GEOLOCTCALBRANCH ASSESSMRNTRTMRT

REPORT OF WORK

ON THE

TAS PROJECT
FILMED
N.T.S. $93 \mathrm{~K} / 16$

OMINECA MINING DIVISION
BRITISH COLUMBIA

Situated at Coordinates: $\begin{array}{r}55052^{\prime} \mathrm{N} \\ 124016^{\prime} \mathrm{W}\end{array}$

NORANDA EXPLORATION COMPANY, LIMITED (NO PERSONAL LIABILITY)

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
LOCATION AND ACCESS 2
CLAIM STATISTICS 2
TOPOGRAPHY AND VEGETATION 3
REGIONAL GEOLOGY 3
PROPERTY HISTORY 3
AGREEMENTS 4
GRIDS 4
LOCAL GEOLOGY 5
GEOCHEMISTRY 7
10,000 RECON GRID 7
50,000 GRID 7
ZANA GRID 8
HA 1 GRID 9
GEOPHYSICS 10
INSTRUMENTATION 10
VLF-EM SURVEY 10
MAGNETOMETER SURVEY 10
I.P. SURVEY 10
DISCUSSION OF RESULTS 11
GENERAL 11
VLF-EM SURVEY 11
MAGNETOMETER SURVEY 12
I.P. SURVEY 13
DIAMOND DRILLING 20
PERCUSSION DRILLING 29
CONCLUSIONS 33
RECOMMENDATIONS 34

APPENDICES

I	STATEMENT OF COSTS	35
II	STATEMENT OF QUALIFICATIONS	36
III	ANALYTICAL PROCEDURE	37,38
IV	DIAMOND DRILL LOGS	39
V	DIAMOND DRILL SECTIONS	in pocket
$V I$	I.P. PSEUDO SECTIONS	in pocket

LIST OF FIGURES

Figure 1 Location Map 1:8,000,000

LIST OF MAPS

MAP 1	Claim Map	1:25,000
2	Compilation Map	1:2,500
3	Geology Ridge East Half	1:1,000
4	Gealogy Ridge West Half	1:1,000
5	Recon Grid Area $1 \mathrm{Cu} / \mathrm{Au}$ Soils	1:2,500
6	Recon Grid Area $4 \mathrm{Cu} / \mathrm{Au}$ Soils	1:2,500
7	Recon Grid Area 5 Cu/Au Soils	1:2,500
8	Recon Grid Area $6 \mathrm{Cu} / \mathrm{Au}$ Soils	1:2,500
9	Recon Grid Area $7 \mathrm{Cu} / \mathrm{Au}$ Soils	1:2,500
10	Recon Grid Area $8 \mathrm{Cu} / \mathrm{Au}$ Soils	1:2,500
11	Recon Grid Area $9 \mathrm{Cu} / \mathrm{Au}$ Soils	1:2,500
12	Ridge Grid Soil Geochem Au East Half	1:1,000
13	Ridge Grid Soil Geochem Au West Half	1:1,000
14	Ridge Grid Soil Geochem Cu East Half	1:1,000
15	Ridge Grid Soil Geochem Au West Half	1:1,000
16	Zana Grid Soil Geochem Au	1:5,000
17	Zana Grid Soil Geochem Cu	1:5,000
18	Zana Grid Soil Geochem Ag	1:5,000
19	Zana Grid Soil Geochem Pb	1:5,000
20	Zana Grid Soil Geochem Zn	1:5,000
21	HA 1 Grid Soil Geochem Cu/Au	1:5,000
22	HA 1 Grid Soil Geochem Pb/Zn	1:5,000
23	HA 1 Grid Soil Geachem As/Ag	1:5,000
24	Magnetometer Survey Recon Grid	1:5,000
25	Magnetometer Survey Ridge N-S Lines	1:2,500
26	Magnetometer Survey Ridge E-W Lines	1:2,500
27	I.P. Survey P.F.E. Plan	1:2,500
28	I.P. Survey Resistivity Plan	1:2,500
29	VLF-EM Survey	1:2,500
30	Detail Trench Plans-East Zone	1:200
31	Detail Trench Plans-Mid Zone	1:200
32	Detail Trench Plans-West Pit Zone	1:200
33	Detail Trench Plans-Freegold Zone	1:200
34	Drillhole Location Map	1:2,500

SUMMARY:

The TAS project is located approximately 50 km north of Fort St. James and 150 km northwest of Prince George. The area is underlain by Upper Triassic to Lower Jurassic Takla Group volcanics and sediments intruded by a series of Upper Triassic to Lower Cretaceous stocks and batholiths.

The focus of present exploration is on a package of strongly hornfelsed siltstone/tuff, andesite and hornblende augite porphyry units which host elevated gold mineralization in shear and fracture zones. To date, three zones have been outlined by cat trenching: the east zone, the mid zone and the west pit zone. A total of 1188 meters of diamond drilling have also been completed.

Further recommended work includes a gradient array I.P. survey, further dipole-dipole I.P. survey, mise a la masse survey, trenching and 3,000 meters of diamond drilling.

INTRODUCTION:

The purpose of the TAS project was to evaluate a large (1.5km $x 0.25 \mathrm{~km}$) gold geochem anomaly. In doing so, several new gold showings were discovered by both diamond drilling and cat trenching.

A further 4253 B-horizon soil samples were collected on four separate grids, the 10,000 recon grid, the 50,000 detail grid, the Zana and the HA 1 grids. In addition, 44 km of VLF, 28 km of I.P. and 124 km of magnetometer survey were conducted in an attempt to outline further mineralized trends.

Approximately 6,000 square meters of cat trenching was completed over areas of strongest gold geochem using a TD-8 cat and washing with a wajax fire pump. A small diamond drill program totaling 1,188 meters in 17 holes was completed between June and August of 1987. In addition, eleven percussion drillholes totaling 390 meters was also completed.

LOCATION \& ACCESS:

The TAS property is situated approximately 50 km north of the town of Fort St. James and 150 km northwest of Prince George. The property can be directly accessed by two wheel drive vehicle on the all-weather Inzana Lake logging road from Fort St. James. Access to various parts of the property are via rough logging roads and clear cuts. Presently, several logging contractors are active in the area.

TAS PROJECT CLAIMS:

NAME	UNITS	RECORD \#	RECORD DATE	DUE	AREA (Ha.$)$
Ha 1	18	7705	June 30	1989	450
Tas 1	9	8142	January 27	1991*	225
Tas 2	12	7448	December 30	1990*	300
Tas 3	9	7449	December 30	1990*	225
Tas 4	12	7450	December 30	1990*	300
Tas 5	8	7451	December 30	1990*	200
Tas 6	15	7700	June 24	1991*	375
Tas 7	20	7701	June 24	1991*	500
Tas 8	20	7702	June 24	1991*	500
Tas 9	20	7703	June 24	1991*	500
Tas 10	15	7704	June 24	1991*	375
Tas 11	20	7959	September 17	1990*	500
Zana 2	20	8099	December 4	1989*	500
Zana 3	20	8100	December 4	1989*	500
Zana 4	15	8101	December 4	1989*	375
Zana 5	20	8247	March 24	1990*	500

[^0]

The area is characterized by pine flats, swampy areas and gently rolling hills. The flat areas include layered glacial debris, sandy plains and small eskers. Swampy areas are generally found around Hatdudatehl and Taslincheko Creeks. The gently rolling hills consist mainly of resistant rock outcrop area.

Vegetation consists of mature stands of spruce pine and balsam, which is presently being logged off in some areas. Undergrowth is mainly alder with some devil's club.

REGIONAL GEOLOGY:

The area has most recently been described by J.E. Armstrong in G.S.C. Memoir 252, Fort St. James Map-Area in 1949. The area has also been covered on G.S.C. Map 971A by H.M.A. Rice in 1949 (Geology of Smithers-Fort St. James Area).

The TAS project lies in a broad northwest trending package of rocks known as the Quesnel Trough. These include Upper Triassic to Lower Jurassic Takla Group volcanics and sediments which have been intruded by a series of felsic to ultramafic stocks and batholiths, ranging in age from Upper Triassic to Lower Cretaceous.

The Takla group volcanics and sediments include andesitic to basaltic flows, tuffs, tuff breccia and agglomerates interbedded with conglomerates, greywacke, shales and limestones. The intrusive rocks include the Hogem batholith and several other Omineca intrusions consisting of granite, syenite, granodiorite, quartz diorite, diorite, gabbro and pyroxenite.

The area is cut by numerous fault structures usually trending northwest, parallel to the Pinchi Fault. These may be subparallel splay faults with tensional or transverse structures trending east-west.

PROPERTY HISTORY:

The area has received very little exploration attention in the past, except for the early days of the porphyry copper rage. In 1969, the N.B.C. syndicate acquired the HAT claims to cover the copper occurrence on the HA 1 claim and followed up with VHEM, Mag and detail geology surveys. The area was covered by an airborne EM and Mag survey flown by Questor in 1981, contracted by Selco Exploration. The Sask claims, immediately north of the HA 1 were subsequently staked and followed up by ground HLEM and Mag surveys. Two diamond drill holes were drilled in 1982 to the HLEM conductors.

In 1982, the Inzana Lake forest access road was constructed through the area and during construction, a cat opened up disseminated copper mineralization near the Freegold Zone.

This area was staked by Alex Leggate and later allowed to lapse. The claims were then re-staked by A. Halleran of Fort St. James after receiving geochemically anomalous gold values in rock samples from the Freegold area. Visible gold was discovered in quartz/carbonate veins, not far from the original copper discovery, by Noranda personnel on a routine property examination.

The property was optioned in 1985 and a small follow up program was initiated, including soil sampling, detail magnetometer survey, I.P. and recon geologic mapping. The I.P. lines were extended to cover part of the Ridge area, where a strong chargeability signature was encountered. In the spring of 1986, soil sampling over the Ridge area outlined strong gold geochem over a 1.5 km strike length. Subsequent hand trenching and cat stripping discovered numerous sulphide zones containing strong gold mineralization.

AGREEMENTS:

Noranda Exploration can earn 100\% interest in the TAS property, subject to a 2% N.S.R. (A. Halleran), by maintaining the property in good standing and by making the following option payments:
$=5,000$ on signing
$=3,000$
$=10,000$
$=30,000$
$=60,000$
$=90,000$
$=140,000$
$\$ 330,000$

July 18, 1985	
September 30,	1985
September 30,	1986
September 30,	1987
September 30,	1988
September 30,	1989
September 30,	1990
September 30,	1991

GRIDS:

The old 10,000 grid was extended to the north, west and east to accommodate further recon soil sampling and magnetic surveys. A total of 87.5 km of line was established at line spacing of either 100 or 200 meters with stations marked at every 25 meters. The lines are flagged and run north-south controlled by crudely cut tie lines every 1000 meters.

A new detail 50,000 grid was established over the previous grid to accommodate further close spaced soil sampling, I.P. surveys, magnetic surveys and to add better control for trenching and diamond drilling. Lines on the new grid run both north-south and east-west forming a square grid pattern every 50 meters with stations marked every 25 meters. All baselines, tie lines and some lines are cut and picketed. A total of 60.75 km of 1 ine has been established on the 50,000 grid.

The Zana grid consists of 24 km of flagged line, controlled by 2.4 km of cut baseline, running at an azimuth of 360 degrees. The wing lines run 90 degrees to the baseline with
stations marked every 25 meters. A flagged tie line connects all the lines at 41000E.

The HA 1 grid has 12.25 km of flagged line, controlled by 1.2 km of cut baseline, running at an azimuth of 090 degrees.

LOCAL GEOLOGY:

The 1987 field mapping program was carried out by Rob Baerg and Gordon Maxwell. The mapping was done at two scales, 1:1000 for the overall picture of the Ridge area and 1:200 for detail sampling and mapping in trenches.

The most frequently encountered unit on the property is a hornfelsed siltstone or fine ash tuff, which has been cut by a weakly porphyritic diorite and a hornblende-augite porphyry. These intrusive units occur usually as large to small stocks or dyines. All units in the Ridge area have been moderately to intensely fractured. The units described below and on the geology maps are not listed according to age or any particular order.

UNIT 1: A hornfelged siltstone or fine ash tuff and minor andesite, containing variable amounts of chlorite, epidote, silica, biotite and quartz/carbonate alteration. These rocks are moderately to intensely fractured and brecciated, containing a trace to 10% pyrite, pyrrhotite and chalcopyrite. This unit is generally green-grey in color to a mottled pale green, grey-green, dark green to a bleached tan or buff color in areas of intense alteration.

UNIT 2: Unit 2 is composed of a dark grey to black siltstone/shale which has been locally hornfelsed. This unit is not very prominent on the property, but occurs locally, interbedded with Unit $1 . \quad$ The siltstone/shale horizon is fairly massive to weakly laminated with a weak pervasive carbonate alteration and numerous calcite veins and veinlets.

UNIT 3: This unit is termed hornblende-augite porphyry and occurs as small stocks and dykes cutting Unit 1 at various orientations, with widths varying from 10 cm to 30 meters. The porphyry contains $1-30 \% 1-10 \mathrm{~mm}$ euhedral to anhedral hornblende and augite phenocrysts with local 1$10 \%$ 1-5mm anhedral feldspar phenocrysts. The matrix is grey-green to dark green, variably hornfelsed and locally quartz, chlorite altered. The unit is weakly to moderately fractured with $1-5 \%$ disseminated pyrite, pyrrhotite and chalcopyrite.

UNIT 4: Unit 4 is a light to dark grey hornblende porphyry which occurs in narrow dykes cutting all units except Unit 5. The porphyry consists of $2-25 \%$ 1-2mm hornblende phenocrysts in a fine grained grey-green matrix with weak chlorite-epidote alteration. The hornblende phenocrysts
are aligned parallel to the dyke contacts. This porphyry unit is quite rare on the property, usually occurring only on the western end of the ridge.

UNIT 5: A weakly porphyritic quartz diorite to diorite, which makes up the most prominent intrusive on the property. The diorite is light to medium grey, equigranular to weakly porphyritic, containing $5-10 \%$ hornblende, $90-95 \%$ feldspar and hornblende grains. This unit appears to be weakly to moderately allitized and saussuritized. The unit is commonly silicified with minor chlorite and sericite alteration, containing trace to 2% pyrite and trace to 5% pyrrhotite. On the Ridge area, this unit occurs as small stocks and dykes cross cutting all units and may be closely related to the large epidotized diorite stock which covers most of the Freegold area of the grid. The diorite in the Freegold area is characterized by a very strong high magnetic signature, possibly due to the pyrrhotite and trace amounts of magnetite.

UNIT 6: Unit 6 is a fine grained, dark green to green-grey feldspar porphyry with $2-3 \mathrm{~mm}$ anhedral feldspar phenocrysts. The matrix is usually moderately to strongly chlorite altered, sometime weakiy schistose in areas of shearing.

UNIT 7: An intensely altered fault zone, located in diamond drill holes 271-87 $1 \& 2 . \quad$ \& 2 ese are usually strongly schistose, with intense chlorite/clay alteration, typically containing $2-3 \%$ disseminated pyrite. This unit is sometimes surrounded by an highly brecciated zone on both the footwall and hanging wall.

UNIT 8: A brown to grey quartz/carbonate altered zone usually highly weathered, containing $1-2 \%$ disseminated pyrite and $1-25 \%$ quartz and calcite veins and veinlets. Found usually in the area of the Freegold trench, where the odd speck of visible gold has been encountered.

UNIT 9: The main host of gold mineralization in the Ridge area, consists of stringer to massive sulphides, usually hosted in shears or heavily fractured siltstone/tuff or hornblende-augite porphyry. This unit typically contains 5-80\% pyrite, pyrrhotite and chalcopyrite in stringers and semi-massive to massive sulphide bands, ranging from 1 cm to 300 cm in thickness. Stringers are found in moderately to strongly brecciated and fractured areas immediately adjacent major shears contain thin, massive to semi-massive sulphide bands.

SOIL GEOCHEMISTRY:

A total of 4253 B-horizon soil samples were collected in 1987 on four separate grids. The largest is the 10,000 recon grid on the TAS property, over which 2435 samples were collected. Detailed sampling over the Ridge area was initiated on a new 50,000 grid and a total of 898 samples taken. In addition, 630 samples and 290 samples were obtained from the Zana and HA 1 grids respectively. The samples from the recon 10,000 grid were collected during winter months using long soil augers to obtain samples under two meters of snow. Samples from the 50,000 Zana and Ha 1 grids were obtained, using grub hoes, from holes ranging from 15 to 35 cm in depth during summer months. The samples were placed in Kraft wet-strength paper bags, dried, then shipped to Noranda Labs in Vancouver, B.C., for analysis. Samples from the recon 10,000 and the 50,000 grids were analyzed for copper and gold only; samples from the Zana grid were analyzed for copper, zinc, lead, silver and gold and the HA 1 grid were analyzed for copper, zinc, lead, silver, gold and arsenic. Results are plotted on 1:1000, 1:2500, and 1:5000 scale maps in rear pockets.

10,000 Recon Grid:

Gold Geochem - Gold values in areas other than the Ridge zones range from 5 to 590 ppb with most in the range of 5 to 10 ppb, very low values were considered anomalous. The anomalous values appear to be highly scattered and isolated.

Copper Geochem - Copper values range from 2 to 1040 ppm , with background around 2 to 25 ppm. Anomalous values appear to be scattered and isolated and no new areas of high copper geochem were outlined.

50,000 Grid:

Gold Geochem - The area of strongest and most consistent gold geochem is on the Ridge area where values range from 10 to $50,000 \mathrm{ppb}$. The 50 ppb contour indicates large wide-spread areas of elevated gold geochem. This contour shows some strong trends of which the most obvious is a 600 meter long anomalous trend at 055 degrees extending from the west pit zone to 49600E/50300N. The same trend appears to be intersected by three cross structures which trend 140 degrees and cut the main trend at the west pit zone, $49400 \mathrm{E} / 50150 \mathrm{~N}$ and $49550 \mathrm{E} / 50200 \mathrm{~N}$. These anomalous gold trends may be indicating major structural trends which host strong gold mineralization.

The 50 ppb contour also shows a short (300 meter), 50 meter wide zone trending 030 degrees across the mid zone, which appear to follow the major structures found in the trenches.

There appears to be a strong discontinuous trend running north-south along L50000E over the east zone. Other large anomalies also occur: 1) between 49250 E and 49500 Er from 49700 N
to 49900 N which appears to trend 010 degrees, 2) a blob type anomaly located between 50100E and 50400E from 49750N to 49950N, 3) between 48950 E and 49150 E from 50100 N to 50200 N trending 055 degrees, and, 4) an east-west trending anomaly between $49450 E$ and 49600E at 49350N.

Some more isolated anomalies are listed below:

$48850 E / 50100 N$	$49900 E / 49850 N$
$49250 E / 49800 N$	$50150 E / 50025 N$
$49600 E / 50025 N$	$50375 E / 50000 N$
$49600 E / 49875 N$	$50400 E / 50175 N$

49700E/49700N
50400E/50175N

Copper Geochem - Copper values on the Ridge area range from 6 to 3300 ppm , where background is around $20-50 \mathrm{ppm}$. The largest anomalous copper geochem covers a large area immediately south and including the east zone. The main trend of the anomaly appears to be about 060 degrees and appears to be intersected by a north-south trend anomaly which covers the east zone.

Another obvious anomaly occurs over the west pit zone trending 350 degrees, discontinuously from 49700 N to 50150 N along line 49050 E . Other major anomalies occur: 1) between 48750 and $48900 E$ at 50225 N trending 060 degrees, 2) at the north edge of the soil coverage between 48950 E and 49300 E at 50300 N trending east-west, 3) a north-south trend between 50100 N and 50250 N at 49250 E , 4) surrounding the mid zone between 49700 E and 49800 N from $49950 E$ to $50100 E$, and 5) a large blob type anomaly between $50200 E$ and $50300 E$ from 49950 N to 50100 N .

The small isolated anomalies are listed below:

$50400 E / 50025 N$	$49300 E / 50250 N$
$49675 E / 49825 N$	$49200 E / 49800 N$
$50100 E / 49700 N$	$49150 E / 50125 N$
$49500 E / 49800 N$	$48800 E / 49775 N$

Zana Grid:

Gold - Gold values on the grid range from 10 to 150 ppb , but only two values are considered anomalous. The two anomalous values are centered around L38400N/40450E.

Copper - Copper values range from 8 to 1600 ppm , with background levels considered to range from 8 to 40 ppm , anomalous values are >100 ppm.

The largest and strongest anomalous area occurs at $40900 E$ to $41100 E$ between lines 39000 N and 39400 N . Other anomalous areas occur at $40250 E$ to $40450 E$ between lines 39700 N and 39800 N , 40600 E to 40800 E between lines 39000 N and 39500 N and centered around L39600N/40250E.

Single sample anomalies are as listed:

L38200N/40475E
L38200N/40600E L38400N/40050E L38400N/40100E L38700N/40750E

L39000N/40725E
L39600N/40825E
L39500N/40625E
L39800N/40925E

Silver - Silver values range from the detection limit of 0.2 to 5.6 ppm , background levels are $0.2-0.6$ ppm and anomalous values are considered to be >1ppm.

The largest and strongest silver anomaly coincides with the best copper anomaly at 40800 E to 41200 E , between line 39000 N and 39500N. Other anomalous areas occur at $40000 E$ to $40050 E$ between lines 39200 N and 39600 N , centered around L39200N at 40700 E and $40650 E$ between lines 39500 N to 39700 N .

$$
\begin{array}{ll}
\text { Single station anomalies occur at: } \\
& \text { L38700N/40350E }
\end{array}
$$

L39700E/39625N
Lead - Lead values range from 1 to 80 ppm, with background around 1 to 5 ppm and anomalies considered $>20 \mathrm{ppm}$. Lead geochem has outlined three anomalous areas: 1) 40800E to $41000 E$ between lines 39000 M and $39700 \mathrm{~N}, 2$) 41050 E to 41150 E between lines 39200 N and 39500 N , and, 3) 40700 E between 39100 N and 39300 N . Several other single station anomalies occur at:

L3900ON/40725E	L40000E/39675N
L3910ON/4060OE	L40000E/39850N
L39400N/40500E	L40000E/40100N
L39900E/40375N	L40000E/4020ON

Zinc - Zinc values range from 56 to 600 ppm with background levels around 56 to 200 ppm and anomalous values considered >500 ppm. Only three single station anomalies are outlined.

L39100N/40825E
L39900E/40475N
L40000E/39825N

HA-1 Grid:

Copper - Copper values range from 12 ppm to 450 ppm in scattered, isolated, single station anomalies throughout the grid. A group of anomalous copper values ranging from 200 ppm to 450 ppm occur on Line $10,200 E$, centered approximately at 9500N.

Gold - Gold values were all very low with a maximum value of 80 ppb. A group of three consecutive 80 ppb gold values occur at the north end of Line 9400E.

Lead - The maximum lead value is 4 ppm, therefore, no areas are considered anomalous.

Zinc - Zinc values range from 54 ppm to 350 ppm in scattered, isolated, single station anomalies throughout the grid. A group of weakly anomalous zinc geochem is clustered around Lines 9900E and $10,000 \mathrm{E}$ between 9300 N and 9550 N .

Arsenic - Arsenic values range from 1 to 28 ppm , none are considered anomalous.

Silver - Silver values range from 0.2 to 1.4 ppm , no anomalous areas on the grid are apparent.

GEOPHYSICS:

INSTRUMENTATION:

VLF-EM SURVEY INSTRUMENTATION

The EM-16 VLF-EM receiver is manufactured and serviced by GEONICS of Mississauga, Ontario. This instrument measures the dip of the null angle and phase of the electromagnetic field generated by very low frequency transmitters maintained by military forces around the world for communications purposes. The frequency range is between 15 and 30 KHz . with power outputs in the range of 50 kilowatts to 1 megawatt.

The operation of the EM-16 instrument is well documented in the manuals and other literature. Basically the system is physically oriented along the lines of the electromagnetic field and this angle of the null field is recorded as units of percent slope. Additionally the phase angle is also measured and recorded. This type of passive EM system suffers considerable influence from the local topography and as a high system frequency is employed, subtle variations in the underlying resistivity produce large variations in the recorded profiled data thus caution must be exercised in the intexpretation of the data.

This EM survey employed the transmitter station located at Seattle, Wash. (NLK). Both VLF-EM parameters discussed above were recorded at 25 meter intervals.

MAGNETOMETER SURVEY INSTRUMENTATION

The magnetometer surveyed employed a field and base station package also manufactured by Scintrex of Concord, Ontario. The MP-3 system records the Total Magnetic Field with a field accuracy of 1 to 2 nano Teslas with all applicable corrections having been applied to the data. Readings were recorded at 12.5 meter intervals.

Some of the early work also employed a Geometrics 'unimag' (G.836). This data however was also corrected, leveled and merged with all of the recorded data. The accuracy of this data is of the order of $+/-10$ nano Teslas.

I.P. SURVEY INSTRUMENTATION

The I.P. survey employed a Frequency Domain system manufactured by Phoenix Geophysics of Toronto, Ontario. The transmitter and generator have a capacity of producing 1.2 Kilowatts of electrical power although this amount of power is rarely used.
I.P. surveys that were carried out during the early part of 1986 utilized the same transmitter but in the Time Domain mode along with a Huntec Mark IV receiver. A two second cycle time was used throughout the survey.

The survey parameters employed for these surveys were as follows:
Dipole array : Dipole-Dipole
Dipole length
: 25 meter detail
Separations
Frequencies
Parameters recorded
I.P. transmitter
: $n=4$ on detail
: $n=3$ on recon
: 0.25 and 4.0 Hertz
: Percent Frequency Effect (PFE) \& Resistivity (ohm-meters)
I.P. receiver
: Phoenix IPT-1 \& MG-1
: Phoenix IPV-1
A fixed transmitter setup using up to four Tx dipoles on either side of the transmitter was the most frequently, however some of the work completed by P. Walcott (contractor) employed a moving setup method. The recorded resistivities indicate that EM coupling was negligible.

DISCUSSION OF RESULTS

GENERAL

Surveys completed on the TAS project area between 1986 and 1987 consisted of VLF-EM, Magnetometer and Induced Polarization methods. Grid lines extend in both North-south and East west directions with most of the early survey coverage completed on the North - South grid lines.

VLF - EM SURVEY

During July 1987 a VLF-EM survey was completed on the RIDGE GRID with readings recorded at 25 meter intervals. The Seattle, Wash. VLF-EM transmitter was employed for the source signal.

The VLF-EM coverage was restricted to 11 east west lines. The survey has recorded numerous 'crossovers' however for the most part these are of long wavelength (> 100 meters) and thus are most likely caused by smooth continuous variations in the overburden resistivity or by topographic changes. There are a few sharper features which are noted on the profile map as 'conductor axes' but these are for the most part lacking in good quadrature response. These sharper features are considered areas of interest. One locality with significant VLF (and magnetic) activity is centered approximately at L.49850N/49600E.

When this data is compared with the filtered resistivity data there is good correlation with the subtle EM responses however there is a low confidence level with the VLF-EM data by itself. The quality of the I.P. data supersedes the quality of the VLF-EM which, considering the quantity of I.P. data available, puts the VLF-EM data as a supportive method at best.

MAGNETOMETER SURVEY

Magnetometer surveys were run during several programs spanning 1985, 1986 and 1987. This large coverage was completed on the North-South lines while a smaller magnetic survey was completed on the RIDGE GRID which is constructed of East-West lines. (There has been no attempt to merge the East-west line data with the North-South line data). All of the North-South line data has been leveled, corrected and merged into a single data set. Difficulties were encountered in attempting to merge the numerous data sets collected by a number of individuals. Most of the level differences have been corrected to within approximately 10 nano Teslas however discrepancies still exist particularly on the north ends of lines 9400E and 9600E.

The large data set ($N-S$ lines) has identified four specific types of magnetic responses reflecting changes in the magnetic susceptibility of the underlying geology. They are as follows:

UNIT 1:
This response is typical of an intrusive body and is mapped over the south central portion of the grid between Lines 9800E and 12300 E and approximately south of station 10300 N . This response indicates a high magnetic susceptibility whose boundaries are well defined. Possible dike structures are evident emanating from the North west corner of the intrusive in a 065 and 315 azimuthal direction. Note that peripheral of the northern contact there is an extensive magnetic low which is a reflection of the dipolar nature of the Total Field. This low should not be construed as an anomalous area of magnetic mineral depletion.

UNIT 2:
This area is located west of the intrusive and south of the 1250 nT contour (on the filtered map) between approximately L. $7600 \mathrm{E} / 11300 \mathrm{~N}$ to L. $9400 \mathrm{E} / 10000 \mathrm{~N}$. This area is underlain by a moderate but uniform magnetic susceptibility unit.

UNIT 3:

The remainder of the gridded area is underlain by a low magnetic susceptibility unit that has a geological noise level of approximately 50 to 75 nT . This 'noise' is generally of a low frequency except in an area bounded between Lines 9800E - 11000E and stations 11100 N to 11500 N where the characteristics of the geological 'noise' is considerably sharper and higher in amplitude. This would indicate discrete, small near surface sources of high susceptibility. These sane sources may also be responsible for the overall pattern of the magnetics for this unit 3 but beyond the above mentioned area may be at a somewhat deeper depth of burial.

RIDGE GRID

A smaller scaled magnetometer survey was completed during 1987 on the RIDGE GRID which consisted of a number of East-West lines controlled by the 50000 baseline. Note that this area was also surveyed with some detail on a North-South line direction. The information from either of these data sets indicates that the area is underlain by a magnetically uniform package punctuated by small isolated zones of high magnetic susceptibility.

Some indication of magnetic 'strike' direction can be inferred from the data however the numerous isolated anomalies tend to add some confusion to the picture. Both data sets indicate a preferential 140-160 direction as well as a subsidiary 090 direction. A third direction of interest is a magnetic contact feature which extends in a definite 045 degree direction. This direction is most evident on the old data set collected on the North-South lines. Specifically a package of active magnetics is mapped between L.49300E/49800N - L.49900E/50300N and L. $49750 E / 49700 \mathrm{~N}$ - $50350 \mathrm{E} / 50300 \mathrm{~N}$. West of this unit there is a similar package defined northwest of a contact between L. $49000 \mathrm{E} / 49750 \mathrm{~N}$ - L. $49500 \mathrm{E} / 50300 \mathrm{~N}$. These are very subtle features and can only be poorly defined at best due to the line directions of the two Ridge grids.

Other structural features are evident from the magnetic data and are as presented on the Ridge grid compilation/Mag map.

INDUCED POLARIZATION SURVEYS

Numerous I.P. surveys have been completed in the TAS project area. The majority of the work has centered on the Ridge grid con both of the two overlapping grids). The work can be split into two portions - i.e. the North-South grid and the East-West Ridge grid. Determining line to line correlation with the I.P. data has been at best a difficult task and this is probably the result of the small PFE sources involved and the unknown direction of these sources. A case can be made for a multiplicity of strike directions however directions as defined by the magnetometer surveys are seen. This is particularly true of 140 - 160 degrees.

NORTH - SOUTH GRID
The IP data indicates this large area to be underlain by a high IP effect response typically in the range 4 to 9 percent FE. Within this high background several "anomalous" PFE and resistivity responses stand out thus defining a number of potential targets. The work completed during 1986 consisted of 'recon' lines numbered less than 20000E. Time Domain equipment employing 25 meter dipoles was used on lines 10000E to 10800E. For Lines $8800 E$ and 11100 E to 12900 E a wide 50 meter dipole length was employed. Specific descriptions of the recorded data on the North-South grid (Lines 8800E - 12900 and Lines 49000E 50400E) are as follows:

LINE 8800E
This recon line was surveyed with 50 meter dipoles and three weak zones of PFE were recorded in a fairly homogeneous resistivity package. The most significant PFE anomaly is defined between 11500 N and 11650 N .

LINE 10000E
A high chargeability background is mapped north of station 10300 N with few other distinctive features noted.

LINE 10100 E
A high chargeability background is noted north of station 10387 N with a local IP anomaly defined at $10425 \mathrm{~N}-10500 \mathrm{~N}$. To the south of this package the area is broken by three weal IP zones as illustrated on the pseudo-section. The two small responses at 10150 N and 10200 N have no identifiable resistivity signatures other than that they lie within a high resistivity zone.

LINE 10200E
A distinctive high chargeability package is defined north of station 10400 N . To the south of this unit there are no responses of immediate interest save for a number of small weak response at $9825 \mathrm{~N}-9925 \mathrm{~N} / \mathrm{n}=4$.

LINE 10400E
A similar signature as above carries to this line. The high IP background is evident north of 10525 N and within this unit the resistivities are quite variable. Within this unit a weak IP is defined at 10650 N . At the south contact (10525N) there is a noticeable increase in the resistivity. South of 10300 N the IP background increases with a local IP enhancement noted at this contact.

LINE 10600 E

Two IP backgrounds are noted on this section and whose boundary or transition occurs between 10662.5 N and 10725 N . This is also reflected in the resistivity data but is not as prominent as with the IP data. Within the area of the high IP there are two zones of above (local) background and are centered at $10825 N / n=4$ and a less distinct zone at approximately 11200N. Associated with this latter response is a low resistivity zone which is assumed to be the east extension of the low resistivity zone defined at L.10800E/11312.5N as mentioned below.

South of the high IP background the resistivities drop north of 10450 N . Within this 200 ohm-meter material a broad IP anomaly is recorded centered at $10362.5 \mathrm{~N} / \mathrm{n}=3$. There is no distinct resistivity signature associated with this zone.

LINE 10800 N

A high IP background is recorded on this line of data. Within this package some localized zones are noted particularly those centered at $10875 \mathrm{~N} / \mathrm{n}=3,4$ and $11337.5 \mathrm{~N} / \mathrm{n}=4$. These two responses reflect subtle changes in the rock composition rather than discrete zones. There is no recorded resistivity signatures associated with these IP responses. One resistivity feature that is initially mapped on Line 10600E is identified at 11312.5N which appears to be sourced by a narrow, steeply dipping zone of low resistivity.

LINE $11100 E$

The IP survey on this line employed a 50 meter dipole length and has defined a high IP background between 10350 N and 10900N(?) within which some minor increases in the Frequency Effect can be discerned. The resistivities are uniform throughout the section.

LINE 11500 E

No discrete PFE targets were identified on this section of data. Two areas of above background are mapped south of 9800 N and at 10350 N - 10850 N . The resistivity shows no outstanding features save for a resistivity high centered at $10050 \mathrm{~N} / \mathrm{n}=3$.

LINE 11900 E

This Line of data has defined an area of above background PFE north of station $11350 N$. The PFE values at depth ($n=3$) are quite high and indicate a wide target. The resistivity is low within this high PFE zone.

LINE $12400 E$

Two zones of high PFE are defined on this line however it is strongly suspected that they are the same zone which extends across the full length of the gurveyed line. A low resistivity area between $10850 N$ and 11100 N appears to be suppressing the depth of detection which in turn causes an artificial low in the PFE values. Local high PFE anomalies are seen in the data and are as illustrated on the section.

LINE 12900E

Three zones of anomalous PFE readings were recorded on this line and are as illustrated on the IP section. Due to the wide dipole spacing of 50 meters definition of these sources is poor.

The following IP Lines were surveyed with a dipole length of 25 meters.

LINE 49000E

A broad PFE target with PFEs in excess of 10% is located at $49800 N-50025 N$ however the resistivity does not show any clear pattern. Indeed it appears that there may have been a problem with the $T x$ electrodes (ice?) that has suppressed the PFE response and disrupted the resistivity pattern.

At stations $50175 N-50212 \mathrm{~N}$ there is a substantial PFE anomaly that clearly stands out above the high background. This target lies on the south flank but not in a uniform zone of low resistivity. This low resistivity unit is a pronounced change in signature thus probably is reflecting a gross change in the geology.

LINE 49200E

Located at $49687 \mathrm{~N}-49712 \mathrm{~N}$ there is a moderate response that may actually be closely associated with the response discussed below. The south edge of this anomaly has a sharp cutoff which is in itself an anomaly. There is no resistivity signature of interest.

As discussed above this zone at $49812 \mathrm{~N}-49837 \mathrm{~N}$ may be associated with the response to the south but otherwise represents a narrow source at depth.

A narrow and poorly defined anomaly at 50000N-50025N lacks a balanced anomaly shape. It is approximately twice background and may be due to an electrode problem.

This anomaly at $50087 \mathrm{~N}-50112 \mathrm{~N}$ has a well developed PFE pattern indicating a source that extends to depth with a width of approximately 25 meters. There is no obvious resistivity pattern associated with this target however the PFE response should stand on its own.

LINE 49400 F

A broad PFE response is located at $49962 \mathrm{~N}-50112 \mathrm{~N}$ that is well above background and has a high resistivity 'core". This zone may extend some 100 meters to the south but the signature indicates this section of the source to be buried.

LINE 49600E

This narrow zone at $49800 \mathrm{~N}-49850 \mathrm{~N}$ is poorly defined and is at best only inferred as a surficial response within a low resistivity zone.

Much of this PFE response at $49937 \mathrm{~N}-49975 \mathrm{~N}$ was not recorded as it occurs within and on the north side of a very low resistivity anomaly that has values down to 8 ohm-meters. This resistivity response is highly anomalous and in fact may be a composite response of two low resistivity sources. A high resistivity zone lies on the north flank of the PFE/RES anomaly.

A very broad zone is defined north of 50125 N that extends beyond the end of the line. Within this anomaly variations of the PFE can be discerned however with a background of $12 \%-15 \%$ it is difficult to identify specific features. A significant low resistivity zone is recorded at the north end of the line and is only partially defined.

LINE $49800 E$
The wide PFE zone at 50087 N - ? is the extension of the zone discussed above for Line $49600 E$ and is assumed to be the same source.

A poorly defined PFE anomaly is mapped at $49700 \mathrm{~N}-49725 \mathrm{~N}$ however it appears to occur at a resistivity contact.

At $49812 \mathrm{~N}-49850 \mathrm{~N}$ there is a small response of two times the background PFE. The shape of this anomaly hints that the edge or the end of the source is being defined with the bulk of the source located off line.

A definite surficial source is located at 49925E-49950E and is of limited depth extent as indicated by the PFE signature. The resistivity response is interesting in that the anomaly is associated with a low resistivity sandwiched by thin high resistivity sources.

LINE 50000E

A very poorly defined near surface PFE response is recorded at $49975 N-50000 \mathrm{~N}$ on the south flank of a resistivity contact.

A zone of limited depth extent is mapped at 50150N-50187N and is associated with a high resistivity response. This PFE response is approximately twice background and generally poorly defined.

LINE 50200E
The high PFE zone defined at 49887N-49962N occurs within a high background and is thus poorly defined although what is attractive
is the narrow and coincident resistivity low that is associated with this target.

A high PFE zone (2 times background located at 50112N-50162N) appears to be of limited depth extent. A significant low resistivity anomaly is mapped coincident with the south contact of the PFE anomaly. This resistivity low is flanked or sandwiched with a veneer of high resistivity.

LINE 50400E

A 50 meter wide zone at the extreme North end of the line has clear and distinct boundaries along with a well defined resistivity signature of 400 to 500 ohm-m. This line has an overall low PFE background.

The remaining lines discussed below are located on the EastWest grid lines and are concentrated in the vicinity of the 'RIDGE GRID'. Frequency Domain equipment employing a 25 meter dipole-dipole array was used exclusively in this area.

LINE 49200N

Two zones of anomalous PFE were partially defined on this line of data. At the west end of the line a build-up in the PFE values is recorded west of station $49050 E$. This source appears to occur within a high resistivity environment however it is only partially defined. East of $49800 E$ there is a significant increase in the PFE and what is noticeable about this package is the uniformity of the PFE and resistivity values leading to the conclusion that this unit is quite homogeneous. The east contact is located at station 50025E.

LINE 49400 N
The PFE values are somewhat elevated on this Line defining a background of about 5% to 6%. Within this package there are two narrow zones centered at $49612.5 E$ and at $49750 E$. Neither of these sources has any outstanding resistivity signature.

LINE 49900N
This line of data has a complex picture both in the resistivity and PFE parameters thus making anomaly identification difficult. Five anomalous PFE zones are tentatively indicated on the section. Narrow (< 50 m) responses that do stand out are centered at stations $49100 E$ and at $49737.5 E$ with the latter being the most interesting due to its association with a localized resistivity.

LINE 49950N

As for the line to the south there is an elevated PFE background with a few 'anomalous' responses that are as noted on the pseudo-section. None of these have well defined shapes and
probably reflect changes in the sulphide content of the underlying geology. One feature of interest is the zone of high resistivity centered at $49950 E$ and a poorly defined zone at $50037.5 E$. There is no unique PFE response mapped with these resistivity anomalies. Additional second grade high resistivity zones are mapped at approximately 48900E, 49362.5E and 50212.5E.

LINE 50000N

This line of IP data has mapped a number of PFE anomalies however the pervasive high background provides difficulties in anomaly definition. Those zones that standout are as indicated on the pseudo-section and are centered at 49037.5E, 49500E and $51025 E$. There are several narrow high resistivity sources mapped on this line and are located at 48850E, 49375E, 49825E, 49950E and $50162.5 E$. These resistivity highs may represent dikes and/or discrete zones of silicification.

LINE 50050N

As for the previous lines there is a high PFE background recorded over most of this line however a contact is defined at $50225 E$ where the PFE drops significantly east of this point. Note that there is an increase in the PFE at this contact. Well defined PFE sources are difficult to locate within this high PFE environment however an attempt has been made to indicate these areas on the pseudo-section. Narrow resistivity highs are mapped at 49125E, 49512.5E - 49612.4E (?), and at 49925E. None of these resistivity targets have an associated and discrete PFE response.

All of the resistivity and PFE data in the vicinity of the RIDGE grid, which includes the data from the North-South and East-West grid lines, has been filtered (according to D. C. Fraser of DIGHEM, Ontario) and plotted at 1:2500 in contoured plan form. This presentation allows an overview of the IP survey to be seen however actual anomaly location and definition should be determined from the pseudo-sections only. Both the PFE and resistivity data sets show a weak trend direction of 140 - 160 degrees which is supported somewhat by the magnetic survey. The resistivity data shows a number of high resistivity units in particular the major package which runs in an East-West direction and enclosed by the 500 ohm-meter contour. Peripheral to the bulk of this package centered at $50050 \mathrm{~N} / 49500 \mathrm{E}$ there is a PFE high which with some imagination encircles the local resistivity high. Other areas have a coincident resistivity and PFE high and appear to be of small dimension. Such sources are located at approximately $49950 \mathrm{~N} / 50200 \mathrm{E}$, $50175 \mathrm{~N} / 50200 \mathrm{E}$ and $50450 \mathrm{~N} / 49800 \mathrm{E}$.

DRILLING:

In May of 1987 a 5000 foot drill contract was let to Phil's Diamond Drilling of 100 Mile House, B.C. Drilling was done using a skid mounted Longyear 38 , tow around by an International TD-8 bulldozer. Drilling encountered difficulties with equipment, personnel and the extra-ordinarily hard and brecciated rock on the property.

HOLE NO:	$271-87-1$
Location:	$48708 N / 48950 E$
Azimuth:	330 degrees
Dip:	-45 degrees

LOG: (meters) Description

```
0-6.1 Casing
6.1 - 12.2 Diorite
12.2 - 16.5 Altered tuff/siltstone - 2-3% py
16.5 - 22.3bw Fault Zone!.
22.3 - 40.2 Diorite
40.2 - 50.6 Silicified siltstone
50.6-59.1 Diorte
59.1 - 60.4 Hornfelsed andesite
60.4 - 70.4 Diorite
70.4-72.5 Siltstone
72.5 END OF HOLE
```

Drillhole 1 was proposed to test the down dip extent of the Freegold Zone, but encountered very poor ground conditions, recovering only about 20% of the core. A large fault zone was intersected, but no quartz/carbonate zone was cut. No significant assays were reported.

HOLE NO: 271-87-2
Location: 48714N/48983E
Azimuth: 330 degrees
Dip: $\quad-45$ degrees
LOG: (meters) Description

$0-4.6$	Casing
$4.6-10.1$	Diorite
$10.1-19.2$	Siltstone/tuff
$19.2-26.5$	Fault Zone
$26.5-39.0$	Andesite tuff
$39.0-43.6$	Diorite
$43.6-44.8$	Andesite
$44.8-46.9$	Silicified siltstone - 2-5\% py
$46.9-48.2$	Andesite
$48.2-71.9$	Diorite
71.9	

The second hole was another attempt to test the Freegold Zone, but 50 meters to the east along strike. The hole again failed to intersect a quartz/carbonate zone. No significant assays to report.

HOLE NO:	$271-87-3$
Location:	$49976 N / 49976 E$
Azimuth:	100 degrees
Dip:	-55 degrees

LOG: (meters)	Description
0-2.1	Casing
2.1-8.8	Hornblende-augite Diorite
8.8-13.4	Hornblende-Augite Porphyry - 5\% py
13.4-16.5	Siltstone
16.5-19.5	Brecciated siltstone
19.5-21.0	Sulphide Zone - $10-20 \%$ py, 2% po, tr. cpy
21.0-28.0	Brecciated siltstone - $1-2 \%$ py
28.0-41.1	Andesite - 1\% py
$41.1-46.3$	Brecciated siltstone - 1-2\% py
$46.3-48.5$	Siltstone - 1\% py
48.5	END OF HOLE

Drillholes 271-87-3, 4, 5, 6, and 11 are located along the East Zone trend of mineralization which was trenched and chip sampled in Trench 1. Assays from chip sampling up dip from hole 2 gave 24.7 gmt Au over 2.0 meters. The drillhole intersected a sulphide zone at 19.5 m to 21.0 m , but no significant assays were returned.

HOLE NO: 271-87-4
Location: $50006 \mathrm{~N} / 49978 \mathrm{E}$
Azimuth: 100 degrees
Dip: $\quad-45$ degrees
LOG: (meters) Description

0-2.7	Casing
2.7-4.9	Hornblende-augite porphyry
4.9-7.9	Siltstone
7.9-8.8	Hornblende-augite porphyry - 2-5\% py
8.8-13.7	Siltstone
13.7-14.6	Andesite - 2-5\% py
14.6-14.9	Brecciated siltstone - 1-2\% py
14.9-15.2	Massive sulphide - 30\% po, $50 \% \mathrm{py}$, $1 \% \mathrm{mag}$
15.2-17.1	Andesite - 2-5\% py
17.1-18.6	Siltstone - 5\% py
18.6-21.0	Sulphide zone - 25\% po, 10\% py, 1\% cpy
21.0-24.4	Siltatone
24.4	END OF HOLE

```
HOLE NO: 271-87-5
Location: 50006N/49978E
Azimuth: }100\mathrm{ degrees
Dip: -65 degrees
LOG: (meters) Description
```

```
0-6.1
```

0-6.1
6.1 - 17.1
6.1 - 17.1
17.1 - 18.3
17.1 - 18.3
18.3-21.3
18.3-21.3
21.3-22.6 Brecciated siltstone with 10-15% Py, tr. Cpy
21.3-22.6 Brecciated siltstone with 10-15% Py, tr. Cpy
22.6 - 24.4 Siltstone
22.6 - 24.4 Siltstone
24.4-25.9 Brecciated siltstone with 10-15% Po, 1% Py,
24.4-25.9 Brecciated siltstone with 10-15% Po, 1% Py,
15cm massive Po, trace Cpy
15cm massive Po, trace Cpy
25.9-26.8 Magnetite and Sulphides with 60% Magnetite,
25.9-26.8 Magnetite and Sulphides with 60% Magnetite,
20% Po, 20% Carbonate
20% Po, 20% Carbonate
Siltstone
Siltstone
32.0 - 33.2 Andesite
32.0 - 33.2 Andesite
33.2 - 37.2 Siltstone
33.2 - 37.2 Siltstone
37.2 - 37.6 Silicified siltstone, bands of massive Pyrite and
37.2 - 37.6 Silicified siltstone, bands of massive Pyrite and
Pyrrhotite - 10-15% Py, 10-15% Po
Pyrrhotite - 10-15% Py, 10-15% Po
37.6-44.8 Brecciated siltstone, 2-3% sulphides
37.6-44.8 Brecciated siltstone, 2-3% sulphides
44.8-49.1 Siltstone
44.8-49.1 Siltstone
49.1 END OF HOLE

```
49.1 END OF HOLE
```

Drillholes 4 and 5 were completed from the same set up along the same section to test a sulphide zone in Trench 1 , which gave a chip sample of 4.5 gmt over 2.3 meters. Hole 4 intersected two mineralized zones; the upper assayed $2.0 \mathrm{gmt} / 6.1$ meters and the lower zone ran $8.81 \mathrm{gmt} / 0.9$ meters. Hole 5 also intersected the two same zones; $3.8 \mathrm{gmt} / 5.5$ meters and $7.7 \mathrm{gmt} / 0.4$ meters.

HOLE NO: 271-87-6

Location:	$50040 \mathrm{~N} / 49968 \mathrm{E}$
Azimuth:	095 degrees
Dip:	-45 degrees

LOG: (meters) Description

```
0-4.6 Casing
4.6-13.1 Diorite
13.1 - 14.6 Siltstone
14.6-18.3 Diorite, minor siltstone
18.3 - 28.7 Hornfelsed black shale
28.7-31.1 Siltstone
31.1 - 31.5 Massive sulphides - 60% Po, 15% Py, 5% Cpy
31.5 - 35.4 Siltstone - 2-5% Po, 2% Py, 1% Cpy
    2-15cm bands of massive sulphides
    Siltstone
36.9-38.1 Hornblende-augite porphyry
38.1 - 43.0 Siltstone
43.0-44.2 Hornblende-augite porphyry
```

$44.2-54.3$	Siltstone
$54.3-55.8$	Diorite
$55.8-56.4$	Mineralized zone - $10 \% \mathrm{Py}, 10 \%$ Po, 1% Cpy
$56.4-57.0$	Carbonate vein
$57.0-57.9$	Hornblende-augite porphyry
$57.9-58.5$	Brecciated Siltstone
$58.5-66.8$	Diorite
66.8	Siltstone
	END OF HOLE

Drillhole 271-87-6 was a 25 meter set out along strike to the north from holes 4 and 5. The hole intersected 8.9 gmt/5.3 meters from 30.1 m to 35.4 m and $15.53 \mathrm{gmt/0.6}$ meters from 55.8 m to 56.4 m .

HOLE NO:	$271-87-8$
Location:	$49968 N / 49700 E$
Azimuth: 120 degrees	
Dip:	-45 degrees
LOG: (meters) Description	

$64.3-73.8$	Siltstone
$73.8-75.3$	Hornblende augite porphyry
$75.3-88.1$	Siltstone
$88.1-92.0$	Brecciated siltstone
92.0	

HOLE NO:	$271-87-13$
Location:	$49973 N / 49748 E$
Azimuth:	120 degrees
Dip:	-45 degrees

LOG: (meters) Description

$0-7.0$	Casing
7.0-25.2	Siltstone - 1\% py, <1\% po
25.2-34.3	Andesite - 1-2\% po, 1\% py
34.3-38.8	Mineralized siltstone - 10-15 po, 5-10 py, tr cpy
38.8-41.8	Diorite - 1-2 py, 1 po
41.8-45.4	Siltstone - 1 py, po
45.4-47.6	Hornblende Augite Porphyry - 2-5 py, 1 po
47.6-56.1	Siltstone - 2-5 py
56.1-63.4	Hornblende Augite Porphyry - <1 py
63.4-72.5	Siltstone - 1-2 py, <1 po
72.5-73.8	Hornblende Augite Porphyry - 10-15 po, 1-2 py <1 cpy
73.8-78.5	Siltstone - 2-3 py, <1 po
78.5-81.6	Andesite - 2-5 py

$81.6-83.5$	Siltstone $-2-3$ py
$83.5-85.6$	Mineralized siltstone $-10-20 \mathrm{po}, 2-5 \mathrm{py}$, <1 cpy
$85.6-86.7$	Breccia $2-5 \mathrm{po} 2-3 \mathrm{py}$ tr cpy
$86.7-89.3$	Siltstone $-2-3 \mathrm{py} 1-2 \mathrm{po}$
$89.3-91.6$	Breccia $-2-3 \mathrm{py}$
$91.6-101.5$	Siltstone $1-2 \mathrm{py}$
101.5	END OF HOLE

HOLE NO: 271-87-14

Location: 49894N/49058E
 Azimuth: 270 degrees
 Dip: $\quad-45$ degrees

LOG: (meters) Description

0	- 2.7	Casing
2.7	-6.3	Siltstone - 1-2 py
6.3	- 7.4	Hornblende Augite Porphyry
7.4	- 21.4	Diorite
21.4	- 25.3	Andesite - 2-5 py
25.3	- 32.7	Siltstone - 1-2 PY
32.7	- 34.0	Hornblende Augite Porphyry
34.0	- 34.8	Diorite
34.8	- 43.9	Siltstone - 2-5 py, tr cpy
43.9	- 46.3	Mineralized Hornblende Augite Porphyry $5-10$ po, 5 py, <1 cpy
46.3	- 51.2	Siltstone - 2-3 py
51.2	- 56.9	Hornblende Augite Porphyry - <1 py
56.9	-61.0	Siltstone
61.0		End of Hole

HOLE NO:	$271-87-15$
Location:	$49920 \mathrm{~N} / 49953 E$
Azimuth:	280 degrees
Dip:	-45 degrees

LOG: (meters) Description

$0-4.6$	Casing
4.6-16.6	Andesite Tuff
16.6-21.4	Diorite
21.4-24.2	Siltstone - 1\% py
24.2-25.2	Mineralized Siltstone - 20-25\% py, trace cpy
25.2-29.4	Siltstone
29.4-36.7	Andesite Tuff - 2-3\% py
36.7-39.9	Hornblende-augite porphyry
39.9-41.6	Andesite
41.6-42.8	Hornblende-augite porphyry
$42.8-43.1$	Mineralized siltstone - $10-25 \%$ py, trace cpy
43.1 - 46.1	Siltatone
46.1-46.6	Andesite Tuff
46.6-48.3	Siltstone - 2-3\% py

$48.3-49.5$	Hornblende-augite porphyry - 2-5\% py
$49.5-55.1$	Siltstone
$55.1-57.2$	Brecciated Andesite
$57.2-58.0$	Hornblende-augite porphyry
$58.0-58.1$	Siltstone - 2-5\% py
$68.1-69.2$	Hornblende-augite porphyry
$69.2-71.0$	Andesite
$71.0-73.2$	Siltstone-2-3\% py
73.2	END OF HOLE

HOLE NO: 271-87-16

Location: 49972N/49018E
Azimuth: 260 degrees
Dip: $\quad-45$ degrees

LOG: (meters) Description

$13.7-16.8$	Diorite
$16.8-18.3$	Diorite, Quartz carbonate - 1\% py
$18.3-24.4$	Diorite
$24.4-25.9$	Quartz carbonate
$25.9-30.5$	Diorite
$30.5-54.9$	Siltstone, diorite -
54.9	End of Hole

This hole was a 25 meter step out to the east, but encountered very little quartz carbonate.

HOLE NO:	$271-87-\mathrm{P} 4$
Location:	$49244 \mathrm{~N} / 49910 \mathrm{E}$
Azimuth:	250 degrees
Dip:	-55 degrees

LOG: (meters) Description

0	6.1	Overburden
6.1	9.1	Siltstone - 2-5\% py
9.1	- 12.2	No recovery
12.2		Abandoned Hole

HOLE NO: 271-87-P5
Location: 49240N/49910E
Azimuth: 250 degrees
Dip: $\quad-55$ degrees

LOG: (meters) Description

0	4.6
$4.6-7.6$	Overburden
$7.6-88.4$	Hornblende Augite Porphyry - $1-2 \% \mathrm{py}$
88.4	
	End of Hole

Drillhole P4 and PS were designed to test a strong I.P. anomaly directly in front of the Noranda camp site. P4 failed to give recovery after 9.1 meters. P5 was successful, but gave no significant assays.

HOLE NO: 271-87-P6
Location: 48713N/48900E
Azimuth: 355 degrees
Dip: $\quad-45$ degrees
LOG: (meters) Description

$0-7.6$	overburden
$7.6-61.0$	Diorite -1% py, tr. cpy
61.0	End of Hole

This drillhole was a 25 meter step out to the west on the Freegold zone, but failed to intersect a quartz-carbonate horizon.

```
HOLE NO: 271-87-P7
Location: 48978N/49486E
Azimuth: }355\mathrm{ degrees
Dip: -55 degrees
LOG: (meters) Description
0-27.4 Overburden
    P7 was an attempt to test another I.P. target, but the
hole was lost in overburden.
HOLE NO: 271-87-P8
Location: 49195N/49914E
Azimuth: 270 degrees
Dip: -55 degrees
LOG: (meters) Description
---------------------------------------------------------
    0 - 7.6 Overburden
    7.6-36.6 Hornblende Augite Porphyry, siltstone
    2-10% py, tr. cpy
36.6 End of Hole
    Drillhole pg tested another strong I.P. target in the camp
vicinity, but gave no significant gold assays.
HOLE NO: 271-87-P9
Location: 49525N/49787E
    Azimuth: }260\mathrm{ degrees
Dip: -50 degrees
LOG: (meters) Description
0-3.0 overburden
3.0-13.7 Diorite - 1% py
13.7 End of Hole
    Hole Abandoned
```

```
HOLE NO: 271-87-P10
Location: 49710N/49785E
Azimuth: 080 degrees
Dip: -55 degrees
LOG: (meters) Description
0-6.1 overburden
6.1 - 13.7 Hornblende Augite Porphyry
13.7 - 18.3 Siltstone - 2-3% py
18.3 End of Hole
                    Hole Abandoned
                            Both drillholes P9 and P1O failed to test the projected
targets because of bad ground conditions.
HOLE NO: 271-87-P11
Location: 49968N/49746E
Azimuth: }300\mathrm{ degrees
Dip: -55 degrees
LOG: (meters) Description
---------------------------------------------------------
0-21.3 Siltstone - 2-10% py
21.3 End of Hole
P11 was drilled across known mineralized zones on the Mid zone, but assays failed to reproduce chip and grab samples results.
```


CONCLUSIONS:

Tas Property
The TAS property appears to be underlain by a strongly hornfelsed series of siltstone/tuff, andesite and hornblendeaugite porphyry. This hornfelsing is believed to be a result of emplacement of the diorite stock in the area of the Freegold Zone. Gold mineralization appears to have been driven off from either the diorite or another source, through a complex shear and fracture system in the siltstone/tuff unit.

Trenching outlined three main trends of gold mineralization: the east zone, the mid zone and the west pit zone. Gold mineralization in the east zone occurs as massive to stringer pyrite, pyrrhotite, chalcopyrite and magnetite in what appears to be a prominent shear trending 350 degrees. Assays as high as 24.7 gmt over 2.0 meters in chip sampling and 8.9 gmt over 5.3 meters in diamond drilling have been encountered.

A total of five diamond drillholes have been completed on the Mid zone, which lies 250 meters west of the East zone. This zone consists of a series of narrow sulphidefilled shears, generally trending 030 degrees. The best assays include 24.4 gmt over 1.0 meters, 24.7 gmt over 0.9 meters and $20,200 \mathrm{gmt}$ over 1.0 meters from chip sampling and 11.69 gmt over 0.7 meters.

The West Pit zone is a strong shear zone which can be traced for almost 100 meters, trending 350 degrees. Gold mineralization occurs in bands of massive to stringer pyrite, pyrrhotite and chalcopyrite in widths up to 2.0 meters. The highest assays from this zone include 37.8 gmt over 1.5 meters. 10.2 gmt over 1.5 meters and 11.4 gmt over 1.8 meters in chip sampling and 17.01 gmt over 1.3 meters in diamond drilling.

Soil geochemistry and geophysics outlined numerous targets which warrant further follow up using trenching and diamond drilling. The percussion drilling program was somewhat of a bust, because of very poor recovery after about 20 meters depth, as a result of the highly fractured nature of the host rocks.

Zana Grid
Only one weak gold anomaly was outlined on the entire grid, but requires further fill-in sampling. The most interesting anomaly is the coincident copper, lead and silver geochem around 40900 E to 41100 E between lines 39000 N and 39600 N . Further sampling is required in this area; this should be followed up by prospecting and cat trenching to determine the source.

HA 1 Grid
Although the property has received only a limited exploration, it appears that the gold-copper potential is somewhat reduced from initial expectations. The area of most interest appears to be mainly the silicified zones and quartz-carbonate
alteration which contains $2-5 \%$ pyrite in quartz stringers. These zones have returned only low gold values to date.

RECOMMENDATIONS:

1. A large gradient array I.P. survey should be conducted in order to determine the extent of the mineralization on the Ridge area.
2. Further dipole-dipole array I.P. is necessary in areas of strong P.F.E. and chargeability anomalies in order to determine their extent.
3. Small mise a la masse survey should be conducted over the east zone and the west pit zone in order to determine the extent of such mineralization.
4. Further detail soil sampling is required to the north and south of the east-west soil coverage to date on the Ridge
5. Approximately 5,000 square meters of cat trenching is required to test geochem anomalies in areas of shallow overburden.
6. A diamond drill program consisting of 3,000 meters of drilling is required to test previously outlined gold mineralization and new geochem and geophysical targets.

APPENDIX I

STATEMENT OF COSTS

TAS PROPERTY

1. Geophysics:

Magnetometer Survey	$\$ 8,211.00$
VLF-EM Survey	$\$ 1,389.00$
I.P. Survey	$\$ 33,857.00$

2. Geachemistry:

Soil	$\$ 58,527.00$
Rock	$\$ 1,872.00$
Other	$\$ 107.00$

3. Sampling/Assaying: $\$ 12,462.00$
4. Diamond Drilling: $\$ 144,502.00$
5. Linecutting: \quad \& 8,154.00
6. Trenching: $\quad 5,369.00$
7. Geology: $\$ 45,660.00$

APPENDIX II

STATEMENT OF QUALIFICATIONS

I, Gordon Maxwell of Prince George, Province of British Columbia, do hereby certify that:

1. I am a Geologist residing at 5905 Rideau Street, Prince George, British Columbia.
2. I am a graduate of the University of Manitoba with an Hons. B. Sc. (geology).
3. I am a member in good standing of the Canadian Institute of Mining and the Prospector's and Developer's Association.
4. I presently hold the position of Project Geologist with Noranda Exploration Company, Limited and have been in their employ since 1980.

I, Lyndon Bradish of Vancouver, Province of British Columbia, do hereby certify that:

1. I am a Geophysicist residing at 1826 Truth Street, Vancouver British Columbia.
2. I am a graduate of the University of British Columbia with a B. Sc. (geophysics).
3. I am a member in good standing of the Society of Exploration Geophysicists, Canadian Institute of Mining and the Prospector's and Developer's Association.
4. I presently hold the position of Division Geophysicist with Noranda Exploration Company, Limited and have been in their employ since 1973.

L. Bradish.

APFENDIX ITI

ANALYTJCAL FROCEDURES

The methods listed are presently apolied bo analyse geological materials by the Norarda Geochemical Laboratory at Varicouver: (March, 1984).

PREPARAT ION OF SAMPLES

Sediments ard soils are dried at approximately aboc and sieved with a ga mesh mylom screen. The -big mesh (bu le mm) fraction is used for anelysis.

Rock specimers are pulverized to -1Eq menh (D. 3 Bmm n Heavy mireral Fractions (parmed samples) are aralysed in its ertiretyo when it is to be determined for gold without further sample preparationn

GNALYSTS DF SAVIPLES

Decomposition of a \quad EDR \exists Eample $i s$ dore with eoncentreted perchiomic and mitmic acid (3nj); digested for 5 Howre at ref:ux temperaturen Fulps of rock or core are weighted out at $\mathrm{g}_{\mathrm{y}} \mathrm{g}$ gr less deperiding om the matrix of the rocky aro twice as much acic is used for decomposition that that is used for sizt or soil.

The comeertratiors of Ag . Ca , Co, Cu, Feg Mry Moy Ni, Fb, \forall and Zn (all the group A elemerts of the fee schedule) can be determined directiy from the digest (dissolution) with art atomio absorption spectrometer (AA). A Variar-Techtrom Model AA-5 or Model AA-475 is used to measure elemental corocotrations.

ELEMENTS REQUIRING SFECIFTE DECOMFOSTTION VETHDD

Antimony - Sb: D.E a sample is attached with 3.3 ml of 6% tartaric aid, 1.5 ml come. hydrochlomic acid ard tha ml of come.
 is determired directly from the acid solutior with ar AA-475, equipped with electrodeless discharge lamp (EDL.).

Arseric - As: Z. 70% perchloric acid and 0.5 ml of conc. mitric acid. A Variari AA475 equipped with ar As-EDL measures the arsenio comoentratiom of the digest.

Barium - Ban b. 1 日 sample is decomposed with corm. perchloric, nitric and hydrofluoric acid. Atomic absorption using a mitrous oxide-acetylene flame determines Ba from the aguemus solution.
 perchloric 70% arid $1 . \min$ of conc. nitric acid. Bismuth iss determined directly from the digest int the flame of the $A A$ instrument c / w EDL.

Gold - Aus 10, 0 g sample sample (Fan-concentrates see belaw) is digested with aqua regia (i part mitric arid 3 parts hydrochloric acid. Gold is extracted with Methyl iso-Eutyl ketore (mIEK) From to aqueous soiutione Gold is determined Fram the MIBK solution with flame AA.

Magnesium - Mg: R. 25 - D. 10 g mamole is digested with 4 m? perchloric/mitric acid (3:i). Ar aiicuat is takemto reduce the concentration to within the range of atomio absorptior. The Aa475 with a mitrous axide flame determines mig from the aquecus solutiom.

Tumgster - W: 1. Q sample sirtered with a carborate fiux ard thereafter leached with water. The leachate is treated with potassium thiocyanate. The yelum tumgstem thiocyarate is extracted into tri-robtyl phosphate. This permits cosourimetmic comparisor with standards to measure tungster concentrationn

Uranium - U: Ar aliquat, taken From a perciloriemitrim (3:1) decomposition, usually from the multi-elemert digestiong is diluted with weier and a phosphete buffern Tirs soution is exposed to laser light, amd the lumimescence if the uramy isu is quantitatively measured on the UA-3 (Sointrex).

LOWEST VALUES REEQRTED IN PEGI

$A g-B . E$	$\mathrm{ma}-\mathrm{eb}$	$\mathrm{Zr}-1$	Au - Diai (ibippo)
Cd- $\mathrm{D} . \mathrm{E}$	$\mathrm{ma}-1$	$5 b-1$	$W-E$
$\mathrm{Co}-1$	$N i-1$	$\mathrm{As}-1$	$U-1$
$\mathrm{Cu}-1$	Fb-1	$\mathrm{Ea}-10$	
$\mathrm{Fe}-100$	$v-10$	$\mathrm{Ei}-1$	

DIAMOND DRILL LOGS

DATE CDLLARED: DATE COMPLETED: JUME 9,1987 CORE SIZE: NO FROFERTY: TAS OFTION N.T.S. \# 33 K/IG

FIELD CO-GRDINATES:

$==$	SURVEYED CO-DRDINATES:

ENGTH 71.9

PROPERTY: TAS DPTION
HOLE NO : 271-67-3
PRGE
3

PROFERTY: TAS OPTION HOLE NO : 271-97-4 PAGE 3

DATE CDLLARED: DATE COMPLETED:
June 14,1987 June 16,1987

SURVEYED CO-DRDINATES:

NORANDAEXFIGRGTIDNEDMANYLIMITED

PROPERTY: TAS OPTION
HOLE NO : 271-87-E
PRGE \geq OF

NORANDA EXPLORATIDN CGMPANY LIMMTED)
 (NG PERSGNAL LIABIEITY)

FIELD CO-DFDINATES:

LAT:	5042 N
DEF:	497e5E
DIP:	-45 deg
EEARING:	bed dey
ElEV:	1070 m
LENGTH	58. 5 m

SURVEYED CO-DRDINATES:
$==========$

DIF TESTS:
DEPTH: SB. EM
ANGLE: -44 DEE

PROFERTY: TAS IFTION HOLE NO : $271-87-9$ OF 2

DATE COLLARED:
DATE CDMFLETED:
CORE SIZE: NQ
FRDFERTY: TAS OFTION
N.T.S. \# 93 K/16

June 2e, 1987 June 24, 1987

FIELD CO-DRDINATES:
SURVEYED CO-DRDINATES:

PROPERTY: TAS OPTION $: \quad$ HOLE NO : 3

PROPERTY: TAS IPTION

HOLE NO : 271-87-11
PAGE 4 of 4

DATE COLLARED: DATE COMPLETED: CGRE SIZE: NQ

PROPERTY: TAS DPTION

SURVEYED CO-DRDINATES:
FIELD CD-DRDINATES:

DIP: DEPTH: 82.7 n
ANGLE: -45 den

HOLE NO: 27i-87-12

1040 m

ELEV:
LENGTH 82. 9 :

DATE COLLARED: DATE COMPLETED: CORE SIZE: NQ

PROPERTY: TAS OPTION
N.T.5. \# 93 K/i6

July 2e, 1987 July 24, 1997

FIELD CO-ORDINATES:
SURVEYED CO-DRDINATES:

LAT:	49894 N	
DEF:	$49958 E$	
DİP;	-45 deg	DIP TESTS:
EEARING:	270 deg	DEPTH: E1.0 m
EIEV:		ANGLE: -45
LENGTH	51.0.0in	

PROJECT: 271 PAGE 1 OF e

$$
(N O \text { PERSONAL LIABILITY). }
$$

PRDPERTY: TAS OPTION
HOLE NO : 271-67-14
PAGE e of z

NORANDAEXPLORATIGNGDMPANY LIMITED)

(NO PERSONAL LIABILITY)

LENGTH 50.3 mm

FAGE 2 of 2

DATE COLLARED: August 7, 1987

DATE COMPLETED:
August 9, 1987

CORE SIZE: NO

FIELD CO-ORDINATES:

LAT:	49955N
DEP:	49059E
DIP:	-45 deg
BEARING:	0800 deg
ELEV:	
LEMGTH	89.3 m

SURVEYED CO-DRDINATES:

DIP TESTS:
 DEFTH: 89.3 m ANGLE: -42 deg

[^0]: * Subject to confirmation from Gold Commissioner.

