ASSESSMENT REPORT ON THE BAYONNE CLAIM GROUP

EAST AND WEST GROUPINGS NELSON MINING DIVISION

NTS 82 F/2

49 DEG 10' LATITUDE 116 DEG 57' LONGITUDE

OWNER OF CLAIMS: GOLDRICHE RESOURCES, LIGHTNING MINERALS OPERATOR: LIGHTNING MINERALS LTD.

BY: AUSTIN HITCHINS B.Sc

16,728 Part 1579 FILMED

DECEMBER 17, 1987 GEOLOGICAL BRANCH

ASSESSEENTERPORT

British Columbia Energy, Mines and Petroleum Resources	ASSESSMENT REPORT TITLE PAGE AND SUMMARY
TYPE OF REPORT/SURVEY(S)	TOTAL COST
GEOLOGICAL / GEOCHAMICA	7 23, 447.25
AUTHOR(S) AUSTIN HITCHIALS SI	
	m
DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FI	LED Star Star YEAR OF WORK . 8.7
ROPERTY NAME(S) BAYOMME. GROUP.	Me EST. C. C. C. M. P. A. C.
OMMODITIES PRESENT	•••••••••••••••••••••••••••••••••••••••
.C. MINERAL INVENTORY NUMBER(S), IF KNOWN	·····
INING DIVISION M.E.C.S.Q.M.	NTS
ATITUDE	DNGITUDE
AMES and NUMBERS of all mineral tenures in good standing (when w 2 units): PHOENIX (Lot 1706): Mineral Lesse M 123: Mining or Certifie	Nork was done) that form the property [Examples: TAX 1-4, FIRE 2 ad Mining Lease MI 12 (claims involved)]:
PAY 100 2084(2) RAVISUE (5) RAY	600 3111(5) A4Y 700 3117(5)/140 5
RAYONALD 1 2503 (11) / RENTORY 596	many Ann sous for yar Rus 5911
SAYOANA. 5083. NIRGINIA. 6887. I.I.C. NEW JERSEY 5967 DELAWARE	LINOISA. 6.8.85 /. OX. FOR D. 50.84. SHOOKS
WNER(S)	SFEUTONIALIO IS DIE
WNER(S)))
WNER(S)))
WNER(S)))
WNER(S))	3FCOTONTACDNACDDCDDCDDDCDDDDDDDDDDDDD
WNER(S))	S FE O 7 ON TALLO T'S []]/E
WNER(S))	S FE 07 0 N FALTO 7 S []/E
WNER(S))	
WNER(S))	
WNER(S))	
WNER(S))	
 WNER(S) 	
WNER(S))	
NNER(S))	S FE 07 02 FARTS 7.3 ()/E
MNER(S)) Cock. R. C. M.R R. S. S. O.R. S. S. J. N.K. (2) AILING ADDRESS	SPECY ON THUS TS ()/E) on, size, and attitude): BA XOMME : BA THOLITH, A.C.E
NNER(S)	SPECY ON THE TS ()/E) on, size, and attitude): $SA YOWNE \cdot BA THOLITH, Act 13 A. J.M ST.EAPLY PIPPINIC MEAU$
WNER(S))	SFECTONTALTS TSTILE) on, size, and attitude): $BAYOMMA \cdot BATMOLITAY \cdot ACC.$ $OMMA \cdot STAPPLY \cdot DEPARC \cdot MEAN (2 M. M. STAPPLY · DEPARC · MEAN (M. MIDT · $
WNER(S))	SFECTONTALTS TSTIC on, size, and attitude): $GA \times OMMA : SA THOLITA, ACC. ON : ST TAPLY : PPRIATE : MEAN ON : ST TAPLY : PPRIATE : MEAN M : MIJAT : S : GUART : S : MEIMAINE : ERS. S. OSTE : A.S. S. IMONAT. 4.$
WNER(S))	SPECY ON THUS TS (ITE) on, size, and attitude): BAYONNA: ISATIA.U.LITA, A.C.E. (3.M. A.M. ST. FAPCY. P.P.P.MC. HEAK (3.M. A.M. ST. FAPCY. P.P.P.MC. HEAK (3.M. A.M. ST. FAPCY. P.P.P.MC. HEAK (3.M. A.M. ST. FAPCY. P. P.P.MC. HEAK (3.M. A.M. ST. F. S. C. M. ON AT (3.M. A.M. ST. A. S. S. C. M. ON AT (4. C. C. S. S. C. M. S. S. M. T. M. A. T (3. A. A. S. S. C. M. S. S. M. T. M. A. T (3. A. A. S. S. C. M. S. S. M. T. M. A. T (3. A. A. S. S. S. S. S. S. T. M. A. T (3. A. S. S. S. S. S. S. S. A. T. M. A. T (3. A. S. S. S. S. S. S. S. S. A. T. M. A. T (3. A. S.

			,		1				
TYPE OF WORK IN THIS REPORT	EXT (IN	TENT OF WORK METRIC UNITS)			0	WHICH CLAIMS		مەربى يەربىيە بېيىتىر	COST
GEOLOGICAL (scale, area)			[dias ite co
Ground	1:2004	220Km			PAG	I. Axco	Cor BAY	100	\$ 8048.50
Photo			1					an canada a series de la composición de	543
GEOPHYSICAL (line-kilometres)	· · · · ·								
Ground							\$2. S		
Magnetic			1						
Electromagnetic									
Induced Polarization									
Radiometric			1						
Seismic									
Other									
Airborne			1						
GEOCHEMICAL (number of same	oles analysed for)		· · · · · · · · · · · ·					
Soil			. 54	00 KUM	INE	TORSOVI DI	SI. AMIANS	-/ -	87423.50
Silt			. CA	TYONNE	1. C. cen	mausi DH	COL HAN	·····	\$1257.25
Rock		78	m	ARXIAN	P. BA	Visna T. K.			\$ 955.00
Other									
DRILLING (total metres; number	of holes, size)							<u>e</u>	
Core						te z		14. 14.	
Non-core					•••••		•••••		
RELATED TECHNICAL			1				•••••••	· · · · · · · · · · · · · · · · · · ·	
Sampling/assaving	SAMP	LING					· · · · ·		512980
Petrographic						•••••	• • • • • • • • • • •		
Mineralogic	127						••••••••••••••••••••••••••••••••••••••		
Metallurgic							••••••••	••••••	
PROSPECTING (male area)									
PROSPECTING (scale, area)	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	••••	••••••••••	•••••••	•••••	
PREPARATORY/PHYSICAL	· .			* 1			r Anno 19		
Legal surveys (scale, area)			1						· · · · · · · · · · · · · · · · · · ·
Topographic (scale, area)									
Photogrammetric (scale, area)									
Line/grid (kilometres)				. SA.M.S	A.S	C. E. Q. C.H. E. M			S. Z.78.3.00.
Road, local access (kilometres)									
Trench (metres)									
Underground (metres)	•••••				• • • • • • • • •				
									11-7-11-7-2-
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		TOTAL COST	YZ 3, 49. F 25
FOR MINISTRY USE ONLY		NAME OF PAC ACCOUNT	T	DEBIT	CREDIT	REMARKS:			
Value work done (from report)								· · · · · · · · · · · · · · · · · · ·	····
Value of work approved									
Value claimed (from statement)									
Value credited to PAC account						and the second second		· ·	
Value debited to PAC account .			••••						
Accepted		Rept. No				Information Class .			
									5 mm

A REAL

	rovince of ritish Columbia	Ministry of Energy, Mines and Petroleum Resources	TI	ASSESSMENT REPO TLE PAGE AND SUMMA
	TYPE OF REI	PORT/SURVEY(S)		TOTAL COST
	GEOLOG	SICAL CAOCHAMIC	4(\$ 30,534.00
AUTHOR(S)	IENT OF EXPLORAT	TION AND DEVELOPMENT F	SIGNATURE(S)	YEAR OF WORK .
PROPERTY NA	ME(S)	Y.Q.N. N. &	· . (t. A. S	
		AC/D	• • • • • • • • • • • • • • • • • • • •	
B.C. MINFRAI	INVENTORY NUMP	ER(S). IF KNOWN		
MINING DIVIS	ION M.EC.	SQN	NTS	82. F.12
LATITUDE	49°10'		ONGITUDE	57
NAMES and NU (12 units); PHOE	MBERS of all mineral NIX (Lot 1706); Mine	tenures in good standing (when ral Lease M 123; Mining or Certif	work was done) that form the ied Mining Lease ML 12 (clair	property [Examples: TAX 1-4, FII ns involved)] :
BAY 2.91	0. 2985 (3)	BAY.300. 29.86.(3.	, 13 A. X. You . 2.98	7. (3.) ; . AA.Y. 2. 2504.
SUMMIST.	BALLA . 10.7.77	TorAccia Aurona 10.7.	ZC/MICHEAN. 10.7	75 . MONTANA. 10 7.7.8
LAST. CHA PORTLAND OWNER(S) B.	M.L. 2358/BCU 13017/IDAHO MAC 1-2724,	NB 1RO , 9357, MAXALO 13019/AMICIZIO8/ TYEI 3731	WER. 935.6 . ECHO 1. Vicon 2641 Amics	3014/ ECHO FR 1395/5T. E 2709/ BMAC 2-2725
(1)		· · · · · · · · · · · · · · · · · · ·	2) . GO.CO.R.I.C.	A.K RAS.OU.A.C.A.S. I
MAILING ADDI	RESS	•••••	•••••••••••••	·····
· · · · · · · · · · · · · · · · · · ·				1w. A.S.T C.A. Q.R.G.L.
				N.C.Q.U. M. d. B. S
OPERATOR(S)	(that is, Company payi	ing for the work)		•
(1)	H.T. NING A	MINARALS. 4J.P. (2)	••••••
• • • • • •	· · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •	
MAILING ADD	RESS			
. 2.9.	7., 76.08 1	1.03 . 57	• • • • • • • • • • • • •	
.E.O.M.	2. d. W.T. d. r. A.L	T.A T.G.E 4.28	••••••••••••••	
•••••	•••••		• • • • • • • • • • • • • • • •	•••••
SUMMARY GEO	LOGY (lithology, age,	, structure, alteration, mineralizat	tion, size, and attitude):	
. 20. K.	n.c. A.R.E.A.	.I.M BAY. AM.M.A.	BA.T. S. 4. I.T.	HALCGAAND.
	2 L 1 2. A.T. I. an	IN ST. E KALY	A. P.P.I.N.C M. 6.A.	14. 4. X. O.X. 1 R. 1. 7. 8.00.
MINAR		2. 7.0. 4. M. S.T. R.K.S.	.w. e a Q. U.I.	R.I.Z. V.EINAINE
M.I.N. F. R.A. 	.Z.ON.P.S U.A	· •	C	8 de l'inner
M.I.N. F. B.A. S.H.A. A.R . 1. N S.H.A	.Z.ON.1.5U.A A.A. ZONES	S FROM. O 3. 1	NATERS, OR	C
M.I.N. F. R.A. . S.H.A. A.R . I.N S.H.A . O.K.I.D. I.Z	. 2 .0N.1.5 U.A A.A 2 .0 M E S B.A 2 .0 M B.	5 FROM. O.T. 3. 1 1.50 m F.ROM	N. I. T. E. L. S Q. P 	6 27. 5

TYPE F WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)		ON WH	IICH CLAIMS		APPORTIONED
GEOLOGICAL (scale, area)						
Ground	7. 2990 Zy K.m		F F.A.ST G.A.	QUPING. S.A.V.	£	1.1.
Photo	· · · · · · · · · · · · · · · · · · ·	BAY. 20.4	AND. 4.6.9	ims. WITHIN		\$16,287.50
GEOPHYSICAL (line-kilometres)				•		
Ground	1		:	-		11
Magnetic	(q 0,00 ,		S.T	L. M.C	• • • • • • • • • • • • •	A. 2.27 . 64.
Electromagnetic						
Induced Polarization	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • •			•••••
Radiometric						• • • • • • • • • • • • • • •
Seismic				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	•••••
Other	• • • • • • • • • • • • • • • • • • • •	••••••••••••		•••••••		
Airborne GEOCHEMICAL (number of sam	ples analysed for) 30 ECEMENT	1 + AA FO	n Ao	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • •
	702	Frain	57 51 40	ID A.L. RAY	and at 8 3	\$ 36.99.50
Soll	······································	··· ·) 2. 47.4		. J . C. A. A p	C.M. M. 2	11 (10
Sit	·····		••••••	· · · · · · · · · · · · · · · · · · ·	•••••	4 6 14 60
Nock		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••	• • • • • • • • • • • • • • • • • • • •	• • •	
DB111 ING (total matrix: numbe	r of holes elte)	•••	• • • • • • • • • • • • • •	••••••••••••••••		
DATELING (total metres, numbe						
Core	· · · · · · · · · · · · · · · · · · ·	••••••••••••	••••••••••••••••••••••••••••••••••••••	••••••••	• • • • • • • • • • • • • •	
NON-CORE		•••	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •		
RELATED TECHNICAL	CA - Ar inch			· · ·		\$ 1220.00
Sampling/assaying		•••		•••••••••		· · **· · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	•••		••••••••		
Mineralogic		•• • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
metallurgic	••••••	•••		•••••••	• • • • • • • • • • • • •	•••••
PROSPECTING (scale, area)		•••		• • • • • • • • • • • • • • • • • • • •		
PREPARATORY/PHYSICAL						
Legal surveys (scale, area)						
Topographic (scale, area)						
Photogrammetric (scale, area)						
Line/grid (kilometres)	8500 m		. S.T. E.L.M.O	. 10.ADD DAS	ONNR. 2.	\$ 927.00
Road, local access (kilometres	350 M	ELHO	S.F. ELMA.			
Trench (metres)	450 m		S.T. ALMO			\$720150
Underground (metres)						
					· · · · · · · · · · · · · · · · · · ·	
					TOTAL COST	1.3.0, 534× 0
FOR MINISTRY USE ONLY	NAME OF PAC ACCO	OUNT DEBIT	CREDIT REI	MARKS:	· · ·	
Value work done (from report)						· · · ·
Value of work approved						
Value claimed (from statement)						
Value credited to PAC account						
Value debited to PAC account					* 	
Accepted	Bept. No.		Infe	ormation Class		

TABLE OF CONTENTS

	PAGE
1.0 - LIST OF FIGURES	2
2.0 - INTRODUCTION	3
2.1 - OBJECTIVES	3
2.2 - LOCATION AND ACCESS	3
2.21 - EAST-WEST CLAIM GROUPINGS	Э
2.22 - BAYONNE GROUP	3
2.23 - MONTANA CLAIM	4
2.24 - SUMMITT BELLE	4
2.3 - HISTORY	4
2 31 - BAYONNE GROUP HISTORY	4
2 32 - SUMMIT BELLE AND MONTANA	
2 4 - LIST OF CLAIMS INVESTIGATED - 1987	5
2.5 _ SUMMADY OF DEFERME WORK	 6
2.5 - SOMMARI OF PRESENT WORK	0
	0
	0 6
O O CROCHEM DECCEPHER	0
3.3 - GEOCHEM PROCEDORES	······································
4.0 - REGIONAL GEOLOGY	(
5.0 - BAYONNE MINE GEOLOGY	8
5.1 - NURTH VEIN	8
6.0 - EAST GRID (BAYUNNE, ECHO, St. ELMU)	
6.1 GEOLOGY	9
6.11 - ECHO VEIN GEOLOGY	
6.12 - St. ELMO VEIN GEOLOGY	10
6.2 - GEOCHEMISTRY	11
6.21 - ECHO VEIN SOIL GEOCHEM ANOMALY	11
6.22 - St. ELMO VEIN SOIL GEOCHEM ANOMALY_	11
6.3 - GEOPHYSICS	12
6.4 - ECHO VEIN CAT TRENCHING	12
7.0 - WEST GRID	13
7.1 - WEST GRID GEOLOGY	13
7.2 - WEST GRID SOIL GEOCHEMISTRY	13
8.0 - MONTANA VEIN - GEOLOGY	13
9.0 - SUMMITT BELLE VEINS - GEOLOGY	14
10.0 - MISCELLANEOUS AREAS - GEOLOGY	15
10.1 - MAYFLOWER ADIT	15
10.2 - WEST RIDGE GEOCHEM ANOMALIES	15
11.0 - INTERPRETATION OF RESULTS	15
11.1 - NORTH VEIN	16
11.2 - ECHO VEIN	16
11.3 - St. ELMO VEIN	17
11.4 - MONTANA VEIN	17
11.5 - SUMMETT BELLE VEINS	1 72
11.6 - WEST RIDGE GEOCHEM ANOMALIES	18
12 0 - CONCLUSIONS AND RECOMMENDATIONS	18
13 0 - DEFERENCES	10
14.0 - ITEMIZED COST STATEMENT - FAST GDID	21-25
15.0 - ITEMIZED COST STATEMENT - WEST GRID	26-28
And the second	

1.0 - LIST OF FIGURES

 \bigcirc

 \bigcirc

FIGURE	1 LOCATION MAP - REGIONAL - TOPOGRAPHY
FIGURE	2 LOCATION MAP - LOCAL
FIGURE	31:10,000 CLAIM MAP
FIGURE	4 TOPOGRAPHIC INDEX MAP
FIGURE	5BAYONNE MINE - NORTH VEIN PLAN
FIGURE	6BAYONNE MAIN VEIN LONG SECTION
FIGURE	7A-VEIN LONG SECTION
FIGURE	81:2000 GEOLOGY PLAN - EAST GRID
FIGURE	9-14 1:2000 GEOCHEMISTRY PLAN - WEST Au Ag Pb Cu Zn As
FIGURE	151:2000 GEOPHYSICS - EAST GRID
FIGURE	161:500 PLAN OF ECHO VEIN CAT TRENCHING
FIGURE	171:2000 GEOLOGY PLAN
FIGURE	18-23 1:2000 GEOCHEMISTRY PLAN - WEST AU Ag Pb Cu Zn As
FIGURE	24 MONTANA PLAN OF WORKINGS
FIGURE	25MAGGIE AIKENS PLAN OF WORKINGS
FIGURE	26 COMPOSITE STRUCTURAL PROFILE - BAYONNE
FIGURE	27STRUCTURAL PROFILE - SUMMITT BELLE

2.0 - INTRODUCTION

2.1 - OBJECTIVES

The chief purpose of the August 4 to November 9, 1987 exploration of the Bayonne claims was to locate any structures the mined out Bayonne/A-vein system. adlacent to **Unde** structures were delineated then more detailed work could commence in order to assess their potential for gola mineralization. More general reconnaissance of the claim group was also undertaken in order to examine old long since abandoned workings and assess their potential as well. These include the Summitt Belle group as well as the Montana claim, Detailed mapping and sampling was also done on what is being called the west grid - across the valley from the Bayonne Mine. The purpose here was to locate the possible western extension of the Bayonne Main Vein.

Mapping is done on 1:2000 for grid work, 1:10,000, 1:15,000, and 1:43,000 for traverses covering the claims, listed in section 2.4, over an estimated 80 square kilometres.

2.2 - LOCATION AND ACCESS - figures 1, 2, 3, 4

Part of the Nelson Mining Division in south eastern British Columbia, the Bayonne claim group is located about 5.5 kilometres north of the Salmo-Creston Highway and is accessible by a 10 kilometre gravel road in good condition which follows Bayonne Creek, shown in figure 1. The turnoff from the main highway is located approximately 46 kilometres from Salmo and 33 kilometres from Creston. The mine site is located on the western flank of John Bull Mountain (2225 metres), part of the Selkirk Range.

2.21 - EAST-WEST CLAIM GROUPINGS - figure 2

The claims have been split into an east and a west grouping for the purpose of assessment, shown in figure 2. While the body of this report treats both groupings as one, and itemized cost statement for each grouping is included in sections 14.0 and 15.0.

2.22 - BAYONNE GROUP

The claim area is extensive covering more than 40 square kilometers. Most of the work was done on the east grid which includes the Bayonne Mine and the Echo and St. Elmo structures. The Bayonne claims are located in alpine to subalpine area with

sparse to dense forest depending on elevation. The 8-level portai is collared at the 1900 metre elevation. At lower elevations alders become dense impeding progress substantially. Logging has been ongoing in the area for some time. The area had been burned at some time in the past and is growing back. The area is rugged and contains large talus deposits and shear cliffs. Snow fall during an average winter ranges from between 4 to 5 metres. The Bayonne area appears to be more arid than much of the surrounding area.

The east grid, south west of the Bayonne Mine is logged off. Where untouched, the bush becomes heavily overgrown with underbrush.

2.23 - MONTANA CLAIM

The Montana claim is located at the head of Bluebird Creek in a lightly treed grassy alpine area surrounded by talus slopes to the north and south. There is no road access to the claim, but is accessible via John Bull Mtn.

2.24 - SUMMIT BELLE GROUP

The property is located in the eastern periphery of the Bayonne group north of Bluebird Creek. There is no road access to the adit, and it is apparent no one has been there for quite a long time. The adit is situated approximately 300 metres north of a recent clear-cut at the top of a series of rock bluffs above a talus slope. At the top of the bluffs it is relatively flat, but steepens as one moves south away from the adit and toward the clear-cut. The area is heavily forested with mature growth, but little underbrush.

2.3 - HISTORY

2.31 - BAYONNE GROUP

Almost all activity in the Bayonne region centers around the Bayonne mine. In its long history the mine produced a total of 85,000 tons at .470 opt Au and 1.12 opt Ag.

The first known work began with trenching and drifting on the Bayonne and Echo veins from 1901 to the start of the first world war. By 1935 Bayonne Consolidated Mines Ltd. acquired 17 crown grants leading to full production by 1936. Considerable underground development as well as construction of the 60 ton per day cyanidization plant was undertaken. Production continued until 1942 when it was shut down as with most mines in the camp. The mine remained shut down until the end of the second world war. In 1946 the mine was reopened, but labour and material shortages lead to an early closure in that same year. In the period from 1947 to 1951 a number of leasees produced 673 tons at .670 opt Au and 4.75 opt Ag.

Torquest Resources Ltd optioned the property in 1963 and initiated a program of mine rehabilitation, diamond drilling, and resampling. The following year the company completed the road from the mine site to the Salmo-Creston Highway. It also built a new 50 ton per day leaching plant based on a reserve estimate of 12,450 tons at .790 opt gold.

In 1968 the property was optioned by Liberty Mines Ltd. though the company did little work with it. The property was later optioned by Goldriche Resources Ltd. in 1980 which undertook a program of mine rehabilitation and test stoping. Results of the stope were .150 opt Au and 1.2 opt Ag.

Lightning Minerals Ltd. optioned the property in 1987 and completed a detailed geologic and soil sampling program, the results of which are the subject of this report.

2.32 - SUMMIT BELLE AND MONTANA CLAIMS

These claims were originally crown grants owned privately and acquired by Goldriche Resources in 1980. The first known reference is found in the Minister of Mines Report of 1917. Work prior to 1937 consisted of four hand trenches and about 30 metres of drifting. The workings were located during the summer of 1987 and preliminary sampling and mapping were completed.

2.4 - CLAIMS INVESTIGATED

Work of a geological and geochemical nature was done on the following claims:

CLAIM LOT/	RECORD #	CLAIM LOT/	RECORD #
Kentucky	5966	Maryland	5085
Ohio	5362	Columbus	5961
Bayonne	5083	Oxford	5084
Virginia	6887	Skookum	9360
New Jersey	5967	Delaware	5960
Echo	13014	Echo Fr.	729
Ontario	13016	St. Elmo	13018
Mayflower	9356	Bluebird	9357
Last Chance	9358	Montana	10778
Summitt Belle	10777	Maggie Aikens	10776
Michigan	10775	Portland	13017
Bayonne 2	2504	Bayonne 1	2503
Bay #400	2987	Bay #600	3116
Bay #700	3117		

2.5 - SUMMARY OF PRESENT WORK

- Geological survey: mapping and sampling -	see fi	gure 2	for
groupings.			
east grid	26,150	metres	
west grid	11,250	metres	
traverse	20,000	metres	
east grouping:			
soil samples		302	
silt samples		4	
rock samples		42	
west grouping:			
soil samples		606	
silt samples		21	
rock samples		78	
- Geochemical survey: soll sampling			
east grid/east + west grouping	26.150	metres	
west grid/west grouping	11,250	metres	
- Geophysical survey: EM and magnetometer			
east grid/east grouping	6,000	metres	
- Line establishment:	26,150	meters	3

3.0 - GENERAL

3.1 - PROCEDURES

Mapping is reliant on air photo control as none of the original claim posts have been located. The 1:2000 grid maps are generated from air photo blowups and further controlled by compass and hip chain. All grid lines were run with silva compass and flagged at 50 metre intervals. The lines were run to increase the degree of accuracy. The west grid is controlled by air photo and hip chain. Traverse is controlled by air photo triangulation and hip chain.

Mapping of outcrop involved measuring orientations of joints, noting alteration of granodiorite as well as float, and noting and sampling veins.

3.2 - INSTRUMENTS USED - GEOPHYSICS

The VLF-EM unit used in the Lightning Minerals surveys was a Geonics EM16 which is a battery powered very low frequency receiver equipped with two built-in antennas for measuring horizontal and vertical field components of radio signals. The instrument is able to utilize radio emissions from military and time standard transmitters operating in the 15 to 25 Khz frequency range. Electromagnetic propagation in this frequency range is such that signals can be received over distances of several thousand miles in a consistent manner. The Seattle station was used for work at the Bayonne. These primary fields signal fields induce secondary vertical in local conductive bodies that can be detected by the EM16 unit, hence its usefulness for detecting such conductors. By analyzing in phase and quadrature components of secondary signals emitted by local conductive bodies it is possible to estimate the depth of the conductor and also determine the possible characteristics of it.

A magnetometer was also used at the Bayonne, but the type and make are not available as the instrument is presently in use in the United States.

3.3 - GEOCHEMICAL PROCEDURES

Both rock and soll samples were sent for assay. In the case of solls, the oxidized "B" horizon was sampled consistently occurring at 5 to 10 cm depth.

by Acme Analytical Assaying of samples was done Laboratories Ltd. of 852 East Hastings Street, Vancouver B.C., V6A 1R6 (ph: (604) 253-3158). All samples were subjected to 30 and gold atomic absorption. Details of the element ICP procedures are noted in the geochemical analysis certificates located at the back of this report. The analysis assayed for the following elements: Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Au, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na. K. and W.

4.0 - REGIONAL GEOLOGY

The entire claim group is situated within the Bayonne Batholith which intrudes clastics and carbonates of the late Proterozoic Horsethlef series. The intrusive is medium grained and of granodiorite composition. It is equigranular and white with less than 20% mafics. It is intern intruded by narrow (1 cm to 1 metre wide) aplite dykes of discontinuous strike length which are predominantly north-south trending. A few narrow lamprophyre dykes are also known consisting mainly of biotite

and amphibole. The batholith contains numerous matic xenoliths of less than 30 cm. Larger less rounded and more gneissic xenoliths are found near the periphery of the body retaining apparently relict sedimentary structures. The intrusive is affected by a penetrative jointing fabric which tends to be of similar orientation locally, but changes on the order of several hundred metres.

The principal known structure is the Bayonne vein and the Avein splay. The Main Vein strikes at an azimuth of 80 degrees. It is believed that the Echo and St. Elmo veins strike similarly while the Montana and Maggie Aikens structures vary by approximately 20 degrees.

5.0 - BAYONNE MINE - figures 5. 6. 7

The Bayonne vein is exposed for 750 metres and the Avein, for 550 metres. The structures are very linear with a mild sinuosity. Vein material is quartz which intrudes along dilatencies within a strongly oxidized shear zone measuring anywhere from 1 to 5 metres in width. The vein itself varies from 5 cm to 3 metres in width. Splaying and horsetailing into both ribs is fairly common. The shear zones are expressed as gentle recessives due to their soft and broken up nature. The obvious rusty limonitic alteration found along joint surfaces and into the host intrusive has been long used as a pathfinder for finding new structures in the area.

Gold is associated with limonitic quartz and heavy sulfide bearing quartz. An axial zonation is apparent as the limonitic zone extends to a depth of 140 metres. Little sulfide remains in this zone. Quartz is often vuggy showing that pyrite was once present. Limonite is commonly observed to pseudomorph pyrite. At the 140 metre depth there is a relatively abrupt transition to a 50 metre thick massive and generally unaltered sulfide zone. The suite in hand specimen contains pyrite, galena, chalcopyrite, and sphalerite. Pyrolusite stain is often evident.

Long sections of both structures (figures 6 and 7) show a propensity for stoping in proximity to the surface. Infact, the stoping in both cases seems to parallel the surface topography. This may not be coincidental because the granodiorite is deeply weathered. In some areas the weathering is more than 2 metres in depth and while preserving primary structures, the major rock forming minerals show extreme argillic alteration. In such areas the rock is only slightly more competent than the soil above it. Very little erosion has occurred, non of it glacial The supergene enrichment model does seem appropriate in this context.

5.1 - NORTH VEIN - figure 5

The North Vein is located approximately 100 metres north of the Bayonne Main Vein and is exposed by a series of trenches and old workings for approximately 400 metres. No detailed work was done on the structure during the 1987 field season, but work done in 1983 is shown in figure 5. The gold assays range from .007 opt to 2.100 opt for an average of .394 opt. The vein is not known to have been worked from underground nor diamond drilled. Its slight difference in strike with respect to the Main Vein indicates a junction to the east which enhances the possibility of locating large tonnages of ore, perhaps even on the order of that found on the A-Vein.

6.0 - EAST GRID: BAYONNE, ECHO, St. ELMO

6.1 - GEOLOGY - figure 8

The map area is entirely situated in granodiorite. The predominant joint direction is north-south while the predominant direction of the shear zones is east-west. The mapping turned up two structures which were studied in detail - these being the Echo and St. Elmo structures. The soil geochem results (discussed in section 6.2) were also factors in locating the structures.

6.11 - ECHO STRUCTURE

Two adits have been driven on the Echo structure some time after the turn of the century. The main adit is located on line 53E. A road was constructed in 1983 or 1984 to provide access to the Echo adit. It crosses the structure at a point about 20 metres east of the adit. A considerable amount of old hand trenching was done to the east of the adit in order to locate the structure. The best trench assays were as follows:

2.330 opt from quartz (54E 43.5N) .029 opt from quartz (55E 43.5N)

These assays lead in part to the cat trenching program which did not confirm the 2.330 opt assay.

It is not known how far the Echo adit went in or what the results were. Assays of quartz vein in the dump turned up the following results:

.133 opt - > 20 cm vein, heavy limonitic alteration .204 opt - quartz vein with brick red oxidation .060 opt - quartz vein with heavy limonite alteration No sulfides were found in the quartz suggesting that the adit did not go in far enough to intersect any possible unoxidized sulfide zone. The fact that values do occur on the structure indicates strongly that ore grade material is possible at depth especially when considering the fact that the inferred strike length of the structure is about 1 kilometre. There is a large area on vein to hide a substantial orebody.

The second adit on the structure is found on the east side of the ridge to the east of the Echo adit. The adit goes in for only 5 metres, but is unsafe to enter. Assays from guartz in the blast rock returned assays of only .001 opt. The best assay is .016 opt which was found further up the shear zone where in situ guartz vein is found. At this point the 3 metre wide heavily oxidized shear zone is clearly visible on the ridge top as well as from the ridge peaks running north-east from John Bull Mtn.

A traverse was run between the two adits. It turned up a number of new trenches and intermittent areas containing oxidized float. These trenches were found between lines 59E and 59.5E at 44N and carried values of .036 and .043 opt in guartz float.

6.12 - St. ELMO STRUCTURE

The St. Elmo structure is exposed in two major areas: the adit, situated between 56.5E and 57E at approximately 41N, and on the ridge top south-east of John Bull Mtn. The gold geochem anomaly also helps to outline it (see figure 9).

The dump contains a great deal of oxidized and sheared granodiorite indicative of a wide shear zone. All of the unoxidized granodiorite contains 10% alteration of feldspars to epidote. This alteration also occurs on the ridge top. The dump is roughly equivalent in size to that of the Echo and contains about 5% quartz vein most of which is very strongly limonitic. The degree of the limonitic alteration is in excess of any seen at the Bayonne dumps and is most similar to the material found at the Montana workings. In addition, some of the samples contain from 5% to 15% galena - the only visible sùlfide.

The galena did not run appreciably however, and the other types of guartz carried only erratically:

.016 opt - 2-5% galena in quartz .051 opt - 5-10% limonite, vuggy .182 opt - 5-10% limonite, vuggy .048 opt - 10-20% limonite .051 opt - milky quartz, 5-10% limonite .006 and .004 - 30% limonite, 5-15% galena Trenches about 50 metres to the east were also found to contain guartz vein material:

.043 opt - milky guartz with 30% limonite .030 opt - moderately oxidized guartz

The best assay at the ridge top was .009 opt. Obviously none of these assays is ore grade, but they do indicate that the structure is gold bearing. The presence of unaltered galena suggests that the deposit should relate to the middle levels at the Bayonne mine.

6.2 - GEOCHEMISTRY - figures 9-14

Contour plots of Au, Ag, Cu, Pb, Zn, and As can be found in the back of this report. All the contour plots show one or several very strong anomalies over the Bayonne Mine workings. The shear size and element concentrations are the inevitable result of over 50 years of contamination and dispersion.

Two strong linear Au (ppb) anomalies were identified in the vicinity of the Echo adit. These anomalies are not the result of contamination from the Bayonne Mine as there is a deep ravine separating the two areas. Oddly enough, the A-Vein only shows a single point anomaly and there is nothing whatsoever to suggest that the bulk of the ore mined from the Bayonne came, in fact, from the A-vein.

6.21 - ECHO GEOCHEM ANOMALY - figures 9-14

The first anomaly is directly associated with the Echo adit (see figure 9). The strongest value (650 ppb) is found at the Echo dump and therefore due to contamination. A high value (560 ppb) occurs below and to the south of the dump which is probably also caused by contamination. The anomaly has the same strike above and below the dump which would suggest that the anomaly below the dump is not completely the result of contamination. The anomaly also parallels the strike of the A-vein. In fact trenching the structure represented by the anomaly confirmed it as a splay from the main Echo structure (see section 6.4).

The gold anomaly has a total length of 450 metres, 300 metres of which is above (east) of the adit. This is the portion which was trenched. While the other elements which have been contoured show contamination anomalies on the Echo dump they do not show good anomalies associated with the rest of the structure. This of course suggests that the gold is not strictly associated with chalcophile elements or arsenic - this seems reasonable in view of the fact that the surface is located in or just above the oxidation zone.

6.22 - St. ELMO GEOCHEM ANOMALY - figures 9-14

The anomaly associated with the St. Elmo is much longer than that of the Echo, but generally weaker and more erratic. It tends to bifurcate and truncate between the two structures. The anomalies strictly associated with the St. Elmo total approximately 1 kilometre in length. Oddly, only the weakest of anomalies is expressed in proximity to the St. Elmo dump. It seems possible that the anomaly below (west) of the dump is the result of contamination. On the basis of the strength of the anomaly, trenching was commenced, but never completed on the structure.

The erratic, but sinuous appearance of the anomaly suggests that structures may exist between the two major veins. In fact a quartz sample from a trench equidistant between the two veins carried a grade of .187 opt.

Contour plots of the other elements are generally inconclusive in clarifying the gold anomalies. The two exceptions are at 59.5E 44.5N on the Echo and at 50E 40E on the St. Elmo. The consistent highs suggest a possible zone of mineralization. In the case of the St. Elmo this anomaly is located at the very corner of the grid. The grid should be extended in this area even though the terrain is very steep and covered with slide alder.

6.3 - GEOPHYSICS - figure 15

Figure 15 shows magnetometer readings. Both mag and EM16 were run over the Echo and St. Elmo structures is hopes of better delineating them. No such results were obtained and they appear to be essentially random and so are inconclusive.

6.4 - ECHO CAT TRENCHING - figure 16

Trenching of the Echo splay vein consisted of digging four cross trenches at 50 metre intervals east of the adit. When the shear zone was exposed the cat could begin trenching along vein. Only the lower 100 metres of the trenched area was trenched along vein as the vein was difficult to locate higher up. Once the cat was finished the hardpan and weathered rock were laboriously removed by hand. The exposure was then hand swept so that the structure was clearly visible. Figure 16 shows the mapping and assay results of the work.

The shear zone ranges from 1 to at least 15 metres wide. Trench 2/3 exposed the splay structure while trench 1/2 and 2 exposed the Echo vein proper. The veins are numerous but narrow, rarely reaching 15 cm wide. The highest assay was .128 opt which is located very near the old hand trench where the 2.330 opt assay occurred. All other assays were uninteresting and some could at best be called only anomalous.

The almost complete lack of grade from the veins is unsettling when one considers the magnitude of the geochem anomaly directly associated with it. The extreme weathering could be a factor. All or most of the gold could have been leached out over two or more epochs of time and is presently dispersed throughout the unglaciated soil profile. This of course raises questions as to the validity of the recommencement of trenching. To this author drilling would be a more useful tool than continued trenching.

7.0 - WEST GRID

Nothing of major interest was found on the west grid and certainly no obvious sign of the Bayonne extension was found. The only point of interest was a 1.020 opt gold assay from a narrow pyrite and galena bearing vein from a boulder on BL1. It seems likely that the boulder had come from that side of the valley, but could easily have been transported gradially.

7.1 - WEST GRID GEOLOGY - figure 17

As with the east grid, the west grid is comprised entirely of granodiorite. There are relatively few outcrops and those present contain little structure other than two predominant joint sets striking at 45 and 90 degrees azimuth. There are a few minor oxidized shears with the 70 to 80 degree strike common on the east side of the valley, but none are more than 1 metre wide or carry any quartz veining of any consequence.

7.2 - WEST GRID GEOCHEMISTRY - figures 18-23

The results of the soil survey are the same. There are a few very weak and isolated gold anomalies, but nothing that would suggest an ore bearing structure beneath the overburden. This side of the valley does show more evidence of glacial deposition which may impede element dispersion. Geochem maps of silver, lead, zinc, copper, and arsenic are equally inconclusive. No further work is warranted in this area. The more interesting geochem anomalies on the ridge to the west of the present work is discussed in section 10.0.

8.0 - MONTANA CLAIM GEOLOGY - figure 24

The Montana workings, as shown in figure 24, consists of a series of 12 hand and blast trenches on a single structure with a known strike length of 300 metres. Assays of the vein range from .004 opt to .828 opt for an average grade of .267 opt for the vein. Veln material contains both strong sulfides and limonitic alteration. The higher gold values are associated with vuggy honeycombed quartz with medium to heavy limonite and a heavy black oxide alteration. Like the St. Elmo dump, the galena and sphalerite bearing guartz does not carry as well and can infact be very low (.067, .095, .006 opt). Vein width in situ and as blast rock averages about 20 cm.

Assuming that the host carries no gold, the inferred grade over a 1 metre mining width is .053 opt. This is not economic, but does suggest potential at depth and further along strike. There is also a possibility of parallel structures hidden under the talus as in the Summitt Belle Group.

9.0 - SUMMITT BELLE GROUP GEOLOGY - figure 25

Consistently high gold assays have been found on the quartz vein of the Maggie Alkens workings. Silver values are negligible. The dump produced the highest gold assays of 6.411, 4.742, and 3.200 opt. These values are all associated with 20% to 40% sulfides consisting of galena, pyrite, and to lesser extents sphalerite and chalcopyrite. The limonite altered guartz also carries high values. Apparently parren vein material carries values of between .015 and .254 opt. There is noticeably little of this barren variety anywhere on the property.

The three trenches nearest the adit also carry high gold values ranging from .176 to 1.199 opt. A lesser amount of sulfides, 10% to 20%, was observed at these trenches.

A fourth trench is located 47 metres to the west of plt #3. This produces a combined mineralized strike length of approximately 100 metres. Quartz is sulfice and limonite bearing as before and the barren variety remains uncommon. The average grade for the guartz in this pit was .178 opt ranging from .001 to .378 opt. One large quartz poulder was found in the pit on its side. The vein was measured to be 0.63 metres (2.17) in width and contained heavily sheared and oxidized The guartz carried .249 opt while the host granodiorite. carried .064 opt.

Figure 25 is taken from the Report of the Minister of Mines 1937. It shows two subparallel structures ranging from .2 to .5 metres in width. Pits #1 - #3 are on the southern structure. Pit #4 could be on either vein. Judging from the consistency of the assays throughout the workings it is reasonable to assume that both structures are carrying gold. The report states that pyrite and gold values occurred in the host - this was not observed by the author. Of particular interest is the possibility that one of the veins might be a splay of the other - a situation similar to that of the Bayonne Main Vein and the Avein.Overall averages of grade and inferences of grade over 1 metre mining widths are listed as follows:

> .990 opt - average grade for all assays .710 opt - average grade (cut to 2.000 opt) .272 opt - grade over 3 foot width - (.2 metre vein) .320 opt - grade over 3 foot width - (.5 metre vein)

The grade of the host shear zone is assumed to be zero for these calculations. Indications are, however, that they are up to .05 opt. This could produce a significant increase in the grade of the above inferences.

Grab samples from the 1937 report ran as follows:

.96 opt - grab sample from underground .72 opt - grab from pit #3 .14 opt - grab from pit #2 .43 opt - grab from altered granodiorite host

10.0 - MISCELLANEOUS AREAS - floure 3

10.1 - MAYFLOWER ADIT

()

An old adit was found just north of the boundary of the Mayflower claim. As per normal the structure consisted of a rusty shear zone containing quartz stringers. Galena lenses were commonly found in the quartz. The vein material was less vuggy than normal. A grade of .034 opt was obtained for galena bearing quartz while .057 occurred in a more oxidized, vuggy quartz.

The adit has a bearing of 110 degrees which is not too dissimilar to the Montana structure. The structure is roughly on strike with a shear zone exposed on the ridge to the east. On the ridge the oxidized float covers and area 10 metres wide. The area appears as an obviously gossanous zone from the summit of John Bull Mtn. looking north. Some 3-5 cm guartz vein is exposed in situ within the shear zone and is observed to strike at 148 degrees. The guartz carried a value .001 opt only.

On the basis of the information available only a brief amount of follow-up prospecting is warranted in this area.

10.2 - WEST RIDGE GEOCHEM ANOMALIES

Out of pure speculation a geochem line was run on the west ridge west of the west grid and the Bayonne Mine (see figure 3) and is referred to as L14. The line produced two noticeable anomalies - one at L14+850 (106 ppb Au) and one at L14+1250 (410 ppp Au). The more southerly anomalies is located near the road is extremely dense forest. Neither of these anomalies is on strike with any structure on the east side of the valley.

The magnitude of the anomalies along with the fact that there is no sign of contamination on the ridge top suggests that the results are valid and are on the order of the anomalies found over the Bayonne Mine and the Echo vein. This would suggest that two hitherto unknown structures are found here which definitely require a follow-up.

11.0 - INTERPRETATION OF RESULTS - figures 26, 27

Five structures are suspect of containing ore deposits. These include the Echo, St. Elmo, Montana, Summitt Belle, and All are similar to the Bayonne North Vein structures. structurally and mineralogically. Of these, the two Summitt Belle structures and North Vein contain the highest grade material and greatest likelihood of obtaining ore grade material with the least effort. Since the author spent little time following up on the North Vein it should be examined closer before a final judgment is presented. These are followed by the Montana vein which, though narrow, has a number of high assays and could widen at depth. The Echo and St. Elmo are of lower priority because of their lack of ore grade values. Great potential does exist at depth, especially as they are proximal and subparallel to the Bayonne Main Vein.

Also of interest are the two geochem anomalies on the east ridge which must be followed up.

11.1 - NORTH VEIN

The values on the structure obtained int 1983 suggest strongly that it is ore bearing. Since it is proximal to the Bayonne Main Vein and appears to intersect it, the structure can be expected to have the same or similar geochemical environment as the Main Vein. For these reasons further work should be undertaken.

11.2 - ECHO STRUCTURE

Trenching exposed a complex splay structure with no economic potential whatsoever. This is inconsistent with the strong gold soil anomaly directly associated with the splay. Gold does occur on the Echo structure at surface as detailed above in section 5.4. The lack of gold in the deeply weathered and incompetent shear zone could be attributed to dispersion

over the millennia as there is no significant glacial activity evident. If this is true one might have to go to some depth before meaningfu) values are found.

In any case the structure as it appears on surface is uneconomic as the veins are narrow. This may be more of a function of the stress field at the junction of two shear zones. Most of the veins in the exposed shear zone are oriented obliquely to perpendicularly to the Echo structure as one approaches the actual junction. At such points the stress is usually better accommodated than in a strict shear stress field so wide veins do not get expressed. The final caveat is that the exposed shear zone resembles the upper Bayonne vein near the ridge top.

At these same types of splay junctions in other deposits Since values do occur in the one often finds mineralization. Echo one may have to go to depth before finding sufficiently wide vein with an acceptable grade. My reasoning for suggesting this is that gold and silver camps with subparallel veins tend to carry their precious metal deposits in a pattern which is roughly perpendicular to the prevailing orientations of the Since the Bayonne area is in an essentially those veins. structurally isotropic intrusive it is possible that this model does not hold - the Bayonne and A-vein might just be the only local deposit, but it is doubtful. It is more likely that the exposure of the Echo may just represent a heavily leached and weathered top of a substantial deposit beginning at relatively shallow depth.

Figure 27 shows a composite topographic long section of the Echo, Bayonne, St. Elmo, and Montana structures. The Echo is shown to follow the topography of the Bayonne fairly closely. Since parallel ore shoots on parallel veins rarely have identical elevations, it is quite possible that ore should occur at some depth below surface.

11.3 - St. ELMO STRUCTURE - figure 27

The interpretation of the St. Elmo structure is virtually the same as that for the Echo (11.1). It is somewhat more complex than the Echo in some ways though. The occurrence of galena at the St. Elmo adit along with strong limonitic alteration is confusing in comparison to the Bayonne, but consistent with what is found at the Montana. Galena is less susceptible to oxidation than copper or iron somewhat sulfides and in fact no such sulfides were found at the dump. shows the structure to be 50 to 100 metres higher in Figure 27 than either the Bayonne or Echo so if the same section inferences hold here as with the Echo, then one might expect mineralization at greater depth.

The complexity of the gold anomalles between the Echo and St. Elmo suggests the strong possibility that other splay structures which could lead to gold accumulations.

11.4 - MONTANA STRUCTURE - figure 27

The Montana exposure is situated similarly to the St. Elmo dump and mid levels of the Bayonne in terms of elevation. Its mineralization bears the greatest similarity to the St. Elmo dump and infact the two appear to be the same structure producing a combined known strike length of 1.5 kilometres. While not economic at the surface, the vein does have potential further along strike and at depth. There is also the possibility of adjacent structures or splays hidden under the talus which might be ore bearing. In fact the cliff face to the west contains galena bearing guartz in a narrow weakly defined Its orientation is nearly perpendicular shear zone. to the Montana vein and so can be expected to intersect it.

11.5 - SUMMITT BELLE STRUCTURE

The quartz vein from the workings on the Maggie Aikens claim contains proportionally more and fresher sulfides and most resembles material from the lower workings of the Bayonne and Avein dumps. The presence of vuggy oxidized guartz suggests that the workings, in terms of elevation, are on the boarder between If the Bayonne the purely oxidized and purely unaltered zones. represents a reasonable model then it would appear that the adit is located relatively near the middle of the ore deposit. This is partially supported by figure 28 which shows the adit to be about 150 metres below the lowest workings at the Bayonne Mine. It seems apparent that elevations for ore zones are not uniform leave an throughout the Bayonne property. This should still The fact that estimated 200 metres of ore below the surface. only 100 metres of strike length has been exposed, all with excellent results, could mean that a few hundred more metres of good grade material could be present. The fact that there are two structures involved (and possibly more) only enhances the probability of obtaining high tonnages of one on the order of that mined at the Bayonne.

11.6 - WEST RIDGE GEOCHEM ANOMALIES

The actual elevations of the anomalies are not known, but do appear to be roughly the same altitude as the Bayonne eighth level. On the basis of the anomalies it is evident that the inferred structures strike more or less east-west as do the other veins in the camp. Until more detailed work is complete on the area nothing definite can be said about the geology of the area.

FIG 25

12.0 - CONCLUSIONS AND RECOMMENDATIONS

While the probability of obtaining one on all of the five structures is good the priority should be the Summitt Belle and North veins, followed by the Montana, and finally both the Echo and St. Elmo structures. In any case, continued trenching is not recommended on the Echo or St. Elmo structures in view of the probable leaching of the weathered bedrock.

In all cases drilling is necessary. A rotary percussion drill with a range of 70 to 150 metres and capable of producing chips of around 5 mm would be the optimal tool. If a drill is produces only rock powder it will be of little use as it will sampling, will amenable to require continuous not be examination, and will cause a greater degree of contamination due to clogging of the blt. The drill described above type of drilling could be a useful tool in this type of ground for the following reasons: 1) initially, at least, most holes would be less than 150 metres in depth in order to test for shallow ore deposits, 2) the host rock is essentially uniform locally so documentation of lithology is unimportant, 3) large snear zones would be easily recognizable and could be preferentially sampled negating the need for sampling continuously down hole. The quartz is easily distinguishable in the shear zones, 4) holes can be stopped upon exit of the shear zone if desired, 5) it would allow a greater number of holes (even grid drilling) which are drilled faster and at less expense than diamond drilling.

Diamond drilling could be introduced at a later date to follow up on encouraging results and go to greater depth to probe the bottom of the ore zone.

Additionally, in the case of the Summitt Belle structures, diamond and percussion drilling can be done from below the rock bluffs providing an additional 50 metres of vertical on the veins. Prior to drilling though, soil geochem would be of importance in assessing the total strike lengths of these known structures and delineating new parallel ones.

A program of soil geochem is not possible at the Montana claim because the entire area surrounding the trenches is covered by thick talus containing huge boulders. In fact it is amazing that the structure is exposed at all.

The east grid should be extended to the south so as to locate any other structures. Of particular interest is the clarifying of the anomaly at 50E 40N.

More detailed work involving drilling is recommended on the basis of the 1983 results.

Finally the two anomalies on the west ridge will require more detailed work. A grid should be laid out and sampled parallel to the ridge. Mapping will also be required, but will be difficult because of the lack of outcrop and heavy undergrowth. Proper linecutting will probably be a requirement.

13.0 - REFERENCES

Goldriche Resources Inc. GRD (1984). Economic Evaluation of Ymir, Sheep Creek, & Bayonne Mining Camps. by Frank D'Grady. William C. Day, Ray A. Wells. Company report.

Report of the Minister of Mines (1937 and 1938) Nelson Mining Division, pg 16,17. 14.0 - BAYONNE ITEMIZED COST STATEMENT - EAST GROUPING -1987

COSTS:

<u> </u>	Geologists	\$200/day e	ea.
	Geophysical Operator #1	\$125/day	
	Geophysical Operator #2	\$100/day	
-	Technicai Field Assistant	\$125/day	
-	Geological Technician	\$110/day	
	Field Assistants	\$80/day ea	э.
-	Truck (Mileage + Leasing)	\$60\$/day	
	Room and Board (Geologists + Technicians)	\$30/day ea	æ

August 3 - (2) Field assistants: flag southern halves of lines 5500E and 5600E. subtotal: \$95

August 4 - (2) Field assistants: correct and complete the southern halves of lines 5600E and 5700E. subtotal: \$95

August 5 - (2) Field assistants: flag the southern halves of lines 5500E, 5800E, 6000E south. subtotal: \$95

August 6 - (2) Geologist: map the southern halves of lines 5500E, 5600E, 5900E, and 6000E south. (3) Field assistants: flag the southern halves of lines 6000E and 6100E south. subtotal: \$380

August 7 - (2) Geologist: map the southern halves of lines 5700E, 5400E, 6000E, and 6100E south. (3) Field assistant and (1) Geophysical operator #1: flag the south halves of lines 5300E and 5400E.

subtotal: \$442.5

August 8 - (1) Geologist: map the southern halves of lines 6000E and 6175E. (2) Field assistants: flag the south half of line 6175E.

subtotal: \$225

August 9 - (2) Geologist: map the ridge to the summit of John Bull Mtn. and the southern half of line 5300E. subtotal: \$210

August 10 - (1) Geologist: map John Bull Mtn. (1) Field assistant: soil sample the southern halves of lines 6000E and 6175E.

subtotal: \$292

August 15 - (1) Geologist: map traverse from summit of John Bull

east. Map the area (talus) below the mountain. (1) Field assistant: soll sample southern halves of lines 6100E, 6000E, 5900E, and 5800E south.

subtotal: \$315

August 16 - (2) Geologist: sample Echo dump and do general reconnaissance of the area. (2) Field assistant: soll sample the southern halves of lines 5500E, 5600E, and 5700E. subtotal: \$340

August 17 - (1) Field assistant: soll sample the southern halves of lines 5400E and 5300E south. subtotal: \$120

August 18 - (2) Geologist: map ridge and valley area east of John Bull and ridge south of John Bull. subtotal: \$490

August 20 - (1) Geologist: mapping and reconnaissance of the ridge south of John Bull. subtotal: \$260

Sept 18 - (1) Geologist and (1) Geological Technician: investigate the nature of the three geochem anomalies in the vicinity of the Echo adlt. subtotal: \$430

Sept 19 - (1) Geologist and (1) Geological Technician: map, run line, and soll sample the southern half of line 5650E south. subtotal: \$215

Sept 20 - (1) Geologist, (1) Geological Technician, and (1)
field assistant: map, run line, and soil sample line 5750E and
the southern half of 5950E.
 subtotal: \$255

Sept 22 - (1) Geologist and (1) Geological Technician: map and follow oxidation from the Echo adit to the shear zone near the summit of John Bull. This does appear to be the same structure. subtotal: \$430

Sept 23 - (1) Geologist and (1) Geological Technician: map and follow oxidation along the anomaly 3 structure. An old dump and adit found on the structure. It is being named the St. Elmo adit.

subtotal: \$430

Sept 28 - (1) Geologist and (1) Geological Technician: map and note oxidation of anomaly 2. Oxidation and some guartz float was found, but there is little concrete evidence of a structure present. (1) Geophysical operator #2 and (1) Technical field assistant: run EM on lines 53, 54, 55, 56 from 45N to 40N.

subtotal: \$685

Sept 29 - (1) Geologist and (1) Geological Technician: map the Bluebird and Montana claims. Some old trenching with in situ quartz veining found. (1) Geophysical operator #2 and (1) field assistant: base-line 43.5N run for mag. Mag. run on lines 53E and 54E.

subtotal: \$610

Sept 30 - (1) Geologist and (1) Geological Technician: detail map and sample the Montana trenches. (1) Geophysical operator #2 and (1) field assistant: run mag. and EM on the southern halves of lines 55E, 56E, 57E, and 58E.

subtotal: \$610

Oct 1 - (2) Geologist: map the Oxford claim and Mayflower claim. An old adit was found at the Mayflower with in situ galena bearing vein material. (1) Geophysical operator and (1) field assistant: run mag. and EM on lines 60, 61, and 61.75. subtotal: \$700

Oct 3 - (2) Geologist and (1) Geological Technician: map, sample, and prospect the Summit Belle group to the west. subtotal: \$660

Oct 5 - (1) Geologist, (1) Geophysical operator, and (1) field assistant: extend, map and sample lines 61.75E, 61E, 60E to 3800N.

subtotal: \$470

Oct 16 - (2) Geologist and (1) Technical field assistant: detail sample and map the workings at the Maggie Aikens claim. subtotal: \$675

Oct 20 - (2) Geologist: flag and blaze 800m for trenching on the Echo and St. Elmo structures as well as a road between the end of the Echo trenching to the St. Elmo dump. subtotal: \$520

Oct 23 - (1) Geologist: watch cat, hand muck overburden from trench #1. Cat: clear overburden from trench #1 - cat down with sheared bolt on the blade arm

subtotal: \$290 (cat work included later in report)

Oct 24 - (1) Geologist: watch cat, hand muck overburden from trench #1. Cat: complete work on trench #1 - cat down with broken pin. Work started on trench #3. subtotal: \$290

Oct 26 - (1) Geologist and (1) Field assistant: clear off overburden by hand and trench #1 - sample. Cat: complete trench #3 and work on trench #4 - make access road.

subtotal: \$370

Oct 27 - (1) Geologist and (1) Field assistant: watch cat clear overburden n from trench #1 as well as #3 and #4 by hand begin sampling. Cat: complete trench #4 and commence work on trench #2 - complete access road.

subtotal: \$370

Oct 28 - (1) Geologist, (1) Geological Technician, and (1) Field assistant: watch cat - hand muck overburden from trench #2 - sample. Cat: complete trench #2 and start the trench between #2 and #3 (trench #1-2).

subtotal: \$510

Oct 30 - (1) Geologist and (1) field assistant: watch cat and hand muck in trenches #1-2. Cat: complete trench #1-2. Cat (D6) down. (1) Geologist, (1) Geological Technician, and (1) Technical field assistant: At the Maggie Aikens workings locate a fourth trench and detail sample it. Two trucks used. subtotal: \$955

Nov 2 - (2) Geologist and (1) Field assistant: hand muck overburden in trench #1-2 - near completed sampling. Cat: work on trench #2-3. subtotal: \$600

Nov 3 - (2) Geologist and (1) Field assistant: hand muck overburden from trench #1-2 and complete sampling - start clearing overburden from trench #2-3. Cat: Extend trench #4 no shear zone found - complete work on trench #2-3. subtotal: \$600

Nov 4 - (1) Geologist and (1) Field assistant: hand muck overburden from trench #2-3 and sample. Cat work on road and trench #4 - still no shear zone. subtotal: \$370

Nov 5 - (1) Geologist and (1) Field assistant: hand muck overburden, sample and map trench #2-3. Cat: work on road. subtotal: \$370

Nov 6 - (1) Geologist and (1) Field assistant: hand muck and sample trench #2-3. Cat: road work. subtotal: \$370

Nov 7 - (1) Geologist and (1) Field assistant: map and sample trench #2-3. Cat: work on first trench on the St. Elmo just below the dump.

subtotal: \$370

Nov 8 - (1) Geologist, (1) Geological Technician, and (1) Technical field assistant: map and sample trench #2-3. Cat: work on trench at St. Elmo - cat down. subtotal: 585\$ Nov 9 - (1) Geologist, (1) Geological Technician. and (1) Technical field assistant: complete mapping and sampling of trench #2-3. Cat: down Total cat moving expenses:_______\$1585.50 Total cat time:_______\$5616 Total samples taken on east grid: 348 @ 12.25 per sample:__\$4263 Shipping costs:_______\$200 Report generation: \$100 for 24 days:______\$2400

total cost: \$30,534

15.0 - BAYONNE DAILY JOURNAL - WEST GROUPING - 1987

COSTS:

-	Geologists	_\$200/day_ea.
	Geophysical Operator #1	\$125/day
	Geophysical Operator #2	\$100/day
	Technical Field Assistant	\$125/day
	Geological Technician	_\$110/day
	Field Assistants	\$80/day ea.
	Truck (Mileage + Leasing)	\$60\$/day
	Room and Board (Geologists + Technicians)	\$30/day_ea

July 31 - (1) Geologist: map and tie in cultural features to the 5000N base-line between 5000E to 5150E and 4800N to 5100N. (2) Field assistants: flag and soil sample lines 5300E and 5400E north. These lines were rechecked.

subtotal: \$450

August 2 - (2) Geologist: map half of line 5400E north and prospect the western flank across the valley from the Bayonne (west grid). (2) Field assistant: flag lines 5100E, and 5200E north.

subtotal: \$680

August 3 - (3) Geologist: prospect Virginia claims and gossanous showing - map lines 5600E and 5700E north - complete mapping line 5400E and 5300E north. (2) field assistants: flag lines 5500E, 5600E, and 5700E north halves.

subtotal: \$815

August 4 - (2) Geologist: map lines 5500E and 5200E north commence mapping of 5800E, 5900E, and 6000E north. subtotal: \$585

August 5 - (2) Geologist: map lines 5500E and 5600E north halves - complete mapping of 5800E, 5900E, and 6000E north. (2) Field assistants: flag north halves of 5500E, 5800E, and 6000E south. subtotal: \$490

August 6 - (2) Geologist: map north halves of lines 5500E, 5600E, 5900E, and 6000E south. (3) Field assistants: continue base-line to 6175E - flag north halves of lines 6000E and 6100E south.

subtotal: \$380
August 7 - (2) Geologist: map north halves of 5700E, 5600E, 5900E, and 6000E south. (3) Field assistant + (1) Geophysical operator #1: flag 5200E, 5000E, and the north half of 5300E and 5400E

subtotal: \$443

August 8 - (1) Geologist: map north halves of lines 6100E and 6175E south. (2) Field assistant: flag line 5100E and the north half of 6175E subtotal: \$225

August 9 - (2) Geologist: map north half of lines 5300E and 5200E south - map the north half of the ridge to the summit of John Bull Mtn. subtotal: \$310

August 10 - (1) Geologist: map lines 5100E and 5200E south. (1) Field assistant: soil sample the north halves of lines 6175E and 6000E south. Soil sample 5800E, 5900E and 6000E subtotal: \$308

August 11 - (2) Geologist: tie in roads on line 5100E and tie in base-line to the roads - commence mapping ridge to Virginia Mtn. (2) Field assistant: soil sample lines 5300E, 5400E, 5500E, 5600E, and 5700E north.

subtotal: \$680

August 12 - (1) Geologist: sample and examine the Bayonne dumps. (1) Field assistant: soil sample lines 5000E, 5100E, and 5200E north.

subtotal: \$370

August 15 - (1) Field assistant: soil sample the north halves of lines 6100E, 6000E, 5900E, and 5800E south. subtotal: \$455

August 16 - (2) Geologist: sample lower dumps at Bayonne mine. (2) Field assistants: soil sample the north halves of lines 5500E, 5600E, and 5700E south. subtotal: \$340

August 17 - (2) Geologist: map the ridge from the junction of 5500E to the southern ridge south of the Virginia Mtn. reconnaissance of the mountain north of Carolina Creek. (2) Field assistant: soil sample the north halves of lines 5400E and 5300E south. Sample line 5200E subtotal: \$490

Suprocar: 4470

August 18 - (2) Field assistant: soll sample lines 5000E and 5100E.

subtotal: \$190

August 19 - (2) Geologist: map and show field assistants now to sample logging roads on the west grid - flag lines 2.3.4. and 6 - mapping on the east grid. (2) Field assistant: soil sample BL1 and BL2. Flag and sample L3 on the west grid. subtotal: \$680

August 20 - (1) Geologist: flag and map line 1 and cut brush. Field assistant: soil sample lines 1,2,3, and 6. subtotal: \$340

August 21 - (1) Geologist: map line 7 and base-lines 3, 4, and 5. (1) Field assistant: flag and soil sample same. subtotal: \$370

August 23 - (2) Geologist: map BL6, L8N, L9S, L9N, L5 and L10 - mapping near ridge. (1) Field assistant: flag and soil sample same.

subtotal: \$600

August 24 - (2) Geologist: map L11 and L12 - mapping the ridge. (1) Field assistant: flag and soil sample same. subtotal: \$600

August 25 - (2) Geologist and (1) Field assistant: map and soil sample L13 and L14. subtotal: \$600

Sept 19 - (1) Geologist and (1) Geological Technician: map, run line, and soil sample the north half of 5650E and 5750E south over the anomalous area. subtotal: \$600

Sept 20 - (1) Geologist, (1) Geological Technician, and (1) Field assistant: map run line, and soil sample north half of 5950E south.

subtotal: \$225

Sept 21 - (1) Geologist and (1) Geological Technician: map, run line, and soil sample line 5050E south. subtotal: \$430

Total samples taken: 703 at \$12.25 per sample for assay:_\$8636.25 Transport costs:______\$200

Report geneneration: \$100 per day for 24 days_____\$2400

Total costs: \$23,447.25

STATEMENT OF QUALIFICATIONS

- I. Leonard Austin Hitchins, do hereby certify that:
- I am a geologist employed by Lightning Minerals Inc. of # 202, 7608-103 street, Edmonton Alberta. T6E 428.
- 2) I am a graduate of the University of Alberta holding a B.Sc (specialization) in geology (1983).
- 3) I have practiced my profession since graduation and was engaged in exploration prior to graduation.
- 4) My previous employers include Terra Mines Ltd., The University of Alberta, Aquarius Resources Ltd., and U.S. Borax Corp.
- 5) I have experience in the various aspects of narrow vein mine geology. I have been employed in two mines and have experience with 7 others. I have conducted geological and geochemical research of one mine. I have conducted a surface exploration program. I have supervised underground drilling programs. I have constructed drilling proposals for both underground and surface drills. I have experience in the Slave Archean and Bear Aphebian provinces as well as the cordillera.

L. Austin Hitchins

			1						7		Ţ	ERRA	A MI	NES	LTD	•	FIL	E #	ម7-	378	4												Hage
SAMPLE	P	10 P#	(CU)	PB PPN	(IN) (FPM)	AG) NI PPM	03 494	, Hn Pfr	FE Z	AS	U FFN	au Ffm	TH FPN	SR Ffn	CD PPM	SB PPM	BI PPN	V PPN	CA 1	P Z	- LA PFM	CR FPM	NG 1	8A PPM	11 2	8 PPM	AL 1	NA 2	K Z	N 998	AUT	•
BL14 00		1	16	15	37	.2]	6	3	175	3.29	8	5	ND	6	11	1	2	2	47	.08	.057	8	15	.18	38	.20	4	4.78	.04	.05	2	1	
BL14 50		1	1.7	14	11	.1	5		408	2.08	9	5	ND	3	21	1	2	2	39	.16	.048	8	10	.26	45	.14	2	1.56	.03	.07	2	2	
2L14 100		1	11	20	24	.1		· ·	1.52	10.31	14	ີ 5	10	4	· /	1	2 2	2	38	.03	.083	2	10	- 13 AA	20	.17	2	3.24	03	.03	3. 1	1	
BL14 100		1	2	24	21 .45		-	- -	749	2.00	7	- J . - 5	มก	1	. 11	1	2	2	37	.07	.020	0 1	7 17	20	20 49	.07	2	1 74	.02	05		í	
FC14 200		•	<u>е</u> .		· · ·		Ū	-	1.	1.0	.,					•	4	4	57		.030	U		.20	15	•••	-	1./4		.05	. *	•	
BL14 250		1	14	19	57	1	8	4	411	2.59	.7	5	ND	6	14	1	2	2	40	. 10	.062	7	8	. 36	40	.17	7	3.95	.03	.10	2	2	
BL14 300		1	14	20	65	.1	8	4	926	2.28	9	5	ND	4	14	1	2	2	38	.11	.088	7	11	. 30	55	.17	2	3.02	.03	.10	1	1	
BL14 350		1	- 5	24	- 26	.1	:	1	515	.91	5	5	ND	1	12	1	3	- 3	22	.11	.029	6	51	.08	44	.13	2	. 77	.02	.04	1	2	
BL14 400		t	17	15	50	- 1	-	3	249	2.31	8	5	ND	5	Ģ	. 1	2	2	33	.07	.076	5	Ģ	.18	39	.19	. 2	4.63	.03	.06	2	1	
BL14 450		1	14	21	56	.1	8	4	421	2.49	7	5	ND	3	14	1	- 2	2	40	.11	.045	7	8	. 29	53	.17	6	2.85	.03	.08	1	1	
							-						_				-	-															
BL14 500		1	. 11	é	57	1.15	8	5	708	2.55	10	5	ND	4	13	1	.2	2	37	.09	.103	6	11	.25	40	.17	2	5.47	.03	.08	2	1	
BL14 550		1	10	29	- 66 - 50		4 c	. 6	146/	2.78	. 8	5	NU	· 3	1/	. 1	2	- 2	45	.14	.059	R	11	- 59	64	.18		2.82	.04	.10	1	· 2	
EL14 500		1	15	14	58	•	5	4	3/5	2.44	0	5	ND -	4	8	1	2	2	36	.06	.0/5	6	12	.16	42 -	.18	8 L	5.79	.03	.03	2		
BC14 020		*	12	29 10	ند ف	• •	с 3	ċ	122	2.12	2	ч с	ND -	3 4	12	1		. 5	24	10	.075	с 0		. 20	10	.10	17	2.77	.05	.00	2		
BC14 /00		1		10	63	••	C	C.	1 322	2.13	4	J	ΝU		24	1	2	2	31	•17		0	9		0.2	.10	27	3,77		4 V i	-	•	
HL14 750		1	12	28	Q.,	.1	6	5	1/39	7.19	6	5	ND	2	23	1	2	2	34	. 70	. 148	7	в	.23	97	. 14	4	2.33	.03	.08	1	1	
BL14 800		1	6	23	63		5	5	1643	2.24	6	5	NÐ	3	28	1	2	2	39	.30	.047	- 8	10	.41	64	.16	2	1.40	.03	.11	1	1	
BL14 650		1	11	81	۹ :	.1	ŕ	ė	2564	2.38	7	5	ND	3	29	1	- 2	2	37	. 29	.078	10	8	. 45	125	.14	2	1.75	.03	.13	1	106	1
8614 900		1	13	26	83	1.1	11	8	840	3.03	7	5	ND	5	28	1	2	2	46	.30	.098	10	12	.70	123	.21	13	3.22	.04	.20	·· 1	1	
BE14 1000		1	11	25	B4	1.1	12	7	1229	2.71	6	5	ND	6	26	1 -	2	2	42	.28	.109	10	17	. 58	122	.20	- 2	2.67	.04	.15	. 2	1	
												1.1																					
BL14 1050		1	12	44	111	.1	11	7	2141	2.81	. 7	5	ND	5	32	1	2	2	41	.33	.110	12	13	.63	183	.17	2	2.58	.04	.19	1	2	
BL14 1190		!	11	81	130	1.2	9	5	2755	2,25	8	5	ND	3	33	1	2	2 .	35	• 34	.075	9	10	. 42	167	. 15	3	1.79	.04	.15	1	1	
BL14 1150		1	11	27	61	.1	Ģ	ó	- 754	2,44	8	5	ND -	6	24	1	- 2	2	37	.22	.078	12	!!	.48	68	.17	3	3.20	.03	.12	1	1	
BL14 1200		1	ç	29	79	.!	8	6	1517	2.38	-2.	5	ND	2	20	i	. 2	2	38	.18	.094	8	ų	. 35	104	. 17 ·	2	1.89	.03	.09	1	1	
HL14 1250		1	13	46	, và	.1	6	4	1208	1.94	2	5	ND	3	22	1	2	3	34	.19	.073	8	9	.21	130	.14	5	1.42	.03	.07	1	410	
to			~		E .							 _	A.T.	~					60			-	F			10	-	00	. 47	07		, i	
BL14 1390		:	•	4 <u>0</u>	34	• 4	6		1464	1.30	4.	1.5	ND	2	26	1	2	Z	27	. 22	.048		5	.17	118	.12	; 2	. 78	.03	.07	1		
BE14 1250		1	10	01	63 171		. 0	4	1495	1.30	4	5	UN	2	25	1	2	2	27	+1/ j	.068	70	10 50	.18	124	.14	70	.71	.03	.07	1	10	
510 C/AV-5	!	-	27	₩ <u>7</u>	191		64	28	1945	- 7 * Are	24	18	8	4()	. 21	18	17	22	58	. 4/	.088	33	57	.85	178	.08	38	1.80	.08	• 1 4	12	48	

27

.

11

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - Sample Type: Soil Aut Analysis by AA FROM 10 GRAM SAMPLE.

	Đ	AIE	RECI	EIVE	D:	AU6	31 198	7	DAT	E R	EFO	RT M	AILE	D:	S	zA	1-87	87	ASS	SAYE	F. /	I.a	bi je	/D	EAN	TUY	Ε, ί	ERT.	1⊢11	ED B	.c.	ASS	AYEF	.
						. ,		۰. 			7	TER	RA M	INE	зцт	<i>D</i> .	۲	ile	# 8	7-30	794		Faqe	2 1										
	5	SAAPLE		nu Prn	(CU) PPM	PB PFM	(IN)	(AB)	NI PPM	CO PPM	NN PPM	FE Z	(AS (PPM)	U PFM	AU PPM	TH FPM	SR PFM	CD PPM	SB PPM	BI PPM	V PPM	CA X	የ ኒ	LA PPN	CR PFM	MG 2	BA Ffr	11	B PPM	AL 1	NA	K 2	N Pfm	AU t PPB
		8111 50 8111 100 8111 150 8111 200 8111 250		1 1 1 1	7 7 7 7 10	36 29 46 42 95	67 69 77 82 98	.3 .4 .3 .3 .4	7 8 8 9 9	6 5 6 7	777 392 1482 807 1154	2.62 2.33 2.28 2.69 2.48	7 2 7 8 7	5 16 28 13 26	ND ND ND ND ND	2 3 3 3 3	26 27 44 40 29	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	44 42 39 43 39	.27 .28 .59 .50 .30	.039 .046 .066 .049 .062	14 18 25 16 35	10 9 11 9	.41 .48 .51 .54 .40	61 58 70 80 129	.15 .13 .11 .15 .12	83333	1.73 2.12 2.02 2.05 2.10	.03 .03 .04 .04 .03	.10 .12 .12 .14 .13	1 2 1 2 2	1 1 1 1
11-7		BL11 300 BL11 350 BL11 400 BL11 450 BL11 500		1 1 1 1	9 14 10	32 28 67 45 89	73 59 75 53 57	.2 .2 .4 .1 .2	9 6 8 8 5	7 3 7 4 2	1209 582 2653 309 251	2.64 2.28 2.11 2.20 1.34	6 4 7 8	8 6 13 5 5	ND ND ND ND ND	3 2 2 2 1	23 17 35 20 17	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	41 38 34 36 28	.22 .14 .42 .22 .22	.053 .052 .082 .050 .064	23 9 29 10 10	12 11 10 9	.40 .30 .31 .31 .19	78 47 85 57 63	.13 .13 .10 .13 .08	5 2 6 2	2.15 1.62 2.82 1.59 .91	.03 .03 .03 .03 .02	.09 .08 .09 .09	1 1 2 1 1	1 1 1 1
and the second	 	8L11 550 8L11 600 8L11 650 8L11 700 8L11 750		1 1 1 1	9 11 10 11 12	92 92 63 66 105	105 89 80 76 69	.2 .3 .2 .3 .6	9 10 9 10 8	4 5 6 5	266 1144 1061 511 892	4.11 2.76 2.53 2.93 1.64	14 10 8 13 13	9 24 7 5 5	ND ND ND ND ND	3 3 2 3 1	12 28 21 21 32	1 1 1 2	4 2 2 5 3	2 2 2 2 2 2	76 48 42 47 28	.13 .34 .22 .19 .46	.050 .054 .055 .046 .070	8 27 13 13 16	21 14 11 12 8	.41 .31 .37 .41 .22	81 76 71 58 99	.29 .20 .14 .17 .07	5387 373	1.86 2.16 1.79 1.87 1.10	.03 .04 .03 .03 .03	.08 .09 .09 .10 .09	2 1 3 1 1	1 1 15 2
		L11 800 L11 850 L11 900 L11 950 L11 100		1 1 2 4 1	10 8 12 16 7	109 56 51 68 21	87 55 121 208 52	.4 .2 .6 .1 .3	7 7 10 7 6	5 6 12 6 3	833 375 3194 19892 428	2.17 2.35 2.86 1.79 3.50	12 5 9 10	10 5 12 8 5	ND ND ND ND ND	2 3 3 1 3	32 20 37 27 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 2 2 2	2 2 2 2 2	37 49 47 31 56	.40 .17 .37 .35 .20	.071 .025 .089 .088 .051	17 18 19 7 8	10 10 13 4 9	.29 .23 .37 .27 .22	98 65 116 514 44	.12 .18 .15 .08 .18	2 2 7 3 2	1.53 1.41 2.60 1.03 1.56	.03 .03 .04 .02 .02	.10 .07 .09 .13 .96	1 1 1 2 1	1 2 1 1
		ALIS 50 ALIS 100 ALIS 150 ALIS 200 ALIS 250		-	7 9 8 8 8	36 32 51 38 37	56 79 90 89 79	.4 .3 .3 .1 .4	7 8 8 7 8	5 5 6 0	508 467 976 1144 638	1.98 2.76 2.27 2.16 2.40	4 9 8 5	5 5 12 11 19	ND ND ND ND ND	2 2 3 2 2	19 18 58 40 40	1 1 1 1	2 2 4 2 2	2 2 2 2 2 2	34 39 35 34 35	.18 .14 .72 .52 .50	.049 .065 .076 .062 .058	21 15 23 19 22	6 10 8 8 8	.28 .38 .54 .42 .41	52 59 85 74 71	.11 .13 .10 .09	10 CT 10 CT 10 CT	1.58 3.73 2.14 1.72 2.14	.02 .03 .03 .03 .03	.09 .10 .13 .12 .11	1 2 1 1	1 16 1
.13		RL13 300 RL13 350 RL13 400 RL13 450 RL13 500) 1 1 1	7 8 10 7 8	36 43 55 32 71	65 73 88 69 98	.4 .2 .2 .3 .1	8 9 9 9	5 6 7 5 8	785 1234 1533 790 1382	2.39 2.06 2.39 1.91 2.32	5 8 7 8 9	14 5 5	ND ND ND ND ND	3 1 2 1 2	33 23 24 43 38	1 1 1 1	2 2 2 2	2 2 2 2 2 2	36 33 37 28 36	.33 .24 .23 .47 .49	.040 .057 .059 .064 .057	17 13 15 18 14	10 11 12 9 10	. 40 . 32 . 39 . 34 . 49	63 69 83 77	.12 .10 .10 .07		1.72 1.62 1.75 1.47 1.58	.02 .02 .03 .03	.10 .10 .11 .10 .12	1 1 2 2 2	2 6 14 1 2
	8 8 8 8	L13 550 L13 600 L13 650 L13 750 L13 750		1 1 1 1	7 7 6 8 10	67 56 37 42 37	80 77 46 86 65	.2 .2 .3 .1 .1	8 7 6 9 7	6 6 5 6 4	:511 1263 407 1073 418	2.25 2.03 2.05 2.19 2.31	7 5 9 6 6	7 5 22 5	ND ND ND ND ND	2 2 3 2 2	37 38 20 47 25	1 1 1 1	2 2 3 2 2	2 2 2 2 2	35 33 32 35 40	.42 .47 .16 .55 .28	.053 .067 .043 .073 .044	13 23 19 28 11	11 9 0 10	. 39 . 43 . 27 . 42 . 32	88 65 33 60	.10 .08 .08 .10 .12	0. 11 12 12	1.40 1.56 1.25 2.14 1.26	.03 .93 .02 .03 .03	.12 .09 .07 .10 .11	1 1 4 1	1 1 1 1 1
	8 5	L13 800 TD C/AU-	5	i 5 5	13 59	51 42	130	.3	۶ 0		1835 1046	2.14 1.88	8 41	5	ND 8	2 40	17 52	1 18	3 14	2 21	38 58	.40	.067 .070	39	ь 61	.25 .87	115 178	.13 .08		1.75	.01 .99	.(° .:5	2	1 49

			~			, .			2		Т	ERRA	MI	NE8	LTD	•	FIL	Ë #	87-	364:	1);	۶
	SAMPLE	KO Pph	(CU) (PPM)	PB PPM	(IN PPM)) (AG PPN)	NI PPM	CO PPN	NN PPH	FE X	AS	U - PPN	AU PPH	TH PPN-	SR PPM	CD • PPM	SB PPM	BI PPN	V PPN	CA X	P	LA PPH	CR PPM	MG	BA PPM	TI X	B	AL Z	NA Z	K	W PPH	AU	1
Y		1	· . 4	16	28	1.1	3	2	252	1.18	3	5	ND	1	15	1	2	2	18	.17	.024	7	3	.15	37	.07	2	.58	.02	.04	1	1	
	8L6 00 BL6 50	1	8 · 13	20 18	42	.1	5	3 4	436 486	2.10	2 2	5 5	ND ND	2 2	17	1 1	2	2 2	29 31	.19 .13	.039	9 8	7 13	.24 .23	55 59	.11	2 3	1.91	.03	.06	2	1	
	BL6 100 BL6 150	1 1	6 6	13 13	61 50	.1 .1	6 4	5 3	270 370	2.07 1.94	2 2	5 5	ND ND	4 4	14 20	1 1	2 2	2	27 30	. 14 . 28	.079 .087	12 10	.7 5	.39 .28	39 40	.08 .11	2 2	2.84	.02	.06	1 3	. <u>1</u> . 1	
	BL6 200	1	8	17	65	.2	6	4	296	2.34	2	5	ND	3	11	t	2	2	29	. 12	.064	10	8	. 28	46	.11	2	3.87	.02	.05	1	1	
	BL6 250 BL6 300	1	8 13	21 20	54 73	.2	7	5	369 610	2.20	2	5 10	ND ND	3 3	17 12	1.	2	2 3	30 29	. 18	.048	11 16	- 8 9	.35	55 57	.11	6	2.66	.03	.07	1	1	
	BL6 350	1	9	56 24	104	.1	5	6	2917	1.73	2	83	ND	1	80	1	2	3	24	1.03	.163	41	8	.41	101	. 03	3	2.30	.03	.09	1	1	
		•	u.	27		••	J	3	703	2.32	4			2	13	1	2	2	32	.25	.060	8	10	.27	78	. 11	2	2,10	.03	.08	1	1	
	NU NUMBER 1 NO NUMBER 2	1	8	22	48 54	.2	6 7	4	274 938	2.34 2.35	2	5. 5	ND ND	4 2	14 29	1 1	2 2	2 2	30 34	.16	.061 .043	14 16	10 10	.38 .40	45 72	.09	2 2	2.93 1.55	.02	.07	1	1 16	
	NO NUMBER 3 STD C/AU-S	1 18	6 57	15 41	41 132	.1 7.1	4 68	4 27	392 1019	1.66	2 35	5 16	ND 8	4 36	32 49	1 18	2 17	2 20	21 55	.49 .47	.081 .088	15 36	- 6 57	.52 .88	58 174	.07 .08	6 32	1.41 1.84	.04 .08	.14	1 14	1 49	

M145512 L4+250

		ALYTICA	L LA	BORA	TOR	IES		852	E. HA	STIN	IGS S	ЗΤ.	VANC	couv	ER E	.c.	Ve	A 1	R6	ł	-HON	IE 2:	53-3	158		DAT	ALI	NE 2	251	\mathbb{D}_1		
						·		GE	EOC	HE	MI	CA	۱ ــ	ا ت ا	CP	6	NN A	<u> А</u> Ц	YS	IΞ	5											
A40	NN' RIP				.500 THIS - SAM	GRAM S LEACH IPLE TYI	AMPLE I IS PART PE: SOII	S DIGE TAL FO L	STED WITH R MN FE C AU+ ANALY	3ML 3- A P LA SIS BY	1-2 HC Cr Mg (AA Fro	L-HNO3 Ba Ti M 10 G	-H2O A B W AN Rah sai	T 95 DI D LIMI MPLE.	EG.C F TED FOF	OR ON R NA AI	E HOUR ND K.	AND I AU DE	IS DILU Itectio	TED TO N LINIT	IO ML By I(WITH W CP 15 3	ATER. PPN.									
1 ilsi	DATE R	ECEIVED	: AU	6 24 1	987 1	DATE	REP	ORT	MAILE	D:	Sef	A	4/8	7	ASSA	YĔR	^) é	ber	9. de	AN 1	ΓΟΥΕ	, CE	ERTI	FIEI	οв.	c. 4	SSA	YER			
V					. <			7 7	ERRA	MINE	S LT	D.	F	ile	#8	7-3(541		Page	e 1								•		/		
	SAMPLE#	NO CU PPM PPN) ppm	(ZN PPM)	(AG PPM)	NI PPN -	CO PPN 1	NN PPM	FE AS) U PPM	AU	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA X	P X	LA PPM	CR PPN	16 1	AB PPM	T 1 Z	B PPM	AL Z	NA X	K Z	W PPN	AU# PPB		
B ^{L \}	BL1 50 BL1 100 BL1 150 BL1 200 BL1 250	1 8 1 12 1 8 1 14 1 15	33 22 19 33 29	42 25 33 70 59	.2 .4 .2 .5 .5	7 6 9 10 9	4 3 5 8 6 6	361 2 113 2 350 2 872 2 659 2	.63 6 .75 7 .01 3 .75 9 .97 7	5 5 23 56 24	ND ND ND ND	4 3 7 3 4	14 16 32 57 33	1 1 1 1	5 2 2 2 2	2 2 2 2 2 2	41 33 29 41 41	.12 .13 .33 .56 .36	.029 .027 .042 .073 .055	10 11 21 34 24	10 12 10 17 12	.24 .17 .54 .65 .47	64 62 78 92 87	.16 .14 .10 .13 .15	2 2 12 3 10	1.46 3.42 1.77 3.14 3.21	.02 .02 .03 .03 .03	.07 .06 .17 .18 .14	2 2 2 1	1 1 1 1		
	BL1 300 BL1 350 BL1 400 BL1 450 BL1 500	1 12 1 15 1 14 1 14 1 14 1 11	33 36 48 28 25	73 88 92 97 102	.4 .6 .4	10 10 10 12 10	7 8 7 7 8 10 10 11 8 5	657 3. 772 2. 001 3. 135 3. 506 3.	32 7 92 6 04 7 55 4 08 8	7 6 23 5 14	ND ND ND ND	2 3 4 4	25 36 36 33 28	1 1 1 1	2 2 2 2 2	2 2 2 2 2	43 41 42 51 42	.25 .33 .41 .33 .35	.042 .048 .071 .060 .056	16 18 29 22 18	12 12 13 15 13	.44 .54 .54 .85 .77	76 119 84 112 87	.16 .14 .14 .16 .14	3 13 3 9 9	3.08 2.36 3.57 3.32 2.85	.02 .03 .03 .03 .03	.09 .13 .12 .22 .17	1 1 1 1	1 1 1 1		
size {	BL2 00A /SL BL2 00 BL2 50A /SL BL2 50 BL2 100A /S	1 11 1 23 - 1 12 1 8 1 11	30 24 16 41 25	53 34 48 69 57	.2 .7 .3 .4 .3	7 10 6 11 8	4 5 5 2 4 2 8 5 5 6	511 2. 217 2. 258 1. 903 2. 686 2.	50 7 11 13 87 9 84 10 34 4	5 558 7 17 5	ND ND ND ND ND	2 4 2 3 2	16 70 22 40 18	1 1 1 1	3 2 2 2 2	2 2 2 2 2	36 38 28 42 34	.15 .38 .24 .43 .15	.051 .047 .058 .062 .044	10 43 11 23 12	11 26 8 11 10	.32 .37 .31 .69 .33	56 85 58 99 58	.13 .18 .10 .12 .12	10 13 10 3 12	2.13 4.83 1.22 2.91 1.63	.02 .04 .02 .03 .02	.09 .10 .08 .20 .07	1 1 2 1 1	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $)BL.2	ہ تھ
	BL2 100 BL2 150A 3 BL2 150 BL2 200A 3 BL2 200	1 11 1 8 1 12 1 10 1 8	48 27 22 26 20	61 46 63 65 57	.2 .2 .3 .4 .1	7 6 10 10 7	4 6 5 7 5 3 6 4	646 2. 707 2. 349 2. 498 2. 478 2.	34 9 27 5 51 5 90 9 42 11	7 5 5 5 5 5 5 5	ND ND ND ND	2 2 3 4 3	15 22 19 26 34	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	34 35 35 40 34	.14 .21 .19 .29 .23	.059 .034 .069 .053 .100	9 11 13 13 11	10 9 12 12 7	. 29 . 26 . 46 . 51 . 44	58 65 60 64 64	.11 .13 .13 .14 .13	3 3 3 7 2	1.90 1.78 4.37 3.10 2.61	.02 .02 .02 .02 .02	.07 .06 .09 .09 .09	1 2 1 1	1 1 1 1 1		
BLZ {	BL2 250A 8 BL2 250 BL2 300 BL2 400 BL2 450	 1 1 10 1 10 1 1 1 1 13 	23 48 29 20 26	49 57 79 34 70	.3 .7 .1 .1 .3	8 10 9 6 10	5 3 7 9 6 5 3 2 6 6	300 2. 912 2. 573 2. 293 1. 512 3.	26 5 37 8 92 9 90 6 18 6	5 10 5 5 5	ND ND ND ND	6 2 3 2 3	26 36 23 22 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 3	32 38 41 35 41	.34 .42 .27 .25 .15	.059 .095 .074 .023 .046	19 28 11 9 11	9 28 10 8 13	.42 .52 .52 .21 .40	53 86 69 60 75	.10 .12 .14 .14 .16	2 2 11 3 3	1.95 3.89 3.45 1.08 2.72	.02 .03 .03 .02 .02	.11 .11 .10 .06 .10	1 1 1 1	54 2 1 29 3 3 1	۶C ۱C	
1.3	BL3 00 BL3 50 BL3 100 BL3 150 BL3 200	1 9 1 15 1 10 1 12 1 10	28 24 24 16 15	45 59 47 52 49	.2 .1 .1 .4 .1	5 8 7 10 7	3 9 4 4 4 4 9 8 4 3	935 2. 431 2. 491 2. 908 2. 374 2.	29 4 44 2 45 4 48 7 98 7	5 5 5 5 5 5	ND ND ND ND	2 2 4 3 3	15 26 14 17 16	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	35 36 35 32 46	.12 .28 .13 .16 .16	.050 .051 .058 .081 .064	8 9 9 16 7	10 10 10 12 11	.24 .37 .29 .43 .30	55 81 54 56 45	.13 .13 .14 .11 .18	2 12 11 2 2	1.53 1.56 2.01 3.05 1.48	.02 .02 .02 .02 .02	.07 .08 .07 .09 .06	2 2 1 1 2	3 1 8 1 1		
	BL3 250 BL3 300 BL4 00 BL4 50 BL4 100	1 12 1 8 1 14 1 10 1 8	51 25 25 26 17	73 40 58 58 65	.2 .3 .1 .1 .3	9 6 8 8	5 13 3 1 4 2 5 4 5 4	349 2. 195 1. 290 2. 147 2. 128 2.	60 10 95 8 60 7 57 5 54 8	5 10 5 5 5	ND NO ND ND	3 2 4 2 2	30 22 15 17 21	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	37 36 38 34 35	.36 .28 .12 .15 .21	.070 .043 .031 .063 .043	13 6 12 11 11	9 7 13 10 7	.51 .19 .34 .33 .41	88 51 46 50 59	.14 .15 .15 .12 .13	8 3 8 9 2	2.00 .91 2.79 2.28 2.26	.03 .02 .02 .02 .02	.09 .07 .07 .08 .09	1 2 1 1	1 5 1 1		
(BL4 150 STD C/AU-S	1 11 19 61	24 42	74 132	.5 7.4	• 9 73	6 11 29 10	23 2. 055 4.	38 8 08 43	8 17	ND 8	2 38	33 51	1 20	2 16	2 21	34 59	.42 .49	.067 .092	19 37	7 60	.47 .91	69 180	.08	7 34	2.34 1.90	.03 .07	.08 .13	1 15	1 53		
								- - -							." •			• • •														

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158 DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOILS -BO MESH AU\$ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: SEPT 2 1987 DATE REPORT MAILED: Sept 11/07 ASSAYER. N. BUY ... DEAN TOYE. CERTIFIED B.C. ASSAYER

TERRA MINES LTD File # 87-3857 Fage 1

SAMPLE	МО Ррн	CU PPM	PB PFM	In Ppm	AG PPM	NI PPM	CO PPM	MN PPN	FE Z	AS PPM	U PPM	AU PPN	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P X	LA PPM	CR PPN	MG X	BA PPM	TI Z	B Ppm	AL Z	NA Z	K 2	N PPM	aut PFB	
L12 50 L12 100 L12 150 L12 200 L12 250	1 1 1 1	11 11 12 8 9	22 24 20 31 44	69 57 42 44 85	.2 .2 .4 .2 .1	7 7 5 5 6	5 4 3 5	438 700 205 417 1444	2.54 2.03 2.58 1.96 2.09	8 8 5 7 8	5 5 5 15	ND ND ND ND	4 2 1 2	16 21 14 15 51	1 1 1 1	2 2 2 2 2	2 2 2 2 2	38 32 35 33 33	.15 .26 .12 .16 .73	.035 .052 .042 .036 .065	11 12 12 8 21	15 12 10 11 14	.37 .32 .19 .21 .47	53 62 46 51 103	.14 .10 .13 .12 .08	3 10 2 2 2	1.97 1.66 2.09 1.03 1.71	.02 .02 .02 .02 .02	.09 .09 .05 .07 .10	1 1 2 2 1	1 1 1 1 1	
L12 300 L12 350 L12 400 L12 450 L12 500	1 1 1 1	9 9 8 7 7	21 20 27 56 16	85 75 65 57 51	.2 .1 .2 .1 .1	7 8 6 6	6 5 4 4	491 393 487 343 314	2.85 2.58 2.08 1.86 2.31	6 8 6 7 5	7 5 5 5 17	ND ND ND ND ND	3 2 3 2 3	44 27 32 34 28	1 1 1 1	2 2 2 2 2	2 2 2 2 2	41 41 35 29 34	.56 .32 .39 .42 .27	.046 .032 .029 .047 .033	16 12 14 10 12	16 15 13 11 13	.58 .49 .30 .30 .40	88 70 74 80 54	.14 .13 .12 .08 .11	2 3 2 2 2	1.85 1.70 1.14 .87 1.49	.02 .02 .02 .01 .01	.12 .09 .08 .09 .08	1 1 1 1	1 1 1 1 1	
L12 550 L12 600 L12 650 L12 700 L12 750	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 10 10 10 10	34 22 30 44 36	63 55 50 104 52	.1 .1 .2 .1 .1	6 6 7 9 6	4 4 8 5	1193 517 386 1541 2072	1.97 2.66 2.33 3.04 2.26	6 7 7 7 7	5 5 5 5	ND ND ND ND ND	2 3 2 3 2	23 15 16 39 20	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	31 45 42 49 43	.28 .14 .14 .49 .23	.059 .053 .045 .054 .030	10 10 9 15 11	11 14 12 20 12	.26 .31 .32 .69 .30	85 53 46 104 96	.10 .14 .15 .15 .15	2 2 2 2 2	1.02 1.91 1.21 1.99 1.30	.01 .01 .02 .02	.08 .07 .08 .11 .08	1 2 1 1	1 1 1 1	
L12 800 L12 850 L12 900 L12 950 L12 950	1 1 1 1	12 17 16 10 19	36 49 36 29 34	70 90 74 96 120	.1 .4 .2 .2 .5	8 9 9 7 15	5 11 8 5 7	988 2631 1354 2773 964	2.42 2.47 2.64 2.42 3.00	8 10 7 8 8	8 9 5 5 5	ND ND ND ND	3 2 2 2 6	38 36 23 23 9	1 1 1 1	2 2 2 2 2	2 2 2 2 2	40 37 44 42 37	.47 .50 .26 .27 .04	.048 .093 .045 .046 .084	31 21 18 8 15	15 14 15 14 20	.47 .39 .35 .35 .32	90 81 76 123 95	.14 .09 .13 .14 .12	2 2 2 2 5	2.10 2.51 1.62 1.27 2.53	.02 .02 .02 .02 .01	.08 .09 .09 .10 .09	1 1 1 1	1 1 1 1	
L82 89 L62 90 L82 91 L82 92 L82 92 L82 93	1 1 1 1	14 39 22 11 2	57 62 28 23 56	81 1:2 98 45 55	.6 .7 .9 .4	10 16 11 5 5	5 8 5 3 2	821 604 1103 1095 113	2.54 2.88 2.52 1.21 1.02	11 12 11 3 4	5 5 5 5	ND ND ND ND	2 4 2 1 2	8 11 7 8 11	2 1 1 1 1	2 2 2 2 4	2 2 2 2 2	37 33 34 22 24	.05 .07 .04 .04 .09	.087 .087 .095 .035 .030	11 17 10 16 11	15 19 18 9 7	.21 .39 .23 .08 .06	67 76 72 83 55	.09 .08 .10 .07 .05	2 2 2 2 2 2 2	1.38 1.91 2.86 .97 .44	.01 .01 .01 .01 .01	.08 .13 .07 .04 .04	1 1 1 1 1	1 1275 104 2 1	
L82 94 L93 88 L83 84 L83 90 L83 91	1 1 1 1	9 14 14 77 172	18 24 27 141 258	42 85 80 76 32	.5 .6 .2 1.1 2.5	5 10 10 8 2	25432	121 524 368 846 110	.96 2.60 2.20 1.75 2.49	5 7 5 11 24	555	ND ND ND 2 4	3 4 1 3	12 10 11 25 . 4	1 1 1 2	4 3 2 5	2 2 5 17	18 38 34 14 4	.13 .07 .07 .36 .02	.019 .053 .036 .047 .029	14 14 17 13 9	8 15 13 10 5	.09 .20 .20 .15 .02	65 81 106 123 28	.07 .11 .09 .03 .01	2 3 2 2 2	.47 1.09 .97 .65 .15	.01 .02 .01 .01	.04 .07 .07 .06 .02	2 1 1 1	5 1 4 1540 4985	
F83 65 F83 65 F83 64 F83 65 F83 65 F83 65	1 1 1 1	193 47 38 55 55	201 66 81 75 136	33 68 116 92 69	2.5 .8 .8 1.0 1.0	2 13 20 12 7	2 6 9 5	26 422 854 557 1483	2.62 1.99 2.66 2.51 1.92	25 9 13 14 13	5 5 5 5 5	5 2 ND 2 ND	4 3 3 3 3	2 11 19 9 9	1 1 1 1	3 2 2 3 3	21 6 3 4 5	2 16 28 23 20	.01 .15 .21 .07 .11	.024 .039 .063 .059 .050	6 13 20 15 13	4 16 26 15 11	.01 .30 .51 .27 .12	11 66 134 59 85	.01 .05 .07 .05 .04	3 2 2 29 3	.05 .89 1.60 1.20 .56	.01 .01 .01 .02 .01	.01 .09 .13 .09 .07	2 1 1 1	6075 1350 940 1855 1310	
L83 901 STD C740-8	1 17	20 60	61 39	113 128	.6 7.1	12 66	7 27	1330 1020	2.40 3.94	16 39	5 19	ND 7	2 39	20 49	1 15	3 17	2 21	28 57	.36 .46	.131 .085	13 37	16 60	.29 .91	120 174	.08 .08	2 38	1.30 1.69	.01	.10 .13	1	60 50	

						- 1. - 1.					7		T	ERRA	MI	NES	LTD	•-	FIL	E #	87-	366	4												Page 3
5A	MPLET		P	MŪ Ph	CU PPM	P8 PPH	ZN	A6 PPM	NI PPM	CO PPM	NN PPM	FE Z	(AS) PPH)	U PPM	AU Ppn	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA X	P Z	LA PPM	CR PPM	NG X	BA PPM	TÍ 1	8 99#	ÁL I	NA L	K X	N PPM	AU+ PPB	
BL BL BL BL	8/N 3 8/N 3 8/N 4 8/N 4 8/S 5	100 150 100 150		1 1 1 1	10 10 10 10 10	39 31 29 34 19	94 95 80 47 48	.1 .1 .2 .4 .1	11 6 10 7 4	8 8 7 3 4	1093 1129 1551 248 700	2.80 2.62 2.63 2.47 2.26	7 8 8 7 2	5 5 5 5 5 5	ND ND ND ND ND	1 1 2 2 1	34 35 28 15 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	42 39 37 38 30	.48 .49 .36 .12 .14	.069 .053 .033 .036 .077	13 14 11 9 8	13 11 11 9 8	.58 .52 .42 .29 .21	74 83 77 39 46	.12 .13 .14 .14 .14	5 8 6 5 2	2.17 2.00 1.72 1.42 1.72	.02 .02 .02 .01 .02	.10 .09 .09 .07 .05	1 1 1 1	2 2 1 1	
BL BL BL BL	8/S 1 8/S 1 8/S 2 8/S 2 9/N 5	00 50 200 250 10		1 1 1 1	11 10 6 10 9	18 45 27 18 20	63 89 34 59 39	·.1 ·.1 ·.1 ·.1	9 6 2 7 2	4 6 2 6 4	1203 1418 738 274 250	2.36 2.52 1.05 2.62 2.04	16 6 9 8	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	17 31 9 17 11	1 1 1 1	2 2 2 2 2	2 2 4 2 2	35 33 23 35 37	.17 .55 .10 .21 .14	.054 .095 .031 .044 .030	11 11 5 10 6	8 12 6 11 9	.28 .40 .09 .33 .14	56 65 73 63 48	.15 .12 .14 .17 .16	2 10 4 6 9	1.55 2.02 .64 2.17 1.25	.02 .02 .02 .02 .02	.07 .09 .04 .06 .03	1 1 1 1	1 1 1 2 2	
BL BL BL BL	9/N 1 9/N 1 9/N 2 9/N 2 9/N 3	00 50 00 50		1 1 1 1	3 8 9 6	83 43 52 35 39	105 91 103 74 58	.1 .3 .1 .4	8 10 9 10 9	6 7 7 6 5	3078 1030 1597 1249 701	1.76 2.65 2.24 2.72 2.31	7 3 10 8 5	5 5 5 5 5	ND ND ND ND	1 2 2 1 1	31 40 51 26 22	2 1 1 1 1	2 2 2 2 2	2 2 2 2 2	27 38 31 38 35	.52 .55 .76 .30 .26	.037 .060 .069 .040 .035	7 13 16 11 11	8 11 10 12 11	.31 .56 .51 .39 .35	152 71 104 71 78	.10 .13 .10 .14 .13	5 12 4 5 7	1.12 1.98 1.73 1.70 1.41	.01 .02 .02 .01 .02	.06 .09 .07 .08 .07	1 1 1 1 1	1 1 1 1	
BL BL BL BL BL	9/N 3 9/N 4 9/N 4 9/N 5 9/N 5	50 00 50 00 0		1 1 1 1	5 7 17 4 9	29 27 9 61 18	61 66 39 39 43	.1 .1 .4 .3 .2	5 12 9 6 3	6 4 3 4 4	689 546 178 96 157	2.13 2.56 2.56 1.37 2.60	12 8 9 2 5	5 5 5 5 5	ND ND ND ND ND	2 4 4 1 2	26 21 8 15 16	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	31 39 33 30 42	.33 .22 .06 .11 .14	.036 .038 .039 .026 .042	12 13 10 7 9	10 11 9 8 10	.37 .44 .18 .18 .25	55 57 32 38 38	.12 .15 .16 .12 .15	6 2 3 6 2	1.65 2.23 3.21 .88 1.39	.01 .02 .02 .01 .01	.06 .08 .04 .06 .06	1 1 1 1	54 2 1 1 2	
BL BL BL BL	9/S 1 9/S 1 9/S 2 9/S 2 9/S 3	00 50 00 50 00		1 1 1 2 1	2 5 9 9 2	28 60 33 20 51	19 64 47 49 44	.1 .1 .1 .1	4 8 5 6 1	1 4 4 3	26 1129 183 195 219	.66 1.87 3.26 2.52 1.22	6 7 8 8 2	5 5 5 5 5	ND ND ND ND	1 1 2 1 1	8 17 11 11 17	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	21 27 42 38 33	.05 .20 .10 .10 .20	.011 .068 .037 .052 .016	6 9 8 9 6	7 10 14 11 7	.05 .25 .21 .21 .17	43 64 37 39 75	.14 .09 .16 .15 .14	4 5 10 4	.64 1.62 2.94 2.03 .74	.01 .01 .01 .02 .01	.02 .06 .04 .05 .05	1 1 1 1 1	2 2 1 1 4	
BL BL BL BL	10 0 10 50 10 10 10 15 10 20	0 0 0		1 1 1 1	9 1 6 2 5	44 44 39 39 36	39 66 70 38 49	-1 -1 -1 -1	5 9 3 5 6	2 5 3 3	292 558 665 186 737	2.06 1.97 1.75 2.22 1.51	12 6 5 4	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	11 27 30 13 21	1 1 1 1 1	2 2 2 2 2	3 10 2 2 2	35 28 26 30 24	.12 .34 .48 .11 .33	.047 .043 .045 .030 .035	5 16 14 12 7	10 11 11 12 9	.18 .41 .32 .18 .20	56 66 67 30 71	.17 .10 .09 .10 .09	4 8 2 2 2	2.32 1.84 1.55 2.11 1.00	.02 .02 .01 .01 .01	.04 .08 .05 .03 .05	1 1 1 1	1 8 1 1 1	
BL BL BL BL ST	10 25 10 30 10 35 10 40 D C/AU	0 0 0 -S	1	1 1 1 1	3 2 2 7 61	34 26 43 24 38	36 36 39 42 129	.1 .1 .2 .1 7.2	6 7 9 9 72	4 3 3 4 28	191 164 272 231 1083	1.73 2.15 1.42 2.38 4.16	5 7 2 12 39	5 5 5 16	ND ND ND ND 7	1 2 1 1 40	15 14 20 14 51	1 1 1 18	3 2 2 18	2 2 2 2 2	27 36 25 32 57	.17 .10 .19 .11 .50	.034 .020 .024 .045 .085	10 11 8 12 38	10 12 12 12 59	.28 .23 .30 .36 .91	35 38 58 40 182	.10 .14 .11 .12 .08	2 5 25 5 38	1.47 1.75 1.07 2.00 1.82	.01 .01 .02 .01 .06	.07 .04 .05 .06 .12	1 1 1 1 14	2 3 1 1 50	

LFS + 300 anossime.

f

C

							/			~		TI	ERR	A MI	NEB	LTD	•	FIL	# 3.	87	·366	4	-											Page
		SANPLE	NO PPH	(CU (PPM)	PB PPM	(IN PPH)	AG	NI PPK	CO PPM	AN PPH	FE	AS	U PPM	AU PPN	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PP n	CA X	P L	LA PPM	CR PPM	NG X	BA PPN	11 X	B PPM	AL Z	NA Z	K Z	W PPM	AU# PPB	
	$\left\langle \right\rangle$	BL5 250 BL5 300 BL5 350 BL5 400 BL5 450	1 1 1 1	9 11 9 7 9	29 7 43 30 11	98 80 84 95 45	.2 .1 .1 .2 .1	9 8 9 9 5	8 7 6 7 3	1014 379 894 1341 154	2.88 2.93 2.43 2.69 1.95	9 3 2 12 2	5 5 5 5 5 5	ND ND ND ND	3 4 3 3 2	30 15 37 26 12	1 1 1 1	4 7 2 3 5	2 2 3 2 7	38 43 37 39 41	.39 .15 .55 .35 .13	.079 .052 .063 .063 .028	16 11 22 13 6	14 13 10 11 9	.46 .35 .36 .44 .17	83 55 65 75 46	.15 .17 .13 .13 .15	12 2 5 3	2.76 3.10 1.89 1.88 .95	.02 .02 .02 .02 .02	.10 .08 .08 .09 .05	1 4 1 3 1	2 2 1 1 1	
BLS		BL5 500 BL5 550 BL5 600 BL5 650 BL5 700	1 1 1 1	12 6 7 6 7	15 31 20 17 18	60 77 60 43 70	.3 .2 .2 .1 .1	8 11 6 5 8	5 5 4 3 5	179 611 301 294 249	2.79 2.23 2.40 2.14 3.15	12 11 6 9		ND ND ND ND ND	4 3 2 2 3	14 27 15 15 18	1 1 1 1	7 4 3 6 5	2 2 2 2 2 2	41 34 38 40 47	.12 .35 .13 .16 .19	.035 .040 .045 .032 .027	11 13 9 8 11	11 10 9 11 15	.31 .41 .28 .17 .38	45 59 33 56 54	.15 .12 .12 .17 .16	2 4 5	2.12 1.64 1.71 1.20 2.17	.01 .02 .01 .02 .02	.07 .07 .07 .07 .09	2 1 1 1 1	1 1 2 2	
		BL5 750 BL5 800 BL5 850 BL5 900 BL5 950	1 1 1 1 1	7 7 8 7 9	13 51 20 23 9	46 72 72 61 83	.1 .1 .3 .3	7 10 8 8 10	4 6 10 6	157 647 233 1124 396	2.02 2.29 2.71 2.13 2.92	4 7 16 11 13	0 0 0 0 U	ND ND ND ND	2 1 5 1 4	17 22 20 20 22	1 1 1 1	5 3 2 8 5	2 4 2 6 2	39 34 40 33 40	.14 .24 .18 .24 .22	.023 .049 .028 .070 .040	10 15 12 18 14	9 9 11 10 14	. 28 . 48 . 46 . 28 . 58	39 48 42 48 58	.15 .11 .14 .08 .13	10 2 5 2 3	1.34 1.92 2.35 2.03 2.42	.02 .02 .02 .02 .02	.07 .09 .09 .07 .10	1 1 2 1	1 1 2 1 1	
		BL5 1000 BL5 1050 BL5 1100 BL 5X50 BL 5X100	1 1 1 1	4 6 7 10 5	8 22 19 4 27	53 74 69 64 63	.1 .1 .2 .1 .2	4 8 10 10 6	4 7 8 6 8	144 456 678 381 433	1.66 2.49 2.93 3.02 2.56	7 8 2 10 9	CH Ch 1.5 LA CH	ND ND ND ND	3 2 5 2 4	28 28 25 17 23	1 1 1 1	2 4 2 5 3	2 2 2 2 2 2	34 35 42 41 37	.38 .34 .21 .17 .26	.025 .051 .050 .036 .049	8 12 17 10 15	8 10 18 13 13	.30 .39 .58 .35 .39	78 60 58 54 55	.11 .10 .11 .16 .13	12 2 2 2 3	.89 1.81 2.74 2.45 2.40	.02 .01 .02 .02 .02	.10 .09 .11 .08 .09	1 1 1 1	2 1 1 1 4	
٢	5 -	BL 5X150 BL 5X200 BL 5X200 BL 5X300 BL 5X300 BL 5X300	1 2 1 1	3 10 9 11 11	18 7 7 62 10	68 76 40 116 44	•1 •1 •1 •1	5 8 6 5	5 6 2 7 3	908 410 90 1363 197	2.26 3.12 2.26 2.75 2.38	7 2 6 7 7	5 5 5 5 5	ND ND ND ND ND	2 5 3 1 2	25 14 12 36 11	1 1 1 1 1	4 2 5 2 3	2 2 2 4 2	35 43 43 43 44 39	.33 .15 .12 .52 .11	.047 .102 .035 .063 .046	15 15 6 21 7	8 14 7 14 8	.40 .34 .16 .47 .16	59 55 27 85 34	.11 .16 .15 .15 .17	2 9 4 2 5	1.57 3.61 1.00 2.01 2.13	.02 .02 .02 .03 .02	.10 .08 .05 .11 .05	2 1 1 1	1 1 1 2 1	
	Л.(С L7	BL6 100 BL6 150 BL6 200 BL 7X50 BL 7X100	1 1 1 1	9 15 8 9 6	42 21 34 31 16	86 36 45 87 90	.1 .2 .1 .1	5 6 1 7 7	5 3 1 7 8	1402 74 488 1144 1643	2.70 1.71 .65 2.61 2.54	9 6 5 2 7	5 5 5 5 5	NÐ ND ND ND ND	2 1 1 2 2	22 12 20 25 29	1 1 1 1 1	4 2 2 5	2 2 2 2 2 2	49 32 16 41 40	.29 .11 .23 .28 .36	.044 .053 .019 .037 .063	9 8 8 12 17	11 10 5 11 12	.34 .12 .08 .40 .46	95 60 90 73 74	.17 .10 .08 .15 .13	-4 3 2 2 5	1.58 1.26 .56 1.73 2.10	.02 .01 .01 .02 .02	.09 .04 .04 .08 .10	1 1 1 1	2 4 2 3 1	
		(BL 7X150 BL B/N 50 BL B/N 100 BL B/N 150 BL B/N 200	1 1 1 1 2	4 15 2 9 9	47 8 38 30 55	100 44 44 129 86	.1 .4 .2 .2 .2	8 5 1 8	5 3 1 8 7	1196 131 74 1423 1534	2.40 2.87 .75 3.28 2.83	8 2 8 21 18	5 5 5 5 5	ND ND ND ND	1 5 1 3 3	30 7 14 28 22	1 1 1 1	2 2 2 6 2	2 2 7 2 2	40 36 19 49 41	.39 .07 .24 .48 .30	.044 .076 .019 .066 .064	10 6 5 12 10	10 13 5 16 13	.37 .14 .05 .61 .43	89 32 65 75 78	.13 .16 .07 .16 .14	8 2 3 5 2	1.46 4.68 .44 2.48 1.59	.02 .01 .01 .02 .02	.09 .04 .02 .12 .09	1 3 2 3 1	1 1 1 1	
		BL 8/N 250 STD C/AU-S	. 2 19	14 61	83 39	105 131	.2 7.3	7 69	5 28	1625 1100	2.50 4.11	14 41	6 20	ND 8	2 41	34 51	1 19	2 17	2 19	38 59	.57	.062 .094	21 39	13 63	.44 .89	73 179	.12 .08	3 40	2.04 1.82	.02	.08 .13	1 14	2 51	

L5300 ucher?

2

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

1

(

€

GEOCHEMICAL ICP ANALYSIS

.500 GRAN SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AUT ANALYSIS BY AA FROM 10 BRAM SAMPLE.

DAYONNIE Wissi GRID DUM. DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED: ANG 26 1987 DATE REPORT MAILED: Sent4 ASSAYER / TERRA MINES LTD. File # 87-3664 Page 1 2 Add ? \checkmark

	SAMPLE	NO PPN	(CU) PPN	PB	(ZN) PPM	A6 PPH	NI PPH	CO PPH	NN PPN	FE X	(AS RPB)	U PPM	AU Pph	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA L	P X	LA PPĦ	CR PPM	M6 %	BA PPN	71 X	B PPH	AL X	NA X	K X	W PPH	AUI PPB
	BL 1X00 BL 1X50 BL 1X100 BL 1X150 BL 1X150 BL 1X200	1 1 1 1	8 9 8 12 9	27 25 26 23 42	91 93 74 73 85	.4 .2 .3 .6 .3	9 9 6 10 6	7 8 6 8 6	913 650 541 920 1088	2.55 3.27 2.71 2.67 1.74	12 12 8 12 15	5 5 5 5 5	ND ND ND ND ND	1 2 1 1	41 28 25 21 30	1 1 1 1	2 3 2 4 2	2 2 2 2 2	33 39 32 33 24	.70 .40 .35 .26 .43	.068 .038 .045 .040 .058	17 17 20 16 20	9 12 9 10 7	.54 .55 .44 .37 .25	77 64 56 55 80	.11 .16 .14 .15 .10	2 2 4 2 2	1.83 2.67 2.38 2.89 1.77	.01 .02 .02 .02 .02	.12 .11 .10 .08 .07	1 1 1 1	1 1 1 3 34
. [}	BL 1X250 BL 1X300 BL 1X350 BL 1X400 BL 1X450	1 1 1 1 1	8 12 10 6 7	27 46 40 13 20	73 87 85 57 82	.2 .1 .2 .1 .1	5 6 8 7 8	7 8 7 6 7	1108 2049 1051 585 1214	2.55 2.17 2.41 2.66 2.63	11 9 16 7 12	5 5 5 5 5	ND ND ND ND	1 1 1 1	18 27 27 18 35	1 1 1 1	2 3 4 2 2	2 2 2 2 2 2	34 28 31 34 34	.28 .39 .36 .21 .55	.049 .067 .068 .036 .065	13 15 17 12 20	9 8 8 8 12	.36 .35 .45 .39 .54	96 92 75 54 83	.13 .08 .10 .13 .11	8 3 4 2 6	1.51 1.67 1.85 1.63 1.90	.01 .01 .01 .01 .02	.08 .07 .09 .08 .10	2 1 1 1 2	41 1 2 1 1
Ę	BL 1X500 BL 1X550 BL 1X600 BL 1X600 BL 1X600 BL 1X700	1 1 1 1	10 11 8 10 4	89 45 43 32 13	74 77 70 89 31	.2 .2 .3 .2 .3	6 7 11 6 2	5 7 7 6 2	767 978 563 690 85	2.14 2.32 2.72 3.18 1.44	13 11 14 15 10	5 5 5 5 5	ND ND ND ND	1 1 1 2 1	33 30 25 26 11	1 1 1 1	2 2 4 3	7 2 2 2 2	30 31 37 45 38	.47 .45 .30 .38 .07	.061 .059 .056 .050 .025	26 20 19 10 7	11 9 12 10 4	.33 .41 .45 .40 .14	60 72 54 66 28	.09 .10 .13 .18 .18	2 2 6 4 2	1.82 1.83 1.94 1.59 .94	.01 .01 .02 .01 .01	.07 .09 .09 .10 .05	1 1 1 1 2	2 1 1 1
، ز کن	BL 1X750 BL 3X50 BL 3X100 BL 3X150 BL 3X150 BL 3X200	1 1 1 1	15 9 4 6	28 31 24 44 15	133 93 39 60 62	.1 .4 .2 .1 .1	11 6 2 7 7	8 7 3 4 3	3311 1055 278 642 401	2.76 2.81 1.85 1.78 1.10	6 10 6 7 9	7 5 5 5 5	ND ND ND ND ND	2 1 1 1 2	34 23 13 21 40	1 1 1 1	2 2 4 3	2 2 2 2 2	35 34 30 26 17	.63 .37 .19 .33 .74	.196 .062 .026 .025 .040	17 11 7 7 8	14 10 6 7 6	.38 .47 .16 .26 .28	140 85 40 60 142	.12 .13 .14 .11 .07	6 5 4 3 2	4.34 2.19 1.01 .93 .79	.02 .02 .01 .01 .01	.08 .10 .05 .06 .11	1 1 1 1 2	1 2 1 1 1
	BL 3X250 BL 3X300 BL 3X350 BL 3X400 BL 4X00	1 1 1 1	7 11 7 4 8	11 14 11 8 28	42 34 41 56 91	.2 .2 .1 .1 .1	6 2 3 8 6	5 3 4 6 7	307 199 327 416 498	1.93 2.08 2.37 2.33 2.80	9 7 9 7 10	5 5 5 5 5	ND ND ND ND	2 1 1 4 1	16 8 11 28 30	1 1 1 1	4 2 2 2 2	2 2 2 2 2 2	24 29 30 30 38	.26 .06 .07 .47 .48	.061 .039 .027 .072 .061	12 7 7 17 14	7 6 9 9 12	.33 .11 .22 .55 .59	40 31 35 54 63	.10 .18 .13 .11 .15	16 2 4 7 2	1.79 1.95 1.10 1.54 1.90	.02 .02 .01 .02 .02	.09 .04 .05 .13 .09	1 1 2 1	1 1 5 1
$\left\{ \right\}$	BL 4X50 BL 4X100 BL 4X150 BL 4X200 BL 4X250	1 2 2 2 2	7 13 10 7 8	30 12 17 26 19	80 68 68 78 68	.1 .3 .1 .1 .1	7 5 6 5 9	7 3 5 6 7	1409 456 586 669 501	2.44 2.64 2.89 2.60 2.90	11 17 13 11 13	5 5 5 5 5	ND ND ND ND	1 2 2 2 3	32 13 16 28 21	1 1 1 1	3 2 2 2 2 2	2 2 3 2 2	33 32 37 32 35	.53 .17 .19 .47 .27	.062 .064 .074 .084 .056	22 9 11 15 13	10 9 10 9 10	. 49 . 23 . 37 . 48 . 42	65 45 41 59 46	.11 .15 .15 .13 .14	5 5 8 2 4	1.99 3.23 2.47 2.00 2.27	.02 .02 .02 .02 .02	.09 .06 .08 .11 .08		1 1 1 28
315 (BL 4X300 BL5 00 BL5 50 BL5 100 BL5 150	2 2 2 2 2	12 7 8 9 11	33 20 27 28 27 27	63 73 97 89 76	.2 .2 .1 .1	8 9 7 10 8	5 7 6 8	437 432 788 806 1038	2.66 3.01 3.02 3.17 3.13	10 13 12 17 11	5 5 5 5 5	ND ND ND ND	2 3 1 2 1	17 18 30 19 21	1 1 1 1	4 2 6 2 2	2 2 2 2 4	35 36 39 40 39	.17 .20 .46 .23 .24	.045 .040 .053 .043 .058	11 13 19 10 13	9 11 12 14 13	. 36 . 48 . 60 . 44 . 44	51 48 66 74 65	.16 .17 .15 .17 .15	4 2 8 3 5	2.14 2.83 2.14 1.86 1.66	.02 .02 .02 .02 .02 .02	.07 .08 .09 .09 .08	2 2 1 1 1	2 1 1 1
	BL5 200 STD C/AU-S	1 18	5 63	27 42	25 132	.1 7.3	5 68	2 27	59 1044	2.22	9 43	5 15	ND 7	2 39	7 50	18	3 17	2 22	45 56	.03 .47	.026 .085	5 37	8 59	.08 .90	30 185	.18 .09	2 30	1.17	.01 .06	.03 .13	1 12	1 53

		- Carrie	N. L				•	*				TERF	KA M	INES	5 L.T	D.	FI	LE #	87	-467	79												Parity	3
	SAMPLES	MU PPN	CU PPH	PB PPM	ZN PPM	А5 РРН	NI PPM	CO PPN	NN PPH	FE	AS PPN	U PPĦ	AU PPH	. TH PPH	SR PPM	CD PPM	SB PPM	BI	V PPH	CA	P Z	LA PPN	CR PPM	MG X	BA PPM	TI	B PPM	AL Z	NA Z	K Z	N PPN	AU t PPB		1
Nh	A-3 + -	1	11	24	68	.2	7	3	223	2.44	2	5	ND	2	15	1	2	2	38	.12	.048	. 8	10	.29	48	.12	2	1.40	.02	.08	2	11		
	A-3-E	1	11	20	58	.1	4	3	308	2.29	2	5	2	1	- 11	1	2	2	38	.09	.065	7	10	.23	57	.12	6	2.53	.02	.06	1	2		
	A-3-N	1	9	17	32	.3	3	2	178	2.10	3	5	ND	1	- 9	1	3	2	38	.07	.033	6	8	.14	40	.12	4	1.45	.02	.05	1	1		
	A-3-5	i	10	21	74	.1	7	4	289	2.48	3	5	ND	2	- 18	i	2	2	37	.16	.049	8	9	.38	54	.10	2	1.58	.02	.09	1	2		
	B-A5	1	20	28	62	.1	9	.7	1333	2.76	6	5.	ND	2	10	1	2	2	44	.07	.081	10	11	.39	43	.13	3	4.33	.02	.13	1	1 1		

•

Page 4

	SAMPLE#	NO PPM	CU PPN	PB PPM	ZN PPN	AG PPN	NI PPM	CO PP N	MN Pph	FE X	AS PPH	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	S D PPN	BI PPN	V PPN	CA %	P X	LA PPN	ČR PPK	NG Y	BA PPh	11 1	B PPH -	AL Z	na L	к 2	N PPh	AUT PPB	
	160E 43N	1	13	27	59	.3	8	4	501	2.11	10	5	ND	1	14	1	2	2	33	.11	.063	11	10	.30	49	11	3	2.00	.03	. 10	1	67	
	160E 43.5N	1	10	35	70	.1	. 9	5	870	2.00	9	.5	ND	· 1	19	1	2	2	30	.17	.066	13	11	. 39	50	.10	6	1.62	.03	.12	i	18	
	160E 44N	1	13	14	62	.1	7	4	401	2.05	7	5	ND	1	12	1	2	2	31	.10	.084	8	11	.30	52	.12	4	2.41	.04	.07	2	2	
	L60E 44.5N	1	13	82	117	1.	10	8	1362	2.15	14	5	ND	2	35	1	2	2	30	. 38	.111	17	10	. 41	94	.09	3	2.24	.04	.10	1	1	
	L60E 45N	1	15	16	78	.1	11	5	349	2.26	6	5	ND	1	29	1	2	2	33	.42	.147	18	14	.50	73	.08	5	2.43	.04	.09	· 1	1	
	L60E 45.5N	1	12	100	114	.1	8	8	1140	1.85	15	5	ND	1	57	3	3	2	27	.93	.107	12	13	.43	90	.07	3	1.59	.05	.10	1	2	
	L60E 46N	1	9	24	102	.1	10	7	1027	2.53	7	5	ND	1	32	1	2	- 2	38	.47	.058	11	13	. 58	68	113	3	1.87	.04	.09	1	. 8	
	L60E 46.5N	1	19	93	103	.2	12	9	1105	1.63	6	5	ND	1	27	2	2	2	24	.28	.115	19	12	. 33	103	.06	3	1.99	.03	.12	1	1	
	L60E 47N	1	5	14	30	.1	3	1	78	16.	3	5	ND	1	17	1	2	2	18	.15	.020	8	2	.08	56	.11	2	.65	.02	.04	2	2	
	L60E 47.5N	1	11	30	54	.1	9	- 4	194	1.80	-2	5	ND	1	14	1	2	2	28	.11	.061	17	12	.35	56	.12	2	2.04	.03	.09	1	- 6	
										1											.												
	L60E 48N	1	12	33	12	.1	10	4	508	2.43	9	. 5	ND	1	16	1	2.	2	40	.13	-066	10	11	.5/	64	.15	۵ ج	1.73	.03	.11	1	1	
	LOUE 48.5N	1	19	63	155	••	20	4	2381	2.26	. 0	2	ND	1	20	. 2	. 2	2	38	. 50	.118	19	21	.00	1/6	•11	2	1 70	.03	.12	. 1	4	
	LOUE 47N	1.	10	37	40	•	3	4	2/3	11.60		3	NU	1	14	1	2	2	30	+11	.038	10	. 11. 	.1/	24	114 -	. 4	1.30	.03	10	4		
	LOUE 47.3N	1	12	67	82	• •			407	2.25	11	5	ND	1	10	. 1	4	ა ი	38	.13	.001	5	7	. 24	50	10	ა ი	1.90	100	.10	1	17	,
	LOVE JUN	1	10	av	/ 1	• •		3	6/0	2.37	10	5	Ry	1	12	I	2	. 4	70		.000	. 1	11	. 41	30	.10	1	1.14	.00		•	14	
_	1.61E .41N	1	15	27	49	1	R	4	804	2 34	10	5	ND	t	12	1	3	3	36	. 10	.077	9	10	.31	46	. 13	5	1.92	. 03	.11	1	1	
-	1416 41 50	1	12	12	. 71			5	977	2.17	10	5	ND ND	1	14	1	2	2	74	14	121	10	Â	70	44	10	2	2.21	.03	.13	. 1	1	
	LAIF 42N	1	13	30	60	.1	8	5	522	2.04	8	5	ND	1	15	1	2	2	34	.12	.092	11	10	.37	-52	. 10	4	2.50	.03	.12	1	1	
	161E 42.5N	i	13	74	78		7	Ă	447	2.28		s	NI	;	15	1	2	2	38	.13	.067	8	10	. 32	58	.13	3	2.28	.03	.13	1	2	
	LAIF ATN	1	13	16	78	· ř	ģ	5	547	2. 35		5	ND	ĩ	14	1	2	2	38	. 10	.079	10	10	.47	57	.12	4	2.24	.03	.14	1	. 1	
	COIL TON	•	10			••		5			, i			•	• 1	4	•	•	00				••				•			•••	-	-	
	L61E 43.5N	1	9	24	51	.1	7	3	182	2.75	13	5	NÐ	3	15	1	2	2	48	.13	.056	8	9	.29	57	.17	4	2.26	.03	.07	1	1	
	1.61E 44N	1	ģ	23	59	.2	7	3	217	2.10	5.	5	ND	i	15	1	2	2	28	. 14	.070	10	8	.35	46	.11	5	3.54	.04	.06	1	2	
	L61E 44.5N	t	13	28	58	.1	7	4	272	2.08	9	5	ND	1	13	1	2	2	34	.10	.076	10	9	.35	49	.11	3	2.23	.03	.11	1	1	
	L61E 45N	i	16	32	96	.2	15	11	2125	2.76	10	5	ND	2	24	1	2	2	36	. 22	.122	20	27	.53	130	.10	7	2.55	.04	.12	- 1	1	
	L61E 45.5N	1	. 9	14	62	.1	7	4	426	1.95	2	5	ND	2	16	1	2	2	33	.15	.041	9	9	.33	53	.13	2	1.80	.03	.10	1	2	,
	STD C/AU-S	19	59	41	134	7.1	71	28	1017	3.88	42	17	7	38	50	18	17	20	58	.46	.089	38	57	.86	177	.09	37	1.84	.08	.14	13	49	1
	L61E 46N	1	13	20	54	.3	7	3 -	139	2.57	8	5	ND	3	11	1	4	2	41	.08	.042	8	9	.22	55	.17	2	2.23	.03	.07	1	1	
	L61E 46.5N	1	11	36	76	.1	9	6	748	2.63	9	5	ND	2	17	1	2	2	43	.15	.085	11	12	. 49	48	.12	8	2.17	.03	.13	1	1	
	L61E 47N	1	12	28	83	.1	8	4	581	2.09	10	5	ND	2	24	. 1	2	2	33	.23	.093	9	9	.34	84	.13	5	1.67	.04	.09	1	85	
	L61E 47.5N	1	12	39	93	.3	7	6	1951	1.99	11	5	ND	2	32	1	3	2	32	.21	.071	33	13	.31	80	.09	3	1.91	.03	.11	1	2	
												10 P				· `\																	
	L61E 48N	1	11	33	71	.2	8	3	407	2.52	7	5	ND	2	15	. 1	2	3	43	.14	.058	- 8	11	.29	-53	.16	7	2.24	.03	.08	1	2	
	L61E 48.5N	1	13	23	44	.1	8	3	234	2.21	4	5	ND	2	11	1	2	2	36	.08	.062	10	10	.19	45	.17	. 4	2.95	.04	.07	1	. 2	
	L61E 49N	1	15	23	51	.1	. 7	3	119	2.97	3	5	ND	4	9	1	.4	2	45	.06	.096	7	11	.22	33	.19	3	4.10	.04	.07	1	635	
	L61E 49.5N	i	11	22	77	.1	.8	4	334	2.49	8	5	ND	3	19	1	2	2	41	.16	.049	8	9	.38	46	.16	3	2.19	.04	.11	· 1	1	
	L61E SON	1	13	57	98	.1	10	4	823	2.38	9	ž 5	ND	3	22	1	2	2	39	.21	.096	11	10	.35	106	.16	3	1.83	.04	.14	1	1	

SANPLE	NC PPR	CU PPN	PB PPM	ZN PPM	AG PPM	NI PPH	CO PPN	NN PPH	FE X	AS PPM	U PPN	AU PPH	TH PPM	SR PPM	CD PPN	SB PPR	BI PPM	V PPH	CA X	P X	LA PPH	CR PPM	M6 7	BA	11 X	B PPM	AL Z	na Z	K Z	N PPN	AUS PPB
L58 44.5 L58 45 L58 45.5 L58 46 L58 46	1 1 1 1	10 8 10 12 10	41 52 41 28 51	97 113 111 72 107	.1 .3 .2 .2 .1	10 9 10 8 9	6 5 6 4 5	649 518 920 314 787	2.48 2.32 2.66 2.29 2.17	5 3 8 2 6	5 5 5 5 5 5	ND ND ND ND	2 2 3 1	34 27 34 19 29	1 1 1 1	3 2 2 2 2	2 2 3 2	38 36 40 34 34	.42 .31 .44 .21 .36	.048 .043 .062 .096 .088	16 12 11 10 12	10 13 14 10 13	.44 .44 .47 .36 .39	83 72 75 64 80	.13 .13 .14 .12 .12	10 3 9 8 15	1.97 1.69 2.16 2.44 1.69	.04 .04 .04 .04 .04	.10 .11 .08 .09 .12	1 1 1 1	12 1 1 2 1
L58 47 L58 47.5 L58 48 L58 48.5 L58 48.5	1 1 1 1 1	9 13 13 11 11	44 71 28 49 45	73 125 54 90 90	.1 .2 .1 .1	8 9 6 7 6	3 7 2 3 3	445 1186 138 574 990	2.71 2.15 2.50 3.38 1.80	5 4 9 7	5 5 5 5 5	ND ND ND ND	2 1 2 2 1	15 38 12 20 21	1 2 1 1 1	2 2 3 2 2	2 2 2 2 2	47 31 38 58 33	.17 .35 .10 .20 .18	.043 .071 .049 .104 .050	9 14 8 7 7	12 10 10 10	.31 .39 .16 .25 .19	58 117 49 64 92	.17 .12 .18 .19 .12	3 3 2 4 2	1.72 1.86 2.94 1.58 1.35	.03 .04 .03 .03 .03	.08 .11 .05 .13 .07	1 1 1 1	31 34 1 120 59
L58 49.5 L58 50 L59 40 L59 40.5 L59 41	1 1 1 1 1	12 14 11 12 13	70 108 23 20 40	123 96 41 50 54	.1 .1 .1 .1 .1	8 8 6 9	4 4 3 3 3	1114 687 185 189 415	2.39 2.87 2.41 2.44 2.49	8 12 3 5 6	5 5 5 5 5	ND ND ND ND	2 1 1 3 1	24 14 9 13 12	1 1 1 1	2 5 2 2 4	2 2 2 2 2	40 47 39 37 37	.21 .12 .07 .10 .09	.054 .070 .045 .068 .058	9 7 7 9 9	11 10 15 13 10	.31 .34 .21 .29 .29	86 68 50 46 55	.15 .17 .17 .15 .16	10 8 2 2 3	1.88 1.78 1.46 2.16 1.94	.04 .03 .03 .03 .03	.12 .12 .07 .09 .09	1 2 1 1	62 4 1 1 40
L59 41.5 L59 42 L59 42.5 L59 43 L59 43.5	1 2 1 1 1	13 14 11 12 7	27 28 22 22 28	46 59 42 47 52	.1 .2 .1 .1	8 10 6 6	5 5 3 2	535 528 222 177 77	1.95 2.67 2.57 2.46 1.17	2 5 4 2 4	55555	ND ND ND ND	1 2 2 2 1	14 16 14 13 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	29 37 42 39 29	.10 .12 .10 .10 .10	.076 .047 .048 .072 .025	15 12 11 8 7	10 11 11 11 8	.32 .42 .27 .27 .15	53 65 57 42 74	.09 .16 .16 .13 .13	3 5 2 2 2	2.10 1.81 2.02 2.10 .95	.03 .03 .03 .03 .03	.10 .12 .09 .05 .06	1 1 1 1	13 5 1 1 1
L59 44 L59 44.5 L59 45 L59 45.5 L59 46	2 1 1 1	11 14 14 10 9	75 302 70 46 29	115 242 148 125 77	.1 .2 .3 .4 .1	8 10 16 11 9	3 7 8 7 5	365 1297 1434 1286 425	2.48 2.64 2.54 2.16 2.43	6 7 7 7	5 5 5 5 5	ND ND ND ND ND	3 1 1 2 2	13 28 37 66 18	1 2 1 1	2 2 2 2 2	2 2 2 2 3	39 35 38 36 37	.12 .32 .43 1.15 .19	.049 .114 .115 .161 .057	8 16 24 14 12	10 13 18 16 11	.32 .53 .67 .60 .44	49 110 90 79 50	.15 .10 .12 .06 .12	3 3 4 4 4	2.27 2.09 2.39 1.82 1.88	.03 .04 .05 .05 .03	.11 .12 .15 .10 .08	1 2 2 1	1 1 2 1
L59 46.5 L59 47 L59 47.5 L59 48 L59 48.5	1 1 1 2 1	8 12 16 14 11	36 47 109 24 58	76 70 160 60 89	.4 .1 .4 .1 .4	8 9 11 8 9	5 5 4 5	671 492 1294 194 470	2.08 2.21 2.57 2.82 2.53	4 6 7 4 5	5 5 5 5 5 5	ND ND ND ND	2 1 3 4 3	35 17 26 11 23	1 1 2 1 1	2 2 2 2 2 2	2 2 2 2 2	33 34 37 40 37	.50 .15 .32 .09 .19	.070 .065 .091 .059 .073	16 13 11 13 15	13 14 12 11 13	. 49 . 34 . 42 . 31 . 43	48 61 119 42 70	.09 .11 .13 .17 .14	3 3 23 5	1.80 1.84 1.88 3.74 2.24	.04 .03 .04 .04 .04	.08 .10 .12 .10 .13	1 1 1 1	1 1 9 2 1
L59 49 L59 49.5 L59 50 L60E 41.5N L60E 42N	2 2 1 1	11 12 15 12 12	43 85 115 28 29	65 80 123 78 69	.1 .1 .3 .2 .1	7 9 7 10 6	3 3 3 5 4	443 281 224 870 480	2.46 3.05 3.48 2.48 2.32	9 7 2 6 7	5 5 5 5 5	ND ND ND ND ND	2 4 5 3 2	16 20 13 20 13	1 1 1 1	2 3 3 2 2	2 2 2 2 2 2	42 56 47 36 36	.14 .14 .09 .15 .10	.060 .058 .058 .108 .070	9 8 8 11 11	10 13 14 10 11	.28 .35 .24 .43 .32	50 60 51 68 46	.14 .21 .09 .12 .12	2 3 2 5 4	2.05 1.59 2.67 2.84 2.25	.03 .03 .03 .04 .03	.09 .11 .06 .13 .11	1 3 2 1 1	1 1010 335 1 2
L60E 42.5N STD C/AU-S	1 . 19	10 59	27 42	55 128	.4 7.3	6 71	2 28	144 1034	2.07 3.93	2 41	- 5 18	ND 7	2 38	11 50	1 19	2 18	2 21	38 58	.06 .48	.042 .092	9 37	13 60	.22 .87	47 175	.15 .08	4 35	1.72 1.84	.03 .09	.08 .14	1 13	8 51

Page 3

£

C

SAMPLE#	NO PPH	CU PPH	PB PPK	ZN PPM	A5 PPN	NI PPM	CO PPN	MN PPM	FE X	AS Ppr	U PPN	AU PP M	TH PPM	SR Ppn	CD PPM	SB PPR	BI PPM	V PPR	CA Z	P X	LA PPN	CK PPK	H 6 7	BA PPH	11 - 2	B PPN	AL Z	na X	K 1	N PPN	AU4 PPB
156 47.5	1	ę i	41	103	. 4	7	4	548	1 94	2	5	ND	1	25	1	2	2	30	24	057	ç	62	33		11	5	1 74	63	10		
1.56 48	1		1 46	174	5	, 8		1115	2 25	2	5	ND	2	25	1	2	. 2	71	22	045		10	19-2	/0	10	2	1.30	0.0	10		04
154 49 5	- -	17	70	141		0	0	1501	2.23	5	5	ND	4	23	2	2	2	10	. 22	.003	11	10	1.07 1/	: C KO	. 12	2	1.70		.10	4	60
151 40.3	4	12	107	141		0	0	1301	2,01		- J - E	10	. 1	41	2	4	4	10	.10	.037	11.	10	.40	38	. 14	6	2.23	.04	.11	1	17
15/ 40 E		10	107	100	1.0	8	· 7	1410	2.23	. 1	. 5	NU	- 2	33	4	4	2	34	- 28	.066	16	14	.3/	¥4	13	2	1.82	.04	.10	1	11
L30 47.3	. 1	10	42	128	.2	0	ა	4/5	2.35	Z	2	NU)	1	12	1	2	2	56	.11	.090	6	12	.22	60	.16	2	2.56	.03	.07	2	18
L56 50	1	15	90	122	.5	6	3	506	2.39	2	5	ND	3	13	i	4	2	37	.12	.095	7	11	.23	57	.17	3	2.58	.04	.09	1	1
L57 40	1	7	33	60	1	7	5	509	1.94	2	5	ND	-1	18	1	2	2	29	.14	,051	12	11	. 34	46	.10	2	1.67	.03	.10	1	1.
L57 40.5	1	8 :	25	70	.1	7	3	364	1.86	2	5	ND	1	18	1	2	2	31	.16	.070	7	12	.30	46	.12	5	1.30	.03	.09	1	1
L57 41	1	6	19	36	.2	3	1	68	1.34	2	5	NÐ	1	9	1	2	2	29	.06	.036	7	9	.11	28	.14	5	.95	.03	.04	-1	20
L57 41.5	1	8	27	58	.4	6	5	411	1.98	4	5	ND	4	20	1	4	2	30	.30	.094	13	10	, 44	56	.11	2	2.21	.04	.20	3	6
L57 42	1	8	23	52	.3	6	4	272	1.88	2	5	ND	3	17	1	2	2	26	.23	.086	13	10	.40	431	.09	2	2.39	.03	.12	1	4
L57 42.5	1	11	74	77	.1	9	4	701	1.96	3	5	ND	1	21	1	2	2	29	.17	.062	11	14	33	76	. 11	3	1.65	. 03	.10	1	1.
157 43	1	16	102	109		10	5	1684	1.77	3	5	ND	i	47	2	2	ī	25	. 35	061	14	tó	71	. 136	.08	5	1.64	. 03	.12	1	41
157 43.5	ł	9	41	64		8	5	437	1.96	7	5	ND	1	21	1	2	2	29	17	051	14	14	121	50	10	7	1 43	63	.11	1	1
157 44	1	12	79	79	1	e e	ž	1125	1 97	7	5	ND	÷	21	,	2	2	20	17	.011	17	1.	30	71	10		1 57	03	11	;	· 2
	•	••			.,		J.		11/5	1	J	NU	•	21		-	4	23			13	14.	. 50	70			1.00	•••			•
L57 44.5	1	5	26	51	.2	4	2	113	1.36	2	5	ND	1	17	1	2	2	33	.17	.024	.7.	6	.16	34	.13	- 7	.73	.03	.05	1	2
L57 45	1	8	30	81	.3	7	6	979	2.13	2	5	ND	1	41	1	2	2	34	.48	.077	14	17	. 38	60	.09	3	1.72	.04	.08	1	.1
L57 45.5	- 1	10	60	121	.5	9	6	1041	2.01	2	5	ND	1	44	· 1	2	2	29	.54	.073	18	17	. 45	97	.10	3	1.66	.04	.10	- 1	2
L57 46	1	9	12	50	.1	6	5	278	2.23	2	17	ND	4	24	1	4	2	27	.24	.045	16	10	.17	28	.15	6	5.39	.04	.05	2	1
L57 46.5	1	6	38	77	.2	7	5	587	2.12	2	5	ND	1	21	1	2	2	33	.21	.038	11	12	. 35	81	.13	3	1.46	.03	.06	1	1
L57 47	1	10	32	48	.1	6	3	142	2.52	2	5	ND	2	12	1	2	2	39	.09	.043	8	12	.24	34	.15	. 4	2.27	.03	.05	1	i
L57 47.5	1	7	38	70	.3	6	3	203	2.89	2	5	ND	2	18	1	3	2	51	.16	048	8	10	. 29	43	.14	5	1.53	.03	. 08	1	63
L57 48	1	10	44	85	.1	- 7	5	330	2.20	2	ŝ	ND	-	21	1	2	2	32	27	093	11	10	48	44	11	र	7.51	.03	.15	i	8
157 48 5	ī	10	7.0			í.	7	722	2 70	3	5	10	5	10		7	2	14	.2.3	641		14	21	45	10	7	1 70	03	07	;	1
157 49	•	12	10	100		0		1157	2.17			10		20		2	2 . 1	70	.07			10	74	74	.10	ő	1.70	.03	.00		
LJ/ 47	. 1	14	37	100	••	0	'	1152	2.23	9		NU	1	20	2	ц 4	2	22	•17	.057	14	11	. 34	50	.15	8	2.22	.05	.07	1	1
L57 49.5	1	31	345	221	1.7	7	6	650	2.39	3	5	ND	3	18	2	2	2	35	.21	.081	11	9	. 44	47	.14	2	2.38	.04	.14	1	270
L57 50	1	14	110	175	.6	8	4	2447	2.44	8	5	ND	1	31	2	2	2	40	.31	.088	7	12	.37	148	.15	2	1.69	.03	.13	-1	420
L58 40	1	10	27	58	.3	6	3	361	1.93	7	5	ND	2	16	1	2	2	33	.13	. 066	8	16	.26	61	.13	2	1.38	.03	.10	1	3
158 40.5	1	11	37	52	2	7	- र	777	2.16	2	5	ND	1	15	1	- 2	2	77	17	054	- 7	11	24	54	17	2	1 74	03	08	1	1
158 41	- i		71	45	1	,	्य.	700	1 05	2	5	ND	· •	15	-		- 2	20	12	.034	*^	17	20	50	.15	÷.			.00	•	:
	•	U	51	45	• 1	,	5	300	1.02	4	2	ΝIJ	2	17	, ,	7	2	27	• 1 4	1040	10	13	.20	50	. /1	2	1.01	.05	.09	. 2	4
L58 41.5	1	8	33	50	.1	7	3	197	2.02	2	5	ND	2	18	1	2	-2	32	.13	.035	10	14	.31	49	.13	2	1.39	.03	.10	1	5
L58 42	' i	10	49	67	.2	8	4	384	1.84	2	5	ND	i	25	1	2	2	27	.19	.063	13	17	.36	73	.09	2	1.56	.03	.12	1	- 1 .
L58 42.5	1	9	37	66	.1	7	4	292	2.30	2	5	ND	1	17	1	2	2	36	.14	.045	11	13	.35	47	.13	2	1.66	.03	.10	1	1
L58 43	1	9	35	65	.2	6	4	388	2.33	6	5	ND	2	16	-1	2	2	37	.12	.043	10	11	.29	49	.14	7	1.62	.03	.10	1	- 1
L58 43.5	1	8	-25	46	.3	4	2	130	1.72	5	5	ND	1	10	1	2	2	36	.08	.041	5	10	.12	32	.14	10	1.57	.04	.05	2	151
L58 44	1	9	27	56	.2	6	2	496	1.79	5	5	ND	1	14	1	5	2	29	.12	.097	5	10	. 19	51	.13	2	1.75	.03	.06	i	1
STD C/AU-S	18	57	43	132	7.3	69	28	1050	3.93	41	18	7.	37	50	19	18	23	58	.47	.091	37	61	.87	181	.08	35	1.84	.09	.12	12	52

(

Page 2

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158 DATA LINE 251-1011

£

C

e

C

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AUT ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE	RECEI	/ED:	AUE	21 19	87	DA	TE I	REPO	DRT M	IAILI	ED:	a	ùg	3//E	17	ASS	SAYE	R. A	la	up!	7. D	EAN	τογ	Έ, (CERT	IFI	ED B	.c.	ASS	AYEF	₹	
									TER	RA M	1INE	S LT	в.	, F	-ile	# E	37-3	517		/ F'age	2 1											
SAMPLE	NO PPH	CU PPM	PB PPN	ZN PPM	AG PPM	NI PPH	CO PPN	NA PPP	FE	AS PPH	U PPN	AU PPM	TH PPN	SR Pph	CD PPN	SB PPM	BI PPN	V PPN	CA ۲	P Z	LA PPM	CR PPH	MG X	BA PPN -	TI X	B PPN	AL X	NA Z	K	N PPN	AUS PPB	
L55 40 L55 40.5 L55 41. L55 41.5	1	18 9 7 9	71 24 34 32	78 46 48 83	.1 .1 .1	12 7 7 8	18 4 3 5	1649 275 297 866	1.95 2.12 2.22 2.40	6 8 2 3	5555	ND ND ND ND	2 2 2 1	25 21 22 34	1 1 1	3 2 2 2	2 2 2 2	29 30 40 31	.20 .16 .23	.256 .047 .074 .063	20 16 9	9 14 14 10	.28 .27 .30	90 60 51 70	.08 .11 .14	7 2 2 12	3.25 1.61 1.32	.04 .03 .03	.11 .07 .08	1 1 3	11 3 31	
L55 42	1	6	30 77	- 60 57	.1	8	5	993	2.13	2	7	ND	2	49	1	2	2	28	.43	,050	21	15	.45	51	.08	2	1.50	.04	.08	1	6	
L55 43 L55 43.5 L55 43.5 L55 44 L55 44.5	1 1 1 1	13 9 11 8	27 34 57 37	60 69 62 67	.1 .1 .1 .1	8 8 7	5 5 6 6	424 341 520 592 772	2.33 2.60 2.31 2.21 2.51	3 2 7 4 3	6 7 5 5 5	ND ND ND ND	3 4 1 1	23 14 19 28 21	1 1 1 1	2 2 2 2 2	2 2 2 2 2	39 40 35 31 35	.23 .14 .17 .27 .22	.047 .074 .049 .067 .043	9 13 8 17 11	11 13 14 13 12	.27 .40 .30 .31 .35	70 48 60 80 54	.15 .14 .13 .10 .13	2 2 3 3 3	1.84 3.07 1.48 1.67 1.63	.03 .03 .03 .03 .04	.11 .11 .10 .10	1 1 1 1	34 2 4 220 13	
L55 45 L55 45.5 L55 46 L55 46.5 L55 47	1 1 1 1	7 8 10 8 13	35 35 65 28 69	33 98 94 43 173	.2 .1 .1 .3 .3	5 9 9 5 10	2 7 6 2 7	186 946 1193 156 1859	2.22 2.38 2.63 2.13 2.33	7 2 9 2 3	6 5 5 5 6	ND ND ND ND	2 2 3 1 2	22 33 33 15 38	1 1 2 1 2	3 2 4 3 3	2 2 2 2 2 2	37 38 44 37 35	.24 .42 .30 .14 .35	.034 .063 .045 .037 .118	8 14 12 8 15	11 14 13 12 9	.18 .54 .38 .21 .48	44 66 69 38 119	.16 .13 .17 .15 .12	5 2 9 7 2	1.19 2.12 1.88 1.31 2.09	.03 .04 .04 .03 .05	.07 .09 .10 .09 .15	1 1 3 2 1	1 4 1 2 13	
L55 47.5 L55 48 L55 48.5 L55 49 L55 49	1 1 1 1	7 7 10 17 15	40 63 51 266 81	109 380 326 497 97	.1 .1 .7 1.1 .7	8 8 7 9 8	5 7 6 7 4	384 737 879 1245 842	2.33 2.39 2.33 2.78 2.33	5 2 4 4	5 5 5 5 5	ND ND ND ND ND	3 3 2 3 2	30 30 24 26 21	1 4 3 1	2 2 4 2	2 2 2 2 2	36 37 36 42 41	.32 .32 .26 .31 .18	.081 .051 .058 .089 .077	11 13 11 12 9	10 10 11 14 12	.55 .57 .48 .64 .32	44 68 68 79 91	.13 .14 .14 .16 .16	2 2 5 9 2	1.92 1.92 1.88 2.67 1.87	.04 .04 .04 .05 .04	.12 .12 .10 .14 .12	1 2 2 1 1	19 9 35 49 37	
L55 50 L56 40 L56 40.5 L56 41 L56 41.5	1 1 1 1	40 11 10 12 7	780 25 19 23 20	237 80 72 61 94	4.7 .2 .1 .1 .1	7 9 9 8 8	7 5 5 4 5	616 345 301 252 443	2.65 2.52 2.49 2.35 2.41	26 2 4 4 4	6 5 5 5 5 5	2 ND ND ND ND	5 4 3 3	28 18 18 17 31	2 \ 1 1 1 1	7 3 4 4 2	2 2 2 2 2 2	37 39 39 39 39 32	.39 .16 .17 .14 .27	.116 .061 .056 .056 .051	13 11 12 12 13	11 9 13 12 13	.71 .44 .43 .34 .45	70 48 45 60 51	.13 .15 .15 .14 .10	2 2 2 2 2	2.36 2.67 2.64 1.95 1.56	.05 .04 .04 .03 .04	.25 .12 .11 .09 .10	2 1 1 1 1	1480 3 1 165 1	
L56 42 L56 42.5 L56 43 L56 43.5 L56 44	1 1 1 1	8 6 9 7 7	38 25 39 18 27	72 52 64 61 45	.2 .1 .1 .1 .1	7 6 8 4	5 3 3 4 2	640 187 470 357 141	2.02 2.52 2.26 2.50 1.24	2 4 2 6 3	5 5 5 5	ND ND ND ND	2 3 2 6 1	45 21 25 20 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	26 49 35 32 28	.34 .19 .23 .25 .14	.061 .037 .037 .074 .028	16 11 11 15 11	12 10 12 12 7	.41 .27 .22 .43 .12	49 45 69 44 115	.07 .16 .12 .11 .11	3 10 2 11 3	1.65 1.23 1.14 2.42 .97	.04 .03 .03 .04 .03	.10 .08 .09 .14 .06	1 1 1 1	1 26 4 5 3	
L56 44.5 L56 45 L56 45.5 L56 46 L56 46.5	1 1 1 1	9 8 11 10 12	36 32 78 62 47	95 67 126 121 101	.2 .2 .1 1.1 .2	9 7 7 9 7	7 7 4 7 3	1300 386 958 1663 479	2.19 2.31 2.40 2.38 2.35	4 2 8 2 4	5 5 5 5	ND ND ND 2 ND	2 2 1 1 2	33 19 29 42 20	1 1 2 1	3 2 2 2 3	2 2 2 2 2	37 32 35 32 38	.36 .17 .52 .48 .19	.059 .047 .072 .090 .067	17 16 7 17 8	10 10 12 10 13	.42 .30 .35 .46 .27	69 46 133 90 74	.11 .11 .12 .10 .13	13 3 6 3 2	1.80 1.90 1.33 1.87 1.85	.04 .03 .04 .04 .03	.08 .09 .15 .09 .09	1 1 1 1	60 8 77 1 2	
L56 47 STD C/AU-	1 S 19	15 57	62 41	122 131	.5 7.3	8 68	6 28	1165 1048	2.45 3.90	6 42	12 24	ND 8	2 36	31 49	2 19	2 17	2 18	37 57	.28 .47	.091 .090	17 37	11 59	.32 .89	63 178	.11 .08	7 33	2.27 1.81	.04 .08	.10	1 13	11 . 49	

	SAMPLE	NO PPN	CU PPN	PB PPM	ZN PPM	A6 PPM	NI PPM	CO PPH	PPM	FE X	AS Ppm	U PPM	AU PPH	TH PPM	SR PPM	CD PPM	SB PPH	BI PPM	V PPN	CA X	Р 7.	LA PPN	CR PPH	NG X	BA PPM	71 2	B PPH	AL Z	NA Z	K Z	N PPN	AUT PPB
2	S 60 51.5	5 · ·	15	120	66	.7	5	3	166	3.27	4	5	ND	4	10	1	2	2	43	.09	.042	8	11	.19	50	.21	2	3.23	.01	.05	3	24
`,	<pre> L60 52 L60 53.5 </pre>	5151	12 16	28 13	39 30	.1 .1	· 4 8	3	285 131	2.36 4.60	3 2	5	ND ND	- 3 5	14 6	· 1	2	2	33 55	.16 .06	.061 .075	6	10 16	.20 .15	45 32	.17	2 7	3.45 4.93	.02 .02	.08 .03	2 3	2 2
	L61 50 L61 50.5	1	13 14 (-	27	47 34	.1	7 5	3 3	235 108	2.18 2.69	2	5 5	ND ND	3	17 9	1 1	2 2	2	31 40	.16	.049 .047	9 6	9 10 -	.26 .15	76 39	.17 .21	2 6	1.73 2.52	.01 .02	.08	3 2	1 1
	L61 51	1	18	23	29	.1	5	3	174	2.54	,	5	ND	3	8	1	2	2	34	.07	.105	5	9	.16	38	. 20	8	4.61	.02	.04	4	1. 1 -
	L61 51.2	1	11	28	34	.1	- 4	3	111	2.43	3	5	ND	2	10	1	2	2	30	.08	.043	7	10	. 28	40	.21	2	2.52	.02	.06	1	1

**

C.

Ć

C

C

СĘ.

SAMPLE#	MD PPN	CU PPM	PB PPH	ZN PPM	AG PPM	NI PPM	CO PPM	NN PPH	FE X	AS PPH	PPM	AU PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPK	CA %	P %	LA PPM	CR PPN	MG %	BA PPM	11 %	B PPN	AL X	NA X	K X	PPH	AU t PPB
BL56 56 BL56 56.5	1	15 14	44 83	76 84	.2 .1	6 6	4 7	360 1041	2.60 2.22	· • 4 7	5 5	ND ND	5 3	16 31	1 1	3	2	45 38	.16 .27	.052 .040	7 9	ė J	.39 .51	38 93	.26 .21	3	2.76 1.72	.02	.11	1	2 2
BL56 57	1	11	37	77	.1	8	5	782	2.68	5	5	ND	3	15	1	3	2	45	.13	.061	12	12	.4Ċ	50	.16	2	2,30	.01	.10	1	1
BL36 57.5 BL56 58	1	17	25 23	44 50	.1 .1	4 9	4 5	109 187	2.85	2 4	5	ND ND	5	10 14	1	2 - 2	4 3	44 45	.09	.036 .046) 7	11 12	.24 .39	42 43	.26 .24	6 3	4.51 3.22	.03 .02	.08	1 2	1
BL57 50	1	11	52	71	.8	7	5	258	3.39	3	5	ND	4	21	1	2	2	56	.19	.037	8	11	.42	40	.26	3	2.12	.02	.10	1.	34
BL57 50.5	1	12	69	80	.8	6.	5	328	2.66	5	5	ND MD	3	23	1	2	2	48 50	.22	.044	8 7	10	.40 35	45 47	.23	ა. ე	1.82	.02	.11	1	63 · · ·
BL37 31 BL57 51.5	. 1	14	19	67	.1	. 9	5	210	3.17	3	5	ND	4	18	1	2	2	48	.17	.076	8	12	. 44	45	.23	2	3,12	.02	.10	1	i
BL57 52	1	17	48	89	.1	8	7	789	2.46	9	5	ND	3	21	1	4	4	37	.21	.134	10	10	, 42	84	.20	3	2.79	.02	.13	1	14
BL57 52.5	1	12	80	126	.3	. 8	5	624	3.21	2	5	ND	3	22	1	2	2	55	.23	.059	7	11	. 46	74	.23	7	2.07	.02	.14	1	12
BL5/ 53	. 1	12	55	51	۰.1 ج	6	4	224	5.12	2	5 5	ND ND	4	16	1	2	2	20 51	. 13	.045	8 4	12	. 41	52 42	.20	4	3.36	.02	.07	1	· 1
BL57 54	1	9	81	54	.2	. 4	3	213	1.88	2	5	ND	2	17	1	2	2	34	.13	.044	8	8	. 24	44	. 17	4	1.64	.02	.07	1	2
BL57 54.5	1	15	44	67	1	. 8	5	390	2.80	. 8	5	NÐ	3	17	1	2	2	48	.15	.047	,7	12	.33	65	.24	7	1.89	.02	.08	1	2
BL57 55	1	17	51	105	.1	9	7	1217	2.52	3	5	ND	1	23	í	2	2	37	. 25	.102	9	11	. 38	94	.15	4	2.54	.02	.12	1	4
BL57 55.5	1	12	33	62	.1	8	4	433	2.09	.5	5	ND	2	17	1	2	2	36	.15	.063	10	ß	.27	63	.18	8	2.31	.02	.07	1	1
BL3/ 36 DIS7 5/ 5	1	15	20	57	.1	4	2	247	3.41	2	. 5	ND ND	2	8 77	1	2	2	64 7.4	07	1000	6 8	-10	.14 30	44 65	. 21	2	3.85	.02	.03	1	2
BL58 50	1	14	38	59	.1	6	5	470	3.26	6	5	ND	3	14	1	3	2	53	.13	.099	7	11	.28	52	. 25	10	2.13	.02	.08	1	1
BL58 50.5	1	9	49	76	.1	6	5	467	3.04	7	5	ND	4	22	1	3	2	42	.25	.125	10	9	.46	45	.16	13	2.27	.02	.11	2	7
BL58 51	1	15	32	76	.2	8	5	416	3.13	6	5	ND	5	18	1	2	4	46	.17	.093	9 7	10	.48 7.4	52	.22	4	2.99	.02	-14	1	2
BL36 31.3 BL58 52	1	14	22	- 38 - 55	.1	9	4	277	2.90		ມ 5	ND	4	12	1	2	2	45	.14	.064	6	11	.36	54	.23	12	2.52	.02	.10	1	. 8
BL58 52.5	1	13	26	69	.1	8	7	676	2.71	7	5	ND	3	20	1	2	2	44	.19	.079	9	11	. 44	65	.19	8	2.48	.02	.12	1	2
BL58 53	1	9	35	68	.1	6	5	495	2.71	5	5	ND	3	25	1	2	2	45	. 22	. 046	10	11	. 42	67	.19	3	1.96	.02	.11	1	1
BL38 33.3	1	14	52 47	62 50	1	1	4	118	2.49	6 7	3 5	ND ···· ND ·	4 र	1/	1	4	2	40	.10	.043	. 7	11	.27	37	.21	2	2.30	.02	.05	2	2
BL58 54.5	2	16	32	64	.1	14	4	263	2.79	3	5	ND	4	14	1	3	2	44	.13	.073	9	12	.37	63	.22	10	3.49	.02	.08	1	1
BL59 50	1	18	125	141	1.0	7	5	194	3.79	9	5	ND	6	12	1	2	4	51	.09	.048	11	13	.29	48	.14	6	2.88	.01	.07	1	350
BL59 50.5	1	42	360	210	2.9	10	6	356	2.71	11	5	ND	7	20	1	6	2	37	.22	.082	13	11	.48	51	.15	2	3.17	.02	.12	42	845
8159 51 5	1	15	58 26	49 67	.5	ם ד	3 14	545 450	2.15	5 A	3 5	עא אם	ა 5	12	1	. 2	2	37	.12	.079	/ 8	10	. 17	48	. 19	. 9	2.87	.02	.10	1	4
BL59 52	1	13	33	66	.1	9	5	366	3.18	6	5	ND	3	16	1	2	3	49	.15	.053	9	11	.32	. 79.	. 16	3	2.23	.02	.09	1	2
BL59 52.5	1	11	24	57	.1	7	5	550	2.97	3	5	ND	4	21	1	2	3	46	.25	.076	7	10	. 38	62	.22	2	2.78	.02	. 10	1	13
BL60 50 STD C/AU-S	1 19	17 60	29 44	55 132	.1 7.5	6 70	4 26	315 1040	2.36 3.77	7 40	5 18	ND 7	5 37	12 49	1 17	2 18	3 21	37 58	.11 .46	.072 .082	9 38	9 56	.27	48 173	.19 .08	4 36	2.90 1.83	.02 .06	.07 .12	11 11	4 50

Page 3

SAMPLE#	M0 PPM	CU PPH	PB PPM	ZN PPM	AG PPN	NI PPM	CO PPM	MN PPH	FE ۲	AS PPM	U PPM	AU PPN	TH Ppn	SR PPH	CD PPM	SB PPM	BI PPM	V PPH.	CA X	P X	LA PPK	CR PPM	NG 7	BA PPK		B PPK	AL 7	NA Z	K X	¥ PPh	AU t FPB	
BL 54 57.5 BL 54 58 BL 54 58.5 BL 54 59 BL 54 59.5	1 1 1 1 1	12 13 12 17 9	17 20 36 17 38	55 43 49 36 86	.1 .1 .1 .1	7 5 6 8	3 3 4 3 6	144 142 271 126 687	2.60 2.59 2.49 2.21 2.44	12 7 12 4 11	בת כת כת כת כת	ND ND ND ND	53346	11 9 10 7 22	1. 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	47 42 43 38 36	.10 .08 .08 .06 .27	.031 .039 .039 .036 .076	7 6 9 8 13	11 10 9 10	.29 .20 .22 .19 .60	45 35 36 21 59	.22 .21 .23 .23 .16	2012/10/2012	2.44 2.71 2.40 4.26 2.75	.02 .02 .02 .02 .02 .02	.06 .05 .07 .05 .15	1 1 1 1	1 1 1 18	
BL 54 60 BL 55 50.5 BL 55 51 BL 55 51.5 BL 55 52	1 1 1 1	13 10 9 12 15	27 30 160 33 43	29 63 111 52 98	.1 .1 .1 .1	5 7 5 8	2 5 4 5	98 308 347 259 922	2.38 2.72 3.03 2.68 2.99	10 6 5 8	5 5 5 5	ND ND ND ND ND	5 4 2 4 3	7 17 19 16 - 24	1 1 1 1	2 2 2 2 2	2 2 2 2 2	41 41 47 42 47	.06 .17 .19 .15 .23	.030 .078 .052 .077 .065	7 10 8 6	10 10 10 12	.14 .47 .40 .31 .48	27 53 36 48 101	.24 .18 .18 .19 .23	4 2 6 2 3	3.42 2.35 1.68 3.13 2.25	.02 .02 .02 .02 .02	.05 .10 .09 .07 .14	i 1 1 1	1 2 1 1 4	
BL 55 52.5 BL 55 53 BL 55 53.5 BL 55 54 BL 55 54.5	1 1 1 1	12 11 13 12 12	32 52 29 36 44	92 81 75 75 49	.1 .1 .1 .1	8 7 8 7 5	7 5 5 4	1259 758 637 643 259	2.97 2.76 2.91 2.63 3.01	8 13 10 5 10	כא כא דע כא כא	ND ND ND ND ND	3 3 4 3	25 21 19 17 14	1 1 1 1	2 2 2 2 2	3 2 2 2 2	45 45 45 42 47	.23 .16 .19 .14 .12	.062 .039 .053 .064 .051	9 8 8 9	12 10 11 10 10	.51 .43 .35 .40 .27	96 67 80 55 40	.22 .21 .21 .19 .20	3 5 2 2 2 2	1.83 1.96 2.74 2.33 2.23	.02 .02 .02 .02 .02 .02	.15 .11 .08 .11 .07	1 1 1 2	1 9 1 15	
BL 55 55 BL 55 55.4 BL 55 56.5 BL 55 56.5 STD C/AU-S	2 1 1 20	18 12 11 13 62	328 48 38 43 39	279 74 72 63 135	1.2 .2 .1 .2 7.3	10 7 7 7 69	4 4 2 29	229 614 753 414 1087	3.33 2.87 2.90 2.51 4.02	7 9 12 11 41	5 5 5 19	ND ND ND ND 7	4 2 4 3 39	14 15 14 10 51	1 1 1 18	2 2 2 18	3 2 2 2 19	53 51 48 41 59	.14 .15 .12 .09 .50	.041 .049 .048 .055 .089	10 8 8 6 39	13 12 11 8 61	.35 .29 .28 .18 .90	42 63 63 76 176	.25 .21 .20 .20 .10	5 9 3 2 37	2.41 1.81 2.24 2.37 1.82	.02 .02 .02 .02 .02	.10 .08 .08 .06 .13	1 2 1 14	1 1 2 1 47	
BL 55 57 BL 55 57.5 BL 55 58 BL 55 58.5 BL 55 59	1 2 1 1 1	6 14 6 5 8	24 22 17 28 24	20 57 37 19 31	.1 .1 .1 .1	2 8 4 6	1 5 3 3 3	78 230 183 124 184	.85 2.90 2.26 3.07 2.57	4 10 4 3 6	5 5 5 5 5	ND ND ND ND ND	3 6 3 4 4	17 13 17 11 16	1 1 1 1	4 2 2 2 2	2 4 2 2 2	31 42 46 68 43	.14 .11 .15 .10 .16	.009 .062 .032 .022 .055	7 10 7 6 9	3 13 8 9 9	.10 .36 .24 .16 .33	60 42 49 36 37	.22 .18 .24 .26 .19	2 6 3 7 5	.71 3.52 1.33 1.53 1.90	.02 .02 .02 .02 .02	.07 .09 .08 .05 .07	2 1 1 1 1	1 1 1 1	
BL 56 50 BL 56 50.5 BL 56 51 BL 56 51.5 BL 56 52	1 1 1 2	11 11 10 13 11	22 18 18 31 27	62 44 65 70 66	.1 .1 .2 .1	7 6 7 7 7	54655	294 195 310 411 270	2.89 3.30 2.90 2.73 4.01	4 9 2 6 8	5 5 5 5	ND ND ND ND	4 5 5 3	17 14 18 15 18	1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2	43 49 43 41 62	.17 .13 .18 .13 .14	.058 .060 .057 .081 .061	9 7 9 7 8	10 9 9 10 12	.53 .29 .55 .41 .36	44 30 43 64 53	.21 .22 .21 .22 .22	3 2 4 10 6	2.90 2.00 2.93 3.38 1.67	.02 .02 .02 .02 .02	.13 .07 .14 .15 .08	1 1 1 1 1	1 8 2 1 1	
BL 56 52.5 BL 56 53 BL 56 53.5 BL 56 54 BL 56 54	1 1 1 1	12 13 11 11 11	24 34 28 34 35	57 53 44 71 56	.2 .1 .3 .1	8 7 5 7 6	6 4 4 5	260 216 162 421 283	3.76 2.47 2.89 2.73 3.51	5 5 6 7	5 5 5 5	ND ND ND ND	5 3 3 6	16 20 12 20 16	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	51 43 46 44 52	.12 .15 .10 .18 .14	.078 .049 .047 .063 .055	10 8 7 8 8	12 10 10 10	.42 .40 .26 .43 .37	50 40- 39 55 47	.26 .22 .23 .22 .23	6 5 5 2	2.69 1.70 2.12 2.79 2.36	.02 .01 .02 .02 .02	.11 .10 .07 .13 .09	1 1 2 1 1	1 1 1 1	
BL 56 55 BL 56 55.5	1	15 13	44 22	56 39	.1 .3	7 5	3 3	191 159	2.97 2.56	2	5 5	ND ND	6 5	8 11	1	2 2	2 2	42 39	.07 .09	.046 .074	ь 5	10 8	.20	48 38	.23 .20	2 4	4.04 3.48	.02 .02	.07 .05	1	1 1	

Page 2

C

Ć

€

C

€

€

€

С

e

f

€

€

€

C

C

C

€

¢

€

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPH. - SAMPLE TYPE: SOILS -BO MESH AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE 5	ECE	IVE	ED:	AUG	17 198	17	DA	E R	EFO	RT M	AILE	ED:	Au	92	2.7/8	37	ASS	BAYE	R. A).,	ep.	ap	L'AN	107	E. C	сект	IFI	ED H	.c.	ASS	AYEF	
										ΤE	RRA	MIN	ES L	D _TD	ŕ	ile	# E	37-3	387		Fage	a 15										
SAMPLE#	 F	M0 PPM	CU FPM	PB PPM	ZN PPM	A6 PPM	NI FPM	CO FFN	MN PPM	FE %	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB FPM	BI PPM	V . FPM	CA X	P X	LA FFN	ie FPR	N(-	ва 1941	11 %	B PPM	AL %	NA 2	К Х	N PPK	AU t PPB
BL 53 50 BL 53 50. BL 53 51 BL 53 51. BL 53 52-	1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 17 10	74 84 239 41 29	113 139 131 94 81	.4 .3 1.0 .3 .1	8 9 7 7 7	6 6 4 5 6	358 459 567 611 776	2.77 2.77 2.60 2.42 2.47	6 4 10 6	មួយមាលមា	ND ND ND ND ND	3 2 3 2 2	18 21 17 23 23	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2 2	40 38 41 37 40	.19 .23 .24 .25 .25	.073 .087 .065 .053 .030	12 6 10 11	10 11 10 11 11	.48	47 4 <u>1</u> 101 77 51	.20 .18 .25 .20 .21	2 2 2 3 7	3.08 2.23 2.90 2.24 1.97	.02 .02 .02 .02 .02	.11 .08 .05 .09 .10	2 1 1 2 1	56 5 4 84
BL 53 52. BL 53 53 BL 53 53. BL 53 54 BL 53 54.	5	1 1 1 1	11 10 7 9 12	25 27 23 19 20	87 88 63 72 102	.2 .1 .1 .1 .4	7 8 5 7 8	7 7 4 5 7	501 466 330 237 269	2.69 2.88 2.16 2.51 2.80	6 2 7 4	មាលជា	ND ND ND ND ND	2 2 1 3 3	20 16 12 18 18	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	41 44 33 38 45	.21 .16 .12 .21 .20	.052 .039 .024 .045 .042	11 13 9 10 12	12 12 6 10 12	.45 .70 .28 .42 .57	45 59 46 37 49	.22 .24 .18 .20 .24	3 2 2 4 5	2.83 2.33 1.61 2.78 3.03	.02 .02 .02 .02 .02 .02	.10 .10 .06 .11 .12	2 2 1 3	1 1 3 7
BL 53 55 BL 53 55. BL 53 56 BL 53 56 BL 53 57	5	1 1 1 2	11 11 11 14 13	33 33 14 92 20	100 75 49 152 34	.2 .3 .1 .3	7 7 5 10 3	6 5 3 6 2	339 289 96 1340 76	2.53 2.24 2.73 2.17 2.60	4 7 13 11 9	5 5 5 10 5	ND ND ND ND	2 1 3 1 4	19 19 9 36 6	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	40 37 42 34 38	.20 .19 .09 .49 .05	.056 .049 .036 .071 .031	13 14 5. 21 7	12 9 11 13 8	.41 .39 .18 .36 .09	63 55 44 76 35	.20 .18 .24 .15 .27	4 7 2 6 9	2.41 2.24 3.83 2.55 3.48	.02 .02 .02 .03 .02	.09 .12 .05 .10 .05	1 1 3 2 2	1 2 1 6 2
BL 53 57. BL 53 58 BL 53 58. BL 53 59 BL 53 59.	5	2 1 1 1 1	11 10 11 8 9	18 35 16 7 9	51 61 49 35 39	.1 .1 .1 .1	5 4 5 5 4	3 3 3 3 3 3 3	172 282 167 105 110	2.55 2.17 2.33 2.82 2.94	4 10 10 8 2	5 5 5 5 5	ND ND ND ND	1 1 2 5 6	8 12 11 10 10	1 1 1 1	2 2 2 2 2 2	2 2 2 3 2	41 41 36 44 45	.07 .12 .11 .09 .08	.044 .034 .043 .027 .028	8 7 6 6	10 8 9 10 10	.16 .18 .22 .17 .17	38 51 33 30 30	.24 .20 .19 .24 .26	4 3 7 3 9	2.52 1.64 3.30 3.89 4.35	.02 .02 .02 .02 .03	.05 .06 .06 .05 .05	1 1 1 2 1	3 1 52 1 1
BL 53 60 BL 54 50 BL 54 50. BL 54 51 BL 54 51.	5	2 1 1 1	8 11 8 12 15	22 65 118 41 20	47 95 197 145 68	.1 .1 .2 .1 .1	6 4 5 7 6	3 4 7 5 5	124 160 1172 460 371	2.65 2.89 2.61 2.74 2.56	11 7 10 7 9	55555	ND ND ND ND	2 4 2 3 1	12 14 37 21 13	1 1 2 1 1	2 2 2 2 2	2 2 2 2 2 2 2	50 44 38 41 40	.11 .13 .35 .21 .12	.026 .033 .052 .049 .084	8 8 12 9 7	9 9 10 11 10	.18 .30 .61 .48 .30	38 39 90 55 47	.21 .20 .18 .22 .21	15 2 2 2 8	1.79 2.69 2.22 2.45 2.89	.02 .02 .02 .02 .02	.06 .07 .13 .10 .07	1 1 1 1	1 93 16 1 2
BL 54 52 BL 54 52. BL 54 53 BL 54 53. BL 54 54	5	1 1 1 1	9 10 12 9 11	27 26 113 17 16	79 80 207 77 67	.1 .2 .1 .1	7 9 10 7 5	6 5 6 5 4	551 226 1349 292 294	2.56 3.35 2.56 2.23 2.92	9 7 7 6 7	5 5 8 5 5	ND ND ND ND	1 4 1 1 3	19 17 47 21 16	1 1 2 1 1	2 3 2 2 2	2 2 2 2 2	39 48 40 35 50	.21 .16 .63 .20 .16	.053 .055 .068 .051 .039	10 9 17 11 8	9 13 12 10 10	.41 .48 .52 .45 .39	42 46 77 50 49	.16 .22 .18 .15 .26	4 3 2 10 7	2.20 2.50 2.33 2.06 2.16	.02 .02 .02 .02 .02	.08 .11 .11 .10 .10	1 1 1 1 1	4 1 1 1
BL 54 54. STD C/AU- BL 54 55 BL 54 55. BL 54 56	5 5	1 20 1 1 2	15 62 12 15 10	178 41 25 16 19	203 142 46 53 34	.1 7.5 .1 .1	9 69 7 4	6 28 3 4 2	512 1012 129 223 103	2.60 4.11 2.73 2.72 2.37	10 43 7 9 10	5 18 5 5 5	ND 7 ND ND ND	1 39 2 2 3	19 52 11 13 8	1 19 1 1	2 17 2 2 2	4 20 2 2 2	41 61 43 43 45	.21 .52 .09 .14 .06	.051 .089 .032 .061 .028	14 39 8 8 6	12 62 9 11	.49 .93 .26 .28 .14	60 185 38 40 35	.20 .10 .23 .22 .23	5 37 3 2 2	2.34 2.09 3.10 3.41 2.40	.02 .05 .02 .02 .02	.10 .15 .07 .07 .05	1 14 1 1	1 53 1 10 1
BL 54 56. BL 54 57	5	1 1	14 10	31 22	71 51	. 1 . 1	8 8	4 3	495 167	2.46 2.48	6 13	5 5	ND ND	2 2	13 12	1 1	2 2	2	40 43	.12 .09	.049 .041	7	10 12.	29 27	6 <i>6</i> 46	.18	4	2.65 2.31	.02 .02	.08 .07	1.	1 1

ACME ANALY AL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-171

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH JHL 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PI-SOIL P2-ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECE	IVEI); [;]	OCT 13	1987	I		RE	PORT	r Mai	ILED):	Nou	12	18	7	ASSA	YER.	. N.	Å	4.27.	.DE	AN T	OYE	, CE	RTI	FIEI	эв.	C. A	SSA	ER	
								٦	ERRA	A MI	NES	LTD	م آراد د	Fi	le	# 87	-503	8	F	age	1										
SAMPLE	MO PPN	CU PPN	PB PPM	ZN PPH	A6 PPH	NI PPM	CO PPH	HN PPM	FE 1	AS PPN	U PPM	AU PPN	TH PPN	SR PPM	CD PPH	SB PPM	BI PPM	V PPH	CA	P Z	LA PPN	CR PPM	M6 1	BA PPH	TI 1	B PPN	AL Z	NA	K	¥ PPH	AU1 PPB
1405 30 50	1	20	17	118	.1	- 11	7	1726	2.48	6	5	ND	3	60	• 1	2	2	40	.54	.115	15	14	. 48	131	.12	7	2.87	.02	.20	1	1
LOVE 37. JA	1	14	. 21	84	.1	9	6	1071	2.69	. 4	5	ND	2	28	1	2	2	41	.30	.059	12	15	.44	76	.15	9	2.45	.02	∴. <u>11</u>	- 1	. 1
LOVE 37.00	;	16	11	99	.1	10		1408	2.64	6	5	ND	2	21	1	2	3	42	.20	.081	10	15	.43	. 74	.15	8	2.49	.02	.11	1	1
LOVE 30.30	1	17	20	90		8	5	756	2.23	3	5	ND	1	17	~ 1	2	2	36	.18	.075	10	12	.39	51	.09	7	2.71	.02	.10	1	1
L61E 41.0N	1	15	16	77	.1	9	7	1213	2.63	3	5	ND	3	19	1	, 2	2	39	.17	.083	12	- 14	.50	85	.13	5	2.69	.02	.15	1	1
				DA	,			1017	2 74	0	5	ND	1	17	1	2	2	40	.14	.076	11	13	.55	56	.12	4	2.34	.02	.15	1	2
L61E 40.5N	-1	14	19	80	•1	10	7	1017	2.95	5	5	ND	: ;	18	1	2	2	43	.17	.080	10	15	.53	102	.15	6	2.70	.02	.14	1	1
L61E 40.0N	1	18	22	119	• •	10		1010	2.03		5	80	2	21	1	2	:3	48	.19	.060	12	16	.55	55	. 14	6	2.40	.02	.11	1	1
L61E 39.5N	1	15	18	13	• •	10	0 1	1003	2.00	1	5	ND	1	79	· 1	2	2	43	.35	.063	10	15	. 48	126	.14	- 4	2.09	.02	.10	1	1
L61E 39.0N	1	15	¥	111	.1	7	5	201	7 77		. 5	10		- 11	2	2	2	45	.08	.050	7	13	.32	48	.18	9	1.61	.02	.08	1.1	2
L61E 38.5N	1	18	16	71	•2	'	•	204	J. 23	۲		. 194	•	••	Ē	-	-														
		(0	70	41	1		٦	154	2.39	4	5	ND	1	7	1	2	2	41	.05	.041	7	11	.18	.44	19	2	2.40	.02	.06	1	3
L61E 38.0M	1	10	20	- 01		0	5	1032	2 55		5	· ND	2	15	2	3	4	39	.15	.136	9	14	.40	61	.10	6	2.90	.01	.13	_ 1	- 5
L61./5E 41.3N	1	1/	1	01	.4	10		1641	2 34	Ģ	5	ND	ī	19	- ī	2	2	39	.18	.115	- 11	13	.48	54	.09	- 4	2.55	.01	.15	1	8
L61./5E 41.0N	1	13	11	00	•••	10	7	025	2.04	Ĺ	5	ND	3	16	- 1	2	2	41	.14	.078	12	14	.57	54	.11	7	2.86	.02	.17	1	1
L61.75E 40.5N	2	15	14	. 85	• • •	10		1000	7.01	, ,	Ę	- 10	7	15	Ĩ	- 7	4	39	.13	.089	12	15	.45	63	.11	5	3.68	.02	.14	1	1
L61.75E 40.0N	1	19	8	105	••	10	0	1000	2.30	. *	5		v	10	•	-	•						·			-	a 60	07	10		
1.41 75F 39.5N	2	20	16	69	.2	9	- 4	205	2.40	5	5	ND	2	. 10	1	2	3	39	.06	.058	13	14	.31	45	.12	. 3	2.92	.02	.10	. 1	1
141 75F 39 ON	1	20	9	66	.1	10	5	289	2.77	• 7	5	ND	3	13	1	2	2	48	.08	.053	11	15	.36	54	.17	. 3	2.83	.02	.10	1	. 1
141 75F TR 5N	i	14	15	80	.3	9	7	581	2.69	6	5	ND	3	14	1	2	4	44	. 11	.064	11	14	. 42	45	.16	1	2.69	.02	.10	1	:
141 755 30 04		19	17	68	• .,	9	4	328	2.48	2	5	ND	2	12	1	2	2	42	.07	.048	10	14	.32	49	.17	6	2.89	.02	04	1	1
STD C/AU-S	18	60	39	131	7.3	69	28	1039	3.92	42	19	8	40	51	18	18	21	60	. 47	.087	39	60	.87	177	.08	35	1.88	.05	.15	12	49

SAYONNR

ŧ

1

1

ſ

(

(

ſ

¢

Ć

Quined Nov!

ACME ANALY

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604)253-3158 FAX (604)253-

RECEIVED OCTUBRIO

6

ť

(

C

PLOTTED

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M6 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPH. - SAMPLE TYPE: P1-SOIL P2-ROCK P3-SLUDGE AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

								.]	FERR	A MI	NES	LID	•	۲1	16 1	# 8/	-400	, ,		aye	1										
SAMPLE	HO Pph	CU PPM	PB PPM	ZN PPH	AG PPH	NI PPM	CO PFM	HN PPh	FE I	AS PPN	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BT PPM	V PPN	CA Z	P Z	LA PPH	CR PPN	M6 X	BA PPM	TI Z	B PPM	AL I Z	A 1	K I PP	H H	AU1 PPB
5 54 57 54W	,		74	197	L.	. 7	- 5	246	3, 18	4	5	ND	5	13	2	2	2	45	.13	.064	7	12	.37	50	.12	2 2.	23 .(1.0)8	1	8
B SU.SE SUN	- <u>-</u>	11	51	370	• •	,	7	881	2.85	8	5	ND	4	26	2	2	2	46	.28	.046	12	13	.56	64	.12	82.)2 .(2.0	19	1	114
B 30.3E 49.3M	2	13	J0 77	440	•••	, ,	· 1	274	2 57	ŭ	5	ND	4	12	1	2	2	41	.10	.049	7	11	. 28	39	.13	72.	53.(2 .(16	1	23
B 30.3E 47M	1	17	10	70	• •	, 'e	Ĩ	316	3.33	· 1	5	ND	i	9	1	2	2	47	.07	.085	6	13	.23	47	.15	5 3.	35 .(2.0	16	1	81
B 50.3E 48.5M	4	17	10	07	.1	1	1	1097	2.79		5	ND	3	13	1	2	2	46	.11	.083	7	12	. 29	86	.12	22.	13(2.0)7	1	4
8 30.35 48N	1	12	40	74	• 1	'	7			•	-		-																		
			24	10	1	7	ĥ	557	2 55	4	6	NÐ	4	15	i	- 3	2	37	.14	.104	7	11	.35	56	.12	72.	37.0	2.0	19	1	2
B 50.5E 47.5N	- 1	17	29	00 70		,	5	419	2.80	5	5	ND	4	12	1	2	2	41	.11	.081	7	13	.33	48	.13	23.	28 .(2.0	18	1	1
B DU.JE 4/N	1	1.1	20	10	.2		ĭ	345	2 40		5	ND	6	15	1	2	2	38	.14	.061	7	10	.31	51	-11	52.	33 .(2.0)8	1	2
B 30.3E 46.3M	.1	11	23	01 17	• 1	7		448	2.86	3	5	NÐ	5	11	1	2	. 2	38	.09	.106	7	12	.28	56	.14	63.	18 .0	2.0	37	1	1
B 30.3E 46N		10	29	104	.1	10	7	494	2 93	. 7	5	ND	5	22	1	2	2	41	.23	.057	10	9	.65	75	.13	2 3.	. 60	2 .	14	1	68
8 30.32 43.3N	1		33	104	• 4	10	· •	100	2110	. •	-		-					٠.													1
-			70	90	1	8	7	437	2.77	2	- 5	ND	5	22	1	2	2	37	.23	.054	12	10	.56	70	.11	53.	79 .	2.	14	1	36
8 3V. 3E 43M	1		20		,	, v	5	797	2.43	2	7	ND	5	15	1	2	2	36	.13	.072	B	10	.33	70	.13	92.	92.	2.)8 _.	1	1
5 30.32 44.3M	1	10	17	174	.,	10	8	2021	2.92	2	7	ND	4	37	1	2	2	41	.43	.136	11	11	.80	190	.11	3 3.	00 .	2	21	1	64
B DU. DE 44N	1 7	10	141	744		.0	7	1471	2.62	4	27	ND	1	48	2	2	2	38	.59	.064	28	25	.56	64	.08	72.	92.	2.	29	1	126
5 JV. JE 43. JN	4	11	54	211		12	7	481	2.88	4	5	ND	6	20	1	3	2	42	.23	.089	9	14	.54	72	.12	2 3.	13 .)2.	12	1	110
S 30.3E 43N	+		24				•			-	_																	2			
9 50 5E 17 5H	1	. 7	42	199	.1	9	. 7	1163	2.67	8	5	ND	3	32	1	2	2	40	.38	.083	8	11	.65	113	.12	32.	54 . •	2 .	14	1	31
B 30.3E 42.3R		, ,	77	76		, q	7	410	2.81	4	5	ND	4	23	· 1	2	2	40	.26	.062	11	13	,56	53	.12	82.	BZ .	12.	12	1	3/
9 JV. JE 42N 8 KA KE 11 KM	· 1	, ,	22	70	.1	8	k	807	2.42	6	5	ND	3	26	1	2	2	38	. 28	.053	8	- 11	.51	73	.11	5 i.	97.	2 -	11	1	17
B JU.JE 41.JR	· 1	9 9	21	A1	•	7	5	809	2.31	5	5	ND	3	30	1	2	2	32	.29	.050	15	12	. 49	61	.09	6 1.	89 .	2	. 90	1	- 14
B JU, JE TIR		10	. 23	77		10	Å	815	2.85	2	5	ND	6	22	i	3	2	43	. 23	.082	8	13	.54	78	.13	7 2.	44 .	JZ .	15	1	1
1 JU. JE 40. JN	1	10	41	. 14	••					-	-																1	1	- 11 		
	•	17	17	74		Ú.	7	814	3.34	2	5	ND	4	33	1	2	2	48	.28	.026	8	13	.59	126	.14	72.	99 .)2 .	17	1	B
5 JU.JL 908	1	14	7/ 75	. 70		10	, g	934	2.81	2	5	ND	3	33	1	2	2	41	.34	.062	10	11	.59	104	.12	32.	71.)2	14	1	1
B JU.JE J7.JR	1	0 0	2J 70	11	1	10	· R	480	3.54	2	5	ND	4	31	1	3	2	51	.29	.032	8	17	.58	119	.15	10 2.	36.	2.	14 -	1	3
8 30.36 37R		4	70	120	7 0	70	28	1171	4.07	38	18	7	38	50	19	18	21	58	.49	,085	38	62	.91	174	.06	36 1.	90)6 .	14 1	.2	51

BAYONNE SOLL

Page 3

(

(

•

£

€

E

€

€

0

TERRA MINES LTD. FILE # 87-3458

SAMPLE	HO	CU	PB	ZN	AG	NI	00	MN	FE	AS	U	AU	Нĭ	SR	CD CD	SB	BI	V	CA	ş.	. 16 PER	11) 191	ĥĿ	B₽ F₽₽	11	B PPN	AL	NA. χ	. K	N FPK	AUN PPB
	PPN	PPM	PFR	114 K	PFM	PPn	Frn	PPR	4	rrn	rrn	rrn	rrn	rra,	FFD	F F IN	110														
161.75 48	1	13	21	55.	.1	9	4	196	2.90	2	5	ND	4	12	1	≥ 2	2	44	.10	,080	12	15	. 44	39	.14	513.	44	.03	.97.	1.2	2
L61.75 48.5	1	8	26	64	.1	· 6	5	454	2.51	4	5	ND	3	23	1	. 2	. 2	141	.18	.041	< 11		. Ab	4	. (42	24.	85	.0)	197	-	1
161.75 49	1 1	11	35	83	.2	9	5	2093	2.11	7	5	ND	3	20	1	2	2 (31	.19	.103	19	1.1		~101	.11	1.	50	263.	, 08	. 1	3
L61.75 49.5	1	12	17	39	1.1	6	3	157	1.96	8	9	NÐ	6	10	- 1	4	2	29	.08	.055	- 16	1		St.	-15	- 2 3.	85	.01.	.04		1
L61.75 50	- 1	8	21	49	.1	• 7 •	4	473	1.83	8	5	ND	3	16	1	2	2	28	.16	.048	1.			40	19	(2 + 1)	6	, 0:	.67	÷.	ذ

SANPLE#	NÛ Pf'k	CU. PPM	PB PPM	ZN PPM	AG PPM	NÌ - PPM	CO PPM	nn Ppn	FE X	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD Ppr	SB PPM	81 PPM~	V PPH	CA Z	• . Р У	Lk PFE 1	i k Fin	ds (be Sister		B PPK	AL 1	NA Z	k 7	H PPM	au t PPE	
8151 58.5	. 1	13	36	60	. 3	7	5	855	2.03	. 9	5	ND	. 2	17	1	12	÷.2	32	. 19	. (].	11	13		£ 32	 	. 2	2.38	.03	. 11-		. 3	
BI 51 54	1	11	32	81	4	9	6	439	2.58	2	5	ND	4	18	1	2	1	47	. 20	454	1.0	95	4	1.1	. 16	2	3.36	.03	. 12		20	
8151 59 5	1	11	964	205	5	9	7	2243	2 51	11	5	ND	2	33	,)	5		40	46	659	17	17			1.0	4	2.45	.04	.10	2	. 4	
DESE 10	. ,	۰۱ د		505		, G	, ,	2410	2.21	11	5	NB	7	11	1.	2	. 5	4.0	11	034	1		.,	54	14	. 7	2.05	61	0.9	Ē		
DEDI DU		. 16	47	00		4	7	400	2,00	7		ND	د ۲	11	1	- -	r n	76	. i i ne	364		· •	5 E.	1 A.			2 40	64	14	,	11	
, BLOZ DV.D	. 1	10	47	87	.*	Q	3	212	2.00 /	2	J	D D	3	24	. 1	÷	4	. 52	124	, 0,14	11			11.1			2.40					
8L52 51	1	7	36	109	.3	6	7	587	2.88	9	5	ND	6	36	1	2	2	42	. 34	.066	. 15		ъ	1.97	17	4	2.80	.05	. 31	3	38	
8L52 51.5	1	13	59	97	.1	9	. 6	2412	2.30	11	5	ND	2	39	2	2	. 2	37	, 43	.061	29	1.		ာနှင	.14	2	2.03	.04	14	1	16	
BL52 52	1	10	68	132	.2	7	6	1187	2.28	5	9	ND	2	39	2	- 2	2	35	.51	.016	17	1 E		10	13	2	2,00	.04	.12	1	b	
BL52 52.5	1.	11	49	113	. 1	· A	5	238	2.88	6	5	ND	4	16	1	2	. č	44	15	.634	19	11	:40	1 22	.19	3	2.26	.03	.11	1	1	
BI 52 57	1	 Q	79	128	4	. Ă	۵.	632	2 49	13	5	ND	र	20	1	2		42	19	04;	4	5	74	84	.17	5	1.77	.03	.10	1	20	
DEDI DO		· ·	, ,		• •		. '		2107	. 10			. Ŭ			•														-		
BL52 53.5	· 1	10	22	46	.1	5	3	134	3.13	12	5	ND	4	8	1	2	1 2	51	, 07	.044			121	1	.20	2	2.63	. é E	1.07	3	5	
BL52 54	1	10	32	49	.1	6	3	211	3.26	9	5	ND	3	9	1	2	2	49	.06	.62	÷	.4	.19	50	. 17	2	2.37	.02	. 0e	1	1	
BL52 54.5	. 1	7	21	41	.2	4	2	109	1.86	8	5	ND	2	17	1	2	- 2	32	.15	.033	5	Ę.		. 44	. 14	2	1.15	.03	.08	1	1	
BL52 55	1	8	33	43	.2	4	2	157	2.77	11	5	ND	3	11	1	2	2	48	.08	. 025	с. ¹	. 16	. I£	63	19	3	1.83	.03 -	.06	2	1	
BI 57 55.5	1	13	19	4.4	.1	5	. 2	114	3.02	8	5	ND	5	7	· 1	. 2	2	42	.04	170.	7	łe	.15.	39	.18	2	3,07	.03	.06	1	1	
PEGE 001 3			• ·		••	. •	-			·			Ū.		•	-				,												
STD C1	19	58	41	127	7.4	71	29	1015	3.96	. 39	18	7	40	49	19	17	- 26	58	. 47	, 689	38	σŻ	.67	183	, 08	36	1.75	.08	.13	- 15 .	. 49	
BL52 56	1	7	20	49	.3	5	3	211	2.89	9	5	ND	. 3	15	1	2	2 -	47	. 14	.034	<u>7</u> .:	â	.27	43	.16	2	1.42	.02	.07	1	2	
BL52 56.5	1	9	24	43	.1	5	3	260	2.15	8	5	ND	2	14	1	2	2	34	, 12	.044	ę .	7	.27	45	. 14	- 2	1.76	.03	.08	2	3	
8152 57	. 1	10	21	44	.1	Ā	3	259	2.31	3	5	ND	3	14	1	7	2	37	- 12	.046	Q	10	.28	46	.16	2	1.84	.03	.10	2	1	
BI 52 57 5	1	10	22	47		5	ंर	201	2 05	Š	5	ND	2		i			34	. 07	.039	ټ	-	. 19	44	.15	. 2	1.81	.03	.08	1 -	10	
DEDE DIAD				74	••		U.	2,0	2.00	. "		112	-		•	-	•		••••			-										
BL52 58	. 1	6	23	34	.1	- 3	2	100	2,20	. 7	5	ND	2	12	. 1	. 2	2	45	.08	.023	ć.	1	.14	14	.20	2	.92	.03	.06	1	1	
8152 58.5	ţ	9	25	34	.1	5	3	150	1.56	3	5	ND	2	8	1	2	2	27	.04	.029	ę	1.7	.14	36	.14	2	1.32	.03	.07	1	1	
BI 52 59	1	12	22	41		5	. 3	153	1 72	2	5	ND	2	12	1	2	2	27	.08	.051	11	4	.23	45	.10	2	1.94	:03	. 07	· 1	1	
DL 51 57		11	27	71	. 1	1	7	171	2 22		5	ND ND	5	0	· 1	. 5	2.	75	05	034	- e '	16	16	34	16	2	1.92	.03	.07	2	16	
DEJ2 J7.J	4		20	37	. •1	<u>ہ</u>	2	101	2.22	4	5	ND	2	, ,	1	2	2	46	00	001	. ŭ	· 10	1	τ <u>α</u> .	15	2	1 34	02.	. 06	1	3	
8L32 6V	1		20	- 32	•2	4	.2	107	2.00	. 0		NU	2	11	1	· · · · ·	1	40	. 00	.027		19	. 1 .		.10	· .	1101			•	v	
161.75 42	- 1	13	36	72	1	7	4	762	2.44	8	5	ND	2	15	1	-3	2	38	.13	.086	7	12	.30	64	.13	2	1.92	.03	.11	i	1	
141.75 42 5	· 1	12	27	50			Å	970	7 27	7	5	ND	2	13	i	2	2	40	.06	.059	8	- 5	. 22	59	.14	3	1.62	.03	.11	1	1	
141 75 42.0		14	14	43		7	5	404	2.21	, ,		ND NO	. 2	1.4		5	2	75	17	095	ų Q	· 9	76	54	09	र	1.91	03	17	. 1	· 1	
L01.73 43		1.4	17	200	• 2		J 0	100	2.12		5	110	1	17	1		-2	71	67	1975	. 7	5 Л	13	16	12	2	2 77	63	10	1	1	
L61./3 43.3	1	. 11	17	20	• 1	4	2	162	2.06	0	·]	ND	1		1	4	4	11	.00	.030		14			. 1 2		2+17	.03	10			
L61.75 44	- 1	15	19	54	•3	8	4	772	2.43	15	5	ND	3	12	1	2	- 2	38	.08	.075	1	. У .	. 30	61	.15	. 4	2.20	.03	. 10	1	1	
L61.75 44.5	1	11	35	59	.3	6	2	322	2.10	4	5	ND	2	11	1	2	2	34	.09	.061	7	8	.20	51	.12	. 2	2.19	.02	.09	. 1	- 1	
161.75 45	1	7	25	41	.2	5	3	173	1.88	2	5	ND	2	10	1	2	2	40	.06	.027	9	1.7	.28	47	.14	2	1.45	.03	:09	2	5	
141 75 45 5	1	, 7	27	44		5	3	154	1 95	- 7	5	ND	, ,	11	1	- 2	2	39	. 07	029	9	. 9	. 30	53	.14	2	1.51	.03	.09	1	1	
141 75 44		0	- <u></u>	РТ 04	• •	7	7	100	1.00	ن د		10	. 4	10		7	5	37	14	061	7	12	71	67	17	ंर	1.77	. 63	.12	t	2	
L01./0 40	1	с ,	27	47	•4		د ح	321	1.70	0,	1	1112	د ,	- 17		с С	4 2	27	• 10 0 1	001	11	17	. 47	17	- 19	. J S	7 17	03	10		54	
L61./3 46.5	1	6	20	44	•1	. 8	5	334	2.54	\$.	3	NB	6	17	1	. 2	2	24	• 71	.46/	11	13	. 47	43	. 12	2	2.10	.00	10	. 1	30	
1.61.75 47	1	11	24	40	.4	5	2	114	1.88	3	5	ND	3 -	14	1	2	2	41	.11	.933	Ŷ	Ģ	,26	38	.14	7	1.62	.03	.09	4	13	
161.75 47.5	1	. 9	20	68	.1	10	7	892	3.12	4	5	ND	4	17	1	- 2	2	41	.16	.084	11	14	. 61	69		3	2.44	.03	.13	1	8	
	-				• •																											

Fage 2

C

€

(

C

С

C

6

C

1.yon #

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158 DATA LINE 251-1011

€

€

ŧ

€

Ć

(

"

6

€

C

€

C

€

€

€

€

C

.o/

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR NG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPH. - SAMPLE TYPE: SOIL AU: ANALYSIS BY AA FROM to GRAM SAMPLE.

DATE RE	CEIVED): A	106 18 1	987	DA	TE F	REFORT	MAIL	ED:	lue -	ą 2	7/8	7	ASS	BAYE	к. Д)	beje	7. D	EAN	τογ	E, C	ERT	161	ED B	.c.	ASS	AYEF	ŕ	
							TE	RRA I	1INE	5 L.T	D.	F	ile	# ‡ E	37-3	458		r Haqı	- ÷ ·			•								
SAMPLE	NO PFM F	CU I PM PI	PB 21 PM PPI	AG 1 PPM	NI PPM	CO FPM	(HN) FE FPH)	AS PPM	FPM	AU PPM	TH PPN	SR PPM	CD PPM	SB Pfm	B1 PPn	V PPK	CA %	F	LA PFH	i.h PFR	ħ.	ÉR PPZ	۲۱ ۲	⊦frk	AL Z	NA 2	K X	W FFM	AU t PPB	
BL50 50.5 BL50 51 BL50 51.5 BL50 52 BL50 52.5	1 1 1 1	9 11 10 10 8	21 34 17 40 22 61 29 49 23 88	1 .1 1 .1 1 .1 3 .1	4 7 7 10	2 3 4 3 7	143 2.37 118 3.71 256 2.69 140 5.94 1098 3.00	2 3 4 9 2		ND ND ND ND	3 5 5 2	6 10 15 11 26	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	34 54 39 91 42	.05 .07 .15 .08 .36	.055 .044 .082 .079 .057	4 C 2 E	11 11 11	14 19 140 140	- 12 - 44 - 34 - 35 - 44	,13 ,22 ,16 ,26 ,16	3 5 9 2 6	2.74 3.60 3.69 2.69 2.20	.02 .03 .03 .03 .03	.04 .05 .08 .05 .08	1	2 2 1 1 1	
BL50 53 BL50 53.5 BL50 54 BL50 54.5 BL50 55	1 1 1 1 1	10 4 8 2 9 2 13 2 11 2	47 111 28 80 26 71 25 76 22 62	.1 .3 .1 .1 .2	15 11 8 8 7	8 6 4 3	3022 3.10 911 2.81 223 4.54 2604 2.24 1024 1.88	6 2 2 2 3	5555	ND ND ND ND	3 3 5 1	29 31 14 13 12	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	46 42 70 40 35	.31 .31 .14 .12 .11	.058 .058 .078 .060 .072	13 11 8 7 6	24 18 16 14 10	.59 .56 .35 .18 .18	148 81 48 94 59	.17 .14 .23 .16 .14	7 3 2 3	2.35 1.96 2.73 1.43 1.40	.03 .03 .03 .03 .03	.13 .09 .07 .06 .06	1 1 1 1 1 1	9 1 1 2 1	
BLS0 55.5 BL50 56 BL50 57 BL50 57.5 BL50 58	1 1 1 1	9 3 6 1 6 1 11 1 13 2	51 68 14 24 11 24 15 38 28 77	.1 .1 .2 .1	9 2 4 6 11	4 1 1 2 5	465 2.45 49 .81 52 .86 142 1.93 1334 2.35	6 2 2 2 4	55555	ND ND ND ND	2 1 2 3 2	17 12 13 10 14	1 1 1 1	2 3 3 2 2	2 2 2 2 2 2	39 27 30 30 38	.14 .10 .11 .08 .14	.050 .013 .015 .068 .080	7 7 7 8 9	20 9 9 20	.39 .07 .07 .18 .29	64 38 33 25 60	.15 .14 .13 .15 .12	2 2 2 2 2 2	1.72 .60 .63 3.44 2.50	.03 .02 .02 .03 .03	.08 .03 .04 .05 .09	1 1 1	1 1 4 1 1	
BL50 58.5 BL50 59 BL50 59.5 BL50 60 BL51 50	1 1 1 1	13 2 16 2 9 3 9 3 27 37	24 72 24 71 37 132 35 51 75 405	.1 .1 .2 1.5	13 11 13 7 8	5 4 7 2 6	1498 2.47 267 2.87 451 2.97 203 2.36 955 2.52	3 3 2 2 13	5 5 5 5 5	ND ND ND ND	1 5 4 3 3	14 16 24 10 45	1 1 1 2	2 2 2 2 2	2 2 2 2 2	41 40 47 37 35	.13 .11 .29 .08 .46	.071 .082 .045 .051 .082	9 - 6 - 12	25 22 25 17 13	.29 .31 .47 .17 .50	61 76 128 40 93	.13 .21 .19 .16 .12	2 2 3 2 9	2.49 4.87 2.68 2.72 2.10	.03 .04 .03 .02 .04	.07 .07 .08 .05 .13	1 1 1 5	1 2 1 2 290	ا تەرىخى ئى
BL51 50.5 BL51 51 BL51 51.5 BL51 52 BL51 52.5	1 1 1 1	28 31 14 10 11 8 12 2 9 2	14 231 03 124 50 141 29 86 20 51	.9 .5 .1 .1	9 7 10 10 7	7 5 6 6 3	1157 3.01 932 2.54 802 3.33 688 3.23 172 3.36	14 6 7 2 5	5 5 5 5 5 5	ND ND ND ND	3 3 4 4 4	40 31 24 13 12	2 1 1 1	2 2 2 2 2	2 2 2 2 2	43 39 50 48 58	.46 .34 .21 .10 .10	.061 .041 .043 .048 .036	16 14 9 9	17 9 16 17 12	.51 .42 .43 .40 .30	70 58 138 80 43	.15 .15 .22 .21 .24	3 3 8 3 2	2.45 2.20 1.98 2.59 2.32	.04 .04 .04 .03 .03	.11 .09 .09 .08 .05	1 1 1 1	690 151 1 1	- 3-1 2 - 20 7
BL51 53 BL51 53.5 BL51 54 BL51 54.5 BL51 55	1 1 1 1	11 2 12 2 8 3 7 4 9 4	25 60 26 49 34 87 42 105 49 97	.1	10 8 8 10 13	4 3 6 6	201 2.15 203 2.60 1012 2.30 1102 2.66 1169 2.32	2 2 2 2 3	5 5 5 5 5	ND ND ND ND	3 5 2 3 3	15 13 30 28 35	1 1 1 1	2 2 2 2 2	2 2 2 2 2	36 39 36 41 38	.12 .10 .35 .31 .45	.032 .079 .040 .044 .053	10 7 10 12 13	18 14 13 17 25	. 33 . 27 . 44 . 57 . 44	68 38 87 110 111	.18 .16 .12 .15 .14	2 2 6 2 3	1.83 2.92 1.61 1.90 1.97	.03 .03 .04 .03 .04	.07 .07 .09 .09 .09	1 1 1 1 1	1 1 1 1	
BL51 55.5 BL51 56 BL51 56.5 BL51 57 BL51 57.5	1 1 1 1	12 9 13 7	33. 97 42 BE 24 36 27 53 25 27	.3 .3 .1 .2 .1	11 12 5 7 5	7 6 2 3 1	1351 2.85 1224 2.51 144 3.34 223 2.22 76 1.02	5 2 8 2 2	CI CI CI CI	ND ND ND ND	5 3 5 4 2	26 24 10 12 8	1 1 1 1	2 2 2 3	2 2 2 2 2	44 42 46 35 25	.26 .27 .09 .09	.050 .056 .045 .052 .023	15 13 6 9 6	22 22 14 12 9	.47 .43 .17 .28 .06	. 118 E1 44 47 37	.17 .15 .18 .14 .15	2 3 2 6 . 4	2.51 2.30 2.72 3.60 1.21	.04 .03 .03 .03 .03	.09 .08 .05 .05 .06	1 1 1 1	1 1 1 1	
BL51 58 STD C/AU-S	1 18	10 57	36 64 40 131	.2	8 67	5 27	707 2.24 1015 3.60	2 19	5 21	ND 6	38 3	15 49	1 19	2 17	2 21	37 56	.14 .46	.041	10 36	. 15 60	. 33 . 85	54 175	.15 .08	8 37	2.20 1.75	.03 .08	.08 .13	1 13	1 53	

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

1

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH JML J-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR NG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. n 1

DATE RECE	IVED	: SE	PT 22	1987	Dŕ	 ΤΕ	REP	JRT	MAI	LED:	Ċ	Vcf	2/0	97	AS	SSAY	ER.	θ_c	k	1ej	DEAN	4 TO	YE.	CER	TIF	IED	в.с.	AS	SAYE	ĒR		
										TER	RA M	IINE	s	Fi	le ŧ	ŧ 87	-443	6														
SAMPLE#	MQ. PPM	CU PPM	PB PPM	ZN PPM	A6 PPM	NI PPM	CO PPM	NN PPN	FE Z	AS Ppn	ų PPM	AU PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	Р 7.	LA - PPm	CR PPN	nG X	8A PFM	11	B PPM	AL Z	NA Z	K Z	PPM	AUI PPB	
50						_				. 1	/	.10		75		2		. 70	. 7/	047	17	15	40	17	17		1 75	62	00	/ 1	P	
B 56+00E 45+50N	1	10	. 28	78	.1	1.	6	907	2.40	- 4	3 5	ND	1	33	1	4		37	.JD 14	.047	13	1.1.7	. 42	33 56	-15	2	2 79	02	10	1	32	
8 56+50E 49+50N	- 1	15	24	1//	• • •	4	4	221	2.60	5	5 5	10	2	10	1	* 1	2.	41	11	050	Q Q	13	. 20	44	15		2.57	.01	. 08	;	76	
8 36+30E 47+00N	1	13	2/ 00			, , ,		224	2.07	- -	J 5	110 110	· 1	14	1	4	2	74	17	.030	11	11	- 29	54	. 15	5	1.96	.01	.08	: 1	7	
B 30+301 48+30N	1	12	27	133	•4	- 0	41 7	205	2.20		- J - S	עה		10	1	7	. ,	39	.12	.052	9.	12	.25	40	.14	2	2.11	.01	.08	1	19	
B 30+30E 48+00N	1	12	47		• 2	4	. .	200	2.37	: "	5	1110	-	47.	•	•			•••							-						
B 56+50E 47+50N	1	10	68	112	.1	7	6	2609	2.29	4	5	ND	1	45	1	2	2	34	.32	.039	14	15	.40	72	.12	2	1.64	.02	.10	1	58	
B 56+50E 47+00N	1	15	114	137	.1	, 7	.4	839	2.47	9	5	ND	. 1	19	1	2	2	38	.14	.051	- 10	13	.27	- 63	.14	2	1.80	.01	.08	1	47	
8 56+50E 46+50N #1	1	11	22	49	.2	6	3	203	2.47	7	5	ND	2	13	1	2	2	40	.12	.045	- /	15	.23	40	.13	- 4	1.72	101 01	.V/ 04	1	10	
B 56+50E 46+50N #2	1	10	21	44	.1	5	3	171	2.38	51	5	. ND	1.	14	1	2	2	38	.11	.034	8	10	44-2	. 40 44	.13	. 2	1 47	.01	.00	1	29	
B 56+50E 46+00N	1	9	43	86	.1	7	5	952	2.17	5	5	ND	- 1	52	1	, Z	. 4	34	. 30	.031	11	- 14	. 41	04		. 4	1.40	.02	.00	•	. 17	
7 8 56+50F 45+00N	1	10	51	85	.1	8	5	932	2.48	7	5	ND	1	26	1	2	2	39	.25	.039	11	15	.37	79	.14	2	1.53	.02	.10	1	11	
B 56+50E 44+50N	- 1	9	19	48	.1	6	. 3	330	2.09	2	5	ND	i	24	i	2	2	32	.19	.030	12	11	.24	71	.13	2	1.27	.02	,07	· 1	7	
B 56+50E 44+00N	1	11	24	55	.1	6	3	370	2.42	4	5	ND	1	21	1	- 2	2	40	.20	.050	8	11	.22	55	.15	2	1.43	.02	.07	1	3	
B 56+50E 43+50N	1	10	15	58	.3	7	4	486	2.37	3	5	NÐ	1	16	1	2	2	37	.13	.034	11	14	-, 30	42	.13	2	1.59	.02	.08	1	5	
B 56+50E 43+00N	1	12	24	54	.1	6	3	392	2.38	4	5	ND	1	16	1	- 2	2	37	.13	,053	9	12	.23	55	.13	2	1.58	.01	.07	. 1	8	
-		10				,	,	670	7 1L		5	ыņ	1	15	1	4	2	74		.049	17	13	. 29	44	. 11	2	1.91	.01	.09	-1	17	
B 35+30E 42+30N	1	12	21	33 77	•	2	4	001	2.10		5	ND	1	24	+	ד ד	2	33	.17	.061	15	12	.30	59	.12	2	1.66	.01	.08	1	15	
B 50+30E 42+00N	1	10	17	./4	*1	<i>'</i>	उ	222	2.23	ר ד	5	ND	;	18	1	2	2	37	.13	.030	11	12	.29	39	.14	2	1.53	.01	.08	1	3	
8 3073VE 4173VN 8 54450E 411400W	1	11	19	111	1	4	5	1815	2.15	2	5	ND	1	35	1	2	2	31	.27	.034	11	12	.34	74	.11	. 6	1.34	.02	.09	1	5	
B 544506 41400N	1	12	19	94	1	7	Δ	366	2.59	4	5	ND	1	15	1	2	2	38	.11	.032	10	14	.36	44	. 14	2	1.95	.01	.09	1	10	
B JOTJUE FUTJUN	•	14		/*	••	,		000							-	-										- 1						
8 56+50E 40+00N	- 1	11	12	57	.2	6	4	265	2.43	4	5	ND	1	15	1	2	2	36	.11	.033	10	13	.33	42	.13	2	2.13	.01	.09	1	15	
B 56+50E 39+50N	1	12	21	60	.1	6	5	657	2.68	4	5	ND	1	16	1	2	2	39	.11	.043	10	12	.31	46	.14	2	2.13	.01	.08	- 1	11	
B 56+50E 39+00N	. 1	12	20	50	.3	6	3	245	2.62	4	5	ВN	3	16	1	3	2	40	,11	.033	-10	12	.29	44	.14	. 4	2.00	.01		2	7	
B 57+50E 50+00N	1	16	48	86	.1	8	4	441	2.66	4	5	ND	1	15	1	2	2	42	.10	.039	8	-13	31	63 25	.10	2 2	1.07	-01	- 14	1	र	
B 57+50E 49+50N	1	16	24	78	.2	7	4	616	2.92	6	5	ND	2	13	1	5	2	42	.08	.083	8	14	. 28	20	•17	. 2	2.70	.01	.00	1		
B 57+50F 49+00N	1	14	74	165	1.0	8	7	1227	2.32	4	5	ND	2	20	3	2	2	35	.15	.046	14	13	. 33	62	.13	. 4	2.15	.02	.09	1	41	
R 57+50E 48+50N	1	10	10	48	.1	4	3	194	2.76	2	5	ND	2	14	1	3	4	44	.12	.045	5	10	.38	42	.19	2	1.51	.01	.13	2	4	
8 57+50E 48+00N	1	17	96	113	.3	6	3	305	3.15	5	5	ND	3	13	1	3	2	44	.10	.073	· 7	15	. 25	49	.15	2	2.80	.01	.08	. 1	108	
B 57+50E 47+50N	1	14	42	66	.4	. 7	5	280	2.21	5	5	ND	1	12	1	5	2	36	.08	.053	15	12	. 25	41	.12	4	2.70	.01	.08	1	240	
8 57+50E 47+00N	1	17	19	56	.1	7	4	234	2.49	6	5	ND	2	10	1	2	2	37	.07	.061	. 9	13	.24	43	.14	2	2.94	.01	.06	1	9	
D 671665 4115AN		17		73		7		447	2 57	τ	5	ND	1	15	1	3	4	.37	.15	.044	9	13	.31	64	.14	2	2.06	.01	.08	1	3	
8 3/1302 40130N 8 571500 411000	1	12	- 23	7.4 81	.1	ĥ	ں ۸	402	2.27	5	5	NÐ	2	22	1	3	2	35	.25	.059	12	13	. 27	46	.11	2	2.14	.01	.08	1	1	
D 571506 46190N	1	11	3/	10 7 J	• 2	о д	. .	345	2.52	. 3	5	מא	1	16	1	4	2	38	.15	.039	9	14	.31	46	.13	2	1.66	.01	.09	1	35	
9 377300 43730N 9 574506 45400N	1		16	63	.1	7	4	237	2.29	2	5	ND	1	23	1	4	2	37	. 22	.031	9	14	.37	41	.12	2	1.52	.01	.07	1	1	
STD C/AU-S	18	58	35	131	6.9	64	26	1021	3.97	36	18	8	36	48	16	17	19	56	.41	. 083	36	62	.75	171	.08	30	1.73	.05	.13	13	47	

SAMPLE	NÛ PPN	CU PPK	PB PPM	ZN PPM	AG PPM	NI PPh	CO PPN.	MN PPH	FE X	AS PPM	ป . PP K	AU PPM	TH PPN	SR PPM	CD PPM	SØ . PPR	BI PPM	V PP K	CA X	۲ ۲	CR PPR	CK PPN	1 6 7	SR PP h	11	B Pph	ĤĹ. Y	NÁ. Z	Х	# PPN	au i PPB
							-	501	1		1				•			06							0.5		. E/		14	,	,
81.03.40,0	. 1	13	100	100	• • •	э ,	2	281	1.58	10	52	NU ND	1 4	32	. 1	2	2	20	.00	.063	. 4	5	.20	21	.06	. 0	1.00.	.02	. 19 AC	1	. ,
BL 53 46	1	11	26	17	. 1	۵ ۲	4	204	2.3/	11	1 .7	NU	2 1	16	2	4	2	34	17	.000.	e 	11	49	· . 44 75	, 10 A0	c r	4,40	192	.v. .no	1	20
BT 22 4915	1		. 29	25	, 9		4	13/	1.40	10	15	NU	4	23		4	4	18	105	+034	. 11		: 1 ' 71	49 22			1.30	.42	1.00	1	4
BL 53 47	1	11	54	60	.4	- 6	4	364	1.47		1 2	· NU	1 3	34	. 4		. 2	29	. 36	340.	14	· 14-	- 35 - 57	50	.11	4	2.20	.04	.11	1	·
BL 33 47.3	· 1	20	214	226	.9	/	C C	1209	2.33	- 14	10	NU	4	32	5	2	. 2	33	.57	.080	315	14	. 4 с.	57	.12	4	1.97	.02	.13	. 1	60
BL 53 48	i	8	44	84	.3	6	7	570	2.78	9	7	ND	8	51	1	2	2	41	.49	.096	1.	14	. 91 -	122	.17	2	2.88	.03	46	1	8
BL 53 48.5	1	13	30	76	.3	. 5	4	359	2.63	8	5	ND	5	12	1	2	2	39	.10	.047		15	30	40	.16	. 8	2.91	.02	. 07	1	4 1
BL 53 49	1	12	101	624	2.0	8	7	1023	2.72	9	7	NÐ	4	31	7	2	2	39	.35	.060	-16	16	. 59	. 45	.13	2	2.36	.02	.10	2	10
BL 53 49.5	1	12	170	222	.7	7	5	469	2.62	10	5	ND	4	23	1	2	2	40	.25	,049	9	-131	.4:	40	.13	10	2.01	.02	.10	1	235
BL 54 40	ł	10	21	53	.1	9	5	203	2.56	9	5	ND	5	17	ł	2	2	36	.16	. 03e	12	ļ¢	, 44	76	.13	9	2.12	, 02	. 10	1	18
RI 54-40 S	1	13	56	76	2	. 7	3	550	1.56	8	:	ND	2	28	1	2	2	28	. 29	638	4	4		-1	09		95	. 01	. 67	. 1	5
RI 54 41	i	7	18	47	2	7	4	258	2.30	. 8	5	ND	Ă	28	1.	2	2	37	. 27	. 621	12	, Ś		*6	13	2	1.38	02	.08	1	4
BL 54 41 5	1		76	56			5	549	1 89	7	5	ND	2	27	1	2	4	28	. 27	.035	. 10	16	. 44	4.4	. 69	7	1.32	.02	.09	1	4
BL 54 42	. 1	9	34	47	.2	7	5	576	2.04	Ĥ	5	ND	2	24	1	2	2	30	.22	. 039	13	11	.34	46	. 09	6	1.45	.02	.08	1	48
81 54 42.5	1	Q	17	38	.3	ĥ	3	276	2.00	7	10	ND	4	18	2	2	2	34	.17	.023	10	11	. 27	51	.15	6	1.08	:02	.07	1	5
			• ·			•	•				1				-		-														
BL 54 43	1	8	24	37	.2	5	3	206	2.18	5	5	ND	3	15	1	2	2 -	34	.14	.036	9	9	.24	37	.11	2	1.43	.01	.07	. 1	28
BL 54 43.5	1	8	29	51	.1	6	3	630	1.99	. 7	5	ND	2	22	1	2	2	33	.27	,052	8	10	. 27	54	.11	2	1.20	.02	.08	. 1	185
BL 54 44	ł	7	22	31	.2	3	2	291	1.34	7	7	ND	2	14	1	2	2	29	.13	.020	7	7	.14	35	.12	7	. 83	.02	.06	(1, 1)	43
BL 54 44.5	2	Ģ	35	46	.1	7	3	134	2.66	8	5	ND	3	12	1	2	2	40	.09	.028	11	13	.20	39	.17	2	2.38	.02	.07	1	6
BL 54 45	1	11	38	76	.2	8	5	972	2.55	11	5	ND	3	26	1	2	2	37	. 30	.047	12	14	.42	61	.13	6	1.85	.02	.10	. 1	5
RI 54 45 5		Q	ъ.	47	2	5	2	159	2 72	10	5	ND	, X	. 11	. 1	. 2	2	51	10	. 046	. 7	13	.18	35	.15	4	2.18	.02	.04	1	18
BL 54 46		+1	31	45	7		4	231	2.23	9	5	ND	3	20	1	- 2	4	35	. 20	.030	10	10	.23	55	. 14	5	1.79	.02	.06	1	5
81 54 44.5	1	7	15	27	.1	5	7	147	1.80	- 5	5	ND	3	19	- i	2	. 2	45	.18	.022	· R	11	.25	36	. 16	4	.90	.02	.07	1	4
BL 54 47	· •	11	40	99	.5	. 7	5	901	2.51	10	10	NÖ	3	28	1	2	2	35	.27	. 050	11	15	44	77	.13	2	1.77	. 02	09	1	22
BL 54 47.5	1	10	21	. 83	.1	8	4	224	2.67	9	5	ND	3	17	1	3	2	40	.15	. 040	8	14	.42	48	.16	2	1.99	.02	.08	1	5
	-				••	-	•			·	-		•			•	-														
BL 54 48	1	10	31	68	.1	7	5	326	2.59	10	5	ND	1 4	20	1	2	2	39	.17	.041	10	12	.46	55	.15	7	2.23	.02	.08	- 1	17
BL 54 48.5	1	10	39	88	.1	8	5	504	3.12	15	5	ND	5	24	- 1	2	2	43	.22	.129	. 9	14	.48	58	.16	4	2.66	.02	.11	1	8
BL 54 49	1	10	47	84	.2	1	5	535	3.14	11	5	ND	5	22	i	2	2	45	.20	.065	i 0	13	;48-	60	.17	2	2.12	.02	.11	1	20
BL 54 49.5	1	12	29	49	.2	5	3	171	3.01	9	5	ND	4	16	1	2	- 2	46	.13	.093	: 7	13	. 28	. 49	.15	2	1.90	.02	.07	1	11
STD C/AU-S	18	60	39	129	7.0	69	28	1032	4.18	41	21	7	38	50	17	17	22	60	. 49	.088	38	60	. 8 ^c	174	.08	35	1.84	.06	.13	13	47

Page 3

€

C

TERRA MINES FILE # 87-3557

ſ

í

€

C

€

£

€

C

€

C

C

0

€

in the and

SAMPLE		NO PPN	CU PPH	PB PPN	ZN PPM	AG Ppn	N1 PPH	CO PPM	MN PPH	FE X	AS PPM	U PPM	AU Ppn	TH PPN	SR PPM	CD PPM	sø Ppk	B1 PPN	V PPN	LA X	F	L R PPH	CK PPM	HE 'i	rk FPK) . 2	B PPN	4L 1	NA 1	R Y	N PPR	AUI PPB			
BL 51 BL 51	18 18.5	1	11 13	192 33	142 175	.3	5	6 5	448 365	2.27	5 5	5 5	ND ND	5 6	35 16	1	2 2	2	35 36	. 32 . 15	.093 .118	8 7	11 12	. 63 . 34	76 76	, 11 . 13	2 7	3.25 3.80	. 02 . 02	. 27	. 1 2	26 18			
BL 51	19	1	22	142	144	1.5	. 1	- 5	384	2.55	16	•5	ND	4	13	1	- 2	2	37	. 14	.079	9	13	- 34	55	.12	5	3,33	. 02	-10	3	47 -			
BL 51 -	19.5	1	12	40	109	.3	6	- 5	244	2.60	9	5	ND	- 4	13	í	2	3	36	. 14	.078	8	13	. 36	47	.14	- 3	2.74	. 02	. 08	2	4			
BL 51	50	9	488	15084	3178	39.0	4	8	143	9.63	818	5	7	6	- 16	27	104	2	18	. 20	. 068	7.	1	-16	23	.03	. 1	. 43	.02	.13	1264	6950			
BL 52	10	1	10	60	- 64	.4	. 7	5	776	2.28	8	5	ND	5	25	1	2	2	35	. 28	.078	. Ý.	12	46	70	. 13	9	1.94	. 02	.47.	3	64			
81.52	10.5	1	-8	23	53	.1		4	536	2.28	8	5	ND	5	18	1	2	2	36	.18	.046	8	14	- 41	52	,13	5	1.97	. 02	.11	i	205			
BL 52 4	11	1	12	26	74	.1	7.	6	1891	2.06	6	5	ND	2	27	1	2	- 3	23	. 24	.035	15	12	. 37	103	.11	2	1.72	.02	. 09	i	15			
BL 52 4	11.5	. 1	10	82	101	.1	. 7	6	892	1.80	8	5	NÐ	- 1	35	1	2	2	27	.33	.062	9	11	. 36	99.	. 08	. 2	1.28	. 02	. 09	1	6	See. 5		
BL 52 4	2	1	8	26	55	.2	7	5	240	2.42	9	5	ND	. 4	25	1	2	· 2 ·	37	.26	.044	11	14	. 50	43	.12	· 6	2.05	, 02	. 10	2	560	$L_{\rm el}$ is	6.5	ð t
BL 52	2.5	1	10	36	62	.2	8	5	292	2.67	7	5	ND	4	16	1	2	2	40	.15	.071	9	14	43	55	.13	4	2.84	. 02	.11	1	i			
BL 52 4	3	1	8	49	68	. 5	6	4	239	2.40	7	5	ND	- 4	18	1	2	3	39	.17	.043	9	13		35	.11	6	1.60	.02	.08	1	2			
BL 52 4	13.5	1	9	20	50	.3	6	4	251	2.18	5	5	ND	- 4	16	1	2	3	3,4	,15	.047	8	11	. 37	45	.12	2	1.81	. 02	. 08	1	1			
BL 52 4	4	·. 1	11	28	53	.2	6	· 4	233	2.86	8	5	ND	. 4	14	1	- 2	5	43	.12	.049	6	13	. 29	43	. 14	∴ 4	1.50	. 02	. 07	1	33			
BL 52 4	4.5	1	6	35	64	.1	6	5	314	2.22	5	5	ND	2	35	. 1	2	3	34	. 40	.025	7	11	. 42	60	.12	3	1.28	.02	. 09	1	56			
BL 52	5	. 1	7	30	49	.1	5	3	192	2.07	7	6	ND	2	30	1	2	3	32	. 33	.035	11	12	.31	55	.13	2	1.48	.02	. 08	1	101			
BL 52 4	5.5	- 1	6	26	43	.1	- 4	. 3	289	1.74	8	5	ND	2	24	1	2	. 2	34	.25	.018	7	10	. 26	65	.12	- 2	.86	. 02	. 07	1.	12			
BL 52 4	6	1	11	29	56	.4	6	4	1387	2.39	8	5	ND	3	19	1	2	3	41	.14	.045	7	11	.18	79	. 18	7	1.40	. 02	. 06	1	· 4			
BL 52 4	16.5	-1	12	29	69	.3	7	6	662	3.30	9	5	ND	- 4	15	1	2	. 4	- 44	.11	.070	6	13	24	60	. 21	3	2.21	.02	.06	1	· 1			
BL 52 4	7	1	7	36	64	.1	5	. 5	429	2.27	5	5	ND	5	27	1	2	2	33	. 30	.060	12	11	.54	57	.11	2	2.35	. 02	.15	2	2			
BL 52 4	7.5	1	8	29	85	.1	6	4	563	2.24	7	5	ND	5	21	Ĩ	2	2	33	.21	. 084	9	- 11	. 39	58	.11	3	1.84	.02	.11	1	- 1			
BL 52 4	8	1	15	58	136	.2	7	5	732	2.27	8	5	ND	6	22	1	2	2	34	.25	.083	10	12	. 43	81	. 12	- 4	2.64	.02	.13	- 1	22			
BL 52 4	8.5	i	12	39	144	.3	7	4	311	2.96	5	5	ND	5	13	1	2	3.	40	.12	.087	9	15	. 37 -	37 -	.14	5	3.66	. 02	. 08	1	1			
BL 52 4	19	1	17	140	118	1.0	6	- 4	358	2.30	12	5	ND	3	13	1	2	5	35	.12	.070	7	12	.30	48	.13	2	2.96	.02	.08	2	47			
BL 52	19.5	1	22	268	145	3.2	6	. 4	418	2.29	25	5	ND	4	13	1	4	2	34	.15	.070	8	- 11	.31	44	.12	. 4	2.30	.02	.08	5	215			
BL 53 4	10	1	14	112	114	.1	9	-5	1394	2.14	12	5	ND	2	20	3	2	2	34	. 18	.049	8	13	.38	114	. 12	2	1.47	. 02	. 12	- 1	2			
BL 53 4	10.5	1	10	23	60	. i	7	3	292	2.20	9	5	ND	2	15	1	2	2	39	.13	.043	7	12	, 37	81	. 14	2	1.25	.02	.09	1	1			
BL 53 4	11	1	8	13	43	.2	6	3	193	2.13	8	5	ND	3	18	1.	2	2	35	.17	.049	7	12	. 34	43	.11	. 2	1.51	. 02	. 08	1	1			
BL 53 4	11.5	1	6	15	47	1	6	4	590	1.58	5	5	ND	2	37	i	2	2	24	. 32	,041	14	10	.32	44	. 08	3	1.41	.02	. 07	1	1			
BL 53 4	2	. 1	9	22	56	.1	8	5	267	2.37	7	5	ND	5	19	i	2	2	36	.19	.053	10	13	. 43	43	.13	2	2.40	. 02	.10	1	295			
BL 53 4	12.5	· 1	7	25	45	.1	7	4	195	2.56	6	- 5	ND	4	21	1	2	2	41	.17	.029	9	13	.40	40	.14	2	1.43	.02	.09	2	3			
BL 53	13	i	5	19	41	.1	4	3	256	1.53	6	5	ND	2	20	1	2	2	32	.18	.019	8	10	. 28	47	.12	3	1.05	.02	.07	2	72			
BL 53	13.5	1	102	2221	872	1.9	5	. 6	1030	2.53	21	5	ND	3	21	2	2	2	23	.25	.069	13	8	. 30	47	.03	2	1.05	.01	. 10	3	650	20	pr. L.	2
BL 53	H	1	10	28	30	.2	5	2	225	2.00	8	5	ND	2	10	1	2	2	36	.06	.040	7	9	. 15	41	.14	3	1.53	. 02	. 04	1	5	1.1	200	
BL 53	14.5	1	7	17	47	.2	5	3	228	2.33	13	5	ND	3	22	i	2	4	38	. 22	.056	7	11	.26	57	.12	3	1.79	. 02	. 06	1	i			
BL 53 4	15	1	. 6	30	55	.1	5	4	573	1.41	5	5	ND	1	35	1	2	2	22	. 45	.055	13	9	.33	49	.06	3	1.17	.02	. 07	1	62		: · · .	
STD C/	NU-S	20	61	37	131	7.3	69	28	1045	4.15	43 :	26	7	39	51	17	16	20	60	. 48	.092	38	61	. 88	182	. 08	33	1.82	.06	. 14	12	52			

Section and the section of the

C

(

(

ſ

6

C

€

C.

C

€

¢

€

€

€

.500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER. A. A. DEAN TOYE. CERTIFIED B.C. ASSAYER DATE RECEIVED: AUG 20 1987 DATE REPORT MAILED: (110) TERRA MINES File # 87-3557 Face 1 SAMPLE. MO PB 2 N AG NI CO KN FE AS U AU TH SR CD SB BL V CA P LA CR HG BA TI B AL NA # AU CU PPM PPM PPH PPH PPH 1 PPH 1 ž ï PPN PPB BL 50 40 1 99 : 9 8 2406 3.51 11 5 ND 2 55 2 2 42 .55 .096 12 18 .54 201 .10 4.1.86 .02 .18 265 19 265 13 BL 50 40.5 1 19 88 112 .3 13 8 1436 2.97 11 18 NÐ 4 106 2 2 41 .93 .075 21 24 . 75 359 .19 5 3.63 .03 .19 1 1 .87 .061 8 1.90 .02 .13 12 6 976 2.59 2 70 12 38 12 .54 70 .13 1 12 BL 50 41 1 34 85 .1 11 8 | 5 NÛ 1 - 2 ç. BL 50 41.5 1 17 70 107 .2 10 7 2172 2.51 9 5 ND 1 74 1 3 2 36 .91 .118 10 18 .53 184 .13 7 1.72 .02 .18 1 3 6 110 88 2 4 27 1.20 .107 6 3.52 .02 .11 64 105 7 5 1171 1.91 NÐ 1 2 17 .41 87 .07 13 8L 50 42 1 14 .6 62 1 81 50 42.5 6 1758 2.64 28 2.33 30 1 10 56 138 2 -38 2 2 36 .45 .145 10 14 59 173 .12 .03 .17 .1 7 10 5 NÐ 1 2 39 .42 .067 8 14 .60 114 .15 4 2.01 .02 .15 2 BL 50 43 1 8 31 116 .2 7 6 834 2.71 9 5 ND 3 34 2 2 1 BL 50 43.5 1 11 32 126 .2 9 8 709 3.30 8 5 ND 4 29 1 2 2 46 .36 .116 5 15 .82 96 .16 3 3.39 .02 .23 ١ 5 BL 50 44 10 22 81 6 336 2.80 ND 6 23 2 40 .23 .082 10 14 .58 -65 4 3.83 .02 .13 1 7 1 .1 8 2 5 1 2 . 16 BL 50 44.5 1 9 8 459 2.65 11 5 ND 5 23 2 2 42 .25 .059 9 15 .53 58 .14 3 2.18 .02 .12 1 19 26 70 .1 6 1 8L 50 45 44 .29 .058 4 2.99 .02 .14 22 1 9 28 99 12 8 7 802 3.02 9 5 ND ٨ 27 2 -2 8 14 ,62 87 .16 1 1 BL 50 45.5 1 8 57 79 .3 6 6 318 2.62 10 5 NĎ 6 24 2 2 2 38 .27 .051 10 13 .53 48 .14 4 2.41 .02 .13 2 150 81 50 46 24 Ŷ 14 .55 53 . 15 3 2.56 .02 .12 1 19 1 7 38 76 .1 7 6 284 2.86 8 5 ND 6 1 2 2 42 .26 .042 BL 50 46.5 45 90 7 5 1203 2.05 7 ND 3 29 2 31 .34 .108 8 12 .40 B4 .11 11 1.77 .03 .14 1 4 1 10 .1 5 1 2 BL 50 47 1 366 4324 1710 6.5 10 5 660 3.40 68 5 ND 4 21 14 25 2 33 .24 .074 té 10 .31 63 .09 5 1.17 .01 .08 320 190 BL 50 47.5 9 .13 2 3.56 .02 .09 8 1 13 34 80 .1 9 5 267 2.60 7 5 ND 5 16 1 5 2 37 .17 .088 15 . 47 48 - 2 81 50 48 1 44 457 247 .7 7 670 2.66 15 7 NÐ 4 33 1 2 2 40 .33 .037 10 13 .50 54 .13 3 1.75 .02 .10 30 82 6 2 1.37 .02 .12 894 2020 . 44 BL 50 48.5 1 246 5219 827 9.8 7 -6 366 4.16 176 5 NÐ 5 20 3 28 2 35 .27 .087 12 14 37 .08 BL 50 49 1 9 44 62 .1 6 6 775 1.65 8 5 ND 2 22 1 2 3 25 .26 .058 10 10 .40 55 . 08 2 1.44 .02 .10 5 12 3 13 27 108 2 .33 .02 .10 1002 6110 BL 50 49.5 1 489 13500 3307 38.9 4 7 112 9.19 810 5 11 2 16 .16 .061 ć 3 .12 21 .02 22 3 2.10 .02 .11 #7 BL 51 40 . 1 10 124 62 .3 7 5 641 2.49 9 5 ND 3 1 2 2 41 .23 .041 7 13 .38 74 .15 4 22 6 2,93 .02 .11 2 BL 51 40.5 9 36 62 .1 9 6 419 2.78 8 5 ND 3 1 2 2 43 .24 .051 7 15 .44 82 .16 40 t . 25 .14 2 1.91 .02 .14 2 175 32 66 8.9 6 523 2.29 8 5 17 2 1 2 2 36 .24 .056 10 14 . 48 72 BL 51 41 1 я 7 5 5 9 5 19 -2 2 43 .21 .170 10 16 .46 45 .14 5 4.61 .02 .10 2 12 BL 51 41.5 1 10 26 66 4.8 8 6 321 2.64 1 10 21 .76 72 .16 13 2.18 .02 .13 1 14 .2 7 319 3.22 5 ND 36 1 2 2 44 .41 .067 BL 51 42 - 1 12 26 76 11 ٨ 4 7 2.27 .02 .17 79 34 2 37 .41 .131 Ģ 13 .59 153 .12 2 BL 51 42.5 1 10 41 143 .1 8 7 1504 2.64 11 6 ND 4 1 2 23 2 41 .27 .066 Ģ 17 .50 74 .13 9 1.84 .02 .12 1 12 BL 51 43 1 10 67 151 .2 9 6 673 2.66 8 5 ND 3 1 2 24 1 2 36 .29 .099 11 13 .54 44 .12 15 2.87 .02 .13 2 5 6 316 2.54 7 NÐ 4 2 BL 51 43.5 1 ę 40 98 .1 7 5 21 8 11 .36 7 1.36 .02 .10 9 ND 3 1 2 2 31 .24 .091 63 .12 1 11 BL 51 44 1 8 37 : 85 .1 .5 4 592 1.99 5 5 231 2.68 5 ND 4 15 1 2 2 41 .12 .024 6 12 .27 54 .17 6 1.84 .01 .09 1 24 47 .1 4 5 BL 51 44.5 1 8 BL 51 45 1 25 39 .2 5 ٦ 168 2.18 6 5 ND 4 15 1 2 2 43 .12 .018 £ Ģ .22 45 .17 25 1.31 :02 . 08 2 2 - 6 ND 4 14 2 3 39 .12 .058 7 12 .28 49 .14 .5 3.03 .01 .06 1 1 10 22 376 2.74 6 : 5 1 BL 51 45.5 60 .1 6 4 1 . 7 29 2 34 .38 ..099 14 12 .59 65 .13 3 2,59 .02 .22 1 2 BL 51 46 1 Q 24 63 .2 6 6 404 2.36 8 5 ND 1 2 BL 51 46.5 77 473 2.42 8 5 ND 7 36 . 1 2 2 35 .42 .094 14 13 .71 86 .14 2 2.58 .02 .29 1 10 8 56 .1 1 6 6 216 2.94 5 12 2 42 .08 .096 7 14 .27. 45 .17 3 3.24 .01 .07 1 BL 51 47 1 13 52 .1 7 4 12 ND 5 1 6 16 5 ND 5 12 1 5 2 44 .09 .089 6 15 .27 .1 7 4 200 3.23 11 40 .17 4 3.49 .01 .06 1 1 BL 51 47.5 1 13 26 53 19 58 42 129 6.9 67 27 1032 4.04 40 24 7 37 48 16 16 18 58 47 087 37 60 86 172 08 38 1.75 05 13 13 52 STD C/AU-S

зĒ

ſ

ſ

C

C

€

C

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

A. DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER . W. C. DATE REPORT MAILED: DATE RECEIVED: SEPT 23 1987 TERRA MINES File # 87-4472 SARPLE 80 CH. : PB ZN A6 NI £0 MN FE AS U AH TH SR CD ŚB BI · V CA . P LA ĊR ăб ΒA Ξ.H ß AL K NA M ALL FPH. PPN PPN PPM PPM PPM PPM PPM 7 PPM PPM PPM PPN PPN PPN PPM PPM PPM ž 7. PPH FFM PPM 7 PPM 7 % ž 2 1998 PPB B 59.5E 50N 1 15 41 60 ۰. 3 389 2.11 2 5 ND 1 1 .2 2 37 .09 .046 9 .22 54 .14 2 2.30 .01 .07 51 6 1 ó 1 8 54.5E 44.5N 1 12 43 45 . 4 ۵ 2 142 2.28 2 5 ND 4 11 1 2 . 2 45 .09 .025 7 8 .18 51 .15 2 1.45 .01 . Ó6 2 8 59.5E 49N 13 55 4 375 1.72 21 NÐ 1 17 1 2 2 29 .15 .058 11 .35 T. 60 1 Ĥ. 10 .09 2 2.07 .09 6 65 .02 1 2 8-59.5E 48.5N 1 13 33 52 .1 7 3 261 2.17 2 5 NÐ 1 13 1 2 2 38 .13 .047 Ы 10 . 27 52 .14 2 2.11 .01 .07 1 Ĥ 8 59.5E 48N 15 50 75 7 974 2.04 3 ND 28 2 2 35 .29 .078 15 . 39 1. 1.1 10 5 1 1 13 85 .11 2 2.38 .02 .10 1 137 8 59.5E 47.5N 1 12 23 53 .1 8 3 278 2.18 4 5 NÚ 1 17 1 2 2 40 .16 .050 8 10 186 61 .14 2 1.59 .02 . 10 1 B 59.5E 47N 25 481 1.86 2 5 NÜ 15 1 2 2 31 .16 .084 12 .35 ,08 1 14 53 .1 7 7 1 12 44 2 2.75 .02 .09 1 1 8 59.5E 46.5N 15 24 .2 8 575 1.93 2 5 Nß 1 17 1 2 2 31 .19 .081 15 13 .36 52 .06 2 2.82 .02 1 68 8 . . 69 1 1 8 59.5E 46N 1 12 12 78 .1 9 7 590 2.35 2 8 ND 1 21 1 2 2 41 .27 .047 16 13.56 42 .12 2 2.17 .02 .09 1 1 8 59.5E 45.5N 7 1052 2.33 2 70 2 34 1.22 .198 17 21 .61 98 .05 1 20 ćδ 155 ٠ò 13 26 NĎ 1 2 2 2 2.45 .02 .17 1 1 .25 .113 8 59.5E 45N 11 435 3.49 5 39 2 5 78 1.62 2 2.59 1 29 51 103 . 4 80 6 5 ND 1 56 22 249 .33 .02 .18 1 12 # 59.5E 44.5N 1 18 28 78 .1 8 6 833 2.58 24 5 NÐ 1 15 í 2 2 43 .14 .064 19 13 .59 47 . 14 2 2.05 .02 .21 1 1 8 37.5E 44N ND 15 2 2 31 .16 .056 8 .31 41 .09 2 1.53 10 36 51 3 264 1.81 5 1 1 8 .02 .08 1 1 .1 6 4 1 8 57.5E 43.5N 14 32 58 625 2.10 2 5 ND 1 13 1 2 2 36 .10 .058 9 11 .30 55 .13 2 2.30 .01 .10 1 1 .1 5 4 8 54.5E 43N 51 70 773 . 87 2 5 NÐ 1 18 1 2 5 30 .12 .060 11 6 .34 83 .11 2 1.97 .01 .11 1 1 16 .1 8. ۸ 2 2 2 33 .09 .057 9 .30 45 .11 2 2.19 .01 .11 B 59.5E 42.5N 1 15 27 51 ...1 3 272 1.95 5 NŰ 1 12 1 11 1 ó 1 B 59.5E 42N 1 12 26 49 .1 7 4 430 1.81 2 5 ND 1 -15 2 2 29 .11 .054 11 10 .35 49 .08 2 1.81 .01 .10 1 1 .28 2 1.53 B 59.5E 41.5N 12 24 49 .1 6 3 288 1.96 2 6 ND 1 12 1 2 2 32 .09 .038 4 9 40 . 11 . 01 . 68 1 2 1 28 .08 .054 8 .22 55 .10 2 1.31 .01 .07 1 B 59.5E 41N 1 18 26 36 .6 6 2 104 1.50 4 5 ND 1 12 1 2 2 10 1 .23 40 .06 .037 8 10 57 .15 3 1.78 .01 .07 1 B 59.5E 40.5N 16 16 47 .2 5 2 197 2.03 2 5 ND 1 9 1 2 2 1 B 59.5E 40N 15 82 7 5 910 2.10 2 5 ND 2 22 1 2 2 34 .21 .107 10 11 .42 89 .12 3 2.21 .02 .12 1 1 ۸ñ .2 54 2 2 33 .57 .091 17 13 . 42 82 .07 2 2.05 .02 .11 1 2 2 5 ND 1 1 B 57.5E 44.5N 1 14 44 81 .1 8 7 1115 2.07 .2 -3 12 2 2 34 .09 .041 8 8 .20 41 .13 2 1.59 .02 .08 1 10 B 57.5E 44N 11 25 44 5 2 141 1.60 3 5 ND 1 1 .29 70 .12 17 2.09 .03 .10 1 1 ND 20 2 2 36 .13 .001 15 11 B 57.5E 43.5N 1 17 70 68 .2 8 5 675 2.05 4 5 1 1 2 ND 2 17 2 2 . 37 .14 .039 10 11 .32 42 .13 2 1.46 .02 .09 1 18 8 57.5E 43N 12 24 50 .1 .7 4 2 2.12 5 t 1 8 57.5E 42.5N 350 1.92 2 5 ND 2 19 2 2 31 .15 .084 17 13 .38 64 .11 2 2.42 .02 . 11 1 1 1 14 50 60 .1 8 4 1 .36 53 .12 2 1.80 .02 3 5 B 57.5E 42N 27 7 3 224 1.95 2 7 NÐ 2 18 1 2 2 33 .14 .037 12 10 .10 1 11 50 .4 .25 2 1.24 8 57.5E 41.5N 10 33 45 .2 5 2 270 1.52 4 5 NÐ 2 15 1 2 2 31 .11 .034 8 8 43 .13 .01 . 09 1 1 1 ND 10 11 .33 42 .14 2 2.09 .02 .10 1 1 8 57.5E 41N 14 28 50 .1 7 3 253 2.24 3 5 3 14 1 2 2 38 .10 .066 1 2 NÐ 10 2 2 43 .05 .028 8 4 .16 34 .15 3 1.86 . 02 . 05 2 1 8 57.5E 40.5N 1 ų 25 35 .5 3 2 73 1.59 5 3 1 12 .35 2 1.59 .02 .10 27 2 7 2 2 38 .13 .042 10 68 .15 1 8 57.5E 40N 1 ١Ś 36 62 .1 7 4 654 2.10 NÐ 1 19 1 11 .36 47 .11 2 1.58 .02 1 8 57.5E 39.5N 1 11 23 55 .2 7 4 265 2.12 3 5 NÐ 1 19 1 2 2 35 .01 .042 10 .10 16 37 24 40 51 18 18 20 60 .48 .088 38 57 .88 181 .08 36 2.02 .06 .13 12 52 38 132 7.4 28 1050 3.94 7 STD C/AU-S 18 62 66

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M6 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips AU& ANALYSIS BY AA FROM 10 GRAM SAMPLE.

٦

DATE RE	CEIV	'ED:	NOV	16 1	987	DA	TE I	REPO	RT	1AIL	ED:	No	0 2	25/	187	AS	SAY	ER. A.	che	peg. 1	DEAN	TOY	ΥE,	CER	FIFI	EDI	з.с.	ASS	SAYE	R .	
										. •	TERR	A M	INES	5	Fil	le #	87	-5725													
SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPH	AG PPM	NI PPM	CO PPM	HN PPM	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V CA , PPM Z	P 7	LA PPM	CR PPM	MG I	BA PPM	11 1	. B PPM	AL Z	NA 1	K Z	W PPH	AU I PPB	
C 46955 C 46956 C 46957 C 46958 C 46959	1 1 2 1	6 15 69 20 8	2 5 5 8 2	13 22 12 17 12	33.7 12.4 32.1 14.5 10.4	1 5 2 3	1 2 1 1 1	212 253 151 144 172	.55 .80 .39 .69 .68	2 27 2 8 2	5 5 5 5	9 3 6 4 3	1 1 1 1	188 213 374 144 313		2 2 2 2 2	2 2 3 2 3	3 6.63 6 6.31 2 8.54 6 3.98 6 7.14	.008 .016 .007 .014 .014	2 6 2 4 4	3 5 7 5	.06 .10 .03 .14 .08	25 28 34 31 25	.01 .01 .01 .01 .01	2 2 2 2 2	.22 .35 .22 .25 .27	.01 .01 .01 .01 .01	.02 .05 .02 .02 .04	1 1 1 1	4700 2440 7130 3730 2250	0.150 0.078 0.728 0.728 0.072

6

ť

í

ť

(

(

C

€

€

C

C

C

Ć

C

GEOCHEMICAL/ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B N AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK

DATE R	ECEIV	/ED:	AU	5 15 14	987	DA	TE I	REPC	DRT I	MAIL	ED:	Ú	lug	26	187	AS	SAYE	ER. L	las	bej?	1 1	DEAN	TOT I	YE.	CER	TIFI	ED B	8.C.	ASS	BAYE.	R
										TER	RA M	1INE	ร″เา	ъ.	F	ile	# 8	37-3	2094	4											
SAMPLE#	NO PPM	CU PPM	PB PPM	ZN PPM	- AG PPM	NI PPM	CO PPM	MN PPM	FE X	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD FPM	SB PPM	- BI PPM	V PPM	CA X	۴ ۲	LA PPM	UR FPM	nG X	BA PFK	. 11 χ	B PPM	AL ۲	NA X	r Z	W PPM	AU 02/1
46529 46530 46533 46714 46715 46716	1 1 1 1	4 124 4 7 3 4	11 1911 212 970 25 46	42 598 35 349 280 36	.1 13.4 1.0 6.2 .1 .8	3 1 2 2 2 2	4 1 2 1 1	526 90 512 104 56 58	2.50 2.61 1.59 .82 .50 .76	10 174 13 6 3		ND 3 ND ND ND	6 1 2 1 1	5 4 5 4 1 3	1 4 1 1 1	3 2 2 8 2 2	2 2 2 2 2 2 2 2	6 1 2 2 1	.07 .02 .06 .06 .03	.034 .017 .021 .008 .002	15 2 5 2 2	5 1 1 5 2	.04 .01 .02 .03 .04	30 10 15 2 1	.01 .01 .01 .01 .01	2 2 2 15 2	.28 .10 .14 .23 .12	.03 .02 .01 .01 .01	.13 .08 .09 .01 .01	1 1 2 1 2 2	.001 .133 .006 .004 .002 .001
53833 53834 53835	1 1 1	117 17 90	26 834 64 120	618 14 366	6.4 .4 .8	1 3 1 3	5 1 3	42 906 417 382	.48 2.79 .61 1.71	86 2 5	555	ND ND ND	1 7 1 2	4 3 6	2 1 1	4 2 2	2 2 2	1 1 2	.07 .01 .04	.003 .043 .002 .022	16 2 6	5 3 3	.01 .01 .04	27 11 22	.01 .01 .01	2 2 2 2	.21 .03 .26	.01 .01 .01	.15 .02 .12	3 1 1	.044 .001 .001
53836 53837 53838 53839 53840	1 1 1 1 1	10 B7 6 4 3	356 1803 42 30 12	260 896 38 28 59	.2 13.5 .3 .1 .1	3 2 4 3 3	7 2 8 3 7	597 216 678 451 976	2.70 2.97 2.94 1.60 2.63	10 391 28 6 5	5 5 5 5 5	ND ND ND ND	11 4 9 5 8	6 5 4 6 29	1 1 1 1	2 4 3 2 2	2 2 2 2 2 2	6 3 4 5 17	.04 .02 .09 .03 1.04	.049 .023 .062 .023 .073	23 9 18 9 16	2 3 1 1	.06 .01 .03 .02 .36	33 17 34 26 72	.01 .01 .01 .01 .02	2 6 7 2 2	.58 .19 .38 .26 .77	.02 .01 .02 .01 .05	.14 .09 .20 .08 .22	1 1 2 1 1	.001 .042 .001 .001 .001
53841 53842 53843 53844 STD C	1 1 1 1 18	9 4 6 2 57	329 102 22 32 42	157 127 48 70 131	3.3 .2 .2 .1 6.8	4 4 3 67	6 7 6 7 26	1209 845 1092 869 1023	3.58 2.93 3.06 2.88 3.63	37 41 27 14 39	5 5 5 5 17	3 ND ND ND 7	7 11 8 8 38	5 6 64 48	1 1 1 1 17	2 2 2 2 17	3 2 2 2 20	4 5 6 4 55	.04 .11 .07 2.05 .48	.035 .059 .044 .059 .085	14 22 16 10 37	1 1 1 2 56	.03 .04 .04 .17 .91	62 37 53 45 172	.01 .01 .01 .01 .08	2 2 2 2 36	.27 .37 .37 .25 1.84	.01 .02 .02 .02 .08	.12 .17 .15 .17 .12	1 1 2 1 13	.026 .001 .003 .001

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHON

Face F

DATA LINE 251-101 PHONE 253-3158

6

€

C

€

€

Assay

GEOCHEMICAL/ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-HZO AT 95 DEG.C FOR_ ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICF 15 3 PPM. - SAMPLE TYPE: PI-ROCK P2-CORE

DATE RECEIVED: AUG 17 1987 DATE REPORT MAILED: aug 27/87 ASSAYER. ACALF? ... DEAN TOYE. CERTIFIED B.C. ASSAYER

TERRA MINES LTD. File # 87-33876

SAMPLE#	MO PPM	CU PPM	PB PPM	2N PPM	AG PPM	NI PPM	CO PPM	MN PPN	FE X	AS PPM	U PPM	AU PPM	TH PPM	SR . PPM	CD PPM	SB PPM	B1 FPM	V PFM	CA X	ř	LÂ PFr	UK. IPPR	85 1	BA (ep	11 : - <u>)</u>	B Ffm	AL 1	NA Z	ř	N PPM	AU 02/1	
C 46536	1	3	584	211	.9	2	. 3	861	1.25	2	5	ND	6	à	1	2.	2	-3	10	.044	12	2	, 6¢	52	.01	4	. 4 4	.03	. 18	1	.016	
C 46537	1	- 4	67	49	1	2	1	90	.36	8	5	ND	1	. 1	1	2	2	. 1	.01	.002	2	÷.,	. Ó1	ż	. 61		. UE	.01	. 65	1	.005	
C 46538	1	27	448	87	2.8	2	1	29	1.41	68	5	3	1	1	1	2	<u>`</u>	1.1	.01	,008	-	1	101	- 4	, (; <u>)</u>	- 2.,	,04	.01	.02	i	.235	
C 46539	1	224	1298	310	20.4	5	2	86	2.45	121	5	-11	1	1	1	30	2	2	.01	.015	2.	4	,01	1	10.	21	. QT	.01	, O3	- 227 ;	,650	
C 46540	1	16	116	108	. 6	. 4	5	1045	2.43	49	5	NÐ	4	4	4	2	2	4	.01	.014	10		191	4 C	:01	2	.15 .	.91	.08	10	.026	
C 46541	1	11	515	28	9.6	2	i	53	. 39	19	5	10	1	2	1	£	2	1	.01	.006	2	4	.0;	4	.0	11 -	.04	01	.03	199	: 329	
C 46542	- 1	. 9	107	323	. 9	. 3	2	789	1.89	26	5	ND	3	67	2	2	2	2	1.59	.018	ŝ	1	, ŝć	i i	.01	3	.10	.03	.07	7	.049	
C 46543	1	18	1063	48	4.9	1	1	29	.30	23	5	ND	1	5	1	2	2	1	.01	.001	2		.,01	- 3	.01	2	.01	.01	.03	2	.073	
C 46544	3	562	18094	8042	70.6	4	5	26	3.74	309	- 5	29	1	3	78	41	5	-1	.04	,017	3	1	.01	- 5	.01	31	.09	.02	.06	21	.840	
C 46545	2	404	1911	3659	33.4	2	1	184	1.53	161	5	ND	. 1	2	35	13	2	1	.02	.003	2	- 1	.01	5.	.01	. 2	.03	.01	.02	76	.135	
C 46546	1	98	5950	571	42.6	2	1	20	3.33	400	5	10	1	3	2	21	3	1		. 004	2	2	101 1	1	·, 01	2	.01	.01	.02	2	. 378	
C. 46547	1	8	557	61	10.8	2	1	13	.33	47	- 5	2	1	1	1	4	- 2	1	.01	.001	2	4 .	.01	16	.01	2	.01	.01	.01	1	.062	
C 46548	2	170	11385	3866	25.9	4	5	240	3.37	365	5	ND	2	11	38	23	2	1	.18	.015	1	3	.05	6	.01	2	.09	.01	.07	.11	.076	
C 46549	1	752	22322	2428	252.8	3	8	12	16.96	1686	5	8	1	24	26	177	2	.1	.01	.001	2	1	.02.	2	.01	2	.01	.01	.02	6	1.108	
C 46550	1	60	1329	1557	2,4	3	1	29	.83	57	5	ND	1	2	17	3	2	1	.01	.002	2	. 1	.01	. 1	. 61 -	2	.01	.01	.01	4	.233	
C 46551	1	74	2411	472	24.9	2	1.	20	2.04	394	- 5	6	1	2	4	57	2	1	.01	.003	2	1	.01	2	.01	6	.01	. 01	.02	5	.635	
C 46552	. 1	56	452	324	6.3	3	2	127	.94	44	5	ND	1	2	2 .	9	2	- 2	.09	.013	2	. 3	.02	13	.01	11	.13	.01	.08	- 1	.055	
C 46553	1	242	1353	273	75.1	1	1	- 18	2.08	252	- 5	13	1	· 1.	2	46	2	i	.01	.003	2	1.	.01-	1	.01	2	,02	.01	.03	2	.390	
C 46554	1	8	110	37	4.4	3	· 1	28	.38	8	5	6	-1	1	1	2	2	1	.01	.001	2	3	,01	1	.01	13	.01	.01	.01	3	.510	
C 46555	14	1100	23156	75395	133.4	2	6	18	17.07	1565	- 5	26	1	11	535	99	2	1	.01	.004	2	2	.02	7	.01	6	.03	.01	.06	1	1.566	
C 46556	1	43	2729	773	7.3	3	3	381	1.83	108	5	ND	6	15	9	10	2	4	.05	.038	12	3	.01	- 15	.01	12	.22	.01	.11	10	.053	
C 46557	1	21	417	462	3.1	2	3	1108	2.73	144	5	ND	i	92	. 5	2	2	2	2.72	.008	2	4	.54	16	.01	2	.06	.02	.04	4	.018	
C 46558	1	6	82	120	.2	. 2	1	35	.43	10	5	ND	1	1,	. 1	2	2 -	1	01	.001	2	5	.01	1	.01	4	.01	.01	.01	1	.015	
C 46559	5	462	18394	17867	80.4	2	3	78	4.94	499	5	7	. i	14	166	99	2	1	.14	.009	2	í	.03	10 -	.01	2	.06	.01	.05	828	.380	
STD C	17	58	38	129	7.1	67	27	1021	3.90	39	18	7	37	49	17	- 17	23	56	.46	,086	37	57 -	.86	175	.08	38	2.35	.08	.13	13	-	

ASSAY REQUIRED FOR PD>10,000 ppm Zn> 20,000 ppm Ag>35 ppm

C

ſ

(

€

€

C

1

GEOCHEMICAL/ASSAY CERTIFICATE

1 1

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR_ ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips

Au by regular accery

	DATE RE	ECEI	VED:	AU	6 24 1	987	DA	TE	REPO	DRT	MAIL	EDr	Ü	40] .	5 0	37	AS	SAY	ER.,	N. 4	£4	1.27.1	DEAN	TO	ΎΕ.	CER	TIFI	ED I	a. c.	ASS	BAYE	F:	
											ΤE	RRA	MIN	ES L	_TD.		Fil	∈ #	87-	357	4												
	SAMPLE	MO PPM	CU PPN	PB PPH	ZN PPM	AG PPM	NI PPM	CO PPM	HN PPK	FE X	AS PPM	U .PPN	AU PPN	TH PPM	SR PPN	CD PPM	SB FPN	BI PPM	V PPM	CA ۲	P I	LA PFK	CR PPM	Н6 1	BA FFM	11 X	B FPM	AL X	NA Z	. K 1	N PPN	AU 02/1	
	C 46560 C 46561 C 46562	1 1 1	16 61 12	162 9 139	72 21 153	.2	4	4 2 3	545 470 222	2.32 1.70 1.86	13 10 40	5 5 5	ND ND ND	i 1 1	50730	1	2 2 2	2 2 2	2 2 2	.37 .02 .01	.007	5 2 2	1 1 2	.01 .01 .01	32 85 14	.01 .01 .01	2 2 2	.07 .07 .05	.03 .02 .01	.04	1 2 1	.001	
	C 46564	1 	21 296	5969	7921 7921	./ 19.3	4	4	873 218	4.81	300	5	NU 9	1	98 13	78	11	2	1	2.28 .28	.005	2	1	.08	. 9 13	.01	6	.08	.02	.0è	162	.472	
SAYONNA EAST	C 46565 C 46566 C 46567 C 46568 C 46569	1 1 17 1	21 21 77 10400 163	595 669 675 15395 1627	661 1518 584 99999 2083	.3 .9 3.8 297.5 20.4	2 3 2 2 3	1 7 1 2	115 351 482 32 85	.66 1.60 1.63 15.69 1.33	8 42 22 507 18	5555	ND 2 72	1 1 1 1	9 31 80 2 2	8 15 5 1339 23	2 2 2 589 21	2 2 2 2 2	1 1 1 1	.20 .71 1.43 .01 .02	.001 .011 .011 .001 .001	2 2 3 2 2 2	1 1 1 1	.04 .16 .31 .02 .01	2 20 5 2 1	.01 .01 .01 .01	2 6 2 9 2	.01 .24 .08 .01 .01	.01 .02 .02 .01 .01	.01 .13 .05 .01 .01	10 4 2 1	.025 .004 .089 2.330 .556	
	C 46570 C 46571 C 46572 C 46573 C 46574	2 1 1 1 1	432 217 26 11 17	9816 2741 391 73 108	4017 2616 384 65 164	18.7 7.3 .6 .1 .2	4 3 5 3 5	1 2 5 1 3	136 96 433 96 515	2.77 6.04 2.50 .95 2.70	118 68 60 8 10	5 5 5 5 5 5	5 2 ND ND ND	1 3 7 1 4	3 13 4 2 4	37 17 2 1	23 2 2 2 2	2 2 2 2 2 2	1 4 1 4	.01 .02 .04 .01 .04	.025 .034 .031 .006 .025	2 5 16 2 11	1 1 1 2	.01 .02 .02 .01 .02	5 13 25 7 24	.01 .01 .01 .01	2 6 8 2 3	.05 .28 .27 .08 .26	.01 .01 .01 .01	.03 .09 .16 .05 .12	7 6 1 1 1	.204 .060 .002 .001 .006	
	C 46575 C 46576 C 46577 C 46577 C 46578 C 46579	1 1 1 1 3	25 7 7 7 116	771 42 25 26 7637	293 56 34 43 6193	1,4 .1 .3 43.8	4 4 6 10	1 4 4 6 12	309 618 425 1075 291	1.80 2.75 2.60 3.78 9.01	4 17 12 23 347	5 5 5 5 5	ND ND ND ND 23	1 4 6 8 5	6 4 5 10 7	1 1 1 50	2 4 3 2 11	2 2 2 2 2 2	3 3 5 6 7	.01 .01 .07 .93 .06	.011 .023 .050 .060 .033	2 10 14 12 7	3 1 3 1	.01 .02 .11 .05 .02	8 31 33 59 25	.01 .01 .01 .01	12 2 9 5 6	.09 .19 .45 .33 .39	.01 .01 .02 .02 .01	.04 .08 .15 .18 .22	1 1 1 13	.020 .001 .001 .001 .020 ~	- FLOAT
BAYONNA WAST CANS	C 46580 C 46581 C 46718 C 46719 C 46720	1 1 1 1 1	6 8 18 12 14	39 184 59 60 96	58 138 48 107 94	.1 .8 .3 .1 .3	4 5 3 4 4	6 3 1 1	816 291 151 195 187	3.87 1.42 1.30 1.08 1.49	3 9 8 5 6	5 5 5 5 5	ND ND ND ND	7 2 1 1 1	7 31 7 8 3	1 1 1 1	2 3 3 2 3	2 2 2 2 2 2	11 14 2 2 1	.06 .27 .08 .09 .02	.024 .015 .027 .030 .011	15 6 4 4 2	2 3 4 3 5	.03 .30 .03 .05 .02	36 36 35 30 11	.01 .05 .01 .01 .01	2 4 2 5	.44 .82 .12 .16 .05	.04 .06 .01 .01 .01	.16 .13 .05 .06 .02	1 1 2 1 1	.001 .007 .001 .001 .001	
n an	C 46721 C 46722 C 46723 C 46724 STD C	1 1 1 1 18	5 7 29 41 64	12 58 22 19 42	9 49 89 58 135	.1 .5 .1 .1 6.9	3 5 24 11 68	1 7 9 5 27	64 914 410 333 1025	.59 3.94 4.91 3.82 3.92	2 127 6 4 42	5 5 5 5 19	ND ND ND ND 7	1 10 16 12 36	5 6 7 7 48	1 1 1 17	2 3 2 17	2 2 2 2 19	1 8 43 31 55	.05 .08 .15 .05 .47	.019 .046 .075 .035 .088	3 21 32 29 36	2 6 58 46 55	.01 .04 1.90 1.26 .86	3 40 172 131 174	.01 .01 .23 .17 .08	2 4 9 2 33	.02 .41 3.24 2.04 1.78	.01 .02 .07 .06 .08	.01 .18 1.43 1.01 .12	1 1 1 1 1 1 1	.001 .001 .001 .001	

ASSAY REQUIRED FOR CORRECT RESULT -

11

		1				•				1	FERR	A MI	NES	LTI).	FIL	.E #	87-	467	9												- F * a
SAMPLE	NO	CU PPN	PB PPN	ZN PPM	AG PPM	NI PPM	CO PPN	NN PPH	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPN	SB PPM	BI PPM	V PPM	CA	PI	LA PPM	CR PPM	нб 7	BA	TI X	B	AL Z	NA Z	K	N PPH	AUI PPB	
C 51108 C 51109 C 51110 C 51111 C 51111	1 1 2 1 2	10 39 76 7 57	330 1042 2004 50 1918	108 323 693 81 764	.7 1.9 2.4 .2 2.7	1 2 2 2 2	2 6 10 2 2	450 310 1192 472 217	1.05 2.09 3.79 2.23 1.51	8 54 38 4 23	5 5 5 5 5	ND ND ND ND	1 2 4 2 2	4 5 4 2 3	1 1 4 1 7	2 2 2 2 2	2 2 2 2 2 2	2 30 9 3 5	.02 .02 .04 .01 .14	.006 .016 .034 .011 .013	2 3 12 5 2	1 3 3 2	.01 .02 .03 .01 .01	10 12 40 32 10	.01 .01 .01 .01 .01	2 8 6 11 10	.10 .17 .24 .10 .08	.01 .01 .01 .01	.04 .06 .10 .06 .05	2 1 1 1 1	159 1465 1220 111 1735	
C 51119 C 51120 C 51122 C 51123 C 51123 C 51125	2 1 1 1 1	88 3 6 1 4	5821 44 81 25 47	434 28 112 43 48	16.1 .1 .1 .1	1 2 3 2 2	5 5 7 3 2	566 312 1433 609 255	3.33 1.99 5.39 3.15 1.03	108 5 2 2 2	5 5 5 5 5	10 ND ND ND	2 1 1 2 1	4 4 4 2	2 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	9 2 11 6 1	.01 .01 .01 .01 .01	.034 .018 .024 .020 .006	4 5 2 4 2	4 1 2 3 2	.01 .01 .04 .02 .01	24 17 27 17 5	.01 .01 .01 .01 .01	7 2 2 4 8	.15 .13 .21 .18 .08	.01 .01 .01 .01 .01	.10 .06 .04 .05 .04	1 1 1 1	6230 42 32 4 325	
C 51126 C 51127 C 51127 C 51128 C 51129 STD C/AU-R	1 1 1 1 20	30 32 40 37 50	29 18 14 7 40	28 22 18 5 132	.2 .2 1.6 7.4	16 14 11 7 72	10 10 6 4 29	878 414 467 92 1072	4.81 3.02 2.72 1.75 4.06	7 10 2 2 41	5 5 5 5 20	ND ND 16 8	9 5 7 2 40	40 11 9 5 52	1 1 1 19	2 2 2 2 17	2 2 2 3 20	18 18 11 1 59	.05 .14 .04 .01 .48	.060 .073 .030 .012 .090	27 16 18 5 39	17 13 11 3 63	.46 .54 .33 .01 .90	60 40 20 9 180	.04 .04 .02 .01 .07	3 3 5 2 34	1.21 1.02 .70 .08 1.87	.01 .01 .01 .01	.54 .40 .19 .05 .14	1 1 1 13	35 31 380 22750 485	

C

ACME	ANALY	AL	LAB	ORA1	rori	ES L	_TD.		85	2 E.	HA	STIN	165	ST.				в.с.	. v	6A .	- T C	- т (200-				1047	200	
						(GE	oc	:H-IE	EM	IC	AL	, F	111	AL	YE	5 I E	5 1		PN 1	1.1	- <u>.</u>		1 6								
					ICP This - Sp	500 S LEACI WIPLE 1	0 GRAM H IS PA Type: S	SAMPLI RTIAL	E IS DI For Mi In	igestei Fe C/) WITH A P LA	3HL 3- CR MG	1-2 H Ba ti	CL-HNO B W Ai	3-H2O ND LIM	AT 95 Ited fi	DEC. C Or na i	FOR DA K and A	NE HOUT AL. AI	R AND J DETE	IS DILU CTION I	UTED TO LINIT B	I 10 ML I ICP	WITH IS 3 P	WATER. PM.							
I	DATE REC	CEIVE	D:	OCT 16	1987	1	DATE	RE	PORT	MA	ILED		œ	t_2	6/	87	ASSA	YER	A		beje	DE.	AN T	OYE,	CE	RTI	FIED	в.С	. A	SSAY	'ER	
							ROS	SBA	HER		BORA	TORY	PR	OJE	CT-C	ERT	# 8	767	7	Fil	e #	87-4	892					7c	re re	A	MIN	105
	SAMPLE	NO BRW	CU	. PB	ZN	A5 PDM	NI	CO PPH	NN PPH	FÉ	AS	U PPN	AU PPN	TH PPM	SR	CD PPM	SB	BI PPN	V PPN	CA X	P X	. LA PPM	CR PPM	116 1	BA PPM	TI I	B PPM	AL. I	NA I	K	N S	
_		r.rn	rrn	rra	r r n												7	7	10	07	027	5	241	05	36	.01	. ,	.24	.01	. 07	1	
ECHO TRI	46599	4	9	159	396	2.3	1	16	1313	6.40	- 5 8	2	NU ND	4 3	. 0	- 4 - 1	2	2	2	.03	.003	5	126	.01	19	.01	2	.07	.01	.07	3 -	
	47825	1	33 15	14	ີ 3'. ຮ	· • •	0 9	5	38	3.52	6	5	ND	3	1	1	2	2	-1	.01	.006	5	73	.01	19	.01	2	.05	.01	.06	2	
a	4/820	2	19	13	6	.1	6	3	265	2.01	4	5	ND	9	2	1	3	2	1	.02	.011	10	67	.06	19	.01	2	.11	.01	.06	1	
STONE	47829	2	15	15	1	.1	6	3	48	1.93	7	5	ND	3	1	1	2	2	1	.01	,003	4	100	.01	6	.01	2	.01	.01	.02	2	
	47832	2	52	22	3	.8	22	6	31	4.45	4	5	ND	6	1	1	2	2	1	.01	.006	7	64	.01	32	.01	2	.11	.01	.10	- 3	
	47833	3	42	17	4	.6	15	7	77	3.46	5	5	ND	4	1	1	2	2	1	.01	.010	6	71	.01	25	.01	2	,U8	.01	.07	1	
	47834	1	24	11	- 4	.8	9.	5	83	2.48	5	5	8	· . 4	1.	1	2	2	. 1	.01	.005	۵ ۵	118	.91	25	.01	2	-21	01	17	1	
CHO TAK	47851 47851	3	149 2	36 210	61 146	.5 .3	23 3	12	1195 745	3.25 3.05	2	5 5	ND NG	5	. 4 . 3	1	2	2	6	.08	.027	7	109	.01	46	.01	5	.14	.01	.11	1	
					/					0.70	-		ND		0	7	. 11	2	. 1	. 01	.070	3	126	.01	12	.01	. 4	.09	.01	.06	1	
	51112	2	31	37738	2138	45.2	5 7	- 1	204	2.39		5	10	1	5	ĥ	4	2	i	.01	.011	2	122	.01	14	.01	. 3	.08	.01	.06	1	
	51113	1	25	26436*	1436	27.4	د ا	15	2/V 7595	7 91	35	5	ND	2	7	- 19	6	. 2	12	.02	.040	6	76	.08	55	.01	. 4	.19	.01	.13	1	
ST	51115	2	29	1010	1000	· 3.3 7 7	1	13	2368	7.54	46	5	ND	3	7	17	4	2	10	.02	.034	7	80	.08	48	.01	- 4	.21	.01	.14	1	
TI MO	51110	2	51	17712	10414	25.9	3	5	449	2.42	12	5	12	· · · 1	6	19	4	4	2	.07	.016	3	122	.01	- 11	.01	2	.06	.01	.04	1	
DUMP				10011			-								-	_	2						107	07	95	A 1		17	. A1.	08	1	
	3 51118	2	61	1101	484	4.0	- 4	- 4	618	3.35	61	5	ND	2	4	3	2	. 2	11	.01	.019	. I.	117	.02	38	.01	6	.37	.01	.07	2	
	51121	3	8	211	211	.5	6	11	2370	7.60	3	5	ND	5	3	1	3 7	. n	20	.01	040	77	70	.03	45	.01	- 4	.41	.01	.20	2	
	51124	1	2	48	105	1.	5	- 9	1201	4.32	2	2	- <u>NU</u> Ri	10		1	2	· 87	3	.01	.070	10	109	.02	21	.01	6	.16	.01	.11	2	
	51130	. · 3	101	41	173	5.0	1/	4	100	3.52	2	- J - E	1L 27	· J	7	1	2	12	ĭ	.01	.024	8	100	.02	22	.01	2	. 17	.01	.12	. 3	
A. 1	51131	4	214	179	. 50	3.5	\$1	19	12	5.00	4	2		. 1	· 7	. 1	-															
1362		•	. 77		1520	15	10	•	154	4.04	3	5	35	2	2	56	2	59	2	.01	.009	7	130	.03	14	.01	2	.12	.01	.09	1	
	51132		137	242	4320		70	11	535	5.53	3	5	2	6	10	2	2	6	19	.26	.128	. 12	85	.62	55	.06	2	1.11	.01	.58	1	
	/ 51189	. J	170	10	14	10.7	12		52	3.68	- 4	5	132	- 1 - 4	6	1	2	575	. 7	.01	.011	. 8	143	.02	21	.01	2	.17	.01	. 15	2	
	51192	1	107	551	18	7.0	17	9	45	3.10	2	5	40	8	. 6	· 1	2	76	. 5	.06	.016	17	95	.04	41	.01	7	. 31	.01	.21	- 2	
	51197	4	120	1349	260	25.4	57	28	158	8.67	2	5	_ 31	6	5	3	2	121	. 4	.01	.043	9	107	.03	23	.01	2	.22	.01	.12	1	
	51200	3	173	56	118	1.3	27	14	1159	4.76	2	5	67	7	4	. 1 17	2	- 14 23	8 60	.11	.048	. 14 38	94 61	.31	48 179	.01 .08	16 38	.52 1.90	.01 .06	.25	1 12	
	STD C	20	58	37	131	1.2	68	- 28	1048	3.79	74	21	'	٦V	51	• /	• '															

Rec

22

1

NUV. 1/87

< /

- ASSAY REQUIRED FOR CORRECT RESULT -
ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VAA 1R6

PHUNE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Received NOV. 7/87

(^{``}

6...

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 NCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips AU\$ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE	RECEI	VE	D:	OCT	29 198	37	DAT	EF	EPO	RTM	AILE	ED:	No	v 9	B	7	AS	SAYE	R.4	l	Defe	1. D	EAN	тоү	Ε, (CERT	IFIE	D B	.c.	ASS	AYEF	8		
											TER	RA	MINE	SL	TD.		Fil€	e #.	87-5	5269														
SAMPLE	PP	0	CU PPH	PB PPM	ZN PPM	A5 PPN	NI PPH	CO PPM	MN PPH	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA	P I	LA PPM	CR PPM	M6 1	BA PPM	TI I	B PPM	AL I	NA Z	K I	N PPN	AU t PPB		
C 46765 C 46766 C 46757 C 46758 C 46770		1 1 1 1	6 10 9 3 5	2 105 9 4 4	8 92 50 47 61	.3 .5 .2 .3 .2	1 3 2 3	1 6 7 5 5	141 883 1249 963 1285	.57 2.95 3.48 3.41 4.46	4 38 8 5 3	5 5 5 5 5	NÐ ND ND ND	1 7 4 2	5 7 12 4 4	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	3 10 27 10 13	.04 .08 .04 .02 .02	.006 .035 .022 .021 .023	2 16 13 6 5	1 2 1 2	.08 .07 .09 .03 .05	13 31 59 44 60	.01 .01 .01 .01 .01	2 4 2 4 3	.20 .44 .50 .20 .23	.02 .02 .01 .01 .01	.05 .16 .10 .06 .06	1 3 4 2	2 16 6 1 1	BAYO	WNK VCHES
C 46771 C 46772 C 46773 C 46774 C 46775	1 1 1 1	1 1 1 1	3 6 3 5 4	3 16 6 10 11	27 43 33 68 60	.3 .3 .4 .6 .1	2 3 2 4 3	4 4 7 9 8	558 1068 953 1407 1482	2.34 3.26 3.10 5.69 4.90	2 3 9 10 5	5555	ND ND ND ND ND	6 3 13 12 4	6 22 5 8 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	7 20 17 32 34	.05 .04 .01 .01 .01	.031 .017 .018 .028 .025	12 4 27 24 8	1 2 1 1	.04 .08 .04 .03 .04	27 45 66 95 76	.01 .01 .01 .01	6 3 4 8 3	.31 .37 .41 .43 .34	.02 .02 .01 .01 .01	.10 .06 .13 .15 .07	3 3 2 2 1	2 1 6 7 3		
C 46776 C 46777 STD C/A	1 1 U-R 19	1 1 9	9 29 57	33 392 37	64 171 134	.4 3.0 7.6	3 2 68	6 5 28	997 359 1054	2.94 2.70 4.22	37 180 40	5 5 19	ND 3 7	9 4 40	11 5 51	1 1 18	2 2 17	2 2 19	9 9 58	.13 .05 .51	.044 .022 .089	17 6 38	2 1 61	.17 .14 .89	47 22 180	.01 .01 .08	3 2 32	.56 .48 1.93	.02 .01 .08	.14 .11 .16	1 2 12	92 4225 480		

PHONE (604) 253-3158 FAX (604) 253-

MAGCIA: AIKENS

8

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DISESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR DNE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M5 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: DET 21 1987 DATE REPORT MAILED: Oct 28/87 ASSAYER. J. DEAN TOYE, CERTIFIED B.C. ASSAYER TERRA MINES LTD. File # 87-5080

SANPLES	PPN	PPM	PB	2N PPM	A6 PPN	NI PPH	PPN PPN	nn PPH	FE	AS PPN	U PPM	AU PPM	PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA X	. P 1	PPM	CR PPM	. M6 1	BA PPM	TI I	B PPH	AL	na I	K I	PPM	AU t PPB	
C 46746	1	17	18	37	.1	2	1	106	.61	2	5	ND	1	4	1	2	2	1	.01	.004	2	1	.01	3 -	.01	5	.03	.01	.01	2	590	Ň
C 46747	2	582	25559	2096	26.5	2	- 3	42	5.83	106	5	24	1	9	20	8	2	3	.01	.024	5	1	.01	.9	.01	3	14	.01	.07	1	52600)
C 46748	1	97	11585	1399	28.7	2	4	52	6.31	75	5	63	1	5	15	4	3 .	2	.01	.009	2	1	.01	5	.01	3	.06	,01	.05	106	109700	
C 46749	4	1224	30769	8072	38.4	3	6	154	6.06	126	5	21	1	13	81	8	3	2	.04	,012	2	1	.01	5	.01	5	.07	.01	.02	655	28600	
C 46750	2	481	17241	2605	27.6	3	3	142	4.78	86	5	31	1	8	22	6	2	2	.03	.014	2	2	.01	6	.01	6	.08	.01	.04	134	27400	
C 46751	3	877	29882	4812	98.1	3	4	129	7.53	123	5	193	i	28	54	10	2	2	.30	.022	3-	1	.08	7	.01	3	.11	.02	.06	163	219800	
C 46752	2	542	27769	3380	122.9	2	- 4	57	7.26	127	5	218	1	13	36	15	5	1	.01	.008	2	1	.01	4	.01	-4	.05	.01	.05	74.	80600	
C 46753	- i i	293	19638	384	94.2	4	2	24	4.16	39	5	222	1	9	. 4	2	3	1	.03	.009	2	4	.01	3	.01	. 4	.05	.01	.04	736	162600	
C 46754	4	775	5199	5480	5.3	2	1	261	1.98	25	5	6	1	9	64	2	2	1	.19	.010	2	1	.02	- 4	.01	3	.05	.01	.02	509	4470	
C 46755	1	162	3909	187	4.4	2	1	177	1.23	10	5	6	1	11	1	2	2	1	.36	.010	2	1	.04	4.	.01	2	.05	.02	.04	223	8710	
C 46756	1	41	93	78	.7	2	1	132	.84	7	5	2	2	5	1	2	2	2	.02	.008	3	1	.01	5	.01	3	.05	.01	.03	· 3	3040	
C 46757	1.	45	56	70	.2	3	2	58	1.22	-11	- 5	ND	2	4	1	2	2	2	.01	.007	5	2	.01	4	.01	2	.06	.01	.05	1	510	
C 46758	. 1	64	66	159	.3	3	1	119	1.62	. 9	5	ND	1	10	. 1	2	2	1	.01	.008	2	1	.01	3	.01	2	.03	.01	.02	5	4930	
C 46759	2	349	20621	3236	14.0	1	2	40	3.23	38	5	11	. 1	9	32	2	-2	2	.03	.011	2	1	.01	- 4	.01	2	.05	.01	.03	996	43400	
C 46760	· 1	170	6804	1233	6.0	2	3	206	3.06	30	5	5	2	13	11	2	2	2	.14	.016	3	1	.04	6	.01	6	.07	.01	.06	4	6140	
C 46761	. 4	806	17994	8539	18.7	2	6	352	6.23	126	5	10	3	. 45	94	7	2	3	.78	.030	5	1	.19	10	.01	2	.14	.03	.10	6	60200	
C 46762	1	13	122	201	.3	6	7	1252	4.85	3	5	NÐ	13	16	1	2	2	6	.34	.114	29	1	.06	. 40	.01	4	.51	.04	.19	1	. 74	
C 46763	1	442	7126	593	21.0	2	4	145	7.61	63	5	30	2	6	2	6	3	7	.01	.035	2	. 1	.02	7	.01	.2	.10	.01	.05	20	25800	
C 46764	- 3	379	11082	4976	15.6	2	2	45	3.11	61	5	22	1	9	56	_j 2	2	1	.04	.008	2	8	.01	4	.01	2	.05	.01	.02	30	52300	÷ (
C 47626	1	129	705	234	6.8	- 3	- 3	610	2.60	15	5	21	3	5	1	4	2	9	.02	.019	2	5	.02	7	.01	2	.10	.01	.04	686	29500	
C 47627	1	. 34	654	147	.3	2	1	. 46	.98	4	5	ND	1	2	1	2	2	1	.01	.006	2	2	.01	2	.01	2	.03	.01	.01	1	6040	
C 47628	· 1	122	8985	418	14.7	1	. 2	46	6.36	240	5	10	6	7	1	5	2	- 4	.01	.069	13	1	.01	15	.01	- 4	.26	.01	.14	7	23200	
C 47629	1	224	16540	785	23.4	2	2	140	8.50	228	5	23	1	7	2	8	3	9.	.01	.039	2	1	.01	. 8	.01	3	.08	.01	.06	22	16100	
C 47630	1	272	3449	243	3.0	1	1	54	2.04	35	5	6	10	1	- i	2	2	6	.02	,053	29	2	.03	19	.01	3	.35	.01	.15	1	7730	
C 47631	- 1	303	571	157	16.4	2	2	29	2.99	31	5	28	2	5	1	2	2	2	.01	.012	2	1	.01	2	.01	2	.04	.01	.03	1	61505	ļ
C 47632	1	154	479	120	20.6	i	2	40	3.56	35	5	45	1	6	1	2	2	2	.01	.008	2	1	.01	3	.01	2	.04	.01	.02	2	35700	.
C 47633	1	93	606	61	9.7	1	1	33	1.47	31	5	11	1	6	1	2	3	1	.01	.006	2	1	01 ر	2	.01	2	.02	.01	.01	· 1	41100	1
STO C/AU-R	18	57	41	132	7.1	67	27	1037	4.04	41	15	7	39	51	18	18	20	57	. 48	.087	38	55	.85	180	.08	35	1.86	.08	.13	14	500	1.

- ASSAY REQUIRED FOR CORRECT RESULT for P6 = 19,000 PPM

,	3						•				T	ERRA	MI	NES	LTD	•	FIL	E #	87-	-503	8												Page			
	SAMPLEN	HO PPH	CU	PS PPH	ZN PPM	A6 225	NI PPH	CO PPM	MN PPH	FE	AS	U PPN	AU PPM	TH PPH	SR PPM	CD PPN	SB PPM	BI	V PPH	CA	P	LA	CR PPM	K6 Z	BA PPN	T1 1	B PPH	AL	NA Z	ĸ	¥ PPH	AUI PPB			(
	C 47603 C 47604 C 47976 C 47981 C 47982	1 1 1 1 1	20 8 10 61 10	70 11 4 9 8	30 43 1 11 7	.6 .2 .1 .5 .1	3 4 5 3 5	2 7 1 3 1	149 752 40 301 133	.96 2.91 .44 1.18 1.42	4 2 2 2 4	5 5 5 5 5	NÐ ND ND ND	1 11 1 2 1	18 9 5 3	1 1 1 1 1	3 2 2 2 2	2 2 2 2 2 2	1 9 2 5 1	.01 .15 .26 .02 .01	.004 .069 .102 .018 .005	2 20 2 4 2	3 3 2 1 6	.01 .11 .08 .02 .01	487 52 16 21 4	.01 .01 .01 .01	6 11 6 12 12	.03 .58 .22 .19 .06	.01 .03 .02 .01 .01	.01 .20 .08 .05 .02	3 2 1 2 20	1940 2 1 1280 70	MAY SAY BLUS	FL DWER JR SWER BIR 12 ,		
	C 47983 C 47984 C 47985 STD C/ALI-R	1 1 19	6 18 62 62	33 329 40	25 11 259 128	.5 .5 2.8 7.5	2 1 2 69	1 1 1 29	38 22 43 1055	.80 .57 1.50 4.13	11 3 23 38	6 5 19	ND ND 5 7	1 1 1 40	2 6 3 51	1 1 18	2 2 18	2 2 2 21	1 1 1 59	.01 .01 .01 .47	.005 .002 .007 .089	2 2 38	2 2 1 61	.01 .01 .01 .86	9 1 3 162	.01 .01 .01 .08	4 12 7 37	.11 .01 .03 1.98	.01 .01 .01 .06	.07 .01 .02 .13	3 2 2 12	350 495 21710 510			(
									- - -))(
																					-															
									-										, - , -																	L L
						•																													i	よ。 し、 よ
															•			• •			· · · ·															原語でい
を受け																																			R	
ALL DASK						: • •									•										•									9.	20v4	
								· · · ·																										(, ,	7	C

ACME ANALYTIC ABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604)253-3158 FAX (604)253-171

GEOCHEMICAL ICF ANALYSIS

RECEIVED Bet 17/19

PLUTTED

.500 GRAN SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HNO3-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M5 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-2 ROCK P3-SOIL AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

										-2 101				mine i a	·• ··	nn 1 Nu /-	1 14 5	nan en		,	1-	1											
	DATE	REC	CEIV	ED:	0C	T 5 19	87	DAT	TEF	EPO	RT M	AIL	ED:	ÔĊ	<i>t !:</i>	5/8	7	ASS	SAYE	к. Д	1.50	eye	D	EAN	төү	Е, С	ERT	IFIE	D B	.C.	ASS	AYER	
											TER	RA M	1INE	S LI	D.	F	ile	# 8	7-4	579		Page	e 1										
	SAMPLE)	NO PPN	CU PPN	PB PPH	ZN PPP	I AG PPM	NI PPH	CD PPM	NN PPN	FE X	AS Ppm	U PPN	au PPM	TH PPM	SR PPN	CD PPM	SB PPM	BI PPM	V PPM	CA X	P	LA PPM	CR PPH	H6 X	BA PPH	11 1	B PPM	AL X	NA Z	K	N AUT PPH PPB	
¥0~	C 46600 C 46725 C 46726 C 46727 C 46728		1 3 8 13 21	26 330 2127 1795 3782	591 3856 34871 5625 15465	125 1818 4586 1857 2396	2.4 14.6 145.0 130.3 144.4	1 1 3 1 2	1 5 5 7 12	84 443 158 192 217	.99 2.10 1.56 14.74 19.73	11 2 270 602	5 5 5 5 5	ND ND ND 49 27	1 1 1 2 1	9 19 7 2 8	1 13 42 4 11	2 9 94 163 133	2 2 3 2 2	10 1 1 6 7	.07 .21 .03 .01 .01	.007 .011 .009 .026 .025	2 2 2 2 2 2	3 1 2 2 1	.01 .05 .01 .02 .02	5 7 7 8 6	.01 .01 .01 .01	3 3 3 4 2	.06 .08 .07 .22 .13	.01 .01 .01 .01 .01	.03 .04 .04 .04 .04	1 1030 1 3020 6 3270 4 13780 9 28400	
	C 46729 STD C/A C 46730 C 46731 C 46732	IU-R	1 20 1 4 8	27 59 38 398 366	133 39 236 886 1605	44 134 56 997 811	1.2 7.4 1.4 4.0 29.1	3 67 3 5 3	3 29 2 27 9	275 1048 221 156 301	1.55 4.07 1.22 13.51 6.87	3 39 4 637 466	5 21 5 5 5	ND 8 ND 5 22	2 39 1 3 4	4 51 3 4 6	1 19 1 1B 3	2 17 2 136	2 19 2 3 96	2 57 1 16 5	.02 .50 .02 .01 .01	.013 .089 .004 .017 .026	7 38 2 5 8	3 61 3 5 4	.01 .92 .01 .02 .03	19 176 7 10 12	.01 .06 .01 .01 .01	4 35 4 11 6	.15 1.86 .06 .09 .24	.01 .06 .01 .01 .01	.07 .13 .01 .06 .07	i 210 13 480 1 130 3 4930 2 28200	
YONNE	C 46733 C 46734 C 46735 C 46735 C 46736 C 46737		1 1 1 2 2	87 52 19 172 156	694 754 259 95 877	309 157 399 747 113	4.6 14.8 .5 2.5 31.8	2 2 4 6 3	7 3 5 10 2	153 70 560 1098 90	3.94 3.46 2.14 4.70 2.50	132 243 10 48 205	5 5 5 5 5	3 16 ND ND 15	5 4 4 5 1	10 5 10 14 1	1 1 3 7 1	3 2 2 2 5	2 2 2 2 2 2	3 2 7 4 1	.02 .01 .11 .07 .01	.038 .038 .038	18 20 11 15 3	4 3 3 4 3	.01 .01 .30 .04 .01	22 16 37 55 5	.01 .01 .01 .01	7 5 3 5 6	.24 .22 .68 .29 .09	.01 .01 .01 .01 .01	.14 .12 .10 .12 .05	1 3510 1 13620 1 670 1 310 1 21400	
451	C 46738 C 46739 C 46740 C 46741 C 46742		14 1 2 10 3	1676 735 1272 732 215	33704 1562 1890 2081 37307	11688 143 616 8364 240	120.3 33.8 145.6 9.0 42.0	6 2 2 9 2	5 1 5 36 2	65 79 108 2970 63	1.93 1.06 9.77 10.99 .99	82 69 101 17 50	5 5 5 5	8 13 ND 3 5	1 1 1 1	8 1 1 5 3	102 1 1 53 3	108 5 607 2 27	24 10 7 6 11	1 1 10 1	.01 .01 .01 .01 .01	.002 .003 .007 .017 .001	2 2 8 2	2 3 3 2 2	.01 .01 .01 .07 .01	4 4 27 3	.01 .01 .01 .01	3 2 4 2 3	.02 .03 .07 .15 .01	.01 .01 .01 .01	.01 .01 .03 .09 .01	2 4300 1 15760 2 1340 4 4600 1 4210	
Run	C 46743 C 46744 C 46745 C 47501 C 47601 C 47602		2 2 1 1 4	234 46 11 5 445	782 9140 175 95 34429	1007 347 27 42 892	12.1 19.6 .4 .2 78.2	3 1 4 3 1	6 4 1 6 2	242 78 154 967 73	4.82 2.96 .65 3.60 3.71	26 68 2 6 43	5 5 5 5 5	3 2 ND ND ND	1 1 3 1	2 3 1 228 39	2 1 1 1 4	12 7 2 2 38	2 6 2 2 2	3 2 1 4 1	.01 .01 .01 5.06 .02	.019 .008 .001 .039 .010	3 7 2 8 2	3 3 5 2 3	.02 .01 .01 .22 .01	15 8 1 23 32	.01 .01 .01 .01 .01	3 8 2 2 5	.19 .12 .01 .20 .25	.01 .01 .01 .01 .01	.07 .06 .01 .11 .12	1 3240 1 2310 1 83 1 48 1 1170	
7.4.10	C 47974 C 47975 C 47975 C 47977 C 47978 C 47979		1 2 1 3 1	22 18 13 12 7	888 1435 106 69 28	71 963 90 24 11	1.7 2.4 .4 .1	3 6 2 5 4	1 6 2 2 2	150 143 365 194 86	.77 3.54 1.51 .98 1.14	21 52 18 2 2	5 5 5 5 5	ND ND ND ND	1 7 1 4 4	7 4 6 6	1 1 1 1 1	2 3 2 2 2	3 2 2 3 4	2 6 1 1 6	.03 .01 .01 .23 .03	.010 .031 .015 .014 .022	3 17 5 7 8	4 8 3 4 8	.01 .02 .02 .18 .18	11 17 7 9 24	.01 .01 .01 .01 .02	2 5 5 2 6	.12 .31 .14 .18 .32	.01 .01 .03 .03	.06 .15 .07 .01 .16	41 1620 1 530 1 21 1 4 1 1	
	C 47980 C 51101 C 51102 C 51103 C 51103		2 1 1 1 2	10 9 20 12 38	37 41 2392 169 1146	20 245 153 149 601	.2 .1 1.9 .3 .5.1	3 4 3 5 6	2 10 5 6 13	161 1168 440 616 755	.75 4.87 2.08 3.29 4.25	2 8 10 21 93	5 5 5 5 5	ND ND ND ND 3	2 1 1 1 4	2 3 3 2 10	1 3 1 2 2	2 3 2 2 2	3 2 2 2 2 2	4 15 31 4 17	.10 .01 .01 .01	.006 .029 .029 .017 .041	6 4 5 2 13	9 4 5 4 6	.18 .03 .02 .02 .02	9 49 27 31 27	.01 .01 .01 .01 .01	2 4 4 8	.27 .17 .15 .09 .29	.03 .01 .01 .01 .02	.06 .06 .07 .03 .14	i 30 i i i 148 1 1480 3 2270	
↓ _7	C 51106	in de la composition de la composition Presentation de la composition de la comp	2	243	3475	401	55.9	3	3	82 1857	4.08	522 29	5	68 ND	17	i 5	1	48 2	2	1 10	.01	.019	2 23	5 10	.01	3 160	.01	2	.05	.01	.01 .26	2179900 1 1000	-

- ASSAY REQUIRED FOR CORRECT RESULT for Pb - 10,000 ppm

(

GEOCHEMICAL/ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HW03-H20 AT 95 DEG.C FOR_ ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-ROCK P2-SLUDGE P3-CORE/ROCK

lug CFY.DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED: AUG & 1987 DATE REPORT MAILED: ASSAYER ... TERRA MINES LTD. File # 87~3028 Page 1 SAMPLE 03 FE AS U AU TH SR 60 SB BI V CA Ρ LA CK All ΜŪ CH ΖN AG NI HN MG BA

		PPM	PPN	PPN	PPN	PPN	PPM	PPH	PPM	2	PPM	PPN	PPN	PPĦ	PPM	PPN	PPM	PPM	PPM	X	2	PPN	FPN	7	PPM	7	PPM	7	ž	2	PPH	01/1	
7	C-46501	1	21	15	69	.1	. 6	6	519	2.15	2	5	ND	6	32	1	2	2	25	, 37	.052	14	9	.62	50	.06	2	1.31	.04	.23	1	.001	
í.	£-46502	1	13	37	32	.2	2	2	421	1.36	15	5	ND	i	7	1	2	2	7	.04	.008	3	1	.03	32	.01	- 7	.14	.02	.07	- 5	.001	
	C-46503	. 1	25	205	82	4.1	2	4	70	2.99	59	5	ND	2	3	1	2	2	3	.03	.007	· ņ	1	.03	14	.01	14	.14	.01	.09	1	.007	
	C-46504	1	6	16	50	.1	5	6	392	2.11	3	5	ND	4	41	1	2	2	· 25	.43	.053	10	8	. 64	48	.10	9	1.33	.05	.27	1	.001	
	6-46505	1	3	14	59	.2	5	4	358	1.72	2	5	ND	4	46	1	2	2	- 23	.49	,038	11	7	.55	36	.09	2	1.21	.07	. 18	1	.001	
	C-46506	1	5	7	13	.1	3	2	140	.88	2	5	ND	1	26	1	2	2	9	.13	.012	2	2	.19	48	.06	16	. 49	.06	.21	2	.001	
	C-46702	· 1	19	910	22	1.4	15	5	274	1.26	4	8	ND	4	7	1	2	4	-5	.09	.015	17	8	25	20	.02	2	.56	.02	.10	2	.001	
	C-46703	. 1	12	23	9	.2	. 7	4	134	1.15	2	5	ND	2	7	. 1	2	3	3	.08	.009	-4	8	.09	15	.01	22	. 29	.02	.07	1	.001	
	C-46704	1	5	16	22	.1	4	3	897	1.64	3	5	ND	2	68	1	2	2	3	.10	.036	5	3	.22	2813	.02	2	.22	.01	.07	2	.001	
	C-46705	1	35	5	13	.2	7	2	166	.88	2	5	ND	3	4	1	2	2,	3	.04	.020	12	3	.15	18	.01	2	.30	.01	.04	1	.001	
	C-46706	1	5	3	1	.1	2	1	77	.37	2	5	ND	1	1	1	2	2	ľ	.01	.003	2	4	.01	44	.01	2	.01	.01	.01	1	.001	
	C-46707	1	17	4	3	-1	3	1	88	1.22	2	11	ND	1	46	i	2	2	2	.14	.077	4	3	.04	19	.01	2	.12	.01	.05	1	.001	
	C-46708	1	44	33	20	.1	14	5	292	2.74	22	5	ND	2	6	1	2	2	7	.01	.031	- 6	7.	.22	29	.02	2	. 49	.01	. 14	1	.001	
	C-46709	. 1	7	4	3	.1	5	1	129	.87	2	5	ND	1	2	1	2	2	- 1	.01	.006	2	7	.02	5	.01	2	.07	.01	.02	1	.001	
	C-46710	1	99	891	53	10.6	2	1	57	1.52	96	5	ND	5	38	t	3	16	2	.01	.020	12	2	.01	27	.01	3	.19	.01	.14	1	.002	
	C-46711	1	31	149	15	2.3	2	1	76	.77	19	6	NØ	1	3	1	2	7	i	.01	.002	2	5	.01	8	.01	2	.06	.01	.05	1	.051	
	C-46712	1	14	201	16	3.0	2	1	34	.59	24	5	ND	1	3	1	2	6	1	,01	.004	2	5	.01	4	.01	2	.02	.01	.02	1	.030	
	C-46713	1	130	660	99	4.5	3	1	75	2.19	61	5	NÐ	1	3	1	8	7	4	.01	.013	2	3	.01	12	.01	2	.11	.01	.05	1	.028	
	C-46913	1	7	13	15	.1	8	2	129	.91	- 4	5	ND	2	2	1 -	2	2	4.	.03	.013	5	· ę	.17	14	.02	2	. 39	.01	.13	2	.001	
	C-46914	t	25	13	6	.1	7	2	223	1.24	· 4	5	ND	1	2	1	2	2	3	.01	.012	2	5	.02	8	.01	2	.09	.01	.02	1	.001	
	C-47401	1	12	13	56	.3	5	8	656	2.75	3	6	ND	6	24	1	2	2	23	.32	.086	12	5	.57	. 76	.06	3	1.15	.03	.32	1	.001	
	C-47402	1	4	10	46	.1	5	5	903	1.95	3	5	ND	7	13	1	2	2	13	.24	.066	16	5	.23	117	.01	. 4	.76	.03	.31	. 1	.001	
	C-47403	1	. 3	16	53	.2	4	7	806	2.88	7	5	ND	9	14	1	2	2	12	.21	.072	18	2	.15	58	.01	2	.60	.02	.24	1	.001	
	C-47404	1	14	182	210	.5	4	6	769	2.62	22	5	ND	12	8	1	2	2	5	.10	.056	25	3	.04	55	.01	3	.52	.01	.22	1	.003	
	C-47405	1	15	368	206	1.5	3	3	258	2.00	34	5	ND	4	-4	1	2	2	3	.04	.029	- 8	1	.01	23	.01	3	.21	.01	.12	1	.067	
	C-47407	1	8	52	87	.1	· 4	6	561	2.78	19	5	ND	5	5	1	2	2	8	.03	.031	13	5	.03	33	.01	3	.31	.01	.16	1	.007	
	STD C	19	60	43	132	7.6	73	29	1021	3.98	40	21	8	39	52	20	18	22	60	.48	.094	39	60	. 89	180	.09	36	1.85	.06	.15	12		

ACME ANALYTICAL LABORATORIES LTD.

A STATE OF A

÷, -

(.,

€.

€.

¢.:

٤

Ć

C

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH JNL 3-1-2 HCL-HM03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR NS BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE. 1 1

	DATE	RE	CEIV	ED:	NOV	13 19	87	DAT	re F	REPO	RT M	AIL	ED:	No	v2	3/8	7	AS	SAYE	R. 🖌	I.,	Ъų	4.D	EAN	TOY	E, C	ERT	IFIE	D B	.c.	ASS	AYEF	*
										•	TER	RA M	IINE	S LI	D.	F	file	# 8	37-5	665		Page	2 1										
	SAMPLE)	MO PPN	CU PPN	P9 PPN	ZN PPM	A6 PPN	NI PPM	CO PPM	MN PPM	FE Z	AS PPM	U PPN	AU PPM	TH PPM	SR PPH	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P	LA PPM	CR PPM	H6 1	BA PPN	11 1	8 PPH	AL I	NA I	K Z	N PPN	AU1 PPB
	C 47501 C 47502		1	13 10	83 180	66 174	.2	2	9 7	1270 1222	4.09	44	5	ND ND	- 4	4	- 1	2	2	19 12	.02	.032	8 15	3	.05	56 37	.01	2 2	.32	.01	.09	1	480 310
	C 47503 C 47504 C 47505	•	1 1 1	9 7 6	320 386 79	56 34	.5 1.4 .6	3 3 2	10	1345 910 910	4.98 3.30 2.74	65 28	5 6 5	UN D ND	4	· 4 5	1	2 2 2	3 2	14 5	.03 .01 .04	.021	10 10	3 1	.04 .03	- 36 29	.01	2 5	.28 .24	.01	.09	1	660 82
/	C 47506 C 47507 - C 47508 - C 47509 - C 47510		1 1 1 1 1	6 7 7 7 6	38 73 327 27 23	52 41 53 55 62	.4 .3 1.9 .1	2 3 4 2 3	7 5 11 9 8	1358 767 981 1570 1351	3.66 2.32 3.53 4.33 4.17	13 34 78 38 33	5 5 5 5 5	ND ND 2 ND ND	6 3 4 3 2	5 4 4 4	1 1 1 1	2 2 2 2 2 2 2	2 2 3 2 2	9 2 13 11 16	.05 .03 .01 .02 .01	.047 .028 .026 .034 .032	17 9 9 9 7	1 2 2 2 1	.05 .02 .93 .05	35 27 34 38 53	.01 .01 .01 .01	4 2 7 2 2	.34 .20 .27 .27 .24	.01 .01 .01 .01	.16 .09 .08 .09 .06	1 2 1 1 1	12 105 2350 56 53
	C 47511 - C 47512 - C 47513 - C 47589 - C 47689	己爱	1 1 1 2 1 2 3	8 4 7 7 5	9 127 92 24 25	34 78 41 49 36	.2 .2 .1 .1	3 3 3 4 3	7 11 5 11	1007 1243 899 1208 797	2.92 4.00 2.66 3.53 2.88	41 67 20 59 46	5 8 5 5	nd Nd Nd Nd	4 3 2 4 5	4364	1 1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 12 12 11	.02 .01 .01 .02	.028 .026 .016 .024 .022	9 9 4 12 15	2 2 2 1 3	.03 .04 .03 .08	25 35 25 140 49	.01 .01 .01 .01	2 2 3 3 3	.19 .27 .26 .42 .38	.01 .01 .01 .01	.09 .08 .09 .10 .11	2 1 1 1	43 57 89 74 81
	C 47691 C 47692 C 47693 C 47694 C 47694 C 47695			5 7 2 6 3	17 45 12 7 20	28 43 42 34 51	.1 .1 .1 .1 .1 .1	5 4 4 3 1	8 9 6 6 9	696 679 1310 776 1128	2.24 2.82 2.81 2.53 3.49	38 50 14 27 37	5 5 5 5 5 5	HD ND ND ND ND		5 5 * 4 5 3	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	- 2 2 2 2 2 2 2 2	8 7 11 8 21	.02 .02 .01 .01 .01	.025 .021 .022 .024 .025	24 12 8 9 9	3 2 2 3 1	.04 .12 .10 .04 .03	51 47 81 55 32	.01 .01 .01 .01 .01	5 3 5 5 3	.40 .49 .49 .28 .26	.01 .01 .01 .01 .01	.19 .12 .11 .12 .08	1 1 1 1 1	143 210 18 34 80
	C 47696 C 47697 C 47698 C 47698 C 47699 C 47700			6 7 7 8	72 11 136 192 155	69 59 54 45 49	.1 .1 .1 .2 .3	3 3 4 4	9 8 7 10 8	1414 1455 1067 1221 1361	4.25 4.19 3.11 3.78 3.96	26 30 25 54 39	5 5 5 5 5 5	nd Nd Nd Nd Nd	234	65454	1 1 1 1 1 1	2 3 4 2 2	2 2 2 2 2 2 2	18 21 11 11 10	.03 .01 .02 .02 .01	.030 .033 .030 .030 .028	8 7 12 9 11	3 2 2 2 2 2	.10 .06 .04 .07 .05	61 48 41 42 37	.01 .01 .01 .01 .01	2 3 4 5 4	.46 .29 .28 .34 .25	.01 .01 .01 .01 .01	.09 .08 .10 .10 .11	1 1 1 1	82 73 750 240 117
/	- C 48426 - C 48427 - C 48428 - C 48428 - C 48429 - C 48430		1 1 1 1 1	4 6 5	8 17 9 14 14	58 69 22 120 58	.1 .1 .1 .1 .1 .2	3 4 1 4 2	5 10 3 12 8	1375 1668 594 2242 1160	3.76 4.60 1.54 6.84 3.53	14 28 9 9 23	5 5 5 5 5	ND ND ND ND ND	2 6 1 - 4 5	4 5 2 10 7	1 1 1 41 1	2 2 2 2 2 2 2	2 2 2 2 2 2	17 19 7 6 6	.01 .01 .01 .08 .06	.029 .041 .013 .056 .040	6 17 6 12 13	2 2 1 1 1	.03 .06 .02 .08 .05	55 55 23 47 39	.01 .01 .01 .01 .01	3 3 2 2 2 2	.20 .38 .13 .26 .31	.01 .01 .01 .01 .01	.06 .11 .05 .11 .12	1 1 1 1	1 22 1 8 11
	- C 48431 C 48432 C 48433 C 48434 C 48435		1 1 1 1 1	? 5 6 8	19 6 19 32 4	111 44 128 37 49	.1 .1 .1 .1 .2	6 3 5 3	15 6 14 8 9	2264 1186 2015 993 1210	6.94 3.23 6.49 3.14 3.85	66 14 31 76 54	5 5 5 5 5	ND KD ND ND	6 3 7 4 6	7 5 8 4 5	1 1 1 1	2 2 2 3 2	2 2 2 2 2 2	10 15 9 6 5	.07 .02 .08 .01 .02	.049 .029 .065 .027 .046	15 9 20 13 17	2 1 3 2 1	.07 .07 .07 .03 .04	69 59 59 31 36	.01 .01 .01 .01 .01	3 2 4 4 3	.43 .32 .37 .18 .24	.01 .01 .01 .01 .01	.14 .08 .14 .09 .13	1 1 1 1	23 1 19 79 24
	C 48436 STD C/A	U-R	1 20	9 63	44	66 132	.1 7.4	4	11 30	1216 1117	3.95 4.08	73 41	5 22	ND 8	5	5 52	1	2 19	2 23	9 61	.01 .50	.032	18 42	4	.04	37 183	.01	2 34	.27 1.92	.01 .07	.12 .14	1 11	55 480

	and the second	۶L	1.									TĘ	RRA	MIN	ËS	FI	LE #	87	-560	2												
1 Section	APLE)	ND PPN	CU PPK	PB PPN	ZN PPM	A6 PPN	NI PPN	CO PPN	MN PPH	FE X	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPH	SB PPM	BI PPH	V PPM	CA Z	P I	LA PPN	CR PPH	H5 I	BA PPN	TI 7	B PPM	AL I	na I	K I	N PPM	AU1 PPB
C 4 C 4 C 4 C 4 C 4	47683 47684 47685 47686 47687	1 1 1 1	3 3 4 6	14 20 25 15 98	43 35 37 42 39	.6 .3 .2 .2 .5	4 2 4 4 4	7 4 4 5 6	995 637 740 1127 634	3.62 2.02 2.44 3.70 2.43	23 13 18 16 46	5555	nd Nd Nd Nd Nd	12 4 4 9 4	6 8 9 5 4	1 1 1 1	2 2 2 2 2 2	2 2 3 2 3	8 9 14 7	.11 .07 .05 .03 .04	.061 .029 .020 .031 .023	24 8 5 17 10	3 2 4 4 3	.04 .07 .05 .06 .05	33 31 32 46 38	.01 .01 .01 .01 .01	5 4 4 4 4	.47 .42 .35 .47 .48	.02 .02 .02 .01 .01	.20 .09 .10 .14 .14	3 1 2 3 3	50 156 33 74 139
C - C - C - C - C - C - C - C - C - C -	47688 47853 47854 47855 D C/AU-R	i 1 1 1 17	5 6 9 58	19 6 11 5 36	46 5 7 14 128	.3 .2 .5 .1 7.0	4 4 5 9 66	7 5 3 26	965 726 1211 443 1001	2.85 2.02 2.12 1.14 3.94	30 6 5 2 40	5 5 5 5 21	ND ND ND ND 7	7 12 8 10 38	6 5 4 49	1 1 1 18	2 2 2 19	2 2 2 2 21	12 3 4 56	.04 .01 .01 .02 .49	.028 .015 .013 .008 .084	16 19 13 17 37	4 4 6 62	.08 .02 .04 .07 .86	76 24 26 41 167	.01 .01 .01 .01	4 2 3 2 30	.59 .19 .21 .37 1.89	.01 .01 .01 .01 .08	.15 .10 .07 .18 .13	3 1 1 1 14	49 28 315 6 480
	47856 47857 47858 47859 47860	2 1 1 2 1	8 6 13 16 7	16 4 4 17 2	11 8 10 26 28	.2 .2 .3 .3 .3	6 10 25 20	3 4 7 6	1486 989 1026 1610 1351	7.20 1.37 1.51 2.90 2.95	2 3 2 2 2	5 5 5 5 5 5	nd Nd Nd Nd	17 12 9 15 13	10 5 9 6 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2	6 3 8 6	.01 .01 .07 .05 .07	.019 .010 .008 .012 .014	28 17 16 26 21	8 8 5 12 8	.04 .08 .12 .30 .33	69 17 31 44 64	.01 .02 .01 .01 .01	3 2 4 4 3	.45 .17 .25 .71 .40	.01 .01 .01 .01 .01	.21 .03 .14 .20 .25	1 2 2 1 1	585 12 17 28 6
	47861 47862 47863 47864 47865	3 2 1 1	28 33 6 17 18	5 25 8 5 16	14 10 16 7	.3 .5 .2 .4 .7	10 13 15 4 7	6 10 5 2 3	988 683 564 522 618	1.47 1.62 2.23 .90 1.01	3 5 2 2 2	5 5 5 5 5	ND ND ND ND ND	9 12 10 8 12	4 5 3 7	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	4 5 7 2 3	.04 .05 .03 .01 .03	.008 .007 .008 .004 .011	15 16 18 15 23	5 10 10 3 7	.17 .17 .25 .07 .07	30 52 54 21 32	.01 .01 .02 .01 .01	2 3 4 2 4	.30 .37 .59 .15 .25	.01 .01 .01 .01 .01	.13 .19 .21 .08 .10	1 1 1 2	9 2 21 9 11
	47866 47867 47869 47869 47870	1 1 2 1 1	17 7 4 11 12	4 2 45 6 3	7 4 4 10 2	.3 .2 .5 .3 .2	8 4 7 11 4	3 2 3 5 2	455 282 104 693 400	1.48 .52 .87 1.31 .92	2 3 2 2 2	5 5 5 5 5	ND ND ND ND	12 9 17 9 5	8 2 9 11 2	1 1 1 1	2 2 2 2 2	2 2 2 2 3	3 2 5 4 1	.08 .01 .14 .15 .02	.006 .006 .047 .015 .004	17 16 29 14 9	5 16 5	.12 .03 .14 .17 .06	23 21 60 38 5	.01 .01 .01 .01 .01	3 3 4 2 2	.20 .14 .45 .35	.01 .01 .01 .01 .01	.07 .08 .20 .14 .04	1 1 2 1 1	8 34 62 48 7
	47871 47872 47873 47874 47875	2 2 1 1 1	6 12 11 11 23	44 2 8 20 4	7 8 59 6 3	.3 .4 .3 .1 .4	4 10 37 5 9	1 8 14 -2 13	125 624 1544 449 617	.77 1.06 4.58 1.15 .87	2 3 3 4	5 5 5 5 5 5	ND ND ND ND	6 11 11 9 11	2 9 9 4 4	1	2 2 2 2 2 2 2	2 2 2 2 2 2	2 3 13 2 2	.02 .11 .10 .01 .01	.005 .016 .027 .006 .008	12 18 17 17 18	12 5 17 7 3	.05 .10 .59 .03 .02	19 48 131 -22 28	.01 .01 .06 .01 .01	2 3 4 2 2	.18 .28 .94 .18 .17	.01 .01 .02 .01 .01	.07 .17 .46 .09 .11	2 1 1 1 1	20 17 2 62 119
- C - C - C	47876 47876 47877 47878 47879 47880	1111	-7 5 6 4 11	2 9 5 2 8	4 1 4 4	.1 .4 .2 .3 .1	4 2 3 3 3 3	12 11 2 1 2	199 121 186 248 417	.83 .98 .72 .60 1.30	2 3 2 3 3	5 5 5 5 5 5	ND ND ND ND	6 10 6 8 7	3 3 2 4 4	1 1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2	1 2 1 1 2	.01 .01 .01 .03 .01	.006 .005 .004 .003 .007	11 19 12 13 14	3 5 3 4	.03 .01 .01 .04 .02	21 22 18 14 14	.01 .01 .01 .01 .01	2 2 2 2 2	.10 .10 .09 .08 .13	.01 .01 .01 .01 .01	.04 .07 .08 .05 .06		8 141 58 1 15
- C 4 - C	47881 47882 -	1 1	5 19	2 3	- 1 9	.4 .3	3 12	_1 5	261 	.51 1.80	2 3	5 5	ND ND	14 20	2	1 1	2	2 2	. 1	.01 .01	.005	20 16	3 5	.02	13 49	.01 .01	2	.06 .30	.01 .01	.04	1 1	8 2

Pa

8

(

(.

(

(

C

(

()

TERRA MINES FILE # 87-5602

5

:

6

(

(

C.

C

C

States and the second	· • • • • • • • • • • • • • • • • • • •																														
THE!	HQ PPH	CU PPN	PB PPN	ZN PPH	AS PPM	NI PPN	CO PPN	NN PPH	FE	AS PPM	U PPN	AU PPH	TH PPM	SR PPM	CD PPM	SB PPH	BI PPM	V PPM	CA	P Z	LA PPM	CR PPM	HG Z	9A PPh	TI I	B PP N	AL Z	NA Z	K Z	N PPN	AU s PPB
C 47883 C 47884 C 47885 C 47885	1 1 1	12 18 6	15 2 2	5 23 2	.1 .2 .1	7 24 5 6	3 7 2 2	472 1464 244 152	1.09	3 2 3	5 5 5 5	ND ND ND ND	7 12 12	3 8 2 2	1 1 1	2 2 2 2	2 2 2 2	2 7 2 3	.03 .07 .01	.007 .018 .004	13 18 17	5 10 4	.04 .23 .01	19 68 35	.01 .01 .01	4 3 2 2	.16 .47 .13	.01 .02 .01	.07 .20 .06	1	51 5 1
- C 47887	i	4	2	6	1	5	3	643	1.27	2	5	ND	7	2	1	2	2	2	.02	.007	11	6	.13	23	.01	2	.20	.01	.08	1	4
- C 47888 - C 47889 - C 47890 - C 47890 - C 47891	1 1 1	2 5 6	2 8 2 20	1 2 2 2 2	.1 .1 .1	1 2 3 2	1 1 1 1	33 48 94 61	.35 1.13 .74 .74	2 2 2 2	5 5 5	ND ND ND ND	5 8 7 5	1 2 1	1 1 1	2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 1	.01 .01 .01	.001 .004 .003	9 14 10 7	2	.01 .01 .01	11 17 17 8	.01 .01 .01	3 3 3	.04 .13 .07	.01 .01 .01	.03 .05 .05	1 1 1 1	2 82 48 330
-C 47892	1	13	2	2	.1	9	2	139	1.48	5	5	NÐ	10	2	1	2	2	2	.01	.008	15	3	.01	39	.01	3	.16	.01	.11	1	210
- C 47893 - C 47894 - C 47895 - C 47895 - C 47896 - C 47897	1 1 1 1	5 2 34 12 3	6 2 7 24 2	1 1 8 6 1	.1 .1 .2 .1 .1	2 2 8 4 1	1 1 4 2 1	44 36 682 346 35	.47 .64 1.53 1.32 .39	3 4 2 2 2	5 5 5 5 5	ND ND ND ND ND	5 4 6 8 3	1 1 2 3 1	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	1 1 2 3 1	.01 .01 .02 .01 .01	.003 .002 .006 .008 .002	9 7 9 15 6	3 2 4 8 2	.01 .01 .06 .05 .01	11 10 27 25 5	.01 .01 .01 .01 .01	2 3 2 4 3	.04 .04 .15 .22 .02	.01 .01 .01 .01 .01	.05 .04 .07 .08 .03	1 1 1 1	12 152 152 350 4
- C 47898 - C 47899 - C 47899 - C 47900 - C 48401 - C 48402	1 2 1 1 1	22 34 3 82 45	5 31 3 47 15	8 7 1 19 20	.1 .3 .2 .7 .3	8 12 1 8 7	3 4 1 4 3	728 115 26 100 60	1.23 2.82 .31 2.68 1.91	2 2 2 3 3	5 5 5 5 5	nd Nd Nd Nd	8 12 8 5 8	3 10 6 3 2	1 1 1 1 1	2 2 2 2 2 2	2 2 2 4 2	3 9 1 4 2	.03 .03 .01 .09 .01	.009 .022 .003 .019 .007	12 18 13 8 12	5 16 3 9 4	.07 .06 .01 .05 .02	53 57 21 24 38	.01 .01 .01 .01 .01	3 2 3 3 3	.23 .49 .08 .25 .14	.01 .01 .01 .01 .01	.15 .16 .05 .10 .07	1 1 1 1	34 835 1 720 2130
- C 48403 - C 48404 - C 48405 - C 48405 - C 48406 - C 48407	1 1 1	75 38 87 239 19	16 11 23 999	9 4 21 100 4	.8 .1 .3 15.6 .1	9 3 5 11 3	5 2 2 4	78 87 383 310 44	2.96 1.38 1.35 3.29 1.03	3 8 2 4	5 5 5 5 5	2 ND ND 3 ND	1 5 6 9	1 1 1 2 1	1.	2 2 2 2 2 2	2 2 2 35 2	1 1 1 2	.01 .01 .01 .02 .01	.002 .003 .004 .006 .003	2 7 10 11 6	3 3 2 5 2	.01 .01 .05 .04 .01	5 13 19 30 18	.01 .01 .01 .01 .01	3 2 2 3 2	.04 .04 .07 .18 .05	.01 .01 .01 .01 .01	.02 .03 .02 .12 .02	1 1 1 1	2070 245 116 2620 99
- C 48408 - C 48409 - C 48410 - C 48411 - C 48412		62 91 7 60 16	19 200 - 8 - 18 13	10 208 3 22 2	:6; 4.9; .1 .5; .1;] 10 2 3 1 3	2 8 1 ? 2 1 4	309 74 25 46 27	1.20 2.52 .51 .77 .63	2 ; 5 10 4 5	5 5 5 5 5	ND 4 ND ND ND	8 2 5 7 4		1 1 1 1 1	2 i 2 2 2 2 2	2 10 2 2 2 2	1) 11 12 12 1	.01 .01 .01 .01 .01	.004 .001 .001 .005 .002	10 2 9 12 10	3 3 3 3 2	.04 .01 .01 .01 .01	13 4 13 28 13	.01 .01 .01 .01 .01	2 2 2 3 2	.07 .03 .03 .07 .07 .04	.01 .01 .01 .01 .01	.05 .01 .04 .07 .02	1 1 1 1 1	4645 6260 76 157 305
- C 48413 - C 48414 - C 48415 - C 48416 - C 48417	1	13 72 37 14 18	11 207 40 41 36	2 9 5 5 7	.2 1.1 .4 .9 .3	2 3 1 3 3	1 1 1 1 1	47 34 27 29 44	.94 1.06 .73 1.15 1.00	5 5 3 10 2		NÐ ND ND ND ND	8 4 5 8 8	1 1 1 1 1	1	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	1 1 1 1 2	.01 .01 .01 .01 .01 .01	.004 .002 .004 .004 .005	14 6 9 12 13	3 2 3 3 3	.01 .01 .01 .01 .01 .01	21 12 24 29 25	.01 .01 .01 .01 .01	2 2 3 2 2	.05 .05 .07 .07 .10	.01 .01 .01 .01 .01	.03 .04 .04 .08 .05	1 1 1 1 1	71 760 240 705 164
C 48418 STD C/AU-R	18	105 57	1347 40	84 132	2.9 7.4	15 68	10 27	30 1014	1.07	2 40	5 20	ND - , 7	4 38,2	1 49	3 17.	2 16 -	5 19	1 56	.01 .49	.002 .084	7 36	3 58	.01	21 176	.01	2 32	.08 [.83 [#]	.01 .09	.05 .14	1 13	62 500

TERRA MINES FILE # 87-5602

Pag

C

€

C

Œ

Ć.

(

6

C

and the second																																
MPLEI		HO PPH	CU PPN	PB PPM	ZN PPH	AG PPH	N] PPM	CD PPN	HN PPH	FE Z	as PPM	, U PPN	au Pph	TH PPN	SR PPM	CD PPM	S8 PPM	BI PPM	V PPM	CA X	P I	LA - PPN	CR PPM	MG 1	BA PPH	TI I	B PPM	AL Z	NA Z	K Z	N PPH	AU1 PPB
C 48419		t	19	7	4	.5	i	2	59	.75	6	5	NO	9	1	- 1	2	2	1	.07	. 003	16	2	. 01	18	.01	2	.07	.01	.04	1	94
C 48420		i	535	173	12	7.6	8	2	87	4.54	5	5	8	5	i i	· 1	2	43	2	.01	.005	6	3	.02	18	.01	3	.08	.02	.07	2	6520
- C 48421		1	254	250	8	7.0	3	1	40	3.21	6	5	5	4	3	1	2	20	2	.01	.008	٠ <u>۶</u> .	3	.01	16	.01	2	.07	.06	.06	11	1280
- E 48422		1	17	16	5	. 6	2	1	45	2.25	2	5	ND	6	7	1	2	2	2	.01	.010	10	3	.01	19	.01	2	.08	.02	.07	1	785
C 48423		1	25	7	9	.2	6	2	43	1.52	2	5	ND	3	4	1	2	2	2	.01	.006	7	2 -	.01	17	.01	2	.09	.01	.05	1	505
						_	_				_			· _ ·			_						_		<u>.</u>							1
C 48424		1	55	58	7	.9	2	1	54	1.84	3	5	2	2	1	1	2	2	3	.01	.007	2	2	.01		.01	2	.04	.01	.02		4210
- C 48425			712	81	14	5.0	19	/	262	4.28	2	2	4 NR	1	- 1	· . 1	2	2	1	.02	.001	- 1 ²	2	.02	- 1	.01	2	.03	.01	.03	.1	115
- C 49401		1	// 77	.0 74	32	•4	20	7	274	1.80	2 7	3	RD No	7	12	1	2	2	ן ד	.03	. 010	13		. 40	40	- 02	2	.19	.01	. 09	. 1	280
- C 49402		1	21	4	. 🤊	.3	Å	2	33	53	2	5	ND ND		4	1	. 7	. ,	2	.05	.072	13	Ă	.01	48	.01	2	.20	.01	.12	1	16
- 6 4/403		•		. *	•	• •		-				5		J	1	•	- ←		•								-			•••		
_ C 49404		£	13	3	16	.1	16	6	1017	1:97	2	5	ND	12	7	· 1	2	2	5	.01	.008	20	7	.13	69	.02	. 3	. 45	.01	.17	1	4.,
-C 49405		2	20	23	19	.9	24	9	1336	2.44	2	5	ND	15	5	1	2	2	6	.03	.014	27	11	.16	54	.01	- 41	. 46	.01	.14	1	1370
-C 49406		1	69	7	10	.2	11	6	2165	2.41	3	5	ND	. 3	. 3	1	2	2	4	.05	.004	6	14	.20	13	.01	2	. 20	.01	.05	1	122
-C 49407		1	11	4	5	.3	- 4	2	159	1.88	4	5	ND	8	2	1	2	2	3	.01	.007	13	5	.02	30	.01	3	.19	.01	.09	1	19
-C 49408	÷	1	18	18	5	.6	4	1	186	3.09	5	5	ND	17	5	1	2	2	6	.01	.015	35	10	.03	89	.01	ذ	. 52	.01	.15	1	140
		1	51	8	5		7	L	123	1.82	Å	5	ND	3	1		2	2	2	-01	.005	5	3	.04	5	.01	2	.09	.01	.03	1	710
-C 49410		i	7	5	4	1	3	2	386	1.07	.2	5	NO	- 5	2	· 1	2	2	2	.01	.005	10	3	.04	10	.01	2	.09	.01	.04	1	18
-C 49411		2.	44	.9	14	.9	13	6	456	3.52	2	5	ND	24	5	1	2	2	8	.01	.024	47	7	.02	82	.01	3	.40	.01	.18	2	610
-C 49412		1	16	5	9	.1	10	. 4	237	1.60	2	· 5	NÐ	9	3	1	2	2	4	.01	.007	17	. 6	.07	48	.01	2	.29	.01	.12	1	350
-C 49413		1	29	3	26	- 4	26	12	975	3.04	2	5	ND	12	6	1	2	2	12	.01	.017	19	13	.32	106	.07	3	.92	.01	.35	2	36
													Lim		· .			-	7	A1	017	71			13	01 ⁵		22	01	15	1	1210
_C 47415		. 1	12	8 	ું ડું 	. 6	. 1		173	1.07	4	3	NU ND	17	10	1	. 4	4		.91	. 412	26	14	. 11	01 81	05	2	.75	.01	.21	2	995
			44	<u></u> ,	17 		. 32 	10	150	2,00	2	3 #	89 100	 	1 10	· · · 1	2	2		.01	.007	9	3	.06	11	.01	2	.11	.01	.03	1	17
- C 49417		A 21-1		. 17	्र २ म 		27	្លាំ	37	1.77	2 2		· 1	7		1	2	2	2	.01	.014	14	8	.01	22	.01	2	.11	.01	.06	ī	4480
- C 49418		1	12	7		3	-	3	-12	1.11	2	័ទ	NÐ	. 9	3	i	2	2	- Ā.	.01	.007	15	6	.08	37	.01	2	.24	.01	.11	1	67
2	1				$\rightarrow i$	$\mathcal{F}_{i} \in \mathcal{F}$		*	n stan	1.16		erse Ter ga e				1. J.															1	÷
-C 49419		٦ ٢	14	. .	9	: .2	5	3	199	1.30	2	5	ND .	9	4	1	2	2	4	.01	.006	12	- 6	.11	16	.02	2	.24	.01	.05	-1	98
C 49420		1	- 19	12	3×1.	·	- 3	#1	. 45	1.62	- 2	5	, M	· • • 2.	, 1	1	1 2	2	1	.01	.005	4	5,	.01	<u>.</u> 9	.01	2	.04	.01	.02	1	633
C 49421		1	: , T	- 2	- 2	.1	, 5	472	ୁ 39	2.90	2	5	្រុល	1	2	1	2	2	2	.01	.004	13	- 3	.04		.01	Z	. 14	.01	.V3	1	67 9050
	1	्रि म ् ।	19	24	2	5.0	2			2.24	6		15				- <u>*</u> :	2	3. 1	01	•V17	12	- 11 - T	07	12	.01	T	.43	.01	.03	1	275
- 6. 47423		en de la	. 	7		- -			D/			7	2 				- 1 - 1	2	. *_;	10.					. 14		100				÷.	->
- F A9474			18 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	្ទុទ័ទ	:9			• 785 S. D	*71	7.41			21	1		1	2	2	4	.01	.017	25	7	.01	35	.01	2	.15	.01	.10	1	1480
A # 1 49475	5		79			 		7	10	1.29		្លៃខ្លី	- 11 0	្វី	1	× 1	2	2	Ē	.01	.009	1	3	.01	10	.01	2	.06	.01	.03	i	196
E 49474		 1	៍ផ្ទៃ	3	2	.1		- Si	46	1.57	2	5	ND	5		i i	2	2	1	.01	.003	11	2	.01	11	.01	2	.05	.01	.03	1	13
- C 49427		i	14	3	13	.1	1	2	107	2.50	7	5	MD	- 4	2	1	2	2	3	.01	.013	8	3	.01	22	.01	3	.11	.01	.06	2	1010
_C 47428		្រ៍	14	7	17	.4	5	5	696	2.79	2	5.	ND	14	4	1	2	2	5	.01	.019	28	5	.02	58	.01	2	.24	10.	.13	2	35
						į.						7		· _	-		-											67		67		174
-C 49429		- 1	- 3	2	1	. 1	2	1	21	.53	4	5	NO .	2	1	1	2	Z	· I	.01	.001	71	2	.01	174	.01	3 71	1 00	101	14	10	140
STE C/AU-R	l	18	59	57	120	7.0	66	- 24	4997	4.03	- 37	17	$\leq l$	57	47	- U	18	: 1¥	23	14	. VO4	20	Ĵ/	.00	1/4	100		1.97	• • • •		14	114

					•						TE	PRΔ	MTN	**** 70	FTI	F #	87.	-560	2												P.
متشنيه ولأنج	Caliptore'		. ¹	18	6.5	<u>ي</u> د.	1.14			63	احد د ر	n na	1	ិ៍ផ្ស			- 25									Ŷ.	177			1	
AMPLE	M	CU	PB	ZN	A5	NI	03	HN	FE	AS	Ŭ	AU	TH	SR	CD	SB	BI	÷γ	CA	P	LA	CR	MG	BA	TI	B	AL	NA	K	. ¥. A	មារ
	PPH	PPN	PPN	PPH	PPH	PPH	PPN	PPH	7	PPH	PPN	PPM	PPN	PPN	PPN	PPN	PPN	PPN	1	1	PPN	PPN	ĩ	PPH	ĩ	PPH	Z	Z	2	PPH P	PB
				,		ы т. •		20	1 07			Nħ	7	1	. 1	,	2	,	A1	700	8	, T	-01	7	.01	2	.03	. ot	.01	1 9	750
- C 49431	1	3	2	2	.1	1	· 1	30	.67	3	5	ND	4	1	i	2	2	i	.01	.002	11	2	.01	10	.01	2	.05	.01	.03	1 3	530 ·
- C 49432	1	3	2	<u> </u>	.1	1	1	35	.56	3	5	ND	7	- <u>t</u>	1	2	2	1	.01	.003	11	1	.01	9	.01	2	.02	.01	.03	1	29
→ € 49433	1	10	7	1	.7	2	1	34	1.52	2	5	2	1	1	1	2	2	i	.01	.001	3	- 4	.01	4	.01	2	.02	.01	.02	1 14	170
→ C 49434	1	5	2	2	.1	2	1	29	. 60	2	5	ND	3	1	1	2	2	1	.01	.002	7	2	.01	9	.01	2	.03	.01	.02	1	9
- C 49435	1	6	7	t	.2	3	- 1	52	1.09	2	5	DK	1	1	1	2	i.	i	.01	.001	2	3	.01	2	.01	2	.01	.01	.01	1 9	ł40
- C 49436	1	3	3	1	.1	1	1	18	.34	2	5	ND	2	1	1 -	2	2	1	.01	,001	7	2	.01	6	.01	2	.02	.01	.01	1	19
- C 49437	1	34	3	15	.1	11	5	581	2.10	2	5	ND	4	2	1	2	2.	3	.03	.004	7	5	.22	30	.01	2	.39	.01	.11	1 1	.97
C 49438	1	67	31	13	1.0	20	20	121	4.75	2	5	2	2	1	1	2	8	1	.01	.002	2	1	01	- 5	.01	2	.02	.01	.01	1 1 1 1	10
C 49439	1	8	2		.1	2	1	66	.81	2	3	ND	2	1	1	2	2	1	.01	.002	D	2	.01	7	.01	. 4	.03	.01	.03	1	4 7
- C 49440	t	25	7	16	1	11	5	751	2.22	4	5	ND	5	2	1	2	2	2	.07	.017	9	2	.07	17	.01	4	.17	.01	.05	1	46
- C 49441	2	45	44	18	2.0	21	13	61	9.37	2	5	8	6	3	1	7	. 41	. 4	.01	.006	8	10	.02	25	.01	2	.17	.01	. 10	1 93	.90 10
-C 49442	1	6	2	1	.1	3	1	40	1.13	3	5	ND	3	1	1	2	2	1	.01	1004	1	2	.01	25	101	2	.03	.01	.02	1	67 41
- 6 47445	1	8 45	45	23	1 1	0 77	12	121	1.40	*	3	7 7	7	- 1	-1	ź	4	۲ ۲	.01	.005	10	12	103	12	.01	. 5	. 18	.01	.07	2 33	190
		05	73	23	4.4	10	12	91	u • 70	4				v	•	•	•	•				••						•••			
- C 49445	· 1	9	2	5	1	5	2	62	1.33	2	-5	NÐ	6	1	1	2	2	1	.01	.003	10	2	.01	19	.01	2	.08	.01	.04	1	37
- E 49446	1	9	2	15	1	17	5	354	2.49	. 2	5	ND	7	17	1	2	2	4 -	.11	.040	- 14	5	.09	48	.01	2	.30	.01	.15	1	35
C 49447	- 1	45	- 11	29	.2	17	- 11	78	3.69	2	5	ND .	6	1	1	2	2	2	.01	.003	8	4	.01	14	.01	2	.10	.01	.03	2 11	.50 119
C 49448	1	1	ა ი	12	-1-	3	2	49	1.50	5	3	19 19	7 0	1	1	2	4	1	.01	017	12	5	.01	52	.01	2	.37	.01	.18	1 .	15
· • • • • • • • •			. * .	щ,	••		1	324 (3)	1.30	J		NU/			•	.•	•	•				-	•••	~~		-			· · ·		
- C 49450	1	26	2	36	.1	11	6	53	1.69	2	5	ND	2	1	1	2.	2	1	.01	.001	3	- 3	.01	13	.01	2	.07	.01	.04	1 7	/40
- C 49451	1	8	- 34	137	.2	14	5	267	1.75	2	5	ND	5	2	1	2	2	3	.02	.007	9	4		37	.01	2	.31	.01	.13	1 2	17
-C 49452	1	170	- 2	13	.3	6	2	179	.91	3	5	ND	. 1	- 4	1	2	2	2	.04	.006	11	5 4	.07	20 74	.01	. <u>2</u> . T	19	.01	.14	2 48	320
C 19451	1	137	17	ः २७ २०१४ -	्र •⊒े र	ं ३१ े १७	43	101	7.84	2		A ND	.g		- 1.	2	, ,	4	.08	.026	14		. 16	36	.01	2	.34	.01	.11	2 1	134
			1	4.			÷.		4.0T	- Îș									- 35	194		. R.	1.1		1.44			1.5	, .		
- 6 49455	- 1	5	. 7	27	12	31	4	383	2.60	2	5	ND	16	5	1	2	2	10	.08	.027	16	13	. 24	83	.06	2	.68	.01	.31	1	18
C 49456	Ľ	, 42	19*	- 9	្លាំ	. 18	4	65	3.51	2	5	- 2	4	2	1	2	4	2	.01	.007	7	7	.01	24	.01	2	.13	.01	80.	2 15	160
- C 49457	÷1	24	7	૽ૼૻઙૼ	.3	7	5	56	2.18	2	5	NÐ	<u> </u>	2	1	2	2	2	.01	.006	17	5	.04	26	.01	2	.16	.01	-10	1 2	160 145
- C 49458	-r	22	_, ₽ *	<u>_11</u>	.1	13	₽	- 67	1.83	2	<u>े इ</u> ्	ND	5	2	1	2	2	3	.02	.013	9	4	.03	.33	.01	2	. 21	- 01	.10	1 1	173
- C 49459	14.1	47 12:492	6 24	10	.3	12 12		- 68	1.88	2	3	RU			2 Ø:				• 44	.000		4	•••	14	• • •	_					
20 49460		26	Ś	12	.5	7	÷.	349	1.69	3	5	KO	6*	4	1	2	2	3	.04	.004	9	5	.21	10	.01	2	.24	.01	.04	3	505
C 49461	៍	3 1 1	2	៍ទី	.2	2	1	54	.83	2	5	- 10	4	1	1	2	2	1	.01	.003	9	2	.01	9	,01	2	.05	.01	.04	.11	147
- C 49462	1	99 *	8	12	.3	20	11	51	3.99	2	5	ND	3	1	1	2	6	1	,01	.004	5	2	.01	13	.01	2	.07	.01	.04	2 33	550
- C 49463	1	8 -	5	- 12	.1 [*]	7	3	200	1.70	2	5	ND	3	2	1	2	2	2	.01	.005	7	3	.06	19	.01	2	.15	.01	.00	1 200	137 - 1 200 - 1
-C 49464	1	12	.4	5	4.7	4	1	55	1.23	3	5	22	4	1	1	2	4	1	.01	.002	9	3	.01	12	.01	2	.va	• of		2 407	
-C 49465	1	51	5	-4	.2	8	3	55	1.40	3	5	ND	1	1	1	2	2	1	.01	.001	2	2	.01	7	.01	2	.02	.01	.02	2 14	190
STD C/AU-	R 18	57	37	133	6.8	68	28	1031	4.11	41	18	6	37	49	17	16	19	55	.49	.084	29	57	.86	174	.08	22	1.87	.08	.14	12 :	110

•

Ċ

C

C

€.

			and the second se			•						TER	RRA	MINE	S	FI	_E #	87-	-560	2												- F 4
and and a second second	PPI	CL I PPI	J P J PP	B N Pi	ZN PM	ag PPN	NI PPN	CO PPN	HN PPH	FE	AS PPN	U PPH	AU PPH	TH PPH	SR PPN	CD · PPM	SB PPM	bi PPH	PPN s	CA I	P 7	LA PPH	CR PPM	M6 1	BA PPN	11 7	B PPH	AL I	NA Z	K	N PPH	AU PPB
LC 49466 LC 49467 LC 49468 LC 49469 LC 49469			5	4 2 5 2	11 5 5 1 2	.3 .1 1.8	17 2 21 4 3	7 1 8 1 1	78 74 73 23 36	1.53 .30 5.94 .96 .41	2 2 2 2 2	5 5 5 5 5	ND ND 4 ND ND	9 7 1 5 5	2 1 1 1	1 1 1 1	2 2 5 2 2	2 2 7 2 2	4 1 1 1	.01 .01 .01 .01	.007 .002 .002 .004 .004	14 15 2 9 9	4 1 2 2	.04 .01 .01 .01 .01	44 17 4 13 12	.01 .01 .01 .01 .01	3 3 2 2 2	.28 .07 .02 .07 .07	.01 .01 .01 .01 .01	.16 .06 .03 .05 .05	1 1 1 1	22 8220 350 120
- C 49470 - C 49471 - C 49472 - C 49473 - C 49473 - C 49474		1 11 1 1 1 9 1 9	3 5 3 2 1	2 6 9 0 7	2 2 12 4	.4 .4 .4 .2	4 4 7 5	1 1 2 2 2	21 62 795 90	.78 .99 1.46 1.16	2 3 4 2 4	5 5 5 5 5	ND ND ND ND ND	1 4 5 1 9	1 12 1 4	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	1 1 2 1 2	.01 .01 .31 .01	.001 .004 .005 .001 .005	2 8 6 2 14	2 2 3 2 3	.01 .02 .17 .01 .08	2 16 15 2 22	.01 .01 .01 .01 .01	2 2 2 3 2	.01 .09 .21 .01 .18	.01 .01 .01 .01 .01	.02 .07 .07 .01 .08	1 18 5 1	480 47 73 820 560
- C 49475 - C 49476 - C 49477 - C 49477 - C 49478 - C 49479		1 22 1 15 1 1 1 40	7 41 7 1 3 1 3	4 .7 4 51	79 9 2 15	3.4 1.8 .2 1.8	9 18 3 18	6 6 1 4 8	862 144 85 202 320	3.38 4.47 1.07 3.69 6.65	4 2 6 7 5	5 5 5 5 5	ND 5 ND 5 3	4 1 4 5 2	2 1 1 2 1	1 1 1 1	2 2 2 2 2 2	10 2 2 2 2 2	2 1 1 2 1	.03 .01 .02 .02 .02	.007 .001 .003 .005 .002	6 2 6 7 2	3 2 2 3 3	.14 .01 .01 .05 .04	17 1 11 24 8	.01 .01 .01 .01 .01	2 2 2 2 2	.21 .01 .07 .15 .06	.01 .01 .01 .01 .01	.07 .01 .05 .08 .03	1 2 1 1 1	640 1470 84 9460 5250
C 49480 C 49481 C 49482 C 49483 C 49484	• .	1 30 1 1 1 1 1 43 1 1	0 3 0 1 2	5 4 56 8	,5 7 13 5	.2 .2 3.8 .1	3 4 65 4	i 1 21 2	202 307 95 205	.57 .69 16.95 .87 2.19	3 3 7 2 2	5 5 5 5 5	ND ND 6 ND	4 7 2 3	6 12 1 5 6	1 1 1 1 1	2 2 8 2 2	2 2 2 2 2	i 1 1 1 8	.12 .21 .02 .09 .15	.004 .004 .001 .003 .017	7 10 2 7 12	1 2 4 2 10	.06 .10 .03 .06 .27	12 15 4 14 63	.01 .01 .01 .01	2 2 2 2 2 2	.09 .12 .02 .12 .61	.01 .01 .01 .01 .01	.05 .07 .02 .07 .37	1 2 4 1	73 39 8560 43 153
C 49485 C 49485 C 49487 C 49489 C 49489		1 22 1 22 1 3 1 1	16 14 13	7 83 23 2	3 12 30 2	.4 .1 .3 .1	13 7 7 3	6 2 3 1	113 222 283 48	2.93 .89 1.44 .65	- 3 3 2 2	5 5 5 5	ND ND ND ND	1 8 7 1 7	1 4 4 1 4	1	2 2 2 2 2 2	2 2 2 2 2 2 2	1 2 4 1	.01 .07 .06 .01 .06	.001 .007 .005 .001 .005	2 13 10 2 13	2 3 5 2 3	.01 .08 .16 .01 .04	2 21 24 1 20	.01 .01 .01 .01	2 2 2 2 2 2	.02 .21 .28 .01 .14	.01 .01 .01 .01 .01	.01 .10 .10 .01 .09	2 1 2 1 1	1860 133 180 250 3990
- C 49490 C 49491 STD C/AU C 49492 C 49493	H R	1 19 1	(4)2 ;0 ;1 ;5	d 14 39 26 3	3 11 132 3 2	.5 7:1 1.2 .1	12 67 4 3	4 28 1 1	232 1038 92 18	1.60 4.11 .85 .49	2 38 3 2	5 19 5 5 5	ND 7 3 ND	11 41 1 4 9	5 50 1 1 3	18	2 18 2 1 2 2	2 20 2 2 2 2	5 57 1 1	.08 .49 .01 .01	.015 .088 .001 .004 .010	17 38 2 8 11	7 58 2 1 9	.16 .85 .01 .01 .17	50 172 3 12 64	.03 .08 .01 .01	2 30 2 2 2	.42 1.85 .02 .08 .39	.01 .09 .01 .01 .01	.20 .14 .02 .06 .22	1 14 1 1	112 475 1550 29 315
- C 49494 - C 49495 - C 49496 - C 49496 - C 49497 - C 49498			78 84 27 48	10 64 15 12 25 5	25 26 39 5 12 77	3.1 2.3 .1 .8	23 60 6 4 14 17	19 14 1 12 5	493 513 40 80 254	12.71 2.33 .95 4.67 1.88	23	5555	5 9 100 100 100 100	3 6 7 7 13			2 2 2 2 2 2 2	4 2 2 3 2	2 3 2 3 3	.03 .10 .01 .01	.002 .003 .007 .011 .011	2 2 5 9 1 13 1 11 5 16	2 4 3 4	.09 .12 .01 .01	5 18 27 35 47	.01 .01 .01 .01 .01	2 2 2 2 2 2	.05 .19 .13 .14 .23	.01 .01 .01 .01 .01	.03 .09 .07 .07 .13	1	10500 183 188 12560 11660

34

12å

25

49499

Ç.

 $\zeta_{\rm CC}$

<u>с</u>.,

 $c \sim$

0

C

0

Ċ

Ċ

(

Ć

C

(

LABORATORIES LTD. ACME ANALYT

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

C

C

GEOCHEMICAL ANALYSIS CERTIFICATE 199. Q -3.5

ICP - .500 GRAM SAMPLE IS DIGESTED WITH JWL 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

SMP(E) JNO CU PB JN 66 NI CO MN FE AS U AU TH SH CO SH PT L AC PF L AC N AL NM E C C 44777 1 4 17 2 4 701 2.66 4 701 2.66 4 701 2.66 4 701 2.66 4 701 2.66 70 701 70 701 <th>DATE RE</th> <th>ECEIV</th> <th>VED:</th> <th>NUV</th> <th>11 178</th> <th>17</th> <th>DA</th> <th></th> <th>EPU</th> <th><1 M</th> <th>TERF</th> <th>RA M</th> <th>INES</th> <th>;</th> <th>Fil</th> <th>/ .e #</th> <th>87-</th> <th>-560</th> <th>2</th> <th>Pa</th> <th>7 . .ge 1</th> <th>•••</th> <th></th> <th></th> <th>-, .</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	DATE RE	ECEIV	VED:	NUV	11 178	17	DA		EPU	<1 M	TERF	RA M	INES	;	Fil	/ .e #	87-	-560	2	Pa	7 . .ge 1	•••			-, .						
$ \begin{array}{c} - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	SAMPLE	HO PPN) CU I PPM	PB PPM	ZN PPN	A s PPN	NI PPM	CO PPM	HN PPH	FE Z	AS PPM	U PPM	AU PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P Z	LA PPM	CR PPM	H6 1	BA PPH	TI	B PPH	AL I	NA X	K	N PPM
C 44784 1 4 15 16 .2 2 3 545 1.7 2.4 3 540 7 4 2 2 1 10 83 13 17 .01 5 2 .02 13 .13 17 .01 5 22 .02 .03 .022 11 3 .13 .13 .17 .13 .14 .14 .14 .15 .13 .14 .14 .14 .14 .15 .14 .14 .13 .13 .13 .13 .14 .14 .14 .13 .14 <	C 46779 C 46780 C 46781 C 46782 C 46783	1 1 1 1	4 5 4 4	17 55 13 11 22	24 26 28 20 28	.1 .3 .1 .2 .2	2 3 2 2 4	4 4 3 5	701 434 772 683 790	2.06 1.69 2.27 1.82 2.43	44 19 23 27 9	5 5 5 5 5	ND ND ND ND ND	4 4 3 2 5	5 7 4 4	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	8 6 12 9 11	.04 .03 .01 .01 .04	.019 .011 .012 .009 .019	9 6 4 11	2 2 1 2 3	.05 .06 .04 .03 .09	39 28 34 35 43	.01 .01 .01 .01 .01	3. 4 4 3 4	.33 .29 .28 .23 .51	.01 .01 .01 .01	.10 .09 .07 .07 .16	2 2 1 1 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- C 46784 - C 46785 - C 46786 - C 46787 - C 46788	1 1 1 1	4 10 15 1 4 1 4	13 83 63 16 14	16 162 78 43 53	.2 .3 .1 .2 .3	2 4 3 4 3	3 8 7 8	543 1417 1126 666 1101	1.70 3.84 3.40 3.04 3.51	44 35 36 3 12	5 5 5 5 5	ND ND ND ND	2 7 6 11 6	3 6 9 30 9	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	8 18 15 24 16	.01 .03 .04 .15 .04	.009 .022 .019 .048 .018	5 11 16 23 11	2 3 2 4 2	.02 .13 .17 .45 .10	30 77 53 80 40	.01 .01 .01 .03 .01	4 5 3 3 4	.20 .92 .89 2.25 .61	.01 .01 .01 .04 .01	.09 .18 .15 .23 .11	1 1 3 1
- C 46794 1 6 190 49 1.1 3 5 610 2.28 46 5 ND 6 6 1 2 2 7 .05 .025 15 2 .12 39 .01 3 .41 .02 .16 C 46795 1 15 515 48 .8 2 4 .378 1.93 92 5 ND 5 1 2 2 9 .04 .019 7 3 .13 49 .01 3 .61 .02 .16 C 46796 1 15 548 18 2 1 7 5 18 7 1 2 2 103 .017 5 2 .12 .46 .01 .12 .12 .13 .69 .02 .12 .03 .017 .13 .65 .04 .02 .2 .68 .03 .04 .01 15 .64 .02 .16 .02 .2 .08 .03 .04 .01 .5	C 46789 C 46790 C 46791 C 46792 C 46793	1 1 1 1 1	4 3 4 4 4	47 33 24 20 21	39 63 49 45 60	.4 .1 .5 .4 .2	2 2 3 3 4	6 5 12 6 7	830 1156 1155 934 1105	2.55 3.85 3.65 3.46 4.37	16 12 8 20 9	5 5 5 5 5	ND ND ND ND ND	6 5 11 10 6	6 4 10 9 4	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	11 21 19 5 8	.02 .02 .04 .13 .02	.014 .025 .023 .063 .048	16 12 27 22 16	2 1 2 1 3	.06 .04 .11 .04 .05	62 52 72 31 54	.01 .01 .01 .01 .01	5 5 3 4 4	.51 .42 1.16 .38 .38	.01 .01 .02 .02 .01	.15 .11 .21 .13 .13	124
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ C 46794 _ C 46795 _ C 46795 _ C 46796 _ C 46797 _ C 46798		6 7 1 13 1 5	190 124 515 38 613	49 99 48 87 774	1.1 .4 .8 .1 1.2	3 3 2 3 4	5 4 4 6 11	610 533 378 1118 743	2.28 2.06 1.93 4.12 4.30	46 28 92 17 82	5 5 5 5 5	ND ND ND ND	6 5 3 9	6 7 5 6 10	1 1 1 1 2;	2 2 2 3 2	2 2 2 2 2 2	7 9 12 21 28	.05 .04 .03 .03 .08	.025 .019 .017 .019 .036	15 7 5 11 20	2 3 2 3 4	.12 .13 .12 .10 .28	39 49 21 56 52	.01 .01 .01 .01 .01	3 3 2 3 5	.47 .61 .46 .69 1.53	.01 .02 .01 .02 .02	.15 .14 .12 .17 .20	
- C 46947 1 14 6 4 .2 3 1 147 1.24 11 5 ND 2 2 1 .2 2 1 .01 .006 4 2 .02 5 .01 6 .04 .01	- C 46799 - C 46800 - C 46944 - C 46945 - C 46945 - C 46946		13 6 200 10 134	253 52 11 6 29	299 62 11 4 13	.3 .6 .8 .1	3 4 16 7 7	6 9 6 1 6	956 951 159 110 384	3.29 4.24 4.43 .71 3.12	47 18 5 4 33	5 5 5 5 5	ND ND ND ND	8 11 3 5 7	6 6 1 1 5	1 1 1 1 1	2 2 2 2 2 2 2	2 3 2 2 5	9 10 1 1 2	.07 .03 .01 .01 .09	.045 .047 .005 .004 .005	20 27 5 7 10	2 3 2 3 4	.08 .05 .02 .04 .08	40 64 9 10 20	.01 .01 .01 .01 .01	5 5 2 4 2	.64 .52 .05 .07 .10	.02 .01 .01 .01 .01	.16 .19 .02 .01 .04	
- C 46952 1 7 4 2 .1 2 1 86 .53 2 5 ND 1 2 1 2 2 1 .02 .003 3 2 .02 5 .01 5 .02 .01 .01 - C 46953 1 6 4 2 .2 3 1 29 .87 10 5 ND 2 1 1 2 2 1 .01 .004 4 2 .01 6 .01 2 .03 .01 .02 - C 46954 1 13 5 1 .1 4 2 38 .88 12 5 2 5 1 1 2 2 1 .01 .003 8 3 .01 8 .01 2 .04 .01 .01 C 47680 1 4 7 38 .2 3 6 1028 3.27 13 5 ND 9 6 1 2 2 7 .04 .042 19 2 .03 88 .01 4 .37 .01 .15 C 47681 1 6 12 40 .3 5 8 703 3.09 7 5 ND 11 9 1 2 2 16 .16 .064 22 4 .22 63 .01 3 .92 .04 .22	C 46947 C 46948 C 46949 C 46950 C 46951	1 1 1 1	L 14 L 9 L 6 L 6 L 5	6 14 163 12 11	4 4 9 3 4	.2 .4 2.7 .1 .5	3 4 13 4 6	1 5 1 2	147 125 28 46 31	1.24 1.36 10.84 1.35 1.65	11 13 165 14 29	5 5 5 5 5	ND ND 4 ND ND	2 3 1 1 3	2 2 1 1 1	1 1 1 1 1 1	2 2 2 2 2	2 2 6 2 2	1 1 1 1 1	.01 .04 .01 .01 .01	.006 .005 .001 .001 .001	4 4 2 2 5	2 4 2 2 2	.02 .01 .01 .01 .01	5 10 3 5 7	.01 .01 .01 .01 .01	6 2 2 2 2 2	.04 .03 .01 .02 .03	.01 .01 .01 .01 .01	.01 .01 .01 .01 .01	-
	- C 46952 - C 46953 - C 46954 C 47680 C 47681	1 1 1 1 1	t 7 i 6 1 i3 1 4 1 6	4 4 5 7 12	2 2 1 38 40	.1 .2 .1 .2 .3	2 3 4 3 5	1 1 2 6 8	86 29 38 1029 703	.53 .87 .88 3.27 3.09	2 10 12 13 7	5 5 5 5 5	ND ND 2 ND ND	1 2 5 9 11	2 1 1 6 9	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	1 1 7 16	.02 .01 .01 .04 .16	.003 .004 .003 .042 .064	3 4 8 19 22	2 2 3 2 4	.02 .01 .01 .03 .22	5 6 88 63	.01 .01 .01 .01 .01	5 2 2 4 3	.02 .03 .04 .37 .92	.01 .01 .01 .01 .04	.01 .02 .01 .15 .22	

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

C

(

C

C

Ć

C

€

¢

E.

¢

€

€

€

•

€

C

C

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR MG BA T1 B W and limited for NA and K. Au detection limit by ICP is 3 PPM. - Sample type: stream sed Aut Analysis by AA FROM 10 GRAM SAMPLE.

DATE RECEIVED:				5 15 19	87	DA	TE	REPC	DRT I	MAIL	ED:	aug 26/87				AE	ASSAYER D. Beye					DEAN			CERTIFIEI			э.с.	ASE	ASSAYER		
										TE	RRA	MIN	έsι	TD.		Fil	e #	87-	3309	9												
SAMPLE	NO	CU	PB PPM	ZN PPM	AG	NÎ PPR	CO PPN	MN PPM	FE	AS	U	AU	TH	SR	CD	SB	BI	V	CA	P	LA	CR	ĦG	BA	11	B	AL	NA	K	N.	AU	
			1.11		4 1 11	110	r i n	11.0	÷.		110	111	L L U	rrn.	rrn	rrn.		FFN		4	rrn	rrn		rrn		rrn		Å .	- +	rrn	FFB	
46531	1	4	17	44	.1	7	4	334	1.51	2	5	ND	. 3	36	1	2	2	21	.45	.042	13	. 7.	. 44	38	:08	2	1.23	. 06	.10	2	1	
46532	1	8	36	96	.4	7	5	754	2.01	2	6	ND	2	48	2	2	2	28	.60	.073	14	13	.45	69 -	.10	4	2.12	.04	.12	- 1	3	
- 46534	1	4	29	52	.2	· 4	- 5	363	1.71	2	6	ND	6	39	1	2	2	25	.61	.107	1?	6	.43	55	.08	25	1.17	.05	.16	1.	99	
46535	1	. 4	46	91	.5	5	5	342	1.79	2	5	NÐ	5	38	1	2	2	25	.51	.095	15	7	. 48	- 44	.09	2	1.54	.04	.16	3	16	

ACME ANALYT LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

1

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M6 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE	RECI	ECEIVED: NOV		NOV	NOV 2 1987		DAT	EPO	RT M	Nou	13	187		ASSAYER. N. Journ DEAN TOYE, CERTIFIED B.C. ASSAYER																				
								TERRA			MINES LTD.			_ + _ 1	File	ile # 87-5318		8																
SAMPLE		MO PPM	CU Pph	PB PPM	ZN PPM	AG PPH	NI PPM	CO PPM	MN PPN	FE X	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPN -	SB PPM	BI PPM	V PPH	CA Z	P X	LA	CR PPM	MG X	BA PPH	TI Z	B PPM	AL Z	NA Z	K Z	¥ PPM	AU I PPB		
46778		- 1	5	29	35	.1	3	5 4	777	2.98	2	5	ND 8	5	6	1	2	2	6	.05	.038	12	1	.03	39 20	.01	3	.28	.02	.10	1	4	Cellein	ι.
46936		1	34	77	411	.2	5	10	1226	4.77	13	5	ND DM	11	35 87	5	2	2	5	.92	.103	19	2	.11	43	.01	8	.28	.02	.15	108	340) in Acres	1
4693B		1	184	4049	806	6.9	4	6	841	3.26	21	5	. 4	7	12	10	3	2	2	.27	.055	14	1	.02	25	.01	8	.23	.01	.13	246	7830	PIRSO	.5
46939 46940		1	179 28	3331 404	716 363	26.4	2 2	2 3	432 737	1.56	11	5 5	186 2	2 5	17 325	7	4	2	1 2	.17	.015	3 7	1	.02	8 15	.01	8	.08	.01	.04	207 1 481	2970 8540	in 4	
46941 46942		1	19 47	353 600	515 129	.8 3.4	32	6 3	1277 223	3.05	19 14	5	2 16	7	157 8	4	2	2	32	1.87	.056	11 8	1	.05	26 13	.01	4	.26	.01	.13	340 744 1	2210 2480	in de la companya de La companya de la comp	
46943		1	- 3	6	6	.1	1	1	170	.51	2	5	ND	2	9	1	2	2	3	.11	.015	2	3	.06	13	.02	6	.24	.03	.06	7	38		
STD C/AU	-R	18	61	28	126	7.1	67	28	1008	4.12	39	22	8	37	50	18	16	21	58	.49	,086	38	59	.87	172	.08	32	1.86	.06	.13	12	495		

high W- require regular Assay.

TERRA MINES LTD. FILE # 87-5665 SB BI V CA ¥ AUL SR CD P LA CR H6 BA TI B Ľ TH E CU PB ZN FE AS AU 10% ۵G NT. CO MN PPN PPB z PPN PPM z 1 PPN z PPM z PPN PPH PPH PPH PPM PPH PPN PPM PPH PPN PPM PPN Z PPH PPM PPN The states when ۲, 1.2 김 광구국 20 .09 .063 21 2 .14 179 3 .01 2 .53 .12 16 1 2 .0ŧ -C 48437 18 13 2202 6.43 5 7 1 117 5 .1 1 24 .01 .07 __C 48438 2 .03 .036 11 1 .02 34 .01 4 .14 10 3 6 1027 3.20 35 -5 3 1 2 3 41 1 3 .1 3 .15 .10 1 124 .02 32 10. .01 27 2 .04 .034 11 1 -C 48439 825 2.73 -5 5 2 3 4 ٦ 9 32 .1 3 6 38 3 .24 32 .01 .10 1 2 4 .09 .052 -14 2 .04 .01 ____C 48440 Q 40 .1 3 938 3.25 31 5 ND 5 2 7 1 1 25 .02 34 .01 5 .19 .01 .11 2 2 .13 .055 14 1 997 3.34 42 5 7 2 C 48441 1 22 34 .1 3 7 .26 .08 41 2 .06 35 .01 .01 1 .030 10 -C 48442 1488 4.53 .04 1 15 57 .1 2 7 31 -5 7 46 .01 3 .27 .01 .12 1 -14 13 3 .03 -C 48443 27 37 .1 3 7 932 3.36 48 5 ND 5 5 2 2 4 .07 .047 1 7 2 .09 54 .01 2 .29 .01 .05 1 42 __C 48444 44 95 .3 ŧ 12 1961 6.23 39 5 ND 2 ŧ. 2 3 7 .02 .031 4 1 1 Q 1 118 ND .05 .052 14 2 .06 74 .01 2.35 .01 .11 45 -5 5 5 2 2 - C 48445 1 6 17 42. .1 2 8 1084 3.87 6 2.38 .02 .10 1 6210 801 18553 56561 78.8 8 533 10.79 16 217 71 31 31 .39 .062 5 4 .26 8 .03 C 53855 15 65 5 2 3 38 11 1015 C 53856 9 .22 17 .02 7 .34 .01 .09 21 99 3507 2673 8.2 85 1.09 .302 22 229 4.89 7 -5 3 27 13 A - 6 4 - 5 3 220 .73 38 .15 .99 .05 .40 9 183 1999 1688 , 4.2 83 2.50 .176 12 23 4 C 53857 20 13 395 3.69 2 5 3 51 g 4 7 2 3215 .02 .01 .01 .01 .01 C 53858 60 1622 18701 79999 45.1 63 5 2 958 75 3 20 .05 .006 2 1 1 2 20 9 2200 15.60 ND 1 .13 15 .01 3.25 .01 .06 1 4930 79 .52 .165 5 6 36 4947 20039 38543 36.6 18 16 158 45 2 C 53859 24 2 217 3.22 5 3 2 .13 1 910 .17 28 .01 2 .41 .01 - C 53860 2 106 376 1671 .8 25 11 571 4.52 2 5 ND 5 7 2 2 7 .08 .043 14 8 1 210 .08 33 -01 3 .27 .01 .11 - C 53861 1 76 142 172 .3 25 8 194 1.74 5 10 2 3 .04 .021 23 * 1 195 .01 .022 21 5. .05 35 .01 2 .29 .01 .16 - C 53862 77 447 2.71 5 Q 5 2 2 57 107 .4 13 7 ND 4 1 6 N 2 .06 .01 .03 1 139 ं उ .04 7 .01 - C 53863 26 55 31 203 .74 5 2 2 .01 .004 5 1 .1 - 3 2 2 ND 3 1 1 1 1 3220 2 2 .01 .012 24 3 .01 31 .01 2 .15 .01 .13 - C 53864 1 19 499 57 6.7 1 1 30 1.12 70 5 8 2 2 2 .03 1 1010 .05 201 - C 53865 ́П. 183 19 40 22 5 2 .01 .008 6 3 .01 11 .01 2 1 1.0 3 1.17 3 2 3 1 1 1 41 .01 .17 .01 .13 1 1050 2 C 53866 3 .01 .032 28 5 101 36 1121 36 2.8 53 è 3 12 2 3.01 22 5 16 2 1 i 1 0.01 1 2310 3 .01 3 .02 .01 .01 C 53867 6 76 35 3.0 1 43 .55 19 5 ND 1 1 1 2 - 2 忌む .01 .003 1 60 186 .07 .15 11 500 63 37 53 16 23 .50 .089 41 64 .93 35 1.87 .07 STD C/AU-R 19 134 7.5 73 30 1060 4.12 43 25 40 19 9

. K.

ومذري

W. Steer De

S 11

1

And the second second

12 - 4

.....

. .

Proved the Action

÷, - 4

3

1

ASSAY REQUIRED FOR CORRECT RESULT -

Set.

1.2%.

3.2

 $f_{1,2} g$

122 Υ.

1.2.20

24

1

17

C .

z.,

()

(

T :

C

C>

1

Sec.

1.1.1.1.1

2. s.

1,

A.

(A)

. fá

HOGEN AND NO BOR

45 N 2 1 1 Z · · · 1 1 1 9 1 (12) 7 3 1 4

JUNIN DULL IVITIN.

(107, (8) (8) 44 A VEIN ADIT

61 50
51 20 23 9 22 19 313
3 66 (05)09 56 51 68 21 LII
50 50 79 74 79
00 1 413 8 413
42 42 42 42 42 42 53 54 55 55 55 55 55 55 55 55 55
³² 16,728
FIG 20 Part 7079
SAYONNE WEST GRID SOIL GEOCHEM cm = 40 METRES Ph PPM 0 40 60, 120
SCALE IN METERS

