calculated for signal
verification.

ii) Receiver System

The CSAMT receiver system consists of the V4 receiver console, a
magnetic sensor coil and peripherals. Photo 1 shows a V4, eight-channel
universal receiver which can be used for spectral IP, conventional IP in
time or frequency domain, and CSAMT. Photo 2 shows the magnetic sensor
coil used to measure the H-field., Non-polarizable electrodes are
usually employed for the E-dipoles, to measure the E-field.

The main features of the V4 receiver are:

1. Simultaneous measurement of eight input channels.

2. Microprocessor-controlled, real-time filtering, signal stacking
and averaging. '

3. Data logging in solid state, non-volatile memory.

4. Two standard output ports (parallel and serial) for a vest
pocket printer and data transfer to a microcomputer.

5. Automatic gain control and self-potential (SP) cancellation.

6. Frequency range from 0.25 to 8192 Hz for CSAMT operationm.

* 7. Real-time calculation of apparent resistivity, phase, mean and

standard deviation of measured parameters.

8. Continuous monitoring of any measured and calculated parameters
on 4 line x 16 characters LCD display.

9. Comprehensive keyboard-and-prompt operation.

iii) Transmitter System

The CSAMT transmitter system consists of a transmitter console, a
frequency control device, a motor generator and peripherals. Photo 3
shows an IPT-1 transmitter console. For the transmitter bipole, a long
magnet wire is laid on the ground, in an approximate straight line.

Both ends are grounded.

The main features of the transmitter system for the CSAMT operation
are:

1. Frequency range from 0.25 to 8192 Hz, with a binary step.

2. Output voltage of up to 800 volts.

3. Maximum continuous output power of 3kw, with MG-3 motor

generator,

4. Regulated current up to 10 amperes.

5. Automatic turn-off protection if the current exceeds 150% full

scale or if it is less than 5% full scale.




The transmitter system is portable. Furthermore the transmitter
system can be situated at one location to cover a large survey area.
There are more powerful transmitter systems available from Phoenix for
applications where portability is not the most important factor.
Depending upon the frequency range required these systems can have a
power output of 30 kva, up to 100 kva,

iv) Survey Configuration and Grid

Figure ! illustrates the survey configuration and grid. The
standard configuration performs Six (or Seven) Ex-field and One Hy-field
measurements at each of 16 frequencies, (0.25 to 8192 Hz). As
illustrated, the E-fields are measured with a dipole using
non-polarizable electrodes, in the same way as for IP measurements. The
survey traverse line, for the series of equally spaced E-dipoles, is
parallel to the transmitter bipole. The measurement dipole length is
determined by the desired scale of the survey; this may also be
influenced by the E-field signal strength, which is in turn determined
by the transmitter-receiver distance, the transmitter bipole current and
the earth resistivity. The receiver dipole length may be in the range
from 10 meters to 200 meters.

A horizontal magnetic sensor coil is placed on the ground,
approximately at the centre of the series of E-~dipoles. It must be
placed several meters away from the E~-dipole line and the receiver
console, to avoid interference, as well as to reduce inductive coupling
due to operator movement. Only one H-field measurement is required for
each group of six E-field measurements; the justification for this will
be discussed later.

The transmitter (powered by a suitable motor generator) sends
current into a long wire, grounded bipole. The length of the bipole may
be varied from several hundred meters to several km, depending upon
signal strength requirement. This will also be discussed later, as will
be the transmitter-receiver distance and the survey area to be covered
with one transmitter bipole location.

CSAMT SIGNALS AND PARAMETERS

i)  Field Strength

At a given receiver location, the field strength depends upon
various factors: location of measuring point (relative to Tx bipole),
transmitter bipole length, current in the bipole, earth resistivity and
measuring frequency. It is important to know the approximate field
strength to be expected, in order to plan the survey grid and to locate
the transmitter properly, to give the optimum survey results.

‘ Figure 2(a) and Figure 2(b) show examples of contours of the

Hy-field strength and Ex-field strength at 1024 Hz, over a homogeneous
earth of 1000 ohm-m, based on the parameters indicated in the diagram.
The heavy dashed contours indicate the region beyond which the field
strength becomes minimal in magnitude.

ii) Apparent Resistivity




The apparent resistivity is calculated from the ratio of the
electric field and magnetic field magnitude using the well known
Cagniard equation (1) for MT. It should be noted that this Cagniard
equation is exactly valid only in the plane wave region of the
electromagnetic field; i.e., when the distance between transmitter
signal source and receiving location is sufficiently large.

Figure 2(c) indicates the apparent resistivity, calculated by the
Cagniard equation over a homogeous earth of 1000 ohm-m using the field
strength magnitudes shown in Figure 2(a) and Figure 2(b). It should be
observed that the valid area for the application of the equation is
indicated by the calculated apparent resistivity value of approximately
1000 ohm-m, which is equal to the true resistivity value. The dashed
line depicts the plane of the minimal field strength previously
mentioned and measurements in this area should be avoided.

The effective survey area, a trapezoidal shape, indicated in
Figure 2(c) is thus optimally placed within the maximum possible field
strengths and by avoiding areas that are too close to the transmitter
bipole.

iii) Far-field and Near-field ‘

In a CSAMT survey, the distance between the transmitter and
receiver locations is constrained, in general, by the requirement that
the magnetic field and the electric field be strong enough to permit

‘useful measurements. The paradox encountered is that where the "plane

wave'" assumption is valid, the signal may be weak; and where the signal
is strongest (near the transmitter), the "plane-wave' assumption is no
longer valid.

At some distance from the transmitter bipole, where the transmitted
electromagnetic field becomes a "plane-wave", it is called "far-field".
The Cagniard equation is valid in the "far-field" situation for the
calculation of the apparent resistivity. The "far-field" distance, Les
is approximately given by the following equation:

Lf > 3 x skin dgpth 2 1509 /P/f

where Lf is in meters, P 1s the resistivity of the homogeneous earth in
ohm-m and f is frequency in Hz.

If the distance between transmitter and receiver is much less than
than L_, the transmitted field is not "plane-wave" in character; it is
referréd to as the '"mear-field". In the "near-field", the Cagniard
equation overestimates the actual resistivity. Figure 3(a) shows the
apparent resistivity curve, using the Cagniard equation with
theoretically calculated Ex and Hy values, over a homogeneous earth.
The apparent resistivity curve in the '"near-field" is characterized by a
slope of 45 degrees, meaning that the apparent resistivity value is
doubled by each binary frequency step. The area of the gradual change
from "far-field" to "near-field" is called the "transition-zone" or the
"transition-field".




Figure 4(a) shows Hy-field vs frequency over a homogeneous earth,
for various resistivity and transmitter-receiver distance.
can be expressed by the following equations:

|
in "far-field"; Hy = ot rd (2)

in "near-field"; Hy = —'2— 3)
r

where O = '/p is conductivity in mhos/m.

Figure 4(b) shows Ex-field vs frequency in the same manner.
The Ex-field can be expressed by the following equatioms:

|
in "far-field"; Ex = _ 3 (4)
in "near-field; Ex = alr3 (5)
For "far-field", from the equation (2) and the equation
4);

therefore,

Ex
Hy

|
po”T

introducing factor, Kf / 5

Pa = 5% 15l

For "near-field", from the equation (3) and the equation (5),

3
Ex ~ ar ~ |
Hy | -
therefore, 2
Ex
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The Hy-field



introducing "near-field" factor K,

Ex

. (7)

PQ = Kpr

iv) First Order "Near~Field" and "Transition-Field" Correction

Ex

Hy
any uniform earth, for the entire resistivity, transmitter-receiver
distance and frequency ranges. These are unexpectedly simple
relationships. It should be noted that the K is a constant, 0.63 in
the "near-field" and K, is a constant, 1.0, iR the "far-field",
indicating that equation (6) is the same as the Cagniard equation. From
the known values of f (frequency), r (transmitter-receiver distance) and
[E/H] (measured), it is possible to categorize a particular field
situation as "far-field", "transition-field" or "near-field", for any
conditions encountered.

Figure 4 (d) shows the K and K factors vs (fx r x ), for

Now the corrected apparent resistivity can be calculated from the
field measurements using: the Cagniard equation if the measurement is in
the "far-field"; the equation (7), if the measurement is in the
"near-field"; and the equation (6) or the equation (7), using proper Ke
or K, values if the measurement is in the "transition-field".

If a valid "near-field" and "transition-field" correction is
performed on CSAMT data (to obtain apparent resistivity values
equivalent to the "far-field" situation), then the apparent resistivity
value is equivalent to that for a scalar MT/AMT measurement.
Consequently, well-developed existing interpretation techniques for MT
can be utilized. Proper correction also prevents some false and
dangerous interpretation errors, caused by the "near-field" and
"transition-field" variations in the measured data.

v) Use of "Near-Field" Correction for Non-Uniform Earth

The use of the K_ and K_ parameters shown in Figure 4(d) results in
a perfect correction Bo the measurement data for a uniform earth, to
give the apparent resistivity that would be measured for the "far-field"
situation. Our experience has been that this "first order" correction
is excellent even in situations in which the earth is non-uniform.

Figure 4(c) indicates an example of the method executed on a field
data curve automatically, by a micro-computer. The example shows the
field data profile calculated from the Cagniard equation, as well as the
curve for the "near-field" corrected apparent resistivity. The regions
of "near-field", transition-field" and "far-field" are also indicated.
After corrections, the low resistivity portion of the curve, designated
by "A" on the uncorrected Cagniard resistivity profiles, was eliminated
and the data indicate perhaps two layers of high resistivity over a low
resistivity, instead of the high-low-high layered geometry.

The data shown in Figure 4(e) and Figure 4(f) pertain to a layered
earth. The plots show the f% vs f curves for specific subsurface




geometries and several separations between the transmitter dipole and
the measurement point. In these examples, the upper layer is more
resistive than the lower layer,

In both examples the calculated Cagniard apparent resistivity
for a measurement at a distance of 4.0 km has been corrected using the
"near-field" correction program outlined above. In both examples, the
corrected curve agrees exactly with the "plane-curve" or true Cagniard
example.

The first order, “near- field" correction outlined above is not as
perfect for the case in which the surface layer is more conductive than
the lower layer. The theoretical results shown in Figure 4(g) are the
near-field corrected data for one example. The corrected results are
much closer in magnititude to the plane-wave data than the magnitudes
that would be measured at four kilometers from the transmitter bipole.
This type of data can be used by the geophysicist to give some feeling
for the errors to be expected from the '"near-field" corrected results.

DATA PROCESSING AND PRESENTATION

Survey data are measured, the parameters are calculated, stored in
the RAM of the receiver unit and tranferred into permanent mass storage
media (such as a cassette tape) at the end of each day, in the field
base camp. The data can then be immediately processed by
micro-computer. The field presentation of the results is in the form of
a contoured apparent resistivity pseudosection plot or profile plot.
Other parameters such as phase, or E and H field magnitude, can also be
presented in the same form.

. This immediate data processing and presentation permits the
geophysicist to modify the survey plan and also to VERIFY DATA IN THE
FIELD. A 1-D inversion program has also been developed for a
micro-computer to use in the field base camp or in the office. Some
examples will be shown in the discussions of specific case histories.

(3

ADVANTAGES OF CSAMT AND PHOENIX SYSTEM

There is no geophysical exploration method and/or system that can
be said to be superior to any other system and method, in respect of all
situations. However, the following list describes some advantages of
CSAMT in general, and of the Phoenix V-4 CSAMT system in particular.

1. Depth of detection.

. The depth of detection in geophysical exploration is not easy to
express in simple terms. It is related to many factors, such as
earth resistivity, frequency, size of target, resistivity contrast,
background electrical noise, geological noise and system
sensitivity. The effective depth of penetration in CSAMT is a

- function of frequency and earth resistivity, and not the length of
the receiver dipole or the distance between transmitter and
receiver. The frequency range of 0.25Hz to 8192 Hz permits
sounding depths that vary from very shallow to very deep. The
effective depth of detection of CSAMT, therefore, may be several



hundred meters to several kilometers, depending upon the ‘f}
characteristics of the conductor at depth.

2. Lateral resolution.
CSAMT offers excellent lateral resolution, dependent only upon the
length of the receive dipole, independent of the distance between
the transmitter and recelver. The length of the receiver dipole
can be adjusted to the size of the exploration target, with no loss
in depth of penetration. A reconnaissance mode survey can often be
completed using a large receiver dipole, typically 100m to 200m.

3. Flexible survey design.
Normally a large survey area can be covered using a single grounded
transmitter bipole. The location of this bipole, relative to the
survey area, is often flexible enough to allow utilization of
existing roads or trails to lay out the bipole wire and to position
the transmitter equipment.

4, Little topographic effect between receiver and transmitter.
Since the measured value 1s normalized at the receiver, the
topographic relation between the transmitter and receiver is not an
important factor. This fact makes CSAMT particularly useful in
mountainous or remote regions, as well as within limited land
holdings.

5. Ease of set-up of transmitter,
The single grounded transmitter bipole is much easier to set up and p
maintain, than the large rectangular or square loops generally
utilized by time-domain EM system. These loops must typically be
several hundred meters to a few kilometers square.

6. Effects of transmitter location.
The location of a large loop transmitter, for time-domain EM, is
often critical to anomaly response. A second conductor can be
easily masked by a first conductor located closer to the
transmitter. Therefore, in time-domain EM, it is frequently
necessary to repeat measurements with a second transmitter set-up
at a different location from the first set-up. The limitations are
discussed by Spies and Parker in Geophysics, Vol. 49, No. 7, page
902-912, CSAMT, on the other hand is much more independent of
transmitter location, with a reasonable distance between
transmitter and receiver. This is so, because CSAMT measures
relative phase shift and amplitude ratio between the E and H
fields. These parameters are controlled by the local resistivity
surrounding the measuring point. Intervening conductors (between
Tx dipole and Rx measuring point) affect the absolute phase
shift/amplitude ration between Rx-Tx, which is not of interest in
CSAMT,

7. Effective measurement points.
With other EM and resistivity methods, to obtain satisfactory
anomaly shape information, the measurements have to be performed on
either side of the anomaly. Also, especially in Schlumberger ‘;)
method, the survey line must be extended to permit the transmitter
bipole to extend to either side of sounding point, requiring extra
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line cutting beyond a survey area. This is not the case for CSAMT,
because each station is essentially a point sounding. Fewer
receiver dipole measurements are required to represent an anomaly
and no extra line cutting is required.

8. Apparent resistivity measurements in real-time,
With other EM techniques, it is generally necessary to do data
processing and interpretation after a survey is completed, in order
to calculate the resistivity of the conductor and the host media.
CSAMT provides real-time calculation of apparent resistivity, which
helps the geophysicist to understand the situation immediately, and
permits him to re-configure the survey, if needed.

9. High productivity through simultaneous multi-station measurements.
Six (or optionally seven) E-field measurements and one H-field
measurement are made simultaneously. Resistivity changes are
predominantly reflected by changes in the E-field magnitude. Only
one H-field measurement, per group of E-measurements, is needed
because the H-field is essentially constant over significant
distances along a line parallel to the transmitter dipole, even in
the vicinity of very strong conductive features. Although survey
progress will be dependent upon the topography of an area, seven
receilver set-ups can be easily performed in a field day. This
produces data from forty two stations, with sixteen frequencies,
from 0.25 Hz to 8192 Hz, at each station.

10. Wide frequency range.
The wide frequency range from 0.25 Hz to 8192 Hz, in binary steps,
provides very shallow to very deep soundings, thus making the
interpretations, especially with inversion, more effective.

EXAMPLES OF FIELD RESULTS

The CSAMT Method has been found to be very useful for the mapping
of subsurface resistivities. As we shall see, the method is

‘particularly useful in locating, and mapping, relatively small

zones, at considerable depth. However, the scale of any particular
survey 1s determined solely by the length of the E-field dipole
employed. In our work, this distance has ranged from 25 meters to 200
meters,

The "near-field" and "transition-field" correction procedures
described above have been used in all of the examples to be discussed.
Our impression is that this simple "first-order" correction to the data
does, in fact, produce results that approximate those that would be
measured in the true "plane-wave" situation.

i) Nighthawk Lake Grid, Timmins, Ontario, Canada

The Nighthawk Lake Grid is located near Timmins, Ontario, in a
region where the surface is covered by approximately 100 meters of
glacial, lake-bed sediments. The deposit, itself, is an approximately
horizontal source of sulphide and graphite.
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The results shown in Figure 5(a) are the data measured by an
E-field dipole of 25 meters. The measurements were made at a distance
of 4.0 kilometers from the grounded current bipole. The effect of the
conductive overburden layer and the bedrock conductor (centered at 1+508
to 0+50S) can both be seen in these uncorrected results. However, the
effect of the "near-field" distortion can also be observed in the fact
that the apparent resistivities, calculated using the Cagniard equation,
increase sharply as the applied frequency is decreased.

The data shown in Figure 5(b) are those from the "near-field"
corrected procedure completed by the micro-computer. The conductive
surface layer (higher frequencies) is still present and the apparent
resistivities measured at depth (lower frequencies) are approximately
constant. The identical results were produced when the correction
procedure was applied to data measured 7.6 kilometers from the current
bipole. - :

The data shown in Figure 5(c) are scaler AMT results published by
Strangway etal from measurements made on Line l1E. The lowest frequency
used was 10 Hz, but the pseudosection is essentially the same as that
for the CSAMT, corrected results.

ii) Line E Hatchobaru Grid, Ohita, Japan.

This line is from a geothermal survey near Ohita, Japan. The line
was 5.8 kilometers from the transmitter current bipole and the E-field
dipole length was 100 meters. The corrected data shown on Figure 6(a)
indicate a layered media. The conductivity layer, at depth, is best
detected in the range from 4.0 Hz to 1.0 Hz. These results have been
interpreted using the one~dimensional inversion scheme we have developed
for scaler AMT data. The inversion is performed at each sounding site,
using a micro-computer in the base camp.

The results of these six inversions are shown in Figure 6(b). The
interpreted true resistivity values, and the interpreted boundaries,
shown by small rectangles, indicate an approximately layered earth. The
conductive layer is centered at approximately 1000 meters of depth. The
interpretation of the corrected CSAMT data agrees quite well with that
previously developed by the joint inversion of MT data and Schlumberger
resistivity data. (See boundaries and resistivity values designated by
ellipses).

iii) Line C Hatchobaru Grid, Ohita, Japan.

This line is 400 meters from Line E. The results shown in Figure
7(a) suggest a more complex subsurface geometry than the layered earth
indicated in Figure 6(a). The result of the one-dimensional
interpretation procedure is shown in Figure 7(b). The subsurface
geometry here is indicated to be more complex than on Line E; however,
the conductive layer is still present.

The joint inversion of the previous MT and Schlumberger resistivity
results also indicate the presence of the conductive layer, at depth.
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- However, the more complex geometry has resulted in greater differences

between the CSAMT inversions and the MT inversion.
iv) Abuta Mine, Hokkaido, Japan.

The Test Line at the Abuta Mine passed directly over the
Kuruko-type ore deposit. The massive sulphide zone lies at a depth of
50 to 75 meters, the host rocks are relatively conductive, relatively
young volcanics. The position of the sulphide zone, and the corrected
CSAMT apparent resistivity pseudosection are shown in Figure 8. Even
within the environment of the low resistivity host rocks, the position
of the deep conductor is clearly defined. The lateral resolution of the
CSAMT measurement is excellent.

v) McLean Lake Deposit. Athabaska Area, Saskatchewan.

The uranium deposits at McLean Lake lie beneath approximately 550
feet of the younger, Athabaska sandstones. The specific geologic
situation for these uranium deposits is well known, due to the
considerable amount of drilling that has taken place. The uranium and
sulphide orebodies are concentrated in zones of intense fracturing and
alteration that modify the porous regolith that lies at the top of the
pre-Cambrian unconformity.

The regolith itself might be expected to have a higher conductivity
than the overlying Athabaska sandstones, or the pre-Cambrian basement.
The overbodies have a relatively small cross-section; however, they are
conductive enough to have caused electromagnetic anomalies in some
previous surveys. The corrected CSAMT results shown in Figure 9(a) were
measured using an E-field dipole of 200 feet, at a distance of 7.2 km
from the transmitter current bipole.

The apparent resistivity pseudosection indicates a subsurface
structure that agrees very well with the known geology. A
discontinuous, poorly defined conductor extends across the entire one
mile length of the line surveyed; this almost certainly represents the
conductive regolith. The McLean North Zone, Pod #1 is centered at
13+00N to 14+00N. The McLean South Zone, East Pod is centered at 8+00S
to 7+00S.

The positions of the uranium ore bodies both correlate with
moderate magnitude, definite, resistivity lows, on the pseudosection on
Figure 9(a). The results shown on Figure 9(b) were measured using a 100
foot E~field dipole. The resistivity lows from the orebodies are still
clearly defined, even at a depth of more than 500 feet.

In addition, there are several narrow, shallow, local zones of low
apparent resistivity that were not clearly evident in the measurements
with the 200 ft E-Field dipole.

The measurements on Line 12E, 100 foot E-field dipole, are shown in
Figure 9(c). At this location four hundred feet to the east, the
orebodies are poorly developed. The two zones are centered at 12+50N
and 9+50S to 8+50S. The apparent resistivity anomalies that correlate
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with these positions are also less definite on Line 12E than they were
on Line 8E. However, these anomalies, and several other features on the
pseudosections, can be correlated from line to line.

It is possible to solve the AMT scalar "Forward Problem" for a
two-dimensional earth. The apparent resistivity vs frequency
pseudosections generated by this procedure would be expected to be
similar to those from '"near-field" corrected CSAMT field results over
linear conductors.

The forward problem solution shown in Figure 9(d) is for a
subsurface geometry that approximates that at the McLean Lake Uranium
Deposits. The contour pattern shown is very similar to several of those
measured at McLean Lake. This is particularly true for the smoothed
data measured using a 200 feet E-field dipole.

vi) Corey East Pinacle Reef, Enniskillen Township, Ontario.

Careful measurements with the CSAMT system can be used to locate,,
and map, any subsurface structure that contains a resistivity contrast.
The data shown on Figure 10 were measured over a small, petroleum
producing, pinnacle reef in south-western Ontario. The measurements
were made at a distance of 7.3 kilometers from the current bipole, using
an E-field dipole of 100 meters.

From electric log measurements in the drill holes shown in Figure
10, the conducting features present would be expected to be the A-2
shale and the Salt Water beneath the oil.

An unusual, and quite definite apparent resistivity pattern on the
pseuydosection in Figure 10 correlates with the pinnacle reef. There is
no obvious explanation for the apparent resistivity high that lies
beneath (at lower frequencies) the conductive feature that appears to
correlate with the reef.

CONCLUSIONS

The CSAMT method can be used to produce apparent resistivity
pseudosections of the subsurface. The corrections that are necessary if
the measurement point is near the transmitter current bipole can be
automated using a microcomputer. This procedure results in apparent
resistivity vs frequency pseudosections that are very similar to those
that would be measured using a scaler AMT (plane-wave) technique.

Our limited experience, to date, has found several applications for
the method and it is expected that others will follow.
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Apparent resistivity in ohm-m
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CSAMT APPARENT RESISTIVITY (CORRECTED)
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CSAMT APPARENT RESISTIVITY (CORRECTED)
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CSAMT APPARENT RESISTIVITY (NEAR-FIELD CORRECTED)
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CSAMT APPARENT RESISTIVITY (NEAR-FIELD CORRECTED)
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