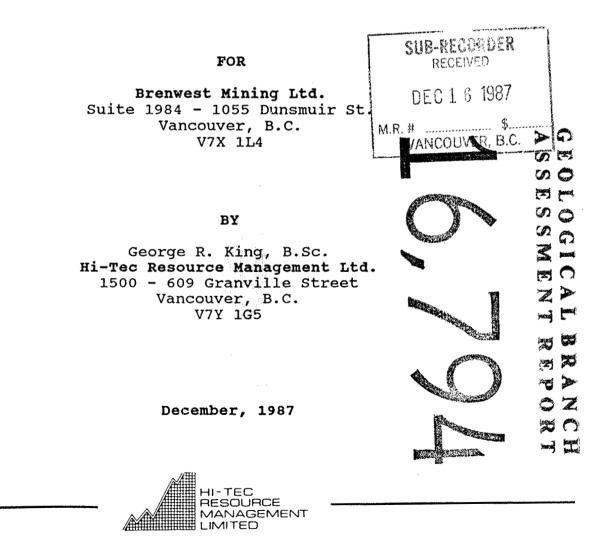
and the second second	LOG NO: 0104	RD.
	ACTION:	
	FILE NO:	

GEOLOGICAL, GEOCHEMICAL AND


GEOPHYSICAL REPORT ON THE

JOY 1 AND 2 CLAIMS,

ISKUT RIVER AREA,

LIARD MINING DIVISION, B.C.

NTS 104-B/10W, 11/E Latitude 56⁰45'N Longitude 130⁰59'W

TABLE OF CONTENTS

		Page No.
1.0	SUMMARY	1
2.0	INTRODUCTION	2
2.2 2.3	Property and Ownership Location and Access Physiography History and Previous Work	2 2 3 4
3.0	GEOLOGY	7
3.2	Regional Geology and Mineralization Property Geology Mineralization	7 10 14
4.0	PROPERTY GEOCHEMISTRY	15
		16 16 17 18
5.0	GEOPHYSICAL SURVEY	19
5.1	Results of VLF-EM and Magnetometer Survey	19
6.0	CONCLUSIONS	20
7.0	RECOMMENDATIONS	21

LIST OF FIGURES

After Page

Figure	1.	General Location Map	2
Figure	2.	Claim Location Map	3
Figure	3.	Regional Geology Map	7
Figure	4.	Property Geology	in pocket
Figure	5.	Geochemistry - gold and silver	in pocket
Figure	6.	Geochemistry - arsenic and antimony	in pocket
Figure	7.	Geochemistry - copper, lead and zinc	in pocket
Figure	8.	Soil Geochemistry - gold (ppb) and silver (ppm)	in pocket
Figure	9.	Soil Geochemistry - arsenic (ppm) and antimony (ppm)	in pocket
Figure	10.	Soil Geochemistry - copper (ppm), lead (ppm) and zinc (ppm)	in pocket
Figure	11.	Magnetometer Survey	in pocket
Figure	12.	VLF-EM (Fraser Filtered)	in pocket

LIST OF APPENDICES

- APPENDIX I References
- APPENDIX II List of Qualifications
- APPENDIX III Laboratory Analytical Methods
- APPENDIX IV Geochem Results
- APPENDIX V-A Statistical Analysis of Data for Soil Geochem Survey
- APPENDIX V-B Statistical Analysis of Data for Stream Sediment Geochem Survey
- APPENDIX VI Description of Rock Samples

APPENDIX VII Statement of Costs

1.0 SUMMARY

Pursuant to a request by the directors of Brenwest Mining Ltd., an exploration program involving prospecting, geological mapping, geophysics, and soil and stream sediment geochemistry was carried out on the Joy 1 and 2 claims in 1987. The author was active in this program in the capacity of project geologist.

The property is located in the western Iskut River area of northwestern British Columbia, roughly 110 kilometers northwest of Stewart and 80 kilometers east of Wrangell, Alaska. This area has been the focus of intense mining exploration activity in recent years which has resulted in several discoveries.

The property lies within the westernmost part of the Intermontane Tectonic Belt, close to its boundary with the Coast Crystalline Tectonic Belt. The Joy claims are underlain by a sequence of volcanic and sedimentary rocks which have been intruded by several small igneous bodies of felsic to intermediate composition.

Anomalous qold values were obtained from samples of sulphide-bearing guartz veins and shear zones in andesitic volcanics in several locations on the Joy 2 claim. A grab sample from one pyrite and chalcopyrite bearing shear zone yielded an assay value of 190.0 g/tonne gold (5.542 oz gold/ton), and geochem values of 226.3 ppm silver (6.6 oz silver/ton), and over 0.5% This area of the Joy 2 claim appears to have copper. excellent potential for hosting significant precious metal mineralization.

In order to fully evaluate the mineralization potential of the Joy property, further exploration work is recom-

mended. An appropriate exploration program might involve more geological mapping, prospecting, and geophysics as well as diamond drilling. Special exploration emphasis should be placed on the eastern portion of the Joy 2 claim.

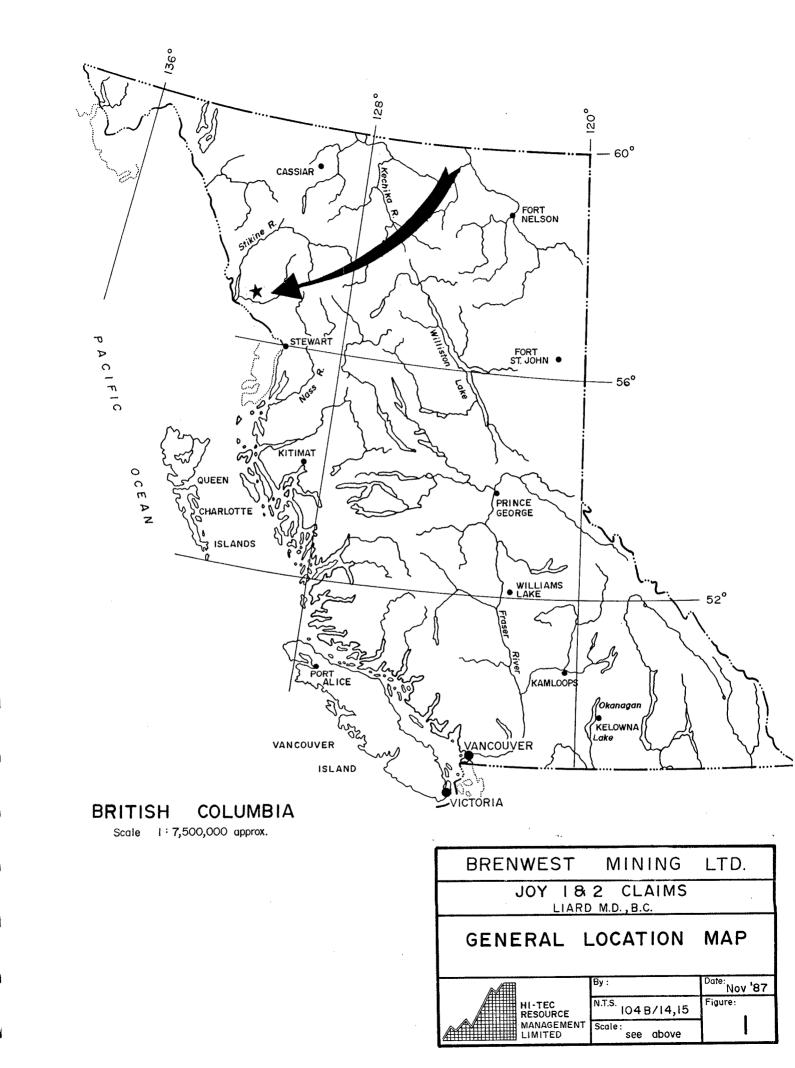
2.0 INTRODUCTION

Pursuant to a request by the directors of Brenwest Mining Ltd., an exploration program involving geological mapping, prospecting and geochemical sampling was carried out on the Joy 1 and 2 claims by Hi-Tec Resource Management Ltd. from August to October 1987. The purpose of this program was to evaluate the precious and/or base metal potential of the property.

2.1 Property and Ownership

The property is recorded as follows:

Claim	Record	No.	Record Date	Recorded		
<u>Name</u>	<u>No.</u>	<u>Units</u>		<u>Owner</u>		
Joy 1	3734	20	Dec. 5, 1986	I. Hagemoen		
Joy 2	3735	20	Dec. 5, 1986	I. Hagemoen		


Total: <u>40</u> Units

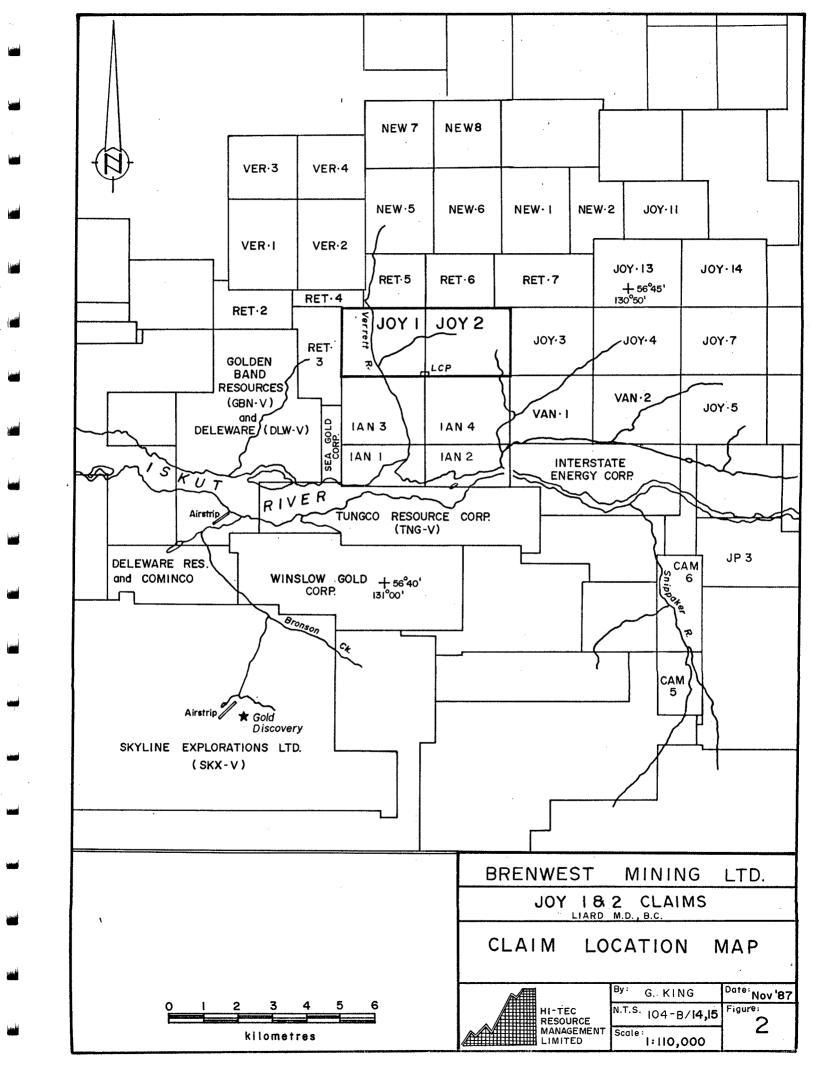
The Joy claim group consists of 2 contiguous claims totalling 40 units in the Liard Mining Division. Both claims are held by I. Hagemoen for Brenwest Mining Ltd.

2.2 Location and Access

The Joy 1 and 2 mineral claims are located in the western Iskut River area of northwestern British Columbia. The property is approximately 110 air kilometers northwest of Stewart, B.C., 80 air kilometers east of

Wrangell, Alaska and 10 air kilometers east-northeast from the Bronson Creek air strip. The southern boundary of the claims is about 3 km north of the Iskut River (see Figure 2). The claims are located on NTS map sheet 104B/10W and 11 E at latitude $56^{\circ}45'$ North and longitude $130^{\circ}59'$ West.

The area is accessible by air from Smithers, Wrangell, Terrace or Stewart to gravel airstrips at Bronson Creek, Snippaker Creek and Johnny Mountain. The nearest road is Highway 37 at Bob Quinn Lake, which is 65 km to the northeast. The only means of access to the Joy property is via helicopter from one of the airstrips. Due to the dense forest growth and steep terrain, helicopter landing sites are not plentiful. However access may be achieved along the Verrett River and above treeline on the eastern portion of the claims.


2.3 Physiography

Topographic relief on the Joy 1 and 2 claims ranges from relatively gentle to very steep. Several of the creeks cut deep and inaccessible gorges. Elevations vary from 200m at the Verrett River to greater than 1600 m at the eastern edge of the claim block.

Much of the property supports a mature forest of spruce, fir and hemlock. Tree line is at an elevation of approximately 1200 meters. Below this, undergrowth is dense and consists mostly of devil's club and huckleberry.

The western Iskut River region lies within the coastal wet belt. Hence rainfall and snowfall tend to range from heavy to extreme. Permanent snowfields exist on

the eastern portion of the claims above approximately 1500 meters elevation.

2.4 History and Previous Work

Although the Stikine River served as the access route to the placer deposits of the Cassiar area which were discovered in 1873, there is no record of any prospecting activity in the lower Iskut River area until 1907. In that year, F.E. Bronson and Associates of Wrangell, Alaska staked nine claims on the lower reaches of Bronson Creek, to the north of Johnny Mountain. The Iskut Mining Company was incorporated in 1910, and in 1911 it undertook a program of trenching and drifting on the Iskoot and Red Bluff claims. A report from that program states that a ton of ore from one cut yielded \$1.20 in gold, 44.2 ounces of silver and 12.45% of copper.

The Iskut Mining Company's claims were subsequently crown granted in 1914 and 1915 and by 1920, numerous trenches had been dug on these claims, along with a 30 foot adit. The latter revealed a number of veins and stringers hosting galena and gold-silver mineralization.

In 1929, Consolidated Mining and Smelting staked 48 claims on Johnny Mountain. There is no record of any further work on these properties until 1954. In that year, prospectors from Hudson's Bay Mining and Smelting located the Pickaxe showing, and found high grade goldsilver-lead-zinc float on the open, upper slopes of Johnny Mountain. Today, these showings are part of Skyline Exploration's Reg property. Hudson's Bay Mining and Smelting allowed these claims to lapse after performing exploration work on them in the mid-1950's.

In the 1960's a number of major mining companies conducted helicopter borne reconnaissance surveys for potential porphyry copper-molybdenum deposits. Several new claims were staked on Johnny Mountain and along Sulphurets Creek in that period, while Kennco and Noranda investigated the original showings on Johnny Mountain. The original crown grants and surrounding claims were explored by a consortium of Cominco, Copper Soo Mining Ltd., and Tuksi Mining and Development Ltd. in 1965. Some 1,800 feet of diamond drilling in 10 holes was completed by this group. Further geological work was done on these properties in 1968.

Texas Gulf Inc. investigated the porphyry copper potential of Johnny Mountain in 1974. Numerous mining companies conducted exploration work elsewhere in the Iskut River area in the 1960's and 1970's. Among these were Iskut Silver Mines, which conducted programs involving geological and geochemical surveys, trenching and packsack drilling on a property located north of the Iskut River and between the Twin and Verrett Rivers.

On various occasions between 1962 and 1972, Newmont Exploration of Canada Ltd. conducted exploration programs involving geological mapping, geophysics and limited diamond drilling on several prospects in an area near the headwaters of Forrest Kerr Creek.

In 1965, Silver Standard Mines commenced work on the E & L prospect, a nickel-copper deposit on Nickel Mountain near the headwaters of Snippaker Creek. This prospect was later optioned by Sumitomo Metal Mining, and by the end of 1971, 1,500 feet of underground work had been completed in addition to intensive trenching, and surface and underground drilling programs.

In 1969, Skyline Explorations Ltd. restaked the Inel property, after having discovered massive sulfide float originating from the head of Bronson Glacier. The Reg property was restaked by Skyline in 1980, and in 1981, a program of trenching and limited diamond drilling was carried out on this property. The Reg property was optioned to Placer Developments Ltd. in 1982, which formed a joint venture program with Anaconda Canada Ltd. to carry out various surveys in addition to trenching and diamond drilling in 1983. Exploration was continued on the property by Anaconda in 1984, after which season it reverted to Skyline Explorations Ltd.

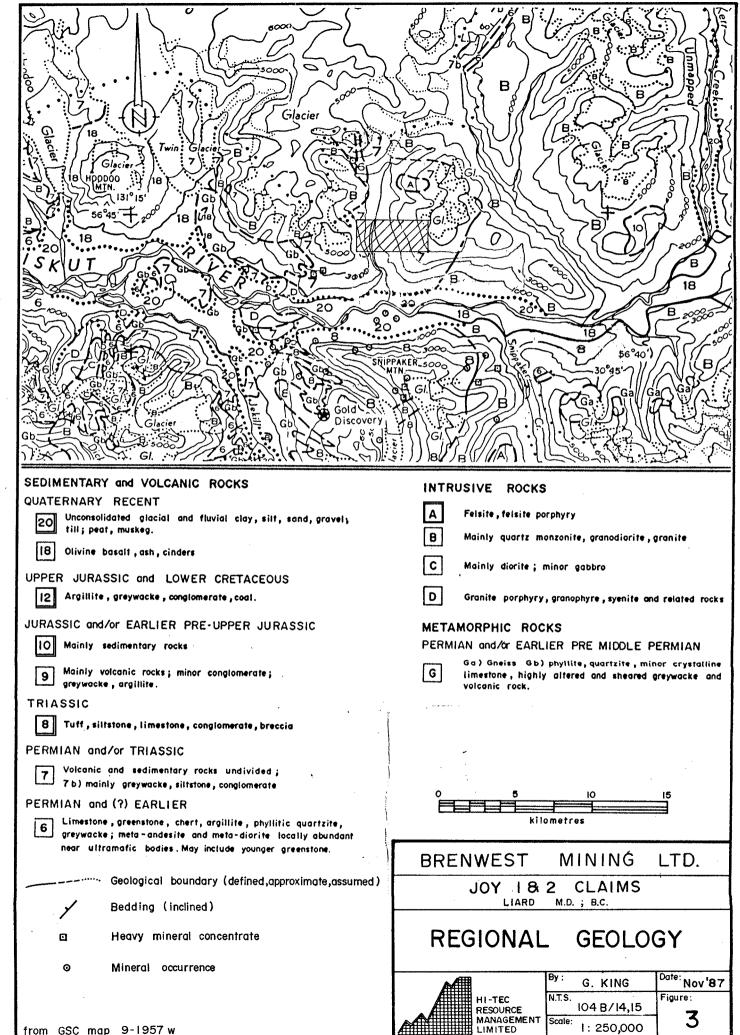
By the end of 1986, Skyline had completed 1,500 feet of underground cross-cutting and drifting in addition to extensive drilling on the Stonehouse Gold Zone. This work confirmed the presence of high grade gold mineralization in addition to silver and copper with good lateral and depth continuity over mineable widths.

Further exploration and development work has been carried out in 1987, as Skyline prepares to bring the Reg Deposit into production. The success of Skyline's program has provided the impetus for an extremely active mining exploration scene in the Iskut River area over the past few years. In 1987, companies such as Western Canadian Mining Corporation, Gulf International Minerals Ltd., Tungco Resources, and Newhawk Gold Mines among others, have carried out extensive drilling programs in the area. Delaware Resources Corporation, in joint venture with Cominco, has carried out a major drilling program on the Snip Property near Bronson Creek, and a production decision is believed to be imminent.

There is no record of extensive exploration work having been done on the area now occupied by the Joy Claim

group prior to 1987. However, the Bax claims of Dupont of Canada Exploration Ltd. occupied in 1980 some of the ground that now is within the Joy 2 claim. A two day program of geochemical sampling was completed by Dupont that year, along with a minor geological examination.

3.0 GEOLOGY


3.1 Regional Geology and Mineralization

The subject property lies within the western most part of the Intermontane Tectonic Belt, close to its boundary with the Coastal Crystalline Tectonic Belt. As a result of the proximity of this area to a regional tectonic boundary, geologic relationships tend to be quite complex. The geology of this area has been studied by Kerr (1930, 1948), and by Grove (1986), and is represented in Geological Survey of Canada Maps 9-1957, 1418A and 1505A. Figure 3 in this report is a generalized map of regional geology for the area.

The oldest rocks in the area are complexly folded and metamorphosed schists and gneisses of probable mid-Paleozoic age. The metamorphism occurs within and adjacent to a plutonic system. The metamorphic rock is commonly overlain by a white to grey crystalline limestone which is believed to belong to a Late Paleozoic sedimentary sequence that includes some minor greenstone units. This oceanic assemblage is part of the Stewart Complex, a tectonic unit which has been correlated with the Cache Creek Group.

The principal component of the Intermontane Tectonic Belt in the Iskut River area is a Mesozoic volcanic and sedimentary sequence. This was originally regarded as a Late Triassic sequence, correlative with the time

equivalent Stuhini Volcanics; a theory which is supported by the presence of Monotis fossils on the north slope of Snippaker Peak and to the west of Newmont Lake. Grove (1986), however, correlates this unit with the Middle Jurassic Unuk River Formation of the Stewart Complex.

On the north slopes of Johnny Mountain and Snippaker Peak, Paleozoic metasedimentary rocks are found to overlie the Mesozoic sequence. These apparently represent the upper plate of a regional, east-west trending thrust fault, which pushed up and over to the south in a manner similar to that of the King Salmon Thrust Fault.

In the Coast Crystalline Tectonic Belt, Paleozoic and Mesozoic sequences are commonly intruded by plutonic rocks of quartz monzonite to quartz diorite composition. These intrusions are Late Cretaceous to Early Tertiary in age. To the east of the main intrusive complex, smaller granitic plugs and stocks are prevalent.

Quarternary flows and ash deposits of olivine basalt are the youngest rocks in the area. Hoodoo Mountain is underlain by this unit, which also occurs in parts of the valleys of the Iskut River and Snippaker Creek.

The first mineral showing to be discovered in the western Iskut River area was located on Bronson Creek, two miles upstream from its confluence with the Iskut River. This is in the vicinity of the property currently being explored by the Delaware Resources-Cominco joint venture. The original showing was marked by a prominent zone of gossan and extensive alteration peripheral to an orthoclase porphyry intrusion. In this vicinity, there is a zone of sheared and altered volcanic and sedimentary rocks which is two miles long by 1,000 to 2,000

feet wide. In this alteration zone, pyritization varies from fracture fillings and disseminations to nearly massive pyrite. Other sulfides which occur in lesser abundance include arsenopyrite, chalcopyrite, galena, sphalerite, tetrahedrite and molybdenite in fractures and quartz veinlets within and adjacent to the intrusion. Significant values of gold, copper and silver were revealed by early work on this zone.

Numerous quartz-sulfide veins and skarn deposits have been reported from various locations along the Iskut River. Low gold values, and good grades of silver, copper, lead and zinc occur in many of these. Mineralized float has been observed below several glaciers in the area.

Near the headwaters of Snippaker Creek, Silver Standard Mines Ltd. and later Sumitomo Metal Mining did extensive surface and underground work on a copper and nickel bearing gabbro intrusion. A total of 3.2 million tons of 0.80% nickel and 0.60% copper have been confirmed in this deposit. However, this has been a low priority target over the past several years, as a result of depressed base metal prices and the relative remoteness of the location.

The two most significant mineral deposits subject to current investigation in the Iskut River area are the Skyline Explorations Ltd. Reg property on the north slope of Johnny Mountain and the Delaware Resources-Cominco Ltd. joint venture Snip property near Bronson Creek. These properties are only five kilometers apart and appear to be quite similar in nature.

At least seven auriferous, mineral rich quartz veins are known to occur on Skyline's Reg property. These are

ŝ

collectively known as the Stonehouse Gold Zone. This zone is hosted in an east-west striking, northerly dipping sequence of Jurassic volcaniclastics and porphyritic flows. A sequence of Middle Jurassic volcanic breccias and well stratified volcanic tuffs and sediments unconformably overlie the mineralized unit. Steeply dipping northeast trending fractures are the only known mineralization environment in the Stonehouse These are developed in a zone some 4,700 Gold Zone. feet long and 900 feet wide. The mineralized zones consist of pods, lenses and quartz veins which contain a variety of sulphide and sulphosalt mineralization in addition to native gold and electrum. Adjacent to the zones, extensive K-feldspar alteration occurs in the wallrock.

In addition to gold, copper and silver also occur in significant quantities. Grove (1986) estimated the known reserves at that time to be 938,446 tons grading 0.73 oz Au/ton, 0.85 oz Ag/ton and 0.76% Cu.

On the Delaware-Cominco joint venture's Snip property, four quartz-carbonate-pyrite shear veins with high gold values have been discovered. These strike 110° to 120° and dip 65° to the southwest, and occur in Mesozoic tuffs and arenites that have been intruded by a dikelike orthoclase porphyry. Extensive K-feldspar, silica, and pyrite alteration is associated with these zones.

3.2 Property Geology

Geological mapping conducted by the author on the Joy 1 and 2 claims has delineated a sequence of volcanic and sedimentary rocks which has been intruded by several small igneous bodies of felsic to intermediate composition.

The dominant lithology on the property is an extensive unit of intermediate volcanics. This material has been encountered elsewhere in the region, where its most distinctive feature is the presence of rounded inclusions of plagioclase porphyry material. Such inclusions occur in outcrop in the southern part of the Joy 2 claim, but were not observed to the north. Here, porphyry material occurs in irregular horizons in massive volcanics. Propylitic alteration is pervasive and intense in this unit, and generally has obliterated primary textural Plagioclase phenocrysts are almost always features. saussuritized and massive epidote commonly occurs as fracture filling material in these volcanics.

The massive, homogenous nature of the intermediate volcanics on the Joy claims, in addition to the high magnetite content of this unit, has led to the suggestion that these rocks are in fact doleritic or microdioritic in composition. The author, however, is of the opinion that this lithology represents the hypabyssal components of an extensive flow sequence.

Distinctive volcaniclastic horizons are encountered in the andesites which outcrop in the northeastern part of the Joy 2 claim. Agglomerates and volcanic breccias with clasts up to 10 cm in diameter are frequently encountered in this area of the property. Talus piles below outcrops of the more massive volcanics in this area commonly contain polygonal shaped blocks which are suggestive of columnar jointing.

In the central part of the Joy 2 claim, some unique alteration patterns are encountered. These include extensive zones of clay alteration, which appear as brownish, rusty colored areas in outcrop. Zones of

intense silicification are also present. Hematization is commonly associated with the clay alteration zones, and specular hematite occurs occasionally in fractures.

A few well-bedded chert horizons are interbedded with the volcanics in the central part of the Joy 2 claim at 4,000 to 4,500 foot elevation. Other sedimentary rocks on the Joy claims include argillite and limestones. Argillites are encountered in the southeastern part of the Joy 2 claim. In the north-central part of the Joy 2 claim at 3,400 foot elevation, there are several outcrops of massive argillite. This material has undergone moderate to intense alteration, and bedding features are not discernible.

A unit of buff-orange weathering limestone occurs in the southeast corner of the Joy 2 claim. This material has been encountered elsewhere in the vicinity, and may represent a significant marker horizon. In this location, it strikes at 015° and dips 71° to the west.

A massive unit of greyish-white, crystalline limestone with occasionally abundant crinoid fossil fragments is encountered on the east side of the Verrett River in the Joy 1 claim. This is a very resistive unit, and outcrops as prominent hummocks in the low lying areas adjacent to the river. The mode of outcropping of this unit, and its confinement to the bottom of the Verrett River Valley, leads the author to conclude that this unit may be unconformable with the volcanic and sedimentary sequence which occupies much of the Joy claims.

The most significant intrusive body on the Joy property is a stock of granitic to granodioritic composition which outcrops in the north central part of the Joy 2 claim. The peripheral areas of the intrusion have

undergone intense sericite and epidote alteration, and the original texture of this material has been obliterated. Epidote is abundant in this intrusion, and massive epidote commonly occurs in fractures within the material. Quartz-epidote veins are occasionally present near the contact of this stock with the surrounding volcanics. Part of the southern boundary of this intrusion appears to be a fault contact with the volcanic unit. This contact strikes at approximately 075°.

In the southern part of the Joy 2 claim, several intrusive bodies of syenitic to dioritic composition intrude the volcanics. The largest of these is approximately 100 meters in diameter.

Dykes of mafic composition are abundant in the Joy 2 claim. There is a minor dyke swarm near the contact of the granite stock with the massive intermediate volcanics. These dykes rarely exceed one meter in width, and the majority of these in this particular area strike at 090° to 110° and dip nearly vertical.

A number of small, whitish-pink aplite sills occur in the volcanics immediately adjacent to the granite stock. The widest of these reaches 1.5 meters in width. These are flat lying bodies, with dips rarely exceeding 20°. Strike and dip directions of these sills are variable.

The structural geology of the Joy claims is extremely complex. This is indicated by the variety of bedding orientations encountered, and the abundance of faults and shear zones which occur in the Joy 2 claim. A geophysical survey conducted on a grid in the north-central part of the Joy 2 claim indicates that the volcanic rocks here have undergone intense folding.

> HI-TEC RESOURCE MANAGEMENT

The Verrett River Valley very probably represents a graben or rift structure of regional extent.

3.3 Mineralization

most significant mineralization occurrence dis-The covered on the Joy property to date is an intensely oxidized, pyrite and chalcopyrite bearing shear zone in This showing is located in the north altered andesites. central part of the Joy 2 claim, and occurs in close proximity to a contact between the volcanic unit and a This shear zone is exposed over a granitic stock. strike length which is estimated by the author to be at least 20 meters and is mineralized over a width of 30 Sample 87-BGR-011, a high grade sample centimeters. taken from this showing, yielded a fire assay value of 190.0 g/tonne (5.542 oz/ton) gold, and geochem values of 226.3 ppm silver (6.6 oz Ag/ton) and 5,701 ppm copper. Highly anomalous gold, silver and copper values were also recorded in samples from a smaller shear zone which converges with the main showing.

Sulfide bearing shear zones, quartz veins and zones of intense clay alteration elsewhere on the Joy 2 claim commonly contain anomalous gold values (Figure 5).

A zone of pyrite mineralization which occurs near the convergence of two small shear zones was discovered in a creek bed in the Joy 1 claim, approximately 300 meters east of the Verrett River. Geochemical analysis of a sample of this material yielded a gold value of 1,350 ppb.

4.0 PROPERTY GEOCHEMISTRY

The objective of the 1987 program was to identify areas of interest on the property on which to focus future exploration efforts. A total of 128 rock grab samples, 182 soil samples and 38 stream sediment samples were taken on the Joy 1 and 2 mineral properties.

The soil sampling program involved the establishment of 6.4 km of grid in the north-central part of the Joy 2 claim. Samples were taken at 20 meter intervals on the grid in all cases where soil development was present. An effort was made to collect B horizon soil wherever possible. Sample depths averaged [5 cm.

An effort was made during the 1987 field season to collect stream sediment samples from all drainages on the property. These samples generally consisted of silt and/or fine sand taken from stream beds.

Rock grab samples were taken in the course of the prospecting and geological mapping program. These samples generally contained sulphide mineralization and many of them were procured from quartz veins and stringers.

All samples collected were analyzed for gold, copper, lead, zinc, silver, arsenic and antimony at Min-En Laboratories Ltd. of 705 West 15th Street, North Vancouver, B.C.

4.1 Discussion of Geochemical Results

4.1.1 Rock Geochemistry

Anomalous base and precious metal values were obtained from several of the rock grab samples taken on the Joy claims. Results for each analyzed element are discussed below:

Gold: Fifty-five of the rock grab samples yielded gold values exceeding 50 ppb. An exceptionally high assay value, 5.542 oz/ton (190.00 g/tonne), was recorded in sample 87-BGR-011.

silver: Thirteen of the rock grab samples yielded silver values exceeding 4 ppm. An especially high value 226.3 ppm, was recorded in sample 87-BGR-011.

Arsenic: No significant arsenic anomalies were recorded in the rock grab samples. Four samples yielded arsenic values exceeding 30 ppm, and the highest value, 50 ppm arsenic, was recorded in sample 87-BBR-012.

Antimony: Four of the rock grab samples yielded slightly anomalous antimony values exceeding 10 ppm. The highest antimony value, 39 ppm, was recorded in sample 87-BKR-044.

Copper: Twenty-one of the rock grab samples yielded copper values exceeding 300 ppm. The highest value, 5,701 ppm, was recorded in sample 87-BGR-011.

Lead: Lead values exceeding 40 ppm were recorded in ten of the rock grab samples. The highest value, 796 ppm, was recorded in sample 87-BNR-014.

Zinc: There were no significant zinc anomalies recorded in the rock grab samples. The highest zinc value, 209 ppm, was recorded in sample 87-BKR-029.

4.1.2 Soil Geochemistry

Anomalous values in base and precious metals were recorded in some of the soil samples taken from the BA grid. Results for each analyzed element are discussed below.

Gold: Anomalous gold values were recorded in soil samples taken at seven stations on the grid. These are isolated occurrences. An exceptionally high value of 3,250 ppb was recorded in a sample taken at the 0+40W 0+00N station, which is near the shear zone from which the 87-BGR-011 rock sample was taken.

Silver: Slightly anomalous silver values were recorded in samples taken from two stations on the grid. The highest silver value, 6.3 ppm was recorded in a sample from the 0+40W 0+00N station, while a value of 3.7 ppm was recorded in a sample from the 1+20W, 1+20S station. 1.1

Arsenic: Slightly anomalous arsenic values exceeding 40 ppm were recorded in samples taken at four stations. These were: L0+40W 0+60S (45 ppm); 0+00 2+40S (49 ppm); 0+00 3+40S (41 ppm); and 0+00 4+00S (48 ppm).

Antimony: Significant antimony anomalies were recorded in samples taken at two stations. These were 0+00 1+40S (59 ppm) and 1+00E 0+00S (49 ppm).

Copper: Anomalous copper values exceeding 250 ppm were recorded in samples taken at three stations. The high-

est value, 767 ppm copper, was recorded in a sample taken at 0+40W 0+00N, which is close to the 87-BGR-011 high grade rock sample location. Anomalies also occur at L 0+80E 0+00S (485 ppm copper) and at 0+00 2+20N (296 ppm copper).

Lead: Slightly anomalous lead values exceeding 30 ppm were recorded in samples taken from the following stations: 1+20W 3+40S (34 ppm lead), 0+40E 1+20S (33 ppm lead), and 1+20W 1+20S (31 ppm lead).

Zinc: Slightly anomalous zinc values exceeding 175 ppm were recorded in samples taken at two stations. These were: 0+40W 0+20S (226 ppm) and 0+80E 1+80S (192 ppm).

4.1.3 Stream Sediment Geochemistry

Anomalous assay values in base and precious metals were recorded in some of the stream sediment samples taken on the Joy claims. Results for each analyzed element are discussed below:

Gold: Anomalous gold values exceeding 30 ppb were recorded in ten samples. The five highest values were: 87-BGL-006 (175 ppb), 87-BSL-017 (115 ppb), 87-BNL-010 (85 ppb), 87-BSL-020 (85 ppb) and 87-BSL-028 (65 ppb).

Silver: One sample, 87-BKL-036 yielded an anomalous silver value of 4.5 ppm.

Arsenic: One sample yielded an anomalous arsenic value of 36 ppm. This was sample 87-BKL-036.

Antimony: A slightly anomalous antimony value of 9 ppm was recorded in sample 87-BKL-036.

Copper: Slightly anomalous copper values exceeding 150 ppm were recorded in two samples: 87-BGL-004 (208 ppm) and 87-BNL-013 (176 ppm).

Lead: Slightly anomalous lead values exceeding 30 ppm were recorded in two samples 87-BML-001 (44 ppm) and 87-BSL-016 (31 ppm).

Zinc: Anomalous zinc values exceeding 200 ppm were recorded in two samples: 87-BML-007 (288 ppm) and 87-BSL-006 (209 ppm).

5.0 GEOPHYSICAL SURVEY

5.1 Results of VLF-EM and Magnetometer Survey

A detailed grid consisting of 6.4 km was established over the northeastern portion of the Joy 1 & 2 claim group. This provided control for soil geochemistry and a VLF-EM/magnetometer survey in order to delineate the source and nature of highly anomalous results gathered earlier in this years exploration program. The grid, labelled "A", was tied into the 1:5,000 geological mapping and it's location can be seen on the geochemical results maps (Figure 5, 6 and 7).

A baseline was chained east and west $(70^{\circ} - 250^{\circ})$ a total of 240 meters from the most anomalous showing, as close to strike as was functionally possible. Detailed crosslines were then chained and picketed at 20 meter intervals, with stations every 10 meters. At the southern end of the grid line spacings were doubled to 40 meters.

The geophysical survey was conducted with an EDA Omni Plus VLF-EM/magnetometer (serial no. 208035) as the

field system and the EDA Omni IV magnetometer as the recording base station. Both systems are microprocessor based. In the field, magnetic total field and vertical gradient readings and VLF-EM in-phase, quadrature and total field readings were stored automatically. The base station recorded the magnetic diurnal variations. Using a Toshiba T1100 computer the data was stored, diurnal variations corrected then contoured or profiled.

The VLF transmitting station in Lualualei, Hawaii (23.4 Khz) was recorded on this grid as it most closely aligned with the geological contacts and trends.

"A" Grid Survey Results

The magnetic survey results, corrected for diurnal variations, and contoured to bring out the magnetic highs and their flanks can be seen on Figure 11a. Readings ranged approximately 1400 gammas from 56,900 gammas to 58,300 gammas. Several zones of high magnetics are In the vicinity of the baseline through the noted. northern half of the grid there is a high degree of magnetic variation. The magnetic highs in this region exhibit short local trends to the north and northwest, however, on the larger scale the magnetic features indicate the possibility of folded structures. On the baseline at 0+20W one such folded high magnetics anomaly is noted, which is coincident with anomalous rock assays.

The southern portion of the grid exhibits a lesser degree of magnetic variation. The results show primarily lower magnetics with the exception of 2 high magnetic anomalies at: 3+50S, LN 0+80W through LN 1+20W; and at 4+20S, LN 0+00, through LN 0+80E.

The VLF-EM, Fraser Filtered results show numerous anomalous zones of varying magnitudes (Figure 11b). Of particular interest are 2 anomalous conductive zones on the north- central portion of the grid. Spanning LN 0+20W through LN 1+20W, between stations 0+50N and 0+90N, is a conductive zone coincident with a high magnetics anomaly, perhaps reflecting a conductive contact. A second conductive anomaly is centered at the baseline, 0+20W, and spans LN 0+00 through LN 1+20W. It is coincident with a folded magnetic high feature and anomalous rock assay results.

6.0 CONCLUSIONS

The Joy 1 and 2 claims are underlain by a sequence of sedimentary and volcanic rocks which is intruded by several small igneous bodies of felsic to intermediate composition. Anomalous gold values were recorded in samples taken from several localities in the andesitic volcanics of the Joy 2 claim. Most of these were samples from quartz veins and shear zones. Samples taken in zones of clay alteration consistently yielded enhanced gold values. The most significant mineralization occurrence discovered during the 1987 exploration program was a pyrite and chalcopyrite bearing shear zone from which a fire assay value of 190.0 g/tonne (5.542 oz/ton) gold, and geochem values of 226.3 ppm silver (6.6 oz Ag/ton) and 5,701 ppm copper were obtained. This shear zone is mineralized over a width of 30 cm, and is exposed over an estimated strike length of at least 20 meters.

The presence of extensive clay alteration zones, and the abundance of sulphide mineralization occurrences with elevated gold values indicate that the andesitic volcanics of the Joy 2 claim may hold the potential for

significant precious metal occurrences. In light of this encouraging evidence, further exploration work is highly recommended.

7.0 RECOMMENDATIONS

In order to fully appraise the gold potential of the Joy property, an exploration program involving further mapping and prospecting, geophysics, and diamond drilling should be undertaken.

A program of airborne magnetometer and VLF-EM surveys should be conducted over the entire property in order to identify plausible exploration targets and to augment an interpretation of the complex structural geology of the property. A ground magnetometer and VLF-EM survey might be considered for selected areas of interest.

A program of intense geological mapping and prospecting should be conducted in the northeastern portion of the Joy 2 claim. The purpose of such a program will be to delineate more plausible drill targets. The existing targets should be tested by diamond drilling.

Further reconnaissance exploration work should be conducted in the western part of the Joy 2 claim. In order to facilitate practical access to this area of the property, one or more helicopter pads should be cleared. The services of an experienced faller should be enlisted for this purpose, as the size of timber in this area is considerable.

> Respectfully submitted, HI-TEC RESOURCE MANAGEMENT LTD.

King B.Sc. George R Geologist

HI-TEC RESOURCE MANAGEMENT LIMITED

December 14, 1987

APPENDIX I

References

REFERENCES

- Carter, N.C. (1987). Geological Report on the Ian 1-4 Mineral Claims, Iskut River Area, Liard Mining Division, British Columbia, Private Report for Ashburton Oil Ltd.
- Carter, N.C. (1987). Geological Report on the Ian 6 and 8 Mineral Claims, Iskut River Area, Liard Mining Division, British Columbia. Private Report for Vanstates Resources Ltd.
- Caulfield, David A. and Ikona, Charles K. (1987). Geological report on the New 7 & 8 Mineral Claims, Iskut River area, Liard Mining Division. Private Report for Ticker Tap Resources Ltd.
- Grove, E.W. (1986). Geological Report, Exploration and Development Prospect on the Skyline Explorations Ltd. Rey Property, Iskut River Area, Northwestern, B.C., Liard Mining Division. Private Report for Skyline Explorations Ltd.
- Geological Survey of Canada (1957). Stikine River area, Cassiar District, British Columbia, Map 9-1957.
- Poloni, John R. (1987). Report on the Hag 2, 4, and 8 Mineral Claims, Iskut River area, Liard Mining Division, British Columbia, Private Report for Cove Energy Corporation.
- Sorbara, J.P. & Associates (1987). Geological Report on the Joy 1 & 2 Mineral Claims, Liard Mining Division, British Columbia. Private Report for Brenwest Mining Limited.
- Strain, D.M. (1981). Geological and Geochemical Report on the Bax Claims, Liard Mining Division, British Columbia. BCMEMPR Assessment Report, 1188.
- Toduruk, S.L. and Ikona, C.K. (1987). Geological Report on the CAM 5 and 6 Mineral Claims, Iskut River area, Liard Mining Division. Private Report for Gigi Resources Ltd.
- Toduruk, S.L. and Ikona, C.K. (1987). Geological Report on the JP 3 and 4 and Cam 9 & 10 Mineral Claims, Iskut River Area, Liard Mining Division. Private Report for Norman Resources Ltd.

APPENDIX II

Statement of Qualifications

à

STATEMENT OF QUALIFICATIONS

I, GEORGE R. KING, of Suite 5, 736 West 14th Avenue, Vancouver, British Columbia, do hereby certify:

- 1. That I am a geologist in the employment of Hi-Tec Resource Management Ltd., with offices at Suite 1500 -609 Granville Street, Vancouver, British Columbia.
- 2. That I am a graduate from the University of Saskatchewan in Saskatoon (1985) with a Bachelor of Science Degree in Geology.
- 3. That my primary employment since 1981 has been in the field of mineral exploration.
- 4. That my experience has encompassed a wide range of geologic environments, and has allowed considerable familiarization with geological mapping, prospecting, geochemical and geophysical techniques.
- 5. That I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- 6) That I hereby grant permission to Brenwest Mining Ltd. for the use of this report in any prospectus or other documentation required for any regulatory authority.

Dated at Vancouver, British Columbia this <u>1674</u> day of <u>December</u>, 1987.

George R. King, B.Sc.

Geologist

APPENDIX III

Laboratory Analytical Methods

LABORATORY ANALYTICAL METHODS

After intial preparation, all samples were analyzed by the Inductively Coupled Plasma (ICP) method for Ag, As, Cu, Pb, Sb and Zn. Gold was determined by the fire assay and atomic absorption method.

After drying soil and stream sediment samples at 95°C, they were screened with an 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. For some of the silt samples, 40 mesh or 20 mesh sieves were used. Rock samples were put through a jaw crusher and a ceramic-plated pulverizer.

For ICP analyses, 1.0 gram of sample material was digested for 6 hours with a hot $HNO_3 - HCIO_4$ mixture. After cooling, samples were diluted to a standard volume. The solutions were then analyzed by a computer-operated Jarrell Ash ICP Analyzer. Reports are formated by a route computer dotline printout.

For Au analyses, a suitable sample weight of 15 or 30 grams was fire assay preconcentrated. Samples were then digested with an Aqua Regia solution and then taken up to suitable volume by adding a 25% HCl solution. Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with methyl isobutyl ketone. Gold is analyzed by Atomic Absorption instruments using a suitable standard solution. The detection limit is 1 ppb.

APPENDIX IV

Geochem Results

	(VALUES IN PPH)	AG	AS	CU	P8	SB	ZN	AU-PPB	*******	
	87 BBR 1	4.5	1	16	18	4	52	29		
	87 BBR 2	5.0	22	213	90	10	108	2		
	87 BBR 3	1.6	1	1072	16	5	43	2		
	87 BBR 4	1.0	1	99	26	2	44	2		
	87 BBR 5	.8	2	22	10	4	- 40	23		
	87 BBR 6	1.2	6	17	19	2	81	55		
	87 BBR 7	.4	10	18	5	2	26	10	******	*****
	87 BBR 8	2.1	10	11	27	4	55	1050		
	87 BBR 9	1.2	2	15	13	3	35	210		
	87 BBR 10	.7	6	9	7	2	27	2		
	87 9BR 11.	1.6	6	25	18	3	45	780		
	87 BBR 12	1.6	50	84	20	? 2	65	1	***************************************	
	87 BBR 13	1.7	12	54	9	<u>,</u> 2	68	2		
	87 BBR 14	1.9	1	129	9	11	24	10		
	87 BBR 16	1.6	13	93	16	7	59	- 4	•	
	87 88R 18	2.3	13	125	19	5	. 50	7		
	87 BBR 19	2.6	1	385	11	3	40	14		
	87 BBR 20	1.6	36	22	17	9	148	20		
	97 BBR 21	1.9	. 2	115	18	2	43	17	• •	
	87 BBR 22	2.5	21	52	•14	1	67	10		
	87BBR30	.8	1	42	17	1	21	32		
	87BBR31	2.3	9	19	16	1	15	65		
	87BBR32	5.7	13	501	18	2	26	2100		
•	87BBR33	.9	10	16	17	1	22	1400		

~	(VALUES IN PPN)	A6	AS	CU	PB	SB	ZN	AU-PPB	
	87 BGR 05	1.3	11	11	16	3	83	78	
	87 BGR 08	1.4	27	144	22	3	152	13	
	87 BGR 09	3.8	4	48	15	4	86	870	
	B7 B6R 10	1.8	10	53	16	3	43	34	
	87 BGR 11	226.3	23	5701	11	2	81	100000	
	87 BGR 12	2.3	15	34	11	2	26	240	
	87 B6R 13	1.6	5	31	56	1	15	53	
	87 BGR 14	6.8	1	918	-19	1	73	128	
	87 BGR 15	,9	6	340	11	1	26	46	
	87 BGR 16	2.9	11	208	13	2	55	220	
	87 BGR 17	1.4	4	288	11	6	38	175	
	87 BGR 18	.7	6	102	9	6	25	44	
	87 BGR 19	.8	12	22	15	5	85	8	
	87 BGR 20	1.0	15	33	7	5	57	2850	
	87 B6R 21	1.6	29	22	11	3	78	157	* * * # * * * * * * * * * * * * * * * *
	87 BGR 22	3.6	28	290	14	4	79	123	
	87 B6R 23	1.4	27	242	9	9	60	67	
	87 BGR 24	3.4	30	281	12	5	64	3600	
	87 BGR 25	1.4	7	32	15	2	32	230	
	87 BGR 26	2.0	2	76	19	1	26	87	
		λ							

.

i

ł		· · · · · · · · · · · · · · · · · · ·					ZN	AU-PPB	
	(VALUES IN PPN 87 BKR 01) AG 6.2	AS 25	CU 1780	PB 19	SB		23	
	87 BKR 02	3.1	16	270	45	1	• 76	26	
	87 BKR 03	1.2	16	24	17		26	23	
	87 BKR 04	2.6	6	20	26	5	63	132	
	87 BKR 06	.7	11	61	10	1	34	45	
	87 BKR 07	2.8	16	61	7	6	55	950	
	87 BKR 08	4.7	28	449	29	9	66	157	
	87 BKR 09	2.3	20	44	11	2	94	12	
	87 BKR 010 87 BKR 011	3.2	30	77	10	5	93	590	
		.6	10	6	12	•	42	34	
	87 BKR 12	1.0	13	. 9	15	2	36	2	
,	87 BKR 13	2.5	22	2680	19	6	49	43	
•	87 BKR 14 87 BKR 15	.7	7	41 153	7	3	15	3	
•	87 BKR 16	, 1.1		128	<u> </u>	15	75 33	46 92	
	87 BKR 17	1.9	5	- 1776	9	5	25	68	•
	87 BKR 18	2.9	16	201	40	· 5	54	35	
	878KR 19	.5	i L	********					
	87BKR 20	1.6	6 12	24 305	16 13	1	45 61	54 104	
	878KR 21	2.1		81	12	2	61	28	
	878KR 22	1.3	13	- 31	14	2	67	58	
	878KR 23	.2	7	19	9	1	14	39	
	878KR 24	5.6	14	349	11	J	59	1800	*********
	878KR 25	.7	4	19	7	2	18	22	
	878KR 26	1.2	19	48	20	3	136	77	.•
	878KR 27	2.2	12	9	11	2	45	63	
	87BKR 28 87BKR 29	.5 32.8	<u>1</u> 20	28 5329	<u>13</u> 25	2	24	42	하는 사용 위 위 위 위 위 위 위 위 속 부 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수
	87BKR 30	3.4	25	620	19	1 2	201 209	12000 195	
	87BKR 31	2.8	19	187	• 24	3	159	79	
	878KR 32	75.6	5	1410	17	4	100	25000	
	878KR 33	49.1	4	651	23	2	28	35000	
	878KR 34 878KR 35	3.1	13	27	14	5	98	235	
	87BKR 39	1.4 2.9	22 17	67 224	18 13	3	102	600	
	87BKR 41	1.1	6	179	18	2	63 86	112 71	
									* = • = * * * * * * * * * * * * * * * *
	878KR42 878KR43	.9 3.1	7	79 389	90 168	1	132	24	
	B7BKR45	10.8	6 11	247	62	39 39	86 106	4	
	878KR45	1.2	3	26	40	1	37	7	
	87BKR46	2.3	19	43	20	. 4	66	132	
	878KR47	1.6	8	20	35	1	57	3	
	B7BKR4B	.8	1	15	16	. 1	31	58	
<u>.</u>	878KR49	2.9	24	9	15	6	39	62	
•	87BKR50 879KR51	2.3	28	40 5	21 12	4	58	225	
	878KR52	1.0	<u>6</u> 7	J 4	10	2	<u>59</u> 77	46 42	
	B7BKR53	1.1	1	14	11	2	31	285	
	87BKR54	1.7	7	3	23	2	60	28	
	878KR55	1.8	12	38	12	1	52	17	
;							_		ş
•									

:	(VALUES IN PPN)	AG	AS	CU	PB	SB	ZN	AU-PPB	****
	87 BHR 05	1.0	45	195	22			^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	87 BMR 06	1.1	35	195	21	9 4	52 64	36 14	
	87 BNR 09	2.1	9	29	16	4	52	1350	
	87 BMR 10	1.8	20	34	17	7	51	930	
	87 BMR 14	4.9	8	399	20		51	65	
	87 BMR 15	3.7	9	86	20	1	64	83 27	
	87 BMR 16	3.7	15	247	23	6	94	34	
	57 5111 10 7	J 11	10	241	23	a	74	24	
•									
·	(VALUES IN PPH)	AG	AS	CU	PB	5B	ZN	AU-PPB	
	87 BNR 1	1.2	9	115	33	1	129	90	~~~~
	87 BNR 2	1.8	- 1	15	32	3		s 14	
	87 BNR 5	1.2	2	25	15	2	86	34	K .
	R7 BNR 6	1.4	2	20		- -	88	13	
	B7 BNR 7	1.5	1	3		÷ 2		20	*
	B7 BKR B	.7	<u>i</u>	37	<u>-</u>		43	25	
	87 BNR 9	1.8	13	3	18 -	5	53	25	
	87 BNR 11	3.5	5 24	15	21	1	201	- 3	
	87 BNR 12	1.6	9	44	51	3	96	1	
	87 BNR 14	2.8	12	12	796	.5	176	2	
	87 BHR 15	2.8	13	35	22	2	73	1	
	87 BNR 16	1.9	26	45	53	1	72	2	
	87 BNR 17	2.3	1	268	20	15	65	.35	
	87 BNR 18	1.6	12	28	38	1	55	1	
						·		-	
1									
:									
1									
•									
				•	,				
•	(VALUES IN PPN)	AG	AS	CU	PB	SB	ZN	AU-PPB	
•••	87 BSR 5	2.6	16	25	29		154	18	
	87 BSR 12	.7	2	8	10	2	35	8	
	87 BSR 13 r	•6	5	15	12	2	44		*******************
	87 BSR 14	.4	4	6	7	2	20	2	
	87 BSR 15	1.4	1	8	10	3	39	3	
	87 BSR 18	2.3	8	172	48	7	57	51	
	87 BSR 19	3.5	15	323	67	10	54	20	
	87 BSR 22	1.4	2	9	18	1	84	88	*******
	87 BSR 23	2.3	1	13	10	3	17	1	
	87 85R 24	1.0	2	5	10	2	77	20	
	87 BSR 25	1.6	9	43	15	2	65	20	
						4.		-	
	87 BSR 26	2.3	20	38	14	2	59	22	

4

.

. .

•

PHONE: (A	04) 980-581		705 West 15th	sts in Min	RATORI eral Environ ncouver, B.C. Canada	V7N 1T2	LEX:VI
				ifica	te of		
Proje	ect:87	TEC RESOU BC 031 . SORBARA	RCE			File: Date: Type:/	SEP1
<u>He h</u> e	reby d	<u>ertify</u> t	he follow	ving resul	ts for samp)	es submitted.	
Sampl Numbe			AU G/TONNE	AU ⁱ OZ/TOŃ		· · · · · · · · · · · · · · · · · · ·	
87 B0 87 B0 87 B0	R 20		190.00 6.80 4.50	5.542 0.198 0.131			
		; 					
	··· .			:	:		
	********	12 % ###################################		,			
		• •					
	:						
				. <u></u>			
		à				1	

(VALUES IN PPN)	AG	AS	CŪ	PB	S9	ZN	AU-PPB	
87 BBL 15 40M	.3	-1	40	14	2	76	10	
87 BGL 1	1.3	<u>-</u> 6	90	16	4	133	40	
87 B6L 2 40M	1.0	2	78	19	4	99	5	
							25	
87 BGL 3 40M	.9		139	16	<u>4</u>	72	25	
87 B6L 4	1.6	1	208 42	23 13	2	95 154	175	
87 BGL 6 87 BGL 7	1.4	6 14	5 65	13	2	71	5	
	1.9							
87 BKL 5	1.3				<u> 5</u>	<u> </u>	5	
878KL 36	4.5	36	13	24	2	143	. 5	
87BKL 37	1.4	4 5	31 57	16 25	3	128	5	
87BKL 38	.9	25		11	3 1	118	10	
878KL 40	1.1	2J -	66		1		1V 	
87 BHL 1	1.3	6	85	44	1	116	15	
87 BHL 2	.7	- 6	46	17	2	93	35	
87 BML 3	.7	1	54	14	2	100	20	
87 BNL 4 40M	.8	1	52	20	1	117	10	
87 BHL 7 40M	1.4	2	46	16	1	288	5	
87 BML 8 40M	1.0	1	58	15	3	111	50	
87 BML 11	1.3	3	96	21	2	161	45	
87 BHL 12 20M	.8	1	68	17	3	86	5	
87 BH 13	1.1	1	44	15	2	154	10	
87 BH 17 40H	.9	1	62	16	3	127	10	
B7 BM 18	1.0	8	14	11	1	122	25	
87 BNL 4 40H	.5	1	32	16	2	50	5	
87 BNL 10	.8	7	66	20	3	109	85 25	
87 BNL 13	.9	•	176	21	3	106		
87 BSL 1 87 BSL 2	1.0	1	75	19	3	122	55	
87 BSL 3	1.6 1.9	20 15	43 47	24 27	1	130 139	40	
87 BSL 4	1.7	15	38 .	26	1	108	5 15	
B7 BSL 6	1.8	12	42	12	1	209	5	
87 BSL 7	1.6	11	51	14	1	64	10	
87 BSL 10	.2	1	42	17	3	108	15	
87 BSL 11	.6	9	82	26	3	122	5	
87 BSL 16	.9	8	106	31	3	118	25	
B7 BSL 17	1.1	5	94	27	3	93	115	
87 BSL 20	.8	6	82	14	3	100	85	
87 BSL 21	.6	1	46	11	3	100	5	
87 BSL 28	.7	3	81	19	3	83	65	
								· · · · ·

ì

.

1

1

.

ł

(VALUES IN PPN)	AG	AS	CU	PB	SB	ZN	AU-PPB	
87 BBS 17	1.5	1	302	11	4	83	15	
B7 BNS 3	1.2	3	13	22	12	53	10	

•

.

•

ŧ

·

:

ł

.

•

; ...

•

÷

i.

r •

1

•

IVALUES		A6	AS	CU	PB	58	ZH	AU-PPB	** ** ***
BA L0+00 BA L0+00		.7	18 . 24	104 111	22 27	1 1	134 112	50	
BA L0+00		.4	. 47	116	22	7	114	20 10	•
BA LO+00		1.3	27	97	30	ī	161	5	
BA L0+00		.6	1	84	19	1	117	5	
BA L0+00		.7	5	107	21	3	107	530	
BA L0+00		.5	10	31	14	2	55	5	
BA L0+00	1+801	.4	2	119	23	3	88	100	
BA L0+00	2+001	1.0	2	174	22	1	110	10	
BA 10+00	2+20N	1.2	2	296	23	1	109	140	
BA L0+00	2+40M	1.4	29	94	19	4	119	5	
BA L0+40		1.1	-3	170	21	1	120	20	•
BA L0+40		1.1	11	95	23 ·	2	163	5	
BA L0+40		.4	2	95	16 -	1	109	20	
BA L0+40			1	102	16	1	103	5	
BA LO+40		1.4	20	70	25	2	134	5	
BA LO+401		.7	2	111	21	1	118	5	
BA LO+401 BA L0+401		1.2 . .7	.	116	53 25	1	133	2	
BA LOHAOI		.7	21	28		2 x	109	5	
BA L0+40		N/S	<u>-</u>		15	J •••••••••	71	5	
BA LO+408		.2	13	25	11	1	65	5	
BA L0+40		1.3	2	12	27	. 2	125	5	
BA L0+408		.7	ĩ	55	19	2	129	5.	
84 L0+406	E 0+20N	.9	6	158	18	1	118	80	
BA L0+408	0+40N	1.1	6	115	26		111	20	
BA LO+40E		.:	5	163	26	2	117	30	
BA L0+408		.7	7	156	26	2	119	. 5	•
BA LO+40E		•	1	89	19	2	108	5	
BA LOHAOE			1	53	18	3	109	5	
BA LOHAOE		1.3	1	62	25	2	124	5	
BA LO+40E		.8	5	63	23	1	121	10	
BA LOHAON		2.4	27	-113	20	2	226	5	
BA LOHAON		1.4	1	99	20	7	124	5	
BA LO+40M		1.9	45	137	14	4	127	20	
BALO+40W1		1.1	5 1	79	16	1	119	5	
BA LOHAON		1.0		26 24	23 17		66 77	3	
BA LO+40M		.5	3	43	14	•	73 97	5	
BA LO+40W		.7	3	31	12	+ 5	81	э 5	
BA LO+40W				<u> </u>	18	·	97	10	
BA LO+40M		1.5	13	25	18	i	127	5	•
BA LO+40W	2+405	1.2	8	61	17	1	117	5	
BA LO+40W		1.3	16	52	25	3	112	5	
BA LO+40W		1.3	4	59	16	7	115	5	
BA LO+40W		1.4	10	95	20	6	142	10	
BA LO+40W		.7	13	25	16	2	79	5	
BA LO+40W		1.5	8	25	23	6	115	5	
BA LO+40W		, B	12	22	16	1	56	20	
BA LO+40W		.9	16	53	5	6	89	5	
BA LO+40W		2.1	28	100	21	1	100	250	
BA LO+40W		6.3	9	767	24	1	120	3250	
BA LO+40H		1.2	23	111	21	1	121	40	
BA LO+40H		1.4	•	143	21	7	133	20	
BA LOHAON				100	14		100	10	
BA LO+40W		.1	16	77	- 11	2	112	5	
BA LO+40M		.5	12	60	16	1	97	10	
	14208	. 6	14	84	20	1	113	5	
BA LO+40W								-	
BA LO+40W BA LO+40W	1+40N	.4	9	94 95	19 18	1	105 140	5	

hand

(VALUES IN PI	PH) AG	G AS	CU	PB	SB	ZN	AU-PPB	
BA L0+40H 1+			128	18	2	115	5	
BA L0+40# 2+0			143	21	4	116	5	
BA LO+40W 2+2			• • •		. •		•	
BA L0+40# 2+4		i 10	91	12	2	85	10	
BA LO+BON 0+			100	7	4	111	5	
BA LO+BOH O+			89	19	i 4	117	5	우리 아이가 아이가 아이가 아이는 것 같은 것이 가지 않는 것 같은 것 같
BA L0+80W 0+4	-		109	22	2	112	10	
BA LO+BON 0+		• •	•••	**	•	***		
BA LO+BOW 0+8		1	94	18	4	137	5	
BA LO+80W 1+0			53	13				
BA LO+80W 1+2					;	89	5	
			67	13	4	107	20	
BA LO+80W 1+4			68	12	4	100	5	
BA LO+BON 1+			53	17	5	110	30	
BA LO+BOW 1+E			67	18	4	98	5	
BA L0+80W 2+0			80	23	5	103	5	
BA LO+BOW 2+2		i 11	14	12	5	84	10	
BA LO+80W 2+4	. 80	18	58	21	4	159	5	
BA LO+BON 2+6	608 2.2	9	33	12	7	109	· 5	
BA L0+80W 2+8	.7	14	38	12	2	77	5	
BA L0+80W 3+0	05 1.2	. 7	24	17	7	104	5	
BA LO+80W 3+2	205 1.5	9	10	9	5	86	10	** * = * * * * * * * * * * = = = * * * *= = = *
BA LO+80W 3+4			10	6	6	128	5	
BA LO+BON 3+6			49	18	3	104	5	
BA LO+80W 3+8			96	17	4	117	10	
BA LO+80W 4+0			21	10	4 L	88		
BA LO+80W 0+2			63	16			5	マック こ に じ う ひ 白 か こ う ひ う ひ う ひ う つ う し し し し し し し う う う う つ う う つ う し つ う し し う こ し し う う う う う う し し し し う う う う
BA LO+BOW 0+4		15	50		2	96	5	
BA LO+BOW O+6				13	6	111	5	•
BA LO+BOW 0+B			48	20	1	93	15	
		17	63	13	5	100	10	
BA LO+BOW 1+0		19	104	19	4	107	20	
BA L0+80W 1+2		10	49	21	7	117	5	
BA LO+BOW 1+4		1	21	27	7	96	5	
BA LO+90W 1+6		12	18	10	1	94	10	
BA LO+BOW 1+8	ON .4	9	35	• 21	4	80	10	
BA LO+80W 2+0	0N .8	2	39	21	3	98	5	
BA LO+80W 2+2	ON .9	13	72	16		113	10	****
BA LO+BOW 2+4		8	16	19	6	67	5	
BA L1+20W 0+0		2	90	21	6	122	20	
BA L1+20# 0+20		1	94	20	7	132	5	
BA L1+20W 0+4		5	75	18	2	120	5	
BA L1+20W 0+6		14	76		****			
BA L1+20W 0+80				16	7	114	10	
BA L1+20W 1+0		4	82	-21	2	119	5	
		17	42	18	5	96	5	
A L1+20W 1+20		20	10	31	7	168	5	
A L1+20W 1+4		14	42	26	4	133	5	*****
A L1+20# 1+60		17	22	21	5	108	5	
A L1+20W 1+BC		6	32	18	2	78	5	
A L1+20W 2+00		1	97	16	5	107	10	
A L1+20W 2+20	S 1.3	6	39	20	3	166	5	
A L1+20W 2+40	S.5	5	18	19	- 3	59	5	
A L1+20W 2+60		8	77	23	····ž····	128	5	
A L1+20W 2+80		Ĩ.	37	29	6	112	5	
A L1+20W 3+00		1			-			
			32	19	5	88	5	
A L1+20W 3+20		26	13	26	10	126	10	
A L1+20W 3+40			13	34	9	105	5	
A L1+20W 3+60		23	15	26	7	132	10	
A L1+20W 3+80		1	68	10	4	88	5	
A 11+208 4+00	S 1.2	21	29	18	5	69	5	
A LJ+20W 0+20		9	82	17	6	160	5	

.

فتعنفق

in the second

IVALUES IN PPH 1 BA L1+20W 0+60N	A6 .7	AS 11	<u>CU</u> 24	PB 22	<u>5B</u>	ZN 79	AU-PPB 10	
BA L1+20W 0+80N	.6	15	72	14	3	124	5	
BA L1+20W 1+00W	.5	19	73	15	2	93	5	
BA 11+20W 1+20N	1.4	15	34	12	4	82	5	
BA L1+20W 1+40N	.7	19	88	15	2	111	5	
BA L1+20W 1+60N	.8	20	69	22	4	127	5	
BA L1+20W 1+80N	•2	14	57	19	2	93	5	
BA L1+20W 2+00W	1.2	23	43	12	6	128	5	
BA L1+20W 2+20N	1.3	1	62	18	7	138	5	
BA L1+20W 2+40W	1.3	20	37	14	5	106	5	

. .

• • •

.

.

(VALUES IN PPN)	AG	AS	CU	PD	Sð	ZN	AU-PPB	
BA L1+00E 0+008	1.4	1	215	16	49	133	5	## \$#\$\$\$ \$ \$\$\$ \# \$\$ \$\$ 4 4 5 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7
BA L1+00E 0+205	.7	. 5	144	22	12	97	5	
BA L1+00E 0+409	• 6 ·	2	128	16	3	137	5	
BA L1+00E 0+605	. 1.1	13	150	22	2	130	5	•
BA 11+00E 0+808	.3	11	B1	21	1	144	5	
BA L1+00E 1+008	1.0	8	118	17	2	121	10	•
BA L1+00E 1+208	1.5	13	115	20	4	117	20	
BA L1+00E 1+408	.4	12	94	10	1	91	5	
BA L1+00E 1+608	1.5	10	67	8	1	142	5	
BA LO+BOE 0+005	1.5	31	485	22	<u> </u>	138	40	
BA L0+80E 0+205	1.5	34	164	20	1	143	10	
BA LO+90E 0+405	1.0	3	144	17	l l	146	20	
BA LO+BOE 0+608	1.2	25	158	. 24	1	139	5	
BA LO+BOE 0+808 BA LO+BOE 1+008	1.1	1 30	118 111	27	8 7	129	5	
BA LO+BOE 1+205	<u> </u>	22	130	<u>25</u> 23		<u>142</u> 131	<u>10</u> 5	
BA LO+80E 1+40S		1	112	19	у Б	108	5	
BA LO+90E 1+608	.2	22	53	13	5	94	5	
BA LO+BOE 1+805	.7		98	26	2	192	5	
BA LO+BOE 2+005	.9	16	97	19	ĩ	137	5	
BA L0+80E 2+208	.7	19	46	15	1	111	10	
BA LO+80E 2+408	1.8	30	25	27	9	99	5	
BA LO+BOE 2+608	1.5	1	109	18	7	123	- 5 -	
BA LO+80E 2+805	¥/\$							
BA LO+80E 3+008	1.0	25	68	23	2	127	5	
BA LO+BOE 3+208	1.1	26	74	21	2	114	10	
BA L0+80E 3+40S	1.0	15	66	30	7	107	5	
BA LO+BOE 3+608	.7	1	27	21	3	85	5	•
BA LO+BOE 3+808	2.3	32	75	28	1	127	5	
BA LO+BOE 4+00S	2.1	2	79	23		118	5	
BA LO+SOE 0+00N	• Q	24	148	22	5	107	20	
BA LO+60E 0+20N BA LO+60E 0+40N	N/S	77			-			
BA LO+60E 0+60N	.9 X/S	27	118	. 15	5	. 118	30	
BA LO+60E O+BON	.3	26	194	74	2	177	•	
BA 10+60E 1+00N	N/S		126	24	2	133	5	
BA LO+60E 1+20N	.2	24	115	12 [.]	6	123	5	
BA LO+60E 1+40M	N/8	••		••	•	• 6 9	•	
BA LO+60E 1+60H	1.9	19	163	25	6	159	20	
BA L0+00 0+005	.6	10	111	20	7	117	5	
BA L0+00 0+205	1.9	1	214	19	8	146	5	
BA L0+00 0+405	1.9	5	176	20	8	151	5	
BA L0+00 0+608	.9	1	113	16	1	125	5	
BA L0+00 0+905	1.3	21	142	19	1	149	10	
BA L0+00 1+005	1.5	12	52	21		155	5	* ** ***
BA L0+00 1+20S	.5	1	85	15	1	134	5	
BA L0+00 1+405	.2	1	105	13	59	119	5	
BA L0+00 1+608	.,	1	93	17	1	112	5	
SA L0+00 1+805	1.5	10	56	19	10	136	10	
BA L0+00 2+005		7	30	16		108		***
B4 L0+00 2+205	1.0	17	66	16	4	123	5	
BA L0+00 2+408	1.7	49	121	15	2	138	5	
BA L0+00 2+608	2.0	Ţ	44	25	7	139	5	
BA L0+00 2+805	1.5	1	156	16	1	120	5	
BA 10+00 3+005		9	51	18		117	5	
BA L0+00 3+205	1.7	5	63	. 19	4	127	5	
BA L0+00 3+405	2.4	41	98	22	1	143	5	
BA L0+00 3+608	1.2	28	97	27	•	130	10	
BA LO+00 3+805	.1	21	92	15		93	5	
BA L0+00 4+005	2.0	49	60	20	•	125	5	

·

APPENDIX V-A

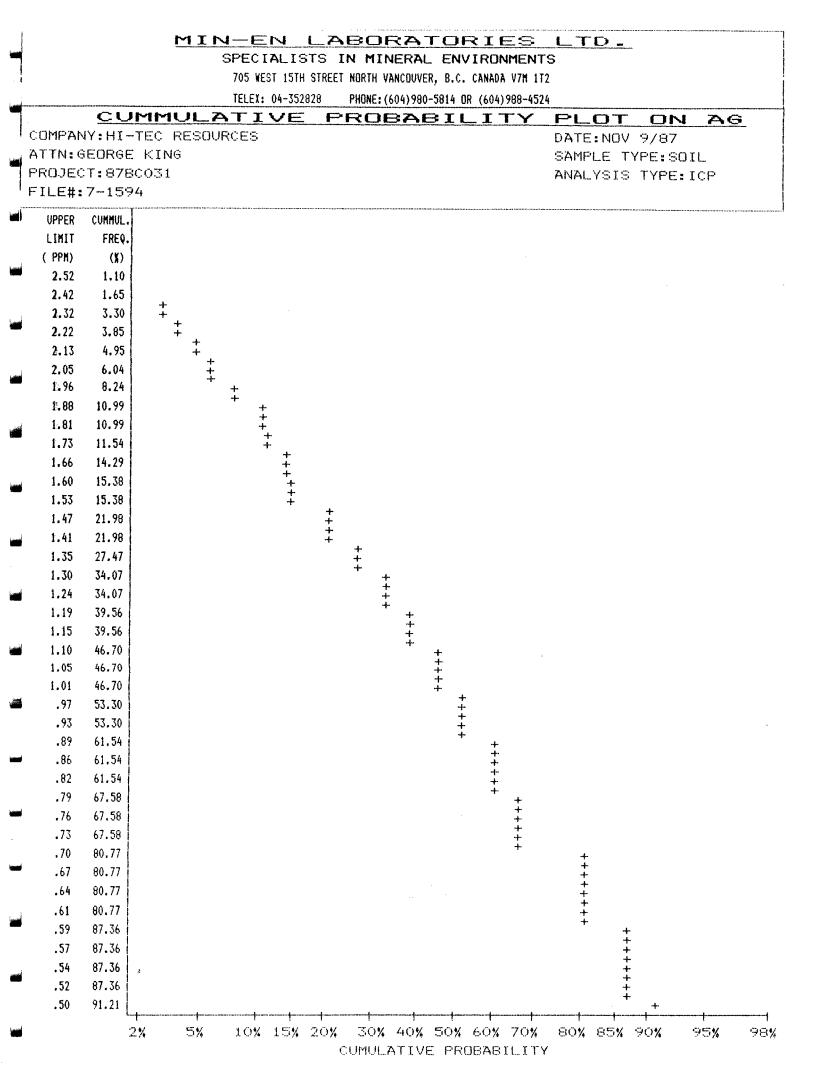
Statistical Analysis of Data for Soil Geochem Survey

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS 705 VEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7H 1T2

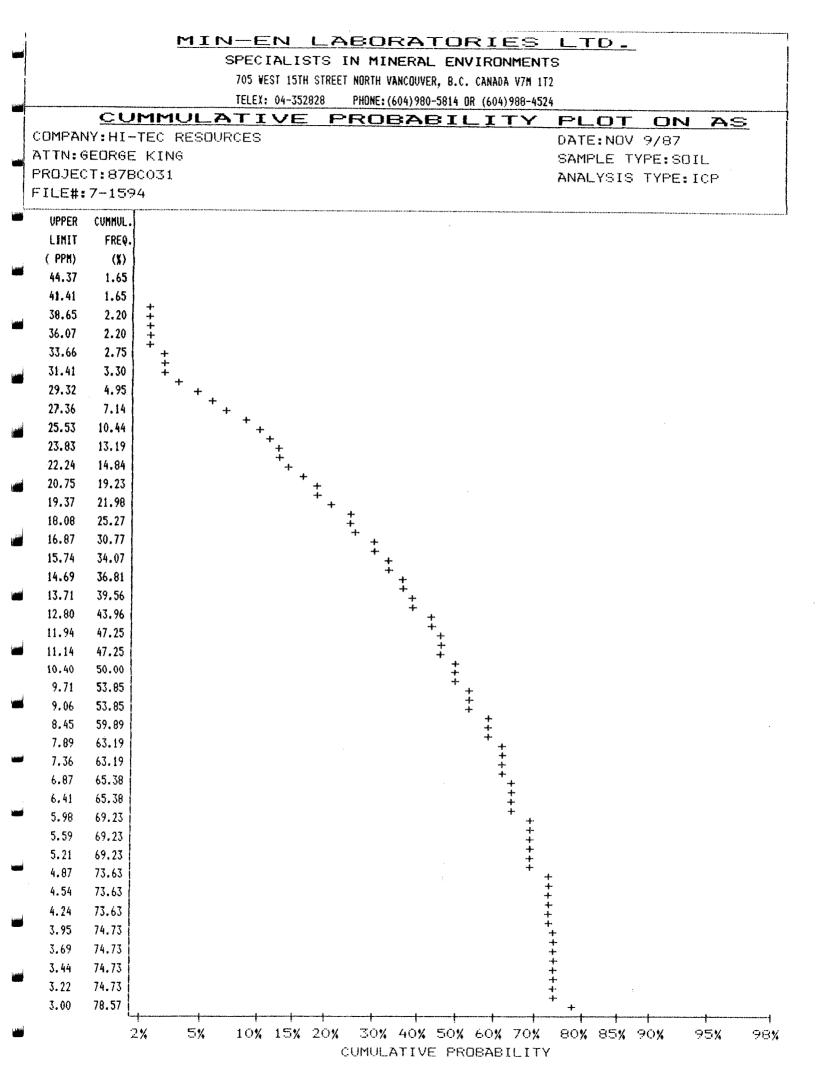
TELEX: 04-352828 PHONE:(604)980-5814 OR (604)988-4524

CORRELATION COEFFICIENTS

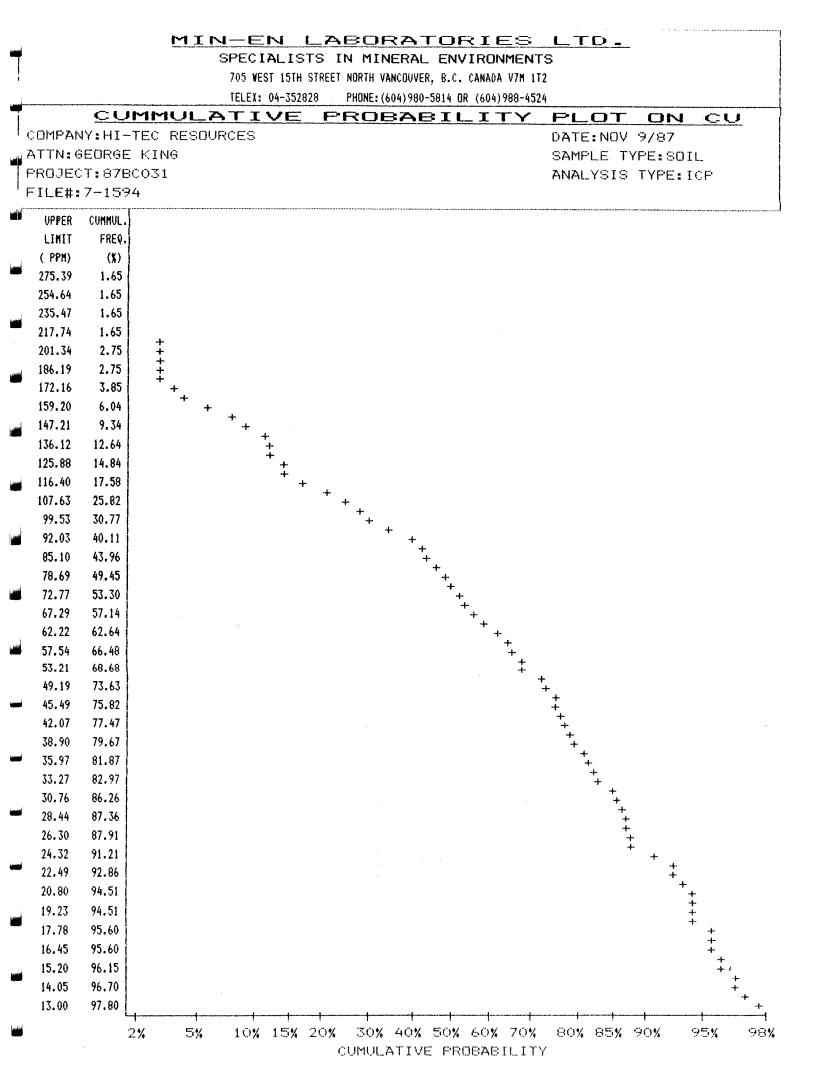

COMPANY:HI-TEC RESOURCES ATTN:GEORGE KING PROJECT:878C031 FILE#:7-1594 DATE:NOV 9/87 SAMPLE TYPE:SOIL ANALYSIS TYPE:ICP

THE TABLE BELOW REPRESENTS THE PEARSON CORRELATION MATRIX, SHOWING THE INTER-ELEMENT CORRELATION COEFFICIENTS. THOSE VALUES THAT EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIGNIFICANCE ARE SHOWN IN DARKER PRINT AND UNDERLINED.

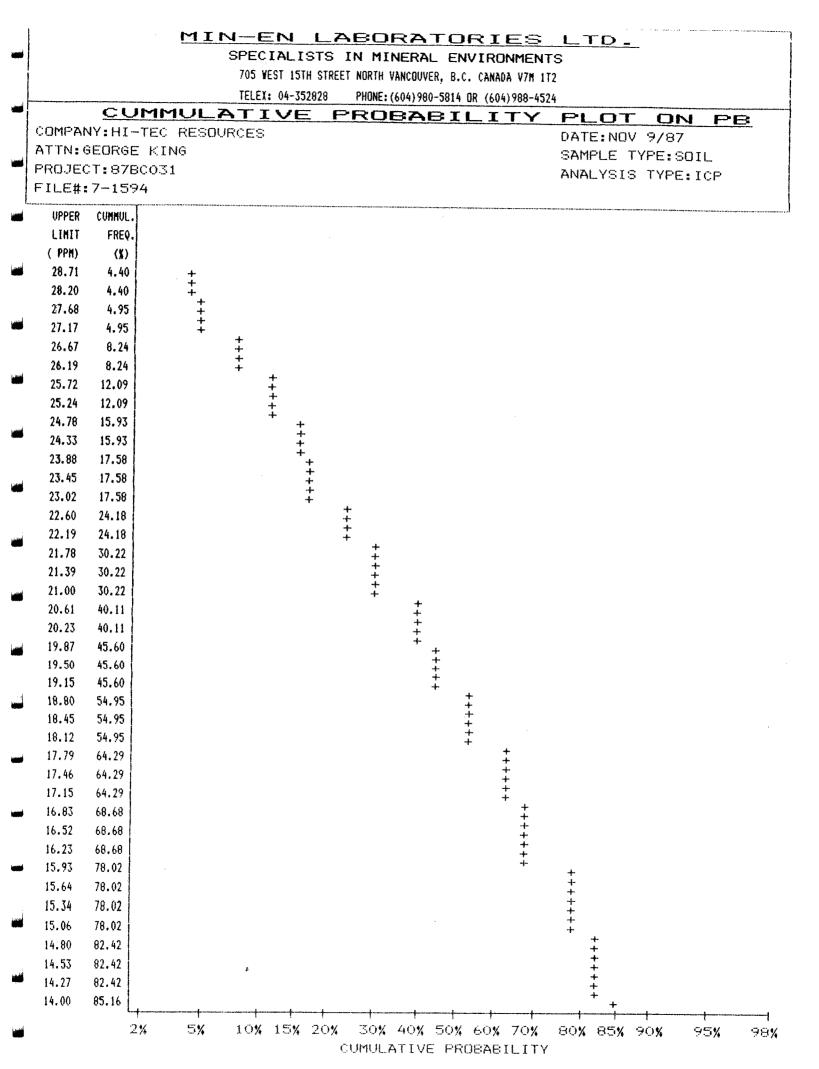
4		AG	AS	cU	PB	S8	ZN	AU
AG	1	.000	.210	.377	.268	.031	.310	.572
AS	:		1.000	.032	.096	093	.173	024
	,			1.000	.169	.008	.285	<u>.695</u>
I PE	:				1.000	057	.384	.079
SE	: {					1.000	.042	052
Τzn	1						1.000	.005
¹ A∪	1							1.000


	SPEC	IALISTS IN MI	NERAL ENVIRONMENTS	
	705 ¥	EST 15TH STREET NORTH	VANCOUVER, B.C. CANADA V7N 1T2	
	TELEX	04-352828 PHONE:	(604)980-5814 DR (604)988-4524	
		ICAL S	UMMARY ON AG	
OMPANY: HI-TEC				NOV 9/87
TTN:GEORGE KI				E TYPE:SOIL
ROJECT:87BC03	1		ANALY	SIS TYPE:ICP
ILE#:7-1594				
NUMBER OF S	AMPLES: 18	2	5 HIGHEST AG VA	LUES:
MAXIMUM VAL			BA L0+40¥ 0+00N	
MINIMUM VAL	JE:	.20 PPM	BA L1+20₩ 1+208	
MEAN:		.11 PPM	BA L0+80W 2+208	
STD. DEVIAT			BA L0+00 3+40S	
COEFF. OF V	ARIATION:	.60	BA L0+40W 0+205	2.4 PPM
			1	
HISTOGRAM FO	R AG	CLASS INT	ERVAL = .1	
MID CLASS	CLASS	, , , , , , , , , , , , , , , , , , ,		an
PPM				
< .50	8.79			
.55	10.99			
.65	13.19			
.75	6.04			
.85	8.24			
.95	0.00			
1.05	13.74			
1.15	5.49			
1.25	6.59			
1.35	5.49			
1.45	0.00			
1.55	7.69			
1.65	2.75			
1.75	.55			
1.85	2.75			
1.95	0.00			
2.05 2.15	3.30 0.00			
2.25	1.65			
2.35	0.00			
2.45	1.65			
> 2.50	1.32			
· • • • • • • • • • • • • • • • • • • •	and the first data			
		0.00%	6.87%	13.74%
			FREQUENCY (%)	

t

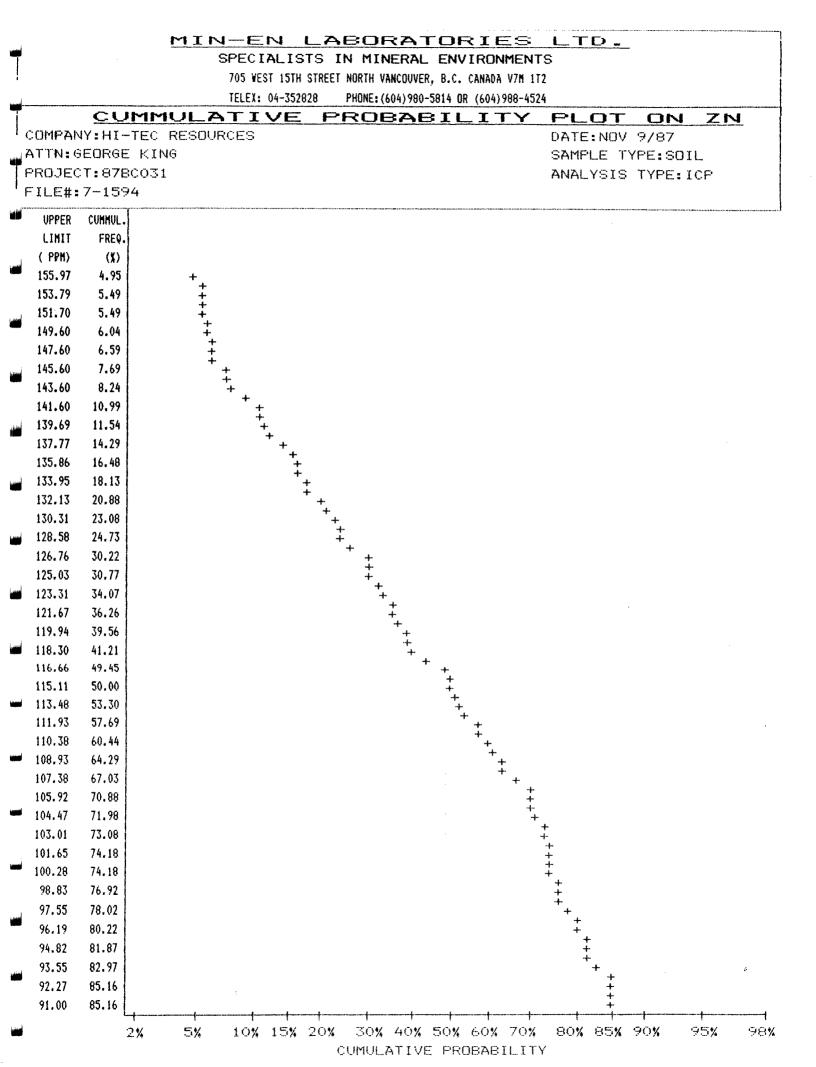


	SPECIA	ALISTS IN M	INERAL ENVIRONMENTS	
	705 ¥ES	I 15TH STREET NORT	H VANCOUVER, B.C. CANADA V7H 1T2	
			E:(604)980-5814 OR (604)988-4524	
		ICAL S	SUMMARY ON	
MPANY:HI-TEC				DATE:NOV 9/87
TN:GEORGE KI				SAMPLE TYPE:SOIL
ROJECT:878003	1			ANALYSIS TYPE:ICP
[LE#:7-1594				
······································				
NUMBER OF S			5 HIGHEST A	
	UE: 49.0			+40S 49 PPM
	UE: 0.0			HOOS 48 PPM
MEAN:	12.1			0+60S 45 PPM
	ION: 10.0		BA L0+00 3-	
CUEFF. UF V	ARIATION: .8	5.5	BA LO+80E	0+20S 34 PPM
			,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
HISTOGRAM FO	R AS	CLASS IN	ITERVAL = 2.1	
MID CLASS	CLASS			
PPM	<u> </u>			
< 3.00	21.43			I THE REAL PROPERTY AND A DESCRIPTION OF
	9.89			NUTRILLIEL <u>PRESER</u> EN STELEE STERC (America)
6.15	6.04			
8.25	9.34			
10.35	6.59			
12.45	7.69			
14.55	5.49			
16.65	7.14			
18.75	4.95			
20.85	5.49			
22.95	3.30			
25.05	4.40			
27.15	2.75			
29.25	2.20			
31.35	1.10			
	.55			
33.45		1		
33.45 35.55	0.00	1		
33.45 35.55 37.65	0.00			
33.45 35.55 37.65 39.75	0.00 0.00			
33.45 35.55 37.65 39.75 41.85	0.00 0.00 .55			
33.45 35.55 37.65 39.75 41.85 43.95	0.00 0.00 .55 0.00			
33.45 35.55 37.65 39.75 41.85	0.00 0.00 .55			
33.45 35.55 37.65 39.75 41.85 43.95	0.00 0.00 .55 0.00 1.32			21.43%

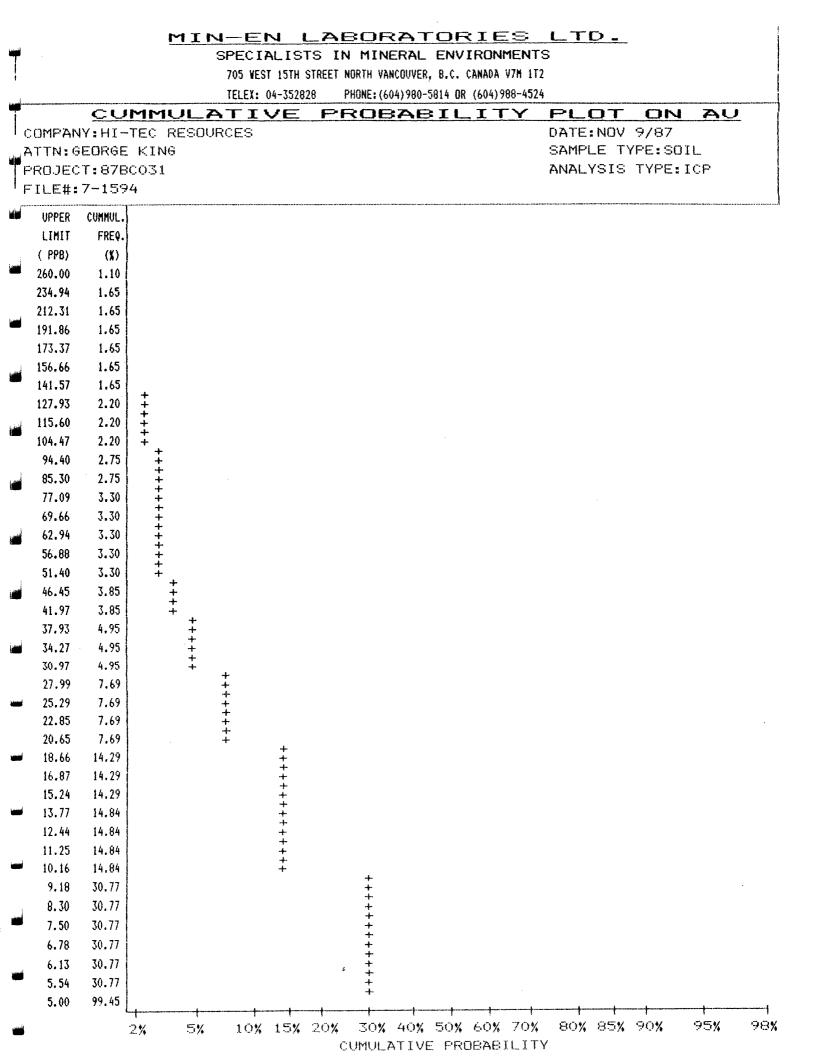

ß

			ORTH VANCOUVER, B.C. CANADA V7M 1T2 HONE:(604)980-5814 OR (604)988-4524		
ST			SUMMARY ON	cu	
MPANY: HI-TEC	RESOURCES		Di	ATE: NOV 9/87	
TN:GEORGE KI	46		Si	AMPLE TYPE:SO	IL
0JECT:878C03	1		A	NALYSIS TYPE:	ICP
LE#:7-1594	.				
NUMBER OF S	AMPLES: 182		5 HIGHEST C	J VALUES:	
MAXIMUM VAL	JE: 767.	OO PPM	BA L0+40W 0		PPM
MINIMUM VAL	JE: 10.4	00 PPM	BA LO+80E 0		PPM
MEAN:	86.	51 PPM	BA L0+00 2+:	20N 296	PPM
STD. DEVIAT	ION: 74.	39 PPM	BA L1+00E O	+005 215	PPM
COEFF. OF V	ARIATION:	86	BA L0+00 0+:	20S 214	PPM
HISTOGRAM FO	R CU	CLASS			
MID CLASS	CLASS		941 - 9 A 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 194	a 1 9 - 6 - 98 - 98 - 98 - 98 - 98 - 98 - 98 - 9	
PPM	%		44111111111111111111111111111111111111		
< 13.00	2.20				
20.08	10.99				
34.23	8.79				
48.38	10.44				
62.53					
76.68	8.79				
90.83					
	10.99				
119.13	7.14				
133.28	2.20				
147.43	3.85		1 Intel Trittels at		
161.58 175.73	3.85 1.65		Hennerman		
1/0./3	0.00				
204.03	0.00				
218.18	1.10	Alarman tildt			
232.33	0.00	THE THE PARTY OF T			
246.48	0.00				
260.63	0.00				
274.78	0.00				
288.93	0.00	1			
> 296.00	1.32				
		0.00%	6.87% FREQUENCY (%)	13.74%	······
			 Constructing the second state of the Application 		

			MINERAL ENVIRONMENTS	
			NORTH VANCOUVER, B.C. CANADA V7M 1T2	
		*****	2HONE: (604) 980-5814 DR (604) 988-4524	
MPANY:HI-TEC		<u>ICAL</u>	SUMMARY ON F	
TN:GEORGE KI				E:NOV 9/87 PLE TYPE:SOIL
ROJECT:87BCO3				LYSIS TYPE: ICP
(LE#:7-1594	L			MIGIO HTELLOF
LLE.#*/ 1.277				
NUMBER OF SI	MOLES. 100		5 HIGHEST PB	1211000
MAXIMUM VAL				IOS 34 PPM
MINIMUM VALU			BA L1+20# 3+4 BA L0+40E 1+2	
MEAN:		00 FFM 15 PPM	BA L0+40E 1+2 BA L1+20¥ 1+2	
STD. DEVIAT				05 31 PPM 0S 30 PPM
COEFF. OF V			BA L0+802 344 BA L0+00 4+00	
VULEE. UE VA		á 1	an 20100 4100	.u uv rrn
HISTOGRAM FOR	2 PB	<u>(1 200</u>	INTERVAL = .85	
		~~ L_ F71 -2		
	CLASS			
PPM	*			
< 14.00	14.84			
14.43	3.30			
15.28	4.40			
16.13	9.34			
16.98	4.40			
17.83	9.34			
18.68	9.34			
19.53				
20.38	5.49			
21.23	9.89			
22.08	6.04			
22.93	6.59			
23,78	1.65			
24.63	3.85			
25.48	0.00			
26.33	3.85			
27.18	3.30			
28.03	.55			
28.88	.55			
29.73	2.20			
30.58	0.00			
> 31.00	1.32			
		(
		0.00%	7.42%	14.84%



	705 ¥	EST 15TH STREET NORT	MINERAL ENVIRONMENTS TH VANCOUVER, B.C. CANADA V7H 1T2	
	*****	**********	NE: (604) 980-5814 OR (604) 988-4524	.
MPANY:HI-TEC		ICAL :	SUMMARY ON SE	£ NOV 9/87
TN:GEORGE KI				E TYPE:SOIL
DJECT:87BC03				SIS TYPE:ICP
_E#:7-1594	L		стач, н _е , т	9 A 99 1 1 1 1 A 2 1 1 1
NUMBER OF ST	AMPLES: 18	2	5 HIGHEST SB VA	LUES:
MAXIMUM VAL			BA L0+00 1+40S	
MINIMUM VAL	JE: 0.	.00 PPM	BA L1+00E 0+00S	49 PPM
MEAN:	. 4.	.18 PPM	BA L1+00E 0+20S	12 PPM
STD. DEVIAT	(ON: 5.	.85 PPM	BA L0+00 1+80S	10 PPM
COEFF. OF VA	ARIATION:1.	40	BA L1+20₩ 3+20S	10 PPM
HISTOGRAM FOR	R SB	CLASS IN	TERVAL = .35	
1ID CLASS	CLASS			Waxee option () () () () () () () () () (
FPM	%			
1.00	9.89			
1.17	15.93			
1.52	0.00			
1.87	13.19			
	0.00			
2.57	0.00			
	11.54			
3.27 3.62	0.00			
3.97	13.74			
4.32	0.00			
4.67	0.00	ļ		
5.02	9.89			
5.37	0.00			
5.72	0.00			
6.07	9.89			
6.42	0.00			
6.77	0.00			
7.12	10.99			
7.47	0.00			
7.82				
> 8.00	5.27			
		<u> </u>		


											NL ENV /ER, B.C.						
						: 04-					30-5814 01						
ጠለቋማ እ ቀ							E	PI	20	BA	BIL	<u>- I 7</u>		<u>-OT</u>	ON	SE	3
	IY:HI- EORGE			.ວມປ	RUES										9/87		
	T:878														YPE:SO		
	7-159		L										ANA	LASI2	TYPE:	(CP	
		· ·											 				
UPPER	CUMMUL.																
	FREQ.																
(PPM) 12.36	(%) 1.10																
12.38	1.10																
10.86	1.65																
10.19	1.65																
9.55	2.75	+++++++++++++++++++++++++++++++++++++++															
8.95	3.85	÷															
8.39	3.85	[+++++														
7.87	5.49		+	+													
7.38	5.49			+++++													
6.92	16.48			+			÷										
6.49	16.48						+++++										
6.08	16.48						+										
5.70	26.37							-	+ +								
5.35	26.37							-	+ + + + +								
5.01	26.37							-	+	+							
4.70	36.26									+							
4.41	36.26									+++++++++++++++++++++++++++++++++++++++							
4.13	36.26									+	+						
3.87	50.00										+ +						
3.63	50.00										++++						
3.40 3.19	50.00										+ + +						
2.99	61.54										++						
2.80	61.54											+					
2.63	61.54											+ + -					
2.47	61.54											+					
2.31	61.54											+ +					
2.17	61.54											+++++++++++++++++++++++++++++++++++++++					
2.03	61.54											+- +					
1.90	74.73												+				
1.79	74.73												+				
1.67	74.73												+ +				
1.57	74.73												+ +				
1.47	74.73												+- +-				
1.38	74.73																
1.29	74.73												+ +				
1.21	74.73												+++++++++++++++++++++++++++++++++++++++				
1.14	74.73												+ + + + +				
1.07	74.73												+ +			(
1.00	90.11							4				1	 		+		

	SPECIAL	ISTS IN M	IINERAL ENVIRONMENTS	i	-
			H VANCOUVER, B.C. CANADA V7M 1T2		
	TELEX: 04-		E: (604)980-5814 OR (604)988-4524		
		CAL S	SUMMARY ON		~ /~ 7
OMPANY: HI-TEC				DATE:NOV SAMPLE T	-
TIN:GEORGE KI ROJECT:878C03:					TYPE: ICP
RUJECT:878003. TLE#:7-1594	1			MUMETOIO	(TPE:IVP
1664:/-1024					
NUMBER OF SA	AMDIEC. 100		5 HIGHEST	7.1 17.1 115	
	UE: 226.00	PPM	BA LO+40W		
	JE: 55.00		BA LO+80E		192 PPM
	115.16		BA L1+20W		
	ION: 24.23		BA L1+20₩		
	ARIATION: .21		BA LO+40E		
HISTOGRAM FOR	R ZN	CLASS IN	TERVAL = 3.85		
	CLASS		nin ya saya (1999) dalama ka da ya Afrikani ya ka		, , , , , , , , , , , , , , , , , , ,
PPM	%				
	14.84				
	3.85				
96.78	4.95				
4 mm					
100.63	2.75				
104.48	3.85				
104.48 108.33	3.85 9.89				
104.48 108.33 112.18	3.85 9.89 8.79				
104.48 108.33 112.18 116.03	3.85 9.89 8.79 7.14				
104.48 108.33 112.18 116.03 119.88	3.85 9.89 8.79 7.14 8.24				
104.48 108.33 112.18 116.03 119.88 123.73	3.85 9.89 8.79 7.14 8.24 5.49				
104.48 108.33 112.18 116.03 119.88 123.73 127.58	3.85 9.89 8.79 7.14 8.24 5.49 6.59				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 3.30				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98 146.83	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 3.30 1.10				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98 146.83 150.68	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 3.30 1.10 1.10				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98 142.98 146.83 150.68 154.53	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 3.30 1.10 1.10 1.55				
104.48 108.33 112.18 114.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98 1446.83 150.68 154.53 158.38	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 3.30 1.10 1.10 1.55 1.65				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98 142.98 146.83 150.68 154.53	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 1.10 1.10 1.10 .55 1.65 1.10				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98 146.83 150.68 154.53 158.38 162.23	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 3.30 1.10 1.10 1.55 1.65				
104.48 108.33 112.18 116.03 119.88 123.73 127.58 131.43 135.28 139.13 142.98 144.83 150.68 154.53 158.38 162.23 166.08	3.85 9.89 8.79 7.14 8.24 5.49 6.59 6.04 3.85 3.30 1.10 1.10 1.55 1.65 1.10 .55 1.32			- -	

₿

			BORATORIES L	<u>_TD.</u>
			MINERAL ENVIRONMENTS	
			URTH VANCOUVER, B.C. CANADA V7M 1T2	
<u>c</u>			HONE: (604) 980-5814 OR (604) 988-4524	211
COMPANY:HI-TEC				ATE:NOV 9/87
ATTN: GEORGE KI				AMPLE TYPE:SOIL
PROJECT: 87BC03				NALYSIS TYPE:ICP
FILE#:7-1594	-			
				49 4 4 4 4 4 4 4 7 4 7 4 7 4 7 4 4 4 7 4 4 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7
NUMBER OF S	AMDIEC. 100		5 HIGHEST A	H WALLES.
MAXIMUM VAL				+00N 3250 PPB
MINIMUM VAL			BA L0+404 0	
MEAN:		90 FFB	BA LO+00 14	
STD. DEVIAT			BA L0+40# 4	
COEFF. OF V			BA L0+00 1+	
` <u>-</u> •€⊒?!			Dit 20100 11	
HISTOGRAM FO	R AU	CLASS	INTERVAL = 1.75	
MID CLASS	CLASS		WYN PHANTSYNG A CHWYN Argel yn Mae y Maeth ffyd yn yn gellyn yn ffir dynf yn fref yn fan gyfryf yn gyfryf yn f	Arrystik ar fri yn gener yn dar ar friffi fri yn yn friffichian yn ar dd bar i'r ffir far fan ar yn yn drafar
PPB	%			
			****	attarap a dae pary 4000 - 1976 - 1900 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1
< 5.00	.55			
5.88	69.23			
	0.00			
	15.93			
11.13	0.00			
	0.00	}		
14.63	.55			
16.38	0.00			
	0.00			
19.88	6.59			
21.63	0.00	l		
23.38 25.13	0.00 0.00	1		
20.13	0.00			
28.63	0.00			
30.38	2.75			
32.13	0.00	R R R R R R R R R R R R R R R R R R R		
33.88	0.00			
35.63	0.00			
37.38	0.00			
39.13	0.00			
> 40.00	5.27			
		L ₁	······································	
		0.00%	34.62%	69.23%
		0.00%	04.04A	tur oʻni alandi /y

APPENDIX V-B

Statistical Analysis of Data for Stream Sediment Geochem Survey

\$

MIN-EN LABORATORI	ES LTD.
SPECIALISTS IN MINERAL ENVIRO	
705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANAG	DA V7H 1T2
TELEX: 04-352828 PHONE: (604) 980-5814 OR (604	
CORRELATION COEFFIC	IENTS
COMPANY:HI-TEC RESOURCES	DATE:NOV 10/87
ATTN: GEORGE KING	SAMPLE TYPE:SILT
PROJECT:878C031	ANALYSIS TYPE: ICP
FILE#:7-1318 7-1433 7-1583	
THE TABLE BELOW REPRESENTS THE PEARSON CORRELATI SHOWING THE INTER-ELEMENT CORRELATION COEFFICIEN	TS. THOSE VALUES THAT
	TS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION COEFFICIEN EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIG	TS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION COEFFICIEN EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIG IN DARKER PRINT AND UNDERLINED.	TS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION COEFFICIEN EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIG IN DARKER PRINT AND UNDERLINED. AG AS CU PB SB ZN AU	TS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION COEFFICIEN EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIG IN DARKER PRINT AND UNDERLINED. AG AS CU PB SB ZN AU AG 1.000 .751 186 .190 .414 .309 112	TS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION COEFFICIEN EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIG IN DARKER PRINT AND UNDERLINED. AG AS CU PB SB ZN AU AG 1.000 .751 186 .190 .414 .309 112 AS 1.000 285 .174 .136 .120 102 CU 1.000 .260 .235 256 .121 PB 1.000 .137 042 061	TS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION COEFFICIEN EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIG IN DARKER PRINT AND UNDERLINED. AG AS CU PB SB ZN AU AG 1.000 .751 186 .190 .414 .309 112 AS 1.000 285 .174 .136 .120 102 CU 1.000 .260 .235 256 .121	TS. THOSE VALUES THAT

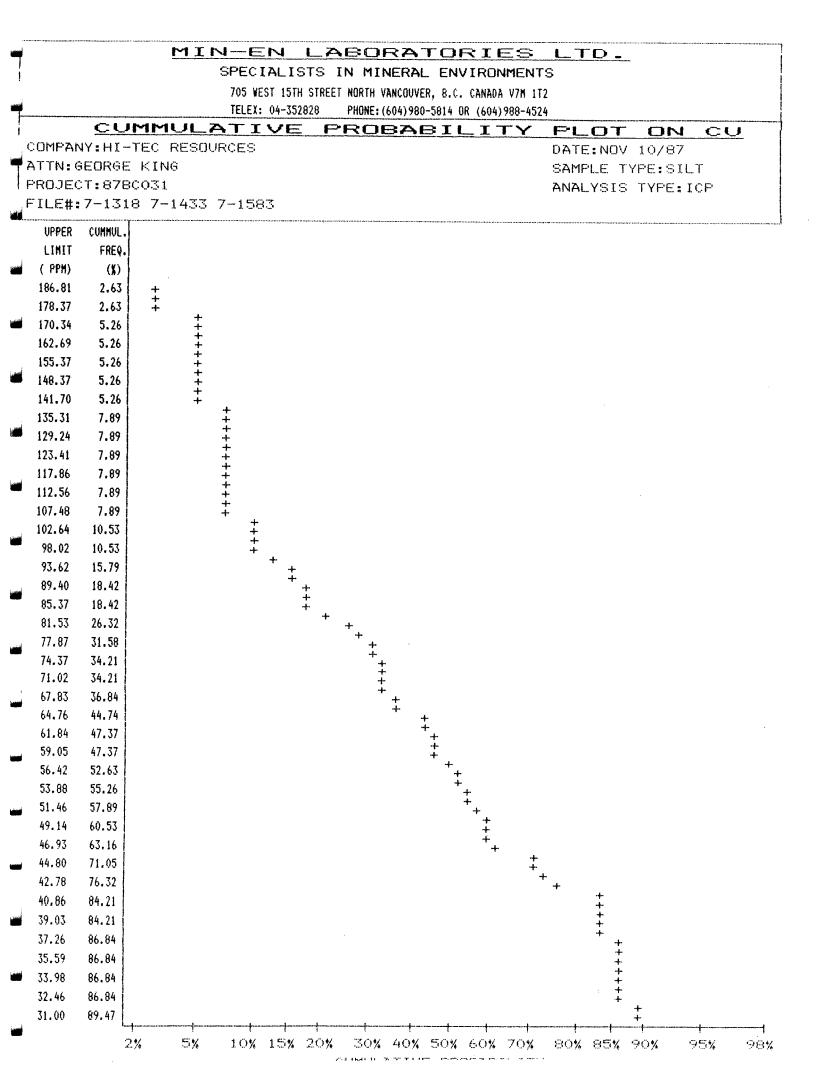
1.000

N_ AU

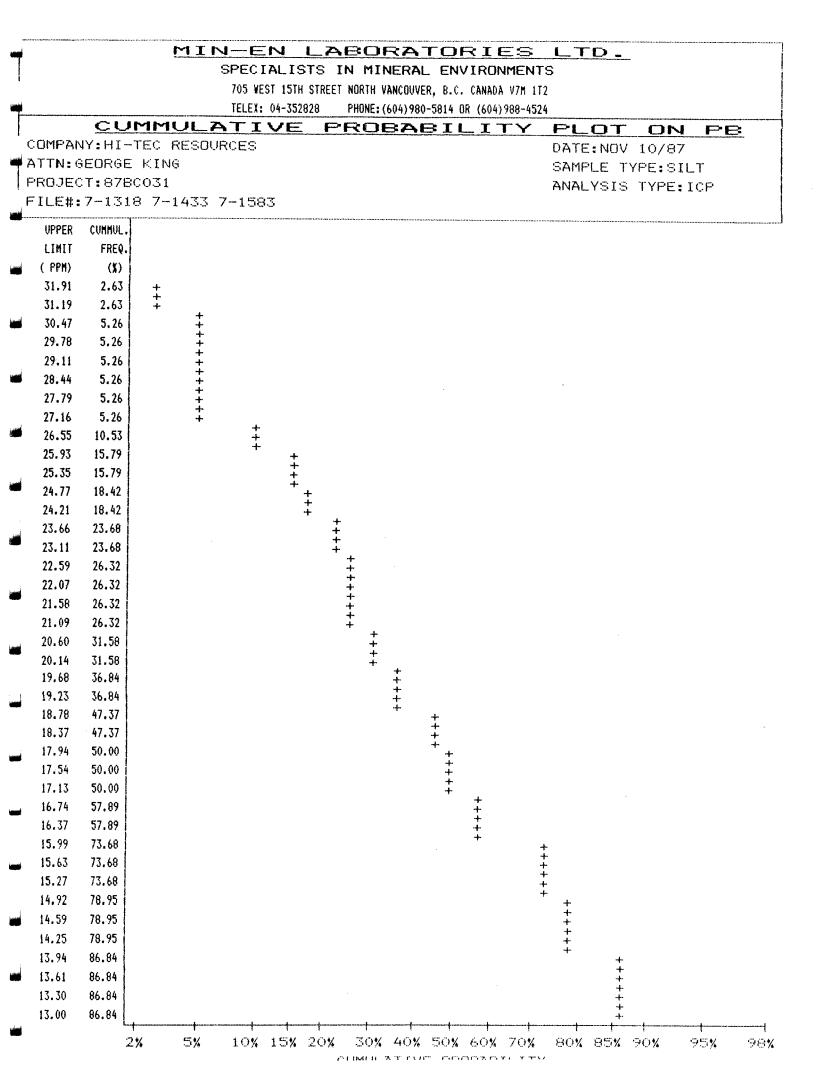
Ni M

			DRATORIES	
			TH VANCOUVER, B.C. CANADA V7M 1T2	
			NE: (604) 980-5814 OR (604) 988-4524	
ST			SUMMARY ON	
MPANY:HI-TEC I				DATE: NOV 10/87
TN:GEORGE KING	- 1			SAMPLE TYPE: SILT
ROJECT:8780031				ANALYSIS TYPE: ICP
LE #: 7-1318 7-:	1433 7-158	3		
NUMBER OF SAI				AG VALUES:
MAXIMUM VALUE				4.5 PPM
MINIMUM VALUE		20 PPM		1.9 PPM
MEAN:		18 PPM		1.9 PPM
STD. DEVIATIO				1.8 PPM
COEFF. OF VAN	KIAHIUN: .	28	87 83L 4	1.7 PPM
HISTOGRAM FOR	AG	CLASS IN	NTERVAL = .07	
	CLASS			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PPM	VLM00 %		1711-1711-17-171-1711-1711-1711-1711-1	
< .60	7.89			
	5.26			
	7.89			
.78	10.53			
	0.00			
6.92	13.16			
.99	10.53			
1.06	0.00			
1.13	7.89			
1.20	0.00	}		
1.27	10.53			
1.34	0.00			
1.41	7.89			
1.48	0.00			
1.55	0.00)		
1.62	7.89			
1.69	2.63			
1.76	0.00	}		
1.83	2.63			
1.90	2.63			
1.97	0.00			
> 1.90	3.16			
		0.00%	6.58%	13.16%

		MII									LTD.			
				ST 15TH	STREET	NORTH VA	NCOUVE	R, B.C.	CANAD7	A V7M 1T	2			
*****	CUM	MUL		04-352		PHONE: (6					PLOT		1 86	
OMPAN	IY:HI-TE										DATE: NOV			.
	EORGE K										SAMPLE			
PROJEC	T:878CO	31									ANALYSIS			
TLE#:	7-1318	7-1433	7-158	3										
UPPER	CUMMUL.													
LIMIT	FREQ.													
(PPN)	(%)													
1.76	10.53		+											
1.71	10.53		+ + +											
1.67	13.16			+										
1.62	13.16			+ + + +										
1.58	21.05			+	÷									
1.54	21.05				+ +									
1.49	21.05				* * * * * * * *									
1.45	21.05				+									
1.41	21.05				+	- 4 -								
1.37	28.95					+ + + + +								
1.34	28.95					+ +								
1.30	28.95					+	+							
1.27	39.47						* * * * * * * * * * *							
1.23	39.47						++							
1.20	39.47						++							
1.16	39.47						+ +							
1.13	39.47						+++++++++++++++++++++++++++++++++++++++							
1.10 1.07	39.47 47.37						- 1 -	+						
1.04	47.37							+ + + + +						
1.04	47.37							+ +						
.99	57.89							- t -	+					
.96	57.89								+ + + + + +					
.93	57.89								+ +					
.91	57.89								+ +					
.88	71.05									+ +				
.86	71.05									+ + + + + + + + + + + + + + + + + + +				
.84	71.05									+				
.81	71.05									++				
.79	81.58									+	-4- -4-			
.77	81.58													
.75	81.58													
.73	81.58										+ + + + + + + + + + +			
.71	81.58											·4-		
.69	89.47											+ +		
.67	89.47											÷ + + + + + + + + + + + + + + + + + + +		
.65	89.47							3				+. +		
.63	89.47											+ +		
.62	89.47													
5.O	92.11									·····		+	·····	


·

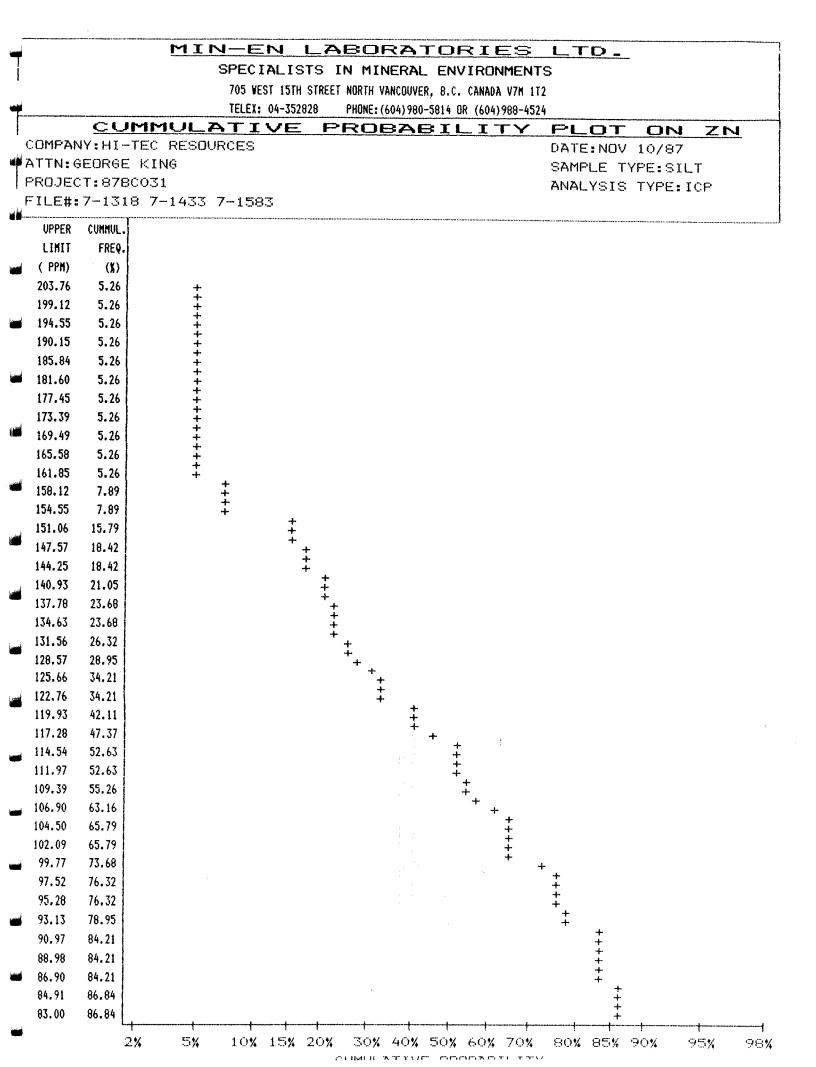
		MINERAL ENVIRONMENTS TH VANCOUVER, B.C. CANADA V7H 1T2	5
	TELEX: 04-352828 PHO	NE:(604)980-5814 DR (604)988-4524	
STAT	ISTICAL :	SUMMARY ON	AS
MPANY:HI-TEC RESOU	RCES		DATE:NOV 10/87
TN:GEORGE KING			SAMPLE TYPE:SILT
OJECT:87BC031	······································		ANALYSIS TYPE: ICP
LE#:7-1318 7-1433	/-1383		
NUMBER OF SAMPLES	: 38	5 HIGHEST	AS VALUES:
MAXIMUM VALUE:	36.00 PPM	87BKL 36	36 PPM
MINIMUM VALUE:	0.00 PPM	87BKL 40	25 PPM
	6.50 PPM		20 PPM
STD. DEVIATION:		87 BSL 4	
COEFF. OF VARIATI	ON:1.21	87 BSL 3	15 PPM
HISTOGRAM FOR AS	CLASS IN	VTERVAL = .95	
MID CLASS CLA			
PPM	*		
< 1.00 26.	32		
1.48 7.	89 89		
2.43 5.	26		
3.38 7.	89		
4.33 5.	26 		
5.28 5.	26		
6.23 13.			
7.18 2.			
8.13 5.	in a second seco		
9.08 2.			
10.03 0.			
10.98 2.	1		
11.93 2.	1		
12.88 0.4	1		
13.83 2 14.78 2	(
14.78 2.4 15.73 0.4	1		
16.68 0.4	1		
17.63 2.0	(
18.58 0.4	1		
19.53 0.4	1		
> 20.00 6.3	1		
/ 20.00 6.	0.00%	13.16%	26.32%


			M	IN-	-EN	L	A	30F	RAT	-0	R	IE	s	LTD.			1
7					ECIAL												
1					5 VEST 1												
			<u> </u>		LEX: 04-				04)980-								
r		CUI	MMUL		*******	****			*******		*****					AS	3
	COMPAN		EC RES											DATE:NO			-
	ATTN: 6	EORGE	KING											SAMPLE			
	PROJEC	:T:87BC	031											ANALYSI			
ألاس	FILE#:	7-1318	3 7-143	3 7-3	1583												
	UPPER	CUMMUL.															
	LIMIT	FREQ.															
لعمير	(PPN)																
	(FFN) 25.35	(%)															
	23.33	2.63	+ .	÷													
i		5.26		+ +- +- +-													
	21.48 19.77	5.26	-														
		1		+ + +													
فنعطه	18.20	7.89		÷	÷												
	16.75	10.53			+ + +												
	15.42	10.53			+ +												
	14.19 13.06	13.16 15.79			+	+											
	12.02	15.79				+ + +											
		1				++											
	11.07	18.42				+	+										
	10.19	21.05				•	+ + +										
	9.38	21.05					++										
	8.63	23.68					'+ + +										
	7.94	28.95						+ +									
	7.31	28.95						+ +									
أينها	6.73	31.58						++									
	6.19	31.58						+	+								
	5.70	44.74							+ + +								
أتنفذ	5.25	44.74							+ +								
	4.83	50.00							•								
	4.45	50.00								+++++++++++++++++++++++++++++++++++++++							
i umud	4.09	50.00								+	+						
	3.77	55.26									+ +						
	3.47	55.26									+ +						
	3,19	55.26									+ +						
	2.94	63.16										+ +					
. 1	2.70	63.16										*******					
	2.49 2.29	63.16										+++++					
	2.11	63.16 63.16										++					
اد مدر	1.94	68.42										+ +	_				
لتعير	1.74	68.42											+				
		í.											+				
أسيدو	1.64	68.42											+				
	1.51	68.42											+				
	1.39	68.42											+ +				
أهيهيز	1.28	68.42											+ +				
	1.18	68.42											* * * * * * * * * * * * * * *				
	1.09	68.42															
أنغيين	1.00	73.68			·····	ŧŧ·		·····		·····t···		- t		+			1
		2	4 5)	6 1	0% 15	5% 2C	*	30%	40%	50%	60)%	70%	80% 85%	90%	95%	98%
								1631-11 ···				• •					

			ATORIES LTO	
	705 WES	ST 15TH STREET NORTH VAN	COUVER, B.C. CANADA V7H 1T2	
	TELEX:	04-352828 PHONE: (60)	4)980-5814 DR (604)988-4524	
S	TATIST	ICAL SU	MMARY ON CL	<u>ר</u>
MPANY:HI-TEC				NOV 10/87
TN:GEORGE KI				E TYPE:SILT
OJECT:878C03			ANALY	SIS TYPE:ICP
LE#:7-1318 7	-1433 7-158	3		
			T	
NUMBER OF S	AMPLES: 38		5 HIGHEST CU VA	LUES:
MAXIMUM VAL	UE: 208.	00 PPM	87 BGL 4	208 PPM
MINIMUM VAL	UE: 13.	00 PPM	87 BNL 13	176 PPM
MEAN:	66.1	95 PPM	87 BGL 3 40M	139 PPM
STD. DEVIAT	ION: 39.	58 PPM	87 BSL 16	106 PPM
COEFF. OF V	ARIATION: .	59	87 BML 11	96 PPM
			<u> </u>	n a su a s
HISTOGRAM FO	R CU	CLASS INTER	VAL = 7.25	
MID CLASS		. Manadina tina paka ma ¹⁹⁶ 000 tini tini ni aka historia manada alipa anya a fi taka ka Tang		
PPM	%	******		
< 31.00				
34.63	7.89			
41.88	13.16			
49.13				
56.38				
63.63				
70.88				
78.13	7.89			
85.38	7,89			
85.38 92.63	7.89 7.89			
85.38 92.63 99.88	7.89 7.89 0.00			
85.38 92.63 99.88 107.13	7.89 7.89 0.00 2.63			
85.38 92.63 99.88 107.13 114.38	7.89 7.89 0.00 2.63 0.00			
85.38 92.63 99.88 107.13 114.38 121.63	7.89 7.89 0.00 2.63 0.00 0.00			
85.38 92.63 99.88 107.13 114.38 121.63 128.88	7.89 7.89 0.00 2.63 0.00 0.00 0.00			
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13	7.89 7.89 0.00 2.63 0.00 0.00 0.00 2.63			
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13 143.38	7.89 7.89 0.00 2.63 0.00 0.00 0.00 2.63 0.00	KERRINKERISKIKEISKOR		
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13 143.38 150.63	7.89 7.89 0.00 2.63 0.00 0.00 0.00 2.63 0.00 0.00	KERRINKERISKIKEISKOR		
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13 143.38 150.63 157.88	7.89 7.89 0.00 2.63 0.00 0.00 2.63 0.00 0.00 0.00	KERRINKERISKIKEISKOR		
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13 143.38 150.63 157.88 165.13	7.89 7.89 0.00 2.63 0.00 0.00 2.63 0.00 0.00 0.00 0.00	KERRINKERISKIKEISKOR		
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13 143.38 150.63 157.88 165.13 172.38	7.89 7.89 0.00 2.63 0.00 0.00 2.63 0.00 0.00 0.00 0.00 0.00 0.00	KERRINKERISKIKEISKOR		
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13 143.38 150.63 157.88 165.13	7.89 7.89 0.00 2.63 0.00 0.00 2.63 0.00 0.00 0.00 0.00	KERRINKERISKIKEISKOR		
85.38 92.63 99.88 107.13 114.38 121.63 128.88 136.13 143.38 150.63 157.88 165.13 172.38	7.89 7.89 0.00 2.63 0.00 0.00 2.63 0.00 0.00 0.00 0.00 0.00 0.00			15.79%

ê

		ANCOUVER, B.C. CANADA V7N 1T2 604)980-5814 DR (604)988-4524	
	······································	JMMARY ON	P R
MPANY:HI-TEC RESOURCE			DATE:NOV 10/87
TN:GEORGE KING			SAMPLE TYPE:SILT
DJECT:878C031			ANALYSIS TYPE: ICP
LE#:7-1318 7-1433 7-1	583		
NUMBER OF SAMPLES: 3	8	5 HIGHEST	PB VALUES:
MAXIMUM VALUE: 4	4.00 PPM		44 PPM
MINIMUM VALUE: 1	1.00 PPM	87 BSL 16	
	9.21 PPM	87 BSL 3	
STD. DEVIATION:	6.49 PPM	87 BSL 17	27 PPM
COEFF. OF VARIATION:	.34	87 BSL 4	26 PPM
			11
HISTOGRAM FOR PB	CLASS INTE	RVAL = .9	
MID CLASS CLASS			
PPM %			
(13.00 13.16			
13.45 2.63			
14.35 7.89			
15.25 5.26 16.15 15.79			
17.05 7.89 17.95 2.63			
17.70 2.60		NING IN THE REPORT OF THE OWNER OF THE OWNER OF THE OWNER OF THE	
19.75 5.26			
20.65 5.26			
21.55 0.00			
22.45. 0.00			
23.35 2.63			
24.25 5.26			
25.15 2.63	1 ·····		
25.15 2.63 26.05 5.26			
26.05 5.26			
26.05 5.26 26.95 5.26			
26.055.2626.955.2627.850.00			
26.055.2626.955.2627.850.0028.750.00			
26.055.2626.955.2627.850.0028.750.0029.650.00			
26.055.2626.955.2627.850.0028.750.0029.650.0030.550.00		7.89%	15.79%



			ATORIES LTD		
			ICOUVER, B.C. CANADA V7N 1T2		
			14)980-5814 OR (604)988-4524	·	
S			MMARY ON SE	a	
COMPANY: HI-TEO				- 40V 10/87	
ATTN:GEORGE KING			SAMPLE	TYPE:SILT	
PROJECT:87BC031		ANALYS	SIS TYPE:ICP		
FILE#:7-1318	7-1433 7-158	3			
			T		
NUMBER OF SAMPLES: 38		5 HIGHEST SB VALUES:			
MAXIMUM VAL	MAXIMUM VALUE: 9.00 PPM		878KL 36	9 PPM	
MINIMUM VAL	MINIMUM VALUE: 0.00 PPM		87 BGL 4	6 PPM	
MEAN:	MEAN: 2.61 PPM		87 BKL 5	5 PPM	
	ION: 1.		87 BGL 1	4 PPM	
COEFF. OF \	ARIATION: .	66	87 BGL 3 40M	4 PPM	
	·····				
HISTOGRAM FOR SB CLASS INTER		VAL = .25			
MID CLASS	CLASS		()		
PPM	%				
< 1.00	13.16				
	13.16				
1.38	0.00	CUMPERSION DUCTOR DU	n'Ultrace		
1.63	0.00				
	21.05				
2.13	0.00				
2.38	0.00				
2.63	0.00				
2.88	36.84				
3,13	0.00				
3.38	0.00				
3.63	0.00				
3.88	10.53				
4.13	0.00				
4.38	0.00	}			
4.63	0.00	and and a second se			
4.88 5.13	2.63 0.00				
5,38	0.00				
5.63	0.00				
5.88	0.00				
> 6.00	3.16				
2 No. 4 NANA	اسالة الاليدا		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		0.00%	18.42%	36.84%	1
		nar winnar yw			

	, , , , , , , , , , , , , , , , , , ,		М	II	<u>N-E</u>	NL	AB	DRA	TOF	RIES	LTC	<u>> -</u>			
										IRONMEN					
السب						ST 15TH ST 04-352828				CANADA V7M 1 R (604)988-45					
		cu	MMU	L.7			******					эт	ON	SB	
	COMPAN								, ,				10/87		-
	ATTN: G	EORGE	KING								SAMPL	E TY	PE:SIL	T	
	PROJEC	T:878	031								ANALY	SIS	TYPE: I	CP	
	FILE#:	7-131	8 7-14	33	7-158	33									
. .	VPPER	CUMMUL.													
	LIMIT	FREQ.													
أفنعها	(PPM)	(%)													
_	6.03	2.63	+												
	5.75	5.26		+											
	5.49	5.26		+++++++											
	5.25	5.26		+++++++++++++++++++++++++++++++++++++++											
	5.01	5.26		÷	+										
	4.79	7.89			+ +										
	4.57	7.89			┿ ┿ ┿ ┿ ┿ ┿ ┿ ┿ ┿										- 14 -
أهرا	4.37	7.89			+ +										
	4.17	7.89			+ +										
	3.98	18.42				+									
imi	3.80	18.42				+									
	3.63 3.47	18.42 18.42				+ +									
	3.47	18.42				+ +									
	3.16	18.42				+ +									
	3.02	18.42				+ + + +									
	2.88	55.26				1				+ +					
	2.75	55.26								++					
	2.63	55.26								+ +					
i	2.51	55.26								+ +					
	2.40	55.26								+ +					
	2.29	55.26								+					
	2.19	55.26								+ +					
_	2.09	55.26								+++++++++++++++++++++++++++++++++++++++					
	2.00	76.32								•	+ +				·
	1.90	76.32									+ + + + + + + +				
	1.82	76.32									+- -+-				
	1.74	76.32									+				
i anati	1.66	76.32									+ +				
	1.58	76.32									++++++++++++++++++++++++++++++++++++++				
	1.51 1.44	76.32									+ + -				
	1.44	76.32									+				
	1.38	76.32									+ +				
أهنعمز	1.26	76.32									+ +				
	1.20	76.32									+ +				
	1.15	76.32									+++++++++++++++++++++++++++++++++++++++				
أأنبع	1.10	76.32									<u>،</u> +				
	1.05	76.32									·+- -+-				
	1.00	86.84									-#-	·+·			
-	. =	Ĺ.	-+	=====	† 4	/ 4 KC 42 - 13	† ⇔ŧ∕ ==	++ *0*/ 40	+ 50+	6.0% 70	K 80%	 /	90%	95%	<u>1</u> 98%
		1	2%	5%	10%	(15% 2				00% /0 00% /0		ю(X	25236	2 W X	7 C) %
							F F IP	ana za t t	China ha, hai						

	705 WEST	15TH STREET NORTH V	NERAL ENVIRONMENTS VANCOUVER, B.C. CANADA V7H 1T2	
~7			604)980-5814 DR (604)988-4524 JMMARY ON Z	
MPANY:HI-TEC				NOV 10/87
TN:GEORGE KI				LE TYPE:SILT
OJECT:878C03	1			YSIS TYPE:ICP
LE#:7-1318 7	-1433 7-1583			
NUMBER OF S	AMPLES: 38		5 HIGHEST ZN V	
MAXIMUM VAL	JE: 288.0	O PPM	87 BML 7 40M	
MINIMUM VAL	JE: 50.0	O PPM	87 BSL 6	
MEAN:	119.7	9 PPM	87 BML 11	161 FPM
STD. DEVIAT			87 BGL 6	154 PPM
COEFF. OF VA	RIATION: .3	4	87 BM 13	154 PPM
HISTOGRAM FOR	R ZN	CLASS INTE	ERVAL = 6.3	
MID CLASS				
PPM	%			
< 83.00	13.16			
86.15	5.26			
92.45	7.89			
98.75				
105.05				
111.35	5.26		n dan Ballan a sata	
117.65				
123.95		1		
130.25 136.55	7.89			
142.85	2.63 2.63			
142.00	2.63 2.63			
155.45	7.89			
161.75	2.63		anna a an	
168.05	0.00			
174.35	0.00	1		
180.65	0.00			
186.95	0.00			
193.25	0.00			
	0.00			
199.55	0.00			
199.55 205.85				
	3.16		·	
205.85		- 00%	6.58%	13.16%

ġ.

705 VEST 15TH STREET NORTH VANCIELEX: 04-352828 FILEX: 04-352828 PHONE: (604 CANY: HI-TEC RESOURCES A: GEORGE KING PECT: 878C031 ##: 7-1318 7-1433 7-1583 AUMBER OF SAMPLES: 38 NUMBER OF SAMPLES: 38 NO PPB NUMBER OF SAMPLES: 38 NUMBER OF SAMPLES: 38 NUMBER OF PPB STO. DEVIATION: 35.98 PPB STOGRAM FOR AU CLASS INTERV NUMER SAME SAME SAME SAME SAME SAME SAME SAME	9980-5814 OR (604)988-4524	ATE:NOV 10/87 AMPLE TYPE:SILT NALYSIS TYPE:ICF U VALUES: 175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
STATISTICAL SUI PANY:HI-TEC RESOURCES A:GEORGE KING PECT:87EC031 PECT:87EC031 #:7-1318 7-1433 7-1583 AUMBER OF SAMPLES: 38 AXIMUM VALUE: 175.00 PPB MAXIMUM VALUE: 175.00 PPB 11NIMUM VALUE: 5.00 PPB MAXIMUM VALUE: 5.00 PPB 1EAN: 29.08 PPB STD. DEVIATION: 35.98 PPB SOEFF. OF VARIATION:1.24 STOGRAM FOR AU CLASS INTERV STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % S.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 37.00 3.26 37.00 3.43 37.00 3.46 27.00 0.00 31.00 2.63 37.00 3.26 37.00 3.64	MARY ON Di Si Si Si Ai 5 HIGHEST Ai 87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 20 87 BSL 28	ATE:NOV 10/87 AMPLE TYPE:SILT NALYSIS TYPE:ICF U VALUES: 175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
PANY:HI-TEC RESOURCES A:GEORGE KING DECT:87E031 #:7-1318 #:7-1318 7-1433 AUMBER OF SAMPLES: 38 AXIMUM VALUE: 11NIMUM VALUE: 11NIMUM VALUE: 5.00 PPB % STOGRAM FOR AU CLASS PPB % S.00 2.63 % S.00 2.63 % S.00 2.63 %	Di Si Al 5 HIGHEST Al 87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 20 87 BSL 28 /AL = 4	ATE:NOV 10/87 AMPLE TYPE:SILT NALYSIS TYPE:ICF U VALUES: 175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
A: GEORGE KING VECT: 87BC031 #: 7-1318 7-1433 7-1583 AUMBER OF SAMPLES: 38 MAXIMUM VALUE: 175.00 PPB MAXIMUM VALUE: 175.00 PPB MAXIMUM VALUE: 5.00 PPB MAXIMUM VALUE: 5.00 PPB MAXIMUM VALUE: 5.00 PPB MAXIMUM VALUE: 5.00 PPB MEAN: 29.08 PPB STD. DEVIATION: 35.98 PPB STOGRAM FOR AU CLASS INTERV CLASS CLASS PPB % 5.00 2.63 T1.00 13.16 PPB 19.00 0.00 31.00 2.63 35.00 2.63 PPB 43.00 2.63 PPB	Si Al 5 HIGHEST Al 87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	AMPLE TYPE:SILT NALYSIS TYPE:ICF U VALUES: 175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
JECT:878C031 #:7-1318 7-1433 7-1583 AUMBER OF SAMPLES: 38 MAXIMUM VALUE: 175.00 PPB MINIMUM VALUE: 5.00 PPB MINIMUM VALUE: 5.00 PPB MEAN: 29.08 PPB MEAN: 29.08 PPB STD. DEVIATION: 35.98 PPB GOEFF. OF VARIATION: 1.24 CLASS INTERV STOGRAM FOR AU CLASS INTERV CLASS INTERV STOO 2.63 MMM 11.00 13.16 MMM 15.00 7.89 MMM 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 MMM 39.00 5.26 MMM 43.00 2.63 MMM	AI 5 HIGHEST AU 87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	NALYSIS TYPE:ICF U VALUES: 175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
#:7-1318 7-1433 7-1583 AUMBER OF SAMPLES: 38 MAXIMUM VALUE: 175.00 PPB MINIMUM VALUE: 5.00 PPB MEAN: 29.08 PPB STD. DEVIATION: 35.98 PPB CEFF. OF VARIATION: 1.24 STOGRAM FOR AU CLASS INTERV STOO 2.63 % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 39.00 5.26 43.00 2.63	5 HIGHEST A 87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	U VALUES: 175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
AUMBER OF SAMPLES: 38 IAXIMUM VALUE: 175.00 PPB IINIMUM VALUE: 5.00 PPB IEAN: 29.08 PPB STD. DEVIATION: 35.98 PPB COEFF. OF VARIATION:1.24 CLASS INTERV STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 39.00 5.26 43.00 2.63	87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
1AXIMUM VALUE: 175.00 PPB 1INIMUM VALUE: 5.00 PPB 1EAN: 29.08 PPB STD. DEVIATION: 35.98 PPB COEFF. OF VARIATION:1.24 CLASS INTERV STOGRAM FOR AU CLASS INTERV STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63	87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
1AXIMUM VALUE: 175.00 PPB 1INIMUM VALUE: 5.00 PPB 1EAN: 29.08 PPB STD. DEVIATION: 35.98 PPB COEFF. OF VARIATION:1.24 CLASS INTERV STOGRAM FOR AU CLASS INTERV STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63	87 BGL 6 87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	175 PPB 115 PPB 85 PPB 85 PPB 65 PPB
MINIMUM VALUE: 5.00 PPB MEAN: 29.08 PPB STD. DEVIATION: 35.98 PPB COEFF. OF VARIATION: 1.24 STOGRAM FOR AU CLASS INTERV STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63	87 BSL 17 87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	115 PPB 85 PPB 85 PPB 65 PPB
1EAN: 29.08 PPB STD. DEVIATION: 35.98 PPB COEFF. OF VARIATION:1.24 CLASS INTERV STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63	87 BNL 10 87 BSL 20 87 BSL 28 /AL = 4	85 PPB 85 PPB 65 PPB
STD. DEVIATION: 35.98 PPB COEFF. OF VARIATION:1.24 STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63	87 BSL 20 87 BSL 28 /AL = 4	85 PPB 65 PPB
COEFF. OF VARIATION: 1.24 STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63	87 BSL 28	65 PPB
STOGRAM FOR AU CLASS INTERV D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63	/AL = 4	
D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 39.00 5.26 43.00 2.63		
D CLASS CLASS PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 39.00 5.26 43.00 2.63		
PPB % 5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 39.00 5.26 43.00 2.63		
5.00 2.63 7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
7.00 34.21 11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
11.00 13.16 15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
15.00 7.89 19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
19.00 0.00 23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
23.00 13.16 27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
27.00 0.00 31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
31.00 2.63 35.00 2.63 39.00 5.26 43.00 2.63		
35.00 2.63 888 39.00 5.26 888 43.00 2.63 888		
39.00 5.26 100 43.00 2.63 100		
43.00 2.63 (1988)		
47.00 0.00 1		
51.00 2.63 ANN 55.00 2.63 ANN		
55.00 2.63 6 6 6		
63.00 2.63 (1) 67.00 0.00		
71.00 0.00		
75.00 0.00		
79.00 0.00		
83.00 2.63		
85.00 6.32		
		·········
0.00%	17.11%	34.21%

p

 1	MIN-EN LABORATORIES LTD. SPECIALISTS IN MINERAL ENVIRONMENTS																			
	705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7N 1T2 TELEX: 04-352828 PHONE:(604)980-5814 OR (604)988-4524																			
		<u></u>	MINI		*****	****				************		******								
1			TEC RE				<u> </u>		F C		5		<u></u>		<u>I Y</u>			01 10/8		<u> </u>
			E KING		1106.0													YPE:S		
-		T:87E																TYPE		
			8 7-14	133	7-158	33											. 1			
	HODEO	AUMMIN	[
	VPPER	CUMMUL.																		
	LIMIT	FREQ.																		
	(PPB) 105.92	(%) 5.26																		
	97.94	5.26		+ + + + +																
أتحمنا	90 . 56	5.26		+																
	83.75	10.53		+	.د.															
	77.44	10.53			+ + + + + + + + + + + + + + + + + + + +	•														
أعضر	71.61	10.53			+	•														
-	66.22	10.53			.+ +	•														
	61.23	13.16			•	++++++														
	56.62	13.16				+ +														
	52.35	15.79					+ +													
	48.41	18.42					+ +													
	44.77	21.05					+	÷												
	41.39	21.05						++	.											
لفسنها	38.28	26.32							++++											
	35.39	26.32							+											
	32.73	28.95							- + +											
أسموا	30.27	28,95							÷	+										
-	27.99	31.58								+++										
	25.88	31.58								+		+								
	23.93	44.74										+ +								
	22.13 20.46	44.74 44.74										+ +								
1	18.92	44.74										+								
أسبيا	17.49	44.74										+++++++++++++++++++++++++++++++++++++++								
	16.18	44.74										- + + +								
	14.96	52.63										+	+							
أتعنا	13.84	52.63											+ +							
	12.79	52.63											++++							
لمسيرز	11.83	52.63											++							
_	10.94	52.63											+++++							
	10.11	52.63											+							
	9.36	65.79													+++++					
	8.65	65.79													+++++					
	8.00	65.79													++					
	7.39	65.79													+ +					
	6.84	65.79													+++					
1	6.32	65.79													+ +					
	5.85	65.79													++++++					
	5.40	1													+ +					
لمستذ	5.00	97.37					ł			+	1	h						·····+		+
		ن م	2%	5%	10%	15	× 2	20%	3	0%	4Ö	% 5	0%	60%	70	80%	85%	90%	95%	98%
									сни	11 IL 2	ΔΤΤ	VE	een	oxo	ті т	τv				

·

APPENDIX VI

Description of Rock Samples

DESCRIPTION OF ROCK SAMPLES

- 87BMR-005 Outcrop; argillite with some quartz containing pyrite downstream from volcanic contact.
- 87BMR-006 Outcrop; cherty-argillite along a mudstone contact with some pyrite along fracture planes.
- 87BMR-009 Outcrop; narrow quartz vein in argillite with chalcopyrite and some arsenopyrite.
- 87BMR-010 Same as above only .75 m away.
- 87BMR-014 Outcrop; volcanic calated between underlying limestone argillites good pyrite.
- 87BMR-015 Outcrop; same as R-14 only more volcanics with pyrite.
- 87BMR-016 Outcrop; representative sample of mineralized volcanic with pyrite.
- 87BSR-005 Outcrop; silic. bx zone with frags of alt argillite and volcanic contains epidote and trace to minor pyrite.
- 87BSR-012 Outcrop; 20 cm rusty shear in volcanic. No visible mineralization.
- 87BSR-013 Outcrop; irregular quartz vein in shear, trace pyrite.
- 87BSR-014 Outcrop; same as above
- 87BSR-015 Outcrop; quartz filled shear with 1-3% disseminated pyrite in quartz and silic. volcanic shear 10-20 cm wide.
- 87BSR-018 Outcrop; 10-20 cm silic. shear with quartz, pyrite.
- 87BSR-019 Outcrop; 10 cm quartz vein in 2 m shear zone, pyrite, trace chalcopyrite and trace hematite.
- 87BSR-022 Outcrop; rusty shear.
- 87BSR-023 Outcrop; as above with minor pyrite over 1/2m.

- 87BSR-024 Outcrop; 1m wide rusty shear zone 1-2% pyrite, trace chalcopyrite.
- 87BSR-025 Outcrop; 10 m intrusive dyke with minor disseminated pyrite.
- 76BSR-026 Outcrop; siliceous rusty wx volcanic at hanging wall contact of porphyry mafic dyke. Minor pyrite and <1 cm quartz veining.
- 87BGR-005 Float; coarse flaked pyrite and stringers, some epidote and limestone in volcanic.
- 87BGR-008 Float; banded and disseminated pyrite in argillite.
- 87BGR-009 Float; (possible subcrop) argillite with fine grained pyrite.
- 87BGR-010 Outcrop; in shear disseminated pyrite in siliceous argillite.
- 87BGR-011 Outcrop; rusty crumbly rock (argillite?) with pyrite and quartz.
- 87BGR-012 Outcrop; intrusive with fine disseminated pyrite.
- 87BGR-013 Outcrop; quartz with good disseminated pyrite (shear is 2-3 m wide and 5-10 m in length).
- 87BGR-014 Outcrop; quartz vein with heavy pyrite along argillite/limestone contact. Vein >2-4 cm wide and at least 5 m long (number of stringers with pyrite along ____).
- 87BGR-015 Outcrop; pyrite in argillite/quartz rock.
- 87BGR-016 Outcrop; quartz stringers 1-3 cm wide 15 m in length with coarse pyrite.
- 87BGR-017 Outcrop; quartz vein with pyrite 3-7 m wide and 5 m in length.
- 87BGR-018 Float; good pyrite veining and disseminated pyrite in quartzy siliceous green stone.
- 87BGR-019 Outcrop; quartz crystals with large number of flaky hematite.
- 87BGR-020 Outcrop; quartz stringer with pyrite in argillite.

- 87BGR-021 Outcrop; argillite with pyrite in weathered crumbly rock.
- 87BGR-022 Outcrop; argillite with coarse pyrite in veining pyrite.
- 87BGR-023 Outcrop; argillite, heavily mineralized with pyrite, very rusty.
- 87BGR-024 Float; volcanic with massive pyrite.
- 87BGR-025 Float; volcanic with massive pyrite in quartz.
 - R-026 Outcrop; similar to R-025. Volcanic with pyrite in quartzy veinlet.
- 87BKR-001 From a 7 cm wide quartz vein near a contact with dioritic intrusion and andesite volcanics. Chalcopyrite and (?) chalcocite mineralization.
- 87BKR-002 Pyrite mineralization in andesite, with argillaceous interbedding. This is from a talus slope.
- 87BKR-003 Pyritized lens in meta-arkose.
- 87BKR-004 Float; pyrite in vein quartz.
- 87BKR-006 Pyrite bearing quartz vein in andesitic volcanics.
- 87BKR-007 As above. This is a 5 cm wide vein.
- 87BKR-008 Rusty, pyritized lens in andesite.
- 87BKR-009 Rusty, pyritiferous shear zone material in andesite.
- 87BKR-010 As above.
- 87BKR-011 From zone of pyrite-silica alteration in andesite.
- 87BKR-012 Sample from a 3 cm wide quartz vein in andesitic volcanics.
- 87BKR-013 Material from altered intermediate volcanic outcrop.

87BKR-014 Sample from aplite sill.

- 87BKR-015 Sample from rusty, pyrite bearing zone, with quartz spatially associated with a shear zone.
- 87BKR-016 Pyritiferous, siliceous material, associated with a shear zone.
- 87BKR-017 Sample from a pyritiferous quartz vein in andesite.
- 87BKR-018 Siliceous, pyrite bearing material in andesite.
- 87BKR-019 Greenish, siliceous material from shear zone in andesite.
- 87BKR-020 6 cm wide, pyrite bearing quartz stringer, with assicated epidote and tourmaline.
- 87BKR-021 Pyrite mineralization near convergence of 2 shear zones.
- 87BKR-022 This sample was taken across a series of 1 cm wide, pyrite bearing quartz stringers in altered zone in andesite.
- 87BKR-023 Chip sample across 20 cm wide aplite dyke.
- 87BKR-024 Pyrite bearing, quartz-epidote vein in shear zone in volcanics.
- 87BKR-025 Chip sample across 10 cm wide aplite vein, which has an epidote-rich selvage.
- 87BKR-026 Quartz-hematite mineralization in fault.
- 87BKR-027 Quartz-epidote altered zone in volcanics.
- 87BKR-028 3 cm wide pyrite bearing quartz veinlet in andesite (agglomerate).
- 87BKR-029 30 cm wide chip sample across showing shear zone, 3 m NW of sample BGR-011, strong gossan and copper staining.
- 87BKR-030 Footwall material from BGR-011 location.
- 87BKR-031 Hanging wall material from BGR-011 location.

87BKR-032 Sample across shear which runs parallel to BGR-011 shear (approx. 1 m to the NE), pyrite mineralization, strong gossan.

- 87BKR-033 Quartz vein material from BGR-011 shear; 10 m SE of BGR-011 sample.
- 87BKR-034 3 cm wide quartz veinlet in (?) andesite, minor pyrite.
- 87BKR-035 Pyrite rich shear zone material at site of BMR-009 and BMR-010.
- 87BKR-039 Minor pyrite mineralization in argillite.
- 87BKR-041 3 cm wide quartz veinlet in andesite.
- 87BKR-042 Sample taken across 1 m wide rusty shear zone in tuffaceous, andesitic volcanics hematization, silicification, and minor pyrite.
- 87BKR-043 Fracture with calcite and siderite filling about 20% pyrite, very minor chalcopyrite.
- 87BKR-044 Pyrite in silicified altered andesitic volcanics.
- 87BKR-045 6 cm wide quartz sweat in volcanics, associated with epidote, actinolite <u>+</u> andradite garnet.
- 87BKR-046 Pyrite, epidote, quartz associated with fault in tuffaceous andesitic volcanics.
- 87BKR-047 Hematite and minor pyrite in shear zone in volcanics.
- 87BKR-048 10 cm wide quartz vein with pyrite.
- 87BKR-049 Quartz vein with pyrite.
- 87BKR-050 Quartz vein with pyrite.
- 87BKR-051 Zone of intense clay alteration in andesitic volcanics, intense shearing.
- 87BKR-052 Zone of intense clay alteration in andesitic volcanics, intense shearing.
- 87BKR-053 Zone of intense clay alteration in andesitic volcanics, intense shearing.
- 87BKR-054 Breccia, in intensely kaolinization zone with chalcedonic silica.

87BBR-001

Outcrop; pyrite, quartz, volcanics in shear zone, strike 14⁰.

- 87BBR-002 Outcrop; vein in shear zone-10 cm, spec. hematite strike 100⁰ dip vertical.
- 87BBR-003 Outcrop; quartz veins with pyrite, strike 60°.
- 87BBR-004 Outcrop; quartz veins with pyrite.
- 87BBR-005 Outcrop; gossan with pyrite + hematite veins.
- 87BBR-006 Outcrop; rusty zone with some pyrite, strike 40° .
- 87BBR-007 Outcrop; quartz veins with some pyrite.
- 87BBR-008 Outcrop; some pyrite.
- 87BBR-009 Outcrop; gossan and quartz in shear zone, strike 160⁰.
- 87BBR-010 Outcrop; rusty quartz vein, strike 130⁰.
- 87BBR-011 Outcrop; pyrite in thin vein, strike 100°.
- 87BBR-012 Outcrop; beds striking 120^o with disseminated pyrite.
- 87BBR-013 Outcrop; bed dipping SW, granitic with disseminated pyrite.
- 87BBR-014 Float; epidote with pyrite in creek below canyon.
- 87BBR-016 Outcrop; intrusive with epidote and pyrite.
- 87BBR-018 Outcrop; pyrite, epidote, intrusives in shear zone.
- 87BBR-019 Outcrop; pyrite, epidote, intrusives in shear zone.
- 87BBR-020 Outcrop; pyrite in veins.
- 87BBR-021 Outcrop; granite with epidote, disseminated pyrite.
- 87BBR-022 Outcrop; granite with disseminated pyrite extensive zone.
- 87BBR-030 Quartz vein strike 190⁰ 30 m north of Greg's R11 sample - rusty with pyrite.

87BBR-031 32 m north of GR11 - epidote

- 87BBR-032 Quartz vein, 20 cm, strike 125⁰ @ 0+10E, 0+25S on grid.
- 87BBR-033 Quartz vein 195⁰ strike, lots of pyrite, 1+70N, 0+80E on grid.
- 87BNR-001 Sampled a rusty shear zone. Red rusy stain was visible. Main rock type was probably rusty andesite with quartz present. Shear zone width (and sample length) was about 20 cm. Pyrite content about 1.1-2.1. Ele. 985 meters.
- 87BNR-002 Sampled an outcrop with no well defined vein systems. Overburden was present. The host rock was lightly fractured and rust stained, probably andesitic volcanic type. This sample contained about 3.1 hematite and aobut 1.1 pyrite. Note, this sample was taken about 20 meters north of 87BNR-001 on the north bank of creek. Ele. about 3 meters higher than previus sample.
- 87BNS-003 Soil red-orange color, B horizon, depth of about 0.2 meters 10.1-20.1 organics. Texture fine earthy. Note, this sample was taken about 10 meters north of 87BBR-003. Ele. roughly same as 87BBR-003.
- 87BNL-004 In this stream, the silt development was very poor. At the time this sample was taken, there was a very low volume of water in creek. This creek was probably a tributary to the main creek - that the three preceding samples were taken on. Organic content estimated at 40.1. to 60.1. Ele. 978 meters.
- 87BNR-005 Sampled outcrop material just south of creek. Red rusty staining was present on rock material. The rock was probably of volcanic origin. This sample contained about 2.1.-4.1. hematite. Ele. 1,160 meters.
- 87BNR-006 Sampled a rusty shear zone along the south side of creek. This sample was taken below a system of tight water falls - maybe due to faulting. Rocks probably of volcanic origin. The soil present was also very rusty in appearance. Note, there was no obvious mineralization here. Ele. 4,092 ft.

- 87BNR-007 Sampled a rusty shear zone with a width of about 50 cm to 60 cm. The surrounding rock material was probably of volcanic origin. Also, yellow rusty staining was present. Minute quantities of pyrite specks were present (<<1%). This sample was taken at the base of waterfall on north side of creek. Ele. 1,100 meters.
- 87BNR-008 This sample was taken along the base of the major cliff belts where the waterfalls were. These rocks were of volcanic origin and covered with dark rusty staining. Strong shearing appeared to be evident although there was no apparent sulfides. Note, sample was taken on north side of creek. Ele. 1,120 meters.
- 87BNR-009 Rocks covered with rusty stain and probably of volcanic origin. Small quantities of hematite were present in veins approx. 2.1. Note sample was taken about two meters downstream from 87BNR-008 on the same side of creek. Ele. see previous sample.
- 87BNR-010 Fine silty material mixed with coarser material such as pebbles.
- 87BNR-011 Outcrop; shear area, volcanic, rusty and fractured traces of pyrite and hematite.
- 87BNR-012 Outcrop; coarse grained granitic, disseminated pyrite 1.1.
- 87BNR-013 Silts.
- 87BNR-014 Outcrop; andesitic blue-grey with 2 cm wide quartz vein 2.1 pyrite associated with vein.
- 87BNR-015 Outcrop; dike granitic, weathered, rusty, disseminated pyrite (.5 1%)
- 87BNR-016 Outcrop; blue-grey volcanic or andesitic, rusty fractures, large clusters of pyrite embedded.
- 87BNR-017 Outcrop; quartz vein 1" width, massive pyrites (70%) host rocks, blue-grey volcanics.

87BNR-018 Outcrop; granitic with disseminated pyrites.

APPENDIX VII

Statement of Costs

STATEMENT OF COSTS

BRENWEST MINING LTD. Projects 87BC031 and 87BC046

Personnel		
A. Smallwood, Project Manager 21.0 days @ \$250.00/day	\$5,250.00	
G. King, Geologist		
29.0 days @ \$275.00/day	7,975.00	
D. Collins, Ph.D. Senior Geologist 3.0 days @ \$375.00/day	1,125.00	
G. Mowatt, Technician	1,125.00	
14.0 days @ \$200.00/day	2,800.00	
J. McCaffrey, Prospector		
14.0 days @ \$250.00/day R. Ney, Technician	3,500.00	
11.0 days @ \$200.00/day	2,200.00	
J. Shields, Cook	2,200.00	
19.0 days @ \$200.00/day	3,800.00	
		\$26,650.00
Companyistics T.D. Carbons		
Supervision, J.P. Sorbara 3.0 days @ \$400.00/day		1,200.00
J.U days e \$400.00/day		1,200.00
Project Preparation		2,000.00
Mobilization/Demobilization		3,200.00
Geochemistry 53 rocks - 6 element ICP FA AU (rush)		
0 \$21.38/sample	\$1,133.00	
19 rocks - 6 element ICP FA Au	<i>41</i> ,200.00	
@ \$14.25/sample	85.50	
38 rocks - 6 element ICP AA Au (rush)		
@ \$18.00/sample 13 silts - 6 element ICP AA Au	684.00	
0 \$14.85/sample	193.05	
186 soils - 6 element ICP AA Au	200000	
@ \$ 9.90/sample	1,841.40	
24 silts - 6 element ICP AA Au (rush)		
0 \$14.85/sample	356.40	
3 pulps - Au @ \$8.00/sample Freight	24.00 55.70	
j		4,373.05

Statistical Analysis

97.05

Geophysics - 10 km @ \$400.00/km VLF-EM Survey (EDA Omni Plus System-2 Magnetometer Survey (EDA Omni Plus w station; Total Field and Vertical (Magnetics)	ith base	4,000.00
Domicile and Camp Rental 111 man days @ \$73.07		8,110.00
Supplies, Fuel		2,624.00
Freight		500.00
-		500.00
Expediting and Communications		500.00
Radio Rental		500.00
Air Support - Helicopter 18.4 hours - Fixed Wing	\$10,805.00 979.00	
		11,784.00
Office Overhead		2,034.00
Report Compilation and Drafting		4,000.00
Project Management		12,850.00
	TOTAL:	\$84,423.00

ŗ,

OMNI-PLUS Tie-line MAG/VLF Ser #208035 VLF DATA Date 28 SEP 87 5001 Operator: Records: 196 Bat: 15.7 Volt Lithium: 3.46 Volt Last time update: 9/28 8:04:00 Start of print: 9/28 17:30:39 66.9 -7.2 2604. #1 1.1 67.2 -7.5 2622. 0.9 #2 -1.3 2655. #3 69.8 0.7 #4 69.7 -1.5 2660. 0.7 -1.1 2552. #5 69.4 0.8 69.6 -0.7 2548. 0.8 **#**E 23.4 Line 0+40 W Date 28 SEP 87 #7 POSITION I/P QUAD T.FLD TILT CULT 46.3 -11.0 20.00 0+10 N 6.9 Line 0+40 W Date 28 SEP 87 23.4 #8 I/P QUAD T.FLD TILT CULT POSITION 0+00 N 44.6 -13.1 19.73 6.9 0+10 N 44.4 -14.1 19.77 5.9 0+20 N 37.4 -10.9 20.53 6.9 18.4 -9.3 20.68 5.9 0+30 N 29.0 -11.9 19.91 5.9 0+40 N 35.4 -13.1 19.86 3.9 0+50 N 46.3 -13.8 18.97 5.9 0+60 N 0+70 N 20.5 -12.5 19.96 4.9 0+80 N 33.4 -12.8 20.14 4.9 0+90 N 18.8 -9.4 19.59 4.9 4.9 24.3 -12.9 20.13 1+00 N 25.4 -11.6 19.67 4.9 1+10 N 26.1 -10.8 19.08 2.9 1+20 N 5.9 37.8 -12.4 19.51 1+30 N 39.7 -12.4 20.01 3.9 1+40 N 38.1 -13.1 19.63 1+50 N 5.9 44.6 -12.3 19.40 5.9 1+60 N 36.7 -12.6 19.90 5.9 1+70 N 38.8 -11.6 20.25 5.9 1+80 N 5.9 1+90 N 39.8 -12.9 19.42 26.9 -11.7 20.11 5.9 2+00 N 2+10 N 20.1 -10.4 19.83 5.7 35.2 -14.9 20.60 3.9 2+20 N 2+30 N 44.9 -14.2 19.67 5.9 48.8 -14.5 19.61 2+40 N 5.6 23.4 #33 Line 0+60 W Date 28 SEP 87 POSITION I/P QUAD T.FLD TILT CULT 2+40 N 35.8 -10.0 19.36 5.9 50.0 -11.7 20.47 5.9 2+30 N 4.9 37.0 -11.4 20.88 2+20 N 3.9 30.4 -9.8 20.95 2+10 N 2.9 25.9 -10.0 20.17 2+00 N

1

1+90 N 1+80 N 1+70 N 1+60 N 1+50 N 1+40 N 1+30 N 1+20 N 1+20 N 1+20 N 1+10 N 1+00 N 0+90 N 0+90 N 0+90 N 0+90 N 0+50 N 0+50 N 0+20 N 0+10 N	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.999999999999999999999999999999999999	
POSITION 0+00 N 0+10 N 0+20 N 0+30 N 0+40 N 0+50 N 0+50 N 0+60 N 0+70 N 0+80 N 0+90 N 1+00 N 1+10 N 1+20 N 1+20 N 1+50 N 1+50 N 1+50 N 1+50 N 1+70 N 1+80 N 1+90 N 2+00 N 2+10 N 2+20 N	W Date 28 SEP 87 I/P QUAD T.FLD 18.3 -9.9 19.68 27.9 -10.0 19.36 4.9 -7.4 21.04 28.6 -12.8 18.69 31.3 -10.6 18.60 35.2 -10.4 19.80 14.3 -7.1 20.14 7.2 -9.8 20.38 22.8 -8.6 19.08 27.2 -10.8 18.78 9.6 -8.1 19.50 25.6 -9.7 20.07 30.7 -8.9 20.25 12.4 -9.2 20.19 29.1 -8.7 19.70 17.6 -9.1 19.41 37.6 -14.0 19.47 27.7 -10.7 19.98 34.2 -10.6 18.96 39.4 -12.3 18.87 30.1 -9.2 18.91 35.0 -12.8 19.48 18.1 -9.1 19.87 9.9 -7.6 19.99 18.5 -8.4 19.37	TILT CULT 3.9 4.9 2.9 3.9 4.9 4.9 4.9 4.9 2.9 4.9 2.9 4.9 4.9 2.9 4.9 3.3 3.9 3.9 3.9 3.9 3.9 3.9 4.9 4.3	
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+90 N 1+70 N 1+60 N	W Date 28 SEP 87 I/P QUAD T.FLD 46.2 -8.4 20.21 33.6 -8.5 21.74 40.1 -9.2 20.99 37.4 -9.7 22.36 39.1 -9.4 21.18 17.1 -7.8 20.94 32.1 -7.5 21.19 40.0 -7.9 21.04 48.6 -8.9 21.39 36.4 -9.5 22.47 59.1 -9.2 20.39 43.1 -10.5 20.67 44.9 -10.4 21.35 44.1 -8.2 22.35 43.7 -9.5 22.20	TILT CULT 5.9 4.9 5.9 3.9 2.9 3.9 3.9 5.9 3.9 5.9 5.9 4.9 3.9 5.9	

.

•

0100 N		71 97	5.9
0+80 N 0+70 N 0+60 N 0+50 N 0+40 N 0+30 N 0+20 N 0+10 N 0+00 N 0+10 S	51.1 -9.4 33.4 -8.8 40.7 -9.5 33.0 -9.1 41.6 -9.9 32.7 -8.6 51.0 -9.6 36.7 -9.0 16.0 -7.8 14.4 -8.4 27.2 -9.7 28.7 -9.4	22.43 22.47 21.30 21.38 21.55 22.09 21.37 21.10 20.84 21.39	5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 3.9 4.4 2.9
0+00 N 0+10 N 0+20 N 0+30 N 0+40 N 0+50 N 0+50 N 0+60 N 0+70 N 0+90 N 1+00 N 1+00 N 1+00 N 1+20 N 1+30 N 1+40 N 1+50 N 1+60 N 1+70 N 1+80 N 1+90 N 2+00 N 2+10 N 2+20 N 2+30 N	E Date 28 I/P QUAD 25.1 -10.0 28.4 -9.9 27.4 -8.2 15.3 -8.0 29.6 -10.3 26.4 -8.2 13.8 -8.2 23.9 -7.9 26.2 -10.9 15.7 -7.8 15.6 -8.1 33.8 -12.0 5.5 -8.8 11.7 -9.5 5.1 -8.1 29.1 -11.2 29.9 -10.6 39.8 -13.6 39.9 -13.8 30.5 -12.9 36.9 -13.8 36.6 -11.0 24.8 -10.4	T.FLD 21.60 21.06 19.78 21.31 20.52 19.93 20.73 20.92 20.00 21.75 21.15 20.04 22.00 20.29 21.84 20.54 20.01 19.75 20.07 19.60 19.25 19.99 20.36 18.90	TILT CULT 4.9 3.9 2.9 2.9 2.9 2.9 3.9 2.9 2.9 3.9 2.9 3.3 1.5 3.4 1.9 3.3 4.9 3.9 4.8 4.7
2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+90 N 1+80 N 1+70 N 1+60 N 1+50 N 1+30 N 1+30 N 1+20 N 3 1+10 N 3 1+10 N 3 1+10 N 3 0+90 N 3 0+80 N 3 0+60 N 3 0+50 N 3 0+40 N 3	E Date 28 I/P QUAD 38.8 -10.3 54.5 -8.8 49.4 -8.5 39.6 -5.8 54.0 -6.7 53.0 -6.4 36.5 -6.2 31.5 -7.0 50.5 -6.2 43.8 -7.5 44.0 -7.1 42.4 -6.1 34.2 -6.8 31.4 -6.3 38.9 -7.0 36.0 -7.2 32.9 -6.9 21.3 -6.5 32.1 -7.8 29.4 -7.2 32.8 -7.9 19.4 -6.2	T.FLD 7 21.81 20.81 20.71 20.71 21.06 20.99 21.56 21.02 21.31 21.11 21.12 20.69 21.79 20.79 21.22 21.29 21.25 21.29 21.25 21.29 21.85	23.4 #135 ILT CULT 4.9 4.9 5.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4

.

0+20 N 0+10 N 0+00 N 0+10 S 0+20 S 0+30 S 0+30 S 0+50 S 0+60 S 0+60 S 0+70 S 0+80 S 0+90 S 1+00 S 1+10 S 1+20 S 1+30 S 1+40 S 1+50 S 1+60 S	26.1 28.7 45.3 31.5 48.7 43.3 36.8	-8.4 -9.1 -9.1 -8.6 -9.7 -9.4 -9.7 -9.2 -8.5 -7.8 -8.5 -9.2 -8.7 -9.2 -8.7 -7.1 -7.4 -7.1	22.12 21.68 22.99 22.03 21.53 22.54	5.9 3.9 3.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 4.9 5.9 4.9 5.9 5.9 4.9 5.9 5.9 4.9 5.9 5.9
Line 0+00				
	I/P 35.9		T.FLD 20.04	TILT CULT
2+10 S				
				5.9
2+00 S	17.1	-5.5	21.48	2.9
2+00 S 1+90 S	17.1 29.9	-5.5 -4.3	21.48 20.47	2.9 2.9
2+00 S 1+90 S 1+80 S	17.1 29.9 10.1	-5.5 -4.3 -8.0	21.48 20.47 21.11	2.9 2.9 4.9
2+00 S 1+90 S 1+80 S 1+70 S	17.1 29.9 10.1 23.6	-5.5 -4.3 -8.0 -6.2	21.48 20.47 21.11 21.45	2.9 2.9 4.9 5.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S	17.1 29.9 10.1 23.6 24.7	-5.5 -4.3 -8.0 -6.2 -2.8	21.48 20.47 21.11 21.45 20.15	2.9 2.9 4.9 5.9 3.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S	17.1 29.9 10.1 23.6 24.7 20.3	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5	21.48 20.47 21.11 21.45 20.15 20.47	2.9 2.9 4.9 5.9 3.9 2.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+50 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8	21.48 20.47 21.11 21.45 20.15 20.47 20.54	2.9 2.9 4.9 5.9 3.9 2.9 4.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47	2.9 2.9 4.9 5.9 3.9 2.9 4.9 3.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.2	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.47 20.13	2.9 2.9 4.9 5.9 3.9 2.9 4.9 3.9 4.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S 1+20 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 29.8	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.2 -8.0	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99	2.9 2.9 5.9 3.9 2.9 4.9 3.9 4.9 3.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+50 S 1+30 S 1+20 S 1+10 S 1+10 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 29.8 33.9	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.2 -8.0 -9.5	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60	2.9 2.9 4.9 5.9 3.9 2.9 4.9 3.9 4.9 3.9 4.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S 1+10 S 1+00 S 0+90 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 29.8 33.9 27.1	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.2 -8.0 -9.5 -6.6	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60 20.22	2.9 2.9 4.9 5.9 3.9 2.9 4.9 3.9 4.9 3.9 4.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+50 S 1+40 S 1+20 S 1+20 S 1+10 S 1+00 S 0+90 S 0+80 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 29.8 33.9 27.1 26.4	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.2 -9.5 -6.6 -8.3	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60 20.22 19.30	2.9 2.9 4.9 5.9 2.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+50 S 1+40 S 1+20 S 1+20 S 1+10 S 1+00 S 0+90 S 0+80 S 0+70 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 29.8 33.9 27.1 26.4 16.2	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.2 -9.5 -6.6 -8.3 -7.5	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60 20.22 19.30 20.96	2.9 2.9 4.9 5.9 2.9 2.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S 1+20 S 1+10 S 1+00 S 0+90 S 0+80 S 0+70 S 0+60 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 29.8 33.9 27.1 26.4 16.2 24.3	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.0 -9.5 -6.6 -8.3 -7.5 -11.2	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60 20.22 19.30 20.96 20.46	2.9 2.9 4.9 5.9 2.9 4.9 3.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S 1+20 S 1+10 S 1+10 S 1+00 S 0+90 S 0+80 S 0+70 S 0+60 S 0+50 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 29.8 33.9 27.1 26.4 16.2 24.3 26.6	-5.5 -4.3 -8.0 -6.2 -7.5 -6.8 -7.1 -8.0 -9.5 -6.6 -9.5 -6.6 -8.3 -7.5 -11.2 -11.1	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60 20.22 19.30 20.96 20.46 20.23	2.9 2.9 4.9 5.9 2.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.9
2+00 S 1+90 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S 1+20 S 1+20 S 1+00 S 0+90 S 0+90 S 0+90 S 0+70 S 0+60 S 0+50 S 0+40 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 27.1 26.4 16.2 24.3 26.6 13.8	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.0 -9.5 -6.6 -8.3 -7.5 -11.2 -11.1 -6.7	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60 20.22 19.30 20.96 20.46 20.23 20.45	2.9 2.9 4.9 5.9 2.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.9 4.9 4.9 5.9 4.9 5.9
2+00 S 1+90 S 1+80 S 1+70 S 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S 1+20 S 1+10 S 1+10 S 1+00 S 0+90 S 0+80 S 0+70 S 0+60 S 0+50 S	17.1 29.9 10.1 23.6 24.7 20.3 24.7 17.8 26.9 27.1 26.4 16.2 24.3 24.3 26.6 13.8 13.8	-5.5 -4.3 -8.0 -6.2 -2.8 -7.5 -6.8 -7.1 -8.0 -9.5 -6.6 -8.3 -7.5 -11.2 -11.1 -6.7 -8.6	21.48 20.47 21.11 21.45 20.15 20.47 20.54 20.47 20.13 19.99 19.60 20.22 19.30 20.96 20.46 20.23	2.9 2.9 4.9 5.9 2.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.9

EOF

OMNI-PLUS Tie-line MAG/VLF Ser #208035 VLF DATA Date 1 OCT 87 Operator: 5001 Records: 343 Bat: 15.6 Volt Lithium: 3.46 Volt Last time update: 10/01 8:05:00 Start of print: 10/01 18:18:26

#1 68.5 -3.4 2564. Q.8

Line 0+40 E Date 1 OCT 87 23.4 #2 POSITION I/P QUAD T.FLD TILT CULT 0+00 N 42.9 -8.9 18.55 2.9

		,		
	2			
Line 0+40 POSITION 0+10 N 0+20 N 0+30 N 0+40 N 0+50 N 0+60 N 0+70 N 0+70 N 0+70 N 0+70 N 1+00 N 1+10 N 1+20 N 1+30 N 1+40 N 1+50 N 1+60 N 1+70 N	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	T.FLD 18.54 19.87 19.48 18.13 19.67 18.65 19.03 18.90 18.49 18.37 18.60 18.68 18.55 18.54 18.55 18.54 18.18	TILT CULT 1.5 2.9 1.9 3.9 3.5 2.8 1.9 1.9 1.9 2.9 2.9	·
Line 0+60 PDSITION 2+00 N 1+90 N 1+80 N 1+70 N 1+60 N 1+70 N 1+60 N 1+70 N 1+20 N 1+20 N 1+20 N 1+20 N 1+20 N 1+20 N 1+20 N 0+90 N 0+90 N 0+90 N 0+70 N 0+80 N 0+70 N 0+70 N 0+70 N 0+70 N 0+70 N 0+20 N 0+20 N 0+20 S 0+20 S 1+00 S 1+10 S 1+20 S 1+40 S 1+60 S	I/P QUAD 43.6 -9.7 43.7 -10.6 10.8 -6.0 52.5 -9.3 70.7 -10.7 41.4 -7.9 31.3 -7.6 31.2 -8.5 29.3 -7.2 28.4 -7.5 23.8 -7.3 19.4 -6.0 31.9 -7.8 22.2 -6.3 18.1 -5.0 20.6 -5.5 21.4 -5.7 22.0 -7.1 11.6 -5.7	T.FLD 19.93 19.94 19.94 20.10 21.05 19.67 20.18 19.96 19.96 19.96 19.95 19.15 19.15 19.11 19.35 19.44 19.34 19.95 20.67 19.95 20.67 19.29 19.34	23.4 #20 TILT CULT 1.9 4.9 1.9 2.9 2.9 2.9 4.9 1.9 3.9 1.9 1.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3	

.

· · ·

· · ·

	х		
1+60 1+50 1+40 1+30 1+20 1+10 1+00 0+90 0+90 0+80 0+80 0+50 0+50 0+40 0+30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.742.919.282.920.254.919.893.919.954.919.331.919.232.218.894.919.573.719.264.920.553.921.263.919.821.320.812.9	
POSITI 0+20 0+10 0+00	N 39.5 -8.8	T.FLD TILT CULT 21.36 2.9 22.01 1.9 20.40 2.9 2.9 2.9	73
0+10 0+20 0+30 0+40 0+50	S 29.6 -9.5 S 46.4 -10.3 S 49.4 -9.6 S 43.3 -10.2	20.76 3.9 20.82 3.9 21.72 3.9 20.84 4.9	
0+60 0+70 0+80 0+90 1+00 1+10	9 S 44.2 -11.6 9 S 30.4 -10.0 9 S 29.5 -10.7 9 S 45.0 -9.7	20.29 3.9 21.01 3.9 20.06 3.9 20.76 4.7	
1+10 1+20 1+30 1+40 1+50 1+60	S 37.2 -10.0 S 41.5 -10.5 S 41.0 -10.8 S 48.7 -12.3	20.70 3.9 20.69 3.9 21.07 3.9 20.21 3.9	
1+70 1+70 1+80 1+90 2+00 2+10	S 45.7 -10.2 S 55.7 -9.8 S 50.3 -11.4 S 47.8 -11.8	20.64 3.9 20.95 5.9 19.80 3.6 20.48 3.9	
2+20 2+30 2+40 2+50 2+60	S 44.7 -10.3 S 50.1 -11.3 S 44.5 -10.7	20.91 3.9 19.94 3.9 20.05 3.9	
2+70 2+80 2+90 3+00 3+10	S 49.4 -11.2 S 42.0 -10.2 S 42.4 -11.3 S 37.8 -9.5	20.68 5.9 20.80 4.9 21.22 4.9 21.26 4.9	
3+20 3+30 3+40 3+50 3+60	S 31.9 -9.8 S 40.9 -9.9 S 42.0 -10.6 S 49.4 -9.5	21.15 4.9 20.50 2.9 20.11 4.6 21.23 4.9	
3+70 3+80 3+90 4+00 4+10 4+20	S 50.3 -12.2 S 45.8 -11.6 S 42.4 -10.8 S 41.7 -9.7 S 43.6 -9.4	21.20 3.9 19.42 2.3 20.43 3.8 20.11 3.9 20.24 3.9	

.

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T.FLD 20.79 21.12 20.28 19.49 21.97 21.39 20.04 21.24 20.33 19.78 18.93 20.19 20.30 20.07 20.95 20.61 20.88 20.62 20.62 20.61 20.88 20.62 20.45 20.62 20.64 20.62 20.64 20.62 20.64 20.53 20.64 20.64 20.53 20.64 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.65 20.64 20.65 20.64 20.64 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.53 20.64 20.55 20.64 20.55 20.64 20.55 20.64 20.55 20.64 20.55 20.64 20.55 20.54 20.56 20.52 20.54 20.56 20.52 20.52 20.54 20.54 20.55 20.54 20.55 20.54 20.55 20.54 20.55	3.9 3.99 3.49 3.99 3.499 3.99 3.44999 3.544 4.9999 3.594 4.9999 4.999 1.9439 3.594 1.94539 3.594 1.94539 3.594 1.94539 3.594 1.94539 3.594 1.94539 3.5959 1.94539 1.94539 3.5959 1.94539 1.95953 1.95953 1.95953 1.95953 1.95953 1.95953 1.95953 1.95953 1.95953 1.99535 1.99555 1.99555 1.995555 1.995555 1.995555555 1.9955555555555555555555555555555555555
0+60 S		20.90 19.80 20.43 19.73 19.45	3.9
Line 0+40 POSITION 0+10 S 0+20 S 0+30 S 0+40 S 0+50 S 0+60 S 0+70 S 0+80 S 0+90 S 1+00 S 1+10 S 1+20 S 1+30 S 1+40 S 1+50 S 1+60 S	W Date 1 I/P QUAD 51.2 -8.6 50.4 -9.5 44.7 -9.7 39.2 -10.9 37.2 -9.9 41.5 -12.2 43.3 -9.0 37.8 -10.4 42.2 -10.8 35.6 -9.9 40.7 -9.1 37.0 -9.2 30.5 -10.3 41.6 -10.1 33.0 -8.8 27.0 -9.3 40.2 -10.4	OCT 87 T.FLD, 20.53 20.68 21.45 20.01 21.28 21.02 22.38 21.01 21.33 21.62 22.19 21.62 21.54 20.95 21.68 21.61	TILT CULT 5.9 5.9 5.9 5.9 5.9 5.2 3.9 4.9 2.9 2.9 3.9 3.9 3.9 1.9 2.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

• • •	1+80 S 1+90 S 2+00 S 2+10 S 2+20 S 2+20 S 2+30 S 2+40 S	48.0 -8. 41.5 -8. 32.7 -9.		4.9 5.7 4.9 3.6 4.4 4.6 2.9	
	2+20 S 2+00 S 1+90 S 1+80 S 1+70 S 1+70 S 1+50 S 1+50 S 1+30 S 1+20 S 1+20 S 1+10 S 1+00 S 0+90 S 0+80 S 0+70 S 0+50 S 0+40 S 0+30 S	I/P QU/ 20.6 -9. 28.5 -8. 25.6 -10. 17.5 -12. 24.7 -7. 10.4 -11. 25.1 -9. 7.0 -9. 24.2 -8. 28.5 -9. 26.2 -9. 27.6 -8. 35.5 -11. 29.8 -9. 20.0 -8. 28.9 -11. 38.3 -12. 25.4 -9. 6.1 -7. 33.8 -8.	 AD T.FLD AD T.FLD A 21.04 O 19.79 4 20.30 5 20.76 3 19.23 1 20.70 8 20.33 7 20.42 7 19.83 5 19.61 7 19.83 5 19.61 7 19.91 O 19.91 O 19.91 O 19.91 O 19.42 4 19.33 7 20.15 O 18.91 4 18.98 9 19.68 O 21.45 O 19.04 6 19.27 7 19.81 1 20.34 	TILT CU 3.9 4.5 4.5 2.3 4.3 1.3	
		I/P QUA 42.6 -7. 35.9 -7. 37.1 -7. 40.0 -8. 22.0 -6. 49.2 -8. 24.7 -7. 33.8 -7. 31.1 -7. 33.5 -7. 38.9 -7. 47.0 -7. 49.5 -9. 41.7 -8. 35.8 -8.	D T.FLD		#208 LT
	Line 1+00 POSITION 1+60 S 1+50 S 1+40 S 1+30 S 1+20 S 1+20 S 1+10 S 1+00 S 0+90 S 0+80 S 0+70 S	16.3 -7. 21.5 -10. 10.7 -8. 9.6 -6. 14.1 -6. 13.2 -5. 18.2 -9. 19.3 -7. 19.8 -5.	D T.FLD 9 19.76	23.4 TILT CUI 4.8 5.7 2.4 3.3 3.9 2.7 4.3 3.4 4.3 4.3 4.3	#224 LT

0+50 S.	17.2 -6.6 6.9 -8.0	20.78	1.8
0+40 S 0+30 S 0+20 S 0+10 S	23.3 -7.6 12.9 -6.8 20.9 -7.4 22.6 -7.2	19.76 19.24	4.8 2.9 5.5 3.9
0+00 N 0+10 N 0+20 N 0+30 N	0.6 -7.3 15.8 -7.3 16.6 -8.1 8.4 -7.5	21.20	2.9 3.9 3.9 2.9
0+40 N 0+50 N 0+60 N	16.9 -7.7 33.2 -11.2 26.3 -10.2	20.27 19.13 19.10	2.9 4.9 3.9
0+70 N 0+80 N 0+90 N 1+00 N	13.2 -8.5 13.5 -9.1 6.9 -6.8 4.9 -7.6	20.48 20.86	
1+10 N 1+20 N	19.9 -10.0 40.3 -13.5 17.4 -6.7 9.4 -6.6	18.91 19.05	3.6 4.4 3.5 3.9
1+50 N 1+60 N 1+70 N	30.2 -11.3 27.0 -9.8 23.1 -9.1	19.46 19.72 18.45	4.9 5.9 4.3
	28.3 -8.7 33.7 -8.3 23.8 -6.3 28.5 -9.2	19.23 19.02	3.7
2+30 N	16.2 -8.5 22.7 -10.4 20.6 -11.0	19.61	3.3
POSITION 2+40 N	36.6 -8.6	T.FLD 20.04	TILT CULT 4.9
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N	I/P QUAD 36.6 -8.6 34.7 -7.8 37.4 -8.5 31.9 -8.5 31.7 -8.3	T.FLD 20.04 21.00 21.46 20.67 20.01	TILT CULT 4.9 3.9 3.9 5.6 4.9
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+80 N 1+70 N	I/P QUAD 36.6 -8.6 34.7 -7.8 37.4 -8.5 31.9 -8.5 31.7 -8.3 38.5 -8.2 40.3 -7.7 38.9 -7.5	T.FLD 20.04 21.00 21.46 20.67	TILT CULT 4.9 3.9 3.9 3.9 5.6
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+80 N 1+60 N 1+60 N 1+50 N 1+40 N 1+30 N	I/P QUAD 36.6 -8.6 34.7 -7.8 37.4 -8.5 31.9 -8.5 31.7 -8.3 38.5 -8.2 40.3 -7.7 38.9 -7.5 32.5 -8.7 32.0 -8.4 29.8 -8.3 43.3 -9.7	T.FLD 20.04 21.00 21.46 20.67 20.01 20.50 20.16 19.66 21.27 19.59 20.46 20.63	TILT CULT 4.9 3.9 5.6 4.9 3.9 4.9 5.9 5.9 4.9 4.9 5.9 4.9 5.9
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+90 N 1+80 N 1+70 N 1+60 N 1+50 N 1+40 N 1+30 N 1+20 N 1+10 N 1+00 N 0+90 N	I/P QUAD 36.6 -8.6 34.7 -7.8 37.4 -8.5 31.9 -8.5 31.7 -8.3 38.5 -8.2 40.3 -7.7 38.9 -7.5 32.5 -8.7 32.0 -8.4 29.8 -8.3 43.3 -9.7 40.4 -9.0 38.5 -9.3 32.6 -8.2 28.7 -7.3	T.FLD 20.04 21.00 21.46 20.67 20.01 20.50 20.16 19.66 21.27 19.59 20.46 20.63 20.63 20.50 19.72 20.32 20.74	TILT CULT 4.9 3.9 5.6 4.9 3.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 4.9
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+90 N 1+80 N 1+70 N 1+60 N 1+50 N 1+40 N 1+30 N 1+20 N 1+10 N 1+00 N	I/P QUAD 36.6 -8.6 34.7 -7.8 37.4 -8.5 31.9 -8.5 31.7 -8.3 38.5 -8.2 40.3 -7.7 38.9 -7.5 32.5 -8.7 32.0 -8.4 29.8 -8.3 43.3 -9.7 40.4 -9.0 38.5 -9.3 32.6 -8.2 28.7 -7.3 23.8 -6.0 33.7 -7.3 29.6 -6.7 27.2 -6.7	T.FLD 20.04 21.00 21.46 20.67 20.01 20.50 20.16 19.66 21.27 19.59 20.46 20.63 20.50 19.72 20.32 20.74 20.37 20.28 21.47 20.74	TILT CULT 4.9 3.9 5.6 4.9 3.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+90 N 1+80 N 1+70 N 1+60 N 1+50 N 1+40 N 1+30 N 1+20 N 1+20 N 1+10 N 1+00 N 0+90 N 0+80 N 0+70 N 0+60 N	I/P QUAD 36.6 -8.6 34.7 -7.8 37.4 -8.5 31.9 -8.5 31.7 -8.3 38.5 -8.2 40.3 -7.7 38.9 -7.5 32.0 -8.4 29.8 -8.3 43.3 -9.7 40.4 -9.0 38.5 -9.3 32.6 -8.2 28.7 -7.3 23.8 -6.0 33.7 -7.3 29.6 -6.7 27.2 -6.7 38.8 -6.6 33.8 -6.6	T.FLD 20.04 21.00 21.46 20.67 20.01 20.50 20.16 19.66 21.27 19.59 20.46 20.63 20.50 19.72 20.32 20.74 20.37 20.28 21.47 20.28 21.47 20.74 19.98 20.05 20.88	TILT CULT 4.9 3.9 5.6 4.9 5.9 5.9 5.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9
POSITION 2+40 N 2+30 N 2+20 N 2+10 N 2+00 N 1+90 N 1+90 N 1+80 N 1+70 N 1+60 N 1+50 N 1+40 N 1+30 N 1+20 N 1+20 N 1+10 N 1+00 N 0+90 N 0+90 N 0+80 N 0+70 N 0+60 N 0+50 N 0+30 N 0+20 N	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	T.FLD 20.04 21.00 21.46 20.67 20.01 20.50 20.16 19.66 21.27 19.59 20.46 20.63 20.50 19.72 20.32 20.32 20.74 20.37 20.28 21.47 20.74 19.98 20.05 20.88	TILT CULT 4.9 3.9 5.6 4.9 3.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 4.9 5.9 5.5 5.7

•					
0+70 S 0+80 S 0+90 S 1+00 S 1+10 S 1+20 S	25.3 37.9 26.7 43.1 38.4 27.5	-7.7 -7.9 -8.0 -7.6		4.9 5.9 4.9 5.9 6.7 5.9	
1+30 S 1+40 S 1+50 S 1+60 S	30.5 25.4 34.5 45.7 40.1	-7.9 -7.4 -8.0 -8.6 -7.7		5.9	
1+90 S 2+00 S 2+10 S 2+20 S 2+30 S 2+30 S	24.0 26.8 35.2 28.6 39.4 44.2	-7.2 -8.2 -7.2 -6.6	21.93 21.41 21.33 22.24 21.66 22.39	2.9 2.9 5.8 3.9 5.9 5.9	
0+40 S 0+20 S 0+20 S 0+10 S 0+00 N 0+10 N 0+20 N 0+20 N 0+30 N 0+50 N 0+60 N 0+70 N 0+80 N	I/P 14.1 9.4 17.9 11.2 8.3 3.0 2.3 1.4 29.3 25.3 12.1 1.4 12.0 13.8 8.8 2.7 4.6 2.7 12.1 3.0 18.7 13.9 11.1 -1.2 6.2	QUAD -7.3 -7.1 -7.3 -9.1 -8.7 -6.9 -8.0 -6.7 -7.9 -10.4 -8.0 -9.2 -8.1 -7.9 -8.1 -7.9 -8.1 -7.2 -8.1 -7.2 -8.1 -7.2 -8.3 -8.3 -8.2	T.FLD 20.10 21.09 19.40 20.97 20.66 19.96 21.38 20.20 19.85 19.69 19.58 19.97 19.77 19.51 18.93 19.95 20.75 20.60 19.77 21.26 19.72 20.69 20.65 21.40	TILT C 4.9 2.5 3.5 4.3 4.4 1.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	#314 ULT
0+90 N 1+00 N 1+10 N 1+20 N 1+30 N	4.7 1.7 21.9 9.1	-6.6 -6.4 -9.0	21.05	1.9 3.9 4.9 3.9	

EOF

OMNI-PLUS Tie-line MAG/VLF Ser #208035 VLF DATA Date 2 OCT 87 Operator: 5001 Records: 86 Lithium: 3.46 Volt Bat: 16.1 Volt Last time update: 10/02 8:10:00 Start of print: 10/02 17:17:30 #1 69.3 -1.6 2565. 0.8 Line 1+20 W Date 2 OCT 87 23.4 #2 I/P QUAD T.FLD TILT CULT POSITION 19.2 -4.7 19.34 2+50 S 3.7 23.4 Line 1+20 W Date 2 OCT 87 #3 TILT CULT POSITION I/P QUAD T.FLD 15.2 -5.1 19.61 1.9 2+60 S -5.4 19.64 2+70 S 13.0 3.8 -4.2 19.31 2.9 2+80 S 14.3 10.7 -4.4 20.11 2.9 2+90 \$ 3+00 5 16.1 -4.5 19.07 3.6 3+10 S 24.2 -4.6 19.77 5.9 3+20 S 14.7 -4.4 19.59 3.8

11.6 -3.7 19.46

14.6 -3.4 19.73

17.4 -3.6 20.00

15.9 -2.6 19.13

18.5

18.6

15.8

15.3

-3.5 19.56

-3.1 18.74

-2.8 19.23

-3.1 19.33

3.5

2.7

4.3

4.3

3.4 3.3

3.3

4.4

3+30 \$

3+40 S

3+50 S

3+60 S 3+70 S

3+80 S

3+90 S

4+00 S

4+10 S	13.1	-3.5	19.24	4.3	
4+20 S	7.0	-4.4	20.20	3.4	
4+30 S	12.1	-5.3	19.55	4.3	
4+40 S	10.8	-5.2	19.09	4.6	
Line 0+80					
POSITION					JLT
4+40 5					
4+30 \$					
			18.89		
4+10 S	4.5	-2.8	19.20	3.3	
4+00 5					
3+90 S					
3+80 5	12.4	-5.1	19.18	з.з	
3+70 S	6.2	-2.8	18.37	3.2	
3+60 S	9.1	-2.5	18.25	4.2	
3+50 S	8.3	-2.9	18.59	3.3	
3+40 5	5.9	-2.3	18.26	4.3	
3+30 S	9.9	-1.9	19.01	4.3	
3+20 S	З.7	-3.7	18.85	4.3	
3+10 S	2.3	-2.5	18.11	2.3	
3+00 S	1.1	-3.8	18.49	3.3	
2+90 S	-5.4	-2.6	19.63	1.3	
2+80 S	3.4	-2.2	19.71	2.3	
2+70 S	-2.6	-2.5	19.03	3.3	
2+60 S			18.20		
2+50 S	1.9	-2.6	17.53	2.2	

POSITION 2+50 S	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>) T.FLD 22.37 22.20 21.67 21.78 21.93 23.19 23.19 21.67 21.19 22.53 22.04 22.68 22.04 22.68 22.04 21.61 21.61 23.15 20.79 20.57</pre>	TILT CULT 3.9 2.5 3.9 3.9 2.9 3.8 4,4 3.5 4.6 3.4
Line 0+00 POSITION 4+50 S 4+40 S 4+20 S 4+20 S 4+20 S 3+90 S 3+90 S 3+80 S 3+70 S 3+60 S 3+70 S 3+60 S 3+20 S 3+10 S 3+20 S 2+90 S 2+90 S 2+70 S 2+60 S 2+50 S 2+20 S 2+20 S	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	T.FLD 21.07 19.90 20.26 20.96 21.71 21.90 22.23 21.78 21.79 21.79 21.79 21.47 22.03 22.06 22.10 22.06 22.10 20.52 20.97 20.92 21.12 20.92 21.75 21.80	TILT CULT 3.3 1.4 1.3 3.3 3.3 4.3 1.5 3.3 2.4 3.5

EOF

EDA OMNI-IV Tie-line MAG Ser #208035 TOTAL FIELD DATA (Base stn. corrected) & GRADIENT Date: 28 SEP 87 Operator: 5001 Reference field: 56800.0 Datum subtracted: 0.0 Records: 196 Bat: 15.7 Volt Lithium: 3.46 Volt Last time update: 9/28 8:04:00 Start of print: 9/28 17:14:27

Base stn. Pos: 19+00 N Line: 30+00 E Last time update: 9/28 8:04:00 Start of print: 9/28 17:14:28

#1	55950.6	.00	419.1	8:20:31	88
#2	55948.6	.00	421.1	8:27:37	88
#3	55947.7	.00	422.0	10:10:07	88
#4	55948.0	.00	421.7	10:11:08	88
#5	55954.7	.00	415.0	10:42:22	88
#6	55954.9	.00	414.8	10:45:12	88

Line:	(0+40 W	Date:	28 SEF	° 87	#7
POSITI	DМ	FIELD	ERR	DRIFT	TIME	DS
0+10	Ν	57789.2 33.4	.06	414.7	10:45:54	88
0+00	Ν	57789.4	.06	415.9	10:49:42	88
0+10	Ν		.07	416.2	10:50:20	88
0+20	N	57938.7	.06	417.2	10:51:08	88
0+30	Ν	57843.5	.06	417.9	10:52:14	88
0+40	Ν	57856.2	.05	418.5	10:53:03	88
0+50	Ν	58242.4	.06	419.0	10:53:44	88
0+60	N	58226.7	.07	419.6	10:54:45	88
0+70	Ν		.09	419.8	10:55:22	88
0+80	N	58064.9	.05	419.9	10:55:57	88
0+90	N		.06	420.0	10:56:26	88
1+00	Ν	57696.9	.06	420.1	10:57:01	88
1+10	Ν		.07	420.2	10:57:31	88
1+20	Ν	57612.3	.06	420.2	10:58:04	88
1+30	Ν	18.0 57725.6 -78.0	.10	420.6	11:00:52	88

	• · · · · · · · · · ·	•
*	Tando M mymania a sa	420.9 11:01:30 88
	33.5 1+50 N 57898.0 .10	420.8 11:02:16 88
	71.5 1+60 N 57634.4 .06	420.7 11:03:05 88
	-14.5 1+70 N 57591.5 .06	420.5 11:04:08 88
	23.3 1+80 N 57330.1 .06	420.6 11:04:36 88
	-15.3 1+90 N 57185.4 .05	421.0 11:05:07 88
	-11.5 2+00 N 56973.9 .06	421.4 11:05:36 88
	-24.0 2+10 N 56910.5 .06	421.0 11:06:09 88
	-21.9 2+20 N 56883.5 .06	420.5 11:06:41 88
	-37.6 2+30 N 56882.8 .06	421.0 11:07:10 88
	-21.4 2+40 N 56892.9 .07	421.4 11:07:47 88
	-8.2	28 SEP 87 #33
	Line: 0+60 W Date: POSITION FIELD ERR	DRIFT TIME DS
	2+40 N 56907.5 .06 -22.3	423.0 11:09:41 88
	2+30 N 57038.9 .07 0.5	423.1 11:10:56 88
	2+20 N 57035.9 .06 -2.2	423.0 11:11:24 88
	2+10 N 57141.9 .06 -13.9	422.8 11:12:04 88
	2+00 N 57428.1 .06 -1.9	421.9 11:12:37 88
	1+90 N 57668.1 .06 4.3	421.3 11:13:13 88
	1+80 N 57813.6 .07	421.2 11:13:42 88
	47.3 1+70 N 57698.7 .06	421.2 11:14:15 88
	-7.5 1+60 N 57662.7 .06	420.7 11:15:00 88
	-34.1 1+50 N 57732.3 .06	420.1 11:15:42 88
	-24.2 1+40 N 57789.4 .06	
	9.9 1+30 N 58055.6 .09	
	95.3 1+20 N 57885.9 .06	
	30.7 1+10 N 57490.0 .11	
	-84.8 1+00 N 57480.2 .06	
	-21.9 0+90 N 57532.3 .00	
	-10.1 0+80 N 57713.4 .00	
	-43.4 0+70 N 58067.0 .0	
	0470 N 3800710 14	

				,		
٠.						÷ .
•	0+60 N	57899.3 39.3	.07	419.5	11:22:22	88
	0+50 N		.06	419.8	11:22:51	88
	0+40 N	57904.8 18.8	.06	420.5	11:23:32	88
	0+30 N	57798.6	. 11	420.2	11:24:47	88
	0+20 N	57652.3 51.6	.07	420.3	11:25:27	88
	0+10 N		.07	420.4	11:26:03	88
	0+00 N		.05	420.4	11:26:50	88
		+80 W				58_
	POSITION 0+00 N	FIELD 57454.1		DRIFT 424.8	TIME 11:39:48	DS 88
		-9.8			11:41:16	
		-54.2			11:41:10	
		15.5			11:42:13	
		-25.9	.05		11:44:38	
		-19.7				
		58067.0 42.4			11:45:19	
		58014.3			11:46:10	
		57960.2			11:46:52	
		57713.3 25.0			11:48:10	
		57780.8 26.3			11:48:40	
		58024.3 64.1			11:49:11	
		58126.0 41.1			11:49:55	
		58153.9 82.6			11:50:36	
		58144.1 85.3			11:51:39	
		57935.9 23.5			11:52:13	
	1+50 N \$	57827.0 23.9			11:52:41	
	1+60 N \$	57862.7 32.6	.07	419.9	11:54:23	88
	1+70 N :	58160.7 84.3	.09	419.7	11:55:17	88
	1+80 N 5	58091.8 45.9		419.6	11:55:44	88
	1+90 N ;	58200.3	.07	419.4	11:56:13	88
	2+00 N ;	58270.6 127.4		419.2	11:56:43	88
	2+10 N \$	57974.4 66.1	.09	419.1	11:57:10	88

OLOG N	57770 0	07	419 A	11:57:35	88
	38.7				
2+30 N	57359.6 -58.6			11:57:57	
2+40 N	57315.1 26.1	.05	418.8	11:58:35	88
.ine:	0+20 W	Date:	28 SEF	• 87 #{	33
	FIELD	ERR	DRIFT	TIME	DS
2+40 N	57126.5 13.7	.06	413.3	12:19:36	88
2+30 N		.07	413.2	12:20:46	88
2+20 N		.06	413.1	12:21:35	88
2+10 N		.06	412.9	12:22:09	88
2+00. N	57496.3	.09	412.7	12:22:36	88
1+90 N	57352.0 -25.8	.06	411.7	12:23:08	88
1+80 N	56989.6 -125.8	. 11	411.9	12:23:41	88
1+70 N	57072.0 -69.5	.11	411.7	12:24:16	88
1+60 N		.08	411.1	12:24:51	88
1+50 N		.05	411.7	12:25:31	88
1+40 N		.06	411.6	12:26:50	88
1+30 N		.06	411.1	12:27:46	88
1+20 N	57469.1 -38.5	.06	411.4	12:28:54	88
1+10 N		.11	411.2	12:30:07	88
	58425.4 159.7			12:31:08	
0+90 N	58285.2 111.8	.10	411.9	12:31:36	88
0+80 N		.10	412.1	12:32:08	88
0+70 N		.06	412.8	12:32:38	88
0+60 N		.07	413.1	12:33:06	88
0+50 N		.07	412.5	12:33:30	88
0+40 N		.07	413.5	12:34:04	88
0+30 N	57524.2 -7.4			12:34:39	
0+20 N	-19.2			12:35:09	
	24.8			12:35:36	
	57410.2 1.5			12:37:15	
0+10 S	57315.8 -31.7	.05	413.3	12:37:46	88
		19 19			

• • •

.....

0+20 S 57239.5 .05 413.2 12:38:17 88 -23.1

•.

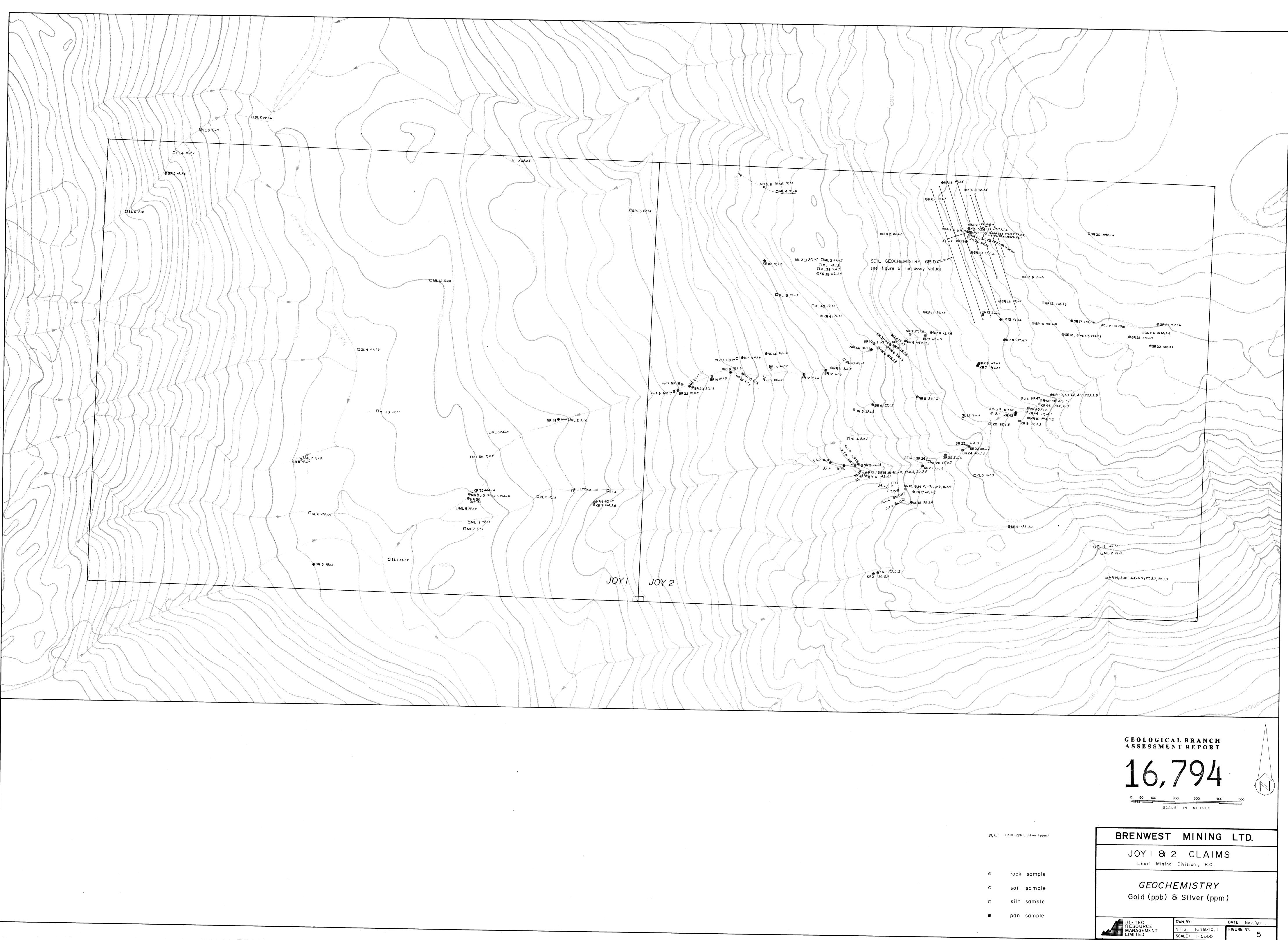
,

		28 SEP 87 #110 DRIFT TIME DS
0+00 N 58429.8		412.1 13:07:48 88
75.1 0+10 N 58141.4	.06	413.0 13:09:06 88
-25.3 0+20 N 58085.2 -6.3		412.3 13:09:44 88
0+30 N 57961.1 21.2		413.2 13:10:20 88
0+40 N 57854.7 109.4	. 10	413.4 13:11:10 88
0+50 N 57764.0 53.5		413.8 13:11:59 88
0+60 N 57541.6 34.4		414.0 13:12:30 88
0+70 N 57430.6 7.1		414.0 13:13:06 88
0+80 N 57322.7 -11.6		414.1 13:13:38 88
0+90 N 57166.2 -42.8	.06	414.7 13:14:47 88
	.10	415.0 13:15:23 88
		415.0 13:16:02 88
	.06	413.9 13:17:12 88
	.05	413.8 13:17:55 88
-20.0 1+40 N 57914.7 31.2		413.6 13:19:07 88
	.11	415.0 13:19:52 88
	.08	414.8 13:20:48 88
42.3 1+70 N 57608.9 69.3	.09	424.3 14:27:18 88
		425.0 14:28:25 88
		425.2 14:29:05 88
	.05	424.4 14:29:42 88
2+10 N 57154.1 -22.1	.06	424.5 14:30:33 88
	.06	425.1 14:31:36 88
	.05	424.4 14:32:52 88
	.06	425.2 14:33:34 88
		28 SEP 87 #135
		DRIFT TIME DS
2+40 N 57143.8 -1.3	.07	424.8 14:35:55 88
	.06	426.1 14:37:12 88

1 *						
• .	2+20 M		.06	425.8	14:37:53	88
	2+10 1	12.3 N 57523.0 29.2	.06	425.7	14:38:36	88
	2+00 1	V 57492.9	.06	426.0	14:40:02	88
	1+90 M	18.0 N 57521.4 11.3	.05	425.9	14:41:06	88
	1+80 1		.06	426.2	14:42:27	88
	1+70 1		.05	425.3	14:44:26	88
	1+60 M		.06	425.4	14:45:56	88
	1+50 M		.10	424.2	14:47:18	88
•.	1+40 M		.05	424.0	14:47:58	88
,	1+30 N		.07	423.6	14:48:38	88
	1+20 1		.06	423.4	14:49:12	88
	1+10 1		.07	423.2	14:50:17	88
	1+00 1		.07	423.2	14:51:03	88
			.07	422.8	14:51:43	88
		v 57563.8 -4.3	.06	423.0	14:53:21	88
	0+70 1		.07	423.6	14:54:01	88
	0+60 N	v 57269.7 -99.5	.10	424.2	14:54:41	88
	0+50 N	v 57146.2 -85.4	.10	425.9	14:56:31	88
	0+40 N		.06	426.3	14:57:17	88
	0+30 N		.07	426.5	14:58:01	88
	0+20 N	4 58157.3 74.0	.11	426.2	14:58:39	88
	0+10 N		.10	425.4	14:59:17	88
	0+00 N	100.0 1 58240.1 27.9	.,06	425.1	15:00:07	88
	0+10 8	3 58037.4 33.7		424.2	15:10:42	88
	0+20 5	57915.8 27.2	.06	424.7	15:11:17	88
	0+30 9	57734.4 -10.8	.06	424.8	15:11:58	88
	0+40 9	57644.7 43.3	.07	425.5	15 : 12:33	88
	0+50 5	57487.5 -13.3	.06	425.4	15 : 13 : 10	88
	0+60 9	57484.2 -12.6	.05	425.9	15:13:44	88
	0+70 9	57508.4 -16.0		426.6	15:14:14	88
	0+80 9	57710.4 23.6	.05	427.3	15:14:42	88

.


· · · ·


•							1 1 -	
				.06	427.2	15:15:17	88	
	1+00	5	0.1 57832.9	.07	426.8	15:15:43	88	
	1+10	S	17.0 57787.8	.07	426.9	15:16:07	88	
	1+20	S	-11.5 57885.0	.07	426.7	15:16:40	88	
	1+30	S	50.8 57783.5	.07	425.7	15:17:17	88	
			48.9 57499.6		424.1	15:17:48	88	
			2.9			15:18:18		
			-32.1			15:18:56		
	ado - 9667-66-		-18.9					
						87 #17		
			57364.6			TIME 15:24:45		
		e	12.0	05	40C 0	15:25:50	00	
	2+00	5	57322.0 -20.0	•03	420.0	10120100	00	
	1+90	S	57262.3	.06	427.7	15:26:42	88	
	1+80	S	57161.4 -38.8	.05	429.1	15:27:38	88	
	1+70	S	57089.1 -33.1	.06	429.6	15:28:16	88	
	1+60	S	57230.8 -65.8	.10	430.7	15:29:09	88	
	1+50	S	57497.5 17.0	.06	433.5	15:30:55	88	
	1+40	5	57534.0	.06	433.8	15 : 31:40	88	
	1+30	S		.06	434.2	15:32:18	88	
	1+20	S	57757.3		434.4	15:33:00	88	
	1+10	S	57852.0		434.8	15:35:27	88	
	1+00	S	57986.3 23.9	.05	437.3	15:36:00	88	
	0+90	ទ	57753.4 -12.7	.07	439.2	15:36:30	88	
	0+80	S	57718.0	.06	438.2	15:37:05	88	
	0+70	S	57687.3 15.8	.06	436.3	15:37:29	88	
	0+60	S	57606.9 4.6		435.1	15:37:53	88	
	0+50	S	57580.6		434.4	15:38:16	88	
	0+40	S		.11	434.4	15:38:46	88	
	0+30	S		.05	434.6	15:39:11	88	
•			. *					


0+20 S	57469.1 .06 -43.5	434.2	15:39:38	88
0+10 5	57835.7 .07 -51.0	433.1	15:40:16	88
Checksum	Error! Record	#197		


0+00 N 0.0 .00 0.0 0:00:00 0 0.0

EOF

	L. 1+20 W	L. 0+80 W	L. 0+40 W	L. 0+00	· ·		·			
—	5,1.3	5,1.6	- 10, o. 6	5,1.4						
	- 5,1.3	- 10,0.9	- N/S	- 140,1.2	0+40 E	0+60 E	0+80 E	Ш 00 +	•	
2+00 N	- 5,1.2	- 5, o.B	- 5, o.7	- 10,1.0	Г. 0+ С	L. 0+6	L. 0+8	L. I+0		
	- 5,0.3	- 10,0.4	- 5,0.7	- 100,0.6						
	- 5,0.8	- 10,2.2	- 5,0.7	- 5,0.5	- 10,0.8	- 20, 1.9				
	- 5,0.7	- 5,1.7	- 5,0.4		- 5,1.3	- <i>N/S</i>				
	- 5,1.4	- 5,1.6	- 5,0.6	- 530.0.7	- 5,0.9	- 5,0.2				
I+00 N	- 5,0.5	- 20,1.1	- 10, o.5	- 5,0.6	- 5,0.6	- <i>N/</i> 5				
	- 5,0.6	- 10.0.9	- 5.07	- 5,1.3	- 5, 0.7	- 5,0.3				
	- 10.0.7	- 15, 0.9	- 10,1.3	- 10,0.4	- 30,0.8	- <i>N/S</i>				
	- 5,1.3	- 5,1.0	- 30,1.4	- 20, o.7	- 20,1.1	- 30,0.9				

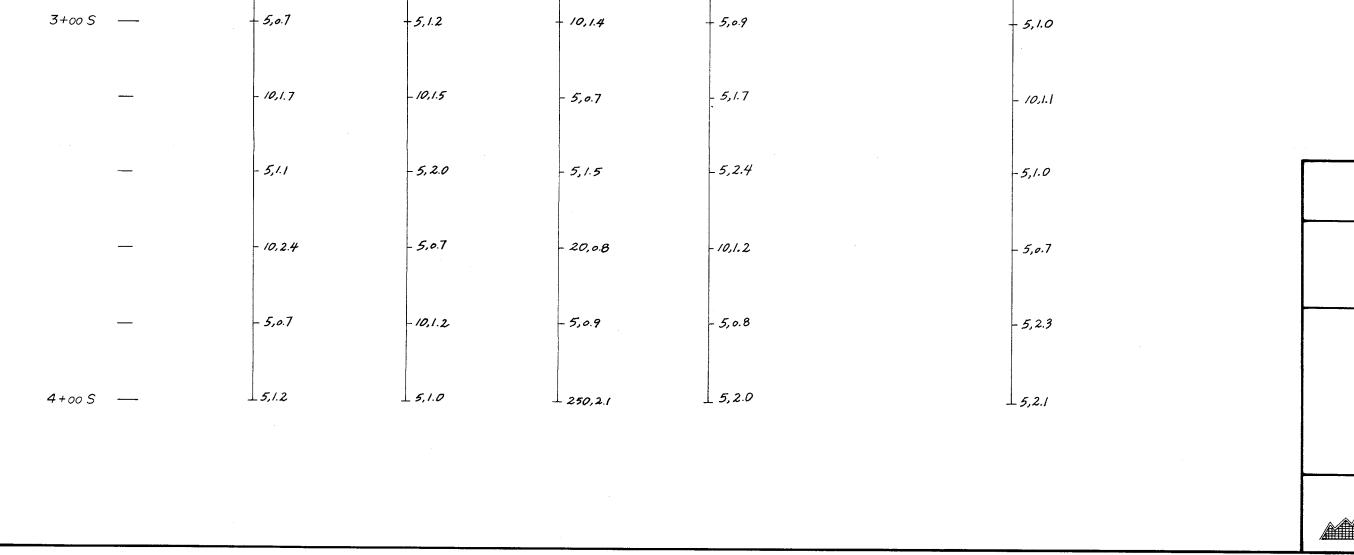
80,0.9

- N/S

- 070°

Baseline O+oo				3250,63		20,0.8		
Duschine 0100		20,1.4	5, 0.9	GR·Ⅱ	5,0.6	30,1.1	40,1.5	5,1.4
	_	- 5,1.3	- 5,1.0	- 5,2.4	- 5,1.9	- 5,1,1	- 10,1.5	- 5,0.7
		- 5, o.B	- 10, o. 5	- 5,1.4	- 5,1.9	- 20, o.4	- 20,1.0 ·	- 5,0.6
	_	- 10, o. 5	- <i>N/S</i>	- 20,1.9	- 5,0.9	- 5, o. 3	- 5,1.2	- 5,1.1
		- 5,1.1	- 5,1.1	- 5,1.1	- <i>10,1.</i> 3	- 5,1.4	- 5,1.1	- 5,0.3
1+00 S		- 5,1.5 -	- 5,0.7	- 5,1.4	- 5,1.5	- 5,0.7	- 10,1.4	-10,1.0
		- 5, 3.7	- 20,1.0	- 5,1.0	- 5,0.5	- 5, 1. 2	- 5,1.1	- 20,1.5
	_	- 5,2.0	- 5.0.6	- 5,0.5	- 5, o. 2	- 5,0.7	- 5,0.6	- 5,0.4
		- 5,1.9	- 30, o.9	- 5,0.7	- 5,0.9	- 5, o. 3	- 5,0.2	5,1.5
	_	- 5,0.6	- 5,0.8	_	- 10,1.5	- N/S	- 5,0.7	
2+00 S		- 10, o.8	- 5,1.1	- 10,0.8 -	- 5,0.9	- 5,0.2	- 5,0.9	
		- 5,1.3	- 10,2.5	- 5,1.5	- 5,1.0	- 5,1.3	- 10,0.7	
		- 5,0.5	- 5,0.6	- 5,1.2	- 5,1.7	- 5,0.7	- 5,1.8	
		- 5,1.7	- 5,2.2	- 5,1.3	- 5,2.0		- 5,1.5	
		- 5,1.0	- 5, o.7	- 5,1.3	- 5,1.5		- N/S	
3+00.5		- 5.0.7 -	-512 -	10.14	5.09		510	

- 40,1.2


- 50,0.7

- 5,0.9

- 5, 0.4

GEOLOGICAL BRANCH ASSESSMENT REPORT

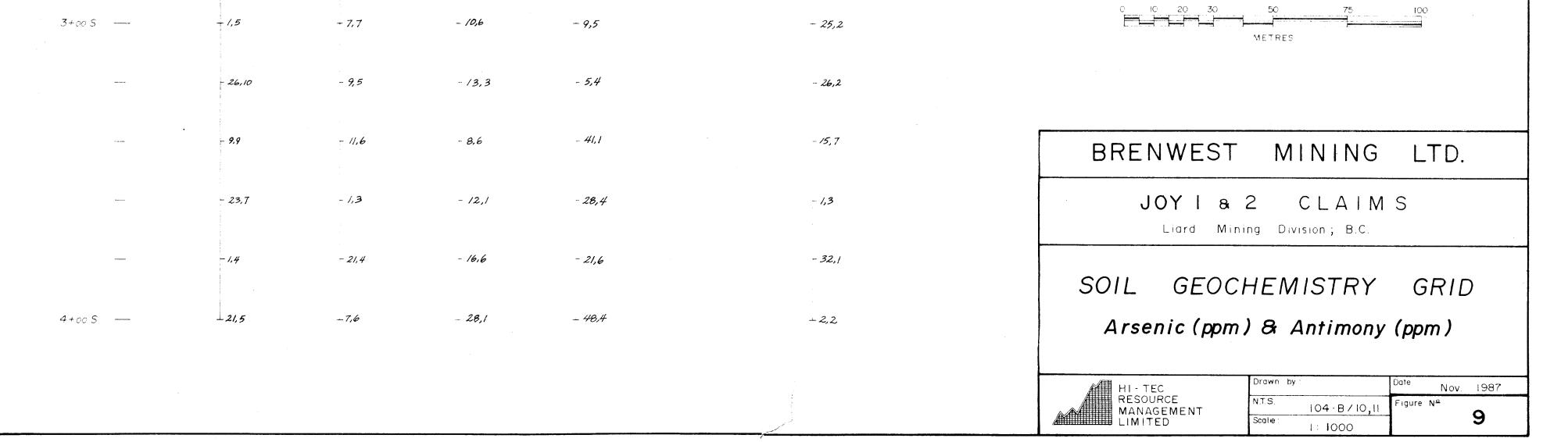
16,794

METRES BRENWEST MINING LTD. JOY I & 2 CLAIMS Liard Mining Division; B.C. SOIL GEOCHEMISTRY GRID Gold (ppb) & Silver (ppm) Drawn by HI - TEC RESOURCE MANAGEMENT LIMITED Date : Nov. 1987 N.T.S. Figure Nº 104·B/10,11 8 Scale : 1: 1000

50

75

100


0

10 20 30

	L. 1+20 W	L. 0+80 W	L. 0+40 W	L. 0+00					
	20,5	8,6	- 10,2	- 29,4					(
2+00 N	- <i>1,7</i> - 23,6	- 13,1 - 3,3	- N/S - 20,4	- 2,1 - 2,1		L. 0+60 E L. 0+80 E	L. 1+00 E		· ·
	- <i>14,3</i> - 20,4	- 9,4 - 12,1	- <i>15,2</i> - 9,1	- 3,3 - 10,2	5,1	- 19,6			 -
	- 19,2	- 1,7	- 9.1		- 1,3	- N/S			
1+00 N	- <i>15,4</i> - <i>19,3</i>	- 10,7 - 19,4	- 14,1 - 12,1	- 5.3 - 1,1	- 1,3 - 1,3	- 24,6 - N/S			
	- 15,3 - 11,4	- 17,5 - 17,1	- 16,3 - 13,1	- <i>27,7</i> - <i>1,</i> 2	- 7.2 - 5.2	- 26,2 - N/S		• · ·	
	- 29,7	- 15.6	- <i>9,</i> 7	- 24,1		- 27,5			
 Baseline O+co	- 9,6 2,6	- 16,3 22,4	- 23./ 9.1 GR	- <i>18,1</i>	- 6, 1 3,1	- N/S 24,5 31,6	1,49		
	- 1, 7 - 5, 2	- 19,4 - 17,2	- 27,3	- 1,8 - 5,8	- 11,2 - 2,1	- 3,1	5,12 - 3,3		
	- 14, 7	- N/S	- 45,4	- /, /	- /,1	25,1	13 , 2.		
1+00 S	- 4,2 - 17,5	- <i>1,4</i> - <i>13,4</i>	- 3,1 - 6,8	- 21,1 - 12,7	- 20,2 - 2,1	- 1,1 30,7	- 11,1		
	- 20,7 - 14,4	- <i>18,4</i> - <i>17,4</i>	- 1,4	- /, 1 - /, 59	- 8,1	- 22,5	- 13,4 - 12,1		GEOLOGIC. ASSESSME
	- 17.5 - 6.2	- <i>16,5</i> - <i>1,4</i>	- 3,5	- 1,1 - 10,10	- 21,5 - N/S	- 22,5	- 10,1		ASSESSME. 16
2±00 \$	- 1,5	- 1,5	/ 2,]	- 7,6	- 13,1	- 16,1			
	- 6,3 - 5,3	- <i>11,5</i> - <i>18,4</i>	- <i>13,6</i> - <i>8,1</i>	- 17,4 - 49,2	- 2,2 - 1,2	- <i>19,1</i> - 30,9			
	- 8,3 - 6,6	- 9,7 - 14,3	- <i>16,3</i> - <i>4,</i> 7	- 9, 7 - 1,1		- 1,7 - N/S			

CAL BRANCH ENT REPORT

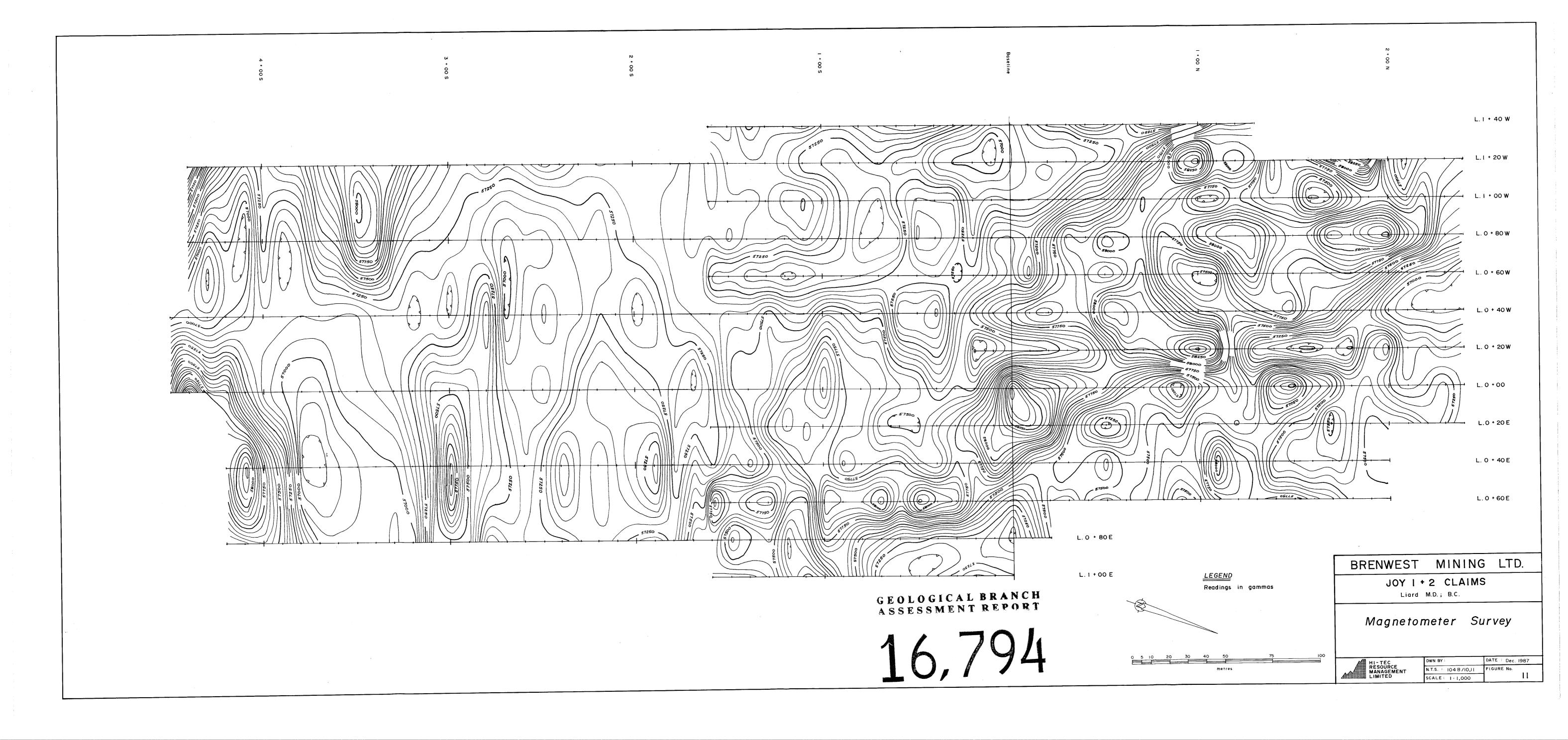
Baseline - 070°

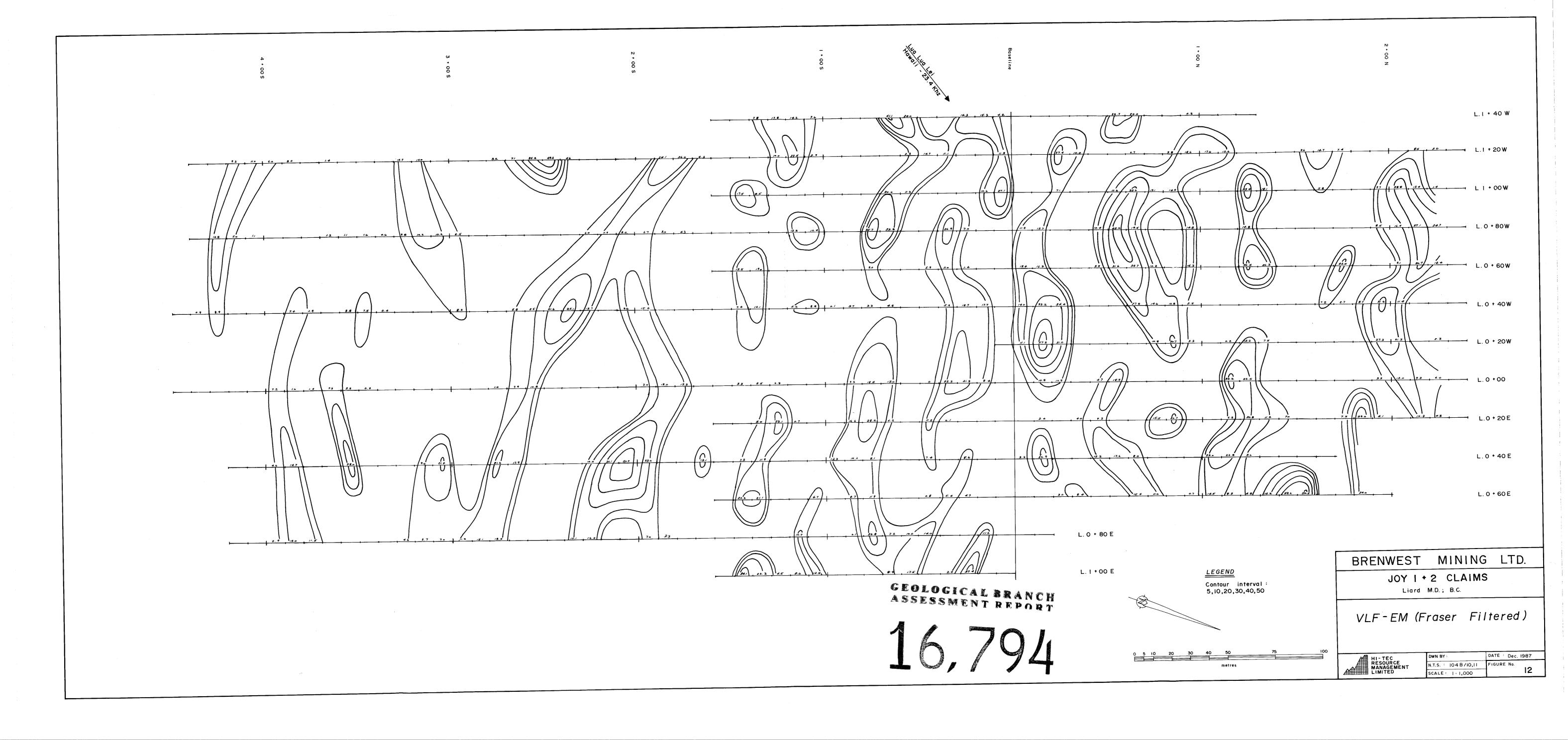
	-			
L. 1+20 W	L. 0+80 W	L. 0+40 W	L. 0+00	r

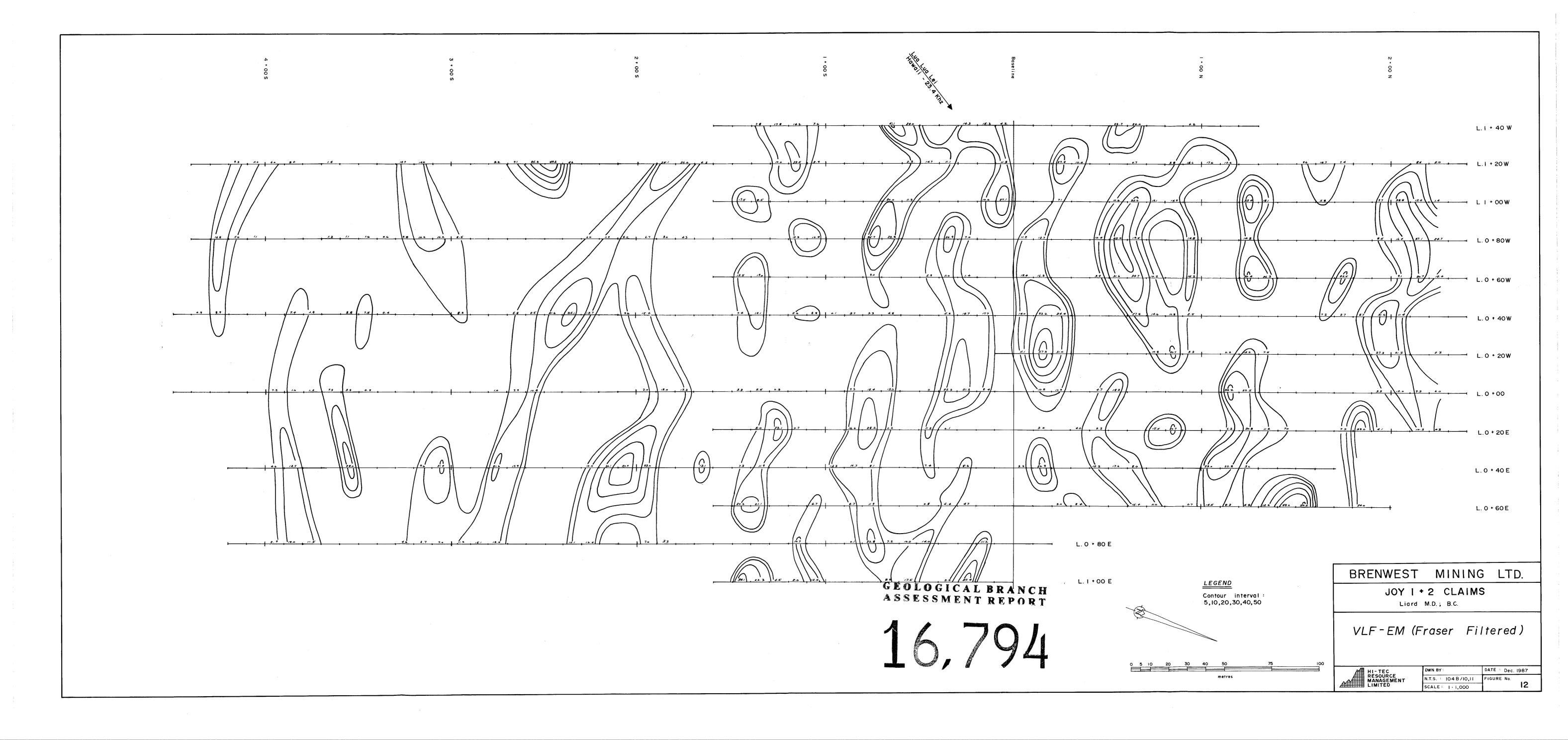
•

	-	- 37,14,106	- 16,19,67	- 91,12,85	- 94,19,119				
		- 62,18,138	- 72,16,113	- <i>N/s</i>				0+80 E	₩ 00 ±
2+00 N		- 43,12,128 -	- 39,21,98 -	- 143,21,116 -	- / 74,22,110	ن ر ـ ــــــــــــــــــــــــــــــــــ		ں ن	
	_	- 5 7, 19, 93	- 35, 21,80	- <i>128,18,115</i>	- 119. 23,88				
	_	- 69,22,/27	- 18,10,94	- 95,18,140	- 31,14,55	63,23,121	- 163, 25, I	59	
					i				
	_	- 88,15,11	- 2/, 27,%	- 94,19,105	-	- 62,25,124	- N/S		
		- 34, 12,82	- 49, 21, 117	- 84,20,113	- 107,21,107	- 53, 18, 109	- 115,12,123	•	
1+00 N		- 73,15,93 -	- 104,19,107 -	- 60,16,97 -	84, 19, 117	89,18,108	- N/S		
		- 72,14,124	- 63,13,100	- 77,11,112	- 97, 30, 161	- <i>156, 26, 119</i>	- 126, 24, 13	3	
		- 24, 22, 79	- 48, 20 ,93	- 100,14,100	- 116,22,114	- 163,26,117	- N/S		
		- 57, 23,110	- 50, 13, 111	- 143,21,133	- //1,27,//2	- 15,26,11	- 118,15,118		

Baseline - 070°


	_	- 82,17,160	- 63,16,96	- 111,21,131	-104,22, 13 4	- 158,18,118	- N/S	
				767,24,120			148,22,107	
Baseline O+oo		90, 21, 122	100,7,111	GR·II	/11,20,117	170, 21, 120	485,22,138 215,	16,133
		- 94,20,132	- 8 9, 19, 117	-113,30,226	- 214,19,146	- 95,23,163	- 164,20,143 - 141	4,22,97
		- 75,18,120	-109,22,112	- 9 9, 20, 124	- 76, 20, 151	- 95,16,109	- 144, 19, 146 - 128	3, 16, 137
		- 76, 16, 114	- N/S	- 137,14,127	- 113,16,125	- 102,16,103	- 158, 24,139 - 150,	.22,130
		- 82,21,119	- <i>94,18,13</i> 7	- 79,16,118	- 142,19,149	- 7 <i>0,25,</i> 134	- /IB,27, I29 - 8I,	21, 144
1+00 S	·	- 42,1 8,96	- 53,13,89	- 26, 23, 66	- 52,21,155	- 111 , 21, 118	- 111,25,142 - 118	,(7, 12)
		- 10, 31, 168	- 67,13,107	- 24, 17, 73	- 85,15,134-	- 116,33,133	- 130,23,131 - 115	T, 20, 117
	— .	- 42,26,133	- 68,12,100	- 43,14,97	- 105,13, 118	- 100,25,108	112 ,19, 198 - 84	10,91
		- 33, 21, 1 3 8	- 53,17,110	- 31, 12, BI	- 93,17,112	- 38, 15, 71	- 53,/3,94 - 67	
		- 32,18,78	- 67,18,98		- 56,19,136	- N/S	- 98,26,192	
2+00 S	—	- 97,16,107	- 80,23,103	- 63,18,97	- 30,16,108	- 25,11,5	- 97,19,137	
		- 39,20,166	- 14, 12,84	- 25,18,127	- 66,16,123	- 92,27,125	- 46,15,111	
	_	- 18, 19, 59	- 58,21,159	- 61,17, 117	- 121,15,138	- 55, 19, 128	- 25, 27, 99	
	_	- 77,23,128	- 33,12,109	- 52,25,112	- 44,25,139		- 109,18,123	
		- 37, 29, 112	- 38, 12,77	- 59,16, 115	- 156,16,120		- <i>N/</i> 5	
3+00 5		- 32, 19, 88	- 24,17,104	+ 95,20,142	- 51,18,117		- 68, 23, 127	


GEOLOGICAL BRANCH ASSESSMENT REPORT


16,794

х. т. т.

3+00 S	- 32, 19, 88	- 24,17,104	- 95,20,142.	- 51,18,117	- 68, 23, 127	0 10 20 30 50 75 100 METRES
_	- 13, 26, 126	- 10,9,86	- 25,16,79	- 63, 19, 127	- 74, 21,114	
	- 13,34,105	- 10,6,128	- 25,23,115	- 98,22,143	- 66,30,107	BRENWEST MINING LTD.
_	- 15, 26,132	- 49, 18, 104	- 22,16,36	- 97,27,130	- 27, 21,85	JOY I & 2 CLAIMS Liard Mining Division; B.C.
	- 68,10,88	- 96,17,117	- 53, 5,89	- <i>92,15</i> , 93	- 75, 28, 121	SOIL GEOCHEMISTRY GRID
4+00 S	29, 18,69	21,10,88	100,21,100	60,30,125	79,23, // <i>E</i>	Copper (ppm), Lead (ppm) & Zinc (ppm)
	·					HI-TEC RESOURCE MANAGEMENT LIMITED Drawn by: Date: Nov. 1987 N.T.S. 104 · B / 10,11 Scale: 1: 1000

