10962-E140

PROGRESS REPORT ON HIGHLAND VALLEY RESOURCES LTD2S FAIRVIEW PROJECT OLIVER, BRITISH COLUMBIA

OSOYOOS MINING DIVISION, BRITISH COLUMBIA N.T.S. 82E-4

1.5

GEOLOGICAL BRANCH ASSESSMENT REPORT

 $\begin{bmatrix} 0 \end{bmatrix}$

Latitude: 49 degrees 12'

 $= \sum_{i=1}^{n-1} e^{-i \frac{i}{2} \frac{i}{2} - \frac{i}{2}}$

Longitude: 119 degrees 38'

April 11, 1988

A STREET

David T. Mehner, F.G.A.C. Project Geologist

TABLE OF CONTENTS

 \bigcirc

 Θ

Ó

	PAGE
	4
	4
CTION	4
DIT	4
round Mapping	4
round Rock Sampling	5
	6
	e e
	6 6
	Ť
nches, outcrops NW of Stemwinder Shaft	7
nder Property, 1987 Backhoe Trenching	8
	8
round Rock Sampling	8
NG	8
	11
Bear Adit Channel Samples	
Samples of Pits and Trenches SE of Stemv	vinder Shaft
der Mine Property	
	winder Shaf
	ng
der Property	
	DIT round Mapping round Rock Sampling der Mine, Main Vein Decline der Mine, Hanging Wall Vein nches, outcrops SE of Stemwinder Shaft nches, outcrops NW of Stemwinder Shaft der Property, 1987 Backhoe Trenching round Rock Sampling NG NG Bear Adit Channel Samples der Mine, Main Vein Decline Interval Channel Samples der Mine, Hanging Wall Vein Interval Channel Samples der Mine Property Samples of Pits and Trenches SE of Stemv der Mine Property Samples of Pits and Trenches NW of Stem der Property choe Trenching ne, Channel Samples der Property nd Geochem Results for 1987 Rotary Drilli

Assay and Geochem Results for 1988 Rotary Drilling

TABLE OF CONTENTS (continued)

PLATES

1 Brown Bear Adit Geology 1:500

2 Brown Bear Adit Channel Sample Assays, Au/Ag 1:500

3a) Rock Sampling of Stemwinder Shaft and Area to the SE 1:500

b) Rock Sampling of Stemwinder Shaft and Area to the NW 1:500

c) Rock Sampling of Area North of the Stemwinder Shaft 1:500

4 Surface & Underground Au/Ag Assay Plan

5a) Fairview Project Compilation (west section) 1:1000

b) Fairview Project Compilation (central section) 1:1000

6 Rock Type Legend for Cross-Sections

a) Cross-Section S88R02 + S88R03

b) Cross-Section S88R01 + S88R04

c) Cross-Section S88R05

d) Cross-Section S88R06

e) Cross-Section S87R01 + S88R07

f) Cross-Section S88R11 + S87R04

g) Cross-Section S87R02 + S87R03

h) Cross-Section S87R05 + S88R08 + S87R06

i) Cross-Section S88R10 + S88R09

PROGRESS REPORT ON HIGHLAND VALLEY RESOURCES LTD.'s FAIRVIEW PROJECT, OLIVER, BRITISH COLUMBIA

SUMMARY

From mid-October 1987 till the end of February 1988 a comprehensive exploration program was carried out over the Stemwinder and Susie Mine properties in the Fairview gold belt, 7 km west of Oliver, British Columbia. The work included construction of a flagged picket grid on 100 metre spaced lines, underground mapping, sampling and surveying of the Brown Bear Adit and detailed rock sampling of pits, trenches, shallow underground workings and quartz vein outcrops over the Stemwinder Mine property. This program was followed up with subsurface testing of the quartz vein system by 17, 5 1/2 inch reverse circulation rotary drill holes totalling 2,595.4 metres.

Exploration at the Susie Mine was confined to detailed rock sampling of favorable quartz vein sections on all 3 levels and sampling of the quartz vein outcrop at the decline portel.

All work on the Highland Valley property has now been suspended while results of the initial phase are complied and evaluated. It is anticipated that further testing of the property will involve drifting and underground drilling NW of the Brown Bear Adit.

INTRODUCTION

Following gaining control of Highland Valley Resources Ltd. by The Valhalla Gold Group Corporation in the summer of 1987, exploration work commenced on the Fairview and Susie Mine properties in mid-October, 1987. This report summarizes the results of the program which was completed February 29, 1987.

GRID CONSTRUCTION

A flagged picket grid with lines 100 metres apart and stations at 25 metre intervals was established over the vein system on Highland Valley Resources' ground. The grid, which is a continuation of the Oliver Gold property grid is approximately 8 line km.

BROWN BEAR ADIT

A: Underground Mapping

The Brown Bear Adit was surveyed by Frank Fergusson and then geologically mapped at 1:500 scale (Plate 1). Although the geology is similar to that of the Fairview Mine, there are a number of significant differences. These include:

A) A lack of felsic, intermediate and mafic sills or dykes associated with the quartz vein system;

- B) An absence of biotite in the footwall and hanging wall quartizites and along F1 (parallel to regional foliation) fractures in the quartz veins;
- C) A general abundance of sericite along the fractures and F1 foliation planes discussed in "B";
- D) A seemingly smaller amount of graphite along the F1 fractures/foliation planes;
- E) A much straighter contact between vein and country rock quartzites. Also, the veins seem to have a more uniform NE dip and exhibit little sign of folding whereas at the Fairview Mine the veins steepen and flatten.
- B: Underground Rock Sampling

As at Fairview, the Brown Bear Adit was measured and section lines were marked on the walls in green paint every 5 metres. Sample intervals were then painted on each section line with every effort made to make the intervals 1 metre in true thickness. Channel samples were then collected by hammer and chisel.

All 121 samples were sent to Bondar-Clegg in Vancouver for Cu, Pb and Zn geochem analysis and Au and Ag 1 ton assay. The results of this work along with sample length, estimated true thickness and percentage of quartz for each sample is given in Appendix "A". Sample locations along with true thickness and Au and Ag assay results are shown on Plate 2.

Visually, the most sulphide rich quartz vein occurs on either side of the major WNW-ESE, left-lateral fault which has an apparent horizontal strike slip offset of approximately 110 metres. Gold assay results are relatively low and erratic with only 9 samples running greater than 0.100 oz/ton Au and a further 9 samples containing between 0.060 oz/ton Au and 0.099. The highest value comes from sample 58722 which runs 8.829 oz/ton Au and 3.62 oz/ton Ag.

On the basis of our detailed sampling it seems higher Au values occur in the portion of the quartz vein which sits on top of the major left-lateral fault.

The erratic nature of the gold is clearly evident when comparing the results of preliminary sampling carried out by D. Mehner and L. Nagy in June with the recent detailed sampling. The following table illustrates the point.

Mine Section	June Sampling oz/ton Au/oz/ton Ag	October Sampling oz/ton Au/oz/ton Ag
25, 1st drift	4.75 ft @ 0.095/0.27 1.5 ft @ 0.086/0.15	2.8 ft @ <0.002/0.02 3.4 ft @ 0.019/0.11 3.0 ft @ 0.026/0.15
15 cross-cut 27 raise	3.0 ft @ 0.109/1.03	3.2 ft @ 0.025/0.84 2.7 ft @ 0.049/1.04 2.5 ft @ 0.031/0.84
0, 2nd drift	4.0 ft @ 0.066/0.29	3.2 ft @ 0.205/0.31 3.2 ft @ 0.003/0.10

Mine Section	June Sampling oz/ton_Au/oz/ton_Ag	October Sampling oz/ton Au/oz/ton Ag			
50, 2nd drift	2.5 ft @ 0.067/0.77	2.5 ft @ 0.004/0.03 3.0 ft @ 0.109/1.46			
2nd drift 119 raise	6 ft @ 0.033/0.14	3.2 ft @ 0.003/0.02 3.5 ft @ 0.003/0.04 3.0 ft @ <0.002/<0.02 2.6 ft @ <0.002/<0.02			

SURFACE ROCK SAMPLING

Detailed, systematic rock sampling of all known pits, trenches, shallow underground workings including the upper part of the Stemwinder decline and quartz vein outcrops was also completed. As with the Brown Bear Adit, all sample intervals were painted red and channel samples were sent to Bondar-Clegg for Au and Ag 1 ton assay and Cu, Pb and Zn geochem.

Pits, trenches and outcrops were surveyed by Brunton compass and chain and plotted on 1:500 scale maps.

A: Stemwinder Mine, Main Vein Decline

The Stemwinder decline (Plate 3a) dips approximately -60 degrees and is accessible for 22 metres where it is blocked by old timbers and caved rock. The water table is approximately 24 metres from the decline collar.

About 18 metres down the decline a sub-drift extends approximately 20 metres SE and 60 metre NW. This drift which is not recorded on any maps we have is stoped out below, possibly down to 2 level. A cross-cut extends to the Hanging Wall vein.

The results of the 49 channel samples are shown in Appendix "B". The best values which range up to 0.300 oz/ton Au and 5.40 oz/ton Ag over 0.87 metres (Sample 58793) are found in the decline in the first 20 metres in the drift to the NW. Stoping SE of the decline from below prevented sampling in this area but presumably the vein was well mineralized here. A grab sample from "rubble" at the end of a crosscut assayed 0.198 oz/ton Au and 2.56 oz/ton Ag. This quartz vein sample presumably is from the Hanging Wall vein.

In the Main Vein decline at least 75% of the Au values >0.100 oz/ton Au come from the upper or hanging wall part of the vein.

The Stemwinder decline and subdrift have not been geologically mapped but a brief examination during sampling indicated the quartz vein was faulted off at the NW end of the drift by a NE-SW fault.

B: Stemwinder Mine, Hanging Wall Vein

Near the Stemwinder shaft the Hanging Wall Vein outcrops in 2 locations and is explored by a small decline and subdrift (Plate 3a).

Four samples were taken from the surface outcrops (Appendix "C") and all yielded low but highly anomalous values. The best sample, 58778 runs 0.055 oz/ton Au and 0.24 oz/ton Ag over an interval of 1.15 metres.

The small underground workings are accessible from a 5 to 6 metre vertical shaft. A 5 metre sub-drift heads NW from the shaft where a 4 metre vertical winze leads down to a 20 metre NW-SE drift.

Thirteen samples were taken from these underground workings where the vein ranges from 1.4 metre wide at the far SE to about 3 metres wide at the NW end of the drift. Quartz vein samples are very anomalous with values up to 0.591 oz/ton Au and 0.37 oz/ton Ag over 0.65 metre true width (Sample 58775).

C: Pits, trenches, outcrops SE of Stemwinder Shaft

Along the vein system between the Stemwinder shaft and eastern boundary of the Highland Valley Resources property 73 samples were collected from the Hanging Wall and Main Vein (Plate 3a). The results which are given in Appendix "D" are very encouraging and include 14 samples grading better than 0.100 oz/ton Au including sample 58914 which yielded 3.333 oz/ton Au and 0.67 oz/ton Ag over 0.5 metres true quartz vein thickness. Ten of the samples are from the Main Vein while 4 samples come from the Hanging Wall Vein. A further 13 samples from both veins run between 0.060 oz/ton Au and 0.099 oz/ton Au.

In this area sampling of the Main Vein has identified a gold enriched zone containing numerous samples grading >0.100 oz/ton Au over mineable widths between survey station 98 to the SE and 20 metres west of the Stemwinder decline to the NW. This is a horizontal distance of about 375 metres. Significant values in the 0.080 to 0.095 oz/ton Au range over 0.8-1.3 metre intervals (true width) are found along strike to the SE for another 365 metres from widely spaced trenches.

Sampling of the Hanging Wall Vein has produced more erratic results and does not clearly identify a zone of better Au values although outcrops and trenches near the 3.333 oz/ton Au sample are well mineralized and warrant further follow-up.

D: Pits, trenches, outcrops NW of Stemwinder Shaft

Along the vein system between the Stemwinder Shaft and NW end of the property 45 rock samples were taken from the Hanging Wall and Main Veins (Plate 3b). Values are noticeably lower than to the SE of the shaft with only 5 samples containing >0.100 oz/ton Au and only 1 having a value in the 0.060 to 0.099 oz/ton range (Appendix "E"). The best value obtained runs 0.970 oz/ton Au and 0.27 oz/ton Ag over 0.65 metres true sample width. This sample comes from an outcrop that may be of the Main Vein.

Sampling in this area has failed to indicate any significant Au rich quartz vein zones. It appears that the Stemwinder fault which cut off the ore zones in the Stemwinder Mine is a significant break between well mineralized vein to the SE and relatively massive, barren vein to the NW.

E: Stemwinder Property, 1987 Backhoe Trenching

Following completion of all outcrop, trench and pit geochem sampling 8 backhoe trenches were put in to test the vein system in areas of poor exposure.

Trenches 1-3 were put in south of the Brown Bear Adit to test the SE extension of veining near the eastern edge of Highland Valley Resources' property (Plate 3a). Trench 1 encountered 0.7 metres of well mineralized (galena rich) quartz vein that runs 0.116 oz/ton Au and 1.66 oz/ton Ag (Appendix "F"). Trench 2 intersected low grade vein and Trench 3 failed to hit bedrock.

Trench 4 (Plate 3c) was put in NW of the Brown Bear Adit where an impressive looking outcrop of quartz vein had been trenched by earlier workers but the orientation of the veining is difficult to decipher. The trench encountered bedrock but no quartz veining.

Trenches 5 to 8 were put in NW of the Stemwinder shaft along the projected strike of the Hanging Wall Vein (Plate 3b). Trenches 5 and 6 encountered narrow quartz veins with very low gold values. Trench 7 did not intersect outcrop and trench 8 which was put in where a speck of visible gold was found in heavily oxidized surface rubble yielded a sample running 1.997 oz/ton Au and 0.84 oz/ton Ag.

More work may be warranted in the region of trench 8 and immediately N.W.

SUSIE MINE

A: Underground Rock Sampling

Exploration work at the Susie Mine has been confined to an examination of all accessible workings followed by detailed rock (channel) sampling of the most favorable sections of quartz veining based on the presence of sulphides and assay results from previous workers.

A total of 155 rock chip samples were collected, 13 from the surface outcrop and the remainder from 3 levels of underground workings (Plate 4).

The surface sampling yielded 2 samples grading greater than 0.100 oz/ton Au and 1 sample in the 0.060 to 0.099 oz/ton range (Appendix "G").

In the underground sampling 28 of the 142 samples run greater than 0.100 oz/ton Au while a further 18 samples have values in the 0.060 to 0.099 oz/ton range. The results of work done to date indicate the Susie Mine is developed on a 2-3 metre thick, N-S striking quartz vein that dips between 10 degrees and 15 degrees east. The vein, which occurs entirely in Fairview granodiorite appears to have a gold rich zone at least 30 metres wide which plunges to the NE. A fault cuts the vein off to the north.

ROTARY DRILLING

Upon completion of rock geochem sampling Tonto Drilling of Vancouver was hired to conduct a 2500 ft. reverse circulation rotary drill program on the property. It was decided to try rotary drilling for a number of reasons, including:

- i) the 5 1/2 inch hole would produce a bigger sample and hopefully more accurate gold values for the quartz vein intersections;
- ii) the cost per foot is substantially less than diamond drilling thereby allowing for more drill holes with the same total expenditure;
- iii) we hoped all holes could be drilled with air thereby avoiding the excessive expenditures of trucking in water;
- iv) the drilling program would be completed at a much faster rate;
- v) it was hoped the larger hole would help overcome the problems of caving which occurred along the faults bounding the quartz veins on the Oliver Gold property and led to the loss of drill rods in 2 out of 4 holes.

Aside from extremely hard ground which resulted in high drill bit costs and excessive water below depths of around 350 feet the rotary drill proved to be very successful. On holes where the large amount of water was a problem we resorted to triconing.

The favourable results and progress from the initial rotary drilling ultimately led to the drilling of 6050 ft. in 17 holes. The locations are shown on Plates 5a and 5b.

All holes have been logged on GEOLOG and sections of each hole are included as Plates 6-19. Drill cuttings are being stored in cross-cuts on 3 level at the Fairview Mine.

Geochem analysis for Au was carried out on 328 samples. Of these, 54 samples were also assayed for Au and Ag. The results are listed in Appendices "H" and "I".

A summary of the rotary drill program follows:

				· · · · ·			
	<u>Hole</u>	Hole Length (m)	Quartz Vein (Significant Se (m)	ections)	Interval Length (m)	oz/ton <u>Au/ Ag</u>	Ppb <u>Au</u>
	S87R01	94.49	22.86- 26.67		3.81	0.086;1.21	
			74.67-76.20		1.53		500
	S87R02	163.07	59.43- 63.24		3.81	0.021;0.10	
			89.91-93.72		3.81		92
		andar Angelaria	99.06-100.58		1.52		<5
	S87R03	115.82	24.38- 28.19		3.81		12
			45.72-48.01		2.29		90
			49.53- 52.57		3.04		402
	S87R04	143.26	57.91- 65.53*		7.62	0.137;0.29	
			85.34- 92.96		7.62		549
t		includes	57.91- 60.20		2.29	0.234;1.79	
	S87R05	112.78	21.33- 31.24		9.91		777
			99.06-100.58		1.52		255
		includes	25.91- 27.43		1.52	0.092;0.44	

	Hole	Quartz Vein	Interval Length	oz/ton	Ppb
Hole	Length (m)	(Significant Sections) (m)	(m)	<u>Au/ Ag</u>	<u>Au</u>
S87R06	121.92	27.43- 35.81	8.38	0.098;1.79	
	includes	28.19- 31.24	3.05	0.183;3.30	
S88R01	143.26	38.10- 42.67	4.57		24
		67.05- 71.62	4.57		20
		92.96- 94.48	1.52	0.305;0.56	· <u>.</u>
		121.16-122.68	1.52		<5
S88R02	129.54	86.86- 90.68	3.82		8
		118.87-120.39	1.52	0.026;0.62	
S88R03	190.50	178.30-185.17	6.87		890
	includes	183.64-185.17	1.53	0.088;0.97	
S88R04	228.60	206.50-208.03	1.53		<5
S88R05	172.21	78.49- 84.58	6.09		846
		123.44-128.01	4.57		948
		160.02-163.06	3.04		118
	includes	81.53-83.06	1.53	0.099;0.94	
	and	123.44-124.96	1.52	0.053;0.11	
S88R06	188.98	56.38- 58.67	2.2.9		4667
		119.48-121.16*	1.68		1808
		140.20-141.73	1.53	Maria Maria Maria	10
	includes	118.87-120.39	1.52		2559
S88R07	160.02	59.43- 63.25	3.81		733
S88R08	109.73	32.77- 33.52*	0.75		>10,000
		89.91- 96.01			8
	includes	32.77- 34.29	1.52		>7,000
	and	39.62- 41.91	2.29		1600
S88R09	205.74	166.11-168.40	1.52		223
		193.55-196.60	3.05		<5
S88R10	202.69	141.73-144.78	3.05		10
		166.88-167.64	0.76		35
ter taken di seria se					

\$99R11 112.78 NONE

* indicates zone where gold values >1000 ppb were obtained in sample above or below significant quartz vein intersection. Significant quartz vein sections include those with >20% quartz.

Careford P.

Drilling intersected significant vein sections in 16 of 17 holes and obtained values of 0.0850 oz/ton Au or better over minimum widths of 1.52 metres in 9 holes. It also confirmed the surface sampling results in indicating the area east of the Stemwinder shaft is a prime target for further exploration drifting.

Somewhat surprising is that the best values from drilling east of the Shaft come from the Hanging Wall Vein, not the Main Vein as in surface sampling. Also, deep drilling in holes S88R09 and S88R10 intersected quartz vein but low gold values.

Drilling at the NW end of the property did obtain significant quartz vein widths with 2 of 4 holes yielding good gold values. Further testing to the NW onto Oliver Gold Corporation ground is warranted.

CONCLUSIONS

Rock sampling of surface showings and underground workings along the Fairview vein system indicates gold rich zones occur in the Hanging Wall and Main Veins from 20 metres west of the Stemwinder decline to the SE boundary of Highland Valley Resources's property, a distance of 740 metres. Sampling west of the shaft indicates the quartz veins have appreciable widths but aside from local highs contain low Au values on surface.

Rotary drilling intersected significant quartz vein widths and values throughout the area tested but yielded the best values from the Hanging Wall Vein.

The results obtained should be followed up with underground drifting and drilling NW of the Brown Bear Adit and further surface drilling at the extreme NW end of the property. The vein system should also be drilled east of the Brown Bear Adit.

Sampling at the Susie Mine suggests a gold rich shoot plunging NE may exist in a 2-3 metre thick quartz vein which dips about 10-20 degrees E. Although the shallow dip makes the target somewhat unattractive, a VLF survey should be carried out to find the faulted off continuation of the vein system and perhaps a couple of drill holes put in to test the vein at depth.

Reported by: David T. Mehner, M.Sc., F.G.A.C. Taiga Consultants Ltd. April 11, 1988

DTM*gen

BROWN BEAR ADIT

Appendix "A"

		,		Channel	Samples				
		Interval Thickerse	True Taickness						
<u>location</u>	<u>Sample</u>	(<u>m)</u>	(<u>m)</u>	<u>X Gtz</u>	<u>01/10</u> Au	<u>20</u> 62	<u>Cu</u>	<u>FEM</u> Fb	Zn
ENTRANCE	<u>08088-007</u>	-							
		-							
15	58631	1.05	1.04	0	0,002	<0,02	<u>e</u> o	10	68
20 .	58652	1.07	0.85	36	0.043	0,27	103	465	205
35	58662	1.10	1.05	100 -	0.008	0.22	2010 AS		
	58653	1.00	0.95	100	0.020	0.22		104	85
	58664	0.44	0.40	100	0.020	9.27 6.10	28 40	245 35	87 37
43	58665	1.10	1.00	50	0.444				
	5866 <u>6</u>	1.00	0.98	0	0.444	- 7.52	1,200	3,800	19,300
			00	~	01010	6.22	63	215	241
37	58767	1.00	0.78	13	0.004	č.:S	77	685	115
103	58768 :	0.90	0.60	1.5	0.002	0.03	54		
	58759	0.78	0.52	õ	0.003		54 80	28	72
	58770	0.73	0.65	78	0.019	1	- 89 10	24	86
	56771	1.03		. ō	0.003	0.02	10 85	155 14	100
<u>let DAIFT</u>								17	24
3E -	58553	1.30	1.05	23	0.046	0.18	120	460	235
	58654	1.00	0.98	95	0.012	0.1P	13	2,8000	1,200
	58555	1.03	1.00	7	0.015	0.06	64	54	9 8
102	56656	0.63	0.62	ο.	0.003	0.15	36		
	58657	1.10	1.05	100	0.012	0.08		, 92,	83
	58658	1.09	0.85	29	0.005	0.03	48 48	170	97
					4.000	V.VD	45	460	167
15E	58657	1.05	1.00	62	0.004	4	18	215	41
	56660	0.70	0.60	85	°.003	0.17	48	82	.34
	58651	0,85	0.58		0.007	- 0 . 09	§7	53	112
110	58567	0.77	0.58	28	0.015	0.15	50 ^{- 5}	545	E15
20W	58668	1,25	1.00	100	0,070	0.19	14	720	
	58639	1.35	0.90	88	0.793	0.45 ·			283
	58679	1.04	0.85	40	0.079	-0.35		3,200	3.840
	58570	0.83	0.75		0.009 0.009		46	660	136
1		v. oo	0.70		0.004	0.06	46	- 96	124
25W 🦿	58671	1.30	0.90	100	0.025	0.15			1.1
	56672	1.07	1.05	57	0:025		14	780	843
	58e73	1.15	0.85	97. 6 .	0101+ -0.062	<.1r <.12	16	530	272
			0.00	±	· · · · · · · · ·	···-2	-20	42	-63

Survey Statio	n <u>Samole</u>	Interval Thickness (m)	True Thicknes≘ (m)		gz/	ten			
			<u>x107</u>	<u>7 9tz</u>	Au	<u>Ag</u>	Сц	<u>FFM</u> Fb	
31W 33W	58674 58675 58676	1.20 1.15	1.00 0.45	100 0	0.040 0.075		24 40	1,750 260	<u>Zn</u> 16,000
15 CROS	58677 58678	1.00 1.00 0.73	0.98 0.98 0.68	100 100 100	0.056 0.050 0.044	0.32 0.64 0.76	12 40 30	3,200 3,700 800	221 1.040 1.900 518
100									010
15W	58680 58681 58682 58683 58683	1.04 1.30 1.50 1.42	0.52 0.70 1.00 0.45	0 87 100 0	0.006 0.029 0.029 0.008	0.08 0.37 0.30 0.34	70 47 15 84	100 280 1,100 166	116 149 510
20W	58685 58686	0.70 0.90 0.90	0.50 0.60 0.85	100 100 0	0.021 0.088 0.048	0.12 3.61 1.68	7 176 130	320 1.150 555	358 32 720
	58587	0.80	0.55		0.051	2.03		,000,	365
27 RAISE	58589 58590	1.10 0.84 1.00	1.00 0.83 0.75	3 105 0	0.025 0.049 0.031	0.84 1.04 0.84	192 106 54 70	700 163 455	270 234 126
40W	58691 58692	1.10 0.90	1.08 0.85	0 44	0.003 0.027	0.05	70 120	10	80 66
160W	58693 58694	0.80	0.35 0.65	87	0.069 0.002	0.86 <0.02	31 65	168 430 12	1,220
170W	58693 58696	1.00	0.77	75.	0.003 0.008	0.10	46 20	54	54 84
	58712 58713	1.17	1.00 0.42	25 0	0.010 0.012	0.04	20 20 72	620 90	683 65
	58714 58715	1.17 1.10	0.60 0.35	100 5	0.020 0.244	0.09	30	205	109 130
	58716 58717	0.75 1.15	0.70 0.50	57 0	0.002 0.003	0.07 0.03	80 30 68	42 545 24	146 529 127

()

Survey Station	Sample	Interval Thickness T} <u>(m)</u>	True Nickness <u>(m)</u>	<u>7. Qtz</u>	<u>oz/to</u> <u>Au</u>	n Aa	<u>Cu</u>	PPM Pb	Zn
2nd DRIF	т								
O₩	58705	1.00	0.98	80	0.205	0.31	52	2,900	0 470
	58706	1.00	0.97	100	0.003	0.10	4	2,700	2,470 170
5W	58701	0.90	0.88	100	0.005	0.05	75	340	3,020
	58702	0.82	0.60	0	0.026	0.06	45	135	3,020
	58703	1.10	0.90	100	0.005	0.07	50	520	132
	58704	1.15	1,00	100	<0.002	0.04	4	400	423
10₩	58697	1.05	1.00	100	0.014	0.13	43	800	182
	58678	1.10	1,00	100	0,024	0.18	12	2,000	1,190
	58699	1.10	0.80	100	0.017	0.24	37	3,400	1,360
	58700	1.20	0.65	42	0.013	0.07	20	420	278
15W	58707	1.12	0.95	. 0	0.020	0.04	52	190	100
	58708	1.10.	1.07	100	0.038	0.20	26	2,000	120
	58709	1.10	1.08	100	0.014	0.07	8	475	585
	58710	1,25	1.20	100	0.004	0.02	ž	103	87
	58711	1.30	0.30	100	0.008	0.15	21	1.500	265
20 w	58718	1.06.	0.90	100	0.030	0,30	4	440	76
	58719	1.27	1.20	100	0.127	0.19	16	920	166
25W	58720	1.05	1.00	43	0.004	0.05	51	22	58
	58721	1.45	1.20	Sec. 75	0.008	0.11	38	85	46
JOW	58722	1.03	1.05	:00	3,829	3.62	60	1.200	10.7
	58723	1.02	0.95	7	0.072	0.07	70	40	707
35W	58724	1.08	1.00	100	0.069	0.24	171	24.0	-
	58725	1.04	1.00	40	0.014	0.13	132	260	216
							102	300	257
40W	58726	1.60	0.25	0	0.075	0,17	130	130	210
	58727	1.06	1.00	98	0.002	Q.19	40	645	521
	58728 58729	1.15	2 .	77	0.009	0.04	8	35	27
	38727	0.60	2	1100	0.003	0.02	3	32	12 .
45W	58730	1.08	1.05	96	0.114	0.13	8	1,100	856
	58731	0.65	0.30	61	0.011	0,03	. 6	45	29
50W	58732	1.10	0.90	100	0.109	1.45	205	740`	236
	58733	0.82	0.75	53	0.004	õ. 43	10	32	17
55W	58734	1.15	0.85	3	0.055	1,41	190	285	270
	58735	0.74	0.73	:00	0.013	0.00	15	280 148	. 230 55
	58736	1,05	0.95	10	0.020	0.17	41	29	20 79

 \mathbf{C}

Survey		Interval Thickness Ti	True Nickness		oz/t;			DEM	
Station	<u>Sancla</u>		<u>(m)</u>	<u>% Qtz</u>	<u>ez, c</u> <u>Au</u>	<u>ea</u>	<u>Du</u>	PEM Pb	Zņ
65W	58737	1.32	0.35	400					
0.0.1	52738	0.98	0.03	100 _ 0 _	0.005 <0.002	0.06 0.02	8 45	1,350 15	639 69
80W	53739	0.91	0.70	3	(0.002	0.04	- 44	68	64
	58740	0,82	0.35	100	0.049	0.45	158	2,000	347
87W	53741	1.16	0.41	0	<0.002	<0.02	41	34	113
	58742	1.04	0.70	100	0.005	0.19	4	2,100	1,230
	59743	1.19	0.80	11	0.002	<0.02	10	40	33
95W	22744	0.56	0.33	100	0,005	0.05	4	172	69
	58745. 58746	1.06 0.84	0,95	100	0.014	0.04	5	102	337
	E8747	1.26	?	100 87	0.002	<0.02 <0.02	. 5	28	17
1001							_	25	. 14
100W	59748 58749	1.45.	2	. 100	0.013	0.07	5	17	26
	10/47 55750	1.06	7 1100	100 16	0.007 0.006	0.05	37	-25	42
	58751	1.34	0,20	8	0.00a 0.00Z	0.09 <0.02	10 - 4	66 15	-29 11
105₩	56752	0.62	0 55	Ę.					11
100₩	59753	1,05	0.55	78	0,020 0,008	0.34 0.12	83	335	60
				70	. 01,000	0.12	16	173	50
1100	22724	1.00	0.95	4	0.014	0.27	53	108	84
	56756	0.88	0,40	100	ð . 010	ः. २०	6	70	24
115W	58758	1.25	0.90	18	0,234	3,38	2.000	4,300	148
	88757	1.10	1.00	0	0.005	0.08	96	104	59
115₩	26758	1.35	1.00	71	0.019	0,32	21	620	-157
	56759	1.06	1.00	10	0,004	0.08	54	52	40
	58760	1.10	0.90	9	0.002	<0.02	55	15	59
RAISE 119		1.00	0.98	58	0.003	0.02	30	53	109
	58782	1.10	1.08	100	0.003	Q.Q4	7	140	120
	58763 58764	1.00	0.90	F.		<0.02	36	.8	21
	22.24	1.00	0.80	2	<0 . 002	<0.02	аą	4	40
2nd DRIFT	<u>cot'd</u>								
1220	53765	1,00	0,98	94	0.087	1.08	205	845	197
	58766	1.08	1.04	° + 0	0.003	0.03	35	22 -	42

STEMWINDER MINE

Appendix "B"

MAIN VEIN DECLINE 5 Metre Interval Channel Samples

()	Interval True					· · · ·	
Survey <u>Station</u> <u>Samole</u>	Thickness Thickness (m) (m)	% Qtz	<u>oż/tor</u> <u>Au</u>	<u>As</u>	<u>Cu</u>	PEM Pb	<u>Zn</u>
DECLINE							
5N 58792 58793	1.00 0.95 0.90 0.87	100 95	$0.166 \\ 0.300$	2.29 5.40	82 . 250	2,250 2,000	47 59
10N 58794 56793 58796	0.90 0.90 1.00 1.00 0.38 0.15	100 100 0	0.136 0.060 0.009	2.55 0.99 0.05	375 99 52	2,000 320 86	265 - 60 - 98
15N 58797 58798 58799	0.65 0.60 1.02 1.00 0.62 0.55	10 100 100	0.035 0.105 0.077	0.14 1.66 1.41	87 610 70	260 760 830	245 70 380
20N 58800 58801 58802 59803	0.90 0.35 1.25 1.05 0.70 0.48 0.70 0.60	0 100 8 95	0.113 0.115 0.074 0.268	1,78 0,20 4,15	170 79 70 930	920 1,650 52 2,000	530 660 170 275
EAST DRIFT							
5E 58804 58805 58805 58807	1.04 1.00 0.55 0.47 1.17 1.10 0.72 0.45	95 5 98 18	0.179 0.023 0.083 ~ 0.034	1.15 0.12 1.15 0.50	32 90 70 114	420 72 1,000 540	54 97 700 620
WEST DRIFT							
50 58808 58809 58810 58811 58812	0.95 0.35 0.82 0.75 0.77 0.60 0.73 0.55 0.50 0.15	0 90 0 100 0	0.055 0.123 0.011 0.018 0.012	0.21 0.73 0.10 0.22 0.20	180 138 82 9 118	360 740 27 112 112	145 295 139 58 460
10W 58813 58814 58815 58815 58815 58815 58815	1.00 0.20 1.03 1.00 1.02 1.00 0.70 0.65 1.25 0.32	0 100 44 100 0	0.012 0.123 0.039 0.057 0.014	0.15 1.20 0.41 1.11 0.24	72 43 118 100 143	200 720 345 770 420	100 340 245 930 800
15W 58818 58819 56819	1.25 1.20 1.20 1.15 1.00 0.35	90 90 0	0.043 0.074 0.015	0,76 1,64 0,10	179 97 75	950 800 168	370 390 1,000

Interval True Survey Thickness Thickness Station Sample <u>si/ton</u> (\overline{m}) <u>(m)</u> % Otz FFM <u>Au</u> 69 Cu F'b Ζn 20W58821 0.95 0 0 56822 0.003 0.92 0.03 0.90 50 25 100 90 58823 0.037 1.10 0.49 1.00 45 97 22 425 120 56824 0.114 1.00 1.44 0.95 69 1,350 1.150 0.015 0.28 165 380 35w 2.300 58825 1.08 0 70 0.025 58926 1.05 0.73 29 1.00 100 320 78 Ó.010 0.12 90 400150 295 58827 0.85 0.70 3 56828 0.029 1.25 0.42 1.15 66 90 186 112 0.018 0.40 42 162 50w 50 58829 1,10 0.70 0 0.005 58830 0.08 1.30 78 0.65 37 60 58331 0.036 32 0.31 1.10 12 0.45 200 90 47 58932 0.090 0.87 1.00 0,98 11 1,300 100 60 53833 0.095 1.00 ~ 2.22 123 0.90 740 14 0.073 230 1.87 280 55% 1.600 . 58934 780 Q 0 Ó 0.0060,14 69 58 60w 54 58636 1.00 0.20 Ó (0.002 56834 0.02 0.95 61 0.80 44 6 90 58337 0.04 0.05 0.80 17 0 47 100 <0.002 33 0.03 12 NGRTH CROSS-101 19 18 10% 53308 1.00 0.98 17 $< \circ, \circ \in \mathbb{C}$ <0.02 53 25%ខ 88639 64 SRAB 0 100 0.193 58640 2.55 0.35 **GRAB** 20 0 ė,500 100 4,800 0.028 5 460 205

 $\mathbf{2}$

STEMWINDER MINE

Appendix °C°

HANGING WALL VEIN 5.0 Metre Interval Channel Samples

Conten

	Interval Thickness Th <u>(m)</u>	True ickness <u>(m)</u>	<u>% Stz</u>	oz/ta Au	<u>Aq</u>	Cu	<u>Fem</u> Fb	<u>Zn</u>
58776 58777	1.00 0.80	0.97 0.77	100 100	0.035	0.52 0.04	- - -	1.450 415	305 84
58772	1.45	1.31	89.6	0.259	0.28 [°]	11	2,300	250
58773 58774 58775	0.57 1.00 0.70	0.57 0.95 0.45	33 100 100	0.009 0.199 0.591	<0.02 0.28 0.37	-16 -7 10	205 245 2,300	480 68 365
58907 58908	1.05 1.08	0.90 1.03	80 100	0.015	0.30 0.67	. 7 7	855 120	530 225
58905	0.90	0.80	100	0.022	0.57	15	245	265
58902 58903 58904 58905	0.90 0.40 1.00 0.70	0.90 0.40 1.00 0.70	100 75 100 85	0.013 0.009 0.023 0.032	0.07 0.05 0.35	20 23 12 41	32 14 1,300 2,550	105 45 4,850
SURFACE OUTORC	<u>195</u>							
58867	1.30	0	100	0.014	0,03	4	365	7é -
58778 58779	1.15 0.85	0	100 100	0.055	0.24 0.04	: 5 7	167 205	74 380
58780	1.30	- Q	100	0.012	0.06	2	27	8

STEMWINDER MINE PROPERTY

5

Appendix "D"

Channel Samples of Pits & Trenches S.E. of Stemwinder Shaft

		Interval	True						
Survey		Thickness			oz/to	חר		PPM	
<u>Station</u>	<u>Samole</u>	<u>(m)</u>	<u>(m)</u>	<u>/ Qtz</u>	Au	<u>Aa</u>	Cu	<u>Fb</u>	Zn
13	58781	0.86	0.84	100	0.060	0.96	84	700	
	58782	0.77	0.75	93	0.234	5,13	. 980	785	122
	58783	0.85	0.65	1	0.011	0.12	84	3,000 34	790
	58784	0.55	0.53	87	0.035	0.39	70	740	120 360
12	58788	0.95	0.80	· 0	0.005	0.04	71	26	
	58789	1.20	1.00	98	0.172	3.33	510		90
	59790	1.00	0.95	100	0.381	8.08	980	1,350	275
	58791	0.60			0.023	0.16	- 29	2,950 134	580 72
13	58785	1.08	1.05	95	0.027	0.45	15	690	
	58786	0.88	0.85	78	0.210	0.25	1,500	2,900	440
	58787	0.60	0.59	100	0,085	0.68	39	445	270 44
171	58925	1.25		100	<0.002	<0.02	7	13	3
	58926	0.80		100	<0.002	<0.02	7	6	2
171-170	58927	1.30	1.00	100	<0.002	<0.02	5	4	1
	58928	1.02	0.98	100	<0.002	<0.02	49	5	<1
. 83	58868	1.00	0.70	100	0.030	0.38	13	157	88
	58869	1.00	0.90	100	0.003	0.02	4	15/	
	58870	0.95	0.90	84	0.066	0.80	105	150	20 128
84	58871	1.25	1.20	100	0.007	0.07	10	50	40
	58872	1.25	1.20	72	<0.002	0.06	14	28	40
92	58915	1.30	1.25	100	0.044	0.15	8	07	
	58916	1.30	1.10	81	0.072	0.21	15	83	83
	58917	1.50	0.50	100	0.028	0.17	21	520 225	210 275
87	58873	1.40	1.10	100	0.061	0.68	10	102	
	58883	1.00	0.98	. 0	0.002	0.02	20	17	24 43
88	58884	1.30	0	100	0.132	1.63	15	595	
	58885	1.30	0	100	0.250	2.94	15		5
	58886	1.20	0	86	0.045	0.38	13	2,100	3
	58687	0.65	0	73	0.029	0.22		465	8
	58888	0.53	0.50	ō	0.079	0.59	26	59	10
	58889	1.30	1.05	100	0.951	1.08		225	32
	56890	1.30	1.10	100	0.099	1.60	16	715	6
	58891	1.30	1.10	96	0.080	0.96	11	730	4
	58892	1.30	1.10	100	0.031	0.22	10 13	695 .	4
	58893	1.20	0	100	0.020	0.45	13	198 169	16 4
							-		7

		Interval	Trúe						
Survey		Thickness (Thickness		oz/te	on		FFM	
Station	Sample	<u>(a)</u>	<u>(m)</u>	<u>/ Otz</u>	Au	Ag	Cu	EP.	<u>Zn</u>
								<u></u>	<u>= 11</u>
87	58894	1.25	1.20	95					
	58895	0.92	0.90		0.104	1.47	55	1,400	12
	58896	1.03		100	0.030	0.71	47	840	30
	58897	1.30	0,90	100	0,002	0.05	23	1,050	6
	58878		1.00	93	0.093	1.46	26	430	43
	00070	0.50	0.49	10	0.102	1.26	87	44	285
96	58918	1.35	1.30	75	0.128	0.30	16	1,400	210
78	58899	1.15	0,95	26	0.104	0.62	87	169	70
	58900	1.10	1.00	100	0.024	0.38	56	210	
	58901	0,60	0,55	0	<0.002	0.20	- 82	- 235	30 260
99	58909	A 57							
//		0.97	0.95	100	0.043	0.53	26	90	28
	58910	1.20	1.15	100	0.009	0.13	28	74	28
101	58912	0.52	0.50	100	0.004	0.04	7	94	24
100	58911	1.35	1.30	100	0.071	0.30	16	106	30
103	58913	1.70	1.50	79	0.025	0.07	12	415	48
104	58914	0.52	0,50	100	3.333	0.67	11	305	36
108	58920	0,85	0.83	70	0.017	0,13	12	310	60
109	58919	0.85	0.83	96	0.095	0.46	20	2,150	45
111	58921	1.27	1.25	90	0.014	0.04	10	540	52
115	58922	1.03	0.95	100	0.012	0.05	3	410	
	58923	0.95	0.90	45	0.015	0.07	8		10
	58724	1,20	0.90	100	0.002			885	58
	00721		V. 7V	100	0.002	0.02	12	85	80
114	58929	0,56	0.55	100	0.002	0.10	. 4	<u>6</u> 4	. 7
116	58930	1.40	1.10	0	0.024	0.04	41	305	100
	58931	1.28	0.85	õ	<0.002	<0.02	30		490
	58932	1.20	1.10	ŏ	0.011	0.04		30	290
		1.10	1.10	v	0.011	0.04	86	90	660
127	58933	1.40	1.00	100	0.095	1.56	138	365	33
119	58943	1.15	0,90	0	0.005	0.06	71	114	355
	58944	1.05	i.00	.0	0.019	0.15	36	610	195
	58945	1.15	0.90	92	0.042	0.07	4	295	55
120	58941	1.19	1.10	0	0.020	0.11	36		
	58942	0.97	0.95	0				117	136
	58940	1,40	1.25	77	0.038	0.22	Ġ	103	29
	00170	11-0	1.24	11	0.100	0.15	. 4	145	36

Interval True Survey Thickness Thickness <u>oz/ton</u> PPM Pb Station <u>Sample</u> <u>(m)</u> <u>(m)</u> <u>% Qtz</u> <u>Au</u> <u>Aa</u> <u>Cu</u> <u>Zn</u> i22 1.37 1.30 58937 1.25 100 0.121 0.011 0.011 0.26 5 4,050 355 116 1,450 28 15 58938 58939 1.10 100 0.04 4 1.40 100 0.06 4 124 58935 1.10 1.05 0.012 0.031 100 0.15 4 36 88 760 58936 1.20 1.15 100 0.20 5 2,700 129 58934 0.05 0.49 100 0.098 1.57 26 3,320 500

STEMWINDER MINE

Appendix "E"

Channel Samples of Pits & Trenches NW of Stemwinder Shaft

S	urvey		Interval Thickness T	True hickness		oz/t				
S	<u>itation</u>	<u>Sample</u>	<u>(m)</u>	<u>(m)</u>	% Qtz	Au	<u>Aa</u>	<u>Cu</u>	<u>РРМ</u> <u>РБ</u>	Zn
6	4	58847	1.00	0.80	. 100	0.027	0.45	8	00	
		58848	0.85	0.70	100	0.061	0.43	8 5	92 190	10
- 6	2	58849	1.40	1.30	100	0.034	0.49	9	595	235
		58850	1.00	0.98	4	0.014	0.04	17	. 95	50
		58880	0.80	0.70	0	0,022	0.19	20	580	240
		58881	0.90	0.80	23	0.009	0.15	25	670	210
6	3	58851	1.00	0.80	0	0.025	0.60	85	192	66
		58852	1.25	1.20	100	0.017	0.25	-23	41	23
		58853	1.10	1.05	100	0.019	0.49	6	114	
7	Q ·	58854	1.40	1.35	100	0.101	1.49	4	1,200	- 62 ·
- 51	8	58855	1.20	1.10	54	0.011	0.06	15	48	30
7	1	58856	1.00	0.95	100	0.026	0.04	7	0.05	
		58857	0.70	0.60		0.010	0.10	5.	225	14
		58858	1.00	0,95	Q .	0.002	0.02	86	67 47	6 44
7	5	58859	1.10	1.08	8	0.021	0.28	6	66	3
- 4	0	58841	1.10	1.05	100	0.040	0.79	57	460	Ŷ
		58842	0.32	0.31	93	0.008	0.04	7	480	9 3
4:	2 .	58843	0.63	0.55	56.8	0.015	0.38	330		_
		58844	1.08	1.00	0	0.014	0.04	84	795	28
		58845	Q.46	0.45	93	0.014	0.04		18	55
	-						V. 21	11	174	30
43		38846	1.00	0.98	100	0.022	0.36	37	500	16
47	7	58861	0,45	0.42	Q .	0.052	0.84	18	197	54
		58862	1.00	0.85	100	0.045	0.65	14	320	18
51	1	58863	1.2	1.18	0	0.257	4.10	215		
		58864	1.25	0	õ	0.042	0.56	215	770 270	24
							0.00	20	270	13
53	S .	58865	0.72	0.50	55.5	0.009	0.03	54	11	52
		58866	1.00	0.70	100 -	0.002	<0.02	8	7	10
80) .	58860	0.80	0.75	100	0.007	<0.02	. 7	4	<u>^</u>
81		58882	0.83	0.80	100	0.002	0.03	6	19	6
13	59	58874	0.95	0,93	100	0.013	0.06	4	8	3
14	0 1.	58875	?	?	100	0.016	0.07	5	17	4

 \bigcirc

Interval True Survey Thickness <u>Dz/ton PPM</u> <u>Station Samole (m) (m) % Otz Au Aq Du Pb</u>	Zn
	<u>Zn</u>
141 58876 1.22 1.20 - 0.024 0.25 18 179 58877 1.00 - 100 0.010 0.14 4 25 58878 1.35 - 100 0.008 <0.02	88 7 4 64
137 58968 0.18 0.17 100 0.009 0.06 8 187	. 8
136 58967 0.14 0.14 100 0.006 0.09 11 675	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 24 30 38 19
134 58951 1.30 0.80 100 0.006 0.03 3 127 58952 1.45 0.70 100 <0.002 <0.002 3 8 58953 1.60 - 96 0.038 0.21 4 755	4 4 51

Test

STEMWINDER PROPERTY	

Appendix "F"

1987	Backhoe	Trenching
		the mentang

						=		
<u>Trench</u>	<u>Samole</u>	Interval Thickness <u>(m)</u>	True Thickness <u>(a)</u>	<u>oz/t</u> Au	on Ag	<u>Сц</u>	<u>FFM</u> Fb	<u>Zn</u>
1	58998 58999	0.7 1.9		0.116 0.032	1.66 0.42	295 40	3,600 370	350 43
2	59000	0.8		0.023	0.34	6	48	14
3	NONE							
4	NONE							
5	57001	1.00		<0.002	0.03	8	200	86
6	59002	0.80		<0.002	<0.02	3	16	ម
7	NONE							
8	59003	1.0		1.997	0.84	4	2.100	139

SUSIE MINE

Appendix "G"

				Channel	Samples				
		Interval	True						
Survey		Thickness	Thickness		oz/to	0		Pre-Net	
Station	<u>Samole</u>	<u>(m)</u>	<u>(m)</u>	<u>% Otz</u>	Au	Ag.	<u>Cu</u>	PPM Pb	Zn
200	58954	1.30	1.25	100	0.076	1.14	31	785	
	58755	1.25	1.20	100	0.263	5.42	21		16
	58956	1.20	1.11	100	0.189	3.44	-	4,800	4
	58957	1.30	1.15	100	0.046	0.73	5	1,000	2 3
	58958	1.30	1.15	100	0.042		6	640	3
	58959	1.30	1,00	100	0.042	1.13	5	980	2
	58960	1.25	1.00	84		0.03	- 2	22	1
	58961	1.30	1.00		0.002	0.11	13	52	3
		1.00	1.20	42	0.023	0.59	4	300	8
203	58766	1.40	0.80	89	0.035	0.62	5	115	7
	58962	0.80	0.75	100	0.020	0.32	4	210	4
	58963	0.70	0.55	100	0.024	0.23	3	110	- 1
	58764	1.30	1.30	100	0.017	0.22	ž	40	·· 6
	58965	1.45	1.00	100	0.011	0.14	4	43	14
UNDERGROU	IND SAMPL	ING							
10N	58969	1.30	1.20	100					•
	58970	1.00	0.97	100	0.118	1.99	5	1,100	25
	58971	0.96			0.057	0.69	3	200	3
		0.70	0.93	100	0.056	0.78	6	161	16
5N	58972	1.30	1.28	100	0.059	0,99	14		~.
	58973	1.42	0.90	100	0.041	0.61	7	295 330	30 14
0							* .	000	. 14
0	58974	1.00	1.00	100	0.002	0.07	6	31	9
	58975	1.05	1.05	100	0.002	0.12	8	28	15
	58976	1.35	1.15	100	0.002	0.23	10	106	20
	58977	0.73	0.71	100	0.008	0.13	11	73	20
55N	63076	1.00	0.97	40	0.022	0.42			
	63077	1.00	0.98	· · <u>·</u>	0.008		2	193	8
			0.70		0.008	0.26	4	120	16
50N	63078	1.00	-, .	100	0.016	0.22	2	147	
	63079	1.00	~ -	100	0.017	0.23	2	75	6
	63080	0.78		100	0.019	0.22	3	100	14
65N	63081	1.05	· · ·	100	0.123	2.44	-		
	63082	1.00	·	100	0.051		2	1,300	3
	63083	1.00		100	0.031	0.79	2	260	6
	63084	1.08		100		0.29	· 2 ·	57	5
				100	0.019	0.41	2	171	6
70N	63085	1.10		100	0.040	0.63	3	157	14
	63085	1.03	. .	100.	0.016	0.36	1	117	14
						0.00	τ.	111	5

Surve Stati		Interval Thickness <u>(m)</u>	True Thickness <u>(m)</u>	<u>% Gtz</u>	<u>oz/t</u> c <u>Au</u>	<u>en</u> Ag	<u>Cu</u>	<u>FFM</u> F5	<u>Zn</u>
Surve Static	,	Interval Thickness <u>(m)</u>	True Thickness <u>(m)</u>	<u>% Qtz</u>	<u>oz/tc</u> <u>Au</u>	<u>in</u> Ag	<u>Cu</u>	<u>FFM</u> Fb	Zn
75N	63087	1.10		100	0.04.0	-		· .	231
	63088	1.03		100	0.014 0.026	0.19 0.48	2.	49	6
SON	63089	1.08	÷ ·	100	0.122	2.17	1	221	5
	63090	1.02	_ '	100	0.070	0.83	- 2	660	2
	63091	0.60	-	100	0.061	1.02	28	137 370	2 12
85N	63092	1.05			$(-1)_{i\in I} = (-1)_{i\in I}$		20	370	12
0014	63093	1.05	0.80	100	0.128	2.39	. 3	2,000	4
	0.007.0	1.08	1.00	100	0,201	3.44	47	940	124
88N	63094	1.05	0.70	100	0.161	o	_		
	63095	1.02	0.45	100	0.181	2.74	- 310	1,000	10
					V.123	2.65	12	3,000	40
92.5N	63096	0.55	0.50	100	0.022	0.68	16	295	00
55	50070							270	68
33	58978	1.45	0.90	100	0.021	0.10	é '	48	9
	58979	1.50	1.30	100	<0.002	0.03	5	21	5
	58980	1.30	0.85	100	0,017	0.38	7	149	13
105	58981	1.50	2	100		A			
	58982	1.05	1.00	100	0.027	0.56	4	59	4
	58983	1.30	1,10	100	0.009	0.13	12	58	12
					0.047	1.12	12	545	18
158	58984	0.96	0.45	87	0.049	1.22	3	575	
	58985	1.05	0.80	100	0,190	4.16	7	2,450	· 15 6
258	58986	0,90						-,	0
200	58987	1.00	0.88	100	0.012	0.16	15	74	60
	00707	1.00	0.90	100	0.146	3.17	5	1,950	32
305	58788	1.30	1.00	100	0.009	0.13	,	-	
	58989	1.30	0.70	100	0,002	0.13	5 8	75	68
						0.04	. . .	66	150
358	58990	1.34	1.30	100	0.070	0.75	7	139	10
	58991	1.40	1.38	100	0.233	3.68	32	1,200	10
	58992	1.50	1.30	100	0.039	0.85	7	250	14
	58993	1.05	1.00	100	0.041	0.78	13	465	28
	58794	1.30	1.10	100	0.052	0.89	5	126	23
Interm	ediate Level								
10S	57650	1,12	1 10	4 6 6					
	57651	1.12	1.10	100	0.004	0.07			
	0,001	1.00	1.00	36	0.007	0.12			
205	57586	1.03	0.90	· o ·	0.002	0.02			
	57587	1.08	1.00	100	0.047	0.99			
	57588	1.00	0.85	43	0.018	0.26			
	57589	0.55	0.20	100	0.013	0.19			

Survey Station	<u>Samole</u>	Interval Thickness T <u>(m)</u>	True hickness <u>(m)</u>	<u>% Qtz</u>	<u>oz/ton</u> <u>Au</u>	Aq	<u>Cu</u>	Fem Fb
Survey <u>Station</u>	Samole	Interval Thickness T <u>(m)</u>	True hickness <u>(m)</u>	<u>% Gtz</u>	<u>oz/ton</u> <u>Au</u>	<u>Aq</u>	<u>Cu</u>	PPM Pb
258	37590 57591 37592	1.05 1.0 0.78	1.0 1.0 0.40	0 85 78	0.002 0.021 0.018	0.04 0.40 0.35		
308	57573 57594	1.10 1.30	1.05	3 95	0.002	<0.002 3.78		
40S	57595 57596 57597 57598 57599 57599 57600	1.10 1.10 1.05 1.01 1.00 0.40	0.80 1.00 1.00 7.98 1.00 0.39	0 100 99 42 26 53	0.016 0.534 0.171 0.023 0.024 0.012	0.24 6.34 3.27 0.26 0.71 0.23		
455	57608 57609 37610	0.78 1.05 0.90	0.60 1.00 0.70	0 100 90	0.008 0.361 0.080	0.23 5.78 1.42	2 	
508	57613 57614 57615	0.70 1.15 1.15	0.40 1.00 0.80	0 95 80	0.025 0.036 0.020	0.41 0.53 0.35		
855	57616 57617 57618	1.02 1.0 0.65	0.95 0.90 0.30	100 100 90	0.220 0.174 0.093	3.24 3.25 1.74		•
855	CROSS-CU	Г						
5E	57619 57620 57621	1.05 0.97 0.88	1.0 0.95 0.60	100 100 93	0.220 0.119 0.529	3.43 2.22 8.68		
9E	57622 57623 57624 57625 57625 57627	1.05 1.10 1.10 1.03 1.00 0.53	1.0 1.0 1.03 1.00 0.96 0.53	88 30 40 80 95 90	0.025 0.082 0.040 0.011 0.023 0.076	0.47 1.07 0.52 0.20 0.35 1.18		
Intermedia	te Levels	(continued)	<u>}</u>					
905	57628 57629	1.03 1.28	1.0	100 82	0.078 0.037	1.05		
	57630 57631	0.98 1.10	0.98 0.95	100 100		1.68 1.22		

3

<u>Zn</u>

<u>Zn</u>

Interval True Survey Thickness Thickness pz/ton Station <u>Sample</u> <u>(m)</u> (m) <u>/ Qtz</u> <u>Au</u> <u>ea</u> <u>Çu</u> Interval True Survey Thickness Thickness oz/ton Station Sample (m) <u>(m)</u> <u>% Gtz</u> <u>Au</u> <u>Ag</u> Cu 1005 57632 0.98 0.95 100 0.027 0.87 57633 1.00 1.00 74 0.115 2.25 57634 1.00 0.98 97 0.054 1.22 57635 1.00 1.00 100 0.041 0.64 57636 1.00 1.00 100 0.013 0.15 57637 0.87 0.87 100 0.008 0.03 1055 57638 1.00 9.05 92 0.033 ó.34 57639 1.0 0.45 98 0.231 3.75 1105 57640 1.00 1.00 100 0.037 0.65 57641 1.00 0.90 100 0.094 2.00 57642 0.85 0.50 100 0,056 1.07 1155 57643 1.15 0.90 100 0.149 2.91 1208 57644 1.05 1.00 95 0.073 1.38 57645 0.70 0.20 100 0.043 0,96 :258 57646 1.00 1.00 100 0.038 0.74 57647 0.70 0.30 100 <0.002 0.05 133S 57648 0.98 0.98 100 0.018 0.35 57649 0.80 0.75 85 0.032 0.43 <u>_ower Level</u> ΞN 57652 .0.38 0.35 100 0,075 1.08 57653 0.98 0.95 100 0.071 1.29 10N 57654 1.10 1.00 89 0.067 0.86 57655 1.15 1.05 78 0.077 1.08 15N 57656 1.02 1.02 100 0.147 1.86 57657 1.35 0.65 100 0.007 0.11 ZON 57658 1.0 0.98 100 0.146 2.16 57659 1.0 1.00 100 0.002 0.03 57660 1.05 0.50 (?) 30 0.020 0.33 28N 57661 1.15 0.95 95 Ò.225 4.30 57662 1.08 1.00 95 0.007 0.18 57663 1.00 ?` 50 0.047 0.87 30N 57664 1.12 1.00 1000.023 0.36 57665 1.10 1,00 1000.027 0.33 57666 1.00 0.95 57 0.026 0.40 57667 1.00 0.93 1004 0.012 0.19

<u>F'F'M</u>

Fъ

<u>F'P'M</u>

₽<u>b</u>

<u>Zn</u>

<u>Zn</u>

 \bigcirc

<u>Zn</u>

<u>Zn</u>

Survey		Interval Thickness	True					
<u>Station</u>	Sample	(<u>m)</u>	(<u>m)</u>	% Gtz	<u>oz/to</u> Au	<u>n</u> Ag	Cu	PPM Pb
						<u></u>	<u>PU</u>	<u>ro</u>
		Interval	True					
Survey		Thickness			oz/to	_		
<u>Station</u>	<u>Sample</u>	<u>(m)</u>	<u>(m)</u>	<u>% Qtz</u>	<u>Au</u>	Aq.	Cu	<u>F'PM</u> E'b
35N	57668	1.00	0.95	100	0.165	2.36		
	57669	1.12	1.00	100	0.016	0.27		
	57670	1.30	?	95	0.013	0.18		
40N	57671	1.00	0.80	80	0.017			
	57672	1.10	1.00	50 79	0.016	0.22		
	57673	1.24	2	99	0.013	0.19		
			•		0.004	0.05		
45N	57674	1.10	1.00	100	0.003	0.02		
	57675	1.10	1.00	85	0.010	0.02		
	57676	1.15	?	20	0.004	0.05		
NW CROSS-	-cur							
0	57901	1.43	2	100	0.042	0.61		
SE	57902	1.00	0.00					
	57903	0.95	0.98 0.94	· 100	0.005	0.05		
	0,700	0.70	0.74	100	0,003	0.02		
10E	57904	1.00	0.95	95	0.054			
	57905	0.96	0.86	100	0.034	1.05		
				100	0.010	0.20		
15E	57906	1.00	0.95	100	0.013	0.20		
	57907	1.20	1.15	100	0.015	0.11		
						V. 11.		
20E	57908	1.00	0.95	95	0.026	0,46		
	57909	1.24	i.18	100	0.368	6.50		
24E	57910	0.05	0.07	-				
	57911	0.95 0.53	0.95	85	0.085	1.34		
	0/711	0.53	0.53	85	0.203	3.65		

STEMWINDER PROPERTY

Appendix "H"

ASSAY AND GEOCHEM RESULTS FOR 1987 ROTARY DRILLING

Hole	Sample	From-To	Au		
	世	(m)	(ppb)	Au	Aq
0000			70007	oz/ton	
S87R01	62785	21.34- 22.86	35		
	62786	22.86- 24.38	1250	0.046/0.59	
	62787	24.38- 25.15	7700	0.218/3.25	
	62788	25.15- 25.91	2000	0.070/1.03	
	62789	25.91- 26.67	1300	0.046/0.55	
	62790	26.67-27.43	460	0.015/0.17	
	62792	27.43- 28.96	1300	0.047/0.32	
	62791	28.96- 30.48	190	0.005/0.06	
	62793	30.48- 32.00	2800	0.044/0.29	
	62794	32,00- 33,53	680	0.031/0.42	
	62795	68.58- 70.10	45	0.001/0.42	
	62796	70.10- 71.63	160		
	62797	71.63- 72.39	340		
	64476	72.39- 73.15	60		
	64477	73.15- 73.91	420		•
	64478	73.91- 74.68	190		
	64479	74.68- 75.44	720		
	64480	75.44- 76.20	280		
	64481	76.20- 76.96	110		
	64482	76.96- 77.72	110		
	54483	77,72- 78,49	70		
	64484	78,49- 79,25	90 .		
	64485	79.25- 80.77	220		
	64486	80.77- 81.53	<5		
	64487	81.53- 82.30	55		
	64488	82.30- 83.06	45		
	64489	83.06- 83.82	25		
	64490	83.82- 85.34	5 -		
	64491	85.34- 86.11	5		
	64492	86.11- 86.97	15		
	64493	89.92- 91.44	<5		
\$87R02	60000				
	64494 64495	59.44- 60.96	900	0.022/0.11	
	64496	60.96- 61.72	300	0.011/0.06	
	64497	61.72- 62.48	740	0.022/0.19	
	64498	62.48- 63.25	920	0.02970.04	
	64499	63.25- 64.01	95		
	64500		25		
	64501	76.2 - 77.72	<5		
	64502	77.72- 79.25 89.92- 91.44	<5		
	64503		150		
	64504	91.44- 92.20 92.20- 92.96	50		
	64505	92.96- 93.73	.75 .		
	64506	72.75- 93.73	35		
		····/07 74.49	5		

Hole	Sample	From-To	Au	
	世	<u>(m)</u>		
			<u>(dob)</u>	
S87R02	64507	96.01- 97.54	<5	
	64508	97.54- 98.30	<5	
	64509	78.30- 99.06	<5	
	64510	99.06- 99.82	<5	
	64511	99.82-100.58	<5	
	64512	100,58-101.35	· <5	
	64513	138.68-139.45	5	
	64514	139.45-140.21	10	
	64515	140.21-141.73	5	
	64516	141.73-143.26	30	
	64517	143.26-144.02	280	
	64518	144.02-144.78	55	
	64519	144.78-146.30	15	
	64520	146.30-147.83	15	
	64521	147.83-148.59	5	
	64522	148.59-149.35	<5	
	64523	149.35-150.11	<5	
	64524	150.11-150.88	<5	
	64525	150.88-151.64	< 5	
	62776	151.64-152.40	85	
	62777	152.40-153.16	- 70	
	62778	153.16-153.92	5	
	62779	153.92-154.69	20	
	62780	154.69-155.45	- 5	
	62781	162.31-163.07	<5	
S87R03	40701			
	60301 60302	4.57~ 6.10	15	
	60303	10.67-12.19	- 30	
	60304	12.19- 13.72	50	
	60305	24.38- 25.91 25.91- 26.67	5	
	60306	- · · · · · · · · · · · · · · · · · · ·	20	
	60307		25	
	60308	27.43- 28.19 28.19- 28.96	<5	
	60309		20	
	60310	28.96- 29.72 29.72- 30.48	<5	
	60311	30.48- 31.24	20	
	60312	31.24 - 32.00	380	
	60313		110	
	60314		15	
	60315		35	
	60316		10	
	60317		<5	
	60318	35.05- 35.81 35.81- 36.58	30	
-	60319		60	
	60320		70	
	60321		110	
	60327	38.10- 38.86	25	
	60328	45.72- 47.24 47.24- 48.01	35	
	60322	47.24- 48.01 49.53- 50.29	200	
	60323	50.29- 51.05	190	
1			740	

Au

oz/ton

Aq

)

Hole

Hole	Sample	From-To	Au	Δ.,	
	<u>#</u>	(m)	(ppb)	Au	<u>Aq</u>
			<u>VDD07</u>	<u>oz/ton</u>	
S87R03	60329	51.05- 51.82	560		
	60324	51.82- 52.58	220		
	60325	52.58- 53.34	300		
	60326	73.15- 73.91			
	60330	74.68- 76.2	170		
		7.00 76.2	65		
S87R04	63098	54.86- 56.38	15		
	63099	56.38- 57.91	- <5		
	60352	57,91- 59,44	10		
	60353	59.44~ 60.20	6000	0.182/0.43	
	60354	40.20- 60.96	<10000	0.367/0.93	
	60355	60.96- 61.72	2500	0.036/0.11	
	60356	61.72- 62.48	540	0.048/0.06	
	60357	62.48- 63.25	2600	0.031/0.11	
	60358	63.25- 64.01	1450	0.096/0.12	
	60359	64.01- 64.77	540	0.055/0.03	
	60360	64.77- 65.53	1900 1100	0.061/0.44	
	60361	45.53- 46.29	220	0.041/0.20	
	60362	66.29- 67.06	10		
	60363	70.10- 70.87	<5		
	60364	73.15- 73.91	15		
	60365	85.34-86.87	100		
	60366	86.87- 88.39	60		
	60367	98.39- 89.9 2	960	0.030/0.38	
	60368	89.92- 90.68	170	0.002/0.08	
	60369	90.68- 91.44	2800	0.079/1.17	
	60080	91.44- 92.96	140	0.07771.17	
			4.10		
S87R05	60382	21.34- 22.10	640		
	60383	22.10- 22.86	80		
	60384	22.86- 23.62	10		
	60385	23.62- 24.38	2100	0.004/0.09	
	63100	24.38- 25.15	15	0.00470.09	
	60386	25.15- 25.91	65	0.00070.07	
	60387	25.91- 26.67	4200	0.002/0.03	
	60388	26.67- 27.43	820		
	50589	27.43- 28.19	660	0.018/0.14 0.021/0.38	
	60390	28.19- 28.96	300	0.010/0.11	
	60391	28.96- 29.72	760	0.029/0.28	
	60392	29.72- 30.48	360	0.027/0.28	
	60393	30.48- 31.24	70		N
	60394	33.53- 35.05	150		
	60395	35.05- 35.81	140		
	60396	35.81- 36.58	110		
	60400	99.06- 99.82	320		
	60401 [°]	99.82- 100.58	190		
1					

ALC: NO	
()	
Contraction of the	

Hole	Sample 世	From-To (m)	Ац (<u>ррђ</u>)	Au oz/ton	Aa
587R06	60371 60372 60373 60374 60375 60375 60377 60378 60379 60380 60380 60381 60397 60398 60399	27.43-29.19 28.19-28.96 28.96-29.72 29.72-30.48 30.48-31.24 31.24-32.00 32.00-32.77 32.77-33.53 33.53-34.29 34.29-35.05 35.05-35.81 76.20-77.72 99.06-100.58 117.37-118-11	680 9000 7200 2300 600 6500 2300 2300 2900 1650 70 <5 <5 <5 <5	0.019/0.24 0.247/5.42 0.227/2.65 0.189/4.10 0.067/1.03 0.018/0.14 0.141/1.20 0.055/1.24 0.078/1.97 0.037/0.83	

STEMWINDER PROPERTY

Appendix "I"

ASSAY AND GEOCHEM RESULTS FOR 1988 ROTARY DRILLING

Hole	Sample	From-To	Au	Au Ag
	坓	<u>(m)</u>	(ppb)	oz/ton
S88R01	60751	38.10- 39.62	<5	
	60752	39.62- 41.14	55	
	60753	41.14- 42.67	15	
	60737	65.53- 67.05	130	
	60738	67.05- 67.81	30	
	60739	67.81- 68.48	20	
	60740	68.58- 67.34	45	
	60741	69.34- 70.10	15	
	60742	70.10~ 70.87	5	
	60743	70.87- 71.62	<5	
	60744	71.62- 73.15	<5	
	60745	92.96- 93.73	>10000	0.464/0.53
	60746	93.73- 94.48	5600	0.146*/0,59
	60747	121.16-121.92	<5	
	60748	121.92-122.68	<5	
	60749	131.06-131.83	40	
	60750	131.83-132.58		
S88R02	60699	44,19- 45,72	10	
0001102	60719	86.86- 88.39	< <u>5</u>	
	60720	88.39- 89.15	<5.	
	60721	89.15- 89.91	25	
	60722	89.91- 90.68	5	
	60723	118,87-120,39	1000	0.026/0.62
	60724	120.39-121.16	35	
000007	10101	7 05 4 57		
S88R03	60686	3.05- 4.57	15	
	60687	4.57- 6.09	5	
	60688	53,34- 54,86	480	
	60689	54.86- 56.38	180	
	60700	74.68- 76.20	5	
	60701	83.82-85.34	45	
	60702	100.58-102.10	5	
	60703	126.49-128.01	<5	
	60690	178.30-179.83	170	,
	60691	179.83-180.59	5	
	60692	180.59-181.35	140	
	60693	181.35-182.14	740	
	60694	182.11-182.88	660	
	60695	182.88-183.64	25	
	60696	183.64-184.40	3300	0.091/1.26
	60697	184.40-185.17	2800	0.085/0.67
	60698	185.17-185.92	130	

Aq

ì

3

Hole	Sample	From-To	Au	Au
	世	<u>(m)</u>	(ppb)	oz/ton
				<u></u>
S88R04	60799	80.77- 81.53	<5 /	
	60800	99,06-100.58	<5	
	57501	100.58-102.10	<5	
	57502	119.63-120.39	<5	
	57503	120.39-121.16	<5	
	57504	121.16-121.92	<5	
	57505	158.49-159.26	65	
	57506	176.78-178.30	150	
	57507	178.30-179.83	640	
	57508	179.83-181.35	25	
	57509	181.35-182.88	<5	
	57510	201.17-201.93	<5	
	57511	201.93-202.69	<5	
	57512	206.50-207.26	<5	
	57513	207.26-208.03	<5	
	57514	208.03-208.79	<5	
	57515	211.84 - 212.60	<5	
	57516	212.60-213.36	<5	
	57517	220,98-222,50	240	
S88R05	60704	77.72- 78.49	240	
	60705	78.49- 79.24	130	
	60706	79.24- 80.01	180	
	60707	80.01- 80.77	320	
	60708	80.77- 81.53	340	
	60709	81.53- 82.29	1350	0.047/0.35
	60710	82.29- 83.06	3800	0.151/1.52*
	60711	83.04- 83.82	110	0.101/1.02*
	60712	83.82- 84.58	540	
	60713	84.58- 85.34	120	
1	60714	94.48- 95.25	15	
	60715	95.25- 96.01	10	
	60716	96.01- 96.77	<5	
	60717	96.77- 97.53	<5	
	60718	97.53- 98.30	5	
	60733	98.30- 99.06	<5	
	60734	99.06- 99.82	5	
	60735	99.82-100.58	<5	
	60736	100.58-101.35	30	
	60725	121.92-123.44	50	
	60726	123.44-124.21	1650	0.052/0.17
	60727	124.21-124.96	1550	0.053/0.05
	60728	124.96-125.73	760	0.03370.03
	60729	125.73-126.49	1050	0 005/0 70
	60727	126.49-128.01		0.025/0.32
	60731	134.11-134.87	340	
	60732	134.87-135.63	140	
	60783	160.02-160.78	<5	
	60684	160.78-161.54	180	
	60685		10	
	00000	161.54-163.06	140	

Hole	Sample	From-To	Au	. Au
	#	<u>(m)</u>	(ppb)	Au Aq
			10007	<u>oz/ton</u>
S88R06	60771	55.63- 56.38	460	
	60772	56.38- 57.15	8000	
	60773	57.15- 57.91	5000	
	57607	57.91- 58.67	1000	
	60774	71.62- 72.54		0.029/0.19*
	60775	72.54-73.115	15	
and the second second	60776	118.87-119.63	10	
	60777	119.63-120.39	1900	
	60778	120.39-121.16	3000	
1	60779	140.20-140.97	400	
	60780	140.97-141.73	10	
	60781	141.73-142.49	10	
	60782	163.83-164.59	20	
	60783	164.57-165.35	. 40	
	60784	165.35-166.11	65	
	60785	166.11-166.88	100	
	57525	166.88-167.64	30	
	. 60786	170.68-171.45	220	
	60787	171.45-172.21	60	
	60788	172 21-172 97	65	
	60789	172.97-173.73	35	
·	60790	173.73-174.49	50	
	60791	174.49-175.26	30	
	60792	175.26-176.02	80	
	60793	176.02-176.78	45	
	60794	176.78-177.54	<5	
	60795	177.54-178.30	25	
	60796	178.30-179.07	10 95	
	60797	182.88-183.64		
	60798	183.64-184.40	620 700	
	007.0	100.04 104.40	700	
S88R07	57535	30,48- 32,00	5	
	57536	32.00- 33.53	<6	
	57537	56.39- 57.91	900	
	57538	57.91- 59.44	440	
	57539	59.44- 60.96	30	
	57540	60.96- 61.72	3500	0.000000.00
	57541	61.72- 62.48	25	0.044*/0.06
	57542	62.48- 63.25	20 80	
	57543	63.25- 64.01	30	
	57604	140.97-141.73	120	
	57605	149.35-150.11		
	57606	150.11-150.88	10	
	0,000	100.11 100.00	20	
588R08	60754	30.48- 32.00	190	
	60755	32.00- 32.77	240	
	60756	32.77- 33.53	<10000	
	60757	33.52- 34.29	4000	
· · ·	60758	39.62- 41.14	1750	
	60759	41.14- 41.91	1300	
	60760	41.91- 42.67	180	
			100	

Hole	Sample	From-To	Au	Au
	<u>#</u>	(m)	(000)	1.1.1
		· · ·		
S88808	60761	82,29- 83.06	10	
	60762	89.91- 90.68	10	
	60763	90.68- 91.44	· 5	
	60764	91.44- 92.20	15	
	60765	92.20- 92.96	5	
	60766	92.96- 93.73	<5	
	60767	93.73- 94.48	5	
	60768	94.48- 95.25	15	
	60769	95.25- 96.01	<5	
and the second second	60770	96.01- 96.77	<5	
S88R09	57518	99.06- 99.82	<5	
	57519	99.82-100.58	<5	
	57520	100.58-102.10	5	
	57521	102.10-102.87	10	
	37522	112.77-114.30	<5	·
	57523	164-59-166.11	320	
	57524	166.11-166.88	50	
	57525	166.88-167.64	220	
	57526	167.64-168.40	400	
	57527	168.40-169.16	180	
	57528	193.55-195.07	<5	
	57529	195.07-195.83	< 5	
	57530	195.83-196.60	<5	
588R10	57544	21.34- 22.86	<5	
8661110	57545	22.86-24.38	10	
	57546	105.68-108.20	15	
	57547	108.20-107.73	<5	
	57548	112.78-114.30	20	
	57549	114.30-115.82	10	
	57550	141.73-143.26	10	
	57601	143.26-144.78	10	
	57602	144.78-166.88	10	
	57603	166.88-167.64	35	
S88R11	57531	92.96- 94.49	60	
200N11	57532	94.49- 96.01	40	
	57533	96.01- 97.54	20	
	57534	97.54- 99.06	10	
	37334	77.04- 77.06	10	

Ad

1

oz/ton

* erratic value

 $\overline{)}$

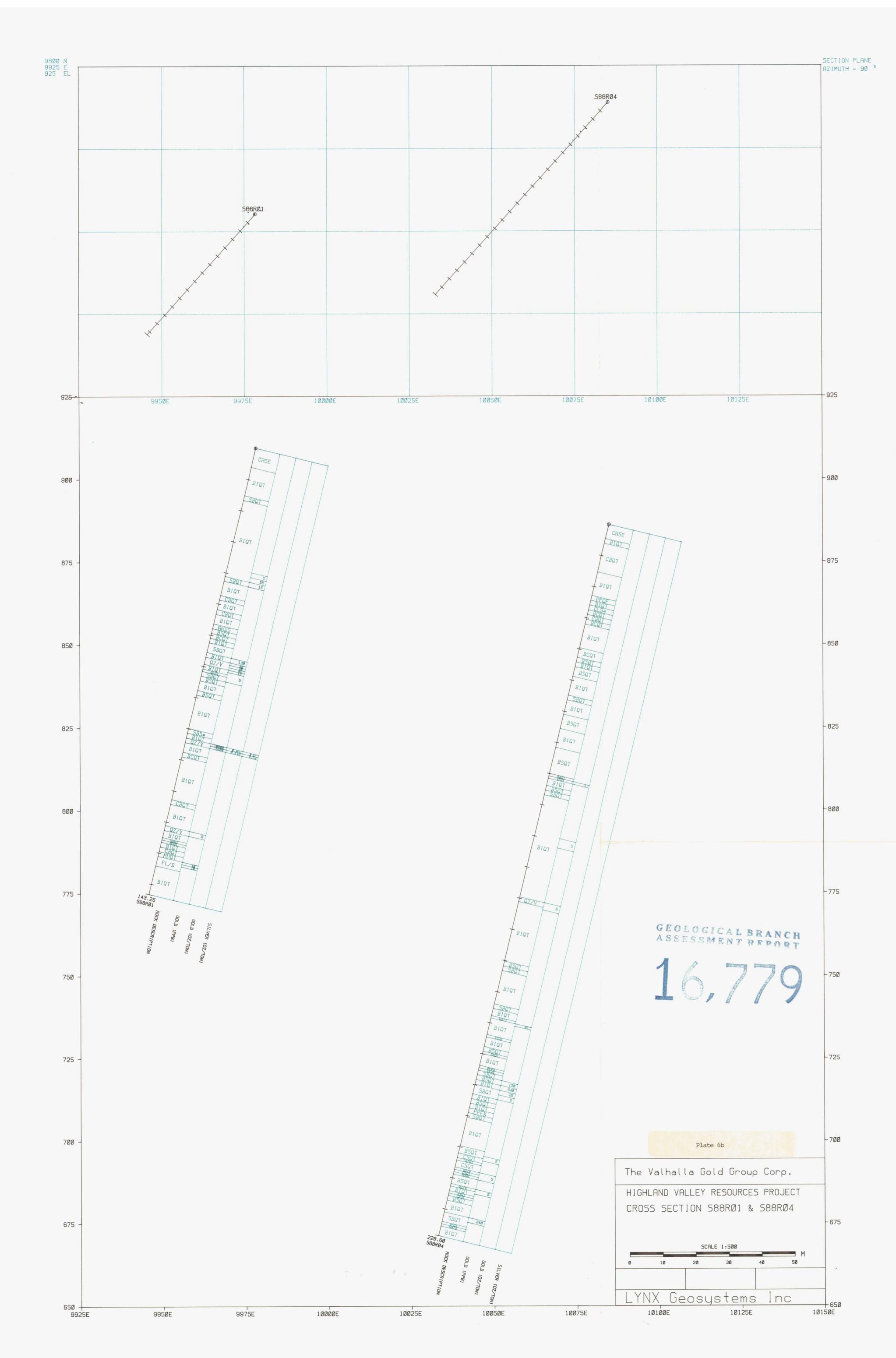
ROCK TYPE LEGEND FOR CROSS-SECTIONS

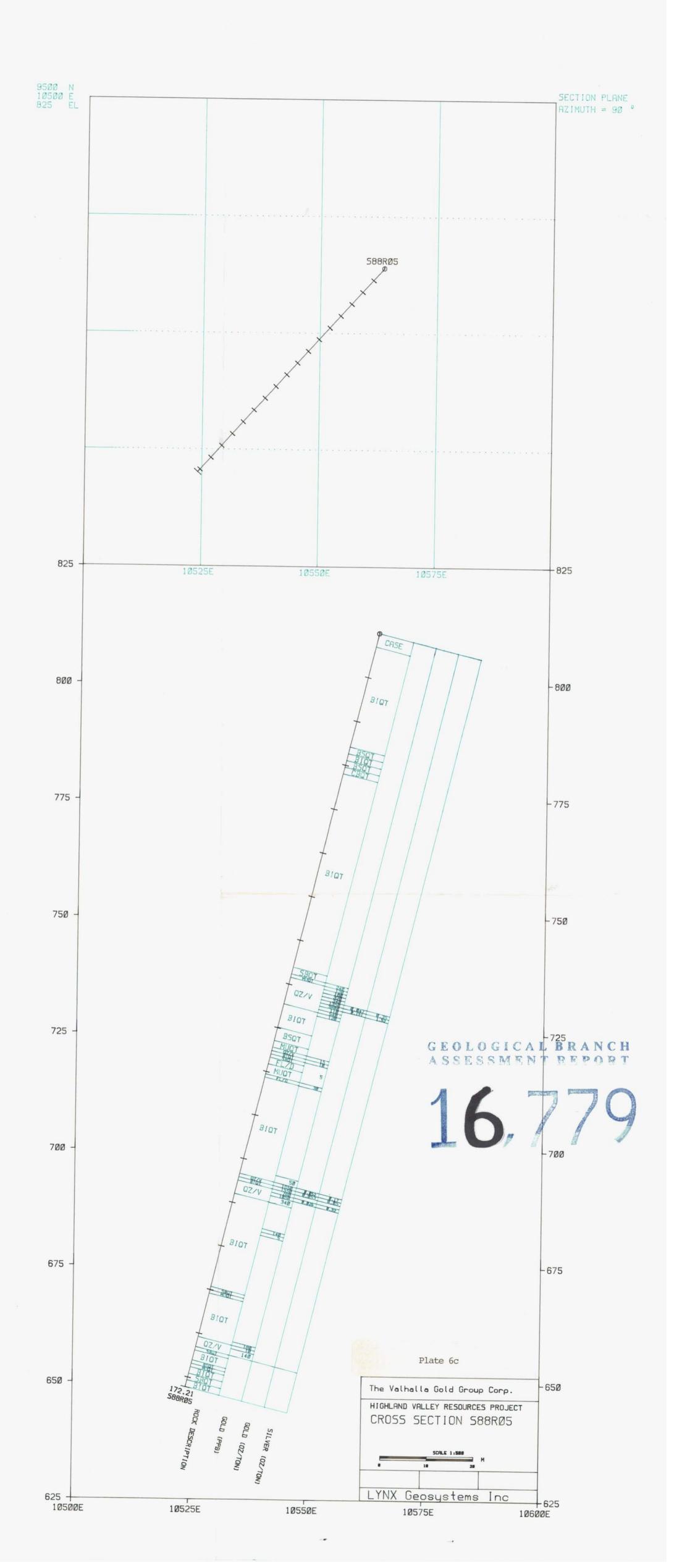
QUARTZITES

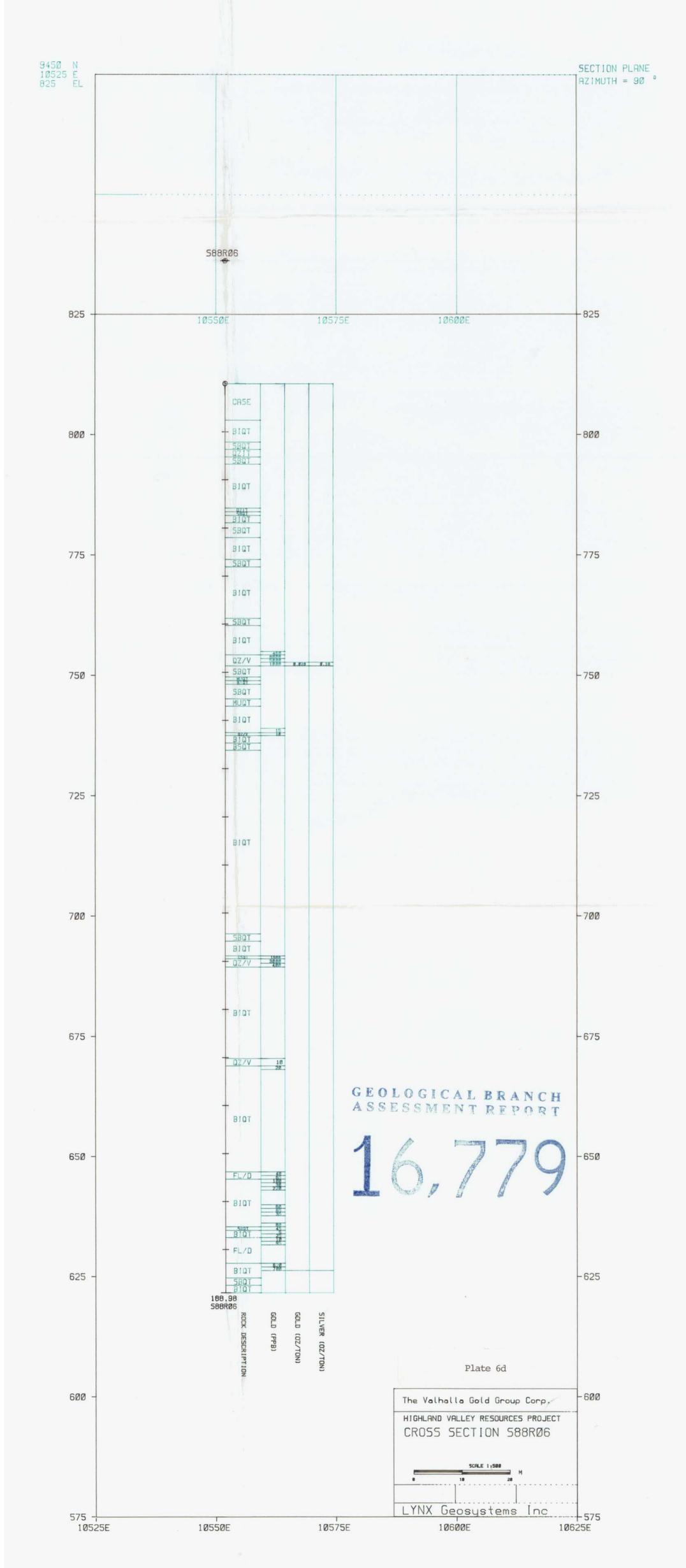
QZIT	Quartzite
BIQT	Biotite quartzite
CBQT	Chlorite - biotite quartzite
BCQT	Biotite - chlorite quartzite
CSQT	Chlorite - sericite quartzite
BSQT	Biotite - sericite quartzite
SBQT	Sericite - biotite quartzite
CLQT	Chlorite quartzite

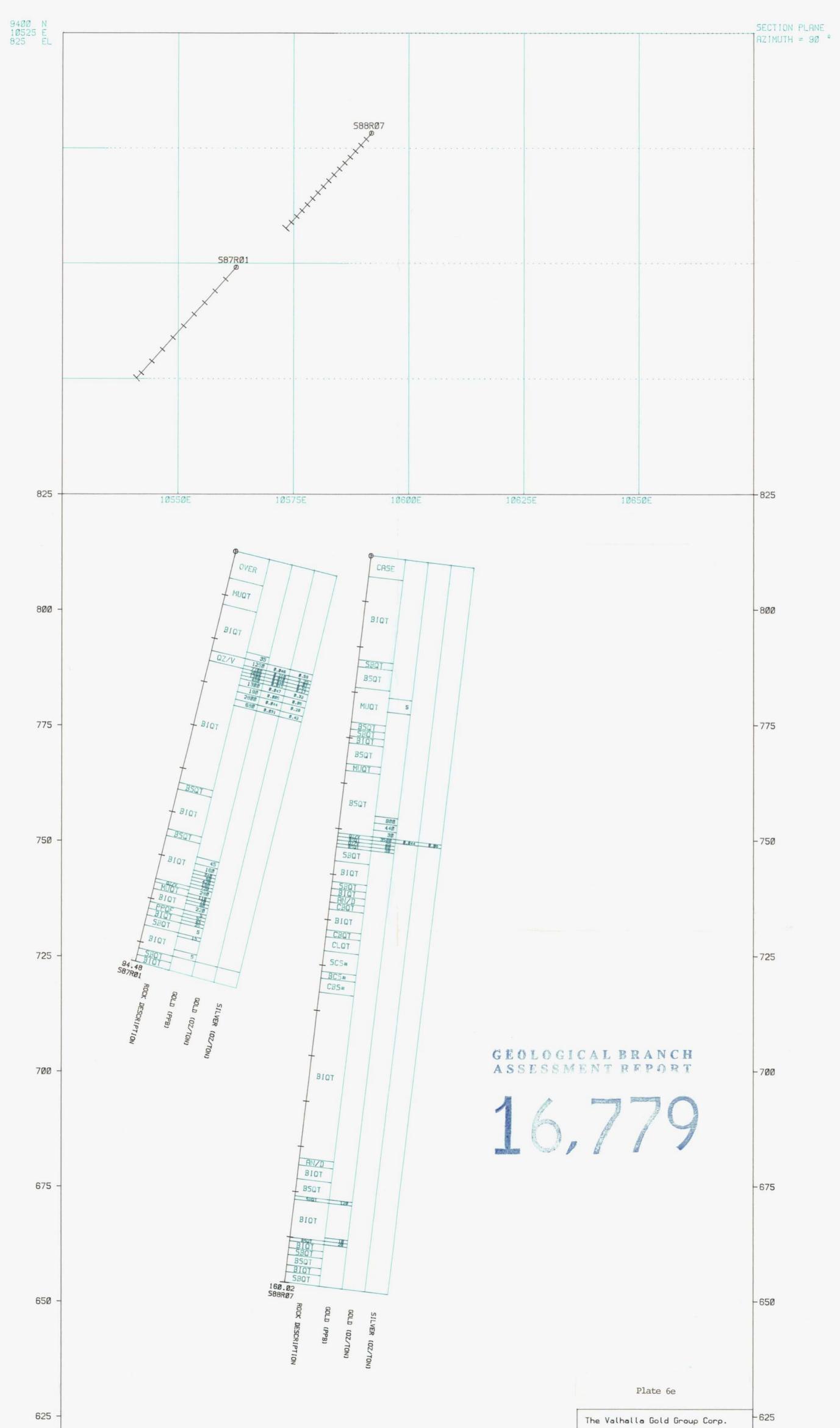
<u>SCHISTS</u>

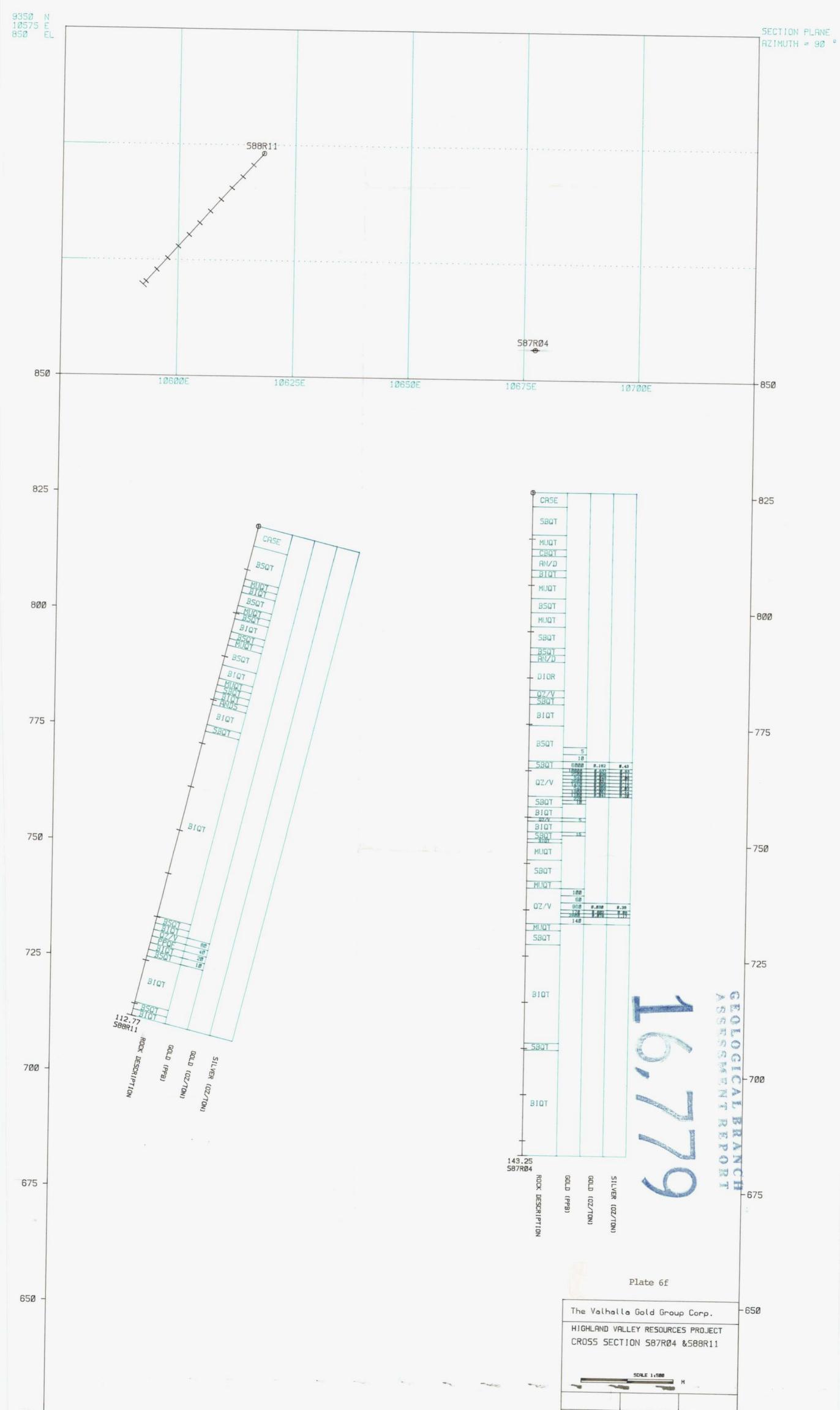
CSS#	Chlorite - sericite schist
CLS#	Chlorite schist
BCS#	Biotite - chlorite schist
CBS#	Chlorite - biotite schist
SBS#	Sericite - biotite schist
MUS#	Muscovite schist
SCS#	Sericite - chlorite schist
BIS#	Biotite schist

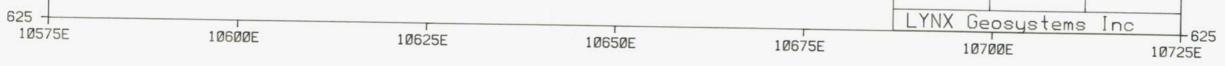

INTRUSIVE

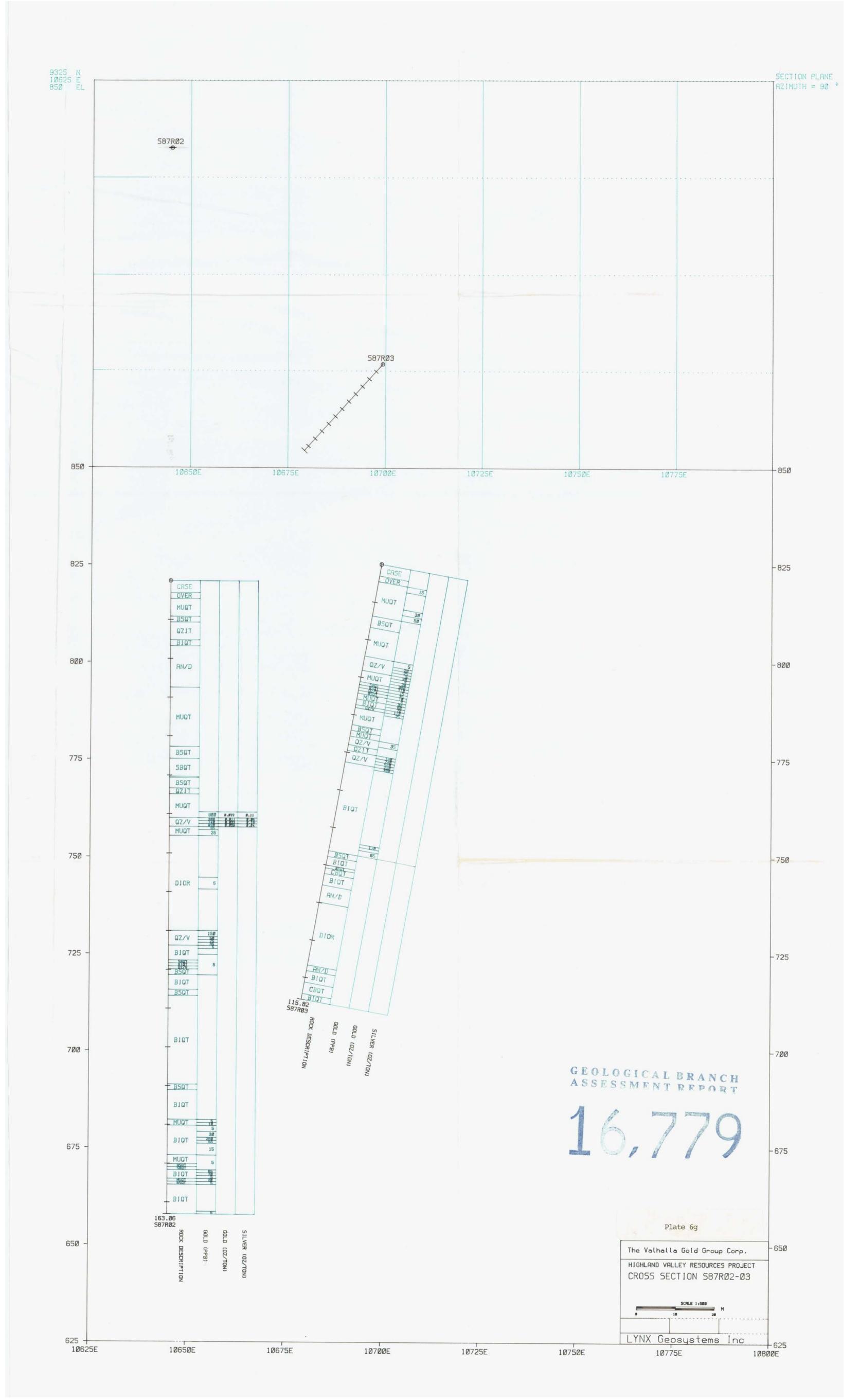

DIOR	Diorite
GRAN	Granite
ANDS	Andersite
AN/D	Andersite dyke
AN/L	Andersite sill
PPFQ	Porphyry, feldspar-quartz
PPQF	Poprhyry, quartz-feldspar
PPFX	Porphry-feldspar
FL/D	Felsic dyke
FL/L	Felsic sill
QZ/V	Quartz vein
DC/D	Dacite dyke

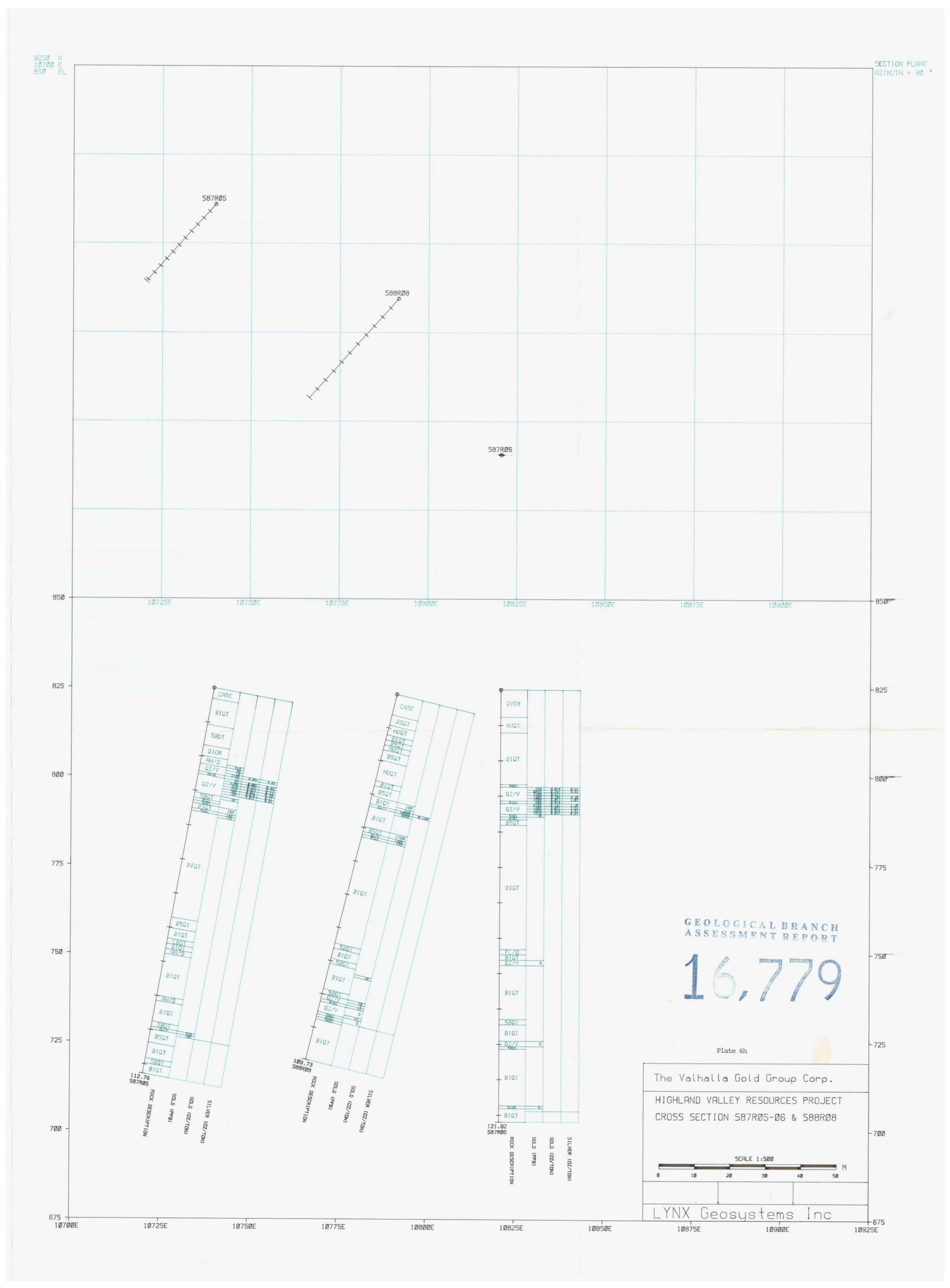

<u>OTHER</u>

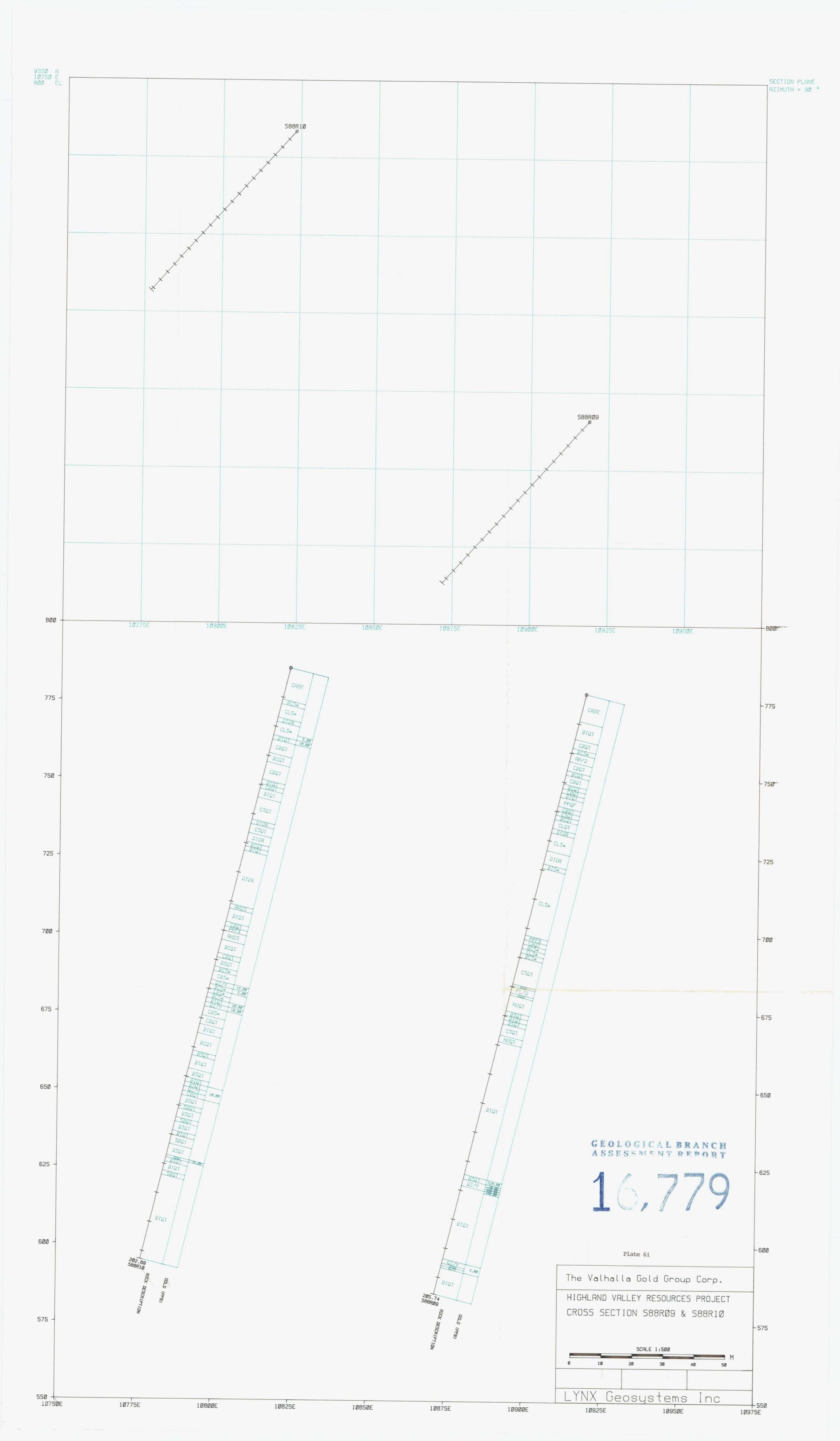

OVER	Overburden
CASE	Casing
FU	in minerals = fucksite (it's an alteration mineral)
GR	Graphite
FAUL	Fault
GOUG	Fault gouge
MISS	Core missing

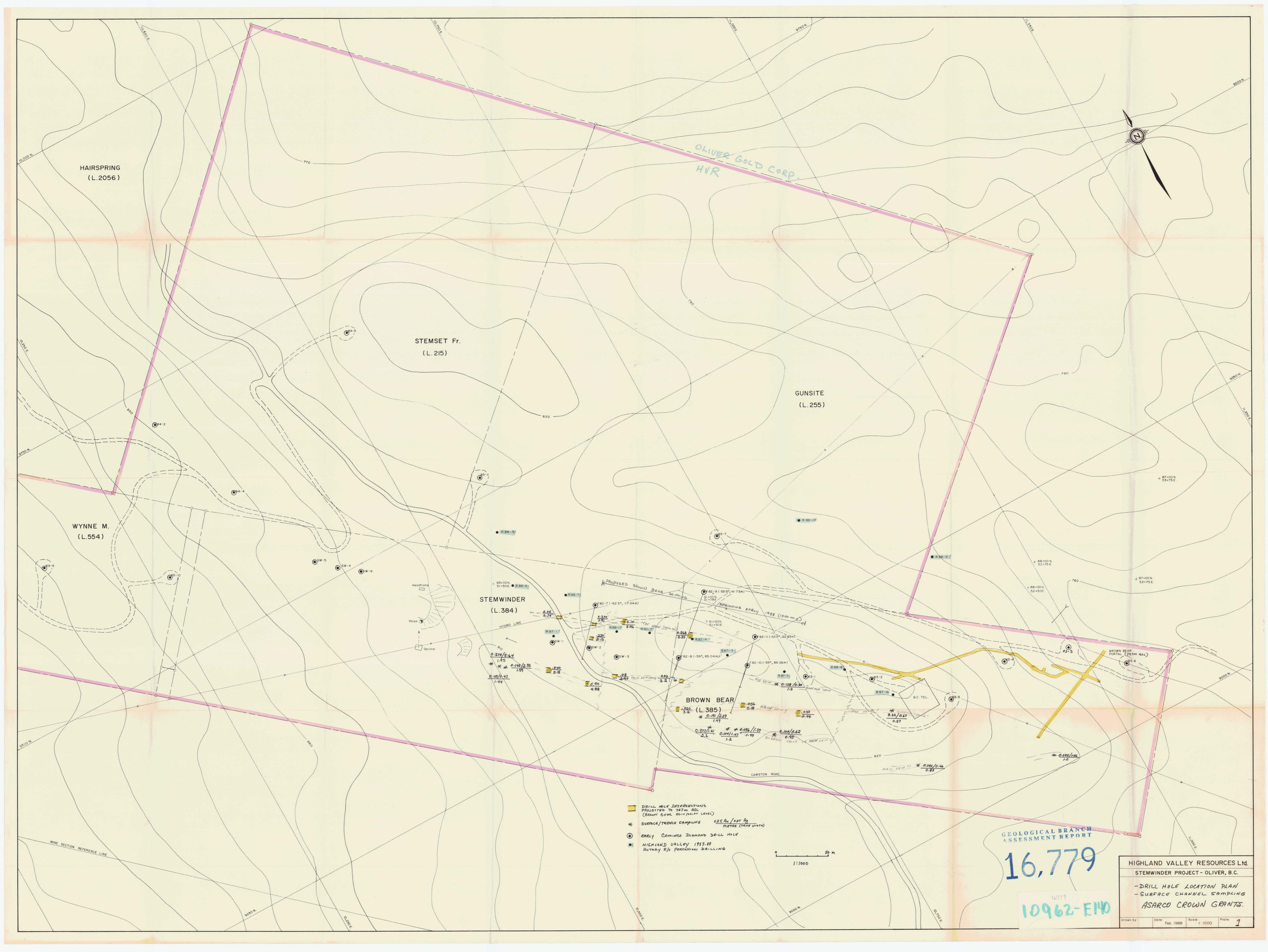


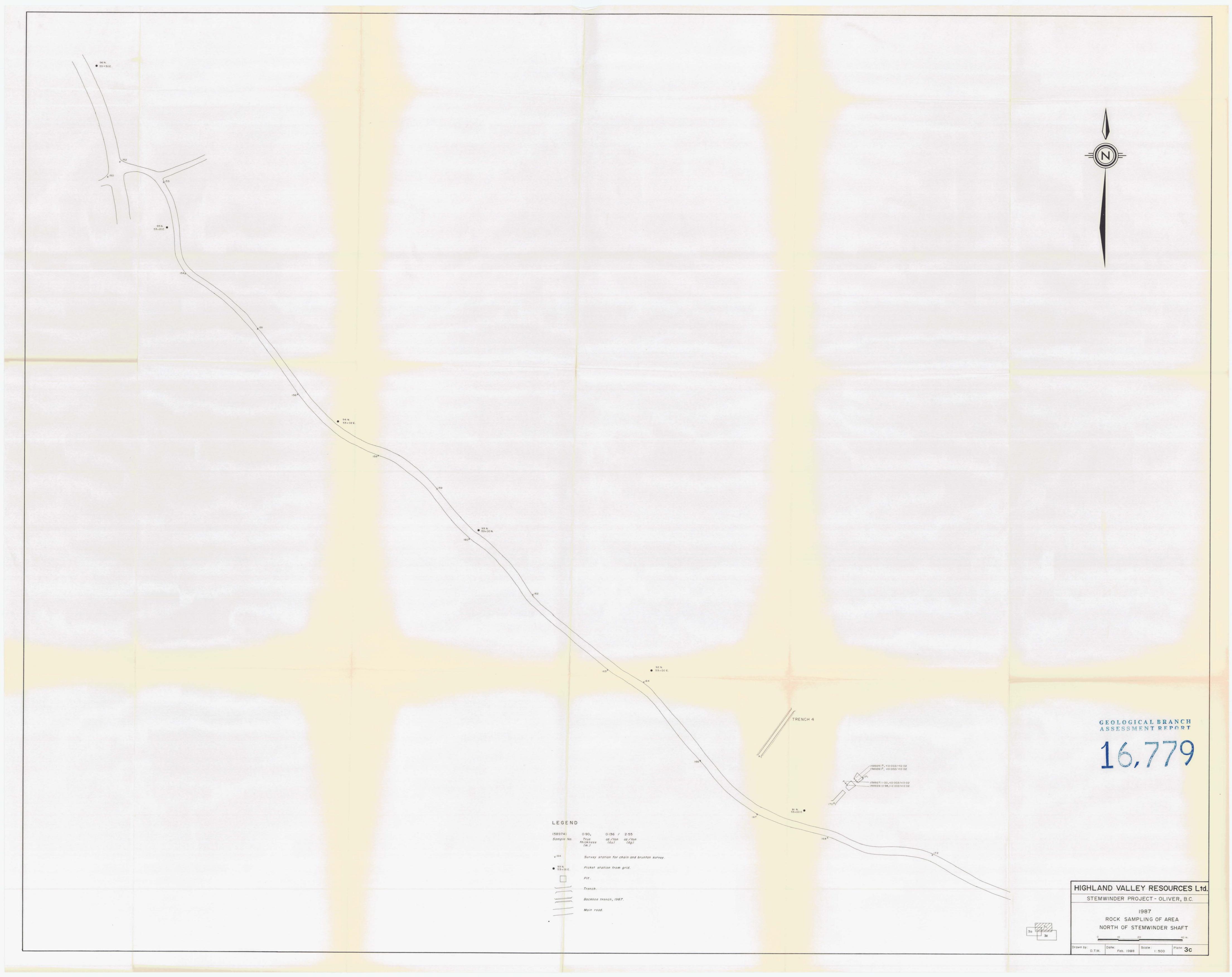


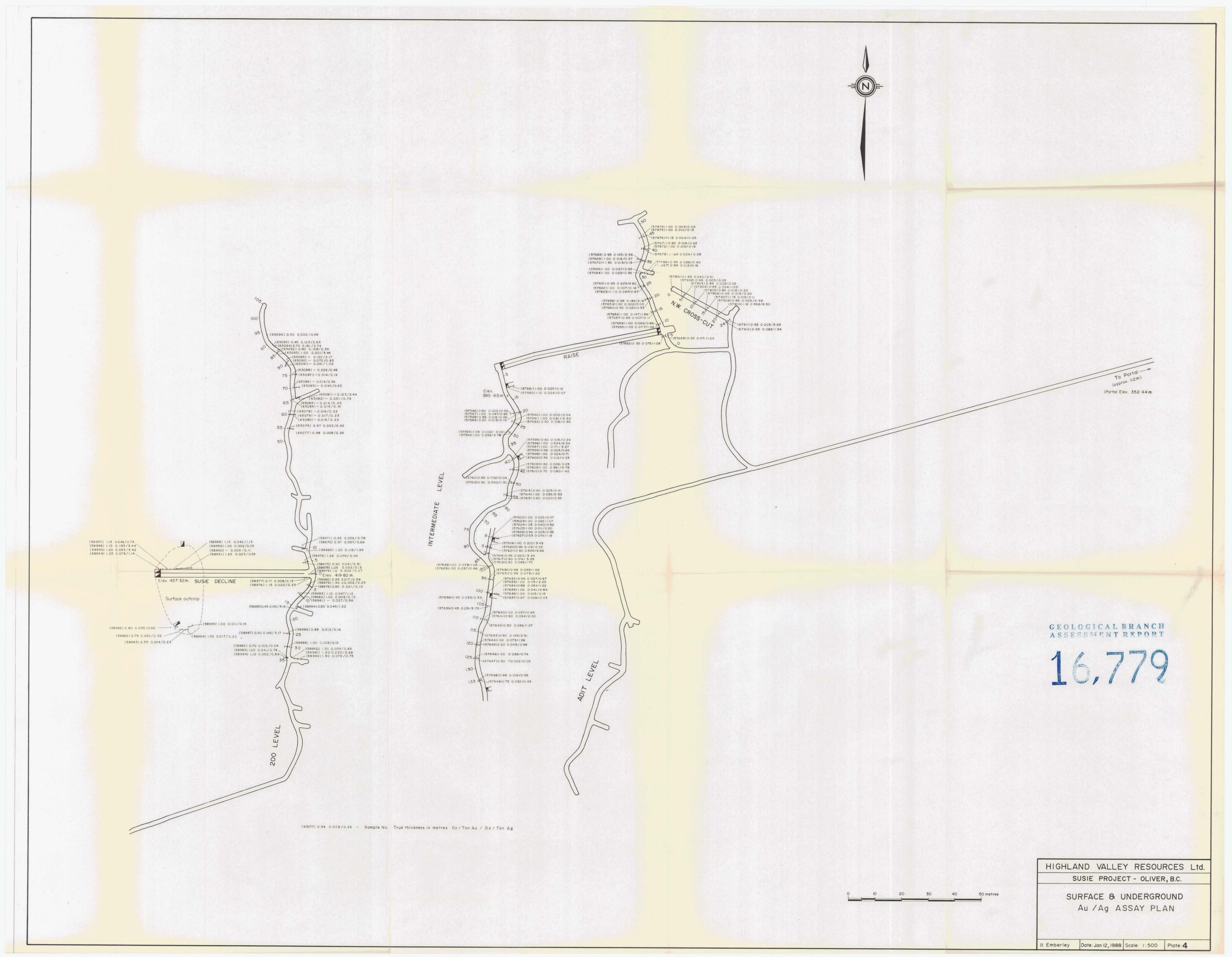


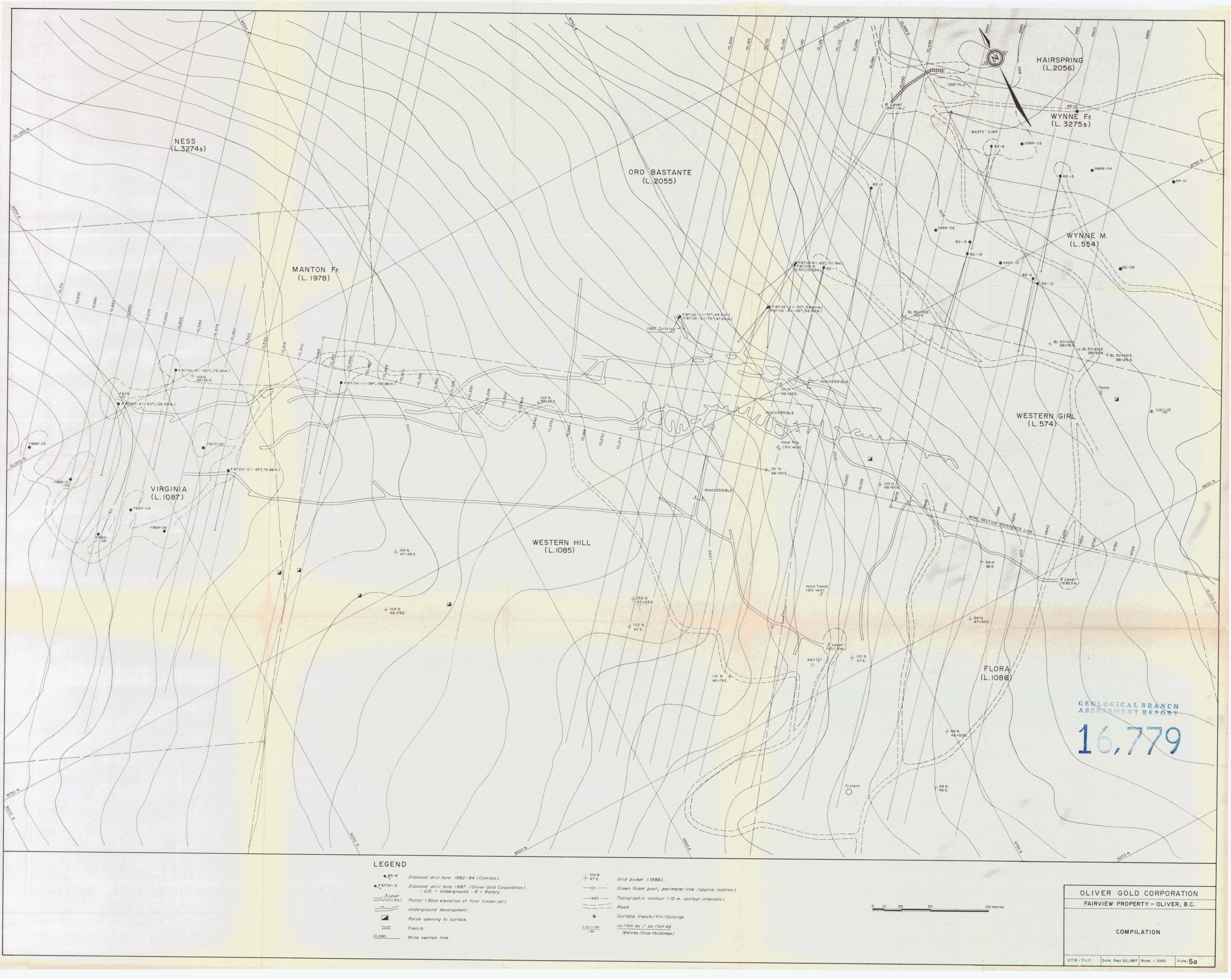


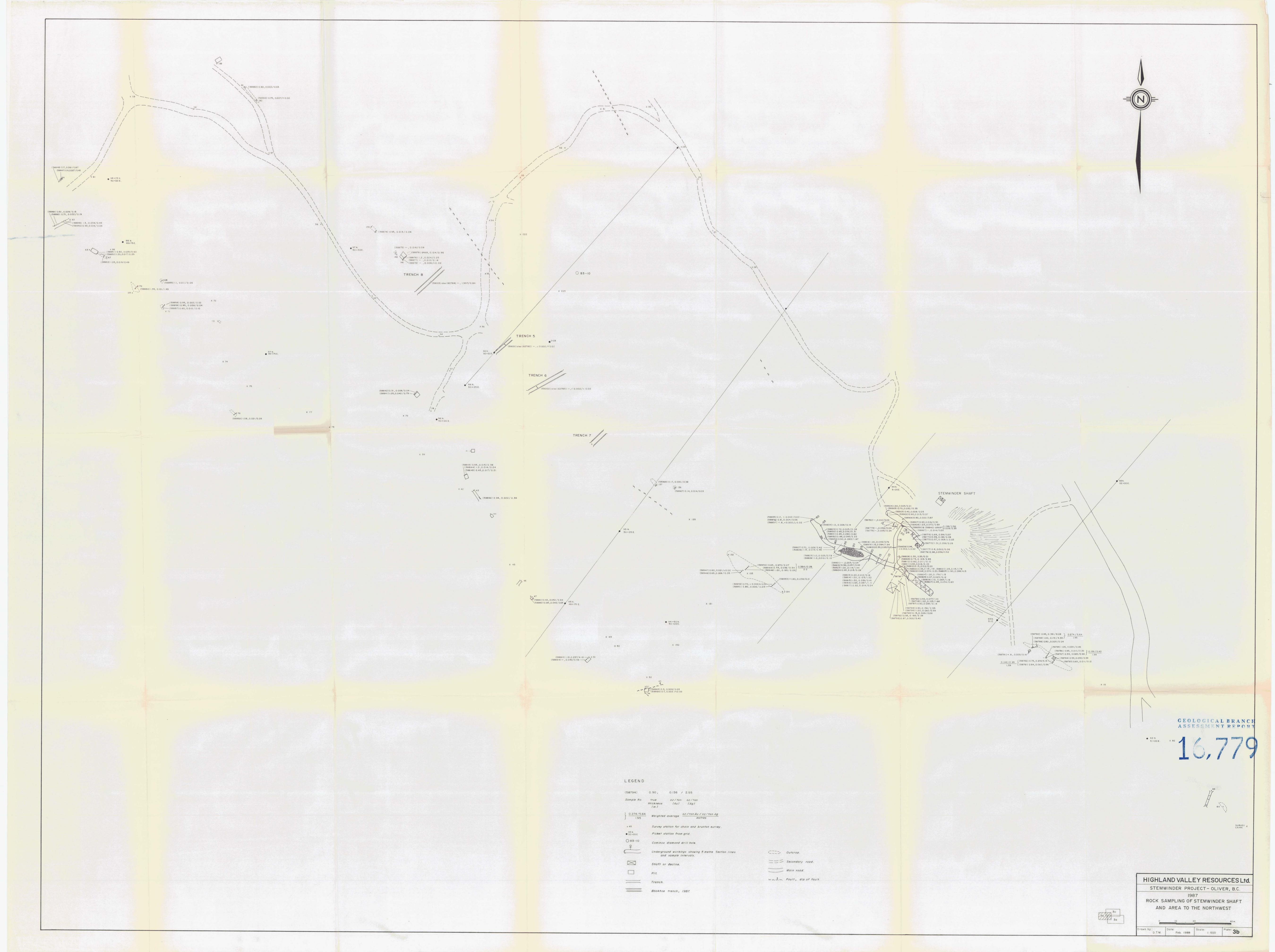




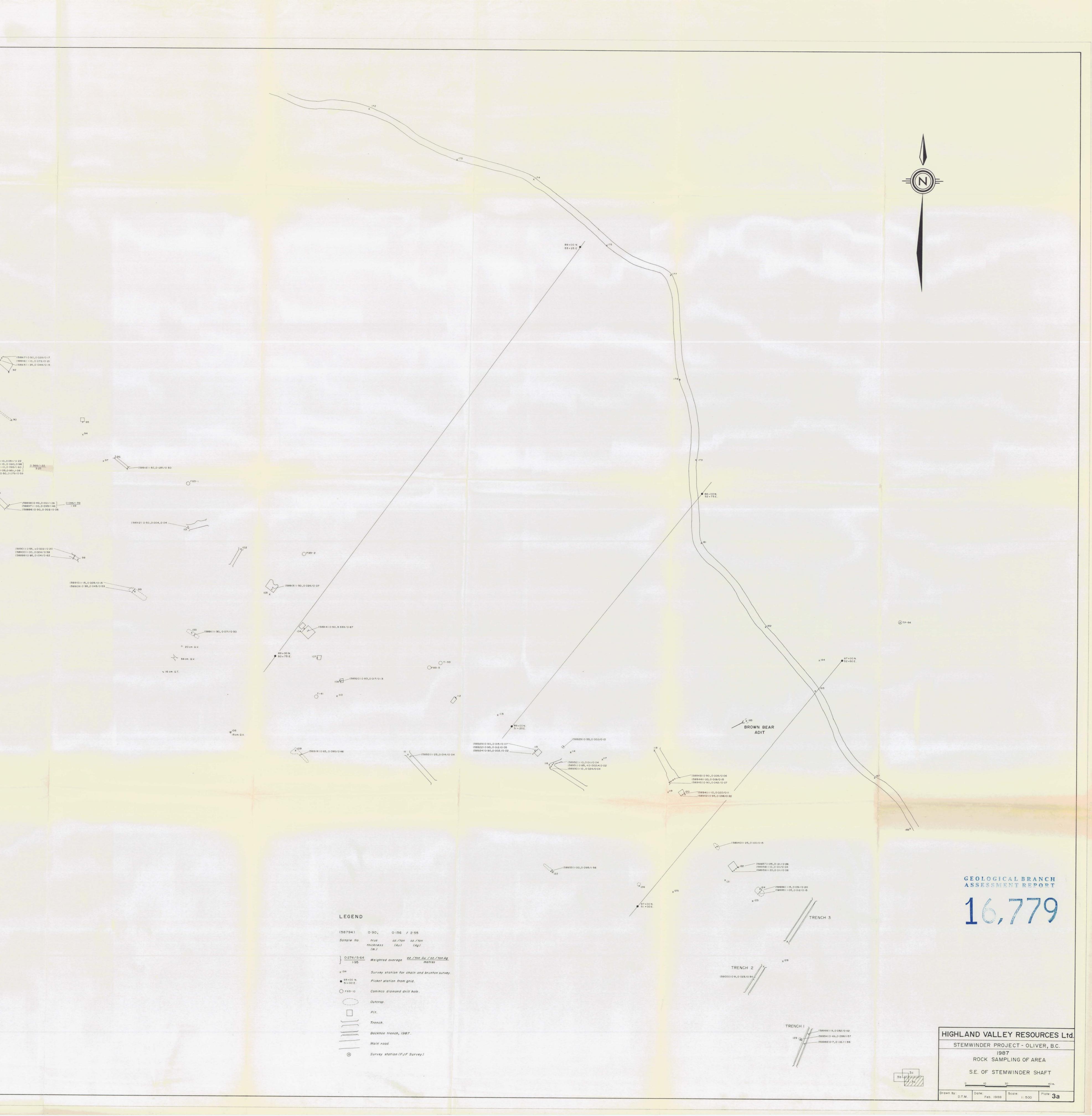


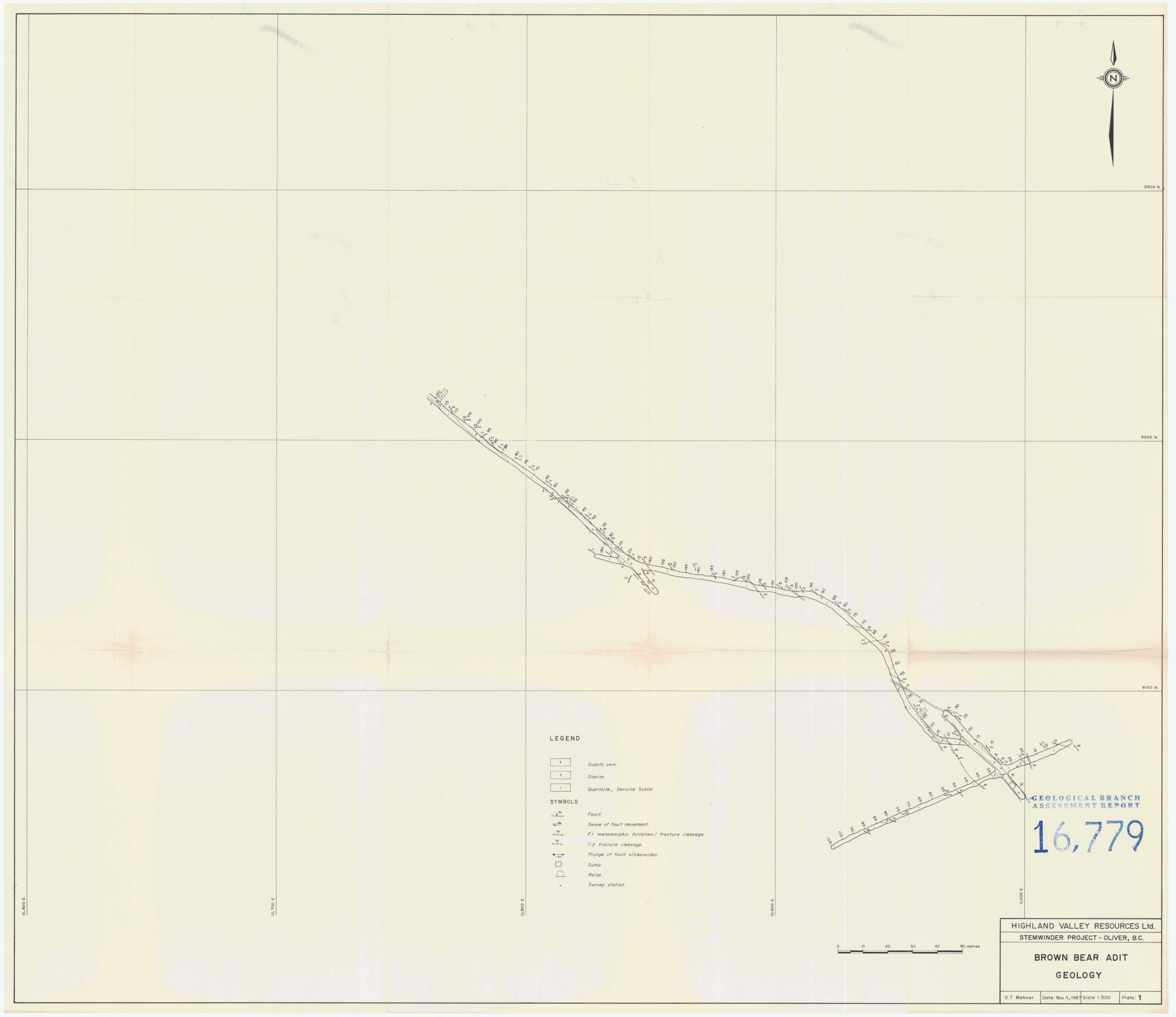


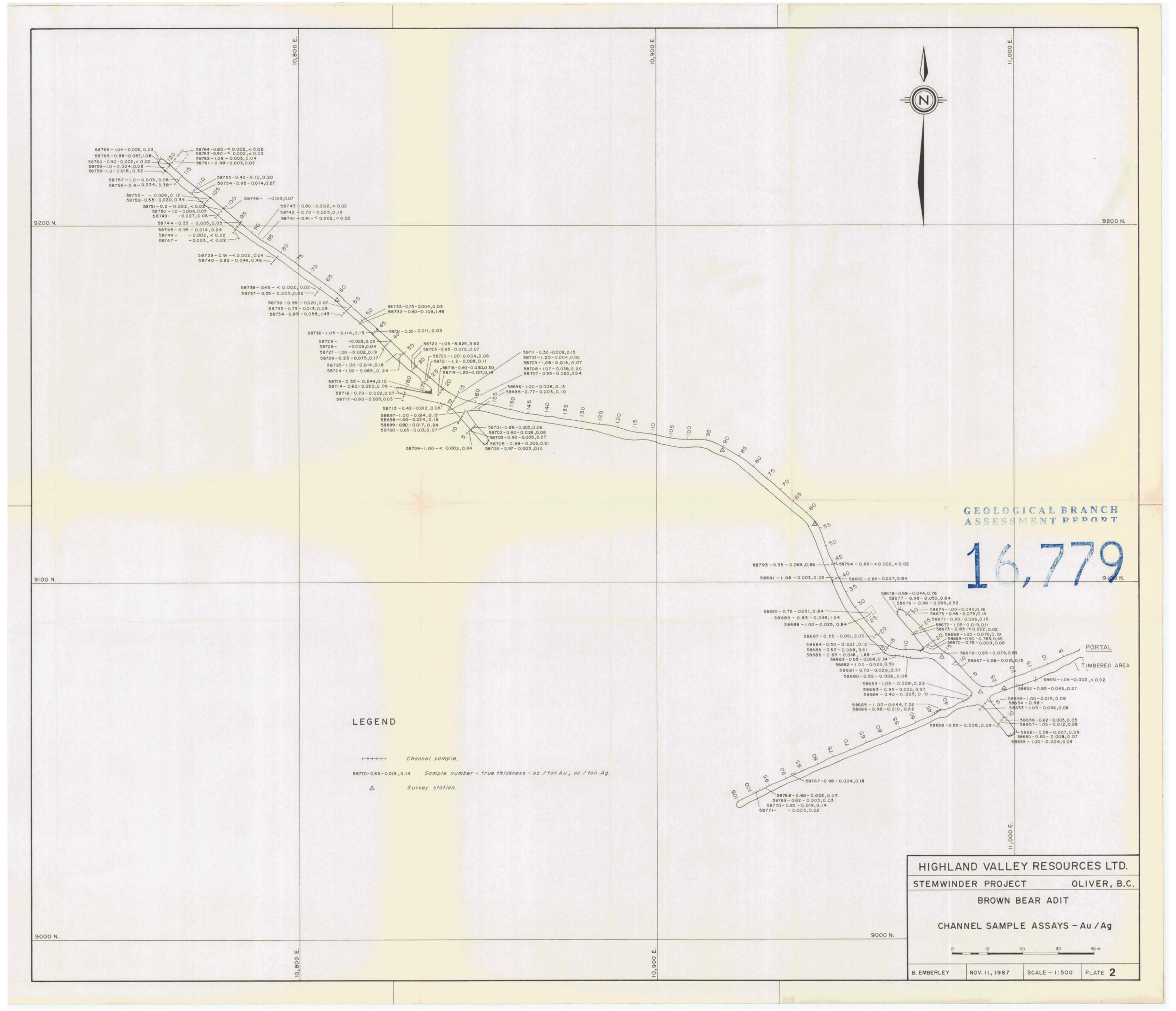




(58868) ,0·030/038 (58869)0·90,0·003/0·02 (58870)0.90,0.066/0.80 (58871) 12,0.007/0.07 85 X SURVEY CAIRN 91+00 N 93 51+00 E. 93 92 93 93 (58917) 0.50,0.028/0.17 (58916) 1.10,0.072/0.21 (58915) 1.25,0.044/0.15 92 91 8 1 Ja 90 (58873) 1-1,0-061/0-68 (58883) 0-98,0-002/0-02 87 -H $\begin{array}{c} (58887) \circ 6, 0 \circ 029 / 0 \cdot 22 \\ \hline (58886) \circ 0, 0 \circ 045, 0 \cdot 38 \\ \hline (58886) \circ 0, 0 \circ 250, 2 \cdot 94 \\ \hline (58884) \circ 100, 0 \cdot 132, 1 \cdot 63 \\ \hline \end{array}$
 98
 (58892)1-10,0031/022


 (58891)1-10,0031/022


 (58891)1-10,0099/160


 (58891)-10,0099/160

 (58889)1-05,0951,108

 (58889)0-50,0079/059
XX XBB (58893) ,0.020/0.45 (58895) 0 90,0 030/0 71 (58894) 1 20,0 104/1 47 (58898)0·49,0·102/1·26 (58897)1·00,0·093/1·46 (58896)0·90,0·002/0·05

