GEOLOGICAL AND GEOCHEMICAL REPORT

OF THE

GOSSAN 6, 9-13, 21 CLAIM GROUP

LIARD MINING DIVISION

GEOLOGICAL BRANCH ASSESSMENT DEPORT

B.P. Butterworth, B.Sc. D.B. Petersen, P.Eng. October 14, 1987 104B/10 Au, Ag, Zn, Cu. 56° 35' North 130° 53' West Western Canadian Mining Corp.

Authors:

Date: Date: Date: Date: October 14, 1987 NTS: 104B/10 Commodities: Latitude: Latitude: Date: Commodities: Au, Ag, Zn, Cu. Latitude: 130° 53' North Longitude: 130° 53' West Owner: Western Canadian Mining Corp. Report No: 988

TABLE OF CONTENTS

弊

13 9

	SUMMARY	
1.	INTRODUCTION	1
	1.1 Location and Access	1
	1.2 Physiography	1
	1.3 Claim Information	3
	1.4 History	3
	1.5 1987 Exploration Programme	5
2.	GEOLOGY	8
	2.1 Regional Geology	8
	2.2 Property Geology	8
	2.2.1 Pyramid Hill Area	8
	2.2.1.1 Lithology	8
	2.2.1.2 Lithogeochemistry and Mineralization	9
	2.2.2 Sericite East Area	13
	2.2.2.1 Lithology	13
	2.2.2.2 Lithogeochemistry and Mineralization	14
3.	PETROLOGY	17
	3.1 Introduction	17
	2 2 Pogulta	17
	3.2 Di coursi on	10
	J.J DISCUSSION	10
4.	GEOCHEMI STRY	19
	4 1 Tetroduction	
	4.1 Introduction 4.2 Counts Descention and Analytical Dressdurs	10
	4.2 Sample Preparation and Analytical Procedure	10
	4.5 Ireatment and Fresentation of Results	10
	4.4 DISCUSSION OF RESULTS	19
	4.4.1 Stream Sediment Geochemistry	20
	4.4.2 Soll Geochemistry	20
	4.4.2.1 Pyramid Hill Grid	21
	4.4.2.2 Sericite East Grid	21
	4.4.2.3 West Ridge Contour Grid	21
	CONCLUSIONS AND RECOMMENDATIONS	23
	COST STATEMENT	24
	REFERENCES	26
	STATEMENT OF OUALTEICATIONS	97
	PINITUM AL ANDRETANTION P	L /

FIGURES

Figure 1	· _	Location Man	2
Figure 1	_		2 1
Figure 2			4
Figure 3		Regional Geology	6
Figure 4	· _	Compilation Map	7a -
Figure 5	_	Detailed Geology and Lithogeochemistry	
		- Pyramid Hill Magnetite Showing	16
Figure 6	· _ ·	Geology - Pyramid Hill In	Pocke t
Figure 7	-	Lithogeochemistry - Pyramid Hill	**
Figure 8		Detailed Geology and Lithogeochemistry - Pyramid	
	•	Saddle	**
Figure 9	-	Geology and Lithogeochemistry - Sericite East	**
Figure 10		Soil Geochemistry - Pyramid Hill - Au in ppb	87
Figure 11		" " - Ag in ppm	**
Figure 12		" " - Cu in ppm	**
Figure 13	_	"" — Zn in pom	
Figure 14	-	Soil Ceochemistry - Sericite East - Au in ppb	
Figure 15		" " - Ag in nom	
Figure 15			
Figure 10	-		
Figure 1/	-		
Figure 18		Sericite East Stream Sediment and West Ridge Soll Geochemistry	10° .
Figure 19	-	Stream Sediment Geochemistry; Pyramid Hill and Khyber	
0		Pass Areas	**
		TABLES	
mahla 1		Claim Status - Mineral Claims	3
Table I	. –	ATATM DIGINO - UTUCIAT ATATMO	

Table 1		Claim Status - Mineral Claims	· 5
Table 2.1	-	Summary of Lithogeochemical Results	
		- Pyramid Hill	11
Table 2.2		Summary of Lithogeochemical Results	
		- Sericite East	15
Table 3.1	·	Mean, Threshold and Anomalous Metal Values in "B"	
		Horizon Soil Samples	20
		- Pyramid Hill Grid	
Table 3.2	-	Mean, Threshold and Anomalous Metal Values in "B"	
		Horizon Soil Samples	20
		- Sericite East Grid	

APPENDICES

Appendix	Ι	. —	Assay and Analysis Certificates
Appendix	II	-	Petrographic Report

SUMMARY

100

1

1 and

-

.

The Gossan 6, 9-13 and 21 claim group situated in the Liard Mining Division is bounded by Bronson Creek to the Northwest and tributaries of Snippaker Creek to the east. Access to the property is by helicopter from the Snippaker Creek or Bronson Creek airstrips. The area is of interest because of exciting precious metal discoveries at the Bron and Red Bluff showings on the Cominco/Delaware property, its close proximity to Skyline Explorations' Reg property and numerous precious metals occurrences in the surrounding area. Favourable units of the Betty Creek Formation have been uncovered in the region while conducting regional and detailed mapping programmes.

The 1987 exploration programme consisted of geological mapping, soil and rock chip sampling. Stream sediment (silt) samples were collected from all major creeks draining the property.

Future work should include diamond drilling of the gold anomalies on Pyramid Hill and detailed mapping, higher density soil and rock chip sampling and trenching of gold anomalies in the Sericite East area. The retained, grouped claims are in good standing until August, 1999.

1. INTRODUCTION

The Gossan 6, 9-13 and 21 mineral claim group, situated in the Iskut River area of northwestern British Columbia (Figure 1) is comprised of 7 mineral claims totalling 94 units. Fieldwork was conducted between June 21, 1987 and September 12, 1987 by a 6 person crew. The programme was supervised by the author, under the direction of project geologist D.B. Petersen of Western Canadian Mining Corp. Objectives of the programme were to outline precious metal targets and to determine whether or not the inferred economic potential of the claim groups warranted the planning and financing of future exploration programmes.

This report is based on geological and geochemical data collected during the 1987 field programme; an examination of diamond drill core and discussion of the Cominco/Delaware property with Bob Sharpe of Cominco Ltd.; and an underground examination of Skyline Explorations' Stonehouse gold deposit conducted by the company's geological staff. A review of available geological and exploration data in the area was also conducted.

1.1 Location and Access

.

0.4

The Iskut River area is situated in northwestern British Columbia approximately 90km north of the town of Stewart and 55 kilometers southwest of the Stewart Cassiar Highway.

The Gossan 6, 9-13, and 21 mineral claims are situated south of Iskut River, southwest of Mount Snippaker and west of Snippaker Creek. The claims occur within the Liard Mining Division, NTS 104B/10, and are centred at latitude 56° 35' north and longitude 130° 53' west.

Access into the area is by fixed wing aircraft from Terrace (260 Kilometers to the Southeast) to the Snippaker Creek or Bronson Creek airstrips 3 kilometers east and 10 kilometers west, respectively and thence by helicopter to the claims.

1.2 Physiography

The claims are situated within the Boundary Ranges of the Coast Mountains. This geographic province consists of a mountainous and glaciated terrain that exhibits relief in excess of 2000 metres. Tree-line varies from 1000-1200 metres above sea level and is marked by a thick, intertwined growth of one to two metre tall stunted spruce. Below this point, particularity within the lower valleys, vegetation predominantly consists of a dense growth of tag alder.

Active glaciation is prevalent in the district. These occur as caps over areas of higher elevation, notably above 1500 metres, and as impressive valley glaciers.

Relief over the subject claim group ranges from 850 metres above sea level on the valley floor to 1780 metres on Khyber ridge. Slopes are generally moderate to steep, facing in all directions. Streams which drain these slopes have eroded a series of deep ravines that provide good bedrock exposure. Such features however, play havoc with side hill traverses.

1.3 Claim Information

The Gossan claim group (Figure 2) is comprised of 7 modified grid mineral claims totalling 94 units. Pertinent data for each claim is outlined below in Table I.

Claim Name	Units	Record Number	Recording Date	Year of Expiry
			•	
Gossan 6	20	2397	08/24/82	1999
Gossan 9	6	2400	08/24/82	1999
Gossan 10	12	2401	08/01/82	1999
Gossan 11	15	2402	08/24/82	1999
Gossan 12	15	2403	08/24/82	1999
Gossan 13	20	2404	08/04/82	1999
Gossan 21	6	2628	12/16/82	1999

TABLE I - CLAIM DATA

The claims are owned and operated by Western Canadian Mining Corp.

1.4 History

Interest in the Iskut River area underlying the Gossan and surrounding claims dates back to 1907, when gold, silver, and galena bearing mineralization was discovered near Johnny Mountain by the Iskut Mining Company. Only scanty information is available covering subsequent activities until 1954-61, when Hudson's Bay Mining and Smelting carried out drilling programmes in the same area. Since then the district has been explored for base and precious metals at both regional and property scales by various mining companies, including Skyline Explorations Ltd., Cominco Ltd., Silver Standard Mines Ltd., Texasgulf Inc., Great Plains Development, Teck Corporation and Dupont Canada Ltd.

In 1983 Lonestar Resources Ltd. commissioned Active Mineral Exploration Ltd. to carry out a reconnaissance geological mapping and geochemical sampling programme on the Gossan Mineral Claims (Bending, 1984). A number of the properties were optioned to Brinco Mining Ltd. in 1985 and subsequently transferred to Western Canadian Mining (W.C.M.) Corp. in 1986. Aggressive exploration has been continued in the immediate area of the Gossan mineral claims, notably by Skyline Explorations Ltd. and by Cominco Ltd.

1.5 1987 Exploration Programme

04

A CONTRACTOR

Exploration activities in 1987 on the Gossan 6, 9-13 and 21 mineral claims were carried out by a 6 person crew between June 21, 1987 and September 12, 1987. The exploration programme consisted of the following surveys:

- Stream sediment samples were collected from all major tributaries draining the property. A total of 23 samples were collected.
- 2) Grids were established on the east flank of Sericite Ridge (Sericite East Grid) and on Pyramid Hill (Pyramid Hill Grid). Grid lines were spaced 100 metres apart and B-Horizon soil samples were collected at 25 metre intervals. A total of 870 samples were collected.
- 3) Two contour grid lines, at 1260 m and 1480 m, were established on the Gossan 9 mineral claim. A total of 33 Bhorizon soil samples were collected at 50 metre intervals.
- 4) Detailed geological mapping (1:2,500) and rock chip sampling was carried out over the Pyramid Hill and Sericite East Grid areas; 198 rock chip samples were collected.
- 5) Rock chip/channel samples were collected in two highly mineralized areas on Pyramid Hill. A total of 106 samples were collected.

All samples were analysed for 30 elements utilizing the ICP technique and for gold by atomic absorption analysis.

- 5 -

2. GEOLOGY

2.1 Regional Geology

The regional geology in the Iskut River areas has been mapped by Kerr (1948) and recently by Grove (1986).

The Gossan property lies at the eastern edge of the Coast Plutonic Complex, near the western boundary of the Bowser Basin (Figure 3). The claims are at the northern end of the belt of rocks described by Grove (1971) as the Stewart Complex. The complex consists of an undivided group of sedimentary and volcanic rocks of Upper Triassic and Jurassic age, which are intruded by Middle Mesozoic marginal phases of the Coast Range intrusions.

The stratified rocks are composed of submarine to sub-aerial fragmental volcanic rocks that are interlayered with sequences of argillite, banded siltstone, greywacke, conglomerate and minor impure limestone, most of which are believed correlative with the lower Jurassic Hazelton Group.

Structurally, rock units have a general northwest trend and have locally, been regionally metamorphosed to the greenschist facies and strongly deformed. According to Grove (1979) the Iskut River marks a major east-west trending thrust fault that has resulted in Paleozoic strata being pushed southerly across Mesozoic units. Numerous north to northeasterly trending faults and fractures offset units throughout the region.

The stratigraphy is intruded by subvolcanic intrusive and by mid to late Mesozoic and Cenozoic plutonic rocks. These include stocks and dykes of granodiorite, quartz monzonite and feldspar porphyry, as well as late Tertiary dykes and plugs of basalt and diorite.

2.2 Property Geology

2.2.1 PYRAMID HILL AREA

2.2.1.1 Lithology

Geological mapping and rock chip sampling on the Gossan 10 and 13 mineral claims was concentrated on the east and west slopes of Pyramid Hill and to a lesser degree, along ravines on the north slope (Figures 5,6,7). In addition, detailed mapping and rock chip/channel sampling was carried out in a highly mineralized area, west of Pyramid Peak (Figure 8) on the north side of a prominent "saddle" and on the east flank of Pyramid Hill (Figure 5) in and around a massive magnetite exposure.

Pyramid Hill is largely underlain by a southwesterly dipping, 450 to 550 metre thick succession of sedimentary and volcaniclastic rocks. The sedimentary rocks are predominantly thinly bedded, locally calcareous, pale to dark grey siltstones passing stratigraphically upwards into tuffaceous siltstones. Higher in the succession, the sequence is characterized by massive tuffs and lapilli tuffs. Numerous granodiorite and orthoclase porphyry dyke-like apophyses of the Coast Plutonic Complex intrude both the siltstone and volcaniclastic units.

The two hypabyssal plutonic suites recognized in the area are comprised of massive, medium to coarse grained, orthoclase bearing diorites and quartz diorites. These rocks form swarms of dykes up to 25 metres in thickness and, although complexly faulted, have been traced for over 150 metres in strike length. Varying degrees of sulphide-bearing skarn alteration are developed within the volcaniclastics and tuffaceous siltstones, particularily in areas adjacent to the intrusions. Similarly, the basal siltstone unit is commonly hornfelsed with secondary biotite and is pyrite-rich in areas adjacent to many of these intrusions.

Skarn alteration is best developed in the middle to upper part of the volcaniclastic sequence; it is comprised of massive, medium grained chlorite + diopside with lesser amounts of quartz and epidote, isolated clusters of subhedral to euhedral coarse brown garnet, scattered tremolite-actinolite and sporadic sulphides.

The biotite hornfels siltstone is characteristically dark brown coloured, siliceous, massive and fine grained. It is commonly cut by a network of thin quartz veinlets with a core of light green coloured chlorite, + diopside and pyrite. This distinctive chlorite veining and hornfelsing serves as a useful indicator of nearby skarn alteration and mineralization.

2.2.1.2 Lithogeochemistry and Mineralization

Grab and continuous rock chip samples collected from the Pyramid Hill area contained moderate to high gold, silver and copper contents (peak values 2,400 ppb, 291.7 ppm, and 12,044 ppm, respectively) and anomalous concentrations of other elements. Grab sample locations and results are shown on Figure 7 and continuous chip sample locations and results are shown on Figures 5 and 8. Table 2.1 summarizes lithogeochemical results of some anomalous samples. Assay certificates are included in Appendix I.

The skarn related mineralization at Pyramid Hill appears stratabound and has selectively followed a favourable horizon, notably a sequence of tuffs and lapilli tuffs within a bedded succession of siltstones and tuffaceous siltstones. The volcano/ sedimentary succession has been intruded and hornfelsed by swarms of granodiorite and orthoclase porphyry dykes. Gold-bearing sulphides, predominantly pyrite and chalcopyrite, occur as fine grained anhedral disseminations, masses, veins and veinlets often concentrated along contacts between dykes and skarn-altered volcaniclastics. In other parts of the skarn assemblage pyrite and minor chalcopyrite occur as disseminated anhedral aggregates, clusters, and discontinuous, erratically distributed veins and veinlets.

A massive magnetite and minor chalcopyrite replacement zone was identified on the east flank of Pyramid Hill in the vicinity of the skarn/siltstone contact (Figure 6). Apophyses of this magnetite body were traced for approximately 30 metres and continuous rock chip samples were collected at 1 metre intervals (Figure 5). Samples collected from both the magnetite zone and nearby silicified and pyritized siltstone unit yielded low precious and base metal Similarly, continuous rock chip samples were concentrations. collected at 1 metre intervals from exposures of hornfelsed latitic volcanics and siltstones on the north side of a prominent 'saddle' west of Pyramid Peak (Figure 8). Geological mapping of the area revealed a high concentration of stockwork pyrite and minor chalcopyrite infilling fractures in both the volcanic and sedimentary units and also along contacts between diorite dykes and the hornfelsed volcanosedimentary units. Precious metals concentrations were moderate and erratically distributed (Peak values 720 ppb gold and 3.9 ppm silver).

2

1

6

-

21.2

1

TABLE 2.1

SUMMARY OF LITHOGEOCHEMICAL RESULTS - PYRAMID HILL

SAMPLE		RES	SULTS			DESCRIPTION
No.	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	
G-87R-006	5 831	1129	10277	291.7	410	Andesite fragmental tuff with angular fragments up to 1cm in diameter; Quartz occurs as stockwork veinlets with disseminated pyrrhotite, sphalerite and galena. Grab sample.
G-87R-009	267	11	77	14.8	32	Intensely silicified and locally clay altered siltstone with up to 1% disseminated pyrite. Grab sample.
G-87R-049	9 12044	17	52	18.4	1620	Chlorite-epidote+ diopside skarn-altered volcaniclastic rock. Up to 5% pyrite and lesser chalcopyrite occur as anhedral blebs and clusters. Grab sample.
G-87R060	3148	3 5 2	637	16.8	395	Quartz stockwork infills 1 metre wide shear zone in banded siltstone unit. Up to 1% disseminated pyrite and occasional patches of malachite. Grab sample.
G-87R-064	\$ 540	32	98	2.9	650	Hornfelsed siltstone with 10% massive magnetite and scattered clusters of chalcopyrite. 10 metre chip sample across magnetite rich zone.
G-87R-069	8874	41	540	11.1	79	Quartz, chalcopyrite and pyrite stockwork infilling shear zone. 1 metre continuous chip sample.

SUMMARY OF LITHOGEOCHEMICAL RESULTS - SERICITE EAST								
SAMPLE		RESUL	TS		н 1944 - С.	DESCRIPTION		
	Cu	Pb	Zn	Ag	Au			
No.	ppm	ррш	ррш	ррш	ppb			
G-87R-091	1306	10	18	4.7	935	Quartz-epidote + diopside skarn with 3-5% disseminated and stockwork pyrite. 1.5 metre continuous chip-sample.		
G-87R-093	343	5	5	2.9	485	As described in 091.		
G-87R-094	510	10	5	3.7	505	As described in 092.		
G-87R-095	2360	17	82	6.2	705	Chlorite-epidote + diopside skarn with pervasive and stockwork carbonitization. Up to 20% pyrite occurs as veinlets and disseminations. Grab sample.		
G-87R-099	5406	11	44	11.3	1060	Epidote-garnet-quartz-chlorite skarn with 5-10% pyrite occurring as coarse aggregates. 1.5 metre Grab sample.		
G-87R-102	1933	15	23	9.7	2400	Quartz-chalcopyrite vein, 10cm wide with scattered blebs and coarse aggregates of chlorite, epidote and pyrite. Grab sample.		
G-87R-118	810	77	69	4.1	1100	Quartz-chlorite-epidote skarn assemblage with 10-30% massive pyrite. Grab sample.		
G-87R-553	210	14	39	0.6	725	Siltstone sequence with pervasive and stockwork silicification. Pyrite occurs as veins and veinlets infilling fractures to 20%. Grab sample.		
G-87R-600	108	48	86	11.4	780	Massive magnetite with 5-20% pyrite as coarse aggregates.		

TABLE 2.1 Cont'd

1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -

and the second se

2.2.2 SERICITE EAST AREA

2.2.2.1 Lithology

The Gossan 6 mineral claim is underlain by quartz monzonite and related hypabyssal rocks and lesser amounts of andesite tuffs, greywackes and siltstones. Schists and phyllites derived from felsic to intermediate volcanic and volcaniclastic rocks overlie most of the intrusive body. Geological mapping of the property in 1987 was concentrated on the east slope of Sericite Ridge and to a lesser degree, along the southern end of Sericite Ridge. The geology and sites of chemically analyzed rocks are shown on Figure 9.

Pale to medium green, medium grained monzonite to quartz monzonite intrusive rocks (Unit 1) crop out in many of the creek beds draining the east slope of Sericite Ridge. These rocks are widespread throughout the area, underlying most of the lower half of the property. A penetrative foliation in and around major structural features generally varies between 005° and 020° with 28° to 76° dips.

Several dykes of varying composition, related to both the monzonite pluton and a later dyke forming event, occupy fractures in the intrusive and in the overlying volcano/sedimentary unit. The dykes generally vary from 1 metre to 5 metres in width with a predominant northeast trend. The following is a brief description of the various dykes encountered during the 1987 mapping programme:

Granodiorite (Unit 1c)

Pale to medium green, fine grained and porphyritic. The unit is comprised of up to 25% subhedral to euhedral feldspar phenocrysts averaging 1-2mm in size; 35-40% very fine gained K-feldspar and 12-15% quartz. Quartz, K-feldspar and minor pyrite veins and veinlets cut the sequence locally. Feldspars are commonly altered to fine grained aggregates of sericite and occasionally epidote.

Orthoclase Porphyry (Unit 1d)

Fine grained, equigranular matrix comprised of 30% anhedral to subhedral mafic phenocrysts and 40% anhedral masses of quartz. Euhedral orthoclase phenocrysts up to 0.5 x 2.0cm in size comprise up to 20-30% of the unit.

Basalt (Unit la)

Dark brown to black, medium grained, magnetic and locally vesicular unit. Widths generally range from 1-7 metres.

Hornblende Lamprophyre (Unit 1b)

Brown to dark grey aphanitic groundmass with 1-5% scattered hornblende phenocrysts. Phenocrysts are dark brown to black, subhedral to euhedral and locally up to 0.5cm in width.

A prominent, highly hematite and limonite stained interbedded volcaniclastic and sedimentary unit (Unit 2a) occurs in sharp contact with the underlying monzonite pluton. The volcaniclastic unit is comprised of a fine grained latitic matrix with angular fragments of a similar composition reaching 2cm in diameter. The matrix is highly foliated and fractured, contains minor disseminated pyrite, and is intensely altered to sericite and minor chlorite. Siltstone beds are pale to medium grey, laminated, locally up to 20 metres thick and weakly hornfelsed.

A thick sequence of green to grey, well laminated siltstone is prevalent in the southern end of Sericite Ridge. The unit is highly fractured and iron stained with rare pyrite occurring as fracture fillings and local disseminations.

2.2.2.2 Lithogeochemistry and Mineralization

Rock chip samples collected from the Sericite East area contained moderate gold contents (peak value 450 ppb) and anomalous concentrations of other elements (Figure 9). Table 2.1 summarizes lithogeochemical analyses of some representative and anomalous rock samples. Assay certificates are included in Appendix I.

An intensely sericitized felsic volcaniclastic rock (Sample G87-R-527) with up to 3% disseminated pyrite and intense pervasive iron-oxide staining had the highest gold content, 450 ppb. However, the great majority of similar rocks in the area did not contain more than 50 ppb gold. Sample G-87R-060, representing a quartz stockwork infilling a sheared zone in laminated siltstones contained anomalous gold, silver, copper, lead, and zinc values of 395 ppb, 16.8 ppm, 3,148 ppm, 252 ppm, and 637 ppm, respectively.

	SUMMARY OF 1	LITHOGEOCHE	MICAL RE	SULTS - SERICITE EAST
SAMPLE	RES Cu Pb ppm ppm	SULTS Zn Ag ppm ppm	Au ppb	DESCRIPTION
G87R-060	3,148 252	637 16.8	395	Quartz stockwork up to 1 metre wide infilling sheared zone. Up to 1% disseminated pyrite and scattered patches of malachite. Grab sample over 1m width.
G87R-503	209 23	142 0.6	240	Sericite/chlorite schist, highly fractured and foliated with up to 3% disseminated pyrite. Grab sample.
G87R-525	40 81	225 1.6	390	Silicified siltstone with 3-5% disseminated and minor stockwork pyrite. Grab Sample.
G87R-527	8,304 26	63 9.9	450	Sericite and minor chlorite schist with 5-10% and <1% disseminated pyrite and chalcopyrite, respectively. Grab sample.
G87R-539	52 27	93 1.6	265	Silicified, laminated siltstone with up to 3% disseminated pyrite. Grab sample.
G87R-601	265 26	115 1.1	13	Andesite tuff with minor chlorite, epidote and silica alteration. Up to 2% disseminated pyrite. Grab sample.

TABLE 2.2

- 14 -

and a second A North

ALC: UNK

and a second second

te il sel

Strate Strate

SYMBOLS & ABBREVIATIONS

chip sample intervals Cu in PPM/Pb in PPM/Zn in PPM/Ag in PPM/Au in PPB.
outcrop
strike of foliation
chlorite
epidote
magnetite
pyrite
malachite

LEGEND

FIGURE No. 5 I. Siltstone/Chert WESTERN CANADIAN MINING CORP. 2 Skarn altered pyroclastic unit. 1987 Massive magnetite, minor pyrite and chalcopyrite. 3 GOSSAN PROJECT PYRAMID HILL MAGNETITE SHOWING Diorite DETAILED GEOLOGY & LITHOGEOCHEMISTRY Quartz, pyrite veins. Date October, 1987 N.T.S. 104 B 15 m. RPT 988 P 10 5 Scale

. GEOCHEMISTRY

4.1 Introduction

Soil sampling was both of a reconnaissance and detailed nature. The former was in the form of contour line sampling at 50 metre sample intervals and the latter at 25 metre intervals along grid lines spaced 100 metres apart. The grids were established in two areas in 1987, notably Pyramid Hill and the east flank of Sericite Ridge. A total of 314 and 556 soil samples were collected on the Pyramid Hill and Sericite East grids, respectively. Thirty-three soil samples were collected from contour lines established west of Sericite Ridge, an area now referred to as West Ridge.

Attempts were made to collect B-horizon samples wherever possible however, some areas exhibited poor soil development therefore Chorizon samples were occasionally collected. Soil sampling was not undertaken in areas of glacial morraine cover.

Silt samples were collected from most major tributaries draining the property. A total of 23 samples were collected.

Geochemical data was entered into an IBM compatible computer, stored on 5-1/4" floppy diskettes and processed by a number of software programmes. Soil and silt sample locations and results are plotted on Figures 10-19 and assay certificates are presented in Appendix I.

4.2 Sample Preparation and Analytical Procedure

At Acme Analytical Laboratories soil and silt samples were oven dried at approximately 60° C and sieved to minus 80 mesh. A 0.5 gram sample of the minus 80 fraction was digested in hot, dilute aqua regia in a boiling water bath and then diluted to 10ml with demineralized water. All samples were analyzed for 30 elements utilizing the ICP technique. In addition, gold was analyzed, from a 10 gram fraction, by standard atomic absorption.

4.3 Treatment and Presentation or Results

In assessing the soil geochemical results, graphical statistical methods were used to separate background from anomalous metal concentration. Threshold and anomalous levels were determined at the mean plus two standard deviations $(\bar{x} + 2s)$ and the mean plus three standard deviations $(\bar{x} + 3s)$, respectively from log probability plots prepared for each element. The soil geochemical results from the Pyramid and Sericite East/West Ridge grids are summarized below in Tables 4.1 and 4.2, respectively.

Sample locations, numbers, and analytical results are shown on Figures 10-19. Results for gold, silver, copper, and zinc have been contoured at threshold (\bar{x} +2s) and anomalous (\bar{x} +3s) levels.

TABLE 4.1

MEAN, THRESHOLD AND ANOMALOUS METAL VALUES IN 'B' HORIZON SOIL SAMPLES PYRAMID HILL GRID

METAL	N	MEAN (Ī.	THRESHOLD $(\bar{x} +$	2s) ANOMALOUS $(\bar{x}+3s)$
Au	314	45	ppb	100 ppb	200 ppb
Ag	314	0.5	p pm	1.0 ppm	2.0 ppm
Cu	314	125	p pm	250 ppm	400 ppm
Zn	314	65	p pm	100 ppm	150 ppm

TABLE 4.2

MEAN, THRESHOLD AND ANOMALOUS METAL VALUES IN 'B' HORIZON SOIL SAMPLES SERICITE EAST AND WEST RIDGE GRIDS

METAL	N	MEAN	(x)	TF	IRESHOLD	(x +2s)	ANOMALOUS $(\bar{x} + 3s)$
Au	589		35	ppb	75	ppb	100 ppb
Ag	589		0.5	p pm	1.0	p pm	2.0 ppm
Cu	58 9		80	p pm	150	p pm	250 ppm
Zn	58 9		70	p pm	100	p pm	150 ppm

4.4 Discussion of Results

4.4.1 STREAM SEDIMENT GEOCHEMISTRY

Sample locations and results are shown on Figures 18 and 19. Analysis certificates are presented in Appendix I.

Stream sediment results from Sericite East, Pyramid Hill and Khyber Pass indicates the presence of several moderate to highly anomalous precious and base metal values. Gold, silver, copper, lead and zinc all show significant variation among the total population. Highly anomalous values were obtained from tributaries draining the southeast slope of Khyber Pass (Sample 409-829 ppm Cu, 37 ppm Pb, 1,055 ppm Zn, 4.0 ppm Ag, 1,090 ppb Au). In addition, moderate to highly anomalous values were obtained from creeks draining the east side of Pyramid Hill (Sample 212-2,099 ppm Cu, 6 ppm Pb, 1,831 ppm Zn, 1.2 ppm Ag, 260 ppb Au) and the north end of the Sericite East area (Sample 404-159 ppm Cu, 167 ppm Pb, 342 ppm Zn, 1.9 ppm Ag, 150 ppb Au). Soil sampling was undertaken in the Sericite East and Pyramid Hill areas as follow up to anomalous stream sediment sample results.

4.4.2 SOIL GEOCHEMISTRY

4.4.2.1 Pyramid Hill Grid

Anomalous gold, silver, copper and zinc values (Figures 10-13) occur in soil samples collected from a magnetite-pyrite-chalcopyrite bearing pyrometasomatized volcaniclastic sequence. The anomalous zone trends northeasterly from L 9+00 W 0+00 to L4+00W 3+25N. Highly anomalous copper (1,841 ppm) gold (420 ppb) zinc (348 ppm) and silver (2.9 ppm) occur in a magnetite-rich zone within the skarn assemblage. The anomalies are sharply cut off to the west suggesting a probable lithological control to the mineralization. Sinuous demarcation boundaries to the south and east imply that the zone is overlain by a thicker masking soil cover.

A large zone of anomalous copper and silver values occur at the south end of a small grid located north of the main Pyramid Hill Grid. The anomalous zone extends from L2+00W to 4+00E and may very well correspond to the footwall contact region of the southwesterly dipping skarn assemblage.

Numerous sporadic, isolated gold and other element anomalies occur throughout the Pyramid Hill area. The zones correspond to localized quartz-pyrite stockwork systems that occur primarily within a banded siltstone sequence.

4.4.2.2 Sericite East Grid

Soil sampling over the Sericite East grid (Figures 14-17) generally yielded a number of isolated, erratically distributed gold, silver and copper anomalies. In one area however, a group of highly anomalous copper (up to 1552 ppm) and moderately anomalous gold and silver values produced a northeast trending anomalous zone centred at L4+00E 2+00S. As the dominant structural trend throughout the area is 005° to 020° the anomaly may represent a mineralized shear zone in the underlying intrusive.

4.4.2.3 West Ridge Contour Grid

Soil samples collected from the West Ridge area (Figure 18) display a wide range in values within the populations of some elements. Copper (25-152ppm), silver (0.1-7.5ppm) and gold (1 - 190 ppb) display enough variation to clearly define an anomalous population. In general, soil sampling produced some anomalous values, however most of these were single sample anomalies and widely separated.

CONCLUSIONS AND RECOMMENDATIONS

Geological mapping, rock chip sampling and soil sampling on the Gossan 6, 9-13, and 21 mineral claim group indicate that portions of the property have good potential for hosting precious metals mineralization and that the property is worthy of additional exploration.

The property is mostly underlain by a variably altered sequence of volcaniclastic and sedimentary rocks probably belonging to the Betty Creek Formation. The volcanosedimentary succession has been intruded by quartz monzonites and hypabyssal intrusive rocks of the Coast Plutonic Complex. The presence of a skarn altered volcaniclastic sequence in the Pyramid Hill area with up to 2,400 ppb Au and 8.51 oz/t Ag is considered to be a good indication of the area's precious metals potential.

Soil geochemical surveys provided an indication of the most suitable elements (Cu, Zn, Ag, Au) to use as pathfinders for gold and silver mineralization. The geochemical surveys located anomalous zones in both the Pyramid Hill and Sericite East areas. The Pyramid Hill grid contained a zone of anomalous copper, zinc, silver and gold in soils proximal to a skarn-altered volcaniclastic sequence. Moderate to highly anomalous copper, silver and gold values produced a north-east trending zone in the Sericite East area.

Future work on the Gossan 6, 9-13 and 21 mineral claim group should include diamond drilling of the skarn altered volcaniclastic sequence on Pyramid Hill and detailed mapping, higher density soil and rock chip sampling and trenching of the northeast trending gold-silvercopper anomalies on the Sericite East grid. The rest of the retained claim block contains low economic potential or is covered by glaciers and/or glacial overburden.

10

Respectfully Submitted,

B.P. Butterworth, B.Sc., Geologist

D.B. Petersen, P. Eng., Senior Geologist

COST STATEMENT

- 22 -

GOSSAN 6, 9-13, 21 MINERAL CLAIM GROUP

GEOLOGY AND GEOCHEMISTRY

PROJECT PREPARATION

Contraction of the

and the second

Sector Sector

SALARIES AND BENEFITS

B. Butterworth April 27 - June 11 23.5 days @ \$153/day	3,596
D. Odenwald June 9 - June 12 4 days @ 118/day	472
D. Burgoyne June 10 - June 12 3 days @ 126/day	378
Total Project Preparation Costs	4,446
Total Project Preparation Costs Apportioned	1,259
FIELD COSTS (including apportionment of demobilization costs)	
SALARIES AND BENEFITS	
R.P. Butterworth	
Project Geologist June 15 - August 27 31.5 days @ 153/day	4,820
R.S. Hewton, Supervisory Geologist June 25, July 13,18, Aug 27 3.5 days @261/	day 914
D.B. Petersen,	
Supervisory Geologist June 25 1 day @ 239/day	239
S. Casselman, Geologist June 15 - August 27 33.5 days @ 130/day	4,355
H. Holm,	
Supervising Technician June 30 - July 10 6 days @ 171/day	1,026
D. Burgoyne, Field Technician June 15 - Aug 27 25 days @ 106/day	2.650
K. Richmond,	_,
Field Technician June 15 - Aug 27 30 days @ 106/day	3,180
T. Watson,	2 200
Field Technician June 15 - Aug 27 24 days e 92/day	2,200
Field Technician June 15 - July 9 9 days @ 118/day	1,062
S. Avaiki,	
Field Technician June 22 1 day @ 122/day	122
FOOD AND ACCOMMODATION	
10 persons, June 21 - August 27, 1987 164.5 mandays @ \$22/manday	3,619

FIELD EQUIPMENT RENTAL

June 21 - August 27 164.5 mandays @ \$3.30/manday

543

COST STATEMENT Cont'd

GOSSAN 6, 9-13, 21 MINERAL CLAIM GROUP

GEOLOGY AND GEOCHEMISTRY

FIELD EQUIPMENT PURCHASE AND SUPPLIES	9,819
GEOCHEMICAL ASSAYS AND ANALYSES (INCLUDING FREIGHT)	
304 rock samples for 30 element ICP, Aug by AA @ \$20/sample 903 soil samples for 30 element ICP; Au by AA @ \$18/sample 23 stream sediment samples for 30 element ICP; Au by AA @ 18/samp	6,080 16,254 ole 414
TRANSPORTATION	
Helicopter 30.8 hours @ 588.5/hour Fixed Wing	18,126 16,531
TRAVEL EXPENSE	1,572
MOB - DEMOB	
Salaries and Benefits Vehicle Rental and Expense Food and Accommodation	797 886 148
Total Field Costs	95,365
REPORTING	
B.P. Butterworth 24 days @ 153/day	3,672
Drafting	
H. Holm 13 days @ 171 J. Winfield	2,223 975
Typing 50 hrs @ 20.60/hour Reproduction	1030 500
Total Reporting Co	sts 8,400
ABRITANEN TOTAL	\$105,024

and the second se

Second Second

REFERENCES

- Bending, D.A. 1984: 1983 Summary Report of the Snippaker Creek Area, British Columbia. Report for Lonestar Resources Ltd.
- Grove, E.W. 1971: Geology and Mineral Deposits of the Stewart Area, British Columbia. B.C. Department of Mines and Petroleum Resources, Bulletin No. 58.
- Grove, E.W. 1986: Geology and Mineral Deposits of the Unuk River-Salmon River - Anyox Area. Ministry of Energy, Mines and Petroleum Resources., Bulletin No. 63.
- Kerr, F.A. 1948: Lower Stikine and Western Iskut River Areas, British Columbia, Geology Survey. Can. Memoir 246.
- Meyers, R.E. 1986: 1986 Geochemical Sampling and Reconnaissance Mapping on the Gossan 1-4, 7 Claim Group and Gossan 14-17, 23 Claim Group. Assessment Report.
- Petersen, D.B., Woodcock, J.R., Gorc, D. 1985: Geological, Trenching and Diamond Drilling Report on the Gossan 11 Claim. British Columbia Ministry of Energy, Mines and Petroleum Resources, Assessment Report.

STATEMENT OF QUALIFICATIONS

I, Brian P. Butterworth, of North Vancouver, British Columbia, hereby certify that:

- I am a geologist residing at 1008 Wellington Drive, North Vancouver, British Columbia and am employed by Western Canadian Mining Corporation of 1170-1055 West Hastings Street, Vancouver, British Columbia, V6E 2E9.
- I received a Bachelor of Science degree from the Faculty of Geology of the University of British Columbia, Vancouver, British Columbia (1983).
- 3. I am the author of this report which is based on field work conducted during June to September, 1987 on behalf of Western Canadian Mining Corporation.
- 4. I have no beneficial interest in Western Canadian Mining Corporation, nor do I expect to receive any.

Western Canadian Mining Corporation

D.P. Buthan H

B.P. Butterworth, B.Sc. Geologist

APPENDIX I

and the second se

ASSAY AND ANALYSIS CERTIFICATES

WESTERN CANADIAN MINING PROJECT-GOSSAN #9102 FILE # 87-3405

198

SAMPLE	NO PPH	CU PPM	PB PPM	ZN PPH	AG PPH	NI PPM	CO PPN	NN PPK	FE	AS PPN	U PPN	AU PPH	TH PPM	SR PPH	CD PPM	SB PPN	BI PPN	V PPH	CA Z	P X	LA PPN	CR PPN	MG Z	BA PPN	T1 X	8 PPN	AL Z	NA Z	K	N PPN	AUI PPB	
				· ·												_		_ .			-					_						
PYL3+00W 0+25N	. 53	701	25	207	.6	39	43	2297	8.58	25	5	ND.	2	28	1	2	6	76	.35	.165	9	34	1.18	197	.29	2	3.01	.02	.37	11	112	
PYL3+00W 0+00	30	705	23	191	.8	` 43	32	1417	7.30	16	5	ND	3	31	1	. 2	- 16	86	.42	.146	8	36	1.60	419	. 33	4 -	3.59	•02	.59	- 14	128	
PYL3+00W 0+505	14	543	8	83	-1	68	-12	309	6.89	2	5	ND	2	111	1	2	9	75	.29	.156	5	164	2.95	672	.28	2	6.23	.03	.49	6	9	
PYL3+00W 0+755	8	55	26	67	.1	5	7	1063	4.45	6	5	ND	. 1	17	1	2	- 4	57	.14	.102	10	18	.36	80	.14	2	2.18	.02	.0?	1	9	
PYL3+00W 1+005	9	23	9	24	.2	2	2	92	2.51	2	5	ND	1	8	1	2	2	43	.07	.071	5	6	.07	32	.14	2	.49	.02	.04	3	7	
PYL3+00# 1+255	10	24	6	24	.1	1	3	97	3.00	3	5	ND	1	7	1	2	2	51	.05	.051	7	4	.03	27	.13	5	.31	.01	.03	- 3	8	
PYL3+00W 1+505	9	54	13	34	.7	2	3	48	2.80	6	5	NÐ	1	18	1	2	2	29	.13	.105	13	12	.02	17	.18	2	.67	.01	.03	3	33	
PYL3+00W 1+755	4	27	5	22	.1	1	3	69	1.94	2	5	NÐ	1.	10	1	2	2	28	.07	.083	4	6	.07	17	.08	7	.50	.02	.03	1	25	
PYL3+00W 2+005	23	44	6	22	.2	2	2	64	2.62	3 -	5	ND	1	13	1	2	2	35	.08	.087	6	7	.03	57	.08	2	.48	.01	.04	1	32	
PYL3+00W 2+255	10	30	18	55	.2	4	6	1126	5.85	9	5	ND	1	10	1	2	2	35	.09	.087	19	15	.16	27	.14	5	1.78	.05	.08	1	5	
PYL3+00W 2+50S	13	32	27	. 37	.5	7	4	201	5.19	7	5	ND	1	11	1	2	2	72	.07	.077	17	13	.07	26	.25	2	.98	.01	.04	2	6	
PYL3+00W 2+755	9	34	24	71	.3	6	7	1461	5.39	. 9	. 5	ND	1	20	· 1	2	2	49	.14	.133	16	18	.29	58	.14	2	1.82	.04	.11	· 1:	4	
PYL3+00W 3+00S	10	48	19	98	.3	9	8	1367	4.53	9	5	ЖD	-1	25	1	2	6	56	.19	.120	11	22	.41	110	.08	2	2.20	.02	.11	3	11	
PYL3+00N 3+255	8	. 30	11	27	1	2	3	86	2.36	3	5	ND	1	22	1	3	2	35	.13	.077	6	6	.06	61	.08	2	.42	.02	.04	2	8	
STD C/AU-S	18	58	37	131	7.1	66	28	1023	3.83	40	18	8	40	49	18	16	20	55	.47	.086	37	59	.84	176	.09	31	1.88	.06	.13	12	52	

SOIL GEOCHEMISTRY

ţ

¢.

€.

f

50

PYRAMID HILL GRID

Page 4

WESTERN CANADIAN MINING PROJECT-GOSSAN #9102 FILE # 87-3405

ALC:

and the second second

100 mil

TH:

......

and see

SAMPLE	HC PPM	CU PPM	PB PPH	ZN PPN	AG PPN	NI PPM	CO PPN	HN PPH	FE 1	AS PPH	U PPM	AU PPN	TH PPN	SR PPM	CD PPH	SB PPH	BI PPH	V. PPN	CA I	P	LA PPH	CR PPN	N6 1	BA PPM	TI T	B PPN	AL Z	NA I	K Z	N PPX	AUT PPB	
PYL4+00W 2+25N	23	179	20	79	.5	11	6	332	6.29	6	5	ND	2	52	1	2	2	57	. 29	. 137	9	32	. 77	747	. 16	2	3.34	.02	. 20	.΄ τ	20	
PY1 4+00H 2+00N	18	89	24	101			10	1358	7.10	8	5	ND	3	20	ī	,	,	63	.15	.088	19	74		104	. 22	7	3.69	.03	.13		10	
PVI 4+00W 1+75W	44	477	29	108	2.3	19		544	7.39	13	5	ND.	7	118	1	•	;	45	71	145	12	71	1 70	1 407	***		7 29	05	10	, i	17	
PYL 4+00H 1+50H	37	388	- 28	144	1.4	28	19	1500	5.81	17	5	20	,	71	÷	5	,	45	145	144		47	1 21	A15	110		7 51	. UJ 65	.00	· •	100	
DVL 4+008 1+258	15	175	10	10	5			407	5 99		š	80	5	21		2	5	10		075		7/	1.21	100	.20	÷.	7 00	.03	17		60	
LITALOOM TITTON	1.5	175	10	07	••	1	7 .	101	5.00	7		NU		10	•	2	2	00	• 4 4	.0/3	12	38	.0/	110	• 21	3	J. 07	• 44	•19	4	78	
PYL4+00W 1+00N	22	329	14	111	.6	17	13	687	6.43	6	5	ND	1	51	1	2	2	65	.36	.178	11	22	1.04	303	.27	2	3.51	.02	.36	3	71	
PYL4+00W 0+75N	- 15	374	21	120	.1	27	19	838	5.80	6	5	ND	2	42	1	2	2	71	•42	.140	. 9	53	1.47	257	.20	2	3.52	.02	.43	1	110	
PYL4+00W 0+50N	21	823	23	173	.5	30	27	907	6.59	9	5	ND	- 4	37	1	2	2	78	.62	.144	17	59	1.63	351	. 38	2	3.74	. 02	.46	11	94	
PYL4+00W 0+25N	43	753	23	340	.5	52	46	1080	11.83	6	5	ND	- 4	47	1	2	5	73	.30	.130	9	9	1.38	258	.24	2	5.78	.02	.83	8	24	
PYL4+00W 0+00	40	470	25	145	1.1	26	36	1470	7.73	. 7	5	ND	3	29	1	2	2	70	.46	.187	13	40	1.32	149	.32	13	3.21	.03	.32	5	89	
PVI 4+00N 0+255	19	307	74	156	.1	18	19	1287	6.69	3	5	ND		29	1	2	2	-51	. 39	. 125	71	26	.70	238	.74	2	3.62	. 04	.26	3	τo	
PYL 4+00H 0+50S		120	20	88	.1	5	7	790	4.55	5	5	ND	1	29		2	-	34	.35	152	16		.25	351	.02	2	1.24	. 01	17	1	14	
PYLA+00W 0+755	17	89	11	49		. a		249	2.82	Ĭ	5	ND	i	31	-	,			. 77	171		10	79	81	.13	10	1.07	.04	- 11	;	75	
PVI 4400H 1400S		151	20	75	1.0	7	7	597	7 71	11	5	80	÷	24	÷	2	,	10	20	107	11	76	17	74	20	,	3 27	ΔA	17	- i	77	
PVI 44009 14255	14	179	14	10	1	20		500	5 77	1	š	20	1	24	- ;	2	,	79	41	170	10	57		81	10	5	2 75	10	• • • •	2	- 30 - 77	
· .	14	137	10	00	••	10	,		J. 41		J		•	20	•	•	. •		. 10	.131	v	47	.00			•	2.75		••/		2.5	
PYL4+00W 1+505	53	118	22	- 66	.4	17	4	413	8.20	9	5	100	1	52	1	2	2	139	1.58	. \$27	9	43	1.69	259	.15	26	4.60	.03	.31	1	56	
PYL4+00W 1+755	11	50	19	78	.1	- 4	4	360	4.94	9	5	ND	1	15	1	2	2	51	.16	.102	16	19	.44	50	.13	2	2.47	.05	.10	1	29	
PYL4+00# 2+005	10	45	26	80	.3	7	9	2484	5.68	8	- 5°	KD	2	31	1	2	2	72	.26	.120	14	18	.48	124	.19	2	2.32	.06	.11	1	10	
PYL4+00W 2+255	15	84	24	56	.3	8	6	573	5.76	2	5	ND	1	27	1	2	2	74	.18	.136	10	25	.59	128	.15	2	2.75	.03	.15	1	9	
PYL4+00# 2+505	8	47	16	34	.2	2	3	206	4.86	2	5	ND	1	18	1	2	2	52	.12	.107	11	9	.32	56	.14	2	3.64	.01	.08	2	12	
PYL4+00# 2+755	19	58	19	75	.3	7	6	735	5.91	5	5	ND	1	13	1	2	2	68	.10	.107	- 14	22	.55	70	.11	- 11	3.02	.03	.09	-1	14	
PYL4+00# 3+00S	7	32	16	30	.1	5	- 4	149	4.16	- 4	5	ND	. 1	17	1	2	2	80	.14	.077	7	9	.15	48	.23	2	.72	.01	.07	2	75	
PYL3+00W 3+75N	- 40	188	36	62	1.0	8	7	216	10.09	16	5	ND	3	62	1	2	2	103	.12	.114	9	40	.64	321	. 37	5	2.68	.02	.23	5	43	
PYL3+00W 3+50N	31	636	- 44	162	2.1	46	9	550	6.87	13	- 5	ND	2	21	1	2	2	167	.14	.093	9	86	2.19	451	.54	2	6.79	.01	1.09	17 .	56	
PYL3+000 3+250	15	238	28	79	1.6	20	9	461	4.92	5	5	ND	2	32	1	2	2	82	- 19	.067	9	40	1.34	321	.28	2	4.55	.01	.32	5	75	
PYI 3+00N 3+00N	15	257	18	73	.8	16	ę	467	4.37	2	5	ND.	2	31	1	,	2	76	. 19	. 099	11	32	1.67	331	. 19	7	4.97	. 07	.25	3	26	
PY1 3+00H 2+75H	18	210	25	76		12	9	149	5.47		5	ND.	1	75			- 3	59	. 79	110	17	77	70	225	.17	17	3.13	. 05	.23	5	64	
PYT 3+00H 2+50H	77	97	33	72	.5	7	ź	179	8.10	7	Ř	80	i	26	i	,	2	76	21	0.91	14	27	20	45	27		2 34	. 01	.10	i i	30	
PVI 3+00W 2+25W	21	128	19	55	1 0	í	5	191	7 18	6	š	80		14	;	2	5	47	17	0.05	21			71	17	5	4 29	07	60	· •	45	
PVI 3+00# 2+00M	17	70	25	70	1.0	7		775	1 54	10		80	4	19	1	2	5	15	14	.V7J	17	20		00	•47	5	7 19	. 02	.00		24	
1123-000 21000	17	15	20	/•		'			0.30	10	J			11	•	4	-	0.	. 17	.015	13	23	. 32	ov	+17	4	Z. 70	• • • •		•		
PYL3+00W 1+75N	19	106	24	79	.3	11	7	751	6.48	11	5	ND	2	14	i	2	2	55	.11	.084	18	26	.39	73	.19	2	2.70	.02	.07	1	32	
PYL3+00W 1+50N	21	193	20	84	.5	16	9	480	5.54	12	5	KD	1	32	1	2	3	60	.31	.103	14	33	.80	138	.23	2	2.89	.05	.17	3	68	
PYL3+00W 1+25N	21	153	23	97		16	16	1122	6.11	14	5	ND	1	51	1	2	2	97	.56	.110	8	35	1.22	328	.30	15	2.43	.03	.30	3	59	
PYL3+00W 1+00N	23	270	23	147	.3	18	22	1906	6.92	15	5	ND	1	- 36	. 1	2	2	67	. 37	.110	15	29	.74	194	.77	2	2.56	.03	.24	3	80	
PYL3+00N 0+75N	31	528	22	116	.8	22	39	1577	6.49	16	6	ND	i	31	1	2	2	61	. 37	.115	15	33	.80	174	.77	2	3.45	.02	7.08	1	69	
						~~							•	~.	•	٠	•	41					100				V. 18			• • •		
PYL3+00W 0+50N	38	859	20	135	.5	30	52	2247	4.86	49	5	ND	1	42	1	2	2	70	.17	.001	. 17	31	. 88	172	.01	2	.01	.03	.01	6	117	
STD C/AU-S	18	58	41	127	6.9	66	26	1029	3.86	41	19	7	37	48	17	17	21	56	. 49	.079	36	57	. 86	172	:07	39	1.90	.06	.14	13	52	

Page 3

€

C

C

C

€

C

€

C

€

)

		L				WEST	FERN	I CA	NADI	AN I	1 I NI	NG	PPRO	JEC	r-GC	ACC	J #	9102	2 F	ILE	# 8	7-2	932								Pa	i .ge
SAMPLE	NO PPN	CU PPM	PB PPM	ZN PPH	AG PPM	NI PPM	CO PPM	HN Pph	FE	AS PPM	U PPM	AU PPH	TH PPM	SR PPN	CD PPM	SB	BI PPM	V PPN	CA I	P I	LA PPM	CR PPM	16 I	BA PPH	TI I	B PPN	AL	NA Z	K	W PPH	AU1 PPB	
PY 16+00W 1+50N	26	239	31	98	1.8	28	17	1305	6.48	-15	5	ND	1	27	1	2	2	62	.65	.207	6	55	1.08	310	.21	2	2.00	.04	.31	2	68	
PY L6+00# 1+25N	45	187	24	76	2.2	30	- 14 -	1354	5.38	11	5	ND	. 2	32	1	4	2	52	.59	•133.	4	83	.99	249	.25	2	1.41	.04	.45	1	57	
PY L6+00W 1+00N	37	399	15	82	1.6	19	4	408	3.69	5		ND	1	24	1	2	2	75		.100	9	68	1.23	152	.33	2	3.80	.03	.25	1	91	
PY LA+00W 0+/5N	/د ۳۳	285	25	19	1.2	13		933 707	5.08 7 05	7	2 6	7U NO	1	23	1		2	/4	. 24	.113	5	40	. 97	126	.1/	2	2.60	.02	.17	1	36	
PT 10+000 0+300	- 21	122	21	12	1.7	14		312	1.03	9	J	ny .	4	21	1	J	4			.007	7	01	1.43	137	•30	2	3.05		*28	2	51	
PY L6+00W 0+25N	118	179	22	137	1.8	11	13	1254	10.21	15	5	ND	1	56	1	3	2	74	.80	.174	6	42	.71	222	.17	2	1.42	.03	.32	2	66	
PY L6+00% 0+00N	60	325	21	91	2.9	15		565	7.04	8	3	5.	2	36	1	2	2	12	. 37	.131	8	52	.98	135	.25	-2	2.74	.03	.19	2	55	
PT 14+008 0+235	41	137	20	140	۲. ۲	20	11	1200	1.00	10		- 40	4	101	1	3	4	128	4.32	1.02/	. 14	20	1.21	301	.06	2	2.48	.03		1	- 94	
PT 16+00# 0+305	10	17	10	60 07	!	14		7/19	J./2 5 95	3 7	J	80	1	47	1	,	2	70	37	.113	۵ ۲	38 77	1 00	104	•23 रर	2	2.30	.92	-1/	1	34	
P\$ 68+00# 0+755	10	133		07			**	///	4114	•	2	112	•	01	. •	•	-	.,	. 10	1100	J	JL	1.00	102		4	4.74	.10		1		
PY L6+00W 1+005	19	107	24	68	.6	10	4	372	5.35	5	5	ND	2	28	1	7	3	76	.25	.115	7	30	.81	86	.16	7	2.36	.03	.13	5	54	
PY L6+00# 1+255	17	144	21	58	6	9	3	242	5.20	8	5	ND	2	15	1	2	2	72	.19	.098	13	39	.56	47	.19	2	3.47	.02	.08	- 3	34	
PY L6+00W 2+005	51	124	17	91	.6	17	6	702	11.51	12	5	ND	د ۲	55	1	2	2	121	1.35	.707	6	45	1.62	325	.12	2	2.65	-03	.63	1	71	
PY L6+00W 2+255	. 21	110	20	108	•	10		121	0.10	8 10.	2	10	2	41	· 1	2	. 2	121	1.03	+047 . L47	0 7	. 40	1.69	4/2	- 14	2	2.50	.05	.6/	1	49	
PT L0+000 2+303	04	155	17	00		10	. 8	020	7.10	10	. •	nu	4	07		2	2	141	1.37	.072	,		ledi	201	.14	. 4	2.09	.03	. 31	1	00	
PY L6+00W 2+755	19	86	24	80	1.4	9	4	484	8.03	6	6	ND	4	28	1	2	2	74	.20	.101	- 14	32	.38	94	.18	3	2.18	.02	.13	1	13	
PY L6+00W 3+005	17	287	. 9	14	.3	13	8	495	7.95	2		ND ND	- 5	42	1	2	2	76	.19	.146	8	39	1.65	208	.31	2	4.77	.02	.84	1	72	
PT L6+00W 3+235	1/	320	13	54	.3	14		41/	/.80 0 07	2	3 5	ND ND	1	02 75	. 1	2	2	6 7 79	.20	101	0	17	1.45	104	. 30	2	3.41 7 //	.03 70	.32	. 1	31 17	
PY 15+00W 3+303	74	363	47	139	2.9	17	4	799	11.84	19	5	NO	· 1	116	i	2	2	85	.21	.143	8	48	1.18	107	.35	2	2.79	105	.86	23	175	
							•								•		. –				•					-						
PY L5+00W 3+00N	33	106	24	73	1.9	- 8	4	437	7.19	8	5	ND	1	-39	1	3	3	56	.27	.117	10	27	.38	180	.09	2	1.69	.01	.13	1	3	
PY L5+00W 2+75N	22	121	20	74	1.9	11	6	417	5.08	5	5	ND	- 1	- 51	1	2	6	58	.26	.108	9	30	.58	219	.11	2	2.69	.01	.17	2	4	
PY L5+00W 2+50N	27	417	18	95	1.0	24	12	641	6.02	. 9	. 5	ND	3	48	1	3	2	57	.31	.125	8	38	1.27	407	.25	Z .	3.47	.02	. 49	. 3	1	
PY 15+00W 2+25N	42	233	29	93	1.3	- 18	9 -	. /15	3./6	12	2	ND No	2	48	1	2	2	60		.128	8	4Z	1.00	249	.22	2	2.35	.04	.29	1	1.	
PY L5+00W 2+00W	19	146	18	50	9	10	. S	240	2.28	2	0	πIJ	3	01	2	2	2	47	• 17	. 177	. ′	21	. 80	217	•17	2	2.00	.02	• 28	1	11	
PY L5+00# 1+75N	7	54	8	.18	.5	4	' 1	86	1.19	5	5	ND	3	22	í	. 4	2	18	.07	.035	3	12	.29	80	.06	3	.73	.01	.14	2	725	
PY L5+00W 1+25N	14	125	16	46	i 4	8	3	207	3.28	2	- 5	ND	1	47	1	2	2	40	.19	.074	6	28	.66	173	19	2	1.61	.02	.25	1.	1	· .•
PY L5+00# 1+00N	17	81	16	93	.6	9	. 3	- 449	6.22	5	. 5	ND	3	24	1	· 2	4	60	.19	.088	13	40	.64	107	.22	Z	3.11	.02	.13	2	1	
PY L5+00W 0+75N	- 36	111	32	160	.7	15	14	1697	6.07	8	5	. ND	1	72	1	2	- 4 : E	64	.61	.191	10	54	.55	482	.08	2	1.49	.02	.33	2	. 33	
PT LOTUUN UTOUN	84	214	20	18	1.5	10	2	478	1.23	۲	3	RU	1	29	1	· 2		13	• 10	.102	'	22	.0/	72	•10	2	2.31		.15	2	-	
PY L5+00W 0+25N	45	95	23	74	1.3	7	- 4	463	5.18	6	5	ND	2	30	1	6	5	67	.28	.166	8	20	.32	103	.07	2	1.31	.02	.12	1	1	
PY 15+00W 0+00N	17	57	22	143	.9	8	8	1603	6.32	4	5	NÐ	4	43	1	. 5	2	57	.34	.135	16	23	.37	201	. 10	2	1.91	.03	.14	1	5	
PY L5+00W 0+255	-31	93	21	115	1.0	14	9	1027	5.51	4	5	ND	Z	30	1	· J	5	73	.27	.120	9	44	.81	150	.13	Z . E	1.15	.US	,13 77	1	20 5	
PT L3+00W 0+505	76	168	21	11/	1.5	15	21	2029	1.24	14	2	עא מע	- Z - T	20	1	ა 7	ა ი	67 77	.00	10Z	- 0	51 70	.03 00	100	10	. 3	1.97	.V.3 .04	.14	7	49	
FT LATUUM 04/35	67	220	14	70	1.0	14	10	1407	0.20	10	3	RV	3	41	1	4	4			•1/0	'	37	.00	120	• 4 7	۳.				•		
PY 15+00# 1+255	31	55	17	63	.5	11	4	282	5.67	7	5	ND	2	- 38	1	5	2	93	.65	. 406	11	35	. 86	127	.13	2	2.18	.05	.19	1	42	
STD C/AU-S	19	58	44	132	7.1	86	27	898	3.92	36	-14	7	37	49	17	14	21	57	.48	.087	39	65	. 88	176	.08	31	1.78	.06	.14	14	52	

(

(

C

Ċ

(

C

C

C .

€"

(

(

		111 1115A				WESI	ĘRN	CAI	NADI	AN r	INI	NG	PRO	JECI	-GC	SSAN	i #	910	2 7 F	FILE	# 8	7-2	932								Pa	ų
SAMPLE	MO PPH	CU PPN	PB PPN	ZN PPM	AG PPN	NI PPN	CO PPM	NN PPN	FE Z	AS PPM	U PPM	AU PPM	TH PPM	SR PPH	CD PPM	SB PPM	BI PPM	V PPN	CA Z	P Z	LA PPM	CR PPM	H6 1	BA PPM	TI I	B PPM	AL Z	NA Z	K Z	N PPM	AUI PPB	
PY L8+00W 2+50N	95	414	18	102	1.3	18	9	774	11.76	-27	5	ND	3	50	- 1	5	2	65	.51	.147	10	42	1.38	234	.34	16	2.79	.03	.35	20	310	
PY L8+00W 2+00N	. 99	151	16	84	1.1	52	2	242	1./1	13	3	2		26	1	5	2	. 99	• 52	.093	- 14	102	1.70	168	. 69	2	3.64	.03	.23	· 1	97	
PT L8+00# 1+/38	111	341	70	108		- 41	. 8	009	13.10	20	 	20 20		17		4	4	11	.21	.129	5	40	1.68	804	.28	2	2.78	.03	.54	. 8	71	
PY L8+00W 1+25N	91	252	118	135	2.8	16	4	401	9.08	12	5	ND	2	25	1	2	4	117	.31	.190	6	55 40	1.68	218 218	.17	2	3.32	.02	.13	5	340 73	
PY L8+00W 1+00N	159	262	32	106	1.4	53	9	1047	7.57	12	5	ND	2	55	1	2	2	444	1.19	.534	8	63	2.10	601	.13	2	3.29	.03	.62	4	68	
PY L8+00W 0+75N	57	182	31	51	1.3	13	7	560	11.00	11	5	ND	1	30	1.	2	6	91	.26	.205	5	29	.59	292	.06	.2	1.78	.01	.30	2	109	
PY L8+00W 0+50N	39	84	16	. 17	.6	16	4	474	5.80	16	5	ND	1	116	1	2	2	77	5.52	1.916	9	36	1.09	332	.03	2 -	1.91	•03	. 15	1	-36	
PY L8+00W 0+25N	20	109	12	50	5	9	4	208	4.34	6	5	ND	1	23	- 1	2	6	80	.25	.249	5	19	.24	192	.01	2	1.07	.01	.10	2	47	
PY L7+00N 2+50N	50	217	46	107	3.6	14	6	292	22.56	133	2	2	-	22	. 1	2	2	60	. 28	.309	5	59	.99	185	.25	3	1.14	.03	.41	19	920	
PY L7+00W 2+25N	18	331	19	110	1.7	48	10	677	12.75	22	5	ND	2	22	1	2	2	47	.51	.152	5	73	2.07	581	.29	2	2.29	.02	.62	2	310	
PY L7+00W 2+00N	59	369	14	90	1.0	85	9	610	4.90	17	5	ND	2	16	1	3	2	55	.44	.081	6	91	1.66	619	.44	2	2.23	.01	.64	. 1	45	
PY L7+00W 1+75N	51	1841	46	348	2.1	101	43	1630	11.46	37	5	ND	2	21	1	2	2	51	1.31	.198	9	77	1.42	510	.33	2	2.41	.01	.50	13	420	
PY L7+00W 1+25N	51	210	21	91	1.8	13	6	311	6.55	15	2	ND	- 1	23	1	3	6	66	.23	204	5	28	.42	138	.05	2	1.13	.01	.19	. 4	89	
PT L/HOUW IHOUN	72	192	14	22		20	. 14	BOI	7.8/	13	3	RŲ	2	28	1	2	. 4	84	- 34	.124	1	28	1.00	140	•1/	2	2.15	.02	,72	2	86	
PY L7+00W 0+75N	78	1025	27	83	2.9	31	28	938	20.59	34	5	ND	3	29	1	2	2	80	.60	.219	6	71	.97	181	.44	2	1.74	.03	.28	3	250	
PY L7+00N 0+50N	- 30	173	24	. 92	.8	.17	7	613	7.36	15	5	ND	1	71	1	2	2	125	2.39	.879	11	41	.97	209	.03	2	2.14	.04	.16	1	68	
PY L7+00W 0+25N	20	710	20	87	.5	22	. 29	1367	13.18	22	5	ND		36	1	2	2	82	.82	.133	4	53	.85	75	.25	2	2.12	.01	.06	. 5	185	
PY 17+00# 0+005	14	315	20	66		10	10	- 790	13.24	19	5	ND MD	2	28	1	2	2	66 77	.51	.154	10 e	41	.52	67	.18	2	2.30	.03	.08	6	99	
PT L/+00W 0+235	. 17	140	12	68	•1	10	0	750	10.02	•		NU.		19	·I	•	2	12	• • • •	.142	3	21	•12	100	•12	.	1.79	.02	•11	. 2	63	
PY L7+00W 0+505	25	371	- 11	86	1.0	29	8	1048	7.60	11	7	ND	5	11	1	2	2	87	. 26	.115	15	62	. 94	150	.19	2	4.49	.06	.34	1	42	
PY L7+00# 0+755	21	99	14	68	.8	11	6	645	7.69	13	5	ND	1	39	1	6	2	99	.27	.183	7	39	.90	209	.11	2	2.31	.02	.22	3	51	
PY L7+00W 1+00S	37	147	11	76	.9	16	1	607	8.91	9	5	ND	Z	67	1	Z	Z	113	1.50	.622	8	42	1.44	261	.14	2	2.85	.07	.38	1	93	
PY 17+00W 1+255	26	157	21	58	1.0	9	5	553	12.70	12	2	ND	5	29	1	2	2	78	.34	.149	5	31	.84	102	.14	4	1.93	.02	.15	1	138	
PT L/+00# 1+505	10	180	10	_ 12	•0	Y	•	414	4.22	10	3	RU	3	19	1	2	٩	/0	•10	.094	8	34	.83	12	.15	- 2	4.43	.01	•12	- 1	/6	
PY L7+00W 1+755	27	157	16	78	.8	11	- 8	968	7.25	7	5	ND	1	23	1	- 4	6	86	.25	.117	8	39	.90	75	.16	3	2.96	.02	.12	1	62	
PY L7+00W 2+005	28	157	15	81	1.0	10	8	985	7.56	6	5	ND	2	26	1	3	4	79	.27	.135	8	36	.74	97	.14	2	2.90	.02	.10	i	95	
PY L7+00W 2+255	15	78	16	56	4	6	3	306	8.65	8	5	ND	2	26	1	2	2	71	.20	.081	13	- 20	31	86	.18	- 2	2.22	.01	.10	1	56	
PY L7+00# 2+505	16	686	15	60	1.0	22	21	950	14.19	11	5	ND	4	50	1	2	2	44	.36	.183	7	27	.50	69	.16	4	3.37	.02	.14	6	610	
PY L7+00W 2+755	14	. 344	18	69	1.5	16	11	763	7.70	. 6	5	ND	-1	36	1	5	7	73	.26	.136	6	39	.92	126	.15	3	2.57	.02	.17	3	71	
PY L7+00W 3+00S	3	144	9	58	1.3	4	3	317	5.33	2	5	ND	3	26	1	. 3	2	95	.16	.079	8	24	1.36	161	.22	2	2.36	.03	.68	1	96	
PT L7+00% 3+505	2	59	11	.66	1.2	5	2	249	9.21	2	5	ND	5	84	· 1	Z	2	110	.27	.150	6	37	1.36	160	.24	3	1.53	.10	1.06	. 1	- 15	
PT L6+00W 2+30N	42	510	15	78	1.5	1/	8	468	8.48 7.45	10	2	7.U 117	-	83	1	2	2	81 75	• 24	107	10	3/	1.07	222	.21	3. T	4.10 4.7L	.00	.0/ 70		110	
21 F940AM 54538	. न/ रष्ट	210	11	110	1.1	14 -	. . .	- 404	1.00	10		עא מע		71		2		19 11	اد. ۲۲	104	7	4	1.80	207	•29 70	ა ი	7./0	.03	15	4	147	
FT LOTVUM 2700M		219	28	107	1.7	20	0	J0/	0./0	• 17	. 1	πIJ	4	40	1	Ĵ	2	04	. Ja	1100	0	04	.71	200	• 47	د	1.75		- 10		141	
PY L6+00W 1+75N	84	585	33	178	2.0	38	-14	814	10.10	36	5	2	3	21	1	- 4,	2	58	- 33	.127	6	67	1.25	390	. 39	4	2.16	.02	.29	10	390	
STD C/AU-S	19	57	42	131	7.2	67	27	884	3.90	36	16	7	29	49	16	16	20	56	.48	.087	35	65	. 89	174	.08	31	1.79	.06	.13	13	47	

2

€

C

€

C

€.

(

1

WESTERN CANADIAN MINING PROJECT-GOSSAN #9102 FILE # 87-2844 Page 5 SAMPLE NO -CU PB ZH A6 NI CO FE TH SR SB XN AS U AU CD BI ¥ CA P LA CR 86 BA 11 K . **A1** NA. . Alit PPN PPN PPM PPN PPN PPH PPH PPH Z PPH PPH PPR PPH PPN PPN PPH PPN PPH 7 PPN PPM Z PPH 1 z PPN Z 1 1 PPN PPB PYL9+50H 1+25N 64 12 165 100 .3 11 7 1457 7.20 .087 11 22 2 153 .16 35 1.51 151 .22 2 3.93 -5 1 1 4 4 .04 .29 69 1 PYL9+50H 1+00N 73 103 216 7 .4 30 656 13 5 6.77 5 ND 1 20 2 3 115 .17 .101 5 60 1.40 114 .23 2 2.92 .03 .24 2 1 48 PYL9+50H 0+25N 255 6 53 74 2 .4 11 562 7.68 8 5 ND 1 33 3 2 122 .22 .108 5 30 1.59 148 .25 2 3.82 .05 67 1 .34 1 PYL9+50W 0+00 45 181 6 76 .6 10 2 443 5.77 6 5 ND 1 39 2 2 163 .24 .082 3 2.32 259 .35 1 8 2 3.47 .06 1.01 2 64 PYL9+50# 0+255 15 83 21 68 .2 5 631 8.50 3 4 10 5 NÐ 12 2 2 111 -09 .072 27 .65 63 1 16 .23 2 3.10 .06 .25 1 49 PYL9+50# 0+505 17 123 8 74 .3 11 3 432 6.02 7 -5 ND 31 2 2 151 .18 .073 3 23 1.41 121 .22 ł 2 2.69 .04 .27 2 106 PYL9+50W 0+755 11 119 66 599 7.06 4 .1 15 4 7 5 ND 56 3 2 .22 22 2.22 283 .34 1 1 166 .076 4 2 4.26 .06 .80 2 73 PYL9+00W 3+25N 122 274 8 86 .8 13 5 874 7.64 28 5 ND 3 29 5 2 81 .42 .219 12 94 4.03 253 .63 1 2 3.71 .05 1.79 4 230 PYL9+00W 2+75N 142 190 15 52 .2 12 3 331 12.29 17 5 5 31 2 2 77 1.36 ND 100 .18 .207 6 126 .57 20 1.68 93 1 .06 .55 4 PYL9+00# 1+50M 117 132 15 96 .5 29 2 505 8.02 3 32 2 14 5 ND 2 113 .19 .072 105 2.67 253 2 3.36 1 6 .56 .03 .48 1 133 PYL9+00W 1+25N 19 128 86 10 .2 7 646 9.56 2 .14 .135 6 5 5 63 2 104 8 14 1.88 285 .25 14 3.65 .06 .94 t 36 PYL9+00W 1+00N 72 68 14 71 .6 7 2 336 5.55 13 5 ND ŧ 31 3 2 106 .18 .153 7 22 .86 97 .18 2 2.50 .02 .22 48 1 1 PYL9+00H-0+75N 99 338 8 108 .4 42 13 919 9.01 11 5 ЖÐ t 50 1 2 2 234 .56 .240 6 121 2.96 744 .26 2 4.57 .06 1.01 3 76 PYL9+00# 0+50M 48 304 8 78 17 5 2 71 2 .6 5 613 7.07 16 ND 1 8 135 3.31 1.233 11 47 1.75 254 .10 2 3.77 . .01 .50 2 46 PYL8+50# 0+00 296 25 20 127 .7 22 16 1401 8.55 13 5 72 2 118 47 1.72 ND 4 1 2 2.12 .958 13 533 .15 2 3.81 .01 .68 2 92 PYL8+50N 0+255 19 262 10 119 .8 15 12 1358 8.97 24 5 2 39 2 6 139 . 48 .254 7 35 1.60 244 .17 21 3.74 .04 .38 101 1 1 6 PYL8+50W 0+50S 18 164 10 74 .1 12 5 641 7.48 7 5 2 2 109 .16 21 1.31 198 2 2.98 .39 2 56 ND 1 30 .107 .18 .04 1 PYL8+50W 0+755 27 209 8 71 .3 12 6 662 7.80 7 5 ND ſ 30 1 2 2 105 .21 .131 5 22 1.25 126 .16 2 2.78 .03 .28 3 63 PYL8+50W 1+00S 13 159 12 **91** 22 79 .3 13 8 787 7.92 16 5 40 3 1 2 3 .13 .108 25 1.09 158 .04 .35 17 .18 2 4.43 1 116 PYL8+50# 1+255 21 218 9 65 .2 15 7 683 7.52 33 3 95 .25 25 1.05 .02 8 5 ¥0 1 1 2 .142 6 189 .13 7 2.48 .29 1 104 PYL8+50M 1+50S 34 300 12 70 .4 16 10 1133 8.97 11 5 34 2 2 117 .29 .131 4 28 1.32 200 .16 2 2.41 .03 .41 3 131 1 1 PYL8+50W 1+755 24 489 76 .3 24 1355 7.62 5 2 105 .54 89 1.65 7 57 9 ND 2 38 1 3 .156 9 179 .37 2 2.73 .02 .56 3 75 PYL8+00M 0+00 17 306 23 89 2 5 96 3.5 13 8 1062 12.36 15 5 ND 2 21 .22 .114 5 27 1.77 215 .16 2 2.98 .02 .31 3 420 1 PYL8+00W 0+505 15 161 13 80 15 5 611 10.12 9 5 ND 2 39 2 2 102 .25 .131 28 1.55 254 .04 .39 77 .6 1 6 .19 14 2.77 1 PYL8+00# 0+755 19 125 16 69 760 7.36 2 .18 .82 **?8** .6 11 5 10 5 XĐ 30 2 102 .112 24 142 4 2.30 .03 .20 2 1 1 6 .15 .. PYL8+00# 1+005 16 178 11 72 .7 11 4 445 9.99 2 27 2 94 .18 .097 7 23 1.32 156 .18 3 3.10 .03 .25 250 -5 ND 1 2 1 PYL8+00# 1+255 29 162 28 3 99 .21 24 52 12 68 .4 10 5 616 7.92 5 5 ND 1 1 2 .118 6 .61 118 .14 2 2.66 .02 .11 1 PYL8+00# 1+505 31 211 7 60 .8 15 10 1274 7.86 5 ЖÛ 1 41 1 2 2 95 .34 .151 6 30 .76 238 .11 2 1.83 .02 .13 2 83 6 PYL8+00# 1+755 71 316 1.1 .38 3 179 12 60 13 12 1273 7.71 10 5 XD 39 1 2 3 105 .165 5 27 .46 160 .08 2 1.34 .01 .17 1 PYL8+00# 2+00S 71 410 76 11 1372 9.22 27 73 13 3.4 16 9 5 NO t 2 9 98 .26 .134 5 32 .55 144 .14 5 2.00 .02 .09 3 PYL8+00W 2+255 .02 . ?8 . 9 156 46 160 8 52 .7 3 2 549 4.98 5 ۲D 2 26 5 3 72 .47 .103 5 64 1.74 141 .56 2 2.39 8 1 STD C/AU-S 12 51 20 62 43 - 133 6.9 73 28 1029 4.14 43 17 g 40 52 20 17 22 61 .51 .094 40 68 .94 180 .09 35 1.79 .06 .13

.

.....

195

3

.

۲

6

(

•

(

C

€

C

€

¢

€

(

C

852 E. HASTINGS ST. VANCOUVER B.C. VAA 1R6 PHONE 253-3158 DA

ur sta

DATA LINE 251-1011

С

€

С

C

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HM03-H20 AT 95 DEG.C FOR OWE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-SOIL P2 TO P3-ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

Leide whe

and the

DATE	RECE	IVED	1	WIS 21	1987	D	ATE	REF	PORT	MAI	LED	. 4	lug	39	37	Å	6SA	YER.	D.	de	fe1.	. DEA	NT	OYE,	CE	RTIF	IED	B.C	. A	SSAY	ER	
						W	IESTE	ERN	CAN	ADIA	N PF	OJE	ct-	GOSS	AN 1	\$910	2	Fil	ا ت =	. 87	351	23	Pa	qe 1	•							
SAMPLE	•	MO PPN	CU PPN	PB PPN	ZN PPM	A6 PPH	NI PPM	CO PPM	MN PPM	FE	AS PPH	U PPM	AU PPN	TH PPM	SR PPN	CD PPN	SB PPM	BI PPM	V PPH	CA Z	P Z	LA PPM	CR PPH	MG Z	BA PPM	11 2	B PPN	AL Z	NA Z	K Z	N PPN	AU S PPB
PY-L9+50W	4+75N	70	169	24	72	.9	10	4	352	8.83	24	5	ND .	4	59	1	2	2	111	.23	.207	12	61	2.23	114	.41	9	2.32	.05	1.19	15	230
PA-1 6120M	4+30N	63	126	- 21	- 34	1.0	6	6	273	9.50	31	5	ND	4	47.	1	2	2	91	.15	.129	9	33	2.03	165	.40	11	2.00	.06	.81	11	86
PY-19+50	3+50N	48	243	19	45	1.2	- 11 	4	296	9.00	7	5	ND	. 2	77	1	2	2	130	.12	.123	7	43	1.40	101	.3/		1.95	.VQ AA	•70	2	190
PY-L9+50W	3+25N	78	203	17	82	7	11	7	561	9.46	22	5	ND	2	42	1	2	2	.97	.19	.156	9	72	2.20	312	.59	14	3.06	.05	.98	1	39
PY-L9+50W	3+00N	126	174	20	67	.9	10	6	406	9.99	- 11	5	XD	3	53	1	2	2	99	.22	.162	10	66	1.78	271	.54	5	2.50	.05	.73	5	52
PY-L9+50W	2+75N	106	172	22	76	.9	15	7	425	7.99	11	5	ND	2	78	1	2	2	97	.32	.153	10	39	2.02	268	.41	12	2.89	.11	.83	- 9	49
PY-L9+50W	2+25N	130	105	15	65	.7	16	6	431	7.43	7	5	ND	2	74	1	2	2	93	.33	.139	10	37	1.87	221	.48	3	2.71	.08	.74	2	580
PY-L9+50W	0+50N	91	131	13	77	.4	. 11	. 6	608	8.44	12	-5	ND	1	39	1	2	2	141	.24	.077	3	28	2.37	312	. 39	8	3.71	.06	.97	1	46
PY-L9+00W	3+00N	108	198	22	59	.9	12	7	459	9.60	24	5	ND	2	40	1	6	2	96	.41	.188	8	66	1.35	167	.48	2	2.45	.03	.51	4	75
PY-L9+00W	2+75N	100	160	15	46	.1	11	6	334	9.49	7	5	ND	3	25	ĩ	2	2	96	.16	.160	5	60	1.24	123	.49	2	1.64	.03	.45	2	39
PY-L9+00W	2+50N	101	177	19	58	.5	19	- 6	362	7.23	11	5	ND	2	54	1	2	2	79	.24	.155	7	52	1.62	243	.40	8	2.23	.07	.64	° 4	51
PY-1.9+00W	2+25N	95	121	12	82	.3	28	5	516	6.61	12	5	ND	2	66	1	2	2	74	.85	.285	13	- 52	3.55	264	.33	2	3.44	.08	1.37	3	29
PY-L9+00#	2+08N	115	127	11	105	.6	19	4	443	7.8t	12	5	ND	3	57	- 1	2	2	85	.47	.249	12	41	2.57	305	.38	6	3.06	.05	.95	2	93
PY-19+00W	0+25N	46	146	11	86	.5	32	6	640	6.39	7	5	KÐ	2	70	1	2	2	146	2.43	.834	16	81	2.26	420	.14	4	3.76	.06	.92	1	21
PY-L8+00W	2+35N	81	606	. 32	175	2.3	40	15	760	12.26	31	5	ND	2	38	1	2	7	57	.54	.316	10	41.	1.44	155	.27	2	1.75	.06	.29	17	305
STD C/AU-S		19	59	43	131	6.7	67	26	1017	3.71	32	19	7	37	46	16	17	18	51	.43	.078	32	55	.82	175	.08	32	1.85	.06	.12	14	52

						WES	STER	N C	ANAD	IAN	MIN	ING	PRO	JEC.	-G0	ISSAN	N #9	7102	F	ILE	# 87	-28	44				•				Pag	e 4
SANPLE	NO PPH	CU PPM	PB PPM	ZN PPN	AG PPN	NI - PPM	CO PPM	HN PPH	FE Z.	AS PPN	U PPM	AU PPM	TH PPM	SR PPM	CD PPH	SB PPM	BI PPM	V PPN	CA	P Z	LA PPM	° CR PPN	NG 7	BA PPM	TI Z	B PPH	AL Z	NA Z	K Z	N PPH	AUX PPB	•
PYL11+50W 0+505	16	94	11	69	1.4	10	. 3	433	10.54	22	5	KD		15	1	3	3	98	.05	-081	17	4 3	1.01	41	10		A 10	05	17		740	
PYL11+50# 0+755	21	114	13	57	.4	6	2	336	11.76	20	5	ND.	2	19	ĩ	2		107	75	115		10	1 97	77		4	4.17	-03	•44	1	240	
PYL11+50# 1+005	10	64	13	45	.4	11	1	171	10 52	14	ĕ	MA				÷,	4	103	- 0UJ	•113	3	97	1.23	/5	-17	1	2.95	.03	•24	4	175	
PYL11+50% 1+755	10	97	9	41			-	RAL	0.71	14	-	88	. 2	00	-	3	4	123	.03	.115	•	8/	2.92	128	-21	2	2.66	.07	.97	- 3	185	
PYL11+50W 1+505	22	111	13	61	.7	. 9	2	496	12.15	22	5	ND ND	3	43 133	1	2 5	2 3	156 174	.09 .08	.124 .148	4	77 68	2.43 2.19	145 132	.28	2	3.37 3.75	.05 .12	.86	2	94 995	
PYL11+50W 1+755	21	71	15	87	.7	7	3	542	9.16	20	5	ND	2	26	1	,	7	174	17	179	12	74	1 47	120	47		7 90	A.E.				
PYL11+50W 2+005	16	120	17	71	.6	10	5	575	8.09	12	ŝ	ND	Ē	70	ī	-	-	177	^a	110	12	71	1.10	140	•11	4	3:21	•V3	•31	1	- 131	1
PYL11+50W 2+255	16	111	18	83		13	· .	886	8.97	21	. 5	ND.	Š	17	1	2		110	• VT	100	14	31	1.70	327	.40	- 2	3.25	.03	/0	- 3	7Z	•
PYL11+50W 2+505	24	66	7	41	T	5	1	710	5 40	1	5	110		47	:	-		110		.100	10	91	1.20	143	•41	2	3.76	.05	-36	2.	190	
PYL11+50W 2+755	7	124	12	61	.7	7	1	435	8.00	11	5	ND	2	27 29	1	2	4	224	.10	.051	2	18 57	2.90 3.27	319 201	.40 .47	2	3.09 3.73	.06 .07	1.07	1 1	42 185	
PYL11+50W 3+005	4	110	11	56	.4	6	2	369	8.61	13	5	ND -	-1	32	1	2	3	209	-12	.095	3	36	3.17	153	. 74	. ,	7 15	67	1 00		786	, t
PYL10+50W 2+00N	59	288	6	90	.8	26	2	412	8.31	15	6	ND	2	40	1	3	3	191	.57	793	10	75	2.05	500	25		4 77		1. VQ		370	
PYL10+50W 1+75N	69	265	6	82	.4	23	4	436	6.57	10	5	¥13	1	τά	÷	ī		174	25	147	7	10	4 75	204		4	4.33		•72	1	1/2	
PYL10+50W 1+50N	119	122	ÍŌ	67		21	Ť	175	7 14	10		80	- 1. † -	71	:	-		120	• 4 4	• 1 7/		97	2.33	209	•21		4.76	.04	.21	2	86	
PYL10+50# 1+25N	138	332	2	102	.5	11	3	662	10.36	16	5	ND	1	32	1	4	2	187	.14	.078	2	- <u>77</u> 29	3.38	15/ 274	.24 .46	2 5	3.29 5.25	.04	.49 1.52	2	54 76	
PYL10+50W 1+00N	29	141	12	60	1.5	12	2	746	11.21	6	- 5	ND	2	15	i	6	ź	120	206	.124	3	62	1.79	89	.33	3	2.55	-04	. 19	5	255	
PYL10+50W 0+75N	28	172	15	- 64	2.7	- 9	2	552	12.45	-15	- 5	ND	4	11	1	2	3	113	-03	.112	Ā	45	1.58	12	30	,	2 11	17	54	7	205	
PYL10+50# 0+50N	- 44	223	12	. 79	1.4	12	3	520	8.58	16	5	ND	2	19	1	4	2	104	.07	.097	Å	17	1 44	47	22	,	1 01	07	10	,	04	·
PYL10+50W 0+25N	19	102	15	62	1.1	6	2	331	8.17	14	5	ND	1	17	i		-	107	10	007		22	07	40	10	4	7.71	.03		- 4	67 .	
PYL10+50W 0+00	102	90	14	76	1.1	8	2	371	7.48	- 14	5	KD	1	14	1	2	2	103	.09	.075	, 5	29	1.23	71	.25	2	4.40	.03	.19	1	175	
PYL10+50W 0+255	21	74	15	91	.2	5	6	824	6.54	16	5	ND	2	15	1	2	2	66	.11	.072	9	19	.81	61	.17	2	4.23	.03	.19	1.	37	
PYL10+50# 0+505	55	95	15	89	2.1	9	2	466	8.28	21	5	ND	1	14	1	2	2	116	. 10	.088	Å	29	1.79	88	27	-	7 71	ΔT	70	;	105	
PYL10+50W 0+755	60	117	16	74	2.0	11	3	386	7.44	19	5	ND	1	13	1	2	2	132	. 69	070	7	55	1 79	57	22	-	7 71			1	173	
PYL10+50W 1+005	15	59	16	61	.5	5	3	310	10.01	77	5	ND.	· •	14	•	-	,	110	07	107	e e	70	1.50	47		4	J./0 . 7	.03	•11	1	123	
PYL10+50W 1+255	26	150	6	70	.6	13	2	479	5.51	10	5	ND	1	35	1	2	2	142	.19	.120	2	24	2.42	691	.29	21	3.28 3.49	.02	.85	1	190 123	
PYL10+50# 1+505	15	86	14	51	.9	8	6	525	12.80	32	5	ND	- 3	45	.1	4	4	118	.30	.180	6	32	1.31	103	.28	2	2.55	.10	.43	3	325	
PYL10+50W 1+755	- 14	40	17	62	.6	10	4	398	13.74	39	5 -	XD	3	76	1	2	5	131	.20	. 156	3	66	1.54	176	.75	2	1.83	.13	.83	1	390	
PYL10+50# 2+005	20	86	13	57	.8	10	. 4	426	11.93	70		NB	3	52	1	2		129	41	117	5	22	1 47	194	77	-	1.00	110	.00	-	100	
PYL10+50W 2+255	21	78	13	56	.5	9		374	7 44	14	5	3475	Ť	77	;	-	ž	112	70	1001		48	1.03	110	• 4 4	4	1.70		.00	4	100	
PYL10+50W 2+50S	1.	29	10	69	.3	5	1	466	6.63	12	5	KD	2	41	1	2	2	214	.12	.056	2	22	3.74	393 393	.03	2	3.08	.03	.15 1.34	1	55	
PYL10+508 2+755	8	62	24	53	.4	4	2	257	14.70	25	5	ND	5	59	. 1	2	2	135	.05	.197	4	32	1.53	218	.22	2	1.50	.07	.79	2	225	
PYL10+50W 3+005	4	50	12	56	.3	15	2	345	9.35	23	6	ND	2	32	- 1	2	2	168	.71	190	, T	84	2.35	87	.27	2	7 70	AA -	48	2	114	
PYL9+50# 3+25N	85	282	17	83	1.0	11	6	701	11.17	20	-5	ND	ī	77	÷	5	. 7	94	. 15	104	14	01	2 20	277	144		7 71	~~C	1 A9	÷.	175	
PYL9+50N 2+00N	102	127	13	71	.9	15	ī	370	9 11	10	R -	มก -	7	07	•	5	4	100	-10	150	14	71	4047 9 (7	111 177	. GO	4	6./1 		1.92	3 +	570	
PYL9+50W 1+75N	194	70	11	62	1.1	27	2	390	7.71	14	5	ND	2	66	1	2	2 5	108	.33	.159	10	51 61	2.04	237 277	. 43 .74	2 2	2.71 2.78	.05	.94	2	82	•
PYL9+50W 1+50N	120	73	9	69	.2	10	2	404	7.01	16	5	ND	2	26	1	2	- 3	144	.12	.072	3	30	2.05	207	. 40	2 3	3.53	.06	.π	2	82	
STD C/AU-S	19	61	43	133	7.1	72	29	1023	4.17	40	18	8	40	52	20	15	22	61	.52	.095	40	58	.94	177	.09	36	. 80	.06	.15	13	50	

C

(

€

C

C

C

C

C

C

(
WESTERN CANADIAN MINING PROJECT-GOSSAN #9102 FILE #187-2844

12.38

																									-						
SAMPLE	NO PPM	CU PPH	PB PPM	- ZN PPH	AG PPM	NI PPM	CO PPM	HN PPH	FE Z.	AS PPM	U PPM	AU PPH	TH PPH	SR PPM	CD PPH	SB PPM	BI PPM	V PPM	CA I	P I	LA PPH	` CR PPN	86 I	ba PPn	TI I	9 PPH	AL Z	NA Z	K I	¥ PPH	AUS
PYL15+50# 0+255	52	101	17	70	. 9	. 7	. 7		8 9T	7	5	ND	,	77	,	,	7	197	45	091	10	20	2 40	177	61	-	7 44				-
PVI 154504 04505	21	770	15	104		40		747	7 77	Ê	Ē	100	-	97		÷	<u></u>	107	.va		19	47	2.07	127		4	3.04	.04	. 74	2	320 :
PVI 15150W 01355	71	210	10	107		77		243	7.73	-		102	4	41		4	4	120	-10	•114	<u> </u>	70	2.14	220	.31	Z	2.92	.05	.52	2.	- 99
PTL13+30# 0+/33	20	240	17	103		30	10	110	0.29	3.		100	4	- 00	1	2	2	143	.12	.115		21	Z.06	282	•29	20	2.??	•09	.74	1	114
FILIDION ITUUS	28	910	51	482	1.1	37	23	1147	10.32	1	2	ND 110	. 3	103	1	3	Z	130	.0/	.147		32	1.79	155	.21	?	2.52	.09	.61	1	133
PTL12+3V# 1+225	20	210	112	788	.2	- 28	14	10/5	6.52	9	3	ND	1	23	1	2	2	101	-09	.088	1	36	1.12	319	.14	2	2.84	.04	.20	1	- 66
PYL15+50W 1+505	32	584	93	790	1.4	107	35	1797	7.77	19	6	ND	2	37	2	2	2	104	.21	.132	11	60	1.83	620	.16	2	4.10	.05		1	168
PYL15+50W 1+755	16	283	46	501	.4	54	27	1687	6.44	9	5	XD.	1	26	1	2	2	90	.15	.107	8	40	1.59	297	.12	- 3	3.43	.03	10	1	19
PYL15+50W 2+005	14	392	35	355	2.4	139	39	866	5.59	11	ŝ	ND	ī	22	Ĩ	2	2	74	.14	.106	6	110	1.60	395	. 16	2	3. 17	.03	. 23	;	57
PYL14+50W 0+00	69	360	12	79	8	29	- 3	. 444	5.85	2	5	ND	1	25	1	2	2	136	.10	.077	5	78	2.05	163	.78	5	4 08	07	57	2	97
PYL14+50W 0+255	68	214	19	89	.7	21	. I	430	6.73	5	5	ND	2	24		2		104	. 11	078	17	57	1 27	20	71	•	7 17	 A4	• <u>•</u> ••	1	76
							•			. •	•			•••	•	-	-		•••			41	1124		•••	•	4.47	***	***		14
PYL14+50W 0+505	149	351	10	63	.5	27	3	519	4.87	- 4	5	· ND	2	66	1	2	2	140	.15	.128	5	.73	1.74	125	.33	2	4.52	.05	.73	3	101
PYL14+50W 0+755	. 97	252	18	72	.8	27	. 3	577	7.34	2	5	KD	2	32	1	2	2	148	.11	.086	5	93	2.03	151	.38	2	4.12	.04	.79	2	107
PYL14+50W 1+00S	112	396	- 15	76	.6	26	4	598	6.84	4	5	KØ	2	53	1	2	2	148	.15	.110	6	79	2.04	177	.37	2	4.02	.04	.87	3	116
PYL13+50W 0+505	19	5?	27	67	.2	. 6	2	308	8,77	10	5	KO	4	6	1	2	2	64	.05	.067	21	34	.26	22	.20	2	3.15	.03	.08	2	20
PYL13+50W 0+755	144	94	18	66	. ?	20	2	48?	8.65	32	5	KD	3	12	1	2	5	182	.07	.080	7	79	2.31	232	.45	2	3.89	.05	29	1	100
																														•	
PYL13+50W 1+00S	22	69	25	79	.3	7	6	745	7.92	- 5	5	ND -	2	7	1	4	3	82	.05	.065	18	48	.34	22	.25	2	3.01	.03	.07	5	23
PYL13+50W 1+255	32	128	24.	.2	.3	19	5	470	5.11	10	5	ND	4	17 -	1	3	2	82	.11	. 083	15	45	1.08	108	.23	Ģ	3.12	.06	.23	2	31
PYL13+50W 1+505	18	194	25	125	.4	25	. 10	764	5.93	12	5	ND	- 4	16	1	2	2	74	.22	.106	19	45	.87	115	.18	7	3.74	.04	.25	1	- 26
PYL13+50W 1+755	27	94	- 28	78	.4	12	3	241	5.91	. 12	5	XD	2	11	1	2	2	94	.08	.055	- 14	48	.57	42	.27	2	2.97	.04	.09	2	34 -
PYL13+50W 2+00S	55	163	26	97	.5	17	3	323	6.81	10	5	ND	3	20	1	4	2	192	.09	.092	12	52	1.12	115	.22	2	3.63	.04	.27	2	?1
PYL13+50W 2+255	35	274	18	119	.7	24	9	650	5.74	5	5	ND	3	41	1	2	2	97	.23	.171	10	43	1.33	191	.23	2	3-17	.06	79	1	50
PYL13+50W 2+505	31	285	12	77	.5	11	3	488	6.35	8	5	XD	- Ā	55	i	2	2	113	.13	.147	7	30	7.10	138	. 77	2	3.31	.05	.84	- 1	177
PYL12+50W 0+00	13	374	19	62	2.1	6	2	298	8.08	. 7	5	XD	2	15	1	2	2	73	.05	.073	, ,	79	1.00	56	.15	15	3.38	.03	. 29	÷	131
PYL12+50W 0+255	77	756	17	83	1.7	17	. 7	474	9.70	3	5	20	,	-16	1	. 7	,	128	07	084	8	57	1 70	71	25	2	7 77	04	40	2	175
PYL12+50W 0+505	82	217	18	47	1 0	17	,	177	8 74	10	۲. ۲	100	ī	71	÷	2	-	117	06	000	ě	45	1 10	97	10	-	3 QA	4V7 AT	. 10	1	110
	~~					19	. •	550	0101	14	5	~~	•	<u></u>	•		4	115		••:1	4	J	1.10	04	•10	-	2470	.03	.10	-	140
PYL12+50W 0+755	?1	159	14	57	.5	11	1	439	6.82	6	5	ND	2	44	1	2	2	160	.07	.121	7	63	2.29	202	.35	2	3.28	.05	.99	3	74
PYL12+50W 1+755	114	22?	21	- 61	.8	11	2	535	8.28	. 4	5	ND	2	27	1	2	3	279	.12	.148	- 4	53	2.75	209	.43	2	3.16	.05	1.01	6	325
PYL12+50W 2+005	25	184	15	43	.2	6	1	501	7.48	5	5	ND.	1	20	1	. 2	2	200	.04	.084	3	38	2.69	78	.38	2	2.95	.04	1.04	5	315
PYL12+50W 2+255	49.	167	13	61	.6	10	3	430	6.25	4	5	KD	2	58	1	2	2	143	.24	.092	5	40	2.74	151	.33	2	3.20	.12	. ?6	3	94
PYL12+50W 2+505	49	188	- 16	63	.8	7	1	288	5.31	5	5	ND .	1	32	1	2	3	135	.05	.069	5	32	2.60	116	.23	2	3.18	.04	.78	3	101
PYL12+50W 2+755	57	215	19	62	2	10	,	410	7.76		5	VD	2		1	,	2	147	40	107	5	40	2.29	171	.77	2	3.02	. 05	.83	2	260
PYL11+50H 1+50H	18	147	17	50			-	100	9 51	7	۲ ۲	80	2	17	•	7		71	.00	177	7	77	04	50	20	11	2 28	04	10	7	250
PYL 11+50W 1+25W		580	10	47 47	1 0	. 1		177	10 71	2	ں ج	709 1076	4	- 11	1	,	2	71 91		177	7	10	+94 1 25	95	- 4 V 7 I		1 20	.04	.76	3	315
PVI 11+50W 1+00M	0 0	707	11	10	1.0	а. С	· 4	212	10.31	4		עא	ד 1	20		2	4 7	10 .		191	/ E	10	1.1.1 00	7,3 1,5	+47 1L	2	3.4V 7 AL	107	.70	· · ·	500
97111450H 11976H	7	203 770	11	07 77	0		2	125	0./J 7 60	1	3 e	лџ ил	1	10	i	· 4	· 4	97	.11	· 141	ũ 1	41		03 25	- 10	4	τ.10 Τ.10	.v	20 20	- 1 . τ	260
	1	219		. 11	.7	. 13	. 4	491	1.37	'	3	RIJ	2	18	1	3	3	/1	•14	•144	0	20	. 79	63	•10	4	3.00	.03	.20	J .	100
PYL11+50W 0+50N	12	132	12	67	.7	6	3	285	5.11	7	5	ND	1	14	1	2	2	76	.08	.106	5	32	.53	50	.12	2	2.48	.02	.14	1	205
PYL11+50W 0+255	14	•2	18	54	.6	5	1	196	8.67	?	5	XD	1	14	1	2	2	130	.04	.075	8	56	. ?8	50	.16	2	3.17	.03	.15	2	149
STD C/AU-S	19	62	43	132	6.9	72	29	1024	4.13	43	19	8	39	52	19	15	22	61	.51	.094	40	67	.93	180	.09	35	1.78	.06	.13	11	49

Page 3

C

. C

€

C

C

C

€

C

(

(

						WES	STER	N C	ANAD	IAN	MIN	ING	PRO	JEC.	r-60	SSAN	4 #9	102	FI	LE	# 87	-340)5								Page	2
SAMPLE	NO PPH	CU PPM	PB PPM	ZN PPM	AG PPH	NI PPH	CO PPN	NN PPM	FE Z	AS PPM	U PPN	AU PPH	TH PPN	SR PPH	CD PPM	SB PPM	BI PPM	V PPN	CAZ	P 7	LA PPH	CR PPN	HG T	BA PPM	TI Z	B PPN	AL Z	NA Z	K Z	N PPH	AUT PPB	•
PNL2+00E 0+505	31	320	30	109	2.2	19	9	459	7.87	14	5	ND	5	113	t	2	6	83	.42	.177	12	38	1.64	341	.45	2	3.73	.06	.71	23	63	
PNL2+00E 0+755	- 38	527	21	152	2.0	20	19	840	6.21	11	5	ND	2	43	1	2 .	2	192	.46	.139	9	34	1.79	404	.40	2	3.82	.03	,59	5	31	
PNL3+00E 1+25N	8	402	23	147	.1	5	18	1125	8.06	18	5	ND	4	40	1	2	2	125	.61	.180	8	- 3	2.32	471	.40	24	4.03	.02	.98	14	6	
PNL3+00E 1+00N	15	310	35	188	.7	· 9	21	1242	7.41	9	15	ND	. 6	29	1	2	2	126	.22	.077	24	19	1.53	142	.34	. 7	4.80	.04	.39	11	28	
PNL3+00E 0+75N	24	141	32	98	1.1	6	10	1159	6.74	15	6	ND	. 2	16	1	2	. 2	86	.10	.100	16	19	.67	55	-17	9	3.54	.03	.11	5	24	
PNL3+00E 0+50N	26	141	37	111	2.2	8	16	1551	8.20	11	11.	ND	4	24	1	2	2	84	.14	.104	23	24	.48	112	.25	2	3.43	.03	.13	3	29	
PNL3+00E 0+25N	29	173	33	118	1.2	10	10	820	6.93	13	5	ND	1	30	1	2	2	116	.17	.104	10	27	.83	122	.28	. 2	2.92	.02	.11	10	10	
PNL3+00E 0+00	26	296	37	169	2.4	14	13	608	6.56	12	5	ND	3	39	1	2	2	107	.25	.111	10	34	1.12	197	.27	2	3.57	.03	.23	7	30	
PNL3+00E 0+255	22	142	30	87	8	8	14	1120	6.26	11	5	ND	2	- 44	1	2	2	117	.27	.095	8	19	1.02	190	.29	2	2.74	.04	.28 .	4	12	
PNL3+00E 0+505	20	366	12	155	1.1	11	15	872	7.16	2	5	ND	3	63	1	.5	2	119	.32	.110	13	14	1.84	390	.35	2	5.06	.02	.65	. 7	62	
PNL3+00E 0+755	94	1008	25	52	2.2	6	19	818	16.34	24	5	ND	2	28	1	2	2	48	.52	.228	6	11	.23	45	.08	3	1.35	.01	.09	125	23	
PNL4+00E 1+75N	- 21	603	33	357	1.3	15	34	1766	8.68	3	5	ND	4	24	1	2	2	185	.30	.117	11	16	2.30	126	.30	2	4.88	.04	.36	26	18	
PNL4+00E 1+50N	20	270	32	128	.9	10	14	867	6.57	19	6	ND	3	29	1	2	2	110	.26	.079	12	17	1.38	122	.32	6	3.37	.05	.2?	11	2	
PNL4+00E 1+25N	20	170	29	104	.9	6	11	785	6.30	7	5	ND	2	20	1	2	2	129	.14	.093	8	17	1.14	70	.19	2	3.64	.02	.10	11	14	
PNL4+00E 1+00N	- 14	144	39	81	1.1	7	8	365	6.62	6	5	ND	1	20	1	2	2	118	.14	.127	10	17	.81	83	.21	2	3.24	.02	.19	8	8	
PNL4+00E 0+75N	36	109	50	73	2.3	- 5	8	523	8.62	15	5	ND	3	26	ı	2	2	129	.17	.089	20	18	.32	52	.40	6	1.81	.02	.07	8	19	
PNL4+00E 0+50N	17	301	31	166	.9	8	13	481	7.10	- 10	.9	XD	3	24	1	2	2	133	.16	.082	13	16	1.31	164	.29	2	4.20	.03	.27	12	- 17	
PNL4+00E 0+25N	23	587	38	113	1.2	10	32	1349	7.80	2	5	ND	2	28	1	2	3	162	.26	.088	6	12	2.22	358	.41	5	4.10	.03	.86	30	18	
PNL4+00E 0+00BL	23	399	17	103	1.0	- 14	16	738	6.55	9	5	ND	2	46	1	2	2	121	.30	.079	5	22	1.59	179	.29	17	3.47	.03	.48	12	22	
PNL4+00E 0+255	15	313	18	118	.4	- 11	15	817	5.34	5	5	NÐ	1	36	1	2	2	129	.34	.124	6	17	1.76	301	.33	2	2.91	-04	.62	17	3	
PNL4+00E 0+50S	26	192	17	71	.1	13	9	478	5.03	7	5	ND	1	31	1	2	2	77	.23	.212	5	24	.50	84	.18	2	1.41	.02	.16	35	13	
PNL4+00E 0+755	28	287	24	85	.9	11	8	330	5.45	7	5	- ND	1	32	1	2	2	97	.18	.125	6	20	.83	148	.20	2	3.16	.02	.25	14	13	
PYL5+00W 1+505	15	79	20	90	.4	10	7	505	5.55	12	5	ND	1	31	1	2	2	76	.22	.138	11	23	.56	143	.08	2	2.04	.02	.18	1	61	
PYL5+00# 1+755	39	59	26	62	.9	· · 9	- 5	315	7.36	7	- 5	ND	2	37	1	2	2	98	.20	.183	12	29	. 69	170	.10	2	2.68	.02	.14	1	13	
PYL5+00W 2+005	26	54	25	78	.4	9	. 6	754	5.63	8	5	ND	2	37	1	2	2	102	.34	.316	13	28	.79	209	.14	8	2.20	.04	.22	1.	32	
PYL5+00W 2+255	56	95	16	86	.7	14	7	628	8.28	14	5	NØ	2	72	1	2	2	134	1.13	.491	ģ	40	1.55	314	.10	2	3.51	.03	.30	2	28	
PYL5+00W 2+505	45	92	9	84	.8	17	7	653	8.21	11	5	ND	2	63	1	2	2	129	1.07	.516	10	41	1.28	309	.09	2	3.49	.02	.31	1	46	
PYL5+00# 2+755	34	90	12	84	.5	7	8	680	6.88	7	5	ND	1	40	1	2	2	.95	.53	.254	10	27	.93	166	. 09	2	2.95	.03	.18	- 3	36	
PYL5+00% 3+005	51	124	16	104	.6	16	. 7	553	7.66	12	5	ND	2	61	1	2	2	119	1.28	.554	9	35	1.54	350	.09	- 11	3.49	.03	.30	2	44	
PYL4+00W 4+00N	33	147	23	60	- 1.3	9	5	170	5.39	17	. 5	ND	2	50	i	2	12	78	.10	.171	6	24	.69	532	. 09	2	2.15	.02	.23	4	32	
PYL4+00W 3+75N	.74	236	25	58	2.4	8	6	318	9.55	32	5	ND	4	159	1	3	3	69	. 38	.169	12	38	.94	284	.44	6	2.68	.06	.59	16	265	
PYL4+00# 3+50N	37	429	36	108	2.1	21	7	412	7.04	16	5	ND	2	56	1	3	8	88	.30	.102	8	2?	1.02	383	.22	- 6	4.70	.02	.37	_ 7	66 '	
PYL4+00W 3+25N	83	922	61	168	1.9	45	15	488	10.70	12	S	ND	4	62	1	3	9	117	.21	.156	10	42	1.37	413	.32	4	5.89	.04	.63	21	84	
PYL4+00W 3+00N	12	655	9	109	.1	20	19	797	4.06	2	5	ND	2	74	1	4	2	3 8	. 41	.087	7	5	1.14	235	.18	7	5.26	.01	.34	11	11	
PYL4+00W 2+75N	15	276	21	çq	.2	21	18	905	4.19	6	5	ND	3	31	1	2	2	60	.30	.103	ė	22	.83	238	.19	2	3.39	.04	.25	3	42	
PYL4+00% 2+50N	18	97	27	81	.7	10	7	97R	6.10	. 9	5	ND	2	31	1	2	2	51	.21	.118	15	21	.38	128	.14	3	2.91	.03	.10	- 3	25	
STD C/AU-S	19	63	44	131	7.5	70	27	1020	3.82	41	18	7	37	50	17	15	18	56	.47	.085	37	57	.85	178	.07	36	1.91	.06	.15	12	50	

C

¢

C

ţ

Ç

í,

¢

C

C

C

C

(

C

Ċ

C

C

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158

Seine in the

805 1 makes

Section Section

DATA LINE 251-1011

1

i

1

(

€

€

Ç

(

€

€

(

i.

 ~ 1

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR NG BA TI B W AND LINITED FOR NA AND K. AU DETECTION LINIT BY ICP IS 3 PPH. - BAMPLE TYPE: PI-4 SOIL P5-6 ROCK ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RE	CEIVE	Dı	NUG 1	8 1987	DF	TE	REP	ORT	MAII	ED:	a	ugi	28/8	37	AE	58AY	ER 🏑	là	keji	1	DEAN	4 TC	DYE,	CER	TIF	ED	B.C.	AS	SAYE	ER		
				V	IEST	ERN	CAN	IADI	AN M	ININ	NG P	ROJI	ECT-	GOSS	SAN	#910	02	Fi	le"]	182	<u>=340</u>	52	Pa	ıge	1							
SAMPLE	NO PPN	CU PPN	PB PPN	ZN PPH	AG PPN	NI PPH	CO PPM	HN PPH	FE 1	AS PPM	U PPM	AU PPN	TH PPM	SR PPN	CD PPM	SB PPM	BI PPM	V PPH	CA Z	P Z	LA PPN	CR PPH	NG Z	BA PPM	11 1	B PPM	AL Z	NA I	K Z	N PPM	AU1 PPB	
PNL2+00N 1+00S	52	198	17	85	1.0	13	5	349	8.27	17	5	ND	2	96	t	2	2	100	.22	.137	18	53	1.50	342	.42	7	4.12	.04	.67	7	158	
PNL2+00W 1+255	38	236	12	88	1.4	34	6	295	7.17	15	5	ND	1	104	1	2	2	123	.24	.135	8	138	1.74	360	.33	3	4.47	.04	.75	6	187	
PNL2+00# 1+505	32	140	6	46	.5	9	2	329	5.73	. 9	5	ND	2	36	1	2	2	85	.44	.119	10	47	2.00	283	.71	7	2.50	.05	1.07	5	80	
PHL2+00W 1+755	14	366	Π	166	.3	38	13	1007	7.30	8	5	ND	2	47	1	2	2	151	1.17	.239	7	162	3.29	327	. 61	2	4.31	.03	1.43	1	18	
PNL2+00N 2+005	30	191	30	73	1.3	6	2	287	7.01	36	5	ND	4	.44	1	2	2	96	.08	.103	10	31	1.68	307	.54	2	2.68	.04	.92	1.6	110	
PNL2+00W 2+255	23	135	20	56	1.9	5	2	261	7.50	45	5	ND	2	63	1	2	9	94	.06	.106	9	29	1.70	95	.57	2	2.02	.05	1.12	10	152	
PNL1+00# 0+755	30	270	22	74	1.3	13	· · 7	423	8.83	14	5	КÐ	. 4	69	1	2	2	80	.19	.127	19	50	1.15	352	.44	5	4.02	.05	.58	5	114	
PNL1+00W 1+00S	31	379	9	80	1.0	15	7	329	7.09	9	5	ND	2	60	1	2	2	82	.33	.140	11	52	1.63	273	.36	2.	4.30	.03	.59	. 4	70	
PNL1+00W 1+255	21	203	12	104	.7	15	8	496	6.27	7	5	NÐ	1	68	1	2	2	88	.49	.119	11	64	2.07	379	.50	9	3.85	.06	84	9	76	
PML1+00W 1+505	24	329	12	101	1.8	19	10	517	6.73	8	5	KD	1	61	. 1	2	2	102	.37	.138	12	71	2.09	357	.36	2	4.46	.06	.76	7	155	
PHL1+00W 1+755	29	208	16	73	1.2	. 12	4	495	6.92	17	5	ND	3	50	1	2	2	108	.43	.152	9	61	2.11	351	.70	2	3.03	.04	1.13	16	210	
PHL1+00W 2+105	15	116	2	76	.1	11	3	608	7.62	9	5	ND.	2	32	1	2	2	107	. 39	.142	6	91	2.70	339	. 92	7	3.54	.03	1.78	12	172	
PNL0+00 0+00	97	509	- 8	62	1.8	- 9	5	858	8.00	3	5	MD	- 3	48	1	2	2	107	.93	.277	: 15	70	2.93	357	.86	5	4.72	.04	1.55	14	101	
PWL0+00 0+255	43	377	23	109	.5	13	7	410	8.21	10	5	KD	3	25	1	2	2	96	.37	.118	17	50	2.17	205	.52	9	4.36	04	.52	12	88	
PWL0+00 0+505	44	208	12	45	6	7	4	348	6.80	8	5	KD	1	102	1	2	2	54	.50	.180	8	39	1.22	214	.39	4	3.20	.04	.59	8	97	
PWL0+00 0+755	32	207	5	62	.5	12	5	506	6.65	2	5	NB	2	45	1	2	2	90	.53	.121	9	54	2.41	331	.62	8	4.25	.04	1.09	9	62	
PWL0+00 1+005	32	262	10	75	1.2	14	9	506	7.11	10	5	ND	2	62	1	2	2	95	.56	.143	10	51	2.28	454	.46	8	3.93	.04	.92	6	64	
PNL0+00 1+255	36	343	16	140	1.4	20	19	1024	7.94	7	5	KD	- 1	58	1	2	2	88	.44	. 185	9	45	1.80	276	.21	7.	4.02	.04	.57	. 3	- 78	
PNL0+00 1+505	32	375	15	112	1.1	. 21	11	637	7.30	23	. 5	ND	1	61	1	2	- 4	81	.28	.154	10	49	1.45	281	.18	6	4.09	.02	.50	5	62	
PHL0+00 1+755	18	1246	18	175	1.0	35	21	472	6.06	. 2	5	XD	2	96	1	2	2	109	.29	.129	15	66	2.54	286	.44	4	5.94	.06	.81	1	30	
PNL0+00 2+005	20	526	65	145	2.9	32	23	1084	8.31	14	5	HD.	3	73	1	2	2	93	. 37	.167	11	71	1.79	248	. 66	3	3.76	.04	.91	14	84	
PHL0+00 2+255	16	172	9	71	1.7	14	9	871	8.48	20	5	ND	2	- 44	1	2	6	90	. 38	.128	7	58	1.80	353	. 59	4	2.53	.05	.83	18	280	
PNL1+00E 0+25N	39	245	21	66	.9	12	6	347	7.76	14	5	NØ	4	133	t	2	2	79	. 28	. 189	13	- 39	1.29	249	.47	4	2.89	.04	.72	10	151	
PHL1+00E 0+00BL	. 14	259	. 13	80	.5	B	. 9	645	6.99	6	5	ND	3	32	1	2	2	72	. 38	.125	16	38	1.96	328	. 49	5	4.14	.03	.85	. 7	50	
PNL1+00E 0+255	28	111	23	86	. 6	6	8	1055	7.68	13	5	ND	2	24	1	2	2	82	.15	.100	13	35	.69	122	. 32	2	2.77	.03	.22	. 4	35	
PNL1+00E 0+505	33	142	28	. 44	1.0	6	5	245	7.71	20	5	ND	1	25	1	4	2	91	.13	.072	9	37	.46	75	.41	6	2.31	.02	.11	8	104	
PNL1+00E 0+755	33	362	16	121	6	16	5	378	6.74	2	5	ND	2	66	1	2	2	- 89	.24	.152	. 10	46	2.28	390	.35	6	4.52	.03	.86	7	63	
PNL1+00E 0+955	. 38	741	13	314	4.3	37	14	943	9.41	11	5	ND	4	54	2	2	2	128	.25	.180	14	104	3.44	573	.56	5	7.28	.02	1.03	- 10	70	
PNL1+00E 1+255	16	431	18	168	9	20	10	600	6.58	5	5	ND	1	66	1	2	10	84	.32	.138	9	- 48	1.64	279	. 27	8	4.17	. 02	.64	6	43	
PNL1+00E 1+50S	41	534	24	143	2.4	18	12	622	8.32	23	5	ND	- 5	64	1	2	11	99	.28	.168	11	58	1.98	382	.53	9	4.19	.05	1.05	13	110	
PNL2+00E 0+90N	24	324	48	216	1.2	11	9	568	7.17	10	5	ND	4	19	1	2	2	102	.17	.075	16	28	1.32	138	.13	7	4.57	.03	.29	9	39	
PNL2+00E 0+75N	- 22	261	47	135	.7	11	. 6	305	6.80	14	5	ND	- 2	23	1	2	9	95	.20	.075	9	38	1.05	81	. 29	2	3.71	. 02	.18	12	42	
PNL2+00E 0+50N	27	. 141	35	92	1.3	7	6	528	6.46	. 11	5	ND	3	16	1	2	2	67	.10	.089	17	27	. 49	65	.22	2	3.21	.03	.12	7	. 17	
PNL2+00E 0+25N	32	176	31	140	.7	13	7	384	6.56	11	5	ND	2	24	1	2	. 3	-92	.17	.066	9	41	1.12	112	.29	8	3.27	.02	.22	8	35	
PNL2+00E 0+00	31	214	26	104	1.4	.14	10	514	6.76	10	5	ND	1	28	- 1	2	2	85	.17	.067	10	43	.95	130	. 35	- 5	3.15	.02	.19	11	71	
PNL2+00E_0+255	5	245	. 6	71	.2	12	5	377	5.35	7	5	ND	3	36	1	2	2	72	.47	.120	12	48	1.56	262	.53	2	3.28	.02	.56	7	26	
STD C/AU-5	18	60	40	131	7.5	70	27	1028	3.98	37	16	8	38	49	17	17	20	58	. 42	.085	38	59	.87	175	.07	37	1.96	.06	.15	12	52	

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158

 unit

58 DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR MG BA TI B N AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-4 SOILS P5-ROCK AU\$ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE REC	EIVEI):	JULY 23	5 1987	Ē	DATE	REF	PORT	MAI	LED	: J	uly	30	87	f	ASSA	YER.	D.	Jo.	eje,	. DEA	AN TI	DYE.	CE	RTIF	IED	в.С	. A	SSAY	ER		
						WEST	FERN	I CA	NADI	AN I	PA:OJ	ECT	-609	SAN	#910	2	Fil	e #3	67	265		Pag	je 1									
SAMPLE	NO PPH	CU PPN	PB PPN	ZN PPN	AG Pph	NI PPH	CO PPM	NN PPH	FE X	AS PPM	U PPN	AU PP#	TH	SR PPM	CD PPM	SB PPM	BI PPM	. V PPN	CA Z	P Z	LA PPH	CR PP#	MG Z	BA PPM	TI Z	B PPM	AL Z	NA Z	K I	N PPN	AU ‡ PPB	
SE-1 14005 54000	· a	117	. 77	04	•	4		1141	5 77	27	5	MD	7	10	1	र	2	30	05	071	17		47	261	15	7	1 40	07	10	· · ·	70	
CE-11100C 1175W	1	577	51	51	0.0		,	1171	10 74	21	5	10	-	. 20		2	2	54	.00		13		. 72	101	. 77	10	75	.02	.10	1 4 -	70	
55-11-005 4-7JN	••	JJ7	11	10	-7.0		4	7/	12.70	4		ND	-	20		· 1	2	17 71	.00	1040		7	.00	170	• 22	10	.73	.02	4V2	- 1	10	r
SE-LITUUE ATJUN	10	43	09	00	1.2	1	1	737	3.07	15			2	00	1	2	4	41.	.09	.100	12		•21	1/0	.07	1	.8/	.02	.va	1	02	
SE-L1+00E 4+00R	1	2022	17	92		1		23	34.62	14	3	NU	3	- 12		4	12	13	.05	.068		1	.06	0	.03		1.10	.01	.VI	1		
SE-LI+00E 3+/3N	Υ.	238	11	3/	••	1	2	180	4.30	12	. 1	110	•	21	· · 1	· · · 2	2	20	.11	,.037	17	8	. Vo	10	.15	10	2.09	.03	.03	4.	. 1	
SE-L1+00E 3+50N	² 5	18	50	30	.4	3	2	65	4.90	10	5	ND	5	49	1	2	2	61	.04	.031	13	8	.12	55	.24	5	1.54	.02	.04	1	28	
SE-L1+00E 2+00N	5	20	133	50	.5	3	2	212	2.25	12	5	ND	3	93	1	4	5	23	.12	.073	15	8	.39	265	.10	3	1.04	.05	.06	1	52	
SE-L1+00E 1+75N	11	13	31	60	.9	2	2	368	9.03	19	5	ND.	. 7	16	1	2	3	38	.06	.066	15	9	.09	34	.20	10	1.52	.05	.06	1	7	
SE-L1+00E 1+50N	6	31	110	75	1.0	1	2	383	4.54	34	5	NÐ	6	182	1	. 3	4	22	.14	.709	14	4	.59	360	.06	4	1.42	.Ó2	.11	1	93	
SE-L1+00E 1+25N	1	1933	29	100	1.0	. 1	3	67	35.74	14	5	ND	4	17	3	2	11	29	.01	.066	4	1	.09	34	.09	2	1.23	.01	.03	5 1	9	
SE-1 1+005 1+00N	9	97	74	110	9	2		500	7 94	14	٩			174	1	7	2	71	08	085	. 29		48	795	10	4	1 97	07	19	· •	143	
SE-1 1400E 0450M	· · ·	27	24	70	15	. 2		249	3.00	14	0	ND	Ĭ	171	÷	,	2	27	05	095	27	12	19	129	11	5	4 30	04	05	-1	71	
SE LITOOL OTJON		12			1.5			750	5 70	14	ś	10	7	1/1	. 1	2	<u>د</u>	57.	.05	.003	17	10	12	74	27	0	1 54	07	05		. 15	
SE-L1+00E 0+23N	7	14	50	- 77			2	117	J./0	10		עזת . העו		101		2		10	.00	•0J/	10	10	.12	10	15	5	1 17	.01	. 64	· •	10	
SE-LITURE 01000		- 17	37	- TV - 01	. /	. 1.		170	7 07	17		10	2	201	1	2	2	70	. UJ 70	115	10	7	.VO 77	175	112	1	1.10	.01	07	+ t	. 	
36-614006 84303			_ 41	. 71	• •	1	2	270	3.01	13		, KU	1	223	1	2	- 2	21	.03	•113	10	3	•91	123	.04		.00	.01		. •		
STD C/AU-S	18	57	36	125	6.9	65	26	844	3.54	37	18	8	35	46	17	18	22	59	.44	.081	35	50	.79	170	.07	38	1.79	.05	.13	14	47	
SE-L1+00E 6+75S	. 6	58	21	85	1.0	- 4	. 5	543	5.79	17	5	ND	3	39	1	2	2	45	.10	.068	- 14	10	.40	79	.12	7	2.55	.03	.08	- 1	8	
SE-L1+00E 7+005	. 4	35	22	.71	5	- 3	4	406	5.10	12	5	. ND	2	85	_ 1	3	2	76	.12	.058	7	11	.38	106	.26	7	1.60	.02	.08	1	2	
SE-L1+00E 7+25S	. 10	- 44	23	. 86	.6	2	2	398	7.46	19	- 5	ND	10	21	1	2	2	21	.06	.173	19	9	.17	61	.14	9	2.53	.07	.08	1	30	
SE-L1+00E 7+50S	. 9	46	36	54	1.0	3	3	329	4.22	18	5	- 2	- 7	329	1	3	2	39	.17	.169	12	4	.49	422	.31	5	1.38	.05	.13	1	74	
SE-L1+00E 7+75S	7	22	30	56	.6	3	2	181	5.73	15	5	ND	2	63	1	2	2	-76	.07	. 126	12	10	.20	104	.23	6	1.64	.02	.07	1	10	
SE-L1+00E 8+00S	6	17	30	62	.5	3	3	246	2.81	9	8	ND	3	62	1	2	2	76	.10	.088	13	10	.23	124	.26	4	1.07	.03	.08	· 1	31	
SE-L1+00E 8+25S	. 8	60	26	- 65	1.0	3	3	272	8.36	14	7	NÐ	4	57	1	2	- 2	90	.08	.078	11	11	.24	79	.32	8	1.17	.03	.07	1	- 13	
SE-L1+00E 8+50S	10	46	24	74	.7	3.	3	172	7.12	15	5	ND	3	47	. 1	2	2	82	.09	.088	16	7	.18	79	.30	9	1.30	.03	.06	· 1	21	
SE-L1+00E 8+755	9	123	28	146	1.9	14		337	8.62	- 11	5	ND	6	67	· 1	. 4	2	111	.12	.318	29	22	.56	364	.37	17	1.36	.03	.11-	··· 1	13	
											· · · [.						-															
SE-L1+00E 9+00S	.8	97	91	- 65	.6	- 7	5	199	5.60	12	5-	ND	2	44	1	2	- 3	51	.21	.165	10	9	.30	167	.18	- 7	.73	.05	.09	1	36	
SE-L1+00E 9+255	13	280	85	112	1.0	13	23	1141	12.30	3	5	ND	9	30	1	- 2	2	35	.24	.257	6	7	.69	182	.15	9	1.58	.04	.06	1	104	
SE-L1+00E 9+50S	4	141	34	103	.5	. 9	8	955	7.39	19	5	ND	2	45	1	2	5	57	.07	.099	18	19	.64	173	.18	8	2.45	.02	.05	1	34	
SE-L1+00E 9+755	4	43.	17	122	.3	14	- 18	2847	5.10	13	5	ND	2	42	1	2	2	54	.29	.114	6	19	.97	79	.16	7	1.71	.08	.11	. 1	8	
SE-L1+00E 10+00S	6	38	26	97	.6	10	7	930	4.62	11	- 5	NÐ	1	56	1	2	2	45	.24	.151	11	9	.56	169	.08	7	1.66	.03	.11	2	28	
SE-L2+00E 5+00N	9	12	30	57	. 4	2	. 1	475	6.89	16	5	ND	10	5	- 1	2	4	11	.04	.034	20	11	.05	12	.12	9	3.47	.06	.05	. 4	8	
SE-L2+00E 4+75N	7	26	56	72	.5	5	4	510	3.96	12	5	ND	4	92	1	2	3	36	.18	.090	17	8	. 49	224	.18	6	1.93	.07	.10	- 2	290	
SE-L2+00E 4+50N	5	29	66	71	.8	2	1	347	2,42	15	- 5	ND	3	129	1	2	2	24	.07	.059	11	7	.45	301	.09	3	1.07	.02	.10	1	110	
SE-L2+00E 4+25N	6	13	21	50	.5	2	1	185	5,65	8	8	ND	. 5	10	1	2	3	27	.03	.037	21	13	.07	17	.17	7	3.29	.03	.05	1	18	
SE-L2+00E 4+00N	. 6	11	30	53	.4	2	3	499	5.02	. 9	6	ND	8	8	1	2	4	17	.07	.044	21	5	.10	11	.14	6	3.83	.06	.05	2	5	
CE_1 3400F 747EH	<i>,</i>				n	~		175	1 00	14	r		F					79	17	047	94	. 1 E	00	14	10	٥	₹ ??	۸4	05		1	
SE-12100E 31/38	°,	1/	74	۷۵ ۲ ۱	1.0	. <u>4</u>	1	1/3	7 14	17	<u>ב</u> ד	(1) 10		104	· 1	4	2	-52 20	.03	.043	20 0	10	10	700	10	4	00	.07	.14		90	
JETLITVUE JTJUN	h 1	67	/4	8/	1.0	. /		373	3.14	10		11		177			4	40	*VP		7	0	. 10	307	.14			• V -		•		

SERICITE EAST GRID

ŧ

£

C

C

C

(

							WE	STE	RN C	ANAI	DIAN	PRO	JEC	T-GL	JSSA	N#91	102	FI	LE ŧ	ŧ 87	-265	5									Fage	2	
SAMPLE	NO PPH	CU PPM	PB PPM	ZN PPH	AG PPM	NI PPN	CO PP#	NN PPH	FE	AS PPM	U PPM	AU Pph	TH PPM	SR FPH	CD PPN	SB PPM	BI PPH	V PPM	CA Z	P Z	LA PPN	CR PPN	H6 Z	BA PPM	TI Z	B PPN	AL Z	NA Z	K	N PPN	AU‡ PPB		- C
SE-L2+00E 3+25N	8	15	21	57	.8.	1	t	232	7.52	11	5	ND	13	9	1	2	2	. 19	.03	.040	23	11	.08	18	.16	6	3.92	.06	.06	1	1		(
SE-L2+00E 3+00N	. 6	16	44	40	.1	3	1	168	6.93	7	5	ND	8	63	1	2	2	45	.04	.039	21	13	.09	29	.25	5	2.53	.02	.04	1	16	•	
SE-L2+00E 2+75N	7	32	47	77	.1	4	3	388	4.46	11	5	ND	10	141	1	2	2	31	.15	.065	20	8	.50	265	.19	. 4	2.25	.06	.10	1	.44		- (
SE-L2+00E 0+005	4	15	22	40	1.0	2	1	85	5.95	6	5	ND	4	24	1	2	2	34	.05	.050	17	10	.06	24	.16	4	2.43	.03	.04	1	9		
SE-L2+00E 0+255	7	19	48	59	.4	3	2	226	6.66	15	5	ND	2	179	1	2	2	53	.07	.069	16	12	.22	86	.20	5	1.76	.02	.05	. 2	53		
SE-L2+00E 0+75S	6	82	38	96	.4	4	3	436	6.56	7	5	ND	2	77	1	2	2	48	.11	.104	13	13	. 60	434	.08	4	2.47	.02	.10	1	43		(
SE-L2+00E 1+00S	7	17	20	80	.3	4	4	1035	5.70	10	5	ND	3	34	1	2	2	27	.15	.076	21	8	.19	48	.13	5	2.30	.06	.07	1	1		
SE-L2+00E 1+25S	4	82	23	111	.6	3	7	755	3.60	6	5	ND	- 1	130	1	2	2	47	.11	.074	8	9	.64	67	.20	3	1.42	.04	.07	1	17		
SE-L2+00E 1+505	7	86	31	92	.3	- 4	3	456	5.34	14	5	ND	7	86	1	2	2	38	.09	.100	19	10	.56	238	.15	. 4	2.76	.02	.09	1	108		
SE-L2+00E 2+005	11	72	59	65	.9	2	2	241	7.22	19	5	ND	5	65	1	2	2	89	.06	.149	12	8	.28	132	.22	6	1.70	.01	.06	1	96	•	•
SE-L2+00E 2+255	18	72	80	71	.5	3	2	303	8.47	12	5	ND	4	123	1	2	2	86	.07	.231	13	8	.24	78	.15	. 5	1.57	.02	.04	1	79		, \
SE-L2+00E 2+50S	138	155	48	143	6.0	5	6	1104	5.99	9	5	ND	2	158	1	2	2	48	.30	.213	19	5	.94	315	.13	4	1.72	.08	.12	t	260	0	1
SE-L2+00E 2+75S	7	611	41	260	2.2	8	- 7	1113	7.88	31	5	ND	4	116	1	5	2	77	.15	.232	9	12	1.58	996	.33	5	2.51	.03	.17	2	125		1.
SE-L2+00E 3+50S	8	252	21	134	.1	· 4	17	3870	7.15	2	5	ND	2	30	1	2	2	- 41	.13	.133	6	9	.45	116	.15	5	1.55	.04	.09	1	42		Υ.
SE-L2+00E 3+755	7	64	35	75	.1	5	5	514	5.50	16	5	ND	2	40	1	2	2	104	.18	.161	7	9	.70	75	.43	8	1.10	.05	.06	2	30		
SE-L2+00E 4+00S	9	15	31	29	.1	1	1	155	1.27	6	5	ND.	. 1	23	1	2	5	59	.09	.052	. 6	3	.22	44	.34	2	.87	.02	.04	1	19		C
SE-L2+00E 4+505	5	47	35	81	1.2	4	3	414	5.01	8	5	NÐ	2	55	1	2	2	57	.10	.081	12	12	.50	147	.15	- 3	2.24	.01	.08	1	9		
SE-L2+00E 4+755	4	36	31	101	-1	5	3	779	3.85	10	5	ND	1	65	1	2	2	41	.18	.129	9	9	.60	178	.11	4	1.47	.02	.10	1	27		(
SE-L2+00E 5+00S	8	45	34	67	.1	- 4	3	295	8.28	17	5	ND	3	53	1	2	2	77	.07	.151	. 11-	13	.37	202	.25	6	1.70	.02	.07	1	6		-
SE-L2+00E 5+50S	· · . 7	63	35	65	.1	4	4	442	6.39	13	5	NÐ	- 4	61	1	2	2	82	.10	.134	9	11	.38	174	.24	5	1.76	.02	.10	1	18		r
SE-L2+00E 6+755	5	.41	36	61	.1	5	. 3	213	8.57	21	5	NÐ -	4	62	. 1	2	2	72	.07	.131	14	13	.27	211	.28	6	1.31	.02	.07	1	25	·	L.
SE-L2+00E 7+25S	5	86	28	107	.2	7	7	1074	5.68	17	5.	ND	2	68	1	2	2	56	.18	.119	10	11	.68	147	14	5	2.02	.04	.11	1	4		
SE-L2+00E 7+50S	4	92	40	86	.5	8	6	997	6.66	17	5	NÐ	· 1	68	1	2	2	51	.09	.167	11	19	.61	171	.12	5	1.48	.02	.08	1	30		C
SE-L2+00E 8+00S	7	30	27	88	.9	6	. 6	627	5.87	14	5	ND	. 3	61	1	2	2	51	.13	.095	14	12	.49	95	.20	5	1.62	.04	.07	1	1		~
SE-L2+00E 8+50S	37	381	23	343	.5	5	83	23280	25.99	15	5	ND	4	117	1	3	2	9	. 42	.064	24	1	.09	93	.04	5	1.04	.01	.02	2	1		,
SE-L2+00E 8+755	14	751	28	65	.7	2	6	633	14.01	3	5	ND	7	12	1	2	2	25	04	.057	43	8	.11	17	.21	8	2.43	.03	.05	1	5		ſ
SE-L2+00E 9+00S	. 8	108	29	87	.1	3	5	587	13.63	2	5	ND	3	23	1	2	2	55	.17	.336	10	4	.38	46	.23	10	.00	.01	.05	1	10		
SE-L2+00E 9+255	1	364	17	58	.4	2	5	119	23.98	2	5	ND	2	21	1	2	2	29	.11	.076	4	3	.25	44	.12	4	.58	.04	.04	1	5		(
SE-L2+00E 9+50S	5	307	36	49	2.2	4	2	42	18.86	2	5	ND	6	21	- 1	2	2	60	.05	.165	15	10	.07	29	.29	7	.96	.01	.03	1	15		
SE-L2+00E 9+755	7	316	37	116	.7	8	42	3741	8.35	13	5	ND	7	39	1	2	2	24	.09	.167	17	8	.60	185	.11	- 4	2.80	.02	.07	1	50		۱ <i>.</i>
SE-L2+00E 10+005	27	343	394	335	. 8	5	47	4010	14.61	2	5	ND	13	12	5	2	2	24	.11	.372	20	1	1.04	75	.10	6	1.59	.03	.03	1	65	-	r Ç
SE-L3+00E 5+00N	- 1	1085	3	855	5	6		33	.50	2	5	ND	1	13	12	4	5	12	.07	.060	11	7	.07	8	.13	2	2.13	.02	.01	1	8		
SE-L3+00F 4+75N	6	13	74	31	.9	3	1	81	3,84	7	5	ND	3	19	1	4	6	53	.07	.054	.15	10	.09	23	.35	3	1.31	.03	.04	1	2		. (
SE-L3+00E 4+50N	11	11	24	77	.1	2	2	761	6.48	- 17	5	ND	21	4	1	2	2	6	.03	.031	33	4	.07	14	.13	5	3.71	.07	.08	. 1	1		
SE-L3+00E 4+25N	6	18	19	32	.5	3	2	141	5.20	9	5	ND	2	15	1	2	2	- 39	.06	.056	18	11	.10	19	.19	4	2.22	.03	.04	1	21	•	,
SE-I TIONE ALON	E	10	. 21	τ 1	7	. 7		.77	4 10	4	5	WB	,	15	1	2	4	70	50	.051	19		.06	12	. 19	3	2.18	.03	.03	: 1	6		C
STD C/AU-S	19	62	40	132	7.1	71	29	960	3.97	40	17	8	39	51	19	18	20	59	.49	.091	39	59	.90	181	.09	36	1.73	.06	.13	13	52		

<u>_____</u>

e

C

C

(

C

(

(

(

(

(

(

(

							WE	STE	RN C	ANAI	DIAN	PR	JJEC	:T-6	DSSA	N#91	02	FI	_E ‡	ŧ 87	-265	5									Fac	je 3	
SAMPLE	HQ PPN	CU PPM	PB PPN	ZN PPN	AG PPM	NI PPM	CO PPN	NN PPM	FE	AS PPM	U. PPM	AU PPM	TH PPM	SR PPM	CD PPN	SB PPM	BI PPN	PPM	CA Z	P X	LA PPH	CR PPM	MG Z	BA PPH	11 7	B PPN	AL Z	NA Z	K Z	N PPH	AU1 PPB		
SE-L3+00E 3+75N	6	13	14	59	.+	3	2	615	3.69	12	5	ND	7	13	1	2	2	9	.10	.045	21	5	.09	20	-09	3	2.96	.08	.09	1	· 1 .		
SE-L3+00E 3+50N	9	11	19	54	.1	1	1	614	5.05	11	8	ND	11	3	1	2	2	8	.04	.039	21	. 7	.05	8	.11	3	3.40	.06	.06	5.	1		
SE-L3+00E 3+25N	9	9	20	37	.7	1	1	112	6.09	8	5	ND	7	22	1	- 4	3	43	.04	.043	24	12	.09	26	.28	4	2.49	.03	.04	4	71		
SE-L3+00E 3+00N	9	19	12	35	.6	3	1	147	7.13	7	5	ND	5	15	1	2	2	30	.03	.036	17	9	.06	20	. 21	3	2.01	.07	.03	2	4	1.1	
SE-L3+00E 2+75N	7	25	49	49	.3	4	2	206	5.80	10	5	ND	3	81	1	2	4	57	.09	.047	10	13	.37	88	.19	- 3	1.81	.02	.03	3	35		
SE-L3+00E 2+50N	6	25	137	58	1.1	4	3	252	4.35	50	7	ND	3	189	1	3	2	78	.17	.104	11	9	.48	287	.24	3	1.57	.05	.10	1	86		•
SE-L3+00E 1+75N	. 8	12	11	47	.3	1	1	103	10.30	5	8	ND	8	9	1	2	2	23	.03	.040	14	15	.05	8	.18	3	2.11	.03	.05	2	2		
SE-L3+00E 1+50N	9	17	30	42	.3	1	1	116	9.72	7	6	ND	11	31	1	2	8	57	.03	.045	18	11	.08	30	.29	2	2.37	.02	.04	1	2		
SE-L3+00E 1+25N	- 7	28	163	47.	2.3	2	1	255	3.77	47	5	ND	2	184	1	2	2	28	.06	.206	13	8	.41	403	.26	3	.93	.02	.14	1	175		
SE-L3+00E 1+00N	6	22	50	62	.9	2	2	233	4.89	9	5	ND	2	322	1,	2	4	33	.10	.086	20	16	.41	152	.14	3	2.69	.02	.06	1	650	· .	
SE-L3+00E 0+75N	10	15	28	50	.6	2	3	1187	6.10	6	5	NÐ	3	18	1	2	2	22	.05	.085	22	7	.14	23	.16	3	2.79	.04	.07	1	11		
SE-L3+00E 0+50N	7	18	23	43	.4	2	1	152	6.48	6	5	ND	- 4	17	- 1	, 2 [·]	2.	29	.05	.063	23	- 9	.13	23	.15	3	3.17	.03	.05	3	1		ſ
SE-L3+00E 0+25N	. 7	12	15	56	.3	- 1	· 1	357	4.97	5	5	ND	9	- 4	1	2	2	7	.04	.055	25	7	.05	. 9	.11	3	4.60	.06	.06	4	2		t
SE-L3+00E 0+00N	9	27	31	58	1.0	3	2	195	6.83	15	5	ND	3	22	1	2	2	27	.06	.072	23	9	.17	42	.13	4	3.20	.03	.05	.5	5 -	1	
SE-L3+00E 0+255	8	14	20	56	.8	3	2	166	6.99	6	8	ND	3	- 46	1	2	2	51	.12	.061	15	11	.24	37	.23	3	1.72	.03	.05	1	13		
SE-L3+00E 0+50S	. 9	152	116	63	1.9	3	9	406	5.16	9	5	ND	2	30	· 1	2	3	45	.09	.072	27	8	.25	72	.26	3	2.26	.03	.06	2	18		
SE-L3+00E 0+75S	3	24	31	66	9.0	12	9	274	3.30	· 7·	5	ND	1	323	1	2	2	57	.48	.127	10	10	.85	196	.33	2	1.46	.16	.09	. 1	25	•	
SE-L3+00E 1+255	8	38	35	65	2.4	4	2	164	7.36	12	- 5	ND	4	146	- 1	2	2	46	. 12	.118	24	- 14 -	.13	91	.19	- 5	2.38	.02	.07	2	14		
SE-L3+00E 1+50S	4	154	59	51	3.8	4	2	123	2.50	2	5	ND	1	215	1	2	2	54	.12	.091	19	10	.24	78	.30	3	2.79	.03	.06	1	20		
SE-L3+00E 1+755	8	90	67	74	2.1	4	2	331	10.70	5.	8	ND	5	204	. 1	. 2	2	47	.10	.109	- 14	8	.53	158	.14	2	2.08	.02	.08	- 1	195		
SE-L3+00E 2+00S	11	494	237	79	1.6	2	2	216	13.80	2	9	ND	4	146	- 1	2	5	28	.04	.113	26	2	.33	48	.09	2	1.55	.02	.05	1	210		
SE-L3+00E 2+255	17	32	44	65	.7	3	2	173	9.33	11	5	ND	7	38	1	2	2	85	.08	.240	20	11	.19	171	.36	2	1.53	.02	.05	1	- 25		
SE-L3+00E 2+50S	8	312	300	194	2.1	6	32	2115	11.16	15	5	ND	6	51	1	2	- 2	. 97	.14	.290	6	- 9	1.45	149	.30	2	1.97	.02	.09	. 3 .	66		
SE-L3+00E 2+75S	6	77	76	65	.6	2	- 3	229	7.79	13	6	ND	3	42	1	2	3	88	13	.154	10	8	.35	70	.19	2	1.43	.01	.04	2	25		
SE-L3+00E 3+255	8	328	315	200	1.8	5	34	2223	11.20	8	5	ND	5	49	1	2	2	91	.13	.302	5	5	1.51	150	.29	2	1.91	.02	.09	1	. 75		
SE-L3+00E 3+50S	7	455	. 71	191	.3	11	200	6821	8.03	18	5	NÐ	5	76	. 1	2	2	73	.15	.183	10	8	.97	361	.20	3	2.65	.02	.14	1	195		
SE-L3+00E 3+75S	5.	44	- 44	59	1.5	5	- 4	310	3.61	9	5	ND	2	50	- 1	2	2	81	.14	.086	8	9	.34	123	.23	3	1.24	.01	.08	1	13		
SE-L3+00E 4+00S	12	49	43	87	1.5	5	4	402	10.64	- 14	6	ND	8	35	1	2	- 4	64	.15	.203	20	11	.39	89	.33	- 2	1.56	.04	.08	2	16		
SE-L3+00E 4+25S	10	44	37	69	.6	. 4	- 3	305	6.93	10	5	ND	3	43	1	2	2	107	.12	.084	12	12	.42	83	.41	3	1.54	.03	.05	1	20		
SE-L3+00E 4+50S	13	359	690	198	1.6	7	23	1706	5.24	11	5	ND	' t	41	- 1	2	2	45	.17	.168	8	13	.62	91	.09	4	2.88	.03	.09	1	87		
SE-L3+00E 4+75S	5	63	40	66	.2	9	11	793	3.64	6	5	ND	1	68	1	2	2	65	.48	.108	9	11	.75	90	.28	24	1.58	.15	.08	1	12		
SE-L3+00E 5+00S	· · 7	42	44	40	.8	. 3	2	146	3.87	12	5	ND	4	34	1	2	3	73	.11	.114	15	11	.23	- 58	.32	<u> </u>	1.15	.02	.05	2	66		
SE-L3+00E 5+255	8	238	. 79	49	.2	3	2	186	3.92	. 5	5	ND	1	27	1	2	2	45	.09	.060	19	5	.24	45	.19	2	1.43	.02	.06	1	- 6		
SE-L3+00E 5+50S	8	92	: 45	93	5	6	4	394	5.36	15	5	NŪ	1	62	1	2	2	86	.23	.122	13	13	.58	132	.19	4	1.61	.02	.08	1	14		
SE-L3+00E 5+75S	. 8	62	26	96	.3	6	4	631	7.12	11	5	ND	. 4	46	1	2	2	.116	.13	.175	16	15	.31	143	.50	5	1.32	.02	.09	1	36		
SE-L3+00E 6+00S	. 6	85	30	105	.9	11	· 9	629	5.92	13	7	ND	3	144	1	2	2	66	.43	.164	11	12	1.21	176	.24	3	1.88	.15	.10	1	15		
SE-L3+00E 6+00SB	6	.93	39	101	2.2	5	6	663	6.35	18	5	NÐ	2	83	1	2	2	33	.14	.225	10	6	.72	182	.06	3	1.41	.02	.06	1	16		
STD C/AU-S	19	62	40	132	7.3	70	28	923	4.13	41	18	7	37	50	18	16	19	64	. 57	. 090	37	57	.94	179	.08	34	1.82	. 05	.12	- 14	52		

Ç

0

£

(

0

C

(

C

C

€

6

C

(

(

€__

(

WESTERN CANADIAN PROJECT-GOSSAN#9102 FILE # 87-2655

See

SAMPLE#	NO PPN	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	MN PPH	FE Z	AS PPM	U PPN	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPN	V PPN	CA Z	P 2	LA PPN	CR PPH	M6 X	BA PPM	T1 7	B PPN	AL Z	'NA Z	K Z	N PPN	AUX PPB	•
SE-1.3+00E 6+25S	5	55	18	84	1.2	5	11	861	5.43	10	5	ND	3	34	1	2	2	31	.20	.098	20	18	.41	76	.07	3	3.56	.03	.07	2	21	
SE-13+00E 6+50S	4	31	- 78	62	.5	5	3	336	3.54	9	5	ND	2	94	i	2	2	51	.18	.062	9	11	. 61	163	.17	2	1.23	.03	.07	1	73	
SE-1 3+00E 6+755	3	16	8	77	.3		6	169	2.03	2	5	ND	ī	51	1	2	2	29	.52	.090	8	8	.35	76	.16	- 4		.05	.07	1	1	
SE-1 3+00E 7+00S	5	97	77	49	1 0	2	र	140	9 12	ī	Ř	MB	1	97	i	,	,	81	17	097	ŝ	q	. 28	123	26	,	1.60	01	.03	. <u>.</u>	5	,
SE 13100E 74003	1	70	21	55		- 1	2	170	3 01	- 11	5	ND	1	91	;	5	2	77	70	086	Ă	7	19	94	04	-	91	07	10	;	15	
3C-C3+00E /+233	٦	31	21	44	•7	3	2	320	2.01	11.	J	αv	•	. 74		2	2	33		.000	•	'	• • •		.00	2	• • •			-		
SE-L3+00E 7+50S	9	67	20	56	.6	5	4	487	5.97	8	5	ND	4	- 31	1	2	2	82	.19	.055	22	19	.44	27	.37	3	2.03	.04	.06	1	8	
SE-L3+00E 7+75S	2	122	2	80	.8	8	9	239	2.74	2	5	ND	- 4	155	1	2	2	72	1.44	.059	30	- 14	.61	41	.60	3	2.13	.30	12	1	2	
SE-L3+00E 8+00S	5	36	17	72	.4	9	9	266	4.41	6	5	ND	2	199	1	.3	2	62	.47	.137	7	10	.78	145	.35	3	1.14	.14	.08	1.	- 6	
SE-L3+00E 8+25S	3	21	20	77	-1	9	16	2729	4.06	3	5	ND	1	79	1	3	2	59	.63	.103	9	8	.83	180	.17	3	1.11	.12	.11	1	3	
SE-L3+00E 8+50S	5	36	17	74	.4	16	12	1193	4.19	2	8	ND	1	43	I	2	2	66	.25	.119	11	19	.76	33	.13	3	2.38	.04	.05	1	2	
SE-1 3+00E 8+755	. 8	55	2R	100	. 7	. 8	,	475	7.17	14	5	ND	4	52	1	2	2	62	.23	. 109	8	13	.70	68	.20	. 4	1.59	-07	. 07	1	16	:
SE-13+00E 9+00S	5	35	9	55	.7	Š	7	252	3.47	9	5	NO	. 3	54	ī	2	2	38	.58	.059	26	- 6	. 47	56	.18	3	1.49	.07	.08	2	3	
SE-1 3+00E 9+255	ŭ	43	16	77	.,		ģ	330	4.77	,	5	ND	2	47	ť	2	2	46	.51	.109	13	9		47	.24	2	1.35	.09	.09	1	8	
SE-1 3+00E 10+00S	, 8	59	71	89	.2	3	17	798	5.36	7	5	NO	5	60	- 1	2	2	32	.33	.156	7	5	1.13	76	.08	3	1.36	.01	.05	2	13	
SE-L4+00E 5+00N	13	115	241	148	5.5	12	4	802	5.72	16	8	ND	6	1737	1	3	4	51	.32	.557	26	12	1.03	662	.20	3	2.78	.06	.16	1	510	
SE-1 4+00E 4+75N	5	रर	27	94		7	7	797	7 03		5	ND		197	1	2	. ,	117	19	119	12	28	98	143	. 23	2	2.35	.03	- 06	1	81	
SE-1 4+00E 4+50N		51	87	101	1.9	10		557	5 80	17	5	ND	· 2	135		ĩ	,	110	. 46	.310		28	.84	185	.18	3	1.69	.08	.08	1	53	
SE-1 4+00E 4+25W	7	27	140	87	1 4		1	747	4 53	14	5	NO	Ĩ	159	1	2	5	118	.07	.170		12		275	.18		1.78	.02	.08	1	58	
SE-1 4+00E 4+00N	5	89	88	122		5	5	905	4.58	14	5	ND	4	124	1	2	2	56	.19	.144	9	12	1.09	344	.17	4	1.98	.01	.16	2	81	
SE-14+00E 3+75N	5	52	174	74	1 1		2	TAR	4 89		š	ND	ŕ	181	. 1	- 2	,	101	. 18	.230	. 7	30	.59	246	.18	2	1.47	.02	.07	1	24	
	v				•••	Ū	•	010		. '			•		•	•	•				•					-		••••				
SE-L4+00E 3+50N	5	21	66	71	.6	4	2	407	5.03	11	5	ND	1	130	+ 1	2	2	71	.10	.210	7	14	.53	202	.06	3	1.60	.02	.06	1	17	
SE-L4+00E 3+25N	6	31	36	74	1.1	2	2	200	12.34	11	5	ND	7	29	· 1	3	2	59	.06	.086	17	13	.13	154	.32	2	2.24	.02	.04	1	3	
SE-L4+00E 3+00N	6	49	129	102	.8	. 4	. 3	555	4.10	14	5	ND	2	110	. 1	2	2	40	.23	.106	9	7	.87	564	.11	2	1.69	.02	.17	1	81	
SE-L4+00E 2+75N	11	28	79	58	.6	1	2	161	6.00	14	5	ND	4	99	1	2	2	95	.05	.066	10	8	.26	150	.24	2	1.46	.02	.04	· 1	55	
SE-L6+00E 5+50N	8	159	66	92	2.1	3	2	316	9.28	· 7	8	ND	4	467	1	2	2	61	.13	.268	17	13	.53	187	.16	2	1.46	.02	.09	1	56	
SE-L6+00E 5+25N	7	41	30	48	1.2	3	3	129	6.74	2	5	ND	5	43	1	2	2	111	.13	.096	12	9	.17	51	. 40	2	1.48	.02	.05	: 1	1	
SE-L 6+00E 4+75N	12	24	23	67	.5	3	3	407	9.31		5	ND	A	20	1	2	2	40	.03	.242	21	12	.08	53	.25	3	2.04	.04	.06	1	· 1	
SE-L6+00E 4+50N	9	32	38	66	.9	4	3	225	6.44	12	5	ND	5	58	1	2	2	63	.14	.122	17	9	.29	90	.25	2	1.69	.02	.05	1	22	
SE-1 6+00E 4+25N	13	305	25	97	1.2	3	Ĭ	381	10.04	10	5	ND	7	30	1	3	2	52	.08	.053	26	13	.28	38	.31	3	2.28	.03	.05	2	6	
SE-L6+00E 4+00N	1	676	14	79	1.7	. 1	3	21	29.83	.4	5	ND	3	16	2	3	2	13	.09	.110	6	1	.06	6	.01	2	.87	.01	.02	2	1	
	-		-				•		-		_	-		-																		
SE-L6+00E 3+75N	6	35	72	51	.9	2	1	176	1.89	3	5	ND	1	83	1	3	2	-36	.11	.056	9	5	.33	64	.04	2	. 95	.01	.04	1	24	• •
STD C/AU-S	··· 19	61	37	132	7.0	72	28	934	4.03	- 35	-18	7	37	- 51	18	18	18	65	. 59	.090	37	60	.95	180	.08	35	1.76	.05	· .14	12	23	

Page 4

 \bigcirc

C

C

(

€

€

€

(

Ń

WESTERN CANADIAN PROJECT - GOSSAN #9102 FILE # 87-2530

SAMPLE	NO PPH	CU PPM	PB PPN	ZN PPN	AG PPN	NI PPM	CO PPM	MN Pph	FE Z	AS PPM	U PPN	AU PPN	TH PP#	SR PPN	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P Z	LA PPM	CR PPH	MG 2	BA PPM	71 7	B PPM	AL Z	NA Z	K Z	N PPM	AUT PPB	
SE 13+50W 13+755	7	151	36	80	1.4	17	. 6	353	10.60	17	5	ND	5	102	1	7	2	80	.17	.403	12	40	.84	201	.23	4	1.75	-08	. 08	t	142	
SE L3+50W 14+00S	7	202	36	137	.3	39	15	465	12.17	3	5	ND	11	85	1	2	2	64	.31	.371	12	20	1.05	144	.21		2.10	.04	.06	1	52	
SE L3+50W 14+505	22	135	49	114	.3	25	22	756	12.51	12	5	ND	14	73	1	2	2	53	.14	.443	17	12	.88	218	.21	5	2.49	.04	.08	- ī -	81	
SE L2+50# 10+255	5	45	57	91	1.9	10	5	530	6.84	18	5	ND	2	49	1	3	2	64	.11	.133	15	17	.58	198	.20	5	1.60	.02	.08	1	25	
SE L2+50W 10+50S	3	23	55	76	3.2	9	2	487	3.47	20	5	ND	1	45	1	4	2	53	.18	.148	15	22	.61	158	.17	2	1.28	.02	.07	2	18	
SE L2+50% 10+755	6	89	36	119	1.0	15	23	1862	5.75	27	5	ND	2	45	1	7	2	54	.21	.113	11	22	.92	119	.18	4	2.05	.04	.07	1	21	
SE L2+50W 11+50S	4	41	16	102	.7	14	5	618	5.58	23	5	ND	1	33	1	3	2	53	.12	.125	8	25	.74	84	.12	. 4	2.07	.02	.07	1	33	
SE L2+50W 11+75S	7	66	23	110	.9	13	32	2620	6.34	16	5	ND	2	30	1	2	2	58	.15	.103	9	19	.66	60	.16	4	2.31	.02	.07	1	35	
SE L2+50W 12+00S	5	43	20	89	2.1	11	5	606	6.87	27	5	ND	1	34	1	- 2	2	53	.14	.130	6	17	.62	BO	.11	5	1.66	.02	.07	1	69	
SE L2+50W 12+255	7	49	25	98	1.0	16	9	817	5.35	34	5	ND	1	48	1	4	2	54	.20	.164	6	32	.93	126	.14	3	1.49	.03	.07	1	56	
SE L2+50W 12+50S	7	65	38	96	2.1	9	5	718	4.38	8	5	2	1	61	1	2	3	36	.16	.127	11	15	.97	244	.10	3	2.02	.02	.13	2	92	
SE 12+50W 12+75S	. 4	38	35	95	9	6	- 4	548	4.24	13	5	ND	1	95	1	4	2	40	. 22	.118	9	13	.74	300	.08	. 2	1.35	.02	.17	1	44	
SE L2+50W 13+00S	17	371	66	167	.7	20	23	582	16.76	28	5	ND	7	40	1	2	3	44	.08	.470	8	10	.56	176	.13	6	2.91	.02	.05	1	51	
SE L2+50W 13+25S	13	163	52	127	.7	26	91	3378	10.14	20	5	ND	6	51	1	2	2	49	.10	.370	11	19	.73	218	-17	6	2.42	.03	.06	1	85 .	
SE L2+50W 13+50S	3	35	18	88	.5	8	.6	375	3.78	14	5	ND	1	71	1	3	2	47	.27	.158	6	17	.68	184	.12	2	1.27	.03	.09	1	14	
SE L2+50W 13+755	-4	36	20	82	5	. 9	5	520	4.44	12	5	ND -	1	81	t	4	2	52	.29	.131	6	12	.92	180	.11	: 4	1.47	.02	.09	1	12	
SE L2+50W 14+00S	14	126	13	-73	.2	11	14	492	6.08	12	. 5	ND	1	42	1	2	2	25	. 19	.188	4	6	.71	115	.11	. 4	1.55	.02 .	.07	3	8	
SE L2+50W 14+25S	14	163	27	94	.4	23	12	524	8.57	19	5	ND	7	90	1	2	2	54	.20	.320	10	17	.87	204	.19	6	2.33	. 05	.08	1	53	
SE L2+50N 15+00S	10	179	35	107	.7	28	46	2236	6.56	35	5	ND	2	35	1	3	2	45	.19	.177	6	13	1.02	70	.14	-5	2.35	.04	.05	1	26	
SE L2+50W 15+50S	13	207	48	142	.4	46	110	4245	10.11	30	5	ND	- 3	46	1	5	2	49	.20	.319	8	16	1.39	96	.15	7	2.54	.04	.05	1	32	
SE L2+50W 15+755	12	213	95	166	.9	63	140	5637	13.31	15	5	ND	4	25	. 2	3	3	43	.11	.337	11	17	1.61	98 .	.08	6	2.47	.02	.04	· 1	27	
SE L2+50W 16+25S	9	167	40	140		25	63	2208	9.42	69	5	ND	3	57	· .1	2	4	55	.24	.271	7	16	1.19	77	.17	7	2.19	.04	.06	1	41	
SE L2+50W 16+50S	6	95	34	122	.4	19	45	2053	6.71	25	5	ND	1	55	t	3	2	45	.36	.212	5	14	1.06	88	.09	6	1.60	.03	.06	1	14	
SE L2+50W 16+755	7	169	43	142	.8	28	55	1960	12.27	33	5	ND	3	55	2	3	3	67	.20	.385	7	19	1.40	70	. 19	7	2.23	. 02	.06	1	47	
SE L1+50W 10+00S	9	82	36	81	.5	10	9	845	4.18	- 18	5.	ND	1	61	1	2	4	49	.15	.111	10	13	.56	145	.17	3	1.90	.02	.11	2	4	
SE L1+50W 10+255	5	158	52	130	1.4	15	21	2312	6.72	41	5	ND	- 3	55	· 1	2	3	51	.19	.180	16	24	.96	212	.21	5	1.89	.04	.09	1	48	
SE L1+50W 10+50S	9	284	41	101	.7	17 -	27	1917	5.59	18	5	ND	3	52	- 1	2	2	37	.14	.106	12	13	.64	203	.16	5	2.97	.03	.10	1	23	
SE L1+50W 10+75S	15	789	- 48	125	.7	36	52	2187	6.78	16	5	ND	3	55	1	2	3	23	.07	.160	6	5	.47	615	.08	5	7.50	.02	.07	· 1	25	
SE L1+50W 11+005	19	841	66	493	.3	BO	181	17747	4.20	34	16	ND	3	35	11	2	2	35	.19	.296	10	9	.62	326	.15	- 3	7.07	.05	.05	1	38	
SE L1+50W 11+25S	5	113	36	150	1.2	17	20	2834	6.10	46	5	ND	2	45	1	2	2	68	.24	.140	12	26	1.07	167	.22	6	i.87	.04	.08	1	3	
SE L1+50W 11+50S	8	136	35	90	.8	24	7	393	8.96	89	5	ND	1	33	1	2	6	56	.10	.150	6	33	.42	61	.13	8	1.45	.01	.04	1	63	
SE L1+50W 11+75S	13	78	32	112	.9	12	- 14	1530	6.49	32	5	ND	1	40	i	2	2	68	.16	.122	8	25	.83	112	.19	- 8	1.72	.02	.08.	1	6	
SE L1+50W 12+00S	9	124	21	121	.5	19	55	5161	7.36	19	12	ND	3	51	1	2	3	56	.22	.166	9	18	1.41	147	.17	7	2.79	.05	.08	2	1	
SE L1+50W 12+25S	6	37	25	89	∴. 3	. 9	6	619	5.92	23	· 5	ND	1	60	1	2	2	49	.24	.121	8	14	.53	149	. 09	6	1.61	.01	.10	1	3	
SE L1+50W 12+50S	7	55	25	98	.9	14	11	1172	5.55	33	5	ND	1	. 43	1	2	4	52	.20	.125	8	23	.74	115	.13	9	1.81	.03	.08	2	3	
SE L1+50W 12+755	7	48	30	92	.8	12	5	599	5.15	24	5	ND	1	67	1	2	3	44	.18	.161	10	12	.84	191	.09	5	1.77	.02	.13	i	28	
SID C/AU-S	19	58	40	122	6.9	63	27	896	3.88	40	- 14	7.	31	45	18	15	23	54	,48	.086	36	56	.88	164	.08	33	1.69	.05	- 13	12	50	

Page 2

(

(

C

•

•

(

C

Ć

€

<

{

) (

 $\bigcirc \epsilon$

.

					1022223	WE		RN D		IAN	San og bild	ING		JEC	ي وريد الله	6SA	and the second second	102	C elerous	ÆE	# 07	25	30				See.				Page	1
SAMPLE	NO PPM	CU PPH	PB PPN	ZN PPM	AG PPM	NI PPN	CO PPM	- MN PPH	FE 1	AS PPM	U PP N	AU Pph	TN PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPĦ	CA Z	P Z	LA PPH	CR PPH	MG 2	BA PPN	TI Z	B PPM	AL	NA Z	K	N PPN	AUX	
SE L1+50W 13+005	5	38	24	71	.7	5	14	446	4.83	17	5	ND	1	67	1		2	47	17	179		12	51	207		,			•••			
SE L1+50# 13+255	7	76	22	135	.5	12	25	1358	7.73	9	5	ND	2	47	ī	2	,	58	.14	140	11	12		283	.14	- 3. - 1	1.68	.02	.09	1	27	
SE L1+50W 13+50S	5	61	20	101	.5.	14	12	725	4.87	21	5	ND	2	75	i	3	3	51	.10	147	11	21	1 10	130	1.20		2.00	.02	.03	1	83	
SE L1+50W 13+75S	5	43	24	96	.6	1	5	445	7.11	22	5	ND	ī	41	1	3	ं र	60	16	.143	۵ ۲	10	1.17	1/1	.18	2	2.13	.02	.06	1	44	
SE L1+50W 14+005	4	39	14	81	.3	10	9	635	4.14	12	5	ND	1	60	1	2	2	46	.30	.105	5	17	. 98	100	.12	2	1.80	.01	.08	· 1	15	
SE L1+50W 14+25S	9	117	30	86	1.0	14	5	317	7.33	12	5	ND	1	73	1	4	5	51	. 10	.269	10	19	. 67	714	07	٩	1 76	67	01		310	
SE L0+00E 10+00S	13	73	22	95	.5	8	24	1788	5.21	9	5	NÐ	3	46	1	3	4	44	.20	.115	12	13	.71	50	17	7	2 72	.05	.00	:	200	
SE L0+00E 10+505	9	49	22	100	.4	9	11	1304	5.66	7	5	ND	1	44	1	2	2	58	.27	.095	- 7	15	41	172	1.0	7	1 40	.VJ A7	•V0		29	
SE L0+00E 10+75S	7	101	33	151	.3	23	25	1507	5.77	21	6	ND	2	47	1	2	2	59	.24	.146	16	24	.77	748	.19	5	2 70	.03	.00	. 1	24	
SE L0+00E 11+00S	9	195	32	190	.9	23	35	3096	6.52	49	. 5	ND	3	55	1	6	3	59	.25	.173	12	27	1.36	157	.21	4	2.67	.03	.08	2	78	
SE L0+00E 11+255	8	106	24	122	1.2	23	15	1350	5.68	31	9	ND	i	42	1	3	2	59	.18	.105	8	27	.99	81	.17	5	2.47	.03	.08	1	35	
SE LUHOUE 11+305	6	146	32	129	1.3	20	13	1243	6.61	49	5	ND	2	38	1	2	5	56	.15	.145	12	35	.98	86	.16	5	2.72	.02	.05	2	64	
SE L0+00E 11+/55	. 9	55	18	73	• ?	13	9	748	6.19	23	8	ND	1	36	1	4	3	56	.23	.115	7	18	.51	49	.20	5	1.29	.03	.05	· 1	18	
SE L0+00E 12+005		122	16	72	.5	16	61	1041	3.51	9	. 5	ND.	. 2	19	1	3	2	28	.15	.097	32	9	.30	33	.12	4.	2.59	.02	.03	1	13	
SE LU+UVE 12+235	10	105	5	150	1.1	15	145	10977	8.84	14	9	ND	4	36	1	2	8	54	.17	.179	14	17	.76	?5	.21	7	1.96	.05	.05	1	36	
SE L0+00E 12+50S	12	137	6	182	.4	40	102	7670	8.24	12	5	ND	5	24	1	2	A	. 77	00	171			70	+ + 7	17		- 04		AF	_		
SE L0+00E 12+75S	3	111	21	163	.3	12	17	1141	4.98	19	5	ND	3	54	ŕ	,	2	40	. 01	.121		11	. 10	112	-12	0	2.74	.02	.03	Ζ.	33	
SE L0+00E 13+005	4	42	18	86	.4	12	55	2873	4.83	4	6	ND ·	2	65	• f	3	5	54	.21	172	.7	10	1.17	75	120.	2	2.40	.01	-08	Z	51	
SE L0+00E 13+255	7	86	36	. 91	.6	11	11	609	5.01	18	5	ND	,	46	1	5	- - -	50	17	171		10	.07	70	•41		1.80	.10	.08	1 -	13	
SE L1+00E 5+005	5	93	26	84	•3	5	6	635	3.73	12	5	ND	4	115	.1	4	2	29	.18	.141	10	10	.75	354	.14	3	1.43	.01	.11	1	48 34	
SE L1+00E 5+25S	4	51	25	65	.7	6	. 4	457	3.72	16	5	ND	1	84	1	3	2	30	.14	. 103	7	8	. 70	169	- 08	٦	1 20	A1	07	•	75	
SE L1+00E 5+50S	5	- 79	24	78	.6	. 4	- 4	454	4.81	20	9	ND	5	213	1	3	3	34	.12	.121	13	9	. 60	589	14	ž	1 49	02	15	-	AA .	
SE L1+00E 5+75S	5	33	23	55	1.3	3	2	250	3.89	12	5	ND	2	80	1	4	2	47	.14	.134	8	Ŕ		127	12	7	1 70	01	67	-	10	
SE L2+00E 6+255	6	222	29	66	.7	2	3	271	10.11	7	5	ND	6	41	1	2	5	44	.06	.177	13	Å	.76	140	14	7	7 TA	01	.07	1	10	
SE L2+00E 6+50S	3	57	32	54	.4	5	4	357	2.85	7	5	ND	1	113	t	2	2	31	.23	.125	9	8	.59	151	.10	2	1.42	.06	.07	3	18	
SE L2+00E 6+755	7	32	43	36	.2	2	2	129	5.28	13	5	ND	2	63	1	2	2	80	. 06	. 130	17	7	17	174	74		1 00	A 1	07	•	17	
SE L2+00E 7+005	7	43	26	52	4	- 5	3.	434	5.38	13	5	ND	1	42	t	2	3	60	.08	136	10	12	75	01	21	5	1 17	. 02	101 01		21 75	
SE L4+00E 1+50N	5	113	44	64	1.1	6	2	258	7.80	17	5	ND	2	289	1	2	2	-46	.08	.326	q	27		145	10	3	1 07	07	.00	44	174	
SE L4+00E 1+25N	8	77	50	. 47	1.6	6	3	231	4.67	24	5	ND	1	138	1	3	3	55	. 11	241	,	10		197	.10	· • • •	1 47 -	.02	.0.1	31	- 120	
SE L4+00E 1+00N	4	55	28	62	1.4	4	3	272	3.77	14	6	ND	1	110	1	5	4	34	.12	.122	7	7	.38	220	.10	4	1.16	.02	.08	9	31	
SE L4+00E 0+75N	8	388	161	281	1.8	4	19	1128	5.55	16	5	ND	3	10		4	7	7	13	045	5	1	15	177	A 1	د	00		ΛE.	7	200	
SE L4+00E 0+50N	3	85	52	112	1.0	3	4	317	3.37	9	5	ND	3	26	1	5	2	14	.07	047	5	i i	50	71	.01		•77 • 64	.01	.03	3	28V 71	
SE L4+00E 0+25N	2	67	43	167	1.6	4	11	1273	2,89	5	8	ND	1	31	1	3	2	76	. 30	074	7	۰ د	54	11	• VZ	- J	1.V4	.01	- 00	1	10 10	
SE L4+00E 0+00N	2	100	17	115	.2	2	6	664	2.38	19	5	ND	•	10	i	3	2	12	.10	064	, E	.j 1	107 15	01 · 77	.00	3. 7	1.03	.00	AU7 .	1	47 07	
SE L4+00E 0+25S	2	69	25	105	.5	2	7	1014	2.65	14	5	ND	i	32	1	2	2	19	.16	.072	8	2	.53	129	.03	2	.04	.01	.06	1	15	
SE L4+00E 0+50S	.5	33	81	71	1.1	ż	4	621	4.10	4	5	ND	1	70	,		. ,	47		0E /	~	-		<i>(</i> -								
STD C/AU-S	18	56	40	129	6.8	64	27	974	4.01	3.9	14	7	1 71	30	14	15	20	7 <u>/</u> 57	•1/	.036	8	/	.44	65	.15	5 1	. 14	.02	.08	1	1200	
							•••			40	10	'	21	77	10	13	20	22	.50	.082	22	22	.71	163	.08	- 34 - 1	L.77 ⊡	.05	.12	12	49	

3

(

٩.

(

 \mathcal{O}_{c}

C

Ċ

6

C

€

WESTERN CANADIAN PROJECT-GOSSAN #9102 FILE # 87-2530 SAMPLE 80 CU. PB ZN A6 NI CO **HN** FE AS U AU TH SR CD SB BI v CA Ρ LA CR MG BA TI B AL NA K N AUL PPN PPN PPM PPH PPH PPM PPN PPN X PPN PPH PPM PPN PPN PPN PPH PPN PPH z PPH PPH PPN Z 7 7 Z PPH 7 1 PPN **P**PB SE L4+00E 0+755 5 170 36 60 190 5.35 ND 2 41 .16 .082 4.0 6 4 9 5 30 1 2 6 16 8 .25 91 . .14 4 2.31 .03 .05 1 SE L4+00E 1+00S 1 520 28 96 .8 2 3 78 31.81 22 5 ND 5 10 3 2 8 27 .03 .062 8 5 .12 18 .16 2 2.03 .02 .03 1 7 2 SE L4+00E 1+255 P 2 24 51 59 .5 11 9 235 3.19 7 5 ND 3 120 2 51 .67 .091 8 .77 74 .31 2.98 .12 42 1 6 .18 1 SE L4+00E 1+50S 12 352 25 64 .7 5 7 446 13.16 26 5 ND 2 84 1 3 4 120 .27 .736 6 4 .22 57 .11 2 1.74 .06 .06 2 1 SE L4+00E 1+755 126 26 42 32 16.72 14 5 ND 2 65 1 5 3 43 .09 .428 5 1 1.1 3 3 4 .06 17 .04 3 .70 .02 2 -7 .05 SE L4+00E 2+005 P 1 288 2 64 1.5 61 10 222 2.79 7 ND 65 2 2 2 53 .63 .082 14 61 . 99 30 .27 3 2.32 .23 -5 1 .10 1 1 SE L4+00E 2+255AP 630 5 326 1.1 8 26 123 3.85 5 NØ 2 133 5 2 3 7 .79 .084 17 2 .06 .02 1 4 6 2 1.26 .01 .01 1 1 51 95 9.92 2 2 2 38 .35 SE L4+00E 2+2558 P 1 134 10 .1 8 4 2 5 ND 47 1 .064 8 10 .24 17 .20 2 1.18 .11 .07 1 1 SE L4+00E 2+50S 167 143 5 7 150 4.22 2 8 NÐ 2 15? 2 4 31 .92 .084 18 4 .09 1 11 1.8 1 16 .20 4 1.11 .05 .03 1 1 SE L4+00E 2+75S 376 15 ND 91 2 5 78 .14 .070 17 19 .28 38 .38 15 616 51 73 3.5 3 6.03 5 4 t 3 3.08 .04 .06 2 36 6 SE L4+00E 3+00S 30 312 793 12.05 2 2 77 .04 .039 22 12 .11 19 .55 2 2.06 .03 .04 45 65 1.0 2 11 11 -5 ND 11 -14 1 1 1 SE L4+00E 3+255 72 42 322 9.27 26 5 2 3 95 .07 .061 15 17 .21 48 .33 2 2.03 .02 33 11 71 -1.3 3 4 ND 7 30 .04 3 1 2 70 78 2 35 SE L4+00E 3+505 10 85 32 78 .5 7 7 391 12.91 16 5 ND 7 41 1 2 .21 .126 15 16 .39 .32 2 1.76 .07 .06 SE L4+00E 3+755 134 78 112 13 2 122 2 3 46 .15 .172 9 5 .68 130 .06 2 1.64 .03 .07 1 157 13 3.6 4 6 673 7.64 5 ND 1 SE L4+00E 4+00S 73 29 99 .6 10 9 665 6.96 13 5 ND 6 36 2 3 90 .22 .059 14 28 .49 97 .49 4 2.18 .02 .06 2 13 6 ŧ SE L4+00E 4+255 95 .15 .034 62 .31 2 1.19 .02 14 23 3 150 2.58 5 2 3 11 8 .24 .04 1 7 60 38 .4 2 10 ND 2 41 1 75 SE L4+00E 4+50S 11 51 65 59 1.0 2 4 193 4.66 9 5 ND 3 43 2 3 .14 .042 9 6 .30 65 .19 3 1.23 .03 .05 1 21 1 3 2 7 SE L4+00E 4+75S 58 94 74 528 12 5 NØ 2 2 75 .30 .146 7 8 .48 100 .23 4 1.23 .05 .07 13 .9 5 6 6.16 51 1 SE L4+00E 5+00S 11 252 56 79 2.0 4 4 404 8.39 21 5 ND 6 41 2 2 45 .11 .121 19 7 .36 85 .18 5 2.58 .03 .06 1 42 1 SE L4+00E 5+255 32 390 5 ND 3 26 2 2 83 .11 .120 18 11 .26 46 .25 5 1.41 .03 1 4 8 42 54 1.4 4 3 6.61 8 .06 .22 .108 3 1.72 2 SE L4+00E 5+505P 2 2 61 13 9 .52 78 .21 .05 .06 1 8 97 -34 60 1.1 6 4 255 3.71 13 5 ND 2 49 1 2 50 .22 .61 128 3 1.26 .03 1 26 SE L4+00E 5+755 P 5 68 53 81 .2 6 5 358 4.48 16 5 ND 1 72 4 .101 8 6 .12 .07 1 78 4 8 35 3 .06 .137 12 .11 76 .29 4 1.52 .02 .04 SE L4+00E 6+00S 11 43 60 1.1 1 3 145 12.68 16 5 ND 8 24 1 6 13 SE L4+00E 6+25S 178 434 6.84 5 2 2 47 .09 .084 13 9 .66 135 7 2.21 .02 .07 3 12 7 42 24 ND 8 68 .10 100 .6 4 4 1 SE L4+00E 6+50S 13 16 34 2 5 ND 1 47 2 2 46 .26 .039 5 8 .33 48 .22 2 .68 .06 .04 2 62 2 .6 6 5 117 1.64 1 SE L4+00E 6+75S 2 32 9 26 .8 3 3 73 1.48 2 5 ND 1 28 3 2 42 .10 .025 6 4 .15 52 .19 2 .51 .03 .02 1 1 1 SE L4+00E 7+00S 314 15 142 13 25 1839 5 ND 2 2 34 .57 .131 13 8 .98 132 .09 3 2.61 .03 .11 1 -4 1 .3 2.81 13 4 86 1 SE L4+00E 7+25S 5 62 26 88 2.5 11 10 581 6.15 19 5 ND 3 157 1 5 2 68 .50 .233 9 13 , 99 257 .31 5 1.46 .14 .10 1 15 72 1 SE L4+00E 7+50S 3. 35 33 354 15 5 ND 4 2 .39 .177 9 10 .80 157 .26 3 1.47 .11 .08 1 63 2.2 9 8 5.79 2 85 1 SE L4+00E 7+75S 7 40 33 43 2.6 144 5.23 9 5 ND 4 41 2 2 68 . 08 .082 13 10 .25 49 .33 5 1.40 .02 .05 1 2 -3 2 1 SE L4+00E 8+00S 3 263 59 133 2 25 .44 .137 29 .33 22 .05 7 2.47 .07 .09 1 1 7 3.5 6 5 2.95 7 ND 3 61 2 7 6 2 50 .35 .24 28 6 1.20 .05 1 SE L4+00E 8+255 45 18 46 7 98 4.02 2 5 ND 58 2 2 .12 .08 4 .6 4 1 1 .106 10 8 SE L4+00E B+50S 4 253 47 123 7 781 12 5 NÐ 3 53 3 2 31 .37 22 .72 56 .05 3 2.35 .01 .06 2 11 .6 14 3.03 .106 8 1 1 1 SE L4+00E 8+755 3 48 12 94 20 1950 3.96 2 7 ND 2 99 5 2. 60 1.47 .103 19 13 1.21 95 .36 5 1.74 .26 .17 .1 21 1 730 4.09 112 .34 1 3 SE 14+00E 9+255 3 38 11 83 .3 14 15 4 5 ND 3 2 2 61 1.08 .088 8 8 1.52 74 .36 5 1.81 .15 1 29 SE L5+00E 5+50N 7 135 55 370 2 2 80 .22 .269 13 10 .46 240 .22 6 1.33 .04 .10 1 91 1.2 5 267 11.66 10 5 ND -3 4 1

15

20

63

.52 .087

36

57 .90 179

.08

34 1.82

.05 .12

STD C/AU-S

19 62

40

131 7.0

69

27 912 4.10

40

18

7 36 49 18

and the second

 Sec. 10

1.00 m S 100

Page 4

ſ

(

(

(

(

€

(

(

€

(

€

C

€

(

	at any ta		للاستيان				WES	TER	N CA	NADI	AN	PROJ	ECT	- (5055		910	21	- ILE	. # 1	37-2	530			in an						Pag	e 5
SAMPLEN	NO PPH	CU PPN	PB PPM	ZN PPH	A5 Ppm	NI PPH	CO PPM	NN PPH	FE [.] X	AS PPM	U PPM	AU PPN	TH PPM	SR PPM	CD PPN	SB PPH	BI PPM	V PPM	CA Z	P Z	LA PPH	CR PP N	HG Z	BA PPN	TI Z	9 PPM	AL Z	NA Z	ĸ	W PPH	AU : PPB	
SE L5+00E 5+25N SE L5+00E 5+00N SE L5+00E 4+75N SE L5+00E 4+50N SE L5+00E 4+25N	13 9 8 7 11	58 23 16 17 53	30 42 33 10 28	56 62 49 59 80	.2 .2 .3 1.5 1.1	2 3 3 5 1	4 3 2 4 2	437 230 179 245 227	8.42 10.62 6.63 9.97 16.73	17 19 16 17 23	5 5 8 5 5	ND ND ND ND	5 7 3 8 15	117 52 45 28 16	1 1 1 1	3 4 2 3 8	7 8 6 4 8	80 65 52 90 33	.11 .03 .06 .10 .02	.414 .081 .124 .102 .072	15 14 16 25	10 15 8 18 15	.25 .23 .22 .30 .09	95 50 88 61 25	.25 .33 .24 .53 .28	3 2 2 2 2	2.04 1.67 1.38 4.00 2.39	.02 .01 .02 .03 .02	.05 .04 .05 .04 .05	4 2 1 1 2	7 15 64 9 6	•
SE L5+00E 4+00N SE L5+00E 3+75N P SE L5+00E 3+50N SE L5+00E 3+25N SE L5+00E 3+00N	10 2 3 3 6	74 488 29 132 302	9 4 43 44 51	76 76 77 97 78	1.2 11.5 1.0 4.0 2.0	3 19 8 9 4	6 4 8 6 2	411 104 885 409 297	7.90 2.61 3.52 7.58 6.40	14 6 8 17 16	6 7 5 5 8	ND ND ND ND	8 1 1 1 2	17 49 111 116 117	1 1 1 1	2 3 3 2 2	8 2 2 2 2	53 29 57 62 36	.03 .39 .49 .33 .09	.077 .132 .197 .190 .170	28 15 6 7 12	11 18 11 13 7	.11 .33 .68 .92 .52	41 33 206 141 229	.41 .12 .23 .18 .06	3 5 2 3 2	2.07 1.92 1.09 1.85 2.17	.02 .08 .11 .10 .02	.06 .08 .08 .11 .07	1 1 1 1 1	7 4 28 33 62	•
SE L5+00E 2+75N SE L5+00E 2+50N SE L5+00E 0+25S SE L5+00E 0+25S SE L5+00E 0+50S SE L5+00E 0+75S	3 6 5 14 12	185 49 147 50 755	52 73 41 35 41	84 64 148 101 228	1.2 .9 .5 .4 .4	7 3 7 4 11	6 2 14 4 51	345 296 939 391 6750	8.14 2.84 6.74 12.65 5.43	21 17 20 23 18	5 5 8 9	ND ND ND ND ND	3 2 4 - 10 4	146 166 68 34 76	1 1 1 3	3 2 2 4 2	2 2 2 4 2	49 25 46 77 38	.32 .10 .20 .14 .24	.211 .070 .138 .203 .168	8 8 9 27 27	7 4 10 11 11	.78 .50 .69 .34 .73	319 355 145 77 301	.18 .09 .13 .42 .10	3 2 3 2 3	1.40 .86 1.83 1.74 3.18	.11 .02 .01 .02 .01	.13 .08 .09 .06 .12	1 1 2 3 1	14 84 11 13 132	
SE L5+00E 1+00S SE L5+00E 1+25S SE L5+00E 1+50S SE L5+00E 1+75S SE L5+00E 2+00S P	7 8 6 7 6	98 62 134 53 129	24 28 39 45 16	78 62 111 63 63	1.0 1.5 1.2 .7 .5	4 2 4 3	4 7 3 4	367 306 456 251 183	8.15 8.63 6.94 6.09 3.56	11 19 17 20 3	5 5 5 5 5	NÐ NÐ ND ND	3 9 5 2 1	36 21 62 68 53	1 1 1 1	2 3 2 2 3	3 5 2 3 4	44 61 38 65 39	.15 .12 .14 .15 .23	.193 .109 .100 .070 .087	10 33 14 11 5	8 10 12 8 4	.23 .24 .58 .40 .34	89 40 119 92 366	.13 .38 .15 .19 .14	4 4 2 3 3	1.68 2.40 2.36 1.26 1.07	.01 .05 .01 .02 .03	.05 .07 .06 .06 .05	2 1 1 1	9 8 30 32 12	
SE L5+00E 2+25S SE L5+00E 2+50S SE L5+00E 2+75S P SE L5+00E 3+00S F SE L5+00E 3+25S F	1 1 2 1 2 1 2 4	194 422 277 251 33	12 26 12 13 36	76 89 90 98 79	.1 .5 .2 1.5	1 1 3 3 7	4 4 2 5 7	81 49 104 60 390	38.28 43.89 5.00 2.81 4.99	8 19 5 3 9	6 5 5 5 5	ND ND ND ND	2 2 1 3	16 11 79 56 49	1 1 1 1 1 1 1 1	2 2 2 2 2	13 21 3 2 2 2	8 13 16 41 119	.11 .07 .55 .42 .40	.069 .083 .081 .067 .055	2 2 8 12 9	1 6 10 13	.09 .11 .11 .07 .57	8 8 13 14 120	.05 .06 .15 .40 .47	2 2 5 3 5	.57 .60 .81 1.26 1.24	.02 .03 .04 .09 .08	.02 .03 .03 .03 .09	1 1 1 1 1	6 1 1 1 6	
SE L5+00E 3+50S SE L5+00E 3+75S SE L5+00E 4+00S SE L5+00E 4+25S SE L5+00E 4+50S	11 9 6 11 6	183 125 51 214 45	100 75 20 62 38	95 85 49 133 90	1.1 1.0 1.2 .6 1.1	4 6 2 6 4	4 3 3 34 4	401 371 94 2451 329	7.90 7.99 2.16 6.82 8.84	23 12 2 16 15	5 5 5 5 5 5	ND ND ND ND	6 2 1 2 6	81 127 38 72 29	1 1 1 1	4 2 4 2 2	2 2 2 2 2	37 28 51 50 76	.09 .09 .10 .17 .11	.122 .145 .038 .118 .076	11 11 5 9 17	9 10 5 9 13	.63 .55 .15 .88 .38	130 172 184 139 46	.16 .08 .11 .11 .28	4 4 3 4	1.98 1.26 .95 2.14 2.30	.02 .01 .02 .01 .02	.09 .10 .04 .10 .07	2 1 2 3 1	120 92 21 68 19	
SE L5+00E 4+75S SE L5+00E 5+00S SE L5+00E 5+25S SE L5+00E 5+50S SE L5+00E 5+75S	2 6 8 11 5	52 35 33 312 42	27 35 32 444 183	119 53 67 337 72	.4 .5 1.2 .2 1.2	6 3 5 10 6	7 3 6 5 7	657 164 256 6261 517	4.08 3.55 9.09 4.13 4.52	10 12 15 9 13	5 5 5 5 5 5	ND ND ND ND ND	1 2 5 2 1	56 42 44 46 45	1 1 5 1	2 5 3 2 2	2 2 2 2 2 2	72 69 57 27 51	.34 .16 .29 .32 .29	.087 .067 .110 .124 .090	7 9 14 8 9	11 7 10 4 6	.84 .25 .48 .70 .55	89 57 61 471 73	.17 .18 .32 .09 .19	4 4 4 4	1.66 1.06 1.60 1.91 1.39	.02 .02 .11 .04 .08	.13 .07 .08 .11	1 2 3 2 1	7 30 9 10 6	
SE L5+00E 6+00S STD C/AU-S	5 19	42 55	35 40	100 127	.9 7.0	5 66	7 28	764 921	5.14 4.11	12 42	- 5 18	ND 7	1	45 48	1 18	2 15	2 23	77 56	.23 .51	.132 .089	9 37	8 49	.64 .93	71 173	.19 .08	5 36	1.57 1.81	.03 .05	.10	1 13	12 49	

C

(

(

C

€:

€.

C

(

(

(

(

C

(

£

-Ty (

 $\supset_{\mathcal{C}}$

WESTERN CANADIAN PROJECT-GOSSAN #9102 FILE # 87-2530

SAMPLE	NO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	" NI PPH	CO PPM	HN PPH	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPN	SB PPM	BI PPM	V PPN	CA Z	Р 2	LA PPM	CR PPM	46 Z	BA PPM	TI Z	B PPH	AL . X	NA Z	K Z	N PPN	AU‡ PPB	
SE L5+00E 6+255	4	23	6	56	1.8	- 4	4	167	3.37	8	5	ND	2	35	1	2	2	101	.19	.069	6	6	.25	56	.29	2	.99	.01	.08	1	21	
SE L5+00E 6+50S	6	24	22	61	1.4	. 6	1	225	4.79	7	5	ND	3	44	. 1	2	3	79	.26	.086	13	8	.46	57	.27	2	1.27	.08	.07	1.	7	• •
SE L5+00E 6+755	4	23	26	69	.7	4	4	217	6.01	11	5	ND	4	44	1	2	2	87	.16	.145	9	9	.44	63	.25	2	1.43	.04	.06	1	8	
SE L5+00E 7+005	4	46	295	90	1.1	8	7	582	4.31	15	5	ND	2	96	1	2	2	62	.30	.164	10	12	.77	286	.23	5	1.82	.09	.09	1	31	
SE L5+00E 7+255	- 6	74	28	103	14	6	8	871	6.63	15	5	ND	4	50	1	3	2	51	.18	.098	13	11	.67	69	.19	2	1.94	.03	.07	1	105	
SE L5+00E 7+505	4	43	21	138	.6	7	7	541	5.38	6	5	ND	3	49	1	2	2	70	.28	.098	9	10	.78	64	.15	2	1.85	.02	.11	1	7	
SE L5+00E 7+75S	2	65	9	104	.6	17	10	551	2.77	5	6	ND	2	64	1	3	2	34	.47	.073	11	15	.99	131	.08	2	1.47	.03	.10	1	23 '	
SE 15+00E 8+00S	2	. 44	19	101	.5	17	13	824	3.34	2	. 5	ND	2	85	-1	3	2	43	.73	.083	9	14	1.19	154	.21	2	1.42	.15	.13	1	6	
SE L5+00E 8+50S	1	16	6	57	.2	3	4	405	1.79	2	7	ND	3	63	1	2	2	19	.53	.084	7	3	.70	71	.05	2	.86	.01	.07	1.1	5	
SE L5+00E 8+755	2	79	21	91	.7	22	6	475	4,90	14	5	ND	3	105	1	2	2	48	.31	.166	12	18	1.21	266	.20	3	1.44	.04	.15	1	52	
SE L5+00E 9+00S	2	17	7	49	.2	2	5	401	2.91	2	5	ND	3	63	1	2	3	19	.43	.160	7	2	.61	25	.04	2	.79	.01	.03	2	- 4	
SE L5+00E 9+255	1	11	5	56	2	2	4	398	2.62	2	5	NÐ	3	100	1	2	2	26	. 65	.123	9	1	.86	39	.06	2	1.16	.01	.06	1	8	
SE L6+00E 3+00N P	1	149	33	94	1.6	4	3	332	8.71	2	5	ND	1	81	1	3	2	37	.20	.097	7	2	.58	44	.07	- 4	1.10	.03	.07	1	7	
SE 16+00E 2+75N P	1	14	4	72	.3	5	4	92	1.10	2	5	ND	1.	27	-1	2	2	11	.18	.092	2	2	.18	68	.07	6	. 60	.03	.13	1	3	
SE L6+00E 2+50N	10	60	35	- 77	1.1	10	5	217	8.11	4	5	ND	6	68	1	2	2	65	.16	. 182	17	24	.46	156	.27	. 3	1.78	.03	.06	2	18	
SE L6+00E 2+25N	11	41	55	42	.8	9	3	184	6.93	17	5	ND	- 4	113	1	2	3	220	.16	.201	12	36	.34	175	.34	2	1.42	.02	.07	2	23	

Fage 6

C

ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOL

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158

State - General State

Storte State

3158 DATA LINE 251-1011

1

¢

(

GEOCHEMICAL ICP ANALYSIS

Sale of the second second

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HM03-H2D AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-8 SOIL P9-ROCK AU: ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE	RECE	IVED	e j	IUL 18	1987	E	DATE	REF	PORT	MAI	LED	J,	uly	, 3/	/8	7 A	SSA	YER.	A		eye	DEA	N TI	DYE.	CE	RTIF	IED	в.С	. AS	SSAY	ER	•
						W	ESTE	ERN	CAN	ADIA	N FF	OJE	ст-0	soss	AN I	¥910	2	Fil	e #	12	253	X	Pad	je 1								
SAMPLE		MO PPM	CU PPH	PB PPM	ZN PPN	AG PPM	NI PPN	CO PPH	NN PPK	FE	AS PPN	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA Z	P X	LA PPM	CR PPM	MG 2	BA PPM	TI I	B PPM	AL X	NA Z	K Z	N PPN	AUX PPB
SE L5+50W	10+00S	5	119	47	130	.4	14	18	1721	17.38	74	5	ND	6	- 44	1	2	2	117	.11	.414	. 9	39	1.96	84	.29	2	2.03	.02	.16	1	56
SE LS+50W	11+005	7	99	30	117	4	12	6	682	6.25	23	5	ND	-6	31	1	2	2	51	.09	.137	25	22	.76	105	.20	2	2.73	.04	.08	1	42
SE L5+50W	11+255	. 6	94	28	104	.9	15	8	579	6.03	25	5	ND	3	36	1	2	2	63	.09	.109	17	25	.72	176	.21	2	2.77	.03	.06	1	52
SE L5+50W	11+755	5	138	70	161	1.6	17	13	1323	12.11	81	5	ND	. 2	85	1	2	2.	126	.20	.400	8	62	. 89	132	.22	3	1.49	.02	. 09	1	98
SE L5+50W	12+005	5	154	56	173	2.3	22	. 8	452	11.05	- 77	5	ND	3	74	1	5	2	130	.12	.453	9	51	.77	128	.26	2	1.76	.03	.08	- 1	63
SE 15+50W	12+255	5	279	43	204	1.4	43	16	732	12.45	117	5	ND	4	92	. 1	2	2	146	.22	.529	11	73	1.42	124	.25	2	2.79	.09	.14	1	77
SE L5+50W	13+00S	14	105	346	96	2.2	16	4	196	14.98	35	6	ND	5	101	1	2	2	- 83	.06	.659	12	75	.76	106	.10	3	.92	.08	.16	1	290
SE 15+50W	13+255	13	73	41	60	.9	11	3	264	8.46	19	7	4.	5	163	1	2	2	84	.11	.376	14	35	.86	314	.34	3	i.28	. 09	.17	1	350
SE L5+50W	13+505	5	219	16	212	.2	29	12	1158	7.23	12	5	ND	3	56	1	2	2	72	.14	.250	. 11	22	1.60	157	.25	2	2.56	.02	.09	1	81
SE L5+50W	13+755	5	86	25	136		17	. 7	707	6.39	20	5	ND	2	63	1	2	2	74	.16	.156	11	21	1.16	211	.21	2	2.36	.04	.10	1. 1	88
SE LS+SON	14+005	9	82	26	82	.6	13	7	565	7.43	16	5	ND	5	109	1	2	2	81	.14	.325	14	23	.86	341	.23	2	1.98	.06	.12	· 1	122
SE 15+50W	14+255	9	61	19	51	.4	7	. 10	623	5.59	13	5.	ND	9	80	1 -	2	2	71	.23	.181	9	13	.77	141	.28	2	1.16	.06	.09	· •1	350
SE L4+50W	10+005	5	99	. 27	148	.9	19	8	851	7.23	36	5	ND	. 4	81	. 1	2	2	78	17	.243	12	24	1.46	493	.32	2	2.21	.04	.13	1	105
SE L4+50W	11+005	5	93	37	138	: .4	17	8	746	6.13	34	5	ND	4	57	1	2	2	73	.21	.197	17	29	1.17	143	.28	2	2.19	.06	.10	1	110
SE L4+50W	11+255	4	308	21	122	.7	24	- 19	1065	8.16	41	5	ND	2	45	. 1	2	2	90	.18	. 222	8	43	1.14	84	.17	2	2.45	.02	.05	1	32
SE L4+50N	11+505	7	273	22	152	1.5	45	18	1037	14.15	50	5	ND	4	54	1	2	2	118	.14	.477	9	61	1.54	122	.24	4	3.01	.02	.08	· t	126
SE L4+50W	11+755	5	162	42	156	1.9	34	6	745	8.53	50	5	ND	2	61	1	2	2	101	.16	.218	8	64	1.30	213	.20	2	3.13	.02	.09	. 1	130
SE L4+50W	12+255	5	73	45	87	1.1	13	5	462	7.43	38	5	ND	2	156	¹ 1	2	2	77	.21	.279	15	36	.80	265	.23	3	1.69	.07	.08	1	265
SE L4+50W	12+505	5	78	59	89	5	17	- 7	348	11.57	- 44	7	ND	4	118	1	2	2	107	.27	.651	11	45	1.00	218	.14	7	1.32	.10	.14	1	65
SE L4+50W	12+755	5	63	21	93	.7	11	5	572	6.49	21	-5	ND	3	79	1	2	2	58	.17	.163	11	18	1.18	412	.18	2	2.46	.02	.11	- 1	89
SE 14+50W	13+005	6.	72	28	94	.9	15	6	576	6.82	37	. 6	ND	2	84	- 1	2	2	71	.15	.209	11	34	. 98	297	.21	2	2.21	.04	.10	2	160
SE L4+50W	14+00S	- 11	210	7	113	1	75	14	169	10.80	- 44	5	ND	10	20	1	2	2	81	.08	1.031	5	18	.31	101	.03	2	7.22	.01	.02	7 -	33
SE L4+50W	14+255	5	48	20	- 99	4	. 14-	6	647	6.93	24	5	ND	3	83	1	2	2	73	.22	.195	11	27	1.39	245	.25	2	2.26	.03	.13	1	490
SE L4+50W	14+505	6	51	27	- 71	5	20	4	282	5.27	23	5	ND	2	84	- 1	4	2	73	. 13	.231	12	19	.82	184	.18	2	1.96	.04	. 08	. 1	125
SE L3+50₩	10+005	, a 4	52	43	99	1.3	13	8	1080	4.90	25	5	NÐ	2	48	· 1	2	2	56	.20	.156	13	21	.77	160	.19	. 3.	1.72	.04	.10	1	16
SE L3+50¥	10+255	5	9 8	28	129	.8	16	12	1659	5.73	31	8	ND	2	3B	1	2	2	56	.12	.137	15	26	.98	171	.14	2	2.12	.03	.08	1	25
SE L3+50W	11+005	7	269	- 14	141	2.5	23	16	1816	6.42	24	5	ND	3	24	1 -	2	3	33	.20	.123	21	38	.28	- 114 -	.11	4 -	3,37/	.04	.07	1	12
SE L3+50W	11+255	4	79	18	99	1.6	15	. 7	778	6.52	47	-5	ND	1	37	1	2	2	68	.15	.143	6	21	.62	102	.16	2	1.72	.01	. 08	1.	32
SE L3+50W	11+50S	- 4	40	21	83	4.1	10	5	453	7.21	56	5	ND	1	44	1	3	2	62	.17	.216	5	18	. 48	116	.08	2	1.18	.01	.08	1	:45
SE L3+50W	11+755	5	66	25	115	2.1	17	8	749	8.91	64	5	ND	2	49	1	6	2	87	.13	.200	7	40	. 65	135	.11	3	1.70	.01	.07	2	54
SE L3+50W	12+005	4	55	28	131	1.1	12	8	800	8.98	59	5	ND	2	57	1	2	2	93	.18	.238	7	36	.85	143	. 19	2	1.92	.04	.07	1	15
SE L3+50W	12+255	4	59	30	123	1.9	13	4	506	8.69	49	5	ND	. 1	74	1	- 2	2	103	.15	.194	. 8	42	.92	169	.20	. 2	2.18	.02	.08	1°,	78
SE L3+50W	12+50S	4	54	23	100	1.1	16	8	627	7.27	29	5	ND	. 1	67	1	2	2	77	.22	.174	10	34	1.00	229	.19	2	1.94	.07	.10	1	7
SE L3+50₩	12+755	10	133	24	101	.4	19	11	554	11.07	24	5	ND	7.	50	1	2	2	48	.10	. 439	12	29	.76	182	.16	2	2:43	.05	.07	1	- 44
SE L3+50W	13+255	18	202	42	90	.7	-17	24	838	15.87	17	5	ND	8	-131	• 1 •	2	4.	86	. 14	.656	17	26	.66	313	.20	2	2.33	.07	.10	1	42
SE L3+50#	13+505	10	115	51	79	.7	20	7	298	12.50	16	5	ND	. 9	58	1	2	2	65	. 14	.569	9	22	.63	212	. 21	2	1.42	.04	.08	1	22
STD C/AU-S	3 ·	19	5B	40	130	7.3	68	29	957	3.94	41	20	8	34	48	18	17	22	57	.50	.091	38	56	. 91	176	.07	35	1.73	.06	.14	13	49

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158

DATA LINE 251-1011

5

¢

C

€

€

C

(

€

GEOCHEMICAL ICP ANALYSIS

JU 2 2 398

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-WN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-5 SOILS P6-ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECE	IVED):	IULY 1	5 1987	D	ATE	REF	PORT	MAI	LED		Jul	'y 2	0 8	7 р	SSA	ÆR.	Ac	æ	f.4.	DEA	N T	OYE,	CE	RTIF	IED	B.C	. AS	SSAY	'ER		
				W	ESTE	RN (DIA	N MI	NING	FF	OJE	ст -	. GO	SSAN	#91	02	Fi	.1e	#@B2	7-23	77.	F	age	1							
SAMPLE	NO Pph	CU PPM	PB PPM	ZN PPN	AG PPN	NI PPM	CO Ppn	MN PPM	FE 1	AS PPN	U PPM	AU Ppn	TH PPM	SR PPM	CD PPN	SB PPM	BI PPM	V PPM	CA Z	P 2	LA PPH	CR PPM	116 2	BA PPM	71 2	B PPN	AL Z	NA Z	K I	N PPN	AU‡ PPB	
SE L5+00E 1+50N	7	54	54	77	.6	5	3	436	5.55	17	5	ND	6	103	. 1	4	2	36	.18	.105	12	13	. 61	224	.16	7	2.17	.02	.12	1	66	
SE L5+00E 1+25N	. 4	7.	27	22	.0	4	3	147	1.60	2	5	ND	1	53	1	2	2	56	.25	.036	. 17	1	.25	80	.40	2	1.32	.05	.06	1	20	
SE L5+00E 1+00N	12	23	- 28	36	.8	2	2	133	15.40	2	5	ND	. 9	15	1	2	6	91	.06	.056	20	12	.10	27	.81	8	2.12	.04	.04	1	9	
SE L5+00E 0+75N	- 4	114	31	142	.8	10	5	665	5.92	5	5	ND	3	113	· 1	· 3	2	53	.32	.167	- 9.	12	.93	212	.13	6	3.68	.01	. 18	.1	. 44	
SE L5+00E 0+50N	5	73	24	411	.3	11	17	1583	8.85	2	5	ND	1	104	1	6	6	90	.72	.247	7	10	1.31	120	.35	8	2.10	.18	.13	. 1	10	
SE 1 5+00E 0+25M	0	. 12	15		0	· 7		147	17 27	2	5	MD		22	1	2	Q	107	15	055	74	11	. 18	43	. 79		1.77	- 06	. 06	· 1	í q	
SE 1 5400E 0423N	. 7	1775	- 10	77	A	L 10		10/	2 17	2	5	ערו לוע	1	71	1	2	2	202	75	171	10		56	746	.18	5	2.58	.18	.11	1	1	
SE 14400E 1400N	10	17	17	77	¥ 4 مانسا ∠	r 10 7	11	177	4 25	-	5		Ę	42	÷	2	7	105	17	043	74	Å	18	54	70		1.34	.04	. 06	ī	16	
SE 1 6400E 0475N	10	17	27	47		7	2	125	12 11	2	5	80	6	17	1	i	Ă	43	11	177	19	14	.09	29	.54	8	1.84	.04	.06	1	3	
SE L6+00E 0+50N	5	• •	30	23	.2	4	5	172	2.21	2	5	ND	2	73	1	2	3	68	. 38	.038	15	3	.39	60	.43	3	1.22	.11	.08	i	43	
SE L6+00E 0+25N	7	39	30	41	.5	1	3	187	9.26	2	5	ND	. 4	41	1	8	2	128	.11	.044	8	7	.24	86	.42	5	2.35	.02	.06	1	12	
SE L6+00E 5+00S	9	41	39	85	1.3	5	5	378	6.14	5	5	ND	1	67	- 1	2	5	102	. 38	.075	13	8	.49	169	.40	4	1.61	.02	.10	1	10	
SE L6+00E 5+255	10	32	51	58	1.0	3	4	1077	6.07	4	5	ND	3	53	1	2	6	101	.33	.147	11	13	.32	69	.44	4	1.24	.03	.09	1	40	
SE L6+00E 5+505	. 9	257	82	132	.7	6	17	1436	7.55	4	5	ND	2	46	1	2	2	29	.21	.198	10	6	.74	211	.09	- 4	1.43	.03	.07	1	£36	
SE L6+00E 5+755	4	8	16	26	1.0	6	4	185	4,68	2	5	ND	- 3	26	1	5	3	96	.22	.058	17	13	.31	34	.93	4	1.24	.08	.06	1	9	
SE L6+00E 6+00S	. 9	14	18	73	(7.T	5	3	239	4.85	9	5	ND	5	28	· 1	2	. 5	75	.20	.087	43	11	.18	52	.70	5	1.24	.05	.08	2	3	
SE L6+00E 6+25S	5	50	24	. 97	.7	4	6	446	5.60	8	5	ND	2	77	1	4	2	104	.39	.061	13	11	.65	121	• 32	- 4	2.06	.03	.14	1	5	
SE L6+00E 6+50S	16	53	27	78	.2	- 4	5	433	8.80	5	5	ND	7	38	1	3	2	43	.17	.082	24	10	.39	46	. 32	5	2.13	.03	.07	1	40	
SE 16+00E 6+75S	3	212	20	98	1.0	18	11	920	5.02	6	5	ND	2	103	1	2	2	51	.70	.152	16	29	1.26	158	.37	6	1.88	.16	.14	2	16	
SE L6+00E 7+00S	3	50	21	114	.3	6	9	715	4.07	8	7	ND	3	85	1	- 4	2	36	.61	.107	10	2	.86	229	•14	2	1.40	.03	.08	1	13	
SE 1 6+00E 7+255		74	27	143	5		11	1029	4 53	11	14	ND	5	97	. 1	3	,	39	.71	.142	11	11	.99	191	.15	4	1.51	. 02	. 12	1	20	
SE L6+00E 7+505	3	81	34	274	.3	;	14	1849	4.84		5	NO	Ĭ	105	3	2	3	38	.83	. 143	14		.93	297	. 21	3	1.52	.06	. 08	1	28	
SE 1.6+00E 7+755	2	42	9	75	.1			755	2.81		.5	NB	3	97	1	,	. 2	29	. 98	.156	11	. i	.97	98	.12	3	1.30	.01	.08	· 1	5	
SE L6+00E 8+005	- 3	53	10	81	.1	5	12	875	3.95	2	5	ND	4	100	1	2	2	33	.74	.167	11		.85	90	. 15	3	1.33	.03	.08	1	15	
SE L7+00E 5+00NA	4	87	32	109	.4	9	8	569	5.37	4	. 5	ND	3	97	1	2	2	76	.42	.100	11	16	.84	165	.24	3	2.46	.06	15	- 1	7	
SE L7+00E 5+00NB	. 8	205	27	126	.8	12	14	681	6.81	7	5	ND	- 4	93	i	2	2	75	.44	.171	12	15	.93	342	.37	4	2.70	.13	.15	1	10	
SE L7+00E 4+75N	6	54	36	65	.7	· 4	-3	374	5.19	6	5	ND	2	80	1	2	2	79	.20	.116	11	16	.42	170	.33	3	2.32	.02	.12	1	2165%	
SE L7+00E 4+50N	3	4763	- 39	256	.2	29	29	1914	6.98	2	12	ND	13	145	1	2	3	90	. 36	.200	27	46	.99	490	.83	3	3.53	.08	.13	1	- 4 -	
SE L7+00E 3+75N	5	109	22	97	.3	10	11	863	5.39	4	5	ND	· 3	114	1	2	2	87	.47	.134	12	13	.85	180	.42	2	2.10	.10	.13	2	9	
SE L7+00E 3+50N	6	85	22	101	.2	10	12	1196	5.42	2	8	ND	4	96	1	- 4	2	71	.51	.148	10	12	.84	167	. 39	3	1.86	.12	11	- 1	10	
SE L7+00E 3+25N	3	60	14	109	6.8	6	5	443	4.06	2	7	ND	2	80	1	2	2	55	.34	.078	8	17	.65	85	.26	2	-1.44	.03	.12	1	5	
SE L7+00E 3+00N	9	60	- 44	. 76	.3	5	3	280	10.54	2	5	ND	- 6	48	1	2	2	68	.16	.130	14	18	.31	122	.36	4	2.26	.02	. 08	2	12	
SE 17+00E 2+75N	1	660	7 29	87	.9	3	4	100	32.09	2	5	ND	3	38	1	2	- 4	45	.06	.158	3	3	.18	53	.13	- 2	1.29	.02	.03	1	9	
SE L7+00E 2+50N	8	16	22	- 44	.7	3	3	197	8.72	2	5	ND	10	20	1	2	2	88	.11	.077	23	12	.16	25	. 90	3	2.46	.06	.06	1	_ 6	
SE L7+00E 2+25N	8	161	81	87	.9	7	5	488	13.36	2	5	۳D	. . 4	217	1	3	2	68	.18	.458	14	15	.58	360	.13	4	1.88	.02	.13	1	585.	
SE L7+00E 2+00N	9	35	26	68	1.1	5	4	242	7.48	2	5	ND	6	38	1	2	2	48	.20	.165	17	12	.23	62	.28	4	2.16	.05	.08	2	7	
STD C/AU-S	21	63	42	135	7.3	68	29	1069	4.22	39	20	7	37	54	20	. 15	22	64	.52	.103	43	63	.87	180	.11	37	1.85	.07	.15	12	47	

						WES	STER	NC	ANAD	IAN	MIN	ING	PR0	JEC	r-60	SSAN	1 #9	102	FI		¢ ₿7	-230	77								Fage	2
SAMPLE	HO	CU	PB	ZN	A6	NI	CO	MN	FE	AS	U	AU	TH	Sƙ	CD	SB	BI	. V	- CA	P	LA	CR	#6	BA	11	B	AL	NA	K,	• W	AUT	
	PPH	PPĦ	PPN	PPN	PPN	PPN	PPH	PPH	2	· PPH	PPH	PPĦ	PPM	PPN	PPĦ	PPH .	PPH	PPH	ĩ	2	PPH	PPN	1	PPH	2	PPN	2	· . X.	2	PPN	ppb	
SE 17400E 1475M	7	17	77	29	.1	2	2	81	1.07	ß	5	ND	2	55	. 1	2	2	49	.16	.022	. 8	8	.12	53	.06	2	1.04	.01	.03	1	8	
SE 17400E 1450N	. 8	15	27	51		6	i	125	5.50	12	5	ND	4	44	1	5	.2	118	.16	.072	16	10	.22	124	.50	2	1.04	.04	.05	2	4	
SE 17+00E 1+25N	17	57	47	76	1.0	2	Å	182	20.92	25	5	ND	9	16	1	2	2	116	.02	.141	13	16	.11	36	.53	3	2.32	.02	.04	4.	3	
SE L7+00E 1+00N	10	21	83	63	.5	3	4	192	10.50	3	5	ND	9	15	1	7	2	81	.09	.060	30	8	.16	30	. 62	2	1.49	.05	.05	1	1	
SE L7+00E 0+50N	8	49	46	65	1.0	5	4	306	7.03	20	5	ND	13	67	1	4	2	34	.12	.119	19	8	.44	200	.17	2	2.89	.04	.11	2	20	
CE 1 7400E 0175N	,	10	n /	40			,	147	E 7E	7	f	M0		47	+		2	120	21	120	7	10	70	41	77	र	90	04	09	• . •	1	
SE L/+00E 0+23M	17	10	20.	98 54	.3	ວ າ	. 7	140	0.00		3 5	10	3 7	11	1	2	2	110	.21	.120	34	10	10	77	45	נ ז	1 00	.00	100	· 1	3	
SE 17400E 14256	15	- 20	17	70		- -		274	1.71	-	5	ND NO	7	13	1	5	2	70	.00	.040 TTA	18		13	37	. 40		1.19	.05	.07	3		
SE 17+00E 1+233	11	30	35	- R1	.7		5	194	8.79	Å	5	ND	-6	47	1	2	2	79	.15	.136	17	14	.29	68	.31	2	1.27	.04	.06	1	i	
SE 1 7+00E 1+755		217	25	208	.9	10	20	1301	4.87	13	5	ND	2	76	1	2	2	55	.42	. 106	16	11	.98	220	.08	2	2.26	.02	.15	1	13	
		217	**	100	••	••	20				Ū		-	• •	•	-	-		• • •			•••	• • •									
SE L7+00E 2+00S	8	20	24	52	.3	4	4	137	7.64	12	5	ND	4	33	1	2	2	121	.17	.090	20	11	.23	38	.49	2	1.23	.04	.06	5 1	1	
SE L7+00E 2+25S	5	106	25	69	.8	4	4	92	8.00	10	5	ND	1	58	1	2	2	68	.22	.084	8	2	.18	-88	.10	2	.96	.02	.07	1	20	
SE L7+00E 2+50S	3	234	27	81	.4	6	. 6	195	21.51	2	. 5	ND	2	39	1	2	2	- 41	.10	.115	6	1	.32	- 77 .	.11	- 4	1.22	.03	.06	. 1	59	
SE L7+00E 2+75S	3	223	21	82	.5	3	5	111	24.86	10	5	ND	3	32	1	2	2	62	.15	.176	5	.1	.20	67	.24	3	. 88	.02	.05	1	3	
SE L7+00E 3+00S	6	17	11	42	.6	5	3	121	1.14	- 4	5	ND	1	45	1	2	3	38	.29	.056	6	· 5	.17	49	.10	- 4	1.09	.03	.08	2	6	
CC 1 7.00C 7.0C0			70			•	-		a 7 0				•	£7		-	•		- 17	000		10		51		•	4 40		A0		5	
5E L7+00E 3+235		125	. 34	76	1.4	Y .		400	8.79	Y	2	ND.	4	23	1	2	- 4	20	.23	.072	7	10	.00	50	.10	4	1.07	.04	.07	1	20	
SE L/TUVE 37305		70	33	63	1.7	3	•	100	3.40	10	3		1	39 20	1	2	4	32	.13	.033	24	10		100	.10	· · ·	1.30	102		1	12	
SE L/+0VE 3+/33	13	30	30 70	177	1.3	4	د ۱۵	203	J.4/ 1 50	22	3	ND	్	90 00	1	· 1	2	70	- 17	171	17	0	. 47	114	14	2	1.00	.03	08	1	31	
SE 17+00E 4+005	21	174	37 50	137	· • •	6	17	497	77 01	16	5	ND	ل ۲	1.89	1	2	2	31	. 19	. 261	1/	5	.54	151	.06	2	1.15	.01	.10	1.	270	
	••	114	54	101		ŭ	Ŧ	475	10.30	10	J		v	107	•	•	•	••	•••										•••	• •		
SE L7+00E 4+50S	- 7	184	58	282	.9	3	8	942	6.17	17	5	ND	4	113	2	2	2	33	.22	.161	9	5	.96	136	.10	2	1.11	.02	.11	1	73	
SE L7+00E 4+755	10	70	40	98	.1	7	6	405	6.84	21	5	ND	4	65	1	2	2	57	.15	.237	10	-14	.71	85	.14	2	1.41	.02	.11	2	61	
SE L7+00E 5+00S	18	- 44	- 36 -	81	1.0	2	3	273	13.47	17	5	ND	15	10	1	5	2	61	.04	.090	23	10	.13	30	.37	3	2.06	.03	.08	1	6	
SE L7+00E 5+255	106	12	16	153	.4	5	10	521	6.99	- 13	5	ND 1	4	41	1	5	2	74	.32	.056	19	12	.44	56	.42	2	1.72	.05	.06	2	2	
SE L7+00E 5+50S	25	100	41	137	1.1	5	11	1068	6.75	16	5	ND	1	51	· 1	2	2	29	.17	.112	- 9	9	.70	145	.04	2	1.29	.02	.08	2	56	
SE L7+00E 5+755	. 8	26	21	66	1.5	5	3	237	10.70	7	5	ND	5	18	1	. 3	2	107	.09	.223	18	13	.16	31	. 38	4	1.84	.03	.06	3	2	
SE L7+00E 6+00S	15	26	18	70	.9	2	4	385	16.91	9	5	ND	8	10	ī	2	2	65	.06	.088	30	9	.09	31	.38	3	1.66	.03	.05	1	2	
SE L7+00E 6+25S	4	83	18	97	.1	7	23	765	5.37	17	5	ND	2	58	1	2	2	43	.33	.093	12	14	.74	81	.09	2	1.21	.02	.10	1	20	
SE L7+00E 6+505	3	63	15	130	.2	10	15	558	5.14	17	5	ND	3	71	1	2	2	56	.58	.128	9	13	1.06	105	.19	2	1.44	.08	.15	1.	43	
SE L7+00E 6+755	4	64	21	147	.1	8	12	634	4.33	17	5	ND	4	79	1	2	2	55	.48	.086	10	10	1.04	94	.11	2	1.51	.01	.16	1	7 .	
SE L7+00E 7+00S	2	150	20	235	.4	12	20	1416	4,63	11	5	NÐ	4	77	1	2	2	57	.70	.155	11	11	1.24	153	.12	2	1.72	.01	.20	1	13	
STD C/AU-S	19	59	43	135	7.4	73	30	997	3.99	- 44	20	8	-35	50	19	15	22	60	. 49	.097	39	56	.89	184	.09	35	.1.71	.06	-13	14	48	

						WEST	TERN	I CA	NADI	AN N	11NI	NG F	PROJ	ECT	- 6	0884	4N #	9102	2 F	ILE	# 8	7-23	77							1	Page	3
SAMPLE	NO	CU PPH	PB PPM	ZN PPM	AG PPM	NI PPN	CO PPN	nn PPh	FE 2	AS PPM	U PPM	AU Ppm	TH PPM	SR PPM	CD PPM	SB PPM	81 PPM	V PPH	CA Z	Р 1	LA PPN	CR PPM	M6 2	BA PPM	11	B PPN	AL	NA Z	K Z	N PPN	AUT PPB	
SE LBHOUE SHOON	9	40	43	45	·.1	2	3	132	6.96	16	5	ND	3	65	1	2	2	131	.12	.123	11	13	.21	120	.48	2	1.44	.02	.07	1	19	
SE L8+00E 4+75H	7	17	31	32	.8	3	2	80	4.71	18	5	ND	4	49	1	2	2	82	. 19	.164	29	7	.12	45	. 46	2	1.02	.02	.06	2	16	
SE L8+00E 4+50N	2	231	34	108	.8	4	5	361	14.94	9	5	ND	. 3	224	1	2	2	53	.22	.232	10	6	.48	200	.12	2	1.63	.03	.10	1	23	
SE 1 8+00E 4+25N	3	369	.44	130	.2	5	14	750	28.52	2	5	ND	4	126	1	2	2	34	.19	.172	13	3	.42	132	.14	2	1.40	.03	.11	1	29	
SE L8+00E 4+00N	11	341	31	144	.1	4	524	15747	10.20	15	5	ND	11	65	1	2	8	66	.23	.071	36	19	.22	135	.43	3	1.44	.03	.08	1	24	•
SE L8+00E 3+75N	. 4	234	33	159	.7	. 9	17	791	5.99	12	5	ND	5	85	1	2	2	52	.49	.161	12	14	.97	195	. 28	2	2.17	.14	.13	1	-1	
SE L8+00E 3+50N	15	27	12	92	.1	2	4	295	15.55	18	5	ND	13	13	1	7	2	45	.10	.074	29	9	.09	32	.56	2	1.90	.05	.08	1	2	
SE L8+00E 3+25N	9	75	34	87	1.0	4	5	281	12.11	24	5	NŰ	7	43	1	2	3.	87	.11	.126	13	21	.37	86	.47	2	2.11	.03	.10	1	21	
SE 1 8+00E 3+00N	7	31	32	45		2	3	144	9.20	14	5	ND	4	42	1	3	2	111	.12	.104	12	11	.23	82	.32	2	1.73	.02	.07	1	10	
SE LB+00E 2+75N	4	155	25	64	.2	4	4	227	9.02	13	5	ND	2	53	1	2	2	60	.24	.072	8	7	. 42	43	.26	2	1.44	.06	.06	·, 1	2	
SE L8+00E 2+50N	12	55	15	135	.1	2	2	288	9.77	21	5	ND	10	80	1	5	2	43	.55	.082	34	11	.09	28	.35	2	1.39	.04	.08	1	1	
SE 1.8+00E 2+25N	8	65	32	69	.8			296	7.59	16	5	ND	4	53	1	2	2	61	.15	.099	11	15	.42	93	.22	2	1.68	.03	.07	1	A15	
SE 1 8+00E 2+00M	12	77	35	88		· .	Ś	619	13.86	16	5	ND	. 6	46	1	2	2	76	.17	.162	14	16	.40	99	.37	.3	1.94	.02	.10	1	26	
SE 1 8+00E 1+75N		21	28	57	1.0		7	307	10.63	17	5	ND		29	- 1	2	2	89	.13	. 199	28	12	.16	62	.40	6	1.28	.04	.07	2	5 .	
SE L8+00E 1+50N	9	31	35	59	.2	2	3	203	8.80	15	5	ND	. 4	39	1	2	2	85	.11	.130	14	11	.25	93	.33	4	1.71	.02	.05	1	7	
SE L8+00E 1+25N	14	91	31	91	.2	5	5	370	10.02	21	5	ND	5	51	1	2	2	108	.16	.154	15	14	.40	108	. 49	7	1.69	.03	.08	1	10	
SE L8+00E 1+00N	16	17	21	62	.3	3	4	200	12.75	21	5	ND	6	21	1	5	2	107	.11	.108	26	9	.18	42	.81	6	1.14	.06	.05	1	1	
SE L8+00E 0+75N	10	52	27	67	.3	3	4	149	22.46	18	5	ND	17	18	1	3	-2	52	.06	.164	10	24	.14	38	. 38	2	3.71	.04	.05	2	2	
SE 18+00E 0+50N	16	290	59	492	.2	12	27	2024	6.52	11	5	ND	2	88	1	2	2	50	.32	.114	18	10	.73	569	.09	2	2.95	.04	.18	1	24	
SE L8+00E 0+25N	21	37	43	61	.4	3	4	163	7.22	18	5	ND.	4	60	1	2	2	126	.16	.100	15	13	.25	92	.58	2	1.80	.04	.07	1	23	
SE L8+00E 0+00N	13	45	24	68	1.7	3	3	185	9.40	16	5	ND	11	36	1	2	3	67	.17	.080	16	16	.23	79	.48	7	2.44	.04	.07	1.	14	
STD C/ALES	22	58	41	139	Fi.8	67	31	1065	4.13	41	19	8	37	53	20	£16	21	63	.52	.095	39	59	.95	189	.11	34	1.88	.06	.17	13	46	
SE 1 8+00F 0+255	11	37	31	74	1.1	5	5	235	10.27	20	5	ND	8	50	1	2	2	91	.21	.133	15	16	.48	105	.49	2	2.27	.05	.10	1	1	
SE 18+00E 0+505	14	30	26	60	.4	3	3	181	11.05	14	5	ND	8	26	1	2	2	79	.08	.087	20	10	.20	54	.56	6	1.98	.03	.07	1	2	
SE L8+00E 0+755	10	42	31	67	.3	3	3	168	10.87	17	5	ND	7	39	1	2	2	69	.14	.190	16	15	.12	60	.39	2	1.71	.02	.05	1	4	
SE L8+00E 1+00S	5	52	29	114	.6	6	7	529	8.08	18	5	ND	5	71	1	2	2	74	.28	.095	11	13	.87	145	. 30	2	2.33	.02	.17	1	2	
SE L 8+00E 1+25S	7	43	11	66	17.3	- 3	6	355	5.50	12	5	ND	3	21	1	2	2	44	.13	.090	28	14	.23	70	.31	2	2.29	.06	.09	1	1	
SE 1 8+00E 1+50S		33	19	- 84	100	5	-	313	8.88	16	5	ND	5	40	1	2	2	95	.17	.110	16	11	.45	63	.40	3	1.72	.02	.08	1	2	
SE L 8+00E 1+755		31	22	70		3	5	265	9.60	19	5	ND	5	27	1	2	2	108	.10	.129	16	11	.45	53	.42	. 2	1.88	.03	.07	1	3	
SE 10400E 14733	,	10	21	70	•			230	10 10	20	5	MO	5	32	1	3	2	69	. 06	3 . 194	8	21	. 39	90	.24	2	3.03	.02	.07	1	37	
SE LOTOVE 2TOVS	•	ev	20		•1			230	10.10	20		14	5		•	. "			•••													
SE L8+00E 2+25S	- 7	58	51	64	.4	6	- 4	244	9.48	16	5	ND	3	81	1	3	2	61	.13	3 .282	2 14	11	.28	93	.22		1.71	.02	.07	1	220	
SE L8+00E 2+50S	7	85	54	73	.2	3	3	241	9.14	16	5	ND	3	65	1	2	2	57	.2	B .239	10	10	. 36	93	.18		1.34	.01	.06	2	2	
SE L8+00E 2+75S	8	126	26	84	1.1	- 4	1	192	2 10.22	9	5	ND	3	49	1	2	2	65	.14	4 .123	3 12	2 7	.33	151	.22		2 1.80	.02	.07	1	16	
SE L8+00E 3+00S	4	39	21	43	.8	2	3	5 220	9.41	13	5	ND	2	39	1	3	2	181	.1	8.109	9 4	6	.47	43	.65		1.65	.02	.07	1	5	
SE L8+00E 3+255	10	256	46	108	.3	5	11	703	9.90	9	5	ND	5	58	1	2	2	48	.1	8 .081	1 13	5 13	.55	69	.19		2 2.17	.02	.08	1	20	
SE L8+00E 3+50S	· 4	252	11	72	1.3	4		2 22	2 1.86	6	5	i NO	1	42	1	2	2	29	.2	4 .10	1 26	9	. 33	58	.10		2 2.95	.01	.05	. 1	7	
SE L8+00E 3+75S	13	35	20	76	.1	2		3 29	9.93	24	. 5	i ND) 17	12	1	2	2	43	.0	5 .092	z 25	58	.10	28	. 37	•	2 1.98	.04	. 46	. 1	- 1 -	

Correct Mark

Martin Bart

and the second

.

..

(

€

(

Ę

€

٤

¢

€

€

WESTERN CANADIAN	MINING	PROJECT	-	GUSSAN	#9102	FILE #	87-2377
------------------	--------	---------	---	--------	-------	--------	---------

Camly CA		CU .	65	7.4	•		co	." Atul		AC	-		ты	CD	CD	GR	RI	v	69	p	۱A	66	86	RA	11	R	ا	NG	. K	· 🖬		
SARPLES	PPH	PPN	PB	PPN	PPM	PPN	PPN	PPN	1	PPN	PPN	PPN	PPN	PPN	PPN	PPN	PPN	PPN	2	ž	PPĦ	PPN	2	PPH	2	PPN	1	ž	2	PPĦ	PPE	
SE L8+00E 4+00S	8	69	38	66	` .4	5	- 4	271	4.31	8	5	ND	3	81	· 1	2	2	83	.33	.090	9	5	.33	122	.33	4	.92	.03	.09	1	49	
SE L8+00E 4+25S	9	140	52	103	.7	7	9	542	6.64	7	5	NÐ	4	101	1	2	2	41	.44	.116	11	8	. 88	249	.21	5	1.41	.12	.12	1	£330÷	
SE L8+00E 4+50S	10	50	31	66	.6	5	4	252	10.23	12	5	ND	5	52	1	2	2	121	.15	.408	13	13	. 38	97	.30	7	1.87	.03	.08	1	46	
SE L8+00E 4+75S	7	26	- 24	62	.3	6	7	342	3.84	9	-5	NŰ	3	50	- 1	2	2	72	.27	.085	21	15	.45	63	.49	6	1.27	.08	.12	l	ę	
SE L8+00E 5+00S	10	62	8	105	.5	9	.8	456	7.28	5	5	ND	8	36	1	2	2	91	.25	.115	28	41	. 69	59	.49	5	2.10	.06	.13	1	L	
SE L8+00E 5+255	- 6	116	35	96	.2	8	10	599	7.55	16	5	ND	2	58	1	2	2	42	. 34	.126	9	19	. 88	70	.10	6	1.28	.02	.13	1	21	
SE LB+00E 5+50S	3	39	24	99	.1	11	15	659	6.03	15	5	ND	- 3	87	1	2	2	59	.74	.116	1	15	1.05	66	.27	5	1.41	.12	.12	1	- 11	
SE L8+00E 5+755	3	36	11	90	.2	14	13	535	5.76	8	5	ND	4	98	1	2	2	- 14	.80	.102	9	21	1.37	69	.42	4	1.75	.19	.20	1	13	
SE L8+00E 6+255	4	138	26	198	.4	16	22	1400	5.24	20	. 5	ND	5	93	1	2	2	63	.74	.149	12	19	1.36	195	.18	4	1.95	.01	.29	1	19	
SE L8+00E 6+50S	3	53	15	88	.1	6	10	551	4.74	16	5	ND	- 3	75	1	2	2	49	.61	.128	8	14	.97	78.	.20	4	1.28	.06	.17	1	38	
SE L8+00E 6+755	2	52	12	130	.3	8	14	1062	3.41	5	- 5	ND	5	140	1	2	2	41	.98	.136	12	6	1.10	172	.12	4	1.71	.01	.16	. 1	1	
SE L9+00E 5+00N	7	63	32	80	.3	6	, 1 4 -	529	5.96	12	5	ND	2	73	1	2	3	60	.33	.147	8	22	.47	158	.19	9	1.29	.02	.09	1	8	
SE L9+00E 4+75N	6	34	23	- 47	.1.	7	6	208	3.91	10	5	ND	2	69	1 I.	2	2	89	.36	.077	9	11	.44	116	-41	4	1.14	.09	.09	1	2	
SE L9+00E 4+50N	9	366	53	131	2.6	2	3	280	10.14	10	7	ND	2	170	1	2	2	40	.29	.162	17	11	.41	. 99	.05	7	1.51	.02	.12	2	9	
SE L9+00E 4+25N	7,	241	28	120	.8	5	6	716	7.87	7	5	ND	2	164	1	2	. 3	86	.43	.105	21	11	.38	71	.38	6	1.50	.07	.10	. 1	6 -	
SE L9+00E 4+00N	° 9	351	27	97	.1		5	519	5.93	20	5	ND	2	60	Ĺ	2	5	60	.37	.067	58	14	.27	40	.30	5	1.73	.05	.11	1	17	
SE L9+00E 3+75N	12	35	13	56	.3	4	5	217	12.05	2	5	ND	5	40	1	2	2	104	.21	.107	16	12	.33	44	.57	6	1.76	.06	.08	1	1	
SE L9+00E 3+50N	j ó	119	15	177	.1	9	22	1659	5.19	10	5	ND	3	82	1	2	2	61	. 44	.142	13	15	1.05	120	.16	4	2.73	.02	.22	1	11	
SE L9+00E 3+25N	6	134	20	115	.6	6	8	496	6.07	13	5	ND	6	91	1	2	2	78	.43	.090	12	13	.83	105	.30	- 4	2.33	.05	.18	1	.19	
SE L9+00E 3+00N	8	44	29	- 77	.1	4	7	1732	7.81	9	5	ND	4	54	1	2	2	116	.26	.164	12	13	.44	109	.45	5	1.66	.05	.12	1	14	
SE L9+00E 2+75N	7	31	25	76	.7	. 5	5	180	7.78	7	5	ND	4	49	1	2	2	170	.24	.083	7	14	.34	74	.76	4	1.63	.06	.08	1	2	
SE L9+00E 2+50W	. 8	74	42	90	.5	7	6	615	6.09	. 14	5	ND	2	96	1	2	2	62	.28	.217	11	17	.69	298	.18	4	1.38	.06	.13	1	36	
SE L9+00E 2+25N	10	86	43	89	.9	6	5	357	7.70	16	5	ND	3	80	1	2	2	65	.24	.131	10	15	.58	243	.21	4	1.92	.04	.10	2	27	
SE L9+00E 2+00N	13	33	15	65	.4	. 4	4	274	8.70	15	5	ND	5	34	1	2	6	87	.19	.076	27	12	.21	67	. 46	5	1.39	.05	.09	· 1	1	
SE L9+00E 1+75N	' 1	84	30	88	.2	6	5	293	5.37	14	5	ND	2	74	1	2	2	76	.46	.089	- 8	15	.38	121	.24	3	.99	.02	.09	t	29	
SE L9+00E 1+50N	-14	39	13	83	.5	8	8	749	9.61	13	5	ND	6	36	1	7	4	65	.27	.080	41	15	. 38	74	.39	5	1.70	.07	.09	2	3	
SE L9+00E 1+25N	7	191	10	46	1.6	5	5	174	4.46	10	8	ND	2	23	1	3	1.4	32	.17	.189	30	17	.24	50	.13	3	3.65	.05	.09	1	1	
SE L9+00E 1+00N	12	26	19	62	.4	3	3	203	9.10	14	5	ND	5	28	1	2	- 4	126	.11	.097	21	11	.18	- 51	.70	4	1.29	.04	.06	1	1	
SE L9+00E 0+75N	10	. 34	32	62		- 3	- 4	199	10.38	11	- 5	ND	5	- 59	. 1	5	2	80	.17	.138	14	12	.32	117	.34	3	1.54	.05	.04	1 - 1	. 4	
SE 19+00E 0+50N	3	50	14	114	.2	18	22	2388	4.53	15	5	. ND	5	359	1	2	2	78	3.18	.114	17	19	1.07	137	.18	2	4.15	.06	.23	1	, 2	
SE L9+00E 0+25N	6	40	42	81	.3	.4	· 4,	430	5.06	15	5	ND	3	104	. 1	2	2	51	.29	.172	9	13	.71	198	.13	2	1.53	.03	.13	1	156	£
SE L9+00E 0+00N	. 7	24	53	51	.3	2	2	143	3.13	14	5	ND	2	90	1	2	3	77	.17	.179	11	3	.21	107	.17	2	1.17	.01	07	1	18	
SE L9+00E 0+255	11	61	13	82	.6	1	3	234	10.22	10	5	ND	12	25	1	3	8	37	.10	.095	29	9	.12	44	.35	. 3	3.57	.05	.08	5	4	
SE L9+00E 0+50S	13	.36	22	83	.5	3	3 .	445	11.34	7	5	ND	8	27	1	2	3	34	.12	.112	25	14	.21	69	.23	3	2.26	.04	.06	1	21	
SE L9+00E 0+755	6	58	144	130	.7	5	5	559	5.14	18	5	ND	3	206	1	2	2	44	.24	.197	15	10	.78	402	.14	2	1.52	.06	.13	1	19	
SE L9+00E 1+00S	6	- 64	81	119	1.1	4	4	440	4.56	18	6	ND	3	154	1	2	2	34	.20	.233	13		. 63	274	.11	2	1.13	.03	. 10	1	82	
STD C/AU-S	20	61	38	135	7.2	69	30	1003	4.02	37	17	7	34	52	18	15	19	60	-50	.094	40	61	.90	174	.09	. 34	1.77	.06	. 15	12	51	
							~~	1000	10.44		.,	'	~~	44	10	14			144					4/7	•••	~4	4417			••		

Fage

(

(

							WEST	TERN	CAI	NADI		11NI	NG I	PROJ	ECT	- G	OSSA	4N #	9102	2 F	ILE	# 8	7-23	577							21 - 1 -	Fac	je
SAMPLE		NO	CU	PB	ZN	AG	NI	CO	MN	FE	AS	U	AU	TH	SR	CD	SB	BI	¥	CA	۴	LA	CR	#6	BA COM	П	B	AL	NA	K	N DDw	AU	
	. 1	PH	PPN	PPH	PPH	PPH	PPN	PPH	PPH	7	PPH	PPH	PPH	PPH	PPĦ	PPN	221	PPH	PPR	1	1	PYR	rrn	4	rrn	4	rrn	*	4		rra	***	
PF 101005 1175	c	7	144	57	174		. .	17	1705	5 48	15	5	ND	1	119	í	2	2	39	.28	.173	14	12	.77	396	.11	2	1.67	.03	.12	2	25	
5E LTTUVE 1723	5 C	÷.	100	107	90		Å	2	318	6.79	16	8	ND	3	161	1	2	2	49	.09	.228	16	14	. 49	232	.10	2	1.52	.03	.10	1	58	
SE 19400E 1475	с .	4	10	104	77	1 0	3	3	303	6.34	20	5	ND	3	127	. 1	2	3	63	.09	.284	16	9	.45	216	.14	2	1.64	.03	.06	3.	26	
SE LATOUE 1173	с ·	5	70	51	117	1		Ň	635	6.35	12	5	ND	1	136	1	2	3	44	.36	.174	11	14	.77	133	.11	2	1.54	.01	.10	1	€ 280	
CE 1 9400E 2400	c	7	109	71	117		,	ĥ	911	8.07	16	5	ND	2	165	1	2	2	43	.29	.230	13	13	.69	227	.11	3	1.50	.02	.13	1	35	
3E L7400E 2423	3		100	11		••	'	Ŭ		0112		-				-																	
SE L9+00E 2+50	S	6	105	71	122	.7	6	. 6	539	6.74	15	6	NC	- 3	166	1	2	2	44	.26	.189	14	12	.75	228	.12	3	1.70	.03	.10	1	29	
SE L9+00E 2+75	S	8	215	28	98	1.4	2	3	161	8.27	6	7	ND	- 3	66	1	2	2	52	.21	.124	14	9	.31	50	.22	4	1.96	.01	.04	. 1	- 6	
SE L9+00E 3+50	S	17	242	56	214	.1	9	7	370	5.56	6	5	NÐ	3	92	1	2	2	59	.38	.092	13	21	.78	95	.15	2	2.36	.02	.09	1	18	
SE L9+00E 3+75	S	5	51	32	136	.9	5	20	1736	3.30	2	5	ND	1	121	· 1	2	2	39	.56	.068	13	12	.62	179	.33	2	1.64	.04	.10	2	83	
SE L9+00E 4+00	s	14	133	70	131	1.4	5	. 6	726	7.85	16	- 5	NÐ	2	122	1	2	2	42	.21	.172	12	13	.68	149	.11	- 2	1.89	.02	.08	- 1	/4	
																		•											A7	A7		50	
SE 19+00E 4+25	iS	10	63	34	88	1.2	4	- 4	356	4.85	. 11	5	ND	2	64	1	3	2	47	14	.112	12	12	.54	144	.13	2	1.32	03	.07	4	J0 40	
SE L9+00E 4+50	S	9	121	28	133	.1	11	12	771	6.68	13	5	ND	4	108	1	2	2	71	. 66	.167	12	16	1.16	11/	.40	2	2.02	.21	.17	1	47	
SE L9+00E 4+75	iS	5	131	23	165	.1	16	16	824	5.44	13	9) ND	. 4	83	1	2	2	62	.41	-161	- 14	. 32	1.23	152	.18	2	2.10	.02	.17		10	
SE L9+00E 5+00)S	3	63	19	109	.3	8	8	605	4.34	- 15	5	ND	3	87	1	. 2	2	46	.41	.134	11	18	.89	152	.14	- 2	1.27	.01	.14	1	10	
SE L9+00E 5+25	is	4	128	24	200	.2	13	24	1242	6.13	19	5	ND	3	95	1	- 2	2	58	.51	.157	11	15	1.30	132	.14	. 2	1.90	.01	-13	. 4	10	
· · · · ·											_	· _		-						-			~		00	25	5	1 47	17	15	. 1		
SE L9+00E 5+50)S	2	36	5	330	.1	11	11	654	4.18	7	5	. ND	2	- 94	2	2	2	22	./0	.104		24	1.32	77	.23		1.04	.13	20	2	14	
SE 19+00E 5+75	iS	- 4	73	26	124	.2	12	10	685	5.28	18	5	ND	2	85	1	2	2	60	.48	.134	11	22	1.21	147	• 10 • 70		1./3	11	14	1		
SE L9+00E 6+00)S	3	48	12	9 8	.7	11	11	602	4.91	7	- 5	ND	1	78	I	2	2	· 5/	. 26	.090	8	10	1.07	110	.23	د ۸	1.7/	.11	. 08	1	14	
SE L9+00E 6+75	iS	. 7	51	25	107	.6	10	23	?16	7.68	17	5	ND	5	83	1	2	· ১	3/	•3/	.1/8	7	10	,70	107	10	7	1 10	.01	08	1	2	
SE L9+00E 7+00	S	5	78	6	88	.4	. ?	15	.715	4.21	10	5	ND	. 4	14	1	2	4	31	• 37	.119	0	15	.70	00	•10	-	1.10	•••		•		
CE 10.005 7.00		-	40	47	107	7		. 14	611	1 17	. 7				104	1	. ,	2	32	.79	.142	10	7	.79	76	.09	3	1.19	.01	.07	. 1	5	
SE L7+VUE /+2:	35	2	97	13	103		7	17	011	7 11	<i>.</i>	 		ं र	125		,	2	37	.87	.131	11	7	1.00	159	.11	. 2	1.56	.01	.10	2	. 9.	
SE L7+00E 7+30		4	43		122	•••	0	17	1100	7 55	1		100		121			2	38	.94	.139	12	9	1.01	163	.12	2	1.55	.01	.10	1	2	
SE L9+00E /+/3	35	4	. 04	10	107	•••	· · ·	10	1170	3.33	0		NO	י ז	109	· .	,	2	36	.91	.113	8	13	1.16	130	.10	3	1.57	.01	.09	2	1	
SE LYTUVE 810	/3 FC	ु इ	- 43	40	102	4	10	14	1077	3.31	· 5	Š	10	, ,	120	1	,	2	36	.82	.126	10	9	1.01	151	.11	3	1.57	.01	.12	1	11	
SE LYTUUE 872	. 60	. 3	av	10	221	• •	10	10	1032	3.27	J			,		•	-	-															
SE 19+00E 8+50	D S	6	57	79	241	.5	10	29	1834	5.72	9	5	ND	4	79	2	2	2	29	.60	.153	10	. 8	1.07	167	.09	ć 3	1.46	.01	.06	1	3	
SE 19+00E 8+7	59	1	- 11	14	132		8	14	1020	3.26	4	5	NÐ	4	118	1	2	2	35	.87	.122	11	9	.97	198	.10	- 4	1.55	.01	.14	2	2	
SE 1 9400E 940	nc -		50		179		, a	14	1043	3.05	6	8	ND	4	127	1	2	2	38	.87	.122	11	9	.99	164	.11	4	1.63	.01	.13	2	- 6	
SE 19+00E 947	55	1	44	17	138		2 8	14	1014	3.27	3	5	ND	5	116	1	2	2	36	.79	.134	11	5	.93	123	.10	. 3	1.49	.01	.10	1	7	
SE 19400E 945	05	1	47		117	.,	7	13	896	3.07	2	5	NO	3	121	. 1	2	2	37	.87	.124	10	6	.95	173	.12	3	1.54	.02	. 12	1	ó	
		•	1	,		4			0.10		•	•																			_		
SE L9+00E 9+7	55	2	50	7	93	.4	7	18	733	3.52	- 11	5	NO	4	83	1	2	2	27	.67	.136	10	3	.71	70	.09	. 5	99	.01	.06	2	4	
SE L9+00E 10+	005	3	74	16	109	.3	9	21	1131	5.68	8	6	ND	4	. 96	1	2	2	33	.,70	.174	10	5	.89	72	10	5	1.26	.01	.07	2		
STD C/AU-S		20	56	40	132	7.6	69	29	969	4.04	42	17	. 8	34	49	18	15	20	58	.50	.073	39	60	.92	180	.09	36	1.77	.06	15	14	49	

tersprese to the second		1- 翻		i Las				§TE₩	Carlos and	NAD	4	IIN	T Beer	JKU		1 60	5	TH 7	1.0	- 1			- 1	ALC: NOT			R		1	Paradala		1993 (A)
SAMPLE		NO PPM	CU PPN	PB PPN	ZN PPM	A6 PP#	NI PPB	CO PPN	MN PPM	FE Z	AS PPM	U PPM	AU PPN	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA Z	P 2	LA PPN	CR PPM	MG Z	BA PPN	TI Z	B PPM	AL Z	NA Z	K 2	N PPM	AUX PPB
00) E . E . U	4.750		77	71	00					7 04	51	5	NB		101	1	2	4	106	.25	. 188	15	24	1.19	192	.43	2	2.12	.10	.11	· 1	225
SE LOTOVA	41/35		3/	30		1.1	11	6	447 1	A 40	40	5	110	1		i	- 5	,	83	. 14	.189	16	27	.99	142	.35	11	2.12	.06	.07	3	116
SE LOTOUR	37003		11.	42	100	1.0		17	003 1	0.70	70	5	ND	Ľ.	73	i	- 7	2	84	.38	.233	13	25	1.32	147	.41	2	2.40	.17	.12	1	81
SE LOTOVA	3+235	0 E	100	4/ 70	107	· 1.2	21	12	745	7.2/	37	J 5	ND ND		79	÷	5	,	89	.15	.295	13	21	1.12	196	.31	2	2.07	.05	.08	1	560
5E L3+30#	3+/35	5	/3	38	78	3.4	10	3	1010	0.02	10		ND ND	3			5	2	51	- 09	.200	18	16	. 65	111	.17	2	3.72	.04	.06	5	93
51 L3+30W	6+002	. /	61	23	82	1.1	12	9	1000	8.70	- 42	J	RU	-	71	•	-	*		•••									•••		-	
CC 15150W	41950	4	71	. 27	04	1 2	10	Đ	572 1	A 45	40	5	MD	5	74	1	2	2	70	. 18	.330	11	18	.96	152	.22	4	2.71	.08	.07	1.	118
SE LUTION	07233	14	175	77	07	1 1	24	-10	501 1	2 01	77	5	ND.	3	109	i	2	2	78	.27	.483	12	30	1.01	117	.24	8	2.29	.11	.08	1	50
SE LOTOVN	7+000	ء 10	1/3	11	75	_ 1+1 	27	12	974	7 04	10		ND	3	52	i	2	2	94	. 49	.262	4	3.	2.61	68	.25	2	3.30	.03	.56	. 4	13
DE LUTUW	71050	10	113	10	13		, 22	14	703 1	1.00	77	5	ND	5	49	1	- 2	2	91	.17	.567	6	31	1.47	101	.23	2	1.96	.05	.10	2	-34
55 L3+3V#	7+235 .	10.	112	34	77	•7•	22	10	040	0.00	22	5	- 10 ND		177	i	2	5	80	. 18	. 273	11	26	1.50	786	.25	5	3.40	.05	.08	1	35
5E L3+3V#	/+/35	1	22	34	102	.0	11	,	677	7441	21	5	ΛÞ	4	141	•	•	. *		•••	••••	••								•		
OF LANGON	51000		. 77	77	LĂ	5	0	٦	795	5 75	20	5	ND	1	57	1	2	2	58	.15	.143	9	19	.66	134	.16	2	1.97	.03	.07	2	24
SE LATJUN	51050		33	40	100	• •	, 17		770	9 72	10	5	#D	5	100	ī	2	2	62	.23	.259	12	31	1.21	197	.25	2	2.59	.06	.11	. 4	56
3E 14430W	37233		/0	70	171	1.1	17	10	7.7 9	0.72	54	5	20	J.	72		5	2	103	.17	. 280	7	77	1.16	122	.41	2	1.99	.05	.07	1	73
52 L4+3V#	2+205	•	100	10	131	1.9	1/	10	707 1	12+71 12 A1	15	. 5	. ND	7 5		1	5	,	76	. 10	.401	,	31	1.01	90	. 27	2	2.05	.04	.07	3	77
SE L4+30#	3+/35	•	203	01	103	1.3.	27	17	10/1	10.91	40	5	10		17	-	5	5	71	15	799	12	17	1.71	136	.27	3	2.94	.07	.08	1	78
5E L4+30W	6+005	6	207	40	1/3	1.4	28	18	1001 1	11.04	42	2	RU	J	67	1	4					**	• *.				. •		•••			
	11050	0	217	40	212	. 7	77	76	1466	T OA	47	5	ND		116	1	2	2	81	.72	. 458	12	9	1.03	122	.23	3	3.07	.07	.07	2	33
3E L4+JVW	072JJ	7	217	41	234	1 0	21	44	1547 1	13.04	10	5	10	5	167	i	2	2	71	.74	.494	18	4	.71	112	.26	2	3.20	.05	.04	2	68
5C L4+30M	41750	1	700	75	240	1.0	20	20	1740 1	11 00	79	5	ND		110		. 2	3	53	. 10	.278	15	4	1.26	177	.21	2	3.57	.04	.08	3	43
32 L4730W	57/J3	0 1	207		. 200	.7	11	10	117	7 17	20	5	10	2	95	1	2	2	65	. 19	. 183	10	19	1.04	193	.18	2	2.60	.05	.07	3	87
51 14+3VW	17005	0	32	20	53	1.0	11. 70	20	1057	1.13	20	- 22	7	74	50	19	19	19	57	. 48	.088	36	59	. 90	178	.08	33	1.89	.07	.14	13	49
510 C/AU-	5	19	28	44	134	7.4	, 7 V	. 40	1032	410Z.	70		,	20	34	. 10.	10	10		. 10							••					

.156 57 .13 47 14 13 .80 183 .20 4 1.23 .04 .08 49 SE L7+50W 1+505 5 56 41 153 .8 23 10 649 5.47 12 5 ND 44 1 2 3 .21 .138 31 29 .93. 9 61 130 .31 2 2.58 .15 .15 1 46 SE 17+508 2+005 5. 57 751 6.31 92 45 99 1.2 13 8 16 5 ND 1 4 3 77 .32 .196 20 25 1.23 193 3 1.77 6 .37 .13 .13 1 84 SE L7+50# 2+255 48 47 13 687 17 8 95 2 2 .23 4 101 1.4 6 6.87 5 ND 1 84 .185 25 25 1.11 202 2 1.97 . 40 .11 .13 1 55 SE L7+50N 2+505 43 79 2.2 446 7.22 20 53 72 .09 5 46 10 4 5 .150 26 29 .65 117 .22 5 3.09 ND 1 1 2 3 .04 .08 1 54 SE L7+50W 2+755 5 50 62 97 1.6 11 6 681 9.90 20 5 ND 4 71 1 2 2 110 .17 .292 17 32 . 99 229 .32 2 1.91 .07 .12 1 61 SE L7+50# 3+005 71 85 33 4 98 1.6 18 10 855 8.13 5 ND 7 119 1 2 2 96 .24 .285 21 34 1.05 227 .37 2 1.97 .11 .15 2 66 SE L7+50W 3+255 3 42 39 85 1.0 13 5 681 6.31 21 5 ND 4 82 1 2 2 104 .22 .158 18 51 1.14 201 .34 2 2.37 . 08 37 .09 1 SE 17+50W 3+50S 5 65 57 113 1.4 15 7 970 7.31 26 5 NÐ 3 63 1 2 2 104 .11 .237 18 42 1.19 246 .29 2 2.79 .04 -09 1 42 SE 17+50W 3+755 .45 .245 109 15 1245 9.40 41 6 -88 163 1.2 26 5 ND 6 86 1 2 2 96 17 43 1.70 191 . 41 2 2.63 . 22 .15 1 150 SE L7+50W 4+755 7 260 34 25 2010 10.82 54 2 2 43 209 .3 10 5 ND 7 1 94 .14 .341 17 21 1.57 146 .30 2 3.03 .05 .09 3 225 SE L7+501 5+755 8 78 29 25 13 5 57 2 2 .18 .225 22 144 .7 10 1084 9.62 ND 8 1 77 27 1.13 121 2 3.28 .30 .09 .11 1 44 SE 17+50W 6+00S 9 67 11 258 39 149 .2 37 13 1152 17.17 6 ND 6 1 2 2 127 .18 .500 14 28 1.20 155 .24 2 3.43 .09 1 67 .08 SE L6+50W 0+50S 74 37 22 13 733 10.78 19 5 170 2 2 .329 17 37 1.33 4 110 .8 ND 6 1 115 .47 114 .46 6 2.51 .20 .18 1 59 .07 SE L6+50W 1+00S 6 80 36 132 .5 22 7 936 8,90 28 5 ND R 68 1 2 2 84 .22 .229 20 36 1.35 167 .38 7 2.33 .12 2 46 653 7.02 SE L6+50¥ 1+255 6 51 42 113 16 8 19 5 63 2 2 71 .35 19 29 .4 ND 7 1 .140 1.21 136 . 37 7 2.15 .16 .12 5 48 SE L6+50W 1+50S 4 26 33 53 ٠ó 6 2 262 5.58 12 5 ND. 2 17 1 2 3 45 .07 .069 16 22 .28 49 .16 9 2.62 .03 .05 1 10 SE L6+50W 1+755 6 28 40 89 .1 13 4 513 7.20 20 5 ND 4 27 1 2 2 71 .10 .104 21 33 .65 71 .28 2 2.45 .05 .09 1 23 STD C/AU-S 52 20 61 40 135 7.7 73 29 1076 4.13 39 18 8 39 18 17 24 60 .49 .094 38 63 .93 182 .08 35 1.86 .08 .15 14 52 SE 1.6+50W 2+00S 99 3 113 82 202 2.1 27 13 1283 15.43 5 ND 74 2 2 122 .20 .392 15 61 1.83 148 . 22 2 2.15 .09 . 12 94 1 1 6 SE L6+50# 2+255 5 119 27 11 977 8.18 34 76 2 2 .23 .250 17 56 170 1.0 5 ND 81 34 1.27 268 .30 2 2.59 .08 185 5 1 .10 1 SE L6+50W 2+50S 6 112 29 199 1.1 38 13 1133 8.25 21 5 ND R 44 1 2 2 .14 .178 23 33 1.25 1 66 64 110 .27 10 3.30 .06 .09 SE L6+50W 2+75S 6 133 27 7 825 8.77 14 5 ND 5 23 2 2 73 .12 .199 15 33 1.27 .1 57 58 178 .7 1 196 .24 2 3.24 .03 .07 SE L6+50# 3+005 1 134 179 82 10 599 8.14 20 5 ND 66 2 2 124 .20 .208 10 32 1.85 272 2 5.55 . 08 1 43 12 .4 4 1 . 47 .06 SE 16+50# 3+505 275 5 118 80 168 23 7 1016 9.07 38 5 95 .14 .278 15 35 1.57 333 . 38 4 2.43 .07 .14 1 1.3 NÐ -5 90 1 2 -3 635 SE 16+50W 4+755 4 .. 47 49 68 1.9 7 4 717 11.14 42 5 ND 5 73 1 2 2 152 .13 .171 16 22 .75 133 .43 6 2.71 .04 .07 1 SE 16+50% 5+00S 5 100 36 101 .8 13 4 515 6.64 15 5 ND 3 30 1 2 3 75 .08 .197 16 22 .76 79 .25 2 2.76 .04 .06 1 49 SE L6+50W 5+50S 9 96 41 89 21 11 648 11.38 50 7 ND 146 2 2 97 .39 .463 19 20 1.12 260 .25 7 1.72 .20 .13 3 585 2.5 6 1 650 SE L6+50W 5+755 5 100 37 93 1.2 16 12 874 13.11 42 5 ND 70 1 2 2 91 .25 .529 10 22 1.15 189 .25 2 1.83 .09 .10 1 6 165 3 SE 16+20% 6+00S 9 72 38 92 ...6 19 7 585 14.00 46 5 ND 94 1 3 2 93 .26 .682 9 20 1.02 176 .23 5 1.74 .11 .09 6 .18 .360 19 1 295 SE L5+50W 4+50S 56 35 13 816 9.25 48 109 2 2 121 30 1.36 273 .38 2 2.74 .08 6 90 1.1 6 5 ND 7 1 .12

ĴΈE

Z PPH

21

C0

585 5.74

5

PPN PPN

PB

33

94

PPH PPH

PPN

3 51

SE L7+50W 0+755

PPH

A6

PPH

.8

PPH

Ģ

📲 ປ

PPN PPM PPM PPN

> 5 MD

ĽН

PPN

1

PPN PPH PPN

> 2 - 3

Z

z PPN PPH Z PPH Z PPH

z

7

1

PPM PPB

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

and the second second

Store Only

GEOCHEMICAL ICP ANALYSIS

and the second

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PI-SOIL P2-ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

												1	10	In-				Λ	1												
DATE RECI	EIVEI):	AUG 29	1987		DATE	RE	POR	r Ma	ILED	: 6	kt	79	18	,	ASSA	YER	<u>_</u>] <u> </u>	A	je1.	. DE	AN T	TOYE	, CE	RTI	FIEI	э в.(с. A	ISSA'	YÉR	
					WES	TERN	CA	NADI	AN I	MINI	NG F	PROJ	ECT	-60S	SAN	#91	02	Fi	le	ເ # 87	-374	47	F	age	1					·	
SAMPLE#	- NO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPN	CO PPM	NN PPM	FE X	AS PPN	U PPM	AU Ppn	TH PPN	SR PPH	CD PPN	SB PPM	BI PPM .	V PPM	CA X	P Z	LA PPH	CR PPM	116 2	BA PPM	11 2	8 PPM	AL Z	NA %	K Z	N PPN	au‡ PP8
WR 1260 0+00	6	123	46	101	.9	8	33	1317	7.35	11	5	ND	5	79	1	3	2	52	.57	.150	7	2	.99	144	.13	20	1.97	.10	.18	1	230
WR 1260 0+50	- 5	85	32	110	4	9	21	1034	4.19	9	5	ND	4	94	1	2	2	42	.77	.108	6	7	.93	156	.12	2	1.62	.10	.17	2	18
WR 1260 1+00	10	51	36	178	.5	35	44	1973	7.38	14	5	ND	2	56	1	2	2	96 .	.28	.156	5	46	2.16	310	.21	2	3.63	.04	.53	2	220
WR 1260 1+50	16	55	36	154	.8	34	50	2289	6.96	16	5	ND	3	93	1	2	2	78	.37	.153	5	31	1.78	601	.14	2	2.99	.04	.35	2	. 53
WR 1260 2+00	6	152	49	222	.1	21	- 22	1705	6.48	22	5.	ND	2	61	1	3	2	85	.27	.117	9	20	1.55	200	.15	2	3.30	.03	.28	1	42
WR 1260 2+50	4	132	52	232	.6	15	24	2523	5.79	28	5	NÐ	1	23	1	2	2	95	.12	.076	9	19	1.49	67	. 12	2	3.48	.03	.13	2	21
WR 1260 3+00	5	137	- 63	271	.7	24	26	1923	6.56	31	5	ND	1	26	1	2	2	99	.17	.083	11	24	1.59	104	.15	2	4.32	.03	.16	1	11
WR 1260 3+50	9	85	48	171	.7	13	. 24	2716	5.64	32	5	ND	1	22	1	2	2	79	.10	.077	10	22	.95	50	.12	2	4.12	.02	.07	- 1	109
WR 1260 4+00	6	82	41	175	.4	18	21	1840	5.62	18	5	ND	1	26	1	2	2	96	.13	.081	9	22	1.19	80	.12	2	3.69	.02	.09	1	21
WR 1260 4+50	8	130	47	224	.5	19	16	16/3	4.95	29	2	ND	1	3/	1	2	2	15	.20	.128	8	14	1.16	106	. 10	2	2.4/	.04	• 14	1	10
WR 1260 5+00	15	121	23	140	4	33	27	1535	8.20	13	5	ND	2	101	1	2	2	111	.30	.155	5	34	2.45	312	.26	2	4.86	.05	.64	1	79
WR 1260 5+50	12	57	19	104	.1	37	21	1130	6.81	9	5	ND	1	52	1	2	2	86	.19	.122	5	59	1.46	126	.15	-2	5.73	.03	.12	1	32
WR 1260 6+00	12	71	30	132	.9	30	32	1915	6.60	20	5	ND	2	68	1	2	2	92	.29	.154	8	29	1.48	144	.26	2	4.40	.09	.19	2	23
WR 1260 6+50	6	69	40	156	1.5	25	22	1446	5.97	23	5	ND	1	42	1	2	2	73	.21	.108	8	24	1.31	99	.11	2	5.02	.03	.09	1	22
WR 1260 7+00	8	147	69	219	1.2	32	.35	1872	7.86	31	5	ND	2	42	1	2	2	91	.27	.174	8	26	2.26	120	.24	2	4.88	.07	.46	1	12
WR 1260 7+50	8	49	44	166	1.0	17	10	1226	8.24	20	5	ND	2	27	1	2	2	82	.08	.106	11	29	.97	81	.15	2	3.08	.03	.05	2	36
WR 1260 8+00	6	98	44	180	2.1	16	20	1730	6.19	28	5	NÐ	2	28	1	2	2	72	.11	.120	12	25	1.13	78	.15	3	4.12	.03	.11	1	38
WR 1250 8+50	10	130	19	112	.5	14 -	28	2359	5.50	13	5	ND .	1	60	1	2	2	84	.40	.188	7	10	1.05	239	.03	4	1.83	.03	.18	1	8
WR 1260 9+00	4	29	21	57	.5	6	4	492	4.08	8	5	ND	1	40	1	2	2	70	.22	.099	8	10	.86	128	.16	2	2.15	.04	.08	1	32
WR 1260 9+50	- 7	30	29	63	.2	6	5	843	6.20	13	5	ND	1	19	1	2	2	56	.07	.094	17	15	.35	42	.13	10	2.14	.03	.05	1	11
STD C/AU-S	20	59	40	131	7.5	70	28	1042	3.99	39	22	7	37	51	19	18	21	57	. 49	.091	37	61	.89	183	.08	36	1.87	.07	.13	14	52
WR 1260 10+00	6	56	37	83	1.0	8	3	248	5.34	18	5	ND	4	17	- 1	2	2	37	.07	.080	23	19	.38	57	.15	2	3.35	.05	.07	1.1	16
WR 1260 10+50	6	82	53	227	.9	24	-11	891	6.88	27	5	ND	6	38	1	2	2	64	.13	.139	24	30	1.13	187	.26	5	3.20	.08	.23	1	41
WR 1480 0+00	11	84	40	197	.7	25	51	2918	6.53	24	5	ND	. 2	54	1	2	. 2	80	.17	.088	8	27	1.53	127	.16	2	4.69	.02	.09	·· (1)	6
WR 1480 0+50	13	68	42	156	.6	29	24	1211	7.87	26	5	ND	2	81	1	2	2	77	.32	.152	7	30	1.54	134	.21	3	3.19	.09	.17	1	66
WR 1480 1+00	6	25	18	114	2.8	71	35	2313	7.15	29	5	ND	1	31	. 1	2	2	156	. 21	.145	4	98	1.65	117	.13	4	3.74	.03	.15	1	185
WR 1480 1+50	8	37	48	146	.5	18	48	6478	5.73	16	5	ND	2	52	1	2	2	79	.33	.112	6	18	.69	233	.10	2	1.88	.03	.07	1	1
WR 1480 2+00	5	49	32	115	5.4	12	15	1732	11.58	110	5	• ND	2	64	1	2	3	112	.18	.118	4	11	2.65	296	.29	2	5.33	.06	.82	- 1	1190
WR 1480 2+50	9	39	30	139	1.4	12	12	2129	6.11	20	5	ND	2	21	1	2	2	72	.14	.114	10	27	.98	- 69	.19	2	3.56	.02	.19	1	35
WR 1480 3+00	7	78	22	125	.9	52	14	1101	8.68	28	5	ND	3	45	1	2	2	85	.19	.139	12	77	1.90	232	.24	2	5.10	.07	.55	. 1	48
WR 1480 3+50	6	52	50	173	.2	17	14	1608	6.74	37	5	ND	2	35	1	2	2	87	.22	.152	9	26	.93	90	.17	2	2.53	.05	.13	1	3
WR 1480 4+00	13	68	29	113	2.6	44	13	1262	10.29	65	5	ND	4	51	1	2	2	128	.23	.233	6	85	2.36	292	. 31	2	4.00	.07	. 47	1	83
WR 1480 4+50	5	123	19	87	1.5	13	9	819	8.81	54	5	ND	· 1	. 39	1	2	2	85	.16	.166	5	- 24	1.18	283	.19	5	2.27	.03	.23	1	63
NR 1480 4+95	8	87	34	122	.4	18	7	547	8.06	30	5	NÐ	7	18	1	2	2	63	.08	.098	24	37	.88	65	.25	2	3.72	.06	.11	3	42

WEST RIDGE GRID

	- Contract - 12		and the second second		no November 1923				and the second se		Salar Carde	<u>ا</u>	a the second	1	and Alight		100000000	ĝ.	Balki a (His		1210-0113	6 ²⁰	+ 226,263			3872	C 13 / Berge		10043230			
		20							WES	TERN	I CAI	NADI	AN	FROJ	IECT	#910	2 (FILE	E # '	87-1	998											Page
SAMPLE	NO PPH	CU PPH	PB PPM	ZN PPM	A6 PPN	NI PPN	CO PPN	AN PPH	FE	AS PPR	U PPN	AU Pph	TH PPH	SR PPM	CD PPN	SB PPN	BI PPM	V PPN	CA Z	P I	LA PPN	CR PPN	M6 Z	BA PPH	TI I	B	AL Z	NA Z	K Z	N PPN	AU‡ PPB	
							,																			,						••
687R-003	4	70	2	27	.7	4	3	279	2.10	6	6	ND	1	38	1	2	3	24	.89	.046	2	11	.43	13	.20	2	.73	.02	.04	4	23	•
687R-004	12	61	2	29	.5	7	4	316	2.08	2	. 5	ND	2	61	1	2	2	42	1.71	.262	10	18	.55	57	.27	2	.95	.07	.12	2	3	
687R-005	14	153	ii	75	.9	4	3	157	11.98	23	5	ND	-3	16	i	2	29	46	.07	.054	2	2	.58	242	.13	2	1.28	.04	.44	21	65	•
STÐ C/AU-R	20	57	40	134	6.7	66	27	983	3.90	38	22	1	34	47	17	16	19	62	.44	.084	35	55	.86	177	.08	34	1.75	.06	.12	13	495	
																															•	

PYRAMID HILL AND SERICITE EAST ROCK CHIP GEOCHEMISTRY

(

(

(

í

€

(

) مر

(

(

(

(

Contraction of the second seco	CINAL SOL	20522489		للأمند والمرتو	. 6		Configuration of the second	1212-02868	CONSISTENT.		-				Contraction of the second s																		
							WES	FERN	CAN	ADI	n n	IINI	NG F	°ROJ	ECT-	-6059	SAN	#91	02	FIL	E #	87-	2144	ł							- 1	Page	3
SAMPLE	MO PPH	CU PPM	P8 PPM	ZN PPH	AG PPN	NI PPH	CO PPH	MN PPM	FE Z	AS PPH	U PPM	AU PPM	TH PPH	SR PPM	CD PPN	SB PPN	BI PPH	¥ ese	CA V	P -	LA	Ck	MG	BA	TI •	8 004	AL 7	NA 7	K 7	. N	aut Pod	· · ·	
						•																				-		·****			•		
						70	44	****		-	-		-		17		÷ Z	\$	Z+61	.031	4	-											
687R-500	2	23	70	353	.2	3	6	348	3.78	14	6	ND	2	714	2	2	2	16	.08	. 194	6	2	1.39	86	.01	2	1.38	.0?	.17	1	31		
687R-501	- 2	-15	8	290	.2	3	1	942	3.32	. 9	5	ND	3	73	1	2	2	35	.11	.127	8	1	1.49	207	.01	2	1.87	.04	08	i	3		
687R-502	- 4	69	29	157	.5	1	1	939	4.22	10	5	ND	8	20	1	2	2	18	.06	.259	4	2	.74	54	.01	2	.93	.02	.12	_1	-		
687R-503	5	209	. 23	142	.6	2	3	668	2.93	7	5	ND	4	50	. 1	2	2	13	.26	.102	10	4	. 63	111	.08	2	.96	.03	.16				
																												· •					

Ĉ.

(

(

(

100

852 E. HASTINGS ST. VANCOUVER B.C. V6A 186 ACME ANALYTICAL LABORATORIES PHONE 253-3158 DATA LINE 251-1011 GEOCHEMICAL ICP ANALYSIS .300 GRAM SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HN03-H2D AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR WA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PI-ROCK P2-SILT P3-7 SOIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. DATE REPORT MAILED: July 22 41. DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER. L DATE RECEIVED: JULY 13 1987 File HIT-1794 WESTERN CANADIAN MINING PROJECT-GOSSAN#9102 Page 1 CA CR 66 TI SAMPLEN CU -PB ZN AG NI CO **HN** FE AS U AU TH SR CD S8 81 ۷ ₽ LA BA 8 AL NA ĸ N AUT 110 PPN PPH PPĦ PPN PPN 1 z PPH PPN 2 PPN ٠٢. PPN 2 z ì PPN PPB PPN ĩ PPN FPH PPH PPN PPR PPH PP# PPN PPH PPH PPH 687-R-006 831 1129 10277 291.7 -79 29 1103 2.99 123 2 96 85 58 10 130 6.60 .154 2 .96 93 .18 2 2.39 .31 .83 3 410 9 -5 NE 4 2 .03 158 .01 2 .31 .04 .54 NÖ 3 5 2 .01 .001 2 1 .08 1 1 687-R-007 13 2 52 2.4 2 1 16 2 5 1 1 1 ND 3 18 2 27 .15 .054 4 4 .72 28 .07 4 .71 .07 .37 4 32 687-6-009 5 267 77 57 3.92 5 2 11 14.8 2 6 5 1 .02 0 2 28 .10 .033 2 10 .54 28 .05 4 .39 .35 2 26 687-R-010 50 101 10 52 2.3 10 7 64 4.68 11 5 ND 1 1 2 687-R-504 4 243 5 54 29 15 976 3.38 ND 176 2 62 4,90 .083 2 43 1.44 6 .22 3 1.32 .03 .01 1 16 .6 15 5 2 2 6 687-R-505 4 -15 11 67 .8 36 62 741 11.18 5 ND 1 141 2 2 64 1.55 .131 3 21 1.56 7 .14 2 1.67 .01 .01 1 13 1 2 37 23 3.03 21 687-R-506 4 14 3 85 .2 23 38 636 5.92 13 5 ND 1 89 2 2 .86 .115 2 22 .11 4 2.45 .01 .05 1 687-R-507 3 3 2 .67 11 .21 85 .01 5 .45 .01 .12 6 7 17 208 5.92 2 5 ND 8 23 2 11 .047 1 1 .1 1 1 1 687-R-508 2 3 -5 1 24 .3 7 137 35 15.43 3 M 2 4 2 . 05 .002 2 1 .05 . .01 * .01 .01 .10 1 -5 687-R-509 34 NÐ 25 3 .14 2 .44 .01 .15 ŧ ĥ 5 8 4 1.0 2 3 614 2.40 4 5 4 3 6 1.64 .087 3 84 .01 687-R-510 19 1.07 .097 2 1.02 .01 .08 9 5 32 ND 109 2 2 7 .85 28 .07 1 R 6 .5 3 6 286 2.23 4 5 4 1 1 687-R-511 .78 .97 .03 3 1 3 7 40 289 4 ND 100 2 2 23 .106 6 3 37 .09 2 1.14 .06 2 .6 2 10 3.24 5 4 1 687-R-512 35 .02 11 1096 22 9 .1 5 3 25 3.80 2 5 ND 1 3 1 2 9 3 .01 .005 2 4 .01 27 .01 .01 .03 1 687-R-513 .29 .06 1.01 3 10 188 2 55 .3 272 3.61 11 ND 18 2 2 56 .078 3 .98 71 .19 2 1.56 1 2 5 5 . 6 687-R-514 910 18 5 ND 2 13 2 .01 .004 1 .02 .01 9 .03 .01 .05 1 45 10 1.0 5 3 31 4.91 5 5 1 1 3 2 10 5 687-8-515 114 1249 ND 2 30 2 2 34 .91 .094 2 15 .63 21 .13 3 2.02 .12 .59 2 270 8 16 1.7 158 4.19 5 1 29 11 687-8-516 43 604 12 19 4.7 8.94 ND 2 2 17 33 .04 .112 3 11 .02 15 .01 6 .19 .01 .22 1 330 36 14 16 66 5 6 1 687-R-517 .01 .24 57 - 51 13 7 43 12 .04 .047 2 .04 .12 .23 2 116 3.5 6.32 31 ND 2 2 1 20 4 21 8 8 5 4 1 687-R-518 12 133 7 104 1.22 .150 56 .36 3 1.54 .05 .93 12 15 2 36 .2 4 9 475 4.43 7 5 NĎ 2 62 1 2 4 5 1.16 STD C/AU-R 19 - 55 42 123 28 935 4.17 39 23 32 46 17 15 23 55 -.51 .090 36 53 .94 168 .09 33 1.77 .06 .14 13 495 7.3 65 6

ASSAY REQUIRED FOR CORRECT RESULT -

						WE	ESTE	RN I	CANA	DIAN	MI	NING	FR	OJEC	ст -	609	SAN	# 91	02	FIL	.E #	87-	237	7							F	'ade	6
SAMPLE	NO PPR	CU PPH	PB PPM	ZN PPM	A6 PPH	NI PPH	CO PPN	HN PPH	FE	AS PPM	U PPH	AU PPN	TH PPK	SK PPN	CD PPM	SB PPM	BI PPM	V PPR	CA Z	Р 2	LA PPM	CR PPH	H6 Z	BA PPN	TI Z	B PPN	AL Z	NA Z	K. Z	W PPH	AUT PPB		
687-K-519	2 a 1 2 a 1	Q	20	Q T	.3	1	2	660	2.76	12	7	ND	5	171	1	, ,	۲	20	. 74	. 697	17	?	.77	203	.07	8	.85	-05	.11	i .	6		
687-k-523	5 8	27	108	40	1.3	3	1	273	2.18	29	7	ND	1	72	1	2	2	12	.11	.071	4	7	.25	73	.06	2	.47	.01	.13	3	. 165 :		
687-R-524 STD C/AU-	1 R 18	37 56	39 9	18 128	.3 7.1	8 67	20 28	241 953	2.69 4.08	2 41	- 5 18	ND 7	1 34	5 49	1 10	2 15	3 23	2 57	.03 .50	.005 .092	2 38	2 57	.03 .92	56 178	.01 .08	4 33	.22 1.76	.01 .06	.03 .14	2 12	4 505		

in the second second

Sec. al

٧.

- 20

Second Second

Section of the

Section 200

							W	EST	ERN	CANA	DIA	N PF	ROJE	ст-е	oss	AN +	910	2 F	ILE	: # E	37-2	530										Page	9
SAMPLES	NO Pph	CU PPN	PB PPM	ZN	A5 PPH	NI PPH	CO PPH	MN PPH	FE	AS PPM	U PPN	AU PPh	TH	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA Z	P 2	LA Ppn	CR PPM	116 Z	BA PPH	TI Z	B PPN	AL Z	NA	K Z	N PPN	AU1 PPB		
687R-033 687R-034	1 22	16 45	65 33	17 148	2.7	1 2	73	86 723	5.51 3.87	19 10	5 5	ND ND	2	9 42	1	2	7	5 26	.07 .31	.117	2 3	1 4	.08	42 161	.01	- 6	.32 1.18	.01 .02	.21 .13	1	45 23		
687R-035 687R-036	1	254 134	40 242	104 943	.3 1.0	2 3	26 9	4438 990	2.67 2.14	2	5	ND ND	7	48 93	6	2	2 2	23 19	.47 1.99	.102	11 10 7	2 3	.92	26 129	.05	2	1.41	.02	.11	1	5 13		
6878-525 6878-526	1 2	40 24	81 18	225	1.6	11 74	14	135 424	5.32 4.63	369 3	5	ND ND	1 2	62 54	1	4 2	2 2	26 36	.33 .21	.033 .041	3 2	16 60	.16 1.25	13 50	.12 .21	5 4	.33	.01	.04	1 1	390 22		
687R-527 687R-528	1 11	8304 136	26 15	63 109	9.9 1.1	55 2	- 155 6	137 143	21.54 1.91	13 11	5 5	ND ND	2	5 47	1	2	2 2	10 5	.17 .03	.046 .034	2 7	1 3	.27 .14	3 27	.01	9 2	.28 .35	.01	.08	13 1	450 59		
687R-529	3	351	2	255	.7	4	9	776	5.40	6	5	ND	4	14	1	7	2	16	.15	.080	13	1	.85	56	.01	5	1.25	.01	.22	1	9B		
687R-530 687R-531	5	620 60	- 37	211	.7	2	8	943 1155	4.32	- 8 15	5	ND ND	7	16	1	2 3	2	21	.24	.075	- 3	1	1.61	260	.05	ა 5 ე	1.47	.01	.25	2	25		
687R-532 687 <u>R-533</u>	1	85 61	- 3	190 104	.2	10	10 6	1720 841	2.65	10 7	9	ND ND	7	145 39	1	12	2	45	2.67	.142	9	4 1	.95	56	.13	3	1.25	.01	.14	1	- 1	÷.	
STD C/AU-R	18	56	37	126	7.1	66	28	919	3.77	38	19	7	. 31	46	17	16	20	55	.47	.089	36	54	.85	168	.08	34	1.62	.05	.13	13	495		

ASSAY REQUIRED FOR CORRECT RESULT -

(

Page 3

.(

•

(

(

C

€

Ę

C

€.

€

¢

(

(

(

 $(\cdot)_c$

 \mathcal{I}_{c}

WESTERN CANADIAN MINING PROJECT-GOSSAN#9102 FILE # 87-2514

12

.....

Sec. 19

SAMPLE	MO	CU	PB	ZN	A6	NI -	C0	MN DDw	FE	AS	Ŭ Pom	AU	TH	SR	CD PPM	SB	BI PPN	V PPM	CA 7	P	- LA PPN	CR	HG 12	BA PPM	TI- Z	B PPN	AL Z	NA Z	K	¥ PPM	AU t PPB
	rrn	. FFN	rrn	rrn	rrn	rra	rrn	rra	•	1111				•••	••••				-	-	••••										
687R-039	3	11	34	40	.8	3	3	459	2.48	3	5	ND	4	56	1	2	2	27	.38	.069	5	3	.85	162	.08	2	1.04	.03	.17	2	19
687R-040	6	131	22	101	1.0	5	6	1275	5.23	6	5	ND	. 2	28	Í	2	2	39	.32	.110	4	21	1.38	61	.12	2	1.66	.02	.18	1, 1	56
587R-041	10	783	21	186	.2	3	14	1383	14.11	8	7	ND	4	8	1	5	- 4	67	.17	.025	4	2	.71	112	.05	2	1.05	.01	.15	- 1	15
687R-042	18	615	9	39	1.1	39	23	212	7.90	7	5	ND	2	37	1	2	3	101	.58	.078	2	- 53	.87	13	.21	2	1.00	.09	.58	7	44
687R-043	28	439	14	51	7	25	- 17	194	6.61	4	6	ND	1	21	1	2	3	119	.34	.073	2	43	1.20	12	.22	2	1.14	.09	.79	- 4	49
5878-044		49	2	14	.1	2	3	105	2.98	2	5	ND	2	21	1	2	2	22	.06	.039	3	4	. 49	63	.04	2	.71	.07	.36	2	6
687R-045	472	52	- 11	10		15	12	54	5.53	9	5	ND	1	.11	1	2	2	10	.05	.035	2	- 8	.37	26	.05	2	.61	.02	.42	2	-68
687R-046	31	144	13	27	1.1	36	23	111	15.80	57	5	ND	1	18	- 1	4	13	24	.10	.046	2	9	.58	8	.05	2	.66	.02	.56	2	330
687R-047	401	28	10	5	.1	6	3	30	2.28	2	5	ND	1	2	1	2	2	. 3	.01	.005	2	5	.05	79	.01	2	.11	.01	.04	1	. 3
STD C/AU-R	20	57	40	134	6.7	63	27	871	3.82	37	17	7	31	45	16	17	19	48	.45	.085	35	50	.84	164	.07	30	1.79	.06	.13	13	510

WESTERN CANADIAN PROJECT-GOSSAN#9102 FILE # 87-2655

al al Al al

SAMPLE	HO	CU	PB	ZN	A6	NI	CO	MN	FE	AS	U	AU	TH	SR	CD	SB	BI	¥ ۵۵۳	CA	P	LA	CR	#6	BA	. 11-	B	AL	NA	K		AUX	
	P25	PPR	111	PPR	PFR	PPR	PPE	PPR	7	Pra	-PPR	PPR	. m	rrn	rrn	rrn	rrn	rrn		4	rrn	rrn	· • •	rrn	4	rrn	· •	4	· •	rrn	***	
687R-048	1	449	11	43	.5	- 49	9	808	3.31	20	5	ND	2	63	1	2	2	38	3.05	.301	18	63	.94	145	.35	12	1.37	.01	.37	3	26	
6878-049	- 65	12044	17	52	18.4	42	71	1580	22.74	46	46	ND	2	1	1	24	2	51	7.82	.027	4	6	.13	2	.07	2	.38	.01	.01	65	1620	
6878-050	1	1701	19	29	4.0	11	. 9	318	14.18	10	13	3	2	59	1	20	15	31	1.13	.071	3	11	.24	16	.22	2	.47	.02	.06	13	410	
5878-057	Å	1000	21	149	1.5			1797	4.87	8	10	NO	1	181	1	3	2	40	.50	. 106	8	3	1.55	80	.01	4	1.94	.03	.09	4	53	
6979-053		17	57	74				746	1 45	2	5	ND	÷	27		2			.03	.051	9	3	.58	87	.01		.15	.07	.13	1	8	
00/11 000	. •			v۲	••	•	. •	710		•	-		•		•	-	•	•			•	•			••••					-	-,	
687R-054	2	5ó	8	48	.2	1	2	224	2.96	7	5	ND	7	145	1	2	4	22	.06	.143	· 7.	3	.70	120	.07	7	.81	.04	.10	1	. 6	
687R-055	1	45	25	193	.4	3	2	1272	4.60	19	11	ND	1	103	1	2	2	102	.36	.082	4	24	1.98	130	.26	2	1.93	.03	.11	2	15	
687R-056	3	37	2	32	.2	1	2	368	2.29	2	8	ND	1	86	1	2	2	17	.21	.041	2	- 4	.44	966	.06	. 5	.67	.01	.10	22	16	
687R-057	6	108	53	32	2.1	13	20	81	3.05	3	5	NÐ	1	10	1	5	2	9	.13	.047	2	3	.13	15	.01	4	.35	.01	.11	1	250	
687R-058		69	33	51	.7	12	8	106	2.71	11	5	ND	1	14	1	6	2	8	.15	.080	5	6	.12	40	.01	5	.38	.01	.15	1	35	
							-				-		-	-																		
687R-534	2	147	11	. 14	1.8	9	11	1629	10.80	20	15	ND	1	5	1	4	2	51	10.41	.152	. 4	27	.07	33	.29	2	.97	.01	.03	20	73	
687R-535	3	35	7	50	.1	4	1	226	1.91	8	7	ND	5	319	1	3	2	18	17	.242	6	3	.84	104	.01	8	.97	.04	.14	1	8	
687R-536	3	47	15	61	.4	44	12	257	2.03	20	5	ND	1	9	1	2	2	11	.44	.143	7	12	.29	104	.01	6	.64	.01	.20	2	18	
687R-537	5	27	18	9	.5	38	21	41	3.37	9	5	ND	- 1	. 8	1	10	2	7	.04	.026	7	3	.03	16	.01	8	.29	.01	.17	1	46	
STD C/AU-R	20	62	40	131	7.1	69	27	994	4.02	40	19	8	38	50	17	17	22	61	.50	.084	38	59	.91	178	.08	36	1.76	.06	.12	12	510	

Page 5

C

(

(

(

(

C

€

€

C

(

(

C

(

(

(

₹.

Oc

AUG 1 2 1987

(

C

(

€

€

€

C

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU& ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: JUL 30 1987 DATE REPORT MAILED: 1997 ASSAYER. A. DEAN TOYE, CERTIFIED B.C. ASSAYER

WESTERN CANADIAN MINING PROJECT-GUSSAN #9102 File #18722864

SAMPLE	MO	CU	PB	ZN	AG.	NI	C0	HN	FE	AS	U	AU	TH	SR	CD	SP	BI	¥	CA	P	LA	CR	86	BA	Π	8	AL	NA	K	¥	AU:
•	PPN	PPH	PPM	PPM	PPN	PPM	PPM	PPH	X	PPN	PPM	PPN	PPN	PPN	PPN	PPN	PPĦ	PPH	1	1	PPM	PPN	1	PPH	· 1	PPN	1	ĩ	1	PPN	PPB
687R-059	1	23	17	109	.1	1	3	644	4.04	5	5	ND	2	86	1	2	6	18	.17	.128	- 7	1	. 80	205	.14	2	1.12	.03	.19	1	6
687R-060	4	3148	252	637	16.8	. 4	9	3105	13.17	114	5	ND	1	47	4	6	7	40	2.85	.061	3	10	.94	42	.12	4	1.24	.01	.07	16	395
687R-061	1	385	36	192	2.1	27	16	1863	6.40	158	5	ND	2	29	1	8	2	104	1.08	.226	7	87	2.85	70	.37	3	2.38	.02	.25	3	129
6878-062	. 6	2996	10	55	2.8	.13	4	430	2.60	12	5	ND	1	10	1	2	3	9	.54	.016	2	8	.43	- 64	.05	3	.45	.01	.06	31	44
687R-063	9	397	18	1212	1.3	123	34	834	13.34	26	5	ND	2	26	2	8	4	45	.53	.044	3	43	2.96	20	.23	3	3.03	.01	.50	14	175
687R-064	1	540	32	98	2.9	18	34	539	29.95	30	5	ND	2	10	2	3	2	18	.78	.268	4	39	3.06	92	.13	. 14	1.86	.01	. 88	1	650
6878-065	1	. 341	30	66	. 8	21	99	257	27.79	34	5	ND	1.	- 2	1	2	. 4	11	.23	.061	2	13	1.33	- 14	.04	6	.90	.01	.42	3	350
687R-066	25	1238	16	127	.5	9	18	795	9.09	6	5	ND	1	- 74	1	6	2	136	.76	.148	6	2	2.92	65	.35	2	4.07	.06	2.19	7	25
687R-067	- 68	2473	22	188	4.5	29	41	376	11.56	8	5	ND	3	18	1	5	2	46	.63	.105	3	8	.70	57	.19	19	1.81	.03	1.07	39	61
687R-068	131	684	7	58	.2	6	21	537	6.15	2	5	ND	1	106	1	3	2	111	.80	.137	5	3	1.82	81	.33	2	2.40	.06	1.77	69	12
687R-069	245	8874	°. ⊴ 41	540	11.1	4	15	459	6.00	- 3	5	ND	1	38	6	. 4	2	39	2.16	.110	6	1	.34	39	.19	5	.87	.02	.56	38	79
687R-070	552	481	16	53	.2	6	21	496	6.02	- 3	5	ND	2	78	1	2	2	99	.99	.117	6	3	1.64	80	.28	22	2.10	.05	1.59	23	8
687R-071	60	987	60	132	1.2	8	28	700	7.69	14	5	ND	2	64	1	3	2	84	1.54	.150	3	- 4	1.89	117	.22	2	3.52	.10	1.28	9	24
687R-072	15	841	15	157	.5	12	20	880	6.33	2	5	ND	1	46	1	- 4	2	171	1.87	.101	4	5	2.25	103	.37	2	3.83	.23	2.14	20	5
STD C/AU-R	19	65	42	133	7.0	67	29	959	4.04	44	17	8	39	52	18	18	21	59	.49	.085	39	61	.90	183	.09	34	1.94	.06	.14	14	505
687R-073	15	3571	21	41	2.0	42	89	426	16.13	- 14	5	ND	2	50	1	5	4	81	1.05	.117	3	2	1.45	43	.21	25	1.71	.04	1.11	31	134
687R-074	131	294	8	- 43	.3	11	18	440	5.69	39	5	ND	- 1	56	1	3	5	122	. 95	.131	- 4	~ 4	1.79	82	. 29	2	2.09	.09	1.45	- 4	112 -
687R-538	5	101	17	16	.5	4	6	169	4.66	4	5	ND	1	57	1	2	2	21	.22	.030	4	5	.14	10	.04	3	. 38	.01	.04	1	24
687R-539	2	52	27	93	1.6	33	8	324	3.22	79	5	ND	- 1	. 44	1	2	2	37	.36	.091	2	32	.60	76	.16	3	.84	-03	.22	1	265
687R-540	. 3	89	10	105	1	. 11	5	594	6.35	3.	5	ND	6	11	1	2	. 9	28	.06	.099	5	15	1.63	46	.05	· 4	2.11	.01	.17	1	16

												a and a second s	20 					B iata:		R RI JA				I ppezz					6.756 .456 Mar							с. –
							W	ESTE	ERN	CAN	ADIA	N M	ININ	G PF	OJE	CT-0	5055		¥ 91	02	FIL	E #	87-	-3405	5								Page	5	•	e
	sahples Koek	NO Pph	CU PPH	PB PPN	ZN PPM	A6 Pph	NI PPH	CO PPM	MN PPH	FE Z	AS PPM	U PPM	au Ppn	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPH	CA Z	P Z	la PPN	CR PPH	K6 Z	BA PPN	TI Z	8 PPM	AL Z	NA Z	K Z	N PPN	AUE PPB				
	587R-080 687R-081 687R-082 687R-083 687R-084	16 7 16 1 8	805 151 244 661 199	24 7 16 17 20	152 16 68 62 36	1.6 1.0 .4 1.9 .6	28 33 21 26 19	28 27 10 22 14	318 221 908 893 504	8.00 6.34 6.11 12.93 6.02	12 15 7 32 12	5 5 5 5 5	ND ND ND ND	7 4 3 4 2	67 109 26 35 14	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 33 101 68 41	.86 1.44 .91 .79 .76	.091 .221 .183 .179 .095	6 9 6 8 5	17 12 73 57 37	1.41 .29 2.86 1.61 1.08	39 21 149 28 26	.25 .45 .56 .33 .32	2 2 2 11	2.12 .80 3.52 2.22 1.28	.01 .05 .08 .02 .04	.72 .08 2.14 .28 .08	2 1 10 10 22	10 185 50 515 51				c
	687R-085 687R-086 687R-087	14 1 17	39 76 138	19 7 23	105 9 98	1.6	30 12 27	23 9 20	1441 174 1189	10.23 4.47 11.73	80 20 17	5 5 5 -	ND ND ND	2 2 3	11 54 10	1 1 1	2 2 2	8 2 2	100 21 106	.63 1.16 .42	.135 .142 .143	4 5 5 4	97 17 97 1	3.43 .25 4.85 74	51 17 32 53	.17 .39 .16 19	6 2 2 2	3.48 .52 4.66 -90	.01 .02 .01 .04	.23 .05 .53 .13	10 2 16 1	68 42 165 3	· · ·		. ((
-	687R-091 687R-092 687R-093 687R-094	69 135 69 149	1304 179 343 510	21 10 4 5 10	100 18 7 5 5	.1 4.7 1.9 2.9 3.7	1 10 6 10 11	10 6 4 4 7	231 313 133 113 85	4.86 3.51 3.48 1.89 2.43	9 14 12 8 5	5 5 5 5 5	ND ND ND ND ND	1 2 1 2 2	18 50 41 37 48	1 1 1 1	2 2 2 2 2	2 2 11 2	10 54 46 38 24	.07 1.34 .43 .83 1.08	.145 .086 .109 .064	5 4 7 6	17 17 28 15	.45 .25 .24 .07	36 47 19 19	.40 .47 .46 .48	3 2 2 2	.55 .31 .34 .26	.03 .03 .02 .02	.33 .29 .18 .09	15 19 22 12	935 385 485 505		(((
•	587R-095 587R-096 587R-097 587R-098 587R-099	31 36 7 2 14	2360 509 759 148 5406	17 9 7 15 11	82 12 27 10 44	6.2 4.6 1.4 .6 11.3	38 9 15 5 28	13 5 12 6 16	1356 176 1192 1796 232	6.85 3.41 4.67 7.25 7.71	18 12 15 17 29	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	77 40 37 23 49	1 1 1 1	2 4 2 2 3	2 2 2 2 34	45 29 31 51 31	6.74 .54 7.14 8.57 .87	.141 .048 .145 .090 .103	4 6 2 3	55 20 29 33 31	1.01 .23 .36 .04 .28	75 21 33 1 19	.37 .50 .33 .30 .40	2 2 11 2 2	1.30 .42 .79 1.12 .48	.01 .01 .01 .01 .01	.95 .23 .30 .01 .23	8 13 21 4 28	705 410 350 79 1060 [(t (
	687R-100 687R-564 687R-565 687R-565 687R-565	4 1 6 25 4	415 406 805 505 548	11 61 20 11 12	17 421 43 22 48	1.6 1.0 .6 1.8 .9	21 14 91 26 10	12 16 23 20 8	895 244 617 257 139	6.28 4.88 8.77 6.98 3.03	16 49 18 20 12	5 5 5 5 5	nd Nd Nd Nd Nd	2 4 2 2 1	21 92 22 89 9	1 1 1 1	2 2 2 2 2 2	2 2 4 2 24	35 29 84 40 25	3.40 1.26 .96 1.12 .30	.097 .057 .173 .145 .025	3 3 5 5 2	41 4 123 39 18	.05 .35 2.45 .44 .69	5 147 31 16 96	.36 .08 .59 .37 .15	2 2 2 2 26	.60 3.13 2.94 .81 .87	.01 .20 .05 .01 .03	.04 .49 1.82 .09 .33	12 1 25 36 7	225 10 126 350 89			(c ۲
	687R-568 687R-569 687R-570 687R-571 687R-572	193 2 11 7 39	448 692 30 480 1069	2 18 2 10 16	5 68 4 16 49	1.1 1.7 .1 1.2 2.8	15 16 14 13 52	29 11 6 16 139	35 917 73 146 108	5.03 6.50 2.80 10.14 26.60	27 20 9 17 29	5 5 5 5 5	ND ND ND ND	1 1 1 2 2	2 24 24 13 4	1 1 1 1 1	2 2 2 2 2	37 2 2 22 228	2 157 23 29 13	.05 .91 .58 .30 .06	.006 .150 .062 .043 .014	2 6 3 3 2	3 28 16 14 1	.01 1.94 .04 .32 .18	6 81 19 13 10	.01 .60 .35 .16 .03	2 2 3 3	.01 2.79 .17 .34 .18	.01 .06 .01 .01 .01	.03 2.02 .06 .25 .23	727 7 13 21 268	43 116 52 285 650	1			¢ €
	687R-573 687R-574 687R-575 687R-576 687R-577	134 169 692 135 6	535 181 549 128 223	21 17 17 17 13	47 24 47 13 25	2.5 1.0 .8 3.8 4.2	63 6 53 1 15	23 16 10 5 9	184 69 339 22 202	8.80 3.36 5.49 3.49 13.81	28 16 12 13 15	5 5 5 5 5	ND ND ND ND	2 1 2 3 3	4 13 34 7 27	1 1 1 1	2 2 2 2 2	6 2 15 2 5	33 12 101 4 77	.08 .04 .67 .01 .65	.043 .026 .156 .028 .029	4 4 7 2 3	10 3 118 5 28	.05 .09 2.54 .05 .15	23 63 64 52 13	.01 .03 .37 .01 .35	2 2 9 2 7	.39 .41 3.12 .40 .27	.01 .01 .13 .01 .01	.16 .22 1.51 .24 .08	2 11 5 7 225	116 92 105 65 495		•	مہ ۔ ا	(
	687R-578 STD C/AU-R	439 19	1336 57	18 40	51 132	2.0	68 38	19 29	736 1058	15.27 3.83	14 40	5 18	ND 8	2 39	40 51	1 18	2 15	4 20	81 58	.81 .47	.141 .087	5 38	60 61	1.42 .85	25 182	.46 .09	2 30	1.85 1.94	.01 .07	1.28	97. 13	305 505				٢

(

(

í

(

WESTERN CANADIAN MINING PROJECT-GOSSAN #9102 FILE # 87-3405

sample# Rock	HQ PPN	CU PPM	PB PPM	ZN PPH	A5 PPN	NI PPH	CO PPN	nn Pph	FE L	AS PPH	U PPN	AU PPN	TH PPN	SR PPM	CD PPN	SB PPM	BI PPM	V PPH	CA Z	P I	LA PPH	CR PPM	NG Z	BA PPH	TI Z	B PPN	AL Z	XA Z	K Z	N PPH	AUS PPB	
687R-579	97	354	26	194	.8	23	9	754	4.25	- 6	5	ND	4	73	1	2	2	67	4.39	.096	7	40	1.65	183	.44	2	3.19	.17	1.57	24	24	
687R-580	71	486	24	52	2.5	11	20	401	8.69	14	5	. ND	4	10	1	2	4	41	.15	.026	2	2	.79	15	.09	19	1.10	.07	.78	216	15	
687R-581	6	806	19	58	1.8	16	6	1193	4.84	10	· 5	ND	1	150	1	2	2	40	8.53	.127	5	40	.47	96	.26	2	1.34	.08	.26	21	295	
687R-582	1	146	10	8	.1	7	2	135	3.42	5	- 5	ND	2	85	1	2	2	10	1.19	.100	- 4	5	.07	- 2	.28	2	.52	.01	.02	3	16	
687R-583	. 1	122	16	- 64	2.9	21	12	276	9.24	10	5	ND	2	2	1	2	2	- 14	.43	.063	2	14	1.28	24	.11	2	.31	.01	.04	4	90	
687R-584	1	1099	9	32	1.3	19	8	131	5.59	18	. 5	ND	2	72	1	2	2	15	.95	.045	3	10	.14	1	.31	2	.55	.01	.01	3	105	
687R-585	. 1	1187	14	176	.8	10	5	1103	9.07	2	5	ND	2	50	1 -	2	9	83	.70	.097	2	2	3.47	63	.31	2	5.17	.15	3.56	65	75	
687R-586	4	375	19	4931	1.4	29	13	249	15.14	19	5	ND	3	9	33	2	2	41	.88	.270	7	47	2.35	29	.05	2	1.02	.01	.23	7	195	
687R-587	1	293	28	26	3.9	23	42	266	37.48	162	5	2	3	2	1	2	6	9	.15	.040	2	- 4	.47	16	.09	2	.46	.01	.35	32	635	
687R-588	· 1	48	20	97	•4	5	9	404	23.98	11	5	ND	5	3	1	2	2	14	.38	.117	2	15	2.71	. 89 .	.04	2	1.26	.01	.63	1	685	
687R-589	i	88	24	63	2.2	11	53	477	40.14	3	5	ND	4	2	1	2	7	3	.09	.027	2	2	.24	27	.04	2	.34	.01	.15	1	305	
687R-590	1	500	- 6	30	3.1	21	- 4	233	10.49	- 13	5	ND	3	27	1	- 2	2	33	.99	.071	3	26	.26	9	.45	8	.37	.01	.06	. 9	250	
STD C/AU-R	19	- 60	42	132	7.2	67	28	1054	3.95	40	, 19	8	40	- 51	17	17.	20	57	.48	.082	- 38	61	.86	181	.09	35	1.86	.06	.14	11	442	

Page 6

0

C

٢.

(

Ć

(

€

C.

C

С

Ç

C

;C

Ċ

ť

÷.

()c

							. (WES'	TERN	CAN	ADI	AN F	ROJ	ECT-	GOS	SAN	#91	02	FIL	E #	87-3	3512	2							•	21	Page	3
SAMPLE	NO PPM	CU PPN	PB PPM	ZN	AG PPN	NI PPH	CO PPN	NN PPM	FE	AS. PPH	U PPR	AU PPN	TH PPM	SR PPM	CD PPH	SB PPM	BI PPN	V PPM	CA	P Z	LA PPN	CR PPH	HG Z	BA PPM	TI I	B PPN	AL Z	NA Z	K Z	N PPH	AU1 PPB		
687R-101	20	818	11	43	4.7	. 9	7	260	3.79	19	5	ND	3	21	1	2	5	57	.57	.064	5	24	.74	58	.30	2	.80	.04	.57	28	262	1.14 ¹¹	
687R-102	38	1933	15	23	9.7	14	13	84	18.12	62	5	ND	5	15	1	2	16	19	.30	.034	2	13	.08	12	.16	2	.03	.01	.09	23	2400		
687R-103	48	249	.7	59	1.6	41	23	283	13.09	21	5	ND	4	42	1	2	2	46	1.23	. 187	11	55	.76	34	.43	31	.54	.05	.52	115	108		
687R-104	5	149	21	64	1.2	37	27	140	16.76	68	5	ND	4	40	1	Ā	7	52	.90	.122	18	-25	.18	25	.30	7	.71	.07	.20	73	122		
687R-105	1	168	5	27	1.1	2	5	81	4.29	3	5	ND	3	35	1	2	2	22	.14	.061	11	4	.40	65	.03	3	.89	.06	.26	1	30		
687R-106	47	30	8	12	.3	1	4	506	7.20	2	5	ND	2	75	- 1	2	2	64	2.06	.027	3	61	.08	3	.56	5	.67	.01	.01	1	76		
687R-107	25	543	6	15	.5	19	15	137	11.15	3	5	ND	2	86	1	3	2	21	1.24	.081	6	28	.16	16	.43	7	.37	.01	.05	52	112		
687R-108	31	208	10	19	1	27	23	148	9.23	4	5	ND	2	84	1	3	2	19	1.15	.086	9	21	.25	15	.48	2	.53	.02	.06	2	48		۰. ۲
687R-109	28	223	8	32	.1	25	17	153	8.41	22	5	NÐ	1	113	1	4	2	16	1.82	.321	6	26	.19	6	.39	7	.65	.03	.02	3	64		
687R-110	. 15	166	6	9	.1	23	12	253	7.51	10	5	ND	2	82	1	4	2	28	1.01	.128	4	33	.13	4	.62	2	.52	.01	.02	1	42		•
687R-111	22	261	3	11	.1	35	18	154	7.22	10	5	ND	1	93	1	4	2	22	1.24	.135	5	25	.13	7	.43	2	.54	.02	.02	. 1	22	. н	
687R-112	6	201	- 3	17	.1	44	20	152	8.47	5	. 5	: ND	2	97	. 1	2	2	25	1.38	.205	8	23	.40	31	.43	2	. 66	.04	.17	1	18		
687R-113	18	592	- 2	22	.7	22	12	218	8.39	9	5	ND	2	43	1	2	2	42	.82	.081	6	31	.74	19	.42	5	.75	.06	.37	5	58		
687R-114	36	729	2	22	1.9	11	6	120	5.13	9	5	ND	2	28	1	3	2	- 31	. 91	.106	7	25	.18	11	.46	2	.36	.03	.05	50	156		
687R-115	. 54	228	4	12	1.3	15	12	115	7.22	12	5	ND	3	53	1	2	2	24	.85	.086	9	18	.21	24	.57	2	.37	.04	.15	31	162		
687R-116	23	3028	33	54	3.6	28	16	417	16.89	56	5	ND	3	47	1	2	4	49	.88	.083	5	73	i.71	38	.46	2	i.33	.08	1.05	275	316		
687R-117	22	111	11	10	1.2	20	11	165	5.77	19	- 5	NÐ	1	65	1	3	5	27	1.11	.049	7.	23	.20	15	.43	2	.52	.01	.17	23	164	•	
687R-118	32	810	11	69	4.1	19	- 19	140	15.85	205	.5	ND	2	26	1	3.	23	41	.41	.065	4	43	.50	26	•22	2	.32	.05	.39	-44	1100		
687R-119	110	86	21	- 14	.8	7	5,	48	5.05	149	5	ND	- 1	. 9	1	2	2	- 14	.05	.026	2	13	.12	21	.13	2	.17	.01	.12	12	605		
687R-120	182	179	30	43	.1	28	29	233	13.18	- 94	5	ND	2	30	1	2	2	85	.42	.112	. 11	23	1.74	40	. 60	2	1.48	.02	1.40	13	36		
687R-121	66	265	25	39	.3	23	19	84	9.52	71	5	ND	2	12	1.	3	2	25	.13	.035	5	17	.58	29	.22	2	.52	.02	.50	20	46		
687R-122	10	519	24	22	2.1	- 94	44	110	18.60	62	5	ND	3	23	1	2	2	40	.74	.255	4	16	.38	15	.07	2	.21	.01	.31	51	392		
687R-123	- 14,	698	25	53	1.4	84	- 46	208	18.27	20	5	NÐ	2	21	. 1	2	2	75	.09	.028	2	102	1.00	17	.13	5	.86	-04	.79	4	182		
687R-591	154	125	140	73	18.5	. 3	8	-141	6.92	- 24	·· 5	NÐ	2	ું 3	-1	14	2	26	.01	.013	2	6	.53	70	.05	18	.95	.01	.31	2	44		
687R-592	23	25	17	21	.6	6	5	123	5.18	- 6	5	ND	1	18	1,	2	2	11	.27	.016	2	4	.16	53	.03	2	.26	.01	.04	40	52		
687R-593	123	332	8	24	14.5	30	17	184	13.01	12	5	ND	2	13	1	2	2	8	.34	.017	2	3	.26	9	.01	2	.13	.02	.05	161	600		
687R-594	22	. 36	76	106	ં .3	23	14	100	13.96	13	5	ND	- 1	5	1	3	2	8	.11	.019	2	5	.10	- 9	.04	2	.13	.01	.09	3	10		
687R-595	19	132	7	11	1.1	24	18	193	6.13	20	5	ND	1	84	1	2	2	66	6.21	2.290	10	18	.16	45	.06	12	.56	.02	.20	5	46		
687R-596	1	10	14	67	1	1	2	1198	6.45	2	5	ND	2	106	1	2	2	- 34	3.47	.047	2	- 4	.78	. 47	.08	-2	2.70	.20	.35	· 1	1		
687R-597	. 2	31	7	9	1	8	10	141	6.33	20	5	ND	- 3	19	. 1	2	2	40	.53	.061	3	25	.16	. 4	.22	10	.25	.01	.02	. 4	52		
687R-598	3	20	- 44	47	1.4	1	17	364	51.73	6	5	ND	4	2	2	2	2	75	.06	.009	2	12	.22	6	.07	14	.71	.01	.04	1	49		
687R-599	21	- 88	16	94	.2	51	11	608	3.67	3	5	ND	3	102	1	2	2	128	3.39	.511	7	60	1.42	150	.21	2	3.87	. 39	1.16	5	6		
687R-600	2	108	48	86	11.4	- 6	15	1062	49.64	76	÷ 5	ND		1	2	2	2	10	.01	.025	2	13	.51	140	.07	12	.79	.01	.14	.1	/80		
STD C/All-P	10	59	το	171	4.0	- 45	27	1040	4 05	70	10	. 7	70	49	18	15	18	-57	49	480	37	59	90	179	:08	35	1.79	.06	.13	12	480		

rrn

rrn

FER

111

т к н

€

C

6

C

C

¢

€.

E

C

€

C

C

C

C

¢

C

C

्रेट

	WESTERN	CANADIAN	MINING	PROJECT-GOSSAN	#9102	FILE	# 87-3747
--	---------	----------	--------	----------------	-------	------	-----------

BAR HAR

Series State

Page 2

SAMPLE#	MO	ິເນ	PB	ZN	A6	NÎ 👘	CO	21N	FE	AS	U	AU	TH	SR	CD	SÐ	BI	۷	CA	P	LA	CR	M 6	8A	ŤI	9	AL	NA	K		AU#	
	PPM	PPM	PPN	PPM	PPN	PPN.	PPN	PPN	2	PPĦ	PPĦ	PPĦ	PPM	PPM	PPM	PPH	PPH	PPĦ	Z	2	PPN	PPN	7	PPN	2	PPN	2	. 2	2	PPH	PPB	

687R-615	18	1209	17	60	1.6	45	19	380	10.67	39	5	ND	2	22	1	2	2	113	.98	364	3	90	1.45	7	13	14	1.27	04	90	14	47
- 6878-616	6	317	34	43	1.7	50	22	158	14.74	84	5	ND	1	16		2	11	47	40	104	2	27	75	é	10			101	50	15	77
687R-617	28	1271	20	56	1.0	36	13	348	8.01	21	5	ND	2	48	1	2	2	30	.74	.086	6	52	2.20	9	.30	5	2.38	.17	1.18	12	35
6878-o18	110	715	18	57	1.0	50	13	443	9.64	10	5	ND	2	32	1	2	2	25	. ól	.072	5	30	3.22	7	.28	2	2.35	. 09	1.54	35	51
- 687R-619	56	1752	16	76	2.0	49	14	334	8.98	- 34	5	ND	3	25	1	2	2	29	.28	.102	6	35	2.37	10	.26	2	2.16	.08	1.40	16	66
687R-620	30	1618	13	58	1.1	. 40	8	419	4.87	14	5	ND	3	43	1	2	.2	49	.79	.126	11	45	2.19	16	. 43	3	2.33	.14	1.37	7	63
687R-621	157	1412	13	54	1.7	64	16	335	8.17	11	5	ND	3	27	1	2	2	52	.56	.107	10	47	1.95	9	. 38	2	1.76	.07	1.17	15	17
6878-622	115	1265	11	62	1.5	77	21	400	7.31	12	5	ND	3	35	1	· 2	2	72	1.05	.217	10	93	2.49	17	.50	3	2.36	.12	1.44	7	1
687R-623	80	1823	11	74	1.9	72	13	415	7.01	7	5	NÐ	2	28	1	2	2	51	.76	.124	6	133	2.65	15	.46	2	2.41	.07	1.56	6	2
687R-624	-83	916	18	62	1.7	55	18	444	8.88	29	5	ND	1 -	24	1	2	3	30	.90	.156	5	87	2.52	10	.32	2	1.92	.05	1.25	10	9 8
687R-625	9	304	13	57	.4	14	8	271	5.55	12	5	ND	3	35	- 1	2	2	41	.27	.102	6	47	1.75	22	.24	2	1.51	.07	1.10	3	- 24
687R-626	30	686	17	77	1.2	46	10	440	7.98	24	5	ND	2	51	1	2	- 3	61	1.58	.561	12	118	2.49	19	.22	2	2.50	.06	1.49	8	49
687R-627	11	1126	11 -	63	1.7	20	23	192	8.75	13	5	ND	3	19	1	2	2	44	.47	.238	8	16	1.06	10	.12	2	1.21	.06	.77	2	43
687R-628	12	1054	11	80	.9	. 39 .	12	600	6.46	10	5	NÐ	1	19	1	2	2	94	1.03	. 220	5	41	3.32	13	.37	2	2.89	.07	1.95	4	52
6878-629	7	721	13	55	1.1	43	11	541	5.38	Ģ	5	ND	2	26	1	2	2	30	2.19	.219	8	38	2.48	14	.34	2	1.96	.06	1.37	13	48
6878-630	17	787	35	50	10.6	24	18	59	19.30	181	5	2	2	8	1	3	373	36	.05	.013	2	4	.16	2	.05	2	.19	.01	.22	67	655
687R-631	43	1795	12	111	3.7	35	18	257	10.96	3	5	ND	2	16	1	2	9	37	.23	.090	3	18	.94	8	.04	2	1.28	.04	.40	1°	- 65
STD C/AU-R	19	58	39	133	7.0	69	28	1038	4.06	41	17	7	37	49	19	17	19	56	. 49	.090	36	59	. 90	174	.08	37	1.87	.07	.13	14	490

								WES'	TERN	CAN	ADI	AN F	ROJI	ECT-	-608	SAN	#91	02	FIL	E #	87-:	3512	2							1.4		Page	2
SAMPLE	MO	CU	PB	ZN	A6	NI	CO	HN	FE	AS	U	AU	TH	SR	CD	SB	BI	¥	CA	P	LA	CR	NG	BA	TI	B	AL	NA	K	¥	AUT	-	
	PPN	PPN	PPN	PPN	PPN	PPH	PPN	PPN	I.	PPH	PPN	PPN	PPN	PPH	PPH	PPH	PPH	PPR	I	I	PPH	PPN	. 1	PPN	I	PPH	1	I	1	PPH	P P9		
PYE-1	1	119	81	23	1.3	-8	7	1101	9.84	26	5	ND	4	11	1	2	2	31	5.59	.121	4	24	.10	30	.32	2	.74	.01	.02	22	58	÷ .	۰.
PYE-2	11	209	30	29	.6	13	11	588	10.37	20	5	ND	4	30	1	2	3	35	2.43	. 191	8	25	.14	142	.33	2	.71	.01	.04	7	43		
PYE-3	. 9	639	72	62	3.1	15	15	284	13.72	55	5	ND	4	32	1	2	8	32	1.19	,227	12	30	.36	46	.25	4	.62	.02	.08	13	136		
PYE-4	15	201	48	152	1.7	14	8	789	19.49	177	5	ND	4	16	1	2	18	73	.79	.332	11	86	2.42	99	.11	5	2.41	.02	.26	22	270		•
PYE-5	4	502	25	50	1.0	16	12	653	6.44	38	5	ND	2	31	1	2	2	31	2.06	.380	11	33	1.01	32	.17	2	1.30	.06	.09	14	87		
PYE-6	3	181	17	49	1.1	11	8	318	11.69	35	5	NÐ	3	20	1	2	11	32	- 63	. 100	6	21	.35	35	. 38	2	.51	. 02	- 04	16	137		
PYE-7	32	447	12	907	1.2	56	35	1547	24.29	73	5	ND	Ā	- 4	6	2	2	130	.81	.169	- 3	136	4.71	30	.13	- ī	4.57	.01	-16	27	280		
PYE-R	26	69	16	100	.8	40	15	507	8.03	58	5	MB	i	5	ī		-	31	.30	.073	2	59	1.39	20	.09	, ,	1 44	61	15	17	445		
PYE-9	44	238	14	134	.8	35	17	488	7.85	19	5	ND	2	9	1	2	3	49	.45	.112	ī	60	1.95	57	.10	2	7.00	.01	.76	7	108		
PYE-10	28	229	13	1039	.6	13	5	843	7.68	19	5	ND	2	- 9	2	2	2	63	.22	.078	2	61	2.39	147	.09	2	2.60	.01	.21	4	39		
PYE-11	12	330	20	221	. 9	35	11	971	8.91	77	. 5	HD.	2	10	1	2	2	47	51	144	4	104	2 41	- 45	10	,	2 49	۰ ۵1	27	17	47		
PYE-12		145	17	86	1.1	70	.25	711	10.44	17	5	MA	,		1	2	,	. 46	45	054	2	51	1 45	77	- 10	2	1 79	04	10	0	129		
PYE-13	22	107	16	37	.7	5		397	6.94	16	5	ND		· ,	- i	2	2	19	.40	.016	,		.55	47	.04	3	.56	.07	- 06	5	44		
PYE-14	7	117	18	28	1.1	2	3	712	6.84	8	5	ND	i	i	- 1	,	Ā.	20	.11	.019	2	5	.33	89	.04			.01	.06	ž	- 25		
PYE-15	10	192	10	9	.8	1	- 4	73	8.63	13	5	ND	1	2	1	2	3	14	.05	.014	2	3	.06	102	.03	2	.06	.01	.04	4	84		
PYE-16	16	180	22	53	1.7	9	4	305	10.94	22	5	ND	2	7	1	2	2	- 34	. 49	. 108	3	33	.87	194	.14	2	.94	.02	.25	9	17		
PYE-17	49	388	34	474	1.2	40	45	530	15.01	102	5	ND	2	7	3	2	13	58	.21	.030	2	39	1.67	15	.15	5	1.99	.01	.17	8	162		
PYE-18	6	795	15	30	5.0	15	14	269	16.87	20	5	ND	3	16	1	2	15	22	. 62	.073	4	22	.18	6	.32	8	.36	.01	.02	. 6	185		
PYE-19	2	126	28	47	1.5	3	14	589	40.22	17	5	ND	5	7	1	2	2	20	.40	.030	3	19	.19	9	.17	2	.39	.02	.04	1	178		
PYE-20	3	175	35	102	4.5	22	19	494	40.55	29	5	ND	3	. 4	1	2	2	27	.18	.037	2	26	.33	9	.12	2	.38	.01	.03	-1,	242		
PYE-21	53	534	- 17	53	3.9	14	17	406	18.66	32	5	ND	2	. 1	1 -	2	7	22	.28	.088	2	14	.19	6	.15	2	.07	.01	.02	- 4	220		
PYE-22	80	283	33	3362	1.7	11	20	611	33.24	24	5	ND	- 3	14	18	2	2	31	.31	.056	2	24	1.22	15	.15	16	1.01	.01	.03	. 1	124		
PYE-23	2	94	47	127	1.1	- 6	- 13	1165	55.13	64	5	ND	- 4	2	· 1	2	2	13	.15	.073	2	28	.55	14	.09	3	.68	.01	.03	1	260		
PYE-24	2	74	48	133	1.8	6	15	826	59.68	43	7	ND	- 4	2	1	2	2	- 6	.05	.039	2	20	.24	14	.06	2	.51	.01	.04	1	157		
PYE-26	1	-47	36	186	.1	21	13	2327	49.14	22	6	ND	- 4	2	1	2	2	15	.16	.066	2	23	1.92	22	.11	2	1.42	.01	.04	1	25		
PYE-27	. 3	130	39	272	1.9	15	15	1404	40.17	67	5	ND		. 4	1	2	2	25	.49	.177	4	40	1.57	65	.16	2	1.25	.01	.02	-1	101		
PYE-28	86	117	4	8	. 1.7	2	- 3	245	3.50	20	· 5	ND	2	101	1	2	2	24	1.75	.204	10	25	.09	. 4	.36	2	.81	.01	.01	. 2	52		
PYE-29	74	143	12	36	.8	7	3	650	4.08	18	5	ND	2	54	1	2	2	22	1.66	.139	14	30	.70	10	.30	- 2	1.14	.04	.05	9	29		
PYE-30	- 4	291	12	81	3.7	6	- 7	876	13.79	22	5	NÐ	2	8	1	2	2	23	4.72	.105	- 4	24	.08	9	:22	9	.63	.01	.03	25	159		
PYE-31	8	69	42	134	3.1	1	16	584	55.51	21	6	ND	. 4	3	1	2	2	4	.12	.051	2	18	.31	34	.09	. 8	.56	.01	.10	1	252	<u></u>	d.
PYE-32	1	262	40	796	1.9	11	21	637	46.84	26	5	ND	4	2	3	2	2	13	.05	.044	2	20	1.24	42	.05	2	1.09	.01	.11	1	139		DD D
PYE-33	21	1360	21	17494	2.9	- 40	. 49	993	18.75	40	. 5	ND	2	6	115	2	2	20	. 68	.119	6	29	2.04	34	.11	2	1.44	.02	.15	1	172		≤
PYE-34	20	181	8	108	2.0	10	. 6	1239	10.94	28	5	ND	2	33	1.	2	-2	40	1.29	.132	6	27	1.85	34	.16	2	2.12	.07	.11	- 3	108	le	E
PYE-35	31	912	28	24764	2.8	36	58	686	24.46	75	5	ND	. 3	7	162	2	2	27	.42	.072	3	28	1.52	11	.05	28	1.35	.04	.15	- 8	280		- -
PYE-36	128	703	. 6	260	1.5	12	5	1115	7.74	18	5	ND	2	54	1	2	2	. 84	1.14	.159	8	76	2.90	63	.26	2	3.04	.03	.15	4	114	R F	מער
PYE-37	333	143	10	208	3.0	3	5	457	6.64	19	5	ND	3	41	2	2	2	33	.94	.106	5	23	.92	8	.24	2	1.18	.03	.04	5	143	Ĥ	-j -
STD C/AU-R	19	56	. 36	131	7.1	66	25	. 955	4.02	37	18	7	37	46	.17	15	20	51	.44	.076	34	55	.81	176	.08	33	1.86	.06	.12	11	505		ŧ :

1

3

-1 1 Bern 1 Č. -

CONTINUOUS CHIP GEOCHEMISTRY

C

C

C

Ç

C

€

¢

€

C

€

€

C

 $\bigcirc_{\boldsymbol{c}}$

PYRAMID EAST - MAGNETITE SHOWING

WESTERN CANADIAN PROJECT - GOSSAN #9102 FILE # 87-2780

.

																-									•									
	SAMP	LES	NO Pph	CU PPN	PB PPN	ZŃ PPH	AG PPM	NI PPM	CO PPM	nn PPH	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPH	CD PPM	SB PPM	BI PPM	V PPH	CA	P	LA PPM	· CR PPN	116 Z	ba Pph	TI Z	9 PPH	AL Z	NA Z	K Z	N PPH	AUX PPB	
3~	PYCH	01	36	328	. 4	47	.3	9	20	701	7.31	11	5	ND	1	105	1	2	2	. 96	2.37	.067	2	5	1.27	49	.21	3	2.17	.21	.75	10	87	
•	PYCH	02	191	419	4	. 44	.5	7	20	343	6.30	8	5	ND	1	63	1	2	2	107	.90	.072	2	1	1.31	41	.24	3	1.93	.26	.75	4	184	
	PYCH	03	13	442	3	43	.4	12	37	229	7.77	8	5	ND	1	57	1	2	2	123	.58	.073	2	3	1.53	28	.16	4	1.74	.22	.85	1	76	
	PYCH	04	842	143	5	33	.2	7	17	246	6.79	6	5	ND	1	131	1	2	2	84	.91	.058	2	6	1.16	45	.11	5	1.99	.25	.60	1	24	
	PYCH	05	310	222	9	48	.2	8	19	238	6.72	8	5	ND	1	46	1	2	2	146	.41	.067	2	5	1.95	29	- 14	4	1.83	.18	.92	1	27	
	русн	06	26	307	5	47	.1	.9	18	282	7.10	7	5	ND	1	86	1	4	2	152	.65	.073	2	5	1.73	31	.16	3	2.18	.25	.97	- 1	. 29	
	PYCH	07	118	425	7	43	.5	13	48	280	8.65	9	5	ND	1	66	1	2	2	119	.93	.063	2	7	1.51	29	.15	5	2.21	.20	.82	-1	97	
	PYCH	08	151	162	9	47	.4	10	24	303	7.68	5	5	ND	1	48	1	2	2	146	.41	.063	2	5	1.86	23	.13	4	1.76	.18	.96	1	38	
	PYCH	09	761	114	. 4	33	.1	9	21	179	7.54	3	5	ND	1	48	. 1	2	2	92	.34	.052	2	6	1.21	24	.11	4	1.25	.14	.63	-1	31	
	PYCH	10	15	100	11	38	.2	10	22	260	7.74	6	5	ND	- 1	63	1	3	2	113	.55	.069	2	-4	1.36	26	.19	4	1.60	.18	.76	1	15	
	PYCH	11	108	144	7	31	.3	12	27	213	9.06	6	5	ND	1	98	1	2	2	86	.69	.061	2	4	.91	27	.19	5	1.81	.17	.29	i	29	
	РҮСН	12	35	300	. 7	46	.2	15	17	242	6.65	6	. 5	ND	1	46	1	2	2	134	.45	.077	2	13	1.59	34	.15	3	2.17	.12	.27	1	91	
	PYCH	13	21	214	4	39	.1	8	8	213	4.67	4	5	ND	1	57	1	2	2	124	.45	.070	2	10	1.56	62	.14	3	1.72	.14	.42	t	38	
÷	PYCH	- 14	219	312	9	45	15	11	20	216	6.46	8	5	ND	Ì	37	1	2	3	148	.35	.073	2	12	1.78	42	.19	4	1.94	.11	.47	3	75	
	PYCH	15	46	610	5	45	.2	10	14	285	5.82	13	5	ND	1	61	1	2	2	149	.74	.077	2	11	1.73	53	.22	3	2.44	.11	.53	1	36	
un	PYCH	16	637	402	8	40	.3	10	8	334	6.05	3	5	ND	1	83	i	2	2	127	.36	.082	2	8	1.46	69	.25	3	2.45	.09	. 64	., 1	45	
7	STD	c/Au	R 18	59	41	131	7.2	70	29	1040	4.05	41	18	7	28	50	17	17	22	58	.50	.092	38	59	.91	178	.08	36	1.75	.06	.14	13	500	

CONTINUOUS ROCK CHIP GEOCHEMISTRY

PYRAMID SADDLE

Page 2

C

(

(

(

C

C

E

€

€

Ċ

ACME ANALYTICAL LABORATORIES

B52 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

.

1

£

ť

(

(

1

C

C

C

(

ો

C

(

(

-0

AUG 1 2 1987

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH NATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE	RECEI	VED	10	L 30 1	987	DAT	E RE	FOR	T MA	ILE	Dı	au	91	0 [E	37	ASS	AYEF	. 1		bere	DE	AN	TOYE	., CI	ERTI	FIE	DB.	c.	ASSA	YER	•
						WES	STER	N C	ANAD	IAN	MIN	ING	FRO	JECI	-GO	SSAN	1 #9	102	F	ile	• 8	721	14.5	P.							
SAMPLE	MO PPM	CU PPN	PB PPN	ZN PPN	AG PPM	NI PPM	CO PPM	nn Pph	FE . Z	AS. PPR	U PPN	AU PPN	TH FPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA X	P Z	LA PPM	CR PPM	86 X	BA PPN	TI Z	B PPM	AL Z	NA Z	K Z	N PPH	AU t PPB
687R-075	20	69	13	46	.7	14	32	431	17.46	2	5	ND	1	130	1	2	2	94	1.95	.056	2	8	.90	25	.12	5	3.15	.26	.67	5	225
687R-076	18	146	8	39	.1	11	21	391	9.61	9	· 5	NÐ	1	61	1	4	2	108	1.23	.066	2	12	1.52	18	.28	2	2.23	.26	.92	19	22
687R-077		324	13	48	.3	12	23	486	10.88	2	5	ND	1	82	1	5	2	144	2.07	.055	3	8	1.69	28	.20	2	2.63	.22	.45	1	13
PYCH-17	103	162	17	75	.9	15	26	400	16.33	5	5	ND	2	69	1	7	14	78	1.94	.065	2	9	.96	25	.14	2	2.75	.30	. 69	27	720
PYCH-18	78	50	10	48	-4	14	25	274	14.02	5	5	ND	. 2	41	1	4	5	57	.55	.041	2	6	1.04	24	.11	2	1.56	.17	.76	9	590
PYCH-19	40	56	4	49	.2	11	16	483	7.12	4	. 5	NO	1	23	1	2	2	89	.30	.060	2	14	1.66	34	.15	2	1.58	.10	1.10	1	42
PYCH-20	133	80	9	37	.6	Ģ	14	358	6.37	10	5	ND	1	38	1	2	2	65	.18	.058	2	12	1.25	38	.11	2	1.20	.11	.94	1	68
PYCH-21	118	208	7	42	1.7	10	14	384	8.27	20	5	ND	1	50	1	2	5	47	.29	.071	2	8	1.15	35	.10	2	1.33	.12	.91	3	150
PYCH-22	51	127	- 3	51	.6	10	14	510	6.57	11	5	ND	1	33	1	2	2	53	.49	.071	2	8	1.42	43	.12	2	1.97	.13	1.05	1	65
PYCH-23	183	53	10	46	.4	8	14	373	10.29	4	5	ND	1	49	1	2	8	76	.55	.067	2	10	1.36	30	.14	~ 4	1.87	.23	.95	4,1	113
PYCH-24	40	111	11	26	.5	6	17	173	18.37	2	5	ND	1	61	1	2	15	47	.79	.057	2	5	.52	20	.10	2	1.40	.24	.41	4	99
PYCH-25	233	- 70	8	23	.3	6	9	199	8.80	2	5	ND	1	54	1	- 4	11	75	.29	.039	2	11	. 69	24	.14	2	.78	.20	.57	. 3	137
PYCH-26	109	- 111	10	30	.4	6	13	215	12.72	6	5	ND	1	59	1	3	7	54	.49	.067	2	6	.76	25	.12	2	.98	.19	.56	10	101
PYCH-27	148	53	5	- 38	.5	10	14	375	7.45	8	5	ND	1	32	1	່ 2	- 3	73	.35	.071	2	13	1.24	33	.13	2	1.30	.13	.89	. 3	57
PYCH-28	76	903	10	28	1.3	35	20	451	7.51	9	5	ND	2	94	1	3	2	91	2.12	.200	2	74	.67	20	.11	16	2.41	.08	.47	6	107
PYCH-29	82	1147	5	29		29	18	546	6.12	6	5	ND	1	106	1	2	3	76	2.65	.127	2	37	.50	15	.10	2	3.16	. 08	.37	2	45
PYCH-30	72	661	3	20	1.2	24	21	381	6.58	11	5	ND	1	78	1	2	5	53	2.39	. 220	3	64	.33	11	.07	18	1.92	.02	.21	2	45
PYCH-31	142	486	9	16	1.1	15	- 6	186	6.13	10	5	ND	1	82	1	3	2	75	.72	.128	2	40	.58	25	.13	6	1.45	.07	.45	4	35
PYCH-32	113	295	8	16	.7	5	- 4	151	9.93	11	5	ND	2	96	1	2	2	84	.20	.147	2	23	.43	35	.12	2	.74	.04	.36	2	59
рүсн-33	117	490	9	14	.7	12	9	271	6.13	12	5	ND	1	74	1	2	2	- 84	.71	-142	2	32	.35	19	.10	2	1.39	.03	.30	3	52
STD C/AU-	R 19	57	39	132	7.3	69	27	913	4.11	43	19	8	37	49	18	.14	19	56	.51	.087	37	58	.93	174	.08	32	1.80	.06	.13	11	510
ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

(

. (

C

€

(

C

C

€

€

€

£

€

С

€

¢

C

AUG 10 1987

GEOCHEMICAL ICP ANALYSIS.

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE ca P La CR MG ba ti b w and limited for NA and K. Au detection limit by ICP is 3 PPM. - SAMPLE TYPE: P1 TO P2-ROCK P3 TO P5-SOIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER. A CHIM. DEAN TOYE, CERTIFIED B.C. ASSAYER Aug 8/81 DATE RECEIVED: JULY 30 1997 DATE REPORT MAILED: WESTERN CANADIAN MINING PROJECT-GOSSAN # 9102 File # 87-2844 Page 1 SAMPLE # 80 CH PB ZN FE SR SB AG NĨ C0 11N AS U AU TH CD BI v CA ₽ LA CR 86 BA TI B AL. AUI NA ĸ ¥ PPH PPH PPH PPN PPN PPM PPH PPH 7 PPN PPM PPĦ PPM PPN PPM PPH PPh PPH **PPH** Z 1 PPM 1 PPN PPH 1 1 1 2 PPM PPB 687R-078 170 347 15 182 15.29 27 1.0 46 31 39 5 42 2 .079 NO 1 2 35 .40 2 13 .88 17 .10 2 1.57 .02 .78 1 310 6878-541 58 1755 16 35 1.5 25 12 297 4.93 12 6 ND 1 300 2 2 81 4.28 .074 2 22 . ?8 52 .15 1 2 6.58 .23 .64 1 229 6878-542 310 760 17 33 9 . ? 11 88 5.03 20 5 ND 1 29 1 2 3 13 .23 .042 2 15 .35 39 .05 2 .96 .02 .43 250 1 PYCH-3-01 49 1199 3 34 .5 64 15 602 4.17 5 89 4 ND 1 1 2 2 85 1.18 .089 2 79 .97 20 .17 3 4.04 .26 .71 3 67 PYCH-3-02 40 1536 5 29 1.0 55 12 538 4.01 90 85 1.27 .096 2 5 NÐ 1 1 2 2 2 70 .93 24 .16 2 4.04 .25 .88 1 240 PYCH-3-03 58 1063 9 25 .6 39 8 600 2.80 2 5 ND 1 98 2 2 101 1.24 .103 2 85 1.09 22 .18 3 4.71 .27 .99 1 80 PYCH-3-04 128 369 7 15 28 .4 5 329 2.88 3 5 ND 2 61 2 2 .76 2 60 2 2.50 1 65 .114 .61 10 .18 .09 .24 61 1 PYCH-3-05 85 550 7 27 .5 34 7B 16 662 8.73 2 6 NÐ 1 1 2 4 61 1.64 .070 2 57 .72 10 .14 2 3.21 .17 .46 1 500 PYCH-3-06 61 399 2 45 .2 52 9 851 5.45 7 ND 1 96 2 2 74 1.82 6 101 1.30 .094 2 21 .23 2 3.82 .25 .68 149 1 1 PYCH-3-07 45 200 10 45 48 .1 12 866 8.35 5 5 NÐ 1 79 1 2 2 111 1.46 .079 2 81 1.81 41 .22 2 3.76 .37 1.42 1 37 PYCH-3-08 102 846 37 53 5 .7 14 717 5.59 2 5 NÐ 1 83 2 2 119 1.62 .094 2 94 1.47 30 .22 2 3.97 .35 .97 57 1 2 PYCH-3-09 44 2294 3 32 1.3 53 13 602 4.32 3 8 ND 1 162 2 2 107 1.21 .115 2 72 1.04 12 .18 2 3.98 .25 710 1 .54 4 PYCH-3-10 7 66 568 30 .5 40 13 697 6.14 6 5 ND 2 119 1 2 10 112 .94 .114 2 73. 1.27 13 .23 2 3.05 3 200 .04 :43 PYCH-3-11 52 985 10 28 .5 51 11 641 6.02 5 5 NÐ 69 2 2 1 1 107 1.25 .100 2 81 1.18 13 .22 2 3.91 .08 .52 107 1 PYCH-3-12 58 569 9 29 .4 33 15 650 6.50 8 5 ND 1 117 2 87 1.20 .123 1 2 2 36 1.16 9 .21 2 3.33 .03 .27 3 66 PYCH-3-13 80 1252 7 33 1.2 43 21 636 6.59 5 246 2 103 1.14 .113 15 .23 2 NÐ 1 2 2 51 1.15 2 3.38 .05 .27 1 105 -1 PYCH-3-14 58 1571 4 34 1.2 31 15 593 6.53 5 79 2 ND 2 1 2 2 86 .87 .136 2 37 1.03 11 .20 2 3.50 .03 .30 1 129 PYCH-3-15 44 2447 35 498 5.14 4 1.9 53 13 3 5 85 2 2 ND 1 1 1.40 .094 2 37 .85 17 2 3.26 182 66 .19 .15 .49 1 PYCH-3-16 20 5887 15 62 3.9 40 44 1147 16.77 2 2 90 8 ND 2 2 2 103 2.66 .084 2 22 1.27 31 .20 2 3.80 .27 .82 161 1 PYCH-34 125 1334 4 20 1.4 27 13 260 5.53 10 5 ND 83 82 .82 .111 37 .57 20 .13 2 2.32 2 76 1 2 2 2 .09 .43 - 1 PYCH-35 114 1233 548 4.97 6 35 1.8 28 12 5 152 1. 99 5 ND 2 2 2.10 37 .15 3 4.32 .38 .88 1 85 .090 2 .95 39 PYCH-36 130 712 2 26 1.3 20 8 249 2.64 2 5 ND 79 53 .120 .50 28 .12 2 2.31 71 1 1 2 2 1.03 2 24 .22 .56 -1 PYCH-37 270 935 5 28 2.0 15 9 260 6.37 2 ND 77 2 62 22 .58 . 99 6 1 1 8 .63 .103 2 28 .14 2 1.77 .18 .61 1 PYCH-45 93 1525 4 50 1.7 26 13 527 6.40 5 ND 2 124 1 2 3 78 1.91 .070 38 1.07 50 4 2 .16 2 3.82 .22 1.01 1 200 PYCH-46 6 185 3 32 .5 .4 5 483 3.62 2 8 NÐ 3 46 1 2 2 63 .68 .072 3 8 1.09 38 .13 2 2.21 .22 .87 1 -15 PYCH-47 2 175 28 5 .2 4 5 426 3.57 2 5 ND 2 -77 2 2 62 1.10 .071 7 1.06 41 .13 2 2.87 .31 .88 - 14 3 PYCH-48 57 1275 37 8 24 2.1 20 387 7.55 15 8 ND 2 162 2 2 97 1.62 .101 2 40 .83 37 .14 2 3.40 .62 1 250 1 .26 PYCH-49 63 453 25 9 1.2 30 20 144 10.17 18 5 ND 1 110 1 2 3 51 .71 .082 2 12 .48 29 .08 2 1.49 .13 :42 2 100 PYCH-50 83 1635 10 43 2.6 53 43 234 11.01 9 80 260 5 ND 1 1 2 3 83 .79 .104 2 57 .86 25 .09 2 1.88 .13 .59 2 PYCH-51 230 567 12 56 1.5 28 24 235 11.24 29 5 113 ND 1 1 2 3 72 1.04 .083 2 22 . 66 24 .09 2 2.09 .15 .46 1 106 PYCH-52 25 825 4 39 17 13 261 5.57 2 1.27 ,44 1 83 1.4 7 85 58 .167 12 .72 2 2.23 .18 8 NU 2 2 40 .10 PYCH-53 103 21 6 7 .1 4 6 267 4.13 5 ND 4 31 2 2 55 . 40 .066 5 .84 28 .09 2 1.28 .12 .57 1 16 4 1 3 PYCH-54 4 126 7 30 2 292 4.18 35 .37 19 .3 5 5 5 ND 4 1 2 2 60 .070 4 7 .95 34 .11 2 1.39 .13 .75 1 PYCH-55 4 248 3 33 .97 21 .4 4 5 311 3.52 2 5 ND 4 34 1 2 2 62 .52 .073 4 32 :11 2 1.70 .15 . 64 1 5 PYCH-56 123 2938 5 35 2.9 20 29 263 9.35 2 85 .51 .081 330 2 5 ND 1 69 1 2 2 9 1.60 25 .14 3 2.07 .19 1.28 1 PYCH-57 34 1357 37 150 1.26 .091 123 7 1.3 17 19 400 7.40 ND 154 2 2 18 2.35 57 7 5 1 1 2 .20 6 4.16 .32 1.78 1 STD C/AU-R 132 7.5 20 59 39 73 29 1022 4.14 18 39 52 17 17 20 61 .51 .093 13 500 41 8 39 64 .94 179 .08 36 1.80 .06 .15

							WEST	ERN	CAN	ADI	an M	IINI	NG F	ROJ	ECT-	-60S	SAN	# 91	02	FIL	E #	87-	284	4			•			. '		Page	2
SAMPLE	NO PPN	CU PPM	PB PPM	ZN PPM	AG PPN	NI PPN	CO . PPN	HN PPM	FE Z	AS PPM	U PPN	AU PPM	TH PPN	SR PPM	CD PPN	SB PPN	BI PPN	V PPN	CA Z	P I	LA PPN	CR PPM	NG Z	BA PPM	TI I	B PPH	AL I	NA Z	K I	¥ PPN	AU t PPB		
РҮСН-58 РҮСН-59 РҮСН-60	70 302 65	983 813 1706	36 22 17	26 21 32	2.0 .9 1.0	19 14 19	25 14 14	183 201 305	9.84 6.83 5.98	7 6 2	5 5 5	ND ND ND	1 1 1	63 130 137	1	3 2 2	2 2 2	49 68 104	.31 .75 1.30	.076 .074 .084	2 2 2	7 13 16	1.37 1.32 1.82	35 38 26	.11 .11 .12	2 2 14	1.59 2.45 4.16	.12 .15 .27	.96 .94 1.14	1 1 1	295 150 75	•	

1

C

. (

(

<

(

C

C

C

C

€

C

¢

C

¢

. (...

C

C

<

 $\mathcal{D}_{\mathcal{C}}$

O_c

and the second se

Basano

ACME	ANALYT	ICAL	LAE	ORA	TOR	ES	, i	852	E. H	ASTIN	56 9	ST. 4	VANC		ER E	.c.	V6	A 1R	6	РНС	NE 2	:53-3	5158		DATA	A LII	NE 2	251-1	011	
					-			G	EOC	HE	MI	CF		I	CP	f		۱ ۲	's I	8										÷
					.500 This - Sam	GRAM S LEACH IPLE TY	SAMPLE 18 PAF (PE: PI	IS DIGE RTIAL FO L-SILT P	STED WIT Ir Min Fe 12-rock	H 3HL 3- Ca p la Aut a	l-2 HC CR H6 NALYSI	L-HNO3- Ba ti i S by A/	-H2O A B W AN A FROM	T 95 D D LINI I 10 Gr	eg.c Ted foi An sahi	FOR ON R NA AI PLE.	E HOUR ND K.	and is Au dete	DILUTED CTION L	TO 10 H NIT BY	L WITH ICP IS	WATER. 3 PPN.			- - 		JU	Ľ -	3	1987
DATE	RECEIV	ED:	JUNE	25 19	87	DAT	E R	EPOR	T MAI	LED:	q,	ly 2	187	7	A58	SAYE	R. 🖊).Je	цц.	DEAN	ו דסז	Έ, (CERT	IFIE	DB	.C.	ASS	AYER		
					·		WE	STER	I CAN	ADIAN	PRO	JJEC.	T#91	102	Fi	le	€.E.7.	2999	5	Page	1									
SAMPLE	NO NO	CU	PB PPM	ZN PPM	AG PPN	NI PPH	CO PPM	KN PPH	FE I	NS U Ph Pph	AU PPM	TH PPM	SR	CD PPN	SB PPM	BI PPN	V PPN	CA Z	P I Pi	A CI H PPI	MG Z	BA PPM	TI Z	B PPM	AL Z	NA Z	K I	N PPH	AU t PPB	
	. rrn																													

t **e**nternation

L

.

-b

a da

1.1

ι

1

Ċ

(

r

687L-210	66	90	4	70	.1	3	9	644	2.97	8	5	ND	5	29		2	2	· 56	.48	.056	10	4.	.50	71	.09	2	1.74	.06	.23	1	9	
687L-211	19	158	14	196	.6	22	13	984	4.12	6	15	ND	2	83	2	2	2	55	1.34	.153	28	27	.59	188	.11	2	2.25	.03	.15	1	39	2
687L-212	19	2099	6	183	1.2 9	88	535	5336	4.18	10	5	ND	1	41	5	4	2	56	.48	.167	8	45	1.06	325	.17	6	4.23	.05	.25	5	750 2	
687L-213	4	2539	2	237	.6	27	82	1024	.29	2	5	ND	1	57	8	2	2	4	1.36	.106	6	3	.08	70	.01	4	2.11	.01	.08	1	6	

WESTERN CANADIAN MINING PROJECT - GOSSAN #9102 FILE # 87-2394

SAMPLE	10	CU	PB	ZN	AG	NI	C0	MN	FE	AS	U	AU	TH	SR	CD	SB	BI	۷	CA	P	LA	CR	MG	BA	П	- B-	AL	NA	K	W	AUT	
	PPN	PPN	PPH	PPN	PPh	PPH	PPR	PPN	ĩ	PPN	PPN	PPĦ	PPĦ	PPN	PPN	PPN	PPH	PPN	I	z	PPR	***	. 1	PPn	L	PPR	1	1	I.	177	PPU	
687-L-400	16	145	7	157	.5	108	105	4786	10.04	12	5	ND	12	91	1	. 2	4	40	1.39	.147	5	9	.68	86	.13	6	1.06	.01	.05	3	6	
687-L-401	22	141	7	174	.3	55	137	4156	3.91	9	5	ND	11	85	3	2	2	25	.50	.180	9	7	. 89	130	.06	2	3.07	.01	.03	- 3	. 8	
687-L-402	15 -	110	14	264	.7	29	81	2620	6.41	7	5	ND	6	75	3	3	2	38	.56	.240	16	. 7	1.22	137	.11	2	2.42	.01	.05	3	26	۰.
687-L-403	. 6	70	8	135	.4	12	29	2263	4.51	8	5	ND	8	69	1	2	2	32	.72	.166	13	. 8	1.27	162	.08	19	1.65	.01	.05	- 4	10	
687-L-404	20	159	167	342	1.9	7	31	3026	8.97	5	5	ND	6	44	2	2	6	29	.55	.184	11	2	1.52	471	.08	2	1.66	.01	.05	4	150	
687-L-405	3	92	38	83	.5	5	5	401	13.55	13	5	ND	3	163	.1	2	3	28	.14	.254	13	4	. 48	122	.09	2	.95	.03	.07	- 4	21	
687-L-406	6	130	42	98	.8	- 5	9	823	.7.96	10	5	ND	- 4	120	1	2	7	27	.14	.233	8	7	.68	173	.09	2	. 98	.02	.06	1	15	
687-L-407	6	377	39	166	6	7	23	1340	4.77	8	5	NÐ	5	50	1	2	5	32	.37	.138	8	7	.76	123	.08	2	1.39	.01	.09	1	120	
687-L-408	7	141	89	159	.7	.7	13	880	7.91	15	5	ND	2	157	1 -	2	4	31	.19	.254	8	7	.73	171	.10	2	1.27	.03	.09	- 3	25	
687-L-409	23	829	.37	1055	4.0	65	30	1342	8.22	50	5	ND	- 3	36	6	3	9	65	.22	.164	10	75	1.77	114	.19	26	2.11	.03	.72	8	1090	
687-L-410	7	305	33	681	1.5	50	18	1333	5.13	21	5	ND	3	29	5	3	2	67	. 38	.110	7	53	1.81	270	.20	2	2.05	.02	.81	4.	150	
687-L-411	17	247	32	333	.6	- 23	23	924	5.84	21	5	ND	1	49	_ 2	2	- 4	97	. 59	. 096	5	26	1.74	190	.24	2	2.20	.01	.45	8	49	
687-L-412	5	65	14	98	· .1.	11	· 9	980	2.94	5	5	ND	2	30	1	2	2	35	.19	.131	- 14 -	- 13	.53	76	.07	2	1.54	.02	.10	1	6	
687-L-600	21	223	19	113	.4	7	19	1340	4.13	13	9	ND	5	87	1	2	3	32	.77	.151	16	7	. 82	377	.10	. 2	1.29	.03	.07	1	22	
687-L-601	24	113	32	121	.7	8	36	2557	5.64	9	7	ND	6	95	1	2	2	36	.72	.171	14	2	1.09	373	.08	2	1.58	.02	.07	1	- 3	
687-L-602	10	38	32	169	.4	12	9	907	2.36	192	5	ND	2	101	2	111	2	32	1.10	.103	19	13	.80	149	.09	- 4	1.52	.01	.09	4	1	
587-L-603	15	- 25	20	107	.4	6	6	484	1.75	6	13	ND	2	84	1	2	2	31	.74	.103	16	11	.57	172	.08	2	1.37	.02	.04	. 1	5	
687-L-604	17	140	48	192	.5	7	26	1453	4.36	19	5	ND	3	68	1	5	2	32	.75	.154	16	9	.77	319	.07	2	1.38	.01		3	13	
687-L-605	72	218	18	68	1.2	- 22	5	285	6.68	22	5	ND	1	44	· 1	5	5	81	.17	.195	6	60	1.57	116	.23	2	1.48	.02	.94	9	165	
STD C/AU-S	21	58	42	133	7.1	70	30	991	4.00	40	24	- 8	36	51	19	13	20	59	.50	.094	40	62	.91	184	.09	36	1.74	.07	.15	14	47	

Page 2

£.

(

(

€

•

APPENDIX II

PETROGRAPHIC REPORT

Nancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph. D. Geologist

> Report for: Brian Butterworth, Western Canada Mining Corp., 1170 - 1055 West Hastings Street, VANCOUVER, B.C., V6E 2E9

P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX IJO

PHONE (604) 888-1323

Invoice 6656 August 1987

Samples: PY - 01, -02, -03SE-3270, -3530, -3850, -3880, -3950

Summary:

Rocks are grouped into intermediate volcanic rocks and hypabyssal to deeper-seated intrusive rocks. All were metamorphosed and altered moderately to strongly. Mafic phenocrysts are replaced by chlorite, and plagioclase phenocrysts commonly are altered to sericite. The stable metamorphic assemblage in volcanic rocks is sericite-chlorite-quartz-epidote-apatite-Ti-oxide.

1. Volcanic rocks

- Latite: commonly with plagioclase phenocrysts and much less abundant ones of biotite and/or hornblende and apatite; groundmass dominated by plagioclase with only minor quartz.
 - SE-3850 cut by abundant quartz-magnetite-(chlorite) veins; magnetite disseminated in rock
 - PY-01 hornfelsed with secondary biotite; replacement veins and patches of quartz-pyrite-chalcopyrite-apatite. rock contains more groundmass guartz than normal possibly dacitic or quartz latitic in composition.
 - PY-02 no phenocrysts, abundant, possibly secondary K-feldspar, abundant quartz-pyrite-(chalcopyrite) veins and patches
 - PY-03 disseminated pyrite with minor pyrrhotite inclusions
 - SE-3950 volcanic breccia/lapilli tuff(?) (small sample); fragments of andesite, cherty latite, hypabyssal latite? in latite groundmass

2. Hypabyssal Granodiorite/Quartz Monzonite

probably related in origin to latite, phenocrysts of plagioclase, biotite, apatite, quartz, hornblende in groundmass dominated by K-feldspar, with lesser quartz and plagioclase and moderately abundant magnetite. Minor chalcopyrite.

SE-3880

(continued)

3. Metamorphosed Quartz Diorite

The Division of the Party of th

ALC: NOT ALC

1

- SE-3530 medium grained; plagioclase replaced moderately by epidote, sericite, biotite replaced by chlorite tepidote abundant quartz
- SE-3270 porphyritic, with plagioclase phenocrysts and minor ones of biotite, hornblende, and apatite in a groundmass of plagioclase, quartz, and epidote, with lesser biotite and K-feldspar. Plagioclase is altered to sericiteepidote, and biotite is altered to chlorite. Pyrite forms disseminated grains and is altered to hematite.

John G. Payne

2.

<u>SE 3270</u>

1

Metamorphosed Porphyritic Potassic Quartz D. rite

The rock contains plagioclase and minor mafic phenocrysts (biotite and hornblende) in a groundmass dominated by plagioclase, quartz, and epidote, with lesser biotite and K-feldspar, and with moderately abundant apatite. Mafic phenocrysts are altered to epidote-chlorite, and plagioclase is partly altered to sericite-epidote.

phenocrysts	
plagioclase	30-35%
biotite	2-3
hornblende	11-2
apatite	1
groundmass	
plagioclase	17-20
quartz	12-15
epidote	15-17
biotite	7-8
K-feldspar	7-8
Ti-oxide	0.2
pyrite/hematite	0.3
sphene	0.1

Plagioclase forms subhedral prismatic phenocrysts from 1.5-2 mm in average size. They are variably altered to patches of epidote and of sericite, with alteration intensity from moderate to locally strong.

Biotite forms a few flakes up to 2 mm in size; these grade down in size to that of biotite in the groundmass (0.3-1 mm). It is altered completely to pseudomorphic chlorite with patches of epidote. The latter ranges widely in abundance, from minor disseminated grains to fine grains occupying about half of the patch.

Hornblende forms a few phenocrysts up to a few mm in size. It is completely replaced by aggregates of very fine to fine grained epidote with or without minor chlorite and quartz.

Apatite forms subhedral to euhedral grains from 0.5-1 mm in size, as well as much finer grains in the groundmass.

In the groundmass, plagioclase forms irregular grains from 0.05-0.3 mm in size. Alteration is similar to that in phenocrysts. K-feldspar forms grains from 0.1-0.4 mm in average size; it contains abundant dusty hematite. Quartz forms anhedral grains averaging 0.1-0.25 mm in size. Epidote forms irregular to subhedral patches up to 1 mm in size. Some probably represent completely altered plagioclase or hornblende.

Ti-oxide forms patches up to 0.3 mm in size; some patches contain opaque cores (ilmenite?). Sphene forms a few anhedral grains from 0.1-0.2 mm in size associated with chlorite, and one euhedral rhombic grain 0.6 mm across.

Pyrite forms anhedral, equant grains averaging 0.2-0.5 mm in size, and a very few euhedral cubic grains up to 0.2 mm across. It is altered strongly to completely to deep red-brown hematite.

A few grains of biotite(?) oriented parallel to the plane of the section show Ti-oxide in a network of planes along crystallographic directions in the original grain. Zones between Ti-oxide plates are composed of chlorite and sericite.

<u>SE 3530</u> Metamorphosed, Altered Quartz Diorite

The rock is a medium grained quartz diorite dominated by plagioclase and quartz, with minor biotite, apatite, and Ti-oxide. It was metamorphosed and partly recrystallized, with plagioclase replaced moderately by epidote and sericite, and biotite replaced completely by chlorite and minor epidote. The rock contains a few seams and patches of more strongly deformed rock with abundant epidote alteration.

plagioclase

-

fresh		40-45%	
sericite	e alte	eration	12-15
epidote	altera	ation	12-15
quartz		25-30	
chlorite	after	biotite	1 <u>1</u> -2
apatite			$\frac{1}{2} - 1$
Ti-oxide			$1 - 1\frac{1}{2}$
zircon			trace

Plagioclase forms anhedral grains up to 1.5 mm in size. Many show evidence of slight cataclastic deformation, and their very irregular outlines probably were formed during recrystallization at the time of deformation. Some parts of the rock contain relatively fresh plagioclase. Elsewhere, it is altered moderately to very strongly to very fine grained sericite. In still other parts of the rock it is moderately to strongly replaced by irregular patches of very fine to medium grained epidote.

Quartz forms anhedral grains averaging 0.5-1 mm in size. Grains commonly show strained extinction, and in a few places, grains are recrystallized along borders to extremely fine grained aggregates.

Biotite forms flakes averaging 0.2-0.5 mm in size. It is replaced completely by pseudomorphic chlorite with minor patches of very fine grained epidote.

Apatite forms irregular grains up to 1.5 mm in size. Many of these are moderately fractured, and some have minor sericite on fractures. A few much finer grains of apatite have subhedral, prismatic outlines.

Ti-oxide forms irregular patches up to 0.5 mm across, and wispy seams up to 1 mm in length. These probably are secondary after ilmenite. They commonly are associated with chlorite.

Zircon forms one subangular, equant grain 0.07 mm across.

The rock contains a few discontinuous seams and patches in which grains were strongly granulated. Such zones contain moderate to abundant epidote alteration. Porphyritic Latite cut by Quartz-Magnetite-Chlorite Veins

The rock contains abundant plagioclase phenocrysts and lesser ones of biotite and apatite in a very fine grained groundmass dominated by plagioclase with minor chlorite and magnetite. Plagioclase is largely altered to sericite, and biotite is altered completely to chlorite-(Ti-oxide). The rock is cut by a few veins up to 4 mm wide of quartz with patches and seams of magnetite and lesser chlorite. Note: thin section only.

phenocrysts		veins	
plagioclase	12-15%	quartz	35-40%
biotite	$1\frac{1}{2}-2$	magnetite	3-4
apatite	$1 - 1\frac{1}{2}$	chlorite	1
groundmass			
plagioclase	30-35		· · ·
chlorite	2-3		
magnetite	$1 - 1\frac{1}{2}$		
Ti-oxide	0.2		

Plagioclase forms subhedral to euhedral phenocrysts averaging 0.5-1.2 mm in length, with a few up to 3 mm long. In much of the rock, these are altered completely to dense, extremely fine grained aggregates of sericite with locally minor fine grained quartz. A few single grains and clusters of grains of plagioclase phenocrysts are only slightly altered to sericite; these are concentrated in vague zones up to several mm across.

Biotite forms ragged phenocrysts up to 0.7 mm in size. They are equant to elongate in outline. Alteration is complete to pseudomorphic chlorite and minor to moderately abundant, very fine to extremely fine grained patches of Ti-oxide. Associated with some are clusters of very fine grained magnetite. Several phenocrysts contain replacement patches of dense sericite as in the plagioclase phenocrysts. It is probable that some of the sericite alteration is associated with the quartz-magnetite-chlorite veins.

Apatite forms anhedral to subhedral, commonly equant grains from 0.1-0.4 mm in size. A few coarser grains are slightly fractured, and fractures filled by quartz and, in one grain, a muscovite flake 0.15 mm long.

The groundmass is dominated by anhedral, equant plagioclase grains averaging 0.02-0.05 mm across. Associated with plagioclase is minor to abundant extremely fine grained sericite. Scattered grains of quartz and a few aggregates of quartz may be secondary, associated with the sericite alteration and/or veins.

Chlorite forms irregular patches up to 0.5 mm in size of very fine to extremely fine grained aggregates. A few patches contain minor to moderately abundant quartz, and others contain minor to abundant magnetite. Chlorite commonly is concentrated around larger grains or aggregates of magnetite.

Magnetite forms disseminated grains and clusters of grains averaging 0.02-0.05 mm in size.

Ti-oxide forms equant grains averaging 0.02-0.03 mm in size, associated with magnetite and with chlorite.

The veins have sharp borders, and are dominated by quartz aggregates averaging 0.1-0.2 mm in grain size. Textures suggest that quart was recrystallized. Magnetite forms patches up to 2 mm across, averaging less than 0.5 mm, and discontinuous trains of much finer, irregular grains. Chlorite commonly is concentrated along borders of magnetite, and locally forms larger patches up to 0.7 mm across of very fine grained aggregates associated with minor to moderately abundant magnetite.

SE 3850

SE 3880 Porphyritic Hypabyssal Granodiorite/Quartz Monzonite

The rock contains phenocrysts of plagioclase and much fewer ones of biotite, hornblende, quartz, and apatite in a very fine grained groundmass dominated by K-feldspar with lesser quartz and plagioclase. Magnetite forms clusters, disseminated grains and veinlets. The rock is cut by veins of quartz-K-feldspar.

phenocrysts				
plagioclase	20-25%		veins	
biotite	2-3		guartz-K-feldspar-(magnetite) 2-3%	
quartz	one		magnetite 0.2	
hornblende	one (al	tered)		
apatite	0.2			
groundmass				
K-feldspar	35-40			
quartz	12-15			
plagioclase	10-12			
magnetite	4-5			
Ti-oxide	0.2			
epidote	2-3			
chlorite	1- 2			
sphene	minor			
chalcopyrite	minor			
~ 4				

Plagioclase forms subhedral to euhedral phenocrysts averaging 1-1.7 mm in size, with a few up to 3 mm long. Most are altered strongly to extremely fine to very fine grained aggregates of sericite. Some also contain irregular patches of epidote up to 0.4 mm in size. A few epidote patches up to 1.5 mm across may represent completely altered plagioclase phenocrysts.

Biotite forms scattered phenocrysts up to 1.5 mm in size. They are equant in outline, and altered completely to pseudomorphic chlorite with wispy lenses of epidote along cleavage planes.

Quartz forms one equant phenocryst 0.9 mm across. It has ragged, slightly embayed borders against the groundmass.

Hornblende forms one or two phenocrysts up to 1 mm long. They are prismatic in outline, but the borders are destroyed by complete alteration to a fine to very fine grained, intergrowth of quartz, chlorite, and magnetite, with minor sericite.

Apatite forms subhedral prismatic grains up to 0.7 mm in length. It is moderately concentrated as anhedral to subhedral grains near a large patch of magnetite.

The groundmass is dominated by an intergrowth of K-feldspar and lesser plagioclase averaging 0.05-0.1 mm in grain size, and grains and patches of quartz, ranging from 0.05-0.3 mm in grain size. A few coarser K-feldspar grains up to 1 mm in size may be original phenocrysts or may be altered plagioclase phenocrysts. K-feldspar contains dusty hematite inclusions. Plagioclase in the groundmass generally is fresh, except for a few ragged grains, which are slightly to moderately altered to sericite, and which may represent partially resorbed, early-formed grains.

Magnetite forms equant grains and clusters of grains averaging 0.1-0.3 mm in size. Clusters commonly consist of extremely fine to very fine grained aggregates. One large cluster 1.5 mm across consists of coarser grains of magnetite up to 0.5 mm in size.

Ti-oxide occurs with very fine grained aggregates of magnetite. It forms anhedral grains up to 0.2 mm in size.

(continued)

SE 3880 (page 2)

1

Epidote forms irregular, very fine to fine grained patches, which probably represent altered plagioclase phenocrysts.

Chlorite forms disseminated grains and patches up to 0.15 mm in size.

Sphene forms anhedral grains averaging 0.03-0.05 mm in size. Chalcopyrite forms very irregular grains and patches averaging 0.05-0.2 mm in size. With pyrrhotite it forms inclusions up to 0.02 mm in size in magnetite.

The rock is cut by a few veinlets up to 0.3 mm in width of fine to very fine grained quartz with patches of K-feldspar and scattered magnetite grains. A few discontinuous veinlets up to 0.15 mm wide consist of very fine to fine grained magnetite.

<u>SE 3950</u> Volcanic Breccia (Latite/Andesite)

The rock contains fragments up to 2 cm in size of a few rock types. The sample is too small to determine which type of fragment is dominant, or if one of the rock types is the groundmass. Minor evidence suggests that the rock contains fragments of andesite and cherty latite in a groundmass of very fine grained latite.

andesite

لأشتنا

1

1

This rock type forms a large fragment up to 2 cm across at one end of the section.

sericite	60-65%
chlorite	12-15
epidote	12-15
plagioclase	4-5
quartz	4-5
apatite	1
Ti-oxide	0.3

Sericite forms extremely fine grained aggregates containing minor relics of plagioclase. Too little plagioclase is preserved to indicate the primary texture.

Chlorite forms irregular patches of very fine grains associated with lesser epidote and/or Ti-oxide. It also occurs in intimate intergrowths with sericite.

Epidote forms irregular to subhedral patches up to 1.5 mm in size, with grains up to 0.5 mm in size. Commonly it is not associated with chlorite, and less commonly is coarsely to finely intergrown with minor to moderately abundant chlorite.

Plagioclase forms scattered, relatively fresh grains, in part associated with quartz. These appear to be secondary, and probably are more sodic in composition that that plagioclase which was altered to sericite.

Quartz forms patches and interstitial grains averaging 0.05-0.1 mm in size.

Apatite forms equant, irregular grains and aggregates up to 0.5 mm in size. Some grains are irregularly fractured. Most contain dusty to extremely fine grained brown inclusions.

Ti-oxide forms extremely fine grained patches with chlorite or alone.

cherty latite

At the opposite end of the sample from the andesite fragment is a patch up to 1.5 mm in size of extremely fine grained plagioclase (possibly with some quartz), with a few slightly coarser grained patches. Sericite forms minor, extremely fine grains and aggregates. The fragment contains minor patches of extremely fine to very fine grained chlorite with minor Ti-oxide. It is cut by a vein 0.2 mm wide of very fine grained quartz. The vein does not extend beyond the borders of the fragment. Nearby is a similar patch 3 mm across, in which sericite is much more abundant, and the texture grades somewhat into that of the groundmass latite.

hypabyssal latite?

At one side of the rock is a patch up to 3 mm across dominated by an intergrowth of fine grained plagioclase altered slightly to moderately to sericite. Chlorite and much less Ti-oxide forms fine to very fine grained aggregates occupying 20% of the patch.

(continued)

SE 3950 (page 2)

latite groundmass(?) (50% of sample)

This rock contains plagioclase phenocrysts in a variable groundmass dominated by sericite. It may be fragmental (tuffaceous) in origin, but alteration has obscured original textures.

phenocrysts	(crystal	fragments)
plagioclase	10-1	58
groundmass		
sericite	75-7	8
plagioclase	4 -	5
quartz	4 –	5
chlorite		1
epidote	0.	5
Ti-oxide	0.	3
apatite	mino	r
muscovite	trac	е

Plagioclase forms phenocrysts from 0.2-0.6 mm in size. They have diffuse borders and are altered completely to extremely fine grained sericite. A few contain patches of slightly coarser grained sericite, with or without minor quartz.

One crystal, 1.5 mm in size contains more abundant quartz and minor epidote. Another up to 2 mm in size contains moderately abundant Ti-oxide intergrown with sericite; this phenocryst may have been a mafic phenocrys (hornblende?)

The groundmass is dominated by extremely fine grained sericite, with very fine grained patches and disseminations of quartz, sodic plagioclase, chlorite, and minor epidote. Ti-oxide forms extremely fine grained patches with chlorite. Apatite forms a few grains up to 0.2 mm in size and aggregates of finer grains. As in the andesite, grains contain dusty hematite inclusions. Muscovite forms a few flakes up to 0.1 mm long. Hornfelsed Porphyritic Dacite with Replacement Quartz-Pyrite-(Chalcopyrite-Apatite)

The rock contains phenocrysts of plagioclase in a very fine grained groundmass dominated by plagioclase and much less quartz. The rock was hornfelsed and altered; secondary biotite is abundant in the groundmass, and has obscured primary textures. The rock contains replacement veins and patches dominated by quartz and pyrite, with lesser chalcopyrite and apatite, and minor sphalerite.

phenocrysts	.•		1911 - 1911 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 -	
plagioclase	17-20%	(possibly higher, tex	kture obscu	red by altera-
groundmass		tior	n and recry	stallization)
plagioclase	35-40			
biotite	12-15			
quartz	4-5			
Ti-oxide	0.3			
garnet	0.2			
apatite	0.3		•	
replacement mi	nerals			
quartz	12-15	sphalerite	minor	
pyrite	5-7	pyrrhotite	trace	
chalcopyrite	$1 - 1\frac{1}{2}$	molybdenite	trace	
apatite	$\frac{1}{2} - 1$	limonite	0.1	

Plagioclase forms prismatic phenocrysts up to 1.5 mm in size, and clusters of pheoncrysts of somewhat smaller size. These are altered strongly to extremely fine grained sericite and biotite, and commonly original textures are obscured or destroyed. A few phenocrysts are altered to patches of extremely fine grained epidote.

Groundmass plagioclase is strongly replaced by biotite and sericite, and original textures are destroyed. Grain size probably was of the order of 0.05-0.1 mm.

Biotite forms aggregates of anhedral, equant flakes averaging 0.02-0.05 mm in size. Pleochroism is from pale to light brown to greenish brown. Textures are typical of secondary biotite formed in contact metamorphic aureoles.

Quartz forms interstitial grains and patches averaging 0.02-0.08 mm in grain size. It is difficult to distinguish groundmass quartz from secondary quartz.

Ti-oxide forms disseminated patches of extremely fine grains, mainly intergrown with silicates. The largest patch is 0.3 mm across.

Garnet forms anhedral, equant grains averaging 0.05-0.1 mm in size. Textures are unusual for garnet, because it generally forms coarser grained porphyroblasts. Some grains appear to have been altered to extremely fine grained aggregates of chlorite.

Apatite forms scattered, subhedral to anhedral grains up to 0.1 mm in size.

Replacement veins and patches are up to a few mm across. They are dominated by quartz averaging 0.05-0.2 mm in grain size. Quartz appears to have been recrystallized during deformation after the replacement, and locally forms parallel aggregates in pressure shadows of pyrite.

Pyrite forms anhedral to locally subhedral grains from 0.08-1 mm in average size, with a few patches of pyrite up to a few mm across. Some grains contain inclusions averaging 0.02-0.03 mm in size of chalcopyrite and/or pyrrhotite.

Chalcopyrite also occurs as grains averaging 0.03-0.1 mm in size disseminated in quartz, and as patches up to 0.5 mm in size adjacent to pyrite. (continued)

PY-01

<u>PY-01</u> (page 2)

Sphalerite forms a few equant grains with irregular outlines averaging 0.05-0.08 mm in size. It is reddish brown to brown in color. Grains are associated with coarser grains and patches of pyrite.

Molybdenite forms a platy grain 0.06 mm in length. Limonite forms patches up to 0.3 mm in size adjacent to pyrite grains and chalcopyrite grains. It is a secondary replacement of one or both minerals.

Covellite occurs as a halo up to 0.1 mm across around a grain of chalcopyrite 0.03 mm in size.

Apatite forms anhedral to locally subhedral grains and aggregates averaging 0.05-0.15 mm in size; these areuscattered through patches of replacement quartz, and locally are intergrown with sulfides

The rock is a very fine to extremely fine grained latite dominated by feldspars with much less sericite/muscovite and biotite, both probably of secondary origin. It is replaced by patches and veinlets of quartz-pyrite up to 2.5 mm in width.

plagioclase/K-feldspar	65-70% 4- 5
sericite/muscovite	7-8
Ti-oxide	0.5
apatite	0.3
chlorite	0.3
sphene	trace
pyrite ± hematite	10-12
chalcopyrite	minor
pyrrhotite	trace
quartz	10-12

Plagioclase and K-feldspar form aggregates of anhedral grains, which range in patches from extremely fine to locally fine grained, with grain size in coarsest patches up to 0.15 mm. The stain on the offcut block suggests that the minerals are present in about equal amounts. It is possible that some or all of the K-feldspar is secondary, but textures are too fine grained and obscure to tell. Plagioclase is slightly to moderately altered to extremely fine grained sericite, which grades locally up to muscovite flakes as coarse as 0.1 mm in length.

Biotite forms patches and single grains averaging 0.02-0.03 mm in size, with a few flakes up to 0.07 mm across. Pleochroism is from pale to light brown. Textures suggest that biotite is secondary and that the rock has been subjected to contact metamorphism.

Ti-oxide forms dusty patches up to 0.5 mm in size and coarser grains averaging 0.02-0.03 mm in size. A few grains are up to 0.1 mm across.

Apatite forms clusters up to 0.8 mm in size of anhedral, equant grains averaging 0.02-0.04 mm across, with a few grains up to 0.1 mm across.

Chlorite forms a few patches up to 0.2 mm in size, and occurs along borders of some patches of pyrite. It commonly contains minor Ti-oxide.

Sphene forms a very few anhedral grains up to 0.15 mm across.

The rock contains veinlets and patches of quartz and pyrite, with quartz dominant in the veinlets and pyrite in the patches. Quartz forms anhedral aggregates averaging 0.03-0.08 mm in grain size. Pyrite forms anhedral grains with irregular to subrounded borders. They range widely in grain size from extremely fine up to 2 mm. Larger pyrite grains commonly contain minor to several inclusions up to 0.1 mm in size of chalcopyrite and/or pyrrhotite. Chalcopyrite also forms a few grains up to 0.07 mm in size away from pyrite; one of these isorimmed by a thin shell of covellite.

Pyrite patches locally contain anhedral to subhedral zones up to 0.9 mm in size replaced by red-brown hematite.

PY-03 Porphyritic Latite

The rock contains abundant plagioclase and much fewer mafic phenocrysts in an extremely fine grained groundmass dominated by plagioclase with patches of biotite. Alteration of phenocrysts is patchy to epidote. The rock contains disseminated pyrite.

phenocrysts							·
plagioclase	25→30%	(inclue	les 8-	·10% e	pid	bte alte	eration)
hornblende(?)	3-4	e de la composition de la comp			•		· · · · · ·
apatite	0.5						
groundmass							
plagioclase ±	K-feldspar	60-65					
biotite	5-7						
pyrite	2-3						
Ti-oxide	0.3						
chlorite	0.1						
calcite	0.1	quartz	0.1				
pyrrhotite	trace	-					
zircon	trace						

Plagioclase forms subhedral to euhedral phenocrysts averaging 0.5-1.5 mm in size. They are variably altered to disseminated sericite and minor chlorite and patches of very fine to fine grained epidote. Epidote alteration completely replaces some plagioclase phenocrysts. A few grains are altered to patches or veinlets of calcite, with or without minor very fine grained muscovite.

Mafic phenocrysts, probably originally hornblende, form prismatic grains up to 1 cm in length, averaging 1-2 mm. They are altered completely to aggregates of very fine to fine grained epidote and/ or biotite, with locally abundant calcite and chlorite, and minor quartz.

Apatite forms subhedral prismatic phenocrysts from 0.2-0.5 mm in average length.

The groundmass is dominated by anhedral, extremely fine grained plagioclase with minor K-feldspar. Grains are anhedral and average 0.01-0.02 mm in size. The groundmass shows a weak flow foliation which is warped around some of the plagioclase phenocrysts. Biotite forms irregular patches and lenses from 0.3-1 mm in average size. These consist of very fine grained aggregates of flakes averaging 0.05-0.1 mm in size. Pleochroism is from pale to light or medium brown. Some patches have very ragged outlines against plagioclase groundmass, and others appear to grade in texture into altered phenocrysts. Some patches contain disseminated epidote and Ti-oxide.

Pyrite forms disseminated, anhedral grains from 0.03-0.5 mm in average size, with a few up to 1 mm across. Several grains contain inclusions of pyrrhotite from 0.02-0.08 mm in size.

Ti-oxide forms lensy patches up to 0.5 mm in size of extremely fine to very fine grained aggregates. These commonly consist of two phases, an inner zone of higher reflectivity surrounded by grains of lower reflectivity. Both types show similar internal reflection.

Chlorite forms a very fine grained aggregate in one patch with biotite; this may be an altered mafic phenocryst.

Calcite forms a few interstitial patches up to 0.5 mm in size, in part associated with pyrite.

Quartz occurs on borders of pyrite, with or without calcite. It has a wavy extinction in grains up to 0.1 mm in size.

Zircon forms one euhedral prismatic grain 0.1 mm in length.

				4 +00
		ш	I+75 N.	F 18
i		3+00		- 2
2	I+25 N.	F ⁶		-14
J		-28		- 8
- 47		-24		-19
42		2.4		
-17		- 20		-17
-35		- 10		- 18
71		30	_	22
- 26		- 12.		- 3
-63		- 62		-13
-31	0+755	23	0+75 S.	L 13

4+00N. 4+00N. 532 M 3+75N. F43 -TIE LINE 117 100 -24 LEGEND - 250 - GRID STATION LOCATION WITH GEOCHEMICAL VALUES FOR GOLD IN P.P.B - CONTOURED AT 100, 200, 300, 400, 500 P.P.B. - - NO SAMPLE NCHORT SCALE 1: 2500 50 100 150 200 m BRA mO 01 GEOLOGICAL ASSESSMENT -32 WESTERN CANADIAN MINING CORPORATION 2 Part Part GOSSAN PROJECT PYRAMID HILL PROSPECT SOIL GEOCHEMISTRY GOLD IN PPB

SCALE. 1:2500

DRAFTED BY. J.W.

DRAWN BY. B.P.B., S.C.

3+755.

3+75 S.

 \oplus

DATE. SEPTEMBER-1987

FIGURE No. 10 RPT. 988

N.T.S. 104 B/10

			4
	ЭE	300 1+75 N.	- 357
	0+ E	200	- 128
I+25N	Г ¹⁴⁷		-104-
216	- 188	-100	- 81
F135 200	-98		- 75
-9Z)	- 00		- 166
-140	- 118		- 113
104	169		103
- 71	- 89)	- [18
-109	-155	_ 100	- 71
		0.75.0	1.00

4+00N. 4+00N. 160 3+75 N. 562 -73 - TIE LINE - 55 -84 LEGEND - 135 - GRID STATION LOCATION WITH GEOCHEMICAL VALUES FOR ZINC IN P.P.M. - CONTOURED AT 100, 200, 300 P.P.M. - - NO SAMPLE -24 HF UR ZC SCALE | 2500 AB 4 50 100 150 200 m mO E B A GEOLOGICAL ASSESSMENT P WESTERN CANADIAN MINING CORPORATION 3 Je to GOSSAN PROJECT PYRAMID HILL PROSPECT SOIL GEOCHEMISTRY ZINC IN PPM 3+75 S. 3+75S. DATE. SEPTEMBER-1987 SCALE 1:2500 N.T.S. 104B/10 DRAWN BY. B.P.B., S.C.

DRAFTED BY. J.W.

 \oplus

FIGURE No. 13 RPT. 988

LECEND	
LEGEND	2///////
HYPABYSSAL INTRUSIVE ROCKS	10/09/1
10 -APLITE	JEPAN (
Light, creamy grey, aphanitic groundmass; rare disseminated pyrite.	
1b -GRANODIORITE Pale to dark grey aphanitic and locally porphyritic groundmass comprised of up to	J / / /
25% subhedral to euhedral teldspar phenocrysts averaging 1-2 mm in size; 35-40% very fine grained k-feldspar and 12-15% quartz. Quartz-k-feldspar-pyrite veins and verifiets out the sequence. Feldspars are commonly altered to fine grained aggregates	
of sericite, and occasionally epidote.	
ic -ORTHOCLASE PORPHYRY	
chlorite and hornblende and 40% anhedral quartz masses. Tabular 0.5 cm x 2.0 cm feldspar phenocrysts comprise 15-20% of the matrix.	
PLUTONIC ROCKS	
1 - QUARTZ MONZONITE / QUARTZ DIORITE Medium arained, equigranular intrusive comprised of 60-70% fine grained, anhedral	
plagioclase and 25-30% anhedral quartz. Plagioclase is commonly altered to very fine grained sericite and occasionally replaced by irregular patches of fine to medium accised evidete.	
gramed epidore.	
VOLCANIC AND SEDIMENTARY ROCKS	
2a - SILTSTONE	
quartz and quartz-pyrite veinlets. Biotite hornfelsing is common particularly in areas adjacent to intrusive rocks.	
25 THEFACEOUS SHITSTONE	
Light to medium green, fine grained matrix with scattered angular siltstone and volcanic rock fragments typically less than 1 cm in diameter. Matrix shows weak to moderate	
chlorite, epidote, quartz ±diopside skarn alteration.(Sk)	
2c - LAPILLI TUFF Medium to dark green, medium grained pyroclastic sequence. Volcanic rock fragments up	neide
±garnet, and minor tremolite – actinolite skarn alteration. (Sk)	pane,
SYMBOLS & ABBREVIATIONS	TH
LIMIT OF OUTCROP	NOR
STRIKE AND DIP OF BEDDING	E P
STRIKE AND DIP OF CLEAVAGE AND FOLIATION	
STRIKE AND DIP WHERE BEDDING PARALLELS CLEAVAGE.	82
STRIKE AND DIP OF VEINS AND/OR DYKES.	
STRIKE AND DIP OF FAULT	20/1
GEOLOGIC CONTACT DEFINITE, APPROXIMATE, INFERRED.	
py - pyrite cl - clay	
cp - chalcopyrite ser - sericite	/N/2/
qtz - quartz veins, veinlets si - silicification	
ep - epidote mo - molybdenite	
bi - biotite mag - magnetite	////ixo
	20 1
	////X-2
SEE FIGURE 8 FOR DETAILED GEOLOGY AND LITHOGEOCHEMI	ISTRY.
	20
	///////////////////////////////////////
	Nor 20
The second secon	2 / 1 20
	103 10 11 11 1
	20
6,272,000N	X1534.1m.
N 15 662 /20	
11/14/14/	
Providente Prodel	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Joseph Martin Mart	55./
12 12 12 12 200 1	20
1-1/10-12	
	20 10
	20 million and a second and a
19X / IX	
SUTH (SOUTH	
///////////////////////////////////////	PYRAMID
000'0	
38	

— N —	
	and the
and the second	
/ 1-2% py	
760, 9, 17, 0.9, 250 8542 CI	
2 10 2	
Summer Summer Summer Street Stre	
Por	
SSESSMENT DEANCH	1 . Sale
- ALLEPORT	
16 707	1
0.///	
Part 2 - PA	
1017 2874	
WESTERN CANADIAN MININ	G CORP.
1987	1 States
PYRAMID SADDLE ARE	ΞA
DETAILED GEOLOGY	
and LITHOGEOCHEMIS	TRY
COMPILED BY : B.P.B. DATE: OCTOBER, 1987	GOSSAN 10-13
DRAFTED BY: H.H. N.T.S.: 104B/10	RP1. No. 988
SCALE SCALE I: 500	FIGURE: 8

LEGEND

HYPABYSSAL INTRUSIVE ROCKS

Ia - BASALT

lc

ld

Dark brown to black, medium grained, locally vesicular dyke forming unit. Dykes range from 1 to 3 metres in width and are commonly magnetic

Ib -HORNBLENDE LAMPROPHYRE

Brown to dark grey aphanitic groundmass with scattered hornblende phenocrysts. Phenocrysts are dark brown to black, subhedral to euhedral and locally up to 0.5 cm in width

-GRANODIORITE

Pale to medium green, fine grained, porphyritic hypabyssal dyke forming sequence. Unit is comprised of up to 25% subhedral to euhedral feldspar phenocrysts averaging 1-2 mm in size; 35-40% very fine grained K-feldspar and 12-15% quartz. Quartz-K-feldspar minor pyrite veins and veinlets cut the sequence, locally. Feldspars are commonly altered to fine grained aggregates of sericite, and occasionally epidote.

-ORTHOCLASE PORPHYRY

Fine grained equigranular matrix comprised of 30% anhedral to subhedral matrix and 40% anhedral masses of quartz; euhedral orthoclase phenocrysts up to 0.5 cm x 2.0 cm comprise up to 20-30% of the unit.

PLUTONIC ROCKS

I -QUARTZ MONZONITE/QUARTZ DIORITE

Medium grained, equigranular intrusive comprised of 60-70% anhedral plagloclase, and 25-30% anhedral quartz. Plagloclase is commonly altered to very fine grained sericite and occassionally replaced by irregullar patches of fine to medium grained epidote.

VOLCANIC AND SEDIMENTARY ROCKS

- 2a -INTERBEDDED ANDESITIC/LATITIC TUFF AND SILTSTONE SEQUENCE Pale green, fine grained latitic matrix with angular rock fragments up to 2cm in size. Matrix is comprised almost entirely of sericite and chlorite, highly fractured and with
 - limonite / hematite on fracture surfaces. Siltstone beds, locally up to 20 metres thick, are pale green to grey in colour, banded and unaltered.

2b -SILTSTONE

Green to dark grey, laminated siltstone commonly with well developed cleavage. Sequence is commonly highly fractured and limonite/hematite stains most fracture surfaces. Clay alteration is frequently observed in regions where fracturing is most intense (fault and shear zones).

3 -SERICITE SCHIST

Buff to light brown, fine to medium grained sequence comprised almost entirely of sericite and minor quartz. Probably derived from felsic to intermediate volcanic and volcaniclastic rocks described in Unit2a Locally friable with intensely limonite/ hematite stained fracture and foliation planes.

Py Ser R-500-23/70/353/0.2/31

1 80

2a

20

R-055-45/25/193/0.4/15

B. 1 1 56

2b

18-536-47/15/6/0.4/18

R-057 108/53/32/21/250

2a

31 2b

Lie-056 37/2/32/02/16

,2b

NR-\$37-27/18/9/0.5/46

R-058 69/33/51/0.7/35

"D R 535 35/7/50/01/8"

55/R-054-06/8/48/02/6

F 76

Py 54 R. 053 67/52/54/01/8

42

2a

20

R-052-1000/21/148/1.5/53

er Chi, Ser, Py

...2a

R-501-15/8/290/04/5

0

00

1P

()) JAR Charles (Part 2 of 4	△400[145,7,157,0.5,12,6] SILT SA Cu(ppm)	ID AMPLE LOCATION with SAMP), Pb(ppm), Zn(ppm), Ag(ppm), As	PLE NUMBER.
P AREAD 1		WESTERN CA	NADIAN MININ	G CORP.
6266000 N	× 934 5	GOS SERICITE E	1987 SAN PROJECT AST STREAM SE	EDIMENT
ALL LALL LAND	N/N/	WEST RIDGE	E SOIL GEOCHEN	AISTRY
LICATION ET LIS	2//3	COMPILED BY: B.P.B DRAFTED BY: H.H.	DATE: OCTOBER, 1987 N.T.S.: 104 B/10	RPT. No. 988
	11/1 ×	SCALE 0 100 200 30	0 400 500 metres 1:10,000	FIGURE: 18

