FAME PROGRAM REPORT

FAME GRANT \#10963-M18
SULLIVAN PROJECT

PREPARED IN THREE PARTS
PART 1: GEOLOGY
PART 2: DIAMOND DRILLING
PART 3: GEOPHYSICS

82G/12
82G/13

WESTERN DISTRICT
 \title{
1987 FAME REPORT
 \title{
1987 FAME REPORT
 SULLIVAN PROJECT
}

Fort Steele Mining Division

INTRODUCTIGN

Specific Location

The work being reported on was done in the Mark and Matthew Creek areas west and northwest of Kimberley, B.C. Access to these areas is by logging and exploration roads.

Property Description

The property being investigated forms part of the Sullivan Mine claim group, owned by Cominco Ltd. Cominco has operated the mine for about 75 years. The Sullivan stratiform $\mathrm{Ag}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Fe}$ sulphide deposit is one of the most important of its type worldwide and has contributed significantly to the mineral wealth generated in the province of British Columbia.

Geological Mapping and Diamond Drilling

Geological mapping was done in the headwaters of Maxis Crefk and in the vicinity of some of the holes drilled. Two holes were drilled on North Star Hill on geophysical anomalies near known sulphide mineralization; one hole tested a geophysical anomaly on the northeast fork of Matthew Creek; and one hole tested Sullivan Horizon on the west fork of Mathew creek. A 1.7 km long hole was drilled 4 km northwest of Sullivan to test for the faulted continuation of the Sullivan orebody north of the Kimberley Fault. EM surveying was conducted in the northeast fork of Matthew Creek.

Claims Explored

The north and west part of the Sullivan claim block (1685 claims) was partially explored by this work, an area about 10 X 15 km in size. Cominco's claim outline in this area is shown in Figure 3 and a summary of the Sullivan Mine Group of Mineral Claims is in Appendix K .

FAME PROGRAM REPORT

SULLIVAN PROJECT

PART 1
GEOLOGY

TABLE OF CONTENTS

PART 1

Page

GEOLOGICAL MAPPING

INTRODUCTION 1-1

RESULTS 1-1

CONCLUSIONS
1-3

REFERENCES 1-3

FIGURE 1 Geological Mapping, Upper Mark Creek . . Pocket

FIGURE 2 Geological Section - 5514 000N UTM Grid 32,000 Sullivan Grid 1-4

FIGURE 3 Geology - Kimberley Area Pocket

EXPLORATION
NTS: 82F/9
82F/16
82G/12
82G/16

WESTERN DISTRICT
1987 FAME REPORT
SULLIVAN PROJECT

PART 1 - GEOLOGY
Fort Steele Mining Division

GEOLOGICAL MAPPING

Introduction

Geological mapping was done in the upper tributaries of Mark Creek to expand on previous work done by Cominco in order to identify structures that might project into areas where deep drilling was being considered. A recent interpretation suggests that a west dipping normal fault is necessary to explain observed steep east dip of bedding in outcrop and apparent gentle east dip of the Upper Aldridge Formation and enclosing strata carter et al, 1987).

Extensive areas at lower elevations expand coverage beyond the more ridge tops. Mapping control was by used in conjunction with airphotos;
were traversed in 1987 to easily and previously mapped pace. compass and altimeter the base map scale was 1:20,000.

Results

Several critical outcrops were located that placed constraints on the locations of the top and bottom contacts of the Upper Aldridge Formation. In addition, because of the contrast in lithologic character between this formation and adjacent formations, it was also possible to use rubble and float occurrences to refine limits of these important contacts.

Rocks mapped belong to three formations, Middle Aldridge, Upper Aldridge and Creston. The lowest strata observed are from the upper portion of the Middle Aldridge Formation, generally exposed at lower elevations along creeks. The dominant rock types are wacke and quartz wacke that are grey weathering; medium to light grey: medium to thick bedded: with sharp, flat bed contacte; graded, especially in the top 10\% to 20% of the beds, through subwacke to argillite. Also present are significant thicknesses of wacke, subwacke and argillite that are rust to dark grey weathering; medium and dark grey; thin bedded to laminated; with sharp flat bed contacts and laminations; beds are either
graded or homogeneous; and typically contain 1\% to 2\% pyrrhotite. Exposures are poor and discontinuous, therefore only an impression of the relative distribution of these two lithotypes is possible. Thickness of either as much as 100 feet were observed, and either may have intercalations of the other in units from 1 to 20 feet thick.

The dominant rock types of the Upper Aldridge Formation are argillite and subwacke to wacke that is rust weathering; the argillite is medium grey, the subwacke-wacke is generally dark grey to black, rarely white; the argillite is uniform or massive, the subwacke-wacke is usually very finely internally laminated; the subwacke-wacke contains very fine silt grains in an argillaceous matrix; these lithotypes are laminated to very-thin bedded with respect to each other, bed contacts are sharp and flat; pyrrhotite and pyrite (about 1 or 2% of the rock in places) is restricted to the subwacke-wacke lithotypes.

The youngest strata mapped belong to the Lower Creston Formation. The dominant rock types are wacke, subwacke and argillite that are light green, brown and light rust weathering; grey to greenish grey; medium, thin bedded and laminated; bed contacts are generally distinct and wavy; beds are typically graded and laminated intervals are distinctly wavy, cross laminations are present; magnetite, although not abundant, is present in the wacke.

Within the lower 100 or 200 feet of the Lower Creston Formation there is one interval of distinct Upper Aldridge type strata about 20 feet thick. Exposures are not adequate to determine if this is a merely a local phenomenon or a feature of regional extent. It is important to be aware that Upper Aldridge contacts based on the presence of Upper Aldridge type rubblemay be in error, although such errors are believed to be relatively minor.

The mapped distribution of the Upper Aldridge Formation (Fig. 1) defines three major westerly dipping normal faults not previously documented. The Cue and Cub faults both have a significant topographic expression on the ridge to the north, the Kent Fault appears to follow a lengthy airphoto linear. Offsets on the Cue, Cub and Kent faults are 800, 1000 and 1300 feet respectively, as determined from section 5514 OOON. Fig. 2.

The Cue, Cub and Kent faults offset a large anticline on the northeast fork of Mark Creek and to the south they disappear beneath the overburden of Mark Creek valley. No major offsets of the Kimberley Fault can be ascribed to these faulte. The dip of these faults changes from westerly to northwesterly as the Kimberley Fault is approached and there they become indistinguishable in the complex deformation associated with this major east-west structure.

Conclusions

This mapping has defined three major west to northwest dipping normal faults. Because these faults curve into the Kimberley Fault, it can be reasonably assumed that they are listric. The Kimberley Fault developed as a lateral ramp and normal fault related to the major east verging Mathew Creek Thrust (Ransom, 1987), one of many east verging structures in the Purcell Mountains produced at the same time as the Rocky Mountain Fold and thrust belt. Because the Cue, Cub and Kent faults cut, and therefore postdate, folds developed during Cretaceous mountain-building, they most likely formed during the major regional scale Eocene extension faulting event documented in southeast B.C. (Price et all. It is inferred that the Kimberley Fault was reactivated at that time as an extensional decollement.

References

Carter, G. and Hoy, T., 1987, OPEN FILE MAP 1987-8. Geology of the Skookumchuck Map Area, B.C. Ministry of Energy, Mines and Petroleum Resources.

Ransom, P.W., 1987, 1986 FAME Report, Sullivan Mine Area, Kimberley, B.C. (FAME Grant Identification No. 10963M-5).

Price, R.A., 1981, The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains, in Thrust and Nappe Tectonics. McClay and N.J. Price (eds.). Geological Society of London Special Publication No. 9.

0

FAME PROGRAM REPORT
SULLIVAN PROJECT
PART 2
DIAMOND DRILLING

TABLE OF CONTENTS

PART 2

DIAMOND DRILLING
INTRODUCTION

NTS: 82F/9
82G/12

1987 FAME REPORT

SULLIVAN PROJECT

PART 2 - DIAMOND DRILLING
Fort Steele Mining Division
February, 1988
P.W. Ransom

DIAMOND DRILLING

Introduction

Five core holes were drilled during 1987 and January 1983, they are:

HOLE NO.	LENGTH FEET	(METRES)
DDH 6460	547	(167)
DDH 6461	497	(152)
DDH 6462	315	(96)
DDH 6463	997	(304)
DDH 6464	5701	(1738)

Detailed lithologic descriptions, core size information, survey information and claim names drilling was done on are in the logs in appendices F to J and a cost summary on each hole is in appendices A to E. Hole locations are shown in Figure 3 (Part 1), the geologic map of the Kimberley area. Figures 4 through 7 are graphic logs showing a lithologic summary and some sedimentologic and structural details in core from holes 6460 through 6463, Figure 8 is the legend for these figures. Figure 9 shows interpretive sections through DDH 6464. A brief description of the results obtained in each hole follows.

Results and Interpretation

DDH 6460

DDH 6460 (Fig. 3, Part 1) was drilled to test the North Star Hill UTEM conductor "J". described in Part C of the 1986 FAME report on Sullivan (Lajoie). Drilling was entirely within the Lower Aldridge Formation; rock types cored include quartz arenite, quartz wacke, wacke. subwacke and argillite in thick, medium and thin beds and laminites; many beds contain minor, but variable, amounts of pyrrhotite (Fig. 4). Veinlets and thin bedding-parallel layers of pyrrhotite up to 3 millimeters thick are electrically
connected across as much as 10 centimeters of strata in the core at a few locations between 270 and 359 feet, the general target depth. These pyrrhotite seams and stringers are the cause of the geophysical anomaly. No economic concentrations of sulphides were cored.

DDH 6461
DDH 6461 was drilled on one of many UTEM and HLEM conductors previously documented on North Star Hill, just south of Mark Creek between the Sullivan and North Star orebodies (Fig. 3 , Part 1). It is approximately on strike to the north of the Quantrell sulphide occurrence in which both bedded and vein sulphides (mainly pyrrhotite, some galena and sphalerite) were exposed by prospectors early this century.

DDH 6461 was drilled entirely within the Lower Aldridge Formation. Rock types cored include quartz arenite, quartz wacke, wacke subwacke and argillite in thick, medium and thin beds and laminites; most beds contain minor variable amounts of pyrrhotite (Fig. 5). Pyrrhotite is also present in bedding-parallel layers up to 3 centimeters thick, laminations, stringers and veins, especially between 20 and 459 feet. Minor galena and sphalerite accompany the pyrrhotite in a few places; no assaying was done. Although the strata cored appear less quartzose than that cored in DDH 6460, both holes cored approximately the same stratigraphic interval.

DDH 6462

DDH 6462 was drilled on the northeast fork of Matthew Creek (Fig.3, Part 1) to test a UTEM anomaly recognized in a survey conducted in 1986 and reported in part C of the 1986 FAME report on Sullivan.

DDH 6462 was drilled within a portion of the Middle Aldridge Formation, primarily through wacke, subwacke and argillite, and minor quartz wacke, in predominantly medium and thin beds, some laminites and a few thick beds (Fig. 6). Pyrrhotite, although not abundant, is widely disseminated. Up to 30\% pyrrhotite in seams parallel to bedding up to five millimeters thick as well as in crosscutting veinlets, all between 157 and 277 feet (the approximate target depth) are the cause of the UTEM anomaly. Two thin gabbro sills, Moyie intrusions, were intersected. No economic sulphide mineralization was discovered.

Page 2-3

DDH 6463

DDH 6463 was drilled south of the west fork of Mathew Creek (Fig.3. Part 1). The objective was to test for strataform lead, zinc. iron sulphides at Sullivan Horizon, the stratigraphic interval where the Sullivan orebody is found, near the top of the Lower Aldridge Formation.

Rocks cored by DDH 6463 include quartz arenite, quartz wacke, wacke, subwacke and argillite in thick, medium and thin beds and laminites of the Middle Aldridge and Lower Aldridge Formations (Figure 7). In the strata interpreted as Sullivan Horizon, no significant concentrations of lead, zinc, iron or other trace elements were found (Table 1). Two thin gabbro sills, Moyie intrusions, were intersected.

DDH 6464

DDH 6464 was drilled west of Mark Creek, about 4 kilometers northwest of the Sullivan orebody (Fig. 3, Part 1). This hole was designed to test for the faulted continuation of the Sullivan orebody north of the Kimberley Fault. Drilling was completed to a depth of 5701 feet. The cored interval was entirely within the the Middle Aldridge Formation and at 5701 feet the hole is substantially above the target horizon.

A simplified stratigraphic interpretation is shown in figure 9. The Moyie intrusions are shown and assumed to to be sills, however it should be pointed out that although Moyie intrusions are generally sill like throughout much of the Aldridge, there are many localities where they cut through substantial amounts of strata. Details of lithology, sedimentology, and structure are contained within the log in appendix A. No significant sulphide mineralization was intersected to the 5701 foot depth. At 5701 feet the rock temperature is 118.50 F .

Jos U 87-02948

SAMPLE From	INTERVAL To (Feet)	$\begin{gathered} \text { Au } \\ \text { PRI } \end{gathered}$	Ht Au GRAM	$\begin{aligned} & A G \\ & P H M \end{aligned}$	$\begin{gathered} \mathrm{PB} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \mathrm{PR} \end{gathered}$	${ }_{\text {Cu }}^{\text {Cu }}$	$\underset{y}{\mathrm{FE}}$	$\begin{gathered} \text { HN } \\ \text { PR } \end{gathered}$	$\underset{P P n}{V}$	$\underset{\text { PR }}{\underset{\text { CE }}{2}}$	A5 HP解	H H
897.0	902.8	(10)	5	. 5	184	265	24	3.24	638	92	93	7	210
902.8	907.0	110	5	. 5	246	1140	33	4.46	688	109	72	7	10
907.0	912.0	- 110	5	8.4	58	411.	29	3.86	516	97	83	13	$(10$
912.0	917.0	(10	5	1.4	29	205	31	3.62	447	89	B3	8	10
917.0	922.0	$(10$	5	. 6	216	421	31	4.14	474	86	92	8	(10
922.0	927.0	(10	5	1.4	149	126	27	3.50	450	90	94	12	110
927.0	930.6	$(10$	5	8.4	37	90	38	3.62	394	90	91	11	(10

I=insuffitieht cayple X=shall sample Eeexteens calidantion C=jetmg chechei R=aevised
If hequested analyses are mot showh omesults ane to follow

LEGEND

Drill Hole Collar
Quartz Wacke or * Quartz Arenite Dominated
Above with as much as 40\% Wacke Wacke with as much as 40\% Quartz Arenite or Quartz Wacke Wacke dominated with Subwacke \& Argillite Subwacke \& Argillite

In general all beds have tops graded to subwacke or argillite.

Bed Thicknesses \qquad
L Laminated ($<1 \mathrm{~cm}$)
Tn Thin bedded $1-10 \mathrm{~cm}$
M Medium bedded $10-30 \mathrm{~cm}$
Tk Thick bedded $30-100 \mathrm{~cm}$
VTK $>100 \mathrm{~cm}$
Bed Contact Structures
Most bed contacts are
sharp or distinct and
flat, and this is implied
throughout.
Symbols for other contacts are:
... vague
wavy
irregular
flame
shredded
Internal Bed Structures
Grading is implied throughout.
ABCD refer to Bouma
subdivisions (not always used).
Cross beds or laminations
Clasts
Flat, even parallel laminations

* Bedding to core angle
n depth in feet

Distribution: Ministry of Energy, Mines and Petroleum Resources (2 copies)
Sullivan Mine
Kootenay Exploration Western District

STATEMENT OF EXPENDITURES
DDH 6460
DIRECT COSTS

```
Contractor: Tonto Drilling (B.C.) Ltd.
            #200 - 3920 Norland Ave.
            Burnaby, B.C. V5G 4K7
```

 Item Amount
 Mobilization/Demobilization
 500.00
$11,831.00$
2.782 .00
75.00
338.00
Direct Costs $=\frac{1,539.45}{\$ 17.065 .45}$

INDIRECT COSTS

Salaries

Other Contractors:
W. Barker Contracting Ltd., Kimberley, B.C. - Site access/Preparation - 0.1 km of road plus site
 plus cat hauling 130.00 Water hauling 6.5 hours a $545 /$ hour 292.50

Henderson Heavy Hauling (1973) Ltd., Cranbrook, B.C.
Equipment hauling (Cat)
639.00

Transportation:
one 4×4 truck - 10 days $400.040 /$ day 400

Gupalies:
Mud - Gel
152.00
Mud - Gel
Core boxes (incl. transport)
Cap
Indirect costs
180.00
34.92

6,408.34

APPENDIX B
 STATEMENT OF EXPENDITURES

Page 2-13

DDH 6461

DIRECT COSTS
Contractor: Tonto Drilling (B.C.) Ltd. \#200-3920 Norland Ave. Burnaby, B.C. V5G $4 K 7$

Item

Amount

Mobilization/Demobilization
$\$ \quad 500.00$
Drilling 0-497
10.685 .50

Moving
650.00

Surveys 37.50

Other 78.00

Materials
631.45

Direct Costs $=\$ 12,532.45$

INDIRECT COSTS
Salaries
$\begin{aligned} \text { P.W. Ransom } & \begin{array}{l}\text { Geologist - supervision, core logging, } \\ \\ \text { report writing } 10 \text { days } \$ 250 / \text { day }\end{array} \$ 2,500.00\end{aligned}$
Other Contractors:
w. Barker Contracting Ltd., Kimberley, B.C.

Site access/Preparation - D-7 buldozer 15.5 hours $585 /$ hour 1,317.50
Site clean-up Grader 6 hrs . $\$ 70 / \mathrm{hr}$. 420.00

Water hauling 47 hrs . a $\$ 40 / \mathrm{hr}$. $1,880.00$
Crossfield Excavating, Kimberley, B.C.
Site clean-up Backhoe $3 \mathrm{hrs} \mathrm{©} \$ 50 /$.hr . 150.00
Transportation:
one 4 X 4 truck - 10 days $440 /$ day 400.00
Supplies:
Mud - Gel
152.00

- Polymer (incl. transport)
924.42

Core boxes (incl. transport)
195.00

Cap
34.92

Indirect costs $=7,973.84$

STATEMENT OF EXPENDITURES

DDH 6462
DIRECT COSTS
$\begin{array}{ll}\text { Contractor: } & \text { Tonto Drilling (B.C.) Ltd. } \\ & \# 200-3920 \text { Norland Ave. } \\ & \text { Burnaby. B.C. V5G } 4 \mathrm{~K} 7\end{array}$

Item
Amount
Mobilization/Demobilization
$\$ \quad 500.00$
Drilling 0-315
Moving
Field Cost Charges
Surveys
6.772 .50
845.00
37.50

Materials
208.00
631.45

Direct Costs $=\$ 8,994.45$

INDIRECT COSTS

Salaries

P.W. Ransom - Geologist - supervision, core logging,	
	report writing $\quad 8$ days a $5250 / \mathrm{day} \quad \$ 2,000.00$

Other Contractors:
W. Barker Contracting Ltd. Kimberley, B.C. - Site
access/Preparation - 1 km or road plus site
D-7 buldozer 17 hours $1,445.00$
plus cat hauling 617.50
Henderson Heavy Heuling (1973) Ltd., Cranbrook, B.C.
Equipment hauling (Cat/Drill)
366.00

Wright Contracting, Cranbrook, B.C. - Site clean-up
626.50

Transportation:
one $4 X 4$ truck - 8 days $\quad 340 /$ day 320.00
Supplies: Mud - Gel
167.00

- Polymer (incl. transport) 585.90

Core boxes (incl. transport)
127.50

Cap
34.92

APPENDIX D
 Page 2-15

 STATEMENT OF EXPENDITURES

 STATEMENT OF EXPENDITURES}

DDH 6463
DIRECT COSTS

INDIRECT COSTS

Salaries:

P.W. Ransom - Geologist - supervision, core logging, report writing 24 days © $\$ 250 /$ day $\$ 6,000.00$

Other Contractors:
Wright Contracting, Cranbrook, B.C.
Site Access/Preparation - 2 km of road plus site D-6 bulldozer $\quad 117 \mathrm{hrs}$ @ $\$ 86.35 / \mathrm{hr} 10.103 .63$

Henderson Heavy Hauling (1973) Ltd., Cranbrook, B.C.
Equipment hauling - Drill 355.00
Equipment hauling - Cat 427.00
Transportation:
one 4×4 truck - 24 days a $540 /$ day 960.00
Supplies

Mud - Gel	152.00
- Polymer (incl. transport)	$1,854.42$
- Polymer through Tonto	$1,285.68$
Core boxes (incl. transport)	397.50
Cap	34.92
Freight waterline . Indirect costs $=$	187.84

STATEMENT OF EXPENDITURES

DDH 6464

DIRECT COSTS

Contractor: Connors Drilling Ltd.	
	2007 West Trans Canada Highway
	Kamloops, B.C. V1S 1A7

Drilling 0^{\prime} - 5701', all invoices
$5258,413.28$

Direct costs $=5258.413 .28$

INDIRECT COSTS

Salaries:

P.W. Ransom - Geologist - supervision, core logging. report writing 88 days 0 s250/day $522,000.00$

Supplies:
Mud - gel
6,477.00

- polymers etc. 43,795.94
Core boxes
2,734.71

Transportation:

Gealogist 4X4 truck - 88 days 0 3,250.00 0 (day
Transportation of mud etc. $1,929.48$

Cominco Charges:

Road and site construction $\quad 7,625.00$
Snow clearing 2.460.00
Inter-office freight charges re supplies
492.43

Core racks - Labour
2.185.70

- Materiala (est.) + installation

2,000.00
Install radios at drill
360.00

Carpentry work 620.00

Federal and Provincial sales taxes re Cominco work 501.74

Other Contractors:

Crestbrook Forest Industries, Cranbrook, B.C. bridge and culvert installation
Indirect costs $=$
$\$ 100.806 .27$

Total Direct + Indirect casts $=\$ 3359,219.55$

Diamond Drill Geological Log For D.D.H.	6460	$\xrightarrow{\infty}$		
Lat. 5010 Sc DEP 038 Cl	GENERAL COMMENTS Depth Sperry Sun Readings Depth Azimuth (Cor.) 01p			
Corile				
OBJECTIVE, To test electromagnetic anomaly.				
Caven enaty 500 feet				
DRRLLED Ar: Tonto Oriling (b.C.) Ltd.				
Tree orili Lonquear 38				
and did nat recirculate. Creak supoly to shotcrete poal was				
insufficient and was necessary to haul water (Barker Contr.)				
	LOG LEGEND			
CASING REMAINING in Hole llengit a sizeli 70% Hhl + Shoe				
TYPE CAP a SEALING METHOOT $6^{\circ \prime}$ casing can	日ED THICKHESS CLASSIFICATIOM		anis	
OTHER MATERILL REMANING IN HOLE: NONe	asps	Very Thleck Bidded		
		Thick Sodded	Lifmeseric chassifienilat	
SUAVEY INSTRUMENT USED Sperry Sun Single Shot		Hed lun biodded		
ADOIIIONAL COWN HOLE TESTS:		Thin ledded		
		Vary Thin liedded		
	latimae	Laminated	D.D.H. 6460	
		\qquad 0.3 cm		
		\%		

Drill Hole Record
Page 2

Drill Hole Record Property	District	Hole No.	DOH6460	Bamund	Page 3
Commenced	Location	Tests at		Hor. Camp.	
Completed	Coresize	Corr. Dip		Vort. Comp.	
Co-ordinates		True Bra.		Logged by	
Objoctive		\% Recov.		Date	

				Hole No.
Property	DDH6460			
Commenced	Location	Tosts at	Hor. Comp.	
Complated	Core Size	Corr. Dip	Vert. Comp.	
Co-ordinates		True Brg.	Logged by	
Objective	\% Recov.	Date		

in most thin quartz wacke bedz and wajkly diseeninated in the thicker quartz wacke
$270.0-285.0$
Cont' d.
$285.0=305.5$ of fine parallal. flat laminations oceur over a fow min up to 10 en. Bedding to core 88°. 282^{\prime}.

Guartz wacke 70\%, vacke with minor subwacke and argiliite 30ki mediun greys medium bedded with a few thick and a fow thin bedsi ebout 25k interval (mogtiy quartz wacke) has very fing and faint parallal fiat lameliae (one eat at 2Bb.3" have an angular discordance that does not appear to be a syneedimentary fault but, poseibly, crose-laminations that are not tangential at the basel; bed contacts sharp to distinct and flat to alightiy waryi pyrihotite is veakiy to moderataly disceminated in most beds (especialiy 10 en at 303° and in a minor miump at 296) pyrihotite is electricaliy connected acrose diameter of core in a few places. Bedding to core 89° 296".
305.5-327.5 Guartzwacke and wacke, medium greys difficult to describe bedding - $75 \times$ of intarval is laminite generaliy in mediun to thick packages with oceasional thin argililte or siltatone parting 0.3 to 4 cm . Pyrrhotite is typicaliy veakiy disememated with a few thin but continuous seame and one 10 cm caleitempyrihotite zone at 320.0 the seams are electrically continuous. Bedding to cora 850 307' and 85° - 322".
327.5-359.0 Quartzwacke and wacke altarnating over 0.5 - 3.0 foot intervals. medium grey. mediun bedded with sone thin beds. about 50\% of interval is laminitez bedding eontaets distinet to vague and definition ifindividual beds is often diffieult to deteraines pyrrhotite is weakiy diseeninated in some bedse coarsely disseminated at the beses of several beds. forme numerous continuous (physicaily and electriealiy) lamalise 0.5 to 3 an mio and one concretion-iike structure 10 en in diangter (331.5'). Bedding to core 330 and 86°. 356°.
359.0-382.0 Guartzwacke and wacke. mediun grey. thin and medium bedded. bed contacts from sharp to vague and i lats about 70x of interval is laninite in which about $5 x$ is

Drill Hole Record Property	Dlatrict	Hole No.	DDH6460		Page 5
Commenced	Location	Tests al		Hor. Comp.	
completed	Core Size	Corr. Dip		Vert Comp.	
Corordinates		True Brg.		Logged by	
Objective		* Recor.		Date	

Diamond Drill Geological Log For D.D.H. 6461

Page 1
 citump pint

Drill Hole Record
Page 2

Page 3

Drill Hole Record
Page 4

Property	Sullivan	District	Hole No. DDH 6461	
Commenced	June 24, 1987	Location	Tests at	Hor. Comp.
Compleled	dune 26, 1987	Core Stze	Corr. Dlp	Vert. Comp.
Co-ordinates			True Brg.	Logged by
Objactive			\% Recor.	Dato

Diamond Drill Geological Log For D.D.H.

themy
Drill Hole Record

Page 7

Drill Hole Record

Foolage		Description
Bom		

E52.0 - 660.
(mo. madum (minor dark greyp units 20 to 25 cm of laminite, masfive bericite flacked wacko or quartz chlorite concretion laminations are flat. parallel and paper thine Bedding to core 80° a 659'. Several ats of sliekensides parallel to bedding.
660.0-672.0 Guartz arenite and quartzwacke with interbede of wacke/subwacke/argililte to 10 em. light aroy, thick bedded, bed contacts sharp, appear flat but are inclined more than adjacent, eg. bedding to core 600 at 667\%.
672.0-682.0 Wackep subwacke and argillite. minor quartzwackep medium to light grey, thin bedded, bod contacts sharp and flat (a few are irregular), one sat of cross beds notad. Gedding to core 810 680\%.
682.0-717.0 Guartz arenite. minor weke/subwacke/argillite fine grained. thick bedded with intervals generaliy 30 em 0 or less of wecke/subwacke/argililte thin beds and one laminito. Quartz vein (5 ca) 20° to core at 687' and another containing pyrrhotite at 699'. Pyrihotite veinlet at 20° to core at 698'. Pyrirhotite blob 4 by 2 cm contains chalcopyrite with peripheral pyrihotite grains at 713*. Bed contacts sharp, most flat sope inclined to wavy and one has lerge sole feature. Bedding to core B10 691' and 57° a 706'.
717.0-720.5 Wacke. subwacke/argillite. minor quartzwacke. medium grey. thin bedded. contacts sharp (most) to vague, and liat, silekensides parallel to some of the bedding contacts. Bedding to core 820 718°.
720.5-740.5 Duartzerenite, light grey. fine and medium grained, thick bedded, bed contacts sharp and flat to irregular (flames), argillaceous tops 5 em or legs, silekencides and emall broken zone (5 cm) parallei or at amallangle to badding at 529。. Bedding to core 81° e 730'.
740.5 - 746.0 Wacke, subwacke/argiliite minor quartzwecke/quartz arenite, medium grey. thin (few modium) beds, contacts sharp and flat, minor shredding of argillaceous layers

truas?
Drill Hole Record

Page 11

Diamond Drill Geological Log For D.D.H. 6464

Property Sullivan	District Western	Hole No.	DDH6464
Commenced	Lacation	Tests at	Hor. Comp.
Completed	Core Size	Corr. Dip	Vert. Comp.
Co-ordinales		True Brg.	Logged by
Objective		\% Pecov.	Date

Foolage		
Fiom	70	

Overburden

14.0-243.0 Wacke, subwacke and argillite; dark grey and medium greys thin bedded with a few medium beds; bed contacts Eharp and flat: about 70x of interval is laminite mast of which is very dark grey with extremely thin laminae and which containe fine pyrrhotite, some beds are light grey with mare widely spaced black laminae and with minor disseminated pyrrhotite, graded beds are present some with flat parallel current (?) lamination others without and most of which have minor disseminated pyrrhotite especially near the bases. The latter beds grade up. in some cases gradually and in others across a planar contact, into distinct argiliite. In some sections, distinct argillite also occurs as the only lithotype alternating with the dark laminite. Two thick wacke/subwacke beds from 157.5 to 159.3 and 189.0 to 190.5 contain a fow lithic clasts. Calcite is present as pale gray phenocrysts in many of the subwacke and wacke beds and in rare limy intervals up to a fow cm long. Bedding to core 600 e 18., 550 @ 32, 600 a 61'. 590 a 87, 580 (115 55° @ 140°. 56° e170'. 58° e 196°. 56° @ 223'.
243.0-264.0 Lithology described above continues with addition of quartz arenite that is light grey, fine grained and calcareous and containing some fine pyrrhotite, especially at the base. This new lithotype is not abundant, the two thickest beds are 243.0 to 243.7 and 246.0 to 247.1: it or quartz wacke forms the thin bases (less than 2 (m) of a few graded beds. Bedding to core 560 (a64'.
264.0-336.0 Wacke, subwacke and argillite, much like first interval, medium to dark grey; thin bedded with rare medium beds: bed contacts sharp and flaty dark grey laminite with extremely thin laminations and very fine pyrrhotite alternate with (usually) beds graded from wacke to argillite. Of the latter the gradation may be impreceptable or abrupt with sharp internal contacts. Several beds noted with dark grey elongate

Property	Sullivan	District Western	Hole No．OQH6464	
Commenced	Location	Tests at	Hor．Comp．	
Completed	CoreSize	Corr．Dip	Vert．Comp．	
Co－ordinates		True Brg．	Logged by	
Objective		\％Recov．	Date	

Footage TO	
Fom	

897．5－909．0

909．0－934．0

Wacke，subwacke and argillite；medium to dark grey；thin to very thin bedded； contacts sharp to distinct and wavy to flat；beds are graded，bases haveflame etructures，some faint cross laminations．Bedding to core 70° e 903^{\prime} ．
Guartz wacke，wacke，minor subwacke and argillite：medium to light grey；thick and medium bedded：contacts sharp to distinct and flat．a few have small scale irregularities and one good load structure；beds are featureless except for grading． Minor bleaching on same fractures．At 922^{\prime} is $10 \mathrm{~cm} z o n e$ of breccia and gouge parallel to bedding：slickensides on enclosing bedding surfaces（thrust？）．Bedding to core 71°（923＇．

934．0－1082．0
Intervale of quartz wacke quartz arenite and wacke alternate with intervals of wacke，subwacke and argillite．The former are medium and light grey；thick and medium bedded：contacts are sharp to distinct and vary from flat to wavy or irregular； beds are featurelesss except for grading and tops are usually subwacke or argillite． The shorter intervals are medium and dark grey；medium，thin bedded and laminated； contacts are sharp to distinct，wavy to flat；beds are graded，some are laminites． Intervals of thinner beds are：934．0－937．0＇；940．0－950．0＇：951．0－953．0＇： 962．0－973．0＇；977．0－980．0＇；993．0－996．0＇：1008．5－1018．0＇；1020．0－1025．0\％； $1036.4-1037.2^{\prime} ; 1042.3-1044.5^{\prime \prime} ; 1046.5-1050.0 \%$ ； $1056.5-1058.5 \%$（Run 1059.0 － 1061.5^{\prime} is 1.5 feet short）；1071．5－1079．8．Bedding（where flat）to core：
 （a）1079
$1082.0-1129.0 ~ w a c k e, ~ s u b w a c k e ~ a n d ~ a r g i l l i t e ; ~ m e d i u m ~ a n d ~ d a r k ~ g r e y ; ~ m e d i u m . ~ t h i c k ~ a n d ~ t h i n ~ b e d d e d ; ~$ contacts sharp and flat；many beds graded，the coarsest eapproach quartz wacke camposition）generally have current laminations（Bouma B）and as well have disseminated pyrrhotite（represent about 25% of interval）－one bed $1104.0-1104.5^{\prime}$ has pyrrhotite graing up to $3 \times 5 \mathrm{~mm}$ at base and that grade in size to minute at the top．Also present are dark grey laminites and distinctive homogeneous subwackelargillite bad tops．Eedding to core 740 ＠1086＇；680＠1111．； 70 ＠1128．．

Drill Hole Record

Property	Sullivan
Commenced	
Completed	
Co－ordinates	
Oblective	
Footage	
From	To

Guartz arenite，quartz wacke with，from 1143．0－1160．5＇．wacke，subwacke and argillite：medium and light grey；quartz arenite／quartz wacke is thick and medium bedded：bed contacts sharp to distinct and flat to undulating；quartz arenite／ quartz wacke beds are graded otherwise featureless．Wacke／argillite beds are redium to thin bedded；contacts sharp to distinct and flat to undulating；a thick and several medium beds have shreds and clasts of argillite indicative of resediment－ ation．Bedding to core 71°（1143＇，650 © 1160＇．

1168．0－1523．0 Wacke，Eubwacke and argillite；medium with some dark grey；medium and thin bedded with a few isolated thick beds；bed contacts are sharp and flat；grading is common often with disseminated pyrrhotite in bed bases and more weakly disseminated above． many of the thin beds are dark grey laminites，base of a thick bed at l884，has Bouma B current laminations，medium beds of predominantly argillite have wacke wisps containing disseminated pyrchotite，medium wacke bed at 1209＇is calcareous and contains medium and fine quartz sand graine，medium beds of quartz wacke from 1226－1229＇，portion of a thick bed from 1286－1289＇contains argillite clasts up to 1 Kq cm in $5 i z e$ and coarse（ $1-5 \mathrm{~mm}$ ）grains of pyrrhotite di巨seminated throughout （and a 2 mm wide pyrrhotite－calcite fracture）．From 1290 to 1510 bedding to core angle changes radically as large fold is penetrated，core in about 25\％of this interval is badly broken．Pyrrhotite was noted in $1-3 \mathrm{~mm}$ seams on several bed contacts and rarely in veinlets．Broken core 1290－1336，with short segments of good core，gouge in intervals from 1326．5－1330．0，broken 1465－1508＇with fair intervals．Bedding／with cleavage if present in opposite sense to bedding：

 49／210 巴 1313＇，passes 90° in irregular zone at 1315^{\prime} to 300／320 at 1315＇，900

 $1420^{\prime} ; 170$＠ $1427^{\prime} ; 25^{\circ}$＠ 1433^{\prime} ， 24°＠ $1451^{\prime}: 24^{\circ}$＠ $1464^{\prime}: 170$＠ $1472^{\prime}: 340 / 40^{\circ}$

$1129.0-1168.0$

Hole No．DDH6464

Tests at	Hor．Comp．
Corr．Dip	Vert．Comp．
True Brg．	Logged by

\％Recov．Date

C
$-\frac{1}{2}$
Analysis

Property	Sullivan	District	Western	Hole No. DDH6464
Commenced	Location	Tasts at		
Completed	Core Size		Corr. Dip	Hor. Comp.
Co-ordinates			True Brg.	Vert. Comp.
Objective			\% Recov.	Logged by

Footage	Description
Fom	

$1523.0-1593.0$
duartz wacke and quartz arenite with intervale of wacke, subwacke and argillite. The former is light to medium grey; grains to fine sand size; thick, rarely medium bedded; contacts distinct to vague, most flat. some load features; Bouma $A E$ beds, E portion is very minor. Alteration comprises minor silica enrichment along fractures, some quartz veinlets, patchy chlorite sericite. The wacke, subwacke and argillite, from 1539 - 1544 " 1548-1564' and 1570-1576" is medium dark to dark grey: medium and thin bedded with some thick beds: contacts generally sharp and flat: beds are graded. Thick subwacke and argillite beds between 1584 and 1588 contain pyrrhotitiferous wacke dikes 0.5 to 1.5 cm wide, the dikes have been folded and separated into segments during compaction, pyrrhotite content is up ot 50x. Pyrrhotite and pyrite noted on fractures, most often parallel to bedding. Bedding to core: 68° (irregular) e 1523'. 70° e 1539': 690 1552': 650 e 1562^{\prime}; 650 e 1570 and 690 e1575 .

1593.0-1789.0 Wacke, Eubwacke and argillite; medium and dark grey;

1593.0-1630.0' thin bedded; bed contacts sharp and flat or undulating; graded beds alternate with dark laminites: graded bases often have diseeminated pyrrhotite and some are cross laminated (Bouma CE and CDE beds).
1630.0 - 1674.0^{\prime} medium and thin bedded. few thiek bede; of latter one is vaguely laminated wacke, onother mostly wacke/subwacke with disseminated and blebs of pyrrhotite with a quartz wacke base overlying a medium quartz wacke bed (1664).
1674.0-1680. 0° thin bedded: contacts sharp and flat: smallfoldfaulted at 1675.0.
1680.0-1712.0" medium and thin bedded, three thiek beds; most beds graded, many of the wacke bases have weak disseminated pyrrhotite. Thin laminates frequently eeparate beds; bed contacts sharp to distinct and flat, rarely wavy. Disaggregated bed of argillite and subwacke at 1710°.and subwacke clastsin the basal half and scattered pyrrhotite throughout.Lower one is mostly argillite with. fine wisps of sifightly pyrrhotitic subwacke.
$1718.0-1784.0$ thin bedded with quite a few medium beds; dark grey laminites alternate with medium grey bede predominantly argillite with bases that grade from subwacke or wacke. Most of these bases and the few wackelsubwacke wispy layers in the argillite have dieseminated pyrrhotite and in more weathered looking layers pyrite (often with minor calcite). Pyrrhotite is up to sox across 1 cm . One quartz arenite sandstone dike cuts bedding near 900 (1771 - 1772°.
1784.0-1789.0 Argillite and subwacke and wacke. one or two graded intervals within which a faint lamination throughout is accentuated by disseminated pyrrhotite clustered and sometimes elongated grains of which are aligned parallel to bedding. Bedding to core: 550 e 1597'; 550 e 1608': 550 a 1625' with cleavage pyrrhotite in bed bese with dip in opposite sense to bedding. at 12° (true dip of bedding is most likely 480 easterly): 610 e $1640^{\circ}: 58^{\circ}$ e 1660': 60° e. 1662' with cleavage pyrihotite in quartz wacke with dip opposite to bedding at 23° (true dip of bedding probably 430 easterly): 500 6 1672': 60° 1674' through 00 in fractured and faulted fold and back to 470 (1675 ; 53° 1680' 590 1690, with cleavage pyrihotite in quartz wacke with dip opposite to bedding at 26° (true dip of bedding probably 44° easterly): 58°
 with clearage pyrrhotite in aubwacke with dip opposite to bedding at 280 (true dip of beda probably 510 easterly).
$1789.0-1917.5$
Quartz arenite and quartz wacke with some bed tops and a few beds of wacke, subwacke or argilifte, intervals predominantly or entirely quartz arenite 1831.0-1865.0' and 1889.0-1917.5': medium to light grey, some of the quartz arenite is dark grey: medium and fine grained; thick and very thick bedded with a few medium beds,

Property Sullivan	District	Western	Hole No.
DDH6464			
Commenced	Location	Tests at	Hor. Comp.
Completed	Core Size	Corr. Dlp	Vert. Comp.
Co-ordinates		True Brg.	Logged by
Objective		\% Recov.	Date

Footage	Description
From	

$1789.0-1917.5$
 (Cont'd.)

some intervals are amalgamated beds; bed contacts vary but most are distinct and flat to wavy, \quad ome irregular; most bede are 95k or more Bouma A turbidites, a few quartz wacke beds near start contain pale grey argilliterip-up clasts; pyrrhotite is rare but present in veinlets near top and bottom of interval and in bed bases in a predominantly wacke interval 1865.0-1889.0\%. Brittle white fractures below 1890' and a few chlorite veinlets below 1900.0'. Bedding to core: 230 E 1803^{\prime}.
 claavage chlarites at about 13° average in oppasite sense to bedding, 53° (0 1885', 40° and 45° a 1900°.
1917.5-2116.0 Gabbro, dark green, medium and coarse grained with a 3 foot fine grained base. Top contact is sharp and at 40° to cores basal contact is sharp and at 65° to core. There are a few quartz veing up to 10 cm wide, Eome contain feldepar, biotite, chlorite and rarely pyrrhotite and most are brecciated and healed.
2116.0-2211.0 Wacke, subwacke and argillite with several beds of quartz wacke to 2135.0; medium and dark grey; medium and thin bedded with some thick beds to 2135.0; bed contacts sharp and flat; grading is common however some units of argillite as well as the usual dark grey laminites show no internal variations, there are a few isolated rip up clasts of argillite. Pyrrhotite is sometimes present disseminated in portions of the wacke beds. in particular at the base and in silty wisps and laminations. the basal 1 to 5 mm of some beds contains greater than 50% pyrrhotite. Biotite alteration due to intrusion noted to 2135.0^{\prime}. Bedding to core 73° a 2119'. 520 a 2138^{\prime}. 53° a 2154^{\prime} with cleavage prrrhotite at 27° in opposite sense to bedding. 59° @ 2179', 59° a 2195^{\prime}. 58° @ 221° with cleavage, pyrrhotite at 23° in opposite EGnEe to bedding.
2211.0-2308.0 Wacke and quartz wacke (rarely quartz arenite) alternates with intervals of eubwacke and argilifite with some wacke; medium grey; the former is thick and medium bedded, latter is medium and thin bedded; bed contacts are sharp to distinct and flat to wavy; a few beds have argillite wiepe and some appear disaggregated, probably have been resedimented. Pyrihotite is almoet absent, cleavage chloritea are commona

Analysis

$211-0437$
Page 9

Property	Sullivan	District	Western	Hole No.	DDH5464	
Commenced		Location		Tests at		Hor. Comp.
Complated		Core Size		Corr. Dip		Vert. Comp.
Co-ordinates				True Brg.		Logged by
Objective				\% Recov.		Date

The medium and thin bedded subwacke intervals are: 2234-2240', 2255-2263', 2268-2273', 2280-2285'. 2300-2304'. 15 cm gouge zone, mostly clay with about 10% smail fragments $<0.5 \mathrm{~cm}$. Bedding to core 55° 2237, with cleavage chlorites at 20° opposite sense to beds, 50° (2280° with cleavage chlorites at 11° in opposite sense to beds, 55° with cleavage chlorites in opposite sense at 15°.
2308.0-2325.0 Subwacke and argillite (one. medium bed of quartz wacke): medium grey with dark grey intervals from 2309-2314' and 2318-2320'; medium to thin bedded and laminated, bed contacts and laminations are sharp and flat, faint calcite laths and rhombs in upper dark zone, good cleavage chlorites in lighter grey argillites and some disseminated pyrrhotite in biltier parts of beds. Pyrrhotite blebs and coarse disseminations in medium and thin beds 2321-2325'. Bedding to core 51° with cleavage chlorites 20° opposite at 2309°. $53^{\circ} \mathrm{with}$ cleavage chlorites 190 opposite at $2321^{\prime \prime}$.
2325.0-2351.0

Quartz wacke (as part of thick beds above 2338') wacke and subwacke, minor argillite; medium grey; thick and medium (rarely thin) bedded; bed contacts sharp to distinct and flat (rarely slightly wavy): some bases of beds are fine grained, most beds are graded. Pyrrhotite is usually disseminated throughout the thick quartz wacke beds and in siltier bases of other beds. Bedding to core 54° with cleavage chlorites 180 opposite at 2339\%.
2351.0-2435.0 wacke, subwacke and argillite, calcareous; medium and dark grey; thin (more in upper half of interval) and medium bedded; bed contacts are sharp and flat: beds are graded, typically with pyrrhotite disseminated in the wacke portions, particularly near the bases; dark grey laminites 1 to 10 cer thick alternate with the graded beds. About 70% of interval, both graded beds and laminites. is weakly to moderately calcareous. From 2420-2435' limy wacke bases (50\%) are cross laminated (several Eets 2422-2423'). Lithic wackes with clasts to 0.5 X 2 cm from 2403.5-2404 with wavy bed contacts appear to be resedimented. Bedding to core/with pyrrhotite
 520/280 〔 2425'.
II-H0

Drill Hole Record

 Culitur ko

Drill Hole Record

Page 14

Property Sullivan	District	Western	Hole No. DOH6464	
Commenced	Location	Tests at	Hor. Comp.	
Completed	Core Size	Corr. Dip	Vert. Comp.	
Co-ordinates		True Brg.	Logged by	
Objective		\% Recov.	Date	

Property Sullivan	District	Western	Hole No.DDH6464	
Commenced	Location	Tests at	Hor. Comp.	
Completed	Core Size	Corr. Dip	Vert. Comp.	
Co-ordinates		True Brg.	Logged by	
Objective		\% Recov.	Date	

Foolage		Description
From	T0	

3575.0-3599.0 Wacke, subwacke and argillite with about 10x guartz wacke: medium grey: medium and thin bedded (the quartz wacke beds are thick); bed contacts distinct to vague and flat to irregularz many beds are graded however there are some argillite dominated intervals in which internal features are obscured by bit grooving. Slickensides are commonly developed on bedding contacts and on fractures subparallel or at a small angle to bedding. Very siall scale tectonic folds and thrusts are developed in the argillaceous intervals. Cleavage chloritas are plentiful. Bedding/cleavage (e ense relative to bedding) to core: 72° to 140 on opposite limb/220 (in same sense os $72^{\circ} 1 \mathrm{imb}$ and opposite the 14° limb) e 3577\%, 750/220 (opposite) a 3589', 940 (enveloping emall thruete)/360 (Eame), 430 and 24° (in same sense on overturned limb)/390 (same, axial planar) (3598.5'.
3599.0-3620.0 Fault zone, 10 feet of core loss, core is shattered with 3 incohesive zones recovered. Predominant lithotype is wacke. Slickeneides are not as abundant as might be expected, but they are most Etrongly developed parallel to bedding, Eometines parallel to eleavage or other fractures sub-parallel to bedding. On one steep highly polished slickenside surface (120 to core at 3613') the slickenside lineation is parallel to bedding.
3620.0-3725.0 Wacke, subwacke and argillite with a few beds of quartz wacke and lesser quartz arenite. Bed thickness and proportion of latter two lithotypes increases with depth; medium greyi medium and thin bedded, thick beds are rare above 3698". common below; bed contaots sharp to vague and flat to irregular (flames noted). much of interval is broken; beds are generally graded, some are uniform, above 3698, a few of the thicker beds have a $3-10$ ca quartz arenite base. Above 3665' are eqveral calcareous beds (usually thicker beds) and occasional calcareous portions of beds (up to 5 cm), the few crose laminated intervale are calcareaus. Subwacker argillite portions of two thick beds between $3675-3680^{\circ}$ are convoluted. possibly primary overprinted by tectonic. Single bed of quartz arenite 3717 - 3724.

Footage	Description
rom 10 _	

3620.0-3725.0 51ickanaides noted on several bedding contacts, especially where lithologic contrast (Cont'd.)
is great, and on some fractures at small angle to bedding: one fracture parallele 20 cm of unbroken core has well developed silickenside lineation near-parallel to bedding (3658'). Bedding/cleavage (sence of dip relative to bedding) to core: 810 3663'. 860/040 (opposite) 3647'. 850/100 (opposite) 8 3665'. 870/200 (8ame)

3725.0-3731.0 About 3^{\prime} short. Fault zone gouge, light grey fine clay with grit and small rock fragments.

3732 . 0 - 3740.0 Duertz arenite and quartz wacke; mediun greyi thick beddedi no bed contacts obeerved. Fractures common. from 0° to 25° to core. At $373^{\prime \prime}$ is a 10 em gouge zone eontaining rock fragmenta to 1 Cn acrosj.
3740.0-3751.0 Wecke, subwacke and argillites medium greyi thin beddeds bed contacts sharp or distinct to flat (most) or wavy. Bedding to core 570 at 3745°.
3751.0-3793.0 Wacke and quartz wacke, minor more argillaceous rocki medium gray; commonly broken but seeme mostly medium bedded, probably some thick beds: contacts rare. Rock is crushed in broken zones, rarely see slickensides until last feet. Minor gouge noted. mainly in last 5 feet.
3793.0 - 3809.0 Quartz arenite, quartz wacke and wacke, medium to light greys thick bedded; bed contacts broken, vague.
3809.0 - 3828.0 Vacke, subwacke and argillites medium greys medium and thin bedded and a few laminations: to 3815' several beds have been disaggregated and have rip up elasts or a shredded appearance: bed contacts are sharp and ilat to wavy. Two graded beds have quartz arenite bases. one is calcareous and the other has calcareous patches. Bedding to core: 470 e 3810°. 43° 3822'. Emall fold at 3824° where bedding to core if 00 over $1 \mathrm{~cm}, 430$ e 3828°.

Page 19

Property Sullivan	District	Hestern	Hole No. DOH6464	
Commenced	Location	Tests al	Hor. Comp.	
Completed	Core Size	Corr. Dip	Vert. Comp.	
Co-ordinales		True Brg.	Logged by	
Objective		\% Recov.	Date	

Footage	
From TO	

3874.0-4080.0 (Cont'd.)

Bedding/cleavage (sense of cleavage relative to bedding): 13° a 3875', 250 13876^{\prime}. 370/00 (N.A.) © 3877'. 370 e 3903'. 04° e 3920'. 150/470 (opposite) © 3922'. 650/400 (opposite) 3922.1. 250/400 (opposite) $\ln 3922.2^{\prime}$ (in these last 3 bedding dips areall in same direction), 200/00 a 3927 . 020 to $120 / 000$ to 160 (opposite) a 3938', 140 3950', 05° e 3965', (at 3975' is a small fold consistent with overturned

4080.0-4456.0 Gabbro, at top contact is a zone of obout 40 em than contains an 8 cm biotite segreg- ation or vein, 25 cm of sediment. and 15 cm of irregular patches of chilled gabbro. Then is very uniform gabbro, at first it is fine grained with a biotititic selvage that is likely a conformable contact (410). Fine grained to 4090' then medium grained to 4110', coarse grained to 4205', medium grained to 4320', fine and medium grained to 4456'. BaEal contact is sharp at 370. Several small quartz veins noted, one at 4115' is yellowish (ankerite + quartz) has a sheared appearance. Largest quartz veins are from 4254 - 4257' (is grey and contains chlorite and ankerite). 4289-4293' (is white and contains 30x ankerite) and 4303-4304. (grey). Pyrrhotite is present but rare.
4456.0-4494.0 Wacke, eubwacke and argillite, unusually hard because of contact alteration: medium to dark grey; medium and thin bedded; bed contacts sharp and flat; beds some probably originally quartz wacke, often internally laminated. cross laminations noted in upper 10 feet of interval. Bedding to core 60° g 4461\%, 450 4480'. 450 e 4494'.
4494.0-4510.5 Quartz wacke and some quartz arenite; medium to light greys thick bedded; bed contacts distinct to vague, some flat (not all seen as core is moderately broken). At 4507-4508, core is fractured (not broken) above a small crush zone (5 an gouge and sheared fragments) at 60° to core over 5 om of healed chloritic breccia with slip surfaces.

Drill Hole Record

Property	Sullivan	District	Western	Hole No.
DOH6464				
Commenced	Location	Tests at	Hor. Comp.	
Completed	Core Size	Corr. Dip	Vert. Comp.	
Co-ordinates		True Brg.	Logged by	
Objective		\% Recov.	Date	

Footag

4510.5 - 4523.5

4523.5 - 4546.0 Quartz wacke, some beds possibly quartz arenita, calcareous above 4526' only; light grey; thick bedded. with some medium and thin beds to wacke, subwacke and argillite above 4531^{\prime}; bed contacts usually sharp and flat, some wavy: one bed from 4526-27' is coarse grained, some are medium and most are fing grained; most beds have vague internal features mainly contacts that indicate amalgamation, vague crosscutting bleached fractures are common. Black argillite clast $0.5 \times 2 \mathrm{Cm}$ e 4535'. Several bed contacts, especially in more argillaceous zones, have well developed slickenside surfaces. Bedding to core 73° a 4527°. 660 日 4535*. 610 \& 4546。.
4546.0-4556.5 Wacke, bubwacke and argillite; medium to dark greys medium, thin bedded and laminated; bed contacts sharp to distinct and flat (one wavy): in upper 2 feet beds have several enall lithic clasts, eeveral of the beds are graded. Bedding to core 60° [4549*. 600 4556'.
4556.5-4566.5 Quartz wacke and quartz arenite; medium to light greys fine grained; thick bedded; bed contacts distinct, flat and wavy; beds homogenous with graded tops. Well developed slickensides on several broken fragments at 4564'.
4566.5-4572.0 Wacke, subwacke and argiliite; medium grey; medium bedded, few thin beds; bed contacts eharp and flat: moet beds are graded, three have black argillite clasts to 1×2 cm with rare very fine argillite and these are shredded yet overlying bed contact is flat. Bedding to core 60° e 4568^{\prime}.
4572.0-4580.0 Quartz wacke and quartz arenite. minor wacke; medium grey; thick bedded; fine grained; graded, Fault breccia (healed) with short interval of not badly sheared broken core with chlorite, slickeneides and small gouge zone 5 mm wide near top cutting core at 62°.

Drill Hole Record

	Sullivan	District	Hestern	Hole No.
Property	DOH6464			
Commenced	Location	Tests at	Hor. Comp.	
Completed	Core Size	Corr. Dip	Vert. Comp.	
Co-ordinatas		True Brg.	Logged by	
Objective		\% Recov.	Date	

Foolage	Description
rom $\quad 70$	

4580.0-4586.0	Wacke, eubwacke and argillite, minor quartz wackes thin bedded with 3 medium bedes bed contacts sharp and flat; graded, wak cross-laminations noted at top of one bed, top half of one medium bed containc angular argillite (shredded) clasta in wacke metrix. Bedding/cleavage, dip in opposite Eense, to core: 650/390 4581 .
4586.0-4599.0	Quartz arenite, quartz wacke with tops less than 10 cm grading to argillites light grey; thick bedded; bed contacts distinct to diffuse and flat to slightly irregular. One 10 cm oream coloured calcareous patch.
4599.0-4607.0	Quartz wacke 60\%z medium to light gray: thin (2 mediun) bedded and wacke, subwacke and argillites medium greys thin beddeds contacts sharp and flat to wavy, flames noteds most beds are graded, one contains a black argililite clast 0.8 X 3 Ca. Bedding/cleavage. opposite sence, to bedding: 620/650 4605'.
$4607.0-4618.0$	Quartz arenite, graded through quartz wacke to argillitel medium greyz thick to medium beddeds bed contacts sharp and flat to wavy; graded, some Eubwacke/argillite tops have shredded character.
4618.0 - 4622	Wacke, subwacke and argillites medium to dark greys thin bedded to laminated; bed contacts sharp and flat with short intervals shredded. Bedding/cleavage, in opposite sense, to core: 600/750 4621'.
$4622.0-4634.0$	Quartz wacke, some quartz arenite, some wacke, all grade to subwacke or argillites medium grey; thick and medium bedded with several thin beds and laminationsy bed contacts sharp and flat to wavy tops of some beds have shredded apprearance: bedding/cleavage, in opposite sense, to core; 630/600 0 4628..
$4634.0-4660.5$	Wacke, subwacke and argillite with 3 caleareous quartz wacke beds $4652-4656^{\circ} \%$ medium grey, medium and thin bedded, rare laminations; bed contacts sharp and

211.843

Drill Hole Record Property Sullivan	District	Western	Hole No.	DDH6464		$\text { Page } 25$
Commenced	Location		Tests at		Hor. Comp.	
Completed	Core Size		Corr. Dip		Vert. Comp.	
Co-ordinates			True Brg.		Logged by	
Objective			\% Recov.		Date	

Footage	Description
From T0	
$\begin{aligned} & 4792.0-4847.0 \\ & \text { (Cont'd.) } \end{aligned}$	Core broken 4837 - 4839'. A small amount of gouge, crush rock with a calcite vein with slickensides on a bed contact at 4839.5'. Bedding/cleavage, in opposite sense to bedding, to core: 750/570 4804; 600/900, with S_{2} kink 60 in same sence ab bedding, 4828'. 50° (a 4844'.
4847.0-4867.0	Wacke, subwacke and argillite; dark grey; medium and thin bedded and laminated, two thick quartz wacke beds 4863 - 4867': bed contacts sharp to gradational and flat: laminations noted are of ten quite faint and they are present throughtout intervals of 10 to 20 cm . Calcareous lathe noted in some fo the laminites. Bedding/ oleavage, in opposite sense to bedding, to core: 460/30 ${ }^{\circ}$ 4955'. Pyrrhotite grains define the cleavage.
4867.0-4875.0	Wacke, $\quad u b w a c k$ and argillites dark greys thin bedded with laminite in intervals up to 30 cm thick; laminations are faint but easily recognized throughouts bed contacte are sharp and flat. Bedding/cleavage (pyrrhotite), in opposite sense to bedding. to core: 550/550 a 4875^{\prime}.
4875.0-4882.5	Quartz arenite to quartz wacke: medium grey; two medium beds over single very thick bed; contacts sharp and flat.
4882.5-4885.0	Argillite and subwacke; medium grey; laminated; all laminations are graded. At 4884.5', bedding is 600: pyrrhotite cleavage is 83° in opposite sense to bedding in light grey subwacke and bundled sericitic cleavage present only in some argillites is 17° in same sense as bedding.
$4885.0-4903.0$	Quartz wacke and wacke with relatively thin tops graded to subwacke or argillite; medium grey; thick (most of interval) and medium bedded; bed contacts sharp (most) to gradational, possibly amalgamated, most are flat.

Foolage Descr	Description
rom To	
5007.0-5053.0	Ouartz wacke, quartz arenite, with a fair amount of wacke and minor subwacke and argillite; thick bedded; bed contacts sharp and flat. some slightly wavy. Predoninantly argillite 5020 - 5023.5^{\prime} has a 10 em fault of gouge and rock chips, upper contact of fault cuts core at 400. Bedding to core: curves from 350 to 150 e 5020', cleavage is oppoaite at 630. 450 ef 5033'.
$5053.0-5065.0$	Wacke, Eubwacke and argillites medium greys thin bedded, rarely laminated; bed contacts sharp and wavy (folding?); beds are graded. Core is broken from 5060 - 5065'. Slickensides noted on some bedding planes, but not common. Bedding/cleavage (opposite?) 420/020 e 5057'.
$5065.0-5290.0$	Lithotypes and cyclic type of sedimentation typical of last several hundred continues to 5290'.
5290.0-5652.0	Predominantly subwacke and argillite, some wacke and minor quartz wacke. Bedding is near parallel and parallel to core throughout this interval.
$5652.0-5702.0$	Wacke, \quad ubwacke and argillite: medium greys medium to thin bedded: bed contacts sharp and flat. Bedding to core 75°.

1. Crown-Granted M.C. 680
2. Held by Assessment:
2(a) TWO POST CLAIMS
Luke Group 75
Rho Group 20
Med Group 15
Donna, Etc. Group 15
Uke Group 11
Mar Group 17
Bad Group 36
Late Group 91
Mat Group 268
Jackpot 1
2(b) REVERTED CROWN GRANTED MINERAL CLAIMS
Tip 4-12 9
Hope 2-12 11
Sun 2-12 11
Cue 2-12 11
B.C., Silver Bell, Tarrant 3
Black Hills, Yankee Girl, Wasp Fr. 3
Blue Dragon49
2(c) MINERAL CLAIMS (54)
Dip 1-8 56
Fal 1-14 84
Golf 1-3 17
Quark 1\&2 12
Fin 1-3 18
Mead 1-3 36
Gin 1-9 110
Clair 24-32 56
Mark 1-3 17549406
3. Greenhorn Mineral Lease 1
GRAND TOTAL $(1+2+3)$ 1,685

APPENDIX L

STATEMENT OF QUALIFICATIONS

As author of Part 1 and Part 2 of this report, I, Paul W. Ransom, certify that:

I am a geologist active in minerals exploration.
I am a graduate of McGill University with a degree of Bachelor of Science.

I have been continuously engaged in mining and exploration since 1966.

I am a member of the Geological Association of Canada.
I supervised Cominco Ltd.'s Sullivan Mine area exploration drilling program in 1987.

COMINCO LTD

EXPLORATION

GEOPHYSICS

NTS: 82/F9,16

- PART 3 -

MATHEW CREEK 1987
UTEM SURVEY

Latitude: 4945 N
Longitude: $11605^{\prime} \mathrm{W}$
Work Performed by: I. Jackish and J. Vyselaar
Claim Owner and Operator: Cominco Ltd.

3-2-

TABLE OF CONTENTS

PLATE 333-87-1: LOCATION MAP 1
INTRODUCTION 3
FIELD WORK 3
DESCRIPTION OF THE UTEM SYSTEM 3
DATA PRESENTATION 4
INTERPRETATION 6
CONCLUSIONS 6
REFERENCES 8
LEGEND 9
APPENDIX 1: STATEMENT 10
APPENDIX 2: EXHIBIT "A" - STATEMENT OF EXPENDITURES 11
APPENDIX 3: CERTIFICATION 13
PLATE 333-87-2: UTEM GRID AND COMPILATION MAP 14
DATA SECTIONS 15

EXPLORATION
GEOPHYSICS

NTS: 82F/9,16

- MATHEW CREEK 1987 UTEM SURVEY -

INTRODUCTION

This report describes a Utem electromagnetic survey performed in the Mathew Creek area, located 10 kilometres northwest of Kimberley, B.C. The area is underlain by rocks of the Aldridge Formation which are known to host the Sullivan orebody at Kimberley, B.C.

Access to the grid is westerly from Marysville along the St. Mary's lake road for about 7 kilometres, then north on the Mathew Creek road.

16 kilometres of Utem surveying were completed.

FIELD WORK
---ー-ー----
The field work was carried out between October 1 to 6, 1987, inclusive, by geophysicists I. Jackish, J. Vyselaar, and assistants S. Kempt, E. Ricketts, and D. Murphy. Two transmitter loops were used for the survey.

DESCRIPTION OF THE UTEM SYSTEM

UTEM is an acronym for "University of Toronto ElectroMagnetometer". The system was developped by Dr. Y. Lamontagne (1975) while he was a graduate student of that university.

The field procedure consists of first laying out a large loop of single strand insulated wire and energizing it with current from a transmitter which is powered by a motor
generator. Survey lines are generally oriented perpendicular to one side of the loop and surveying can be performed both inside and outside the loop.

The transmitter loop is energized with a precise triangular waveform at a carefully controlled base frequency (30.974 Hz for this survey). The receiver system includes a sensor coil and backpack portable receiver module which has a digital recording facility on cassette magnetic tape. The time synchronization between transmitter and receiver is achieved through quartz crystal clocks in both units, and it must be accurate to about one second in fifty years.

The receiver sensor coil measures the vertical component of the electromagnetic field and responds to its time derivative. Since the transmitter current waveform is rectangular, the receiver coil will sense a perfect square wave in the absence of geologic conductors. Deviations from a perfect square wave are caused by electrical conductors which may be geologic or cultural in origin. The receiver stacks any pre-set number of cycles in order to increase the signal to noise ratio.

The UTEM receiver gathers and records 9 channels of information at each station. The higher number channels (7-8-9) correspond to short time or high frequency while the lower number channels (1-2-3) correspond to late time or low frequency. Therefore, poor or weak conductors will respond on channels 9, 8, 7, and 6. Better conductors will give responses on progressively lower number channels as well. For example, massive, highly conducting sulphides or graphite will produce a response on all nine channels.

At the end of the day the casette tape is played back into a Pascal microengine computer at the base camp. The computer is used to process the data and control the plotting on an 11" x 15" graphics plotter. Data are portrayed on Data Sections as profiles of each of the nine channels, one section for each survey line.

DATA PRESENTATION

The results of this survey are presented in one compilation map and 8 Data Sections which all face N.

The maps are listed as follows:
Plate 333-87-1: Location Map (in text)
Plate 333-87-2: Utem Grid and Compilation Map

A legend for the compilation map and data sections is included. The data sections are arranged in order of loop number, then in order of line number. Loop number defines a loop survey area for purposes of data processing and data management.

The magnetic field amplitudes from both the transmitter loop (primary field) and from the electric currents induced in the ground (secondary field) vary considerably from the beginning of a line near the transmitter loop, to the end of the survey line far from the transmitter loop. To present such data, a normalizing scheme must be used. In this survey, the primary field from the loop is used for normalizing and presenting the data according to the following schemes:

1. Continuously normalized plots.

This is the standard normalization scheme.
a) For channel 1:
\% Ch. 1 anomaly $=\frac{\text { Ch. } 1-\mathrm{P}}{\mathrm{P}} \times 100 \%$
where P is the primary field from the loop at the station and Ch. 1 is the observed amplitude for channel 1 .
b) The remaining channels ($\mathrm{n}=2$ to 9) are channel 1 reduced and channel 1 normalized:
\% Ch.n anomaly $=\frac{\text { Ch. } \mathrm{n}-\mathrm{Ch} .1}{\text { Ch. } 1} \times 100 \%$
where Ch.n is the observed amplitude of Channel n ($\mathrm{n}=2$ to 9).
2. Point normalized plots.

These plots display an arrow at the top of the section indicating the station to which all data on the line are normalized. The purpose of point normalized plots is to display only the relative amplitude variation of the
secondary field along the line, that is, only that magnetic field from the currents induced in the ground.
a) For Channel 1:

Ppn
where Ppn is the primary field from the loop at the point norm station and Ch. 1 is the observed amplitude for Channel 1.
b) The remaining channels ($\mathrm{n}=2$ to 9) are channel 1 reduced and channel 1 normalized:

$$
\text { \% Ch.n anomaly }=\frac{\text { Ch.n - Ch.1pn }}{\text { Ch.lpn }}
$$

where Ch. n is the observed amplitude of Channel n and Ch.lpn is the observed channel 1 amplitude at the point norm station.

Point normalized plots are usually produced on data sections containing anomalies to help interpretation by providing a different perspective to the data. They are identified by an arrow at the top of the plot which denotes the station used for point normalization; the latter is usually chosen as a station which is at a constant separation from the loop for the whole grid, or, if there is an anomaly, at a station near the center of the anomalous response.

The above normalizing procedures result in chaining error displayed in Channel 1 only.

INTERPRETATION

The results are shown in the Data Sections and compiled in Plate 333-87-2. A few regions of lower resistance than background have been identified by a stronger gradient in the early time channels (9-8-7). No anomalies from good conductors are interpreted.

CONCLUSIONS

16 kilometres of Utem electromagnetic surveying were
completed in a small area about 10 kilometres NW of Kimberley, B.C. Half of this is overlap from two transmitter loops so that the effective line coverage is 12 kilometres. No good conductors were found in this survey.

Approved for release by:

J. M. Hamilton, Manager, Western District Exploration, Cominco Ltd.

Distribution:

Ministry of Energy, Mines,
\& Petroleum Resources (2)
Sullivan Mine
Kootenay Exploration
Western District

$$
3-8-
$$

REFERENCES

Lamontagne, Y., 1975, Applications of Wideband, time-domain EM measurements in mineral exploration: Ph.D. thesis, U. of Toronto.

LEGEND

UTEM COMPILATION MAP AND DATA SECTIONS

SYMBOL	CHANNEL	MEAN DELAY TIME
		30 Hz
1	1	12.8 ms
	2	6.4
	3	3.2
	4	1.6
	5	0.8
\triangle	6	0.4
,	7	0.2
X	8	0.1
\triangle	9	0.05
	10	0.025

In the data sections, the upper graph contains Channels 9 to 5, the centre graph contains Channels 5 to 2, and the lower graph contains Channel 1. Station numbers are indicated along the abscissa. Elevations along the survey line are shown by the solid profile in the lower graph, the scale for which is the ordinate
 on the right hand side of the graph.

Axis of a crossover anomaly. The right superscript indicates the latest anomalous channel. The left superscript indicates depth to current axis in metres, or $S=$ shallow depth, $M=$ moderate depth and $D=$ deep.

Indicates a negative anomaly of width shown by the dash. The latest anomalous channel is shown. Can sometimes be confused with the negative part of a crossover anomaly.

Indicates contact between two regions of differing resistivity. Arrow points to low resistivity zone.

APPENDIX I

IN THE MATTER OF THE B.C. MINERAL ACT
AND THE MATTER OF A GEOPHYSICAL PROGRAMME
CARRIED OUT ON THE MAT 65
AND ADJOINING MINERAL CLAIMS
LOCATED 10 KM NW OF KINBERLEY, B.C.
IN THE FORT STEELE MINING DIVISION OF THE
PROVINCE OF BRITISH COLUMBIA, MORE PARTICULARLY

$$
\text { N.T.S. } 82 \mathrm{~F} / 9,16
$$

AFFIDAVIT

I, Jules J. Lajoie, of the City of West Vancouver in the Province of British Columbia, make oath and say:

1. THAT I am employed as a geophysicist by Cominco Ltd. and, as such have a personal knowledge of the facts to which I hereinafter depose;
2. THAT annexed hereto and marked as "Exhibit A", to this statement is a true copy of expenditures incurred on a geophysical survey on the Mat 65 and adjoining mineral claims;
3. THAT the said expenditures were incurred between October 1 and 6, 1987, for the purpose of mineral exploration of the above-noted claims.

```
3-11-
```

APPENDIX II

EXHIBIT 'A'

STATEMENT OF GEOPHYSICAL EXPENDITURES (1986)

MAT 65 AND ADJOINING CLAIMS CLAIMS

1. SALARIES
P. Ransom, geological supervision, 2 days @ $\$ 250.00 /$ day $\$ 500.00$
I. Jackish, geophysicist,

6 days @ $\$ 285.00 /$ day
$\$ 1710.00$
J. Vyselaar, geophysicist,

6 days @ $\$ 290.00 /$ day $\$ 1740.00$
S. Kemp, assistant,

6 days @ $\$ 125.00 /$ day $\$ 750.00$
D. Murphy, assistant,

6 days @ $\$ 110.00 /$ day $\$ 660.00$
E. Ricketts, assistant,

4 days @ \$102.50/day $\$ 410.00$
$\$ 5770.00$
2. OPERATING DAY CHARGES

Note: This charge is applied for those days on which useful data are acquired, to cover the costs of data compilation, drafting, interpretation, and report.

5 days @ $\$ 300.00 /$ day
$\$ 1500.00$

$$
3-12-
$$

3. EQUIPMENT RENTAL

Utem system: 5 days @ $\$ 150.00 /$ day: $\$ 750.00$
Additional Receiver: 1 day:
$\$ 825.00$
4. EXPENSE ACCOUNTS (incl. accom., meals, fuel)
I. Jackish $\$ 766.38$
J. Vyselaar
$\$ 238.96$
$\$ 1005.34$
5. LINECUTTING (D. Calder, Cranbrook)
22.522 km @ $\$ 382.50 / \mathrm{km}$
\$8614.67
5. MISCELLANEOUS

Trucks (two 4X4): 6 days © $\$ 90.00 /$ day:
$\$ 540.00$

TOTAL
\$18,255.01

I certify this to be a true statement of expenditures for the geophysical program on the Mat 65 and adjoining claims in 1987.

$$
3-13-
$$

APPENDIX III

CERTIFICATION

I, Jules J. Lajoie, of 5655 Keith Road, in the City of West Vancouver, in the Province of British Columbia, do hereby certify that:

1. I graduated from the University of Ottawa in 1968 with an Honours B.SC. in Physics, from the University of British Columbia in 1970 with an M.Sc. in Geophysics, and from the University of Toronto in 1973 with a Ph.D. in Geophysics.
2. I am a registered member (\#12077) of the Association of Professional Engineers of the Province of British Columbia, the Society of Exploration Geophysicists, and the British Columbia Geophysical Society.
3. I have been practicing my profession for the past fourteen years.

3-15-

DATA SECTIONS

D.S. 1a

D.S. 3

D.S. 4

D.S. 4 a

Area MATTHEW CREEK COMINCO operator IJ JV fraq(hz) 38.974
Loopne 6 Lime GEDDN component $H z$ meaondary Ch I normalized. Ch 1 reduoed
D.S. 5

Area MATTHEW CREEK COMINCO operator IU JV frea(hz) 30.974
Loopne 6 Line $60 B Q N$ componant Hz seoondory Ch I normalized Ch 1 reduead
D.S. $5 a$

Area MATTHEW CREEK COMINCD operator IU JV frag(hz) 30.974
Loopno 6 Line 65BON componont Hz secondary Ch 1 normalized Ch 1 reduced

Area MATTHEW CREEK COMINCO operator IJ JV frea(hz) 30.974
Loopno 6 LIne $7008 N$ component Hz eecondary Ch imormolized Ch 1 reduced
D.S. 7 a

0

D.S. 8 a

