SUMMARY REPORT

D

Second

0

 \int

an tag

and a state of

Activation of

1987 EXPLORATION PROGRAM

ROCHER DEBOULE PROPERTY

Omineca Mining Division Latitude 55° 9.8'N Longitude 127° 35.6'W NTS Map Sheet 93M/4E

> Stephen P. Quin Mining Geologist

> > for

SOUTHERN GOLD RESOURCES LTD. Suite 220, 145 Chadwick Court North Vancouver, British Columbia V7M 3K1

9 November 1987

SUMMARY REPORT

1987 EXPLORATION PROGRAM

ROCHER DEBOULE PROPERTY

Omineca Mining Division Latitude 55° 9.8'N Longitude 127° 35.6'W NTS Map Sheet 93M/4E

GEOLOGICAL BRANCH

(Street, Street, Stree

Stephen P. Quin Mining Geologist

for

FILMED

SOUTHERN GOLD RESOURCES LTD. Suite 220, 145 Chadwick Court North Vancouver, British Columbia V7M 3K1

9 November 1987

TABLE OF CONTENTS

List of	Illustrations	111
List of	Photographs	iv
List of	Tables	iv
1. Int	roduction	1
2. Loc	ation & Access	2
3. Тор	oography & Climate	4
4. Pro	operty & Ownership	5
5. His	story	
5.1	Mine Area	8
5.2	Highland Boy	8
5.3	Armagosa Area	9
5.4	Great Ohio	9
5.5	Victoria	9
6. Geo	ology	
6.1	Geological Setting	10
6.2	Property Geology **	10
6.3	Mineralization	13
7. 198	87 Exploration Program	(1,1)
7.1	Access, Base Map	16
7.2	Rocher Deboule Mine Area	
	7.2.1 Grid	16
	7.2.2 Geology	20
	7.2.3 Geophysics	22
	7.2.4 Talus/Soil Geochemistry	23
	7.2.5 Rock Geochemistry	24
	7.2.6 Underground Sampling & Mapping	24
	7.2.7 Summary of Results	
	a) #4 Vein	27
	b) Intermediate Anomaly	28
	c) Intermediate Anomaly	28
	d) #2 Vein	28
	e) Southern Anomaly	28
7.3	Highland Boy Area	
	7.3.1 Geology	29

. .

7.3.2 Talus Fines Geochemistry	29
a) North Side, Juniper Creek	31
b) South Side, Juniper Creek	31
7.3.3 Discussion of Results	32
7.4 Armagosa Creek	
7.4.1 Geology	32
7.4.2 Geophysics	32
7.4.3 Talus Geochemistry	33
7.4.4 Discussion of Results	33
7.5 Victoria Vein	
7.5.1 Geology	34
7.5.2 Discussion of Results	34
7.6 Great Ohio Vein	
7.6.1 Geology	36
7.6.2 Discussion of Results	36
8. Conclusions	38
9. Recommendations	39
10. Statement of Expenses	40
11. References	41
12. Statement of Qualifications	42
Appendix 1: Geochemical Assay Certificates	
Appendix 2: Sample Descriptions	

ii

. .

LIST OF ILLUSTRATIONS

Figure	1	Location Map	3
Figure	2	Property Map	7
Figure	3	Regional Geology	11
Figure	4	Property Geology	14
Figure	5	Composite Level Plan	18
Figure	6	Underground Sections	19
Figure	7	Geological Map 1:2,500	In Pocket
Figure	8	Soil/Talus Geochemistry Au, Ag	In Pocket
Figure	9	Soil/Talus Geochemistry Cu, As	In Pocket
Figure	10	Soil/Talus Geochemistry Pb, Zn	In Pocket
Figure	11	Geology and Rock Samples 1,000 foot level	In Pocket
Figure	12	Geology and Rock Samples 1,200 foot level	In Pocket
Figure	13	Talus Geochemistry Au, Ag, As	In Pocket
Figure	14	Talus Geochemistry Cu, Pb, Zn	In Pocket
Figure	15	Composite Anomaly Map	In Pocket
Figure	16	Cross Section of Veins and Anomalies	In Pocket

iii

Ŋ

.....

LIST OF PHOTOGRAPHS

Photograph	1	View of Mine Area		17
Photograph	2	1000 Foot Level Portal		17
Photograph	3	Outcropping of #4 Vein		21
Photograph	4	Surface Trace of #4 Vein		21
Photograph	5	#2 Vein Underground		25
Photograph	6	Highland Boy Area		30
Photograph	7	Victoria Vein		35
Photograph	8	Great Ohio Vein	• •	37

LIST OF TABLES

Table	1	List of Claims	6
Table	2	Recorded Production of Rocher Deboule Mine	8
Table	3	Rock Sample Assays: #4 Vein	20
Table	4	Rock Sample Assays: #2 Vein	22
Table	5	Mine Area: Talus Geochemical Values	24
Table	6	Summary of Underground Sample Assays	27
Table	7	Highland Boy: Rock Geochemistry	29
Table	8	Highland Boy: Talus Geochemistry	31
Table	9	North Juniper Creek: Float Sample Geochemistry	31
Table	10	South Juniper Creek: Float Sample Geochemistry	32
Table	11	Armagosa: Talus Fines Geochemistry	33
Table	12	Armagosa: Float Sample Geochemistry	33
Table	13	Victoria: Rock Assays	34
Table	14	Great Ohio: Rock Geochemistry	36

ſ

1. INTRODUCTION

The Rocher Deboule property consists of approximately 9km² of reverted crown grants and located mineral claims 8km south of Hazelton in central British Columbia. An option on the property was acquired by Southern Gold Resources early in 1987 and a program of exploration was conducted during the months of July and August 1987.

The Rocher Deboule property lies on the north western margin of a granidiorite pluton and a series of persistent quartz-sulphide veins have been located on the property. These veins have been located on the property. These veins contain precious metal sections that have seen limited production prior to 1955. The 1987 exploration program was designed to evaluate the economic potential of the property as a whole, concentrating principally on precious metal targets.

2. LOCATION & ACCESS

The Rocher Deboule property lies at the north end of the Rocher Deboule Range in central British Columbia at a Latitude of 55' 9.8'N and a Longitude of 127' 35.6'W on NTS Map Sheet 93M/4E. Most of the property lies in a basin within the range formed by glacial action and now drained by Juniper Creek (figure 1).

The majority of the property is reached via a 4-wheel drive road that leaves Highway 16 at Skeena Crossing, 19km southwest of Hazelton. This access road is a maintained logging road for 1km and then branches off to follow Juniper Creek to the old Rocher Deboule mine site, a distance of approximately 14.5km. The Juniper Creek road was heavily overgrown with alder and washed out in several places. It was improved using a D6 Cat bulldozer to 4-wheel drive standard, but will require further upgrading for continued use.

The Victoria area of the claim block is best reached from the west via an unmaintained 4-wheel drive road that leaves Highway 16 just southwest of Seeley Lake Provincial Park and climbs up the western slopes of the Rocher Deboule Range to approximately 400m below the lowest adit on the Victoria Vein. There are no roads to any of the other workings, although some cleared foot trails improve access.

3. TOPOGRAPHY & CLIMATE

The Rocher Deboule Range of mountains are extremely rugged and slopes are steep to precipitous with large areas covered in talus. The terrain impedes access to many areas and the talus obliterates all outcrop at the lower elevations. Within the range elevations rise from 450m to over 2300m in a distance of only 2km. Within the property boundaries elevations vary from 975m to over 2200m. The majority of the areas below an elevation 1600m are covered in coarse talus while the areas above 1800m are rarely accessible due to precipitous bluffs.

Due to its position at the eastern edge of the Coast Mountain Range, the Rocher Deboule Range gets a mix of coastal and interior weather patterns. As a result winters result in heavy snow falls persisting into April or May. With the onset of summer, melting is quick and by July most of the property is snow free, apart from isolated areas of permanent snowfield. The summer months tend to be dry and hot, though coastal storms occasionally reach this far east.

Vegetation on the property is sparse. The only area with any significant amount of vegetation is the area immediately south and west of the Rocher Deboule mine site and on the lower slopes of Armagosa Creek. This principally consists of scrubby Pine and Juniper. The rest of the property is entirely barren, either comprising of bare rock or talus covered slopes.

4. PROPERTY & OWNERSHIP

The property consists of 36 reverted crown grants, two located fractional claims, four 2-post claims and one 20-unit located modified grid claim. All the reverted Crown Grants have been surveyed and the data is available in Victoria. Several of the old claim posts were also located in the field. The claims are listed following. The claims, except for the Serk 1-4, are grouped as the Rocher Deboule Group (see Figure 2).

Southern Gold Resources acquired interest in the property from W.B. Craig in an acquisition agreement dated 5 February 1987. Under the terms of the agreement, Southern Gold is required to make a series of cash payments to Craig on the 31st January of each year, as long as it keeps the property. This gives Southern Gold a 100% working interest in the property, subject to the conditions of the agreement. However, that portion of the Victoria vein and cross vein on the Victoria (Lot 3303) and Belle (Lot 3304) above an elevation of 1575m is subject to a prior lease to J.M. Hutter of Telkwa, B.C. TABLE 1: LIST OF CLAIMS

<u>Claim Name</u>	* <u>Type</u>	Record #	Lot #	<u>Record Date</u>
Hazelton View	RCG	401	3299	25 8 1976
Lead Pick	RCG	402	3300	25 8 1976
Moose	RCG	403	3301	25 8 1976
Elk	RCG	404	3302	25 8 1976
Delta Fr	RCG	455	604	26 10 1976
Joe Fr	RCG	456	533	26 10 1976
Juniper	RCG	457	2400	26 10 1976
Balsam	RCG	458	2401	26 10 1976
Jack Pine	RCG	459	2402	26 10 1976
Timber Line	RCG	460	2403	26 10 1976
Iowa	RCG	461	2404	26 10 1976
Log Cabin	RCG	462	2405	26 10 1976
Balsam Fr	RCG	463	2406	26 10 1976
Pie Fr	RCG	464	2407	26 10 1976
Third Fr	RCG	465	2408	26 10 1976
Victoria	RCG	466	3303	26 10 1976
Belle	RCG	467	2-14	26 10 1976
View Fr	RCG	468	3305	26 10 1976
Belle	RCG	469	3306	26 10 1976
Mamouth	RCG	470	3307	26 10 1976
Tiger	RCG	471	3308	26 10 1976
Bowl Fr	RCG	472	3309	26 10 1976
Summit	RCG	555	605	5 4 1977
Great Ohio	RCG	556	702	5 4 1977
Pilot	RCG	557	704	5 4 1977
Summit Fr	Fr	582	NA	6 4 1977
Waterfall Fr	Fr	583	NA	22 4 1977
Coral Queen	RCG	616	532	21 6 1977
Lucky Jack	RCG	617	603	21 6 1977
Islander	RCG	618	710	21 6 1977
Golden Fleece	RCG	619	1001	21 6 1977
Happy Jack	RCG	620	1003	21 6 1977
Zig Zag	RCG	621	1005	21 6 1977
Balmoral	RCG	622	1002	21 6 1977
Highland Boy	RCG	623	1000	21 6 1977
Independence F	r RCG	687	4275	25 7 1978
Red Cross	RCG	1372	3310	13 9 1978
Last Chance	RCG	7609	3523	16 5 1986
Leo	MG	3110	NA	20 8 1980
Serk 1-4	2P	8820-8823	NA	3 9 1987
*Types of Claim	ms: RCG	= Reverted	Crown Grant	

MG = Modified Grid 2P = Two Post Fr = Located Fractional Claims

5. <u>HISTORY</u>

The history of the Rocher Deboule Mines is extensively covered in provincial publications (eg Kindle 1954, Sutherland Brown 1960, etc.) and is summarized in detail by Woodcock (1987) in his engineering report on the property to accompany Southern Gold Resources Prospectus.

However, in brief, there are six principal vein structures on the property all of which have seen limited development.

5.1 Mine Area

Most of the historical activity was concentrated on the #2 and #4 veins and the majority of production came from the copper rich #4 vein under the Rocher Deboule Mining Company (Figure 4). Considerable exploration was conducted on the #2 vein but with very limited production mostly confined to the precious metal rich sections of the vein in the 1950's. Reported production is as outlined below.

	TABLE 2: RECORDED PRODUCTION OF ROCHER DEBOULE M						
<u>Year</u>	<u>Tons</u>	<u>Gold</u> oz.	<u>Silver</u> oz.	<u>Copper</u> lb.			
1915	17,000	1,418	21,893	2,788,000			
1916	16,760	1,184	16,738	1,753,225			
1917	2,889	781	7,987	714,871			
1918	3,184	832	16,247	635,870			
1929	72	10	2,972	6,120			
1952	<u>12,814</u>	267	8,640	305,498			
Total	52,719	4,492	84,477	6,203,584			

It appears that his table quotes gross metal contents and can therefore be used to derive grades. The grade of the direct shipping ore averaged 0.106 oz/ton Au, 1.65 oz/ton Ag, and 7.5% Cu; the milled ore averaged 0.021 oz/ton Au, 1.45 oz/ton Ag, and 0.238% Cu; and the total ore production averaged 0.085 oz/ton Au, 1.602 oz/ton Ag, and 5.88% Cu (Woodcock 1987).

However, several sections of these veins, particularly the #2 vein, assay significantly higher in precious metals than these averages and were resampled during the 1987 program. Details of this resampling are presented in section 3.4 of this report.

5.2 <u>Highland Boy</u>

The Highland Boy Vein is located east of the #4 vein and runs across a series of knife edge ridges and hence is only accessible at the western and eastern ends (figure 4). At these points several adits were driven into the vein structure by the Delta Copper Company. There was no further activity on the property subsequent to Western Tungsten Copper Mines acquiring the property in 1921.

5.3 <u>Armagosa Vein</u>

The Armagosa zone is located on the north side of Armagosa Creek (see figure 4), approximately 600m south of the Great Ohio vein (see 5.4). It consists of a north east striking shear zone with several narrow veins. Very little work has been recorded on this area, although one adit was observed during 1987.

5.4 Great Ohio Vein

The Great Ohio vein is located southeast of the Rocher Deboule Mine site in the steep cliffs above Juniper Creek. It has a similar history of development to the Highland Boy, being discovered in 1913, prospected and an adit driven along the shear/vein zone prior to 1920. The claims have been inactive since those times.

5.5 <u>Victoria Veins</u>

The Victoria veins are the only veins on the Rocher Deboule property located on the western slopes of the mountains and they have been the focus of much of the recent exploration activity in the area. Development of several adits was undertaken during the period 1916-1919 and several car loads of gold-cobalt ore were shipped in the period 1918-1950. The property was then inactive until 1976 when Arbor Resources Inc. acquired the rights to the Victoria veins, constructed access road and sampled the veins. At the same time DeGroot Logging were working an adjacent ground, not under lease to Arbor Resources, and conducted an unsuccessful diamond drilling program on one of the veins in 1983. The majority of this property is now controlled by Southern Gold Resources Ltd.

6. <u>GEOLOGY</u>

6.1 <u>Geological Setting</u>

The most recent mapping in the area was undertaken by T.A. Richards on behalf of the Geological Survey of Canada during 1977 and 1978. Thus updated Sutherland Brown's work in 1960 and kindle's economic evaluation of the area in 1954.

According to Richards (1978);

"The area is underlain by late Jurassic to early Tertiary successor basin assemblages of the Bowser Lake, Skeena and Sustut groups, containing locally significant thicknesses of volcanic rocks. Granidioritic intrusions, from large stocks to abundant dykes, are assigned to the late Cretaceous Bulkley Intrusions. They are closely related to most of the mineral occurrences in the area."

The regional geological setting is illustrated in figure 3.

6.2 Property Geology

The Rocher Deboule property lies on the western margin of the Rocher Deboule pluton, as shown in Figure 5, with the southern and western areas being underlain by Upper Jurassic - Lower Cretaceous Bowser Lake Group. Woodcock (1987) describes the morphology of the Rocher Deboule stock in reasonable detail.

"The Rocher Deboule stock underlies about 27 square miles of the northern central part of the range. The stock is an elongate pluton oriented N 25 W. It is a composite of two domes with a connecting saddle. The details of the walls of this stock are readily apparent in the great vertical exposures that this rugged relief offers, and the roof is exposed along parts of the central spine of peaks. The stock is asymmetrical, the eastern side has a gentler slope than the western side.

The main part of the stock is composed of porphyritic granodiorite, a light grey mottled rock in which tabular phenocrysts of plagioclase and dark hornblende and biotite are set in a faintly pink matrix. In general the porphyritic granodiorite is very homogeneous; however there are variants (diorites and low potash granodiorites) of limited occurrence.

Inclusions in the porphyritic granodiorite are ubiquitous forming approximately 1% of the rock in the main mass and from 2% to 4% near the roof contacts. Some of these inclusions are up to 40 feet long.

The second rock type of the Rocher Deboule stock is a finegrained, buff coloured, biotite quartz monzonite which forms

FRATERING FUNCTION FUNCTIO					
TRITARY MOCON May besit INTERCENT Intercent weeks More besit Balance Introduction (III), undifferentiated (B) May besit Balance Introduction (III), undifferentiated (B) May besit Balance Introduction (III), undifferentiated (B) May besit Balance Introduction (IIII), undifferentiated (B) May besit Balance Introduction (IIII), undifferentiated (B) May besit Balance Introduction (IIII), undifferentiated (B) May besit Balance Introduction (IIIII), undifferentiated (B) May besit Balance Introduction (IIIII), undifferentiated (B) May besit Balance Introduction (IIIII), undifferentiated (B) May besit Balance Introduction (IIIIII), undifferentiated (B) May besit Balance Introduction (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		STRATIFIED ROCKS		INTRUSIVE ROCKS	
TRENARY More beast More beast More beast PALCOCENE AND ECCENE More beast PALCOCENE AND ECCENE More beast PALCOCENE AND ECCENE More beast More beast PALCOCENE AND ECCENE More beast More beast <t< td=""><td></td><td>STRATT ILB ROOKS</td><td></td><td>TEDTLADY</td><td>ļ</td></t<>		STRATT ILB ROOKS		TEDTLADY	ļ
NUCCENT Image: Section of the section of		TERTIARY		ECCENE	
Abbr baselt ALEOCENE AND EXCENSION PALEOCENE AND EXCENSION ALEOCENE AND EXCENSION and score, conglomerate, silistone, ceal, tuff; minor andesite (Pa) ALEOCENE AND EXCENSION and score, conglomerate, silistone, ceal, tuff; minor andesite (Pa) CETACEOUS Large Central Cours UPER EXCENSION Status of the conglomerate, silistone, coart problements, monitories, monitories, monitories, complementate, and fully allowed analytics, monitories, monitori, monitories, monitori, mon		MIOCENE		BARINE INTRUSIONS: microdiorite (Tad), rhvolite - quartz	
ALISONN AND BOCHE Ext andsame, conjournite, silistene, col, tuff; allor andesite (P) CRETACEOUS UPER CARDENCIT: Statiling augites prophyry, homoledie prophyry, basilit, angegene basilit, uff, weech, and floor prophyry, basilit, angegene basilit, uff, weech, and floor precontext, and colubiting and wolcant detritus; basility	•	Mbv basalt		TB eye porphyry-breccia (TBr), undifferentiated (TB)	
EXECT sadstone, conjournate, silistone, ceal, tuff, minor andesite (Pr) LATE CRETACEOUS UPFE CRETACEOUS LATE CRETACEOUS URS BILM BUL FORMITON: acid is intermediate volcanits; rhyplite infor balat SELAN BUL FORMITON: acid is intermediate volcanits; rhyplite infor balat SELAN BOUL FORMITON: acid is intermediate volcanits; rhyplite infor balat MAR REEMA GROUP (MAT) ALBAN CREMA GROUP (MAT) MAUTENTIAN TO ALBAN Titum creat self-sectis, and floar Titum Creat self-sectis, and floar Titum Creat self-sectis, and floar MAUTENTIAN(?) The creat section (Creat ALC Corts (Creat ALC Co		PALEOCENE AND EOCENE	and the second		
CRETACEOUS UPFE CRETACEOUS UP		PEs sandstone, conglomerate, siltstone, coal, tuff	; minor andesite (Pv)	CRETACEOUS	
CRETACEOUS UPER CREACEOUS UPER CREACEOUS UNER CREACEOUS UNER PRIME DUB TOWNTON: scid is intermediate solescoper of the component of the componen		Ps, Px	· · · · ·	LATE CRETACEOUS	
CREIACEOUS undifferentisted UPPER CRIACEOUS undifferentisted WK BDIA NOU FORMTON: Acid to Intermediate volcalis; tryphite from, fracting, and Luff, biolite and horehende porphyry flow; fracting, and Luff, traffactors silitates, seatches, conjenerate; and intro basil Steina GROUP (wt1) ALBIAN Steina GROUP (wt1) ALBIAN Steina GROUP (wt1) ALBIAN Steina GROUP (wt1) ALBIAN Fault (defined, approximate) ALBIAN "Total proving, tail, based and agalomestate, and porphyry, baselit, augusene baselit, tuff, breecis, and flows WK "Total proving, tuff, breecis, and agalomestate, conglements, sile, succente common, store col; detrital, minity alluvial, therifigers in part with Kinh sedeting Fault (defined, approximate) JURASSIC AND COPERACEOUS UPPER JURASSIC AND COPERACEOUS BURGED dentate; see auctivities; tails, and cosi; bior conglements, sile, succente componentiate, stalls, and cosi; bior conglements, sile succente with definitate; torbase stalls, stall, and cosi; bior conglements, sile succente consons and conglements; biolity, sharef lastices and conglements; biorrank columana KM "Intermediate Boser Labs subdivision": Lower flooghish facies, channel saddrome dentate; corbase stall subdivision": Lower flooghish facies, channel saddrome dentate; corbase stalls defined cosi; biolity, sharef lastices and conglements; biolity, sharef lastodinter components;				LKB BULKLEY INTRUSIONS: granodiorite, quartz diorite, quartz nonzonite, hornblende porphyry, hornblende-quartz porphyry,	
UPPER CREACEOUS WKB BIAN SOUL POWENTION: acid to intermediate volcanics; rhyolite flass, braccia, and turf; totacte and nonsidered porphyry flass, whore take and have to the complementate, many basit Section 2000 [luK1] ALSIAN SKEENA GROUP [luK1] ALSIAN ALSIAN Section 2000 [luK1] ALSIAN ALSIAN ALSIAN ALSIAN ALSIAN ALSIAN MKN Toback Ridge volcanics*: alkaline suggets porphyry, hornblands falosan porphyr, turf, tracet, and agaloent Lihar: olivine prophyry, basit, suggets basit, turf, brecis, and four tapeble complements allistone, shale, and curt peble complements allistone falosan finar cosi; datrial, minir allivini, interfingers in parts alla Kut files minor cost complements allistone falosan complements allowed (C: from K.C. Carter, *03 # Kho. Busit, linkv. B.C. (aff, 1978) JURASSIC AND CRETACEOUS MAUTERVIAN(?) South CRETACEOUS WAUSERVIAN(?) MAUTERVIAN(?) South CRETACEOUS MAUSERVIAN(?) MAUSER CRETACEOUS Approximate limit of exposure thintor continerate subdivision*: (Depending facts, chanol and complements allowed complements; subdivision*: (Depending facts, chanol and complements) South HERN GOLD RESOURCES LTD. Nonth vanceover, Busitistic and complements; subdivision*: (Depending facts, chanol and complements) South HERN GOLD RESOURCES LTD. Nonth vanceover, Busitistic and complements; subdivision*: (Depending facts, chanol and complements) Mineca Mon, B.C. Wather Cortosian Ado Simble, and		CRETACEOUS		undifferentiated	
WK BRIAM EXOL FORMATION: weld to the metade and horm heads the voltage and head heads theads the volta		UPPER CRETACEOUS			
SKEENA GROUP (JkKT) AlsiAN. CENDOMANIAN, AND (2) YOUNGER RE ROSE FORMATION: well bedied sandstone, chert pebble conglomerate, red gritty siltstone, and toff INKR Re ROSE FORMATION: well bedied sandstone, chert pebble conglomerate, red gritty siltstone, and toff AlsiAN AlsiAN * Sheek fidge volcanics": alsaline augite porphyry, hormblende fidgspe porphyry, turff, brecchi, and gagitesete-fauri olivine porphyr, hormblende fidsper porphyr, hormblende fidsper porphyr, hormblende fidsper porphyr, hormblende fildsper porphyr, hormbl		UKB BRIAN BORU FORMATION: acid to intermediate vo flows, breccia, and tuff; biotite and hornblend breccia, and lahar; tuffaceous siltstone, sands minor basalt	lcanics; rhyolite e porphyry flows, tone, conglomerate;		
ABIAN, CENOMANIAN, AND (2) YOUNGER RD RDS FORMTIDE: well bedded sandstone, chert pebble conglomerate, ref gritts Titistene, and tuff ALBIAN Note of the second		SKEENA GROUP (IUKT)			1
RED BODE FORMTION: well bedded sandstone, chert pebble conglomerate. Fed gritty siltstone, and tuff NURR red gritty siltstone, and tuff ALBIAN Thost faile MAUTERIVIAN TO ALBIAN Thrust faile WK Poppbyry, basalt, quagements: sandstone, chert and quartz pebble conglomerate. Haber of the space state sandstone, chert and quartz pebble conglomerate. saltstore, salt faile Thrust faile MK "AUTERIVIAN TO ALBIAN Paleocurrent direction WK "Autor sale. mascovite common, minor coal; during allower and mark with Kich Syncline JURASSIC AND CRETACEOUS Booging contact (defined, approximate) Socy finder of exposure JURASSIC AND CRETACEOUS Booging contact (defined, approximate) Approximate) JURASSIC AND CRETACEOUS Boogenet with during contact contact contact (defined, approximate) Approximate) MAUTERIVIAN (7) "Intermediate bower take subdivision": Longer floodplain facies (Madif), interringering chance sandstone contact contact contact contact (defined, approximate) Mino		ALBIAN, CENOMANIAN, AND (?) YOUN	GER		
UNR red gritty siltstome, and tuff ALBIAN		RED ROSE FORMATION: well bedded sandstone, c	hert pebble conglomerate,	A Bedding	1 1
ALBIAN IKR "Bocky Ridge volcanics": alkaline augite porphyry, horbibende feldspar porphyry, this, breccia, and agglomerate-lahari olivine porphyry, basalt, aquagene basalt, tuff, breccia, and flows MAUTERIVIAN TO ALBIAN Anticiline MKK "Rocket seliments": sandstone, chert and quart: pebble consignerate, siltstone, shale, macrotocol; detrical, minity alluvial, interfingers in part with Super Super Lake Scoup Anticiline JURASSIC AND CRETACEOUS UPPER JURASSIC AND CRETACEOUS BOWSER LAKE GROUP HAUTERIVIAN (?) Sour Floodplain facies, chanel sandstone dominant: corbonacies and volcanic detrikus; biotice, minor conjourents with Bunnel sandstone-conglomerate and overbak sandstone, siltstone, shale, and conj: minor conjourents with Bunnel and stone-conglomerate and overbak sandstone, siltstone, shale, and conj: plain facies (JKR), interfingering channel sandstone-conglomerate and overbak sandstone, siltstone, shale, and conj: minor conjourents with Bunnel and stone-conglomerate and overbak sandstone, siltstone, shale, and conj: plain facies (JKR), interfingering channel sandstone-conglomerate and overbak sandstone, siltstone, shale, and conj: minor conjourents with Bunder flood- plain facies (JKR), interfingering channel sandstone-conglomerate and overbak sandstone, siltstone, shale, and conj: minor conjourents with Bunder flood- plain facies (JKR), interfingering channel sandstone-conglomerate and overbak sandstone, siltstone, shale, and conj: minor conjourents with Bunder flood- plain facies (JKR), interfingering channel sandstone-conglomerate and overbak sandstone, siltstone, shale, and conj: minor conjourents with Bunder flood- plain facies (JKR), interfingering channel sandstone-conglomerate and overbak sandstone, siltstone, shale, and plane bane :		TUKR red gritty siltstone, and tuff		Fault (defined, approximate)	σ
IKR "Rocky Ridge volcantcs": alkaline augite porphyry, hornblende feldgar porphyry, tuff, breccia, and aggiomerate-lahar; olivine porphyry, tuff, breccia, and aggiomerate-lahar; olivine more space sediments": sandstone, chert and quartz pebble conglomerate, silistone, shale, muscovite comon; minor coal; detricial, sandstone dominan; overset kith Koh IVRASSIC AND CRETACEOUS UPPER JURASSIC AND LOWER CRETACEOUS BOWSER LAKE GROUP HAUTERIVIAN(?) South Cretace Cretace Cous BowSer Lake subdivision": Lower floodplain facies, channel sandstone dominant; overset, silistone, shale, shale, and coal; sinor conglomerate with dominant carbonaceous and volcanic detritus; biotits, minor coal; tuber floodplain facies (IKAU), channel sandstone and conglomerate; subdivision": Lower floodplain facies (IKAU), channel sandstone and conglomerate; subdivision": Upper floodplain facies (IKAU), interringering channel sandstone conglomerate; and overbank sandstone, silistione, shale, minor coal; tuber flood- plain facies (IKAU), interringering channel sandstone conglomerate ind overbank sandstone, silistione, shale, minor coal; tuber flood- plain facies (IKAU), interringering channel sandstone conglomerate ind overbank sandstone, silistione, shale, minor coal; tuber fl		ALBIAN		A Thrust fault	
IKAv feldspar porphyry, tuff, breccia, and agelementa-lahar; olivine porphyry, basit, aquagene basit, tuff, breccia, and flows HAUTERIVIAN TO ALBIAN IKK Conglomerate, siltstone, shale, muscovite comon; minor col; detrital, mainly alluvial, interfingers in part with IKsh JURASSIC AND CRETACEOUS UPPER JURASSIC AND CWER CRETACEOUS BOWSER LAKE GROUP HAUTERIVIAN (?) IKB "Intermediate Bowser Lake subdivision": Upper floodplain facies, blottie, minor conglomerate, siltstone, siltsto		"Rocky Ridge volcanics": alkaline augite por	phyry, hornblende	Anticline	
HAUTERIVIAN TO ALBIAN IKK "Kitsuns Creek sediments": sandstone, chert and quartz pebble congloaerate, shale, souther common, minor coal; detrital, mainly alluvial, interfingers in part with IKsh JURASSIC AND CRETACEOUS UPPER JURASSIC AND LOWER CRETACEOUS BUPER JURASSIC AND LOWER CRETACEOUS JURASSIC AND LOWER CRETACEOUS JURASSIC AND CRETACEOUS JURASSIC AND LOWER CRETACEOUS JURASSIC AND LOWER CRETACEOUS JURASSIC AND LOWER CRETACEOUS JURASSIC AND HAUTERIVIAN (7) JURASSIC AND KIMMERIDGIAN JURASSIC AND KIMMERIDGIAN JURASSIC AND KIMMERIDGIAN JURASSIC SILESONG SILE and maintor coal; JURASSIC AND KIMMERIDGIAN JURASSIC AND KIMMERIDGIAN JURASSIC AND KIMMERIDGIAN JURASSIC AND KIMMERIDGIAN JURASSIC AND KIMMERIDGIAN JURASSIC AND AND KIMMERIDGIAN JURASSIC AND CRETACEOUS BUPER JURASSIC AND KIMMERIDGIAN JURASSIC AND AND KIMMERID		IKRV feldspar porphyry, tuff, breccia, and agglomer; porphyry, basalt, aguagene basalt, tuff, brec	ate-lahar; olivine cia, and flows		
 HAUTERIVIAN TO ALBIAN Witsuns Creek sediments": sandstone, chert and quartz pebble conglomerate, siltstone, shale, main sucovite common, minor coal; detrital, mainly alluvial, interfingers in part with IKSh JURASSIC AND CRETACEOUS UPPER JURASSIC AND COMER CRETACEOUS BOWSER LAKE GROUP HAUTERIVIAN(?) IKB "Upper Bowser Lake subdivision": Lower floodplain facies, channel sandstone dominant; overbank sandstone, shale, main accelerate overbank sandstone, siltstone, shale, main ad minor coal; plain facies (IKBI), interfingering channel sandstone conglomerate and overbank sandstone, siltestone, shale, main ad minor coal; UPPER OXFORDIAN AND KIMMERIDGIAN IKB "Lower Bowser Lake subdivision": Upper floodplain facies (IKBU), channel sandstone and conglomerate; subdivitate overbank sandstone, siltestone, shale, main coal; Lower floodplain plain facies (IKBI), interfingering channel sandstone conglomerate plain facies (IKBI), interfingering channel sandstone coal; UPPER OXFORDIAN AND KIMMERIDGIAN UBB "Lower Bowser Lake subdivision": Upper floodplain facies (IKBI), interfingering channel sandstone ad onglomerate; subdivision": Upper floodplain facies (IKBI), interfingering channel sandstone ad onglomerate; subdivision": Upper floodplain plain facies (IKBI), interfingering channel sandstone conglomerate plain facies (IKBI), were buryes compon 				Palaanmaak dinaaking	· •
IKK "Kitsuns Creek sediments": sandstone, chert and quartz pebble congiomerate, silistone, shale, muscovite common; minor coal; detrital, mainly alluvial, interfingers K/Ar age date: B-blotite, H-hormblende (C: from K.C. Carter, Ph.D. thesis, Univ. B.C. date, 1978) JURASSIC AND CRETACEOUS JURASSIC AND CRETACEOUS BOWSER LAKE GROUP Bowser Lake subdivision": Lower floodplain facies, channel sandstone dominant; overbank sandstone, shile, and coal; minor congiomerate with dominant carbonaceous and vorticatic detritus; blotite, minor chert, rare muscovite IKB "Intermediate Bowser Lake subdivision": Lower floodplain facies (JKaU), channel sandstone and conjonerate; subordinate overbank sandstone, siltstone, shale, and mari; minor coal; plain facies (JKA), interfingering channel sandstone-and conjournerate; and overbank sandstone, siltstone, shale, mari and minor coal; UPER OXFORDIAN AND KIMMERIDGIAN OMINECA M.D., B.C. UPER OXFORDIAN AND KIMMERIDGIAN OMINECA M.D., B.C. UPB "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (uJadf), interbedded channel sandstone- and conjolmerate and overbank sandstone, siltstone, shale, minor coal; Lower floodplain plain facies (JKA), under Sindstone and congolmerate and overbank sandstone, siltstone, shale, minor coal; UPB dowed beds, including Ostrea, ripple and plane laminated sandstone, siltstone, shale, minor coal; plater dowed channel sandstone and congolmerate and overbank sandstone, siltstone, shale, minor coal; UPB dowed beds, including Ostrea, ripple and plane laminated sandstone, siltstone, shale, minor coal, thick shelited palecypod beds, including Ostrea, worn		HAUTERIVIAN TO ALBIAN		Paleocurrent direction	
 IKK conglomerate, siltstone, shale, muscovite common; minor col; detrital, mainj alluvial, interfingers in part with IKsh JURASSIC AND CRETACEOUS UPPER JURASSIC AND LOWER CRETACEOUS BOWSER LAKE GROUP HAUTERIVIAN(?) IKB "Upper Bowser Lake subdivision": Lower floodplain facies, channel sandstone, siltstone, shale, and mari; siltstone, shale, and coal; minor conglomerate with dominant carbonaceous and volcanic detritus; biotite; minor chert, rare muscovite KIMMERIDGIAN TO HAUTERIVIAN (?) JKB "Intermediate Bowser Lake subdivision": Upper floodplain facies (JKsu), channel sandstone, siltstone, shale, and mari; anior coal; plain facies (JKsl), interfingering channel sandstone-conglomerate and overbank sandstone, siltstone, shale, marl and minor coal; UPPER OXFORDIAN AND KIAMÉRIDGIAN UB "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (uJBdf), interbedded channel sandstone, siltstone, shale, mor coal; thick shelled pelezynd deds, includin gottrea, warm burrows common 		"Kitsuns Creek sediments": sandstone, chert	eek sediments": sandstone, chert and quartz pebble	 K/Ar age date: B-biotite, H-hornblende (C: from N.C. Carter, Ph.D. thesis, Univ. B.C., 1974, U: unpublished Univ. B.C. date. 	1978)
JURASSIC AND CRETACEOUS UPPER JURASSIC AND LOWER CRETACEOUS BOWSER LAKE GROUP HAUTERIVIAN (?) IKB "Upper Bowser Lake subdivision": Lower floodplain facies, channel sandstone dominant carbonaceous and volcanic detritus; biotite, minor conglomerate with dominant carbonaceous and volcanic detritus; biotite, minor chert, rare muscovite KIMMERIDGIAN TO HAUTERIVIAN (?) JKB "Intermediate Bowser Lake subdivision": Upper floodplain facies; (JKBU), channel sandstone, siltstone, shale, and main conglomerate; and overbank sandstone, siltstone, shale, marl and minor coal; UPPER OXFORDIAN AND KIMMERIDGIAN UJB "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (uJBdf), interbedded channel sandstone and Conglomerate, ripple and plane laminated sandstone, siltstone, shale, minor coal; thick shelled pelecypob deds, including Ostrae, worm burrows common FigureE		IKK conglomerate, siltstone, shale, muscovite com	mon; minor coal; t with IKsh	Geologic contact (defined approximate)	
JURAŠSIC AND CRETACEOUS UPPER JURAŠSIC AND LOWER CRETACEOUS BOWŠER LAKE GROUP HAUTERIVIAN (?) "Upper Bowser Lake subdivision": Lower floodplain facies, chanel sandstone dominant; overbank sandstone, siltstone, shale, and coal; minor conglomerate with dominant carbonaccous and volcanic detritus; biotite, minor chert, rare muscovite KIM KIMMERIDGIAN TO HAUTERIVIAN (?) "Intermediate Bowser Lake subdivision": Upper floodplain facies (JKB) "Intermediate Bowser Lake subdivision": Upper floodplain facies MKB CHER DEBOULE PROPERTY LEGEND plain facies (JKal), interfingering channel sandstone, siltstone, shale, marl and minor coal; UPPER OXFORDIAN AND KIMMERIDGIAN "Lover Bowser Lake subdivision": Deltaic front (Intertidal) facies (UBdf), interbedded channel sandstone and conglomerate, ripple and plane Juniate standstone, siltstone, shale, minor coal; thick shelled pelecynob beds, including Ostra, worm burrows common					
UPPER JURASSIC AND LOWER CRETACEOUS BOWSER LAKE GROUP HAUTERIVIAN (?) "Upper Bowser Lake subdivision": Lower floodplain facies, channel sandstone dominant; overbank sandstone, siltstone, shale, and ccal; minor conglomerate with dominant carbonatic detritus; biotite, minor cohert, rare muscovite KIMMERIDGIAN TO HAUTERIVIAN (?) "Intermediate Bowser Lake subdivision": Upper floodplain facies (JKau), channel sandstone and conglomerate; subordinate overbank sandstone, siltstone, shale, and mari; minor ccal; JKB UPPER OXFORDIAN AND KIMMERIDGIAN "Upper Bowser Lake subdivision": Deltaic front (intertidal) facies uure Rowser Lake subdivision": Deltaic front (intertidal) facies (UKau), interfingering channel sandstone conglomerate and overbank sandstone, siltstone, shale, mari and minor ccal; UPPER OXFORDIAN AND KIMMERIDGIAN "Upper Bowser Lake subdivision": Deltaic front (intertidal) facies (UBdf), interbedded channel sandstone and conglomerate, ripple and plane laminated sandstone, siltstone, shale, minor ccal; thick shelled pelecynob beds, including Ogtrea, worm burrows common Floure		JURASSIC AND CRETACEOUS		Approximate limit of exposure	
BOWSER LAKE GROUP HAUTERIVIAN(?) "Upper Bowser Lake subdivision": Lower floodplain facies, channel sandstone dominant; overbank sandstone, siltstone, shale, and coal; minor conglomerate with dominant carbonaceous and volcanic detritus; biotite, minor chert, rare muscovite KIMMERIDGIAN TO HAUTERIVIAN (?) IKB KIMMERIDGIAN TO HAUTERIVIAN (?) MINTermediate Bowser Lake subdivision": Upper floodplain facies (JKB) (JkB), interfingering channel sandstone, silestone, shale, and mari; minor coal; Lower flood- plain facies (JKBI), interfingering channel sandstone-coal; Court (JNE) UPPER OXFORDIAN AND KIMMERIOGIAN "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (JBdf), interbedded channel sandstone, shale, minor coal, thick shelled pelecypod beds, including Ostrea, worn burrows common Fligure		UPPER JURASSIC AND LOWER CRETACEOUS			
IKB "Doper Bowser Lake subdivision": Lower floodplain facies, channel sandstone dominant; overbank sandstone, siltstone, shale, and coal; minor conglomerate with dominant carbonaceous and volcanic detritus; biotite, minor chert, rare muscovite IKB SOUTHERN GOLD RESOURCES LTD. North Vancouven, British columbia IKB Intermediate Bowser Lake subdivision": Upper floodplain facies (JKBU), channel sandstone and conglomerate; subordinate overbank sandstone, siltstone, shale, and marl; minor coal; Diain facies (JKBI), interfingering channel sandstone-conglomerate and overbank sandstone, siltstone, shale, marl and minor coal; UPPER OXFORDIAN AND KIMMERIDGIAN OMINECA M.D., B.C. "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies interbedded channel sandstone, siltstone, shale, minor coal; thick shelled pelecypod beds, including Ostrea, worm burrows common Mork by: Mork by: N.T.S.: 93 M Drawn by: Date: OCT. 1987		BOWSER LAKE GROUP			
IKB sandstone dominant; overbank sandstone, siltstone, shale, and coal; minor conglomerate with dominant carbonaceous and volcanic detritus; biotite, minor chert, rare muscovite KIMMERIDGIAN TO HAUTERIVIAN (?) SOUTHERN GOLD RESOURCES LTD. North Vancouver, British columbia JKB "Intermediate Bowser Lake subdivision": Upper floodplain facies (JKBu(), channel sandstone and conglomerate; subordinate overbank sandstone, siltstone, shale, and marl; minor coal; Diain facies (JKBi), interfingering channel sandstone-conglomerate and overbank sandstone, siltstone, shale, marl and minor coal; ROCHER DEBOULE PROPERTY UPPER OXFORDIAN AND KIMMERIDGIAN OMINECA M.D., B.C. "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (uJBdf), interbedded channel sandstone and conglomerate, ripple and plane laminated sandstone, siltstone, shale, mor coal, thick shelled pelecypod beds, including Ostrea, worm burrows common Work by : Work by : N.T.S.: 93 M Date Drawm by: Date OCT. 1987		"Upper Bowser Lake subdivision": Lower flood	plain facies, channel		
Iminite Conground degree with conduminate considered as and voltance desired, biotite, minor coler, rare muscovite SOUTHERN GOLD RESOURCES LTD. North vancouver, British Columbia Iminite Conground as and stone and conglomerate; subordinate overbank sandstone, shiltstone, shale, and mari; minor coal; ROCHER DEBOULE PROPERTY Iminite Conground as and stone, shale, and mari; minor coal; Iminite Conground and minor coal; Iminite Conground and minor coal; Iminite Conground and conglomerate, ripple and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and conglomerate, ripple and plane Souther conground and plane Iminite Conground and plane Iminite Conground and conglomerate, ripple and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and plane Iminite Conground and conglogererate, worm burrows compon I		IKB sandstone dominant; overbank sandstone, silts	tone, shale, and coal;		
KIMMERIDGIAN TO HAUTERIVIAN (?) North VANCOUVER, BRITISH COLUMBIA INB "Intermediate Bowser Lake subdivision": Upper floodplain facies (JKBuf), channel sandstone and conglomerate; subordinate overbank sandstone, siltstone, shale, and mari; minor coal; Lower flood- plain facies (JKBI), interfingering channel sandstone-conglomerate and overbank sandstone, siltstone, shale, mari and minor coal; ROCHER DEBOULE PROPERTY UPPER OXFORDIAN AND KIMMERIDGIAN Imate subdivision": Deltaic front (intertidal) facies (uJBdf), interbedded channel sandstone, siltstone, shale, minor coal, thick shelled pelecypod beds, including Ostrea, worm burrows common Mineca M.D., B.C. Work by : N.T.S.: 93 M Drawm by: Difference Detection		biotite, minor chert, rare muscovite	and vorcanic decircus,	SOUTHERN COLD RESOURCES I	TD
KIMMERIDGIAN TO HAUTERIVIAN (?) "Intermediate Bowser Lake subdivision": Upper floodplain facies (JKBuf), channel sandstone and conglomerate; subordinate overbank sandstone, siltstone, shale, and marl; minor coal; Lower flood- plain facies (JKBI), interfingering channel sandstone-conglomerate and overbank sandstone, siltstone, shale, marl and minor coal; UPPER OXFORDIAN AND KIMMERIDGIAN UJB "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies interbedded channel sandstone, siltstone, shale, minor coal, thick shelled pelecypod beds, including Ostrea, worm burrows common		•		NORTH VANCOUVER, BRITISH COLUMBIA	.1 D.
JKB "Intermediate 8owser Lake subdivision": Upper floodplain facies (JKBu(), channel sandstone and conglomerate; subordinate overbank sandstone, siltstone, shale, and marl; minor coal; <u>plain facies</u> (JKBI), interfingering channel sandstone-conglomerate and overbank sandstone, siltstone, shale, marl and minor coal; UPPER OXFORDIAN AND KIMMERIDGIAN LEGEND FOR FIGURE 3 UJB "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies interbedded channel sandstone, siltstone, shale, minor coal, thick shelled pelecypod beds, including Ostrea, worm burrows common OMINECA M.D., B.C. Work by : N.T.S.: 93 M Date : OCT. 1987 FIGURE		KIMMERIDGIAN TO HAUTERIVIAN (?)			I
JKB (JKBU), Challe's sandstone, shale, and congrome tate, subtrome, congromerate, and overbank sandstone, siltstone, shale, marl and minor coal; LEGEND UPPER OXFORDIAN AND KIMMERIDGIAN FOR FIGURE 3 "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (uJBdf), interbedded channel sandstone and congromerate, ripple and plane laminated sandstone, siltstone, shale, minor coal, thick shelled OMINECA M.D., B.C. UJB "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (uJBdf), interbedded channel sandstone and congromerate, ripple and plane laminated sandstone, siltstone, shale, minor coal, thick shelled Work by : N.T.S.: 93 M Drawn by: Date : OCT. 1987 FIGURE FIGURE		"Intermediate Bowser Lake subdivision": Uppe	r floodplain facies	ROCHER DEBOULE PROPERTY	
plain facies (JKBI), interfingering channel sandstone-conglomerate and overbank sandstone, siltstone, shale, marl and minor coal; FOR FIGURE 3 UPPER OXFORDIAN AND KIMMERIDGIAN "Lower Bowser Lake subdivision": Deltaic front (intertidal) facies (uJBdf), interbedded channel sandstone and conglomerate, ripple and plane laminated sandstone, siltstone, shale, minor coal, thick shelled pelecypod beds, including Ostrea, worm burrows common OMINECA M.D., B.C. Work by : N.T.S.: 93 M Drawn by: Date : OCT. 1987 FIGURE FIGURE		sandstone, siltstone, shale, and marl; minor	coal; Lower flood-	LEGEND	
UPPER OXFORDIAN AND KIMMERIDGIAN "Lower Bowser Lake subdivision": <u>Deltaic front (intertidal) facies</u> (uJBdf), interbedded channel sandstone, and conglomerate, ripple and plane laminated sandstone, siltstone, shale, minor coal, thick shelled pelecypod beds, including <u>Ostrea</u> , worm burrows common Common Structure Statement		<u>plain facies</u> (JKBI), interfingering channel s and overbank sandstone, siltstone, shale, mar	and stone-congromerate	FOR FIGURE 3	
UJB "Lower Bowser Lake subdivision": <u>Deltaic front (intertidal) facies</u> (uJBdf), interbedded channel sandstone, and conglomerate, ripple and plane Work by : N.T.S.: 93 M UJB Jaminated sandstone, siltstone, shale, minor coal, thick shelled Date : OCT. 1987 pelecypod beds, including <u>Ostrea</u> , worm burrows common FIGURE					
uJB interbedded channel sandstone and conglomerate, ripple and plane laminated sandstone, siltstone, shale, minor coal, thick shelled Drawn by: pelecypod beds, including Ostrea, worm burrows common FIGURE		"Lower Bowser Lake subdivision": Deltaic fro	nt (intertidal) facies (windf)	OMINECA M.D., B.C.	
pelecypod beds, including Ostrea, worm burrows common		UJB interbedded channel sandstone and conglomerat	e, ripple and plane	Work by : N.T.S.: 93 M	
		pelecypod beds, including Ostrea, worm burrow	S COMMON	FIGU	RE

5 - 4

Sec.

الواريس المراجع المراجع

the northernmost part of the stock. Whether or not this is a variant of the main granodiorite mass or a separate associated intrusion is not known.

The structure of the Rocher Deboule stock is important in exploration on the property. The stock is clearly intrusive and the granodiorite cuts cleanly across the fold structure of the Hazelton Group with no apparent deformation of the older rocks. In general the granodiorite is neither foliated nor lineated.

Jointing throughout the granodiorite is pronounced, regular, and patterned and the contacts of the two domes and their intervening saddle are important in the distribution of these joints. In general there are three sets of joints, of which the two most prevalent include one parallel to the contact and one normal to the contact and making a horizontal trace on the contact surface. This second set is referred to as cross joints. The third and least developed set is radial, normal to the first two, and dips vertically.

Sutherland Brown suggests that the lack of foliation, the lack of evidence of intense forceful intrusion, and the fit of the pattern of the joints to the shape of the stock, indicate that the joints were caused by cooling contraction.

This stock is dated at 72 m.y. Richards includes it with the Bulkley Intrusions."

The principal other rock type within the property boundary are sandstones and siltstones of the Lower Bowser Lake Group described by Richards (1978) as representing a northerly prograding deltaic assemblage, the debris comprising principally of volcanic clasts. In the vicinity of the property, much of the Bowser sediments have undergone thermal metamorphism forming a biotite grade hornfels rim to the Rocher Deboule stock. Deformation of the Bowser sediments is related to major block faulting and the intrusion of the pluton. Block faulting is thought to have uplifted the whole Rocher Deboule Range, exposing the pluton to erosion, while preserving younger sediments in the valleys to the north and west (Richards, 1978). As a result of the intrusion of the Rocher Deboule stock, the sediments consistently dip to the west (see Figure 4).

Minor rock types include several types of dykes, all younger than the pluton, described by Woodcock (1987) as follows, from oldest to youngest:

a) Aplites and pegmatites throughout the pluton.

b) Granitoid dykes, including the Rocher Dyke in the Rocher Deboule Mine, which are of a Quartz Monzanite composition and may be as much as 30m wide.

c) Porphyritic andesite dykes.

d) Felsite dykes of aphanitic texture with rare phenocrysts of feldspar or quartz.

e) Late fine grained dark, often aphanitic biotite - Lamprophyres and basalts.

6.3 <u>Mineralization</u>

Individual prospects investigated during the 1987 field season will be described in more detail in following sections. The style of mineralization within the property is described in detail by Kindle (1954), Sutherland Brown (1960), and summarized by Woodcock (1987) in his report on this property.

In brief, all the mineral showings within the property boundaries comprise vein fillings of minor shear zones in close proximity to the margin of the Rocher Deboule stock. These shears closely parallel one set of the orthogonal joint pattern caused by the cooling of the stock. The veins all strike in a northeasterly to easterly direction and dip approximately 55° to the north. The veins are developed over significant lengths of shear, perhaps up to 1500m on the Highland Boy, but within this economic widths of mineralization only occur over lengths of 30-75 metres. This is clearly illustrated by the stoping patterns of the #4 vein in the Rocher Deboule Mine.

Kindle (1954) identified three distinct phases of mineralization that are variously developed in the different veins. The oldest and most widespread, a pegmatitic phase, formed veins composed principally of dark massive hornblende and glossy quartz with minor feldspar, apatite, magnetite, scheelite, tourmaline, ferberite and molybdenite. This style predominates on the Highland Boy and Great Ohio veins and is locally well developed in the #2 and #4 veins of the Rocher Deboule Mine and at the Kindle suggested it was a very early stage of Victoria Mine. mineralization formed soon after cooling joints opened, probably related to shearing.

The second stage forms the main phase of sulphide mineralization including principally chalcopyrite (e.g. #4 vein) and pyrrhotite (e.g. Great Ohio) but also locally significant arsenopyrite and cobalt-nickel sulpharsenides (e.g. Victoria vein) and pyrite. It is thought these minerals replace the hornblende and possibly the quartz and may also fill cavities. The sulphide content is locally extremely variable, averaging 5-10% overall and ranging up to 80-90% over 0.5-1.0 metre. There may be some evidence for regional zoning of the sulphides from the interior of the pluton where pyrrhotite chalcopyrite dominate (e.g. the Great Ohio and eastern Highland Boy); to chalcopyrite and pyrite within the margins of the pluton (e.g. #4 vein), to sulpharsenides in the sediments outside the pluton (the Precious metals are widely associated with the sulphides Victoria vein). of this phase.

The third and final stage of mineralization is quite distinct from the earlier stages, cross cutting them and usually more locally developed. Mineralization consists of milky quartz with the principal sulphides being tetrahedrite, galena and pyrite. Also identified are sphalerite, chalcopyrite and the gangue minerals calcite and siderite. The best example of this phase lies at the western end of the 1200 foot drift on the #2 vein of the Rocher Deboule Mine, resulting in much higher precious metal values, especially silver related to the tetrahedrite.

All three phases can overlap and the most spectacular sections of vein are found where they do so, especially at the western and eastern ends of the #2 vein on the 1200' level and 950' levels respectively. Exploration for an economic deposit on the Rocher Deboule property should be directed first towards these areas.

7. <u>1987 EXPLORATION PROGRAM</u>

Since this was Southern Gold Resources' first season of exploration on the property, the exploration program was of necessity broad based, evaluating the economic potential of the property as a whole. Hence all of the known mineral showings within the property boundaries were examined and evaluated to some extent. Most of the work was intended to be concentrated on the Rocher Deboule mine area - principally the #2 and #4 veins - where previous work had indicated significant potential for economic precious metal reserves. The 1987 program was designed to include geological, geochemical and geophysical evaluations of the various prospects but the terrain severely limited access to all but the main Rocher Deboule Mine area, except for cursory examinations of the other veins (see Photograph 1).

7.1 Access, Base Map

The Juniper Creek road was in very poor condition and required extensive rehabilitation to take it to a 4-wheel drive standard. A D6 Cat bulldozer was contracted in Smithers, B.C. and hauled to the start of the Juniper Creek road. A total of 83 hours were required to gain access to the old Rocher Deboule Mine site.

The majority of the portals were in fairly good condition, allowing access to some of the workings. The adits into the #4 vein were, however, in a dangerous condition due to numerous roof-falls and extensive stoping. The 950 foot level was in moderate condition, giving limited access to the #2 vein. The 1000 foot level was in good condition and completely accessible (see Photograph 2). It gave extensive access to the #2 vein for sampling. The portal of the 1200 foot level was collapsed and buried in the major slide. A JD550 backhoe/cat was contracted to reopen this portal, requiring 16.5 hours of work. Once open it gave access to all of this level, which contains extensive sections of the #2 vein. (See Figures 5 & 6.)

A 1:5,000 scale contoured base map was prepared by Eagle Mapping of Port Coquitlam, B.C. from provincial air photographs and an orthophoto composite was also prepared with contours scribed on for field orientation. These documents were filed as assessment work on 15th May 1987.

7.2 Rocher Deboule Mine Area

This was the principal area of activity during the 1987 field season.

7.2.1 Grid

Once access was gained to the property, a grid was established over entire known and inferred extent of the #2 and #4 veins of the Rocher Deboule Mine site. The flagged grid was established utilizing hip chain and compass. The lines were placed at 100m intervals, slope distance. The lines were not cut. A total of 117.25 km of grid were emplaced by these methods.

Photograph 1: View of Mine Area

Photograph 2: 1000 foot Level Portal

CHONG

7.2.2 Geology

The geology of the grid area was mapped by the author at a field scale of 1:5,000 using the established grid and the orthophoto base map for orientation. Detailed mapping was impeded by extensive coarse boulder talus over large areas of the grid. The results of this mapping are presented in Figure 7, plotted at a scale of 1:2,500.

Within the grid area, the eastern half is entirely granidiorite of the Bulkley Intrusions, forming well jointed bluffs and craqs with extensive boulder trains down slope. Most of the outcrops at lower elevations are caused by the erosive action of slides and streams. The contact with Bowser sediments to the west is nowhere exposed, but can be defined to within a few metres by known outcrops. The veins within the grid area were relatively poorly exposed on surface, particularly the #2 vein. The majority of all exposures of the veins were in the vicinity of old workings (see Photograph 3). The #4 vein could be traced over 1300m from line 7+00W to 1+00E in old trenches and adits, though was only well exposed between lines 2+00W and 0+0W (see Photograph 4). A sharp topographic break allowed the vein to be traced well past line 3+00 East, but with no actual outcrop of the vein. A total of 19 rock chip and grab samples were collected from surface outcroppings of the #4 vein. Their locations are shown on Figure 7 and all samples described in Appendix 2. Table 3 below lists some of the more significant results. They indicate a locally significant precious metal content to the #4 vein.

TABLE 3: ROCK SAMPLE ASSAYS #4 VEIN

<u>Sample #</u>	<u>Width (cm)</u>	<u>Cu (%)</u>	Ag (ppm)	<u>Au (OPT)</u>
RD#17R	35	37,118	56.5	0.159
RD#18R	22	39,642	34.5	0.496
RD#19R	70	13,572	76.3	0.213
RD#101R	80	0.16%	.08 OPT	0.166
RD#21R	100	22,648	25.6	0.103
RD#37R	95	41,445	47.6	0.065

The #2 vein could only be traced from line 2+00 West to just east of the 950 foot adit on line 0+50E. Further west the vein would be buried under extensive ancient slide material and further east it would be buried in deep boulder talus. The lack of outcrop prevented extensive surface sampling and only three areas were sampled. These samples are located on Figure 7 and fully described in Appendix 2. Table 5 below summarizes these results.

Photograph 4: Surface Trace of #4 Vein

0

TABLE 4: ROCK SAMPLE ASSAYS #2 VEIN

Sample 🛔	<u>Width (cm)</u>	<u>Cu (%)</u>	Ag (OPT)	<u>Au (OPT)</u>
RD#1-3R(Av)	145	5.56	0.62	0.454
RD#6R	30	2.92	2.18	0.059
RD#7R	56	0.98	6.38	0.008

None of the #1, #2a or #3 veins were exposed on surface.

7.2.3 Geophysics

1

The second

and the second se

Southern Gold Resources rented an Integrated Geophysical System (IGS) incorporating a VLF-EM unit and a proton magnetometer from Scintrex. This is a very compact unit comprising of a digital master console, a VLF-EM receiver and a magnetometer. The "integrated" aspect is electronic hook-up between all these units allowing push button control and digital recording of station and line number and results on the master consoles' memory. A base station magnetometer, portable computer and plotter completed the package. The two field assistants were trained in its use by the author and conducted the surveys of all of the grid lines. On each line total field magnetic readings were taken and in-phase and quadrature VLF-EM readings for each of the selected frequencies. The three stations selected were Hawaii, Annapolis and Seattle to give omni-directional coverage.

At the end of each day, the base station magnetometer and field unit were connected and the magnetic data corrected for diurnal variation. Then all the data was dumped onto the computer, allowing editing and outputting of profiles on a daily basis. All field data collected was presented to Trent Pezzot of GeoSci Data Analysis Ltd. of Richmond, B.C. for final completion and interpretation. The results of his report (Pezzot 1987) are quoted verbatim below:

"The magnetic data contains two distinct responses across the main survey grid. The general outline of intrusive stock is clearly indicated as a gradient from high magnetic intensities observed across the stock to lower values reflecting the country rock. Specific delineation of the surface expression of this contact can best be accomplished by using the isomagnetic lines as a guide between known contact positions.

A number of small isolated magnetic lows are observed within the stock which likely reflect localized areas of increased fault activity. Some of these magnetic anomalies align to form a northwesterly trending zone which parallels the outline of the stock. These may be reflecting major fault activity along a series of southeasterly flowing drainage channels. Three outliers of high magnetic susceptibility materials are mapped along the perimeter of the larger stock. These are likely composed primarily of intrusive material but may be accumulations of magnetite or pyrrhotite mineralization.

Inphase, guadrature and field strength measurements of three VLF-EM stations were gathered during the The field strength of this survey. course intensities were relatively weak but consistent and reliable readings were obtained. Weak evidence of the outline of the Rocher Deboule stock was observed field strength data. A northwesterly in the trending zone of increased field strength values correlates with a magnetic trend across the intrusion and support a fault interpretation.

Alternating narrow bands of moderately conductive and resistive materials are aligned at 075° across the main survey grid. These trends appear to be comprised primarily of 100 to 200 metre long lenses which are most pronounced near the intrusive/ sedimentary contact and normally extend into the intrusive mass. These electromagnetic anomalies are generated from surface or very near surface sources. These geophysical anomalies are probably related to the mineralized fault sets mapped along the contact.

Two 400 metre long lines were surveyed across the Armagosa grid to test a known vein structure. Both the magnetic and electromagnetic data indicate a geological contact near station 175N to 200N but no significant conductivity increase appears to be associated with it."

7.2.4 Talus/Soil Geochemistry

Due to the poor exposure it was decided to attempt geochemical sampling of the grid, despite the abundant talus cover and down hill creep on such steep slopes. On the western parts of the grid, mostly underlain by the Bowser sediments, soil and fine talus material was widely available for sampling. Further east, particularly on line 0+00, coverage was incomplete due to the abundance of coarse boulder trains. Despite this, the samplers were still able to collect fine material from small pockets between the boulders.

In total, 332 soil and/or talus fines were collected within the grid area. All samples were submitted to Acme Analytical Labs of Vancouver, B.C. for Induced Coupled Plasma analysis for 30 elements and also analyzed for gold by standard atomic absorption procedures for greater sensitivity. The results of this sampling program are selectively plotted on Figures 8-10 inclusive and the assay certificates are enclosed in Appendix 1. The value range for selected elements is shown below:

Element	Low	<u>High</u>
Au	1 ppb	2,350 ppb
Ag	1 ppm	64.2 ppm
As	7 ppm	1,854 ppm
Cu	11 ppm	6,156 ppm
Pb	3 ppm	1,363 ppm
Zn	15 ppm	3,375 ppm

The geochemical sampling was surprisingly effective at defining the known veins, suspected extension as well as outlining several new anomalies. [Arsenic and gold proved to be the most effective elements for clearly' defining vein structures, clearly outlining the #2 and #4 veins as well as indicating possible new veins. Silver and lead have more restricted dispersion patterns, principally around the old workings and higher grade sections of the veins. Both silver and lead indicate several other minor anomalies. Copper, while locally highly anomalous, shows widespread dispersion related to down slope mobility. However, the up slope edges of the anomalies clearly define the outcrop of the #4 vein, appear to define the #2 vein over a significantly greater strike length and also outlines anomalous areas approximately 100m south of the #2 vein and between the #2 and #4 Zinc defines the vein structures guite clearly in the veins. granidiorite in the eastern grid area, but a high background zinc level in the Bowser Sediments masks any anomalies.

7.2.5 Rock Geochemistry

Twenty-seven rock chip samples were collected on surface in the grid area. These were entirely collected from surface outcrops of the #2 and #4 veins, the only mineralization observed while mapping. All samples were submitted to Acme Analytical Labs of Vancouver, B.C. for ICP analysis and gold by fire assay. Due to the high base metal content, selected samples were resubmitted for copper, lead, zinc, Arsenic and silver by assay methods. The locations of the sample sites are indicated on the geology map (Figure 7) with a summary of the results. The assay certificates are enclosed in Appendix #1. All samples are described in detail in Appendix #2.

7.2.6 Underground Mapping & Sampling

A very limited program of underground sampling and reconnaissance mapping was undertaken by the author and his assistants, principally on the #2 vein (see Photograph 5). This was partly due to the greater degree of access, all of the #4 vein levels with any mineralization being in very poor condition, and partly because old sample data indicated some significant precious metal potential in unmined sections of the #2 vein. All samples taken were chipped channel samples.

Table 5: Mine Area: Talus Geochemical Values

Photograph 5: #2 Vein Underground

The 1200 foot and 1000 foot levels were in good to excellent condition over most of their lengths. The tunnels are large and free from roof falls due to the generally good condition of the timbers and the granitic wall rocks. The 950 foot level was in poorer condition but still accessible. All levels had good air circulation due to numerous interconnections with other levels via stopes and raises.

Table 6 below lists assays selected to show the range and variability of values in the various veins, particularly the #2 vein. None of the #1, #3 or the #4 returned values of any significance on the 1200 foot level, the best of the samples taken being listed here. The samples listed in Table 6 from the #2 vein on the 1200 foot level are a series of consecutive samples along approximately 100m of vein. The width weighted average of these 10 samples is 5.64% Cu, 16.79 OPT Ag and 0.821 OPT Au over an average width of 80 cm. Diluted to a mining width of 120 cm the weighted average is still 3.78% Cu, 11.25 OPT Ag and 0.550 OPT Au. These 10 samples also illustrate, however, the variability of the assay results and the poor correlation between any of copper, gold and silver.

The samples on the 1000 foot level of the #2 vein exhibit a similar variability of assay results and lack of correlation. For example, samples RU#2001 to RU#2004 are four consecutive samples over only a 25m length which show values varying considerably. Sampling on this level does confirm, however, that the two better sections of vein on this level are at the western and eastern ends of the 1000 foot drift. The importance of the eastern area are confirmed by sampling on the 950 foot level which returned significant copper-silver-gold values.

The results of these examinations and samplings are summarized on figures 11 & 12 and the assay certificates enclosed in Appendix 1. All samples are fully described in detail in Appendix 2.

<u>Sample #</u>	<u>Vein</u>	<u>Level</u>	<u>Width (cm)</u>	<u>Cu 8</u>	<u>Ag (OPT)</u>	<u>Au (OPT)</u>
RU11	#1	1200'	100	1.28	1.30	0.011
RU201	#2	1200'	40	3.84	15.15	0.320
RU202	#2	1200'	127	2.19	18.13	0.290
RU203	#2	1200'	130	2.64	10.18	0.042
RU204	#2	1200'	70	2.10	4.54	0.076
RU21	#2	1200'	80	8.76	15.83	1.560
RU22	#2	1200'	73	10.93	30.60	0.722
RU23	#2	1200'	47	6.37	21.52	0.285
RU24	#2	1200'	65	12.91	41.43	3.825
RU25	#2	1200'	95	5.80	13.81	1.366
RU26	#2	1200'	70	5.55	4.48	0.355
RU32	#3	1200'	75	0.20	0.71	0.007
RU42	#4	1200'	75	0.02	0.05	0.001
RA17	#2	1000'	140	3.83	1.81	0.056
RA90	#2	1000'	100	1.43	4.80	0.059
RA20/30	#2	1000'	115	2.51	11.56	0.035
RA32	#2	1000'	60	5.19	1.30	0.038
RA101	#2	1000'	100	2.92	9.42	0.166
RWU75	#2	1000'	105	3.16	2.59	0.114
RA159	#2	1000'	110	4.24	2.43	0.066
RU2001	#2	1000'	121	5.73	40.85	0.034
RU2002	#2	1000'	87	1.26	1.85	0.032
RU2003	#2	1000'	135	5.51	47.73	2.070
RU2004	#2	1000'	160	0.88	1.95	0.032
R7	#2	950'	90	1.57	0.97	0.302
R8	#2	950'	77	2.21	0.87	0.026
R10	#2	950'	137	4.20	5.09	0.165
R11	#2	950'	153	7.61	1.82	0.256
R12	#2	950'	165	6.78	12.83	0.075

TABLE 6: SUMMARY OF UNDERGROUND SAMPLE ASSAYS

7.2.7 Summary of Results

Surface work has clearly defined five distinct zones of anomalous survey values (see Figures 15 & 16). Two are coincident with known veins while the three others may relate to one of the virtually unexplored #1, #2a and #3 veins. These anomalous zones, from north to south, are:

a) The #4 Vein. Survey coverage was only partial with lines 2+00W and 3+00W not extending far enough to intersect the #4 vein. This splits the results into two halves, the west and east. The east half is the most strongly anomalous and covers the area that has largely been mined out. Soil/Talus sampling returned anomalous Au, Cu, Pb and Ag and more locally anomalous values of

.

As and Zn. Geophysics detected a conductor on all three VLF-EM channels and a coincident magnetic anomaly. The combined anomaly exceeds 350m in length. The western area is less distinctly anomalous geochemically, principally in As and Cu and weakly anomalous in Pb. The geophysics, however, returned good conductors on all VLF-EM channels and a magnetic anomaly, over a length of 250-350m. If these two areas connect through the unsurveyed area, the total anomaly would have a length of 1000 metres.

- Intermediate Anomaly. Two distinct areas, separated by over 100m b) of background values, are also seen in this trend. The eastern half is again the more strongly responsive, returning highly anomalous values in Au, Cu, As, Ag and Zn and slightly anomalous Pb values. Only the Annapolis VLF-EM frequency and magnetics indicate a conductor over a length of 100m in this area. This anomaly appears to correlate with the surface projection of the #3 vein found on the 1200' level. The western area, approximately along the indicated trend, is anomalous in Au, As and Cu and has a coincident magnetic high and Hawaii VLF-EM conductor uphill. The geochemistry indicates an anomaly 125m long. However, this western area is in close proximity to the rail track and may be a spurious anomaly.
- c) Intermediate Anomaly. This is a very strong anomaly just north of the #2 vein again containing two halves. The eastern half is 250m long, highly anomalous in Au, Cu, Pb, As, Ag and Zn, strongly conductive on all three VLF-EM frequencies and a magnetic low lies slightly uphill. The western half is 125m long and again in fairly close proximity to the track, but is anomalous in Ag, Pb and As and weakly anomalous in Cu. Again this western anomaly could represent contamination and the magnetic low caused by the rail track. This anomaly correlates exactly with the surface projection of the #2a vein which was investigated on the 1,000 foot level and in a raise above that, three historical samples assayed 3.8% to 6.8% Cu.
- d) #2 Vein. The #2 vein gives a strong anomaly of fairly limited extent, approximately 250 metres. Its westerly continuation could be the western half of 'c' above. However, the main anomaly lies over the area of most of the production and is strongly anomalous in Au, Cu, As and Ag. There is a coincident magnetic high and all three VLF-EM frequencies detected a conductor.
- e) Southern Anomaly. This correlates closely with the surface projection of the #1 vein investigated on the 1,200 foot level. The geochemistry is strongly anomalous in Au, Cu and As over a distance of approximately 350m with more localized anomalous Ag. However, the geophysical anomalies are much more extensive, up to 1,000m overall, with a coincident magnetic low and all three frequency VLF-EM conductors. The geochemical expression may be more limited because of deep overburden in the southwestern area of the grid.

7.3 <u>Highland Boy Area</u>

The Highland Boy vein is shear related quartz-hornblende vein exposed fairly continuously over a distance of 1,000m, mostly over inaccessible crags in the northern part of the property. As described above (section 5.2) the vein has had minor exploration prior to 1920 and there are five adits of which only one is accessible today. The adit areas at both ends of the vein were examined and lines of talus samples were taken along both sides of the Juniper Creek Valley.

7.3.1 Geology

Very little of the Highland Boy area geology was open to examination. The upper slopes where outcrops are reported are precipitous craqs that would require ropes and climbers to examine (see Photograph 6). The lower slopes are covered in deep talus slopes. Below a visible, but inaccessible, outcrop at the western end of the vein, numerous fragments of quartz-hornblende vein were found, locally with significant quantities of chalcopyrite, magnetite and pyrite. Similarly, at the eastern end, the vein float found in dumps consisted of quartz-hornblende vein with varying amounts of chalcopyrite, magnetite pyrite and, in this area, pyrrhotite. The 14 dump samples collected are fully described in Appendix 2 and the locations are indicated on figures 13 and 14. The samples indicate that the eastern end may be of interest, since three samples returned greater than 0.11 OPT Au. Selected samples are described below.

<u>Sample #</u>	<u>Type</u>	<u>Cu (ppm)</u>	Ag (ppm)	<u>Au (OPT)</u>
RD#28R	Chip	22,139	22.3	0.129
RD#29R	Float	64,525	20.9	0.119
RD#30R	Float	84,216	29.1	0.136
RD#32RA	Float	20,939	10.6	0.014
RD#33RA	Float	77,081	27.3	0.046

TABLE 7: HIGHLAND BOY; ROCK GEOCHEMISTRY

7.3.2 Talus Fines Geochemistry.

A total of 35 talus fines samples were collected at the base of the talus slopes on the northern side of the Juniper Creek Valley. A further 35 talus fines samples were collected along the Southern and eastern slopes of the Juniper Creek Valley. Some results of these samples are plotted on figures 13 & 14. The range in values are summarized following.
Photograph 6: Highland Boy Area

Same and

Marine and

Commenter of the second se

and the local distance of the local distance

TABLE 8: HIGHLAND BOY:	GEOCHEMICAL RESULTS
------------------------	---------------------

<u>Element</u>	'North' Line	'South' Line
Au	1 - 143 ppb	4 - 290 ppb
Ag	0.1 - 1.2 ppm	0.2 - 11.1 ppm
As	2 - 304 ppm	7 - 3997 ppm
Cu	41 - 440 ppm	45 - 1831 ppm
Pb	8 - 33 ppm	4 - 916 ppm
Zn	39 - 97 ppm	37 - 293 ppm

As can be seen from this table, the 'south' line is always more highly anomalous than the samples collected on the north side of the valley.

a) North Side. Two areas returned distinctly anomalous values on the north side of Juniper Creek; Stations 9+00N to 10+00N and 14+50N to 15+50N. These are downslope from sections of the Highland Boy vein and possible extensions of the #4 vein which is reported to continue further east than indicated on figures 13 & 14. In addition, four rock float samples were collected, two of which returned highly anomalous Cu, Ag, As and Au values. The samples are described in Appendix 2 and values summarized following.

TABLE 9:	NORTH	JUNIPER	CREEK:	FLOAT	SAMPLE	GEOCHEMISTRY

<u>Sample #</u>	<u>Cu (ppm)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Au (OPT)</u>
4+70N	82	1.8	151	0.001
5+40N	17,408	37.5	35,582	0.036
8+50N	23,761	5.9	392	0.103
8+75N	2	0.2	7	0.001

Sample 5+40N is a typical sample of Hornblende vein material. 8+50N is unusual, however, in that the mineralization consists of pyrite disseminated granidiorite. Since the sample was collected from close to one of the anomalous talus fines areas, it warrants further investigation.

b) South Side. The talus values are generally higher than on the north side of Juniper Creek as seen in Table 8. Three areas are indicated as being above this elevated background; 2+00S to 2+50S, 4+50S to 5+00S, 9+50S to 12+50S and 14+50S to 17+00S. The latter most area is the strongest of these anomalies. Six grabs of coarse talus were also taken and sent for analysis. The samples are fully described in Appendix 2 and the results summarized following. TABLE 10: SOUTH JUNIPER CREEK; FLOAT SAMPLE GEOCHEMISTRY

Sample 🛔	<u>Cu (ppm)</u>	Ag (ppm)	<u>As (ppm)</u>	<u>Au (OPT)</u>
1+755	6,005	6.7	1,243	0.006
2+155	12,429	5.1	32	0.020
3+805	8,465	13.5	103	0.011
5+00 <i>s</i>	9,616	4.0	91	0.015
7+005	5,147	5.9	1,309	0.001
12+505	323	0.4	389	0.001

All the samples, except 12+50S, are Hornblende-quartz-sulphide veins typical of the Rocher Deboule area but previously unreported on these slopes of the valley. The last sample is a cherty unit, possibly a rhyolite, that probably represents part of the Bowser Group.

7.3.3 Discussion of Results

The geology and talus fines geochemistry both indicate some interesting potential on the north side of Juniper Creek, probably related to the Highland Boy vein. Surface samples also indicate some significant gold potential. The south side of Juniper Creek should also be further prospected, to follow up on the talus fines anomalies.

7.4 <u>Armagosa Area</u>

This is the least well documented of the historical prospects, although work has been conducted, including driving a fairly large adit. Most of the working actually appear to occur just south of the property boundary, but strike on to the Leo Claim. This showing was investigated utilizing standard prospecting techniques, talus fines sampling and geophysics.

7.4.1 Geology.

Only half of one day was spent on the Armagosa area. The area is underlain by metasediments of the Bowser Formation, generally iron stained, but in fairly close proximity to the granidiorite contact, which should lie uphill, but was not observed by the author. There is a large slide area above the adit which has exposed several approximately east-west shear zones and hornblende-quartz veins. Several rock samples were collected from the veins, all of which returned very uninteresting values. Samples RD#40R-48R are described in Appendix 2.

7.4.2 Geophysics.

Two 400m IGS geophysical survey lines were run approximately north-

south across the veined area, 100 metres apart. The results of this survey are fully described by the geophysicist (Pezzot, 1987). In brief, they detected the granidiorite contact at the north end of the grid and detected no significant conductors.

7.4.3 Talus Geochemistry.

A total of 38 talus fines/soil samples were collected along the north slopes of the Armagosa Creek Valley. The sample locations and values for Cu, Pb, Zn, Au, Ag and As are plotted on figures 13 & 14. All were sent to Acme Analytical Labs for analysis by ICP methods and for gold by atomic absorption. The results are included in Appendix 1. The range of values is indicated following.

TABLE 11: ARMAGOSA; TALUS FINES GEOCHEMISTRY

<u>Element</u>	Low (ppm)	<u>High (ppm)</u>
Cu	94	518
Pb	6	51
Zn	29	129
Au	1 ppb	52 ppb
Аg	0.1	1.7
As	117	572

The values do not display any distinct anomalies, although the majority of the elevated values lie between 5+00 and 10+00.

While collecting the talus fines, the field assistant also collected five grab samples of mineralized float found along the lines. Selected values are listed following.

TABLE 12: ARMAGOSA; FLOAT SAMPLE GEOCHEMISTRY

<u>Sample</u> #	<u>Cu</u> (ppm)	<u>Pb</u> (ppm)	<u>Zn</u> (ppm)	<u>Ag</u> (ppm)	<u>As</u> (ppm)	<u>Au</u> (ppb)
A#1	1,011	3,506	1,764	31.3	179	0.001
A#2	2,407	62	143	5.8	88	0.001
A#3	105	28	24	1.5	94	0.001
A#4	581	75	120	4.8	193	0.001
A#5	4,489	29	55	4.5	35,717	1.280

The only sample of real interest is A#5, a grab of quartz-hornblende breccia vein with 15-20% arsenopyrite and pyrite and assaying 1.3 OPT Au. This was collected at 16+70 on the talus line, down hill from the adit area and probably from the Armagosa vein, though much richer than anything seen on surface.

7.4.4 Discussion of Results.

The Armagosa vein area has not returned consistently good results that warrant extensive follow up. The only really interesting value came from the one float sample assaying over one ounce per ton gold. This may deserve a limited follow up program of prospecting to try and locate the source of the float and determine whether it lies on Southern Gold's property.

7.5 <u>Victoria Vein</u>

This is the only vein lying on the western slopes of the Rocher Deboule Range and is most easily accessed by helicopter. Because of the sub-lease controlling most of the more interesting veins on this part of the property (see section 4), and the extensive recent exploration (section 5.5), very little time was spent on this area.

7.5.1 Geology.

One day was spent prospecting and examining the showing and old workings, with access obtained by helicopter. The vein was seen to be fairly extensive, climbing up over precipitous ridge tops, in several adit levels and trenches (see Photograph 7). The vein was generally less than 1 metre in width and comprised of a massive hornblende vein with locally abundant arsenopyrite and cobalt-nickel sulpharsenides. Five samples were collected VIC #1-3 from surface trenches and VIC #4 & 5 from the main #1 Adit. All samples were sent to Acme Analytical Labs of Vancouver for analysis by assay methods for Mo, Cu, Pb, Zn, Ag, Ni, Co, As, W and Au by fire assay. The samples are fully described in Appendix 2 and the results summarized following.

TABLE 13: VICTORIA; ROCK ASSAYS Nil <u>Co</u> <u>Au</u> <u>Sample</u> Mo <u>Aq</u> As (%) (OPT) (%) (OPT) (%) (%) .176 .75 7.07 VIC 1 .02 .36 1.230 VIC 2 .70 .099 .07 .55 9.38 1.340 VIC 3 .045 .05 . 59 .37 7.48 0.511 .027 VIC 4 .01 .01 .01 .15 0.006 .06 0.008 VIC 5 .001 .01 .01 .02

Copper, lead, zinc and tungsten values were all 0.01%.

7.5.2 Discussion of Results.

The sample results confirmed the nature of the Victoria vein as a high grade gold vein with very high levels of arsenic and significant levels of cobalt. The gold values make this an attractive target but the high arsenic content probably makes the mineralization uneconomic, unless a buyer for arsenic concentrate can be found who will also pay for the precious metal content.

Photograph 7: Victoria Vein Area

0

Ŋ

7.6 Great Ohio Vein

This vein is located in close proximity to the granidiorite-sediment contact on the east side of Juniper Creek, opposite the mine site (see Figure 4). The actual vein is located on precipitous slopes and could only be reached at one point, at the base of some bluffs. An adit explores the vein but was partially flooded at the time of examination and therefore not entered (see Photograph 8).

7.6.1 Geology

The Great Ohio vein appears typical of the more easterly veins on the Rocher Deboule property. It comprises principally of Hornblendequartz and sulphides. The sulphides are dominantly pyrrhotite, with lesser amounts of pyrite and chalcopyrite. Five samples were collected of vein material, the first four of float off the dump at the adit entrance and one chipped off the outcrop. These samples are summarized below and fully described in Appendix 2.

TABLE 14: GREAT OHIO; ROCK GEOCHEMISTRY

Sample #	<u>Width</u>	<u>Cu (ppm)</u>	<u>Ag (ppm)</u>	<u>Au (ppb)</u>
RD#8R	Float	2,204	3.2	0.001
RD#9R	Float	3,374	7.1	0.001
RD#10R	Float	7,270	26.8	0.011
RD#11R	Float	2,477	2.3	0.026
RD#12R	120cm	799	11.8	0.040

7.6.2 Discussion of Results

Surface examination of this vein has not yielded any encouraging results that warrant further work. Should an exploration program be conducted on other parts of the property it may be worth draining the adit and examining the vein underground.

Photograph 8: Great Ohio Area

8. <u>CONCLUSIONS</u>

The 1987 field season on the Rocher Deboule property has been successful in indicating a significant potential for precious metal vein deposits. This potential lies on dip and strike extensions of the well explored #2 and #4 veins and on the relatively unexplored #1, #2a and #3 veins (see Figures 15 & 16).

The #1 vein has a small stope developed on it off the 1,200 foot level. This suggests there may have been some mineralization of interest present, although this was not confirmed by Southern Gold. Geochemically and geophysically there is a strong, continuous anomaly coincident with the surface projection of this vein, suggesting significant potential.

On the #2 vein, four principal sections warrant further work, as indicated on Figure 6 (page 19). The potential of all four areas is indicated by historical sampling and was confirmed by Southern Gold's 1987 work. These blocks, as outlined, could contain 60-80,000 tons, though the total reserve potential could be much larger. For example, blocks 3 and 4 may connect and there is no sampling below the 1,050 foot sub-level in block 1 to limit its down dip extent until the 1,200 foot level.

The #2a vein was not investigated in 1987, on the 1,000 foot level, because of flooding. However, three historical samples and the strong geochemical and geophysical surface expression suggest the #2a vein may be more strongly developed up-dip.

The #3 "vein" is only a poorly mineralized aphanitic dyke on the 1,200 foot level. However, 140m up-dip is a well-developed geophysical and geochemical anomaly that warrants further investigation.

On the #4 vein, the areas of the strongest geophysical/geochemical response have largely been mined out. However, a significant strike extension is indicated by geophysics and surface mapping both to the east and west and warrant further investigation on a low priority.

In other areas, the Highland Boy vein certainly merits further investigation after three assays of dump material returned in excess of 0.1 OPT Au. The Armagosa and Great Ohio veins are not high priority targets. Talus geochemistry also indicated some areas of interest on the south side of Juniper Creek that should be further prospected.

9. <u>RECOMMENDATIONS</u>

Based on the 1987 exploration program and taking into consideration the historical data, an order of priority can be placed on the targets. In decreasing order of importance, they are:

<u>Dri</u>	lling	Prospecting
#2	Vein	Highland Boy vein
# 2a	Vein	South Juniper Creek
#1	Vein	Armagosa Vein
#3	Vein	Great Ohio Vein
#4	Vein	

Two approaches are available to drill the veins; conventional surface drilling or a program of underground rehabilitation and drilling. The former approach is significantly less expensive and would allow testing of several different veins without much impact on costs. However, the underground approach would permit much more detailed evaluation of the principal target, the #2 vein, and give the long term benefit of providing permanent access for later exploration and for development. The two approaches are listed below, based on discussions with contractors.

SURFACE

1

UNDERGROUND

Mob/Demob	\$10,000	Mob/Demob	\$10,000
Roads/Cat trails	\$22,000	Roads, Portals	\$15,000
Drilling (4,400 ft)	\$132,000	Drilling (3,000 ft)	\$60,000
Helicopter (40 hrs)	<i>\$20,000</i>	Portal	\$20,000
Assays	\$5,000	Assays	\$5,000
Geology, Assistants	\$25,000	Geology, Assistants	\$30,000
Camp	\$8,000	Camp	\$10,000
Report	\$5,000	Report	\$5,000
-	\$227,000	Rehab (1,500 ft)	<u>\$60,000</u>
			\$340,000

The author favors the underground approach if sufficient financing is available. This approach only tests and, if successful, delineates reserves in the four areas of the #2 vein defined above (section 8.), leaving the other veins to be explored at a future date. The surface program results in four veins tested with 2-3 holes each, without drilling off any reserves. 1. Geophysics Equipment: 22.77 days @ \$170/day = \$3,870.37 \$2,401.82 Interpretation and Report = \$6,272.19 2. Geochemistry \$349.80 Supplies (sample bags, etc.) 457 Soil/Talus - Preparations @ \$0.75 = \$342.75 - ICP @ \$6.00 = \$2,742.00 \$1,942.25 - Au by AA @ \$4.25 = 150 Rocks - Preparation @ \$3.00 = \$450.00 \$630.00 105 Rocks - ICP @ \$6.00 = 105 Rocks - Au by AA @ \$4.25 = \$446.25 99 Rocks - Au by FA @ \$8.25 = \$816.75 103 Rocks - Cu, Pb, Zn, Ag, As Assay @ \$18.75 = \$1,931.25 5 Rocks - Mo, Cu, Pb, Zn, W, Ag, Ni, Co, As Assay @ \$20.00 = \$100.00 11 Rocks - Pt, Pd, Rh by FA-MS @ \$11.36 = \$124.96 \$262.17 Transport = \$240.00 Computer Plotting = \$10,378.18 3. Transportation \$371.40 Air tickets = \$856.50 Helicopter = \$1,000.00 Truck 1 month @ \$1,000 = \$2,227.90 4. Physical Work \$6,640.00 Access - D6 83 hours @ \$80 = \$325.00 Transport = Open Portals - JD550 16.5 hours @ \$65.00 = \$1072.50 \$454.66 Transport = \$8,492.16 \$5,668.00 5. Base Maps 1:5,000 Scale = 6. Geological \$6,600.00 S.P. Quin (Geologist) 22 days @ \$300/day = \$3,600.00 J. Green (Assistant) 24 days @ \$150/day = P. Mackenzie (Assistant) 22 days @ \$150/day = \$3,300.00 \$2,797.85 Camp/Support = Supplies = \$1,627.68 \$17,925.53 7. Report \$299.81 Reproduction = \$2,139.50 Drafting 97.25 hrs @ \$22 = \$270.45 Supplies = \$3,000.00 S.P. Quin 10 days @ \$300.00 = \$5,709.76 Sub Total \$56,673.72 \$5,667.37 Administration and Overhead @ 10% \$62,341.09 TOTAL EXPENDITURES

40

10. STATEMENT OF EXPENSES

11. <u>REFERENCES</u>

2

ز.

.

فو

Annual Reports of the Minister of Mines, 1911 - 1928.

- Hill, H.L. and Legg, R.E., 1952; Report on Rocher Deboule Mine: for Western Uranium Cobalt Mines Ltd.
- Hutter, J.M., 1980; Sampling Report on Victoria Mineral Claim: A report for Arbor Resources Inc., October 20, 1980, Assessment Work Report 8336.
- Kindle, E.D., 1954; Mineral Resources, Hazelton and Smithers Areas, Cassiar and Coast Districts, British Columbia: Geol. Sur. Can. Mem. 223.
- Kohanowski, N.N., 1951; Report on the Geological Status of the Rocher Deboule Property: Company report, December 1951.
- O'Neil, J.J., 1919; Preliminary Report on the Economic Geology of Hazelton District, B.C.: Geol. Sur. Can. Mem. 110.
- Pezzot, E.T., 1987; Geophysical Report on a Magnetic and VLF EM Survey on the Rocher Deboule Property: Company report.
- Richards, T.A., 1978; Geology of Hazelton (West Half) Map Area: Geol. Surv. Can. Paper 78-1A, pp. 59-60.
- Schroeder, T.G., 1978; Victoria Mine in Geology in British Columbia 1977 to 1981, B.C. Ministry of Energy, Mines and Petroleum Resources, pp. 131 - 132.
- Schroeder, T.G. and Panteleyev A., 1986; Gold in British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Preliminary Map No. 64.
- Sutherland Brown, A., 1960; Geology of the Rocher Deboule Range: B.C. Dept. Mines and Petroleum Resources Bulletin No. 43.
- Tipper and Richards, T.A., 1980; Geology of Hazelton (93M) Map Area: Geol. Surv. Can., OFR 720.
- Unknown Author, 1952; Rocher Deboule Mine, Logs of Examination of No. 2 Vein: Compilation for the Inspector of Mines.
- Woodcock, J.R., 1987; Rocher Deboule Property, Company report for Southern Gold Resources Ltd.

12. STATEMENT OF QUALIFICATIONS

3

.

è. 4

- I, Stephen P. Quin, do hereby certify that:
- 1. I am a mining geologist with business address at #220 145 Chadwick Court, North Vancouver, B.C., V7M 3K1.
- 2. I have a Bachelor of Science (Honours) Degree in Mining Geology from the Royal School of Mines in London, England. I am a member of several geological associations.
- 3. I have worked in mineral exploration since 1981. I have worked in various parts of British Columbia, Europe and the western United States of America.
- 4. I have based my report on an extensive study of the published data available on the property and on approximately one month spent on the property as detailed in this report.
- 5. As of August 1986 I have been a Director, Vice-President and Corporate Secretary and a major shareholder of Southern Gold Resources Ltd., a private, non-reporting resource company registered in the Province of British Columbia.
- 6. Between 1981 and 1986 I was a project geologist with Imperial Metals Corporation of Vancouver, British Columbia.

Signed in North Vancouver this 9th day of November, 1987.

Stephen P. Quin, B.Sc., A.R.S.M.

<u>APPENDIX 1</u>

ASSAY CERTIFICATES

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

f

(

1

(

1

(

6

1

(

6

1

í.

(

GEOCHEMICAL ICP ANALYSIS

.SOO GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOILS AU& ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER. A. A. H. DEAN TOYE, CERTIFIED B.C. ASSAYER aug 3/87 DATE RECEIVED: JULY 20 1987 DATE REPORT MAILED: SOUTHERN GOLD PROJECT-RD File # 87-2565 Page 1 SAMPLE# MO CU PB ZN AG NI CO FE AS U AU TH SR CÐ SB B1 ۷ CA P LA CR MS BA TI B AL NA K ¥ AU\$ 11N 2 PPM PPM PPM ĩ. PPH ž . 2 PPM PPR PPM PPN PPN **PPN** PPM PPN PPM PPM Z PPM PPN PPN PPN PPM PPM PPN PPM PPM 7 7 2 RB-LON 5+00N .55 80 .05 3 3.32 .01 2 10 18 210 24 108 44 19 858 5.80 401 ND 2 72 .10 .118 13 64 .10 .1 -5 1 16 1 5 **RB-LBM 4+75N** 2 2 .22 94 .02 4 2.32 . 08 1 11 6 62 16 77 .2 15 13 2412 3.47 79 -5 ND . 1 26 2 49 .14 .134 7 21 . 01 RB-LBN 4+50N 37 .106 .20 62 .02 3 1.79 .01 .06 1 ₹ 3 18 44 11 372 3.03 39 5 ND 2 2 .05 7 17 .1 4 1 14 1 41 R9-L8W 4+25N 3 40 9 50 .2 11 5 290 3.68 34 5 ND 10 1 4 2 57 .05 .103 1 19 .17 54 .01 2 1.95 .01 .06 1 4 1 RB-LBW 4+00N 105 20 98 13 1145 5.10 50 NÐ 5 2 55 .04 .126 26 .37 76 .02 3 2.56 .01 .09 1 6 4 .1 24 5 1 12 1 6 16 1279 5.62 4 RB-L8W 3+75N 4 96 22 124 .1 26 **4**R -5 ND 13 1 - 3 -3 61 .07 .092 R 29 .44 74 .03 4 2.83 . 01 .11 1 1 RB-LBW 3+50N 9 150 40 141 25 53 9785 5.10 93 ND 2 2 .04 .150 9 19 .37 152 .01 4 2.65 .01 . 08 1 5 .1 6 13 1 42 1 **RB-LBW 3+25N** 4 115 25 29 19 1549 5.54 .11 .100 29 94 .06 4 3.19 .01 .18 1 13 134 .1 51 5 NÐ 1 27 1 4 2 61 8 . 64 RB-LBW 3+00N 822 3.89 5 .15 23 .55 217 4 4.67 .01 .11 1 4 3 68 26 123 .1 28 17 38 5 NÐ 2 82 1 2 44 .094 7 .03 **RB-LBW 2+75N** 3 135 23 .47 93 .03 3 3.03 .01 .14 1 R 141 .1 25 16 871 4.75 59 -5 ND 17 1 3 2 55 .10 .116 7 24 1 **RB-LBN 2+50N** 19 .37 76 .03 4 3.17 .01 - 11 1 1 2 -64 22 123 10 748 5.68 56 .06 .111 .1 10 42 5 ND 16 1 3 2 6 .01 .12 .2 RB-LBW 2+25N .38 72 .03 2 3.37 1 2 80 20 109 .1 20 11 673 5.06 68 5 NÐ 1 15 1 4 2 50 .06 .113 6 20 RB-LOW 2+00N 61 .2 502 4.66 2 48 .04 .123 18 .24 49 .02 2 2.60 .01 .07 1 4 3 13 67 12 7 114 5 ND 11 2 7 1 1 3 2.41 .01 .10 4 **RB-L8W 1+75N** 2 62 15 -75 .1 14 10 752 4.06 108 5 ND 1 13 1 2 3 51 .04 .121 10 19 .31 62 .02 1 **RB-L8W 1+50N** 3 103 23 110 .3 20 22 1442 5.23 307 5 ND 14 3 2 52 .06 .115 8 20 .42 72 .02 4 3.04 .01 .09 1 2 1 1 **RB-LBM 1+25N** 3 106 17 94 .1 17 13 415 5.83 79 5 24 2 89 .11 .061 23 1.04 84 .16 4 3.69 .02 .22 1 -4 ŧ - 6 **RB-LBW 1+00N** .2 920 4.63 7 7 93 115 19 13 .09 9 23 .49 76 .04 4 2.99 .01 .10 3 16 89 5 ND 20 1 3 2 60 .110 1 RB-L8W 0+75N 82 25 85 .03 3 2.84 .01 .12 1 1 4 19 98 .1 17 14 1038 4.92 76 5 MÐ 1 19 1 6 2 63 .08 .106 9 .42 RB-LBW 0+50N 6 306 4.09 64 1 2 66 17 56 .3 11 68 5 ND 16 1 2 2 59 .08 .112 7 20 .37 .03 3 2,96 .01 .07 1 1 RB-LBW 0+25N 62 15 26 69 4 3.35 .01 .08 3 91 15 8 595 4.92 95 2 6 2 .08 .096 9 .44 .04 1 1 .1 5 ND 1 17 64 RB-LBW 0+00N .05 2 2 102 833 4,24 90 2 2.95 .01 .09 14 106 .9 15 9 87 5 ND 26 1 2 5 64 .11 .106 8 23 .46 1 1 RB-LBW 0+255 3 75 9 78 .2 14 7 441 5.22 60 5 ND 1 17 1 4 2 61 .06 .086 R 24 .41 59 .03 3 3.30 .01 .06 1 1 **RB-L8W 0+50S** 3 90 17 121 145 ND 5 2 52 .03 .153 .46 144 .01 2 4.74 .01 .21 .1 16 18 1014 6.01 5 1 10 1 5 16 1 1 RB-L8W 0+755 2 36 15 57 5 285 4.22 50 ND .04 .079 17 .25 55 .03 3 2.74 .01 .06 .1 10 5 1 13 1 5 2 56 8 1 1 **RB-L8W 1+00S** 55 94 3 3.15 2 2 11 83 .2 15 9 481 5.13 72 5 NÐ 13 3 3 53 .06 .121 6 22 . 39 .02 .01 .09 1 1 1 **RB-LBW 1+255** 355 4.03 .07 .094 2 2.95 30 1 53 15 82 .3 15 7 69 5 NÐ 15 1 5 -3 48 * 20 . 38 76 . 02 . 01 .07 1 1 **RB-L8W 1+50S** 59 11 105 .3 19 9 361 3.82 82 5. ND 12 1 5 2 45 .06 .088 20 .42 59 .02 3 3.11 .01 .07 1 1 1 1 6 **RB-LBW 1+755** 1 68 82 202 5.5 15 8 270 4.11 405 5 ND 2 17 1 34 2 40 .08 .112 7 16 .34 74 .02 4 4.37 .01 .07 1 6 **RB-LBW 2+005** 33 23 77 4 383 4.65 ND 2 .05 .132 14 58 .03 3 3.56 .01 .05 1 1 2 1.4 10 72 5 1 16 1 4 45 7 .18 RB-L7W 5+00N 6 185 27 150 .3 47 27 1006 4.98 150 5 ND 1 25 1 5 2 60 .09 .093 10 36 .64 105 .03 4 2.77 .01 .09 1 5 RB-L7W 4+75N 8 134 650 .05 -38 .37 71 .02 4 2.67 .02 .06 1 3 -14 99 .1 26 13 4.03 161 5 NÖ 1 21 1 4 54 .117 9 RB-L7W 4+50N 8 145 37 31 20 982 4.52 199 5 NÐ 25 4 4 55 .06 .144 8 32 .44 81 .02 2 2.77 .01 .08 1 10 140 .2 1 1 8 RB-L7N 4+25N 236 37 ND 29 7 3 58 .09 .142 9 36 .51 97 .02 4 2.80 .01 .10 1 14 26 126 ...4 20 706 4.91 210 5 1 1 **RB-L7W 4+00N** 7 240 33 174 .2 42 24 901 4.56 185 5 ND 1 29 1 5 2 58 .12 .132 10 34 .58 **98** .02 3 2.78 .01 .09 1 1 2 RB-L7W 3+75N 900 5 2 .05 .120 10 22 .33 65 .02 5 2.31 .02 .07 1 5 -84 18 103 .1 18 10 4.37 91 5 ND 1 16 1 51 RB-L7# 3+50N 89 13 55 .05 .156 24 .29 69 .02 2 2.46 .01 .07 1 3 - 5-- 90 .1 16 11 1017 4.60 88 5 ND 1 17 1 - 3 - 3 8 49 179 .09 35 1.81 .06 12 STD C/AU-S 18 -57 37 134 7.3 -74 30 996 3.83 42 19 8 33 49 17 15 22 59 .43 .094 41 60 .87 . 14

									sc	итн	ERN	GOL	D PP	ROJE	CT-F	D I	FILE	# E	37-2	2565											۴	,906	2
SAMPLE	NO Ppn	CU PPN	PB PPM	ZN PPM	AG Ppn	NI PPM	CO PPN	MN PPM	FE X	AS PPM	U PP N	AU PPM	TH PPN	SR Ppm	CD PPM	SB PPM	BI PPM	V PPN	CA X	P Z	LA PPM	CR PPM	M6 X	BA PP h	T1 7	B PPN	AL Z	NA Z	K X	N PPM	AU4 PPB		
RB-17W 3+25N	6	47	15	90	.4	11	8	870	4.79	57	5	ND	L	14	2	2	2	61	.08	.126	7	18	.17	68	.02	5	1.75	.01	.05	ı	63		
RB-L7N 3+00N	5	49	12	84	.3	13	8	869	5.14	61	5	ND	1	17 -	1	2	2	56	.07	.140	7	22	.20	56	.01	6	2.26	.01	.05	1	6		
RB-L7W 2+75N	4	61	12	74	.4	13	. 7	1207	4.31	50	5	ND	. 1	13	1	3	3	57	.04	.141	7	21	.23	62	.02	6	2.11	.01	.07	1	5		
RB-L7N 2+50N	3	151	19	104	.4	24	18	1894	4.45	71	5	ND	1	15	i	2	2	48	.07	.119	7	22	. 45	85	.02	5	2.64	.01	.16	1	31		
RB-L7W 2+25N	2	93	17	93	.3	19	15	1211	4.16	48	5	ND	1	14	1	2	2	49 -	.06	.137	7	20	.30	75 -	.02	7	2.63	.01	.11	1	8		
RB-L7W 2+00N	2	134	24	122	.4	21	21	1029	4.80	113	5	ND	1	23	1	2	2	56	.11	.160	6	20	.49	137	.03	6	3.40	.01	.26	2	18		
RB-L7W 1+75N	2	171	19	107	.4	22	16	898	4.97	52	5	ND	1	11	1	2	. 2	50	.06	.117	12	17	. 48	96	.02	5	3.08	.01	.15	1	51		
RB-L7W 1+50N	· 4	81	17	85	.4	14	10	988	5.21	50	5	ND	- 1	17	1	2	2	55	.08	.147	6	19	.31	99	.02	7	2.76	.01	.11	1	10		
RB-L7W 1+25N	3	98	15	103	.7	15	12	1269	5.05	54	5	ND	· 1	34	1	3	2	44	.29	.210	5	15	. 32	99	.01	7	2.61	.01	.12	2	9		
RB-L7W 1+00N	2	126	17	118	.6	21	19	1316	4.84	331	5	ND	1	14	1	2	2	52	.08	.111	7	18	. 46	93	.03	6	2.50	.01	.13	1	15		
RB-L7W 0+75N	3	52	24	85	.9	10	14	2102	7.50	130	5	ND	1	14	2	2	2	51	.07	. 243	4	13	.19	70	.01	10	2.08	.01	.09	1	- 3		
RB-L7N 0+50N	- 2	133	12	73	.5	14	11	609	3.25	67	5	ND	i	14	1	2	2	36	.08	.090	5	- 14	.36	54	.03	4	2.29	-01	.07	1	10		
RB-L7W 0+25N	. 3	112	16	94	.6	18	.9	539	4.83	93	5	ND	1	22	_ 1	2	2	53	.11	.093	7	25	.56	88	.05	7	3.88	.01	.10	1	12		
RB-1.7# 0+00N	2	33	4	33	.5	5	3	224	1.87	42	5	ND	1	18	1	2	2	44	.06	. 107	5	9	.10	73	.01	2	1.28	.01	.06	1	16		
RB-L7W 0+255	4	66	12	92	.6	- 14 -	7	436	4.43	66	5	ND	1	19	1	. 2	2	56	.07	.090	7	23	.40	86	.03	6	3.46	.01	.08	-1	1		
RB-L7W 0+505	3	41	20	66	.7	8	5	232	5.69	88	5	ND	1	16	2	3	2	77	.03	.089	6	17	.21	84	.02	7	2.30	.01	.07	1	2		
RB-L7W 0+755	3	44	13	70	.6	11	7	374	5.64	100	5	ND	1	11	2	3	. 2	55	.03	.121	6	17.	.28	70	.02	8	3.0/	.01	.0/	1	2		
RB-L7W 1+005	4	35	17	66	.6	7	5	480	5.79	66	5	ND	1	16	1	4	2	59	. 06	. 151	5	13	- 14	52	.01	1	2.47	.01	.07	1	1		
RB-L7W 1+255	3	50	16	91	1.0	11	7	1045	4.21	50	5	ND	1	16	1	2	2	51	.05	.129	1	16	.26	60	.03	6	2.99	.01	.08	1	4		
RB-L7W 1+505	3	32	16	49	.6	6	4.	381	3.46	59	5	ND	1	14	1	3	3	56	.03	.116	7	12	.13	48	.01	5	2.26	.01	.06	. 2	. 8		
RB-L7W 1+755	3	28	11	47	.3	7	3	160	2.85	59	5	ND	1	20	1	2	3	53	.03	.064	9	12	.13	52	.02	3	1.84	.01	.04	2	4		
RB-L7W 2+005	3	- 36	74	84	3.5	. 9	5	229	4.87	141	5	ND	1	12	1	18	2	53	.03	.071	6	15	.21	46	.02	. 6	2.90	.01	.04	2	2		
RB-L6W 5+00N	15	182	19	95	.8	32	. 17	867	4.20	168	5	ND	1	24	i	2	2	61	.12	.114	11	33	.50	88	.03	7	2.39	.01	.10	2	13		
RB-L6N 4+75N	7	109	16	95	.4	30	14	973	3.75	- 69	5	ND	1	33	2	2	2	56	.13	.087	8	29	.55	92	.05	9	2.47	.01	.10	2	28		
RB-L6W 4+50N	6	154	15	108	.3	36	19	1109	4.04	67	5	ND	1	25	1	2	2	62	.12	.067	10	33	.67	99	.07	6	2.69	.01	.11	1	1		
RB-L6W 4+25N	3	125	15	97	.4	35	16	1278	3.82	46	5	ND	1	20	1	2	2	58	.10	.097	8	31	.58	101	.03	7	2.75	.01	. 08	1	8		
RB-L6W 4+00N	2	127	16	99	.4	32	13	828	3.75	46	5	ND	1	19	í	3	2	57	.07	.112	7	29	.50	95	.03	5	2.84	.01	.09	1	15		
RB-L6W 3+75N	4	196	16	116	.3	37	21	1177	4.17	119	5	ND	1	16	i	3	2	60	.08	.098	7	32	.55	87	.03	. 6	2.74	.01	.10	1	12		
RB-L6W 3+50N	7	194	16	103	.2	35	26	1146	4.14	127	5	ND	2	17	1	2	2	58	.12	.074	8	30	.56	115	.04	5	2.71	.01	.13	1	16		
RB-L6W 3+25N	3	200	20	157	.3	35	31	2070	4.97	109	5	ND	1	24	1	2	2	60	.07	.088	7	25	.58	151	. 04	7	3.69	.01	. 25	1	4		
RB-L6W 3+00N	4	58	12	103	.6	13	10	1749	5.66	52	5	ND	1	19	t	3	2	53	.11	.141	6	17	.25	77	.01	. 8	2.33	.01	.07	1	6		
RB-L6W 2+75N	. 4	43	8	83	.5	13	6	852	3.94	46	5	ND	1	14	1	2	2	49	.05	.122	6	19	.20	75	.01	4	2.18	.01	.06	1	. 4		
RB-L6W 2+50N	7	72	21	105	1.3	17	13	2448	7.13	69	5	ND	í	20	1	2	2	55	.09	.273	6	23	.21	87	.02	10	2.95	.01	.07	1	3		
RB-L6N 2+25N	4	111	288	163	6.3	22	16	1585	5.30	237	5	ND	1	-14	3	104	2	54	.06	.138	6	19	.39	88	.02	7	3.05	.01	.15	1	12		
RB-L6W 2+00N	4	92	42	120	1.4	19	15	1525	5.56	210	5	ND	.1	15	1	12	2	55	.04	.140	6	21	.33	89	.02	8	3.01	.01	.13	. 1	10		
RB-L6W 1+75N	6	151	22	122	.5	26	22	1435	5.41	107	5	ND	1	16	1	3	2	60	.05	.095	7	25	.50	97	.03	6	3.07	.01	.16	1	5		
STD C/AU-S	19	59	37	132	7.7	73	29	986	3.75	41	18	7	33	48	17	17	21	59	.42	.092	40	59	.85	176	.09	35	1.80	.06	.14	13	48		

 \square

...)

 1

(

(

(

C

0

1

. (Pristo)

A COLORAD

- ist

SAMPLE	NO PPM	CU PPM	PB PPN	ZN PPM	A6 PPN	NI PPM	CO PPM	HN PPH	FE Z	AS PPH	U PPM	AU PPN	TH PPN	SR PPM	CD PPM	S8 PPM	ÐI PPM	V PPN	CA X	P Z	LA PPN	CR PPM	46 2	BA PPM	11 7	9 PPN	AL Z	NA Z	K X	N PPM	au‡ PPB
RR-1 AW 1+50N	,	79	10	91	. 4	• •	Q	411	4.77	44	5	ND	1	17	1	2	7	44	.07	. 1 19	R	17	. 11	87	.02	τ	τ. 1 7	. A t	. 10	1	,
RB-L6W 1+25N	6	66	14	68	.5	9	10	1744	6.29	59	5	ND	i	16	1	2	2	6B	.05	.162	ň	17	.12	73	.01	5	1.75	. 01	.07	i	1
RB-LAW 1+00N	3	157	16	104	.2	17	15	933	4.45	73	5	ND	ī	12	i	2	2	54	.05	.116		16	.39	86	.03	6	2.47	.01	.14	1	i
RB-L6H 0+75N	3	138	27	124	.4	20	20	932	4.83	240	5	ND	1	16	1	5	2	60	.08	.080	9	20	. 57	87	.05	4	3.07	. 01	.17	1	1
RB-L&W 0+50N	3	121	15	107	i.4	17	12	664	4.50	166	5	ND	1	15	1	2	2	55	.09	.130	7	21	.47	75	.04	6	3.03	.02	.12	1	2
RB-1.6N 0+25N	5	85	15	93	1.3	15	12	1058	5.90	130	5	NÐ	1	17	1	2	2	56	.10	. 202	6	21	.41	81	.03	6	3.06	. 02	.12	1	6
RB-L6W 0+00N	5	84	13	96	.7	14	9	985	4.86	101	5	NÐ	1	15	I	2	2	62	.05	.151	8	23	.39	76	.04	6	2.79	.01	.11	1	- 4
RB-L6W 0+255	4	77	18	101	.5	16	8	479	4.25	77	5	NÐ	1	16	I	2	2	60	.07	. 165	1	26	.45	61	.04	7	2.99	.01	.11	1	1
RB-L6W 0+505	5	85	21	110	.7	17	11	1613	4.04	75	5	ND	1	21	1	2	3	59	. 69	. 197	8	24	.46	99	.04	5	2.97	.01	.13	t	4
RB-L6W 0+755	4	45	19	64	.7	9	5	271	4.69	73	5	ND	1	12	1	2	3	62	.03	.085	7	18	.22	54	.02	7	2.75	.01	.05	1	20
RB-L6N 1+005	4	36	12	65	1.0	10	5	335	4.63	62	5	ND	t	13	1	2	3	63	.04	.092	6	17	.22	52	.03	6	2.42	.01	.04	t	5
RB-L6W 1+255	4	18	12	30	.3	4	2	103	2.97	42	5	ND	1	12	1	2	2	59	.03	.036	9	10	.10	48	, 03	4	1.43	.01	.05	L	2
RB-L6W 1+305	4	38	19	59	.4	9	5	184	4.54	89	5	ND	1	11	1	2	2	75	.03	.052	8	16	. 21	60	.05	6	1.83	.01	.05	1	1
RB-L6W 1+755	10	56	22	68	.2	9	5	434	9.38	62	5	NÐ	L	14	1	2	2	86	.04	.097	6	20	.20	44	.07	7	2.89	.01	, 96	1	4
R8-L6W 2+005	10	32	22	75	.2	9	5	436	9.16	75	5	ND	1	10	1	2	2	79	.03	.105	?	20	.19	45	.04	7	3.00	.01	.04	2	3
RB-LSW S+00N	30	401	26	93	.8	37	22	566	4.56	1575	7	ND	2	20	L	2	2	75	.13	.140	10	20	.52	126	.07	6	2.63	.02	. 15	15	28
RB-LSW 4+75N	9	89	16	60	.8	25	8	710	3.12	161	5	ND	1	i4	1	2	3	73	.10	. 148	8	41	.36	98	.04	5	2.76	.01	.13	1	2
RB-L5N 4+50N	10	158	16	93	.2	31	16	823	3.39	136	5	NÐ	I.	17	1	2	2	58	.12	.090	ę	30	.52	88	. 05	6	2.26	.01	.09	2	20
R8-L5N 4+25N	8	164	15	96	.4	33	15	811	3.73	107	5	NÐ	1	16	1	2	2	63	.11	.095	12	31	.54	86	.05	6	2.38	.01	.07	2	6
RB-L5N 4+00N	7	95	19	88	.4	24	14	1205	3.82	68	5	ND	1	16	1	2	3	56	.09	.161	7	27	.37	106	.03	7	3.07	.02	.07	2	5
RB-L5W 3+75N	5	118	13	95	.4	32	16	942	4.06	62	5	ND	l	13	t	2	3	58	.08	.093	9	30	.46	88	.03	4	3.05	.01	.08	1	i
RB-L5W 3+50N	7	103	16	85	.4	26	11	853	4.61	74	5	ND	1	13	t	2	2	62	.06	.111	8	30	. 37	80	.02	7	2.93	.01	.0B	1	6
RB-LSN 3+25N	6	134	19	110	.5	20	- 14	1042	4.31	67	6	NÐ	1	14	1	2	2	56	.05	.112	6	26	.45	- 94	.02	6	2.95	.01	- 14	L	10
RB-L5N 3+00N	7	57	22	66	1.0	17	12	2715	4.17	64	5	NÐ	I	16	i	2	3	61	.05	.158	7	29	.21	111	.01	6	2.04	. 01	.10	1	26
RB-L5W 2+75N	7	157	28	135	.6	32	20	1274	4.16	117	6	ND	1	17	1	3	2	59	.07	.097	8	28	.49	116	.03	6	3.21	.01	.16	1	23
R9-L5W 2+50W	9	69	62	84	.7	14	. 7	1215	4.82	116	6	ND	L	15	1	10	2	58	.07	.112	7	17	.25	89	.02	7	2.50	.01	.08	L	3
R9-L5W 2+25N	t0	50	21	61	.8	10	5	432	5.40	75	5	ND	1	11	1	2	2	54	.04	.109	6	16	. 18	42	.02	6	2.52	.01	.05	1	6
RB-L5W 2+00N	6	64	20	56	1.0	10	- 4	272	2.97	52	5	ND	ŧ	18	1	2	2	48	.07	.069	7	16	.23	53	. 02	5	2,20	.01	.06	1	2
RB-L5# 1+75N	8	153	34	136	.8	22	19	991	4.77	127	7	NÐ	l	18	1	3	2	57	.07	.092	7	20	.44	76	.03	8	3.08	10.	.11	1	15
RB-L5W 1+50N	9	72	22	75	.5	12	10	1923	5.39	75	7	ND	1	14	1	2	2	64	.05	.141	7	16	.26	68	.03	5	2.56	. 01	.09	1	2
RB-L5W 1+25N	12	42	18	57	.3	9	5	492	6.67	70	6	ND	i	11	i	2	2	67	.03	.137	7	17	.18	50	.03	9	2.60	.01	.06	· 1	3
AB-LSW 1+00N	5	37	19	36	1.6	7	3	137	2.45	43	5	ND	1	12	1	2	3	41	.03	.096	7	12	.15	33	.01	- 4	1.90	.01	.05	1	1
RB-L5N 0+75N	7	116	22	- 94	.5	19	16	666	4.14	62	6	ND	L	18	1	2	2	54	.09	.082	11	19	.54	105	.03	. 9	3,02	.02	.15	1	E
RB-L5W 0+50N	7	129	20	102	.4	21	21	1041	4.39	65	7	ND	i	17	1	2	2	55	.09	.084	12	10	.57	118	±04	7	3.17	.02	. 19	1	1
RB-L5W 0+25N	7	128	23	103	.2	20	21	1056	4.45	66	5	NÐ	1	18	1	2	2	56	.09	.081	11	20	.57	118	.04	6	3.13	.02	. 19	1	4
RB-L5W 0+00N	9	BO	23	72	.3	17	8	318	5.23	69	7	ND	2	12	1	2	2	49	.07	.092	8	21	,40	66	.04	10	3.60	.01	.07	3	6
STD C/AU-S	20	55	40	132	6.8	64	26	989	3.82	41	18	7	29	42	16	19	21	52	.37	.082	35	61	.84	153	.07	34	1.63	.05	.11	12	52

Page 3

(

ŧ

(

(

t

Sec. 1

- La-

here .

SAMPLE CR ĦG. 8A K AUR MO CU PB ZN AG NI 00 MN FE AS U AU TH SR CD 58 81 ۷ CA Ρ LA TI Ð AL NA . PPH PPN PPĦ PPM PPM 7. X. PPM PPN PPH PPH Ż 2 2 PPN PPB PPH PPM PPM PPN PPM PPN PPN PPM X PPM PPH PPM PPM z ĩ **RB-L4W 5+00N** 2 3.00 .01 80 130 15 79 22 10 450 3.74 159 5 2 59 .12 .108 10 25 .50 74 .06 .09 1 6 .3 ND 1 18 1 2 RB-L4W 4+75N 3 57 25 90 .4 16 9 916 4.35 50 5 ND I 13 5 2 50 .06 .147 18 .37 81 .03 3 3.06 .01 .08 1 1 1 6 RB-L4W 4+50N 3 68 10 62 .4 13 6 377 3.36 84 5 ND 1 14 1 2 3 60 .10 .100 8 20 .37 66 .04 2 2.61 .01 .07 1 4 RB-L4N 4+25N 2 107 14 83 .2 24 11 584 4.08 70 5 ND 1 20 1 2 3 66 .14 .116 10 28 .55 83 .04 3 3.33 .01 .07 10 450 13 **RB-L4W 4+00N** 53 .2 43 30 2 2 .23 20 .25 2 2.10 3 40 9 5 304 4.58 5 ND 1 5 82 .074 7 64 .06 .01 .06 1 3 RB-L4W 3+75N 3 82 9 66 .2 13 7 296 3.96 47 5 32 3 2 65 .12 .080 11 24 .34 62 .07 3 3.50 .01 .06 1 4 ND 1 1 RR-L4H 3+50N 3 62 14 52 .4 9 5 175 4.24 43 5 ND 1 31 2 4 2 74 .13 .076 11 26 .30 57 .09 3 3.17 .01 . 06 2 5 RB-L4W 3+25N 5 121 14 52 .1 12 366 3.88 86 5 ND 33 5 2 82 .12 .070 20 26 .34 80 .10 2 2.69 .01 .06 15 6 1 1 1 13 -54 35 RB-L4W 3+00N 3 161 49 .1 14 6 401 2.90 5 ND 1 1 2 3 63 .09 .097 8 20 .24 73 .04 2 1.85 .01 .05 L 6 RB-L4W 2+75N 10 362 14 124 675 3.84 472 5 ND 20 63 .18 .105 .56 .02 27 .3 37 26 1 1 4 2 10 26 84 .04 3 2.49 .09 1 RB-L4W 2+50N 5 144 15 103 33 18 1203 3.94 108 2 3 59 .13 .091 9 27 .55 103 .05 2 2.54 .01 .11 4 .1 5 ND 1 16 t 1 RB-L4W 2+25N 2 156 13 75 27 11 249 3.81 20 71 .12 38 .58 67 2 2.96 .01 .09 2 19 .1 61 5 ND 2 1 4 2 .067 9 .10 **RB-L4W 2+00N** 8 89 13 62 .4 12 5 165 4.87 60 5 ND 2 28 1 2 2 75 .19 .060 10 22 .32 54 .12 3 2.68 .01 .05 2 2 .09 3 4.77 RB-L4W 1+75N 2 131 9 87 .2 20 9 293 5.08 49 5 3 5 17 1 3 2 49 .115 10 29 .43 55 .03 .01 .05 1 2 **RB-L4W 1+50N** 3 60 22 53 .4 9 5 177 5.87 51 5 ND 2 20 1 3 2 85 .11 .114 10 23 .25 59 .10 3 3.17 .01 .06 1 4 RB-L4W 1+25N 4 104 19 127 .9 23 13 724 4.63 79 5 ND 1 18 1 5 2 54 .09 .173 6 22 .40 96 .03 3 3.55 .01 .12 1 6 **RB-L4W 1+00N** 2 126 20 139 .7 27 18 1315 4.76 106 5 ND 16 Q 2 56 .06 .124 6 24 .47 111 .02 2 3.44 .02 .13 1 11 1 1 RB-L4W 0+75N .07 2 136 24 144 .8 30 20 1264 4.30 108 5 ND 1 16 1 3 3 56 .095 7 26 .50 121 .03 4 3.31 .01 .16 1 6 RB-L4W 0+50N 3 99 19 115 .5 25 11 556 5.01 109 5 ND 2 15 1 7 2 60 .06 .100 7 23 .45 90 .03 2 2.85 .02 .12 1 12 RB-L4W 0+25N 12 3 19 32 .2 5 2 80 1.93 25 5 ND 13 5 2 62 .05 .053 7 18 .09 34 .12 2 .84 .01 .03 1 5 1 1 RB-L4W 0+00N 3 32 16 50 .8 9 4 163 5.69 58 5 ND 3 2 .08 .100 20 .19 42 .04 2 2.85 .01 .04 1 6 15 1 67 6 - 1 R8-L3W 5+00N 381 70 4 18 94 .3 24 18 582 3.65 236 7 NÐ 8 33 1 3 2 76 .29 .144 16 33 .74 122 .24 3 2.23 .01 .23 1 RB-L3N 4+75N 196 18 71 .5 17 10 320 4.03 189 ND 27 2 2 78 30 .53 70 .09 2 2.52 .01 .11 1 28 4 5 1 1 .16 .117 10 **RB-L3W 4+50N** 8 465 17 80 23 13 ND 31 7 .29 .170 31 . 64 93 12 2.33 .02 . 18 240 .9 480 3.31 177 8 4 1 2 68 21 .15 1 RB-L3W 4+25N 62 1280 2 1291 13 76 1.5 26 43 482 3.89 1127 5 ND 5 32 1 12 7 81 .38 .190 19 37 .70 96 .15 2 2.85 .01 .19 RB-L3N 4+00N 125 3 413 9 77 .6 22 14 285 3.90 250 5 ND 4 120 1 39 2 89 .32 .112 41 39 .81 102 .25 2 2.12 .02 .13 9 RB-L3W 3+75N 23 2 123 10 64 .3 18 9 272 3.49 94 5 ND 41 1 4 2 79 .17 .121 31 .55 78 .09 2 1.96 .01 .13 1 1 7 RB-L3W 3+50N 6 134 12 65 .4 13 6 419 3.35 61 5 ND 1 32 1 3 4. 61 .13 .092 10 21 . 34 74 .05 2 2.52 .01 .06 1 26 RB-L3W 3+25N 24 3 219 17 72 .6 17 9 429 3.51 55 5 ND 1 30 1 3 2 67 .19 .176 12 24 .45 96 .07 3 2.35 .01 .10 1 **RB-L3W 3+00N** 3 220 14 79 .3 501 3.68 155 ND 2 28 25 14 17 12 5 1 3 4 70 .18 .103 11 .50 97 .07 2 2.86 .01 .09 1 R9-L3W 2+75N 2 164 15 385 3.26 72 .22 18 14 61 .5 9 40 5 ND 2 32 2 .093 12 28 .46 91 .10 2 2.42 .01 .11 1 **RB-L3W 2+50N** 2 176 13 67 .4 16 10 285 2.88 49 5 ND 28 3 58 .21 .102 25 .45 83 .07 2 2.58 .02 .08 9 1 1 4 10 1 R8-L3W 2+25N 3 133 12 54 1.2 15 9 258 4.53 75 5 ND 3 22 2 4 2 92 .14 .073 32 .46 74 .12 4 2.53 .02 .10 5 16 10 **RB-L3W 2+00N** 4 62 10 56 .5 10 5 217 3.38 42 5 ND 1 24 1 4 2 69 .12 .077 9 22 .26 73 .07 3 2.09 .01 .07 2 210 **RB-L3W 1+75N** 2 98 12 62 .5 13 181 3.95 73 5 24 25 .41 83 ND 1 1 4 3 76 .14 .141 8 64 .09 2 2.14 .01 .07 1 6 **RB-L3W 1+50N** 2 177 12 8 245 3.05 55 5 59 .6 17 53 5 ND 2 20 1 4 2 62 .18 .116 11 26 .44 .08 2 1.94 .01 .08 1 STD C/AU-S 57 39 33 22 58 53 18 132 7.5 73 29 980 3.76 39 16 7 48 18 17 59 .41 .094 40 .85 175 .08 35 1.81 .06 .13 13

Fage 4

٠(

(

(

(

ſ

(

(

(

(

(

C

(

(

1

C

(

(

(

اد نور

- 🤇

نمدد

فرر

SANPLEN	NŬ PPM	CU PPN	PB PPM	ZN PP#	AG PPM	NI PPM	CO PPN	NN Pph	FE I	as Ppr	U PPM	AU Pph	TH PPH	SR PPM	CD PPM	SB Pph	B1 PPM	V PPĦ	CA Z	Ρ χ	LA PPM	CR PPN	MG X	BA PPN	11 2	9 PPN	AL Z	NÁ Z	K Z	. W PPN	AU\$ PPB
RB-1.3W 1+25N	2	181	10	85	.3	33	22	688	3.76	126	6	ND	3	14	1	3	2	52	.11	.065	9	25	.58	69	.03	2	2.34	.01	.06	I	30
RB-L3W 1+00N	6	132	15	96	.,4	30	17	1221	3.64	102	5	ND	1	15	1	2	2	54	.12	.087	9	26	.51	100	.04	2	2.34	.01	.11	1	6
RB-L3W 0+75N	15	276	25	99	.9	26	21	654	3.99	167	8	ND	3	31	1	7	2	59	.23	.061	12	26	.70	90	.13	2	2.67	.01	.16	1	16
RB-L3W 0+50N	4	130	14	68	. 9	16	8	290	3.83	73	5	ND	1	18	1	2	2	56	.10	.068	6	25	. 44	57	.05	3	2.13	.01	.05	1	20
RB-L3W 0+25N	7	91	10	56	.5	11	7	296	3.31	139	5	ND	i	15	1	2	2	59	.08	. 066	7	16	.26	54	.02	2	1.69	.01	.07	1	6
RB-L3N 0+00N	6	36	12	50	.5	7	4	179	7.95	71	5	NO	i	13	1	2	2	89	.06	.076	6	22	.18	37	.08	2	1.93	.01	.04	1	5
RB-L2W 4+50N	7	530	- 11	84	.1	28	12	220	3.11	111	6	ND	2	35	1	5	2	61	.33	.113	15	25	.47	69	.13	2	2.65	.01	.10	1	81
RB-L2W 4+25N	3	330	12	61	4	16	10	177	2.62	96	5	NÐ	1	40	1	2	2	60	.27	.112	13	24	. 49	- 64	.11	2	2.12	.01	.11	. 1	35
RB-L2# 4+00N	3	168	- 14	52	.3	11	6	364	2.47	58	5	MD.	1	30	1	- 4	3	53	.18	,104	10	20	.36	62	.12	3	1.85	.01	.09	1	13
RB-1211 3+75N	2	81	11	42	,1	7	3	109	2.16	34	5	NŬ	1	22	1	2	2	46	.12	.090	10	15	.20	59	.11	2	1.87	.01	.05	1	18
RB-L2W 3+50N	3	102	7	36	.6	7	4	185	2,14	41	5	ND	1	19	1	3	3	50	.11	.072	B	17	.22	41	.07	3	1.75	.01	, 05	3	22
RB-12W 3+25N	2	337	13	52	.7	17	- 14	277	2.68	- 44	5	ND:	5	24	1	3	2	69	.36	.109	18	33	.50	77	.14	4	1.64	.01	. 14	1	54
RB-L2W 3+00N	4	399	16	75	.1	19	12	259	3.64	170	5	ND	2	45	1	3	2	82	.20	,066	11	30	.64	68	.16	4	2.02	.01	.14	8	56
RB-L2W 2+75N	11	701	24	69	1.1	16	24	1222	3.17	256	5	ND	1	36	t	12	2	71	.18	.113	10	20	. 39	100	.10	2	1.64	.01	.13	12	139
RB-L2W 2+50N	5	479	27	108	.7	22	17	484	4.20	210	5	ND	2	38	1	6	2	91	. 24	.074	11	33	.79	105	. 20	2	2.45	.02	.16	4	57
RB-L2W 2+25N	5	373	17	80	.7	18	14	276	3.70	208	5	ND	4	30	1	6	2	81	.21	.090	11	30	.62	79	.20	3	2.08	.01	.12	5	135
RB-L2W 2+00N	4	113	14	48	.6	11	6	190	2.64	80	5	ND	́ Т.	18	1	6	2	71	.10	.056	10	26	.33	47	.11	4	1.47	.01	.07	5	49
RB-L2W 1+75N	3	134	9	49	1.0	13	7	125	2.33	71	5	ND	i	24	1	5	2	55	.13	.069	8	24	.44	42	. 13	3	1.54	10.	.07	5	36
RB-L2W 1+50N	- 4	96	5	43	.6	9	5	112	3.03	66	5	ND	1	27	1	3	2	70	. 20	. 059	7	23	.26	44	.10	4	1.88	.01	.04	- 4	34
RB-L2W 1+25N	6	· 80	9	35	.2	B	4	150	3.30	62	5	ND	i	23	i	4	2	75	.14	.072	9	24	.24	64	. 12	2	1.00	.01	.05	1	19 .
RB-L2W 1+00N	4	83	10	47	.8	10	5	161	3.34	67	5	ND	1	28	1	2	3	76	.10	.071	B	26	.32	63	.10	2	1.53	.01	.05	2	19
RB-L2W 0+75N	3	90	14	41	.4	9	5	188	2.97	72	5	ND	1	19	1	5	2	69	.10	.053	8	22	.28	44	.11	2	1.74	.01	. 05	- 4	10
R8-L2W 0+50N	3	81	8	54	.4	13	6	238	3.22	62	5	ND	1	23	1	4	3	64	.13	.076	7	23	.35	59	.04	3	1.74	.01	.06	1	31
RB-L2W 0+25N	3	76	7	55	.2	12	6	232	3.03	67	5	ND	1	19	1	2	2	59	.11	.079	6	21	.36	57	.04	3	1.74	.01	.06	1	155
R8-L2N 0+00N	,4	23	6	42	.4	10	5	266	2.97	74	5	ND	1	13	. 1	2	3	57	.08	.065	4	15	.23	45	,01	2	1.24	.01	.03	1	10
RB-LIN 5+00N	4	403	12	85	.9	27	14	500	3.29	89	5	ND	7	39	1	4	2	63	.27	.086	16	28	.67	120	.14	2	2.28	.01	.14	1	9
RB-L1N 4+75N	6	537	24	81	1.4	17	9	245	2.77	68	6	ND	1	38	1	10	2	64	.31	.081	14	25	,48	67	.04	2	1.77	.01	.06	ž	64
R9-L1# 4+30N	16	1123	26	103	2.0	30	18	419	3.43	167	- 1	ND	2	38	1	17	2	66	. 37	.047	29	28	.66	16	.15	5	1.83	.01	.10	1	90
NU-LIN 4+25N	11	686	11	-67	1.0	19	12	5/4	5.05	104	6	NU NG	5	2/	1	5	2	6/	.27	. 191	20	- 27	.33	/3	-14	2	3.8/	.01	.[2	1	4/0
KR-CIM 4+60N	2	497	12	80	.6	22	12	313	3.40	78	2	NŲ	. 4	31.	1	4	2	74	•27	.088	16	31	, 64	-83	.14	5	2.94	.02	,09	1	44
RB-L1N 3+75N	3	375	9	64	.8	20	12	331	3.20	70	5	ND	7	35	1	3	2	70	.30	, 089	17	30	.60	93	.19	3	2.03	.02	.17	1	31
RB-L1W 3+50N	1	175	9	51	.5	18	10	282	3.19	37	5	ND	6	29	1	4	2	63	.29	.088	15	38	. 49	83	.15	3	1.63	.02	. 13	2	8
RB-L1W 3+25N	2	142	7	57	.3	14	7	247	3.53	69	5	NO	3	23	1	4	3	11	.15	.123	11	31	.37	55	.13	2	2,48	.01	.09	1	7
RB-LIW 3+00N	3	73	12	30	. 6	7	- 4	142	2.32	43	5	N9	1	20	1	2	2	57	.10	.069	9	18	.19	50	.08	3	1.36	.01	.06	1	200
RB-L1W 2+75N	79	788	1363	3375	64.2	24	14	355	3.31	321	5	MD	3	46	4	295	2	67	.54	.112	13	20	. 66	53	.09	2	2.23	.02	.13	11	47
RB-L1W 2+50N	8	537	213	386	13.0	17	9	260	2.54	117	5	ND	2	35	4	36	2	61	.36	.082	13	29	.50	57	.10	4	1.36	.01	.11	3	34
STD C/AU-S	18	55	38	132	7.6	- 71	29	974	3.76	40	18	7	32	48	17	15	22	58	.41	. 089	39	58	.86	173	.08	35	1.80	.06	.13	- 14	48

Page 5

See. 2

SAMPLE	HO PCN	CU	PB DDM	ZN	AG	NI	CO Dom	HN POM	FE	AS	U Dem	AU	TH	SR	CD Pow	SB FDN	BI PPM	V DDM	CA	P Y		CR	H6	BA	TI 7	B	AL	NA 7	K	. N DDM	AUL
		110	***	TT II	110	* 1 11	tro	111	. ^	. 1 7 11	111	110		F T H		111	111)	61.0	*	*	1.11	111	*	110	4	rra	~	*	*	1111	
R8-L1W 2+25N	14	1106	596	746	64.0	19	11	30 8	3.75	350	5	ND	2	38	5	162	2	87	. 48	.115	18	36	.57	45	.10	4	1.36	.01	.10	1	143
RB-LIN 2+00N	5	46	20	27	1.4	4	2	57	1.82	43	- 5	ND	1	20	1	7	2	59	.09	.042	7	16	.08	37	.08	2	1.01	.01	.03	- 1	47
RD-L1W 1+75N	6	41	4	22	.7	6	3	60	2.27	50	5	ND	1	43	1	3	2	- 74	.26	.036	6	28	.16	63	.09	- 4	.68	.01	.06	1	22
RB-LIW 1+50N	5	88	23	43	1.1	10	5	175	4.34	58	5	ND	2	27	i	- 4	2	94	.16	.208	9	33	. 31	42	.11	. 8	1.97	.01	.09	2	9
R8-L1W 1+25N	9	214	34	69	2.0	10	6	134	2.45	167	5	ND	1	31	t	7	2	64	.21	.068	8	21	.33	76	.10	6	1.30	.01	.07	1	74
RB-L1W 1+00N	6	409	69	72	2.9	12	8	190	2.53	153	5	ND	- 1	35	1	24	2	65	.26	.089	11	25	.39	50	.10	4	1.50	.01	.09	3	143
RB-L1W 0+75N	. 8	136	23	48	.8	12	6	149	4.07	153	5	ND	3	28	1	4	2	84	.17	.068	8	27	. 38	58	.17	6	1.08	.02	.06	1	19
RB-L1W 0+50N	- 4	94	9	43	.5	9	5	111	2.48	76	5	NB	- 1	26	1	3	2	58	.18	.098	7	23	. 34	54	.11	- 4	1.48	. 01	.04	. 1	250
RB-L1W 0+25N	5	52	17	29	4	6	3	141	2.50	- 61	5	ND	1	22	1	2	2	66	.10	.070	7	10	.16	43	.08	4	1.25	.01	.03	1	36
RB-CIW 0+00N	5	37	.7	21	.6	4,	2	96	1.64	43	5	ND	1	22	1	3	2	45	.12	.056	7	14	.11	39	.07	7	. 80	.01	.03	1	110
STD C	18	57	38	132	7.6	72	28	1026	3.81	43	17	8	37	49	19	17	20	61	. 44	.102	41	62	.88	177	.09	32	1.85	. 06	.14	13	-

Fage 6

Sale contractor

•

•

ŧ

(

(

(

C

(

(

(

C

(

(

(

C

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158 DATA LINE 251-1011

C

GEOCHEMICAL/ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR WA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AUST BY FIRE ASSAY

DATE RECEIVED: JUL 20 1987 DATE REFORT MAILED:										(u.	r 3/	187	AS	SAYE	ER. /	A.	dep	·/1	DEAN	ו דסי	/E,	CER	TIFI	ED I	3.C.	ASS	BAYE	R		
									501	UTHE	RN G		FEU	JEU	0-1-1-11)	F11€	: #	87-1	2060	A										
SAMPLE	N NO	I CU	PB PPM	ZN PPM	AG PPN	NI PPN	CO PPM	NN PPM	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPN	SB PPM	BI PPM	V PPM	CA ۲	P X	LA PPN	CR PPM	MG X	BÁ PPN	11 2	B PPM	AL Z	NA Z	Υ Χ	N PPN	AU## OZ/T
RD#1R	156	65739	77	325	39.0	1027	520	156 1	2.51	6525	5	30	2	7	8	18	39	58	.41	. 020	3	1	.57	18	.02	2	.65	.03	.12	1	1.390
RD#2R	1771	54112	115	433	30.5	208	92	134 1	0.86	935	5	ND	5	5	8	31	21	54	. 62	.133	33	5	.71	19	.02	2	.78	.02	. 20	1	.095
RD#3R	277	25748	57	158	11.9	170	63	141	5.74	399	5	ND	1	5	3	9	7	56	.62	.111	4	2	.50	13	.01	2	. 48	.01	.07	3	.108
RD#4R	14	2913	148	445	1.7	20	8 -	247	2.98	18	5	ND	13	20	2	11	3	54	.52	.069	19	17	.62	33	. 18	4	.92	.04	.19	1	.003
RDUSR	123	39844	4860	12116	256.3	69	57	329	6.47	1326	5	ND	16	21	163	1753	17	20	1.04	.046	157	2	.17	14	.01	5	.62	.01	.13	1	.065
RD#6R	1416	27588	98	391	80.7	180	68	327 1	2.43	692	5	NÐ	3	7	7	259	2	85	.77	.063	37	2	.70	7	.03	2	1.63	.05	.09	6	. 059
RD#7R	62	9900	8648	10162	268.3	14	16	165	1.76	1473	6	ND	3	10	116	4146	2	29	.87	.189	4	7	.42	8	.01	3	.31	.01	.06	5	.008
RD#8R	17	2204	81	187	3.2	481	186	372 2	8.71	812	5	ND	7	23	2	143	3	59	. 80	.141	51	- 4	.56	29	.03	5	.43	.01	.13	2	.001
RD#9R	911	3774	44	143	7.1	106	64	113-1	0.09	977	5	ND	4	11	3	240	4	1	.76	.273	6	2	.14	6	.01	66	.27	.01	.09	18	.001
RD#10R	3	7270	108	538	26.8	592	119	822 1	9.88	7379	5	NÐ	2	437	7	771	2	17	7.40	.084	3	1	2.34	10	.01	6	.05	.10	.04	3	.011
RD#11R	86	2477	34	62	2.3	371	2866	148 Z	7.25	37318	104	ND	7	7	1	82	21	2	.26	.001	17	1	.14	14	.01	14	.22	.01	.09	1	.026
RD#12P	107	799	41	54	11.8	121	1724	109 1	1.59	38039	5	2	89	57	1	62	6	9	1.05	.005	1517	1	.25	31	.01	12	.29	.01	.15	1	.040
RD#13R	622	65436	55	738	33.1	3329	855	310 1	6.92	22745	5	6	5	8	12	65	69	- 4 4	1.13	.046	34	1	.53	141	.01	7	.63	.01	.13	1	.275
RD#14R	247	10552	28	54	20.7	34	12	70 1	2.98	1130	8	ND	8	4	4	35	14	49	. 24	.074	80	1	.15	3	.01	3	.41	.01	.03	1	.022
RD#15R	271	3420	17	-41	10.0	72	9	109 2	4.03	68	5	ND	12	3	1	5	3	171	.64	.134	131	1	-42	2	.03	2	.20	.01	.02	. 4	.008

ASSAY REQUIRED FOR Cu 710,000 Ppm Zn 720,000 ppm Mo, 56>1000 ppm Ag 735 ppm

DATE RECEIVED: SEPT 1 1987 ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 8/87 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

DEAN TOYE, CERTIFIED B.C. ASSAYER

ASSAYER:

SOUTHERN GOLD File # 87-2565A R

SAMPLE#	CU	PB	ZN	AS	AG
	%	%	%	%	OZ/T
RD#1R RD#2R RD#3R RD#4R RD#5R	8.09 5.16 2.77 .29 4.41	.01 .01 .02 .50	.01 .02 .01 .04 1.21	.79 .09 .05 .01 .15	.92 .59 .26 .04 7.26
RD#6R	2.92	.01	.03	.09	2.18
RD#7R	.98	.73	.88	.15	6.38
RD#13R	8.25	.01	.06	2.98	.79
RD#14R	1.06	.01	.01	.13	.52

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

(

í

ť

¢

(

- (

•

1

(

(

(

(

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR DNE HDUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR NG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-2 ROCK P3-10 BDIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: JULY 30 1987 DATE REPORT MAILED: Ung 8/87 ASSAYER. D. ASSAYER. D. ASSAYER. D. C. ASSAYER SOUTHERN GOLD RESOURCES PROJECT-RD File # 87-2859 Page 1

W AUT SAMPLE# CU PB ZN AG NI CO FE AS U AU TH SR CD SB BI V CA P LA CP. MG BA 11 B AL · MA . . MA MN X PPN PPN PPN PPM PPB PPH PPN PPN PPM PPN PPN PPN PPN PPN PPN PPN PPN PPN X z PPN PPM Z 7 PPN 2 2 PPH PPM 366 11523 1526 4175 226.1 264 4.43 4649 61 1613 6 1190 A-16 25 411 6 ND 6 24 -5 22 2.09 .087 41 3 . 38 21 .01 7 .96 .01 .16 5 ND 2 7 25 193 2 .25 .028 2 .40 63 .01 2 1.25 .02 . 28 2 23 A ROCK TALUS #1 17 1011 3506 1764 31.3 104 42 606 4.43 179 8 6 .05 3 11 A ROCK TALUS #2 8 2470 62 143 5.8 220 158 71 32.61 88 5 ND 3 9 3 45 7 14 .60 .213 3 1 .26 8 .01 2 .47 .02 .02 .085 .02 55 .07 .01 .03 5 7 A ROCK TALUS #3 328 105 94 5 ND 3 4 2 2 10 .01 28 24 1.5 2 1 31 3.49 1 1 4 1 A ROCK TALUS #4 17 581 75 4.8 12 11 128 1.33 193 10 ND 2 43 2 23 5 8 .44 .005 7 8 .11 7 .02 2 .87 .20 .04 1 41 120 A ROCK TALUS #5 119 4489 29 55 4.5 1035 3355 198 23.88 35717 5 33 5 3 477 368 .05 .137 2 .29 5 .01 15 .03 .01 .01 198 40800 - 1 1 13 1760 R-1 .96 33 .04 4 1.22 .01 .26 685 45176 206 2249 274.6 29 487 239 8.32 2243 5 ND 7 19 39 1281 19 76 1.74 .176 36 3 R-2 3 1.03 291 55329 1485 8773 188.5 23 72 5 ND 7 25 119 971 26 33 1.04 .041 38 .67 11 .01 .01 .11 1 2070 265 12.76 2572 1 27 2 1.03 .01 .24 4 390 R-3 2806 7083 1253 3239 26.9 57 49 312 4.86 308 15 ND 6 30 42 112 7 75 2.06 .092 1 .86 19 .03 R-4 227 12464 3013 1917 174.9 62 33 230 3.81 1178 9 ND 7 19 32 1374 9 51 1.63 .064 25 4 .53 12 .03 3.79 .01 .14 3 1170 R-5 4 1.15 .01 .17 1 103 260 1824 33 132 9.2 60 21 593 5.05 432 ND 9 35 32 2 57 4.39 .125 93 2.75 11 .01 5 2 72 6.21 .372 .01 4 1.27 .08 .25 4 138 R-6 342 19624 64 488 135.2 130 31 881 9.02 766 27 NÐ 17 60 10 577 6 243 1 1.23 14 52 43 4 .94 .01 .13 1 11290 R-7 103 13885 200 442 31.7 55 30 377 4.52 429 5 3 9 27 8 2 28 1.60 .041 4 .46 24 .02 124 19696 126 5 980 R-8 462 29.5 161 223 1900 5.19 895 31 ND 12 27 12 108 5 64 .60 .046 109 8.55 27 .04 6 1.35 .01 .12 R-9 78 .53 .096 75 .87 17 .05 4 1.21 .01 .13 1 2330 520 28416 445 848 126.3 268 143 357 7.70 1564 19 2 9 12 20 262 10 5 R-10 285 35349 718 833 167.7 244 138 446 7.08 1966 5 2 7 14 21 540 13 57 .64 .128 27 9 . 66 18 .06 3 1.01 .01 .12 1 4830 R-11 45 . 58 .109 21 .72 18 .04 3.92 .01 .12 1 7020 107 61380 281 843 60.4 284 99 257 12.00 1241 5 ND 7 23 19 115 63 2 R-12 .01 .13 1 2540 143 54866 5467 43615 385.7 170 57 231 9.46 1227 5 ND 6 13 527 3389 37 73 .84 .075 16 16 . 82 19 .05 4 1.02 R-13 5 61 1.07 .086 49 24 .07 3.82 .01 .17 3 2160 110 23163 1116 6531 59.2 122 45 244 5.60 472 ND 9 17 85 355 5 8 .68 1 5220 R-14 60 23756 6012 61674 201.1 126 5 32 742 1611 .71 .048 3 .73 .01 .12 64 222 5.09 963 ND 9 10 42 61 7 .61 19 . 04 R~15 .01 1 2850 119 51002 24798 28697 382.1 234 186 8.82 1513 125 2697 42 44 .73 .056 29 14 .03 2.55 . 09 66 ND 6 22 357 3 R-16 469 24395 6060 42537 164.6 85 30 190 5.60 560 5 NÐ 8 20 518 1322 9 49 .77 .103 55 6 .57 16 .05 3 .65 .01 .10 1 1160 R-17 44 99999 8126 4731 108.8 381 61 102 22.30 510 -5 NÐ 75 471 164 52 .30 .050 18 .32 9 .01 3.27 .02 .06 1 2690 3 6 1. R-18 134 88958 555 2590 65.2 222 39 174 16.90 291 5 NÐ 3 10 41 121 151 77 .87 .096 16 1 .68 19 . 01 4 .72 .01 .07 1 4050 RA-1 175 11597 1006 1028 87.3 31 196 331 4.99 7 42 2.09 908 ND 4 27 17 726 2 .043 26 7 .66 69 .05 3 1.54 .01 .19 26 530 RA-11 482 15499 183 859 194.8 20 305 417 4.71 2062 5 4 32 20 1878 223 27 2.19 .080 50 8.38 37 .01 5 1.14 .01 .20 6 5870 - 5 RA-12 374 13173 731 1603 100.2 23 807 17 1.57 .063 236 490 22 219 327 3.70 1119 6 ND 42 2 13 .33 37 .01 16 .88 .01 .19 4 4 RA-13 479 39886 1286 8222 75.9 23 241 334 7.48 1435 5 ND 3 31 103 455 22 24 1.38 .140 14 31 .20 149 2710 6 .48 .01 4 .94 .01 RA-14 315 15445 95 525 27.4 46 861 364 4.76 2200 5 ND 3 24 7 176 12 31 2.35 .135 9 28 .47 32 .02 4 1.23 .01 .17 464 3220 RA-16 508 21140 518 1938 140.9 26 228 252 4.37 2065 5 NÐ 4 36 27 928 3 20 3.22 .176 16 9 .40 16 .01 11 .66 .01 .14 10 510 RA-17 401 32393 1441 2576 60.5 21 163 218 5.96 1064 5 ND 8 31 33 396 10 27 3.13 .349 22 9 .50 15 .02 5.89 .01 .13 24 1530 RA-29/30 214 21798 2329 3181 365.9 17 84 289 6.42 1873 5 ND 9 30 51 2030 2 36 1.63 .066 85 . 84 22 4 1.07 .01 .18 1001 1440 7 .05 RA-32 415 42046 86 379 41.1 20 166 313 9.36 832 5 ND 7 53 60 1.67 .067 53 .01 .14 19 1380 6 26 8 10 1.05 14 .04 3 1.44 RA-41 186 42955 129 423 131.2 32 566 268 8,91 2235 6 ND 11 19 11 234 12 30 .82 .052 25 5 . 63 20 .03 5 1.17 .01 .19 9 799 RA-42 134 33287 241 679 192.1 20 218 281 7.20 1424 7 ND 10 26 18 1582 7 49 1.68 .043 37 12 .78 20 .05 5 1.38 .01 .19 8 680 RA-90 352 13350 14322 6332 165.2 82 1388 32 .75 .01 .11 238 1870 49 871 184 4.01 5844 5 NÐ 28 20 9 14 1.92 .148 474 6 . 41 15 .01 69 1.06 .038 RA-101 116 25246 141 913 297.1 34 27 266 7.28 895 5 4 9 23 22 2075 . 6 79 10 .77 17 .05 3 1.15 .01 .15 3 12360 STD C/AU-R 35 129 6.8 68 57 .50 .089 37 59 .91 173 .08 33 1.73 .05 .13 12 510 18 58 28 922 4.02 41 17 7 30 49 10 17 21

ASSAY REQUIRED FOR Cu Pb As 710,000 ppm

SAMPLE	MO	CU	PB	ZN	AG	NI	00	MN	FE	AS	U	AU	TH	SR	CD	SB	BI	۷	CA	₽	LA	CR	ĦG	BA	н	B	AL	NA	K	¥.	AUT	
	PPN	PPN	PPN	PPN	PPN	PPN	PPH	PPN	1	PPN	PPM	PPĦ	PPN	PPN	PPN	PPN	PPN	PPN	2	1	PPM	PPN	ĩ	PPM	2	PPN	2	ï	ĩ	PPN	PPB	
ROCK TALUS 8+75N	3	2	20	108	.2	- 14	7	1614	10.72	7	5	ND	1	166	1	2	2	103	21.48	.002	5	1	1.68	15	.01	2	.11	.27	.01	4	2	
ROCK TALUS 8+50N	2 23	3761	43	129	5.9	29	254	474	3.81	392	5	ND	6	27	4	10	80	51	3.92	.001	20	1	. 25	21	.01	10	.62	.01	.15	t	2750	
ROCK TALUS 5+40N	6 17	7408	68	348	37.5	225	576	64	15.50	35582	5	ND	5	3	3	96	7	3	.12	.067	15	1	.04	- 4	.01	- 74	.06	.01	.02	320	1320	
ROCK TALUS 4+70N	2	82	142	250	1.0	72	9	264	41.15	151	5	ND	9	5	1	9	1	416	.41	.103	111	1	. 49	5	.03	2	. 42	.01	.02	1	17	
RT ROCK 1+755	26	6005	17	98	6.7	40	13	430	3,00	1243	5	ND	1	6	1	2	2	136	.55	.080	4	5	1.21	Ģ	.01	6	. 67	.02	.01	6	285	
RT ROCK 3+805	95 B	9465	48	126	13.5	9	. 7	488	12.63	103	5	ND	7	73	2	222	2	56	3.70	.127	18	4	.45	20	.01	5	.21	.01	.10	- 1	410	
RT ROCK 5+005	139 9	7616	15	70	4.0	46	22	276	11.09	91	9	ND	9	19	1	2	2	160	1.73	.183	26	10	1.33	50	.05	- 4	1.25	.01	.12	9	685	
RT RUCK 7+00S	27 5	51:47	43	109	.5.9	122	158	129	24.41	1309	5	ND	12	9	i	14	2	51	.26	.037	2	11	.28	9	.04	44	.40	.03	.16	11	36	
RT ROCK 12+50S	25	323	10	- 44	.4	265	20	135	2.50	386	5	ND	3	152	1	. 5	2	129	2.87	.008	2	58	1.02	53	.06	47	5.08	.57	.52	4	20	
RT ROCK 2+155	73 12	2429	21	387	5.1	35	13	486	7.90	32	14	ND	9	67	2	4	2	185	4.54	.033	90	8	1.03	20	.01	5	. 34	.01	.07	. 4	830	
RVJ-1	1715	5	10	65	4.9	8135	8214	142	18.64	31610	5	104	. 6	121	2	21	1189	32	1.51	.021	2	1	.20	12	.01	39	.21	.01	.02	· · · 1	81300	,
RVJ-2	70320	148	9	1	1.0	381	8255	180	3.06	35551	10	91	37	489	2	2	178	192	8.99	2.297	629	1	.81	12	.01	2	.49	.24	.04	1	131290	
RVJ-3	1583	81	7	41	i .4	1602	4151	505	4.96	23103	15	3	4	21	1	2	138	109	1.83	.255	23	1	1.59	9	.02	. 7	1.67	.01	.32	1	7050	
RWU-55	1805 24	1415	691	9188	179.7	16	268	344	5.55	1847	5	ND	21	. 65	125	1885	2	15	1.92	.082	374	3	.38	30	.01	8	. 90	.01	.22	1414	1460	
RWU-75	241 28	8953	514	1736	86.2	174	159	215	5.41	1235	10	2	14	23	24	89	17	29	.95	.025	169	8	.45	15	.04	6	.91	.01	.13	7	4580	
RWU-77	92 16	5271	191	432	63.4	37	32	209	4.79	382	11	ND	24	19	7	121	2	14	.74	.009	355	3	. 49	13	.01	8	1.04	.01	.15	5	1460	I.
NO NUMBER	267 13	3189	50	150	42.0	25	30	226	14.09	1404	9	ND	6	11	2	36	9	60	. 58	.093	45	3	.51	25	.03	4	1.12	.02	.18	70	4980	÷
STD C/AU-R	20	60	41	130	6.8	69	28	924	3.97	41	21	. 7	37	50	18	18	19	57	. 48	.089	37	58	.88	177	.08	32	1.85	.06	,14	15	510	

Page 2

€

(

€

€

€

C

£

€

C

€

(

(

SAMPLE	NO PPM	CU PPM	PB PPN	ZN PPM	AG PPN	NI PPH	CO PPN	HN PPH	FE X.	· AS PPH	U PPN	AU PPM	TH PPM	SR Pph	CD PPM	SB PPH	BI PPN	V PPM	CA X	Р 7	la Ppr	CR PPN	M6 %	BA PPN	11 X	B PPM	AL X	NA Z	K Z	N PPN	AU s PPB	
AT 0+00	23	143	18	75	.4	20	6	353	5.63	156	8	ND	2	24	1.	-5	3	80	.19	.106	15	37	.70	84	.06	3	3.67	.02	.15	1	3	
AT 0+50	20	387	7	61	.8	52	35	262	6.48	491	31	ND	. 9	51	1	4	2	134	.77	.099	17	39	1.73	139	. 34	2	3.72	.04	.60	-1	10	
AT 1+00	13	129	9	71	.5	43	15	481	6.07	132	10	ND	1	30	1	5	2	123	.19	.146	6	91	1.40	104	.11	2	2.97	.02	.33	1	1	
AT 1+50	9	126	12	93	.5	62	32	747	6.44	151	R.	ND	3	57	1	4	3	- 117	53	.154	7	91	1.63	120	.19	2	2.64	.03	.51	1	1	
AT 2+00	27	217	19	129	.3	131	54	631	8.05	356	5	ND	5	76	1	10	2	124	.54	.108	10	100	2.09	178	.23	8	3.30	.03	.61	i	5	
AT 2+50	26	296	13	86	.5	117	57	554 1	0.86	291	14	ND	8	116	1	12	2	112	. 39	.153	10	74	1.72	145	.20	2	3.53	.05	.65	1	18	
AT 3+00	6	94	8	- 49	.1	19	21	438	7.47	179	5	ND	7	44	1	3	2	128	.57	.13?	5	79	2.39	192	. 34	3	2.89	.02	1.20	1	10	
AT 3+50	19	223	9	73	.3	85	35	412	8.58	225	6	ND	4	84	1	8	2	103	.30	.122	10	- 74	1.53	141	.18	2	3.44	.04	.49	1	8	
AT 4+00	10	245	12	87	.3	42	31	698	8.50	232	8	ND.	3	76	1	8	2	102	. 38	.141	8	85	1.70	126	.20	. 2	3.22	.03	.55	1	5	
AT 4+50	20	518	17	64	.4	68	33	406 1	1.53	399	5	ND	7	109	1	25	2	115	. 34	. 151	10	79	2.01	150	. 28	3	3.66	.04	.97	. 1	16	
AT 5+00	17	291	16	86	.4	54	27	514	9.04	483	5	ND	2	83	1	13	2	97	.33	.154	9	58	1.41	132	.09	3	3.22	.04	.48	ť	5	
AT 5+50	23	374	14	64	.4	69	33	371 1	3.07	572	8	ND	7	105	1	21	2	90	.23	.166	12	50	1.47	116	.16	3	3.68	.05	.63	1	20	
AT 6+00	- 18	274	13	76	.5	47	19	280	9.04	011	6	ND	2	67	1	16	2	78	.26	.128	7	50	1.14	102	.11	2	3.64	.04	.43	- 1	10	
AT 6+50	24	396	21	64	.5	78	30	337 1	2.22	388	- 5	ND	6	43	1	21	2	101	.18	.157	9	68	1.60	129	. 19	2	3.11	.04	.68	9	52	
AT 7+00	17	216	14	62	5	39	23	743	8.66	310	5	ND	2	58	1	10	2	89	.20	. 186	9	51	1.19	109	.12	2	3.01	.04	.40	1	6	
AT 7+50	17	284	9	53	.3	46	19	463 1	2.11	443	5	ND	3	89	1	13	2	75	.15	.152	Ģ	58	1.36	105	.11	2	3.62	.05	. 49	1	11	
AT 8+00	39	401	23	64	.6	79	31	341 1	3.11	500	5	ND	6	57	1	22	Z	82	.13	.161	9	59	1.38	110	.13	2	3.50	.05	.56	10	10	
AT 8+50	23	281	47	- 54	.3	28	- 11	194-1	4, 82	465	5	ND	4	69	1	34	2	67	.13	.143	5	50	1.24	75	. OB	3	3.13	.05	.45	2	15	
AT 9+00	23	262	51	46	.3	26	10	163 1	4.16	429	- 5	ND	4	60	1	38	2	65	.10	.139	5	44	1.17	73	.08	2	2.85	.05	.45	1	10	
AT 9+50	32	313	16	57	.3	95	32	435 1	3.35	247	7	ND	5	111	1	15	2	57	.26	.176	. 8	30	1.04	90	.05	2	4.03	.06	.38	2	1	
AT 10+00	17	175	6	46	.5	18	5	187	8.45	164	7	ND	t	45	1	7	2	65	.17	.169	5	35	.69	60	.04	2	3.03	.04	.19	1	t	
AT 10+50	11	139	7.	55	.3	19	4	136	6.21	117	5	ND	1.	46	1	5	4	47	.19	.221	4	25	. 50	62	.02	2	3.30	.02	.15	1	3	
AT-11+00	22	255	23	49	.1	35	- 11	172 1	1.90	165	6	ND	3	99	1	16	2	72	14	.159	7	- 44	1.12	102	.09	- 2	3.78	.06	.52	1	1	
AT 11+50	13	170	6	58	.4	23	8	390	7.26	135	5	ND	1	66	1	7	3	50	. 24	.169	4	24	.52	74	.02	2	2.48	.03	.20	1	5	
AT 12+00	14	120	12	58	.5	17	5	227	7.30	131	8	ND	1	55	1	8	2	78	.17	.166	5	29	.82	83	.02	2	2.85	.04	.25	1	4	
AT 12+50	11	108	11	43	.7	21	4	94	5.66	102	8	ND	i	35	1	6	2	71	.13	.133	5	24	.27	79	.02	2	2.10	.02	.11	2	1	
AT 13+00	- 15	107	22	- 44	.4	29	6	107	8.45	185	8	NÐ	2	44	1	12	3	80	.07	.128	5	55	.72	87	.07	6	4.21	.04	.26	6	6	
AT 13+50	21	275	26	56	.3	49	13	175 1	3.29	352	5	ND	5	72	1	25	2	73	.05	.166	7	50	1.01	119	.08	3	3.44	.06	.46	5	5	
AT 14+00	12	109	15	49	.6	18	4	117	6.41	152	5	ND	1	64	1	9	2	63	.20	.172	5	28	. 44	93	.01	2	2.34	.02	.17	- 4		
AT 14+50	11	119	17	93	.3	22	11	520	6.90	143	5	ND	1	105	- 1	8	2	54	.47	. 221	5	29	.63	133	.02	2	2.32	.03	.29	1	1	
AT 15+00	12	125	12	61	.6	20	5	198	6.70	161	5	ND	1	56	1	12	2	61	.24	. 151	5	37	,47	76	.03	2	3.34	.02	.15	2	3	
AT 15+50	10	159	15	73	1.4	30	6	105	4,47	128	5	ND	1	61	1	6	2	55	.33	.134	5	23	.30	83	.02	2	1.46	.01	.16	1	4	
AT 16+00	14	167	32	49	1.7	22	1	185	6.01	281	6	ND	1	45	1	13	2	48	.16	.098	14	30	.69	85	.04	13	2.25	.04	.29	-5	12	
AT 16+50	23	303	22	59	.4	25	7	190 1	0.75	367	5	ND	2	79	i	16	2	54	.16	.159	6	29	.67	82	.04	3	3.03	.05	.25	- 24	10	
AT 17+00	20	301	14	46	.3	30	8	156 1	0.79	279	10	ND	3	48	1	13	2	73	.05	.096	8	48	.90	99	.08	2	3.92	.03	.31	. 2	3	
AT 17+50	30	190	10	29	.1	12	3	53	7.14	115	5	ND	1	25	1	6	3	63	.05	.095	7	30	. 33	27	.03	3	3.35	.02	.05	3	4	
STD C/AU-S	21	63	44	131	7.0	- 74	29	1033	4.21	46	19	8	40	54	20	- 14	22	61	.52	.098	40	65	.95	181	.09	35	1.61	.06	.15	11	- 49	

Page 3

(

٤

C

(

•

C

C

€-

C

(

£

								50U	THEF	RN G	OLD	RES	OURC	CES	PROJ	ECT	-RD	FI	LE	# 87	-285	9									Page	a 4
SAMPLE#	NO Pph	CU PPM	PB PPH	ZN PPM	AG PPH	NI PPN	CO PPM	in Pph	FE Z	AS PPM	U PPN	au Ppr	TH PPN	SR Ppn	CD PPN	SØ Ppn	BI PPM	V PPN	CA I	P Z	LA PPM	CR PPN	MG X	BA PPN	דז ג	B PPM	AL Z	NA Z	K Z	N PPN	AU t PPB	
AT 18+00 At 18+50 Atj-1	11 12 22	302 296 232	9 10 36	43 30 41	ь 1. 1.	21 14 36	5 3 14	122 80 209	9.51 8.72 11.52	154 131 489	5 5 5	ND ND ND	2 2 5	54 29 102	1 1 1	11 7 30	3 2 2	73 57 71	.07 .11 .11	.087 .118 .136	8 6 8	55 40 56	.87 .50 1.01	78 40 134	.08 .05 .10	3 2 2	4.31 3.95 3.69	.03 .02 .04	.24 .09 .44	4 3 7	18 20 26	
ATJ-2 Atj-3	27 29	318 297	36 28	62 66	.5 .3	34 29	12 9	266 232	13.33 12.75	567 404	5	ND ND	4	8 9 58	1	28 25	2	62 71	.13 .04	.174 .163	9 8	42 46	.85 .82	123 105	.07 .07	3	3.38 3.80	.04 .04	.41 .31	24 17	37 10	
ATJ-4 ATJ-5	23 35	241 599	29 26	51 50	.2 .9	30 30	9 8	189 173	11.35 16.43	609	6 5	ND ND	4	66 85	1	23 19	2	65 71	.03 .03	.133	7 7	44 35	.06 .79	111 104	.07 .05	2	4.06 4.25	.04 .08	.31 .35	12 159	9 72	
Alj-8 Atj-7 Alj-8	23 20 17	346 356 303	29 14 14	58 33 48	.5 .1 .1	29 19 38	7 4 9	163 110 158	13.59 16.20 12.29	347 266 227	5 7 8	ND ND ND	3 4 4	61 75 103	1 1	18 18 11	2 2 2	59 59	.05 .16 .09	.165 .154 .142	5	40 36 54	.81 .92 1.10	92 90 125	.05 .05 .11	2 15	4.28 4.11 4.35	.02 .04 .07	. 24 . 38 , 58	24 10 5	18 6 3	
47J-9 A1J-10	15 17	287 261	14 10	52 45	.1 .1	37 31	13 11	184 151	9.03 12.94	194 129	5	ND ND	5 5	73 124	1	16	2	72 62	.05 .05	.111	10 10	50 39	1.04	146 135	.11	2 2	4.02 4.25	.06	.46 .51	6 1	6 55	
ATJ-11 ATJ-12 ATJ-13	15 28	238 586	16 19 30	44 82	.1 .1	36 58	12 51	137 601	11.76 8.65	177 282	5 5 5	ND ND	54	66 58	1	6 11 24	2 2 2	65 92	.04	.128	9 7	50 91	1.00	136 149	.12	2 2 2	4.47 5.24	.04	.49 .75	4 6 7	8 11 14	
ATJ-14	13	375	19	51	.1	57	22	361	13.00	227	5	ND	5	3B	1	10	2	66	.05	. 106	7	48	.93	97	.05	2	4.43	.02	.32	2	5	
AIJ-15 RB LAN 7+00N RB LAN 6+75N	40 6 3	518 61 69	23 - 13 17	42 81 114	.2 .1 .1	21 11 22	6. 8.	134 770 446	10.80 4.05 5.28	344 45 62	5 5 5	ND ND ND	3 1 1	56 23 26	1 1 1	22 2 2	2 2 2	62 55 66	.05 .09 .21	.113 .166 .107	9 8 8	40 17 31	.63 .18 .55	85 82 59	.06 .01 .03	2 4 5	4.15 1.70 2.55	.03 .02 .02	.20 .08 .06	9 1 1	в 4 4	
RB L6W 6+50N RB L6W 6+25N	2 3	81 53	23 16	146 101	.1	21 15	15 10	1010 1152	4.72	65 49	5 5	ND ND	1	22	1	2	3 2	63 48	.16	. 125	9 9	30 24	.60	70 62	.02 .02	2 3	2.78	.01 .02	.09	1	8	
RB L6N 6+00N RB L6N 5+75N	4	57 115	20 70	86 156	.5	12 20	9	1014 813	4.02	53 136	5	ND ND	1	19 20	1	2	2	47 50	.11	.198	9	21 28	.23	61 67	.01	2	2.51	.01	.07	1 2	2 5	
RB LON 5+25N RB LON 5+25N	13	135	13	92 92	.5 .7	31 40	11	838 601	3.71 5,23	147	5 5	NĐ	1	40 27	1	3	2	38 65	.15	.173	9	54 70	. 31 , 45	104 94	.01	3 4	2.34	.02	.12	5	5	
RB 15W 7+00N RB 15W 6+75N RB 15W 6+50N	4 3 3	175 81 123	15 32 42	122 110 102	.2 .4 .8	28 23 21	17 9 9	1267 709 832	4,38 4,36 4,18	117 54 58	5 5 5	ND ND ND	2	37 15 17	1	2 6 4	2 2 2	67 54 54	,18 ,07 ,14	,133 ,126 ,139	11 8 9	30 30 25	.65 .49 .45	123 68 72	.04 .02 .02	2 2 2	2.88 2.65 2.51	.02 .02 .01	.14 .08 .07	7 2 5	29 6 2	
STD C/AU-S RB LSW 6+25N	20 3	61 64	40 18	136 93	7.4 .2	72 20	8 30	1055 728	4.10 3.91	39 66	20 5	B ND	40 1	55 14	20 1	18 3	22 2	62 55	.53 .09	.098 .100	42 9	70 30	.96 .43	185 65	.10 .03	37 2	1.90 2.19	.06 .02	-16 -06	14 1	52 25	
RB LSN 6+00N RB LSN 5+75N	5 22	56 377	11 15	64 76	.5 .4	13 25	7 29	72J 483	4.32	53 1854	5	ND ND	23	12 20	1	2	2 2	46 70	.09 .20	.160	8 12	27 33	. 29 . 56	56 99	.02	32	2.91	.02 .01	.07	1	1 21	
RB LOW 5439N RB LOW 5425N RB LOW 0425S	16 32 5	348 431 37	21 24 10	82 83 42	.4 .4 .5	8 23 26	22 24 5	448 536 671	4.90 5.60 3.51	1282 1774 78	5 5 5	ND ND ND	2 3 1	25 20 18	1 1 1	2 3 2	2 2 3	67 76 56	.17 .15 ,06	.105 .109 .090	12 10 6	28 30 17	.81 .59 .21	106 110 83	.07	2 6 2	2.55 2.53 1.52	.02 .02 .02	.13 .13 .09	5 7 2	23 4	
RB L5W 0+505 RB L5W 1+255	4	33 14	9 4	42 23	1.1	6 8	3 5	360 83	3.55 4.49	4 8 13	5 5	NÐ ND	1	30 11	1	2	2 2	54 141	. 19	.125	6 7	11 82	. 11 . 12	62 28	.02 .14	2 2	1.35	.01 .01	.07	3 1	5 12	

Lenne -

N. 4. -

. . .

(

(

€

r"

(

. ks....

SAMPLE	NU PPN	CU PPM	PB PPN	ZN PPM	AG PPM	NI PPH	CO PPM	NN PPH	FE X	AS PPM	U PPM	AU PPM	TH PPM	SR PPN	CD PPM	SB PPM	BI PPM	V PPM	CA X	P Z	LA PPM	CR PPM	NG Z	BA PPM	11 X	B PPM	AL X	NA X	K Z	N PPN	AU t PPB
RB L5W 1+50S RB L5W 1+75S RB L5W 2+00S RB L4W 7+00N RB L4W 6+75N	2 3 5 4 5	11 20 25 77 94	6 3 14 14 26	15 22 36 73 73	.2 .1 .2 .1 .7	3 6 4 15 18	1 1 3 7 7	46 37 152 400 589	1.69 1.82 7.65 4.82 4.79	10 10 71 53 73	5555555	ND ND ND ND	1 1 2 2	16 18 8 19 21	1 1 1 1	2 2 4 2 2	2 2 2 2 2	43 45 93 64 65	.05 .09 .03 .07 .08	.030 .055 .092 .078 .144	7 7 6 9 12	19 27 13 26 28	.05 .04 .13 .52 .55	37 50 46 55 72	.04 .01 .03 .08 .04	16 3 2 7 2	.57 .33 1.73 2.40 2.75	.02 .01 .01 .02 .02	.03 .05 .05 .08 .09	1 1 1 1	1 17 1 24 1
RB L4W 6+50N RB L4W 6+25N RB L4W 6+00N RB L4W 5+75N RB L4W 5+50N	5 3 5 8 6	105 91 169 353 112	15 12 16 26 18	72 47 57 106 73	.5 .3 .5 .4 .1	17 9 12 21 21	8 5 9 20 8	590 252 406 906 284	4.07 2.78 3.48 3.72 3.94	85 271 510 283 451	5 5 5 5 5	ND ND ND ND	f 1 1 2 1	20 18 20 19 20	t 1 1 1	2 2 3 2	2 2 2 2 2	56 46 50 54 56	.09 .11 .11 .18 .13	.142 .085 .104 .151 .081	11 7 8 11 7	21 16 18 22 29	.46 .25 .35 .59 .57	78 50 69 67 66	.03 .02 .04 .05 .04	2 2 3 2 2	2.67 1.83 2.13 2.27 2.15	.02 .01 .02 .01 .01	.08 .06 .07 .12 .06	1 9 3 3 1	2 15 20 9 1
RB L4W 0+25S RB L4W 0+505 RB L4W 0+755 RB L4W 1+005 RB L4W 1+255	2 4 3 5 6	102 100 178 65 50	11 14 13 16 18	83 88 88 58 25	.1 .2 .3 .4 .5	19 19 21 9 5	11 12 13 5 3	276 377 333 340 155	3.70 5.26 4.95 5.52 2.53	45 65 84 52 34	5 5 5 5 5 5	ND ND ND ND	5 4 3 1 1	15 11 17 13 22	1 1 1 1	2 2 3 2	2 2 2 2 2	45 51 55 62 54	.12 .05 .08 .08 .06	.062 .054 .042 .071 .090	8 7 7 6 8	19 20 23 20 19	.52 .46 .76 .29 .13	71 68 110 51 52	.05 .05 .05 .05 .05	2 2 2 2 2	3.26 3.69 4.15 2.42 1.14	.02 .02 .03 .01 .02	.07 .08 .14 .06 .06	1 1 1 1	6 2 2 2 22
RB L4W 1+505 RB L4W 1+755 RB L4W 2+005 RB L3W 0+255 RB L3W 0+505	3 8 6 11 7	13 61 42 25 35	12 17 17 13 16	20 45 36 44 59	.6 .1 .2 .3 .3	3 10 8 5 7	1 5 4 3 5	42 178 159 215 401	1.82 6.94 6.10 6.18 9.73	21 70 53 66 65	5 5 5 5 5	ND ND ND ND	1 8 3 1	12 14 20 14 10	1 1 1 1	2 5 2 3 2	3 2 3 2 2 2	56 109 86 81 73	.07 .08 .11 .05 .04	.046 .207 .059 .106 .116	6 7 8 6 5	15 28 27 9 17	.07 .34 .23 .08 .20	28 43 56 46 37	.10 .16 .12 .03 .05	2 2 13 2 2	.67 2.00 1.88 1.29 1.92	.01 .02 .02 .01 .01	.04 .06 .05 .05 .05	1 3 1 1	2 1 1 1 1
RB L3W 0+755 RB L3W 1+005 RB L3W 1+255 RB L3W 1+255 RB L3W 1+505 RB L3W 1+755	4 6 4 10 9	34 29 41 31 23	7 15 7 9 6	28 43 50 40 27	.1 .2 .6 .3 .4	4 8 6 5	2 3 4 3 2	89 176 164 126 55	1.50 5.67 4.05 5.74 2.37	15 73 40 50 28	5 5 5 5 5	ND ND ND ND	1 1 1 1	16 19 35 27 18	1 1 1 1	2 2 2 2 4	2 2 2 3 2	25 64 47 84 54	.07 .10 .43 .42 .13	.065 .077 .122 .114 .045	6 5 4 5 7	10 16 13 12 17	.06 .11 .15 .13 .10	59 50 52 44 46	.01 .03 .02 .04 .06	2 7 3 2 2	.74 1.73 2.16 1.25 .72	.01 .02 .01 .01 .01	.05 .04 .06 .07 .07	1 2 1 1 1	10 3 1 2 1
RB L3W 2+005 STD C/AU-S RB L2W 0+255 RB L2W 0+505 RB L2W 0+755	4 20 7 7 5	28 61 71 144 323	7 39 7 9	33 130 54 79 61	.4 7.6 .6 .1 .3	7 70 13 24 18	3 29 10 15 11	141 1026 1029 772 426	2.86 4.13 3.58 3.84 3.54	19 41 74 113 84	5 22 5 5 5	ND 7 ND ND ND	1 40 2 2 2	22 53 21 21 21 21	1 19 1 1 1	3 18 2 2 2	2 19 2 2 2	70 61 51 53 59	.13 .51 .13 .22 .28	.061 .075 .077 .088 .085	6 40 5 9 10	32 60 16 25 27	.10 .93 .32 .54 .47	69 171 62 71 59	.03 .09 .01 .03 .06	2 37 2 2 2	.57 1.80 1.66 1.85 1.68	.01 .06 .01 .02 .01	.07 .14 .04 .09 .09	1 13 1 1 2	5 53 1 7 24
RB L2W 1+00S RB L2W 2+00S RB L1W 8+00N RB L1W 8+00N A RB L1W 7+75N	19 13 3 6 4	28 72 118 89 125	7 7 17 24 26	36 61 96 83 105	.1 .4 .5 .4 .4	5 14 20 13 17	3 6 9 7 7	145 120 324 154 506	2.17 2.17 3.41 4.07 2.97	52 42 47 60 43	5 5 5 5 5	ND ND ND ND	1 1 5 2 1	25 38 89 90 85	1 1 1 1	2 2 2 2 2 2	2 3 2 2 2	63 26 64 66 56	.24 .37 .37 .36 .30	.075 .122 .088 .094 .094	6 4 14 17 11	8 12 26 26 24	.07 .15 .63 .46 .47	110 70 87 82 89	.02 .01 .13 .09 .06	2 2 2 10	.73 .95 2.15 3.02 1.79	.01 .01 .02 .02 .02	.06 .08 .12 .11 .12	1 1 1 1	1 1 210 7
RB L1W 7+50N RB L1W 7+25N	2 45	136 6156	64 126	236 192	1.9 3.2	17 35	7	299 306	3.07 8.83	50 433	5 5	ND ND	5 14	99 54	1 2	2 47	2 2	57 73	.37 .44	.097 .137	14 48	25 25	.59 .60	82 49	.08	3 21	2.05	.01 .02	.10 .10	1 1	1 810

Page 5

C

C

P	a	a	e	ć
•	_	_	-	

C

C

€

€

€

€

ſ

SAMPLE	NO PPM	CU PPN	PB PPN	ZN Pph	AG PPN	NI PPN	CO PPM	'NN PPN	FE Z	AS PPM	U PPN	AU PPN	TH PPN	SR PPH	CD PPH	SB PPM	BI PPM	V PPM	CA Z	P 7	LA PPM	CR PPM	M6 2	BA PPM	TI X	B PPM	AL Z	NA Z	K I	N PPH	AU t PPB
RB L1N 7+00N	34	3711	133	115	17.5	23	10	274	5.02	278	6	3	13	87	1	207	2	86	.43	.139	28	30	.61	66	.11	2	2.17	.02	.13	10	2830
RB L1W 6+75N	23	2396	48	122	5.6	18	9	296	3.55	132	5	ND	3	91	1	43	2	61	.51	.080	34	21	. 60	63	.11	2	2.20	.01	.11	1	43
RB L1W 6+50N	9	495	21	46	.6	11	5	349	3.35	53	5	ND	1	55	1	7	2	-77	.37	.068	15	19	.34	82	.12	2	1.91	.02	.09	1	77
RB L1W 6+25N	7	1262	19	65	1.1	13	6	153	2.88	41	- 5	ND	3	55	1	8	2	60	. 49	.094	19	20	. 46	75	.12	2	2.37	.02	.09	1	46
RB L1W 6+00N	4	249	13	61	.6	16	7	246	3.72	28	5	ND	2	52	1	4	3	80	.37	.064	13	26	.56	108	.14	2	2.21	.02	.11	- 1	8
RB L1W 5+75N	5	172	22	47	.6	10	5	212	5.28	53	5	ND	3	45	1	7	3	96	.24	.147	12	23	.37	- 59	.15	2	2.21	.01	.09	- 1	9
RB L1W 5+25N	7	870	18	62	1.2	17	8	301	3.46	83	5	ND	3	31	1	10	2	68	.25	.103	16	24	.52	70	.10	2	2.07	.01	.08	1	143
RB LOW 7+75N	13	146	27	54	.3	19	7	265	3.85	101	5	ND	-2	88	1	9	2	81	.27	.067	19	23	.40	83	.09	. 2	2.06	.02	.08	1	180
RB LOW 7+50N	54	2738	- 74	81	9.5	27	- 9	247	6.56	218	5	ND	5	264	i 1	23	2	73	.36	.173	45	17	.63	102	.07	2	2.25	.01	.12	1	165
RB LOW 7+25N	14	348	43	98	.9	15	11	843	3.07	196	5	ND	2	87	i	8	2	57	.41	.121	17	17	.61	78	.07	2	2.06	.01	.17	1	24
RB LOW 6+50N	18	1691	46	107	3.5	22	8	240	3.79	188	6	ND	5	95	1	25	2	64	.42	.126	47	21	.58	90	.09	14	2.36	.01	.14	1	175
RB LOW 6+25N	36	2463	53	127	7.0	25	19	638	4.53	321	5	ND	6	93	1	46	-2	66	.43	.124	87	17	. 68	90	.07	2	2.31	.02	.11	- 1	185
RB LOW 5+75N	12	996	21	63	•7	-15	8	228	3.36	77	5	ND	5	71	1	21	2.	70	.76	.082	17	19	.46	79	.15	2	2.80	.01	.17	1	46
RB LOW 5+50N	11	928	20	65	.7	15	9	292	3.54	78	5	ND	7	66	1	22	2	78	.72	.085	17	21	. 45	75	.15	2	2.74	.01	.16	1	42
RB LOW 5+00N	27	3783	90	134	5.7	19	10	322	4.39	185	5	ND	4	63	1	31	2	58	.34	.128	23	19	.55	66	.09	2	2.18	.02	.12	1	395
RB LOW 4+75N	6	258	22	44	1.4	8	4	151	3.66	57	5	ND	2	51	1	9	2	73	. 25	.084	13	20	.29	53	.13	2	2.23	.02	.06	2	65
RB LOW 3+90N	4	245	16	54	.9	14	6	260	3:44	48	5	ND	3	28	1	6	-2	68	.20	.085	14	- 26	.41	65	.12	3	2.21	.01	.09	1	31
RB LOW 3+50N	6	431	21	65	.8	13	6	178	3.83	97	5	ND	3	27	1	7	2	66	.22	.106	16	24	.42	60	.09	3	2.95	.02	.06	1	195
RB LOW 3+25N	84	4953	93	169	10.7	88	35	530	4.75	540	5	NÐ	12	73	2	59	2	69	.73	.125	99	21	.93	61	.11	2	1.96	.01	:15	1	325
RB LOW 3+00N	7	554	24	81	.7	24	12	361	3.62	164	5	ND	3	52	1	8	2	65	.32	.105	19	27	.70	9 8	.10	2	2.41	.02	.13	2	35
RB LON 2+75N	18	288	20	46	.4	12	5	137	5.21	185	5	ND	2	27	1	7	2	96	.15	.054	13	22	. 39	72	.14	2	2.56	.02	.05	1	18
RB LOW 2+50N	16	102	8	31	.1	5	3	81	1.35	31	5	ND	1	22	1	2	2	41	.19	.021	11	12	.13	48	.09	3	. 66	.01	.06	1	26
RB LOW 2+25N	23	795	-64	78	2.1	17	8 -	194	4.86	335	5	ND	6	41	11	13	2	90	.35	.103	13	25	.48	74	.17	2	2.06	.02	.06	2	545
RB LOW 2+00N	99	4985	88	243	12.8	99	39	473	4.99	726	5	ND	-11	53	3	94	2	64	.67	.112	124	19	.85	68	.11	3	1.78	.01	.17	1	395
RB LOW 1+50N	11	785	19	74	1.6	24	15	310	3.01	146	5	ND	16	36	1	11	2	64	.56	.117	32	22	.57	63	.16	2	1.18	.01	.16	2	59
RB L1E 9+00N	6	71	13	65	.2	13	8	496	2.44	53	5	ND	2	94	1	6	2	52	.39	.081	12	18	. 52	100	. 08	2	1.75	.01	.21	ŀ	63
RB L1E 8+75N	5	73	14	72	.3	14	9	386	2.93	73	5	ND	4	101	1	7	2	65	.50	.097	19	21	.60	106	.09	2	2.18	.02	.17	1	87
RB L1E 8+50N	4	65	11	72	.3	15	11	458	2.81	68	5	NÐ	5	101	1	8	2	59	.48	.090	19	19	. 66	115	.11	2	2.28	.02	.20	1	20
RB LIE 8+25N	5	71	17	71	.2	- 14 -	8	332	2.85	71	5	ND	6	96	1	8	2	62	.49	.103	21	21	.64	109	.11	2	2.29	.02	.20	1	-69
RB LIE 8+00N	5	62	13	70	.2	14	8	229	2.98	86	5	ND	4	86	1	15	2	61	.37	.094	19	22	.60	101	.10	2	2.47	.03	.14	2	22
RB LIE 7+75N	8	207	16	68	.5	20	10	467	2.91	87	17	ND	3	138	1	7	2	- 55	.83	.102	22	20	.81	131	.08	2	2.67	.03	.13	1	10
RB L1E 7+50N	12	367	22	81	.7	23	13	614	3.09	99	49	ND	. 3	126	1	8	2	56	1.05	.108	18	25	.89	131	.10	4	2.66	.03	.21	5	68
RB L1E 7+25N	10	136	13	62	.3	16	10	446	2.93	74	13	ND	2	111	1	7	2	54	.51	.108	17	20	.63	123	.06	2	2.38	.03	.12	3	18
RB L1E 7+00N	6	101	12	54	.3	15	6	203	2.35	59	.5	ND	4	98	1	7	2	46	.45	.080	17	16	. 58	100	.10	2	1.88	.02	.15	1	25
RB L1E 6+75N	13	268	20	80	1.0	24	10	316	2.93	73	18	ND	4	127	1	5	2	50	.84	.101	16	24	.97	124	.09	3	2.82	.03	. 19	6	7
RB L1E 6+50N	- 8	232	16	65	.4	19	9	296	2.72	75	22	ND	2	126	1	11	2	50	. 86	.090	17	19	.76	120	.06	4	2.46	.03	.10	. 3	15
STD C/AU-S	20	60	41	132	7.6	73	28	1024	4.15	42	21	8	40	52	20	17	22	61	.51	.095	40	59	.94	180	.07	35	1.79	.06	.14	12	48

ZN AG NI CO NN FE AS U AU TH SR CD SB BI Ψ. CA CR MG BA П AL NA K N AUE SAMPLE MO CU PB P LA 8 PPN 7 PPN PPN 7 PPH 1 ĩ. PPM PPR PPN PPN PPN PPN PPN PPM PPH PPM Z .PPN PPN PPH PPH PPN PPH PPH PPN Z PPN z 2 2 1.78 **RB LIE 6425N** 7 69 13 59 .3 12 6 253 2.65 70 5 ND 2 100 2 2 54 .40 .074 15 19 .51 92 .08 .02 .11 1 17 1 55 5 ND 4 .23 .083 12 7 1.98 RB LIE 6+00N 6 53 11 .5 10 6 212 3.23 118 2 106 1 2 62 21 .43 87 .07 .02 .07 1 6 **RB LIE 5+75N** 77 15 62 .3 13 9 361 3.22 125 5 ND 2 121 1 8 2 59 .35 .089 15 20 . 60 112 .07 2 2.44 .02 .13 1 11 6 2 **RB LIE 5+25N** 31 39 8 17 .3 7 3 74 2.48 19 5 ND 1 36 3 62 .27 .048 6 32 .16 54 .05 2 .95 .01 .10 4 4 1 79 19 47 135 5.67 5 NÐ .18 .108 12 35 .28 79 .06 2 3.38 .02 .04 2 22 **RB LIE 5+00N** 6 .3 0 4 35 1 34 1 2 2 82 92 2 2.35 .02 .05 7 **RB LIE 4+75N** 7 15 50 .6 11 6 136 5.29 32 5 ND 1 34 1 2 2 94 .23 .080 11 40 .41 94 .09 2 229 3.43 35 ND 2 3 .31 .130 23 27 .54 104 .05 2 3.20 .03 .06 3 **RB LIE 4450N** 17 309 21 60 .5 13 6 124 70 1 3 59 1 7 352 3.27 ND 61 5 1.90 . 09 3 21 **RB L1E 4+25N** 12 119 16 61 .5 10 68 -5 1 115 2 2 .42 .101 12 21 .41 77 .07 .02 1 RB LIE 4+00N 8 220 18 95 .8 21 11 602 2.79 63 9 ND 3 135 1 4 2 48 1.24 .100 14 24 .86 121 .09 3 2.49 .01 .23 1 7 **RB LIE 3+75N** 11 207 19 59 16 8 403 2.60 67 15 ND 1 107 3 2 45 .76 .103 15 22 .61 100 .05 3 2.22 .02 . 09 4 41 .6 1 RB LIE 3+50N 9 100 13 38 .4 10 5 104 3.69 36 5 ND 2 33 1 2 2 82 .27 .048 8 39 .31 87 .13 2 1.38 .02 .06 4 12 35 **RB LIE 3+25N** 20 179 15 37 1.3 11 4 91 3.49 35 5 ND 3 31 2 2 57 .30 .087 13 .33 62 .10 3 2.17 .02 .05 2 24 1 10 232 48 4 124 2.02 ND 2 17 19 .47 2 2.05 5 13 **RB L1E 3+00N** 14 1.0 12 55 16 113 1 3 2 36 1.04 .104 106 .04 .01 .07 **RB LIE 2+75N** 22 86 277 3.40 82 5 ND 12 2 2 .55 .076 19 32 .73 85 3 2.72 .02 .15 1 50 9 1216 .7 27 18 63 1 64 . 18 .39 **RB LIE 2+50N** 26 1842 16 44 2.9 20 7 141 5.34 134 5 ND 20 24 1 2 3 85 .21 .108 16 45 55 .14 5 3.43 .02 .05 4 2350 **RB LIE 2+25N** 19 1181 28 41 1.9 9 3 103 7.20 88 5 NÐ 10 17 2 2 92 .12 .145 11 42 .21 55 .16 2 4.69 .02 .02 1 485 1 13 2 .11 .114 .22 42 2 4.52 .02 .04 3 540 **RB LIE 2+00N** 16 1159 26 39 10 4 165 6.27 101 5 ND 2 96 12 40 .14 1.6 16 1 1 173 **RB LIE 1+75N** 7 40 5 12 .5 4 2 39 2.04 13 5 ND 1 13 1 2 3 60 .07 .023 7 33 .03 22 .03 2.39 .01 .03 **RB L1E 1+50N** 14 39 8 21 .3 5 3 62 2.52 31 5 ND 1 27 4 4 77 .13 .027 8 31 .09 37 .12 12 .61 .02 .05 1 79 1 2 1780 **RB L1E 1+25N** 43 1453 35 44 6.0 13 5 111 3.79 313 5 ND 3 19 1 42 3 73 .21 .085 10 27 .31 34 .10 2 1.52 .01 .04 **RB LIE 1+00N** 278 2.89 .33 27 2 1.53 2 96 7 431 -29 113 17 10 130 5 7 62 .084 12 .52 82 .07 .02 .09 1.1 ND 1 46 1 2 .103 NÖ 3 .49 18 27 29 1.66 6 40 **RB L1E 0+25N** 17 257 19 61 .3 15 8 289 3.09 115 6 6 45 1 2 60 .50 70 ,12 .03 .11 10 194 36 89 ND 2 3 2 57 . 39 .095 13 24 .36 52 .10 2 1.54 .01 .06 1 37 RB LIE 0+00N 60 10 5 153 2.86 6 44 1 .8 **RB L2E 9+25N** 2 62 12 41 .3 10 5 254 2.48 12 5 ND 1 37 1 2 2 50 .21 .101 10 26 .41 82 .07 2 2.11 .02 .08 3 8 **RB L2E 9+00N** 73 10 46 146 2.16 37 5 ND 2 2 2 49 .29 .096 10 28 , 39 74 .10 25 1.87 .03 .07 3 6 9 .4 9 4 34 1 **RB L2E 8+25N** 302 19 55 17 5 146 2.76 36 5 MB 2 80 2 2 56 .35 .147 14 33 .53 84 .08 3 2.22 .02 .13 1 41 7 .4 1 5 ND 2 2 67 .26 .091 14 35 .63 76 .13 2 2.82 .02 .11 3 12 **RB L2E 8+00N** 4 178 15 56 .2 16 6 181 3.69 31 4 28 1 .25 .072 2 44 **RB L2E 7+75N** 2 201 8 32 .5 7 3 90 1.77 10 5 ND 1 34 1 2 2 37 10 24 .27 70 .07 27 1.67 .02 .07 35 8 43 2 .92 3 18 **RB L2E 7+50N** 13 52 1.38 5 NØ 23 4 3 .11 .050 14 .08 .07 .01 .04 4 31 20 .3 3 1 17 1 1 **RB LZE 7+25N** 48 8 30 .2 15 2 72 1.44 12 5 NÐ 1 23 1 3 2 35 .13 .052 7 43 .33 44 .10 2 1.07 .01 .10 3 7 3 29 5 2.13 7 **RB L2E 7+00N** 9 81 43 420 2.87 25 2 34 2 2 56 .21 .089 10 .28 72 .09 .02 .06 5 11 .3 8 5 5 ND 1 **RB L2E 6+75N** 85 9 40 .5 3 160 2.07 17 - 5 ND 1 48 1 3 2 44 .25 .105 8 20 .22 78 .06 2 1.48 .01 .09 12 10 6 6 .28 2 52 **RB L2E 6+50N** 22 6 19 2 50 1.04 11 5 NÐ 1 21 4 4 31 .081 8 14 .08 49 .01 8 1.37 .01 .04 3 .5 1 1 RB L2E 6+25N 6 70 10 40 .3 10 5 166 5.30 23 5 ND 4 25 1 2 2 96 .21 .073 12 54 .30 67 . 14 2 3.37 .01 .07 1 10 **RB L2E 6+00N** 42 3 35 2 48 .28 .067 9 24 96 2 1.29 3 27 13 49 .4 - 6 304 1.91 5 ND 1 62 1 3 .21 .12 .01 . 10 - 8 **RB L2E S+50N** 14 61 19 43 .7 8 3 135 5.24 49 5 ND 2 31 1 -3 2 80 .12 .084 12 25 .22 69 .07 7 2.11 .01 .05 6 11 STD C/AU-S 16 8 40 52 20 15 22 .51 .095 40 12 52 20 62 41 133 6.9 72 28 1026 4.13 43 61 64 .94 181 .09 35 1.78 .06 .15

Page 7

•

1

4

SAMPLET	NO PPN	CU PPH	PB PPN	ZN PPM	AG PPM	NI PPM	CO PPH	NN PPM	FE Z	AS PPM	U PPM	AU PPH	TH PP#	SR PPM	CD PPM	. SB PPM	BI PPM	V PPM	CA X	P Z	LA PPN	CR PPH	MG X	BA PPH	TI Z	B PPM	AL Z	NA Z	K Z	N PPN	AUT PPB	
RØ L2E 5+25N RØ L2E 5+00N RØ L2E 4+75N RØ L2E 4+50N RØ L2E 4+25N	5 6 7 7 25	27 139 68 109 97	9 14 12 13 16	31 44 43 67 43	.3 .1 .2 .2 .3	5 12 9 11 7	3 5 5 3	193 183 252 238 152	2.02 3.86 3.92 3.88 2.73	11 29 25 25 52	5 5 5 5 5	ND ND ND ND	2 2 1 1 1	24 38 39 43 62	t 1 1 1	2 2 2 2 2	2 2 2 3	54 80 75 70 52	.14 .27 .20 .24 .52	.048 .082 .119 .140 .110	8 12 9 9	29 35 33 31 18	.15 .43 .29 .39 .20	82 89 94 111 124	.04 .09 .06 .03 .02	2 3 2 2 2	.91 1.53 1.50 1.97 1.60	.01 .02 .02 .02 .01	.07 .07 .05 .07 .05	1 9 5 2	19 68 6 15 11	
RB L2E 4+00N RB L2E 3+75N RB L2E 3+50N RB L2E 3+25N RB L2E 3+00N	15 22 14 18 16	105 224 63 53 16	14 16 6 15 10	38 48 46 46 19	.5 .2 .1 1.5 .4	10 10 10 7 3	5 15 6 4 2	131 607 210 149 53	5.19 2.29 3.38 3.18 2.29	51 99 36 28 15	5 19 5 5 5	ND ND ND ND	3 4 3 2 1	37 58 39 37 28	1 2 1 1 1	2 2 2 2 2	2 2 2 2 2 2	79 46 79 63 75	.23 .45 .28 .20 .14	.064 .102 .034 .045 .022	13 35 9 8 7	33 14 23 21 24	.39 .45 .50 .24 .05	105 74 60 75 53	.14 .10 .19 .14 .16	2 3 3 3 2	2.31 2.59 1.55 1.32 .62	.02 .01 .02 .01 .01	.03 .07 .05 .06 .02	3 1 1 1 1	6 21 9 24 51	
RB L2E 2+75N RB L2E 2+50N RB L2E 2+00N STD C/AU-S RB L2E 1+50N	6 12 41 21 18	11 15 37 62 33	6 7 8 42 14	21 21 29 133 26	.1 .1 7.6 .6	3 5 5 73 3	2 3 2 30 1	38 54 56 1050 43	2.06 2.99 2.45 4.32 1.47	7 22 54 40 30	5 5 18 5	ND ND ND 8 ND	1 1 40 1	26 21 20 54 38	1 1 19 1	2 2 18 2	2 3 2 21 3	70 93 67 61 39	.17 .13 .13 .53 .27	.026 .031 .045 .097 .033	8 6 8 41 9	31 49 16 61 14	.05 .08 .14 .95 .06	36 34 64 179 64	.10 .17 .11 .09 .04	2 3 4 36 2	.60 .49 .73 1.86 .81	.01 .01 .01 .06 .01	.03 .04 .04 .14 .03	1 1 12 2	37 16 13 53 129	
RB L2E 1+25N RB L2E 1+00N RT 10+00N RT 9+50N RT 9+00N	26 22 11 9 9	82 259 440 201 308	16 15 22 33 16	55 66 71 66 58	1.3 .9 .6 .4 .3	10 13 25 21 14	5 8 11 9 8	134 443 293 368 404	4.82 3.01 4.47 4.09 3.12	51 184 304 91 20	5 22 5 5 5	ND ND ND ND	5 4 7 7 9	33 47 158 168 158	2 1 2 1 1	2 2 3 2 2	3 2 2 2 2	81 51 71 66 53	.24 .56 1.10 1.17 .99	.085 .164 .128 .106 .090	10 25 17 16 16	40 18 31 29 25	.32 .44 .70 .65 .53	67 65 90 86 128	.15 .07 .08 .08 .04	3 3 3 2 2	2.03 2.32 2.43 2.45 2.30	.02 .01 .01 .01 .01	.06 .11 .20 .20 .11	1 9 5 6 18	17 34 105 31 35	
RT 8+50N RT 8+00N RT 7+50N RT 7+00N RT 6+50N	5 5 6 5 3	117 178 235 153 58	19 21 18 23 17	54 57 74 72 55	.1 .4 .5 .5	15 14 13 17 8	7 6 7 9 6	299 252 333 505 581	2.85 2.69 2.45 3.31 2.34	25 10 8 11 7	5 5 5 6 5	ND ND ND ND	7 8 3 10 2	172 208 165 231 148	1 1 2 1 1	2 2 2 2 2	2 2 3 2 2	55 53 46 66 61	1.48 1.70 1.50 1.57 1.08	.094 .087 .115 .121 .140	15 14 16 14 9	28 23 20 29 25	.64 .59 .61 .74 .38	86 94 166 149 134	.0B .06 .04 .07 .02	4 2 3 2 2	2.57 3.05 2.77 3.36 2.29	.01 .01 .01 .01 .01	.18 .20 .15 .19 .17	2 11 3 4 1	9 6 11 38 10	
RT 6+00N RT 5+50N RT 5+00N RT 4+50N RT 4+00N	3 6 1 2	58 156 168 51 64	14 18 24 16 9	68 72 73 58 41	.1 .4 .4 .2 .1	12 24 21 13 8	6 9 8 4	421 301 323 318 97	2.82 3.05 3.46 2.83 1.73	9 61 57 6 2	5 6 5 5 5	ND ND ND ND	2 8 5 15 3	138 174 191 143 174	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	62 60 63 63 39	.97 1.61 1.57 1.42 1.14	.127 .128 .092 .104 .062	11 19 14 15 12	24 29 28 32 30	.68 .79 .81 .76 .44	137 109 110 94 152	.04 .10 .08 .12 .04	2 2 21 2 16	2.31 2.93 3.25 2.36 2.99	.01 .01 .01 .01 .03	.14 .18 .25 .21 .08	1 1 1 1	2 8 7 2 6	
RT 3+50N RT 3+00N RT 2+50N RT 2+00N RT 1+50N	2 1 1 3 3	50 41 83 55 63	10 8 19 9 12	57 49 74 59 55	.3 .2 .4 .3 .1	9 10 13 14 11	4 5 9 8 8	295 258 338 242 265	2.34 2.17 2.75 3.41 2.41	7 2 32 13 21	5 5 5 5 5	ND ND ND ND ND	3 12 24 19 11	182 223 251 193 237	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	59 49 57 84 55	1.41 2.20 2.68 1.99 2.78	.072 .086 .089 .102 .100	10 11 14 16 14	34 19 26 40 27	.53 .52 .88 .66 .66	98 67 57 73 58	.05 .05 .08 .12 .12	2 12 2 27 2	3.15 3.18 3.44 2.60 3.64	.01 .01 .01 .01 .01	.18 .22 .22 .24 .22	1 1 1 1	3 1 8 6 4	
RT 1+00N RT 0+50N	13 18	71 106	16 14	58 70	.2	11 12	6 7	242 311	2.70	20 29	6 5	ND ND	3	149 158	1 1	2 2	2	65 70	1.15	.082	12 12	31 31	.51 .60	10 8 103	.09 .09	2 3	2.68 2.76	.01 .01	.13 .14	1	3	

Page 8

(

C

1

SAMPLE®	NO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPH	CO PPM	MN PPM	FE X	AS Pph	U PPM	AU PPM	TH PPM	SR PP N	CD PPM	SB PPM	BI PPM	V PPM	CA X	P I	LA PPN	CR PPM	M6 2	BA PPM	TÌ L	B PPM	AL 7	NA 7.	K Z	N PPN	AU1 PPB
RT 0+00N	28	65	26	69	.4	12	7	635	2.72	21	8	ND	4	175	1	4	2	60	1.31	. 096	13	30	.55	92	.08	2	2.34	.01	.17	5	3
RT 0+005	7	344	25	59	.5	11	J	407	3.14	10	28	ND	10	122	1	2	2	BO	.97	.115	17	39	.49	111	.06	2	1.59	.91	.10	7	14
RT 0+50S	32	85	22	70	.2	12	7	387	3.00	23	5	ND	2	104	1	2	2	64	.27	.076	ę	26	.49	87	.09	2	1.55	.02	.07	5	10
RT 1+005	35	112	23	51	.5	9	5	180	2.56	8	5	ND	Z	347	1	3	2	61	.56	.076	9	24	.44	156	.08	2	1.74	.02	.11	6	4
RT 1+505	16	45	81	63	.4	7	3	230	2.04	14	5	ND	1	71	1	2	3	46	.32	.094	6	21	. 30	92	.03	2	1.56	.01	.06	3	13
RT 2+005	12	òòò	19	63	.9	10	5	311	2.35	16	5	ND	ę	70	1	8	2	51	. 66	. 118	18	24	. 46	213	,05	2	1.02	.01	.09	82	32
RT 2+505	3	318	17	59	.4	10	6	255	2.80	7	5	ND	8	51	1	2	2	69	.48	.094	15	- 34	.47	92	.09	2	1.01	.01	.14	95	39
RT 3+00S	5	69	17	40	.3	В	5	361	2.32	9	5	ND	2	36	1	2	2	56	.28	.091	9	24	.42	85	.09	12	1.45	.02	.11	10	4
RT 3+50S	2	207	20	61	.6	11	6	341	2.78	8	5	ND	11	48	1	2	2	65	. 48	.112	13	31	.51	68	.10	2	.99	.02	.13	10	15
RT 4+005	2	231	16	- 69	.5	10	6	297	2.37	13	5	ND	13	54	1	2	2	51	.55	.103	13	23	.53	76	.10	2	.91	.02	.14	9	6
RT 4+505	5	683	8	45	.8	11	6	244	3.39	8	5	ND	16	27	1	2	2	75	.42	.092	14	32	.46	79	.08	2	.71	.01	. 10	42	74
RT 5+005	6	703	12	57	.8	14	7	322	3.39	10	5	-ND	- 14	47	1	2	2	70	. 59	.101	17	31	. 62	111	.10	2	1.12	.01	.12	29	100
RT 6+005	L	90	- 4	37	. 2	9	- 4	165	1.94	50	5	NÐ	ę	48	1	2	2	43	. 88	.116	9	15	.44	26	.09	2	1.30	.01	.10	2	7
RT 6+50S	2	134	9	43	.3	14	8	215	2.71	129	5	ND	13	51	1	2	2	55	1.06	.129	12	19	. 59	34	.12	2	1.56	.01	.19	3	8
RT 7+005	23	348	32	103	.9	34	24	334	9 .8 0	230	5	ND	14	58	1	11	2	97	.46	. 168	17	44	1.26	73	.17	2	2.09	.03	.46	4	11
RT 8+00\$	12	834	24	89	.8	36	2 0	423	5.68	135	5	ND	14	102	1	8	2	BO	.80	.142	12	20	1.10	80	.13	6	1.91	.02	. 26	1	17
RT 8+505	9	1074	28	103	1.4	41	18	439	5.20	155	7	ND	12	260	1	7	2	79	1,43	.145	- 14	26	1.00	121	.12	2	2.48	.01	. 21	2	40
RT 9+005	10	456	42	162	t.Q	117	43	599	7.55	758	5	NÖ	9	39	1	17	2	97	.42	.137	11	62	1.42	160	•17	2	1.98	.03	.52	15	38
RT 9+50S	17	559	47	149	1.1	109	43	755	7.35	677	6	ND	9	58	1	18	2	100	.51	.141	10	70	1.59	170	.18	16	2.60	.03	.51	12	54
RT 10+005	16	644	26	164	1.1	164	62	1033	8.71	921	6	ND	8	36	1	29	2	108	.27	.128	9	66	1.69	180	.18	2	2.66	.03	.57	21	99
RT 10+505	28	937	20	142	1.2	151	63	1064	8.98	1062	7	ND	7	33	1	24	2	100	.20	. 115	8	69	1.58	185	.15	2	2.64	.03	.50	19	9 8
RT 11+00S	30	640	20	129	.7	122	48	801	7.68	873	5	ND	6	30	1	15	2	92	.30	.116	7	70	1.47	160	.14	12	2.36	.02	. 39	12	71
RT 11+50S	16	594	23	176	.7	108	42	947	6.43	636	8	ND	7	65	t	17	2	90	.46	.113	10	61	1.37	171	. 12	2	2.27	.02	.31	3	56
RT 12+005	12	535	27	159	.6	78	32	746	5.67	388	5	ND	7	96	1	10	2	63	.53	.111	13	48	1.22	157	.12	10	2.03	.02	.27	1	290
RT 12+505	19	600	37	134	.8	57	36	805	7.51	697	6	ND	10	166	1	15	2	76	. 36	.129	16	26	1.08	178	.11	2	1.94	.02	.17	12	63
RT 13+005	18	374	57	177	.6	78	26	632	6.31	1017	۶	ND	3	62	1	18	2	75	.22	.111	н	34	.97	120	.06	2	2.32	.02	. 15	4	42
RT 13+50S	19	481	66	196	.7	94	36	756	6.90	1384	5	ND	6	91	2	24	2	77	. 34	.121	14	29	1.10	135	.07	2	2.14	.02	.18	5	56
RT 14+005	18	560	77	219	.9	98	48	989	7.43	1695	5	ND	10	120	2	32	2	76	.57	.121	13	34	1.22	141	.10	3	2.06	.02	.27	3	67
RT 14+505	19	709	85	223	1.0	65	30	772	6.49	1518	7	ND	8	75	2	42	2	72	.40	.121	17	27	1.00	123	.07	12	1.87	.02	.17	5	260
RT 15+005	22	1081	85	209	1.3	33	21	710	6.70	1183	5	ND	9	87	2	47	2	85	.41	.141	35	28	, 94	118	. 12	13	1.74	. 02	.21	16	270
RT 15+505	34	1031	115	293	3.0	47	39	826	7.50	2564	8	ND	14	119	4	92	3	75	.55	.142	45	20	.99	119	. 12	17	1.60	.02	.25	15	170
RT 16+005	21	920	66	161	1.4	34	20	544	5.66	1279	5	ND	7	94	1	27	2	71	. 34	.115	19	22	.63	77	.11	2	1.73	.02	.17	49	151
RT 16+755	94	861	191	145	2.6	31	35	405	9.77	3997	12	ND	14	79	1	71	2	70	. 26	.133	19	19	, 80	67	.10	2	1.55	.02	. 22	100	142
RT 17+005	48	888	120	173	1.6	75	24	558	10.25	1276	5	ND	13	125	1	44	2	100	.41	.167	18	21	.89	51	.11	2	1.95	.03	.26	37	91
RT 17+505	53	663	129	192	1.5	71	22	506	11.17	1321	5	ND	12	117	1	40	2	98	.43	.161	18	23	.94	46	.10	2	1.90	.02	. 30	46	52
RT 18+00S	35	633	916	263	11.1	22	13	317	11.92	1430	8	ND	13	142	1	62	2	86	.43	.176	21	13	.67	31	. 05	2	1.69	.01	.15	37	35
STD C/AU-S	19	60	40	133	7.7	72	29	1031	4.18	37	21	8	40	54	20	17	20	61	.52	.098	41	58	.93	181	. 09	35	1.80	.06	-14	14	49

Page 9

ť.

٢.

{

أتعد

SAMPLE	NO Ppn	CU PPN	рв Рри	ZN PPH	A6 Ppm	NI PPN	CO PPH	NN PPN	FE X	AS PPN	U PPN	AU PPN	TH PPN	SR PPH	CD PPM	S8 PPM	BI PPN	V PPN	CA Z	P Z	LA PPM	CR PPM	NG 7	BA PPN	T1 X	B PPM	AL X	NA Z	K 2	N PPN	AUT PPB
RT 19+855	12	305	450	231	2.9	29	13	710	5.76	545	5	ND	3	67	1	23	2	76	.35	.176	15	22	. 68	63	.06	2	2.03	.02	.14	13	21
TR 17+50N	14	322	65	97	1.0	17	6	207	2.87	130	8	ND	4	74	1	6	2	54	.75	.116	17	23	.55	57	.09	3	2.24	.01	.13	6	59
TR 17+00N	7	241	16	59	.7	15	7	500	3.84	64	5	ND	3	82	1	2	2	70	.77	.111	17	28	.52	49	.06	2	2.02	.01	.13	2	29
TR 16+50N	3	143	14	57	.3	10	6	234	3.00	23	5	ND	1	150	1	2	2	65	1.37	.074	18	25	.45	40	.09	2	3.13	.01	.18	4	2
TR 16+00N	4	125	19	66	.6	11	6	295	3.44	44	5	ND	2	112	1	3	2	74	1.06	.090	11.	29	.53	76	.06	28	2.27	.01	•14	3	10
TR 15+50N	5	219	14	56	.5	12	8	325	3.47	83	5	ND	9	102	i	2	2	74	1.23	.108	20	30	.66	63	.13	2	2.27	.01	.24	2	27
TR 15+00N	4	251	11	56	.4	13	9	335	3.89	91	5	ND	17	9 8	1	2	2	85	1.31	.114	21	36	.64	57	.13	2	2.13	.01	.27	2	39
TR 14+50N	. 8	411	18	74	1.2	12	8	316	4.32	28	8	ND	13	111	1	2	2	94	1.26	.100	19	38	.63	44	.11	3	1.98	.01	.24	4	143
TR 14+00N	5	152	16	39	.7	7	5	141	3.01	22	5	ND	1	70	1	· 4	2 .	67	.72	.105	11	31	.41	60	.08	2	2.10	.01	.16	3	40
TR 13+50N	6	130	14.	53	.3	13	8	351	3.59	14	5	ND	9	69	1	2	2	78	.90	.105	20	33	. 60	55	.12	3	1.91	.01	.22	2	1
TR 13+00N	- 6	136	13	55	.4	13	8	378	3.83	-14	16	ND	11	99	1	2	2	85	1.12	.104	22	30	.57	57	.12	2	2.20	.01	.20	4	1
TR 12+50N	5	138	- 14	52	.5	15	8	299	3.75	4	5	ND	13	105	1	2	2	82	1.20	.095	18	39	.57	. 67	.11	2	1.95	.01	.25	2	1
TR 12+00N	6	214	19	55	.5	12	7	225	3.29	10	8	ND	7	93	1	2	2	66	1.03	.103	17	31	.52	77	.09	2	1.87	.01	.17	3	1
TR 11+50N	7	154	27	52	.5	15	6	283	2.96	21	12	ND	6	197	1	2	2	53	1.41	.115	15	27	.55	86	.05	2	3.16	.01	. 19	4	6
TR 11+00N	6	165	16	53	4	.13	6	264	2.25	14	5	ND	5	160	1	2	2	43	1.12	.087	- 14	24	.48	93	.04	2	2.43	.01	.15	2	3
STD C/AU-S	20	61	. 44	132	7.4	71	29	1022	4.14	38	22	7	40	52	19	- 17	21	60	.51	.093	40	65	.93	180	.09	35	1.79	.06	.15	15	47

Page 10

Ĵ,

(

(

1

£

C

C

£

Ξ.

ACME ANALYTICAL LABURATURIES

852 E. HASTINGS ST. VANCOUVER B.C. VAA 1R6

PHONE 253-3158 DATA LINE 251-1011

(

(

ſ

€

¢

C

£

ſ

€

€

٢

C

GEOCHEMICAL/ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR_ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR MA AND K. AU DETECTION LIMIT BY ICP IS 3 PPH. - SAMPLE TYPE: Rock Chids AU\$# BY FIRE ASSAY

DATE RECEIVED: JULY 30 1987 DATE REPORT MAILED: (19 8/

ASSAYER. A.C. DEAN TOYE, CERTIFIED B.C. ASSAYER

SOUTHERN GOLD RESOURCES PROJECT-RD File # 87-2859A

SAMPLE	MO IPPN	CU. PPN	PB PPN	ZN PPN	AG PPN	NI PPM	CO PPM	HN PPH	FE X	AS PPM	U PPM	PPM	TH PPM	SR PPM	CD PPM	SB PPN	BI PPM	V PPN	CA ۲	Р 2	LA PPN	CR PPM	#6 Z	BA PPM	ti Z	B PPN	AL X	NA Z	K Z	¥ PPN	AU‡‡ Oz/t
RD-16R	4	700	43	99	3.7	105	13	1016	18.87	35	5	NĎ	13	35	2	11	2	199	3.78	.013	21	7	1.13	3	.02	2	1.78	.01	.06	1	.004
RD-17R	161 3	37118	52	389	56.5	68	21	467	16.56	1007	. 5	7	12	35	6	13	12	158	3.03	.132	54	1	. 98	43	.02	2	1.18	.01	.21	1	.159
RD-18R	25 3	39642	20	165	34.5	1210	415	172	12.84	11464	6	13	32	6	4	9	123	43	.36	.087	455	7	.71	Ģ	.01	27	1.92	.03	.14	1	. 496
RD-19R	290 1	13572	22	103	76.3	8	4	59	29.68	842	- 5	4	7	3	2	7	21	30	.20	.027	82	1	.13	6	.02	2	, 25	.02	.05	t	.213
RD-20R	55	2745	10	39	11.3	20	16	87	5.57	592	5	ND	12	16	1	5	4	24	.46	.131	45	5	. 19	28	.11	3	.61	.05	.09	2	.032
RD-21R	282 2	22648	15	103	25.6	15	11	125	11.33	745	5	2	10	5	2	2	9	40	. 39	.084	178	4	. 29	15	.03	2	. 68	.02	.10	1	.103
RD-22R	1012	2285	13	52	1.9	123	30	191	32.60	41	5	NÐ	5	9	1	2	2	278	.54	.005	40	1	.50	3	.04	2	.44	.01	.04	1	.002
RD-23R	735	1384	22	77	1.9	- 74	14	121	38.39	67	5	ND	3	10	2	5	2	204	.50	.058	9	1	.19	3	.04	2	.19	.01	.03	6	.002
RD-24R	336 2	20575	23	89	29.4	203	28	490	34.09	87	5	ND	2	30	- 4	2	2	196	10.64	.002	4	1	.52	3	.03	2	.69	.20	.03	2	.009
RD-25R	465	1003	21	75	1.7	98	7	206	19.45	25	5	ND	17	11	1	2	2	184	.45	.082	134	8	.47	13	.07	2	.67	.04	.12	1	.001
RD-26R	690 3	34237	17	132	37.3	245	17	69	32.45	109	5	ND	7	5	4	2	2	163	.27	.071	38	1	.29	4	.02	2	.34	.02	.07	t	.013
RD-27R	634	660	15	58	2.1	70	12	131	24.20	9	5	ND	9.	14	1	. 2	2	342	. 30	.012	100	4	.15	6	.07	2	.47	.05	.06	6	.001
RD-28R	769 2	22139	20	93	22.3	41	38	515	29.31	45	5	5	15	19	3	13	2	103	.57	.092	183	2	.19	62	.01	5	.52	.01	.12	3711	.129
RD-29R	112 6	54525	33	167	20.9	194	279	424	37.68	112	5	ND	3	. 5	7	8	17	29	.19	.004	2	1	.07	3	.01	2	.05	.01	.01	199	.119
RD-30R	362 8	H216	41	217	29.1	92	126	991	37.19	108	206	ND	6	7	8	9	44	63	.68	.026	18	1	.27	6	.01	3	.27	.01	.02	191	.136
RD-31R	1	593	19	34	.1	63	9	160	49.24	23	5	ND	12	1	3	6	11	613	.30	.006	2	25	.08	4	.01	2	.14	.01	.01	54	.001
RD-32R	222	781	12	33	2.0	6	5	93	12.91	3454	5	ND	4	27	1	2	2	55	.08	.077	12	49	.15	68	.09	6	.58	.02	.08	12	.001
RD-32RA	78 2	20936	19	142	10.6	52	50	195	44.53	38	5	ND	5	3	4	94	2	168	.05	.007	3	28	.09	13	-01	5	.17	•02	.04	366	.014
RD~33R	42	562	11	12	.6	3	- 11	88	7.13	2032	25	ND	11	3	1	2	2	10	.02	.026	9	9	.02	- 32	.01	20	.22	.01	.13	166	.001
RD-33RA	168 7	77081	39	219	27.3	80	68	133	30.59	54	106	ND	3	4	7	109	23	43	. 16	.028	5	1	.11	8	.01	2	.11	. 02	.01	40	.046
RD-34R	153	8448	8	57	5.8	55	135	248	15.85	12	5	ND	9	13	t	5	2	18	.79	.060	4	2	.11	9	.01	12	.27	.01	.17	34	.011
RD-34RA	156	487	12	20	2.1	13	13	62	5.06	1092	59	ND	8	36	1	6	2	20	.04	.036	7	19	.05	27	.01	56	.29	.02	.12	35	.001
RD-35R	30 5	58493	26	131	11.6	45	13	136	20.93	2	60	ND	5	6	5	2	11	69	.06	.008	3	8	.15	7	.01	7	.22	.02	.03	96	.048
RD-35RA	1095 3	32403	12	141	39.6	10	7	214	17.12	897	5	14	3	. 12	3	2	20	39	1.08	.158	36	1	.37	36	.03	2	.74	.06	.27	1	.263
RD-37R	712 4	11445	17	146	47.6	16	14	102	13.49	478	5	ND	29	10	4	2	2	65	1.14	. 322	652	8	. 38	4	.02	2	. 48	.01	.03	1	.065
RD-38R	60	1372	5	22	1.0	5	-15	152	3.67	427	5	ND	10	11	1	3	2	39	. 32	.064	31	10	.36	20	.12	5	.85	.05	. 08	6	.001
RD-39R	28 9	77999	49	1093	64.9	267	55	57	32.83	241	5	ND	3	3	18	2	148	1	.42	.155	4	1	.11	5	.01	2	.61	.02	.03	1	.018
RD-40R	426	515	21	- 8	4.6	34	8	22	6.50	1277	5	ND	3	4	t	5	2	1	.01	.019	2	1	.02	4	.01	84	.04	.01	.01	5	.001
RD-41R	238	1228	7	. 9	1.6	2	. 1	27	2.20	499	5	ND	1	4	1	. 4	2	4	.03	.012	2	. 3	.03	5	.01	89	.07	.01	.03	3	.002
RD-42R	203	604	9	9	.8	2	1	28	3.90	137	5	ND	2	5	1	2	2	- 3	.01	.010	2	2	.02	54	.01	79	.10	.02	.03	29	.001
RD-43R	639	427	20	14	.6	2	2	22	11.80	536	5	ND	4	4	1	53	2	4	.01	.076	4	1	.03	16	.01	47	.15	.01	.04	134	.001
RD-44R	168 1	15299	29	66	5.3	18	16	42	22.34	915	5	ND	- 6	11	2	75	2	2	1.30	.580	3	i	.04	5	.01	39	.15	.01	.02	277	.001
RD-45R	10	457	5	- 14	.2	42	13	46	4.22	50	5	ND	3	49	1	2	2	26	.46	.032	- 4	17	.76	49	.02	3	1.80	.15	.26	7	.001
RD-46R	136	7410	61	- 94	10.9	165	43	186	27.33	890	9	ND	. 4	- 13	2	416	2	4	. 65	.262	14	1	.18	2	.01	20	.04	.01	.03	. 4	.001
RD-47R	462	915	22	11	2.7	1	2	25	11.03	3528	5	ND	4	3	1	140	2	2	.07	.249	2	1	.02	6	.01	28	.03	.01	.02	808	.001
RD-48R	152	4414	9	22	1.9	43	31	87	6.46	2187	5	ND	4	8	1	13	5	5		.082	2	2	. 09	17	.01	65	.18	.01	.03	191	.006
STD C	19	56	41	133	7.1	70	28	929	4.08	35	19	- 7	37	50	18	15	17	58	.51	.088	37	58	.92	176	.08	33	1.79	.06	.13	14	-

- ASSAY REQUIRED FOR CORRECT RESULT - For No -1000 PPM

Any 35 pm

ACME ANALYTICAL LABORATORIES DATE RECEIVED: SEPT 1 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: Sept. 10/87.

ABSAY CERTIFICATE

- SAMPLE TYPE: Pulp

ASSAYER: D. Joye, DEAN TOYE, CERTIFIED B.C. ASSAYER

.

SOUTHERN GOLD RESOURCES PROJECCT-RD File # 87-2859 R Page 1

SAMPLE#	CU %	PB %	ZN Z	AS %	AG OZ/T
A-16	1.29	.16	. 47	. 57	6.69
A ROCK TALUS #1	. 11	.39	.20	.02	.95
A ROCK TALUS #2	.25	.01	.02	.01	.16
A ROCK TALUS #3	.01	.01	.01	.01	.03
A ROCK TALUS #4	.06	.01	.01	.02	.14
A ROCK TALUS #5	.48	.01	.01	14.63	.13
R-1	5.65	.02	.27	.26	8.58
R-2	6.98	.17	1.00	.31	5.81
R-3	.79	.14	. 36	.04	.81
R-4	1.39	.34	.21	.14	5.19
R-5	.20	.01	.02	.05	. 29
R-6	2.23	.01	.06	.10	3.97
R-7	1.57	.02	.05	.05	.97
R-8	2.21	.01	.05	.11	.87
R-9	3.34	.05	.10	.19	3.81
R-10	4.20	.08	.10	.24	5.09
R-11	7.61	.03	.10	.12	1.82
R-12	6.78	.63	4.36	.16	12.83
R-13	2.72	.13	.75	.06	1.77
R-14	2.84	.67	6.10	.13	6.48
R-15	6.05	5.44	2.82	.19	11.93
R-16	2.81	.67	4.22	• • 06	4.94
R-17	17.65	.96	.57	.07	4.17
R-18	13.50	.06	.32	.04	2.02
RA-1	1.31	.12	.11	.11	2.65
RA-11	1.72	.02	.10	.25	5.80
RA-12	1.50	.08	.18	.13	3.08
RA-13	4.77	.15	.92	.18	2.42
RA-14	1.67	.01	.06	.26	.78
RA-16	2.49	.06	.23	.26	4.34
RA-17	3.83	. 18	.30	.13	1.81
RA-29/30	2.51	.28	.36	.23	11.56
RA-32	5.19	.01	.05	.10	1.30
RA-41	5.35	.01	.05	. 29	4.15
RA-42	3.85	.02	.08	. 17	5.77
RA-90	1.43	1.58	.67	.71	4.80
RA-101	2.92	.02	.11	.11	9.42

SOUTHERN GOLD RESOURCES	PROJE	CT-RD	FILE	# 87-	2859 R	Page 2
SAMPLE#	CU	PB	ZN	AS	AG	
	7.	7	7.	7.	OZ/T	
ROCK TALUS 8+75N	.01	.01	.02	.01	.01	
ROCK TALUS 8+50N	2.58	.01	.02	.04	.17	
ROCK TALUS 8+40N	1.88	.01	.04	9.76	1.13	
ROCK TALUS 4+70N	.01	.02	.03	.01	.06	
RT ROCK 1+75S	.63	.01	.01	. 14	.18	
RT ROCK 3+80S	.87	.01	.01	.01	.37	
RT ROCK 5+00S	1.02	.01	.01	.01	.09	
RT ROCK 7+00S	.53	.01	.01	.15	.16	
RT ROCK 12+50S	.03	.01	.01	.04	.01	
RT ROCK 2+15S	1.31	.01	.04	.01	.15	
RVJ−1	.01	.01	.01	24.09	. 16	
RVJ-2	.02	.01	.01	8.21	.40	
RVJ-3	.01	.01	.01	2.95	.01	
RWU-55	2.63	.08	. 98	.21	5.35	
RWU-75	3.16	.06	.19	.14	2.59	
RWU-77	1.73	.02	.05	.04	1.86	
NO NUMBER	1.46	.01	.02	.17	1.25	

100

Sec.

1

Date

Concernant of the second se

Chert

DATE RECEIVED: SEPT 2 1987 ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOUVER B.C. VAA 1R6 2pt. 1.4/ 87. PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

GEOCHEMICAL ICP-MS ANALYSIS

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP MASS SPECTROMETER. - SAMPLE TYPE: Pulp

ASSAYER: A. JUM. DEAN TOYE, CERTIFIED B.C. ASSAYER

SOUTHERN GOLD PROJECT-RD File # 87-3514 R

SAMPLE#	Pt PPB	Pd PPB	Rh PPB
RB-L4W 1+75N RD #1R RD #5R RD #7R RD #13R	2 2 2 2 2 2	2 5 3 9 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
R-1 R-7 R-17 RA-101 RVJ-1	2 2 2 2 2	50 4 2 53	2 2 2 2 2 2 2 2 2 2
RVJ-2	2	16	2

and the second
ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158 DATA LINE 251-1011

ASSAY CERTIFICATE

- SAMPLE TYPE: Rock Chips

DATE RECEIVED: AUG 28 1987 DATE REPORT MAILED: Sel SOUTHERN GOLD PROJECT-VIC File # 87-3700 FA SAMFLE# MO CU PΒ ΖN AG NI СО AS W AU** % 7. 7. % OZ/T % 7. 7 % OZ/T VIC 1 .176 .01 .01 .01 .02 .36 .75 7.07 .01 1.230 VIC 2 .099 .01 .01 .01 .07 ...70 .55 9.38 .01 1.340 VIC 3 .045 .01 .01 .01 .05 .59 .37 7.48 .01 .511 VIC. 4 .027 .01 .01 .01 ...01 .01 .01 .15 .01 .005 VIC 5 .001 .01 .01 .01 .01 .01 .02 .06 .01 .008

					53 - 53 - 53 - 53 - 53 - 53 - 53 - 53 -
				sour	ASS(
22222	22222 23	2222 22222	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RA RA RD	S ET.
45 201 202 203 204	4444 4421 00 10 444 1	228 228 228 228 228 228 229 229 229 229	102R 3 1103R 11 12 12 12 13 13 13 13 22 22 22 22 22 22 22 22 22 22	4PLE# 19 159 160 161 101R	
.01 3.84 2.19 2.64 2.10	.06 .01 .01	12.91 5.80 5.85 11.51 2.95 3.69 3.69	.92 .31 .28 .97 .97 .97 .97 .01 .97 .01 .93 .10.93 .37	PROJEC CU 2 4.24 4.24 .01 .27 .16	RIES DUVER B INE 251
1.001 	.01 .01		.01 .01 .01 .01 .01 .01 .01 .01 .01 .01	PB 1.40 .01 .01	DEAN
.01 .49 .03 .03	.02 .01 .01	. 16 . 18 . 18 . 18 . 18 . 18 . 18 . 18 . 18	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01	03 Fi ZN 1.48 .05 .01 .01	6A 1R6
.01 15.15 18.13 10.18 4.54		41.44 43.48 43.48 43.48 44.14 4.17 4.17 4.17 4.17 4.17 4.17 4.1	. 95 . 13 . 13 1. 48 1. 68 1. 68 1. 68 30. 60 28. 60 21. 52	1e # 8 02/T 1.79 2.43 .02 .02 .02	CERTIF
.01 .01 .01 .01		007 007 007 007 007	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01	AS AS .09 .01 .01	PORT M PORT M NIPS A.M.
.001 .032 .290 .042 .076	.007 .001 .001	3.825 1.366 1.366 .275 .275 .355 .355 .356 .356 .358 .072 .072	.066 .033 .001 .011 .011 .019 .002 .019 .002 .722 2.289	Pa AU** 0Z/T .061 .066 .068 .067 .166	VED: AILED: 7 FA C. ASS
•				ge 1	AUG 2
					8 15
	• • •				(B.7.
					•

-

 SOUTHERN
 GOLD
 PROJECT-121103
 FILE
 #
 B7-3701
 Page 2

 SAMPLE#
 CU
 PB
 ZN
 AG
 AS
 AU**

 %
 %
 %
 0Z/T
 %
 0Z/T

 RU
 2001
 5.73
 .79
 1.34
 40.85
 .55
 .034

 RU
 2002
 1.26
 .02
 .03
 1.85
 .05
 .032

 RU
 2003
 5.51
 .48
 1.12
 47.73
 1.70
 2.070

 RU
 2004
 .88
 .05
 .03
 1.95
 .10
 .037

APPENDIX 2

SAMPLE DESCRIPTIONS

Sample H	Description	<u>Cu(\$)</u>	<u>Pb(%)</u>	<u>Zn(%)</u>	Ag(OPT)	Au (OP1
<u>4 4 VEIN, 1</u>	00' LEVEL					
R#6	Location: 25m from portal Sample type: Chip across 85cm	2.23	.01	.06	3.97	0.004
	HW 15 cm Grd 60 cm MS-Hb vein FW 10 cm sheared guartz vein					
R#5	Location: 30 m from portal Sample type: Chip across 60 cm	. 20	.01	.02	.29	0.004
	HW 10 cm Grd, minor disseminated Cpy FW 50 cm Hb-Cpy vein, minor Qtz					
14 VBIN, 120	00 · LEVEL					
RU#41	Location: 1204 E Drift Sample type: Chip across 1.2 m	0.01	0.01	0.01	0.01	0.001
	Aphanitic dyke, NVM					
RU#42	Location: 1204 B Drift Sample type: Chip across 75 cm of #4 vein with NVM	0.02	0.01	0.01	0.05	0.001
	HW 25 cm aphanitic dyke 18 cm Hb-Fsp dyke FW 32 cm altered Granidiorite					
RU#43	Location: 1201 Cross cut @ #4 vein Sample type: Chip across 51 cm					
	HW 23 cm aphanitic dyke 8 cm shear zone FW 20 cm Franidionite					
RU#44	Location: 1204 W Drift Sample type: Chip across 63 cm	0.01	0.01	0.01	0.01	0.001
	Syenitic dyke					
RU#45	Location: 1204 W Drift Sample type: Chip across 75 cm	0.01	0.01	0.01	0.01	0.001
	Syenitic dyte					

Note: * I

Ŋ

* Indicates value in ppm

Sample	Description	<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(%)</u>	Ag(OPT)	Au (OP1
13 VBIN, 12	00' LEVEL				. * . *	
RU#31	Location: 1201 cross cut @ #3 vein Sample type: Chip across 116 cm	0.06	0.01	0.02	0.91	0.004
	Quartz-calcite-chlorite filled shear zone.					
RU#32	Location: 1201 cross cut @ #3 vein Sample type: Chip across 75 cm	0.20	0.02	0.02	0.71	0.007
	Shear zone as in RU#31					
12 VBIN, 95	0' LEVEL					
∕RD#1R	Location: 950' Portal @0+25B, 2+25N Sample type: Chip samples	8.09	0.01	0.01	0.92	1.390
	FW 40 cm altered Granidiorite with massive sulphides (Cpy, Py)					
RD∎2R	80 cm blocky quartz vein, 5-10% Cpy	5.16	0.01	0.02	0.59	0.095
RD#3R	25 cm band of laminated cherty quartz with 5-10% Py	2.77	0.01	0.01	0.26	0.108
RD∦4R	140 cm band of relatively unaltered granidiorite with minor Cpy	0.29	0.02	0.04	0.04	0.003
RD#5R	HW 30 cm quartz vein, including 10 cm gouge with Cpy, Py, Ga.	4.41	0.50	1.21	7.26	0.065
✓ RD≢6R	Location: Creek @0+25W, 2+25N Sample type: Chip across 30 cm	2.92	0.01	0.03	2.18	0.059
and the second second	sheared granidiorite with blebs of Hb & quartz, 5-10% Cpy, minor Ga.					
RD#7R	Location: Stope @2+00 2+50N Sample type: Chip across 56 cm	0.98	0.73	0.88	6.38	0.008
	 HW 5-10 cm gouge zone 17 cm blocky milky white quartz & Cpy. 4 cm massive sulphides Cpy, Ga & Tet PW 25 cm laminated cherty quartz, minor 					

Note: * Indicates value in ppm

****** Indicates value in ppb

5

r a

1

Ĵ

1

j

Hample 1	mescription		Cu(1)	<u>Pb(\$)</u>	<u>Zn(\$)</u>	Ag (OPT)	Au (OP1
R ≢7	Location: Sample type:	33 m (face) from portal Chip across 90 cm (old #3?3)	1.57	0.02	0.05	0.97	0.302
	HW 60 cm she str	eared, veined Grd locally ringers, blebs Qts + Cpy (5-10% Cpy)					
	FW 30 cm Gro	3					
R#8	Location: Sample type:	30 m from portal Chip across 77 cm	2.21	0.01	0.05	0.87	0.026
	HV 10 cm qua 57 cm she FV 10 cm Gro	artz vein eared, veined Grd, blebs Cpy 1					
R#9	Location: Sample type:	19 m from portal Chip across 170 cm	3.34	0.05	0.10	3.81	0.068
	HV 90 cm vei PV 80 cm Gro	in shear blebs Qtz, Cpy, Ga 1, blebs of Cpy (<1%)					
R#10	Location: Sample type:	18 m from portal Chip across 137 cm (old sample #387)	4.20	0.08	0.10	5.09	0.165
	HW 15 cm bar wit 82 cm she	nded milky white Qtz vein th blebs of Cpy eared vein, blebs & patches					
	of FW 40 cm Gro	Cpy, Qtz 1, minor dissem Cpy					
R#11	Location: Sample type:	13 m from portal Chip across 153 cm	7.61	0.03	0.10	1.82	0.256
	HW 10 cm Gro 5 cm Gou 50 cm Gro] ge], slightly alt., minor Cpy.					
	18 cm she Cpy	eared vein, irregular blebs of V & Qtz					
	30 cm sei PV 40 cm Hb- qua	ni-massive Cpy in Hb -Qtz vein, mostly milky white artz with blebs of Cpy					
R#17	Location: Sample type:	13 m from portal Chip across 70 cm	17.65	0.96	0.57	4.17	0.082
	Repeat of FW	70 cm of R#11					

: * Indicates value in ppm

****** Indicates value in ppb

Note:

6

Concession of the local distance of the loca

State of State

Sample	Description		<u>Cu(\$)</u>	<u>Pb(%)</u>	<u>Zn(%)</u>	Ag (OPT)	Au (OP]
R ≢12	Location: Sample type:	12 m from portal Chip across 165 cm	6.78	0.63	4.36	12.83	0.075
	15 cm gou 60 cm Gro 90 cm Qta	nge, minor Qtz, Cpy, Ga 1 z-massive Cpy vein					
R#18	Location: Sample type:	12 m from portal Chip across 90 cm	13.50	0.06	0.32	2.02	0.174
	Repeat of low	er 90 cm of R#12					
R#13	Location: Sample type:	10.5 m from portal Chip across 221 cm	2.72	0.13	0.75	1.77	0.087
	HV 5 cm Gro 36 cm she 90 cm una FV 90 cm Qta	ear zone, incl. 5 cm gouge alt. Grd minor Cpy z-Hb-Cpy vein, 10-15% Cpy					
R#14	Location: Sample type:	8.5 m from portal Chip across 190 cm	2.84	0.67	6.10	6.48	0.075
	HW 60 cm she & C 60 cm Gro FW 70 cm Qt ble	ear zone with 20-30% Qtz lissem Cpy, Ga l, rare Cpy z-Hb-Cpy vein; irregular ebs milky white Qtz & Cpy (10% Cpy)					
R#15	Location: Sample type:	7.0 m from portal (By wooden door) Chip across 245 cm	6.05	5.44	2.82	11.93	0.102
	HW 60 cm si 10 80 cm Gi	heared vein, minor gouge zones ocalized blebs Ga, minor Cpy rd. harren & unalt.					
	PW 105 cm Qi ii	tz-Hb-Cpy vein zone with large rregular blebs Cpy (15%)					•
R#16	Location: Sample type:	5.0 m from portal Chip across 215 cm	2.81	0.67	4.22	4.94	0.039
	HW 35 cm si z 80 cm Gi FW 100 cm Qi b)	hear zone, incl. 1-2 cm gouge ones & blebs of Cpy & Ga rd, unalt. & NVM tz-Hb-Cpy vein, large irregular lebs Cpy & Qtz (20% Cpy)					

Note:

* Indicates value in ppm

Sample #	Description	<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(%)</u>	Ag(OPT)	AU (OPT
12 VEIN, 10	00' LEVEL					
RAI	Location: 1002 W Drift Sample type: Chip across 53 cm Repeat of A#1	1.31	0.12	0.11	2.65	0.018
	HW 30 cm sheared seds. FW 23 cm Qtz veined Grd, 5% Py, 2-3% Ga, 1% WO ³					
RA11	Location: 1002 W Drift Sample type: Chip across 100 cm Repeat of All	1.72	0.02	0.10	5.80	0.169
	FW 10 cm sheared seds. 30 cm vein with Py, Cpy, Ga HW 60 cm seds.					
RWU55	Location: 1002 W Drift Sample type: Chip across 135 cm Repeat of WU55	2.63	0.08	0.98	5.35	0.043
	FW 20 cm seds, minor Py 20 cm banded clear Qtz, 5% Py 15 cm milky white Qtz (minor WO ₃) HW 80 cm seds, minor sulphides					
RA12	Location: 1002 W Drift Sample type: Chip across 110 cm Repeat of A12	1.50	0.08	0.18	3.08	0.015
•	 FW 70 cm sheared seds, fine dissem Py, Cpy 15 cm milky white Qtz vein, 5% Py HW 25 cm banded clear Qtz, abundant Cpy, Py, Ga 					
RA13	Location: 1002 W Drift Sample type: Chip across 138 cm Repeat of A13	4.77	0.15	0.92	2.42	0.082
	FW 50 cm alt. seds., minor Qtz blebs & Py 13 cm banded shear qtz with 10% Cpy 15 cm milky white Qtz & 0.5% WO, with 5-10% grey sulphide, 5% Py HW 30 cm white Qtz 10% Cny. 30 cm seds	· · · · · · · ·				
					-	

Ŋ

Ŋ

j

Sample	Description		<u>Cu(\$)</u>	Pb(\$)	<u>Zn(%)</u>	Ag(OPT)	<u>Au (OPT</u>
RA14	Location: Sample type:	1002 W Drift Chip across 130 cm Repeat of A14	1.69	0.01	0.06	0.78	0.096
	HW 30 cm se 35 cm wh 2- 35 cm sh	ds, sheared ite milky quartz % Py, 3% Tet. eared banded quartz 5% Cpy					
	FW 30 cm se	ds, minor dissem pyrite					
RA16	Location: Sample type:	1002 W Drift Chip across 75 cm Repeat of Al6	2.49	0.06	0.23	4.34	0.019
	PV 30 cm Gr 30 cm qt HV 15 cm sh	d z vein, abundant Cpy, Py ear zone Py, Cpy & WO₃					
RA17	Location: Sample type:	1002 W Drift Chip across 140 cm Repeat of A17	3.83	0.18	0.30	1.81	0.056
	FW 35 cm Gro 15 cm Hb 80 cm hea she HW 10 cm Gro	d -Cpy vein avily mineralized Qtz vein, eared, milky white Cpy, Py & WO ₃					
RA90	Location: Sample type:	1002 W Drift Chip across 100 cm Repeat of A90	1.43	1.58	0.67	4.80	0.059
	HV 40 cm mil she PV 60 cm Gro	lky white Qtz vein in eared Grd. minor Py. Rare ₩O₃ 1					
RA29/30	Location: Sample type:	1002 W Drift Chip across 115 cm Repeat of A29 & A30	2.51	0.28	0.36	11.56	0.035
	HV 15 cm Grd 60 cm she mas	ared white Qtz vein, locally sive Cpy, Py & Hb. Minor WO ₂					
	EW 40 CH GIO	. minor ry. cpy.				_	

: * Indicates value in ppm

****** Indicates value in ppb

<u>Note:</u>

Contraction of the local distance of the loc

(and 1)

Concernant of

Sample 1	Description		$C_{2}(\mathbf{k})$	<u>Pb(\$)</u>	<u>Zn(\$)</u>	Ag(OPT)	Au (OP1
RA32	Location: Sample type:	1002 W Drift Chip across 60 cm Repeat of A32	5.19	0.01	0.05	1.30	0.038
	HV 10 cm Grd 40 cm Qtz FV 10 cm Grd	vein, abundant Cpy, Py					
RA41	Location: Sample type:	1002 W Drift Chip across 90 cm Repeat of A41	5.35	0.01	0.05	4.15	0.020
	HV 30 cm Grd 30 cm qua Py,	rtz vein with abundant Cpy, tetrahedrite, sheared.					
R2	FW 10 cm Grd Location: Sample type:	1002 W Drift Chip across 85 cm Repeat of A77?	6.98	0.17	1.00	5.81	0.055
	HW 15 cm Grd 20 cm mil 15 cm she FW 35 cm Grd	ky white Qtz vein ar zone					
R1	Location: Sample type:	1002 W Drift Chip across 113 cm Repeat of 744?	5.65	0.02	0.27	8.58	0.058
	PW 23 cm Qtz HW 90 cm she mas	-sulphide vein ared Grd. with blebs of sive Cpy.					
RWU7 5	Location: Sample type:	1002 W Drift Chip across 105 cm Repeat of WU75	3.16	0.06	0.19	2.59	0.114
	FW 40 cm Grd	ared Ata vein					
	HW 40 cm mas abun	sive white milky Qtz vein with dant sulphides, 10% Cpy, Py, Tet					
R W U77	Location: Sample type:	1002 W Drift Chip across 105 cm Repeat of WU77	1.73	0.02	0.05	1.86	0.044
	FV 40 cm Grd 60 cm she HV 5 cm Grd	ared Qtz, sulphide vein, minor Tet					
Note:	* Indicates valu	e in ppm ** Indicates va	lue in pp	Ъ			

(100 mm)

Section 2.

<u>Sample 1</u>	Description		<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(%)</u>	Ag(OPT)	<u>Au (opi</u>
R4	Location: Sample type:	1002 W Drift Chip across 225 cm	1.39	0.34	0.21	5.19	0.023
	HV 35 cm she 90 cm Qtz ble	ar zone with Qtz veins -sulphide veined Grd. Cpy					
	FW 100 cm sh Cp	eet veined & alt. grd. with y	dissem.				
R3	Location: Sample type:	1002 W Drift Chip across 205 cm	0.79	0.14	0.36	0.81	0.016
	15 cm sh 120 cm sh 70 cm sh ve	ear zone eared Grd. with Cpy. in Qtz eet veined Grd. with Cpy. in eins (3% Cpy.)	vein gtz.				
RA159	Location: Sample type:	1002 W Drift Chip across 110 cm Repeat of A159	4.24	0.01	0.05	2.43	0.066
	HV 26 cm Grd 29 cm she 20 cm Qtz dis	l, minor Cpy eared, gouge-Qtz zone e-minor Hb vein with blebs & sem of Cpy					
	FW 35 cm Grd	I, locally blebs of Cpy					
RA160	Location: Sample type:	1002 W Drift Chip across 110 cm Repeat of A160	0.01	0.01	0.01	0.02	0.068
	HW 10 cm Gró 62 cm she PW 38 cm Gró	l., NVM cared gouge zone, minor Cpy. l., rare Cpy.		•			
RA161	Location: Sample type:	1002 W Drift Chip across 96 cm Repeat of A161	0.27	0.01	0.01	0.19	0.067
	HV 67 cm she mal	ared gouge zone, abundant lachite stain					
	12 cm she 17 cm Gro	eared Grd., NVH 1., NVH					

Sales of several section.

1

2

Ĵ.

٠Ĵ

Ĵ,

J

* Indicates value in ppm

Sample	Description	<u>Cu(\$)</u>	Pb(\$)	<u>Zn(\$)</u>	Ag(OPT)	Au (OP:
RU# 2001	Location: @ 76 m into adit Sample type: Chip across 121 cm	5.73	0.79	1.34	40.85	0.034
	 HW 12 cm barren Grd. 30 cm sheared Qtz vein FW 44 cm massive Qtz -Hb vein with 5-10% Tet, 10% Cpy, minor Ga & Sph. 					
RU# 2002	Location: @ 73.5 m into adit Sample type: Chip across 87 cm	1.26	0.02	0.03	1.85	0.032
	HW 23 cm shear zone, minor Qtz 29 cm Qtz-Hb vein with 4-5 % Cpy & 3-4% Tet FW 35 cm irregularly Otz-veined Grd					
	40-50% Qtz vein with 1-2% Cpy, Grd. has 3-4% Cpy.					
RU# 2003	Location: 3m W of R4 Sample type: Chip across 135 cm	5.51	0.48	1.12	47.73	2.070
	HW 13 cm calcite-chlorite shear 19 cm Qtz-vein with 10-15% Tet 31 cm Chl-Qtz-Calcite shear, minor Cpy 57 cm Qtz-Hb-Cpy vein locally blebs of massive Cpy, overall 10-15%					
	PW 15 cm Grd., rare Cpy.					
RU# 2004	Location: 1.4m E of RU2003 Sample type: Chip across 160 cm	0.88	0.05	0.03	1.95	0.037
	 HW 12 cm sheared Grd, minor chl, calcite 5 cm Qtz. vein, minor Tet, malachite stain 29 cm shear zone (chl-calcite-Qtz) 62 cm Qtz-Hb-Cpy vein, irregular blebs of Qtz. & Hb. with assoc. Cpy. FW 52 cm Grd, minor dissem Cny & in fractures 				·	

* Indicates value in ppm

** Indicates value in ppb

Note:

4

1.3

.

10 mm

Sample #	Description		<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(\$)</u>	<u>Ag(OPT)</u>	Au (OP1
<u>#2 VBIN, 1</u>	200' LEVEL						
RU# 201	Location: Sample type:	0.5m E of #192W Chip across 40 cm	3.84	1.05	0.44	15.15	0.32
	HW 20 cm qua maa PW 20 cm sed	artz vein with 10-15% blebs of ssive Cpy., minor Ga. liments					
RU# 202	Location: Sample type:	1202 W Drift Chip across 127 cm #176W	2.19	0.13	0.49	18.13	0.290
RU# 203	Location: Sample type:	1202 W Drift Chip across 130 cm	2.64	0.34	0.34	10.18	0.042
	Vein containir & Asp & Tet sediments	ng 10% Cpy, 2-3% Ga & includes 15 cm FW					
RU# 204	Location: Sample type:	1202 W Drift Chip across 70 cm	2.10	0.11	0.03	4.54	0.076
	HW 30 cm Qua mas PW 40 cm sec	artz vein with locally ssive Cpy & minor Ga liments, NVM					
RU# 205	Location: Sample type:	1202 W Drift Chip across 60 cm	4.84	0.70	1.66	10.85	0.055
	HW 50 cm whi Cpy PW 10 cm sec	ite quartz vein with 10% y minor Ga & Sph. Jiments					
RU#21	Location: Sample type:	1202 W Drift Chip across 80 cm	8.76	0.09	0.13	15.83	1.560
	White quartz v £ includes 20	vein with blebs of Cpy (20%) cm of FW Grd.					•
RU#22	Location: Sample type:	1202 W Drift Chip across 73 cm	10.93	0.32	0.44	30.60	0.722
	HW 58 cm of PW 15 cm Gro	vein with 30% Cpy & 10% Tet with 2-3% Cpy.					

****** Indicates value in ppb

.

Marcine

j,

3

March

Sample 1	Description		<u>Cu(\$)</u>	<u>Pb(1)</u>	<u>Zn(\$)</u>	Ag(OPT)	AU (OPT
RU# 22A	Location: Sample type:	1202 W Drift Chip across 58 cm	14.87	0.41	0.21	28.09	2.289
	Repeat of low	r 58 cm of RU#22					
RU#23	Location: Sa m ple type:	1202 W Drift Chip sample across 47 cm of vein	6.37	0.06	0.19	21.52	0.285
	HW 33 cm alt mas FW 14 cm whi 4-5	ered Grd with blebs of sive Cpy (15%) te quartz vein with % tetrahedrite					
RU#24	Location: Sample type:	€128.5m 1202 ₩ Drift Chip across 65 cm	12.91	0.35	0.16	41.43	3.825
	Hb-Cpy vein & large blebs of	altered Grd with nearly massive Cpy (30%)					
RU#25	Location: Sample type:	€129.5m 1202 ₩ Drift Chip across 95 cm of vein	5.80	0.05	0.18	13.81	1.366
	HW 10 cm Grd 70 cm Qua FW 15 cm Grd	rtz-Cpy (Hb) vein with 30% Cpy					
RU#26	Location: Sample type:	€130.6m 1202 ₩ Drift Chip across 70 cm	5.55	0.07	0.16	4.48	0.355
	HW 20 cm Gró £ L FW 50 cm qua 201	With minor Quartz veining Plebs of Cpy (5%) Prtz-Cpy vein with at least Cpy.					
RU#27	Location: Sample type:	€132.1m 1202 ¥ Drift Chip across 63 cm					
	HW 15 cm Gró FW 48 cm she	, minor Qtz veins & blebs of Cpy ared Qtz-Hb-Cpy vein with 10% Cpy					
RU#28	Location: Sample type:	@136.7m 1202 W Drift Chip across 115 cm	6.87	0.07	0.18	5.77	0.272
	HW 95 cm Qtz Cpy FW 20 cm Gro	-Cpy shear zone, abundant (10-15%) I, minor Cpy.				·	

Note: * Indicates value in ppm

and the second sec

j

<u>Sample </u>	Description		<u>Cu(\$)</u>	<u>Pb(\$)</u>	Zn(%)	Aq(OPT)	AU (OPT
RU #28A	Location: Sample type:	€136.7m 1202 ¥ Drift Chip across 40 cm	11.51	0.01	0.03	4.62	0.356
	Repeat of cent immediately a	tral 40 cm of RU≇28 bove Grd. Includes 30% + Cpy.					
RU#29	Location: Sample type:	@137.9m 1202 W Drift Chip across 99 cm	5.06	0.02	0.12	4.14	0.598
	Quartz-Cpy ve.	in with 10-15% Cpy					
RU #29A	Location: Sample type:	@141.0m 1202 ¥ Drift Chip across 81 cm Repeat of sample #287¥	3.69	0.04	0.06	4.50	0.072
	HW 23 cm Gro 28 cm sh FW 30 cm Qt dis	d. with 5-10% Cpy eared quartz vein, minor Cpy (5%) z-veined, altered Grd. with 3-4% ssmem. Cpy.					
RU∎30	Location: Sample type:	@143.3 1202 W Drift Chip across 69 cm Repeat of WU470?	2.95	0.32	0.39	6.29	0.142
	HW 27 cm al 34 cm Qt of PW 8 cm Gro	tered Grd. with 3-4% Cpy z vein, locally massive blebs Cpy up to 10 cm d. minor Cpy					
RU #30A	Location: Sample type:	<pre>@143.3m 1202 W Drift Repeat chip sample of central 47 cm of RU#30</pre>	15.78	1.38	1.07	49.10	1.225
	HW 29 cm Cpj	y-filled vein (30% + Cpy)					

FW 18 cm Qtz-Ga-Tet (5%) vein

Note:
 Indicates value in ppm

Sample #	Description	Cu(k)	<u>Pb(%)</u>	<u>Zn(%)</u>	Ag(OPT)	Au (OP1
<u>#1 VBIN, 1</u>	200 LEVEL					
RU#11	Location: 1201 Drift Sample type: Chip across 100 cm	1.28	0.01	0.01	1.30	0.011
	Aphanitic dyke with 2-3% Cpy					
RU#12	Location: 1201 Drift Sample type: Chip across 99 cm	0.97	0.01	0.02	1.68	0.019
	HW 75 cm aphanitic dyke FW 24 cm stockwork Cpy-veined aphanitic dyke (2-3% Cpy)					
RU#13	Location: 1201 Drift Sample type: Chip across 120 cm	0.01	0.01	0.01	0.05	0.002
	HW 41 cm calcite vein 15 cm sheared calcite vein FW 40 cm aphanitic dyke					

Note:

Indicates value in ppm

<u>Sample i</u>	<u>Description</u>		<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(%)</u>	Ag(OPT)	Au (OP]
14 VEIN, SUR	PACE SAMPLES						
RD#13R	Location: Sample type:	100' Portal Ploat	8.25	0.01	0.06	0.79	0.275
	Selection consistin Cpy, Py,	n of mineralized dump ng of Hb-Qtz vein with Ga.					
RD#14R	Location: Sample type:	E ast of 100'Level Portal 65 cm chip across #4 vein	1.06	0.01	0.01	0.52	0.022
	HW 15 cm gou 15 cm qua FW 35 cm lan	nge zone, we athered M.S. Artz vein Minated guartz vein					•
RD#15R	Location: Sample type:	2+00B 7+50N Partially preserved #4 vein	3420*	17*	41*	10.0*	0.008
	HW 35 cm Hb Py FW 30 cm qua	Qtz Sulphide vein (<3% Cpy, & Ga) incl. 10 cm massive magnetite artz vein					
RD#16R	Location: Sample type:	Bast end #4 vein 32 cm chip sample	700*	43±	99 ±	3.7*	0.004
	HW 20 cm Qtz FW 12 cm ma	z vein ngnetite-Hb					
RD ≢17R	Location: Sample type:	0+00W 7+75N Chip across 35 cm of the #4 vein	37118*	52 *	389*	56.5*	0.159
	HW 15 cm Hb- 12 cm fin FW 8 cm as	Qtz vein, mag, 2-3% Py, 1% Cpy ne Qtz-calcite vein upper 15 cm.			•		
RD#18R	Location: Sample type:	0+00W 7+75N Chip sample across 22 cm of vein 2 m below #17R	39642*	20*	165*	34.5*	0.496
	Quartz vein + sulphides (Cpy	central 8 cm of massive (+ Py).					
RD≢19R	Location: Sample type:	Adit 0+50W 7+50N Chip sample across 70 cm on East wall of adit	13572*	22*	103*	76.3*	0.213
	Heavily weathe	ered shear/vein zone.					
Note: *	Indicates valu	e in ppm ** Indicates val	lue in ppb	н 			

Sample I	Description		<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(%)</u>	Ag(OPT)	AU (OPS
RD# 101R	Location: Sample type:	Adit @ 0+50W 7+50N Check 80 cm chip sample opposite RD#19 & 20R on W. Wall of open adit (118/67N).	0.16	0.01	0.01	0.08	0.166
	HV 55 cm hea FV 25 cm she	avily weathered Gossanous vein eared Granidiorite					
RD#21R	Location: Sample type:	Stope @1+25W 7+25N Chip across 100 cm	22648*	15*	103*	25.6*	0.103
	100 cm weather relict blebs (red gossanous vein with of Qtz + Cpy/Py					
RD# 102R	Location: Sample Type:	Stope @ 1+25W 7+25N Check chip sample across 115 cm adjacent to RD#21R	0.92	0.07	0.02	0.95	0.066
	HW 35 cm wea 1-2 15 cm fa 1-2 40 cm Gro blo 12 cm rei	athered gossanous quartz vein with 2% relict Cpy irly massive quartz vein with 2% Cpy d, sheared, iron stained, minor ebs of Cpy lict gassanous massive sulphides, stly Cpy2					
RD#32R	FW 13 cm Gro Location: Sample type:	d, iron stained, sheared minor Cpy. #4 vein (west end) Float (dump)	981*	12*	33*	2.0*	0.001
	Intensely weat in gossanous i	thered breccia zone matrix					
RD#33R	Location: Sample type:	#4 vein (west end) Ploat (dump)	562*	11*	12*	0.6*	0.001
	Weathered Qtz-	-Py vein					
RD#34RA	Location: Sample type:	#4 vein (west end) Ploat (dump)	487*	12*	20*	2.1*	0.001
	Weathered brea alt'n & minor	ccia zone with Hb pyrite					
RD#35RA	Location: Sample type:	#4 vein Float (dump)	32403±	12*	141*	39.6±	0.263
	Heavily weathe	ered Hb-Qtz-Py zone					

· •

* Indicates value in ppm

****** Indicates value in ppb

<u>Note:</u>

Ŋ

0

Ŋ

and a second

Constant of the second

Sample 1	Description		<u>Cu(%)</u>	<u>Pb(\$)</u>	<u>Zn(%)</u>	Ag(OPT)	Au (OP)
RD#36R	Location: Sample type:	#4 vein Float (dump)					
	Grab of dump i	fines.					
RD#37R	Location: Sample type:	Trench Chip across 95 cm of vein on East Wall	41445*	17*	146*	47.6*	0.065
	HV 20 cm sei 40 cm vea PV 40 cm Qta	mi-massive Py in Qtz vein athered gouge, Hb. z-Py wein as top 20 cm.					
RD#103R	Location: Sample type:	Trench Check chip sample across 87 cm opposite RD#37R (i.e. on W. wal	1)				
	HV 11 cm qua 50 cm vea mas	artz vein athered gossanous relict ssive sulphide					
	FW 26 cm Qua ble	artz-Hb-Cpy vein with large ebs of Cpy (5-10%).					
RD#38R	Location: Sample type:	Trench Chip across 50 cm	1372*	5 ±	22*	1.0*	0.001
	Bleached Gran	idiorite under vein					
RD#39R	Location: Sample type:	Trench Ploat (dump)	99999 9 *	49±	1093*	64.9*	0.018
	Grab of massi	ve Cnv.					

Sector Sector

1

Ċ

100 TO 100

Contraction of the local distance of the loc

Sample	Description		<u>Cu(\$)</u>	<u>Pb(%)</u>	<u>Zn(%)</u>	Ag(OPT)	AU (OPT
ARMAGOSA V	EIN AREA, SURFAC	e samples					
RD#40R	Location: Sample type:	Armagosa Chip across 60 cm (Two samples)	515*	21*	8*	4.6*	0.001
	HW 20 cm ch.	ip sample Hb-Qtz-Py vein,					
RD#41R	moderate. FV 40 cm ch. sh	ly weathered (5% Py). ip sample of alt. breccia, ear zone below #40R	1228*	7*	9*	1.6*	0.002
RD#42R	Location: Sample type:	Armagosa Grab	604*	9±	9±	0.8*	0.001
	Brecciated sh containing an	ear zone with 15-20% Hb gular clasts of seds.					
RD#43R	Location: Sample type:	Armagosa Grab	427*	20*	14*	0.6*	0.001
	Breccia zone, seds. in dark	angular clasts of bleached Hb-limonitec matrix.					
RD∦44 R	Location: Sample type:	Armagosa Chip sample across 110 cm	15299*	29*	66±	5.3*	0.001
	HV 20 cm ma: FV 90 cm vei	ssive Hb-Qtz vein, 5% Py. athered gossanous shear.					
RD#45R	Location: Sample type:	Armagosa Chip across 100 cm	457 *	.5 *	14*	0.2*	0.001
	Pale grey sil	iceous seds. with 3-4% Py.					
RD#46R	Location: Sample type:	Armagosa Float	7410*	61*	94*	109*	0.001
	Grab of unexp 30% Py minor 1	osed Qtz-Py vein with Hb.					
RD#47R	Location: Sample type:	Armagosa Chip across 65 cm	915 *	22*	11*	2.7*	0.001
	Exposed quart:	z vein					
RD# 48R	Location: Sample type:	Armagosa Adit Ploat	4414*	9±	22*	1.8*	0.006
	Grab of adit a zone.	dump 10% Py in breccia					
Note:	* Indicates val	ue in ppm ** Indicates	value in pph)			

Statistics and

and the second s

<u>Sample #</u>	Description		<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(\$)</u>	Ag(OPT)	AU(OPT
GREAT OHIO	VEIN, SURPACE S	AMPLES					
RD≇8R	Location: Sample type:	Great Ohio Adit Float	2204*	81±	187*	3.2*	0.001
	Quartz vein w of pyrrhotite	ith locally massive blebs					
RD≢9R	Location: Sample type:	Great Ohio Adit Float	3374*	44*	143*	7.1*	0.001
	Hb lamprophyrd with attached	e dyke with 2-5% Py quartz-Pyrrh.					
RD#10R	Location: Sample type:	Great Ohio Adit Ploat	7270*	108*	538±	26.8*	0.011
	Calcite brecc: & 70% Calcite.	ia zone 2-3 % G a					
RD#11R	Location: Sample type:	Great Ohio Adit Ploat	2477*	34*	62*	2.3*	0.026
	Selected float Pyrh, Py, Cpy	t sample of masssive in Hb-quartz vein					
RD#12R	Location: Sample type:	Great Ohio vein B of adit Chip across 1.2 m	799 *	41*	54*	11.8*	0.040
	Shear zone tha massive sulphi	nt includes 40 cm ides Py & Pyrh					

e: * Indicates value in ppm

****** Indicates value in ppb

<u>Note:</u>

No. or other

No. of Concession, Name

Sample #	Description		<u>Cu(\$)</u>	Pb(1)	<u>Zn(%)</u>	Ag(OPT)	<u>Au (opi</u>
HIGHLAND BO	<u>DY VEIN</u>						
RD#22R	Location: Sample type:	Highland Boy, west end Float	2285*	13*	52 *	1.9*	0.002
	Hb vein: mino	r Cpy, Mag					
RD#23R	Location: Sample type:	Highland Boy, west end Float	1384*	22*	77*	1.9*	0.002
	Qtz vein; 20-	30% Mag, Cpy					
RD#24R	Location: Sample type:	Highland Boy, west end Float	20575*	23*	89±	29.4*	0.009
	Weathered Qtz 10% Cpy + Py,	vein breccia with 30% magnetite					
RD#25R	Location: Sample type:	Highland Boy, west end Ploat	1003*	21*	75 *	1.7*	0.001
	Contact area minor magneti	of granidiorite, silicified te (<5%) along edge.					
RD#26R	Location: Sample type:	Highland Boy, west end Float	34237*	17*	132*	37.3*	0.013
	Vein with 10% + 10-20% Cpy.	Qtz, 10% Hb, 50% Mag.					
RD#27R	Location: Sample type:	Highland Boy, west end Ploat	660±	15*	58*	2.1*	0.001
	Massive lamin as stringers	ated Qtz vein with 20% Mag & bands, minor Cpy veinlets.					
RD#28R	Location: Sample type:	Highland Boy (B ast) Chip across 67 cm	22139*	20±	93±	22.3*	0.129
	Heavily weath above portal.	ered Hb-Qtz vein					
RD#29R	Location: Sample type:	Highland Boy (Bast) Ploat	64525*	33 *	169*	20.9*	0.119
	Qtz-Pyrite ve	in, 30-40% Py, minor Pyrh.					

<u>Note:</u>

Service States

Sale Barrier

* Indicates value in ppm

Sample 1	Description		<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(\$)</u>	Ag(OPT)	Au (OP]
RD#30R	Location: Sample type:	Highland Boy (Bast) Float	84216*	41*	217*	29.1*	0.136
	Quartz-sulphic	de vein, 20% Mag, 20% Py, 10% Cp	y.				
RD#31R	Location: Sample type:	Highland Boy (Bast) Ploat	593*	19*	34*	0.1*	0.001
	Qtz-Hb vein 1	5% Mag, 10% Cpy + 5% Py.					
RD#32RA	Location: Sample type:	Highland Boy (Bast) Ploat (dump)	20939±	19±	142*	10.6*	0.014
	Hb-Mag vein w	ith 10% Py, 5% Cpy					
RD#33RA	Location: Sample type:	Highland Boy (Bast) Float (dump)	77081*	39±	219*	27.3 *	0.046
	Quartz vein wi	ith Py, Cpy, Mag					
RD#34R	Location: Sample type:	Highland Boy Float (dump)	8448*	8*	57 *	5.8*	0.011
	Weathered Gran	nidiorite, patches Qtz, Py					
RD#35R	Location: Sample type:	Highland Boy Float (dump)	58493±	26*	131*	11.6*	0.048
	Qtz-Hb vein wi	ith Mag, Cpy					

Note:

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC

and the second se

ALC: NO.

* Indicates value in ppm

Sample	Description	<u>Cu(\$)</u>	<u>Pb(\$)</u>	<u>Zn(\$)</u>	Ag(OPT)	Au (OP)
BOCK FLOAT	SAMPLES, TALUS LINES					
RT Rock 1 + 755	Location: Juniper Creek, South Side Sample type: Grab sample of float	6005±	17*	98±	6.7*	0.006
	Quartz vein + Hb banded rock with <0.2 cm band of Pyrite					
RT Rock 2 + 155	Location: Juniper Creek, South Side Sample type: Grab sample of float	12429*	21*	387*	5.1*	0.020
RT Rock 3 + 80S	Location: Juniper Creek, South Side Sample type: Grab sample of float	8465*	48*	126*	13.5*	0.011
	Hb-calcite vein with 10% Py, 10% Mag + magnetite in calcite vein.					
RT Rock 5 + 00S	Location: Juniper Creek, South Side Sample type: Grab sample of float	9616*	15*	70*	4.0*	0.015
	Hb-quartz veined granidiorite. Hb locally coarse. Contains 5-10% Py, 5% Mag.					
RT Rock 7 + 00S	Location: Juniper Creek, South Side Sample type: Grab sample of float	5147*	43±	109*	5.9±	0.001
	Milky quartz vein with minor Hb, contains massive blebs of pyrrh + minor pyrite.					
RT Rock 12 + 00s	Location: Juniper Creek, South Side Sample type: Grab sample of float	323*	10*	44*	0.4*	0.001
	Cherty rhyolite (?) very fine grained, pale grey, with minor dissem. pyrite + up to 0.5 cm biotite flakes.					
Rock Talus 4 + 70N	Location: Juniper Creek, North Side Sample type: Grab sample of float	82±	142*	250*	1.8*	17**
	Massive magnetite with minor dissem. pyrite.					

Note: * Indicates value in ppm

****** Indicates value in ppb

.

Contraction of the second

Alicin bullet

<u>Sample #</u>	Description			<u>Cu(\$)</u>	<u>Pb(%)</u>	<u>Zn(%)</u>	Ag (OPT)	Au (OP)
Rock Talus 5 + 40N	Location: Sample type:	Juniper Creek, Nor Grab sample of flo	th Side Dat	17408*	68±	348*	37.5*	0.036
	Massive Hb vei	n with minor altere	ed seds.					
Rock Talus 8 + 50N	Location: Sample type:	Juniper Creek, Nor Grab sample of flo	th Side Dat	23761*	43*	129*	5.9*	0.103
	Altered granid pyrite.	liorite with 5% diss	sem. f.g.					
Rock Talus 8 + 75N	Location: Sample type:	Juniper Creek, Nor Grab sample of flo	rth Side Dat	2*	20*	108*	0.2*	0.001
	Coarse grained	quartz vein.						
'A' Rock Talus #1	Location: Sample type:	Armagosa Creek, No Grab sample of flo	orth Side Dat	1011*	3506*	1764*	31.3±	0.001
	Massive pyrite	(30-40%) in shear	zone.					
'A' Rock Talus #2	Location: Sample type:	Armagosa Creek, No Grab sample of flo	orth Side Dat	2470*	62±	143*	5.8*	0.001
	Hb-Py vein wit	h minor magnetite.						
'A' Rock Talus # 3	Location: Sample type:	Armagosa Creek, No Grab sample of flo	orth Side Dat	105*	28*	24*	1.5*	0.001
	Hb rich fault Armagosa adit.	breccia as seen abo	ove					
'A' Rock Talus #4	Location: Sample type:	Armagosa Creek, No Grab sample of flo	orth Side Dat	581±	75±	120*	4.8*	0.001
	Fine grained p with fine lami	ale cherty rhyolite nations of pyrite (e (?) (1-2%).					
'A' Rock Talus #5	Location: Sample type:	Armagosa Creek, No Grab sample of flo	orth Side Dat	4489*	29*	55*	4.5*	1.280
	Qtz-Hb vein wi	th 10% Py.						
Note:	Indicates valu	e in ppm	** Indicates va	lue in ppb				

32, 0.9, 19 2+00 5 ~~~20 . - - - - .. 12. -

		٨						
		1						
	Starball Starball Starball				700N _	0.1 • 4	0.2 • 29	0.1 • 24
						0.1 • 4	0.4 • 6	0.7 · 1
	States Strike Ballings					01 - 0		
					-	ur - 0	0.0 · E	ω υ • ε
				Se la Ti		0.1 • 6	0.2 + 25	0,3 · 15
					500N _	0.5 + 2	0.5 • 1	0.5 • 20
						0.8 · 5	0.4 • 21	0.4 • 9
					-	0.5 • 19	0.4 + 18	0.1 • 1
						0.7 • 5	0.4 · 23	
		500N _	0.1 • 10	0.3 • 5		0.8 • 13	0.8 • 28	0.3 • 80
			0.2 • 11	0.1 • 3		0.4 • 28	0.8 • 3	0.4 • 1
			01 - 3	0.2 . 10		03 - 7	0.2 . 29	04 - 4
							ve • 37	
	a the second devices	1001	0.2 • 4	0.4 • 9		0.4 • 8	0.4 • 6	0.2 • 450
		400N _	0.1 • 6	0.2 • 1		0.4 • 15	0.4 • 5	0.2 • 3
-			0.1 • 4	91 · 2		0.3 · 12	0.4 • 1	0.2 • 4
		-	0.1 • 5	0.1 · 3		0.2 • 18	0.4 • 6	0.4 • 5
			0.1 • 13	0.4 • 63		0.3 • 4	0.5 • 10	0.1 · 15
		300N _	ai · 4	0.3 . 6		0.6 • 6	1 + 26	0.1 • 6
			0.1 • 0	0.4 5		0.5 • 4	0.6 • 23	0.3 + 27
	CLAIN BO	-	0.1 • 1	0.4 . 31		13 · 3	0.7 • 3	0.1 • 4
	SUNDARY		0.1 . 2	0.3 . 8		6.3 · 12	0.8 • 6	0.1 • 19
	The south of the second	200N	0.2 . 4	0.4 . 18		1.4 • 10	1 • 2	0.4 + 2
			01 . 4	0.4 • 51		0.5 + 5	0.8 · 15	0.2 • 2
		_	0.3 . 2	0.4 - 10		0.4 • 2	0.5 • 2	0.4 . 4
				07 . 8	1	05 . 1		
		1000	un/. 1	u.7 • 9		0. 3 • 1	0.3 • 3	0.9 • 6
		10014 _ /	0.2 • 7	0.6 • 15		0.2 • 1	16 • 1	0.7 • 11
		/	0.1 • 1	0,9 • 3		0.4 • 1	0.5 • 1	0.8 • 6
		- /	0,3 • 1	0.5 • 10		1.4 • 2	0.4 • 1	0.5 • 12
		/	0.1 • 1	0.6 + 12		1.3 + 6	0.2 • 4	0.2 • 5
	BASE LINE	00 /	0.9 • 2	0.5 • 16		0.7 • 4	0.3 + 6	0.8 + 6
		/	0.2 • 1	0.6 • 7		0.5 · 1	0.5 · 4	01 • 6
		/ -	0.1 - 1	0.7 • 2		0.7 + 4	ш. • 5	9.2 · 2.0
		/ .	0.1 • 1	0.6 • 2		0.7 + 20		0.3 • 2
	/	100S _	0,2 • 1	0.6 · 1		1 + 5		0.4 • 2
	/		0.3 • 30	1 . 4		0.3 • 2	0.1 • 12	0.5 · 22
	/	-	0.3 · 1	0.6 · 8		0.4 + 1	0.2 • 1	0.6 • 2
	/		5.5 · 6	0.3 • 4		0.2 • 4	0.1 • 17	0.1 • 1
		2005 _	14 + 1	3.5 • 2		0.2 · 3	0.2 • 1	0.2 · 1
			8W	7W		6W	5W *	4W
							2	
		>		12.2.3.				and the second

	and the second second		Same Links		0.3 • 8	
			900N _	- 0.2 + 63	0.4 • 6	_ 900N
				0.3 • 87		
				0.3 • 20		
				0.2 • 69	0.4 • 41	
	800N	. 0.5 · 210		0.2 · 22	0.2 · 12	_ 800N
		0.4 • 7	0.3 · 180	0.5 · 10	0.5 · 44	
		19 · 1	9.5 • 165	0.7 • 68	0.3 · 18	-
		3.2 + 810	0.9 • 24	0.3 + 18	0.2 • 7	
		17.5 • 2830		0.3 • 25	0,3 • 7	_ 700N
		5.6 • 43		1 • 7	0.5 · 10	
		0.6 • 77	3.5 + 175	0.4 • 15	0.5 · 52	-
		11 • 46	7.8 + 185	0.3 + 17	0.3 • 10	
		0.6 • 8		0.5 + 6	0.4 • 8	_ 600N
		0.6 + 9	0.7 · 46	0.3 • 11		
			0.7 • 42		0.7 · 11	-
		1.2 • 143		0.3 • 4	0.3 • 19	
0.3 + 70		0.9 • 9	5.7 · 395	0.3 + 22	0.1 • 68	_ 500N
0.5 • 28		14 + 64	1.4 • 65	0.6 + 7	0.2 • 6	
0.9 + 240	0.7 • 81	2 + 90		0.5 • 1	0.2 • 15	-
1.5 • 1280	0.4 · 35	1 • 470		0.5 • 21	0.3 · 11	
0.6 + 125	0.3 · 13	0.6 • 44	0.9 · 31	0.8 • 7	0.5 • 6	400N
0.3 • 23	0.7 • 18	0.8 + 31		0.6 + 41	0.2 • 21	
0.4 • 26	0.6 • 22	0.5 + 8	0.8 • 195	0.4 - 12	0.1 • 9	
0.6 + 24	0.7 · 54	0.3 • 7	10.7 • 325	1.3 • 24	1.5 • 24	
0.3 • 14	0.7 · 56	0.6 • 200	0.7 • 35	1 + 13	0.4 • 51	_ 300N
0.5 · 18	1.1 • 139	64.2 • 47	0.4 • 18	0.7 + 50	0.1 + 37	
0.4 • 9	0.7 • 57	13 • 34	0.1 • 26	2.9 + 2350	0.1 + 16	
1.2 • 16	0.7 • 135	64 • 143	21 • 545	1.9 • 485		
0.5 • 210	0.6 • 49	1.4 • 47	12.8 • 395	1.6 - 340	0.1 • 13	_ 200N
0.5 • 83	1 • 36	0.7 • 22		0.5 • 173		SECLOGICAL E
0.6 + 5	0.6 • 34	11 + 9	1.6 + 59	0.3 • 79	0.6 • 129	-
0.3 • 30	0.2 • 19	2 • 74		6 • 1780	1.3 • 17	117
0.4 • 6	0.8 • 19	2.9 • 143		1.1 + 96	0.9 · 34	_ 100N
0,9 · 16	0.4 • 10	0.8 • 19				
0.9 • 20	0.4 • 31	0,5 + 250				
0.5 • 6	0.2 · 155	0,4 • 36		0.3 + 40		
0.5 + 5	0.4 • 10	0.6 • 110 1 W	00	0.8 · 37 — 1E	2E	_ BASE LINE
0.3 • 1	0.6 • 1					
0.3 • 1	0.1 • 7 —					
0.1 • 10	0.3 · 24					0 50 100 150
0.2 • 3	0.1 + 1 _ 1005				Г	metres
0.5 • 1			LEGEND			SOUTHERN GOLD RESOURC
0.4 - 1			Ag ppm A	u ppb		
04 . 5	2005		85 + 56			ROCHER DEBOULE PRO
3W	2W					AC & ALL OFOCITEM
						AG & AU GEUCHEM
		1. 10 B)				SCALE: DATE: N.T.S. DRAWN BY 1:2500 Sept.'87 93M/4E GEO-COMP

AN ALCOLOGY STATE			and the second		in and standard	
					1	
A State of the second second						
	1					
	1					
	-0-					
			700N .	- 61 • 45	175 • 117	77 • 53
				69 • 62	B1 • 54	94 • 73
				- 81 • 65	123 • 58	105 • 85
				52 . 49	64 . 66	91 . 271
			600N	55 . 45	04 + 00	51 • 6/1
			0001	— 57 • 53	56 • 53	169 • 510
				115 • 136	377 • 1854	353 • 283
				— 135 · 147	348 + 1282	112 • 451
				164 • 129	431 • 1774	
	500N _	210 · 401	185 · 150	182 · 168	401 • 1575	130 • 159
		62 · 79	134 • 161	109 • 69	89 • 161	57 • 50
	-	37 • 39	145 • 188	154 + 67	158 • 136	68 + 84
		40 - 34	236 + 210	125 • 46	164 - 107	107 * 70
	400N _	105 • 50	240 • 185	127 • 46	95 • 68	40 • 43
		96 • 48	84 • 91	196 • 119	118 • 62	82 • 47
		150 . 02	A 89 . 99	194 - 197	102 . 74	62 . 42
and the second second		130 . 53		194 7 127	103 - 74	02 - 43
	7001	115 + 51	47 . 57	200 + 109	134 • 87	121 * 86
	300N _	68 • 38	49 • 61	58 + 52	57 • 64	161 • 54
		135 • 59	61 50	43 · 46	157 • 117	362 • 472
CLAIM BOUNDA	-	64 • 42	151 . 171	72 • 69	69 • 116	144 - 108
- ARY	-	80 + 68	93 • 48	111 • 237	50 • 75	156 • 61
A CONTRACT OF THE OWNER	2001	61 - 114	134 • 113	92 • 210	64 • 52	89 • 60
11 7 7 3 6 3 5 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1		62 . 108	171 + 52	151 • 107	153 • 127	131 • 49
		103 • 307	81 . 50	78 • 46	72 • 75	60 - 51
		106 . 79	98 . 54	66 • 59	42 • 70	104 • 79
	100N	93 . 69	126 • 331	157 + 73	37 • 43	126 + 106
		82 • 76	52 • 130	138 • 240	116 • 62	136 • 108
	_ /	66 . 68	133 . 67	121 + 166	129 . 65	99 . 109
	/	40 DE	110 . 00	05 100	100 . 44	10 . 25
DASE LINE	00	56 · 30	112 • 93	82 • 130	128 • 66	19 • 25
DASE LINE	00 /	102 • 87	33 • 42	84 • 101	80 • 69	32 + 58
	/	75 • 60	66 · 66	77 • 77	37 • 78	102 • 45
	/ -	90 • 145	41 • 88	85 • 75	33 • 48	100 • 65
	/	36 • 58	44 • 100	45 • 73		178 • 84
	/ 100S _	55 · 72	35 · 66	36 • 62		65 · 52
		53 • 69	50 • 50	18 • 42	14 • 13	50 • 34
		59 • 82	32 · 59	38 • 89	11 - 10	13 • 21
		68 · 405	28 · 59	56 + 62	20 • 10	61 • 70
	2005 _	33 • 72	36 • 141	32 • 75	25 + 71	42 • 53
		8W	7W	6W	5W 3	4W
					6	
	>	Carlos aller			1	

	1 States Asta				62 • 12	
			900N	71 • 53	73 • 37	900N
				73 • 73		
				65 · 68		
				71 + 71	302 • 36	
	800N _	189 - 67		62 · 86	178 • 31	800N
		125 • 43	146 • 101	207 • 87	201 • 10	
		136 • 50	2738- 218	367 • 99	31 • 17	
		6156+ 433	348 • 196	136 . 74	48 • 12	
		3711 - 278		101 - 59	81 - 25	700N
		9906. 199		340 72	01 • 23	
		405. 52	1601 100	200 75	85 • 17	
		470 + 03	1631 • 188	232 • 73	22 • 11	
		1262 • 41	24634 321	69 • 70	70 • 23	ROON
		249 • 28		53 • 118	42 • 35	_ 600N
		172 • 53	996 • 77	77 • 125		
			928 • 78		81 • 49	-
		870 + 83		39 + 19	27 • 11	
381 • 236		403 • 89	3783+ 185	79 • 35	139 • 29	_ 500N
196 • 189		537 • 68	258 • 57	92 • 32	68 · 25	
465 • 177	530 • 111	1123 • 167		309 • 124	109 • 25	-
1291 • 1127	330 • 96	686 • 104		119 • 68	97 + 52	
413 • 250	168 • 58	497 • 78	245 • 48	220 • 63	105 • 51	400N
123 • 94	81 • 34	375 • 70		207 • 67	224 • 99	
134 + 61	102 + 41	175 • 37	431 • 97	100 • 36	63 · 36	_
219 • 55	337 • 44	142 • 69	4953- 540	179 • 35	53 + 28	
220 • 155	399 • 170	73 • 43	554 + 164	232 • 55	16 • 15	300N
164 + 40	701 • 258	988 • 321	288 + 195	1216 • 82	11 • 7	
176 • 49	479 • 210	537 • 117	102 • 31	1842+ 134	15 • 22	
133 • 75	373 • 208	1106 + 350	795 • 335	1181 + 88		
62 · 42	113 • 80	46 • 43	4985- 726	1159 • 101	37 • 54	_ 200N
98 · 73	134 • 71	41 • 50		40 • 13		CERTOSTON
177 • 53	88 • 66	88 • 58	785 • 146	39 · 31	33 • 30	_ ASSESSMENT R
181 • 126	80 + 62	214 • 167		1453 • 313	82 · 51	
132 • 102	83 • 67	409 • 153		431 · 130	259 • 184	_ 100N
276 • 167	90 • 72	136 • 153				
130 • 73	81 • 62	94 • 76				
91 • 139	76 • 67	52 • 61		257 • 115		
36 • 71	53 • 74	37 • 43		194 · 89 —		BASE LINE
25 • 66	71 • 74	1W	00	1E	2E	
35 . 65	144 • 113					
34 . 15	323. 84					
34 • 15	1005					0 50 100 150 200
cs + /3	28 . 52 - 1003				r	metres
41 + 40			LEGEND			SOUTHERN GOLD RESOURCE
31 • 50			Cu ppm As	s ppm		
23 • 28	0000		85 + 56	E.F.MA		ROCHER DEBOULE PROF
28 · 19 3W	72 · 42 _ 2005					
					113	CU & AS GEOCHEMIS
						SCALE:DATE:N.T.S.DRAWN BY1: 2500Sept.'8793M/4EGEO-COMP

	1					
	-00-					
	Ť					
	1		700N _	— 13 • 81	15 • 122	14 • 73
				17 + 114	32 · 110	26 • 73
				- 23 · 146	42 • 102	15 • 72
				16 • 101	18 • 93	12 • 47
			600N _	- 20 • 86	11 • 64	16 · 57
				70 · 156	15 • 76	26 • 106
				13 · 92	21 + 82	18 • 73
				12 • 92	24 • 83	
	500N _	24 • 108	27 · 150	19 • 95	26 • 93	15 • 79
		16 • 77	14 • 98	16 · 95	16 • 60	25 + 90
	_	18 • 44	37 + 140	15 • 108	16 + 93	10 • 62
		9 - 50	26 • 126	15 • 97	15 • 96	14 • 83
	400N	20 • 98	33 • 174	16 • 99	19 • 88	13 + 53
		22 . 124	18 + 103	16 • 116	13 • 95	9 • 66
		40 - 141	A 13 - 90	16 - 103	16 - 85	14 . 52
	_	40 · 141	15.90	20 157	10 10	14 50
	300N	25 • 134		20 + 137	19 • 110	14 • 52
	300N	26 + 123	12 • 84	12 • 103	22 • 66	13 • 49
~		23 • 141	12 74	8 + 83	28 • 135	14 + 124
BOUNDARY	-	22 • 123	19 • 104	21 • 105	62 • 84	15 + 103
		20 • 109	17 . 93	288 + 163	21 + 61	13 • 75
	200N	13 . 67	24 • 122	42 • 120	20 • 56	13 • 62
		15 . 75	19 + 107	22 • 122	34 • 136	9 • 87
	-	23 . 110	17 . 85	10 • 91	22 + 75	22 • 53
		17/. 94	15 + 103	14 • 68	18 • 57	19 · 127
	100N	/16 . 115	17 • 118	16 • 104	19 · 36	20 • 139
		19 • 98	24 • 85	27 • 124	22 • 94	24 • 144
	- /	17 • 56	12 • 73	15 • 107	20 • 102	19 · 115
	/	15 • 91	16 • 94	15 • 93	23 · 103	12 • 32
BASE LINE	00 /	14 • 106	4 + 33	13 • 96	23 • 72	16 • 50
	/	9 • 78	12 • 92	18 • 101	10 • 42	11 • 83
	/ -	17 • 121	20 • 66	21 + 110	9 • 42	14 • 88
	/	15 • 57	13 • 70	19 • 64		13 • 88
,	1005 _	11 • 83	17 • 66	12 • 65		16 • 58
/		15 • 82	16 • 91	12 • 30	4 • 23	18 + 25
/		11 . 105	16 . 49	19 . 59	6 . 15	12 . 20
/		00 . 000		22 (2	2.00	1
/	2005	00 + 202		EC + 68	5 . EE	17 + 45
/	2005 -	23 • 77 8W	74 • 84 7W	6W	14 · 36	4W
		See the			Erry	
	-		S Martin Carrows		/	

9001 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0 0.0 0.0 0.0 0.001 - 0.0 0.0		A State of the sta						-
				1		12 + 41	AND	7
				900N	13 • 65	10 • 46	900N	
					14 . 12			
					11 • 72			
					17 • 71	18 + 55		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		800N	274 · 96		13 + 70	15 + 56	800N	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			26 + 105	27 • 54	16 + 68	8 • 32		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			64 • 236	74 • 81	22 • 81	13 • 20		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			126 • 192	43 • 98	13 • 62	8 • 30		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			133 • 115		12 • 54	11 • 43	700N	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			48 • 122		20 • 80	9 • 40		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			21 . 46	46 . 107	16 • 65	6 . 19		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			19 • 62	53 • 12/	13 . 59	10 + 40	6000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			13 + 61		11 • 55	13 • 49	000N	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			22 • 47	21 • 63	15 • 62			
$a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot a$ $a \cdot b$ $a \cdot a$ $a \cdot b$ <td></td> <td></td> <td></td> <td>20 • 65</td> <td></td> <td>19 • 43</td> <td></td> <td></td>				20 • 65		19 • 43		
$u \cdot u$			18 · 62		8 • 17	9 + 31		
$u \cdot v$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot v$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot v$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot v$ $u \cdot u$	18 • 94		12 • 85	98 • 134	19 • 47	14 • 44	500N	
$r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $r \cdot s$ $r \cdot s$ $s \cdot s$ $s \cdot s$ $s \cdot s$ $r \cdot s$ $s \cdot s$ $r \cdot s$ <td>18 • 71</td> <td></td> <td>24 • 81</td> <td>22 • 44</td> <td>15 • 50</td> <td>12 + 43</td> <td></td> <td></td>	18 • 71		24 • 81	22 • 44	15 • 50	12 + 43		
B · N B · A <t< td=""><td>17 • 80</td><td>11 • 84</td><td>26 • 103</td><td></td><td>21 • 60</td><td>13 • 67</td><td></td><td></td></t<>	17 • 80	11 • 84	26 • 103		21 • 60	13 • 67		
v.7 $u.5$ $v.6$ $u.5$ $u.5$ $u.5$ $u.5$ $u.5$ $u.5$ $u.5$ $u.5$ $u.6$ <t< td=""><td>13 • 76</td><td>12 • 61</td><td>11 + 67</td><td></td><td>16 • 61</td><td>16 • 43</td><td></td><td></td></t<>	13 • 76	12 • 61	11 + 67		16 • 61	16 • 43		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 • 77	14 • 52	15 + 60		18 · 95	14 • 38	400N	
1.40 7.5 9.6 8.60 9.5 6.44 1.72 9.52 7.77 9.490 5.77 9.49 9.79 4.77 4.73 9.59 4.64 4.64 9.79 9.76 1.44 4.69 59.57 8.46 2.66 6.68 9.67 7.58 59.56 8.42 8.46 7.8 7.8 1.44 8.67 8.42 8.47 8.46 7.8 7.8 7.8 9.76 9.78 <td>10 • 64</td> <td>11 • 42</td> <td>9 • 64</td> <td>16 - 54</td> <td>19 • 59</td> <td>16 + 48</td> <td></td> <td></td>	10 • 64	11 • 42	9 • 64	16 - 54	19 • 59	16 + 48		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 . 65	7 . 36	9 . 51	21 . 65	13 . 38	6 . 46		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 . 79	12 . 52	7 . 57	93 - 169	15 . 37	15 - 46		
$u \cdot u$ $u \cdot v$		10 . 00	10	24 . 87	10 - 07	15 1 10	300N	
$u \cdot u$ $u \cdot v$ $u \cdot v$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $v \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $v \cdot u$ $u \cdot u$ $v \cdot u$ $u \cdot u$ $u \cdot u$ $u \cdot u$ $v \cdot u$ $u \cdot u$ $v \cdot u$ $u \cdot u$ <td>14 • 79</td> <td>16 • 75</td> <td>12 • 30</td> <td>24 • 81</td> <td>14 • 48</td> <td>10 • 19</td> <td></td> <td></td>	14 • 79	16 • 75	12 • 30	24 • 81	14 • 48	10 • 19		
B - 67 $P + 108$ $B - 58$ $0 - 51$ $7 - 8$ $7 - 8$ $B - 57$ $P - 80$ $5 - 87$ $8 -$	14 • 61	24 • 69	1363+ 3375	20 • 46	22 • 86	6 • 21		
u - 54 $p - 88$ $p - 88$ $p - 88 - 76$ $u + 78$ $p - 88 - 64$ $u - 54$ $u - 88$ $p - 88 - 78$ $u - 88 - 82$ $u - 88 - 82$ $u - 88 - 82$ $u - 68$ $p - 48$ $u - 88$ $u - 88 - 82$ $u - 88 - 82$ $u - 88 - 82$ $u - 68$ $p - 48$ $u - 88 - 82$ $u - 68$ $p - 48$ $u - 88 - 82$ $u - 68$ $p - 48$ $u - 88 - 82$ $u - 68$ $v - 48$ $u - 88 - 82$ $u - 68 - 82$ $v - 48$ $u - 88 - 82$ $u - 48$ $v - 48$ $u - 88 - 82$	13 + 67	27 • 108	213 + 386	8 • 31	16 • 44	7 • 21		
$x \cdot 54$ $y \cdot 49$ $x \cdot 27$ $y \cdot 43$ $x \cdot 29$ $x \cdot 29$ $200N$ $x \cdot 59$ $5 \cdot 43$ $23 \cdot 43$ $y \cdot 74$ $x \cdot 28$ $x \cdot 29$ $200N$ $x \cdot 59$ $5 \cdot 43$ $23 \cdot 43$ $y \cdot 74$ $x \cdot 28$ $x \cdot 29$ $x \cdot 20N$ $x \cdot 59$ $5 \cdot 43$ $23 \cdot 43$ $y \cdot 74$ $x \cdot 28$ $x \cdot 55$ $x \cdot 59$ $5 \cdot 43$ $23 \cdot 43$ $y \cdot 74$ $x \cdot 55$ $x \cdot 59$ $y \cdot 59$ $x \cdot 44$ $x \cdot 55$ $x \cdot 64$ $x \cdot 59$ $y \cdot 75$ $y \cdot 69$ $y \cdot 64$ $y \cdot 69$ $y \cdot 64$ $x \cdot 59$ $y \cdot 79$ $y \cdot 64$ $y \cdot 69$ $y \cdot 64$ $y \cdot 69$ $y \cdot 64$ $x \cdot 59$ $y \cdot 79$ $x \cdot 64$ $y \cdot 69$	12 • 54	17 • 80	596 + 746	64 • 78	28 • 41			
$a \cdot a + a + a + a + a + a + a + a + a + $	10 • 56	14 • 48	20 • 27	88 • 243	26 • 39	8 • 29	_ 200N	1
$12 \cdot 59$ $5 \cdot 43$ $21 \cdot 43$ $19 \cdot 74$ $9 \cdot 61$ $14 \cdot 25 - 100$ $18 \cdot 85$ $9 \cdot 43$ $19 \cdot 74$ $8 \cdot 64$ $16 \cdot 55$ $15 \cdot 86$ $19 \cdot 47$ $69 \cdot 72$ $89 \cdot 103$ $15 \cdot 66 - 100$ N $7 \cdot 75$ $18 \cdot 66$ $9 \cdot 43$ $ 7 \cdot 75$ $7 \cdot 63$ $7 \cdot 53$ $7 \cdot 63$ $7 \cdot 64$ $ 8 \cdot 56 - 100$ N $7 \cdot 75$ $7 \cdot 64$ <td< td=""><td>12 • 62</td><td>9 • 49</td><td>4 • 22</td><td></td><td>5 • 12</td><td></td><td></td><td></td></td<>	12 • 62	9 • 49	4 • 22		5 • 12			
$B \cdot BS$ $9 \cdot 3S$ $34 \cdot 69$ $35 \cdot 44$ $16 \cdot 53$ $B \cdot S6$ $B \cdot 47$ $69 \cdot 72$ $89 \cdot 10$ $15 \cdot 66 = 100N$ $B \cdot 56$ $0 \cdot 54$ $9 \cdot 43$ $ 66$ $B \cdot 56$ $7 \cdot 53$ $0 \cdot 29$ $10 \cdot 64$ $ 6 \cdot 67$ $B \cdot 56$ $7 \cdot 53$ $0 \cdot 29$ $10 \cdot 64$ $ B \cdot 56$ $7 \cdot 53$ $0 \cdot 29$ 100 $1E$ $2E$ $2E$ $2E$ $B \cdot 59$ $9 \cdot 79$ $ BASE \ LINE$ 200 300 $7 \cdot 38$ 100 $1E$ $2E$ <td>12 + 59</td> <td>5 • 43</td> <td>23 + 43</td> <td>19 • 74</td> <td>8 • 21</td> <td>14 + 26</td> <td>-</td> <td></td>	12 + 59	5 • 43	23 + 43	19 • 74	8 • 21	14 + 26	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 • 85	9 • 35	34 • 69		35 • 44	16 + 55		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 • 96	10 + 47	69 • 72		29 • 113	15 • 66	_ 100N	
$14 \cdot 66$ $6 \cdot 54$ $9 \cdot 43$ $ 10 \cdot 56$ $7 \cdot 53$ $17 \cdot 29$ $19 \cdot 61$ $12 \cdot 50$ $6 \cdot 42$ $7 \cdot 21$ $26 \cdot 60$ $ 13 \cdot 44$ $7 \cdot 54$ $1W$ 00 $1E$ $2E$ $16 \cdot 59$ $9 \cdot 79$ $ 7 \cdot 58$ $16 \cdot 61$ 100 100 $15 \cdot 43$ $7 \cdot 36$ $ 100S$ $7 \cdot 53$ $ 100S$ 100 $7 \cdot 53$ $ 100S$ 100 $7 \cdot 33$ $7 \cdot 61$ $ 1EGEND$ $6 \cdot 67$ $ 1EGEND$ $SOUTHERN GOLD RESOURCES LTD.$ $7 \cdot 33$ $7 \cdot 61$ $ 85 + 56$ $3W$ $2W$ $2W$ 0 0	25 • 99	14 • 41	23 • 48					1
10.56 7.55 17.29 19.61 12.50 6.42 7.21 36.60 $=$ BASE LINE 13.44 7.54 1W 00 1E 2E 14.754 1W 00 1E 2E 15.43 7.36 $=$ 1005 100 <t< td=""><td>14 + 68</td><td>8 • 54</td><td>9 • 43</td><td></td><td></td><td></td><td></td><td></td></t<>	14 + 68	8 • 54	9 • 43					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 • 56	7 • 55	17 • 29		19 · 61		SZ SZ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 • 50	6 + 42	7 • 21		36 • 60	_	_ BASE LINE	
$16 \cdot 59 \qquad 9 \cdot 79 = -$ $7 \cdot 28 \qquad 15 \cdot 61$ $15 \cdot 43 \qquad 7 \cdot 36 = -100S$ $7 \cdot 50 \qquad $	13 • 44	7 • 54	1 W	00	1E	2E		
$7 \cdot 28$ 15 \cdot 61 $15 \cdot 43$ $7 \cdot 36 - 100S$ $7 \cdot 50$ Image: second s	16 • 59	9 • 79 —						
15 · 43 7 · 36 - 100S 15 · 43 7 · 36 - 100S 9 · 40 - 6 · 27 Pb ppm Zn ppm 7 · 33 7 · 61 - 200S 3W 2W	7 • 28	16 • 61						
7 · 50 LEGEND 9 · 40 - 6 · 27 Pb ppm Zn ppm 7 · 33 7 · 61 - 200S 3W 2W	15 • 43	7 . 36 _ 1005						
Image: second	7 . 50					ſ	metres	
Pb ppm Zn ppm 85 + 56 ROCHER DEBOULE PROPERTY 3W 2W DD 0 FAL CHOCHER DEBOULE				LEGEND			SOUTHERN GOLD RESOURCES LTI).
85 + 56 $ROCHER DEBOULE PROPERTY$ $3W 2W$ $ROCHER DEBOULE PROPERTY$	9 • 40	-		Pb ppm 7n	ppm			
7 · 33 7 · 61 - 2005 3W 2W	6 + 27			85 + 56	All		ROCHER DEBOULE PROPERTY	r .
	7 · 33 3W	7 · 61 _ 2005						
PB & ZN GEOCHEMISTRY							PB & ZN GEOCHEMISTRY	
SCALE:DATE:N.T.S.DRAWN BY1: 2500Sept.'8793M/4EGEO-COMPFIGURE: 10							SCALE: DATE: N.T.S. DRAWN BY 1:2500 Sept.'87 93M/4E GEO-COMP FIGURE: 10	

45, 18, 0 666, 19, 63 A 2+00 S

