K2 RESOURCES LIT.
GEOPHYSICAL REPORT ON A PULSE ELECTROMAGNETIC SURVEY TEDDY GLACIER PROJECT

DATE OF WORK: Oct. $5,6,7,1987$
DATE OF REPORT: NOV. 25,1987

GROLOGICALBRANCH ASSESSMENTREPORT

TABLE OF CONTENTS PAGE
INTRODUCTION 1
PROPERTY 1
LOCATION AND ACCESS 1-2
PREVIOUS WORK 2-3
GENERAL GEOLOGY 3-4
PROPERTY MINERALIZATION 4-6
PULSE ELECTROMAGNETOMETER SURVEY. 6-7
DISCUSSION OF RESULTS 8-9
CONCLUSION AND RECOMMENDATIONS 10
COST BREAKDOWN 11
REFERENCES 12
INSTRUMENT SPECIFICATIONS 13-16
STATEMENT OF QUALIFICATIONS:
Markus Seywerd, B.Sc. 17
Glen E. White, P.Eng. 18
APPENDIX A - DATA LISTING
FIGURES
FIGURE 1A - Location Map
FIGURE 1B - Claim Map
FIGURE 2 - Conductor Plan MapFIgURES 3-22 - Data Profiles
PLATE 1 - General Geology

INIRODUCTION:

During October of 1987 a program of pulse electromagnetometer surveying was undertaken by White Geophysical Inc. on K2 Resources Ltd.'s Teddy Glacier project. The pulse electromagnetometer survey consists of approximately 2.0 kilometres of coverage from one transmitter loop on an airborne VLF-EM conductor. This coverage was undertaken to test the response of a graphitic horizon, the probable source of the VLF-EM conductor, and attempt to delineate a sulphide rich subhorizon.

PROPERTY:

The Teddy Glacier property consists of seven claims consisting of approximately 53 units. The claims are described below and shown in Figure 1.

CLAIM NAME	RECORD \#	UNITS	ANNIVERSARY DATE
EGG 1			
EGG 2	236	1	June 7,1994
FRAN 2	237	2	June 7,1992
MOMBOLA FR.	1260	4	Aug. 14,1991
RCG1	2250	-	Aug. 25,1991
AMAPOLA FR.	2430	2471	-
BOB 1	2312	20	Aug. 10,1988
BRYAN 1	2311	20	Nov. 28,1988

LOCATION AND ACCESS

The claims area is located some 40 kilometers southeast of Revelstoke and 11 km northwest of Camborne, B.C. The claims straddle the northerly trending ridge between Comaplix Mountain and Mount McKinnon and extend primarily eastward along the southeastern slope of Mount McKinnon. They lie within the Revelstoke Mining Division and NTS $82 \mathrm{~K} 13 / E$ and

13W. The approximate geographical coordinates of the claim group are latitude $50^{\circ} 52^{\prime} \mathrm{N}$ and longitude $117^{\circ} 45^{\prime} \mathrm{W}$.

A four wheel drive passable road extends north from the town of Camborne along the Incomappleux River, Sable Creek and Stephney Creek to the base of Mount McKinnon. From this point a narrow road switchbacks up Mount McKinnon to the mineral showings. This road is impassable at this time.

PREVIOUS WORK

The subject property was originally staked by George Richie and George Edge, who discovered ore in float issuing from the front of the glacier. In 1924 the ice retreated and ore was found in place.

The property was reported upon in the 1924 Annual Report as the Richie Group and as Teddy Glacier in the Reports from 1925 to 1935. Geological Survey Memoir \#161 also describes the property. To September,1935, approximately 1600 feet of crosscutting and drifting and 60 feet of a planned 600 foot adit, had been completed. Initial results were not considered to be sufficiently encouraging and the property was shut down.

From 1963 to 1965 a Vancouver based company completed 2176 feet of diamond drilling and upgraded the road access to the property. The results of the diamond drilling were not encouraging however the road work disclosed additional mineralization approximately 3000 feet southeast of the original workings.

In October of 1986 an airborne VLF-EM and magnetometer survey was flown over the Egg 1, Egg 2, Fran 2 claims, the Mombola Fraction and the surrounding area. Approximately

119 kilometres of data was gathered and east-west oriented lines, spaced 200 metres apart. The phyllitic texture of the Lardeau Group rocks, generated a large number of north to northwesterly trending conductive lineations. Interesting VLF-EM responses were observed in the area of the Egg Claim mineralization, however these anomalies are not significantly different from the general phyllitic responses mapped across the entire survey area. As well in late 1986 and early 1987 K2 Resources Ltd. staked an additional 46 units adjoining their existing properties.

Other work is unknown of by the authors.

GENERAL GEOLOGY

Plate 1 of this report reproduces the portion of the Geological Survey of Canadas' Open file map \#432 which is applicable to this survey area. This map was compiled by P.B.Read in 1976 and is based on geological mapping from J.O.Wheeler, 1965,1967 and P.B.Read, 1962-1964 and 1971-1976.

This map shows the survey area to be underlain by phyllites and phyllitic limestones of the Lower Cambrian to Middle Devonian Lardeau Group. Six subgroups of this unit are mapped in the survey area. In addition, a narrow band of Permian and/or Triassic age hornblende and pyroxene meta-diorite and meta-andesite is mapped in the northwest corner of the survey area.

The regional structures trend northwest-southeast. A northwesterly trending section of the Finkle Synform axis crosses the northeast corner of the area. There are however a number of lineations and fold axes mapped with an easterly

GEOLOGY LEGEND:

$1 P_{1 p}$	TRIUNE FORMATION: grey to black silfceous phylifte
VIAS	TRIUNE; AJAX, SHARON CREEK FORMATIONS: undivide
PIv	index formation (IPiv to IPigr) Green phyllite, limy green phyllite, greenstone
IPIC	Phyllitic and arenaceous limestone; iminor grey phyllite
IPip	Grey and light green phyllite; minor phyllitic limestone and quartz grit

IPIgr Quartz grit; minor gritty phyllite
IPLS Undivided: grey phyllite, siliccous phyllite, gritty phyllite, phyllitic grit, rare quartzite

HPLV Undivided: green phyllite, limy green phyllite, greenstone
\square undivided: imestone, phyllitic limestone

CAMBRIAN

lOWER CAMBRIAN

K2 RESOURCES LTD.
TEDDY GLACIER PROJECT GENERAL GEOLOGY
N.T.S. $82 \mathrm{~K} / 13 \mathrm{E}, \mathrm{W}$ SCALE $=1: 250000$

vergence, particularly in the area immediately south of the mineral showings on Mount McKinnon.

PROPERTY MINERALIZATION

The following text describes the mineralization of the subject property. It has been reproduced from the 1935 edition of the Report of the Minister of Mines.
"The most important mineralization on the Teddy Glacier is found along two fracture-zones. The more easterly strikes roughly north 10 degrees west and has been traced on the surface for over 120 feet and is possibly exposed again 80 feet farther north. It is mineralized with galena, pyrite, sphalerite, and some chalcopyrite in a gangue of white quartz and rock inclusions, the width varying from a few inches to 4 feet. The second vein, to the west of the first, strikes north 17 degrees west where exposed and has been traced for about 130 feet, varying in width after the manner of the first and being similar in all respects. In addition, there are numerous other quartz veins on the property which trend in various directions, but most frequently about at right angles to the strike of the formation. Many of them connect with the main veins and die out a short distance away from them. Mineralization in these veins is quite irregular, but some good showings have been uncovered, particularly near their junctions with the main veins. Where the first vein intersects the second one, and north of the latter, is the big showing; it is a large body of quartz some 30 feet long and carrying bodies, up to 5 feet wide, of coarse sulphides. It follows a somewhat more easterly course than the average strike of the eastern vein. Apparently the nature of the country-rock has had no important effect on the ore-deposition, although black carbonaceous schists mineralized with pyrite are most
abundant near and west of the big showing. Whether the sulphides have replaced the limestones where these are intersected by the veins is a speculation that should be investigated, as such has been found to be the case in other properties in the Lardeau. The toe of the glacier lies 100 yards east of north from the big showing and in the float at its edge are some boulders of ore, indicating that further disclosures may be made as the ice recedes, which it is doing slowly but surely.

The sulphides, galena, pyrite, sphalerite, and chalcopyrite, occur in bunches in the quartz veins or as continuous bands, pinching and swelling along the strike and varying in width from practically nothing to 4 or 5 feet. They are coarse-grained or very fine-grained and the chalcopyrite is generally present in very minor amount. The finer-grained ore is an intimate mixture of the sulphides with grains of quartz and may require rather fine grinding for concentration. Examination under the microscope reveals many minute areas of tetrahedrite in the galena. Some movement has taken place along the veins since their formation, as the galena is in many cases sheared.

The following assays are quoted from the Annual Report, Minister of Mines, British Columbia 1925:

It is noted that the last assay is unexpectedly high in silver and that similar material assayed for the owners gave: Gold, 0.86 oz.; silver, $6.4 \mathrm{oz.;} \mathrm{lead}$,11.5 per cent."

| DESCRIPTION OF SAMPLE | Au | Ag | Ph | Zn |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Coarse crystalline galena from a | Oz | Oz | Per | Per |
| number of places; a substantial | | | Cent | Cent |
| amount of this ore could be sorted
 out | 0.08 | 39.5 | 74.6 | 1.2 |

DESCRIPTION OF SAMPLE

Au
Ag
Pb
Zn

Steel-grained galena containing pyrite and quartz, from various places; similar material occurs in quantity

$$
\begin{array}{llll}
0.04 & 23.3 & 53.1 & 10.3
\end{array}
$$

Average sample across 5 1/2 feet of ore and waste at the northeast extremity of the southern fissure, 78 feet from the big
showing
$0.29 \quad 17.6 \quad 31.3 \quad 7.2$

Fairly clean pyrite selected from various places; this material $\begin{array}{llll}\text { occurs in abundance } & 0.28 & 16.7 & 1.6\end{array}$

PULSE ELECTROMAGNETOMETER SURVEY

The Crone pulse electromagnetometer system is a time domain E.M. system which can be used in the standard horizontal loop mode, fixed source mode or in a downhole mode.

The primary field for the standard horizontal loop method is produced by a portable transmitter loop of 6,10 or 50 metres diameter. A depth of search of approximately 75\% of separation is obtainable due to the high sensitivity of the receiver system. As measurements of the time derivative of the secondary field occur during primary field off time the method is relatively free from geometrical restrictions. Interpretation is accomplished with the aid of Slingram horizontal loop curves.

The primary field for the 2000 watt fixed source system is provided by a 500 by 1000 metre transmitter loop. A 150 by

150 metre loop is utilized with the 500 watt system. The time derivative of the secondary field resulting from the presence of a conductor is sampled at eight windows on the decay curve, during primary field off time. These eight channels of secondary field information are equivalent to a wide spectrum of frequencies from approximately 2 KHz to 16 Hz thus allowing conductor character and strength determination. The vertical and horizontal components are obtained at each station on the traverse, using the convention of vertical component positive upwards and horizontal component positive away from the transmitter loop. In areas of high surficial conductivity the primary field on time of 10.8 ms , and the receiver delay times may be doubled in order to obtain late time information. Time synchronization between transmitter and receiver is by radio or cable link.

The apparent primary field information is recorded at each occupied station. Normalization of the data with respect to instrument gain produces a constant gain plot. In this format a vertical plate-like conductor anomaly would be symmetric. Normalization with respect to the apparent primary field at each station provides a constant primary field plot that is useful in recognizing conductors present in the far primary field and in correlating anomaly amplitudes from line to line. The anomalies lose symmetry in this format but the condition of anomaly amplitude dependence on distance from the loop is relaxed.

The vector focus method of data display is useful in some line source conductor conditions. A resultant vector can be obtained by the vector addition of the vertical and horizontal components of the primary field. A perpendicular to this resultant indicates the apparent eddy current position.

DISCUSSION OF RESULTS P.E.M. SURVEY:

The pulse electromagnetometer data is plotted in constant gain and primary field normalized formats on Figures 3-22.

The P.E.M. survey was successful in delineating ten conductors in the survey region. Conductor 'A' is the strongest and may be sourced in graphite and/or sulphides. It was intercepted on line 00 N at 50 E and line 50 N at 25 E . At both these intersections the conductor is a strong seven channel response with a strike of approximately 330°. Conductor A is however a short conductor with a probable strike length at approximately 50 metres open to the south.

Conductor E is short/strong conductor with a strike length of approximately 50 m , probably sourced in a graphite/sulphide horizon. Conductor E is open to the north and located under a tongue of ice from the Teddy Glacier. Conductor E is intersected 125 W on line 100 N and at 140 W on line 150 N .

Conductors B and C are two parallel north trending conductors intersected on lines 100 N and 150 N . Conductors B and C are similar in character and much weaker than conductors A and E. These conductors may be soured in graphite, sulphides and/or conductive shears. Geological evidence indicates conductor C may be an extension of Conductor D giving a total strike length of 120 m open to the north.

Conductors F, G, H are subparallel conductors intersected on the western half of lines 00 N and 100 N . These conductors are similar in nature to conductors B and C and of a similar strike length (50m, See Figure 2.).

Conductors I and J are single line intercepts of weak conductors at 125 W on line 200 N and 25 E on line 150 N .

All of these conductors are near surface features with an apparent depth of less than 25 metres.

CONCLUSION AND RECOMMENDATIONS:

In October of 1987 White Geophysical Inc. conducted a Crone P.E.M. survey on K2 Resources Ltd.'s Teddy Clacier project as follow-up to a 1986 airborne survey by Western Geophysical Aero Data Ltd., and as an aid in tracing structures under the ice of the Teddy Glacier. Ten conductors were mapped, all of very short strike. Conductors A and E are the strongest and are probably sourced in a graphite/sulphide horizon. The other conductors, B, C, D, F, G, H, I are much weaker in nature and difficult to correlate from line to line. These conductors may be sourced in graphite, sulphides and/or conductive shears. To properly access the value of this geophysical survey a precise correlation should be made between these conductors and the visible geology. Should one of these conductors prove interesting it could be traced out with an HLEM survey with a narrow 'a' spacing of 25 m on lines with 25 m centers. This tight spacing is necessary since the geophysical response is very complicated in this area. It is unfortunate that no magnetic survey was conducted for if the ore carrying veins had a magnetic signature it would be an inexpensive way of seperating them from the veins with barren graphite.

Respectfully Submitted,

COST BREAKDOWN

REFERENCES

Sunshine Columbia Resources, Geophysical Report on an Airborne VLF Electromagnetometer and Magnetic Survey, Fran 2, Egg 1 \& 2 Claims, Mombola Fraction, Revelstoke Mining Division, Nov.7,1986, by E. Trent Pezzot, B.Sc., and Glen E. White, B.Sc., P.Eng.

SPECIFICATIONS - CRONE PULSE EM EQUIPMENT

1. STANDARD RECEIVER BATTERY SUPPLY:

$\pm 12 \mathrm{VDC}$, two internal, rechargeable, 12 V gel type batteries

MEASURED QUANTITIES:

Primary shut - off voltage pulse (PP). Time derivative of the transient magnetic field by integrative sampling over eight, blentiguous time gates (microseconds).

CH. NO.	WINDOW	WIDTH	MID PT.	REL GAIN	WINDOW	WIDTH	MID PT.
PP	-100 to 0	100	-50	1.00	-200 to 0	200	-100
1	100 to 200	100	150	1.00	200 to 400	200	300
2	200 to 400	200	300	1.39	400 to 800	400	600
3	400 to 700	300	550	1.93	800 to 1400	600	1100
4	700 to 1100	400	900	2.68	1400 to 2200	800	1800
5	1100 to 1800	700	1450	3.73	2200 to 3600	1400	2900
6	1800 to 3000	1200	2400	5.18	3600 to 6000	2400	4800
7	3000 to 5000	2000	4000	7.20	6000 to 10K	4000	8000
8	5000 to 7800	2800	6400	10.00	10 K to 15.6 K	5600	12.8K
10.8 ms . Time B					21.6 ms . Time Base		

READOUT:

Readings are output on an analog meter (6V FSD), over three sensitivity ranges (X1, X10, X100). Data retrieval made by channel select switch.

TIMING:

A telemetry link ("sync.") is maintained by radio signal, or a back-up cable, between the transmitter and the receiver, and is meter monitored.

SENSITIUITY:

Adjustable through a ten turn, calibrated gain pot.
SAMPLING MODES:
"S \& H" (Sample \& Hold)
The receiver averages 512 (10.8 ms), or $256(21.6 \mathrm{~ms})$, readings for all channels, and stores the results for display. "CONT" (Continuous)
A running average for all channels is stored, enabling the operator to reject thunderstorm spikes and power line noise by visual inspection.

OPERATING TEMPERATURE RANGE:
$-40^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}-122^{\circ} \mathrm{F}\right)$
DIMENSIONS: $28 \mathrm{~cm} \times 18 \mathrm{~cm} \times 27 \mathrm{~cm}$
(11" $\times 7$ " $\times 10^{1 / 2 \prime}$)
WEIGHT: 7 kg (16lb)

SHIPPING DIMENSIONS: $37 \mathrm{~cm} \times 27 \mathrm{~cm} \times 35 \mathrm{~cm}$ ($141 / 2^{\prime \prime} \times 10^{1 / 2 "} \times 14^{\prime \prime}$)

SHIPPING WEIGHT: 14.5 kg (32 lb)

2. OPTIONAL DATALOGGER RECEIVER

- Uses above receiver in conjunction with Omnidata Polycorder. ${ }^{\oplus}$
- Data is A/D converted and stored in 32 k memory.
- RS-232C serial interface allows for connection to modem.
- Continual monitoring of readings through LCD.
- Spheric and powerline rejection through software filter.
- Operating temp range from $-40^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}-122^{\circ} \mathrm{F}\right)$

WEIGHT: $14.5 \mathrm{~kg}(32 \mathrm{lb})$
DIMENSIONS: $22 \mathrm{~cm} \times 28 \mathrm{~cm} \times 46 \mathrm{~cm}$
$\left(83 /{ }^{\prime \prime} \times 11^{\prime \prime} \times 18^{\prime \prime}\right)$

SHIPPING WEIGHT: 21.8 kg (481b)
SHIPPING DIMENSIONS: $35 \mathrm{~cm} \times 30 \mathrm{~cm} \times 53 \mathrm{~cm}$
(14" $\times 113 / 4^{\prime \prime} \times 21^{\prime \prime}$)

VERTICAL COMPONENT
 4^{+}

HORIZONTAL COMPONENT

VPEM ANOMALY SHAPE

FLAT LYING TABULAR BODY

VERTICAL COMPONENT
1^{+}
$\frac{x}{h}$

HORIZONTAL COMPONENT
\longrightarrow

VPEM ANOMALY SHAPE

INCLINED TABULAR BODY

HORIZONTAL COMPONENT
\longrightarrow

VPEM ANOMALY SHAPE

STATEMENT OF QUALIFICATIONS

NAME: SEYWERD, Markus B., B.Sc.

PROFESSION: Geophysicist

EDUCATION: University of British Columbia -
B.Sc., Mathematics

EXPERIENCE
Three years of summer field work with Noranda Exploration Company Ltd. in British Columbia, Northwest Territories and Yukon Territories.

Two year Geophysicist with White Geophysical Inc. with work in British Columbia, Saskatchewan and Yukon Territories.

STATEMENT OF QUALIFICATIONS

NAME: WHITE, Glen E., P.Eng.

PROFESSION:
Geophysicist

EDUCATION:
B.Sc. Geophysics - Geology University of British Columbia

PROFESSIONAL Registered Professional Engineer, ASSOCIATIONS: Province of British Columbia.

Associate Member of Society of Exploration Geophysicists.

Past President of B.C. Society of Mining Geophysicists.

EXPERIENCE: -Pre-Graduate experience in Geology Geochemistry - Geophysics with Anaconda American Brass.
-Two years Mining Geophysicist with Sulmac Exploration Ltd. and Airborne Geophysics with Spartan Air Services Ltd.
-One year Mining Geophysicist and Technical Sales Manager in the Pacific north-west for W.P. McGill and Associates.
-Two years Mining Geophysicist and supervisor airborne and ground geophysical divisions with Geo-X Surveys Ltd.
-Two years Chief Geophysicist Tri-Con Exploration Surveys Ltd.
-Fourteen years Consulting Geophysicist.
-Active experience in all Geologic provinces of Canada.

DATA LIST
GRID:K2
DATE:6/10/87
LINE: 00N: A: 250N: 505: 250E: 400E

200	$E-41$	-54	-50	-36	-21	-7	-3	-1	-90	-40	-12	-2	-2	-1	-1	-1	4	1	0
$-1:$																			
175	$E-9$	-61	-70	-55	-31	-11	-4	-2	$-140-74$	-28	-10	-6	-3	-2	-1	6	1	0	-14
150	$E-11$	-86	$-100-77$	-45	-15	-5	-2	$-120-65$	-23	-7	-5	-3	-2	-1	8	1	0	-16	
125	$E-71$	$-160-150-140-70$	-25	-7	-2	$-150-94$	-37	-16	-10	-5	-3	-1	121	0	-16				
100	$E-18$	$-160-195-150-86$	-29	-8	-3	$-260-190-115-70$	-36	-15	-6	-2	181	0	-9						
75	$E 190$	-50	$-150-120-78$	-28	-8	-3	$-450-445-310-200-110-40$	-13	-4	281	0	8							
50	$E 350$	90	-90	$-105-65$	-24	-7	-3	$-510-610-520-350-200-70$	-20	-6	391	0	33						
25	$E 555$	350	90	7	-9	-6	-4	-2	$-540-720-650-450-250-87$	-26	-8	561	0	38					
0	$W 910$	860	600	350	180	50	9	1	$-640-950-910-650-350-140-41$	-13	901	0	51						
25	$W 920$	1000750	490	250	74	17	0	$-550-910-940-700-390-150-50$	-15	1	840	61							
50	$W 800$	940	720	450	250	70	19	4	$-410-690-700-530-300-110-41$	-13	1	600	44						
75	$W 650$	840	640	390	200	57	14	1	$-260-510-600-500-280-110-40$	-13	1	460	43						
100	$W 500$	640	600	425	240	76	-20	3	-96	$-210-265-245-150-64$	-21	-3	1	300	56				
125	$W 390$	530	520	410	250	83	25	-5	-62	$-160-250-210-150-70$	-25	-9	1	240	11				
150	$W 300$	450	500	425	250	92	29	8	-53	$-150-210-200-150-71$	-29	-11	1	150	16				
175	$W 250$	390	440	375	240	85	28	7	-29	-88	$-120-120-94$	-48	-21	-8	1	120	7		
200	$W 200$	330	370	340	200	78	25	6	-57	$-105-120-115-85$	-46	-20	-9	1	100	8			

GRID:K2
DATE: 6/10/87
LINE:50N: A: 250N: 505: 250E: 400E

200 W160 30035030030070

175	$W 200$	330	380	340	200	74	24	4
150	$W 300$	460	490	400	250	81	25	4
125	$W 360$	490	444	300	170	55	15	3
100	$W 475$	500	400	250	150	36	7	-1
75	$W 550$	550	400	250	130	33	6	-
50	$W 710$	640	400	210	87	25	3	-
25	$W 500$	310	45	-32	-32	-15	-5	-4
0	$W 500$	300	9	-59	-48	-20	-7	-4
25	$E 57$	$-200-300-260-140-49$	-13	-3				
50	$E-190-340-340-260-140-46$	-12	-4					
75	$E-190-290-250-200-110-40$	-11	-4					
100	$E-190-230-200-150-80$	-30	-8	-				
125	$E-160-160-150-105-57$	-21	-6	-				
150	$E-160-150-140-90$	-44	-17	-6	-			
175	$E-150-140-94$	-59	-33	-12	-4	-		
$6 R 10$	K							

GRID:K2
DATE: $7 / 10 / 87$
LINE: $100 \mathrm{~N}: \mathrm{R}: 250 \mathrm{~N}: 50 \mathrm{~S}: 250 \mathrm{E}: 400 \mathrm{E}$

200	$E-550-410-250-140-65$	-25	-7	-2
175	$E-400-350-210-130-61$	-24	-6	-2
150	$E-300-270-190-110-56$	-21	-6	-2
125	$E-300-290-210-140-66$	-25	-7	-3
100	$E-290-300-240-150-79$	-29	-8	-3
75	$E-230-310-300-200-105-39$	-11	-4	
50	$E-140-260-260-225-120-45$	-12	-5	
25	$E-120-310-320-260-150-50$	-15	-4	
0	$W 77$	$-200-300-280-150-55$	-15	-5
25	$W 85$	$-210-350-310-190-62$	-18	-5
50	$W 75$	$-250-400-360-200-70$	-20	-5
75	$W 140$	$-190-380-340-200-71$	-19	-6
100	$W 140$	$-200-400-390-210-75$	-20	-6
125	$W 320$	90	$-150-160-130-37$	-10
150	$W 270$	260	200	140
175	$W 210$	300	340	300
190	190	4	-1	
200	$W 160$	290	350	340
1010	75	24	2	

$-140-240-250-200-150-65$	-25	-9	1	100	4	
$-140-250-30$	$-250-170-80$	-29	-13	1	120	22
$-160-360-460-400-255-115-40$	-12	1	150	36		
$-260-500-600-500-300-120-40$	-14	1	310	42		
$-340-550-600-460-280-110-35$	-11	1	540	35		
$-550-900-940-710-400-150-51$	-16	1	680	66		
$-525-755-750-550-300-115-37$	-11	1	950	41		
$-560-800-750-540-290-120-35$	-10	761	0	54		
$-550-700-600-400-240-85$	-26	-7	611	0	41	
$-690-660-460-290-150-54$	-15	-4	321	0	33	
$-255-200-112-56$	-29	-4	-5	-2	241	0
$-250-180-88$	-43	-22	-11	-4	-2	201
-20	-2					
$-240-140-55$	-20	-10	-6	-3	-1	161

-1 :
-1.
-1 .
-16
-9
8
33
38
51
44
43
56
11
16
8

	录	LOOP A	
	CONSTRNT GRIN DRTR, G-(100\%) NUMAER IN LINE: CHRNNEL NUMBER INSTRUMENT: CRONE P.E.M. METRES	K2 RESOURCES LTD.TEDDY GLACIERFULSE ELECTROMAGNETOMETER SURVEYHORIZNTHL COMPONENTLINE 日GN LOOP A	
		IRTE: OCT/87	FIG.: 4

PRIMRRY FIELD NORMRLIZED DATR NUMBER IN LINE: CHRNNEL NUMEER INSTRUMENT: CRONE P.E.M.

METRES

K2 RESOURCES LTD.	
TEDDY GLACIER	
PULSE ELECTROMAGNETOMETER SURVEY	
HORIZONTAL COMPONENT	
LINE 2DGN LOOP A	
DRTE: OCT ~ 87	FIG. : 22

