PORCHER ISLAND - NOVEMBER 1987 THROUGH JANUARY 1988

DIAMOND DRILL AND GEOPHYSICAL EXPLORATION PROGRAM

<u>CLAIMS</u>: Tippy 38573 Toby 1 38574

Toby 2 38575
Kerry 38576
BR1 829
BR2 830
Educ Page 310

Edye Pass 210 Jolt 6253

Pro fr 6252

MINING DIVISION: Skeena

NTS: 103J/2E

<u>LATITUDE</u>: 54° 01' 30" N

LONGITUDE: 130° 35' 30" W

OWNER: Cathedral Gold Corporation

OPERATOR: Cathedral Gold Corporation

AUTHOR: Alan B. Taylor

DATE: February 1988

16,735

FILMED

ALBRANCH

SEED SNT PEPORT

TABLE OF CONTENTS

			<u>Page</u>
	SUMMARY	•••••	1
1.0	LOCATION A	ND ACCESS	2
2.0	PROPERTY D	EFINITION	2
3.0	SUMMARY OF	WORK COMPLETED	5
4.0	GENERAL GE	OLOGY	5
5.0	HISTORY OF	PREVIOUS EXPLORATION	6
6.0	ECONOMIC G	EOLOGY AND PROGRAM OBJECTIVE	8
7.0	RESULTS AN	D INTERPRETATION	11
8.0	RECOMMENDA	TIONS	13
9.0	BIBLIOGRAP	ΉΥ	14
10.0	COST STATE	MENT	15
11.0	CERTIFICAT	E OF QUALIFICATIONS	16
LIST (OF FIGURES		<u>Page</u>
FIGURE FIGURE FIGURE	2 3	LOCATION MAP CLAIM MAP AND GENERAL GEOLOGY DDH LOCAL MAP NORTH HALF - PORCHER ISLAND In back INDUCED POLARIZATION PSEDOSECTIONS In back	
TABLE	1	DIAMOND DRILLING SUMMARY WITH SIGNIFICANT INTERSECTIONS	9
APPEN	DICES		
	DIX 1 DIX 2 DIX 3	GEOPHYSICAL INSTRUMENTATION AND TECHNIQUES DIAMOND DRILL LOGS AND SECTIONS ANALYSIS AND ANALYTICAL TECHNIQUES	

SUMMARY

The Porcher Island property is situated on tidewater in the northwestern corner of Porcher Island 40 km southwest of Prince Rupert, British Columbia. The Surf Point Mine, located on the property, produced gold from approximately 77,800 tons of 0.29 oz/t gold ore in the mid 1930's. Two underground levels were established in the past; both intersected auriferous quartz veins in a small Cretaceous age diorite boss. This diorite body intrudes the Jurassic age basement rocks of the Prince Rupert schists and amphibolites.

The 1987-88 program consisted of 7,971 feet of diamond drilling over 14 holes, 10 of which tested for vein continuity both between and at depth in the Surf Point workings. The remaining four holes tested major shear structures cutting both diorite and amphibolite for their gold potential. A geophysical IP survey was also carried out over 12.85 line kilometers.

Results are encouraging in that most projected veins were intersected and it was also found that low grade gold bearing rock is present both on the flanks of most veins and in silicified diorite. The four holes outside the mine site all intersected ore grade material and prove that mineralizing fluids have entered the shear zones also. A number of IP anomalies were located both in the diorite and schist terrane and should be tested in the future.

Further drilling, geophysics and geology are strongly recommended to follow-up on existing anomalies and test for additional zones.

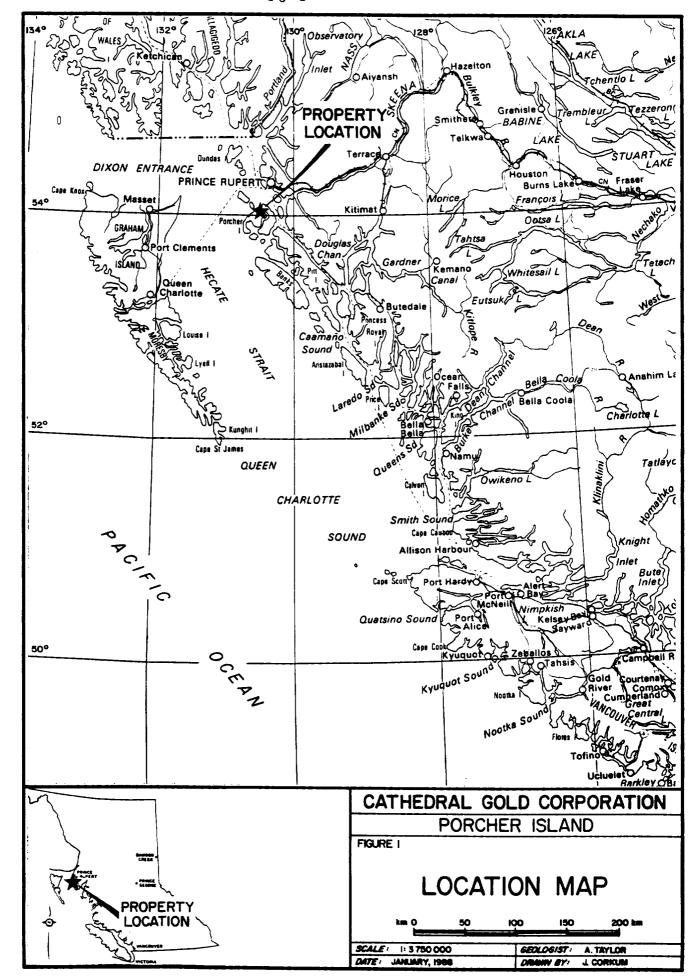
1.0 LOCATION AND ACCESS

The Porcher Island claims are located 40 km southwest of the town of Prince Rupert on the north coast of British Columbia. The property is situated on the northwest corner of Porcher Island, at Edye Pass, and is bordered on two sides by tidewater. There are presently no roads on the property and access is by boat, float plane or helicopter based out of Prince Rupert.

Vegetation is typical of coastal-type settings ranging from wind-blown stunted scrub vegetation in areas of muskeg to tall stands of spruce and cedar on steeper, better drained slopes. Topographically, the property contains rolling hills with moderate slopes and a highest elevation of 1,600 feet on Bell Mountain. Two linear-type bedrock structures trending northeast-southwest are apparent as steep gullies or trenches found in the northwestern part of the property.

2.0 PROPERTY DEFINITION

Crown Grants


The property consists of the following claims owned 100% by Cathedral Gold Corporation.

Hadte

Decemed Date

Lot No

Crown Grants	LOC NO.	Units	<u>kecord Date</u>
Western Hope Pirate Roward Jeanie Nabob Trixie	L6516 L6953 L6955 L7191 L7192 L6515	1 1 1 1 1	Sept 03, 1927 May 22, 1950 May 27, 1950 May 22, 1950 May 22, 1950 Sept 03, 1927
<u>Claims</u>	Record No.	<u>Units</u>	Record Date
Tippy Toby 1 Toby 2 Kerry Edye Pass BR 1 BR 2 Jolt Profr	38573 38574 38575 38576 210 829 830 6253 6252	1 1 1 4 12 3 6	May 01, 1974 May 01, 1974 May 01, 1974 May 01, 1974 Mar 19, 1974 Nov 14, 1978 Nov 14, 1978 Jul 07, 1987 Jul 07, 1987

Cathedral Gold Corporation also hols 7 crown grants adjoining the main property under a 1987 option agreement, these are as follows:

Crown Grant	Lot No.	Crown Grant	Lot No.
Eagle	6513	Starlight	7189
IXL	6517	HSD	7312
IXL fr	6518	Klim	6519
HED fr	7188		

3.0 A SUMMARY OF WORK COMPLETED

Approximately 1.3km of line was cut and surveyed in for horizontal and vertical control by transit in order to establish a mine grid that is tied into the previously surveyed underground. Survey shots were taken from known survey pins or identification posts by McElhanney Surveying and Engineering Ltd. from Prince Rupert.

A helicopter supported camp was established at the old Surf Point Mine site in preparation for drilling. Approximately 13 line kilometers of the "Mine Grid" was compassed, chained, flagged and cut in preparation for a geophysical survey.

A total of 12.85 line kilometers of induced polarization survey was completed by Scott Geophysics Ltd. (see Appendix 1). A total of 7,971 feet of diamond drilling was carried out over 14 holes by J.T. Thomas Diamond Drilling Ltd. using a Longyear 38 helicopter supported drill.

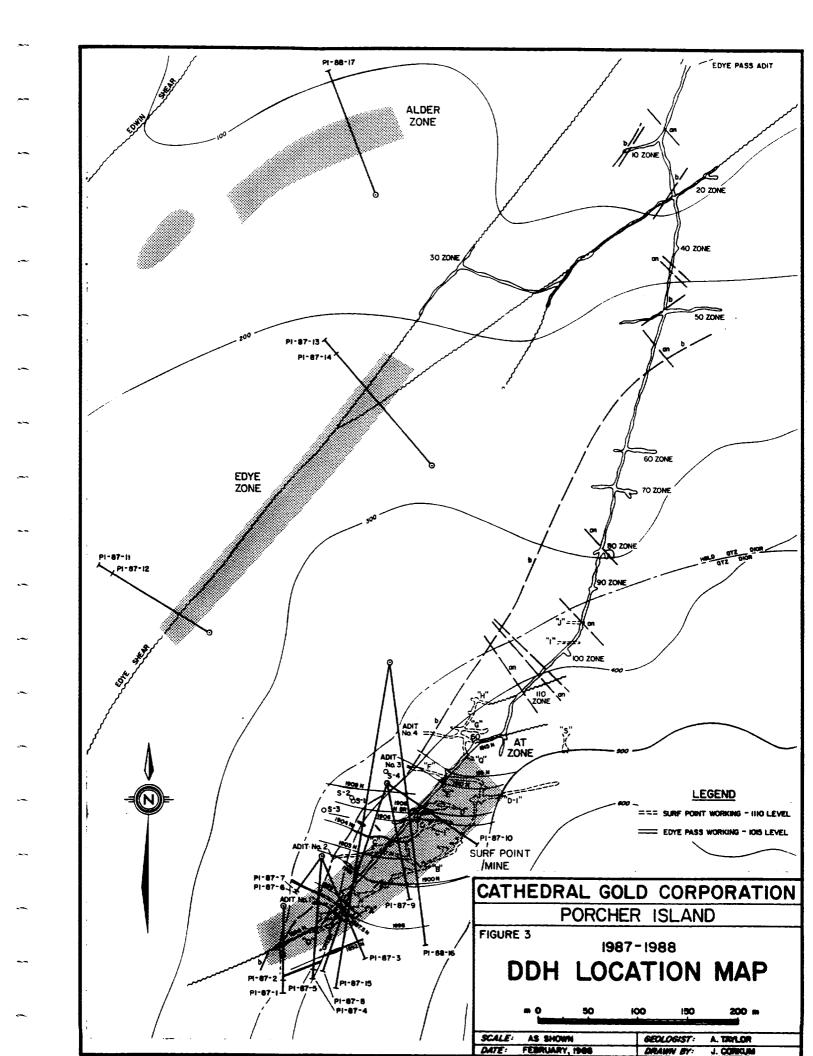
A total of 1,080 core samples were analyzed by Acme Labs, Vancouver. Analyses consisted of a 30 element ICP, and Au by Atomic Absorption. Where gold analyzed greater than 1,000 ppb a fire assay was completed to determine ounces per ton (refer to Appendix 3).

4.0 GENERAL GEOLOGY

Basement rocks on the property consist of the Jurassic age Prince Rupert Schists which consist of metavolcanics, amphibolites and meta-intrusives. These rocks exhibit moderate to strong subvertical foliation and have undergone greenschist to amphibolite metamorphism.

The Prince Rupert Schists have been intruded by a Cretaceous age quartz diorite boss consisting of an outer peripheral hornblende quartz diorite (HQD) and an inner core of quartz diorite (QD). This intrusion is part of the Coast Range Batholith and is subcircular in shape with a diameter of approximately 2.4 km (refer to Figure 2). The auriferous quartz veins mined at Surf Point occur within the quartz diorite body near the intrusive contact with the basement rocks.

The quartz diorite body is cut by several different ages of dykes and quartz veins. Gabboric and andesitic dykes are cut by quartz veins which are in turn injected by basaltic dykes which could be as young as tertiary in age. It is apparent that all dykes have entered along zones of weaknesses such as joints or shears.


5.0 HISTORY OF PREVIOUS EXPLORATION

Initial exploration, prospecting with subsequent trenching and minor underground work was carried out from 1916 to 1932. The Surf Point Mine owned by N.A. Timmins Corporation produced from 1932 through 1937 from a 25 ton per day flotation plant. The mine was sold to Reward Mining Company (which also owned the Edye Pass Mine) in 1937 and in 1938 a fire destroyed the mill. Following the fire, a new company, Porcher Island Mines Ltd., was formed and a new 50 ton per day mill was constructed but at the outbreak of World War II the mine was closed in October 1939. Overall records indicate total production includes approximately 77,800 tons of ore running 0.29 oz/ton gold.

In 1975, Tombill Mines Ltd. optioned the property and carried out a limited underground diamond drill program. This option was subsequently dropped and in 1976 Carolin Mines Ltd. optioned the property and carried out limited surficial evaluation but terminated its option in April 1976.

Banwan Gold Mines Ltd. next optioned the property and carried out a four hole surface diamond drill program in October 1978 at the Surf Point Mine. This prompted Banwan to carry out an extensive underground exploration program funded by E & B Explorations Ltd. up to June 1980 consisting of 1,342 feet of crosscutting and slashing and 50 underground drill holes.

Since the 1980 activity no work was carried out on the property until Imperial Metals Corporation carried out a geochemical survey in May 1987 and subsequently the Cathedral Gold Corporation follow-up diamond drill program commencing November 1987.

6.0 ECONOMIC GEOLOGY AND PROGRAM OBJECTIVES

The auriferous pyritic quartz veins occur as dilatent hydrothermal replacement veins both in the Prince Rupert Schists and diorite intrusion with the Surf Point workings located exclusively in the quartz diorite.

Numerous small widely spaced quartz-pyrite veins occur within the Hornblende Quartz Diorite as seen in the Edye Pass Adit but only three main zones were actually mined (20, 30, 50 zones) producing about 12,000 tons of 0.20 oz/t gold. The ore veins in the QD occur in steeply dipping shear zones or joint planes near the HQD/QD contact. Approximately 30 veins were identified in the Surf Point Mine with 85% of total production to 1938 coming from six veins known as the C, B, D, A, G, and C-1 veins. After the 1015 crosscut development was completed most of these projected veins were apparently intersected on the 1015 level at an average of 87.17m (286 feet) below the Surf Point 1110 level. It was speculated that reserves from 76.2m (250 feet) below the 1015 level to the 1110 level were approximately 250,000 tons of 0.27 oz/t gold.

The quartz veins have two principal strike directions $N65^{\circ}$ and east-west with a general dip of 80 to 85° to the north with minimal post-ore faulting.

The major part of the 1987 exploration program was designed to test the continuity of these veins between levels and at depth and test for a bulk tonnage potential. Other areas of interest including major shears and gold showings elsewhere on the property would also be targeted for both geophysics and drilling tests for additional tonnages.

PORCHER ISLAND - DIAMOND DRILLING SUMMARY NOVEMBER-DECEMBER 1987 SUMMARY OF SIGNIFICANT INTERSECTION (WEIGHTED AVERAGES)

Hole #		ocation(m) Northing	Elevation(m) (Mine Grid)	Atti Azimut		Depth ft/m	Date	Comme	nced	Date (Complete	From	<u>To</u>	<u>Feet</u>	oz/t Au
PI-87-1	4596	18979	1100	170°	-45°	447/136.25	Nov.	8, 1987	7	Nov. 1	2, 1987	49.0	53.0	4.0	0.105
11-07 1	1000											176.0	182.0	6.0	0.418
												329.0	334.0	5.0	0.035
												373.0	380.0	7.0	0.038
	4500	18979	1100	170°	70°	597/181.96	Nov.	12. 198	B7	Nov. 1	4, 1987	173.0	177.0	4.0	0.158
PI-87-2	4596	109/9	1100	170	.,,	007, 101100	•••	,				217.0	224.0	7.0	0.052
												343.0	352.1	9.1	0.084
												448.0	466.0	8.0	0.039
			4400	4504	-45°	503/153.00	Nov	14 10	87	Nov 1	7, 1987	186.0	195.0	9.0	0.058
PI-87-3	4638	19027	1109	158°	-45	503/153.00	1101.	17, 13	,		,, 100,	228.0	261.6	33.6	0.287
												314.0	321.0	7.0	0.050
										Nau 9	0 1007	172.8	188.0	15 2	0.076
PI-87-4	4638	19027	1109	177*	-45°	557/169.77	NOV.	17, 19	8/	MOA. I	9, 1987	219.0	296.0		0.205
												213.0	230.0	,,,,	0.200
51 A7 F	4620	19027	1109	177°	-60°	747/227.68	Nov.	19. 19	87	Nov. 2	1, 1987	68.3	75.0	6.7	0.233
PI-87-5	4638	19027	1109	1//	-00	, 4, , 22,	****	,			•	86.0	98.2	12.2	0.139
												135.0	138.5	3.5	0.078
												432.0	440.0	8.0	0.048
												454.5	462.0	7.5	0.079
												696.0	704.0	8.0	0.054
		10007	1100	215°	-45°	205/62.48	Nov.	21, 19	87	Nov. 2	2, 1987	67.4	71.0	3.6	0.095
PI-87-6	4638	19027	1109	213	-45	200702.40		,			-•	97.0	99.0	2.0	0.131
												197.0	205.0	8.0	0.050
						roc/154 03	Nou	22 10	07	Nov 2	3, 1987	116.4	131.0	14.6	0.089
PI-87-7	4638	19027	1109	215°	-75°	506/154.23	MOA.	22, 19	0/	110V. Z	3, 130/	150.0	157.0	7.0	0.258
												177.5	180.0	2.5	0.115
													197.0	7.0	0.052
												221.0	228.0	7.0	0.043
												319.0	328.4	9.4	0.110
												373.0	381.0	8.0	0.353

PORCHER ISLAND - DIAMOND DRILLING SUMMARY (con't)
NOVEMBER-DECEMBER 1987
SUMMARY OF SIGNIFICANT INTERSECTION (WEIGHTED AVERAGES)

Ho1e #		ocation(m) Northing	Elevation(m) (Mine Grid)	Atti <u>Azimut</u>	tude h Dip	Depth ft/m	Date	Commence	Date Complete	From	<u>To</u>	<u>Feet</u>	oz/t Au
PI-87-8	4700	19093	116.5	195°	-45°	837/225.12	Nov.	24, 1987	Nov. 27, 1987	78.0	85.0	7.0	0.069
								-	-	235.0	268.3	33.3	0.119
										311.0	313.0	2.0	0.172
										528.8	529.3	0.5	0.621
										589.0	589.5	0.5	0.680
										635.0	643.0	8.0	0.052
											674.9	0.5	0.499
											713.0	5.0	0.099
											727.0	1.5	1.453
										728.0		9.0	0.194
										763.0	766.0	3.0	0.299
PI-87-9	4700	19093	116.5	165°	-55°	570/173.74	Nov.	27. 1987	Nov. 30, 1987	96.0	105.0	9.0	0.042
								•	·	187.0	193.0	6.0	0.040
										351.0	357.3	6.3	0.186
PI-87-10	4700	19093	116.5	140°	-45°	402/146 01	Nau	30 1007	Dec 2 1007	20.0	E2 0	15.0	0.105
P1-0/-10	4/00	19092	110.5	140	-45	482/146.91	NOV.	30, 196/	Dec. 2, 1987	38.0 100.0	53.0 132.0		0.105
											176.0		0.210
										101.0	170.0	15.0	0.033
PI-87-11	4531	19250		300°	-45°	625/190.50	Dec. 2	2, 1987	Dec. 5, 1987	168.7	169.5	0.8	1.300
PI-87-12	4531	19250		300°	-60°	445/135.64	Dec (5 1087	Dec. 6, 1987	168.0	170 0	2.0	0.034
1 1 07 12	4001	13200		500		440/100.04	Dec.	0, 1307	Dec. 0, 130/	289.0		0.5	0.034
										203.0	200.0	0.0	0.034
PI-87-13	4743	19425		320°	-45°	767/233.78	Dec.	7. 1987	Dec. 10, 1987	199.0	207.0	8.0	0.068
								•	•	294.0	308.0	14.0	0.268
										363.0	367.0	4.0	0.100
										398.5	417.0	18.5	0.067
PI-87-14	4743	19425		320°	-60°	684/208.48	Dec. 1	10, 1987	Dec. 12, 1987	249.0	252.0	3.0	0.140
										643.0	644.0	1.0	0.069
									·				

TOTAL:

7.0 RESULTS AND INTERPRETATION

<u>Drilling</u>

The first ten holes were drilled under the Surf Point Mine workings and overall were successful in intersecting the projected veins both between and below the 1110 and 1015 levels in the quartz diorite.

Gold mineralization appears almost exclusively in direct relationship with pyrite content located in quartz veins, silicified diorite and shear zones.

Quartz veins appear as distinct, steeply dipping to vertical, generally east-west trending, dilatent infilling structures which in some cases can be devoid of pyrite. These veins can occur as discreet sharp walled features in the diorite, within and parallel to shear zones and central to and in part forming a stockwork system within the silicified diorite zones. Quartz veins vary from less than one centimeter up to one meter. Observation made from underground indicate rapid pinching and swelling of these veins so any intersection in drill holes is encouraging for continuity projections. diorite zones vary from almost a 100% replaced tan brown diorite with an average of 2% pyrite to very subtle alteration where granitic-type textures are still evident. Usually these zones contain a stockwork of quartz veinlets (but not always) and commonly occur on the flanks of major veins. These zones most likely represent various stages of silica flooded diorite related to the same event as the quartz vein forming fluids but have not been sampled in the past and do carry low grade gold mineralization which enhance the bulk potential of the mine. Shear zones occur within the diorite varying from a few centimeters to over ten meters. Shears generally carry quartz-chlorite veinlets and the main 1896 shear trends 65° with sub-vertical dips. This shear is central to the best intersection of 77.0 feet of 0.205 oz/t gold in PI-87-4 and appears to contain substantial potential for additional tonnage at depth and along strike. It is very common to find basalt dykes within these zones of weakness but due to lack of marker horizons, it is difficult to estimate amount of displacement along the shear.

Holes 11 through 14 were drilled away from the Surf Point Mine and on a major 40° trending Edye Shear which cuts both Prince Rupert Schists and the diorite intrusion. This shear is a very evident lineament as seen in air photos and topographically forms a distinct trench or gully cutting the property. A number of old showings exist along this feature and which prompted drill testing of PI-87-11, and 12 below the Dawson workings which contain a two foot

wide quartz-pyrite vein which ran 0.2 oz/t Au. Hole 11 apparently intersected this zone (refer to section Appendix 2) (1.3 oz/t over 0.8 feet in a quartz vein) adjacent to a basalt dyke in diorite. A number of sections of the drill holes intersected Prince Rupert amphibolites and meta volcanics which are probably large roof pendants. Holes 13, 14 are approximately 275m downstrike to the north of 11, 12 and tests the Edye Shear. A number of gold intercepts were found in these holes generally associated with altered diorite of quartz veins. Holes 11 through 14 were successful in proving that gold mineralization does occur within the Edye Shear.

Geophysics

The induced polarization survey revealed one strong anomaly between the Edwin and Edye shears from 4650E 19700N through 4450E 19600 and is still open to the west.

A number of other spot IP anomalies were located at 4750N 19625N and 4850E 19575N. Anomalies found in the vicinity of Surf Point Mine (at the south end of lines 4800E 4750E 4700E) probably represent anomalies related to the underground workings.

8.0 RECOMMENDATIONS

Since the drill program is still underway at this time some of the following may have already been carried out:

- 1) Further drilling both at depth and along strike extensions to the Surf Point veins to firm up and test for additional reserves.
- 2) Further drilling along strike of the Edye shear and Edwin shear to test for additional tonnage.
- 3) Drill test the strong IP anomaly found between the two major shears.
- 4) Further extension of the mine grid to the south over the Surf Point workings and upslope with IP survey extended also to check for further tonnage.
- 5) Underground bulk sampling of 1015 cross-cut and 1110 levels where possible to test for bulk tonnage potential.
- 6) Reexamine and resample old drill core where available.
- 7) Test for possible remnant tonnage (by drilling short holes) above the 1110 level.
- 8) A regional reconnaissance program to explore for additional property acquisition with the recent findings as a guide.

9.0

BIBLIOGRAPHY

- Armstrong, C.M. 1978: Report on the Porcher Island Gold Property, for Banwan Mines Ltd.
- Bergmann, H.J. 1980: Report on Porcher Island Gold Property of Banwan Gold Mines Ltd., Porcher Island, B.C.
- Cochrane, D.R. 1976: Geology, Soil Sampling, SP Survey, and Survey of Workings, Surf Point Mine; for Carolin Gold Mines Ltd. (AR 6195)
- Corvalan, R. 1986: Geochemical Assessment Report on BR1 and BR2 Claims; for Imperial Metals Corporation
- Dearin, C. 1980: Report on Underground Exploration Work on the Porcher Island Project during Phases I and II, October 1979 to June 1980 and Proposal for Additional Exploration/Development Work; for Banwan Gold Mines Ltd. by E & B Exploration Ltd.
- Douglas, G.B. 1975: Underground Diamond Drilling Report, Edye Pass Mine; for Tombill Resources Ltd. (AR 5728)
- Hutchison, W.W. 1982: Geology of Prince Rupert-Skeena Map Area, British Columbia; GSC Mem. 394
- Lawrence, R.W. 1984: Gold and Silver Recovery from Ore Supplied by Imperial Metals Corporation (AR 14602)
- Roddick, J.A. 1970: Douglas Channel-Hecate Strait Map-area (103H and part of 103G); GSC Paper 70-41, Map 23-1970
- Smith, A. 1948: Surf Point and Edye Pass Mines, in Structural Geology of Canadian Ore Deposits, C.I.M. pp.94-99
- Taylor, A.B. 1988: Geochemical Surveys on the Porcher Island Claims for Cathedral Gold Corporation

10.0	COST EXPENDITURE - PORCHER IS	LAND	
	October 1, 1987 - January 15,	1988	
Danasana 1			
<u>Personnel</u>			
T. East Oct. 18	-Jan. 15 88 man days x \$165/day 3-Jan. 15 71 man days x \$115/day 38 man days at \$80 38 man days at \$80	14,520 8,165 3,040 2,000	
Total Personnel	:		\$ 27,725
<u>Transportation</u>			
Helicopter Fixed Wing Vancouver to Pr	ince Rupert (AT, TE, RP)	7,200 1,000 1,000	
Total Transport	ation:		9,200
Drilling			
7,971 feet x 43	feet .	342,753	342,753
<u>Analytical</u>			
	es at \$13.25 (ICP & AA) es at \$8.25 (fire assay)	14,416 1,295 2,430	
Total Analytica	11:		18,140
Geophysics			
12.85km x \$11		14,135	
Total Geophysic	:s:		14,135
Miscellaneous			
Report writing Transit survey Sperry Sun Rent Supplies Communication Expediting	-	2,000 4,350 3,150 6,000 1,500 4,000	
			21,000

\$432,953

GRAND TOTAL:

1	1		n
1	1	•	u

CERTIFICATE OF QUALIFICATION

- I, ALAN B. TAYLOR, geologist, residing at 15-8720 Maplegrove Crescent in the Municipality of Burnaby, Province of British Columbia, hereby certify that:
 - I graduated from Brock University in 1979 with an Honours Bachelor of Science in Geology.
 - I graduated from the University of Western Ontario in 1984 with a 2) Master of Science in Geology.
 - 3) I have worked for various mining companies and government geological surveys since 1977.
 - 4) I am presently a permanent staff geologist with Imperial Metals Corporation of 800-601 West Hastings Street, in the City of Vancouver, Province of British Columbia.
 - 5) The work described in this report on the Porcher Island Claims was undertaken under my direct supervision.

DATED a	at	the	City	of	Vancouver	this	(day	of	9	1988.
---------	----	-----	------	----	-----------	------	---	-----	----	---	-------

Alan B. Taylor, Geologist

APPENDIX

GEOPHYSICAL INSTRUMENTATION AND TECHNIQUES

APPENDIX I

PORCHER ISLAND INDUCED POLARIZATION SURVEY - INSTRUMENTATION

Introduction

Induced polarization and resistivity surveys were conducted over portions of the Porcher Island Property, Prince Rupert Area, B.C., within the periods November 6, 7, 1987 and January 8 to 15, 1988. The work was conducted by Scott Geophysics Ltd. on behalf of Cathedral Gold Corporation.

The pole dipole electrode array was used on the survey, with an "a" spacing of 25 meters and "n" separations of 1 to 5. The current electrode was to the south of the receiving electrodes on all survey lines.

Instrumentation and Procedures

A Scintrex IPR11 time domain microprocessor based induced polarization receiver and a Scintrex 2.5kw IPC7 transmitter were used for the survey. Readings were taken using a 2 second alternating square wave. The chargeability for the eighth slice (690 to 1050 milliseconds after shutoff; midpoint at 870 milliseconds) is the value that has been plotted on the accompanying plans and pseudosections.

The survey data was archived, processed, and plotted using a Sharp PC7000 microcomputer running Scintrex Soft II and proprietary software. All chargeability values were analyzed for their spectral characteristics using a curve matching procedure (Soft II).

Alan Scott, Geophysicist Scott Geophysics Ltd. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

APPENDIX

DIAMOND DRILL LOGS AND SECTIONS

DRILL RECORD

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4596E 18979N

COLLAR DIP : -45° PAGE :

HOLE NO. : PI-87-1

ELEV. : 1100m

COLLAR AZIMUTH: 170°

PAGE : 1 of 5 LOGGED BY : Alan B. Taylor

COMMENCED: November 8, 1987

CORE SIZE: BQ

% RECOVERY : 100%

DATE: November 23/87

COMPLETED: November 12, 1987

LENGTH

: 447 ft

CORE STORED : On property

OBJECTIVE: 1986 intercept.

Sperry-Sun Survey: at $220' = 170^{\circ} \text{ Az} - 47^{\circ} \text{ dip/at } 457' = 173^{\circ} \text{ Az} - 47^{\circ} \text{ dip.}$

From To					From	То				Ana	alysis		
Fe	Feet		Description	No.	Fe	et	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	10.00		Casing.										
10.00	237.00		Hornblende quartz diorite 30% mafics.										
			Generally massive medium grain size with euhedral, dark black to green hornblende 1-2mm in size and variably chloritized and/or epidote rich										
			locally. Occasional mafic xenoliths up to 10cm diameter.										
			Narrow quartz +/- calcite +/- chlorite +/- silicified wall rock at: 36.50' - 1cm at 45° (trace pyrite), 62.30' - 5mm at 40° (slip)(trace pyrite),										
			76.00' - 3mm at 50° (slip), 111.20' - 4mm at 70° (quartz + epidote), 111.30' - 3mm at 15° (quartz + epidote)(light pyrite), 113.70' - 3mm at 80°, 115.30' - 1mm at 70°, 115.80' - 2mm at 20°, 123.30' - 2mm at 45°,										
			123.70' - 4mm at 45°, 145.70 - 2mm at 30°, 177.00' - 2mm at 20° (mod. pyrite), 180.40' - 5mm at 30° (pyrite), 209.10' - 1mm at 85°, 244.00' -										
			4mm at 45°, 244.80' - 1cm at 35°.										
			Vuggy carbonate zone 348.00' - water bearing fractures healed with carbonate - 357.00'.										
			29.10 - 2cm grey-white aplite dike at 45°.										
					<u></u>								

CATHEDRAL GOLD CORPORATION P-I-87-1 Page 2 of 5

From To			Smp.	From To				Aı	nalysi	S	
Feet	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
		46.10-53.00 - silicified altered quartz-diorite with a central brecciated									
	ļ	chlorite-pyrite-carbonate zone.									
	<u> </u>	46.10-49.10 - grey silicified diorite with dark green chlorite fractures									
		weakly magnetic, trace pyrite.									
		49.10-51.40 - broken up carbonate-chlorite shear zone, talcy in									
		places, sheared at 30° with dense knotty chlorite.									
		50.30-50.70 - heavy pyrite approximately 40% at 30°.									
		50.70-53.00 - silicified altered diorite, light pyrite.									
		55.20-55.50 - milky grey silicic bull quartz vein (aphanitic?) 30°.									
		89.80-90.60 - milky grey silicified diorite with trace pyrite.									
		110.0-110.20 - silicic diorite.									
		115.30-116.60 - silicified diorite with light pyrite and chloritic									
		fractures.									
		120.20-123.90 - silicified diorite, trace pyrite.									
		125.80-126.20 - silicified diorite.									
		143.00-143.60 - felsic quartz diorite (not HQD), coarse grain size.									

1

j

)

ŀ

1

l

CATHEDRAL GOLD CORPORATION P-I-87-1 Page 3 of 5

From	To			Smp.	From T	0			A	nalysi	S	
Feet		Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			147.00-149.00 - silicified diorite.									
			149.00-151.00 - badly broken up diorite with clay alteration, talcy, trace pyrite.									
			151.20-154.80 - fine grain black basalt dike, moderately magnetic, contains calcite amygdules up to 5mm. Upper margin chilled in 4'-1cm bands at 20°									
			parallel to contact. Flow banded trace pyrite at upper contact in diorite.									
			154.80-155.00 - altered talcy diorite.									
			155.00-156.40 - basaltic stringer contacts irregular and injecting into diorite. Contact approximately 20°.									
			168.00-168.50 - silicified diorite, trace pyrite.									
			175.10-185.10 - silicified shear zone (1896)									
			185.10-176.00 - silicified, slightly foliated diorite, trace pyrite, foliation 45°, more intense at lower basalt contact.									
			176.00-177.00 - fine grain basaltic dike, fresh black appearance.									
			177.00-179.00 - white bull quartz with pyrite bands (30°), pyrite approximately 15%.									
			179.00-185.10 - badly broken and sheared silicified diorite, pyrite approximately 1%.									

CATHEDRAL GOLD CORPORATION P-I-87-1
Page 4 of 5

				,		,						
From	To			Smp.	From To				A	nalysi	5	
Fee	et	Syb	Description	No.	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
			402.00.100.00									
			193.00-193.20 - silicic diorite with light pyrite.								<u> </u>	
l			194.90-195.70 - silicic diorite, chlorite with pyrite.									
			200.00-200.80 - silicic diorite.									
			205.90-207.00 - silicic diorite with trace pyrite.									
			200.00 207.000 STITIOTO WISH NOW STUDE PJI 1603									
237.0	447.0		Quartz diorite 15-20% mafics.									
<u> </u>			Narrow quartz +/- calcite +/- chlorite +/- silicified wall rock 257.00 -			ļļ						
			3mm at 15°, 289.00 - 3mm calcite at 10°, 297.10 - 3mm at 45°, 307.20 - 2mm									
			at 40°, 327.00 - 3mm at 10°, 396.70 - 2mm at 50°, 425.00 - 5mm grey aplite									
			10°, 431.50 - 5mm grey aplite 20°, 448.00 - 8mm at 45°, 452.50 - 1cm	-								
			epidote-chlorite slip plan 45°.				····					
						 						
1			242.80-242.90 - creamy pink aplitic vein 30°.									
			262.00-262.20 - silicified diorite with trace pyrite.									
			266.00-266.40 - silicic veining (1cm), trace pyrite.									
			000 00 001 00 -131-111111111									
			280.00-284.80 - silicic and carbonated diorite, quartz vein (bull) at									
			282.00 only 9' core between 277.00 and 287.00.									[
			001 00 000 00 -111-111-11-1 - 11-11-1 - 10-11-1 - 10-11-1									
 i			291.80-292.60 - silicic diorite - two quartz veins 2cm thick at 302.20,				<u> </u>					
			302.40, pyrite.									
· .	1	ŀ			1	l l	ŀ	i	ı		- 1	

.

CATHEDRAL GOLD CORPORATION P-I-87-1
Page 5 of 5

From	То			Cmm	From To	<u> </u>			Α.	nalvei		
Fee	• -	Syb	Description	Smp. No.	From To Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu PPM	Zn	Au oz/tn
			304.10 - 4cm quartz-chlorite-pyrite vein at 35°.									
			321.50-337.00 - silicified diorite, salt and pepper texture not as evident, slightly bleached, trace pyrite.									
			338.20-338.40 - 2 x 2cm bull quartz vein.									
			341.50 - chlorite-carbonate 4cm vein 50° with minor pyrite.									
			357.00 - 3cm quartz vein 45°.									
			316.50 - 2cm quartz vein with 2cm massive pyrite at 45°.									
			381.00 - 2cm white quartz vein 45°.									
			397.00-408.00 - epidote rich diorite.									
			409.00 - mafic/xenoliths (amphibolites) distinct.									
			411.80-412.40 - bleached diorite with pink tinge to feldspar, core broken up and fractured.									
			447.00 - end of hole.									

DRILL RECORD

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4596E 18979N

COLLAR DIP : -70°

PAGE : 1 of 6

HOLE NO. : PI-87-2

I-87-2 ELEV.

. : 1100m

COLLAR AZIMUTH: 173°

: 597 feet

LOGGED BY : Alan B. Taylor

COMMENCED: November 12, 1987

CORE SIZE: BQ

% RECOVERY : 100%

LENGTH

DATE : Nov. 24, 1987

CORE STORED : On property

COMPLETED: November 14, 1987

OBJECTIVE: 1986 at depth.

Sperry-Sun Survey @ 200' = 173° Az/-70° at 600' = 183° Az/-70°.

To			Smp.	From To				Ana	ilysis		
ŧ	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
10.00		Casing.									
342.30		Hornblende Quartz Diorite									
		30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up									
		to 10cm.									
		Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 26.80' - 2mm									
		at 45° (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45°, 46.40'									
		1mm at 30° (epidote), 65.20' - 1mm at 30° (epidote), 77.60' - 4mm at 25°									<u>. </u>
1		(calcite), 80.00' - 2mm at 10° (x 2), 87.10' - 1cm at 45°, 108.00' -									
		2mm at 40° (x 2), 115.00' - 1cm at 40° (mod. pyrite), 166.90' - 3mm									
		at 45°, 167.80' - 4mm at 40°, 169.00' - 6mm + 2mm at 80°, 170.60' - 4mm at									
		40°, 171.10' - 3mm at 30°, 171.50' - 3mm at 40°, 185.30' - 6mm at 45°,									
		198.20' - 2mm at 60°, 245.00' - 1cm at 70° (trace pyrite), 276.70' - 2mm at									
		25°, 294.00' - 1cm at 25° (aplite), 312.00' - 4mm at 35°, 315.90' - 4mm at									
		80°, 335.50' - 3mm at 80°.									
		17.50-17.90 - silicified diorite with 5mm calcite vein along ?									
		25°.									
		33.30 - 3cm cream white barren quartz vein 45°.								-	
	10.00	10.00	Description Casing. Hornblende Quartz Diorite 30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up to 10cm. Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 26.80' - 2mm at 45° (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45°, 46.40' 1mm at 30° (epidote), 65.20' - 1mm at 30° (epidote), 77.60' - 4mm at 25° (calcite), 80.00' - 2mm at 10° (x 2), 87.10' - 1cm at 45°, 108.00' - 2mm at 40° (x 2), 115.00' - 1cm at 40° (mod. pyrite), 166.90' - 3mm at 45°, 167.80' - 4mm at 40°, 169.00' - 6mm + 2mm at 80°, 170.60' - 4mm at 40°, 171.10' - 3mm at 30°, 171.50' - 3mm at 40°, 185.30' - 6mm at 45°, 198.20' - 2mm at 60°, 245.00' - 1cm at 70° (trace pyrite), 276.70' - 2mm at 25°, 294.00' - 1cm at 25° (aplite), 312.00' - 4mm at 35°, 315.90' - 4mm at 80°, 335.50' - 3mm at 80°. 17.50-17.90 - silicified diorite with 5mm calcite vein along ? 25°.	Description Casing. Hornblende Quartz Diorite 30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up to 10cm. Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 26.80' - 2mm at 45° (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45°, 46.40' 1mm at 30° (epidote), 65.20' - 1mm at 30° (epidote), 77.60' - 4mm at 25° (calcite), 80.00' - 2mm at 10° (x 2), 87.10' - 1cm at 45°, 108.00' - 2mm at 40° (x 2), 115.00' - 1cm at 40° (mod. pyrite), 166.90' - 3mm at 45°, 167.80' - 4mm at 40°, 169.00' - 6mm + 2mm at 80°, 170.60' - 4mm at 40°, 171.10' - 3mm at 30°, 171.50' - 3mm at 40°, 185.30' - 6mm at 45°, 198.20' - 2mm at 60°, 245.00' - 1cm at 70° (trace pyrite), 276.70' - 2mm at 25°, 294.00' - 1cm at 25° (aplite), 312.00' - 4mm at 35°, 315.90' - 4mm at 80°, 335.50' - 3mm at 80°.	Description Casing. 10.00 Casing. 142.30 Hornblende Quartz Diorite 30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up to 10cm. Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 26.80' - 2mm at 45' (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45', 46.40' 1mm at 30' (epidote), 65.20' - 1mm at 30' (epidote), 77.60' - 4mm at 25' (calcite), 80.00' - 2mm at 10' (x 2), 87.10' - 1cm at 45', 108.00' - 2mm at 40' (x 2), 115.00' - 1cm at 40' (mod. pyrite), 166.90' - 3mm at 45', 167.80' - 4mm at 40', 169.00' - 6mm + 2mm at 80', 170.60' - 4mm at 40', 171.10' - 3mm at 30', 171.50' - 3mm at 40', 185.30' - 6mm at 45', 198.20' - 2mm at 60', 245.00' - 1cm at 70' (trace pyrite), 276.70' - 2mm at 25', 294.00' - 1cm at 25' (aplite), 312.00' - 4mm at 35', 315.90' - 4mm at 80', 335.50' - 3mm at 80'.	Description Description No. Feet Lgth. 10.00 Casing. 142.30 Hornblende Quartz Diorite 30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up to 10cm. Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 26.80' - 2mm at 45° (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45°, 46.40' Imm at 30° (epidote), 65.20' - 1mm at 30° (epidote), 77.60' - 4mm at 25° (calcite), 80.00' - 2mm at 10° (x 2), 87.10' - 1cm at 45°, 108.00' - 2mm at 40° (x 2), 115.00' - 1cm at 40° (mod. pyrite), 166.90' - 3mm at 45°, 167.80' - 4mm at 40°, 169.00' - 6mm + 2mm at 80°, 170.60' - 4mm at 45°, 198.20' - 2mm at 60°, 245.00' - 1cm at 70° (trace pyrite), 276.70' - 2mm at 25°, 294.00' - 1cm at 25° (aplite), 312.00' - 4mm at 35°, 315.90' - 4mm at 80°, 335.50' - 3mm at 80°.	Description No. Feet Lgth. Rec. 10.00 Casing. 142.30 Hornblende Quartz Diorite 30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up to 10cm. Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 25.80' - 2mm at 45° (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45°, 46.40' 1mm at 30° (epidote), 65.20' - 1mm at 30° (epidote), 77.60' - 4mm at 25° (calcite), 80.00' - 2mm at 10° (x 2), 87.10' - 1cm at 45°, 108.00' - 2mm at 40° (x 2), 115.00' - 1cm at 40° (mod. pyrite), 166.90' - 3mm 40°, 171.10' - 3mm at 40°, 169.00' - 6mm + 2mm at 80°, 170.60' - 4mm at 45°, 187.80' - 4mm at 30°, 171.50' - 3mm at 40°, 185.30' - 6mm at 45°, 189.20' - 2mm at 60°, 245.00' - 1cm at 70° (trace pyrite), 276.70' - 2mm at 80°, 335.50' - 3mm at 80°. 17.50-17.90 - silicified diorite with 5mm calcite vein along ? 25°.	Description No. Feet Lgth. Rec. Au ppb 10.00 Casing. 142.30 Hornblende Quartz Diorite 30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up to 10cm. Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 26.80' - 2mm at 45° (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45°, 46.40' 1mm at 30° (epidote), 65.20' - 1mm at 30° (epidote), 77.60' - 4mm at 25° (calcite), 80.00' - 2mm at 10° (x 2), 87.10' - 1cm at 45°, 108.00' - 2mm at 40° (x 2), 115.00' - 1cm at 40° (mod. pyrite), 166.90' - 3mm at 45°, 167.80' - 4mm at 40°, 169.00' - 6mm + 2mm at 80°, 170.60' - 4mm at 45°, 198.20' - 2mm at 30°, 171.50' - 3mm at 40°, 165.30' - 6mm at 45°, 198.20' - 2mm at 60°, 245.00' - 1cm at 70° (trace pyrite), 276.70' - 2mm at 25°, 294.00' - 1cm at 25° (aplite), 312.00' - 4mm at 35°, 315.90' - 4mm at 25°, 294.00' - 1cm at 25° (aplite), 312.00' - 4mm at 35°, 315.90' - 4mm at 35°, 315.90' - 4mm at 360°, 335.50' - 3mm at 80°.	Description No. Feet Lgth. Rec. Au Ag ppb ppm 10.00 Casing. 142.30 Hornblende Quartz Diorite 30% mafics, salt and pepper medium texture. Sporadic gabbroic xenoliths up to 10cm. Narrow quartz +/- calcite +/- chlorite +/- epidote veinlets: 26.80' - 2mm at 45' (trace pyrite), 35.00-36.00' - 4-1cm bands of epidote at 45', 46.40' 1mm at 30' (epidote), 65.20' - 1mm at 30' (epidote), 77.60' - 4mm at 25' (calcite), 80.00' - 2mm at 10' (x 2), 87.10' - 1cm at 45', 108.00' - 2mm at 40' (x 2), 87.10' - 1cm at 45', 108.00' - 2mm at 40' (x 2), 115.00' - 1cm at 40' (mod. pyrite), 166.90' - 3mm at 45', 167.80' - 4mm at 40', 169.00' - 6mm + 2mm at 80', 170.60' - 4mm at 40', 171.10' - 3mm at 40', 171.50' - 3mm at 40', 185.30' - 6mm at 45', 198.20' - 2mm at 60', 245.00' - 1cm at 70' (trace pyrite), 276.70' - 2mm at 25', 294.00' - 1cm at 25' (aplite), 312.00' - 4mm at 35', 315.90' - 4mm at 30', 335.50' - 3mm at 80'. 17.50-17.90 - silicified diorite with 5mm calcite vein along ? 25'.	Description No. Feet Lgth. Rec. Au Ag Cuppb ppm ppm 10.00 Casing. 10.00 Casing	Description No. Feet Ligth. Rec. Au Ag Cu Zn ppm P

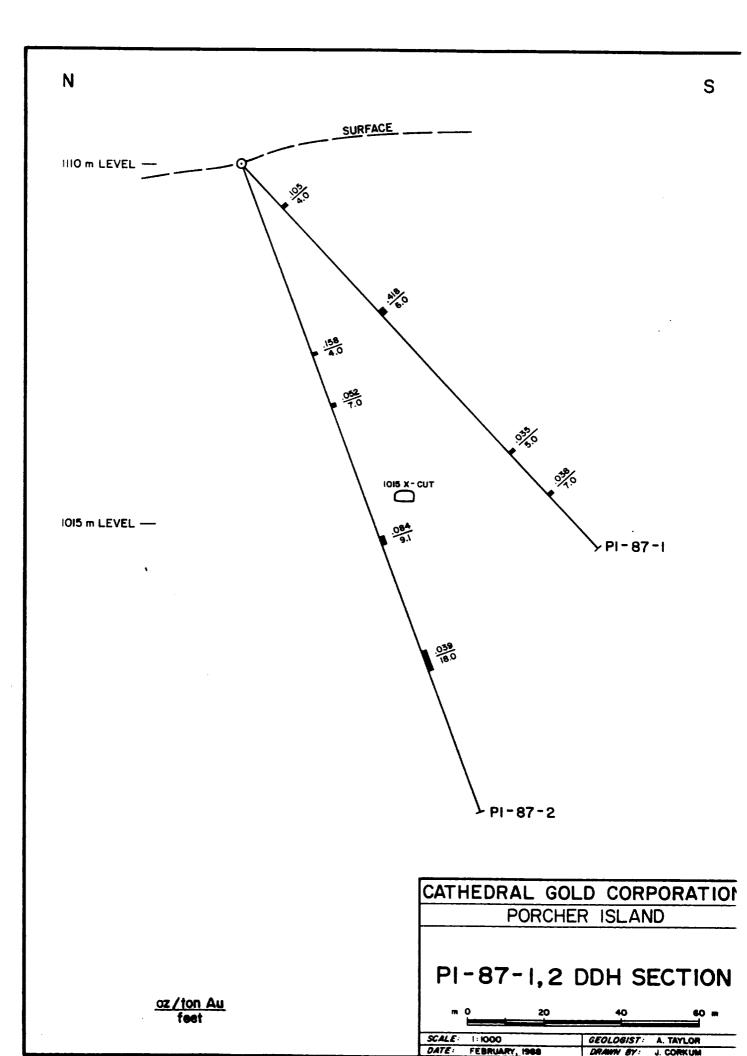
CATHEDRAL GOLD CORPORATION PI-87-2 Page 2 of 6

From To			Smp.	From	To				A	nalysi	<u>s</u>	
Feet	Syb	Description	No.		Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		44.50-46.20 - porphyritic gabbroic xenolith diffuse upper contact with	1		T							
	-	diorite, lower contact sharp at 30°, shows no chill. Euhedral feldspar and					 			 	 	
		amphibolite up to 6mm set in a dark aphanitic matrix.	'		 	 						
	1	amphilipolite up to omin set in a dark aphanitic matrix.		ļ	 							
		49.10-49.30 - white dense quartz vein, trace pyrite, 45°.										
		59.00-59.10 - light green chlorite slip with 2cm silicified altered wall										
		rock.	ļ									
		76.50-76.60 - silicified diorite 30°.	<u> </u>							<u> </u>		
			<u> </u>									 '
		79.00-80.40 - slightly silicified diorite with small carbonate veinlets,		75.00								
		trace pyrite.			80.40			36				ļ
	\sqcup		57039	80.40	81.00	0.60		470				<u> </u>
	 	80.40-81.00 - quartz-pyrite vein, pyrite in 1cm bands, contacts sharp 35°.										
		107.60-107.80 - quartz-carbonate-pyrite vein at 30°, 15% pyrite, green	57041	107.50	107.90	0.40		330				
		epidote at contacts.	57730	156.00	157.50	1.50						
	-		57704	470.00	170.00							
	1	156.60-157.10 - silicified diorite.			173.00				*			
			5//32	173.00	1/5.80				*			
	\vdash	175.80-177.00 - silicified diorite, trace pyrite.	57042	175 90	177.00	1 20		19870				
		1/3.80-1/7.00 - Siticified diditte, trace pyrite.	37042	175.80	177.00	1.20		190/0				
		176.00-176.50 - white quartz vein 35° with light pyrite concentration.	57733	177.00	180.00				*			
			57734	180.00	184.40							
		180.30-180.40 - silicified diorite with 1cm quartz.										
	1 1		<u> </u>									!

CATHEDRAL GOLD CORPORATION PI-87-2 Page 3 of 6

To			Smp.	From	To				Δr	nalvete		
	Syb	Description	No.	1		Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
		190.30-190.80 - epidote rich diorite.										
		191.40 - 3cm banded quartz vein 35° (chalcedony).										
		194.40-195.20 - epidote rich diorite.										
		208.60-208.70 - white aplite vein 80°.										
		211.00-212.00 - epidote rich diorite.	57735	217.00	220.60				*			
		220.60-220.90 - silicified diorite on a slip plane at 30° which has 6mm pyrite seam.						44140	*			
		229.30-230.90 - silicified diorite with lightly banded pyrite at 25°.	57045	229.30	230.90	1.00		875				
		233.70-234.0 - silicified slip plane at 45° with light pyrite.										
		255.90-256.00 - silicified slip at 45°, light pyrite.										
		258.40-260.00 - light epidote bands approximately 5-10cm.										
		275.00-277.00 - porphyritic gabbroic xenolith.										
		287.00-291.00 - slight epidote banding 3-4cm at 30° x 6.	57737	335.00	339.30				*			
	To		Description 190.30-190.80 - epidote rich diorite. 191.40 - 3cm banded quartz vein 35° (chalcedony). 194.40-195.20 - epidote rich diorite. 208.60-208.70 - white aplite vein 80°. 211.00-212.00 - epidote rich diorite. 220.60-220.90 - silicified diorite on a slip plane at 30° which has 6mm pyrite seam. 225.10-225.20 - pinky white aplite vein at 40°. 229.30-230.90 - silicified diorite with lightly banded pyrite at 25°. 233.70-234.0 - silicified slip plane at 45° with light pyrite. 255.90-256.00 - silicified slip at 45°, light pyrite. 258.40-260.00 - light epidote bands approximately 5-10cm.	Description 190.30-190.80 - epidote rich diorite. 191.40 - 3cm banded quartz vein 35° (chalcedony). 194.40-195.20 - epidote rich diorite. 208.60-208.70 - white aplite vein 80°. 211.00-212.00 - epidote rich diorite. 57735 220.60-220.90 - silicified diorite on a slip plane at 30° which has 6mm 57044 pyrite seam. 57736 225.10-225.20 - pinky white aplite vein at 40°. 229.30-230.90 - silicified diorite with lightly banded pyrite at 25°. 57045 233.70-234.0 - silicified slip plane at 45° with light pyrite. 258.40-260.00 - light epidote bands approximately 5-10cm.	Description 190.30-190.80 - epidote rich diorite. 191.40 - 3cm banded quartz vein 35° (chalcedony). 194.40-195.20 - epidote rich diorite. 208.60-208.70 - white aplite vein 80°. 211.00-212.00 - epidote rich diorite. 57735 217.00 220.60-220.90 - silicified diorite on a slip plane at 30° which has 6mm 57044 220.60 pyrite seam. 57736 220.90 225.10-225.20 - pinky white aplite vein at 40°. 229.30-230.90 - silicified diorite with lightly banded pyrite at 25°. 57045 229.30 233.70-234.0 - silicified slip plane at 45° with light pyrite. 255.90-256.00 - silicified slip at 45°, light pyrite. 258.40-260.00 - light epidote bands approximately 5-10cm.	Description 190.30-190.80 - epidote rich diorite. 191.40 - 3cm banded quartz vein 35° (chalcedony). 194.40-195.20 - epidote rich diorite. 208.60-208.70 - white aplite vein 80°. 211.00-212.00 - epidote rich diorite. 57735 217.00 220.60 220.60-220.90 - silicified diorite on a slip plane at 30° which has 6mm 57044 220.60 220.90 pyrite seam. 57736 220.90 224.00 225.10-225.20 - pinky white aplite vein at 40°. 229.30-230.90 - silicified diorite with lightly banded pyrite at 25°. 57045 229.30 230.90 233.70-234.0 - silicified slip plane at 45° with light pyrite. 258.40-260.00 - light epidote bands approximately 5-10cm.	Description No. Feet Lgth. 190.30-190.80 - epidote rich diorite. 191.40 - 3cm banded quartz vein 35° (chalcedony). 194.40-195.20 - epidote rich diorite. 208.60-208.70 - white aplite vein 80°. 211.00-212.00 - epidote rich diorite. 57735 217.00 220.60 220.60-220.90 - silicified diorite on a slip plane at 30° which has 6mm 57044 220.60 220.90 0.30 pyrite seam. 57736 220.90 224.00 225.10-225.20 - pinky white aplite vein at 40°. 229.30-230.90 - silicified diorite with lightly banded pyrite at 25°. 57045 229.30 230.90 1.00 233.70-234.0 - silicified slip plane at 45° with light pyrite. 258.40-260.00 - light epidote bands approximately 5-10cm.	Description No. Feet Lgth. Rec.	Syb Description No. Feet Lgth. Rec. Au ppb	Syb Description No. Feet Lgth. Rec. Au Ag pph ppm	Description No. Feet Lgth. Rec. Au Ag Cu ppm ppm ppm	Syb Description No. Feet Lgth. Rec. Au Ag Cu Zn ppb ppm pp

CATHEDRAL GOLD CORPORATION PI-87-2 Page 4 of 6


				1	I		1						
From	То			Smp.		То	1				nalysi:		,
F	et	Syb	Description	No.] !	Feet	Lgth.	Rec.		Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
342.30	359.00		342.30-359.00 - 1896 shear zone.	57046	339.30	342.30	3.00		450				
			342.30-343.00 - silicified-chloritized diorite, trace pyrite with	57047	342.30	343.00	0.50		43				
			carbonate.	57048	343.00	346.40	3.40		3385				
				57049	346.40	349.40	3.00		335				
			343.00-346.40 - white massive quartz (badly broken) with minor chlorite	57050	349.40	352.10	2.70		4450				
			clots and trace to light pyrite 25°.		352.10				51				
				57052	353.30	357.40	4.10		36				
			346.40-351.00 - badly broken and sheared diorite with 5% quartz. Dis-	57053	357.40	359.00	1.60		9				
			seminated pyrite <2% throughout section, sheared at 10°, talcy.	<u> </u>									
			351.00-352.10 - white quartz with chlorite knots, trace pyrite.								i		
			352.10-353.30 - foliated parallel to core, carbonate, chlorite.										
				 									
			352.30-357.40 - black aphanitic basalt dike 20° sharp contacts.				i						
			357.40-359.00 - silicified diorite.										
250 00	507.00				250 00								
359.00	597.00		Quartz Diorite	5/054	359.00	362.00	3.00		14				
			Massive, salt and pepper texture, medium grain.										
			Names: grants // calaba // chlamba // calaba 205 401 1cm ch 700										
		-	Narrow quartz +/- calcite +/- chlorite +/- epidote. 385.40' - 1cm at 70°,										
			389.60' - 2mm at 20°, 396.60' - 3mm at 20° (light pyrite), 407.40' - 2mm at	 									
			30°, between 410.00 and 412.00 approximately 12 x 1mm at 30°, 415.60' - 3 x 1mm (chloritic) at 45°, 420.00 -> 423.00 - multiple black 1mm basaltic										
			veinlets at 10° -> 30°, 440.00' - 2mm at 30° (x5 basaltic), 503.00' - 1mm					 					
			at 10° (x4). Vuggy water filled calcite fractures at 421.60' at 30°, 576.60 -> 578.00' at 10°.								<u>}</u>		
			3/0.00 -/ 3/0.00 at to.	L		l		1		1			

CATHEDRAL GOLD CORPORATION PI-87-2 Page 5 of 6

					τ		r	т	r				
From	To			Smp.	From	То	İ	1	İ	Aı	nalysi	S	
Fe	eet	Syb	Description	No.		Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
ł					ł				ppb	ppm	ppm	ppm	oz/tn
<u> </u>			407.70-408.30 - chlorite shear, talcy, trace pyrite 30°.		}			ļ				 	
ļ			415.00-415.40 - chlorite-carbonate knot.	57720	407.00	410.00							
			415.00-415.40 - Chiof (Le-Carbollate Khot.			415.40						 	
			415.40-420.40 - silicified diorite, trace pyrite. Carbonate also minor.	•		420.40			66				
			120.10 V20110 OTTTOTT TOS GIOTTES, ELGES PATTES. CUIDORALE GIOS MITTOT.	37033	713.70	720.40	3.00		00				
			422.00-422.20 - porphyritic andesite vein, 20°.										
			423.00-423.40 - same as above, 20°.										
			425.00-435.40 - massive fine grain basalt with (weakly magnetic) sharp										
 			upper and lower contacts at 20°. Erratic carbonate veinlets at contact and										
ll			through upper part of dike, 3mm amygdules 5%.										
			436.50-436.80 - basalt brecciated diorite contains a pinky iron stained										
			carbonate (effervences strong with HCL).	57740	438.00	442.00				*			
		-	427 20 429 20 block bossible dillo shilled at 200 consilei to conteste	F7744	440.00	445 00				-			
			437.30-438.30 - black basaltic dike chilled at 30° parallel to contacts			445.00				*			
			and amygdaloidal bands.			448.00 451.00	2 00		2890				
			449.90-472.00 - silicified diorite with disseminated 1-2% pyrite.			454.00			430				
 			170.00 172.00 Official od diolite with disseminated 1-28 pylite.			457.00			395				
			455.60-456.40 - basalt dike 30° with carbonate veinlets.			460.00			720				
			The state of the s			463.00			650				
						466.00			2190				

CATHEDRAL GOLD CORPORATION PI-87-2 Page 6 of 6

From	To			Smp.	From	То				Aı	nalysi	<u> </u>	
Fe	et	Syb	Description	No.	1	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
			485.00-486.00 - silicified diorite 2% pyrite.	57062	466.00	469.00	3.00		405				
				57063	466.00	472.00	3.00		134				
			495.00-496.00 - silicified diorite 1% pyrite.	57064	485.00	486.00	1.00		340				
													[
			535.50-536.00 - silicified diorite with 2% pyrite	57065	535.50	536.00	0.50		215				
			534.90 - 2cm quartz-pyrite vein at 80°.										<u> </u>
		\neg	334.30 - Zem quartz-pjrrto vern at 60 .	 									
			548.00-554.00 - silicified diorite with disseminated 2% pyrite.	57066	548.00	551.00	3.00		260				
		-	552.00-552.50 - coarse carbonate-chlorite-pyrite knot.	57067	551.00	554.00	3.00		1610				
					554.00					*			
			561.80-561.90 - 2 x 1cm quartz veins, slightly carbonatized diorite.										
			582.00-587.40 - silicified diorite with 2% pyrite.	57769	582 00	584.30	2 30		56				[
			302.00-307.40 - 3111011104 diditto with 2% pfilto.			585.30			1120				
			584.30-585.30 - foliated diorite with parallel quartz-pyrite veins +/-	-		587.40			640				
			chlorite.	57750	587.40	590.00				*			
			590.00-591.00 - porphyritic andesitic xenolith (?)										
			597.00 - end of hole.										
			337.00 - GIR OF HOTE.	 									

DRILL RECORD

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4638E 19027N

PAGE : 1 of 4

HOLE NO. : PI-87-3

ELEV. : 1109m COLLAR DIP COLLAR AZIMUTH: 158°

: -45°

LOGGED BY : Alan B. Taylor

COMMENCED: November 14, 1987

% RECOVERY : 100% DATE : Nov. 25, 1987

COMPLETED: November 17, 1987

LENGTH : 502

CORE STORED : On property

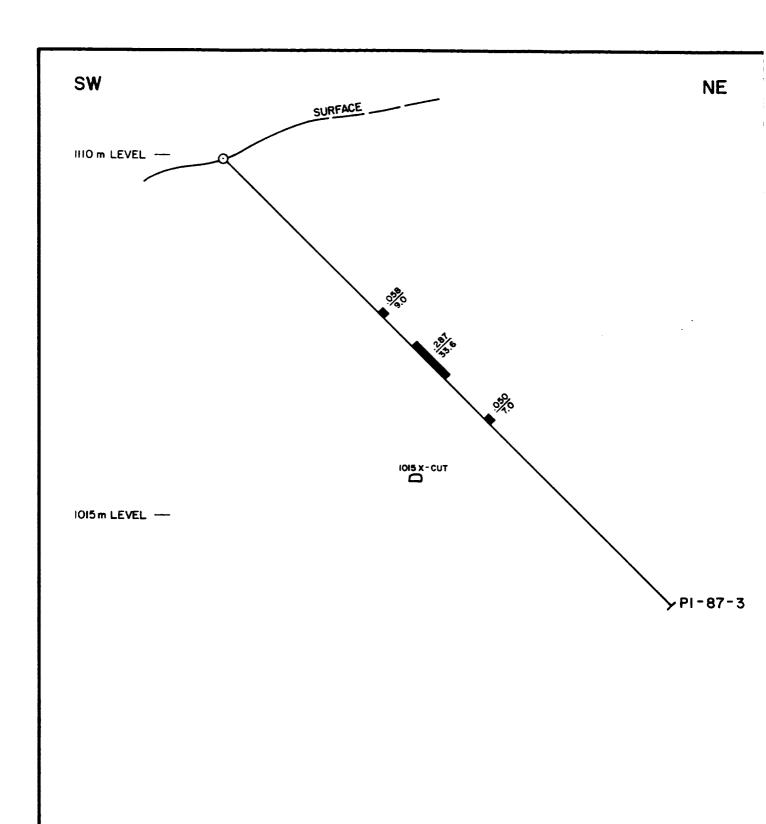
OBJECTIVE: 1898

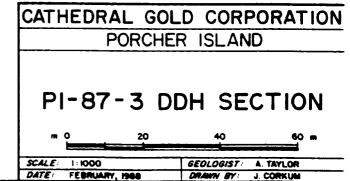
Sperry-Sun Survey: At 250' = 158' Az -45° at 500' = 158° at -45°.

CORE SIZE: BQ

From	To			Smp.	From	To			ļ	Ana	alysis		
F	eet	Syb	Description	No.	F€	et	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
0.00	10.00		Casing.										
	10.00			1									
10.00	502.00		Quartz Diorite										
			Weathered iron stained fracture at 42.00, 47.00, 198.00.										
			Narrow quartz +/- calcite +/- epidote +/- chlorite veinlets: 30.20' - 3mm										
			at 50°, 38.00-39.00' - 3mm at 45° (x6), 64.20' - 2mm at 70°, 66.10' - 2mm										
			at 80°, 78.00' - 1mm at 80°, 139.90' - 1mm at 80°, 172.40' - 1cm at 50°										
			(trace pyrite), 187.90' - 1cm at 90°, 216.10' - 1cm at 60°, 221.00' - 1cm										
			at 50° (pyrite), 222.00' - 1cm at 50°, 226.80' + 227.70' - 6mm at 50°										
			(light pyrite), 235.00' - 1cm at 50°, 250.70' - 8mm at 10° (mod. pyrite),										
			262.30' - 4mm at 80° (x3), 267.60' - 3mm at 60°, 282.00' - 5mm at 15°										
			(chloritic), 317.00' - 2mm at 80°, 317.80' - 2mm at 50°, 350.60' - 1cm at										
			50° (light pyrite), 364.00' - 1mm at 70°, 386.30' - 1cm at 50° plus 5mm										
			pyrite band, 403.90' - 2mm at 60°, 416.70' - 4mm at 45°, 463.30' - 2mm at										
			25°, 477.80' - 2mm at 30°.										
			16.00-18.00 - vague 10cm epidote bands = 70°, in slightly altered diorite.		23.00				43				
		- 1			27.00				70				ļ
			23.00-57.00 - silicified diorite with 2% disseminated pyrite and	57073	30.00				610				
			sporadic quartz veins, broken core.	57074		36.00			108				
				57075	36.00	39.00	3.00		113				
			27.90 - 2cm - quartz-chlorite-carbonate vein 80°.	57076	39.00	42.00	3.00		565]		

CATHEDRAL GOLD CORPORATION PI-87-4 Page 2 of 4


From To			Smp.	From To				Ar	nalysis	<u> </u>	
Feet	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
		68.00-68.20 - core broken up, crumbly.									
		72.40-42.70 - gabbroic xenolith.									
		92.50-94.30 - core broken up and crumbly fractures parallel to core axis, slightly chloritic. 105.90-106.20 - silicified zone with light pyrite.									
		117.10-117.50 - epidote rich bleb.									
		128.80-129.20 - silicified, epidote rich diorite on 30° slip plane.									
		138.00-138.10 - white aplitic vein at 30°.									
		159.30-159.70 - altered pink diorite (potassic) (hematitic?).									
		164.00-164.40 - silicified diorite.									
		171.00-198.00 - altered diorite with disseminated pyrite.									
		171.00-172.80 - carbonatized, weakly foliated diorite at 20°.									
		172.80-179.40 - tan brown bleached diorite with disseminated pyrite 1% and blotchy pyrite cut by knots of chlorite.									
		185.00-187.00 - badly broken and sheared diorite 20°.									
		191.10-191.30 - quartz vein 70° with 5% pyrite.									


CATHEDRAL GOLD CORPORATION PI-87-4 Page 3 of 4

From To			Smp.	From	То				Δı	nalysi		
Feet	Syb	Description	No.			Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
	<u> </u>	195.70-196.10 - bleached tan brown diorite with 2cm quartz vein.										
		222.80-224.30 - diorite cut by 3-3cm quartz veins 70°, trace pyrite.										
		224.30-245.00 - broken up bleached diorite.										
		229.60-230.50 - white quartz with diorite inclusions.										
		244.70 - 1cm pyrite band associated with 1cm quartz vein at 50°.										
		252.00-262.00 - bleached diorite with 4 1cm quartz veins of which 252.20 has moderate pyrite.										
		260.00-261.00 - white quartz with heavy pyrite bands at 20°.										
		267.00-288.00 - bleached altered diorite with 1% disseminated pyrite.										
		273.70-274.10 - quartz-pyrite in 2cm veins 40°.										
		273.70-274.10 - quartz-pyrite-carbonate shear.										
		277.00-280.00 - quartz-carbonate-pyrite vein with quartz 30%, pyrite massive in places, 30° foliation.										
		291.80-293.80 - 80% white quartz with light pyrite and diorite inclusions vein at 70°.										
		Veill at 70 .					 					

CATHEDRAL GOLD CORPORATION PI-87-4 Page 4 of 4

From	To			Smp.	From	To				Aı	nalysi	s	
9		Syb	Description	No.		eet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			293.80-296.00 - bleached diorite.										
			297.30-297.60 - fine to moderate grained andesitic xenolith.										
			304.60-305.70 - bleached epidote rich diorite.										
			357.90-358.10 - chlorite-carbonate clot with light pyrite.										
			366.80-370.00 - silicified diorite, 1% pyrite.										
			368.20-368.80 - white quartz vein at 30° with chlorite and light pyrite.										
			418.00-422.00 - silicified diorite with 5 1cm veins quartz-carbonate at 80° with light pyrite, sheared and healed with carbonate at 422.70 at 30°.										
			539.80-540.20 - white aplitic dike peppered with fine grained mafics 70°.										
			541.50-541.60 - white aplitic vein at 45° banded.										
			547.20-550.00 - black medium to fine grain andesite xenolith (possibly dike). Sharp upper contact at 50°, lower contact more diffuse at 15°.										
			557.00 - end of hole.										

oz/ton/Au feet DRILL RECORD CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island LOCATION: 4638E 19027N COLLAR DIP: -45° PAGE

HOLE NO.: PI-87-4 ELEV. : 1109 COLLAR AZIMUTH: 177° LOGGED BY : Alan B. Taylor COMMENCED: November 17, 1987 CORE SIZE: BQ % RECOVERY : 100% DATE : Nov. 25, 1987

: 1 of 4

 COMMENCED:
 November 17, 1987
 CORE SIZE: BQ
 % RECOVERY
 : 100%
 DATE
 : Nov. 25, 1987

 COMPLETED:
 November 19, 1987
 LENGTH
 : 557'
 CORE STORED
 : On property

Sperry-Sun Survey: At 557' = 177° Az - 42°.

From	To	Syb	Description	Smp.	From Feet		Lgth.	Poc		Ana Ag	alysis Cu	Zn	Au
		3,0	Description	NO.	ree	L	Lytii.	Kec.	ppb			1	oz/tn
0.00	12.00		Casing.										
12.00	557.00		Quartz Diorite										
			Narrow quartz +/- calcite +/- chlorite +/- silicified wall rock: 13.00' -										
			1cm at 50°, 194.00-195.50' - 2mm at 70° (x5), 216.90' - 3mm at 15°, 223.00'										
			2mm at 20°, 234.70' - 3mm at 45°, 235.30 - 3mm at 40°, 241.40' - 1cm at 50°										
			(light pyrite), 246.50' - 3mm at 35°, 253.00' - 1cm at 80°, 254.00' - 6mm										
			at 80°, 251.30' - 5mm at 40°, 252.50' - 5mm at 40°, 267.30' - 1cm at 70°,										
			298.20' - 5mm at 35°, 321.20' - 2mm at 40° (light grey), 334.10' - 5mm at										
			30°, 339.50' - 3mm at 20°, 354.60' - 2mm at 60°, 419.50' - 1cm at 90°,										
			466.30' - 3mm at 30°.										
]			Weathered and vuggy with iron stain at 13,74.30, 24.50' - 3mm at 90°,										
<u> </u>			25.20' - 4mm at 90°, 35.90' - 1cm at 80° (chloritic), 41.80' - 1cm at 85°,										
			114.50' - 2mm at 80°, 159.50' - 3mm to 50°.										
	1			l									
			20.20-20.40 - light green epidote rich diorite.										
		$ \bot $		i						i			
			24.30-51.00 - silicified diorite, 1% pyrite.										
				3									
		[42.80-44.30 - 5 1cm quartz veins at 90°.										
												T	
			48.00-48.40 - 3cm quartz vein.										

CATHEDRAL GOLD CORPORATION PI-87-3 Page 2 of 4

From	То			Smp.	From	То				Aı	nalysi	S	
Fe	eet	Syb	Description	No.	l F	eet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
			·		<u> </u> 				ppb	ppm	ppm	ppm	oz/tn
			29.00 - 5mm pyrite vein 50° in 2cm quartz vein.	57077	42.00	45.00	3.00		470				
				57078	45.00	48.00	3.00		250				
			36.00-37.00 - pink tinge to feldspar (hematite alteration).	57079	48.00	51.00	3.00		59				
				57080	51.00	54.00	3.00		490				
			43.30-43.40 - chlorite-carbonate clot.	57081	54.00	57.00	3.00		50				
				57751	47.00	50.00							
			44.00-44.70 - white contorted quartz veinlets approximately 2cm thick.	57752	50.00	51.00				_			
				57753	51.00	54.00							
			46.30 - 2cm carbonate-quartz vein at 80°.	57754	177.00	180.00							
					180.00								
			51.80-52.80 - tan brown diorite completely silicified with a 2cm aplite	57756	183.00	186.00							
			vein 80°.	57757	186.00	189.00							
			68.10-68.30 - silicified diorite.]
			119.80-120.00 - epidote rich band 45°.										
			198.00-199.60 - silicified diorite disseminated pyrite around 3 x 1cm										
			quartz vein.										
				57082	198.00	201.00	3.00		725				
			pyrite 30°.										
			214.60-215.30 - silicified diorite, disseminated 2% pyrite.										
			232.30-232.60 - silicic diorite - 50% quartz vein carrying 10% banded 1cm	57083	232.10	232.60	0.50		<u>15350</u>				
			pyrite seams at 50°.		ļ								
										1		1	

CATHEDRAL GOLD CORPORATION PI-87-3 Page 3 of 4

Γ				Τ	T			Г	Τ				
From	To			Smp.	From	То				A	nalysi	<u>s</u>	
F	eet	Syb	Description	No.		Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
<u> </u>									ppb	ppm	ppm	ppm	oz/tn
			240.00-241.70 - white quartz with 10% pyrite and fragments of bleached	57084	240.00	241.70	1.70		38015				
			diorite, contacts sharp at 25°.										
<u> </u>	<u> </u>		247.00-26.30 - somewhat altered silicic diorite, trace pyrite throughout.	57085	247.00	250.00	3 00		425				
			277-00 20700 Somewhat arcord Strice arounds, trace pinned throughout.	07000	247.00	250.00	3.00		423				
			255.20-255.90 - white quartz 3% pyrite, 45°.	57086	250.00	253.00	3.00		275				
			257.10-261.60 - white quartz and pyrite (10%), pyrite is erratic, up to	57087	253.00	257.00	4.00		1480			ļ	i
			50% in spots, grossly banded at 35°.		257.00				49240				
					261.60				540				
			261.60-263.00 - foliated sheared diorite at 20°, 2% pyrite,	57090	263.00	266.00	3.00		335				
ļ			disseminated and chloritic.		314.00				1420				
				57092	318.00	321.00	3.00		1715				
			283.80-284.00 - gabbroic xenolith, sharp contacts.										
			314.00-321.00 - silicified diorite.										
			318.40-318.50 - banded pyrite 45°.									 .	
			318.70-319.70 - silicic chloritic breccia with approximately 3% pyrite,										[
			foliation 30°.										
			200 00 017 00 114 114 114 114 170										
			339.00-347.00 - 4 4cm epidote rich bands approximately 70°.										
			362.60-362.80 - silicic zone, 20% altered trace pyrite.										
			205 50 205 90 silinisis a second function 450 trace musting										
ļ -			395.50-395.80 - silicified around fracture 45°, trace pyrite.										

CATHEDRAL GOLD CORPORATION PI-87-3 Page 4 of 4

From To			Smp.	From	То				Aı	nalysi	5	
Feet	Syb	Description	No.	I	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		407.20-407.60 - tan brown silicified diorite, around 2 parallel 3mm veins at 45°.										
		414.00-415.50 - silicified chloritic zone, slip surfaces at 45°.										
		427.90-428.00 - epidote approximately 10%.										
		450.00-450.20 - gabbroic xenolith.										
		502.00 - end of hole.										

DRILL RECORD

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4638E 19027N

PAGE : 1 of 5

HOLE NO. : PI-87-5

ELEV. : 1109 COLLAR DIP : -60° COLLAR AZIMUTH: 177°

COMMENCED: November 19, 1987

CORE SIZE: BQ

% RECOVERY : 100%

: Alan B. Taylor LOGGED BY DATE : Nov. 26, 1987

COMPLETED: November 21, 1987

LENGTH

: 7471

CORE STORED : On property

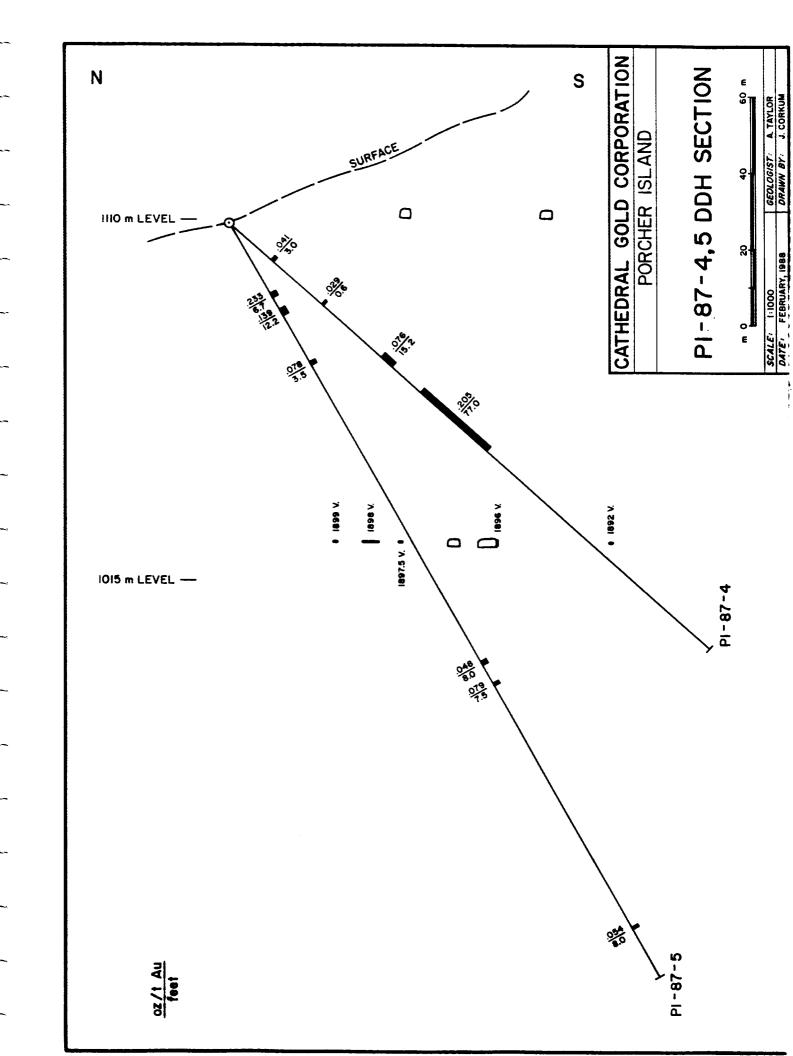
Acid test at 747 -58°.

From	То			Smp.	From To				Ana	alysis		
1	Feet	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.0	0 10.00		Casing.									
10.00	0 747.00		Quartz Diorite			<u> </u>						
			Narrow quartz veinlets +/- calcite +/- chlorite +/- epidote +/- silicified wall rock at 55.00-59.00 - 2mm at 0° (carbonate), 62.00-64.00 - 3mm at 10°,									
			66.00-67.00 - 3mm at 15°, 92.00 - 8mm pyrite vein at 30°, 96.00 - 3cm at									
			70°, 165.50 - 1cm at 40°, 126.50 - 1cm at 50°, 134.00 - 5mm at 60°, 136.90 1cm at 45° (light pyrite), 218.00 - 1mm at 30°, 222.50 - 5mm at 35° (trace									
			<pre>pyrite), 231.80 - 3mm at 50° (light pyrite), 258.00 - 2mm at 10°, 263.40 - 5mm at 45° (light pyrite), 265.00-266.00 - 3 1cm at 80°, 1 at 45° (light</pre>									
			pyrite), 270.10 - 2mm at 45°, 277.00 - 1cm at 45°, 285.00 - 1cm at 60°,									
			299.20 - 6mm at 40°, 325.70 - 3mm at 45°, 327.20 - 3mm at 30°, 330.40 - 2mm at 45°, 348.20 - 3mm at 40° (epidote), 356.60 - 8mm (trace pyrite) at									
			35°, 265.40 - 1cm at 20°, 384.20 - 3mm at 50°, 388.60 - 1cm (coarse epidote) at 15°, 401.80 - 1cm (pink aplite) at 80°, 402.00 - 1cm at 50°,									
			502.80 - 4mm at 45°, 522.00-528.00 - 2mm at 45° (x3), 535.80-536.60 - 4mm									
			at 45° (x4), 545.80 - 1cm at 45°, 550.00 - 1cm at 50°, 585.00 - 8mm at 45°, 597.80 - 2mm at 40°, 627.00 - 1mm at 20°, 656.50 - ?mm at 40° (light									
		_	pyrite), 727.00 - 1mm at 50°, 712.10 - 2mm at 50°, 726.60 - 8mm at 60°.									
			350.00-38.70 - silicified-chloritized tan brown diorite with trace pyrite,									
		\dashv	minor carbonate. Sheared at 37.00.									

CATHEDRAL GOLD CORPORATION PI-87-5 Page 2 of 5

From	To			Smp.	From To				Ar	nalysis		
Fee		Syb	Description	No.		Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
			42.00-42.20 - silicified diorite, broken core.									
			63.00-83.00 - silicified milky white diorite, broken 67.00-69.50.									i
			68.30-69.00 - white quartz with 1 band of 1cm pyrite at 20°.									
			72.60-74.70 - foliated diorite at 20°.									
			74.20-74.30 - white carbonate-quartz, trace pyrite.									
		_	98.20-99.20 - silicified diorite, light pyrite.									
			99.60-99.70 - aplite vein, pinkish tinge 75°.									
			107.40-107.70 - broken up silicified diorite.									
			141.00-141.20 - chloritic shear at 20°.									
			214.60-214.80 - porphyritic andesite dike at 45°, sharp contacts.									
		\dashv	237.30-242.40 - silicified bleached diorite, numerous carbonate fractures, red hematitic carbonate along slips.									
			238.40-239.40 - white quartz vein at 45° with diorite inclusions and									
		\dashv	pyritic blebs (<1%) sheared and clay altered at upper contact (contains red hematitic mineral).									
		二										

CATHEDRAL GOLD CORPORATION PI-87-5 Page 3 of 5


From To			Smp.	From To				Aı	nalysi	s	
Feet	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
		251.20-252.20 - silicified diorite with 2% pyrite.									
		253.00-255.00 - silicified diorite.									
		256.00-257.20 - silicified diorite, trace pyrite.									
		261.80-270.00 - silicified diorite, trace pyrite, chloritic veinlets.									
		268.60-270.00 - badly broken up chloritic shear with 6cm quartz vein at 45°, light pyrite.									
		285.60-288.00 - silicified tan brown diorite with 3% disseminated pyrite.									
		239.90-341.10 - silicified tan brown diorite with multiple chloritic clots and <1% pyrite.									
		355.00-366.00 - silicified diorite - trace pyrite.									
		357.30-361.00 - bleached pinkish diorite with chlorite veins and 1% pyrite.									
		362.40-363.40 - same as above.									
		381.00-382.00 - bleached pinkish silicified diorite with chloritic clots and 1cm pyrite at 40°.									
		381.00-390.00 - epidote rich diorite.									

CATHEDRAL GOLD CORPORATION PI-87-5 Page 4 of 5

From	To			Smp.	From	То				A	nalysi	s	
Fee	t	Syb	Description	No.	1	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			396.00-397.00 - sheared and healed (silicified) diorite, trace pyrite,										
			sheared at 30°.										
			402.60-402.80 - quartz vein at 30°, trace pyrite.										
			405.20-405.40 - pinkish bleached diorite with quartz vein and minor pyrite.										
			407.30-407.60 - silicified bleached diorite.										
			419.00-440.00 - bleached and somewhat silicified spotty pyrite <1%.										
			454.5-462.00 - extremely broken up, crumbly, clay altered diorite, major										
			shear zone, speckled with pyrite, overall <2%, shear approximately 10-20°,										
			also carbonate 2mm, massive pyrite at 461 (2cm).						-				
			462.00-479.00 - bleached diorite, trace pyrite, competent rock.										
			479.00-521.00 - core is badly fractured and broken up generally at 30°-10°,										
			traces of pyrite.										
			477.00-507.00 - chloritized diorite with dark green chloritic veinlets										
			throughout, contact at 30° with slip faces and slickenside development,										
			minor quartz veins at 487.10, 496.00, 498.20 with light pyrite, minor										
			carbonate.										
[507.00-521.00 - silicified diorite, badly broken up and sheared 30°.										
 		 	Contains approximately 1-2% pyrite.										
I		11											

CATHEDRAL GOLD CORPORATION PI-87-5 Page 5 of 5

From	To			Smp.	From	То				Aı	nalysi:	<u> </u>	
Fee	• •	Syb	Description	No.	Fe		Lgth.	Rec.	Au ppb	Ag ppm	Cu	Zn	Au oz/tn
			521.00-530.00 - silicified diorite but competent, trace pyrite.										
			537.00+537.30 - quartz vein at 40°, light pyrite.										
			583.00-587.00 - silicified diorite.										
			594.60-594.90 - andesitic xenolith.										
			613.40-622.00 - altered diorite, slightly sheared and carbonate healed.										
			618.00-619.00 - 4 x 1cm quartz veins, trace pyrite.										
			666.60-679.20 - dark fine grain basalt dike with 2mm calcite filled amygdules toward center and chill banding parallel to sharp contacts 15°.										
			691.00-702.60 - slightly silicified and bleached diorite.										
			701.00-701.50 - guartz-pyrite (5%) 30°.										
			726.00-747.00 - foliated diorite at 20°.										
			742.00-742.30 - quartz-calcite vein 60°, trace pyrite.										
			747.00 - end of hole.										

DRILL RECORD

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4638E 19027N

COLLAR DIP : -45° PAGE : 1 of 2

DATE

HOLE NO. : PI-87-6

ELEV. : 1109

COLLAR AZIMUTH: 215°

LOGGED BY : Alan B. Taylor

COMMENCED: November 21, 1987

CORE SIZE: BQ

% RECOVERY : 100% Nov. 28, 1987

COMPLETED: November 22, 1987

Acid test at $205' = -45^{\circ}$.

LENGTH : 205' CORE STORED : On property

From	To	5.4	Description	Smp.	From	To	Lgth.	Rec	Au	Ana Ag	1)ys1s	Žn	Au
re	et	Syb	Description	NO.	10		Lycii.	Nec.	ppb	ppm	ppm	ppm	oz/tn
0.00	10.00		Casing.										
10.00	205.00		Quartz Diorite										
			Narrow quartz veins +/- carbonate +/- chlorite +/- silicified wall rock at										
			25.00 - 3mm at 20°, 34.90 - 3mm at 20°, 42.00 - 2mm at 20° (x4), 53.50 -										
			4mm at 20°, 56.80 - 1cm at 20°, 85.00 - 8mm at 80°, 114.30 - 3mm at 30°		ļl								
			(light pyrite), 125.30 - 5mm at 45°, 167.40 - 3mm at 45°, 178.70 - 2mm at										
			30°, 182.40 - 2mm at 30°, 190.90-190.40 center 5 2mm at 50°.										
			Vuggy iron-stained fractures at 15.00, 27.70, 72.50.										
			27.00-37.00 - core somewhat broken up, fresh diorite.										
			41.50-43.00 - silicified diorite, trace pyrite.										
			FO CO FO CO 1111151-1 disults bloombad at F7 CO F9 CO and contains										
			52.00-58.00 - silicified diorite, bleached at 57.00-58.00 and contains										
			2% pyrite.										
			67.50-67.80 - quartz vein with banded pyrite (8%) at 30°.										
			07.30-07.00 - quality veill with balled bylite (ON) at 30 .										
		-1	72.90-78.30 - dark black fine grained basalt with 2mm calcite filled										
		\dashv	amygdule, coarse calcite at upper contact 20°.										
			amilyaure, course carette at upper contact to .		-								
L	1				L		L						·

CATHEDRAL GOLD CORPORATION PI-87-6 Page 2 of 2

From To			Smp.	From	To	ŀ			A	nalysi:	5	
Feet	Syb	Description	No.	1	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
		78.30-79.30 - slightly altered carbonated quartz diorite.										
		97.00-99.00 - silicified diorite.										
		97.00-97.20 - quartz-pyrite vein appears weathered and stained at 60°.		************								ļ
		98.50-99.00 - diorite is foliated parallel to core axis (healed shear).										
		118.00-119.10 - silicified diorite with quartz vein and light pyrite.			1							
		166.00-167.00 - epidote rich diorite (20%).										
		200.00-201.40 - silicic diorite with quartz pyrite vein 200.30-200.60										
		carrying 20% pyrite banded at 15°.										
		205.00 - end of hole.										

DRILL RECORD

HOLE NO. : PI-87-7

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island LOCATION: 4638E 19027N

: 1 of 4 COLLAR DIP : -75° PAGE ELEV. : 1109 LOGGED BY : Alan B. Taylor COLLAR AZIMUTH: 215°

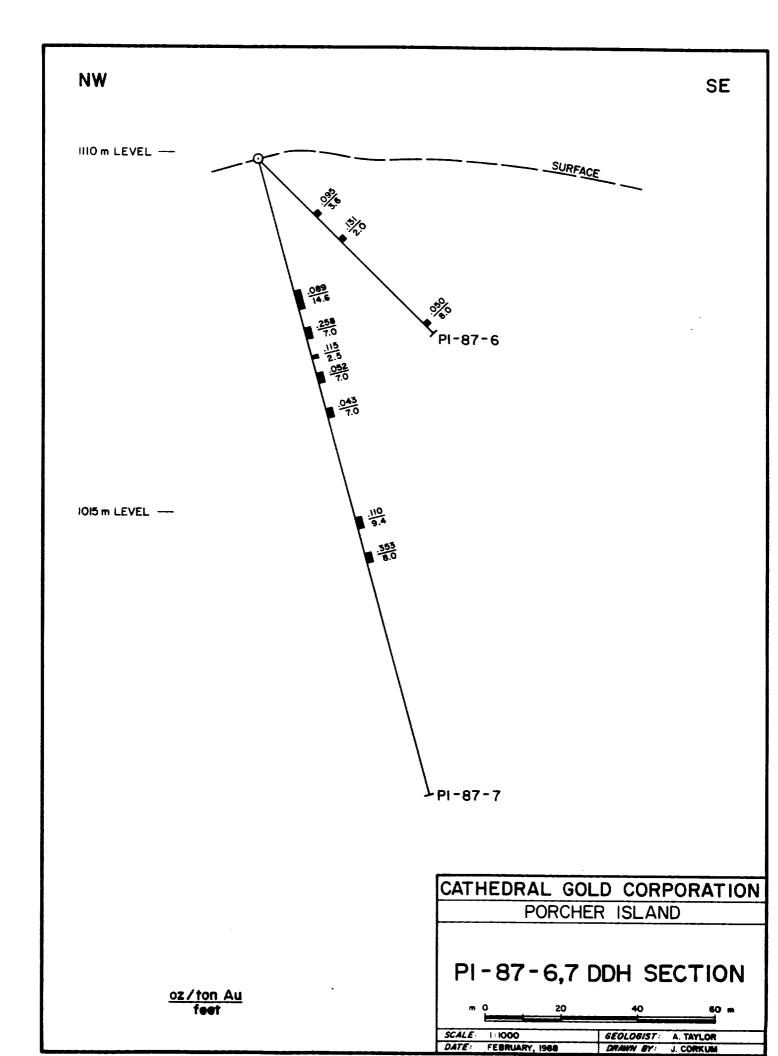
DATE : Nov. 28, 1987 COMMENCED: November 22, 1987 CORE SIZE: BQ m % RECOVERY : 100%

COMPLETED: November 23, 1987 : 506' CORE STORED : On property LENGTH

Acid test at $506.00 = -75^{\circ}$.

From	To			Smp.	From	То				Ana	alysis		
F	eet	Syb	Description	No.	Fe	et	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	10.00		Casing.										
10.00	506.00		Quartz Diorite										
			Narrow quartz veinlets +/- carbonate +/- chlorite +/- silicified wall rock at 51.00 - 2mm at 30°, 52.00 - 1mm at 30°, 57.60 - 8mm at 30° (light										
			pyrite), 105.00 - 2mm at 20° (x2), 110.00 - 2mm at 45°, 134.60 - 1mm at 30°, 136.40 - 3mm at 70°, 144.00-145.00 - 5mm chloritic at 30°, 147.10 -										
			6mm at 45°, 148.30 - 8mm at 35°, 182.00 - 5mm at 35° (+ epidote), 184.00 -										
			3mm at 40°, 191.30 - 2mm at 45°, 198.80-199.40 - 3mm at 35° (x3), 217.40 - 4mm at 25°, 237.60 - 1cm at 80° (light pyrite), 248.30 - 3mm at 45°, 255.50										
			- 2mm calcite at 10° (x3), 275.00 - 6mm at 30° (trace pyrite), 286.20 - 2mm at 35°, 316.80 - 6mm at 70°, 324.00 - 3cm at 35°, 385.00 - 2mm at 40°,										
			392.30 - 2mm at 45° (x3), 392.80 - 2cm pink aplite at 90°, 407.30 - 1cm at										
			15° (light pyrite), 458.30 - 1cm at 10° (moderate pyrite), 460.10 - 1cm (aplite) at 70°, 468.60 - 3mm at 40° (x2), 479.20 - 1cm at 90°, 483.30 -										
			6mm at 60°, 484.10 - 8mm at 20° (light pyrite).										
			Vuggy with carbonate and quartz filled fractures at 73.00-77.00, 375.20.										
			25.20-30.00 - green epidote rich diorite, slightly broken up, massive.										
			31.30-31.80 - silicic diorite with chlorite.										
l]		I								l	

CATHEDRAL GOLD CORPORATION PI-87-7 Page 2 of 4


From	To			Smp.	From To	,			A	nalysi	s	
Fee	t	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			53.00-54.00 - epidote rich diorite.									
			57.40-57.50 - quartz vein 30° with seam (2mm) of pyrite.									
				1			ļ					
			63.20-67.00 - black fine grain basalt dike with 1mm calcite infilled	ļ								
		-	amygdules. Upper contact at 25° and sharp, chilled.									
			71.00-72.00 - core badly broken and crumbly, chloritic fractures.									
			75.50-78.00 - diorite cut by fine grain grey silicic, stringers, netlike	ļi								
			texture.									
			86.40-86.80 - epidote altered gabbroic xenolith.	ļ								
			111.30-111.60 - silicified wall rock around 2mm quartz vein at 30°.									
			116.40-136.00 - silicified diorite with quartz veins and disseminated			-						
			1% pyrite.									
		\dashv	116.50 - 1cm pyrite band at 35°.									
			130.00 Ica pyrrio build ut 30 .			1						
			116.50-123.00 - core chunky, broken into 5cm lengths with variable									
			pyrite along fractures.									
			124.00-131.00 - parallel 3-4cm quartz veins carrying variable pyrite	 						İ		
			at 10° in silicified diorite.									
			125.00-127.00 - massive quartz-chlorite, light pyrite.									

CATHEDRAL GOLD CORPORATION PI-87-7 Page 3 of 4

From To			Smp.	From To				A	nalysi	S	
Feet	S	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		138.00-141.00 - silicified diorite with 1% pyrite.									
	1	148.00-174.00 - silicified diorite with multiple chloritic clots, quartz vein. Core is moderately broken up.									
	#	150.00-151.00 - quartz-chlorite-pyrite (20%) at 20°.									
		156.60 - 6cm quartz vein, 30°, light pyrite.									
	+	160.30-162.10 - massive white quartz, light pyrite and diorite inclusions.									
		173.00-173.50 - 3cm thick quartz veins with moderate pyrite at 20°.									
		177.60-178.40 - silicified diorite with associated 3cm quartz vein at 40°									
		with 5% pyrite.									
		179.50-179.00 - quartz pyrite vein (5%) at 35°.									
		194.00 - 3cm quartz with pyrite vein (5%) at 35°.									
		201.00-201.40 - diorite with small gabbroic inclusions at 4% pyrite.									
		227.50-228.00 - silicic vein with light pyrite at 20°.									
		316.00-328.40 - silicified diorite varying from buff pink to grey with 1%									
		pyrite.									

CATHEDRAL GOLD CORPORATION PI-87-7 Page 4 of 4

From To			Smp.	From To				Aı	nalysi	s	
Feet	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
		317.00 - 5mm graphitic shear at 20°.									
		325.00-325.10 - 50% pyrite.									
		352.00-553.60 - pinkish silicic diorite and chlorite with 1% pyrite.									
		376.00-378.00 - white quartz-epidote-pyrite vein. Pyrite is erratic approximately 15% with inclusions of chlorite also in vein at 20°.									
		421.00-425.00 - pinkish (potassic) feldspar along veins and fractures.									
		421.10-421.60 - 3cm quartz vein, 5mm pyrite seam and pink feldspars at 20°.									
		429.80-430.30 - quartz-pyrite vein at 20°, with pink potassic feldspar									
		alteration along shear.									
		475.00-475.20 - gabbroic xenolith.									
		481.00-487.00 - silicified diorite, bleached buff brown in places, trace pyrite.									
		481.50-481.70 - white bull quartz 30°.									
		506.00 - end of hole.									
	<u> </u>										

DRILL RECORD CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4700E 19093N

COLLAR DIP : -45° PAGE : 1 of 7

HOLE NO. : PI-87-8

ELEV. : 1116.5m COLLAR AZIMUTH: 195°

LOGGED BY

COMMENCED: November 24, 1987

CORE SIZE: BQ

% RECOVERY : 100%

: Alan B. Taylor DATE : Dec. 2, 1987

COMPLETED: November 27, 1987

LENGTH : 8371

CORE STORED : On property

Sperry-Sun Survey at 200'=194° Az -48° at 500'=201° Az -49° at 837'=205° Az -51°.

From	To			Smp.	From	То				Ana	alysis		
F	eet	Syb	Description	No.	Fed	et	Lgth.	Rec.	Au ppb	Ag ppm	Cu	Zn ppm	Au oz/tn
0.00	13.00		Casing.										
13.00	837.00		Quartz Diorite										
			Narrow quartz veins +/- carbonate +/- chlorite +/- epidote +/- silicified										<u> </u>
			wall rock at 37.40 - 1cm at 50° (light pyrite), 39.30 - 1cm (banded quartz										<u> </u>
			+ carbonate) at 45° (light pyrite), 44.40 - 3mm at 40° (chlorite slip,										
			trace pyrite), 49.30 - 4mm at 45°, 51.50 - grey aplite, 3mm at 25°, 67.40										<u> </u>
			- 2mm at 45°, 106.30 - 1cm milky quartz at 80° (trace pyrite), 110.50 -										L
			2mm at 70°, 161.50 - 5mm at 45°, 169.00 - 1cm (pinkish aplite) at 35°,										
			171.40 - 3mm at 45° (hematitic stain), 191.50 - 4mm at 30°, 213.50 - 2mm		<u> </u>								
<u> </u>			(x2) at 80°, 227.80 - pink 1cm aplite at 30°, 253.00 - 8mm at 80°, 266.60										
			- 2mm at 70°, 307.00 - 2mm at 15°, 313.00 - 3mm at 30°, 355.80 - 2cm at										
			45°, 360.80 - 3mm at 15°, 400.00 - 3mm at 15°, 404.00 - 3mm pyrite at 15°,										
			426.80 - 5mm at 45°, 458.40 - 3mm at 45° (x2), 471.70 - 2mm at 45°, 472.20										
			- 1cm at 45°, 473.00 - 1mm at 30°, 474.20 - 3mm at 50°, 512.50 - 5mm at										L
			60°, 536.90 - 1mm at 80°, 541.00 - 1cm at 80°, 542.50 - 2mm at 60°, 544.40]		L
			- 2cm at 90°, 546.60 - 6mm at 70°, 546.90 - 5mm at 80°, 558.00 - 3mm at										
			70° (x3), 574.00-575.50 - 1cm at 70° (x4), 601.80 - 2mm at 50°, 613.60 -					<u> </u>					
			1cm pink carbonate at 60°, 621.70 - 6mm at 40° (trace pyrite), 686.20 - 1cm										
			banded quartz, trace pyrite at 35°, 695.40 - 2mm at 70° (x3), 699.50-701.00										
			- 2mm at 50° (x4), 719.00 - 1cm at 30°, 720.00 - 8mm at 30°, 739.00 - 2cm										
			pink aplite at 90°, 781.00 - 1cm at 80° (light pyrite), 789.70 - 2cm at										
			45°, 808.50 - 1cm at 30°, 814.50 - 1cm at 45°, 824.30 - 1cm at 40°, 828.00-	ŀ									

CATHEDRAL GOLD CORPORATION PI-87-8 Page 2 of 7

From To	۰			Smp.	From	To				Aı	nalysi	S	
Feet		Syb	Description	No.		Feet	Lgth.	Rec.		Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		_		 	 	T							
İ			829.00 - 2mm at 30° (x4), 831.20 - 2cm aplite at 35°, 834.00 - 4mm at 50°,										
			834.60 - 2mm at 40°. Rusty weathered vein: 87.00 at 30°, 23.60-23.70										L
			(vuggy), 24.80, 384.70 vuggy at 20°.	1									
				<u> </u>								<u> </u>	
			22.60-26.50 - silicified diorite in places becoming milky grey and		22.5	26.5			410				
			aphanitic, 3% disseminated pyrite. Multiple irregular quartz veins.	57250		40.0	3.0		505				
				57251		55.0	2.6		220				L
			52.40-55.00 - silicified diorite, light milky grey to dark grey, gross	57928		81.0	3.0		1				
			banding 30°, disseminated 2% pyrite.		81.0	82.0	1.0		18250				
				57929		85.0	3.0		1				
			81.10-82.00 - quartz-pyrite vein at 25°, pyrite some banded and averages	57930	85.0	88.0	3.0		172				
			12%, contacts sharp and unaltered.	57931		91.0	3.0		159				L
					99.0		3.5		1				
			102.70-102.80 - quartz pyrite vein at 45°, pyrite approximately 4%, wall	57253	102.5	103.0	0.5		7580				
			rock unaltered.		103.0	-	3.0		1				
				4	106.0		1.0		730				
			115.50-115.80 - gabbroic xenolith.		107.0		3.0		25				
				57254	126.0	129.2	3.2		212				
			116.50-116.80 - gabbroic xenolith.	57255	189.0	192.0	3.0		1065				
				57256	192.0	195.0	3.0		1065				L
			185.40-185.60 - porphyritic andesite xenolith.	57257	195.0	198.0	3.0		295				
				57258	198.0	201.0	3.0		19				
			189.00-208.00 - altered diorite, mafics altered, silicified.	57259	201.0	204.0	3.0		440				
				57260	204.0	208.0	4.0		48				
			192.00-195.00 - pinkish diorite, silicified, contains 1-2% pyrite.	57261	221.0	225.0	4.0		30				
				57262	225.0	230.0	5.0		83				
	一	1	198.00-205.00 - bleached diorite, white feldspar in chloritic matrix.	57263	230.0	234.0	4.0		6				
				57264	234.0	235.0	1.0		213				

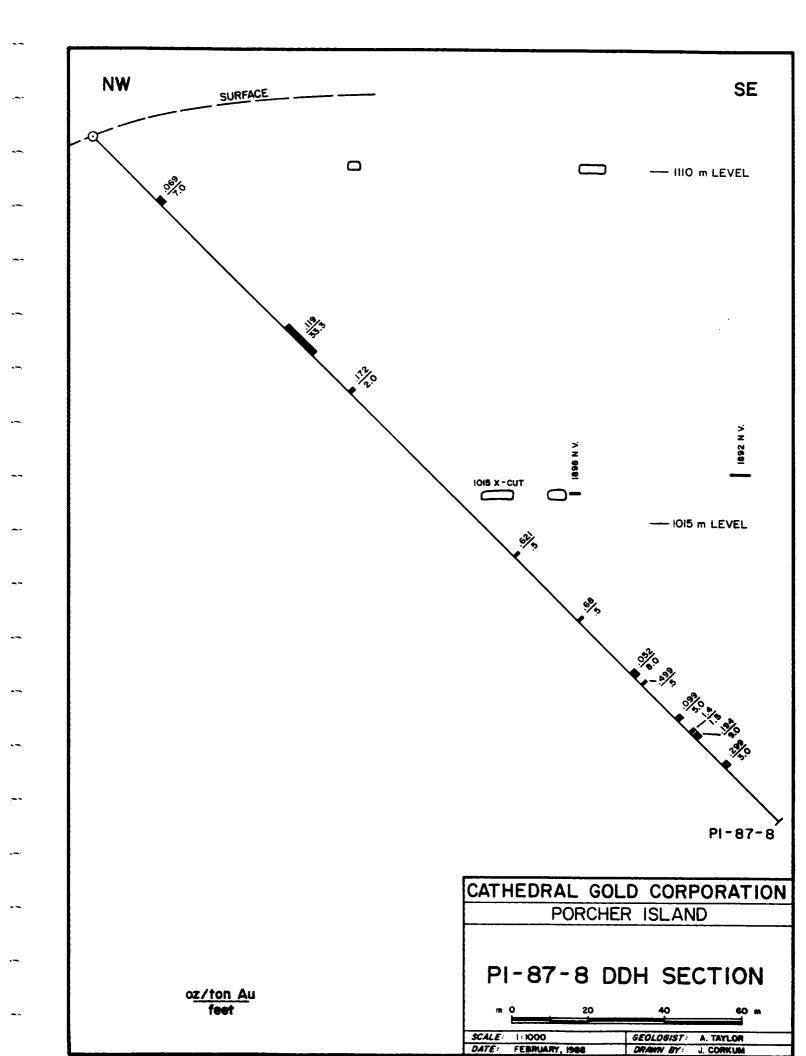
CATHEDRAL GOLD CORPORATION PI-87-8 Page 3 of 7

From	To			Smp.	From	To				Aı	nalysi	s	
Fee	t	Syb	Description	No.	l f	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
			221.00-225.00 - silicified diorite.	57265	235.0	240.5	5.5		1980				
				57266	240.5	241.0	0.5		23800				
			223.50-224.20 - buff pink silicified diorite with chlorite and 2%	57267	241.0	244.5	3.5		11				
			pyrite.	57268	244.5	245.0	0.5		91800				
					245.0		2.0		735				
			225.00-247.00 - section containing 12 narrow quartz veins at approximately	57936	247.0	251.9	4.9		1				
			70° which variably silicify wall rock and carry light pyrite.		251.9		1.4		2670				
				57937	253.3	257.0	3.7		31				
			234.10-235.00 - quartz-chlorite vein carrying 3% pyrite.		257.0		3.0		4				
					260.0		3.0		9				
	·		240.80-241.00 - quartz-pyrite (30%).		263.0		4.8		610				
					267.8		0.5		108000				
			244.90-245.00 - quartz-pyrite-chlorite, pyrite = 40%.		268.3		3.7		70				
				57942	272.0	276.8	4.8		68				
			251.90-253.30 - silicified chloritized diorite with 1% pyrite. Dark grey		276.8		0.7		625				
			and aphanitic.		277.5		4.5		6				
					282.0		3.0		184				
			262.00-262.40 - epidote rich diorite.	57273	285.0	288.0	3.0		585				
				57274	288.0	291.5	3.5		650				
			267.80-268.30 - white quartz vein 70°, pyrite 2%.	57953	285.0	288.0	3.0		4				
				57954	295.0	300.0	5.0		83				
I			276.80-277.50 - silicified grey diorite, 1% pyrite.	57955	300.0	304.0	4.0		4				
				57956	304.0	308.0	4.0		5				
<u> </u>			285.00-291.40 - variably silicified grey to pink diorite with chlorite		308.0		3.0		7				
			and 1% pyrite.	57276	311.0	313.0	2.0		5890				
				57958	313.0	317.0	4.0		48	l			
			311.00-313.00 - silicified diorite with a quartz-pyrite vein 312.00-312.80	57277	403.5	404.5	1.0		280				
			carrying 10% pyrite at 30°.	57278	408.0	412.0	4.0		38	Ī	I		

CATHEDRAL GOLD CORPORATION PI-87-8 Page 4 of 7

From To			Smp.	From	То				Ai	nalysi	 S	
Feet	Syb	Description	No.	ŀ	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppm	ppm		oz/tn
		325.00-326.00 - hornblende quartz diorite flow layer or xenolith.	57279	412.0	415.0	3.0		310				
			57280	415.0	418.0	3.0		1				
		345.00-345.20 - milky grey aplite vein at 30° with a fine peppery	57281	418.0	421.0	3.0		190				
		texture.	57282	421.0	426.0	5.0		59				
			57283	458.3	459.3	1.0		23				
		408.00-426.00 - altered diorite (silicified).	57959	467.0	472.0	5.0		68				
			57960	472.0	477.0	5.0		215				
		412.00-418.00 - silicified diorite with pyrite along fractures, talcy.	57961	477.0	482.0	5.0		48				
			57962	482.0	487.0	5.0		66				
		419.00 - 3cm white bull quartz vein , badly broken.	57963	487.0	492.0	5.0		5				
					497.0	5.0		7				
		420.00-426.00 - bleached white quartz diorite, trace pyrite.		497.0		3.0		26				
				500.0		2.5		225				<u> </u>
		458.30-459.30 - somewhat silicified diorite with chloritic clots and trace		502.5		3.0		565				
	_	pyrite.		505.5		1.5		1030				
				507.0		3.0		410				
		466.00-467.00 - mafic gabbroic xenolith.		510.0		3.0		270				
				513.0		3.0		96				
		486.00-487.30 - foliated diorite at 30°.		516.0		4.0		6				i
				520.0		4.0		20				
		490.50-492.00 - same as above (flow banding?)		524.0		4.8		255				
				528.8	529.3	0.5		21300				
		500.00-516.00 - altered bleached diorite cut by multiple white quartz	57969		534.0	3.0		4680			l	
		veins. Quartz veins at 503.60 (x 2cm at 30°), 505.50 -> 507.00 with	, 	534.0		3.0		650				
		chlorite and trace pyrite, 508.00 (2m), 509.00 (5cm at 50°), 509.50 (4cm	57291	537.0	542.0	5.0		1860				
		at 30°).	57292	542.0	545.0	3.0		430				
				545.0		5.0		360				l
		528.80-529.20 - broken up diorite with pyritic seams.	57294	550.0	555.0	5.0		315				

CATHEDRAL GOLD CORPORATION PI-87-8 Page 5 of 7


From	То			Smp.	From To				Ar	nalysis		
Feet	t	Syb	Description	No.	Feet	Lgth.	Rec.	Au	Ag	Сш	Zn	Au
			·	} }				ppb	ppm	ppm	ppm	oz/tn
			555.40-561.20 - sheared and broken up, silicified and chloritized diorite	57295	555.0 558.0	3.0		205				
			with trace pyrite, shears generally 10-20°.		558.0 562.0	4.0		148				
					562.0 566.0	4.0		27				
			566.50-572.00 - foliated diorite of variable angles, average 20°, minor	57297	566.0 569.0	3.0		26				
			quartz veins with trace pyrite.	57298	569.0 572.0	3.0		230				
				57299	572.0 577.0	5.0		840				
			589.20-589.30 - banded quartz-pyrite vein at 35°, 5% pyrite.	57972	577.0 582.0	5.0		450				
				57973	582.0 587.0	5.0		49				l
			595.00-596.00 - buff pink silicified diorite with 2% pyrite.	57974	587.0 589.0	2.0		320				
				57300	589.0 589.5	0.5		23320				
			605.00-606.00 - banded quartz vein, trace pyrite 40%.	57975	589.5 595.0	5.5		40				
				57301	595.0 596.0	1.0		1340				
			609.00-610.00 - same as above.	57976	596.0 600.0	4.0		240				
				57977	600.0 605.0	5.0		205				
			625.80-626.30 - banded quartz vein at 45° with 4% pyrite.	57302	605.0 606.0	1.0		3510				
					606.0 609.0	3.0		91				
			628.70-643.00 - badly broken up sheared diorite, poor recovery (90%) with	57303	609.0 610.0	1.0		2455				
			talcy alteration (carbonate).		610.0 615.0	5.0		83				
					615.0 621.0	6.0		7				
			635.20 - quartz vein.		621.0 625.8	4.8	l	149				
				57304	625.8 626.3	0.5		18420				
			640.00-640.30 - quartz vein, trace pyrite.	57982		1.7		11				
				57305		7.0		30				
		I	648.00 - 3cm band quartz vein 30°, light pyrite, chalcopyrite?	57306		8.0		1790				
					643.0 648.0	5.0		192				
			674.40-674.80 - banded quartz vein 35°, 5% banded pyrite.	57307	648.0 648.5	0.5		640				
				57308	648.5 651.0	2.5		225				
			681.00-681.40 - pink aplitic vein at 20°.	57984	651.0 657.0	6.0		90		l		

CATHEDRAL GOLD CORPORATION PI-87-8 Page 6 of 7

From	To			Smp.	From To				Ar	nalysis	<u> </u>	
Fee	t	Syb	Description	No.	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	bbw	ppm	ppm	oz/tn
			695.00-705.00 - pink quartz diorite with multiple carbonate-quartz	57985	657.0 661.0	4.0		420				
			stringers and veins.	57986	661.0 666.0	5.0		101				Ī
				57987	666.0 669.0	3.0		510				
			708.00-717.70 - silicified diorite (pinkish) with chlorite-carbonate	57988	669.0 674.4	5.4		136				L
			clots, trace pyrite in small quartz vein.	57309	674.4 674.9	0.5		17110				
				57989	674.9 679.0	4.1		154				
			726.00-727.00 - 2cm quartz-pyrite-graphite vein at 10°.	57990	679.0 684.0	5.0		390				
					684.0 689.0	5.0		380				
			728.00-737.00 - diorite with quartz veins.	57992	689.0 695.0	6.0		15				
				57310	695.0 700.0	5.0		142				
			730.00-730.40 - quartz vein at 20° with 2% pyrite and trace	57311	700.0 705.0	5.0		310				
			chalcopyrite.	57993	705.0 708.0	3.0		210				
					708.0 713.0	5.0		3400				
			731.40-732.00 - quartz vein at 20° carrying 1% pyrite and chlorite.	57313	713.0 718.0	5.0		355				
					718.0 723.0	5.0		76				
			734.50-734.70 - banded quartz and pyrite (20%) at 30°.		723.0 725.5	2.5		260				
					725.5 727.0	1.5		49800				
			749.00-751.00 - foliated quartz chlorite (40°) with irregular quartz-		727.0 728.0	1.0		400				
			chlorite veins.		728.0 732.0	4.0		1230				
					732.0 737.0	5.0		11200				
			736.00-764.20 - foliated (30°) diorite with quartz-pyrite vein 764.00,		737.0 742.0	5.0		205				
		Ш	pyrite 30% banded at 40°.		742.0 745.0	3.0		158				
					745.0 747.0	2.0		1290				
			796.10-796.30 - banded quartz vein 45°, trace pyrite.		747.0 749.0	2.0		55				
					749.0 751.0	2.0		1080				
			815.40-815.60 - quartz-chlorite vein 30°.		751.0 756.0	4.0		7				
					756.0 761.0	5.0		7				
			837.00 - end of hole.	11001	761.0 763.0	2.0		670		1		

CATHEDRAL GOLD CORPORATION PI-87-8 Page 7 of 7

													
From	To			Smp.	From	То	i			Ar	nalysi:	5	
Fee	et	Syb	Description	No.	l	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	pp m	ppm	ppm	oz/tn
				F7220	700 0	705 0			0010				
[_	765.0	1.0		2610				
					766.0		5.0		82				
				11003	771.0	776.0	5.0		11				
				11004	776.0	781.0	5.0		740				
				11005	781.0	786.0	5.0		10				
				11006	786.0	789.0	3.0		63				
				11007	789.0	793.0	4.0		18				
				11008	793.0	796.0	3.0		9				
				57322	796.0	796.5	0.5		8750				
				11009	796.5	801.0	4.5		13				
				11010	801.0	806.0	5.0		8				
				11011	806.0	810.2	4.2		97				
				11012	810.7	814.0	3.3		8				
				75324	814.0	816.0	2.0		580				
				11013	816.0	820.0	4.0		11				
				11014	820.0	824.0	4.0		2				
				57325	824.0	824.5	0.5		1760				
				11015	824.5	829.0	4.5		215				
				11016	829.0	834.0	5.0		178				
			837.00 - end of hole.	11017	834.0	837.0	3.0		66				

CATHEDRAL GOLD CORPORATION DRILL RECORD

PROPERTY: Porcher Island

LOCATION: 4700E 19093N

COLLAR DIP : -55°

: 570 ft

PAGE : 1 of 5

HOLE NO. : PI-87-9

ELEV. : CORE SIZE:

COLLAR AZIMUTH: 165° : 100%

: Alan B. Taylor LOGGED BY

COMMENCED: November 27, 1987 COMPLETED: November 30, 1987

% RECOVERY LENGTH

: Dec. 5, 1987 DATE CORE STORED : On property

Sperry-Sun Survey: at 200'=163°/-57°, 570'=164°/-57°.

From	То			Smp.	From	To				Ana	alysis		
ľ	et	Syb	Description	No.	F	eet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	10.00		Casing.			,							
10.00	570.00		Quartz Diorite	11018	10.0	14.0	4.0		121				<u> </u>
			Narrow quartz veins +/- carbonate +/- chlorite +/- silicified wall rock at	57326	14.0	17.0	3.0		1410				
			28.40 - 5mm at 60° (light pyrite), 47.90 - 5mm at 80°, 48.70 - 8mm at 70°	57327	17.0	20.0	3.0		103				
			(light pyrite), 48.90 - 2cm at 70° (moderate pyrite), 51.60 - 4mm at 50°,	57328		23.0	3.0		310				
			52.40 - 4mm at 60°, 77.00 - 1mm at 15° (grey aplite), 83.30 - 5mm at 60°,	11019	23.0	28.0	5.0		21				
			88.00 - 5mm (pyrite) at 60°, 92.80 - 4mm at 50°, 96.40-96.70 - 5mm at 50°	11020	28.0	29.0	1.0		7				
			(x2), 101.10 - 4mm (pyrite) at 45°, 102.80 - 5mm at 65°, 105.00-107.00 -	11021	29.0	32.4	3.4		13				
			5mm at 50° (x4), 107.60 - 1mm at 50°, 112.30 - 2mm at 40°, 117.20 - 4mm at	57329	32.4	33.4	1.0		174				
			35°, 137.20 - 1cm pyrite at 40°, 145.70 - 2mm at 80°, 153.50 - 2mm at 30°,	11022	33.4	39.0	5.6		16				
			159.00 - 2mm at 10°, 187.10 - 5mm at 50° (light pyrite), 188.60 - 2mm at	57330	39.0	42.0	3.0		335				
			50°, 192.40 - 3mm at 60° (moderate pyrite), 199.30 - 3mm at 60°, 206.40 -	57331	42.0	45.0	3.0		665				
	I			57332	45.0	48.0	3.0		240				
			aplite at 10°, 258.00-261.00 - 1cm aplite at 10°, 273.50-274.50 - 1cm	57333	48.0	52.0	4.0		1410				
				11037	52.0	57.0	5.0		265				
			405.40 - 3mm at 60°, 406.40 - 4mm at 50° and 2mm at 30° (pyrite), 412.70 -	57334	77.6	78.5	0.9		605				
			2mm at 80°, 454.20 - 3mm at 40°, 455.10 - 3mm at 45°, 456.00-457.00 - 3mm	11023	83.0	88.0	5.0		6				
			(x5) at 60°.	11024	88.0	89.0	2.0		2090				
				11025	89.0	92.0	3.0		69				
	1		14.60-24.00 - silicified diorite, buff brown to dark grey with variable	11026	92.0	96.0	4.0		530				
			sections vaguely showing granitic texture.	57336	96.0	99.0	3.0		1340				
				57337	99.0	102.0	3.0		1860				

CATHEDRAL GOLD CORPORATION PI-87-9 Page 2 of 5

From	To Sub-	1 1	Smp.	From To			Analysis					
Fee	et	Syb	Description	No.	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
			·		i			ppb	ppm	ppm	ppm	oz/tn
			32.40-33.40 - buff brown silicified diorite with 1-2% pyrite disseminated.	57338	102.0 105.0	3.0		1510				
				57339	105.0 108.0	3.0		380				
			34.00-34.20 - gabbroic-epidote xenolith.	11027	108.0 111.2	3.2		34				
				57341	111.2 112.8	1.6		1320				
			39.30-52.00 - dark grey to buff brown silicified diorite.	11028	112.8 117.0	4.2		4				
					117.0 117.5	0.5		2520				
			47.00-52.00 - diorite texture still evident but cut by multiple <1cm	11029	117.5 122.0	4.5		2				
			quartz-pyrite veins.	11030	122.0 125.5	3.5		5				
					125.5 126.0	0.5		3670				
			50.00-52.00 - core broken up moderately.	11031	126.0 130.0	4.0		44				
				11032	130.0 134.0	4.0		6				
			61.00-61.40 - gabbroic epidote xenolith.	11033	134.0 137.0	3.0		26				
				57343	137.0 139.0	2.0		2890				
			67.00-67.60 - epidote rich diorite, epidote veinlets 1mm at 35°.	11034	139.0 144.0	5.0		1				
				57344	144.0 147.0	3.0		880				
			77.60-77.50 - creamy brown diorite with 1% pyrite.	57345	147.0 150.0	3.0		87				
				57346	150.0 152.0	2.0		111				
			82.60-82.80 - silicic diorite, trace pyrite.	11035	152.0 157.0	5.0		49				
				11036	157.0 162.0	5.0		32				
			84.20-85.40 - epidote rich diorite.	57347	162.0 165.0	3.0		98				
				57348	165.0 167.0	2.0		31				
			96.00-108.00 - quartz diorite cut by numerous 1cm quartz veinlets. At 50°	11038	182.0 187.0	5.0		4				
			comprises 5% of rock and some with light pyrite.	57348	187.0 190.0	3.0		1330				
				57354	190.0 193.0	3.0		1490	i			
			117.00-117.50 - silicified wall rock around a chloritic-quartz shear at	11039	193.0 198.0	5.0		7				
			35°, pyrite 1%.	11047	198.0 203.0	5.0		11				
				11048	203.0 208.0	5.0		16				
			127.50-130.00 - apple green epidote altered diorite.	11040	208.0 213.1	5.1		4				

CATHEDRAL GOLD CORPORATION PI-87-9 Page 3 of 5

From	To			Smp.	From To				Aı	nalysis	S	
Fee	t	Syb	Description	No.	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
			137.00-139.00 - diorite with quartz pyrite vein at 137.20 at 40°, 138.70 -	57349	213.1 213.6	0.5		19550				
			139.0 at 40°.	_	213.6 218.0	4.4		9				
				57350	218.0 221.0	3.0		815				
			144.00-152.00 - locally altered diorite intruded by numerous quartz veins.	57351	221.0 224.0	3.0		420				
				57352	224.0 228.0	4.0		118				
			162.00-167.00 - silicified dark grey diorite with trace pyrite.	11042	228.0 232.8	4.8		94				
				57353	232.8 234.0	1.2		250				
			178.80-179.20 - gabbroic xenoliths (x2).	11043	234.0 239.0	5.0		18				
<u> </u>				11044	239.0 244.0	5.0		25				
			187.00-190.00 - quartz diorite cut by 8 quartz veins at 50° with variable	11045	244.0 247.0	3.0		4				
			pyrite.		247.0 251.0	4.0		6				
<u> </u>					314.0 317.0	3.0		153				
			189.00-189.50 - gabbroic xenolith.		317.0 320.0	3.0		320				
					346.0 351.0	5.0		1				
			213.20-213.60 - banded quartz vein at 30° with light (2%) pyrite seams.	1	351.0 355.2	4.2		3960				
					355.2 356.0	0.8		29105				
			218.00-227.50 - variably silicified grey to buff brown diorite with 1%		356.0 357.3	1.3		3410				
			pyrite and minor quartz veins.		357.3 362.0	4.7		4				
					362.0 367.0	5.0		7				
			232.80-234.00 - buff brown silicified diorite, trace pyrite.		427.0 432.0	5.0		27				
				11053		5.0		44				
ļ 			314.00-320.00 - silicic diorite, moderately altered.		437.0 442.0	5.0		38				
					442.0 447.0	5.0		40				
			314.00-317.00 - numerous quartz veinlets, bleached diorite, trace	11056		3.0		4				[
				11057		4.0		350				
				57360		3.5		590				
			317.00-320.00 - potassic pink alteration of feldspar with fine carbonate			4.5		142				
		1	veinlet (+ chlorite).	11059	463.0 469.0	6.0		19				

9

1

1

1

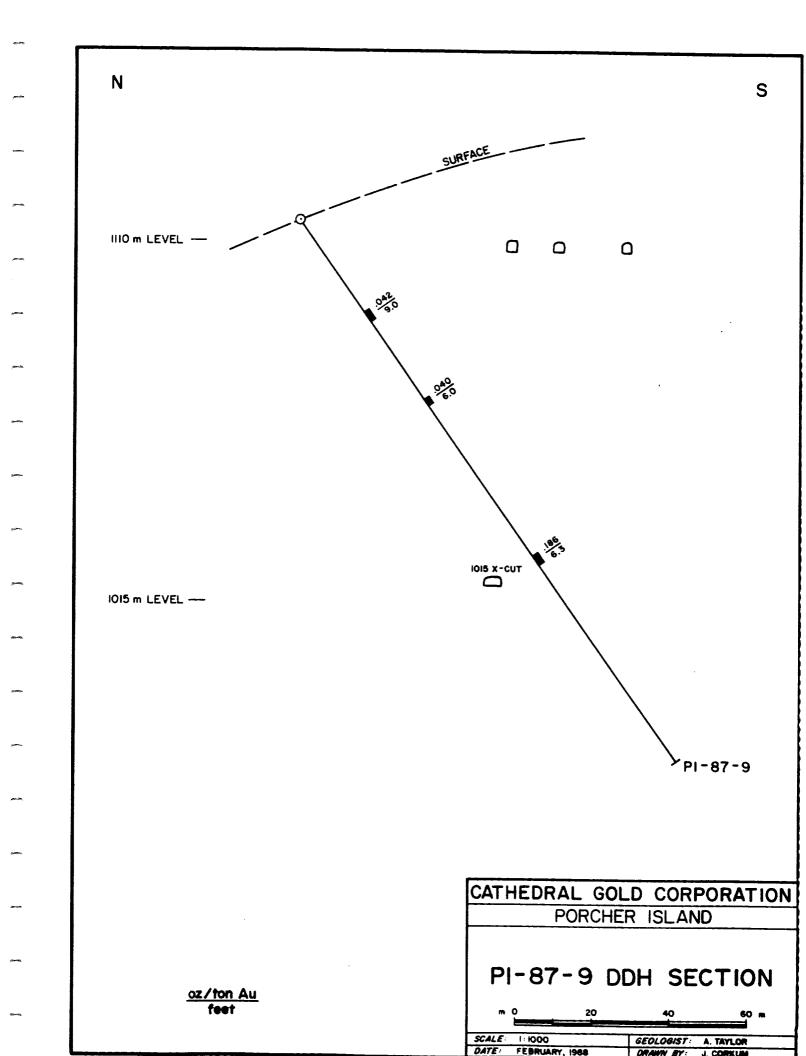
}

CATHEDRAL GOLD CORPORATION PI-87-9 Page 4 of 5

					Υ			·	,					
From To				Smp.	From To		l		Analysis					
Fee	t	Syb	Description	No.	Feet		Lgth.	Rec.	Au	Ag	Cu	Zn	Au	
									ppb	ppm	ppm	ppm	oz/tn	
			341.20-344.30 - porphyritic andesite dike with sharp chill contacts at	57361	469.0	469.5	0.5		157					
			40°, slightly green (chlorite) with amphiboles up to 8mm length, trace		534.0		3.0		625					
			chalcopyrite.		541.8		0.8		225		 			
					568.0		2.0		88				li	
			351.00-357.30 - altered and sheared diorite.				_=:=			†	·			
			351.00-355.20 - chloritic-quartz-carbonate shear zone healed with											
			carbonate, strong foliation, 1% pyrite.											
			355.20-356.00 - quartz vein with 5% pyrite at 30°.											
			364.00-364.80 - epidote rich diorite.											
			427.00-440.00 - slightly coarser diorite with feldspar appearing very											
			white in color.											
			454.00-457.50 - slightly altered diorite cut by 10 3mm quartz veins at											
			60°, trace pyrite.											
			469.00-469.50 - silicified + epidote rich diorite with 1% pyrite.											
			491.30-491.50 - pinkish aplite vein 30°, carries red-brown mineral											
			(iron carbonate? garnet?).										i	
			494.60-494.80 - pinkish aplite vein 25° with 4mm rutile needles.											
			503.30-503.50 - dark black gabbroic xenolith.									1		

I,

Ì


I

I

γ

CATHEDRAL GOLD CORPORATION PI-87-9 Page 5 of 5

From To		b Description	Smp.	From	То			Analysis						
Feet	Syb		No.		Feet		Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn		
		507.60-507.80 - pink aplite 30° with rutile.												
		534.00-537.00 - silicified grey diorite, light chalcopyrite.												
		563.00-563.20 - pink feldspar vein 30° with garnet.												
		568.00-570.00 - silicified diorite, trace pyrite.												
		570.00 - end of hole.												

DRILL RECORD

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4700E 19093N

COLLAR DIP : -45° PAGE : 1 of 4

HOLE NO. : PI-87-10

ELEV. :

COLLAR AZIMUTH: 198°

LOGGED BY : Alan B. Taylor

COMMENCED: November 30, 1987

CORE SIZE:

% RECOVERY

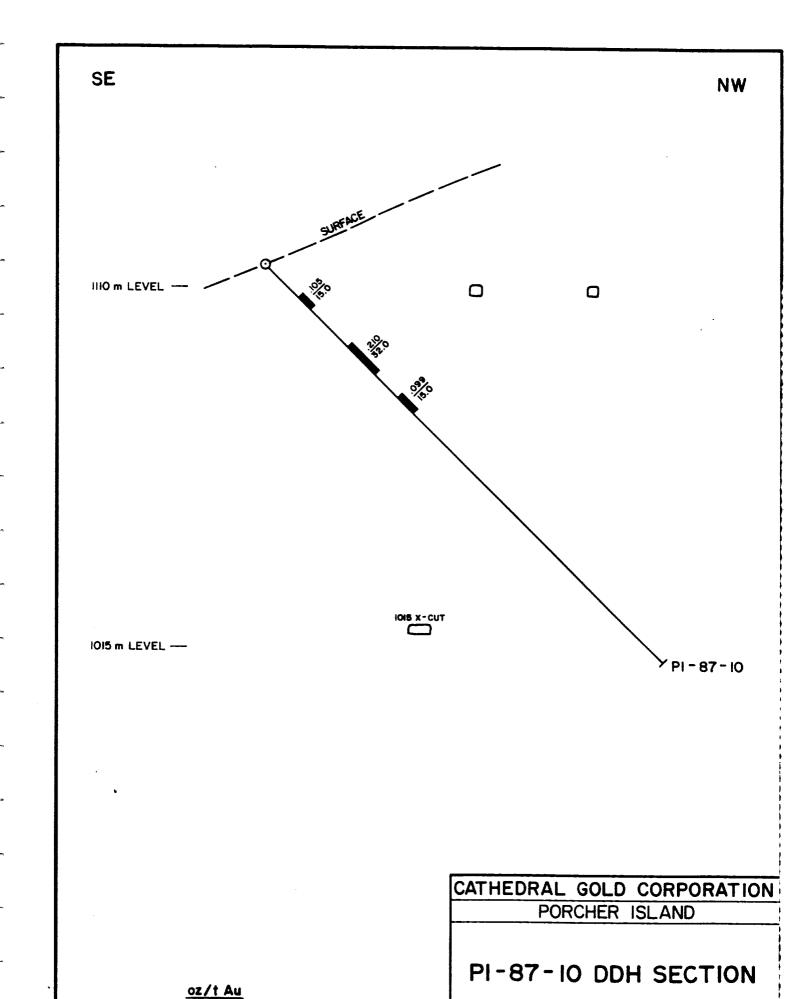
COMPLETED: December 2, 1987

LENGTH : 4821 CORE STORED : On property

Sperry-Sun Survey: at 242'=144°/-45°, 482'=121°/-44°.

From	To			Smp.	From	т То				An	alysis		
F	eet	Syb	Description	No.	F	eet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	bbw	bbw	ppm	oz/tn
0.00	10.00		Casing.										
													
10.00	482.00		Quartz Diorite	11060	13.0	17.0	4.0		1				
			Narrow quartz veinlets +/- carbonate +/- chlorite +/- silicified wall rock	11061	17.0	20.0	3.0		7				
			at 24.30 - 1mm at 50°, 25.50 - 2mm at 60°, 26.10 - 1mm at 60°, 27.60 - 2mm	11062	20.0	25.0	5.0		2				
			at 70°, 30.30 - 3mm at 50°, 34.80 - 1mm at 70°, 56.80 - 3mm at 70°, 59.10	11063	25.0	27.0	2.0		605				
			- 1cm at 80°, 76.90 - 3mm at 80°, 77.10 - 4mm at 70°, 87.10 - 2mm at 80°,	11064	27.0	30.0	3.0		4				
			91.10 - 4mm at 45°, 97.50 - 1cm at 50°, 109.60 - 4mm at 45°, 110.20 - 2mm	11065	30.0	33.0	3.0		28				
			at 30°, 200.50 - 1mm at 45°, 206.90 - 2mm at 50°, 239.30 - 2mm at 70°,	11066	33.0	38.0	5.0		86				
	i		276.70 - 2mm at 60°, 216.00 - 2mm at 80°, 304.00 - 4mm at 30°, 306.50-	57366	38.0	41.0	3.0		7310			i	
			307.00 - 2mm at 10°, 347.80 - 1mm at 90°, 350.00 - 1cm at 80°, 364.30 - 3mm	57367	41.0	44.0	3.0		715				
			at 50°, 368.30 - 3mm at 45°, 373.40 - 2mm at 40°, 398.70 - 1mm at 60°,	57368	44.0	47.0	3.0		2680				
			402.00 - 1cm at 80°, 407.40 - 2mm at 80°, 425.50 - 3mm at 45°, 407.00 - 2mm	57369	47.0	50.0	3.0		3110				
			at 50°, 409.00 - 1cm pyrite at 45°, 412.30 - 5mm at 80°, 414.10 - 3mm at	57370	50.0	53.0	3.0		4145				
			70°, 415.50 - 1cm at 45°, 417.20 - 1mm (x2) at 30°.	57371	53.0	56.0	3.0		605				
				57372	56.0	59.0	3.0		66				
			Rusty weathering at 54.00-55.00.	57373	59.0	62.0	3.0		124				[
				57374	76.0	79.0	3.0		440				
			18.40-19.40 - epidote rich diorite.	57404	87.0	91.0	4.0		161				
	ŀ			57403	91.0	94.0	3.0		12				
			38.00-62.00 - silicified diorite, grey to tan brown with chlorite clots	57402	94.0	97.0	3.0		810				
	I			57375	97.0	100.0	3.0		50				
				57376	100.0	103.0	3.0		11490				
			76.00-79.00 - variably silicified and bleached diorite by 5 quartz-chlorite	57377	103.0	106.0	3.0		6480				
			veins.	57378	106.0	109.0	3.0		27505	i	1		

CATHEDRAL GOLD CORPORATION PI-87-10 Page 2 of 4


From	***			Smp.	. From To				Analysis					
Feet	t	Syb	Description	No.	F	eet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au	
			·						ppb	ppm	ppm	ppm	oz/tn	
			100.00-114.00 - altered diorite with pyrite veins.	57379	109.0	112.0	3.0		570					
				57380	112.0	114.0	2.0		8120					
		1	100.40-102.80 - silicified diorite with quartz-pyrite vein at 35° and	57405	114.0	118.0	4.0		63					
			100.40-102.80 - 1cm pyrite seam running parallel to core axis with	57406	118.0	124.0	6.0		200					
			chlorite and carbonate.	57381	124.0	127.0	3.0		129					
				57382	127.0	131.0	4.0		190					
			108.00-108.90 - quartz vein with heavy spotty pyrite, vein at 50°.	57383	131.0	132.0	1.0		83800					
				57384	132.0	135.0	3.0		154					
			111.00 - 2cm banded quartz vein 8% pyrite at 40°.	57385	135.0	137.0	2.0		70					
				57410	137.0	140.0	3.0		440					
			124.00-136.00 - variably altered diorite.		140.0		3.0		126					
					143.0		4.0		13					
			131.50-131.90 - pyritic (30%) quartz vein.		147.0		2.0		8		ļ			
					149.0		3.0		1460					
			149.00-176.00 - silicified diorite with minor quartz veins (light pyrite)	57387	152.0	155.0	3.0		240					
			at 30° and intermittant unaltered diorite.	57388	155.0	158.0	3.0		190					
						161.0	3.0		164				L	
			157.40 - 4cm quartz vein 30° (trace pyrite).		161.0		3.0		1485					
				57391	164.0	167.0	3.0		945					
			159.50 - carbonate-chlorite clot.		167.0		3.0		405					
					170.0		3.0		750					
			167.00-167.30 - quartz-carbonate-chlorite.		173.0		3.0		15330					
				57398	176.0		3.0		65					
			213.00-217.00 - healed shear zone with quartz vein at 214.50-214.90.	57399		182.0	3.0		58					
			Foliated and somewhat silicified diorite. Foliation at 35° trace pyrite.	57409		205.0	3.0		50					
				11067		209.0	4.0		43				l	
			221.00-222.00 - bleached silicified diorite with a 3cm central quartz-		209.0		4.0		5				I	
			chlorite vein 30°, trace pyrite.	57395	213.0	217.0	4.0		3820					

CATHEDRAL GOLD CORPORATION PI-87-10 Page 3 of 4

From To	T		Smp.	From To				Aı	nalysi	s	
Feet	Syl	Description	No.	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
							ppb	ppm	ppm	bbw	oz/tn
		235.00-238.00 - slight epidote banding (vague), 3-4cm at 80°.	57400	217.0 221.0	4.0		21				
			57396	221.0 222.0	1.0		320				
		343.10-343.60 - quartz-pyrite vein at 30°, approximately 10% pyrite.	57401	222.0 226.0	4.0		34				
			11069	226.0 231.0	5.0		44				
		272.80-273.00 - grey aplitic vein 30°.	11070	231.0 236.0	5.0		35				
			11071	236.0 240.0	4.0		22				
		286.00-291.10 - porphyritic andesite dike 30° contacts, epidote rich at	57407	240.0 243.0	3.0		4				
		borders. Feldspar 4mm approximately 20% in a dark grey aphantic matrix.	57397	243.0 244.0	1.0		8765				L
			57408	244.0 247.0	3.0		25				L
		334.50-334.60 - banded quartz-chlorite vein 30° with trace pyrite.	11072	300.0 305.0	5.0		37				
				305.0 309.0	4.0		142				Ll
<u> </u>		352.00-353.00 - creamy brown silicified diorite with 1% pyrite.		309.0 314.0	5.0		22				
				330.0 333.0	3.0		18				
		373.00-373.20 - silicified diorite, trace pyrite.		333.0 336.0	3.0		215				
				336.0 341.0	5.0		7				
		392.00-394.50 - broken up diorite, slightly chloritized.		341.0 345.0	4.0		1				
				345.0 349.0	4.0		17				
		407.00-407.40 - silicified diorite, 2% pyrite at 40°.		349.0 352.0	3.0		18				
				352.0 353.0	1.0		260				
		409.00-409.10 - 1cm quartz and 1cm banded pyrite at 40°.		353.0 356.0	3.0		4				
				373.0 377.0	4.0		39				
		430.50-435.50 - buff cream brown silicified diorite with chlorite knots		377.0 381.0	4.0		1				
		and 3% pyrite (disseminated).		381.0 385.0	4.0		33				
			*	385.0 388.0	3.0		250				
		442.00-452.00 - altered, sheared and healed diorite, 442.00-445.20 folia-		388.0 392.0	4.0	{	49	[
	<u> </u>	tion varying 10-30°, core broken. 2cm banded quartz vein 443.50 chloritic		392.0 395.0	3.0	ļ	172				
		knots, trace pyrite.		395.0 398.0	3.0		59				
			57425	398.0 401.0	3.0	1	11				

CATHEDRAL GOLD CORPORATION PI-87-10 Page 4 of 4

							·						
From	To			Smp.	From	To		l		Ar	nalysi	5	
Fe	et	Syb	Description	No.		Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
					•				ppb	ppm	ppm	ppm	oz/tn
}	í ·		AAF OO AFO OO . Callabad ablandla dhanda ah oo oo	57400	404.0				245				
-		\vdash	445.20-452.00 - foliated chloritic diorite at 30°.		401.0		3.0		245				
<u> </u>		<u> </u>			404.0		3.0		74				
<u> </u>			462.40-463.10 - pinkish potassic zone with orangy feldspathic diorite.		407.0		3.0		3120				
				57429	410.0	413.0	3.0		139				
				57430	413.0	416.0	3.0		38				
				57431	416.0	419.0	3.0		99				
				57432	419.0	422.0	3.0		108				
				57433	422.0	426.0	4.0		155				
				57434	426.0	430.5	4.5		172				
				57435	430.5	435.5	5.0		660		}		
				57436	435.5	438.0	2.5		32				
				57437	438.0	441.0	3.0		28				
				57438	441.0	445.2	4.2		192				
				57439	445.2	451.0	5.8		12				
				57440	451.0	453.0	2.0		1				
				57441	453.0	456.0	3.0		1				
					456.0		1.0		24				
				11080	457.0	462.0	5.0		17				
			482.00 - end of holes.										
									1				

0 20 40 60 m

| SCALE: |: 1000 | SEDLOGIST: A. TAYLOR
| DATE: FEBRUARY, 1968 | DRAWN BY: J. CORKUM

DRILL RECORD CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island LOCATION: 4531E 19250N COLLAR DIP : -45° PAGE

HOLE NO. : PI-87-11 ELEV. : 290 ft ASL (approx.) COLLAR AZIMUTH: 300° LOGGED BY : Alan B. Taylor COMMENCED: December 2, 1987 CORE SIZE: BQ % RECOVERY : 99% : Dec. 9, 1987 DATE

: 1 of 5

COMPLETED: December 5, 1987 : 625' LENGTH CORE STORED : On property

OBJECTIVE: Edye Shear and Dawson UNUSUAL FEAT : Blocky

Sperry-Sun Surveys: at 300'=303°/-46°, 625'=308°/-45°.

mineralization.

From	To			Smp.	From	To				Ana	alysis		
Fo	eet	Syb	Description	No.	Fe	et	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	10.00		Casing.										
10.00	16.30		Dark black amphibolite with sporadic porphyritic white feldspar, broken										
			up and weathered, poor core recovery, trace pyrite.										
16.30	18.00		Coarse diorite with feldspar up to 4mm. Upper and lower contacts sharp										
			at 25°.										
18.00	48.50		Dark black to grey amphibolite to amphibolite schist. Strongly foliated		ł								
			at an average 40°. Core is moderately broken. Multiple granitic-type										
			veins <1cm and green epidote-chlorite veinlets averaging 1mm comprising 1%				l						
			of section.										
			Coarse granitic (sills) veins at 22.00-22.40, 28.00-28.40, 31.10-31.90										
			(pink potassic vein).										
			,										
48.50	55.00		Intrusive sill varying from porphyritic feldspar diorite (48.50-48.70) to								l		
			fine grained silicic monzonite with a fine pepper texture of 10% mafics								l	l	
			in a aphanitic grey matrix. Contacts 50°, 2mm pyritic vein 10° at 53.00										
			and 1% pyrite 52.00-55.00. Vuggy epidote at lower contact.										
55.00	93.00		Dark black to grey amphibolite at 45°. Variable textures from black										
<u> </u>	<u> </u>	1	aphanitic with epidote veinlets to milky grey showing a vague intrusive	<u> </u>]			

CATHEDRAL GOLD CORPORATION PI-87-11 Page 2 of 5

From	To			Smp.	From To				A	nalysi	s	
Fe	et	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			texture cut by multiple epidote and quartz veinlets.									
			Felsic-aphanitic sills at 64.70->65.10, 74.50-75.90.									
			Coarse green 7mm epidote vein at 10°, 71.00-73.00.									
			Pyrite in 1cm quartz vein (37°) 71.50 at 15°.									
93.00	95.70		Green cherty volcanic (tuff?) with fine seams of pyrite (<1%) at 40°. Contacts at 25-30° and quite sharp with trace pyrite.									
95.70	141.40		Dark milky grey amphibolite with vague intrusive textures evident locally, probably metamorphosed intrusive. Foliation around 45°. Badly broken up									
			shear at 119.00-119.50, 135.00-136.00, 140.80-141.20. Small 5mm quartz- pyrite (4%) vein at 115.30, 119.70. Red iron carbonate at 131.00.									
141.40	147.00		Dark black basalt dike with calcite amygdules 3-5mm in central part.									
			Sharp chilled upper contact at 45°, moderately magnetic. Shot with carbonate veinlets <5mm at 50° and at lower contact.									
147.00	147.50		Grey amphibolite, 1% pyrite.									
147.50	148.00		Black amphibolite with 1% pyrite.									
148.00	168.70		Grey medium diorite, massive appearance, core badly broken 154.00-154.50. Minor carbonate veinlets.									
			Miloi carpoliare Asili)erz.			 						

CATHEDRAL GOLD CORPORATION PI-87-11 Page 3 of 5

		r		т			·						
From	To	,		Smp.	From	To				Aı	nalysi	S	
Fe	et	Syb	Description	No.	1 1	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
168.70	169.50		Quartz-pyrite vein with semi-massive banded pyrite (30% overall) previously										
			sampled.										
169.50	265.00		Massive to semi-massive epidote rich diorite. Quartz veins, trace pyrite										
			at 248.00, 254.00, 207.00-208.00. Core moderately broken up.										
			209.50-216.50 - Core badly broken, fault zone with carbonate and talcy										
			alteration and clay development (only 40% recovery).										
													i
			218.60-225.60 - badly broken fault zone , blue clay alteration (only										
			60% recovery).										
			227.00-233.00 - core moderately broken, <50% recovery.										
265.00	266.00		Porphyritic "gabbroic" dike contacts at 40°. Amphiboles approximately										
			4-5mm comprise 60% of rock.				i						
266.00	287.00		Massive grey diorite (same as 169.00-265.00) with minor pyrite.										
287.00	287.40		Broken and clay alteration, fault zone, minimal recovery.										
287,40	290.90		Dark black meta-basalt with epidote veinlets and 2:1 flattened amgydules.					<u> </u>		 			
			Daily Black most pacific with opinion to this or and Electric transfer amagination										
290.90	346.20	-	Dark grey to grey foliated meta-diorite. Overall fine grained at 50°, more	······						-			1
===:50	-,-,-		altered than above diorite.										
		一	WIDELOW DIMIT SPAIN MINITED				 }	 f	i i				
			Coarser sections show 3-6mm feldspar crystals at 299.80-301.50, 304.50-										—
			304.90, 333.00->333.70.										
	·		007.00; 333.00-/333.70.								}		l
							l l	1)		

CATHEDRAL GOLD CORPORATION PI-87-11 Page 4 of 5

From	To			Smp.	From	To				Aı	nalysi	S	
Fe	et	Syb	Description	No.		Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
				Į.	}				ppb	ppm	ppm	l	oz/tn
<u> </u>	τ			ļ		Υ				PP	FF	<i>FF</i>	
			Pinkish-red mineral - rhodochrosite? associated with epidote veins at	1	l	ŀ							
			297.10, 323.60, 325.00-327.00 - 1mm at 0°, trace pyrite 304.00-307.00.										
346.20	348.60		Cream white felsic diorite (mafics <5%) contacts at 25°.										
			The state of the s	1						***			
348.60	351.50		Dark grey meta-diorite, light 1cm felsic vein at 349.00 at 40°.		1	<u> </u>							,
1	1		Services and the services and the services are the servic		<u> </u>	†							
351.50	352.60		Same as 346.20-348.60. Also a red mineralization on fracture (35°)			}							
	-		rhodochrosite?			İ							·
			Thousan out to.	 									
352.60	438.00		Black to light grey amphibolites and meta-diorites. Foliation at 35°.	l									
			Local epidote 391.40-393.50. Badly broken at 354.00-354.70, 368.00-369.00.										
			Rock cut by multiple anastomosing epidote veinlets. Red carbonate										
			(rhodochrosite?) at 400.00, 406.50, 425.70, 437.50.										
438.00	487.00		Milky grey meta-diorite foliated at 50°.										,
			439.00-440.00 - small 1mm pyritic seams in veinlets (<1%).										
			447.70-452.00 - silicic meta-diorite with pyrite seams and locally as										
			matrix material. Average pyrite 2%.										
			mass (A mass) (a) A Most ago politico and										
487.00	514.00		Dark grey to black banded amphibolite with multiple epidote veins parallel		i								
			to foliation at 35°. Quite silicic in places with local granitic veinlets.										
			The state of the s										
514.00	522.00		Meta-diorite showing granitic textures, massive to foliated (40%), local						i				
		-	epidote rich bands.										
			ALIANA I I AII AMIMAI					t		t			

CATHEDRAL GOLD CORPORATION PI-87-11 Page 5 of 5

From	To			Smp.	From	То				Αı	nalysi		
Fe	et	Syb	Description	No.	1	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
522.00	625.00		Banded amphibolites interlayed with meta-diorites with knots of epidote										
			commonly creating small vugs and clots. Foliation 35°.										
			564.00-565.00 - local pyrite seams 1mm parallel to foliation (1%).										
			567.20-568.60 - pinkish potassic feldspar vein with trace pyrite.										
			596.00-597.00 - badly broken core, fault. 10 feet missing.										
			625.00 - end of hole.										

DRILL RECORD

CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island

LOCATION: 4531E 19250N

COLLAR DIP : -63°

: 4451

: 1 of 3 PAGE

HOLE NO. : PI-87-12

: 290 ft ASL (approx.) ELEV.

COLLAR AZIMUTH: 293°

LOGGED BY : Alan B. Taylor

COMMENCED: December 5, 1987

CORE SIZE: BQ

% RECOVERY LENGTH

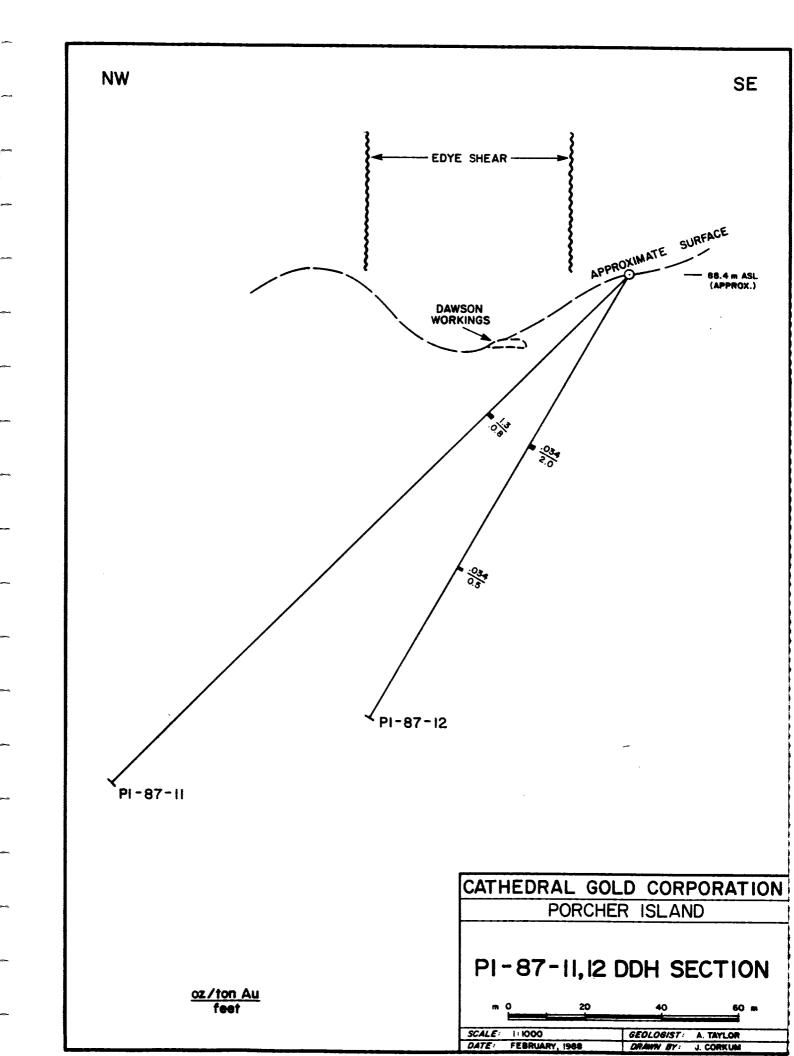
DATE : Dec. 10, 1987 CORE STORED : On property

COMPLETED: December 6, 1987 OBJECTIVE: Dawson & Edye Shear

Sperry-Sun Surveys: at 40'=293°/-63°, 220'=229°/-62°, 445'=300°/-61°.

From	To			Smp.	From To				Ana	alysis		
F	eet	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu	Zn ppm	Au oz/tn
0.00	10.00		Casing.									
10.00	25.00		Mostly medium to coarse mafic diorite interspersed with minor amphibolite									
			bands. Amphiboles in diorite up to 5mm and euhedral. Trace pyrite at 14°.									
25.00	50.00		Amphibolitic schist with various epidote rich and intrusive bands.		<u> </u>							
			Foliation 35°.			ļ						
50.00	65.00		Meta-diorite foliation sub-parallel to core axis, minor epidote veining.									
	L		Trace pyrite.									
		_										
65.00	70.20		Dark black meta-basalt containing visible specks of pyrrhotite.									
			Foliation 30°.									
								1				
70.70	129.90		Amphibolite schist and meta-diorite.									
			99.20 - quartz vein 3cm at 25° with 1% pyrrhotite.									
			122.00-122.90 - very schistose and broken up, trace pyrite.									
405]			
127.90	130.30		Interbanded white coarse diorite and black amphibolite.]
			122.70-126.00 - pyrrhotite in coarse felsic (2%).		<u> </u>							

CATHEDRAL GOLD CORPORATION PI-87-12 Page 2 of 3


From	То			Smp.	From	То				Aı	nalysi	s	
Fe	et	Syb	Description	No.	F	Feet	Lgth.	Rec.	Au ppb	Ag ppm	bbw Cn	Zn ppm	Au oz/tn
130.30	175.20		Mafic massive diorite.										
			100 00 170 00 displie is should by a Fee moute contents with out	 									
<u> </u>	ļ ———	_	168.00-170.00 - diorite is sheared by a 5mm quartz-carbonate vein sub-	l						-			
	 		parallel to core, 1% pyrite.									 	
175.20	183.20		Black basalt dike with few calcite filled amygdules (3mm) sharp chilled										
	<u> </u>		upper and lower contact at 40°.										
	ļ												
183.20	285.00		Mafic massive diorite, local epidote veinlets 256.00-285.00.		 								
ļ 	<u> </u>			1									
		-	187.50-187.70 - silicified diorite grained 5mm - chlorite-carbonate	 									
		\vdash	vein.										
		-	188.80-189.20 - silicified diorites around a 1cm chlorite-quartz vein										
			with 1% pyrite.										
			nton an pyrtov.	1									
			Loose powdery calcite along fracture planes at 35° at 198.00-198.40 (x3),										
			199.10, 206.60-206.80, 215.50-215.70, 220.90-221.00, 230.70.										
			251.20-252.40 - porphyritic andesite dike, contacts 80°, mafics up to 5mm.										
			Carbonate-quartz-pyrite veins/fractures less than 2mm at 270.70 - 30°,										
			272.40 at 30°, 277.10 at 50°, 278.00 at 30°.										
			281.40-283.00 - silicified buff brown diorite with 1% disseminated pyrite,										
			1cm quartz-chlorite vein at 30° with 3% pyrite.										
											i		

1

1 1

CATHEDRAL GOLD CORPORATION PI-87-12 Page 3 of 3

From	To			Smp.	From To				Aı	nalysi	ş	
Fee	t	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
285.00	304.40		Black banded amphibolite at 35°. Variable quartz-carbonate interbanding and local epidote veining.									
			289.00-289.30 - quartz vein at 35° with 2% pyrite.									
304.40	318.70		Coarse massive diorite with local epidote bands.									
317.00	346.00		Fault zone in amphibolites.									
			318.00-323.00 - 10% recovery, core badly broken.									
			327.00-338.00 - only 3' core recovered, core thoroughly altered to clay and entirely broken.									
			343.00-346.00 - good recovery but core is moderately broken, foliation 30°.									
346.00	445.00		Black to grey amphibolite schists and meta-diorite 30°.									
			377.00-393.00 - grey meta-diorite, trace pyrite.									
			390.60-391.50 - sand seam, light grey granular diorite.									
			441.00-442.00 - core broken, trace pyrite.									
			445.00 - end of hole.									
				<u>_</u> 1								l

DRILL RECORD CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island LOCATION: 4743E 19425N

COLLAR DIP : -45°

HOLE NO. : PI-87-13 ELEV. : .280 ft ASL (approx.) COLLAR AZIMUTH: 320° LOGGED BY : Alan B. Taylor COMMENCED: December 7, 1987 CORE SIZE: BQ % RECOVERY : 98% DATE : Dec. 11, 1987 LENGTH : 767' CORE STORED : On property

PAGE

: 1 of 4

COMPLETED: December 10, 1987

OBJECTIVE: Edye Shear

Sperry-Sun Surveys: at 200'=328°/-47°, 400'=324°/-48°, 767'=326°/-47°.

From	To			Smp.	From	To			<u> </u>	Ana	alysis		
F	et	Syb	Description	No.	Feet	:	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	10.00		Casing.										
10.00	15.00		No core.	 									
10.00	15.00		no core.	† — —									
15.00	41.50		Dark grey-black amphibolite schists interspersed with foliated fine to										
			coarse diorite at 35°. Core moderately broken up.										
41.50	60.00		Massive medium grain diorite with approximately 30% mafics up to 5mm										
			length, contacts appear layered at 20°.	1									
60.00	172.50		Dark grey to black amphibolite interlayered with meta-diorite (foliated										
			40°). Intrusive epidote and quartz veinlets occasionally, generally										
			sub-parallel to foliation.										
			74.00-75.00 - grey amphibolite containing 2% pyrrhotite following 3mm										
			quartz vein at 20°.	 									
			94.00 - rhodochrosite? in epidote vein.	 									
			111.70-113.00 - white bull quartz vein at 30°.										
			152.50-160.00 - dark black amphibolite.	 		\dashv							
	Î												

CATHEDRAL GOLD CORPORATION PI-87-13 Page 2 of 4

				······	,						····	
From	To			Smp.	From To				Aı	nalysi:	5	
Fee	et	Syb	Description	No.	Feet	Lgth.	Rec.	Au	Ag	Си	Zn	Au
Ī					:			ppb	ppm	ppm	ppm	oz/tn
172 50	177 50		United display consider from the deals are to madium and to fall to display									
172.50	1//.50		Hybrid diorite varying from fine dark grey to medium grain falsic diorite									—— <u> </u>
			at 177.00-177.50. Slight foliation at 30°.									
177 FO	354.80		Medium to coarse grained hornblende diorite. Generally massive with	 								
1//.50	334.00		local andesite xenoliths and multiple (3mm epidote veins at 30°.						<u> </u>			
			local andesite xenotities and multiple (smm epidote veins at 30.									
			Narrow quartz veins +/- carbonate +/- silicified wall rock +/- epidote at									
			188.60 - 4mm at 30° (2% pyrite), 190.00 - 3mm at 20° (2% pyrite), 199.40 -									
			1cm at 35° (1% pyrite), plus 5cm silicified rock, 200.20 - 5mm at 30°,									
			201.30 - 4mm at 25° (1% pyrite), 204.00 - 2cm at 35° (2% pyrite), 255.00									<u> </u>
			- 1cm at 20°, 259.60 - 1cm at 40°, 260.30 - 5mm at 20°, 270.00-270.40 at									
			40°, 272.00 - 4mm at 35°.									
			Epidote rich bands at 226.00-226.50, 232.50-233.50, 237.00-241.00, 259.00-									
			259.40, 276.00-276.40.		Ì							
					1		I					
			275.00-286.00 - fine grained diorite.									
			294.80-295.00 - quartz with 15% pyrite vein at 30°.									
			308.40-308.80 - quartz vein 30°.									
				l								
]			310.60-310.80 - quartz-chlorite vein, trace pyrite in wall rock 50°.									
			328.00-336.00 - fine grained epidote flooded diorite.									
			350.50-354.80 - fine grained silicic diorite, trace pyrite.								l	

CATHEDRAL GOLD CORPORATION PI-87-13 Page 3 of 4

From	To				Smp.	From	То				A	nalysi	ş	
Fe	et	IS	уb	Description	No.	i	Feet	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
										ppb	bbu	ppm	ppm	oz/tn
354.80	363.8	20		Black basalt dike, 3mm calcite filled amygdules. Contacts at 45°.										
363.80	266 (<u>.</u>	-	Combonate obligate hand must suit to the state of the sta			1							
303.00	300.0	"	1	Carbonate-chlorite band, quartz veinlets in altered diorite, 1% pyrite.			 							
366.00	532.0	0		Variable medium to fine grained diorite phase generally grey green to										
		_	_	bleached appearance and quartz-carbonate veinlets <2mm locally at									*****	
		+	\dashv	irregular angles. More mafic towards bottom.										
		+	\dashv	367.90-368.10 - quartz vein with 2% pyrite at 40°.										
				398.50-400.0s0 - quartz-carbonate (white) vein with heavy pyrite										
		_		399.20-399.80. Central to carbonate alteration zone in diorite.										
		+	十	400.00-403.00 - crumbly carbonate altered diorite with trace pyrite.										
) 							
		1	4	Mafic black diorite - 466.00-468.00, 479.00-482.00 (probable xenoliths).										
		+	\dashv	Epidote rich sections 455.60-456.50, 463.00-466.20, 474.80-476.00.										
		_	1	495.80-502.00 - altered silicic diorite.										
		+	-											
		+-	_	496.00-497.40 - loose fault gouge extremely crumbly but held together										
		╁	\dashv	by clay matrix 30°.										
		1	\Box	497.80-499.20 - quartz vein 35° with 3% pyrite.										
		4	_											
		_	4	522.00-522.70 - 2 x 5cm quartz veins carrying blotchy pyrite (overall 3%),										
				contacts at 60°.										

CATHEDRAL GOLD CORPORATION PI-87-13 Page 4 of 4

From	To			Smp.	From	To				Aı	nalysi	<u> </u>	
Fe	et	Syb	Description	No.	i .		Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
			523.70-524.20 - quartz-pyrite (banded) vein at 60°.										
532.00	767.00		Dark grey to black mafic diorite, medium to coarse grain, massive.										
			Multiple epidote veinlets and local quartz-carbonate veinlets <2cm.										
			576.20-578.00 - coarse feldspathic diorite.										
			Major epidote rich zones 586.00-587.50, 594.00-596.00, 615.00-616.00, 656.20-658.00, 665.00-668.00, 684.00-685.00, 690.50-691.50.										
			625.00-626.00 - silicified diorite with 1% pyrite.										
			645.20 - 3cm carbonate vein at 30°.										
			675.00-675.20 - coarse calcite vein at 50°.										
			735.00-752.00 - medium to fine silicic diorite with coarse carbonate-										
			chloritic veins at 745.00, 745.90, 747.00, 748.20 (pink), trace pyrite.										
		\dashv	767.00 - end of hole.										

DRILL RECORD CATHEDRAL GOLD CORPORATION

PROPERTY: Porcher Island LOCATION: 4743E 19425N COLLAR DIP: -60° PAGE: 1 of 4

HOLE NO. : PI-87-14 ELEV. : 280 ft ASL (approx.) COLLAR AZIMUTH: 320° LOGGED BY : Alan B. Taylor

COMMENCED: December 10, 1987 CORE SIZE: BQ % RECOVERY : 95% DATE : Dec. 13, 1987 COMPLETED: December 12, 1987 LENGTH : 684' CORE STORED : On property

COMPLETED: December 12, 1987

LENGTH: 684'

CORE STORED: On property

Sperry-Sun Surveys: at 200'=338° Az/-60°, at 400'=329° Az/-60°, 684'=320°/-59°.

UNUSUAL FEAT: Lost circula

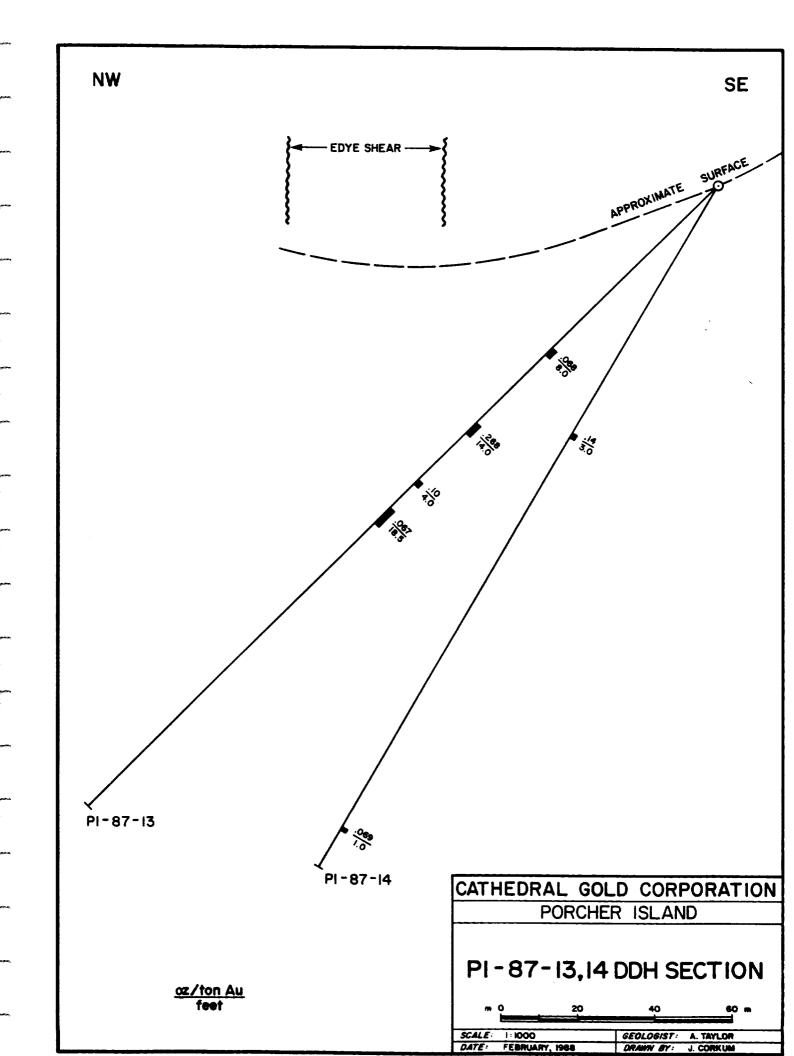
erry-Sun Surveys: at 200'=338° Az/-60°, at 400'=329° Az/-60°, 684'=320°/-59°.

UNUSUAL FEAT : Lost circulation on EOH and abandoned.

From	To			Smp.	From	To				Ana	alysis		
F	eet	Syb	Description	No.	Fe	et	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	bbw	ppm	ppm	oz/tn
0.00	8.00		Casing.										
8.00	15.00		No core.										
15.00	24.00		Dark black amphibolites cut by meta-diorite intrusives. Foliated at 30°.										
24.00	59.00		Massive medium green mafic diorite. Slight fining of crystal size and										
		_	stronger foliation towards contacts at 40°.										
			34.00-35.00 - green amphibolite band 30°.										
59.00	222.00		Dark black amphibolite alteration with meta-diorite and all cut by epidote										
j			veinlets. Foliation 30°.										
			Black amphibolite, local flecks of pyrrhotite 59.00-65.00, 79.70-81.00,										
			98.30-98.90, 121.00-143.00, 161.00-164.70, 207.00-208.50, 209.20-209.90,										
			211.50-215.00, 217.60-222.00 all at 30°, trace pyrite.										
		_		[i								
			102.00-107.00 - quartz vein with various amphibolite fragments and pink								I		
			carbonate (rhodochrosite).										
			107.00-108.00 - amphibolite with 2% pyrrhotite.										
J													

CATHEDRAL GOLD CORPORATION PI-87-14 Page 2 of 4

From	То			Smp.	From To				A	nalysi:	5	
Fe	et 	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			107.00-108.00 - foliated with 2% pyrrhotite.									
			109.00-112.00 - foliated contorted intrusive which carries 1% pyrrhotite in small clots.									
			143.00-156.50 - meta-diorite, slightly silicified and contains trace pyrite-pyrrhotitic.									
			172.00-175.00 - core moderately broken up and has a light clay alteration.									
222.00	335.20		Massive to semi-massive mafic diorite cut by multiple epidote veinlets and locally contains andesitic xenoliths.									
			240.00-241.90, 242.40-247.00 - dark green fine grained andesitic xenolith									
			(dike?), foliated at 30°. 249.00-255.00 - badly broken up and sheared diorite partly silicified and									
			some clay alteration along with carbonate-chlorite veins with trace pyrite.									
			278.30-278.70 - white aplitic vein at 80°.									
			289.00-298.20 - fine grained dark green andesitic dike (xenolith?) with a number of diorite inclusions. Contacts 25°.									
335.20	528.50		Amphibolite schists and meta-diorite. Approximately 70% intrusive, 30% amphibolite.									
			1	j			- 1	ļ	Į.	- 1	- 1	1


CATHEDRAL GOLD CORPORATION PI-87-14 Page 3 of 4

From	То			Smp.	From	То				Aı	nalysi	s	
Fe	et	Syb	Description	No.		Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
			337.00-343.00 - white quartz vein with local rhodochrosite patches and										
ļ	<u> </u>		amphibolitic inclusions, fractured at 30°. Appears barren.										
	 	ļ											L
			Dark grey to black amphibolite at 361.00-367.00, 373.00-374.00, 401.00-										
		-	402.50, 406.70-409.00, 424.30-431.00.										
			370.00 - pink blotches of rhodochrosite.										
			378.00-379.30 - broken core with 2cm (x3) quartz veins at 30° with trace										
	-	-	pyrite.	 									
			380.60-381.60 - 1cm quartz vein parallel to core axis.										
			397.00-400.00 - white feldspathic vein at 15° showing perthitic textures										
			with minor specks of pyrite.										
			437.00-495.00 - core is moderately to extremely broken up and blocky.										
			466.80-473.20 - black basalt dike with 2mm calcite amygdules and contacts			! 							
-			at 30° with trace pyrite in carbonate on upper contact.										
528.50	684.00		Massive mafic diorite.										
			529.00-531.00 - buff brown silicified diorite with chloritic patches and										
			1% disseminated pyrite. Chlorite and quartz banded at 40°.										
	 		F00 F0 F00 00										
			529.50-529.80 - White quartz vein 35° With 2% pyrite.										
			529.50-529.80 - white quartz vein 35° with 2% pyrite.										

.50 0

CATHEDRAL GOLD CORPORATION PI-87-14 Page 4 of 4

From	To			Smp.	From To				Ar	nalysi:	<u> </u>	
Fee	t	Syb	Description	No.	Feet	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			531.00-537.00 - fine grained diorite (altered), trace pyrite.									
			Name and the second of the sec									
.]			Narrow quartz veins +/- carbonate +/- epidote at 551.60 - 2cm at 30°,									
.			556.00 - 4mm at 30°, 561.50 - 8mm at 40°, 562.60-562.80 at 25°, 576.50 -									
			4mm at 40°, 578.50 - 8mm at 25°, 580.80 - 1cm at 45°, 582.00 - 4 (bleb),									
		\dashv	582.80 - 3mm at 40°, 583.50 - 1cm at 35°, 584.00 - 1cm at 40°, 584.40 - 1cm			 						
			at 35°, 656.50 - 6mm at 30°, 684.70 - 1cm at 30°.									
								ļ				
			596.00-624.00 - medium grained massive mafic diorite.									
			Epidote rich diorite 590.00-594.00.									
			643.50 - 5mm pyrite vein at 40°.									
			643.50 - 5mm pyrite vein at 40°.									
							·					
			653.50-654.00 - core badly broken (fault) and mild clay alteration.									
			656.00-656.50 - coarse carbonate and rhodochrosite.									
			662.80-664.50 - broken clay altered fault zone.									
			664.00-665.00 - buff silicified diorite.									
			684.00 - end of hole - had to abandon hole due to major fault creating									
			loss of circulation.									
		\dashv										·
		_										

APPENDIX

ANALYSIS AND ANALYTICAL TECHNIQUES

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEC.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: P1-4 CORE P5-ROCK

AUR BY FIRE ASSAY FROM 1/2 A.T.

ASSAYER. D. LELEG. DEAN TOYE, CERTIFIED B.C. ASSAYER Dec 7/87 DATE RECEIVED: DEC 1 1987 IMPERIAL METALS PROJECT-4544 File # 87-5966 Page 1 SAMPLE CU PB A6 NI CO FĒ AS AU TH SR CD SB BI ٧ CA Ρ LA CR MS BA П AUR AURR MO MN U PPN PPM 1 PPN PPB 07/T PPM PPM 1 1 1 PPN PPM PPM PPM PPM PPM PPM 1 PPN PPM PPM PPM PPM PPH PPM PPH PPM 1 1 10 1.32 13 .11 .10 .14 E 57001 522 2.42 2 39 1.11 .081 11 2 63 1570 3.43 4 5 ND 131 2 2 34 4.40 .081 15 1.49 66 .04 2 1.92 .03 .13 1 24 E 57002 1 33 8 7 8 1.27 195 .01 2 2.12 .03 . 36 1 75 2 63 2 3136 2.54 5 5 NĐ 277 2 2 22 8.47 .023 E 57003 35 .1 7 1 1 36050 1.024 9 53 113 3548 15.24 7 35 1 351 2 19 8.24 .010 2 2 .88 36 .01 2 1.04 .01 .10 E 57004 27 11 16.4 14 6 232 43 6.79 .067 18 1.63 60 .02 2 2.06 .04 .11 1 112 13 29 88 8 2691 3.72 3 2 7 E 57005 B 8 5 1 131 5 1.5B .08 . 24 151 E 57006 43 1.85 .072 12 1.06 .09 13 58 863 2.92 180 64 7 2 ND 137 2 2 35 3.47 .072 5 11 1.13 59 .03 2 1.52 .03 .14 41 13 2 9 1108 3.18 5 1 E 57007 1 2 18 .82 48 .01 2 1.20 .03 .14 1 720 2 48 .5 1325 2.48 3 5 ND 133 1 2 4.22 .075 7 E 57008 16 5 6 1.08 64 .07 2 1.49 .04 .13 1 19 57 8 1157 3.30 5 112 2 41 3.41 .076 E 57009 1 2 .1 4 1 5 2 104 2 52 2.45 .075 9 1.21 138 .10 2 1.65 .06 .29 £ 57010 49 2 88 4 9 996 3.54 5 MD 2 7 44 58 .05 4 1.66 .04 .10 E 57011 18 61 .2 5 9 1024 3.30 5 182 32 3.20 .075 9 1.17 .08 2 2.34 .09 .12 107 15 48 10 1040 3.58 2 5 ND 285 2 2 42 3.60 .075 5 11 1.30 72 E 57012 B 6 2 1.43 .30 1 165 54 92 2 2 44 2.20 .075 7 .91 122 . 10 .07 £ 57013 1 28 3 .2 2 866 3.10 2 5 ND 1 8 1.14 95 .10 2 1.61 .06 . 21 1 415 13 64 5 107 2 45 2.08 .074 E 57014 1 2 11 919 3.43 1 .34 .10 1 .91 170 .12 2 1.44 £ 57015 6 7 55 3 9 667 3.05 5 84 2 48 1.28 .072 5 b 15 28 .07 2 1.86 .05 .07 1 E 57014 11 1027 3.85 107 2 48 2.54 .077 8 1.36 55 1.04 39 .11 4 3.79 . 35 .10 1 230 107 6.36 .101 20 E 57017 45 81 58 28 1321 6.15 72 5 175 2 .1 2 .26 .01 2 42710 1.246 .06 48 .01 . 14 E 57018 9 5 11 335 6.53 4 5 43 30 1 2 2 3 1.09 . 041 3 5 .89 90 .01 2 1.24 .02 . 19 1 98 77 2 2 14 3.83 .115 E 57019 2 37 2 2 1417 1.90 5 1 1 340 10 1.20 48 .01 2 1.61 .02 .12 28 4.05 .076 E 57020 1 40 2 65 .3 5 9 1265 3.26 3 5 100 2 .07 45 12 1.07 111 .09 2 1.54 . 21 E 57021 33 66 .2 9 925 3.11 5 88 2 45 2.12 .079 10 1.20 70 .08 2 1.56 .05 .14 1 245 94 2 36 3.21 .075 E 57022 1 103 67 .3 10 1550 3.14 127 119 2 37 3.99 .073 10 1.40 Sá .07 2 1.72 .04 . 12 1 E 57023 1 81 77 8 1979 3.28 5 ND 1 2 94 .09 6 1.96 .04 . 19 1 47 82 1250 3.48 2 ND 2 121 1 2 2 41 2.85 .081 4 11 1.51 E 57024 23 5 5 12 5 1 77 2 1.55 .05 .17 1 690 43 2.84 .072 10 1.15 .07 E 57025 14 .9 3 10 947 3.29 2 .94 .05 . 32 2 122 E 57026 44 799 1.79 2 5 1.78 .059 .46 164 .06 .43 102 .02 3 .84 .04 . 18 2 24 E 57027 39 788 1.73 2 5 2 68 2 2 13 1.90 .062 11 3 17 8 .61 82 .02 2 1.09 .04 .17 1 .075 12 3 E \$7028 t 18 2 52 6 1008 2.39 2 5 91 16 2.50 98 .080 12 2 .74 53 .02 5 1.38 .05 .09 2 21 2.18 E 57029 1 31 2 62 2 6 967 2.65 3 5 1 6 2 1.39 12 13 5 .74 68 .01 .04 . 13 97 17 3.50 .093 E 57030 1 59 2 2 5 1259 2.77 3 5 17 .97 .02 3 1.48 . 13 E 57031 25 57 7 1403 2.84 99 23 3.76 .071 5 .97 66 .03 2 1.41 .04 .14 1 570 5 ND 137 2 2 30 3.96 .072 5 E 57032 17 2 8 1422 3.13 3 .82 .13 2 70 89 3 .056 8 .41 71 .03 2 .04 E 57033 1 17 2 45 .1 809 1.56 2 11 2.16 9 .40 77 .02 2 .79 .04 .14 1 210 ND 72 2 5 10 1.93 .05B 4 E 57034 36 2 41 .3 4 755 1.65 2 5 2 1 1 .035 .77 .04 1 1140 10 2 .36 68 .01 2 . 15 E 57035 25 38 2 5 840 1.77 2.66 .058 59 5 . 38 116 .02 .76 .03 . 19 E 57036 828 2 5 2 86 2 7 11 2.23 .056 8 2 27 2 41 .3 2 7 1.62

17 22 58 .45 .086

43 22

29 1046 4.00

STB C/AU-R

19 58

41

132 7.4

68

39

51 10

.85

178

39 61

.06

32 1.90

.06 .13

									-	iii Er	INL	1.167.1	MLS	FAU	JEC	-45	77		- 77	3,	J / U	,									
SAMPLE	MO PPM	CU P PM	P9 PPM	ZN PPH	AG PPM	NI PPH	CO PPM	HN PPN	FE 1	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P	LA PPM	CR P PM	M6 1	BA PPM	TI 1	B PPM	AL I	NA Z	K 1		18 AU88 PB 0Z/T
E 57037 E 57038 E 57039 E 57040 E 57041	8 1 1 1	20 22 47 45 25	4 2 4 3 4	31 62 28 50 58	12.2 .1 .1 .1	3 5 15 4 4	5 9 20 14 10	602 852 559 646 922	6.36 4.10	2 2 3 2 4	5 5 5 5 5	18 ND ND ND	1 1 1 1	60 104 39 81 212	1 1 1 1	2 2 2 2 2	2 2 2 2 2	50 18 47	1.65 1.80 1.39 .99 3.82	.056 .074 .030 .076	8 5 2 4 5	2 5 3 5 6	.31 1.18 .51 .83	102 184 54 130 68	.02 .12 .05 .14	2	.87 1.71 .74 1.45 1.99	.06 .09 .04 .14	.21 .40 .23 .59	1 47	i6 - 10 -
E 57042 E 57043 E 57044 E 57045 E 57046	i 1 8 1 1	49 60 44 76 14	8 3 10 13 2	44 41 50 77 47	14.3 .1 42.1 .5 .1	5 3 9 6 7	9 8 22 8 9	840 1038 1040 1256 631	2.70	2 2 8 2 2	5 5 5 5 5	18 ND 43 ND ND	1 1 2 1	68 107 105 86 85	1 1 1 1	2 2 2 2 2 2	3 2 14 2 4	32 32	2.45 3.46 2.79 3.85 1.07	.053 .093 .070 .082	5 5 7 6 5	6 2 7 9	.78 .73 .80 1.05	40 55 72 65 227	.02 .01 .08 .07	3 2 2	1.12 1.15 1.19 1.37 1.35	.04 .05 .06 .04	.10 .14 .24 .17	1 29	0 1.220
E 57047 E 57048 E 57049 E 57050 E 57051	1 2 1 2 1	71 5 42 174 18	2 4 2 2 6	71 2 10 10 32	.1 1.2 .1 .1	8 2 1 1	12 1 2 1 8	1263 230 496 329 1035	3.55 .49 1.02 .86 2.37	4 2 2 2 14	5 5 5 5 5	ND 3 ND 4 ND	2 1 2 1 2	167 24 21 15	1 1 1 1	2 2 2 3 2	2 2 2 3 2	3	4.17 .80 2.09 1.32 4.34	.078 .007 .046 .035 .053	7 2 13 10	12 6 2 2 11	1.31 .05 .20 .17	52 20 57 39 58	.01 .01 .01 .01	4 3 2	1.98 .12 .44 .36 1.22	.03 .01 .03 .02	.12 .04 .11 .08	1 4 1 338 1 33 1 445 1 5	5 - 0 .134
E 57052 E 57053 E 57054 E 57055 E 57056	1 1 1 1	47 15 14 37 53	5 2 6 2 2	81 37 50 33 22	.1 .1 .1 .1	53 6 6 1 1	26 5 6 3 2	916 761 678 1073 982	5.55 2.05 2.08 1.41 1.62	11 4 2 3 2	5 5 5 5 5	ND ND ND 3	3 1 1 3 1	264 78 68 83	1 1 1 1	2 2 2 2 2	3 2 2 2 2	20 25 9	4.72 2.60 1.21 2.78 3.01	.113 .061 .058 .056 .059	20 8 8 9	52 6 7 3 3	1.82 .51 .60 .42 .31	31 62 179 50 64	.19 .03 .09 .01	2	3.40 .92 1.09 .73 .54	.54 .07 .09 .04	.05 .12 .41 .11	i 3 2 i 1 2 4 1 289	9 - 4 - 6 -
E 57057 E 57058 E 57059 E 57040 E 57041	1 1 74 136	33 73 575 8 31	2 5 2 2 2	35 33 31 16 24	.1 .4 .9 .3 2.4	3 20 3 2 1	3 7 4 1 2	752 1101 639 1225 1324	1.58 1.85 1.64 1.00	2 3 2 2 2	5 5 5 5	2 ND ND ND	2 3 3 3 3	88 83 54 78	1 1 1 1	2 2 2 3 2	2 2 2 2 2	18 3 6 1 4 4		.060 .061 .053 .056	9 11 11 15 13	4 10 4 2 3	.42 .43 .37 .26	90 41 44 68 42	.01 .01 .01 .01	3 2 2 3 3	.80 1.11 .62 .49	.04 .07 .03 .02	.15 .09 .09 .13	2 43 1 39 2 72 1 65 2 219	5 - 0 -) -
E 57062 E 57063 E 57064 E 57065 E 57066	9 1 1 3 3	59 15 16 36 7	5 3 2 8 2	31 26 16 44 17	.1 .1 .2 .2	1 1 1 1	2 2 2 1 1	974 710 848 1602 1898	1.27 1.11 1.05 1.50	2 2 2 2 2	5 5 5 5	HD BM DM DM DM	3 2 2 3 4	57 56 71 113 163	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	9 1 5 2 8 3	.78 !.63 !.68	.064 .067 .064 .059	15 13 12 11 9	3 2 3 1	.39 .31 .22 .71	41 63 51 42 40	.01 .01 .01 .01	2 6 2 2 5	.66 .56 .45 .82 .43	.03 .03 .03 .03	.09 .11 .11 .10	1 40 2 13 1 34 2 21 2 26	- - -
E 57067 E 57068 E 57069 E 57070 E 57071	1 1 3 1 2	26 6 53 17	7 3 4 3 2	36 33 28 34 40	1.1 .1 .8 .3	1 2 1 1	2 4 2 5 5	1397 780 2697 772 729	1.47 1.45 1.41 1.53 1.57	2 2 2 2 2	5 5 5 5 5	00 ND ND ND	2 3 2 2 2	115 84 289 83 71	1 1 1 1	2 2 2 3 2	2 2 2 2 2	7 2 7 8 8 2	1. 44 1. 37 1. 32	.059 .059 .037 .056 .058	6 6 7 7	1 3 2 2 4	.50 .34 .46 .36 .41	56 57 64 50 49	.01 .01 .01 .01	3 2 2 2 5	.72 .62 .66 .61	.03 .03 .01 .03	.11 .14 .13 .10	1 1610 2 50 2 1120 1 640 2 40	. 033
E 57072 STØ C/AU-R	2 19	25 60	5 36	39 132	.1 7.0	1 68	4 30	827 1066	1.67	2 45	5 20	ND 8	1 39	87 52	1 18	2 18	2 10			.058 .087	7 3 9	90 2	.41 .85	64 178	.02 .06	2 3 5	.80 1.87	.05 .06	.12	2 70 12 51	

(

(

IMPERIAL METALS PROJECT-4544 FILE # 87-5966

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	A 6 P PN	NI PPH	CQ PPM	HN PPH	FE	AS PPM	U PPM	AU PPN	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	PPM	CA I	P	LA FPM	CR P PM	M6 1	BA PPM	TI I	B PPM	AL I	NA I	K I	N PPM	AU I PP B	AU## 07/T	4
E 57073 E 57074 E 57075 E 57076 E 57077	1 1 4 31	26 46 100 87 75	6 4 2 8 2	36 35 36 23 29	.1 .1 .1 .1	3 2 2 2 2 2	3 3 2 3	853 1173 738	1.56	3 2 5 2 3	5 5 5 5 5	40 40 40 40 40	3 1 2 3 2	100 83 132 79 72	1 1 1 1	2 2 2 2 2	2 2 2 3 2	9 9 8 8	2.26 3.52 2.09	.051 .055 .052 .060 .053	8 9 8 9	3 2 3 2 3	.47 .45 .47 .35 .52	64 62 53 72 64	.01 .01 .01 .01	2 2 4 2 2	.86 .92 .82 .60 .84	.05 .05 .03 .05	.12 .11 .11 .13 .13	1 1 1 1	610 108 113 565 470	-	
E 57078 E 57079 E 57080 E 57081 E 57082	5 1 6 1	94 20 25 21 167	2 2 4 7 5	25 40 16 41 42	.1 .3 .1	1 1 3 2	3 4 3 4 3	750 774 1018 886 1055	1.72 1.49 1.72	2 2 4 2 4	5 5 5 5 5	ND ND ND ND	1 1 3 2 1	72 86 135 86 72	1 1 1 1	2 2 2 2 2	2 2 2 3 3	6 10 5 11 15	1.72 2.99 2.12	.055 .054 .062 .051 .061	8 7 9 6	2 2 3 1 2	.33 .46 .32 .43 .72	66 72 59 60 54	.01 .03 .02 .02	5 2 2 2 5	.68 .83 .59 .76 1.08	.04 .04 .05 .04	.12 .11 .12 .11	1 6 1 1	250 59 490 50 725	-	(
E 57083 E 57084 E 57085 E 57086 E 57087	1 1 1 1	83 127 30 33 36	3 8 2 3 2	32 11 45 45 33	10.0 10.2 .1 .1	3 4 1 4	7 107 5 5 4	914 821	11.03	2 2 2 3 2	5 5 5 5 5	15 39 ND ND ND	2 2 2 3 2	52 18 79 72 66	1 1 1 1	2 2 2 2 2	5 16 3 2 2	9 3 13 13	.67 2.22 1.67	.055 .018 .060 .053	7 2 8 7 10	3 1 2 3 2	.33 .08 .49 .49	74 30 67 85 56	.01 .01 .02 .04	3 3 5 4 2	.71 .18 .86 .84	.04 .02 .03 .05	.14 .06 .11 .12 .10	1 1 1	15350 38015 425 275 1480	.423 1.068 - - .048	
E 57088 E 57089 E 57090 E 57091 E 57092	1 1 12 15	24 10 12 45 49	14 2 2 2 2 4	5 22 46 43 34	23.1 .1 .2 .4 .5	3 1 3 1 2	16 3 4 5		1.62 1.64 2.27	5 5 2 3 4	5 5 5 5	49 ND ND 2 2	2 2 2 2 1	58 67 79 74 158	1 1 1 1	2 2 3 2 2	10 2 4 2 2	5	1.08 2.03	.009 .050 .059 .058 .090	5 15 7 7 6	3 2 2 1 1	.03 .29 .44 .46	25 67 133 73 69	.01 .01 .05 .02	2 3 2 2 2	.10 .65 .83 .83	.01 .03 .04 .05	.05 .13 .20 .12	1 1 1	49240 540 335 1420 1715	1.496 - .046 .058	(
E 57093 E 57094 E 57095 E 57096 E 57097	1 1 1 1	14 13 11 16 25	2 3 4 5 2	35 41 57 43 37	.1 .1 .1 .1	2 2 1 3 2	4 4 4	918 805 1265 723 816	1.71 1.63 2.08 1.56 1.72	2 2 2 2 2	5 5 5 5 5	ND ND ND ND	2 1 1 2 1	77 78 133 80 80	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	9 9 12 9	2.05 2.86	.057 .055 .053 .058	7 6 5 6 7	2 2 2 2 3	.40 .46 .69 .45	69 56 51 64 60	.02 .02 .03 .03	3 4 2 4 4	.79 .85 1.08 .86 .79	.05 .05 .04 .05	.12 .10 .09 .11	! ! ! !	113 67 46 81 390	- - -	(
E 57098 E 57099 E 57100 E 57101 E 57102	1 1 1 1	21 19 65 17	6 2 6 2 3	35 31 34 36 45	.2 .1 .3 1.0	3 3 2 1 2	4 3 3 4 5	849 787	1.55 1.54 1.75 1.65 1.88	2 2 3 2 2	5 5 5 5 5	HD ND ND ND ND	2 2 2 2 2	63 74 81 73 84	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	9 8 8 10 14	1.99 2.29 1.92	.053 .050 .056 .052	7 7 8 7 9	3 2 3 3 4	.38 .34 .42 .38 .49	49 74 60 59 108	.01 .01 .01 .01	5 2 2 2 2	.70 .71 .76 .71	.04 .05 .04 .04	.10 .11 .12 .11		415 157 245 1315 1020		į
E 57103 E 57104 E 57105 E 57106 E 57107	5 32 1 1	13 25 15 8 28	2 3 8 2 2	35 21 43 44 41	.1 2.7 .1 .1	1 4 2 2 2	2 10 4 4 5	721 651	1.39 2.95 1.62 1.55 1.71	2 5 2 2 2	5 5 5 5 5	40 6 6 6 6 6 6 8	1 3 1 1 2	104 203 80 78 72	1 1 1 1	2 2 2 2 2	2 2 2 2 2	7 12 11	1.50 1.44	.055 .058 .054 .055	6 9 7 6 7	1 2 3 3 2	.37 .42 .44 .42	72 59 73 73 67	.01 .01 .03 .03	3 2 2 2 2	.72 .70 .77 .75	.04 .04 .03 .04	.12 .11 .10 .12	1 1	53 5805 49 320 1115	.157	i
E 57108 STD C/AU-R	1 19	15 57	2 36	47 131	.1 7.1	2 67	4 28	728 1066		3 43	5 19	ND 7	2 37	71 49	i 18	2 16	2 19	11 55		.057 .082	7 37	3 59	.47 .85	56 17 5	.02 .06	2 32	.85 1.96	.03 .06	.08	2 12	156 510		1

2 2 8 2.64 .060 12 2 .37 55 .01 2 .65 .04 .13 1 118 -

| SAMPLES NO CU P8 ZN A6 NI CO MN FE AS U A0 TH SR CD SB BI V CA P LA CR M6 BA TI B FPM PPM 79 .10 .12 1 1360 .00 .87 .09 .13 1 275 .88 .07 .18 1 1620 .00 .76 .08 .12 1 73 .62 .04 .11 2 120 |
|--|---|
| E 57109 | .87 .09 .13 1 275
.88 .07 .18 1 1620 .05
.76 .08 .12 1 73
.62 .04 .11 2 120
.69 .04 .09 3 645 |
| E 57110 1 36 9 37 .1 1 4 816 1.86 3 5 ND 2 88 1 2 2 10 2.35 .059 9 4 .47 58 .01 2 E 57111 1 50 2 46 .9 2 6 653 1.94 4 5 6 4 77 1 2 2 16 1.24 .070 8 2 .55 92 .05 2 E 57112 1 11 2 35 .1 1 4 764 1.78 2 5 ND 2 80 1 2 2 10 2.15 .059 7 2 .41 58 .02 2 E 57113 1 12 2 32 .1 2 3 913 1.55 2 5 ND 2 86 1 2 2 9 2.58 .055 7 2 .38 48 .01 2 E 57114 1 42 2 38 .1 3 4 743 1.81 2 5 ND 3 72 1 2 2 12 2.01 .058 8 2 .46 42 .01 2 E 57115 1 21 4 29 .3 1 3 631 1.44 4 5 ND 3 72 1 2 2 8 2.16 .048 8 4 .33 42 .01 2 E 57116 1 45 8 31 .2 2 3 771 1.71 2 5 ND 3 80 1 2 2 9 2.41 .067 10 4 .40 69 .01 2 E 57118 2 20 2 40 .1 2 4 705 1.76 2 5 ND 1 92 1 2 2 11 2.06 .055 8 3 .46 51 .01 2 E 57121 1 16 3 41 .3 2 6 688 2.16 2 5 ND 3 147 1 2 2 12 1.06 .055 8 3 .46 57 .03 2 E 57121 1 2 1 2 2 12 1.18 .062 9 3 .50 68 .02 3 E 57122 1 2 2 38 .1 2 2 4 653 1.71 2 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 | .87 .09 .13 1 275
.88 .07 .18 1 1620 .05
.76 .08 .12 1 73
.62 .04 .11 2 120
.69 .04 .09 3 645 |
| E 57111 | .88 .07 .18 1 1620 .05
.76 .08 .12 1 73
.62 .04 .11 2 120 |
| E 57111 | .76 .08 .12 1 73
.62 .04 .11 2 120 |
| E 57112 | .62 .04 .11 2 120 |
| E 57114 1 42 2 38 .1 3 4 743 1.81 2 5 ND 2 86 1 2 2 9 2.58 .055 7 2 .38 48 .01 2 E 57114 1 42 2 38 .1 3 4 743 1.81 2 5 ND 3 72 1 2 2 12 2.01 .058 8 2 .46 42 .01 2 E 57115 1 21 4 29 .3 1 3 631 1.44 4 5 NB 3 72 1 2 2 8 2.16 .049 8 4 .33 42 .01 2 E 57116 1 45 8 31 .2 2 3 771 1.71 2 5 ND 3 80 1 2 2 9 2.41 .067 10 4 .40 69 .01 2 E 57117 55 21 8 2 38.7 4 35 156 7.43 2 5 55 1 10 1 2 12 1 .36 .001 2 3 .01 13 .01 5 E 57118 2 20 2 40 .1 2 4 705 1.76 2 5 ND 1 92 1 2 2 11 2.06 .055 8 3 .46 51 .01 2 E 57120 1 16 3 41 .3 2 6 688 2.16 2 5 ND 3 147 1 2 2 12 12 .06 .055 8 3 .46 51 .01 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 2 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 2 2 14 1.82 .062 5 1 .08 40 .01 2 | .69 .04 .09 3 645 |
| E 57115 1 21 4 29 .3 1 3 631 1.44 4 5 MB 3 72 1 2 2 8 2.16 .048 8 4 .33 42 .01 2 E 57116 1 45 8 31 .2 2 3 771 1.71 2 5 MD 3 BO 1 2 2 2 9 2.41 .067 10 4 .40 69 .01 2 E 57117 55 21 8 2 38.7 4 33 156 7.43 2 5 55 1 10 1 2 12 1 .36 .001 2 3 .01 13 .01 5 E 57118 2 20 2 40 .1 2 4 705 1.76 2 5 MD 1 92 1 2 2 11 2.06 .055 8 3 .46 51 .01 2 E 57120 1 16 3 41 .3 2 6 688 2.16 2 5 ND 2 86 1 2 2 10 1.95 .058 7 3 .46 57 .03 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 2 14 1.82 .062 8 3 .49 86 .03 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .062 8 3 .49 86 .03 2 | |
| E 57115 1 21 4 29 .3 1 3 631 1.44 4 5 MB 3 72 1 2 2 8 2.16 .048 8 4 .33 42 .01 2 E 57116 1 45 8 31 .2 2 3 771 1.71 2 5 MD 3 BO 1 2 2 2 9 2.41 .067 10 4 .40 69 .01 2 E 57117 55 21 8 2 38.7 4 33 156 7.43 2 5 55 1 10 1 2 12 1 .36 .001 2 3 .01 13 .01 5 E 57118 2 20 2 40 .1 2 4 705 1.76 2 5 MD 1 92 1 2 2 11 2.06 .055 8 3 .46 51 .01 2 E 57120 1 16 3 41 .3 2 6 688 2.16 2 5 ND 2 86 1 2 2 10 1.95 .058 7 3 .46 57 .03 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 2 14 1.82 .062 8 3 .49 86 .03 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .062 8 3 .49 86 .03 2 | |
| E 57116 1 45 8 31 .2 2 3 771 1.71 2 5 ND 3 BO 1 2 2 9 2.41 .067 10 4 .40 69 .01 2 E 57117 55 21 8 2 38.7 4 35 156 7.43 2 5 55 1 10 1 2 12 1 .36 .001 2 3 .01 13 .01 5 E 57118 2 20 2 40 .1 2 4 705 1.76 2 5 ND 1 92 1 2 2 11 2.06 .055 8 3 .46 51 .01 2 E 57120 1 16 3 41 .3 2 6 688 2.16 2 5 ND 2 86 1 2 2 10 1.95 .058 7 3 .46 57 .03 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 2 2 14 1.82 .062 8 3 .49 86 .03 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .062 8 3 .49 86 .03 2 | .66 .05 .10 1 370 |
| E 57117 55 21 8 2 38.7 4 33 156 7.43 2 5 55 1 10 1 2 12 1 .36 .001 2 3 .01 13 .01 5 E 57118 2 20 2 40 .1 2 4 705 1.76 2 5 ND 1 92 1 2 2 11 2.06 .055 8 3 .46 51 .01 2 E 57119 1 28 4 45 .4 2 5 777 1.87 2 5 ND 3 147 1 2 2 12 2.18 .062 9 3 .50 68 .02 3 E 57120 1 16 3 41 .3 2 6 688 2.16 2 5 ND 2 86 1 2 2 10 1.95 .058 7 3 .46 57 .03 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .052 8 3 .49 86 .03 2 | .81 .08 .15 1 475 |
| E 57118 2 20 2 40 .1 2 4 705 1.76 2 5 ND 1 92 1 2 2 11 2.06 .055 8 3 .46 51 .01 2 E 57119 1 28 4 45 .4 2 5 777 1.87 2 5 ND 3 147 1 2 2 12 2.18 .062 9 3 .50 68 .02 3 E 57120 1 16 3 41 .3 2 6 688 2.16 2 5 ND 2 86 1 2 2 10 1.95 .058 7 3 .46 57 .03 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 | |
| E 57119 | .84 .05 .10 1 350 |
| E 57120 1 16 3 41 .3 2 6 688 2.16 2 5 ND 2 86 1 2 2 10 1.95 .058 7 3 .46 57 .03 2 E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .052 8 3 .49 86 .03 2 | |
| E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .062 8 3 .49 86 .03 2 | |
| E 57121 1 21 7 43 .1 2 4 700 1.73 3 5 ND 1 105 1 2 2 11 1.86 .060 8 2 .49 57 .03 3 E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .052 8 3 .49 86 .03 2 | |
| E 57122 1 28 2 38 .2 2 4 653 1.71 2 5 ND 4 79 1 2 2 10 1.79 .060 9 4 .44 53 .02 2 E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .052 8 3 .49 86 .03 2 | .87 .06 .08 2 335 |
| E 57123 25 76 6 11 27.2 3 153 446 13.81 3 5 77 5 31 1 2 22 4 1.16 .026 5 1 .08 40 .01 2 E 57124 1 60 2 41 .3 2 4 694 1.97 3 5 ND 3 63 1 2 2 14 1.82 .052 8 3 .49 86 .03 2 | .80 .06 .11 1 310 |
| | .30 .05 .15 1 71040 2.25 |
| | .81 .04 .16 2 430 |
| E 57125 1 94 9 47 .1 2 4 800 1.99 3 5 ND 4 91 1 2 2 13 2.15 .066 8 2 .54 60 .02 2 | - |
| E 57126 1 107 2 37 .4 1 8 993 2.01 3 5 2 3 122 1 2 2 9 3.31 .054 9 2 .44 52 .01 2 | |
| E 57127 19 65 11 10 45.0 7 76 2176 16.74 5 12 89 1 294 1 2 36 2 6.36 .008 3 1 .10 13 .01 3 | .08 .01 .04 1 92540 2.66 |
| E 57128 1 71 5 36 .1 1 3 1428 1.59 5 5 MD 1 217 1 2 3 7 5.12 .069 11 3 .53 33 .01 2 | .48 .05 .08 1 250 |
| | |
| E 57129 1 20 3 45 .4 2 5 786 1.90 3 5 ND 1 98 1 2 5 14 2.02 .061 6 3 .52 68 .03 3 | |
| E 57130 1 14 2 41 .1 2 4 625 1.71 2 5 ND 1 77 1 2 2 14 1.32 .056 6 4 .47 103 .04 2 | .73 .05 .19 1 25 |
| E 57131 3 23 2 7 1.7 3 12 278 3.61 2 5 5 1 21 1 2 2 1 .67 .017 3 2 .09 25 .01 2 | .20 .03 .05 1 6260 .21 |
| E 57132 3 16 2 34 .7 1 6 648 2.01 4 5 2 1 72 1 2 2 10 1.70 .053 5 2 .39 65 .03 2 | |
| E 57133 1 109 2 31 .1 1 4 870 1.71 4 5 NO 1 99 1 2 2 9 2.67 .058 6 2 .36 60 .01 2 | .62 .05 .12 1 119 |
| E 57134 1 8 3 16 .2 1 2 1167 1.06 2 5 MD 1 154 1 2 2 3 3.89 .023 5 2 .21 37 .01 2 | .32 .02 .08 1 850 |
| F 57135 1 25 3 42 .1 1 3 739 1.90 2 5 ND 2 82 1 3 2 13 1.89 .060 7 3 .47 74 .04 2 | .7B ,07 .14 1 185 |

ND 2 88 1

19 61 42 130 7.4 72 29 1065 4.24 41 16 8 39 52 19 16 20 59 .47 .090 40 61 .91 177 .06 37 1.81 .06 .15 14 490 -

E 57136

Page 4

Fage 5

SAMPLES		CU P PN	_						FE 1																	B PPM	_		K			
TE-87-190R	24	39	2	4	.1	1	2	64	1.40	2	5	ND	1	11	1	2	2	3	.05	.002	2	1	.05	5	.01	2	.10	.01	.01	1	20	-
TE-87-1918	i	22	2	69	ä	i	7	808	3.83	2	5	NO	2	99	1	2	2	43	.71	.090	9	5	1.03	36	.11	4	1.65	.04	.04	1	9	-
TE-87-192R	47	15	2	8	.1	4	167	131	15.40	2	5	ND	1	3	1	2	2	1	.01	.001	2	ı	.02	3	.01	2	.01	.01	.01	2	76	-
	3						70	124	9.83	2	5	26	2	2	1	4	31	i	.15	.001	2	1	.01	7	.01	2	.01	.01	.01	1 :	8300	. 889

•

(

(

1

`

1 .20

59 .88

14

39

53 .01

174 .08

2 .49 .03 .12

31 1.87 .06 .13

12 490

ACME ANALYTICAL LABORATORIES LTD.

.2

áá

13

132 7.2

74

18

E 57172

STD C/AU-R

2 627 .85

29 1061 4.13

45 19

GEOCHEMICAL/ASSAY CERTIFICATE

ICP - .SOO GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEC.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY (CP IS 3 PPM.

- SAMPLE TYPE: Core AURR BY FIRE ASSAY FROM 1/2 A.T. Dec 10/87 ASSAYER. DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED: SEC 2 1987 IMPERIAL METALS CORPORATION PROJECT-4544 Page 1 Ħ SR CD SB BI V CA LA CR FE U ΑIJ TH NI CO MN AS SAMPLE PPM PPB DZ/T PPN 1 PPN PPM 1 PPM PPH PPM 1 Z PPM PPN PPM 1 PPM PPM PPM PPN PPM PPĦ PPH 1 170 .15 9 2.60 . 050 2 .43 66 .02 .65 .04 93 E 57137 34 960 1.36 2 .70 .04 1 92 9 2.46 .047 2 .38 73 .02 3 .16 1 5 MB 2 2 36 834 1.61 E 57138 .61 . 16 1 200 2 .33 70 10. 3 .03 84 2 6 2.31 17 3 25 .2 3 791 1.50 5 2 E 57139 1 51700 1.580 .22 .02 .06 18 2 1.37 .009 1 .06 22 .01 2 5 2 19 10 8 30.7 36 342 10.18 56 2 1 E 57140 14 1 149 .67 .03 .14 .36 64 .01 2 83 8 2.39 .046 2 37 764 1.57 5 E 57141 1 5180 .147 . 47 85 .04 2 .77 .03 45 641 2.07 65 13 1.54 .048 E 57142 2.1 2 .50 111 .07 3 .87 .04 .21 1 210 87 2 2 15 1.43 .050 5 2 44 453 1.73 E 57143 1 133 .70 .03 . 14 73 10 2.11 .052 2 .41 70 .03 3 155 36 813 1.60 2 E 57144 2 1 290 .31 59 .01 2 .54 .03 .12 69 7 2.24 .049 1 5 2 2 9 3 27 786 1.36 2 1 E 57145 195 2 .70 .03 t 1 . 39 .08 1031 1.43 77 2 11 2.59 .055 E 57146 1 570 .84 .04 .17 11 2.11 .048 .41 34 755 1.72 112 2 E 57147 17 5 .13 .01 . 05 1 240 2 .05 34 .01 2 22 2 7 .57 .009 203 .49 5 E 57148 .3 1 150 71 .71 .03 .13 67 2 10 1.85 .051 2 .46 .02 3 37 736 1.59 5 E 57149 5 6 . 25 70 . 48 .04 .13 1 280 .01 2 71 2 2 5 2.48 .055 1 5 ND 1 E 57150 1 7 3 16 3 768 1.26 2 3 2 .70 .03 21 .40 98 .02 91 11 2.30 . 053 2 863 1.65 E 57151 . 48 .03 .13 2 76 82 11 2.51 .053 74 2 2 € 57152 35 959 1.65 .60 .03 .11 .38 65 .02 2 71 2 2 9 2.30 . 054 7 1 873 1.50 2 5 2 E 57153 2 2 31 3 .26 78 .51 .03 .12 1 223 73 2 7 2.37 .049 2 .01 3 E 57154 10 14 5 22 857 1 5940 . 168 2 .44 83 .02 2 .68 .03 .14 10 2.28 .037 874 1.88 95 2 2 E 57155 226 5 33 2 7 2 1 1 240 82 .40 .03 89 2 5 3.17 .056 B .18 .01 2 E 57156 12 12 2 1015 .91 4 73 2 .63 .03 .14 2 .40 .02 3 1206 1.63 98 8 3.18 .044 33 E 57157 .02 .82 .03 .13 58 2 .47 72 74 12 1.93 .051 2 2 2 E 57158 29 3 734 1.72 .52 1 310 .01 .03 .12 138 2 2 5 5.37 .052 12 1 .32 88 2 1 1660 .98 3 ND 1 E 57159 .91 .03 .10 1 30 11 1.67 .049 7 2 .51 70 .04 2 87 2 2 4 749 1.52 2 13 44 5 E 57160 1 58 .60 .05 .11 1 2840 .081 .39 .01 108 7 3.29 .054 2 5 1172 2.12 12 3 E 57161 .81 .04 .17 15 1.56 .057 2 .54 80 E 57162 25 46 .1 779 1.68 7 .31 70 .01 2 .51 .04 .12 760 . 049 5 121 7 4.44 3 1395 1.31 1 E 57163 11 11 21 2 .79 1 3 .02 .03 .10 10 1.94 .047 2 .44 56 2 690 5 ND 2 111 1 2 2 35 4 1.40 E 57164 6 5 7 .34 94 .02 2 .66 .04 .17 1 1240 10 1.88 . 043 3 664 1.49 2 5 ND 1 59 1 2 2 3 E 57165 115 20 28 1 190 .55 .04 .12 7 2.09 .054 10 2 .31 68 .01 2 757 1.42 2 65 7 E 57166 24 2 5 5 .73 .45 70 .02 5 125 10 2.20 . 045 E 57167 38 800 1.46 2 11 .47 83 .02 2 .89 .04 .13 ı 97 117 2 2 12 2.08 . 051 8 2 750 1.74 E 57168 1 32 .1 2 .80 .04 .12 1 118 10 2 .44 80 .02 . 052 787 1.47 5 t 129 1 10 2.17 16 36 2 3 E 57169 ı 4 .1 1 330 2 .92 .11 9 .50 77 .02 .04 127 1 2 2 11 1.96 .052 1 5 1 E 57170 1 31 7 42 .1 2 703 1.77 2 1 4010 .112 .048 .34 64 .01 4 .68 .04 9 664 77 7 2.06 12 62 28 E 57171 1 1030 .025

43

51 17

2

38

2 2

16 24 4 2.32 .052

56 .47 .088

SAMPLE	MO PPM	CU P PM	PB PPM	ZN PPH	AG PPM	NI PPH	CB PPM	MN PPM	FE 1	AS PP#	U PPM	AU PPM	TH PPM	SR P PM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P	LA P PM	CR PPM	MG 1	BA PPM	TI I	8 PPM	AL I	NA I	K I	N PPM		AU\$\$ OZ/T
E 57173 E 57174 E 57175 E 57176 STB C/AU-R	22 2 1 1	53 14 76 60	2 2 2 4 37	30 37 40 37 127	1.1 .1 .1 .9	1 1 1 1 67	6 3 3 4 28	731	1.59	3 2 3 3 42	5 5 5 18	4 HD NB 2 7	3 1 1 1 36	40 75 85 71 49	1 1 1 1	2 2 2 2 20	2 2 3 2 22	9 11	2.28 2.23 1.82 3.15 .46	.054 .053 .051 .051 .074	16 9 8 9 39	1 1 2 2 2 59	.50 .46 .50 .48 .88	73 66 70 59 168	.01 .01 .01 .01 .08	3 2 2 2 35	.80 .90 .97 1.04	.02 .04 .04 .04	.14 .11 .10 .10	1	4380 330 79 1160 500	.126
E 57177 E 57178 E 57179 E 57180 E 57181	1 1 1 1	21 54 25 33 19	5 2 2 2 5	39 30 45 41 46	1.1 8. 6. 1.	1 1 1 1	4 2 4 3 3	757 1244 771 721 727	1.66 1.32 1.64 1.61 1.72	2 2 5 2 3	5 5 5 5 5	2 NB ND ND	2 2 2 2 1	62 83 114 123 150	1 1 1 1	2 2 2 2 2	2 2 2 2 2	6 10 14	2.71 3.95 2.50 1.68 1.65	.050 .051 .054 .045	9 13 11 9	1 1 1 1 2	.49 .41 .50 .52 .55	61 62 89 133 112	.01 .01 .02 .04	2 3 2	1.17 .68 1.11 1.22 1.31	.06 .03 .05 .05	.11 .11 .13 .21		1195 1100 610 62 65	.029
E 57182 E 57183 E 57184 E 57185 E 57186	1 1 1 1	10 50 5 29 19	8 3 2 5 9	50 27 15 39 49	.1 .3 .1	1 1 1 1	4 1 2 2 4	764 792 2175 1258 846	1.79 1.12 1.02 1.39 1.80	2 2 7 4 2	5 5 5 5 5	ND ND ND ND	1 2 2 3 1	153 54 89 89 100	1 1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	4	1.49 2.59 8.67 3.67 1.80	.054 .062 .054 .058 .055	8 16 17 16 8	1 2 1 2 2	.58 .40 .26 .51 .59	208 50 52 58 103	.09 .01 .01 .01	2 2 2	1.87 .66 .45 .96 1.15	.09 .05 .03 .04	.38 .08 .10 .10	2 1 1 1	36 183 530 145 55	•
E 57187 E 57188 E 57189 E 57190 E 57191	1 2 1 1	65 154 15 31 10	2 2 2 6 2	40 38 46 43 44	.3 .7 .6 1.2	1 1 2 1	3 4 5 4		1.51 1.67 1.81 1.75 1.65	2 2 2 3 2	5 5 5 5	ND ND ND 2 ND	2 2 1 2 1	90 97 116 192 123	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	12 17 16	2.81 1.91 1.83 1.84 1.67	.051 .050 .055 .051	8 7 7 8 7	2 2 1 2 2	.47 .47 .52 .52 .51	69 106 141 129 90	.02 .03 .07 .06		.86 .99 1.04 1.33	.04 .05 .05 .08	.11 .17 .25 .22	1 1 2 1	340 870 820 1280 110	038
E 57192 E 57193 E 57194 E 57195 E 57196	1 1 2 1 2	11 10 15 8 24	2 6 3 4 2	44 45 39 52 53	.8 .2 .1 .1	1 2 1 1 2	4 5 4 6 5	722 851 702	1.44 1.99 1.81 2.02 2.12	2 2 2 2 2 2	5 5 5 5 5	2 ND ND ND	2 1 2 1 2	78 75 57 58 58	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	20 15 20	1.58 1.22 1.98 1.00 1.81	.060 .054 .059 .054 .061	7 8 10 9	2 2 2 3 2	.50 .57 .53 .64	76 187 133 176 156	.05 .10 .04 .07	2	.95 1.02 .98 1.11 1.26	.04 .05 .03 .04	.13 .37 .24 .33	1 1 2 2	890 320 61 16 108	-
E 57197 E 57198 E 57199 E 57200 E 57201	25 1 1 1	22 23 5 14 25	5 5 4 2 5	28 45 18 41 37	17.7 .1 .1 .2 .4	4 2 1 1 1	15 4 2 4 4	3660 774	14.23 1.71 .99 1.78 1.51	7 3 9 6 2	5 5 5 5 5	28 ND ND ND	2 2 1 2 2	21 57 502 80 76	1 1 1 1 1	2 2 2 2 2	7 2 2 2 2	17 4 1 11	1.32 4.12	.017 .052 .022 .052 .049	6 11 5 8 7	2 1 2 2 2	.28 .56 .30 .47	19 152 33 85 63	.01 .05 .01 .02	2 2 2 2 3	.57 1.03 .35 .77	.03 .03 .02 .04	.11 .29 .05 .17	1 1 1 1 1 1	30600 112 280 220 490	.840
E 57202 E 57203 E 57204 E 57205 E 57206	1 1 1 1 1	14 13 10 29 21	5 3 6 2 2	39 31 43 37 36	.3 16.4 .5 2.9 3.1	2 1 1 2 1	4 4 5 4	669 777 733	1.87 2.22 1.75 2.45 1.60	4 2 2 2 2	5 5 5 5 5	ND 19 ND 6	1 2 2 2 2 2	99 66 83 80 79	1 1 1 1	2 2 2 2 2	2 2 2 2 2	9 11 9	1.83 2.48 2.11	.057 .041 .050 .052 .047	8 6 7 7	2 1 2 1 2	.48 .38 .49 .40 .43	69 64 64 58 64	.03 .01 .03 .01	4 2 2 2 2	.78 .65 .86 .68 .74	.04 .03 .04 .03	.11 .12 .12 .12	1	490 5640	.546 - .167 .094
E 57207 E 57208	59 9	19 17	2 2	42 38	1.3	2	5 4	814 917	1.95 1.70	2 2	5 5	2 ND	2 2	84 87	1	2 2	2 2			. 050 . 05 1	7 6	2 2	.52 .48	76 72	.04	2 2	.87 .73	.05	.13	1 1	1920 1 98	.058

SAMPLE	MQ PPM	CU PPM	PB PPM	ZN PPH	A6 PPM	NI PPM	CO PPM	MN PPM	FE 1	AS PPM	U PPM	AU PPM	TH PPM	SR P PM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P	LA PPM	CR PPM	H6 1	BA PPM	7 I	B PPM	AL I	NA Z	K I	W AUI PPM PPB	AU## DZ/T
E 57209	4	12	13	38	1.6	3	8	485	2.30	2	5		2	68	,	2	3	15	1.75	. 052	8	2	.46	107	.05	2	.77	.05	.20	1 4410	. 123
E 57210	ì	12 29	13	36	.1	i	4	770	1.72	2	5	ND	î	101	i	ž	2	15		.051	7	2	.44	117	.06	3	.82	. 05	. 22	1 430	
£ \$7211	15	72	j	31	7.1	2	9	592		2	5	13	i	125	i	2	2	11	2.26	.047	7	2	.37	94	.05	2	.89	.05	. 19	1 10670	. 334
		23	,	44		2	i	738	1.91	i	5	ND	i	82	i	2	2		1.93		8	3	.51	80	.05	2	.86	.04	.14	1 76	
E 57212	!	13	7	32	.7	ž	6	867	2.05	2	5	2	2	66	i	2	2	10	2.82		9	ī	.42	68	.01	2	.78	.04	. 15	1 1540	
E 57213	1	13	′	32	• 1	4		gar	2.03	•	•	•	•	- 00	•	٠	•	•••	1.01		•	•	• • •			-		•••		• • • • • • • • • • • • • • • • • • • •	
E 57214	1	21		28	.1	i	3	736	1.46	2	5	ND	1	71	1	2	2	8	2.19	.058	9	2	. 37	70	.01	3	.66	.04	. 14	1 118	-
E 57215	i	17	7	32	.i	i	3	701	1.48	2	5	ND	ż	73	i	2	2	_	1.99	.047	ģ	2	.40	66	.01	2	.66	.04	.12	1 250	-
E 57216	i	",	7	16	7.7	ż	17	486	3.06	2	5	13	ī	47	i	2	2		1.38	.019	i	i	. 20	39	.01	2	. 32	.03	.08	1 10380	.319
E 57217		4	,	16	2.9	i	.,	502	1.71	2	5	5	i	45	i	ž	2	_	1.53	.038	,	i	.23	56	.01	2	.44	.04	.11	1 3740	.114
	i	16	Ŕ	49	.1	•	4		1.84	2	5	ND	2	78	i	2	2	14		.054	8	2	.55	56	.03	2	.90	.04	.10	1 73	-
E 57218	•	10		47	••	•	•	""	4.04	•	•	110	•		•	•	•	• •	••••	•••	-	-				-					٠
E 57219	1	115	10	44	.1	1	3	986	1.68	2	5	NB	1	92	1	2	2	9	2.96	. 054	9	1	.54	62	.01	2	.88	.04	.11	1 77	-
E 57220	i	32	6	48	.i	i	ě	1144		2	5	ND	i	122	í	2	2			.051	7	2	.85	61	.02	2	1.19	.04	.13	1 370	-
E 57221	i	8	5	41	.1	i	ì	716	1.69	2	5	ND	i	73	i	2	2		1.85	.052	8	1	.46	83	.05	2	.78	.04	.14	1 80	-
E 57222	3	11	1	20	30.3	5	47	1443		5	5	37	i	176	i	2	9		4.33	.027	5	i	.38	40	.01	2	.43	.03	.08	1 36100	1.040
	1	32	;	23	.9	i	74		1.70	2	5	2	i	56	i	2	2		2.24	.051	7	i	.31	65	.01	3	.60	.04	.13	1 1580	. 048
£ 57223	1	32	•	23	. 7	٠	•	842	1.70	٠	•	•	•	30	•	•	•	•	••••		•	•	•••	•••		_					
E 57224	1	42	5	23	6.0	1	10	662	4.08	3	5	7	1	65	1	2	2	á	2.09	.041	6	2	.34	51	.01	2	.57	.04	.10	1 6630	.208
E 57225	i	29	3	18	.1	i	3	539	1.26	2	5	ND	2	51	1	2	2	5	1.70	.045	9	1	.30	60	.01	2	.57	.04	.12	1 260	-
E 57226	i	5	2	12	.2	i	2	960	1.09	2	5	ND	ī	99	1	2	2	4	2.79	.020	5	2	.27	29	.01	2	.35	.03	. 05	1 450	-
E 57227	i	32	9	45	.1	i	3		1.84	2	5	ND	2	92	i	2	2		2.36	. 053	9	ī	.52	66	.02	2	.92	.04	.12	1 200	-
E 57228	1	10	6	46	.1	2	i	575	1.49	2	5	ND	ž	96	i	2	2		1.40	.055	9	2	.49	70	.06	2	.89	.04	.12	1 50	-
E 3/220	1	10	•	70	• •	•	•	3/3	1.47	•	•	No.	•		•	•	•	••	••••		-	-	• • •								
£ 57229	10	10	2	37	.1	1	3	954	1.62	2	5	ND	i	102	1	2	2	10	2.78	.037	4	1	.46	57	.02	2	.67	.03	.11	1 250	-
E 57230	9	37	ī	21	6.3	2	7	698	2.18	2	5	9	1	63	1	2	2	6	2.18	.049	1	1	. 26	68	. 01	2	.51	.04	.13	1 7730	. 239
E 57231	i	12	5	41	.7	ī	4	700	1.83	2	5	ND	1	71	1	2	2	14	1.71	.050	7	1	. 48	70	.04	2	.78	.04	.12	1 1090	. 033
E 57232	ė	113	ī	39	1.0	i	i i	694	1.92	2	5	2	2	79	1	2	2	17	1.52	.048	8	2	. 45	136	.08	4	.78	. 05	. 25	1 970	-
E 57233	i	14	9	32	23.7	ž	8		3.64	4	5	27	2	88	ī	2	2		2.31	.046	7	1	. 38	81	.02	2	.73	.05	.17	1 26500	.730
E 3/233	•	47	,	32	23.7	•	٠	001	3.01	•	•	••	•	•	•	•	_														
E 57234	1	12	6	50	.1	1	8	727	2.38	2	5	ND	1	66	1	2	2	17	1.62	.072	7	2	.63	176	.13	2	.99	.06	.47	1 340	-
E 57235	219	8	6	23	5.6	1	3	624	1.73	2	5	6	i	75	1	2	2	9	2.16	.036	6	1	.29	73	.03	2	.59	.04	.13	1 5440	
£ \$7236	1	1	4	38	1.4	1	4	637	1.92	2	5	2	2	158	1	2	2	13	1.97	.048	7	1	.44	116	.05	2	.88	. 05	. 20	1 1310	.039
E 57237	69	2	3	18	.5	i	2	1051	.94	2	5	ND	3	110	1	2	2	6	3.46	.064	14	i	. 26	64	.01	2	.48	.05	.14	1 400	-
E 57238	17	i	5	31	1.1	2	_	1240	2.10	2	5	2	2	116	1	2	2		3.70	.040	12	1	.40	45	.01	3	.60	.04	.14	1 2240	.067
E 3/430	17	•	•	31		•	•	1210		•	٠	•	•		•	-	_	-													
E 57239	1	21	2	36	.3	1	3	939	1.57	2	5	ND	2	102	1	2	2		2.67	.059	10	1	.45	92	.01	2	.68	.04	.13	1 300	-
E 57240	49	5	2	22	3.9	1	10	1167	4.28	3	5	9	2	125	1	2	2	7	3.44	.054	9	1	. 32	63	.01	2	.51	.04	.13	1 7970	
E 57241	58	2	6	18	1.6	1	4	1121	2.02	2	5	3	2	112	1	2	2	6	3.59	. 056	8	1	.26	67	.03	2	.52	.04	. 12	3 2510	
£ 57242	72	34	7	13	22.9	3	82		7.66	2	5	50	1	69	1	2	12	4	2.12	.021	3	1	.13	47	.02	2	.30	.02	.09	1 51800	
E 57243	6	2	3	38	.8	1			1.70	4	5	2	2	140	1	2	2	10	3.78	.045	6	1	.46	92	.04	2	.73	.03	.21	1 1180	.036
3	-	-	-																							_					
E 57244	3	21	3	32	.3	1	4	622	1.63	2	5	ND	2	63	1	2	2		2.31	.045	8	1	.38	75	.02	3	.96	.03	. 14	1 420	-
STD C/AU-R	19	59	41	132	7.7	68	29	1027	4.16	42	17	8	38	52	18	17	21	59	.47	.081	40	40	.09	178	. 09	32	1.71	.04	.14	13 515	-

Page 4

SAMPLED	МО	CB	PR	7 M	45	NT	CO	MN	FE	AS	u	AU	TH	SR	CD	SB	B1	V	EA	P	LA	CR	MG	BA	Ħ	B	AL	NA	K	¥	AU\$	AU##
JAM CEE	PPN	PPH	PPM	PPH	PPM	PPM	PPM	PPN	1	PPM	PPM	PPM	FPH	PPM	PPM	PPM	PPM	PPM	1	1	PPM	PPĦ	1	PPM	1	PPM	1	1	1	PPĦ	PPB	02/1
E 57245	29	79		33	3.2	1	4	664	1.75	2	5	5	2	93	1	2	2	14	2.57	. 052	8	1	.42	102	.05	3	.85	.05	.19	i	3910	.112
E 57246	10	10	4	36	2.4	1	14	743	4.03	3	5	2	1	129	1	2	2	13	2.04	.044	ė	2	. 41	105	.08	6	.70	.05	. 26	1	2070	.059
£ 57247	13	16	2	38	.2	1	4	634	1.57	2	5	ND	2	71	1	2	2	12	1.55	. 051	6	1	.46	81	.06	5	.71	.04	. 15	1	350	-
E 57248	3	39	3	32	. 6	5	3	865	1.51	5	5	ND	3	101	- 1	2	2	9	3.22	. 050	7	9	. 42	57	.01	4	.71	.04	.12	1	220	-

ſ

,

,

(

(

ι

(

ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL/ASSAY CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEC.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TE B M AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

	- SAMPLE TYPE: P1-CORE P2-ROCK AUST BY FIRE ASSAY FROM 1/2 A.T. DATE RECEIVED: DEC 10 1987 DATE REPORT MAILED: Dec 13/87 ASSAYER															Λ	1															
DATE	RECE	IVED	ı (DEC 10	1987	t	DATE	RE	PORT	MAI	LED	: 7	Dec	13	18	7 6	ASSA	YER	۸		Olfe	2per	T NA	OYE,	CE	RTII	FIED	в. С	A	SSAY	'ER	
								IMPE	ERIA	L ME	TALS	FF	OJE	CT-4	544	F	ile	# 8	87-6	041	·	Ρa	ge	1								
SAMPLE	HO PPN	CU PPM	PB PPM	ZN PPH	A6 PPM	NI PPM	CQ PPM	HN PPH	FE 1	AS PPM	V PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	EA I	P	LA PPM	CR PPM	M6 1	BA PPM	T1 Z	B PPM	AL I	NA I	K Z	N PPM	AU I PPB	AU## 0Z/T
E 57249	1	18	6	35	.5	2	5	886	2.13	2	8	ND	4	93	1	2	2	10			10	2	.51	72	.01	2	.81	.04	.14	2	410	-
E 57250	1	14	5	47	.3	2	5	754	1.80	2	5	ND	3	99	1	2	2	16	1.28	. 053	7	3	.55	126	.09	2	.84	.04	. 25	1	505	•
E 57251	1	37	2	63	.1	5	8	1398	2.65	2	5	ND	3	110	1	2	4	21	3.25	. 048	7	10	1.14	65	.01	2	1.48	.03	.13	ı	220	-
E 57252	1	9	2	0	12.6	3	37	253	10.41	2	5	19	2	21	1	2	b	2	.42	.003	2	3	.07	22	.01	2	.11	.01	. 05	ı		. 485
£ 57253	1	11	5	43	7.1	2	5	665	2.34	2	5	8	4	106	1	2	3	20	1.01	.048	10	5	.48	168	.12	2	.94	.07	. 34	1	7580	. 203
E 57254	1	2	2	15	.1	2	2	1154	1.00	2	11	ND	4	143	1	2	3	5	3.34	.060	9	2	.26	42	.01	3		.04	.10	1	212	-
E 57255	1	14	2	55	.1	t	6	857	1.90	2	5	ND	3	115	1	2	2	14	1.05	. 065	8	3	.62	75	.08	2	1.03	.04	.12	ı	113	-
E 57256	5	10	2	22	.5	2	5	1090	1.79	2	5	2	4	108	1	2	2	7	3.73	.063	10	3	. 39	50	.04	2	.63	.03	.10	1		.032
E 57257	ī	9	6	43	.1	ī	5	745	1.65	2	5	2	3	103	1	2	2	14	1.50	.060	9	3	.47	92	.08	2	.83	.04	.16	1	295	-
E 57258	i	14	5	48	.1	2	5	679	1.67	2	5	NO	4	94	1	2	2	16	1.22	.061	8	3	.51	114	.10	2	.88	.04	. 19	i	19	-
£ 37230	•		•	74	•••	•	•	•		•	•	•••	•	• •	•	-	•				_	_										
E 57259	8	7	2	40	.2	1	4	680	1.60	2	5	ND	2	107	1	2	3		1.50		7	3	.45	79	.06	2	.79	.04	.12	1	440	-
E 57260	1	23	2	42	.1	1	3	583	1.35	2	5	ND	2	98	1	2	2	10	1.29	.050	4	2	. 45	48	.06	2	.76	.03	.11	1	48	-
£ 57261	1	8	2	41	.1	1	4	768	1.70	2	14	ND	5	80	1	2	2	11	1.77	. 053	7	2	.51	óó	.03	2	.85	.04	.12	2	30	-
E 57262	1	17	5	46	.1	2	5	884	1.73	2	5	ND	1	89	1	2	2	11	2.17	.057	6	2	. 49	58	.03	2	.80	.03	.10	1	83	-
E 57263	1	6	2	48	.1	3	4	550	1.34	2	5	ND	3	79	1	2	3	12	. 90	. 055	7	2	.50	95	.09	6	.83	.04	. 15	2	6	-
E 57264	1	6	2	25	.4	2	2	756	1.55	2	9	ND	4	88	1	2	2	9	1.98	.050	8	3	.43	54	.01	2	.67	.05	.10	1	213	-
E 57265	1	36	2	38	2.2	1	4		1.83	2	5	3	2	70	1	2	2	10	1.82	. 053	7	2	.46	57	.02	2	.76	.03	.09	1		.059
€ \$7266	i	16	Ă	25	14.3	5	26	950	9.09	2	6	28	4	79	1	2	8	8	2.22	.036	6	3	. 29	41	.01	2	.52	.04	.12	1	23800	.666.
E 57267	i	4	2	46	.1	2	4		1.38	2	5	ND	3	89	1	2	2	13	1.13	. 054	7	2	.47	102	.09	2	.83	.03	. 18	1	11	-
E 57248	i	19	15	35	59.7	6	35		11.23	2	6	102	2	58	1	2	39	13	1.19	.038	6	2	. 35	19	.05	2	. 63	.05	.19	1	91800 2	. 790
£ 3/200	•	••		70	•/•	•	**	•••		•	•		-		_	_	••													•	275	
E 57269	1	6	3	37	.1	2	3	593	1.43	2	5	ND	4	79	1	2	2	13			7	2	.40	87	.07	2	.69	.03	.13	2	735	-
E 57270	t	123	4	53	1.5	4	6	984	2.35	2	5	3	6	93	1	2	4				7	4	. 62	65	.04	2	.96	.04	.12	1	2670	
E 57271	1	12	12	15	69.9	1	2	406	1.09	2	5	113	1	39	1	2	15	4	1.06	.027	4	2	. 19	44	.01	2	.37	.03	.09	1 1	08000 2	. 320
E 57272	i	23	5	36	.1	1	3	884	1.64	2	5	ND	1	89	i	2	2	11	2.26	. 054	1	3	. 42	75	.03	7	.72	.04	. 13	1	625	-
E 57273	1	32	2	. 32	.3	2	3		1.50	2	5	ND	3	93	1	2	2	8	2.53	. 057	7	3	.47	52	.01	2	.67	.03	.09	1	585	-
E 57274	1	8	2	31	.4	3	3	1072	1.52	2	5	ND	3	88	1	2	2	8	2.92	. 058	8	3	. 44	52	.02	6	.68	.04	.09	1	650	-
E 57275	i	594	14		35.7	7	140		19.76	2	5	30	2	28	1	4	361	3	1.21	.002	2	2	.06	12	.01	2	. 12	.01	.03	1	89440 2	.860
STD C/AU-R	19	58	39		7.1	65	-	1146		36	19	8	30	52	19	18	23	58	.44	.081	40	61	. 90	178	.09	31	1.96	.06	.13	11	505	•

	}		,	2	3)		IMPÉ	RIA	L ME	TAL	S Fr	OJE	 ∐1-4] 544	١٦	.Le	# 8	160	41	1		1))		1		, Jge	_ 1		1
SAMPLE		CU PPM	PB PPM	ZN PPM	A6 PPH	NI PPM	CO PPM	MN PPM		AS PPM	U PPM	AU P PK	TH PPM	SR PPM	CD PPM	SB PFM	BI PPM	V PPM	CA I	P	LA PPM	CR PPM	M6 I	BA PPM	TI I	B PPM	AL I	na Z	K	W PPM		AU## OZ/T			
ALDER 818 ALDER 82 ALDER 82 4550E 19700M-A 4550E 19700M-B	42 23 1	62179 \\ 48 \\ 320 \\ 98 \\ 827	2 8 4 5 2	63 17 2 73 44	159.3 ⁷ 46.1 9.5 .8	29 16 3 12 4	52 64 6 15 20	44 921	17.79 17.73 1.81 3.25 4.36	2 2 2 3 3	5 5 5 5 5	99 152 14 ND ND	2 4 1 2	74 3 1 83 187	3 1 1 1	2 2 2 2 2	2 56 4 2 2	5 1 56	1.15		2 2 2 4 4	1 5 2 8 3	.17 .20 .01 1.51 .77	1 15 4 44 93	.01 .01 .01 .19		.13 .22 .03 1.72 1.51	.01 .01 .01 .09		1	96800 155500 14900 1250 420	4.880 .369 .034			
4550E 19700M-C STD C/AU-R	1 18	29 5 7	2 38	133	.6 7.4	4 67	1 28	83 1117	.72 4.08	5 41	5 21	0N 8	1 38	11 51	1 18	2 17	2 20	3 56	.07 .45	.002 .080	2 3 9	3 61	.04 .91	7 178	.02 .09	2 31	.10 1.87	.03 .06	.01 .14	2 12	390 5 0 0	-		(ı

ASSAY REQUIRED FOR CORRECT RESULT -

STB C/AU-R

GEOCHEMICAL/ASSAY CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 MCL-HNO3-HZO AT 95 DEC.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH MATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Core AULE BY FIRE ASSAY FROM 1/2 A.T.

Dec 21/87 ASSAYER. A. A. JULY DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED: NEC 11 1987

IMPERIAL METALS PROJECT-4544 File # 87-6142 Fage 1 CR MS BA TI 2 AL AUR AURE FF AS AU TH SR CD SB BI V CA P LA rn U SAMPLE I PPH I PPM PPN PPN PPN PPN PPN PPM 1 Z PPH PPN I PPM PPM PPM PPM PPH PPM 7 1.97 .043 .24 64 .01 2 .49 1 5890 .159 422 1.99 76 E 57276 1 280 .13 2 1.03 471 2.87 91 21 .89 7 E 57277 38 18 1.14 .054 .54 175 .10 2 .87 .06 .31 1 67 2 2 13 731 1.97 E 57279 1 310 75 2 2 8 2.27 .061 .46 84 .01 2 .05 .04 2 783 1.65 E 57279 å . 1 53 .71 .03 7 2.34 .055 .01 3 774 1.42 51 2 2 E 57280 3 .04 2 .73 .03 190 11 3.34 .058 62 E 57281 38 .2 3 915 1.57 1 111 2 1.21 59 .54 144 .08 ND 374 2 2 16 1.31 .057 15 47 2 645 1.76 € 57282 .04 1 23 .53 76 .05 2 .78 .14 2 10 2.40 .051 1 E 57283 41 .1 3 1144 1.40 5 MD 106 225 70 1.86 .057 1 .42 60 .03 2 .70 .03 1 2 2 37 711 1.59 E 57284 15 .1 2 .83 565 66 .02 2 1 R 1.84 .059 E 57285 57 41 2 4 728 1.65 2 5 ND 71 1 1030 -024 .40 23 .01 2 .51 E 57284 24 . 5 5 1.02 .015 1 410 7 1.95 .050 2 53 .01 1 .67 .03 .09 67 710 1.46 5 E 57287 50 .3 270 2 .83 .03 .07 1 .54 45 .02 86 2 2 11 2.48 .058 1 E 57288 . 2 957 1.80 5 1 .04 1 96 8 1.51 .058 1 .47 54 .05 2 .74 . 08 2 591 1.27 2 5 XD 1 74 2 42 .1 E 57289 2 1 21300 .640 28 .01 2 .34 .02 36 3 1.17 .008 2 .18 E 57290 17 12.4 3 19 376 6.75 2 .83 1 1860 .053 53 .04 .03 .08 12 1.92 .057 .56 E 57291 4 772 1.88 71 1.9 1 430 .88 12 1.90 .059 .52 53 .03 2 .04 .07 720 1.70 5 E 57292 26 340 2 .87 .05 .12 1 .51 76 .02 89 12 2.12 .061 E 57293 75 46 .3 2 918 1.85 2 5 2 1 315 87 12 2.03 .060 1 .51 70 .03 2 .83 .04 .10 ND 29 44 .3 795 1.79 5 5 1 2 E 57294 1 205 13 .28 73 .01 2 .54 .03 106 9 3.90 .061 1 E 57295 2 1 1152 1.35 2 2 2 .60 17 . 29 . 01 E 57296 12 2 1080 1.43 7 3.48 .071 1 26 12 2.24 .064 .57 58 .01 2 1.00 .04 . 10 5 103 2 1.99 £ 57297 230 39 .01 2 .75 .03 -07 6 2.30 .051 .37 £ 57298 87 26 .3 2 851 1.26 2 5 1 80 1 1 840 75 9 2.46 .062 12 .41 63 .01 2 .69 NĐ 1 32 2 2 2 E 57299 21 5 .5 3 963 2.07 1 23320 .670 2 .44 .02 52 4 2.53 .047 .23 64 .01 .10 17 10.8 29 820 3.06 23 E 57300 1 1340 .037 .02 10 . 38 54 2 .60 .09 22 27 954 1.46 5 3.11 .059 E 57301 1.1 .24 28 .01 2 .46 .07 .05 1 3510 .101 50 5 3.36 .029 1 13 20 3.1 782 1.90 3 E 57302 1 2455 .069 50 .74 .04 .07 1 .49 .01 5 147 7 3.18 .061 E 57303 1 128 38 2.1 897 1.61 51 2 .42 .02 .09 1 18420 .526 4 5.10 .035 1 . 20 .01 17 114 2 339 16 14.4 2 5 1268 1.96 1 E 57304 30 5 1.77 .09 1 30 125 .04 . 24 101 13 1.40 .056 .46 543 1.45 E 57305 1 1790 .048 8 2.89 .047 .45 76 2 .97 873 1.58 182 E 57306 35 39 1.3 87 2 .63 .03 . 15 1 440 . 39 .03 91 11 2.44 .050 MO £ 57307 1 225 .05 3 .73 .03 .17 13 1.71 .070 .47 101 76 41 . 4 2 5 797 1.68 5 176 E 57308 .02 1 17110 .416 2 .43 .07 6 4.92 .033 . 32 34 .01 15 201 2 1 25 25 13.9 2 1566 2.07 5 1 3 £ 57309 2 1.29 .04 1 142 99 16 7.27 .050 2 . 45 125 .06 NB 19 727 1.92 E 57310 2 .84 .04 .18 1 310 2 15 1.72 .054 2 .49 117 .06 118 3 4 695 1.73 3 5 ND 1 1 E 57311 15 59 .88 175 .08 22 55 .44 .084 31 1.89 .06 .14 11 500 28 27 1058 4.20 39 18 7 36 50 17 18 37 132 7.2 67

SAMPLE	MO PPM	CU PPM	P9 PPM	ZN PPH	A6 PPM	NI PPH	CO PPM	HN PPH	FE 1	AS PPM	U PPM	AU PPM	TH PPM	SR PPN	CD PFM	SB PPM	BI PPM	V PPM	CA 1	P	LA PPM	CR PPM	M6 1	BA PPM	11 1	B PPM	AL I	NA I	K 1		AUI PPB	
E 57312	219	12	6	51	3.2	1	4	2863	7. 79	3	5	3	1	198	1	2	3	9	7.71	.037	5	1	.85	44	.01	2	.88	.02	.09	1 3	400	. 098
E 57313	32	13	4	23	.1	i	i		.94	2	5	нD	i	142	i	2	Ā		4.14	.061	•	i	. 30	δl	.01	2	.53	.03	.11		355	-
E 57314	743	32	10	24	63.4	ż	14	932		2	5	50	i	81	1	2	17			.047	5	ı	.20	51	.01	2	.46	.03	.10	1 49	800 1	. 440
£ 57315	4	66	4	27	. 8	2	2		1.20	2	6	ND	1	120	1	2	2	6	3.35	.033	5	2	. 34	31	10.	2	. 50	.02	.05	1 1	230	.032
E 57316	20	43	8	33	6.1	1	12	696	2.46	3	5	12	1	64	t	3	2	7	1.96	.053	7	i	.38	48	.01	2	.54	.02	.09	1 11	200	. 324
€ 57317	i	65	5	38	.1	1	4	835	1.52	2	5	NO	1	68	1	2	2	8	2.13	. 055	á	1	.44	53	.01	2	. 63	.02	.08	1	205	-
E 57318	24	77	į	32	.,	i	i	854	1.79	2	5	ND	1	61	1	2	2		2.24		6	1	. 42	47	.01	2	.55	.02	.07	1 1	290	.037
E 57319	2	31	2	39	. 6	i	5	693	1.57	2	5	MD	1	59	ľ	2	2	8	1.73	.056	5	ı	. 43	92	.03	2	. 60	.02	.09	1 1		.031
E 57320	3	34	7	32	8.9	2	19	619	4.06	7	6	16	1	51	1	2	á	7	1.51	.047	5	2	.31	58	.02	2	.44	.02	.12		400	
E 57321	11	10	2	39	1.4	1	9	850	2.05	2	5	3	į	76	1	2	2	10	1.93	.048	4	2	.44	102	.05	2	.56	.04	. 18	1 2	610	. 080
E 57322	48	58	2	23	5.1	2	3	526	1.33	2	5	9	1	51	1	2	2	8	1.47	.029	7	3	. 28	67	.03	2	.41	.03	.13	1 8	750	. 235
E 57323	24	10	2	38	2.4	2	4	576	1.63	2	5	2	1	56	1	2	2	12	1.11	.048	5	2	. 43	116	.07	2	.60	.03	. 21	1 2	670	.072
E 57324	10	11	4	37	.2	2	4	883	1.53	2	5	NB	1	95	1	2	2	10	2.25	.049	5	1	.42	65	.05	2	.63	.04	.11	1	580	•
E 57325	1	7	2	39	1.5	2	4	892	1.65	2	5	2	1	85	1	2	2	12	2.13	.050	5	3	. 46	109	.06	2	.62	.03	.19	1 1		.054
E 57326	1	1	2	21	. 6	2	3	678	1.67	2	5	ND	1	74	1	2	2	6	2.09	.061	1	1	. 26	92	.01	2	.46	.04	.10	1 1	410	.039
E 57327	1	13	4	36	.1	1	3	721	1.65	2	5	NB	2	79	1	2	2	11	1.86	.063	7	1	.44	77	.03	2	.63	.04	.14	1	103	-
€ 57328	i	1	i	21	.1	2	2	929	1.31	2	5	ND	ī	79	1	2	2		2.97	.059	7	1	.31	56	.01	2	.46	.04	.09	1	310	-
E 57329	;	5	i	25	i.i	2	2	611	1.42	2	5	MĎ	i	56	1	2	2	9	1.67	.059	7	2	.32	62	.01	2	.51	.03	.11	1	174	-
E 57330	5	6	Ĭ	30	.1	3	4	841	1.70	2	5	RD	1	96	1	2	2	9	2.45	.064	8	1	.39	66	.01	4	.59	.04	.10	1	335	-
E 57331	12	12	5	39	.4	2	2	749	1.86	2	5	KD	i	74	ı	2	2	11	2.02	.065	1	1	.51	67	.01	2	.72	.04	.11	1	665	-
E 57332	3	11	3	43	.1	3	4	97.4	1.71	2	5	MD	1	73	1	2	2	12	1.40	.057	6	2	.52	70	.04	2	.75	.04	.10	1	240	-
£ 57333	14	73	2	38	1.1	2	i	701	1.88	ž	5	ND	i	90	i	2	2	10	1.95	.058	1	1	.49	66	.01	2	.74	.04	.11	1 1	410 .	.035
E 57334	ij	31	ž	34	.2	2	3	827	1.81	2	5	ND	1	117	1	2	2	8	2.53	.058	8	1	.51	50	.01	2	.63	.04	.08	1	605	-
£ 57335	i	5	3	38	.1	3	4	615	1.58	2	5	ND	1	99	1	2	2		1.29	.054	6	1	.43	118	.06	2	.67	.04	.20	1	52	-
E 57336	9	17	2	40	.9	2	4	742	1.86	2	5	ND	1	72	1	2	2	12	1.85	.055	5	2	. 48	63	.03	2	.66	.04	.10	1 1	340 .	.034
E 57337	31	28	2	41	1.5	ı	7	704	1.97	4	5	2	1	74	1	2	2	11	1.72	.058	6	1	.47	64	.03	2	.69	.04	.11	1 !	860 .	. 052
E 57338	39	23	ž	40	.,	2	6	641	1.67	2	5	ND	1	65	i	2	2		1.46	.052	5	2	.46	56	.03	2	.69	.04	.08	1 1	510 .	. 039
E 57339		11	2	40	.2	Ž	3	712	1.75	2	5	MD	1	77	1	2	2		1.84	. 053	6	3	. 46	70	.03	2	.74	.05	.12	1	380	-
E 57340	10	16	2	27	2.2	Ĭ	2		1.57	3	5	2	1	68	1	5	2	9	1.85	. 058	6	i	. 36	70	.02	2	.54	.04	.13			.075
£ 57341	1	12	4	39	.9	2	4	673	1.70	2	5	2	1	95	1	2	2	12	1.67	.054	á	2	. 45	84	.04	2	.72	.05	.12	1 1	320 .	.039
E 57342	6	7	8	41	3.1	2	7	808	2.38	2	5	3	1	100	1	2	2	14	1.76	.050	5	2	.51	119	.07	2	.72	.04	.22		670 .	
E 57343	5	5	6	42	1.0	2	9		2.38	2	5	3	2	94	1	2	2	17	. 89	.055	6	2	. 48	169	.10	2	.81	.06	. 36	1 2		. 085
E 57344	1	20	2	41	.1	3	4	694	1.79	2	5	ND	1	91	1	2	2	14	1.55	.053	6	2	.50	98	.05	2	.73	.04	.15		880	-
E 57345	i	2	2	38	.1	2	4		1.70	2	5	MD	1	93	1	2	2	14	1.45	. 055	6	2	. 48	89	.05	2	. 68	.04	.14	ı	87	-
E 57346	ī	6	2	40	.1	2	4	930	1.58	2	5	ND	i	111	1	2	2	11	2.24	. 058	7	1	.47	97	.06	2	.65	.03	.18	1	111	•
E 57347	12	5	3	30	.1	2	3	731	1.37	2	5	ND	1	81	1	2	2	9	2.23	.054	6	2	. 39	52	.03	2	.62	.03	.09	t	98	-
STD C/AU-R	18	59	34		7.1	69	28	1057		41	16	8	37	50	18	17	19	55	.45	.085	38	59	.89	175	.08	31	1.61	.04	.14	12	510	-

SAMPLE	NQ PPM	CU PPM	PB PPM	ZN PPH	A6 FPN	NI PPM	CO PPM	MN PPM	FE 1	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	91 N99	V PPM	CA I	P	LA PPM	CR PPM	M6 I	BA PPM	11 1	B PPM	AL I	NA I	K 1		1 AUR 8
£ 57348	1	35	3	40	.1	20	4	780	1.78	2	5	ND	1	97	1	2	2	16	2.04	.055	7	13	.50	97	.04	2	.97	.06	.16	1 31	
E 57349	i	27	ī	45	. 2	3	18	694	2.18	2	5	MO	i	97	1	2	2		1.27	.059	Á	5	. 59	164	.10	2	.96	.05	. 30	1 1330	.039
E 57350		3075	9	18	8.6	4	228	671	4.80	5	5	19	1	52	1	2	2		1.93	.019	2	1	. 16	66	.01	2	.35	.03	.12	2 19550	.590
E 57351	27	96	i	41	.5	1	6	849	1.95	4	5	ND	1	72	i	2	2		2.43	.069	1	i	. 49	81	.05	3	.83	.04	.12	1 815	5 -
£ 57352	1	42	10	34	.1	2	3	851	1.66	2	5	ND	1	78	1	2	2		2.31	. 057	6	1	. 45	80	.03	2	.77	.04	.14	1 420	
,	•		••	•••	••	•	•			-	•		•		•	•	•	•••	•		•	•				_	•		•••		
€ 57353	1	28	2	41	.1	1	4	917	1.74	2	5	ND	1	80	1	2	2	12	2.33	.059	á	2	.51	62	.03	2	.84	.04	.09	1 116	
E 57354	i	47	ž	27	.i	i	ž	935	1.40	2	5	ND	i	80	i	3	3		2.59	.064		ī	. 36	95	.03	ì	.64	.05	.15	1 250	
£ 57355	i	Ïá	i	46	i.i	ż	11	581	2.22	ž	Š	MD	i	70	i	2	ž	21	.79	.056	ī	ž	.55	190	.12	2	.94	.06	.37	1 1490	
E 57356	i	33	5	31	.1	2	3	875	1.41	2	5	NO	1	76	i	2	2		2.78	. 054		1	. 37	65	.03	2	.66	.04	.11	1 153	-
£ 57357	i	79	Ī	45	i.i	ž	5	844	1.94	ž	5	ND	i	105	i	1	2		2.82	.062	7	1	.52	82	.06	2	1.11	.05	.14	1 320	
. 4/34/	•	• • •	•	15	••	•	•	• • •	••••	•	•		•		•	•	-	••			•	•	•••		•••	-			•••		
E 57358	1	269	6	18	1.6	2	16	798	1.84	2	5	4	- 1	82	1	2	3	8	2.30	.067	7	1	. 28	114	.01	3	-69	.03	.20	1 3960	.103
E 57359	3	19	i	- 1	19.3	2	11	327	3.74	5	5	25	i	37	i	2	5	3	.95	.020	2	1	.08	57	.01	2	.24	.02	. 09	1 29105	
E 57360	i	31	Ś	29	2.9	i	3		1.96	- 1	5	3	i	112	i	,	2	-	3.75	.070	ī	i	.39	99	.01	2	.73	.05	. 15	1 3410	
E 57361	•	38		47	.3	2	i	792	1.84	Š	5	NĐ	i	92	i	2	2		1.85	.057	ě		.53	104	.08	ž	.84	.04	.15	1 590	
	. !		•				-			•	5		:	99		2	2		1.82		i	ż	.54	109	.09	2	.91	.06	.20	1 157	
E 57362	1	95	4	46	. 1	2	5	735	1.72	•	3	MD	ı	77		- 4	4	13	1.02	.066	,	4		101	.01	4	. 71	.00		1 131	
E 57363	1	33	á	52	.4	3		887	1.95	6	5	ND		75	1	4	2	12	2.03	.061	7	1	.63	76	.06	2	.99	.05	.12	1 625	i -
E 57364	i	14	10	36	.1	2	ž		1.67	3	5	ND	i	131	i	2	2		4.26	.058	6	i	.49	71	.03	4	.74	.05	.12	1 225	
	-	12	5	37	.1	2	1	807	1.77	2		ND	i	74	•	2	2		2.09	.064	á	÷	.47	73	.05	ż	.75	.04	.12	2 88	
E 57365	!					_	-			-	5		-			-	2			.058	6	1	.42	56	.02	â	.68	.03	.09	1 7310	
E 57366	1	7	2	35	3.4	1	8		2.49	2	-	7	1	89	•	2	-		1.96		-	1	.39	45	.01	2	.56	.04	.08	1 715	
E 57367	5	1	5	23	.4	1	2	723	1.34	2	5	מא	,	75	1	2	2	7	2.22	.058	8		. 17	13	.01	- 4		.01	.00	. ///	
E 57368	7	14	7	23	1.3	1	9	828	2.04	S	6	3	t	112	1	2	2	7	2.79	.066	7	1	.34	54	.01	2	.60	.03	.09	1 2680	.078
E 57369	46	12	11	30	2.6	ž	ī		2.18	3	5	i	i	73	i	2	ž		2.16	.061		i	.40	68	.02	2	.71	.03	.11	1 3110	.097
E 57370	29	10	7	33	2.3	i	11		2.50	i	5	i	·	76	i	2	ž		2.18	.059	ī	i	.39	69	.02	2	.76	.04	.13	1 4145	
E 57371			,	41		i	5		1.86	Š	5	ND	ž	64	i	Š	2		1.67	.065	i	i	.51	57	.03	ž	.82	.03	.10	1 605	
	2	19			.5	2	i			2	5	ND	i	83	1	2	2		1.73	.059	'n	i	.52	75	.04	2	.84	.04	.10	1 66	
E 57372	1	17	•	46	.1	3	•	730	1.72	4	3	NU		63	1	4	4	17	1./2	.437	•		. 34	/3	.01	•	.01	.01	•••		
E 57373	1	17	å	45	.1	2	4	618	1.66	3	5	ND	1	101	1	2	2	15	1.29	.060	7	1	.51	94	.06	2	.86	.04	.15	1 124	-
E 57374	ż	23	12	39	.2	ī	5		2.11	4	5	ND	1	120	i	2	2		2.35	.061	4	2	.51	59	.02	5	.80	.04	.09	1 440	-
€ 57375	ī	11	4	44	.1	ī	Ĭ		1.48	2	5	MD	i	94	1	2	2		1.52	.054	Ä	ì	.53	75	.06	i	.83	.04	.13	1 50	-
E 57376	i	14	14	35	4.8	ż	37		5.38	7	5	12	i	53	i	2	2		1.33	.047	5	2	.36	70	.03	3	.61	.04	.12	1 11490	.316
£ 57377	i	4	11	39	2.7	i	25		4.50	i	5	7	2	61	i	3	2		1.52	.055	Ĭ	2	.44	66	.02	5	.73	.05	.11	1 6480	.191
6 3/3//	•	٠	**	•,	4.7	•		900	1.30	•	•	•	•	٠.	•	•	•	• •			•	•	•••	•••		_		•••		•	
E 57378	i	14	5	24	12.2	2	56	510	7.03	8	5	25	1	60	1	2	3	8	1.19	.038	5	1	. 25	53	.01	2	.49	.04	.10	1 27505	.776
E 57379	i	5	2	38	.3	2	5		2.01	4	5	ND	í	71	1	2	2	15	1.88	.064	1	1	.43	73	.02	2	.78	.04	.11	1 570	-
E 57380	i	8	5	43	4.5	ž	15		3.12	6	5	9	2	71	1	2	4		1.57	.056	å	2	.43	79	.04	2	.77	.04	.12	1 8120	.229
E 57381	i	16	ě	48	.1	ī	4		1.61	2	5	нD	ī	80	i	2	2		1.20	.061	6	ī	.53	61	.07	2	.87	. 05	.08	1 129	-
E 57382	ż	11	2	33	.;	i	3		1.44	ž	5	ND	1	75	i	2	2		2.28	.055	5	2	.39	65	.03	2	.73	.04	.10	1 190	-
- 4, 400	•	••	•		••	•	•	•••		-	•		•		-	-	•	•			-	-									
E 57383	70	32	8	24	28.7	6	283	404	10.95	23	6	72	1	52	1	2	35	á	.87	.028	3	i	.17	20	.01	2	.38	.02	.10	2 83800	
STD C/AU-R	17	56	38	128	6.8	68	28	1049	4.15	43	17	. 7	36	48	17	18	17	50	.43	.083	36	57	. 87	175	.08	34	1.95	.05	.14	11 505	-

•

SAMPLEE	MO	CU	PB	ZM	A6	NE	co	MM	FE	AS	U	AU	TH	SR	CD	58	18	v	EA	Р	LA	CR	MG	BA	II	8	AL	NA	K	¥	AUL	AUEE
SMULTER	PPM	PPH	PPH	PPM	PPH	PPH	PPM	PPH	1	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	1	1	PPM	PPM	1	PPM	1	PPM	1	1	1	PPN	PPB	02/1
E 57384	2	18	8	43	.2	4	5	716	1.86	3	5	ND	2	110	1	2	2				8	4	.54	120	.06	8	.94	.05	.17	3	154	
E 57385	1	7	4	46	.1	5	5	644	1.72	3	5	ND	2	91	1	2	2	17	1.17	.053	9	4	.54	148	.10	•	.93	.06	. 24	1	70	.044
E 57386	1	18	4	35	.5	2	13	669	2.05	2	5	2	2	127	!	2	2	14	2.01	. 054	7	2	.49	84	.05	2	.94 .84	.05 .04	.14	2	1460 240	.011
€ 57387	1	15	•	45	.1	2	5	674	1.74	2	5	ИĎ	!	88	1	2	2	16	1.47	.056	6 5	2	.52 .46	92 60	.09	2	.73	.04	.09	1	190	_
E 57388	1	19	4	34	.1	1	5	846	1.62	2	3	ND	1	94	i	2	2	12	2.39	.047	•					•						
E 57389	1	58	10	45	.3	2	4	1331	1.68	5	5	MD	1	163	ı	2	2	13	3.84	.053	6	2	.53	59	.04	3	.80	.04	.09	1	164	-
E 57390	1	30	11	37	ı.	2	10	867	1.93	3	5	2	ı	86	1	2	2		2.37	. 053	6		.43	60	.03	2	.72 .70	.04 .04	.09 .11	1	1485 945	.054
E 57391	1	44	10	22	.7	1		843	1.97	4	3	ND	1	78	1	2	7	10	2.44	.056	7	1	.43	68 53	.02	2	.78	.03	.09	i	405	_
E 57392	1	16	5	43	.3	2	4	1195	1.69	2	5	ND	1	98	1	2	2		3.10	.046	6 7	1 2	.55 .51	80	.05	2	.90	.05	.12	2	750	_
£ 57393	4	70	3	44	.5	2	5	805	1.97	2	5	ND	ı	91	1	2	2	14	2.04	.054	,	4	.31	av	.03	4	. 10	, va	.12			
E 57394	1	194	8	35	4.7	3	98	654	5.66	3	5	16	1	90	1	2	2	11	1.79	.045	5	3	.40	63	.02	2	.75	.04	.12			. 382
€ 57395	1	31	4	33	1.7	1	8	674	2.69	3	5	4	1	70	1	2	2	10	1.95	.050	7	1	.40	72	.02	2	.73	.03	.12	2	3820	.114
E 57376	5	38	3	44	.3	2	4	795	1.32	4	5	ND	1	74	1	2	2	11	2.01	.051	6	1	.55	86	.06	1	.90	.06	.12	2	320	•
E 57397	19	7	5	32	4.8	2	10	568	4.41	3	5	9	1	62	i	2	2	13	1.61	.044	é	1	.35	114	.06	11	.94	.08	. 27	-	8745	.231
E 57398	1	37	3	36	-1	2	4	793	1.79	2	5	ND	1	88	1	2	2	13	2.19	.057	7	1	.47	86	.04	2	.84	.05	.15	i	65	•
E 57399	1	27	3	49	.2	2	4	680	1.92	5	5	ND	2	73	1	2	2	20	1.14	.057	8	2	.57	182	.12	2	.99	.04	. 38	2	58	-
E 57400	i	11	2	50	.1	2	5	591	1.69	2	5	ND	1	78	1	2	2	17	1.04	.061	7	2	.57	167	.12	2	1.00	.05	. 30	1	21	-
E 57401	i	17	2	48	.1	3	4	405	1.69	2	5	ND	1	89	1	2	2	17	1.15	.057	7	1	.55	167	.12	2	.96	. 05	. 33	1	34	-
E 57402	19	17	6	43	.8	1	5	679	1.79	2	5	NO	1	78	1	2	2	15	1.61	.053	7	3	.47	104	.06	2	.03	.05	. 16	1	810	-
E 57403	1	12	4	47	.1	3	4	760	1.86	2	5	ND	2	101	1	2	2	17	1.57	.052	7	2	.54	154	. 08	3	.94	.06	. 25	1	12	-
E 57404	2	12	2	45	.1	2	4	649	1.68	2	5	NĐ	2	80	1	2	2		1.38	.052	7	2	.49	122	.08	3	.87	.05	.22	1	161	-
E 57405	1	5	7	45	.1	4	4	594	1.53	2	5	ND	2	81	1	2	3		1.26	.054	8	1	.48	124	.09	5	.86	.05	.19	1	63	-
E 57406	i	18	4	42	.2	3	á		1.37	2	5	ND	2	87	1	2	2	11	1.24	.056	8	2	.45	94	.08	4	.85	.06	.15	1	200	-
E 57407	1	11	2	23	.1	1	5	599	1.01	3	5	ND	2	106	1	2	2	20	.78	.056	8	2	.58	213	.14		1.07	.07	. 42	1	4 25	-
E 57408	1	7	4	53	.1	3	5	671	2.16	2	5	ND	2	87	1	2	2	24	.63	. 056	8	2	.59	234	. 16	•	1.15	.09	.52	1	23	-
E 57409	1	11	2	46	.1	1	5	679	1.89	3	5	ND	1	88	1	2	2	21	1.08	.057	7	1	.53	192	.13	2	.94	.06	. 42	1	50	-
E 57410	2	10	2	48	.3	2	5	675	1.88	2	5	ND	2	67	1	2	2	18	1.16	. 056	7	1	.54	157	.10	2	.88	.05	.20	1	440	-
E 57411	1	4	å	49	.1	2	4	495	1.87	3	5	ND	2	77	1	2	2	18	1.34	. 056	1	1	.56	142	.10	2	. 93	.05	. 25	1	126	-
E 57412	1	7	2	49	.1	ı	4	640	1.87	2	5	NĐ	2	76	1	2	2	22	. 91	. 054	8	1	.54	213	.13	2	.97	.06	. 39	1	13	-
E 57413	1	10	7	43	.1	1	5	654	1.07	4	5	ND	2	123	1	2	2	19	1.42	.056	8	1	.51	146	.09	2	.96	.05	. 23	1	8	•
E 57414	1	16	4	47	.2	3	5	692	1.79	3	5	ND	1	67	1	2	2	-	1.51	.055	7	1	.52	155	.10	2	.90	.05	.29	1	215 18	-
E 57415	1	5	á	55	.1	1	5	481	2.02	2	5	MD	2	93	1	2	2	23	.78	.059		2	.59	233	.15		1.07	.07	.47		250	_
E 57416	2	3	5	39	.2	1	3	931	1.60	6	5	ND	1	92	1	2	2	12	2.40	.058	8	!	.49	109	.04	2	.80	.07	.19	1	4	
E 57417	1	7	6	54	.2	1	5	669	2.10	3	5	ND	2	74	1	2	2	24	.61	.055	8	2	.57	226	.15		1.05 1.07	.08 .07	.49	1	39	-
E 57418	1	5	2	50	.1	2	5	695	2.16	2	5	NB	2	109	1	2	2	25	.84	. 058	7	3	.50	223	.14	4	1.07	.07		•		
E 57419	1	8	4	54	.1	1	5	731	2.53	2	5	ND	2	91	1	2	2	28	.70	.054	8	2	.61	250	.16		1.13	.09	.53	1	1	-
STB C/AU-R	18	58	43	132	7.1	71	27	1055	4.05	41	18	7	36	50	17	18	22	55	.46	.087	38	59	.85	175	.08	32	1.93	.06	.13	12	515	•

-																																
SAMPLES	MQ	CU	PB	ZN	AE	NI	CO	HN	FE	AS	U	AU	TH	SR	CD	SB	16	V	CA	P	LA	CR	M6	BA	II	8	AL	NA	K	H	ALIE	AUII
	PPH	PPM	PPM	PPN	PPH	PPM	PPM	PPM	1	PPM	PPH	PPH	PPH	PPM	PPM	PPH	PFM	PPM	1	1	PPM	PPM	1	PPM	1	PPM	1	1	1	PPM	PPS	02/1
			_					***												454					.,		04	۸5	77	,	77	
E 57420	1	3		45	.1		•	595	1.58	2	3	ND		115		4	2	19			6		.54	184	.12		.84	.05	.33	•	33	-
E 57421	!	44	2	43	.!		4	732	1.71	7	3	MĐ	I	68	1	Z	2	16	1.57	.056	!	!	.51	169	.09	9	.80	.05	. 26	- 4	250	•
E 57422	1	14	7	46	.1	ı	•	702	1.66	3	3	MD	1	80	I	2	1	17		.055	'	Z	.52	160	.08	2	.96	.04	. 26	1	49	-
E 57423	1	24	2	44	.1	1	•	714	1.73	2	3	ND	1	76	1	7	2	17	1.07	.057	8	7	.51	140	.07	2	.86	.04	. 24		172	•
E 57424	1	14	7	45	. i	1	4	627	1.61	2	5	ND	1	77	1	2	2	16	1.43	.056	7	I	.50	138	.10	2	.79	.04	.22	1	59	-
E 57425	1	12	9	45	.1	1	5	559	1.67	4	5	MD	1	75	1	2	2	19	.90	.060	7	2	.51	182	. 13	2	.84	.05	. 34	1	11	
E 57426	i	15	\$	43	.1	ī	ī	569	1.72	i	5	NB	1	63	i	2	2	21	.79	.055	7	2	.51	202	.13	2	.81	.06	.42	1	245	-
E 57427	i	5	2	44	i.i	i	5	410	1.73	ż	5	MD	i	70	i	ž	ž	20	.96	.056	7	Ĭ	.50	201	.13	2	.80	. 05	.37	1	74	-
E 57428	ī	12	10	43	1.2	i	7	637	2.66	3	5	3	1	66	i	2	2	17	1.18	. 053	6	1	. 49	112	.11	2	.74	.04	.30	ı	3120	. 084
E 57429	i	14	5	39	.1	43	4	726	1.67	5	5	OK	1	112	1	2	2	15	2.56		6	86	.47	97	.07	2	.70	.04	.15	1	139	•
E 57430	1	15	2	44	.1	1	4	729	1.63	2	5	ND	2	89	1	2	2	17	1.54	.051	6	2	.52	153	.11	2	.78	.04	.27	1	38	-
E 57431	1	7	1	47	1.	2	5	566	1.76	4	5	NO	2	62	1	2	2	22	.49	.058	8	1	.53	208	.14	6	.85	.06	.41	ı	99	-
E 57432	1	7	4	45	.1	1	4	553	1.68	6	5	NĐ	2	69	- 1	2	2	21	.80	. 054	7	2	.51	191	.13	4	.85	.06	.36	1	108	-
E 57433	1	31	11	45	.1	1	5	661	1.66	3	5	NĐ	1	69	1	2	2	18	1.30	.057	6	2	.52	162	.11	2	.75	.04	. 29	1	155	-
E 57434	2	56	2	45	.1	ı	4	640	1.58	4	5	MD	ı	101	1	2	2	16	1.41	.059	7	2	.51	125	.10	3	.76	.04	.20	1	172	-
P 67176	176			70			-					wn		157		,	•	,	5.13	.049	•		.46	52	.01	7	.56	.02	.08	,	860	-
E 57435	135	.,	11	30	.5	ı	2		1.24		3	ND		153	:	,	4	.,			5	,	.56	94	.07	,	.82	.04	.13	i	32	_
E 57436	3	14	10	48	.1	1	•	794	1.03	7	3	ND	1	75		7		10	1.82		•	4				4				:	28	_
E 57437	i	1	6	47	.1	1	5	718	1.86	2	5	MD	7	75	ı	3	2	20	1.30	.059	'	2	.56	145	.10	4	. 62	.04	.25	•		-
E 57438	2	15	11	27	.2	1	4	832	1.53	4	5	ND	3	65	1	2	7		2.34		1	ı	.44	78	.02	3	.73	.03	.15	ı	192	-
E 57439	1	10	8	42	.1	1	4	856	1.72	3	5	NO	1	78	1	2	2	12	2.21	.057	7	1	.55	57	.05	2	.85	.04	.10	2	12	-
E 57440	1	17	5	45	.1	1	5	599	1.48	2	5	NO	2	86	1	2	2	14	1.30	.056	7	1	.54	71	.08	2	.84	.04	.11	1	i	-
E 57441	1	4	2	48	.1	1	4	603	1.61	2	5	MD	1	85	1	2	2	18	1.18	.057	8	1	.55	161	.12	2	. 70	.05	. 31	i	1	-
STD C/AU-R	19	58	41	129	7.5	70	31	1054	3.94	44	19		40	53	19	19	23	58	.49	.082	41	62	. 88	176	.09	36	1.85	.06	.14	10	520	-

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HND3-H2O AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Core AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE. 1) 1

				•	- SHAPL	e iire	: Ları	2	AUS HWA	T1213	DI MM	ו מטאז	י פתאח	SHAFL					1)	1											
DATE R	ECEIV	ED:	DEC	14 19	87	DA	TE F	REPO	IRT M	AILI	ED:	1) 20 1	16/	87	ASS	BAYE	F.	W 6.	Rep	./ D	EAN	TOY	Έ,	CERT	IFI	ED E	.c.	ASS	AYE	Ř
							I	MPE	RIAL	MET	TALS	FF:0	JEC	T-45	544	Fi	le	# 87	7-51	58	F'	age	1								
SAMPLE	MO PPN	CU PPM	PB PPM	ZN PPM	AS PPM	NI PPH	CO PPM	MN PPM		AS FPM	U Pem	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI M99	V PPM	CA I	P	LA PPN	CR PPM	M6 Z	BA PPM	TI Z	8 FFM	AL Z	NA I	K Z	N PPM	AU I PPB
E 57442	1	83	3	99	.1	3	11	961	5.18	4	5	ND	3	25	1	2	2	72	.40	099	13	5	1.66	496	.35	2	2.24	.07	1.56	1	2
E 57443	1	31	2	50	.1	1	5	603		3	5	ND	5	49	1	2	2	30	. 35	.066	17	1	.62	180	.17	2	.97	.07	.59	1	18
E 57444	3	52	2	90	.1	15	14	971	4.42	4	5	ND	4	16	1	2	2	87	. 57	.098	12	39	1.86	326	.32	2	2.25	.06	1.57	1	1
E 57445	3	86	3	68	.1	12	16	719	3.64	2	5	ND	1	22	1	2	2	82	.93	.071	8		1.63	302	. 24		1.87	.06		1	1
E 57446	1	113	2	52	.2	13	12	540	2.92	2	5	ND	4	21	1	2	2	63	.72	.054	9	23	1.02	209	. 21	2	1.19	.08	.67	1	2
E 57447	1	46	5	88	. i	1	5	726	3.11	6	5	ND	6	9	1	2	2	24	.32	.074	23		1.00	176	.22		1.30	.05	1.10	1	1
E 57448	1	50	2	72	.1	2	4		2.49	2	5	ND	5	10	1	2	2	14	. 40	. 053	21	7	.64	133	.16	2	.92	.05	. 59	1	4
E 57449	1	14	2	58	.1	1	3		2.34	2	5	ND	5	10	1	2	2	13	.30	.051	20	1	.58	126	.14	2	.79	.07	.61	1	2
E 57450	1	10	2	33	. i	1	3		1.93	2	5	ND	7	12	1	2	2	8	.30	.033	23	1	. 39	77	.09	2	.56	.06	.36	2	!
E 57451	1	14	2	33	.1	1	4	495	1.86	3	5	D	7	27	1	2	2	11	1.05	.049	25	1	.55	72	.08	2	.69	. 07	.26	1	1
£ 57452	1	15	2	41	.1	1	5	652	2.78	3	5	ND	5	15	1	2	2	26	.60	.065	22	1	.75	155	.17	5	1.00	.07	.76	i	1
£ 57453	1	20	4	59	.1	2	9	719	3.60	2	5	ND	5	15	1	2	2	56	.51	.063	21	1	1.10	183	. 24	2	1.43	. 07	1.10	1	1
E 57454	1	18	2	66	.1	1	5	742	2.97	4	5	ND	5	12	1	2	3	18	.56	.051	20	2	.74	127	.17		1.00	.07	.82	1	2
E 57455	1	23	3	82	.1	1	4	796	2.90	2	5	NĐ	5	22	1	2	4	14	. 50	.063	21	1	.72	144	.17		1.00	.06	. 67	1	1
E 57456	1	42	13	91	.1	1	5	808	3.10	2	5	ND	5	8	1	2	2	18	.31	. 054	14	2	1.09	150	.21	2	1.42	.06	1.17	1	1
E 57457	2	13	7	64	.3	1	5	681	3.07	2	5	ND	6	6	1	2	3	27	. 20	.038	15	1	.86	152	. 21	2	1.16	.06	.92	1	1
E 57458	i	11	2	77	.1	i	- 4	622	2.54	3	5	ND	6	10	1	2	2	16	. 18	. 033	14	1	.62	122	.17	2	. 91	.07	.72	1	1
E 57459	2	13	2	69	.1	í	4	764	2.89	3	5	ND	6	11	1	2	2	17	. 25	.051	17	1	.70	165	.20	3	1.05	.06	.84	1	2
E 57460	8	43	5	31	.1	1	3	271	2.72	2	5	ND	9	7	1	2	2	2	. 21	.014	35	1	.09	33	.03	2	.28	.07	.14	1	2
E 57461	6	26	2	77	.1	2	6	825	2.99	4	5	ND	5	9	1	2	2	23	.59	.064	17	2	. 91	189	. 20	2	1.30	.06	1.05	1	4
E 57462	1	11	2	59	.1	2	3	539	2.46	3	5	ND	6	5	1	2	3	11	. 16	.022	14	2	.67	119	.16	2	.95	.07	.78	1	17
E 57463	1	14	2	70	. 2	1	5	635	2.75	2	5	ND	7	4	1	2	2	21	.20	.033	13	2	.80	140	. 19	2	1.10	.06	. 92	1	1
E 57464	5	46	2	94	.1	4	8	646	3.28	2	5	ND	6	15	1	2	4	29	.53	.045	12	6	1.10	94	. 15		1.35	. 05	.72	1	129
E 57465	í	13	2	41	.1	1	3	544	1.97	2	5	ΝĐ	7	17	1	2	2	10	.70	.040	17	1	.53	93	. 12	3	.72	.06	.56	1	15
E 57466	1	7	2	35	.1	1	3	413	2.28	2	5	ND	7	10	1	2	2	9	.34	.034	16	2	.48	100	.13	2	.71	.06	.57	1	9
E 57467	1	15	4	60	.1	ı	4		2.28	4	5	ND	5	14	1	2	2	15	.37	.041	15	2	.56	124	.15	3	.83	.05	.62	1	1
£ 57468	1	15	2	90	.2	2	6	701	2.79	2	5	NB	5	53	1	2	3	24	.45	.053	20	3	.68	242	. 19	-	1.07	.05	.76	1	1
E 57469	1	23	2	93	.1	2	6	856	3.04	2	5	ND	6	33	1	2	5	26	.90	.055	29	3	.84	186	.19		1.19	. 04	. 83	!	1
E 57470	1	45	5	84	.1	38	23		5.63	11	5	ND	2	233	1	2	2			.116	23		1.79	31	.29		3.16	. 42	.06	1	10 56
E 57471	1	84	2	116	.1	10	14	1052	4.83	2	5	ND	4	30	1	2	2	73	1.18	.070	15	12	1.71	273	. 20	2	2.34	.05	1.20	,	Jo
E 57472	1	75	3	75	.1	5	13	1013		2	5	ND	2	205	1	2	2			.079	9		1.27	211	.15		1.84	.05 .04	.59 .30	1	103 40
E 57473	2	28	2	49	. 2	4	9	1001	2.89	3	5	ND	1	117	1	2	3		2.88	.079	9	2	.94 .78	123	.09 .10	-	1.40	.04	.35	1	1
E 57474	1	12	3	48	.1	3	8	703	2.75	3	5	ND MD	!	145	1	2 2	2		1.73		8 7	2	.76	167 170	.12		1.47	.05	.27	1	i
E 57475	!	13	2	45	1	2	8	644	2.41	2	5 5	ND 75	1	253	1	2	2 163		1.42 2.65	.071	4	J 1	.31	38	.01	2	.47	.02	.10	-	2600
E 57476	13	992	6	25	11.5	5	100	136	13.69	8	3	35	1	61		4															
E 57477	1	12	2	46	.1	2	8		2.65	2	5	ND	2	98	1	2	2		1.61	.079	9	2	.17	143	.13		1.21	.06	.33	2 12	40 485
STO C/AU-R	20	62	37	131	7.5	70	30	1094	4.25	44	23	8	39	55	19	18	23	61	. 48	.088	42	60	.85	180	.06	28	1.85	.06	. 13	12	101

SAMPLE	HO PPN	CU PPM	PB PPM	ZN PPM	AG P PM	NI PPM	CO FPM	MN PPN	FE %	AS PFM	U PPM	AU F PM	TH PFN	SR PPM	CD P PM	SB PPM	BI PPM	V PFM	EA	P	LA FFM	CR FPM	M6 I	BA PPM	TI Z	B PPM	AL Z	NA I	K T	N PPM	AU t PP8
E 57470	1	4	6	£à	.1	2	9	900	3.14	2	5	ND	2	105	1	2	2	36	2.49	.078	11	1	.93	57	.06	2	1.40	.05	.10	1	21
E 57479	i	5	2	35	.4	2	á	1035	2.46	2	5	ND	3	111	1	2	2	16	4.36	.088	21	1	. 27	47	.01	15	.74	.03	.13	2	670
E 57480	1	27	6	33	.1	3	6	1011	2.33	3	5	ND	3	325	1	2	2	23	4.29	.075	17	t	.45	145	.01		1.56	.03	.17	2	12
E 57481	1	11	2	38	.1	3	7	838	2.25	4	5	ND	2	246	1	2	2		3.36	.079	14	1	.60	97	.02		1.43	.03	.10	1	16
E 57482	1	35	4	54	-1	3	7	1028	2.62	2	5	ND	4	247	1	2	2	27	3.87	. 085	18	1	.80	104	.01	6	1.64	.03	.12	1	166
E 57483	8	95	2	42	.1	2	6	1249	2.19	2	5	ND	2	212	i	2	2	26	4.25	.083	16	1	.71	106	.05		1.23	.04	.14	2	66
E 57484	1	25	5	51	.1	2	9	984	3.11	3	5	NĐ	ı	209	i	2	4		2.63	.084	8	2	.91	94	.06		1.44	.06	.13	1	30
E 57485	1	24	2	47	.1	2	8	945	2.54	3	5	ND	1	125	1	2	2		3.26	.069	9	2	.76	54	.03		1.13	.04	. 12	3	10
E 57486	1	41	2	50	-1	3	9	1008	2.71	5	5	ND	2	144	1	2	2		2.99	.075	9	1	.87	56	.01		1.44	.03	.09	1	46
E 57487	1	47	2	44	.1	3	7	876	2.70	2	5	ND	2	129	1	2	2	30	2.78	.077	11	1	.80	78	.08	15	1.18	.05	.17	ı	15
E 57488	ı	35	2	51	.1	3	7	697	2.79	2	5	ND	3	55	1	2	2	40	.80	.057	14	5	.77	217	.17	2	1.24	.11	.75	1	16
E 57489	1	61	3	55	.1	18	13	401	3.03	2	5	ND	1	18	1	2	3	81	1.07	.069	10	42	1.30	76	.23	2	1.45	.12	.98	1	7
E 57490	4	24	2	26	.1	2	5		2.04	2	5	ND	8	13	1	2	2	14	.30	.040	23	2	.38	88	.11	2	.61	.08	.41	1	4
E 57491	1	12	2	67	.1	1	4	660	2.52	2	5	ND	9	9	1	3	2	17	.34	.047	27	1	.52	92	.14	6	.77	.07	.59	!	1
E 57492	1	36	2	70	.1	1	5	627	2.52	2	5	ND	5	40	ı	2	2	23	.56	.049	20	2	.52	142	.14	7	.83	.09	.57	1	4
E 57493	1	34	2	101	. 1	4	6	756	2.56	2	5	NĐ	5	21	1	3	2	30	.56	.039	20	5	.76	125	.15		1.01	.07	.80	2	3
E 57494	1	11	2	38	.1	i	4	523	2.27	3	5	ND	8	19	1	3	2	13	. 42	.038	24	t	.37	58	.09	4	.60	.06	. 43	2	13
E 57495	1	8	2	38	.1	2	4	493	2.45	2	5	MD	9	14	1	2	2	15	.33	.041	29	1	.38	66	.10	18	.63	.07	.45	1	6
E 57496	1	10	2	35	. i	1	4	483	2.39	2	5	ND	8	14	1	5	2	10	. 35	.042	26	2	.43	74	.10	5	.67	.06	.51	1	
E 57497	1	17	3	58	.1	2	5	503	2.47	2	5	ND	8	18	1	2	2	26	.57	.040	24	4	.58	83	.11	2	.78	.07	.52	1	11
E 57498	2	36	2	68	.1	45	14	687	3.50	2	5	ND	5	39	1	2	2	51	1.22	.072	17	58	1.35	105	.23		1.62		1.04	1	1
£ 57499	1	7	2	29	.1	1	4	324	2.08	2	5	ND	8	10	1	3	2	8	. 29	.030	19	1	.30	78	.09	17	.55	.08	. 37	1	1
E 57500	1	14	2	45	.1	1	2	829	2.29	2	5	ND	4	63	1	3	2	14	1.65	.037	18	1	.31	80	.09	37	.59	.08	.31	2	1
E 57501	18	203	2	24	.1	4	9	385	3.14	6	5	NĐ	5	5	1	2	2	6	.14	.024	11	1	.27	52	.04	2	.51	. 05	.26	1	2
E 57502	2	30	3	146	.1	7	10	1136	3.04	2	5	ND	4	27	1	2	3	60	1.00	.060	11	6	1.17	233	.24	16	1.57	.06	1.16	1	1
E 57503	2	16	2	31	.1	3	4	396	1.57	2	5	ND	7	9	1	2	2	8	.33	.027	19	4	.31	73	.07	5	.53	.07	. 39	1	1
E 57504	2	11	2	52	.1	2	4	526	2.21	2	5	ND	7	12	1	3	3	9	.42	.035	26	1	. 48	110	.11	19	.73	.07	.59	1	117
E 57505	2	11	5	42	.1	2	3	441	2.26	2	5	ND	7	12	1	2	2	7	. 35	.033	24	t	.36	95	.09	2	.59	.07	.46	1	10
E 57506	2	15	3	49	.1	2	4	571	2.29	2	5	ND	7	14	1	2	2	14	. 32	.029	24	4	.45	81	.09	16	.63	.07	. 48	1	3
£ 57507	2	33	2	44	.1	2	3	288	1.86	2	5	ND	8	31	1	2	2	11	.45	.038	25	2	.31	64	.09	3	.57	.08	.32	ì	1
£ 57508	2	52	6	96	.1	5	7	690	2.37	2	5	ND	6	20	i	2	4	44	.77	.053	16	2	.93	185	.17		1.27	.ú7	.93	1	1
E 57509	ī	7	2	77	.1	4	4		1.66	2	5	NO	ė	32	1	2	3	36	1.90	.050	16	1	.73	102	.14	5	.93	.08	.64	ı	1
E 57510	1	94	4	166	.1	8	16		4.04	2	5	ND	3	45	1	2	4	105	1.56	. 103	11	2	1.52	145	.26		1.93		1.40	1	4
E 57511	i	32	2	52	.1	2	6		2.04	2	5	ND	ģ	16	1	2	2	16	.34	.031	22	2	.44	73	.11	5	.63	.10	. 46	1	1
E 57513	2	16	2	40	.1	2	2		1.46	2	5	ND	9	27	1	3	3	8	.53	.038	23	2	.34	84	.08	16	.56	.07	.34	2	. 7
STO C/AU-R	21	63	37	133	7.1	72	31	1124	4.30	44	16	8	40	48	20	16	23	54	.47	.089	37	40	.88	183	.09	28	1.86	.07	.15	13	490

(

JAMPLES	HO PPM	CU PPM	PB PPM	ZN PPH	A6 PPM	NI PPM	CO PPM	HN PPH	FE 1	AS P PM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PFM	CA I	P	LA FFM	CR PPM	M6 1	BA PPM	7 I	B PPM	AL 1	NA 1	K	W PPM	AU I PP B
E 57514	2	51	2	44	.1	1	2	402	1.57	2	5	ND	8	19	1	2	2	7	.42	. 032	27	1	.25	51	.10	2	.47	.09	.23	2	7
£ 57515	2	9	2	38	.1	2	4	411	2.51	2	5	ND	8	13	1	2	2	7	. 33		19	i	. 29	98	.09	4	.50	.09	.30	2	4
E 57516	1	295	3	67	.3	3	22	738	4.74	3	5	ND	4	23	1	2	4	90	.50	.064	13	2	1.23	251	.29	2	1.52	.11	.94	1	2
E 57517	2	86	2	58	.1	1	4	625	2.85	2	5	MD	7	11	1	2	3	17	.43	.058	27	1	.86	138	. 19	2	1.08	.08	. 85	1	3
£ 57518	1	11	2	49	.1	2	4	624	2.62	2	5	ND	10	11	1	2	2	18	.30	. 059	28	1	.76	166	. 18	3	.98	.08	.77	1	5
E 57519	1	18	2	76	.2	37	9	772	3.07	4	5	ND	11	9	ı	2	5	50	.54	.053	20	93	1.64	197	. 25		1.62	.09	1.27	1	5
E 57520	1	39	2	108	.2	39	19	985	4.82	3	5	ND	4	12	1	2	2	142	.88	.070	7	104	2.21	269	.35	3	2.18	.08	1.60	ı	1
E 57521	1	35	6	63	.1	2	4	549	2.26	3	5	ND	8	8	1	2	2	16	. 27	.043	28	1	.70	152	. 18	3	.92	.09	.71	1	2
E 57522	1	14	6	73	.1	3	4	723	2.56	2	5	ND	8	7	1	2	2	24	.37	. 045	25	4	.82	194	.21		1.05	.09	.83	1	3
E 57523	1	30	3	94	.1	2	5	937	3.42	4	5	ND	4	10	1	2	4	17	. 33	.061	21	1	1.07	152	. 24	2	1.32	.09	1.09	1	1
E 57524	1	35	2	59	.1	ı	5	726	3.26	5	5	ND	4	11	1	2	2	11	.30		21	1		115	.18	3	.88	.08	.71	1	1
£ 57525	1	8	2	48	.1	i	4	710	2.88	2	5	ND	6	8	1	2	2	13	. 24	.05t	26	1	. 65	128	. 19	2	.87	. 07	.72	2	2
E 57526	1	76	9	175	.2	56	20	1390	5.79	7	5	ND	3	13	ı	2	5	87	.75	. 102	10	71	2.70	476	.50		2.86	.05	2.10	1	1
E 57527	4	272	6	51	.3	27	41	457	4.01	5	5	ND	3	34	1	2	4	24	. 39	.032	6	18	.82	78	.17		1.02	.08	.56	1	6
E 57529	1	39	2	73	.1	56	18	701	3.22	7	5	ND	1	40	1	2	2	56	1.01	.099	7	51	1.91	381	.33	2	1.91	. 11	1.24	1	1
E 57529	1	10	3	37	. 2	3	6	520	2.41	2	5	NB	2	57	1	2	2	18	.76		9	1	.60	173	.16	2		.11	.41	1	2
E 57530	1	5	2	48	.2	2	7	581	2.37	2	5	ND	3	82	1	2	2	32	. 93	. 065	11	3	.77	159	. 16	_	1.07	.08	.37	1	1
E 57531	3	80	4	65	. 2	1	5	664	2.41	2	5	ND	9	12	1	2	2	11	. 48	.046	23	1	.47	97	.14	2	. 65	.08	.42	1	6
E 57532	1	39	2	12	.1	2	1	215	.58	2	5	ND	2	11	1	2	2	3	.31	.012	9	2	.08	15	.03	4	. 16	.03	.07	1	1
E 57533	2	50	2	39	.1	1	6	499	2.07	4	5	ND	8	19	i	2	2	1	.41	.032	20	1	.27	57	.09	2	.52	.06	.29	2	1
E 57534	1	7	2	49	.1	2	7	718	2.55	4	5	NÐ	1	151	1	2	2	36	1.36	.068	7	2	.85	163	.15	2	1.21	.06	.37	1	30
E 57535	16	6	3	36	1.1	2	16	1129	3.22	12	5	2	1	135	1	2	2	22	6.30	.049	5	3	. 66	59	.04	1	1.31	.03	.12	2	1150
£ 57536	1	63	3	60	.2	2	8	1078	3.50	3	5	ND	1	94	1	2	2	48	2.60	.076	7	1	1.19	176	.14	2	1.54	.06	. 43	1	8
£ 57537	1	14	4	54	.1	2	8	744	2.71	5	5	NĐ	1	103	1	2	2	34	1.92	.078	7	2	.98	81	.13	2	1.34	. 05	.17	1	1
E 57538	i	16	4	56	.1	4	7	847	3.08	4	5	ND	1	94	1	2	2	37	1.98	.067	8	3	1.08	114	.12	3	1.44	.06	.26	1	1
£ 57539	1	35	2	28	.1	1	15	780	2.61	6	5	ND	2	121	1	2	3	26	4.18	.068	7	2	.77	51	.09	2	.99	.04	.12	2	10
E 57540	1	6	2	48	.1	4	8	643	2.62	5	5	ND	2	91	i	2	2	41	1.11	.064	10	3	.91	187	. 18		1.36	. 11	.50	1	6
E 57541	1	9	5	59	.1	2	10	1063	3.53	3	5	ND	2	154	1	2	2	28	3.17	.083	11	1	1.12	60	.05	2	1.47	.04	.14	1	1
E 57542	1	9	3	60	.1	1	9	1055	3.79	5	5	ND	2	112	ı	2	3	44	2.75	.081	12	1	1.15	60	.06	7	1.53	.05	.11	1	ı
£ 57543	1	18	2	55	.2	2	9	855	3.19	2	5	ND	2	71	1	2	5	42	1.76	.082	9	2	1.01	90	.13	4	1.30	.06	.19	i	2
E 57544	3	23	2	54	.5	2	11	1129	3.35	2	5	ND	1	82	1	2	2	33	2.95	.084	8	2	.98	101	.10		1.21	.05	.21	1	3
E 57545	1	22	2	56	.1	2	8	739	3.22	2	5	MD	5	75	1	2	2	42	1.31	.077	26	3	.91	155	.17	2	1.23	.08	.33	1	1
E 57546	1	45	7	92	.2	1	10	819	4.18	2	5	ND	6	21	1	2	2	69	.66	.074	23	1	1.29	372	.26	3	1.64		1.11	1	31
E 57547	1	8	4	26	i. i	2	5	419	1.45	2	5	2	5	24	1	3	2	7	.89	.050	20	1	.44	52	.01	3	.56	.04	.12		1180
STD C/AU-R	20	63	42	132	7.2	71	31	1091	4.31	42	21	7	39	55	20	16	21	61	.47	.087	40	59	.94	181	.07	36	1.84	.06	.15	15	500

GEOCHEMICAL ANALYSIS CERTIFICATE

1CP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2D AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA X AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: Core AUR ANALYSIS BY AA FROM 10 GRAM SAMPLE.

SHIFTLE TITE. GUTE MUN MARLISTS OF AN FRUIT TO CHARLES.

28 1060 4.07

STD C/AU-R

DATE RECEIVED: DEC 16 1987 DATE REPORT MAILED: Dec 21/8

ASSAYER. N. O. O. DEAN TOYE, CERTIFIED B.C. AS

18 17 19 57 .48 .082 39 40 .90 178 .09 32 1.94 .07 .15 13 510

DHIE R	ECEIV	EV:	MEC	10 170	0/	DΗ	1 E. F	CF'U	יו ניאנ	HILL	:0:		_	7/-	1	HD	HYE	r.,	T. 71	77.7	,u	EHN	101	Ε, ι	JERI	16.11		,. L.	moa	HIEL	`	
							C	ATH	EDRA	L GC	LD	FFO.	JECT	-454	1-1	Fil	e #	87	-522	12	F.a	gе	1									
SAMPLEN	MO PPM	CU PPM	PB PPM	ZN PPM	A6 PPM	NI PPM	CB PPM	MN PPN		AS PFM	U PFM	AU P PM	TH PPM	SR PPM	CD PPM	SB FPM	BI PPM	V PP N	CA 1	P 1	LA FPM	CR P PM	#6 Z	BA PPM	TI 1	B PPM	AL I	NA Z	K	PPM	AU1 PPB	
E 57548	1	11	3	107	.2	32			3.45	2	5	ND	7	19	1	2	2		1.32		18		2.23	164	.24		2.32	.06	1.55	1	3	
E 57549	1	21	3	52	.2	4	6	572		2	5	ND	5	39	1	2	2	34	. 63	. 053	7	4	.76	169	. 16		1.08	.10	.60	1	1	
E 57550	1	44 34	2	77 94	.2	2 17	5 8		2.97 3.11	2 2	5 5	ND ND	5 5	34 39	i	2 2	2 2	24 27	.76 2.21	.048 .069	14 17	3	.81 1.04	242 120	.17	2	1.14	.08	.75 .44	1	3 1	
E 57551 E 57552	1	14	2	49	.1	17			2.25	3	5	ND	4	22	1	2	2		3.45		17	15	.64	77	.07	2	.98	.04	. 44	i	1	
E 57553	1	26	7	71	.2	2	4		2.46	4	5	ND	7	15	1	2	2	12	.82		21	1	. 65	126	.14	2	.96	.06	.71	1	4 30	
E 57554	1	27	3	117	.2	5	4		2.47	2	5	ND	9	18	1	2	2	17	1.34		22	14		80	.09	2	.93 1.05	40. 40.	.57 .77	1	89 20	
E 57555 E 57556	1	13 40	2	101 125	.4	ه 5	4 5	694 857		2 2	5 5	ND ND	9	15 14	1	2	2	20 25	.87 .83	.036 .046	21 23	14	.77 .95	109 155	.13		1.30	.06	1.03	1	11	
E 57557	4 7	68	4	89	.4	3	10		3.68	3	5	ND	7	30	1	2	2	52	1.51	.039	21		1.15	172	.17		1.52	.07	.89	i	107	
C E7550	•	٠.	•	•	,		•		. 50	,	e	, in	n	90		7	2	5	7 / 6	A71	70	1	.30	23	.01	2	. 35	.06	.07	i	250	
E 57559 E 57559	2	21 16	2 2	26 49	. 6 . 1	1 2	4		1.58 2.64	3 2	5 5	ND OM	8	21	- 1	2	2	15	3.65 18.	.034	29 2 5	4	.55	23 86	.10	2	.76	.07	.54	1	1	
E 57560	1	132	4	289	.3	4	7		3.37	2	5	ND	a	19	3	2	2	26	.66	.042	20	,	.73	89	.13	2	.94	.06	.65	i	i	
£ 57561	2	23	2	129	.2	1	2		2.44	2	5	ND	11	10	i	2	7	9	. 29	.034	26	2	.44	59	.12	2	.67	.07	.52	i	i	
E 57562	ī	5	2	36	.1	i	5		3.17	2	5	NĐ	3	29	1	2	2	24	.64	.082	12	1	.56	159	.15	2	.79	.10	.42	2	1	
E 57563	i	190	2	55	.3	8	22	588	4.21	2	5	ND	5	65	1	2	2	60	1.13	.087	12	11	1.17	310	.21	2	1.59	. 13	.71	i	1	
E 57554	i	11	2	43	.1	2	5		3.05	2	5	ND	5	32	i	2	2	39	.56	.066	15	3	.56	237	. 16	2	.79	.10	.48	2	1	
E 57565	1	27	2	25	.2	1	9		2.57	2	5	ND	5	36	1	2	2	14	1.37	.070	13	1	.64	58	.09	2	.78	.08	.22	1	164	
E 57566	1	4	2	3	.1	1	1	108	.50	2	5	ND	4	8	1	2	2	i	.41	.009	4	2	.06	4	.01	2	. 11	.03	.02	1	3	
E 57567	i	24	2	24	.3	1	5	340	2.39	2	5	ND	5	28	1	2	2	14	.93	.062	12	1	. 58	86	.11	2	.73	.07	.31	!	1	
E 57568	1	25	4	35	.2	1	6	472	2.54	2	5	ND	3	55	1	2	2	16		.064	9	1	.57	43	.08	2	.74	.08	.11	2	3	
£ 57569	i	26	2	25	.2	1	9	297		2	5	ND	4	32	1	2	2	12	. 59	.065	11	1	.50	75	.10	2	. 64	. 10	. 25	2	1	
E 57570	1	7	2	25	. 2	3	4		2.37	2	5	ND	4	26	1	2	2	19	.53	. 059	13	4	.57	131	.13	2	.77	.09	.44	1	1	
E 57571	1	16	4	64	- 1	2	9		3.92	2	5	ND	2	117	1	2	2	55		. 146	7	-	1.06	26	.12		1.53	.11	.07	!	4	
E 57572	1	179	2	75	.2	4	12	855	4.47	3	5	ND	i	135	1	2	2	93	2.19	. lá4	7	2	1.26	26	. 14	2	1.75	.11	.05	1	5	
E 57573	1	35	7	56	1.	13	11	690	3.60	2	5	NΩ	2	119	1	2	2		1.72		ó		1.00	34	.16		1.51	. 16	.08	ŀ	1	
E 57574	ı	45	5	66	.1	10	13		3.66	2	5	ND	1	168	i	2	2			.141	6		1.31	31	. 13		1.97	.13	.06	1	2	
E 57575	1	43	5	111	.7	18		1730		4	5	ND	1	159	1	3	2		4.13		4		2.30	24	.13		2.89	.06	.05	1	520	
E 57576	1	181	3	79	.7	4		1055		2	5	ND	!	197	!	2	2		2.90		5		1.42	28	.12		2.04	.10	.06		440	, «
E 57577	1	17	5	75	27.0	3	12	1152	5.86	2	5	32	2	195	ı	2	8	61	3.55	.125	5	Z	1.35	39	.11	2	1.94	.07	.09	1 3.	2000	•
E 57578	1	16	2	61	.5	2	10		3.87	2	5	ND	1	156	1	2	2		2.35		۵		1.14	31	.13		1.81	.13	.07		270	
E 57579	1	26	7	50	. 3	2	9		3.17	2	5	ND	2	153	i	2	2	-		.149	7	2	.86	47	.13		1.55	. 15	. 10	2	14	
E 57580	1	25	6	44	. 2	2	8		3.10	2	5	ND	2	178	1	2	2			. 149	7	1	.73	51	.13		1.58	.19	.11	!	1	
E 57581	1	12	5	56	. 2	2	ģ		3.46	2	5	ND	2	147	1	2	2			.146	6	1	1.00	31	.12		1.76	. 15	.06	!	3	
E 57582	1	9	2	51	.2	2	8	626	3.45	2	5	ND	1	159	1	2	2	49	1.91	. 153	6	1	.93	44	:12	2	1.70	.15	.08	2	1	
C 67507			2	64		2	10	LAI	7 70	,	ę	MU	1	190	1	,	,	14	1 94	155	6	1	1.00	44	.13	2	1.80	. 16	.08	1	t	

SAMPLE	MO PPM	CU PPM	PB FPM	ZN PPM	AG PPM	NI PPM	CO PPM	HN PPH	FE	AS PPM	U PFM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PFM	CA I	P	LA PEM	CR PFM	M6 7	BA FPM	TI T	B PPM	al I	NA I	K	N FFM	AU# PPB	
E 57584 E 57585 E 57586 E 57587	1 1 1 1	12 7 7 8	2 2 3 4	58 40 63 61	.3 .2 .4	3 2 2 i	9 6 7 5	551 842	3.51 3.01 3.74 3.10	2 2 2 2	5 5 5 5	ND ND ND ND	1 1 2 1	184 242 183 121	1 1 1	2 2 2 2	2 2 2 2		1.94 2.31 1.24	.136 .148 .102	5 6 6	2 2 2 1	.72 1.04 .60	36 48 107 63	.14 .13 .16 .12	9 2 2	1.85 1.61 1.90 1.10	.15 .20 .19 .14	.09 .14 .37	1 2 2 1	3 1 2	1 <i>1</i> -
E 57588 E 57589 E 57590	1 4 1	14 69 14	2 7 2	41 58 45	.1 28.4 .2	2 3 2	7 40 6	1053	3.22 10.67 3.39	2 2 2	5 5 5	ND 143 ND	1 2 1	189 204 219	1 1 1	2 2 2	60 2	55 44 60	1.93 3.91 2.11	.105	7 5 7	2 2	.51 1.06 .70	52 46 102	.08	20 2	1.75 1.68 1.97	.09	.10	3	28000 92	02/T 3,64
E 57591 E 57592 E 57593	t 1 1	21 18 10	4 2 4	44 70 61	.3 .4 .8	2 3 2	7 10 8		3.50 4.20 3.85	2 4 2	5 5 5	ND ND ND	1 2	214 242 170	1 1	2 2 2	2 2 2	61 58 42	2.04 2.31 4.38	. 155	8 7 6		.71 1.28 1.13	93 34 34	.16 .12 .07	31 2	1.94 2.28 1.89	.27 .15 .07	.06	1 2 1	3 85 9 79 5	
E 57594 E 57595 E 57596 E 57597 E 57598	1 1 1 5	15 9 11 7 17	2 5 2 3 2	71 67 60 50 54	.2 .1 .3 .2 .3	2 2 2 2 3	9 8 7 5 7	1190 923 686 623 1063	3.95 3.04 2.63	2 2 2 2 2 2	5 5 5 5 5	ND ND ND ND	1 1 1 2	122 214 180 149 148	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	53 40	3.64 2.45 1.52 1.43 3.17	.148 .150	5 5 6 5		1.25 1.11 .75 .66	25 37 44 36 28	.09 .11 .12 .09	3 2 2	1.75 1.71 1.44 1.21 1.49	.06 .14 .15 .12 .10	.07 .07 .08 .07	1 2 1 2 3	7 4 2 4 425	
E 57599 E 57600 E 57601 E 57602 E 57603	1 1 1 1	18 11 14 12 67	3 2 4 5 3	41 39 61 61 57	1.6 .3 .5 .4	9 1 1 2 1	16 3 5 5 6	927 956	3.82 3.03 3.35 3.18 2.92	2 2 2 2 2	5 5 5 5	ND ND ND CM	3 1 1 1	209 134 140 212 525	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	19 21 22	4.59 2.97 2.14 2.05 2.73	.089 .091	16 5 6 7	14 i i i	.92 .68 .78 .73	41 31 35 44 86	.09 .04 .08 .07	2 2 3	1.87 1.17 1.36 1.49 1.68	.13 .07 .09 .10	.10 .07 .05 .06	2 2 1 1	3020 215 360 235 46	C.1C
E 57604 E 57605 E 57606 E 57607 E 57608	1 1 1 1	3 9 10 75 15	3 2 2 7 3	51 56 56 30 41	.1 .5 5.3	i i 1 2 i	3 5 86 3	585 661 1022 639 642	3.02 B.01	2 2 2 2 2	5 5 5 5	ND ND ND 26 ND	1 1 3 2 1	166 184 473 328 369	1 1 1 1	2 2 2 2 2	2 2 2 15 2	20 20 12	1.04 1.54 3.29 3.05 2.29	.053 .064 .098 .058 .047	5 7 12 12 6	i i i i 1	.43 .43 .69 .44	108 124 72 47 90	.09 .08 .03 .01	2 2 2	.95 1.19 1.71 1.54 1.37	01. 01. 80. 80.	.18 .22 .09 .06 .12	2 1 1 2 2	2 15 16 21700 96	U.665
E 57509 E 57610 E 57611 E 57612 E 57613	1 1 1 1	10 6 118 45 5	2 2 5 2 3	56 52 50 56 67	.1 .6 .9 .3	1 1 6 2 4	8	768 764 1131 819 1001	2.57 3.23 2.94	2 2 2 2 2	5 5 5 5	00 00 00 00 00	2 2 3 1	437 252 236 159 169	1 1 1	2 2 2 2 2	2 2 2 2 2	18 21 24	2.37 1.95 4.33 2.29 2.12	.074 .071 .072 .080	15 12 15 9 5	1 1 4 2 4	.47 .63 .78 .74 1.21	101 51 42 63 66	.02 .03 .01 .07	2 2 2	1.64 1.38 1.63 1.36 1.68	.09 .08 .06 .08	.11 .05 .11 .12	1 1 1 1	385 375 930 33 26	
E 57614 E 57615 E 57616 E 57617 E 57618	1 3 1 1	63 54 42 19	2 2 2 3 3	48 41 68 95 65	.2 .1 .2 .3	2 1 1 2		793 896 1029 1180 834	2.88 3.81 5.35	2 2 2 2 2	5 5 5 5	ND ND ND ND	1 1 1 2	143 156 274 147 177	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	16 26 57	2.14 3.45 2.93 2.52 2.21	.072 .084 .111 .134 .113	4 4 9 6	2 1 1 1	.74 .67 .94 1.50	59 34 47 91 61	.08 .03 .05 .18	2 4 2	1.25 1.30 1.91 2.10 1.56	.09 .07 .10 .08	.12 .08 .07 .39	2 2 2 1	9 84 11 42 2	
E 57619	1	168	2	45 132	.6	1		1253		5	5	ND 7	7 38	131 52	l 19	2 18	2 19		7.08		42 39	1 61	.13	32 181	.01	2 32	1.12 1.98	.03	.10	2 13	130 500	

F	a	a	e	
•	٠.,	7	_	

CATHEDRAL GOLD PROJECT-4544 FILE # 87-6222

SAMPLES	MG	CU	P8	ZN	A6	NI	CO	MN	FE	AS	IJ	AU	TH	SR	CD	SB	BI	V	CA	P	LA	CR	M6	BA	TI	B	AL	NA	K	H	AU#
	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	1	PPH	PPM	PPM	PPH	PPM	PPM	PP#	PPM	PPM	ı	1	PPM	PPM	1	PPH	1	PPM	1	1	1	PPM	PPB
£ 57420	1	94	2	20	.4	1	5	873	1.94	2	5	ND	5	83	1	2	2	9	4.22	.077	26	1	.06	43	.01	3	.50	.02	.10	ı	135
£ 57621	1	14	3	79	. 2	1	6	1015	3.51	2	5	ND	2	121	1	2	2	26	2.14	.115	9	1	. 87	42	.08	4	1.36	.08	.09	1	11
E 57622	1	13	2	58	.1	1	5	715	3.39	2	5	ND	2	119	1	2	2	32	1.38	.116	6	1	.62	74	.11	4	1.12	.15	.15	1	8
E 57623	1	29	2	57	.1	1	7	692	3.42	2	5	ND	3	130	1	2	2	34	1.28	.117	7	1	.70	83	.12	3	1.19	. 15	.17	1	3
E 57624	1	11	3	65	.1	1	5	800	3.29	2	5	ND	2	133	1	2	2	28	1.54	.125	7	1	.74	54	.10	26	1.31	. 15	.09	1	10
£ 57625	i	6	2	66	.1	1	8	792	3.26	3	5	ND	2	119	1	2	2	25	1.61	.122	7	1	.87	56	.09	4	1.44	.11	.ii	1	5
E 57626	1	6	2	48	.2	3	21	755	3.89	2	5	NĐ	1	74	1	2	2	41	1.96	. 094	3	3	1.01	112	.10	2	1.48	.08	.44	2	16
E 57627	1	33	3	52	.3	5	10	699	2.93	2	5	ND	2	186	1	2	2	55	2.26	.149	1	5	1.10	57	.10	2	1.80	. 15	.12	1	4
E 57628	1	19	2	46	.2	3	9	571	3.10	2	5	ND	2	157	1	2	2	60	1.94	.160	6	2	1.00	42	.10	2	1.64	.15	.10	1	4
STD C/AII-R	19	58	42	132	7.6	67	78	1052	4.14	44	19	8	39	48	19	17	20	58	. 49	.084	39	58	.92	180	.07	32	1.96	.07	.13	12	485

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS BILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR H6 BA TI 8 W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Core AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE.

				-	SAMPL	E TYPE	: Care	: 1	NUS ANA	LYSIS	BY AA	FROM 1	O GRAM	SAMPL	£. ,				0	1											
DATE RE	CEIV	ED:	DEC	17 19	87	DAT	TE F	EF0	RT M	AILE	ED:	Z	م	23	187	ASS	SAYE	F	Ø. c.	Ay.	1. D	EAN	ΤΟΥ	Ε, (CERT	IFI	ED B	.c.	ASS	AYEF	R
							I	MPE	RIAL	MET	ALS						1 <i>e</i>					age									
SAMPLE	MO PPM	CU PPH	PB PPM	ZN PPM	A6 PPM	NI PPM	EB PPM	HN PPH	FE	AS P PM	U PFM	AU PPM	TH P PM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P 1	LA FPM	ER PPM	M6 I	BA PPM	11	B PPM	AL 1	NA I	K I	N PPM	AU 8 PPB
E 57629 E 57630 E 57631 E 57632 E 57633	1 1 1 1	15 14 13 9	2 5 4 4 3	61 51 69 63 62	.2 .1 .2 .1	3 3 1 1	8 7 8 7 5	865 720 851 835 832	3.30 2.81 2.85 3.02 3.36	2 2 2 2 2 2	5 5 5 5	ND ND ND ND	1 1 2 1 2	336 194 165 177 160	1 1 1 1	2 2 2 2 2	2 2 2 2 2	54 44 39	2.16 1.86 1.92 1.75 1.56	.149	8 6 6 6	3 2 2 2 1	.98 .80 1.09 .88	200 92 73 104 173	.16 .12 .11 .11	19 16 24	2.08 1.72 1.83 1.59 1.47	.27 .26 .19 .19 .20	.31 .17 .12 .16 .30	1 1 1 1	12 6 1 1 6
E 57534 E 57635 E 57636 E 57637 E 57638	1 1 1 1	9 4 5 4	6 3 5 2 5	83 64 59 62 60	.2 .1 .1 .3	2 3 1 1	5 4 4 5	747 795	3.53 3.66 3.12 3.28 3.51	2 2 2 2 2 2	5 5 5 5 5	HD HD HD HD	1 1 2 1	135 157 344 160 224	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 32 35	2.54 1.89 1.60 1.52 1.92	.079 .104 .115	5 6 7 6		1.23 1.02 .68 .69	194 272 139 122 193	.14 .16 .12 .12 .12	12 15 14	1.89 1.83 1.70 1.43 1.66	.14 .20 .20 .19 .19	.51 .57 .23 .24 .33	1 1 1 1	1 2 1 4
E 57639 E 57640 E 57641 E 57642 E 57643	1 1 1 1 1	5 9 2 15 4	3 9 3 5	62 95 80 73 69	.1 .1 .1 .1	1 2 1 1	5 !! 7 7	767 96 4	3.49 3.40 2.69 3.59 3.48	2 3 2 2 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	228 249 160 214 179	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	34 19 31	2.17 1.56 1.44 2.05 2.96	.148 .131 .144	5 5 5 5		.79 1.55 1.33 .91	138 89 49 68 64	.12 .12 .08 .10	24 15 15	1.70 2.55 2.09 1.79 1.78	.21 .18 .13 .18	.25 .11 .07 .09	1 1 1 1	1 1 2 5 2
E 57644 E 57645 E 57646 E 57647 E 57648	1 1 1 1	3 4 39 56 7	7 6 5 4 4	93 71 48 97 23	.1 .2 .2 .2 .1	1 1 14 15 1	7 6 15 19 4	545 851	3.96 3.43 3.06 4.77 3.10	2 2 2 2 2	5 6 5 5	ND ND ND ND	1 1 5 6 7	202 158 57 47 24	1 1 1 1	2 2 2 2 2	2 2 2 2 2	32 55	4.59 2.00 1.32 1.06 .65	.118	5 5 11 12 20	1 35	1.41 .98 1.24 2.33 .49	61 63 128 389 223	.06 .11 .16 .25 .12	14 16	2.32 1.62 1.54 3.01 .82	.08 .16 .15 .16	.12 .08 .78 1.49 .43	1 1 1 1	1 1 2 1
E 57649 E 57650 E 57651 E 57652 E 57653	1 1 1 1	26 8 4 110 65	3 5 2 2 2	47 25 24 39 32	.1 .1 .1 .3	6 4 2 3 2	9 5 2 12 5	516	3.61 2.24 1.62 3.35 2.88	2 2 2 2 2 2	5 5 5 5 7	ND ND ND ND	4 7 4 4 5	40 29 25 109 48	1 1 1 5	2 2 2 2 2	2 2 2 2 2 2	23 11	1.75	.058	12 18 8 12 16	6 3 1 4	1.03 .57 .63 .91	160 73 58 50 142	.15 .10 .05 .06	18 13 15	1.40 .85 .81 1.58	.18 .14 .09 .09	.59 .33 .27 .15	2 1 1 1	1 2 4 1 3
E 57654 E 57655 E 57656 E 57657 E 57658	! ! ! !	36 79 13 37 81	2 6 8 5	40 80 62 68 46	.3 .1 .1	1 9 1 1	7 13 10 8 10	693 585 605	3.25 4.10 4.34 4.57 3.36	2 2 2 2 2	5 5 5 5	00 00 00 00 00	5 3 2 2 3	23 64 74 73 38	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	21	1.17 1.47 1.12	.134	18 7 9 9	1	.90 1.72 .94 1.09 1.06	159 191 62 152 212	.15 .17 .09 .12 .14	16 16 15	1.17 2.19 1.35 1.54 1.33	.13 .15 .13 .11	.60 .77 .12 .27	1 1 1 1 1 1	2 1 8 1 1
E 57659 E 57660 E 57661 E 57662 E 57663	i i i i	35 7 14 5 7	3 4 5 5 4	68 68 72 76 87	.2 .4 .4 .1	9 4 6 10 3	16	1330 1225	4.11 4.78 4.78 4.36 4.72	2 2 2 3 2	5 5 5 5 5	00 00 00 00 00	2 3 2 1 3	158 121 126 121 113	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	69 68 69	3.87 3.95	.138	7 8 5 4 7	5 5 9	1.28 1.50 1.51 1.99 1.51	64 64 42 42 50	.11 .08 .09 .09	10 8 5	1.89 1.98 2.09 2.72 2.07	.16 .10 .12 .11	.12 .16 .11 .11	1 1 1 1 1	4 3 198 2 4
E 57664 STD C/AU-R	1 19	9 50	7 41	44 134	5.3 7.7	2 69		127 <u>6</u> 10 5 1		4	5 19	5 8	3 9	136 48	1 19	2 16	2 21	26 59		.123	7 40	1 60	.81 .92	61 183	.03		1.34 1.98	.04 .08	.16	! 13	4810 495

SAMPLE	HO PPM	CU PPM	PB PPM	ZN PPM	A6 PPM	NI PPM	CO PPM	MN PPM	FE I	AS PPH	U PPM	AU PPM	TH PPM	SR PPM	CO PPM	SB PPM	BI PPM	V PFM	ea Z	P	LA PPM	CR PPM	M6 1	BA PPM	TI I	B PPM	AL I	NA I	K 1	N PPM	AUT PPB
E 57655	1	4	2	69	. 1	2	8	1273	3.43	2	S	ND	3	87	1	2	2	27	5.58	.109	9	1	1.22	59	.03	2	1.86	ەن.	.17	1	125
E 57666	1	6	2	48	. 2	2	8	1159	4.30	2	6	ND	2	150	1	2	2	52	3.95	.139	7	1	1.16	41	.09	2	1.87	.14	.12	1	16
E 57667	1	7	2	52	.2	1	6	816	2.93	2	5	ND	1	184	ı	2	2	32	3.26	. 122	5	1	.82	48	.08	2	1.76	. 19	.12	1	55
E 57668	1	14	2	48	.1	1	5	509	2.71	3	5	ND	1	148	1	2	2	30	1.43	.095	6	1	.63	28	.11		1.54	. 24	. 07	2	2
E 57669	1	24	2	82	. 2	7	7	887	3.75	2	5	ND	3	100	1	2	2	35	1.38	.062	10	1	1.48	186	.09	2	2.19	. 21	.88	1	3
E 57670	1	18	2	24	. 1	4	6	326	1.38	2	5	ND	1	68	i	2	2	25	1.10	.021	5	11	. 59	184	.07	2	.90	.08	. 44	1	1
E 57671	1	34	2	69	.1	48	15	529	3.70	2	5	ND	3	20	i	2	2	82	.79	.072	7	113	2.19	233	.20	5	2.45	. 18	1.43	i	1
£ 57672	i	5	2	34	.2	1	2	562	2.37	2	5	ND	4	64	1	2	3	12	1.15	.021	10	2	.37	81	.06	2	. 88	.21	.19	1	2
E 57673	1	3	2	25	.1	1	1	747	1.26	2	5	ND	2	68	1	2	2	7	1.96	.012	7	1	. 31	59	.04	2	.61	.11	.20	1	1
E 57674	1	6	2	14	.1	1	1	273	1.08	2	5	ND	3	42	1	2	2	4	.62	.007	7	2	.12	49	.02	2	.37	.10	.09	1	178
E 57675	3	21	2	72	. 2	5	. 10	879	3.53	2	5	ND	7	41	1	2	2	51	1.58	.090	21	3	1.36	158	.16	2	1.85	.10	.93	1	31
E 57676	ĭ	492	3	92	1.3	15	17	1207	4.71	3	5	MD	3	69	ì	2	2		3.53	.057	9	14	1.96	128	.09	2	2.58	.08	.53	1	415
E 57677	i	35	2	63	.3	18	12	946	3.47	2	6	ND	5	67	1	2	2		3.07	.050	15	28	1.55	40	.08	2	2.10	.13	.13	1	39
E 57678	i	39	2	78	.1	6	11	992	3.78	2	5	ND	2	149	1	2	2		2,42	.106	11	9	1.38	122	.08	3	2.47	.10	.23	1	8
E 57679	i	14	i	62	.3	2	6	1113		3	5	ND	2	140	i	2	2		3.57	.068	8	1	1.05	95	.04		1.83	.07	.23	1	3
£ 3/4/1	•	• •	•		•••	•	•		••••	•	-		_	•	-	•	•														
E 57680	1	7	2	116	.2	11	17	1410	4.83	2	5	DM	2	71	1	2	2		2.42	.070	7		2.22	351	. 20		3.30	. 0á	1.95	1	- 1
E 57681	1	21	6	69	.1	5	9	1128	3.24	2	5	ND	1	294	1	2	2			.100	5		1.29	114	. 13		2.06	.15	. 19	1	44
E 57682	i	67	2	63	.1	2	9	956	3.23	3	5	ND	1	120	1	2	2		2.49	. 158	6		1.07	65	.07		1.84	.12	.10	I	13
E 57683	1	15	4	59	.4	3	7	3168	3.63	2	5	ND	1	231	ı	2	2	29	7.52	. 101	4	i	1.38	36	.03		1.74	.05	.08	1	860
E 57684	1	234	3	99	.3	27	16	1841	5.57	4	5	ND	1	145	1	2	2	75	5.02	.057	2	49	2.45	41	.11	2	3.11	.07	.09	Į.	164
£ 57685	1	8	3	56	. 2	6	7	1170	3.37	6	5	ND	1	158	i	2	2	37	3.04	.082	6	10	1.17	80	.08	2	1.80	.11	.10	1	9
E 57686	1	4	2	53	.3	1	5	716	2.85	2	5	ND	2	188	1	2	2	30	1.26	.096	8	1	.72	105	. 10	2	1.46	. 21	. 18	1	1
E 57687	1	20	2	67	.2	1	11	870	3.20	2	6	ND	1	205	1	2	2	24	1.35	.088	7	1	. 56	121	.11	4	1.43	.23	. 35	ı	1
E 57688	1	- 6	2	69	.1	1	4	867	2.84	2	5	ND	1	295	1	2	2	21	1.40	.096	8	i	. 52	120	.10	2	1.58	. 24	. 24	1	1
E 57689	1	15	4	69	.2	1	4		2.19	2	5	ND	1	154	1	2	2	17	1.12	.087	7	i	.66	90	.09	2	1.32	.12	.20	1	1
E 57690	1	5	2	67	.1	1	3	846	2.82	2	5	ND	1	142	1	2	2	23	1.29	.099	7	i	.53	86	.10	2	1.33	.21	. 25	1	1
E 57691	1	5	2	50	.2	i	1		2.74	2	5	ND	2	184	i	2	2		2.32	.085	7	i	.67	68	.06		1.19	.10	.11	2	1
E 57692	1	14	3	75	.3	i	À	1051	2.74	2	5	ND	2	203	i	2	2		1.95	.087	7	1	.72	79	.08	2	1.41	. 15	.13	1	i
		5	2	64	.1	1	3		2.38	ž	5	ND	ī	93	i	2	2	18	.98	. 059	5	1	.50	208	.09	2	.92	.12	.24	1	2
E 57693	1	4	2	39	.;	i	4	791	2.21	2	5	3	i	118	i	2	3		1.97	.048	5	i	.33	136	.04	2	.70	.10	.16	2	2370
E 57694	i	•	2	37	.,	٠	7	771	2.21	•	•	J	•		•	•	•	••			•	•				_					
E 57695	1	8	2	62	.1	1	3	874	2.28	2	5	MD	1	113	1	2	2	17	.93	.059	5	1	.50	206	.09	2	.98	.14	.22	1	25 4 5
E 57696	1	10	2	55	.1	1	3	928	2.25	2	5	ND	1	109	ı	2	2		1.33	.064	5	1	. 49	305	.08	2	.87	.12	.19	•	
E 57697	1	10	2	61	.1	1	4	1024	2.49	2	5	ND	1	87	1	2	2		1.59	.069	5	1	.50	132	.07	2	.89	.10	.15	1 1	59 2
E 57698	1	9	4	40	.1	1	4	926	2.51	3	5	ND	2	760	1	2	2		2.80	.076	10	1	.51	231	.03		2.03	.13	.16		
E 57699	1	13	2	64	. 2	1	5	860	2.76	3	5	NĎ	2	649	ı	2	2	19	2.80	.084	11	ı	.49	154	.03	2	2.31	.13	. 15	1	1
E 57700	1	12	2	49	. 1	1	4	1439	2.42	3	5	ИĎ	4	423	1	2	3	14	6.17	.079	27	1	.26	92	.01		1.85	.08	.10	2	93
STD C/AU-R	18	58	28	132	7.4	68	28	1110	4.10	44	21	8	28	47	19	18	19	57	.49	. 093	39	59	.91	178	.07	32	1.95	.07	. 15	12	510

SAMPLED	MO PPM	CU PPM	PB P PH	ZN PPH	A6 PPM	NI P PM	CO PPM	MN PPM	FE 1	AS F PM	U FPM	AU P PM	TH PPM	SR P PM	CD P PM	SB PPM	BI Mqq	V PPM	CA 1	P	LA P PM	CR PFM	#6 I	BA PPM	TI I	B PPM	AL Z	NA Z	K	N PPM	AU\$ PPB
E 57701 E 57702	1	14	2 2	67 71	.3	1	4	995 849	2.49 2.61	3 2	5 5	ON ON	2	131 118	1	2 2	2 2	16	2.40 1.55	.087 .082	12 6	l i	.65 .70	288 43	.02 .05	2	1.18	.07 .10	.08	1	168 1
£ 57703	1	31	3	68	. 3	6	9	829	3.01	2	5	ND	2	182	ı	2	2	39	1.56	.070	6	9		209	.13		1.77	.10	.44	1	240
E 57704	1	10	2	52	.1	5	7	591	2.56	2	5	ND	1	129	1	2	2	39	1.07	.076	8	9	.89	187	.12		1.43	.14	. 35	1	1
E 57705	1	11	2	54	.1	4	7	660	2.85	2	5	ND	1	88	1	2	2	43	1.15	.074	5	8	.97	209	.13	2	1.48	.13	. 46	1	1
E 57706	1	9	2	55	. i	4	7	699	2.92	2	5	ND	1	88	1	2	2	44	1.19	.070	5	6	1.00	225	.13	2	1.50	. 15	.53	1	1
E 57707	1	9	3	56	.1	5	8	709	2.89	3	5	NĐ	1	87	1	2	2	46	1.16	.067	4	8	1.04	257	. 14		1.60	. 14	.56	1	1
E 57708	1	8	5	53	.3	12	10	838	3.50	7	5	KD	2	455	1	2	2	42	3.66	.065	5	10	1.24	102	.07	2	2.94	. 16	. 16	1	i
E 57709	1	73	2	57	.2	14	9	1334	3.23	9	5	ND	2	192	1	2	2	34	5.21	.070	5	11	1.10	56	.04	2	1.97	.08	.11	1	310
E 57710	i	23	2	52	.1	2	7	804	2.63	2	5	ND	1	639	1	2	2	22	2.55	.068	8	4	.94	138	.09	2	2.08	.11	.25	1	3
E 57711	1	19	3	47	.1	3	6	652	2.53	2	5	ND	1	126	1	2	2		1.68	.068	5	4	.81	162	.11		1.35	.10	.35	l	!
E 57712	1	11	2	47	.1	4	7	536	2.28	2	5	HD	1	81	1	2	2	36	. 99	.073	ė	6	.79	154	.11		1.21	.12	.32	1	!
E 57713	1	11	3	60	.1	6	10	772	3.05	2	5	ND	2	76	1	2	2		1.57	.077	4	9	1.23	79	.10		1.54	.09	.15	1	1
E 57714	1	38	3	55	. 2	ò	8	699	2.68	3	5	ND	1	75	1	2	2	42	1.52	.078	5	9	1.02	118	.10		1.37	. 10	.22	ı	27
E 57715	1	14	2	52	.2	6	9	565	2.66	2	5	NB	i	81	1	2	2	43	1.08	.084	5	9	1.04	141	.12	27	1.47	.13	.28	i	1
E 57716	1	17	2	47	.1	5	8	529	2.79	2	5	ND	2	73	1	2	2	52	.99	.078	6	11	.92	225	.14		1.48	.18	.51	1	1
E 57717	1	7	2	57	.1	4	7	725	2.52	2	5	ND	1	73	1	2	2	32	1.06	.068	3	6	. 92	142	.11		1.32	.11	. 36	1	3
E 57718	1	5	6	53	1.	3	6	694	2.27	2	5	ND	- 1	79	1	2	2	26	1.21	.066	5	4	.74	140	.10		1.13	.10	.30	1	119
E 57719	1	9	2	51	.1	2	5	638	2.21	2	5	ND	2	88	1	2	2	26	.97	.065	5	3	.69	154	.10		1.02	.09	.28	1	9
E 57720	18	21	5	60	1.3	3	6	961	2.66	2	5	D	2	76	1	2	2	27	1.80	.075	7	3	.82	114	.08	2	1.15	.09	.22	1	970
E 57721	7	20	2	43	.1	1	4	703	1.59	2	5	ND	2	67	1	2	2	12	1.89	. 056	7	2	.49	79	.03	2	.83	.06	.13	i	73
E 57722	í	- 6	2	49	.2	2	i i	621	1.86	2	5	ND	3	58	1	2	2	21	.71	.040	8	2	. 57	183	.10	2	.93	.08	. 38	i	6
E 57723	i	i	i	47	.1	2	4	408	1.67	2	5	ND	3	80	i	2	2	16	1.03	.057	8	1	.52	134	.07	2	. 86	.07	.22	1	42
E 57724	•	10	5	47	.1	2	i	656	1.63	2	5	ND	2	75	1	2	2	14	1.46	.058	8	1	. 52	102	. 05	2	. 85	.07	. 18	1	104
E 57725	i	5	2	42	i.	2	4		1.72	2	5	ND	2	57	1	2	2		1.19	.053	7	1	.50	177	.08	4	.84	.08	. 37	1	2
E 57726	1	ė	2	47	.1	۵	4	633	1.75	2	5	HD	2	67	1	2	2	18	1.20	.056	7	11	.56	142	.09	2	.94	.08	.28	1	7
E 57727	13	9	3	34	. 6	2	4		1.62	2	5	ND	2	69	1	2	2	11	2.51	. 059	7	1	.41	93	.02	2	.72	.06	.20	2	219
E 57728	1	15	4	37	.1	1	4		1.73	2	5	ND	2	86	1	2	2	11	2.31	.058	7	1	.50	86	.03	2	. 87	.08	.15	1	4
E 57729	i	6	3	51	. 2	2	7		2.87	3	5	ND	2	118	1	2	2	40	1.58	.071	6	4	.93	165	.12	2	1.45	. 12	. 33	1	2
E 57730	i	ě	2	53	. i	4		1128		3	5	MD	1	96	1	2	2	31	3.25	.076	2	6	1.06	73	.08	2	1.49	.08	.16	1	1
E 57731	1	11	2	56	. 1	6	9	772	2.99	2	5	ND	i	228	i	2	2	41	1.99	.079	6		1.17	97	.09		1.76	.11	.16	1	1
E 57732	1	9	3	50	.1	4	1		2.62	2	5	ND	1	95	ı	2	2		1.19	.079	6	5	. 92	147	.12		1.43	.12	.27	1	!
E 57733	i	9	2	62	. 2	3	9	743	2.83	2	5	ND	1	121	1	2	2	29	1.53	. 083	5	2	1.15	51	.08		1.66	.09	.08	1	1
E 57734	i	43	6	60	.1	2	1		2.85	2	5	ND	1	116	1	2	2	29	2.29	.083	6	3	1.04	51	.06		1.58	.09	.08	1	126
£ 57735	i	11	2	47	.1	5	7		2.62	2	5	ND	1	88	1	2	2	43	1.08	.079	6	12	.87	234	.14	2	1.39	. 14	. 45	1	4
E 57736	i	9	2	45	.1	5	7		2.18	2	5	ND	2	75	1	2	2	32	.89	.077	8	15	.83	161	.11		1.18	.12	.30	1	1 510
STD C/AU-R	18	58	40	132	7.6	67	28	1071	4.16	43	20	8	39	47	19	17	19	50	. 49	.084	39	58	.92	179	.07	21	1.97	.07	.13	11	710

SAMPLE	MQ PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPN	CO PPM	MN P P M	FE	AS PPM	U P PM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	91 PPM	V PPM	CA 1	P	LA F PN	CR PPM	M6 1	BA PPM	11 2	B PPM	AL I	NA I	K I	N PPM	AU# PPB
E 57737	1	16	2	49	.1	6	8	588	2.75	2	5	ND	1	156	1	2	2	46	1.36	.076	6	11	.97	179	.12	2	1.51	.11	.27	1	4
E 57738	1	19	2	37	.4	1	4	752	1.67	2	5	ND	3	102	i	2	2	12	2.33	.051	9	1	.47	96	.02	2	.97	.06	.16	i	566
E 57739	1	25	4	45	. 1	i	4	810	1.80	2	5	ND	2	111	1	2	2	12	2.74	. 053	8	1	.53	72	.01	21	1.13	.07	. 13	1	158
£ 57740	i	19	,	51	.1	•	6		2.36	2	5	ND	3	106	1	7	2	27		.061	9	7	.70	155	.08	3	1.35	.11	. 28	1	23
E 57741	i	14	2	54	.1	2	4		1.90	2	5	ND	3	86	i	2	2	19	1.11	.064	8	2	.63	172	.09	25	1.11	.07	.35	1	14
E 57742	ı	9	3	46	.1	2	4	575	1.68	2	5	ND	2	62	1	2	2	16	.97	.054	7	1	.54	163	.07	2	.92	.06	.31	1	4
E 57743	1	10	3	50	.2	2	4	674	1.85	2	5	ND	3	80	1	2	2	16	1.38	.066	9	2	.60	110	.04	2	1.13	.06	.23	2	1
E 57744	1	43	2	50	. 2	2	4	687	1.86	2	5	ND	3	78	i	2	2	17	1.42	.058	10	2	.57	155	.04	29	1.07	.06	.30	i	140
E 57745	i	12	3	44	. 2	2	4	732	1.70	2	5	ND	3	70	1	2	2	12	1.93	. 054	9	2	.49	93	.03	2	.85	.05	.16	1	98
E 57746	i	5	2	42	. 2	2	2	884	1.69	3	5	NĐ	3	82	1	2	2	16	1.49	.060	10	1	.58	138	.06	29	.96	.07	. 29	2	4
E 57747	1	4	2	34	2.7	2	1	1209	2.01	2	5	4	4	83	i	2	2	8	3.23	.070	14	1	.68	82	.01	5	. 95	.05	.18	2	4220
E 57748	1	8	5	49	.4	1	4	620	1.83	2	5	ND	3	69	ı	2	2	17	1.22	.060	9	2	. 57	143	. 07	32	.92	.06	. 27	2	440
E 57749	1	7	2	49	.1	2	4	580	1.73	2	5	ND	3	78	1	2	2	17	1.23	. 054	9	1	.55	149	.09	4	.93	.06	.28	1	17
£ 57750	i	ģ	2	45	. 2	2	4	623	1.92	2	5	ND	2	104	1	2	2	20	1.13	.056	8	2	.56	179	.10	28	.97	.08	.40	1	163
STO C\AU-R	18	57	39	132	7.3	67	28		4.15	41	23	7	38	47	19	18	20	56	.49	.083	39	57	.93	176	.07		1.98	.07	.14	12	505

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: Core AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: BEC 18 1987 DATE REPORT MAILED: DEC 2467 SAMPLE 1987 CATHEDRAL GOLD PROJECT 45 44 File # 87 - 6200 Fage 1 SAMPLE 2467 File # 87 - 6200 Fage 1 SAMPLE 2467 File # 87 - 6200 File File File File File File File File	
No	C. ASSAYER
Fig. Fig.	
E \$77753	
E \$7753	
E \$77752	
E 57755	
E 57756 1 50 3 46 .3 2 4 656 1.68 3 5 M0 2 89 1 2 2 15 1.35 .055 7 2 .32 111 .07 2 .02 .05 E 577578 1 9 3 48 .3 2 4 651 1.75 2 5 M0 2 7 6 1 2 2 15 1.35 .055 7 2 .32 111 .07 2 .02 .05 E 57758 1 9 3 48 .3 2 4 651 1.75 2 5 M0 2 7 6 1 2 2 16 1.24 .054 7 1 .53 141 .08 2 .87 .05 E 57750 1 27 4 2 42 .1 1 4 728 1.73 3 5 M0 2 7 7 1 2 2 14 1.45 .053 6 2 .51 79 .05 4 80 .05 E 57750 1 24 2 42 .1 1 4 728 1.73 3 5 M0 2 7 7 1 2 2 15 1.96 .056 7 1 .50 70 .04 3 .75 .04 E 57762 1 12 4 2 42 .1 1 4 728 1.73 3 5 M0 2 7 1 1 2 2 15 1.96 .056 7 1 .50 70 .04 3 .75 .04 E 57762 1 12 4 52 .2 2 4 590 1.90 3 5 M0 2 7 1 1 2 2 2 15 1.96 .056 7 1 .50 70 .04 3 .75 .04 E 57762 1 12 4 52 .2 2 4 590 1.90 3 5 M0 2 7 1 1 2 2 2 1 .90 .057 8 2 .55 174 .10 2 2 .90 .05 E 57764 1 2 2 2 47 .3 1 4 673 1.75 2 5 M0 2 7 2 1 2 2 2 1 .90 .057 8 2 .55 174 .10 2 2 .90 .05 E 57768 1 1 20 2 2 47 .3 1 4 673 1.75 2 5 M0 2 7 2 1 2 2 2 1 .90 .057 8 2 .55 174 .10 2 2 .90 .05 E 57768 1 1 2 2 2 4 4 .18 2 4 622 1.88 4 5 2 2 2 2 1 .80 .05 7 1 .50 179 .11 5 .90 .06 8 2 .91 .05 E 57768 1 1 2 2 2 47 .3 1 4 673 1.75 2 5 M0 2 7 2 1 2 2 2 1 .90 .057 8 2 .55 174 .00 .00 4 2 .00 E 57768 1 2 2 2 4 4 .18 2 4 622 1.88 4 5 2 2 5 M0 2 7 2 1 2 2 1 15 1.05 .056 7 1 .55 10 .10 .00 .00 4 2 .00 .00 E 57768 1 2 2 2 4 4 .18 2 4 622 1.88 4 5 2 2 2 2 1 .90 .05	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	
E 57758	
E 57759 1 17 3 43 1.0 2 6 571 1.98 3 5 2 2 77 1 1 2 2 14 1.66 .051 6 2 .51 96 .05 8 .89 .05 E 57760 1 24 2 42 .1 1 4 728 1.73 3 5 ND 2 71 1 2 2 15 1.96 .056 7 1 .50 70 .04 3 .76 .04 E 57761 1 30 2 48 .2 2 4 616 1.75 5 5 ND 2 71 1 2 2 2 15 1.96 .056 7 1 .53 70 .04 3 .76 .04 E 57762 1 12 4 52 .2 2 4 .590 1.90 3 5 ND 2 71 1 2 2 2 14 1.66 .051 6 7 1 .53 70 .04 3 .76 .04 E 57764 1 22 2 47 .3 1 4 .673 1.75 2 5 ND 2 72 1 2 2 21 .71 .055 7 1 .56 .07 1 .50 .07 .01 5 .94 .06 E 57764 1 22 2 47 .3 1 4 .673 1.75 2 5 ND 2 72 1 2 2 16 1.54 .056 7 1 .53 104 .06 2 .81 .05 E 57765 1 26 2 44 1.8 2 4 .622 1.86 4 5 2 3 .62 1 2 2 15 1.31 .055 7 1 .53 104 .06 2 .81 .05 E 57765 1 26 2 44 1.8 2 4 .622 1.86 4 5 2 3 .62 1 2 2 15 1.31 .055 7 1 .53 104 .06 2 .81 .05 E 57768 1 7 2 .50 .05	
E 57760 1 24 2 42 .1 1 4 778 1.73 3 5 ND 2 71 1 2 2 15 1.96 .056 7 1 .50 70 .04 3 .76 .04 E 57761 1 30 2 48 .2 2 4 616 1.59 5 5 ND 2 71 1 2 2 14 1.45 .056 7 1 .50 70 .04 3 .76 .04 E 57762 1 12 4 52 .2 2 4 590 1.90 3 5 ND 2 72 1 2 2 21 .90 .057 8 2 2 .56 176 .10 2 .92 .06 E 57763 1 8 5 50 .1 2 4 570 1.84 2 5 ND 2 72 1 2 2 21 .71 .055 7 1 .56 197 .11 5 .94 .06 E 57765 1 26 2 44 1.8 2 4 622 1.86 4 5 2 3 ND 2 72 1 2 2 21 .71 .055 7 1 .56 197 .11 5 .94 .06 E 57765 1 26 2 44 1.8 2 4 622 1.86 4 5 2 3 62 1 2 2 15 1.31 .056 7 1 .49 119 .06 6 .76 .05 E 57766 1 12 2 47 .2 1 4 .575 1.68 2 5 ND 2 72 1 2 2 15 1.31 .056 7 1 .49 119 .06 6 .76 .05 E 57767 1 8 6 48 .4 2 4 663 1.81 3 5 ND 2 91 1 2 2 18 1.61 .054 7 2 .52 134 .07 2 1.15 .06 E 57769 1 21 3 44 .8 1 4 .99 2.00 2 5 ND 2 72 1 2 2 16 1.15 .05 .77 2 .52 134 .07 2 1.15 .06 E 57769 1 21 3 44 .8 1 4 .99 2.00 2 5 ND 2 72 1 2 2 16 1.15 .05 .77 1 .53 104 .06 2 .81 .05 E 57770 1 16 3 3 47 1.6 2 4 672 1.91 3 5 2 2 60 1 2 2 13 1.53 .057 7 1 .53 178 .09 2 .99 .05 E 57777 1 1 3 1 2 2 2 3 3 4 .8 1 4 .99 2.00 2 5 ND 2 72 1 2 2 14 1.00 .054 7 2 .52 134 .07 2 1.15 .06 E 57774 1 1 3 1 2 2 2 3 3 4 .8 1 4 .99 2.00 2 5 ND 2 72 1 2 2 14 1.00 .054 7 2 .52 134 .07 2 1.15 .06 E 57774 1 1 3 1 2 2 2 3 3 4 .8 1 4 .99 2.00 2 5 ND 2 72 1 2 2 14 1.00 .054 7 2 .52 134 .07 2 1.15 .06 E 57775 1 2 3 4 .8 1 4 .99 2.00 2 5 ND 2 72 1 2 2 14 1.00 .054 7 2 .52 134 .07 2 1.15 .06 E 57777 1 1 3 3 2 5 2 3 3 2 4 .69 1.85 3 5 ND 2 75 1 2 2 16 1.15 .00 .00 7 2 .52 134 .07 2 1.15 .06 E 57777 1 1 3 1 2 2 5 2 3 3 2 4 .69 1.85 3 5 ND 2 75 1 2 2 14 1.00 .054 7 2 .52 134 .07 2 1.15 .05 E 57777 1 1 3 3 2 5 5 .3 2 4 .69 1.89 2 5 ND 2 75 1 2 2 14 1.00 .054 7 2 .50 .89 .05 2 .89 .05 E 57778 1 1 3 3 2 5 5 .3 2 4 .69 1.89 2 5 ND 2 75 1 2 2 14 1.00 .00 8 2 .59 .05 E 57778 1 1 10 2 48 .3 1 4 .69 1.89 2 5 ND 2 77 1 2 2 2 13 1.41 .053 6 1 .52 78 .04 2 .99 .05 E 57778 1 1 1 4 4 4 5 1 1 4 .99 1.07 3 5 ND 2 77 1 2 2 2 13 1.41 .053 6 1 .52 78 .04 2 .99 .05 E 57778 1 1 1 4 4 5 4 .2 2 5 .69 7 .09 2 5 ND 2 77 1 2 2 2	
E 57761	
E 57762	***************************************
E 57762	
E 57764	
E 57765 1 26 2 44 1.8 2 4 522 1.86 4 5 2 3 62 1 2 2 15 1.31 .056 7 1 .49 119 .06 6 .76 .05 E 57766 1 12 2 47 .2 1 4 575 1.68 2 5 ND 3 68 1 2 2 2 16 1.03 .055 7 1 .53 124 .08 2 .81 .05 E 57767 1 8 6 48 .4 2 4 663 1.81 3 5 ND 2 91 1 2 2 18 1.61 .054 7 2 .52 134 .07 2 1.15 .06 E 57768 1 7 2 50 .1 2 4 590 1.68 2 5 ND 2 75 1 2 2 16 1.12 .055 7 1 .54 139 .09 2 .89 .05 E 57769 1 21 3 44 .8 1 4 798 2.00 2 5 ND 2 77 1 2 2 14 2.04 .054 7 2 .50 87 .04 2 .80 .05 E 57770 1 1 6 3 47 1.6 2 4 677 1.91 3 5 2 2 60 1 2 2 13 1.53 .057 7 1 .53 78 .05 2 .81 .05 E 57771 1 31 2 52 .3 2 4 698 1.85 3 5 ND 2 67 1 2 2 16 1.60 .061 7 2 .57 88 .06 3 .91 .05 E 57772 1 21 4 52 .7 3 4 716 1.94 2 5 ND 2 78 1 2 2 14 1.60 .061 7 2 .57 88 .06 3 .91 .05 E 57774 1 1 4 4 45 .1 1 4 792 1.77 3 5 ND 2 75 1 2 2 14 1.70 .058 6 3 .58 81 .05 2 6.87 .05 E 57774 1 1 4 4 45 .1 1 4 792 1.77 3 5 ND 2 75 1 2 2 14 1.70 .058 6 3 .58 81 .05 2 .75 .04 E 57774 1 1 14 4 45 .1 1 4 792 1.77 3 5 ND 3 74 1 2 2 13 1.41 .053 6 1 .52 78 .04 2 .75 .04 E 57778 1 10 2 48 .3 1 4 695 1.69 2 5 ND 2 75 1 2 2 13 1.54 .058 6 1 .52 78 .04 2 .75 .04 E 57778 1 10 2 48 .3 1 4 695 1.69 2 5 ND 2 75 1 2 2 15 1.54 .058 6 1 .52 78 .04 2 .75 .04 E 57778 1 18 5 57 .2 1 5 673 1.94 4 5 ND 2 141 1 2 2 2 13 1.54 .058 6 1 .52 78 .04 2 .75 .04 E 57779 1 18 5 57 .2 1 5 673 1.94 4 5 ND 2 141 1 2 2 2 13 1.54 .058 6 1 .52 78 .04 2 .75 .04 E 57778 1 18 5 57 .2 1 5 673 1.94 4 5 ND 2 141 1 2 2 2 17 1.24 .060 8 2 .59 195 .10 7 .99 .06 E 57778 1 18 5 57 .2 1 5 673 1.94 4 5 ND 3 78 1 2 2 2 17 1.60 .061 8 2 .59 195 .10 7 .99 .06 E 57780 1 5 3 48 .3 2 4 671 2.23 3 5 ND 3 78 1 2 2 2 17 1.16 .055 8 2 .58 217 .11 5 .95 .06 E 57780 1 5 4 54 .2 2 5 687 2.09 4 5 ND 3 78 1 2 2 2 17 1.16 .055 8 2 .58 217 .11 5 .95 .06 E 57781 1 19 3 48 .3 2 2 5 687 2.09 4 5 ND 3 84 1 2 2 2 17 1.16 .061 8 2 .56 146 .07 2 .99 .05	
E 57766	
E 57768	.05 .21 1 2140
E 57767	
E 57770	
E 57770	
E 57771	
E 57772	05 .10 2 1570
E 57773 1 33 5 45 1.2 2 19 656 2.73 2 5 4 2 58 1 2 2 13 1.41 .053 6 1 .52 78 .04 2 .75 .04 E 57774 1 14 4 45 .1 1 4 792 1.77 3 5 ND 3 74 1 2 2 13 2.24 .056 7 1 .51 58 .03 2 .78 .04 E 57775 1 10 2 48 .3 1 4 695 1.69 2 5 ND 2 75 1 2 2 15 1.54 .058 6 1 .52 124 .07 2 .81 .04 E 57776 1 11 4 5 54 .1 2 4 688 1.84 2 5 ND 2 75 1 2 2 15 1.54 .058 6 1 .52 124 .07 2 .81 .04 E 57777 9 17 2 54 .6 2 5 757 2.14 4 5 ND 2 141 1 2 2 21 1.24 .060 8 2 .62 180 .11 6 1.10 .07 E 57778 1 18 5 57 .2 1 5 673 1.94 4 5 ND 3 70 1 2 2 20 .99 .062 8 1 .64 170 .10 4 1.00 .06 E 57779 1 13 2 56 .3 2 4 671 2.23 3 5 ND 3 78 1 2 2 25 .85 .065 8 2 .58 217 .11 5 .95 .06 E 57780 1 55 4 55 .1 2 5 649 2.12 2 5 ND 2 56 1 2 2 23 .68 .059 7 2 .62 232 .12 2 .98 .06 E 57781 1 21 4 54 .2 2 5 649 2.12 2 5 ND 2 56 1 2 2 2 21 1.16 .065 8 2 .58 217 .11 5 .95 .06 E 57780 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 78 1 2 2 2 11 1.16 .065 8 2 .58 217 .11 5 .95 .06 E 57782 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 84 1 2 2 2 17 1.80 .061 8 2 .56 146 .07 2 .99 .06	
E 57774	
E 57775 1 10 2 48 .3 1 4 695 1.69 2 5 ND 2 75 1 2 2 15 1.54 .058 6 1 .52 124 .07 2 .81 .04 E 57776 1 11 6 54 .1 2 4 688 1.84 2 5 ND 2 93 1 2 2 19 1.20 .060 8 2 .59 195 .10 7 .99 .06 E 57777 9 17 2 54 .6 2 5 757 2.14 4 5 ND 2 141 1 2 2 211 1.24 .060 8 2 .62 180 .11 6 1.10 .07 E 57778 1 18 5 57 .2 1 5 673 1.94 4 5 ND 3 70 1 2 2 20 .99 .062 8 1 .64 170 .10 4 1.00 .06 E 57779 1 13 2 56 .3 2 4 671 2.23 3 5 ND 3 78 1 2 2 25 .85 .065 8 2 .58 217 .11 5 .95 .06 E 57780 1 55 4 55 .1 2 5 649 2.12 2 5 ND 2 56 1 2 2 2 21 1.16 .065 8 2 .58 217 .11 5 .95 .06 E 57781 1 21 4 54 .2 2 5 687 2.09 4 5 ND 3 96 1 2 2 2 11 1.16 .065 8 2 .62 180 .09 4 1.11 .06 E 57782 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 84 1 2 2 2 17 1.80 .061 8 2 .56 146 .07 2 .99 .04	
E 57776	
E 57777 9 17 2 54 .6 2 5 757 2.14 4 5 ND 2 141 1 2 2 21 1.24 .060 8 2 .62 180 .11 6 1.10 .07 E 57778 1 18 5 57 .2 1 5 673 1.94 4 5 ND 3 70 1 2 2 20 .99 .062 8 1 .64 170 .10 4 1.00 .06 E 57779 1 13 2 56 .3 2 4 671 2.23 3 5 ND 3 78 1 2 2 25 .05 .065 8 2 .58 217 .11 5 .95 .06 E 57780 1 55 4 55 .1 2 5 649 2.12 2 5 ND 2 56 1 2 2 23 .68 .059 7 2 .62 232 .12 2 .98 .06 E 57781 1 21 4 54 .2 2 5 687 2.09 4 5 ND 3 76 1 2 2 2 11 1.16 .065 8 2 .62 180 .09 4 1.11 .06 E 57782 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 84 1 2 2 2 17 1.80 .061 8 2 .56 146 .07 2 .92 .05	04 .20 1 37
E 57777 9 17 2 54 .6 2 5 757 2.14 4 5 ND 2 141 1 2 2 2 11 1.24 .060 8 2 .62 180 .11 6 1.10 .07 E 57778 1 18 5 57 .2 1 5 673 1.94 4 5 ND 3 70 1 2 2 20 .99 .062 8 1 .64 170 .10 4 1.00 .06 E 57779 1 13 2 56 .3 2 4 671 2.23 3 5 ND 3 78 1 2 2 25 .85 .065 8 2 .58 217 .11 5 .95 .06 E 57780 1 55 4 55 .1 2 5 649 2.12 2 5 ND 2 56 1 2 2 23 .68 .059 7 2 .62 232 .12 2 .98 .06 E 57781 1 21 4 54 .2 2 5 687 2.09 4 5 ND 3 96 1 2 2 21 1.16 .065 8 2 .62 180 .09 4 1.11 .06 E 57782 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 84 1 2 2 2 17 1.80 .061 8 2 .56 180 .09 4 1.11 .06	
E 57778	
E 57779	
E 57781 1 21 4 54 .2 2 5 687 2.09 4 5 ND 3 95 1 2 2 21 1.15 .065 8 2 .62 180 .09 4 1.11 .06 E 57782 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 84 1 2 2 17 1.80 .061 8 2 .56 146 .07 2 .92 .05	
E 57782 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 84 1 2 2 17 1.80 .061 8 2 .56 146 .07 2 .92 .05	06 .46 1 6
£ 57782 1 19 3 48 .3 2 4 748 1.90 3 5 ND 3 84 1 2 2 17 1.80 .061 8 2 .56 146 .07 2 .92 .05	
6 3/182 2 183 2 183 14 2 3 140 1.04 4 3 100 2 01 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
E 57784 1 7 4 52 .4 2 4 621 1.91 3 5 ND 3 75 1 2 2 20 .99 .058 7 2 .59 198 .10 2 .95 .06	
E 57785 1 10 4 54 .2 2 5 665 2.08 3 5 ND 3 93 1 2 2 22 .84 .059 8 2 .63 233 .11 4 1.07 .07	07 .48 1 18
E 57786 9 8 3 46 2.3 2 16 913 3.08 5 5 6 3 113 1 2 2 20 2.21 .051 7 1 .53 112 .09 3 .97 .07	

STD C/AU-R 18 57 40 132 7.4 68 28 1060 4.14 41 20 7 38 47 19 18 22 57 .49 .082 39 58 .92 177 .07 32 1.98 .07 .13 11 495

SAMPLE#	MO PPM	CU PPM	PB PPM	ZN PPM	A6 PPM	NI PPM	CO PPM	MN PPM	FE %	AS FPM	U PFM	AU P en	TH PPM	SR P PM	CD FPM	SB PPM	BI PPM	V PPM	CA %	P	LA PPM	CR PPM	MG I	BA FPM	11	B FFM	AL I	NA Z	K	N PPM	AU# PP8
E 57787	i	7	4	51	.1	2	4	618	2.05	2	5	ND	3	94	1	2	2	23	. 36	. 055	8	2	.60	221	.11	4	1.04	.08	.50	1	2
£ 57788	1	7	4	51	.1	2	4	599	2.02	2	5	ND	2	59	1	2	2	23	. 66	.056	8	2	.61	216	.12	5	.95	.08	.51	1	19
E 57789	13	8	2	41	.5	2	7	1108	1.85	3	5	ND	2	101	1	2	2	14	2.58	.053	8	1	.53	153	.06	5	.76	.05	. 33	1	645
£ 57790	1	7	2	5t	.1	2	4	581	1.90	3	5	ND	2	69	1	2	2	20	.78	.056	8	2	.60	218	.11	2	.93	.06	. 48	1	56
E 57791	1	12	2	50	.2	2	4	622	1.73	2	5	ND	2	73	1	2	2	16	1.16	.057	,	1	.58	159	.09	2	.84	.05	.31	2	109
E 57792	7	25	2	42	.3	1	3	1010	1.65	2	5	ND	2	148	1	2	2	12	2.58	.057	7	1	.56	109	.05	3	.80	.05	.19	ı	250
E 57793	1	8	2	55	.1	2	5	712	2.28	3	5	ND	3	61	1	2	2	26	.74	.057	7	2	.63	234	.12		1.02	.08	.54	1	11
E 57794	3	19	2	52	. 1	2	4	720	2.04	2	5	ND	2	72	1	2	2	21	1.10	.058	9	2	.61	197	.10	5	.92	.06	. 44	1	24
E 57795	2	22	5	79	. 1	1	2	1962	2.17	3	5	ND	2	107	1	2	2	17	3.77	.049	7	1	1.09	93	.03	3	1.18	.04	.19	1	56
E 57796	1	10	2	45	.1	2	4		1.68	2	5	MD	3	82	1	2	2	16	1.29	.057	7	2	.53	139	.07	2	.83	.05	. 24	1	12
E 57797	1	9	3	49	.4	2	4	559	1.82	2	5	ND	2	66	i	2	2	19	.82	. 056	7	2	ە5.	198	.10	3	.86	.06	. 38	1	199
E 57798	1	12	2	48	.1	2	4	634	1.68	2	5	NĐ	2	71	1	2	2	14	1.29	.054	8	2	. 55	117	.06	2	.82	. 05	.22	2	4
E 57799	t	7	4	50	.1	2	4	551	1.81	3	5	ND	3	70	1	2	2	20	.73	. 055	8	1	.55	193	.10	3	.88	.06	.41	2	2
E 57800	i	8	4	51	.1	2	4	619	2.11	2	5	ND	3	58	1	2	2	23	. 65	.054	9	2	. 59	160	.12	3	. 04	.07	. 48	2	4
E 57801	1	7	2	51	.1	2	4	611	1.86	5	5	ND	2	116	1	2	2	19	1.20	.053	8	2	.57	183	.10	2	1.10	. 07	. 38	2	15
E 57802	1	8	2	52	. 1	1	4	635	1.96	3	5	ND	2	101	1	2	2	20	.82	.057	8	1	.60	207	.11	3	.96	.07	.43	1	2
E 57803	27	5	3	31	1.8	2	8	469	1.95	2	5	5	3	148	1	2	2	9	1.77	.055	8	1	.37	79	.05	2	.82	.05	.14		5320
E 57804	1	5	2	51	.1	2	4	603	1.95	2	5	ND	3	87	1	2	2	21	.76	.055	8	2	.57	205	.11	23	.97	.08	. 43	1	16
E 57805	1	8	2	51	. 2	2	4	540	1.85	2	5	ND	3	80	1	2	2	21	.70	.055	8	2	.56	190	.11	2	. 91	.06	.40	i	29
E 57806	1	8	2	48	.1	2	4		1.70	2	5	NO	2	97	1	2	2	16	1.15	.056	7	2	. 55	140	.08	2	. 94	. 05	.23	2	32
E 57807	1	7	2	47	.3	2	4	408	1.58	2	5	ND	4	95	i	2	2	14	1.32	. 055	8	1	.53	109	.06	2	.82	.05	.20	2	15
E 57808	5	1	2	46	.2	2	4	629	1.76	2	5	ΝĐ	3	74	1	2	2	17	1.16	.052	7	2	.52	140	.08	3	.83	.06	.28	1	146
E 57809	2	17	2	46	.1	1	4	687	1.77	2	5	MD	3	82	1	2	2	13	1.71	. 055	8	1	.52	73	.04	2	.81	.05	. 12	1	49
E 57810	4	24	2	39	.5	1	4	770	1.71	2	5	ND	2	76	1	2	2	13	2.05	.052	8	1	.48	62	.03	2	.72	.04	.10	1	380
E 57811	1	15	2	42	. 3	1	4	597	1.53	2	5	ON	3	93	t	2	2	12	1.57	.055	8	1	.46	78	.04	2	.79	.05	.12	1	156
E 57012	i	20	1	51	.4	2	4	712	1.67	2	5	ND	3	114	1	2	2		1.80	.057	7	2	.56	85	.05	2	.88	.05	.11		132
E 57813	23	44	3	47	7.2	2	15	779	3.97	2	6	22	3	85	1	2	11			.054	6	1	.52	66	.04	2	.76	.05	.11		1400
£ 57814	1	29	3	49	.2	1	4	663	1.71	2	5	ND	2	77	t	2	2	15	1.57	.054	8	2	.52	106	.06	2	. 82	. 05	.18	1	166
E 57815	1	12	3	51	.1	2	4	691	1.89	2	5	ND	2	96	1	2	2	20	1.33	.062	7	1	.59	162	.09	3	.90	.06	.29	2	106
E 57816	i	11	2	47	.1	2	4		1.75	2	5	ND	2	113	1	2	2	18	.88	.056	7	2	.53	166	.09	3	.88	.06	.31	1	33
	•		_		••	_					_		_							۸۶.		,	53	110	۸7	ı	1 01	07	.20	1	28
E 57817	1	8	2	49	.1	2	4		1.50	2	5	ND	3	242	1	2	2		1.34	.056	8	2	.52	119	.07		1.06	.07	.51	1	20 Q
E 57818	1	7	3	52	.1	3	4		2.39	2	5	ND	3	76	1	2	2	28	.70	.057	9	2	.61	220	.12		1.03		.42	2	152
E 57819	1	15	5	52	.1	2	4		2.00	2	5	ND	2	66	1	2	2	20	.99	. 059	7	2	.59	194	.11	3	.91	.06		l	480
E 57820	1	62	5	47	. 9	1	4		1.95	2	5	ND	3	106	1	3	2		3.04	.057	9	1	.55	76	.02	2	.79	.05	.13	-	32
£ 57821	1	7	5	53	.1	2	4	649	2.12	2	5	ND	2	68	1	2	2	23	.87	.057	9	2	.58	224	.11	2	.99	.08	.45	1	32
E 57822	1	q	5	51	. 1	2	4		1.90	2	5	ND	2	6á	1	2	2	20	.79	.056	8	2	.58	209	.11	4	.92	.07 .07	. 44	3 12	26 505
STD C/AU-R	18	57	38	132	7.4	67	28	1056	4.16	44	24	7	28	47	18	17	20	57	. 49	.081	39	57	.92	178	.07	77	1.89	.07	.13	14	203

SAMPLED	MO PPM	CU PPM	PB PPM	ZN PPH	AG PPM	NI Mqq	CO PPM	MN PPM	FE Z	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PFM	CA 1	P 1	LA FPM	CR PPM	M6 1	BA PPM	11	B PPM	AL I	NA I	K Z	N PFM	AU I PP B
E 57823	1	9	2	49	.6	2	4	760	1.82	3	5	NĐ	2	79	1	2	2	15	1.61	. 058	8	2	.54	152	.08	2	.82	.06	. 27	1	485
E 57824	ì	11	2	53	.4	2	5	652	1.89	2	9	ND	3	78	1	3	2	19	.92	.061	8	2	.59	198	.11	3	.86	.07	.40	1	62
E 57825	i	21	i	48	.2	2	ĭ	690	1.70	2	5	ND	Ĭ	86	i	2	2	16			9	2	.54	95	.07	4	.78	.05	.15	i	29
		18	2	42	12.5	3	13	757	4.02	2	5	24	2	94	i	2	8	14		.055	7	2	.46	83	.04	2	.72	.06	.15		20200
E 57826	2		-							2	5		2	80	:	2	2		.82		9	3	.55	178	.10	5	.82	.05	. 32	1	33
£ 57827	1	8	3	50	.2	2	4	585	1.65	2	3	ND	2	80	1	2	2	18	.82	.059	3	3	.33	1/6	.10	3	.02	.03			33
E 57828	ı	19	3	46	.7	2	5	792	2.08	3	5	2	3	86	1	2	2	15	1.73	.056	8	2	.53	106	.06	3	.73	.05	.18	2	1710
E 57829	i	26	2	46	.3	1	4	775	1.74	2	5	ND	3	79	1	2	2	16	1.71	.057	8	2	.52	82	.04	2	.77	.05	.12	1	67
£ 57830	t	54	4	30	8.1	3	17	957	6.01	2	6	22	3	66	1	2	10	9	2.54	.046	6	1	.37	60	.01	2	.55	.04	.12	1 2	21200
E 57831	i	9	5	51	2.2	2	4	661	1.88	2	5	3	2	132	1	2	2	20	.93	. 056	8	2	.57	193	. 11	2	.92	.07	.38	1	2540
E 57832	i	24	2	54	3.1	2	5	901	2.34	2	9	4	3	85	ì	2	2	20	1.90	.070	8	3	. 64	125	.04	3	.89	.06	.24	1	3420
L 3/032	•	44	•	41	7.1	•	•	,,,,	2.51	•	,		•		•	•	•	••	••••	••/•	•	•			•••	·				-	
E 57933	1	13	2	51	. 6	2	4	712	1.85	2	5	ND	2	73	1	2	2	18	1.26	.057	7	2	.59	154	.09	11	.78	.06	. 30	1	505
E 57834	1	7	4	51	.3	2	4	644	1.75	2	5	NO	2	95	1	2	2	18	1.04	.058	7	2	.58	157	.09	5	.83	.04	. 29	1	154
E 57835	i	6	4	53	.1	2	i	750	2.14	2	5	ND	3	53	1	2	2	26	.67	. 056	9	2	.61	227	.12	2	.92	.07	.51	1	5
E 57836	i	11	2	47	.3	2	i	801	1.98	2	5	ND	3	53	1	2	2		1.28	059	8	2	.57	184	.08	14	.81	.06	.37	1	59
		. A	2	38	.5	2	3		1.73	2	5	ND	3	66	:	2	2		2.16	.060	,	2	.48	76	.02	4	, 65	.05	.13	i	345
E 57837	1	8	2	20		2	3	913	1./3	2	J	ND	,	00	•	4	4	**	2.10	.000	,	-	. 70	, 0		•	, 00			•	3.0
£ 57838	1	Q	4	44	.5	2	4	824	1.90	3	8	ND	3	92	1	2	2	17	1.52	.054	8	2	.53	141	.05	2	.81	.06	. 24	1	345
E 57839	1	9	3	47	.2	2	4	757	1.86	2	5	ND	3	60	1	2	2	19	1.28	. 057	8	3	.57	161	.08	2	. 79	.05	. 31	1	8
E 57840	i	1	2	48	.1	2	4	732	1.89	2	5	ND	2	56	1	2	2	19	1.20	.057	7	1	.57	181	.08	2	.78	. 05	.33	ı	5
E 57841	i	13	2	48	.3	2	4	787	1.82	2	9	ND	3	67	1	2	2	17	1.54	. 056	8	2	.53	137	. 07	4	.77	.06	.24	2	32
E 57842	i	19	2	55	.7	2	5	775	2.26	2	5	ND	2	58	i	2	2	23	1.11	.071	1	2	.63	161	.10	5	.86	.06	.32	1	510
E 3/072		17	-	33	• ′	•		,,,	2	•	•	,,,,	٠	45	•	•	•		••••		,	•				-				•	
E 57843	1	10	2	56	.3	2	5	778	2.05	2	5	ND	3	117	1	2	2	23	1.32	.069	8	2	.62	178	.11	3	1.02	.07	.34	1	9
E 57844	i	7	2	52	.2	2	4	659	1.86	2	5	ND	3	70	1	2	2	21	.88	.05B	9	2	.58	203	.11	33	.90	.07	. 42	1	2
E 57845	i	8	2	52	.1	2	i	645	1.94	2	5	ND	3	69	i	2	2	23	.82	.061	9	2	.58	202	.11	2	.88	.07	.44	1	5
E 57846	i	8	3	49	.2	3	5	710	1.66	2	5	ND	2	94	i	2	2	14	1.66	.058	7	2	.54	118	. 07	2	.80	.05	.21	4	73
	-	8	2	50	.2	2	4	789	1.84	2	5	ND	2	83	i	2	2	19	1.35	.057	7	2	.58	182	.09	10	.84	.05	. 35	1	335
E 57847	1		2	30	. 2	2	•	/07	1.07	•	,	RØ	4		•	•	4	• ′	1.55	1007	,	•			,	•••				•	•••
E 57848	1	41	4	44	.2	2	3	889	1.75	2	5	ND	3	67	1	2	2	16	2.06	.056	7	2	.56	126	.06	2	.73	.05	.25	1	37
E 57849	i	12	2	43	.1	2	4	797	1.67	2	5	ND	2	97	1	2	2	16	1.66	. 056	8	2	.53	126	.06	7	.79	. 05	.22	1	49
E 57850	i	10	2	47	.1	2	Ä	677	1.81	2	6	ND	3	113	1	2	2	19	1.06	.057	8	2	.56	175	.09	10	. 85	.06	.32	1	11
	•		2	40	.5	i	i	792	1.88	2	5	ND	2	83	i	2	2		2.07	.058	8	1	.50	61	.01	2	.68	.05	.10	1	375
E 57851	1	76				-				2	5	NO	3	70	i	2	2		1.70	.062	9	2	.52	87	.03	3	.70	.05	. 15	i	107
E 57852	i	24	2	42	. 3	2	4	741	1.68	2	J	MU	3	70	1	4	4	13	1.70	.002	,	•		• ,	.03	•				•	•••
E 57853	i	22	2	35	.1	2	4	794	1.59	2	5	ND	3	182	1	2	2		2.34	.058	9	1	.47	78	.01	6	.86	.05	.10	1	92
E 57854	1	13	2	46	.1	2	5	798	1.72	3	5	MD	3	264	i	2	2	15	2.13	.058	11	2	.56	111	.02	8 .	1.10	.06	.12	1	19
E 57855	i	12	3	44	.2	2	4	644	1.64	2	5	ND	2	402	1	2	2	16	1.91	.057	9	2	.52	165	.04	3	1.65	.10	.22	1	26
E 57856	i	7	2	46	.1	2	i	642	1.67	3	5	ND	2	313	1	2	2	17	1.61	.056	9	2	.53	168	.06	2	1.21	.08	.23	1	2
E 57857	i	2	2	14	.3	1	ì	1087	.81	2	5	ND	5	46	i	2	2	-		.067	18	ì	. 22	52	.01	10	.39	.05	.10	i	113
£ 3/83/		4	4	17			•	.vu/		•	J	***	•		•	•	•	•			••	-				-					
E 57858	1	9	4	51	.3	2	4		1.72	2	6	ND	3	97	1	2	2			.058	7	3	.54	171	.09	3	.88	.05	.32	i	3
STO C/AU-R	19	57	42	133	7.5	69	29	1149	4.18	44	20	9	40	49	19	17	20	59	.50	. 086	40	59	.93	180	.07	34 1	.80	.07	.13	13	495

SAMPLE	HO PPM	CU P PM	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	MN PPH	FE	AS PPM	U PP m	AU PPM	TH P PH	SR PPM	CD PPM	SB PPM	BI PPM	V PFM	CA 1	P Z	LA FPM	CR PPM	M6 Z	BA PPM	1	B PPM	AL I	NA Z	K I	PPM	AU1 PPB
E 57859	1	23	2	51	.5	3	4	749	1.93	2	5	ND	2	243	1	2	2	17	1.59	. 057	9	3	.59	177	.06	2	1.41	.08	.25	1	380
£ 57860	i	44	2	52	.1	2	4	815	1.99	2	5	ND	2	185	1	2	2	19	1.85	.061	ė	2	.58	186	.06	3	1.37	. 07	. 32	1	96
E 57861	1	12	2	59	.1	2	5	701	2.10	2	5	ND	2	93	1	2	2	23	1.20	.071	8	2	.61	207	.11	4	1.17	.07	. 42	1	7
E 57862	1	8	6	58	.1	2	5	734	2.26	2	5	ND	3	132	1	2	2	26	1.26	.066	9	2	. 62	233	.11	2	1.45	.10	.47	1	12
E 57863	2	9	3	53	.4	2	4	693	1.92	3	5	ND	3	194	i	2	2	19	2.03	.061	8	2	.59	172	.04	3	1.86	. 12	.30	1	410
E 57864	1	15	2	51	.1	2	4	488	1.97	2	5	ND	3	115	i	2	2	19	1.22	.058	8	2	. 55	179	.08	2	1.08	. 06	.34	1	36
E 57865	i	7	5	56		2	5	714	2.14	2	5	ND	3	84	i	2	2	24	1.06	.061	8	2	.58	229	.11		1.08	.07	. 45	1	1
E 57866	i	23	3	52	.3	2	5	704	2.07	ž	5	ND	3	76	i	2	2	21	1.18	.062	ē	2	.58	186	.09		1.00	.06	. 38	i	280
E 57867	i	9	2	53	.1	2	4	676	2.03	2	5	ND	3	80	i	2	2		1.00	. 059	9	2	.59	189	.09		1.05	.06	.36	1	1
E 57868	i	55	2	51		2	5	752	1.95	2	5	ND	3	86	i	2	2		1.59	.062	9	2	. 57	158	.07	2	.97	.06	. 29	1	55
																					_	_							70		
E 57869	1	7	2	55	. 1	3	6	705	2.05	2	5	ND	3	80	1	2	2		1.05	.063	Ģ	2	.50	213	.10		1.03	.06	.39	1	11
E 57870	5	35	2	48	.4	2	5	805	1.96	2	5	NĐ	4	127	ı	2	2		2.23	.058	10	1	. 56	133	.04		1.06	.06	.22	1	300
E 57871	i	10	2	52	.1	2	4	711	2.11	2	5	ND	3	141	1	2	2		1.43	.061	10	2	.58	221	.10		1.48	.10	.42	1	53
E 57872	1	12	8	59	.1	8	7	775	3.15	2	6	ND	3	68	1	2	2		1.30	.048	8	9	. 89	215	.14		1.56	. 14	, 47	1	4
E 57873	88	14	3	44	3.4	3	8	677	3.60	2	5	4	2	46	1	2	2	19	1.65	.052	6	2	.54	113	.06	4	.97	.06	.33	1	3080
E 57874	1	Q	2	56	.1	2	5	707	2,53	2	5	ND	3	50	1	2	2	25	1.03	.051	7	3	8هٔ.	226	.11	2	1.24	.06	.50	ı	37
E 57875	i	ė	3	56	.1	2	5	673	2.32	2	5	ND	2	53	i	2	2	26	.92	.061	8	3	.64	215	.11	5	1.21	.07	.50	1	12
E 57876		9	6	54	1.1	5		711	2.64	2	5	3	2	107	i	2	2	24	.94	.059	6	4	.79	225	.09		1.54	.06	. 44	1	2760
E 57877	i	8	6	58	.1	2	5	724	2.34	2	5	ND	2	63	i	2	2	26	.97	.062	10	3	.66	236	. 12		1.23	.08	.55	1	4
£ 57878	1	10	9	52	.1	2	4	579	1.81	2	5	ND	2	79	i	2	2	18	.91	.061	Ø	2	. 57	145	.09	2	.96	.06	. 29	1	20
			_			_					_		_			_	_			•				.70	• •			O.	.37	1	2
E 57879	1	9	2	52	.1	2	4	933	1.99	2	5	ND	3	76	1	2	2	21	.92	.061	8	3	.57	179	.10	-	1.00 .93	.06 . 05	.32	i	2
E 57880	1	9	17	51	.1	2	4	558	1.74	2	5	ND	3	73	1	2	2	10	.87	.060	8	2	.56	159	.10	10				-	_
E 57881	1	13	3	50	.1	2	4	481	1.92	2	5	ND	3	75	1	2	2		1.40	.061	9	2	.55	134	.07	2	.92	.05	.24	1	130
£ 57882	1	11	4	51	. 1	2	4	667	1.83	2	5	MD	3	70	1	2	2		1.34	.058	8	3	.56	95	.06	2	.87	.05	.15	1	32
E 57883	1	23	2	45	.6	2	4	455	1.71	2	5	ND	3	77	1	2	2	14	1.61	.057	7	2	.53	103	.05	6	.03	.05	.19	ı	740
E 57884	i	18	ó	56	. 2	17	10	929	2.78	6	5	ND	3	99	1	2	2	42	4.88	.068	11	20	.81	83	.09		2.22	. 13	.16	1	3
E 57885	1	7	2	50	. 1	2	4	588	1.85	2	5	ND	2	85	1	2	2	20	.99	. 054	9	2	.55	166	.10	4	1.02	.07	. 35	1	5
E 57886	1	10	2	54	.1	3	5	734	2.24	2	5	NB	4	72	1	2	2	24	1.20	.061	8	3	. 63	170	.10	2	1.07	.07	. 40	1	4
£ 57887	1	9	3	54	.1	2	5	626	1.99	2	5	ND	4	79	1	2	2	22	.93	. 059	9	2	.60	194	.11	4	1.04	.07	. 40	ı	3
E 57888	ì	13	3	50	. 2	3	4	632	2.08	2	8	MD	3	75	1	2	2	21	1.01	.059	9	2	.60	190	.11	2	1.05	.06	. 42	2	7
E 57889		9	5	51		2		629	1.90	2	5	ND	3	81	1	2	2	20	.89	.059	8	2	.58	195	.11	2	.97	.06	.40	2	1
	1		_	48	.1	-	- ;		1.79	2	5	ND	2	74	1	2	2		1.50	.058	7	1	.56	109	.06	i	.89	.06	.18	1	121
£ 57890	2	37	3	49	.2	3 2	5	768 751	1.93	2	5	ND	3	70	1	2	2		1.55	.062	8	2	.58	120	.07	i	.90	.05	.21	i	46
E 57891	1	14	-		.2	-	3			-	5	ND	3	133	- 1	2	2		1.11	.059	7	2	.59	147	.09	-	1.03	.06	. 28	i	5
£ 57892	1	10	6	48	. !	3	:	589	1.92	2	5	ND	3	77	i	2	2		1.29	.057	7	2	.56	136	.08	á	.87	.06	.25	1	62
E 57893	3	11	2	50	.2	2	•	696	1.87	4	2	שא	2	"	ı	4	2	10	1,47	.037	•	4	.10	100	.00	9	.07	.00		•	02
E 57894	i	5	á	50	.1	2	4	571	1.86	3	5	ND	3	69	1	2	2	19	.72	.056	7	2	.57	182	.11	3	.91	.06	. 35	1	4
STD C/AU-R	18	57	42	132	7.5	68	28	1067	4.15	42	25	7	38	47	18	16	21	57	. 49	.082	39	59	.92	178	.07	22	1.97	.07	.13	12	510

BA K W AUI CR MS П 9 SAMPLE A6 NI. FE AU TH SR CD SB BI ٧ CA LA PPM PPM Z PPM PPM PPM PPM PPM PPH PPH PPH PFH 7 ž. PPM PPM 7 PPM 1 PPM PPM PPM PPM PPN PPM 122 2 24 .70 .053 R .57 203 .12 2 1.03 .08 E 57895 689 2.16 5 ND 3 .98 7 5 .53 173 .09 5 .08 .34 1 3 646 1.82 5 64 19 1.04 .051 E 57896 11 .81 .06 19 .2 2 4 663 1.76 2 5 NĐ 3 74 2 2 15 1.44 .055 ? 2 .50 119 .07 3 . 21 1 235 E 57897 5 42 .99 .54 7 .08 .36 1 8 93 3 2 21 .91 .055 8 3 180 .10 E 57898 12 11 47 .1 2 656 1.94 2 5 ND 3 .83 .06 1 122 12 39 2 736 1.75 2 5 3 78 2 2 16 1.57 .053 7 2 .47 124 .04 2 E 57899 .53 158 3 .90 .07 .30 1 12 683 1.80 1B 1.14 .053 .09 £ 57900 В 2 66 .05 1 35 2 ND 3 69 2 2 12 1.71 .054 7 2 .51 60 .03 6 .81 .10 15 2 4 718 1.61 5 E 57901 . 1 . 79 54 2 12 1.91 .053 7 .50 62 .04 2 . 05 .10 1 E 57902 14 46 .1 2 4 781 1.70 2 8 ND 4 70 2 1 4 62 18 .89 .058 7 2 .54 144 .08 2 .88 .06 .26 1 475 E 57903 10 4 48 2 4 640 1.78 2 5 ND 2 2 1 .4 ND 2 57 2 18 1.05 .052 7 2 .56 156 - 09 5 .87 .07 1 14 3 5 2 £ 57904 8 3 47 4 684 1.78 .52 163 2 .83 .05 . 31 1 250 18 1.23 .052 .OB E 57905 2 4 715 1.92 2 3 66 2 3 59 2 2 .61 .053 B 2 .56 191 .11 . 92 .08 10 4 647 1.98 2 7 ND 23 E 57906 21 . 1 2 2 39 .56 .97 .08 .40 1 2 2 64 2 2 23 .71 .054 7 2 200 .11 E 57907 .1 2 4 456 2.04 5 ND 2 15 1.22 .052 8 2 .52 128 .08 2 . 95 .07 .21 1 72 2 MD 3 122 E 57908 ģ 2 46 . 1 2 4 616 1.64 5 1 2 .07 .29 16 74 16 1.08 .055 8 2 .54 155 .09 2 .91 £ 57909 10 47 2 4 601 1.67 2 5 ND 3 1 2 2 .50 2 .91 .08 .31 1 2400 567 2.08 2 2 17 1.08 .049 161 .08 E 57910 71 41 2.4 .07 .26 38 75 2 2 17 1.10 .053 8 2 .51 145 .08 2 .86 559 1.76 2 2 E 57911 14 2 42 . 2 2 4 5 ND 72 2 .53 112 .07 2 .85 .06 . 20 1 . 2 626 1.83 2 5 NĐ 3 71 2 2 16 1.14 .052 7 E 57912 13 3 . 25 1 17 18 1.01 .055 7 2 .53 139 .08 5 . 96 .07 3 110 2 E 57913 10 5 44 .2 2 4 550 1.83 2 5 ND 1 2 .87 .06 1 162 5 ND 3 102 2 2 16 1.27 .055 8 2 .53 131 .07 E 57914 29 5 45 . 2 4 614 1.79 2 .25 11 16 1.10 .055 3 .53 137 .08 4 .93 . Oá E 57915 555 1.67 2 . 1 6 .90 .08 .36 1 25 2 .54 181 ND 3 75 2 2 22 .81 .055 7 .10 2 4 661 1.97 2 5 E 57916 10 2 47 .1 . 25 3 .56 139 .09 .89 .06 5 4 624 1.72 3 5 ND 3 87 2 2 17 .90 .053 7 £ 57917 48 . 1 2 129 2 .90 .07 .22 1 11 14 1.22 .055 8 2 .54 .07 3 5 ND 3 89 2 2 2 4 663 1.59 E 57918 1 8 4 47 .1 .47 176 .08 2 2.15 . 16 3 603 1.72 2 5 ND 2 426 1 2 2 19 2.22 .047 3 3 43 2 E 57919 6 .1 .08 19 120 2 2 14 1.60 .055 2 .52 93 .06 2 1.04 .16 651 1.68 E 57920 12 . 2 2 .49 118 .07 2 .92 .07 .21 14 99 2 16 1.38 .051 4 636 1.70 2 5 ND 3 E 57921 9 3 .1 2 .57 171 2 1.00 .07 . 34 2 NĐ 3 105 2 2 19 1.00 .055 8 3 .10 2 4 613 1.89 5 E 57922 .1 2 .53 139 .08 2 .87 .04 .27 2 18 1.32 .053 7 3 5 ND 2 71 1 2 2 E 57923 .1 2 4 622 1.83 3 .56 168 .09 4 .94 .07 1 3 78 2 2 19 1.15 .053 3 47 2 4 752 1.90 3 5 ND E 57924 . 1 2 .98 .08 .36 101 2 23 .73 .053 2 .57 192 .11 2 620 2.00 2 5 ND 4 E 57925 50 3 .99 .09 . 43 59 2 2 24 .64 .055 2 . 58 204 .12 ND 3 642 2.02 2 5 E 57926 51 . 1 .57 2 1.01 .09 .43 1 25 3 209 .12 655 2.16 2 ND 3 88 1 .62 .055 £ 57927 3 50 .1 2 4 6 1 2 .59 203 5 1.02 .08 . 44 1 79 2 25 .69 .059 8 .12 2 ND 4 1 2 51 2 4 664 2.12 5 E 57928 8 .1 .51 172 3 .93 .07 20 .76 .055 3 .10 3 3 545 1.82 2 5 ND 3 29 2 2 E 57929 4 1 172 .09 8 1.02 .07 .28 19 1.36 .055 8 2 .53 163 E 57930 2 4 671 1.87 1 5 ND 3 128 1 2 2 31 2 12 515 39 47 18 21 57 .49 .083 39 57 .92 177 .07 32 1.96 24 7 19 STD C/AU-R 57 132 7.4 68 28 1068 4.13 30

(

.

SAMPLE	MG PPM	CU PPM	PB PPM	ZN PPM	A6 PPM	NI P PM	CO PPM	MN PPM	FE I	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P	LA PPM	CR PPM	н6 1	BA PPM	11 1	B PPM	al I	NA I	K Z	H PPM	AU I PP B
£ 57931	1	7	7	44	.1	2	4	624	1.78	2	5	ND	1	ξà	1	2	2	19	1.01	. 055	7	2	.53	175	.09	2	.84	.05	.35	1	159
E 57932	1	6	3	48	.1	2	4	607	2.01	2	5	ND	2	57	1	2	2	24	. 55	.056	7	1	.55	191	.11	2	. 95	.08	. 45	1	1
E 57933	1	6	7	48	.1	2	4	609	2.09	2	5	ND	2	59	1	2	2	24		. 055	8	1	.55	196	.11	2	.94	.08	. 46	2	1
E 57934	1	7	3	43	.7	2	4	536	1.84	2	5	HD	2	63	1	2	2	19	.78	.054	6	1	.50	150	.09	2	.81	.05	.33	2	730
E 57935	1	6	5	47	.1	3	4	598	1.94	2	5	ND	2	58	1	2	2	22	.68	. 054	7	3	.55	188	.11	2	.90	.06	.43	1	25
E 57936	i	6	2	46	. 2	1	4	598	1.95	2	5	ND	3	59	1	2	2	24	.60	.057	7	1	.53	186	.11	2	.90	.07	.43	2	1
E 57937	1	8	2	48	.1	2	4	595	1.97	2	5	ND	2	69	1	2	2	21	.80	. 054	7	2	.53	183	.11	2	.89	.06	.37	i	31
E 57938	1	6	4	19	.1	2	4	644	2.15	2	5	ND	2	61	1	2	2	26	. 45	. 058	8	2	.57	203	.12	2	1.00	.08	.49	1	4
E 57939	1	9	6	46	.1	2	4	617	1.75	2	5	ND	3	98	1	2	2	16	1.14	. 057	7	2	.52	154	.09	2	.89	.05	.30	1	9
E 57940	1	11	2	45	.3	2	4	689	1.78	2	5	NO	2	82	1	2	2	16	1.51	.057	7	2	.52	130	.07	2	. 85	. 05	.25	1	610
E 57941	1	8	2	46	.1	2	4	645	1.78	2	5	ND	3	82	1	2	2	17	1.31	.057	6	2	.54	119	.07	2	.89	.05	.22	1	70
E 57942	1	8	2	46	.3	2	4	625	1.76	2	5	ND	2	109	1	2	2	17	1.15	.057	7	2	.54	171	.09	2	. 91	.05	.32	1	68

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED: DEC 1987

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: Jav.!!/88.

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

CATHEDRAL GOLD PROJECT-4544 File # 87-6222R

SAMPLE# AU**
oz/t

E 57577 .915
E 57589 3.640
E 57599 .100
E 57607 .665

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VAN 16/5 PHONE (6/04) 253-3158 FAX (6/04) 253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 BEC.C FOR ONE HOUR AND IS DILLUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DEFECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Core ALLE ANALYSIS BY AA FROM 10 GRAM SAMPLE ALLES BY EIDE ASCAY FORM 1/2 A T

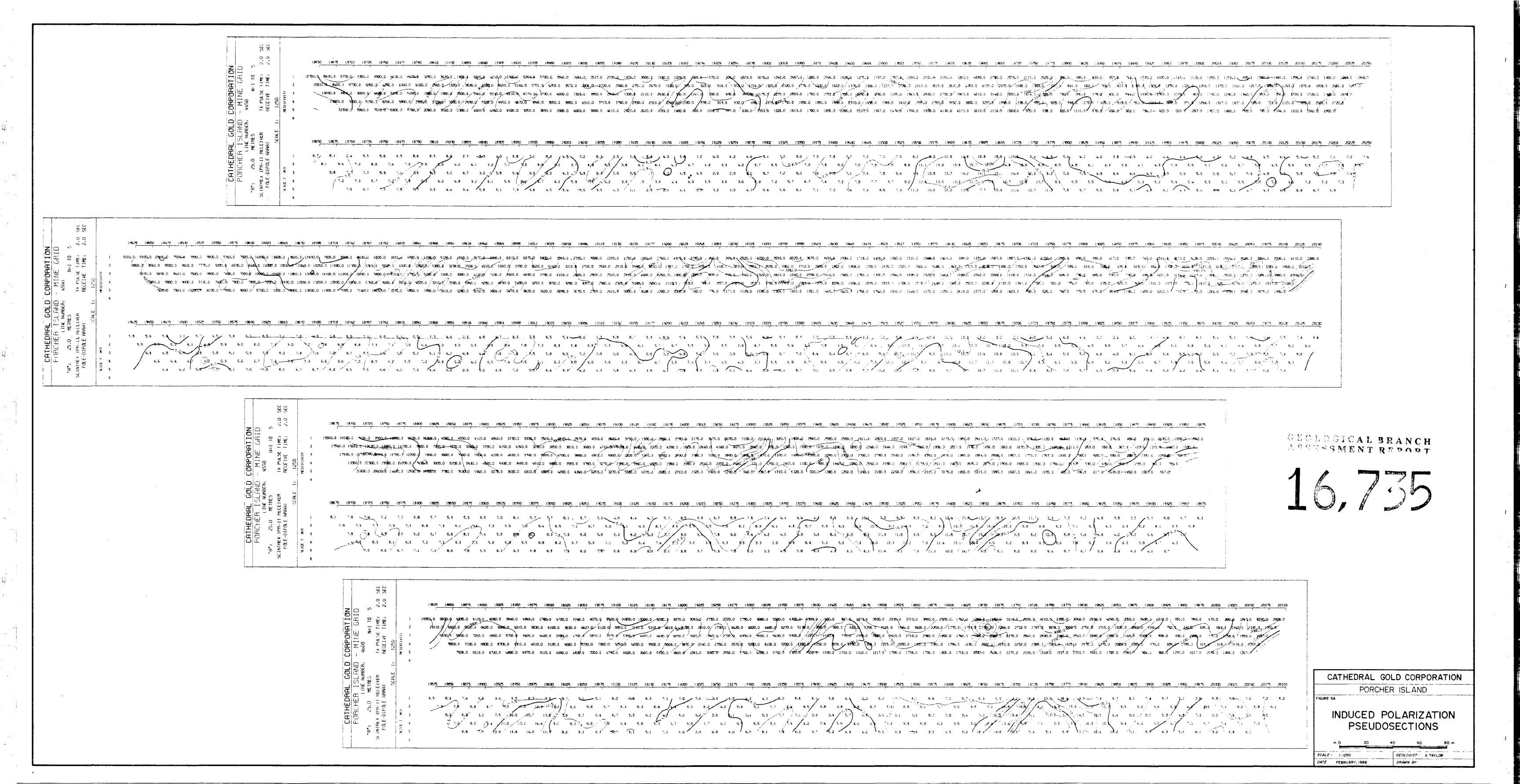
					- 5	AMPLE	TYPE:	Core	AUS	ANALY	SIS BA	AA FR	OH 10	GRAN S	AMPLE.	AUEE	BY FI	RE ASS	AY ERO	OM 1/2	A.T.											
DATE RECE	I VED:	. 4	W 15	1988	D	ATE	REP	ORT	MAI	LED:	J	an	20	88	A	SSAY	ER.	/) ~.:.	Ļιο	~;··	D. T	OYE	OF	C.LE	ONG	, CE	RTI	FIED	в.	c. <i>A</i>	ASSA'	YERS
								CAT	ГНЕВ	RAL	GOLI	D FF	OJE	CT-4	544	F	ile	# 8	8-0	1/1 1	F	age	1									
SAMPLE	NO PPN	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPM	28 PPM	NN PPN	FE 1	AS PFM	U PPM	AU FPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P	LA PPM	CR PPM	M6 I	BA PPM	11 1	B PPM	AL I	NA T	K I	N PPM		AUEE 0Z/T
E57951	1	6	2	46	.1	2	4	598	1.64	2	5	ND	2	117	1	2	2	18	.99	.055	7	ı	.45	179	.09	3	.97	.08	.29	1	6	-
E57952	1	6	3	42	.3	1	4	546	1.47	2	5	NO	1	67	1	2	2	13	1.19	. 055	6	1	. 43	105	. 07	2	.81	.07	.16	1	184	-
E57953	i	6	3	46	.1	1	4	543	1.73	3	. 5	ND	1	51	ı	2	2	19	.58	. 055	6	2	.46	163	.10	2	.82	.07	.31	2	4	-
£57954	1	12	2	44	.1	1	4	589	1.73	2	5	ND	2	90	1	2	2	17	1.03	.054	6	1	.45	170	.09	2	. 81	.07	. 28	1	83	•
E57955	i	5	2	47	. 1	2	4	523	1.79	2	5	ND	1	61	ı	2	2	20	.53	. 056	6	1	.46	210	.11	2	.85	.08	. 37	1	4	•
E57956	1	5	2	40	.1	1	3	598	1.81	2	5	MD	2	57	i	2	2	19	1.04	.057	7	i	. 46	178	.09	2	.83	.08	.33	1	5	-
E57957	1	6	2	47	.1	2	4	581	1.87	2	5	ND	2	77	1	2	2	21	.77	. 059	7	2	. 48	196	. 10	6	.03	.08	. 37	1	7	-
€57958	1	8	2	47	.1	1	4	623	1.87	2	5	ND	ı	92	1	2	2	20	.94	. 056	6	2	.50	186	. 10	10	. 92	.08	. 36		48	•
E57959	ı	10	3	45	.5	2	4	629	1.72	2	5	NB	2	74	1	2	2	17	1.15	. 050	7	1	.47	170	.09	8	.84	.07	. 29	1	68	-
E57960	1	28	2	47	.1	2	4	782	1.68	2	5	ND	1	81	1	2	2	12	1.98	.057	5	1	. 46	78	.05	2	.78	.06	.10	1	215	•
E57961	1	6	2	45	.1	1	4	575	1.85	2	5	ND	2	55	1	2	2	21	ĩà.	. 055	6	1	.48	193	.10	7	.84	.08	. 38	1	48	-
E57962	i	111	2	47	.1	2	4	482	1.87	2	5	ND	1	73	1	2	2	19	1.20	.060	6	2	. 50	179	.09	2	.86	.07	. 34	1	66	-
E57963	1	9	2	42	.1	1	4	578	1.69	2	5	ND	2	59	1	2	2	17	1.10	. 056	6	ı	.46	156	.08	2	.81	.06	. 27	1	5	-
E57964	i	0	2	47	.1	2	4	583	1.80	3	5	ND	1	57	1	2	2	19	.83	.058	7	2	.50	179	.10	3	.86	.07	.32	1	7	-
E57965	1	7	3	44	.1	2	4	478	1.51	2	5	MD	2	70	1	2	2	17	.76	.057	6	1	.43	164	.09	2	.79	.06	.25	1	26	-
E57966	1	10	2	48	.1	2	4	563	1.74	2	5	MD	1	83	1	2	2	18	.89	.059	1	2	.51	189	.10	2	.98	.08	.33	2	6	_
E37967	i	24	3	46		2	į.	415	1.84	3	5	ND	2	73	i	2	2	20	1.01	. 058	7	ì	.50	189	.09	2	.94	. 07	.32	1	20	-
£57968	i	26	2	37	.3	2	3	638	1.59	2	5	KD	ī	67	1	2	2	12	1.80	.059	6	1	. 40	80	.03	2	.86	.07	.11	1	255	-
E57969	3	44	2	42	3.7	2	5	678	1.98	2	5	5	2	69	1	2	2	14	1.62	. 056	6	2	.46	110	.06	2	.86	. 07	.16	1	4680	.139
E57970	1	8	2	49	.5	1	4	568	1.63	2	5	ND	1	61	1	2	2	15	.99	.059	6	1	.52	124	.08	2	.84	.06	.17	1	650	•
E57971		7	2	43	.3	1	4	488	1.66	2	5	ND	2	70	1	2	2	13	1.55	. 056	7	1	.48	70	.03	4	.83	.05	.09	1	27	-
E57972	2	16	3	39	.4	2	7	657	1.66	2	5	ND	3	85	1	2	2	11	1.83	.052	8	1	. 39	84	.02	2	.77	. 05	.12	1	450	-
E57973	1	12	2	51	.1	1	4	623	1.01	2	5	ND	2	64	1	2	2	17	1.16	. 063	7	1	.49	136	.07	2	.84	.06	.22	1	49	-
E57974	5	15	3	55	.3	2	5	837	2.58	5	5	MD	2	64	1	2	2	24	1.70	.081	8	2	.53	174	.07	2	. 85	.06	. 21	1	320	-
E57975	1	8	2	46	.4	2	4	556	1.61	2	5	ND	3	122	ı	2	2	16	1.13	. 058	7	1	.45	146	.06	2	. 90	.07	.22	2	40	-
£57976	1	76	2	48	.5	1	4	717	1.66	2	5	ND	2	86	ı	2	2	13	1.89	.060	8	1	. 48	87	.03	2	.88	.06	.12	1	240	-
E57977	1	15	2	47	.7	1	4	491	1.69	2	5	ND	3	88	1	2	2	12	1.81	. 059	7	1	.49	65	.02	2	.89	.05	.11	ı	205	-
E57978	1	22	4	50	.1	1	4	649	1.72	3	5	ND	3	203	ı	2	2	14	1.49	.061	10	1	.52	102	.02	2	1.09	. 06	.11	1	91	-
E57979	1	10	2	45	.4	1	4	716	1.56	2	5	ND	2	100	1	2	2		2.34	. 055	7	1	.44	83	.03	2	.97	. 06	.14	1	82	-
E57980	1	6	3	50	.5	3	4	600	1.91	2	5	ND	3	86	1	2	2	22	.91	.062	8	2	. 49	187	.10	4	1.03	.08	. 36	1	1	-
E57991	1	21	4	46	.3	2	4	678	1.65	2	5	ND	2	121	1	2	2	14	1.75	.057	7	1	.45	127	.04		1.01	.07	.19	1	149	•
£57982	1	5	3	43	.5	2	4	507	1.57	3	5	MS	3	62	1	2	2	15	1.06	.056	8	2	.41	145	.03	2	1.21	.04	. 25	1	11	-
E57983	1	46	2	49	.4	1	4	720	1.66	2	5	ND	2	77	1	2	2	14	1.74	.060	8	1	.48	102	.03	2	.86	.06	.14	1	192	-
E57984	1	40	2	46	.4	2	4	636	1.73	4	5	NO	2	72	1	2	2		1.28	.059	7	2	. 46	144	.07	2	.83	.06	. 24	1	90	-
£57985	1	59	3	41	.7	1	3	887	1.65	2	5	NB	2	99	1	2	2	11	2.42	. 057	7	1	.43	71	.02	3	.75	.05	.11	1	420	•
E57986	1	14	2	47	.5	2	4	673	1.72	1	5	ND	3	61	1	2	2	16		.061	1	1	.43	159	.08	2	.85	.06	.29	1	101	-
STO C/AU-R	19	57	28	132	7.4	68	27	1051	4.08	43	18	8	37	47	10	17	17	56	. 48	. 088	38	56	.89	177	.07	34	1.95	.08	.14	11	495	-

SAMPLE	MO	CU PPN	PB PPM	ZN		NI PPM	CO PPM	MN PF·M	FE 1	AS PPM	U PFM	AU PPM	TH PPM	SR PPM	CD PFM	SB PPM	BI PPM	V PPM	CA 1	P 1	LA PFM	CR PPM	M6 1	BA PPM	TI I	8 PPM	AL 1	NA I	K	N PPM	AU 8 PPB
	PPM	rrn	rrn	PPM	rrn	rrn	frn	rra		rrn	11.10	1711	11.0	FER	rrn	rrn	rrn	FFA	•	•	rrn	rrn		1111	•	,,,,	_		•		
E57987	1	41	2	44	.8	3	4	816	1.89	2	5	ND	1	75	1	2	2	15	2.12	. 057	6	2	.55	101	.04	9	. 97	.06	-16	1	510
E57988	1	15	3	43	. 2	2	4	741	1.78	3	5	МD	1	49	1	2	2	15	1.64	. 054	7	1	.52	145	.05	14	.84	.06	. 24	ı	136
£57969	1	10	2	46	.2	2	4	653	1.75	2	5	ND	į	102	1	2	2	16	1.44	. 058	6	1	.55	141	.05	2	. 90	.06	.18	1	154
E57790	t	58	2	38	.9	2	4	652	1.69	2	5	МÐ	3	71	1	2	2	14	1.57	.048	7	2	. 45	121	. 05	2	. 79	.06	. 21	1	390
E57991	1	29	5	42	.4	2	4	99 <i>ò</i>	1.75	2	5	ND	2	72	1	2	2	16	1.50	. 054	6	2	.52	104	.05	10	.84	.07	. 16	1	380
£57992	1	8	2	46	.3	2	4	613	1.91	2	5	ND	2	281	t	2	2	19	1.14	.053	8	2	. 54	210	.08	3	1.16	.09	. 33	1	15
E57993	1	34	3	39		2	4	756	1.69	2	5	ND	2	87	1	2	2	12	2.24	. 051	6	2	.47	71	.02	2	. 83	.07	.12	1	210
E57994	ī	26	i	42	.5	ĭ	4	744	1.81	1	5	NB	2	68	1	2	2	13		.053	6	2	. 53	65	.02	3	.88	.08	.11	2	76
£57995	i	41	2	39	.5	2	4	923	1.73	2	5	ND	ī	88	1	2	2	•		. 054	5	3	.40	72	.01	7	.84	.07	.13	1	260
E57996	5	58	3	22	.5	1	1	819	1.59	2	5	ND	1	70	i	2	2	8	2.61	.046	å	2	. 44	60	.01	2	.82	.06	.10	1	400
E57997	2	45	2	42	.2	2	4	589	1.71	2	5	ND	1	58	1	2	2	15	1.07	.053	6	2	.52	127	.07	12	.81	.08	.17	1	158
£57998	1	19	3	47	.2	2	4	689	1.80	2	5	ND	1	48	1	2	2	14	1.52	.054	5	2	. 59	78	.05	2	.95	.10	.11	1	55
E57999	i	9	2	43	.4	2	4	701	1.78	2	5	NO	2	66	1	2	2	13	1.71	. 054	6	2	.53	99	.04	18	.85	.08	. 16	1	7
E58000	i	10	3	44	.2	2	4	618	1.80	2	5	ND	2	56	1	2	2	17	.96	.053	6	2	. 55	179	.oa	2	.87	.08	. 33	1	7
D11001	16	36	2	40		2	3	650	1.64	2	5	ND	ī	62	i	2	2	11	1.72	.047	ě	2	.46	73	.02	2	.75	.07	.10	1	670
811001		-	•		••	•	•	-		•	•		•	••	•	•	•	••	••••	•••	-	_								•	
3 11002	1	9	3	49	.2	2	4	638	2.16	2	5	MD	1	53	1	2	2	23	.61	.054	6	2	.61	226	.11	5	-	.11	.45	1	82
011003	. 1	9	7	47	.2	2	4	651	2.11	2	5	ND	2	58	1	2	2	23	. 69	. 054	6	3	.59	202	.11	7	.98	.10	.42	1	11
B11004	1	7	4	47	.7	2	4	576	1.95	2	5	NO	1	55	1	2	2	20	.56	.050	5	2	.56	207	. 10	19	.91	.10	.41	1	740
D11005	1	7	3	49	.2	2	4	604	2.05	2	5	ND	2	52	1	2	2	24	.57	.056	6	3	.57	220	.11	3	.98	.12	.46	1	10
911006	1	7	2	43	.3	2	4	531	1.40	2	5	ND	1	87	1	2	2	11	1.18	.050	- 6	2	.49	117	.06	13	. 88	.10	.19	1	92
D11007	1	11	7	47	.1	2	4	612	1.97	2	5	ND	1	55	1	2	2	22	.68	.052	6	2	.56	196	.10	2	.94	.11	.41	2	18
9 11008	ì	7	2	47	.3	2	4	616	2.07	2	5	NO	2	56	1	2	2	22	.61	.051	7	2	.57	214	.11	2	.93	.10	.43	1	7
811009	i	7	4	49	.1	2	4	563	1.94	2	5	ND	2	53	1	2	2	22	.55	.052	6	2	.54	208	.11	2	.93	.10	.43	1	13
D11010	i	1	4	50		2	i	928	2.19	2	5	MD	2	50	i	2	2	25	.53	.053	1	2	.59	220	.12	2	1.02	.12	.49	1	
D11011	i	ė	ž	45	.2	Ž	4	560	1.71	2	5	ND	2	86	i	2	2	17	.80	.051	5	2	. 52	177	.09	10	.88	.09	.33	2	97
	•	•	•		•••	-				-	-											_				_					
D11012	1	8	4	- 44	.3	3	4	473	1.58	2	5	ND	2	75	ı	2	2	16	.57	.052	6	2	. 49	164	.09	3	.87	.10	.30	1	
9 11013	ı	7	2	51	-1	2	4	450	1.96	2	5	ND	1	67	1	2	2	20	.89	. 053	6	2	.59	209	.10	10	1.01	.11	.42	1	11
D11014	1	7	3	47	.2	2	4	581	1.97	2	5	ND	2	70	1	2	2	22	.54	.052	á	2	.55	208	.11	10	.95	.11	.43	1	2
311015	1	8	3	44	.4	2	4	626	1.69	2	5	NB	2	72	1	2	2	15	1.37	. 052	6	2	.48	150	.07	3	.85	.10	.27	2	215
\$11014	ı	11	3	42	. 6	2	4	575	1.57	2	5	MD	2	64	1	2	2	14	1.17	.048	6	2	. 46	140	.07	2	.79	.09	.23	ı	178
D11017	1	7	3	47	.1	2	4	597	1.91	2	5	ND	2	62	i	2	2	20	.84	.053	6	2	.54	183	.09	2	.93	.10	.36	2	66
B11018	1	•	2	42	.2	2	4	498	1.98	2	5	ND	1	177	1	2	2	15	1.52	.050	6	2	.52	104	.04	2	.86	.06	.14	1	121
D11019	i	;	ž	44	. 6	2	i	498	1.52	2	5	ND	2	101	1	2	2	15	.01	.052	6	1	.49	146	.08	2	.84	.07	.24	1	21
B11020	i	9	i	47	.3	3	i	629	2.26	2	5	ND	2	01	1	2	2	17	1.00	.051	7	3	.54	153	.08	2	.94	. 10	.26	1	7
B11020	1	,	3	44	.3	2	i	566	1.70	2	5	ND	2	61	i	2	ž	17	.85	.049	6	ī	.51	161	.08	2	.85	.07	.30	1	13
	•	•	•		••	_	•				_		-		•	·	_				_	_						47	25		v
011022 STD C/AU-R	1 17	65 57	4 37	48 130	.1 7.4	3 70	4 27	668 1052	1.68	2 40	5 24	ND 7	2 37	57 48	1 10	2 19	2 19	17 56	1.14	.054 .087	6 38	2 55	.56 .92	144 175	.07 .07	31 31	.87 1.98	.07 . 08	. 25 . 14	1 10	16 520
all L/NUTR	47	41	27	179	7.7	, A	4,	. 444	1.0.	70	41	•	91	740	• •	• •		-	• • • •				• • •	•••	• • • •		3				-

• SAMPLE®	MO PPM	CU P PM	PB PFM	ZN PPM	A6 PPM	NI FPH	CO PPM	MN PPM	FE 1	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD FPM	SB PPM	B! PPM	V PFM	CA I	P I	LA PFM	CR PPM	M6 Z	BA PPM	II I	B PPM	AL I	NA I	K 1	W PPM	AUT PP8	AU38 OZ/T
D11023	ı	8	3	48	. 1	1	4	486	1.57	3	5	ND	2	72	1	2	2	15	.62	.055	6	1	. 48	145	.08	5	.85	.08	.32	2	6	-
D11024	15	8	4	40	1.6	2	8	526	2.14	2	ģ	2	2	62	i	2	2	15	.86	. 050	5	i	. 42	141	.07	2	.77	.08	.30	i	2090	.064
D11025	2	15	2	44	.1	2	3	558	1.88	2	5	NĐ	1	59	1	2	2	19	.76	.054	6	1	.47	163	.08	2	.84	.08	. 38	1	69	-
D11026	13	10	2	44	. 9	2	4	522	1.64	2	9	ND	3	71	1	7	2	13	. 90	. 056	6	2	. 47	119	.07	2	. 86	.09	. 23	i	530	-
811027	1	12	2	58	.1	5	5	694	1.87	2	5	ND	1	126	i	2	2	18	1.23	.060	6	10	.70	121	.07	2	1.11	.07	.17	1	34	-
D11028	1	9	2	46	.4	2	4	554	1.81	2	9	ND	3	61	i	2	2	18	.60	.057	7	1	. 49	170	.09	2	. 91	.09	. 35	1	4	-
B11029	1	8	2	46	.1	2	4	512		2	5	ND	1	49	1	2	2	16	. 75	. 055	5	1	. 46	142	.08	2	.86	.07	.28	ļ	2	-
011030	1	10	2	48	.2	2	4	425	2.05	2	1	ND	2	77	1	2	2	22	.72	.054	6	2	.52	210	.10		1.09	.08	. 48	1	5	-
0 11031	1	7	2	45	.1	2	4	491	1.48	2	5	NB	1	81	1	2	2	13	. 99	. 055	6	1	.46	125	.07	2	.89	.08	.24	1	44	•
8 11032	ı	8	2	43	.2	2	4	523	1.84	2	5	MD	2	43	1	2	2	18	.77	.056	6	2	.45	170	.09	2	.86	.08	.36	ι	á	•
D11033	1	6	2	47	.1	2	4	559	1.94	2	5	ND	ı	5ė	1	2	2	22	.57	.054	6	1	.51	203	.10	2	.96	.09	. 48	1	26	-
0 11034	1	10	2	41	. 1	1	3	611	1.55	2	6	KD	2	66	ı	2	2	13	1.28	.053	5	1	.46	115	.06	8	.79	.06	.22	1	1	-
D11035	i	21	2	43	.1	1	3	900	1.70	2	5	ND	1	74	1	2	2	16	1.14	. 056	6	1	.47	135	.07	2	.03	.07	. 26	1	49	-
9 11036	1	- 11	2	41	. 1	1	3	626	1.59	2	5	ND	2	79	1	2	2	13	1.34	.053	á	1	.45	117	.05	2	.80	.06	.21	1	32	-
D11037	1	14	2	49	.2	2	4	651	1.98	3	5	ND	2	142	1	2	2	19	1.09	. 059	7	2	.52	173	.08	3	.98	.08	.35	2	265	•
D 11038	1	11	2	43	. 2	2	4	544	1.82	2	5	ND	2	64	1	2	2	18	.82	.055	6	ı	.49	169	.09	2	.85	.08	. 35	2	4	-
D11039	1	15	2	44	. 3	2	4	574	2.27	2	7	ND	2	63	1	2	2	22	.61	. 054	7	2	.52	203	. 10	2	.93	.09	.44	1	7	-
B 11040	1	13	2	44	. 1	2	4	561	1.79	2	5	ND	1	83	1	2	2	16	.90	.058	á	2	. 52	168	.08	2	.91	.07	.33	1	4	-
D11041	1	ģ	2	44	.4	2	4	582	1.71	2	1	ND	2	82	1	2	2	17	.88	. 057	6	1	.51	153	.08	2	.87	.07	.28	1	9	•
D11042	t	32	2	43	.3	2	4	559	1.66	2	5	ND	2	60	t	2	2	14	1.10	.057	6	1	.47	117	.07	4	.80	.07	. 21	1	94	•
D11043	1	13	2	48	.1	1	4		1.73	2	5	ND	1	56	1	2	2	17	.74	.058	6	2	.54	182	.09	2	.92	.08	.41	2	18	-
B 11044	2	10	2	46	.4	2	4	608	1.84	2	7	ND	2	64	1	2	2	17	1.13	.060	6	2	.54	151	.08	2	.89	.08	.30	1	25	-
D11045	2	10	2	37	.2	1	3	698	1.58	2	5	MD	2	74	1	2	2	12	1.87	.057	5	1	.42	89	.04	2	.75	.07	.15	1	4	-
D11046	1	10	2	45	.1	2	4	556	1.77	2	5	MD	2	72	1	2	2	18	.83	. 058	é	2	.51	173	.10	2	.92	.08	.41	1	á	-
B11047	1	25	2	46	.1	2	4	553	1.90	2	5	ND	. 1	61	1	2	2	19	.71	. 056	6	2	.53	181	.09	2	.91	.08	.42	1	11	•
B 11048	t	12	3	44	.3	2	4		1.98	2	5	ND	2	79	1	2	2	20	.86	.055	6	2	.51	192	.09	2	.94	.08	.42	1	16	-
D11049	1	10	3	51	.1	2	4	585	1.97	2	5	MD	2	84	1	2	2	21	.61	. 054	6	2	.53	211	.11	_	1.00	.10	. 47	1	ı	-
B 11050	1	11	3	46	. 1	2	4	532	1.73	2	5	ND	1	64	1	2	2	16	. 80	. 055	é	2	. 48	164	.09	2	.84	.07	.33	1	4	-
D11051	1	8	3	48	.1	2	4	548	1.86	2	5	ND	1	59	1	2	2	20	.67	.061	6	2	.50	178	. 10	2	.93	. 10	.43	2	1	-
8 11052	1	9	2	43	.2	1	4	458	1.52	2	5	ND	2	102	1	2	2	15	.70	. 052	6	1	.44	164	.08	2	.85	.08	. 34	1	27	-
DI 1053	1	8	2	37	.1	1	3	222	1.08	2	5	ND	1	76	1	2	2	9	.72	.047	5	1	.34	112	.06	2	.71	.08	.21	1	44	-
9 11054	1	7	2	45	.3	2	4	511	1.68	2	5	ND	2	54	1	2	2	16	.73	. 056	6	1	. 46	166	.09	2	.01	.07	.34	1	38	-
011055	1	14	2	48	.1	2	4	233	1.64	3	2	MB	1	113	1	2	2	15	.94	. 056		Z	. 48	144	.08	2	.92	.09	. 28	1	40	-
811056	i	ė	2	47	.3	2	4	535	1.84	2	6	ND	2	65	ı	2	2	20	.55	. 055	6	2	. 49	194	.10	2	.89	.09	.42	2	4	-
D11057	1	21	2	46	.3	1	4	655	1.77	2	5	ND	1	131	1	2	2	15	1.43	. 056	6	1	.47	131	.07	2	-89	.09	.21	1	350	-
D11058	1	14	2	47	.1	2	4	491	1.57	2	5	ND	1	62	1	2	2	14	.86	.055	6	2	.46	164	.08	2	.83 1.92	.08	.29	2 12	142 510	•
STD C/AU-R	19	59	39	132	7.3	68	27	1032	4.04	28	22	7	36	47	17	18	20	55	. 49	. 085	37	55	.89	171	.07	JZ	1.74	.07	.14	14	310	-

SAMPLE	MO	EU	PB	ZN	AG	HI	CO	MN	FE	AS	U	AU	TH	SR	CD	SP	81	٧	CA	P	LA	CR	M6	BA	71	ı	AL	NA	K	W	ALI#
	PPM	PPH	PPM	PPH	PPM	PPM	PPH	PPM	1	PPM	PPK	PPM	PPH	PPM	PPM	PPM	PPH	PPM	1	1	PPM	PPĦ	I	PPH	I	PPM	1	1	ı	PPM	PPB
011059	1	11	5	51	. 1	2	4	5á8	2.00	2	5	ND	2	86	1	2	2	20	.74	. 059	7	2	.55	210	.11	14	1.03	.09	.46	1	19
B11060	i	ę	2	49	.1	2	4	552	1.68	2	5	ND	2	72	1	2	2	19	.70	.061	ė.	2	. 50	164	.09	2	.90	.07	. 35	1	i
D11061	1	11	4	46	.1	1	4	446	1.39	2	5	ND	1	103	1	2	2	13	.80	.055	å	2	. 45	125	.07	10	.86	.06	.22	1	7
111062	1	•	2	48	.1	2	4	516	1.66	2	5	MD	2	81	1	2	2	16	.84	.057	6	1	.50	153	.08	3	. 91	.07	. 28	2	2
911063	1	11	2	46	.4	2	4	640	1.94	7	5	ND	2	65	1	2	2	18	1.14	.057	6	2	.50	164	.08	3	.89	.07	.32	ı	605
B11064	1	9	5	48	.1	2	4	569	1.99	3	5	ND	2	56	1	2	2	21	.61	.055	4	1	.50	196	.10	2	.94	.09	,47	2	4
D11065	ı	9	3	48	.1	2	- 4	611	2.03	2	5	ND	2	60	1	2	2	21	.79	. 058	7	2	.52	188	.10	3	.98	.10	.44	2	28
9 11066	1	10	2	50	.1	2	4	410	1.96	2	5	MD	1	57	1	2	2	19	.86	. 059	é	2	.52	164	.09	2	.92	.07	. 36	2	86
B 11067	1	21	4	45	.2	2	4	561	1.81	2	5	ND	3	64	1	2	2	18	.91	. 055	6	1	.50	168	.09	2	.89	.08	.34	1	43
840016	1	9	5	48	.i	2	4	547	1.90	2	5	KD	2	52	1	2	2	19	. 63	.056	4	2	.53	189	.09	2	.93	.08	.43	2	5
D11069	1	17	3	47	.2	2	4	557	1.80	2	5	ND	2	53	ı	2	2	18	.83	.056	6	2	.52	185	.09	2	.90	.08	. 40	2	44
9 11070	1	12	2	49	.1	2	4	553	1.98	2	5	MD	1	60	1	2	2	19	.65	. 056	á	2	.52	188	.10	14	.95	.09	. 43	1	35
B11071	1	8	3	48	.1	1	4		1.73	2	5	ND	i	64	1	2	2	17	.76	. 059	6	i	.51	169	.09	2	.91	.08	.37	1	22
9 11072	1	15	2	46	.3	2	4		1.92	2	5	ND	2	62	i	2	2	17	1.30	.058	á	2	.51	141	.08	2	.98	.07	. 29	1	37
811073	1	10	2	44	.2	2	4	415	1.73	2	5	ND	2	83	1	2	2	14	1.40	. 055	6	2	. 45	120	.07	2	.84	.07	.23	2	142
D11074	1	11	3	44	.1	2	4	506	1.43	2	5	ND	2	126	1	2	2	14	1.09	.055	6	2	.44	145	.07	2	.87	.07	.27	1	22
D11075	i	9	2	44	.1	1	4	488	1.53	2	5	ND	1	103	1	2	2	13	.94	. 055	5	2	.47	124	.07	2	.84	. 06	.24	2	10
911076	1	12	4	45	.1	2	4	491	1.45	2	5	ND	2	59	ı	2	2	16	.70	.056	6	2	. 49	159	.08	2	.84	. 07	. 34	1	7
D11077	1	8	2	50	.1	2	4	575	2.05	2	5	ND	1	52	1	2	2	22	.51	. 050	6	2	.53	205	. 10	2	.96	.09	. 48	1	l l
B11078	1	7	2	46	.1	1	4	555	1.81	2	5	MĐ	2	47	1	2	2	18	. 65	. 055	5	7	. 49	180	.09	2	.85	.08	. 40	1	17
D11079	1	7	3	34	.1	2	3		1.74	2	5	ND	1	60	ι	2	2	12	1.23	. 054	6	2	.42	111	.06	2	.77	.07	.22	2	24
080110	ı	4	1	47	.1	1	4		2.15	3	5	MO	2	50	1	2	2	23	.57	. 055	6	2	.52	199	.11	2	.95	.09	. 48	l	17
19300N 4650E	1	ě	3	1	.2	2	1	23	.69	2	5	ND	1	2	ı	2	2	2	.02	.001	2	2	.01	15	.01	7	.07	.01	.04	l .a	645
STD C/AU-R	10	57	38	132	7.2	84	27	1052	4.22	44	21	7	37	47	18	16	19	56	.51	.088	28	56	.92	177	.07	33	1.92	.08	.14	12	500

(


ŧ

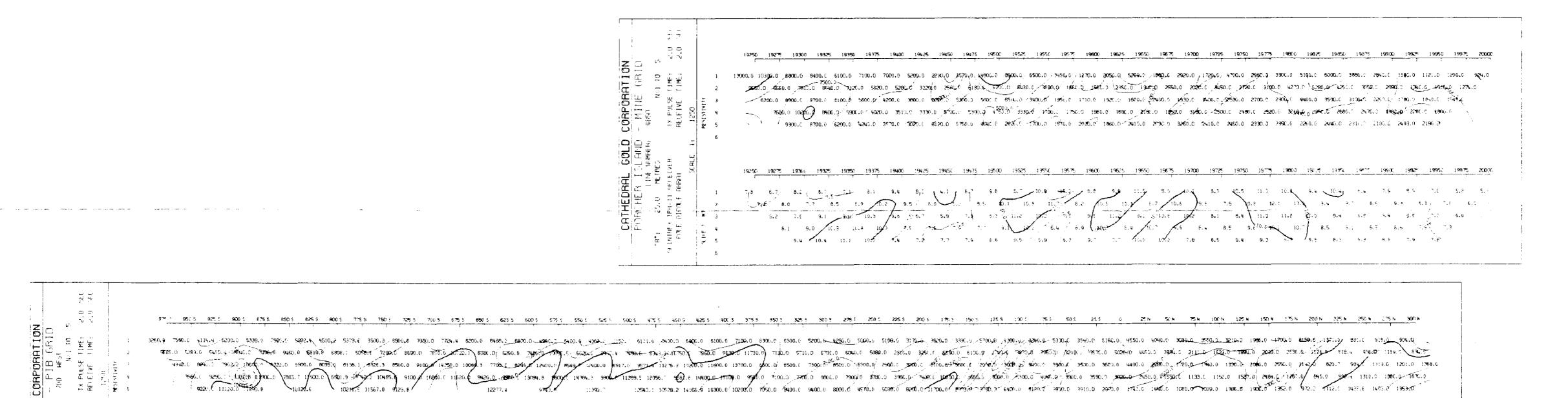
(

i

l

SEC 2.0 2.0 19125 19150 19175 19200 19225 19250 19273 19297 19321 19344 19365 19365 19460 19450 19450 19478 19503 19528 19553 19575 19600 19625 19650 19675 19700 19725 1970 19775 19600 19625 CORPORATION
- MINE GRID S 5500,0 4910.0 4820.0 3340.0 4650.0 3370.0 11690,0 3820.0—3120.0 6400.0 3560.0 4840.0 4620.0 7190.0 4630.0 520.0 7190.0 4650.0 324.0 1924.0 =1 TO TIME: TIME: 5580.0 6222.0 8520.0 11320 0 1986.0 3360.0 3 N=1 TX PULSE TIM 300.0 107000 27000 2900.0 1810.0 3040.0 4600.0 1590.0 7400.0 1072.0 1072.0 100.0 1540.0 1540.0 1540.0 1568.0 1688.0 2680.0 3170.0 2523.0 3810.0 3480.0 2820.0 2820.0 2820.0 1724.0 1717.0 1110.0 1132.0 9700.0 27/1/35 9516.0 2844.0 1660.0 2890.0 4090.0 7500.0 7500.0 7500.0 7500.0 165.0 1400.0 1166.0 1444.0 1391.0 1820.0 2660.0 2100.0 1752.0 1705.0 2491.0 2690.0 2557.0 3918.0 2277.0 2251.0 1990.0 1719.0 1521.70 1147.0 1220.0 CATHEDRAL GOLD OF THE NORTH STATES THE NORTH STREET OF THE NORTH S 19125 19150 19175 19200 19225 19250 19273 19297 19321 19394 19365 19365 19365 19406 19430 19491 19478 19503 19526 19553 1956 19650 19655 19700 19725 19750 19750 19775 19200 19825 19850 19875 19900 "A": 25.0 CINTHEX 1PR-11 5.7 / 8.4 25.0 3.9 و.3 فرام 1.5 فرام 1.3 فرا 5.7 / 4.1 5.7 7.2 7.0 / 3.9 3.2 30176 5 7.0 3.6 2.0 4.8 6.4 3.8 5.3 5.7 7.8 SEC તાં તાં CORPORATION
- MINE GRID L/O F1 10 T1ME: T1ME: 14900.0 / 5100.0 / 1500.0 | 5300.0 | 63 #390.0 2350.0 7810.0 7250.0 7813.0 6190.0 3250.0 2800.0 4493.0 3250.0 2800.0 4493.0 3250.0 6100.0 61 IX PULSE RECEIVE 7100.0 6400.0 7550.0 8610.0 7550.0 3200.0 8000.0 4440.0 2940.0 7600.0 76 CATHEDRAL GOLD
PORCHER ISLAND
LINE NUMBER:
"A": 25.0 METRES
SCINTREX IPR-11 RECEIVER
POLE-DIPOLE ARRAY 19275 19300 19325 19350 19375 19400 19425 19450 19475 19500 19525 19550 1955 19600 19625 19650 13675 19700 19725 19750 19775 19800 19625 19650 19875 19900 19425 1990 19425 1990 19425 1990 19425 1990 19425 1990 19425 1990 19425 1990 19425 1990 19425 1990 19425 19400 19425 :2.0 11.3 9.2 7.2 5.9 \ 9.4 8.7 8.9 \ 6.8 6.5 6.9 \ 4.4 | 🛱 3 10.7 10.2 10.5 8.4 8.1 8.9 8.4 5.4 7.2 6.3 5.8 ¹⁵7.5 7.5 8.4 8.5 6.0 CORPORATION
- MINE GAID E) TO T)ME: TIME: 3180.0 3350.0 4800.0 8100.0 6780.0 6900.0 1900.0 4890.0 1330.0 200.0 1330.0 200.0 1300.0 1300.0 5500.0 1300 N=1 | IX PULSE TIM RECEIVE TIM 4400.0 3340.0, 8\$70.0 7360.0 6837.0 9460.0 \$980.0 \$213.0 2520.0 3850.0 4350.0 5830.0 7310.0 6130.0 \$970.0 948.0 70.0 5130.0 \$970.0 4570.0 7360.0 6837.0 9460.0 \$980.0 \$1982.0 213.0 2520.0 3850.0 4350.0 5830.0 1350.0 1350.0 мировор видо, о водо, 5890.0 5840.0 8000.0 7300.0 2891.0 8940.0 4880.0 4420.0 4420.0 4420.0 4420.0 1410.0 2750.0 2360.0 2450.0 14 CATHEDRAL GOLD (
PORCHER ISLAND
LINE NUMBER:
*: 25.0 METHES

VITEX 1PR-11 RECEIVER 19150 19175 19290 19225 19250 19275 LINV "A": 25.0 MET SCINTAEX 1PA-11 RECE POLE-DIPOLE ARRAN 8.5 6.6 5.3 7.1 6.3 8.8 8.2 7.7 6.3 7.1 6.2 7.9 11.0 $14\frac{19.0}{14.6}$ 14.6 12.2 11.3 12.1 11.0 7.8 $\frac{9.9}{2.9}$ 7.5 7.1 8.0 8.9 $\frac{9.9}{2.6}$ 7.5 8.2 8.5 5.9 6.2 6.6 8.0 8.2 8.3 7.8 6.9 3.2 5.3 $\frac{9.9}{2.6}$ 6.0 5.4 6.7 7.6 7.8 5 7.3 7.5 7.9 8.5 6.4 10.9 11.0 7.2 5.6 2.1 11.0 14.7 12.7 8.3 7.9 8.1 7.3 8.9 9.8 8.9 7.6 5.2 $\frac{9.9}{4.2}$ 5.0 6.0 7.5 7.4 6.9 6.6 5.9 8.5 -7.5 12.1 10. 7.4 7.9 5.8 9.1 13.4 13.1 9.2 8.5 3.0 7.1 3.9 10.2 9.2 7.6 6.6 SEC 2.0 CORPORATION
- MINE GRID S N=1 TO TX PULSE TIME: RECEIVE TIME: 5330.0 18900.0 9700.0 8400.0 4500.0 5200.0 9400.0 8000.0, 2140.0 9490.0 1790.0 5700.0 7900.0 7900.0 7900.0 7900.0 1800.0 8400.0 872.0 3450.0 3450.0 3450.0 3450.0 3450.0 3450.0 3200.0 1950.0 1950.0 1950.0 1950.0 1950.0 3034.0 2139.0 77/0.0 9910.0 520.0 520.0 520.0 500. 🔸 внголо вгодил этория втория втория настранция настр *648.0 3950.0 4300.0 5120.0 5300.0 6300.0 4870.0 1755.6 2450.0 2510.0 1950.0 1950.0 1660.0 1940.0 2500.0 2860.0 2861.0 3570.0 2450.0/1980.0 121.0 1390.0 1880.0 1611.0 CATHEDRAL GOLD (
PORCHER ISLAND LINE NUMBER:
"A": 25.0 METRES
SCINTREX 1FR-11 RECEIVER
POLE-019QLE ARRAY 11.2 10.5 3.5 7.3 7.3 7.5 7.5 3.1 7.7 .2 103 3.6 (11.4 (4.9 9.5 8.1 8.4 / 7.1 / 3.3 A.2 8.4 3.1 8.5 9.6 9.6 7.1 3.4 7.4 / 3.0 9.8 7.4 CATHEDRAL GOLD CORPORATION PORCHER ISLAND FIGURE 5B


INDUCED POLARIZATION PSEUDOSECTIONS

 SCALE
 + 1250

 DATE
 FEBRUARY, 1988

GEOLOGIST - A TAYLOR

DRAWN BY

875 999 983 801 175 800 875 705 775 780 775 780 875 80

TOTAL STATE AND

GESSOUICAL BRANCH ACCORDING MEDDER

16,755

CATHEDRAL GOLD CORPORATION

PORCHER ISLAND

FIGURE 50

INDUCED POLARIZATION PSEUDOSECTIONS

m O 20 40 60 80

 SCALE
 1
 1250
 GEOLOGIST
 A. TAYLOR

 DATE
 FEBRUARY, 1988
 DRAWN
 BY