	A CONTRACTOR OF A CONTRACTOR O	
LOG NO: O	104	k().
ACTION		
	na manana ang kang ang kang ang kang ang kang ang kang k	
FILE NO:	an a	

1987 GEOCHEMICAL REPORT

FILMED

On the OKA PROPERTY (GROUP 1) Osoyoos Mining Division, B.C. NTS: 82E-13W; Lat. 49°48'N; Long. 119°53'W

DECEMBER, 1987. (BC'87 ASSESSMENT REP.)

GEOLOGICAL BRANCH ASSESSMENT REPORT

16.78

REPORT DISTRIBUTION

Government :	2 bound 1 unbound (maps rolled)
FAMF·	2
Enirfield .	2
rallieiu :	1
Field :	1
Cordilleran:	<u>Original</u>
Total	
Prepared:	8 reports

NOTE:

THIS REPORTS CONSISTS OF 1 VOLUME which contains Text, Figures and Plates

1987 GEOCHEMICAL REPORT

ON THE OKA PROPERTY (GROUP 1)

(Oka #1-5, Iron Horse and Cap Claims)

Osoyoos Mining Division, B.C. Latitude 49 degrees 48'N; Longitude 119 degrees 53'W. NTS; 82/E-13W

For

FAIRFIELD MINERALS LTD. Vancouver, British Columbia

By

B. K. Bowen, P.Eng.

CORDILLERAN ENGINEERING LTD. 1980-1055 W. Hastings St. Vancouver, B.C. V6E 2E9

Date Submitted: December 23, 1987 Work Period:

June 1-3, 1987

B.K. Bower

TABLE OF CONTENTS

	Tab		Page
	1.0	SUMMARY AND CONCLUSIONS	1
	2.0	RECOMMENDATIONS	2
	3.0	INTRODUCTION 3.1 Location and Access 3.2 Claim Data 3.3 History 3.4 1987 Exploration Program	3 3 3 6 6
	4.0	GEOLOGY 4.1 Regional Geology 4.2 Property Geology & Mineralization	7 7 7
	5.0	GEOCHEMISTRY 5.1 Introduction 5.2 Results 5.2.1 Garnet Grid 5.2.2 Peachland Creek Grid 5.2.3 South Cap Grid	9 9 10 10 10
•	6.0	REFERENCES	14
	7.0	COST STATEMENT	15
	8.0	STATEMENT OF QUALIFICATIONS	16
	9.0	ANALYTICAL RESULTS	17
		TABLES	
	Table 1	Status of Oka Claims as at December 16, 1987	3
		FIGURES	•
·	Figure 1 Figure 2 Figure 3	Location Map Claim Map Regional Geology	4 5 8

	Detailed Grid, Soil Geochem	<u>istry</u> :	
Figure 4	9400 East, 3250 North	Garnet Area	11
Figure 5	10400 East, 4900 North	Peachland Creek Area	12
Figure 6	12800 East, 2750 North	South Cap Area	13

PLATES

(in pocket)

Plate 1

East Sheet Geology and Location Map for Garnet, Peachland Creek and South Cap Detailed Soil Grids 1: 1:5000

<u>Scale</u>

SUMMARY AND CONCLUSIONS

The Oka property consists of 13 mineral claims (185 units) in the Osoyoos and Similkameen Mining Divisions, located 12 km northwest of Peachland, B.C. Eleven of the claims were staked on behalf of Fairfield Minerals Ltd. by Cordilleran Engineering during March, 1986; the remaining two claims were purchased.

Access to the property is excellent via the Brenda Mine road and the Headwaters Road; the latter bisects the claims from east to west. Pine, balsam and fir forests cover the property.

The claims are underlain by Cretaceous granodiorite which intruded Upper Triassic Nicola Group volcanics, clastic sediments and limestone. Carbonate horizons were variably altered to marble and skarn, which locally contain pods of massive sphalerite, chalcopyrite, pyrite and pyrrhotite with scattered gold values. Disseminated chalcopyrite, sphalerite and molybdenite have been found in the intrusive on the west end of the property. Previous exploration efforts concentrated on the massive sulphide zones and potential porphyry deposits.

Exploration programs in 1986 and 1987 were conducted by Cordilleran for Fairfield.

The 1986 program, which focussed on gold, consisted of linecutting, soil sampling, prospecting and reconnaissance mapping. A number of large gold soil geochemical anomalies were defined; prospecting of some of these revealed that the higher gold values were associated with disseminated and massive sulphides in skarn. Known gold-bearing areas were highlighted by soil geochemical anomalies.

In 1987 a program of detailed grid soil sampling, magnetometer surveying and extensive trenching further tested areas of anomalous gold soil geochemistry.

This report covers only the results of three detailed soil grids which are located on the Oka 1, 2 and 5 claims. The purpose of the soil grids was to define and close off gold soil anomalies that had been partially outlined by the 1986 work.

It is concluded that most of the gold soil anomalies in the three subject areas have been delineated by the 1987 work. Possible sources of gold anomalies in two of the areas may be auriferous skarn or massive sulphide zones. Anomalous values in the third area cannot be explained by the present data.

RECOMMENDATIONS

The following program is recommended to further define the known targets and determine more precisely the lithologic association and extent of the gold mineralization within two of the three subject areas.

- In the Garnet and South Cap grid areas, collect additional soil samples on 25 m x 25 m grids around anomalous stations defined in 1987, and analyse for gold.
- 2. In the Garnet and South Cap grid areas, carry out detailed prospecting to locate mineralized bedrock sources of the gold soil geochemical anomalies.

No further work is recommended in the Peachland Creek grid area.

Respectfully submitted

B. K. Bowen

B. K. Bowen, P.Eng.

BKB/z December, 1987

B, K, Bowe

INTRODUCTION

3.1 LOCATION AND ACCESS

The Oka property is situated in the Okanagan area of B.C. (Figure 1). The junction of the Headwaters Road (Figure 2) which provides access through the center of the claim block, and the paved Brenda Mine road is 11 km from Peachland.

The claims are on the east edge of the Trepanege Plateau, between elevations of 900 m and 1500 m. Forest cover of pine, balsam and fir is extensive. The property is traversed from west to east by Greata Creek and from northwest to southeast by Peachland Creek.

3.2 CLAIM DATA

The status of the Oka, Iron Horse and Cap claims is indicated in Table 1, and their locations are shown on Figure 2. The Oka 1-11 claims were staked in March, 1986, by Cordilleran Engineering for Fairfield Minerals Ltd. The Iron Horse and Cap claims were purchased by Fairfield Minerals from the claim holders.

Group 1 claims dealt with in this report include the Oka 1-5, Cap and Iron Horse claims.

Table 1:	STATUS OF OKA C	LAIMS AS AT DECEMB	ER 16, 1987
CLAIM	UNITS	RECORD NO.	EXPIRY DATE
OKA 1	20	2400	25 MAR. 1994
OKA 2	20	2401	25 MAR. 1994
OKA 3	20	2402	25 MAR. 1994
OKA 4	16	2403	25 MAR. 1994
OKA 5	16	2404	25 MAR. 1994
OKA 6	2	2405	25 MAR. 1994
OKA 7	20	2406	25 MAR. 1994
OKA 8	20	2407	25 MAR. 1994
OKA 9	12	2408	25 MAR. 1994
OKA 10	16	2409	25 MAR. 1994
OKA 11	16	2410	25 MAR. 1994
CAP	1	118	28 SEP. 1998
IRON HORSE	6	1771	2 JUN. 1994

ΟΚΑ 7	CLAIM NAME
2406	RECORD NUMBER
(3)	MONTH OF RECORD
(4N x 4W)	NUMBER OF UNITS N&W
D	LCP LOCATION

FAIRFIELD MINERALS LTD.

CLAIM MAP

OKA PROPERTY

SOUTH OKANAGAN AREA

Scale in Metres

DECEMBER 1987

FIGURE 2 .

3.3 HISTORY

The earliest reported work within the area of the Oka claims was in 1898/99 on the Silver King and Alma Mater properties at the west end of the present claim block. Three shallow shafts (to 4.3 m) and one deep one (76 m) were sunk and four adits (to 70 m) and one crosscut (58 m) were driven in intrusive rocks. The target was "free milling" gold. In more recent years this area has been mapped (1965), soil sampled (1967) and diamond drilled (4 holes, 1979). A porphyry copper/molybdenum deposit was the objective of the later work.

The Iron Horse claim, near the center of the present property, has been another focus of activity which started in the 1930's. The area has been variably mapped, trenched, sampled and geophysically surveyed; an unknown number of holes were drilled in 1956.

A third area to receive previous work is now covered by the Cap and Oka 4 claims, north of the junction of the Brenda and Headwater roads. Exploration activity included mapping, trenching, diamond drilling (? holes, 1965), soil sampling and a magnetometer survey. Skarn-hosted Cu-Zn massive sulphides were the targets on the Iron Horse and Cap claims.

Other areas of the present property were variously prospected, soil sampled and geophysically surveyed during the late 1960's and early 1970's.

Current work has focussed on gold. In 1986, a program of linecutting, soil sampling, prospecting and reconnaissance mapping was carried out. A number of large gold soil geochemical anomalies were defined; prospecting of some of these revealed that the higher gold values are associated with skarn and massive sulphide zones.

3.4 1987 EXPLORATION PROGRAM

The 1987 program consisted of detailed grid soil sampling, a magnetometer survey over the Iron Horse claim and about 3,000 linear metres of trenching which tested areas of anomalous gold soil geochemistry in several widely separated areas.

This report covers only the results of three detailed soil grids which are located on the Oka 1, 2 and 5 claims. The work was carried out and supervised by geologists T. Macdonald and B. Bowen respectively.

Purpose of the above work was to define and close off gold soil anomalies that had been partially outlined in the 1986 work.

* * *

GEOLOGY

7.

4.1 REGIONAL GEOLOGY

The Oka property is situated in the northwest corner of GSC Map 15-1961, Kettle River, mapped by Dr. H. W. Little, 1958-59 (Figure 3), The property is underlain by pendants of sedimentary and volcanic rocks of the Upper Triassic Nicola Group which are cut by Cretaceous(?) age Nelson plutonic rocks. East of the property both intrusive and Nicola group rocks are covered by large areas of Eocene/Oligocene volcanic flows.

4.2 PROPERTY GEOLOGY AND MINERALIZATION

In order to facilitate the discussion of geochemical results in Section 5.2 a brief summary of the property geology and mineralization is given below. Outcrop distribution and geological units within the east half of the property are presented on Plate 1. For the reference source which provides a more complete description of property geology and mineralization, see Section 6.0.

Upper Triassic Nicola Group rocks include limestone, clastic sediments and intermediate to basic volcanic rocks. Carbonate horizons were variably altered to marble and skarn at or near intrusive contacts. Pendants of Nicola rocks underly the central and eastern parts of the property.

The southwest, southeast and north-central portions of the property are underlain by batholiths of probable Cretaceous age. The plutonic rocks are predominantly diorite to granodiorite in composition.

The Nicola Group and plutonic rocks are locally cut by later (Tertiary?) quartz feldspar porphyry and basalt dikes.

Gold mineralization occurs in several widely separated areas on the property. Significant gold values have been obtained from massive sulphide lenses (consisting mainly of pyrite and pyrrhotite with lesser amounts of arsenopyrite, chalcopyrite and sphalerite) located within or between skarn and marble units, from sulphide-poor garnetite skarn and from quartz-arsenopyrite veins. Fine visible gold has been identified within marble containing minor disseminated arsenopyrite.

In the southwest corner of the property a zone of intense sericite alteration is located within a granodiorite unit. The zone contains abundant fine quartz veins, coarse disseminated pyrite and local molybdenite and hematite. Chip samples across this zone returned interesting silver values, but no gold.

DECEMBER, 1987

FIGURE 3

8

GEOCHEMISTRY

5.1 INTRODUCTION

5.0

A total of 162 soil samples were collected on the three 1987 grid extensions which are the subject of this report. The totals per grid area are as follows:

Grid Area	Claim(s)	Number of Samples
Garnet	Oka 1 & 2	42
Peachland Creek	Oka l	45
South Cap	Oka 5	75

End points from the existing 1986 detailed (25m x 25m) grids provided control for 1987 grid extensions. Sample lines, oriented east-west, were established using compass and hip chain at 25 metre intervals, and samples were collected at 25 metre spacings on these lines.

All samples were collected from the "B" soil horizon and placed in kraft paper bags. Sample numbers consisting of grid coordinates were marked on each bag and on flagging at each sample site. The samples were sent to Acme Analytical Laboratories Ltd., Vancouver, where they were dried, screened and the -80 mesh fraction used for Au analyses. Each 10 gram sample was ignited at 600 degrees Celsius, digested with hot aqua regia, extracted by MIBK and analysed by graphite furnace atomic absorption.

5.2 RESULTS

The Au results for the above 1986 detailed grids and their 1987 grid extensions are plotted on Figures 4 to 6. Grid locations relative to outcrop distribution and geological units are shown on Plate 1.

Statistical analysis of the 1986 main (200m by 50m) grid results gave the following Au categories (in ppb):

Background	<5
Weakly Anomalous	5-19
Anomalous	20-65
Strongly Anomalous	>65

Discussion of results from the three 1987 detailed grid extensions are based on these statistics.

GEOCHEMISTRY - RESULTS Continued

5.2.1 Garnet Grid

Two of the three small (25 to 50 m wide, 50 to 100 m long) anomalous areas partially delineated in 1986 were closed off by the 1987 work. The western-most anomaly, in the vicinity of 3250N/9200E, is still open to the south.

No outcrop has been mapped within the detailed grid area. Adjacent areas to the northwest and southeast are underlain by marble and skarn intruded by granodiorite to the east. The source of the Au soil anomalies may be skarn or massive sulphide hosted gold mineralization similar to occurrences at the nearby Iron Horse claim.

5.2.2 <u>Peachland Creek Grid</u>

This detailed grid area contains scattered single value anomalies up to 110 ppb Au. No anomalous patterns are present. The area is underlain by granodiorite. The anomalous values cannot be explained from the present data.

5.2.3. South Cap Grid

The three small (up to 30 m wide by 90 m long) anomalous areas partially delineated in 1986 were closed off by the 1987 work. A single value anomaly at 2725N/12950E remains open to the east.

The grid area is underlain by marble. Although no mineralization has been observed in outcrops mapped to date, localized auriferous massive sulphide zones may be present beneath overburden cover. Massive sulphide zones containing minor gold occur within marble at the nearby Cap showing.

REFERENCES

H. W. Little

Geology, Kettle River (West Half), B.C. G.S.C. Map 15-1961

J. J. Hylands J. D. Rowe Assessment Report: 1986 Geological, Geochemical and Prospecting Report on the Oka Claim Group, Osoyoos and Similkameen Mining Divisions, B.C., Cordilleran Engineering Ltd., April, 1987.

COST STATEMENT

CA	r	ъ	D	т	r	С	
SA	ь	m	л	1	Б	J	•

7.0

-T. Macdonald, Sampler June 1-3: 3 days @ \$68.00/day \$ 204.00

FOOD & ACCOMMODATION:

-T. Macdonald 3 days @ \$25.00/day 75.00

TRANSPORTATION:

-Truck Rent	al (includes	fuel and	l maintena	nce)		
			3	days (330.00/day	 90.00

ANALYSES:

-162 soil samples analysed for Au

Analytical Cost:	162 @ \$4.25/sample	• • • • • •	\$688.50	
Sample Preparation:	162 @ \$0.75/sample	• • • • • •	121.50	810.00

FIELD SUPPLIES:

-Flagging,	topofil,	kraft bags	 30.00

REPORT PREPARATION:

-Author: B. Bowen	2 days @ \$250.00/d	\$500.00	
-Draughting & Reproduction		524.39	_1,024.39

Total <u>\$2,233.39</u>

B.K. Bower

B.K. (BARNEY) BOWEN, P. ENG.

– GEOLOGIST –

12470 99 A Avenue Surrey, B.C. Canada V3V 2R5 • (604) 585-1739

STATEMENT OF QUALIFICATIONS 8.0 I, Brian K. Bowen, hereby certify that: I am a consulting geologist resident at 12470 99A Avenue, Surrey, 1. B.C. V3V 2R5, providing services to Cordilleran Engineering Ltd. I am a graduate of the University of British Columbia (B.A.Sc., 2. Geological Engineering, 1970). I have been employed as both a mine and exploration geologist since 3. 1970 in British Columbia and elsewhere. The work described in this report was done under my direct 4. supervision. I am the author of this report and have assessed the results of the 5. field work conducted on the Oka property during the period June 1 to 3, 1987. I am a member in good standing of the Association of Professional 6. Engineers of the Province of British Columbia.

> I have no beneficial interest in the claims covered by this report or in Fairfield Minerals Ltd.

B. K. Bower

B. K. Bowen, P.Eng.

BKB/z December, 1987

7.

ANALYTICAL RESULTS

9.0

The Geochemical Lab Reports and Certificates of Analysis of Acme Analytical Laboratories Ltd. listed below follow:

> 87 - 1622 87 - 1744 87 - 4408

		JUN 1 2	VED . 87
ACME ANALYTICAL LABO 852 E. HASTINGS, VAN PH: (604)253-3158 CON GEOCHEM	DRATORIES LTD. NCOUVER B.C. 1PUTER LINE:251-1011 ICAL ASSAY	DATE RECEIVED DATE REPORTS CERTIFI	JUNE 6 1987 MAILED JUNE 12/87 CATE
SAMPLE TYPE : S Aut - 10 GM, IGM ASSAYER	SOIL -60 MESH HITED, HOT ADUA REGIA LEACHED, MIBH HITEDDEAN TOYE , CER	KEXTRACTION, AA ANALYSIS. RTIFIED B.C. ASS #4 #5 FILE# 87-14	AYER 22 PAGE# 1
	SAMPLE	Au* ppb	
	L4950N 10300E L4950N 10325E L4950N 10350E L4950N 10375E L4950N 10400E		
	L4950N 10425E L4950N 10450E L4950N 10475E L4950N 10500E L4950N 10525E	5 1 1 1 1	
	L4950N 10550E L4925N 10300E L4925N 10325E L4925N 10350E L4925N 10375E	1 1 1 1 1	
und a second sec	L4925N 10400E L4925N 10425E L4925N 10450E L4925N 10475E L4925N 10500E	2 5 2 1 1	PEACHLAND CREEK GRID
	L4925N 10525E L4925N 10550E L4900N 10300E L4900N 10325E L4900N 10350E	1 1 1 1 32	
	L4900N 10375E L4900N 10400E L4900N 10425E L4900N 10450E L4900N 10475E	4 2 1 1 	
	L4900N 10500E L4900N 10525E L4900N 10550E L4875N 10500E L4875N 10525E	1 2 1 1 1	
······································	L4875N 10550E	1	

Au* ppb PAGE# 2

SAMPLE

L4850N 10500E L4850N 10525E L4850N 10550E L4825N 10500E L4825N 10525E	
L4825N 10550E L3625N 7100E L3625N 7125E L3625N 7150E L3625N 7175E	
L3625N 7200E L3625N 7225E L3625N 7250E L3625N 7275E L3625N 7300E	
L3600N 7100E L3600N 7125E L3600N 7150E L3600N 7175E L3600N 7200E	
L3600N 7225E L3600N 7250E L3600N 7275E L3600N 7300E L3500N 7100E	
L3500N 7125E L3500N 7150E L3500N 7175E L3500N 7200E L3500N 7225E	
L3500N 7250E L3500N 7275E L3500N 7300E L3475N 6600E L3475N 6625E	
L3475N 6650E	

CORDILLERAN	ENGINEERING	PROJECT	OKA #3	FILE# 87-	-1622	FAGE	# 4
	SAMPL	E		Au* ppb	•		
	L3450 L3450 L3450 L3450 L3450 L3450	N 7150E N 7175E N 7200E N 7225E N 7250E	•	6 69 27 5 21			
	L3450 L3450 L3425 L3425 L3425 L3425	N 7275E N 7300E N 5525E N 5550E N 6100E		8 11 1 1 1			·
	L3425) L3425) L3425) L3425) L3425) L3425)	N 6125E N 6150E N 6600E N 6625E N 6650E		10 3 2 10 17		· · ·	
	L34251 L34251 L34251 L34251 L34251	N 6675E N 6700E N 7100E N 7125E N 7150E		3 5 6 32 33			
	L34251 L34251 L34251 L34251 L34251	N 7175E N 7200E N 7225E N 7250E N 7275E		52 17 33 395 7			
	L34251 L34251 L34251 L34251 L34251 L34251	N 7300E N 9300E N 9325E N 9350E N 9375E		11 16 7 3 2	GARNET	GRID	•
	L3400N L3400N L3400N L3400N L3400N	5525E 5550E 6100E 6125E 6150E		1 2 4 15 1			
	L3400N	6600E	10. 19. 7444	. 3			

1

۲Ľ

1

CORDILLERAN ENGINEERING

PAGE# 5

	SAMFLE				Au* ppb		
	L3400N & L3400N & L3400N & L3400N & L3400N &	625E 650E 675E 700E 100E			540 4 1 1 42		
	L3400N 7 L3400N 7 L3400N 7 L3400N 7 L3400N 7	125E 150E 175E 200E 225E		· ·	54 82 33 19 44		
	L3400N 7 L3400N 7 L3400N 7 L3400N 9 L3400N 9	250E 275E 300E 300E 325E			7 4 8 1 1	GARNET	GRID
	L3400N 9 L3400N 9 L3375N 5 L3375N 5 L3375N 6	350E 375E 525E 550E 100E		· · · ·	1 3 1 4 14		
• •	L3375N 6 L3375N 6 L3375N 6 L3375N 6 L3375N 6	125E 150E 450E 475E 500E	:		3 7 8 1 1		
	L3375N 6 L3375N 6 L3375N 6 L3375N 6 L3375N 6	525E 550E 575E 600E A 600E B			3 1 2 9 3		
	L3375N 6 L3375N 6 L3375N 6 L3375N 6 L3375N 6 L3375N 7	625E 650E 675E 700E 100E			1 6 4 1 2		
. *	L3375N 7	125E		4 <u>1</u> 1	56		

CORDILLERAN	ENGINEERING	PROJECT	OKA	#3	FILE#	87-1622
	SAMFLE			• •	Au PF	1 *
	L3275N L3275N L3275N L3275N L3250N	7025E 7050E 7075E 7100E 6500E			1	1 3 1 2 1
	L3250N L3250N	6525E 6550E		· · ·		28

L3250N	6525E	
L3250N	6550E	
L3250N	9100E	
L3250N	9125E	
L3250N	9150E	
	· •	
L3250N	9175E	
L3250N	9200E	•
L3250N	9225E	•
L3250N	9250E	÷
L3250N	9275E	
	•	
L3250N	9300E	
L3225N	6500E	
L3225N	6525E	
L3225N	6550E	
L3225N	6575E	
·	•	
L3225N	6600E	
L3225N	6625É	• . •
L3225N	6650E	
L3225N	6675E	
L3225N	6700E	
L3225N	9100E	
L3225N	9125E	
L3225N	9150E	
L3225N	9175E	•
L3225N	9200E	

L3225N	9150E
L3225N	9175E
L3225N	9200E
·	
L3225N	9225E
L3225N	9250E
L3225N	9275E
L3225N	9300E
L3200N	6275E
L3200N	6300E

-1

12

1

22.

GARNET GRID

GARNET GRID

PAGE# 13

SAMPLE		Au* ppb	
L2850N L2850N L2850N L2850N L2850N	3900E 3925E 3950E 3975E 4025E	7 3 5 1	
L2850N L2850N L2850N L2825N L2825N	4050E 4075E 4100E 3900E 3925E	5 1 3 3 1	
L2825N L2825N L2825N L2825N L2825N L2825N	3950E 3975E 4000E 12650E 12675E	1 60 1 1 1]
L2825N L2825N L2825N L2825N L2825N L2825N	12700E 12725E 12750E 12775E 12800E	1 1 4 1	
L2800N L2800N L2800N L2800N L2800N	12650E 12675E 12700E 12725E 12750E	1 1 1 1 4	SOUTH CAP GRID
L2800N L2800N L2775N L2775N L2775N	12775E 12800E 12650E 12675E 12700E	1 2 1 1 26	
L2775N L2775N L2775N L2750N L2750N L2750N	12900E 12925E 12950E 12900E 12925E	2 1 1 1 1	
L2750N	12950E	6	

CORDILLERAN	ENGINEERING	PROJECT	0KA #3	FILE#	87-1622	F'AGE#	14
	SAMFI	_E		Au PE	1 *		
	L272 L272 L272 L272 L272	5N 12500E 5N 12525E 5N 12550E 5N 12575E 5N 12600E			1 1 3 2 4		•
	L272 L272 L272 L272 L272 L272	5N 12625E 5N 12650E 5N 12675E 5N 12700E 5N 12700E	· · · · · ·	1 1 4	9 6 2 5 9		
	L2725 L2725 L2700 L2700 L2700	5N 12925E 5N 12950E 5N 12500E 5N 12525E 5N 12525E 5N 12550E		1 3	8 2 1 1 2 500TH	CAP GRID	
	L2700 L2700 L2700 L2700 L2700 L2700	ON 12575E ON 12600E ON 12625E ON 12650E ON 12675E		• • • • • • • • • • • • • • • • • • •	6 4 7 3 8		
	L2700 L2700 L2700 L2700 L2700	N 12700E N 12700E N 12725E N 12725E N 12750E	A B	1	7 1 1 4 7		
	L2700 L2700 L2700 L2700 L2700	N 12800E N 12825E N 12850E N 12875E N 12900E	· · · · ·		1 1 1 3		
	L2700 L2700 L2675 L2675 L2675	N 12925E N 12950E N 12500E N 12525E N 12525E			1 1 1 4 1		
	L2675	N 12575E		ć	<u>د</u>		

T

Au*

SOUTH CAP GRID

PAGE# 15

SAMPLE

			ррЬ
L2675N 12600E L2675N 12625E L2675N 12650E L2675N 12675E L2675N 12700E	A _.		1 2 1 1 1
L2675N 12700E L2675N 12725E L2675N 12750E L2675N 12775E L2675N 12800E	B		1 1 2 1 1
L2675N 12825E L2675N 12850E L2675N 12875E L2675N 12900E L2675N 12925E			1 2 2 1 1
L2675N 12950E 5525E 2975N 5525E 2950N 5525E 2925N 5525E 2900N			1 8 2 5 8
5525E 2875N 5525E 2850N		•	22 2

			26.
		JUN Z Z. 8	
ACME ANALYTICAL LA #852 E. HASTINGS, V IFH: (604)253-3158 C	BORATORIES LTD. ANCOUVER B.C. OMPUTER LINE:251-1011	DATE REC <u>EIVED-JUN</u> DATE REPORTS MAIL	ED Q UNG 18/37
GEOCHEN	1ICAL ASSAY	CERTIFICA	TE
SAMFLE TYPE Aut - 10 GM.	: SOIL -80 MESH IGNITED. HOT ADUA REGIA LEACHED. MIBH	EXTRACTION, AA ANALYSIS.	
ABSAYEF	DELL DEAN TOYE . CER	TIFIED B.C. ASSAYER	
CORDILLERAN EN	GINEERING PROJECT OK	A FILE# 87-1744	PAGE# 1
	SAMFLE	Au* ppb	
	L3425N 9400E L3425N 9425E	1	
	L3425N 9450E L3425N 9475E L3425N 9500E		m CDID
in ₩ An an	L3400N 9400E	11 GARNE	I GRID
	L3400N 9425E L3400N 9450E L3400N 9475E L3400N 9500E	1 2 4	
	L2950N 2700É	1	
-	L2950N 2725E L2950N 2750E L2950N 2775E L2950N 2800E	2 1 8 1	
-	L2950N 2825E L2950N 2850E L2950N 2875E L2950N 2900E L2925N 2700E	1 2 1 1 3	
	L2925N 2725E L2925N 2750E L2925N 2775E L2925N 2800E L2925N 2825E	2 1 1 1 1 1	
	L2925N 2850E L2925N 2875E L2925N 2900E L2900N 2700E L2900N 2725E	1 2 6	
	L2900N 2750E L2900N 2773E L2900N 2800E L2900N 2825E L2900N 2850E	1 1 & 3 1 1	
	L2900N 2875E	1	

PAGE# 3

	SAMPLE	Au*
		ppb
	3200N 6475E	3
	3200N 6800E	4
	3200N 6825E	8
	3200N 4850E	<u> </u>
	7200N 4075E	~ ~
	3200N 6900E	116
	3200N 6925E	4
	3200N 6950E	1
	3200N 6975E	143
	3200N 9225E	201
·		
	3200N 9250E	9 GARNET GRID
	3200N 9275E	10
	3200N 9300E	6
	3175N 5500E	14
	3175N 5525E	-
	3175N 5550E	18
÷	3175N 5575E	450
	3175N 5600E	230
•	3175N 5625E	5
	3175N 5650E	635
,	· · · · · · · · · · · · · · · · · · ·	
	3175N 5675E	94
	3175N 5700E	12
	3175N 5725E	50
	3175N 5750E	5
•	3175N 6425E	15
	3175N 6450E	133
	3175N 6475E	255
	3175N 9200E	52
	3175N 9225E	5
•	3175N 9250E	3 GARNET GRID
	3175N 9275E	1
	3175N 9300E	
	3150N 3700E	13
	3150N 3725E	340
	3150N 3750E	5 J
•		
	3150N 3775E	75

₩

■ .

•

د ۱

