GEOLOGICALBRANCH ASSESSMENTREPORT

SUMMARY REPORT; RECONNAISSANCE GEOLOGICAL MAPPING AND LITHOGEOCHEMICAL

SAMPLING PROGRAMS ON THE JACK 29 CLAIM AND SURROUNDING AREA, ATLIN MINING DIVISION, BRITISH COLUMBIA

104N.12E
LATITUDE: $59^{\circ} 35^{\prime}$ NORTH
LONGITUDE: $133^{\circ} 41^{\prime}$ WEST

OWNER: HOMESTAKE MINERAL DEVELOPMENT COMPANY LTD.
OPERATOR: HOMESTAKE MINERAL DEVELOPMENT COMPANY LTD.
BY: \quad DUNCAN MCIVOR
DATE:
DECEMBER 1987
PAGE

1. SUMMARY 1
2. INTRODUCTION 1
2.1 LOCATION, ACCESS, AND PHYSIOGRAPHY 1
2.2 PROPERTY DEFINITION 1
2.3 WORK COMPLETED 2
2.4 GENERAL GEOLOGIC SETTING AND ECONOMIC ASSESSMENT 2
3. DETAILED TECHNICAL DATA 2
3.1 GEOLOGIC MAPPING 2
3.1.1. METHODS EMPLOYED 2
3.1.2. RESULTS AND INTERPRETATION 3
3.2 LITHOGEOCHEMICAL SAMPLING 3
3.2.1. METHODS EMPLOYED 3
3.2.1. RESULTS AND INTERPRETATION 3
4. ITEMIZED COST STATEMENT AND ALLOCATION OF EXPENDITURES 4
5. AUTHOR 'S QUALIFICATIONS 6
6. SELECTED BIBLIOGRAPHY 7
7. LOCATION MAP, ATLIN AREA
8. LOCATION MAP, JACK 29 CLAIM
9. GENERAL GEOLOGY OF THE ATLIN AREA

LIST OF APPENDICES

1. $1: 5000$ GEOLOGY MAP, JACK 29 CLATM
2. ICP GEOCHEMICAL DATA

1. SUMMARY AND RECOMMENDATIONS

The Jack 29 claim is located 1.5 kilometers due east of the town of Atlin in Northwestern British Columbia. In July 1987, Homestake Mineral Development Company completed a reconnaissance scale geological mapping and lithogeochemical sampling program over the claim.

Outcrop exposure constituted less than 1% of the property area, all of which occurred in the extreme northwest corner of the claim.

All encountered outcrops were argillaceous sediments of the Cache Creek Group, which are believed to underlie the majority of the claim. Six samples collected from the encountered outcrops failed to return anomalous precious metal or associated trace element values. No further work is recommended. Total incurred expenditures by Homestake Mineral Development Company for the brief program were $\$ 965.50$.

2. INTRODUCTION

2.1 Location, Access and Physiography

The Jack 29 claim is located 1.5 kilometers due east of the town of Atlin, northwestern British Columbia (see Figures 1 and 2). The claim is in the Atlin Mining Division, on NTS map sheet 104 N . 12E.

The property is readily accessible, with the Surprise Lake Road extending east from Atlin across the southern portion of the claim, and the Whitehorse Road extending north from Atlin to cross the extreme northwest corner of the claim.

Outcrop exposure on the claim is minimal (less than 1\%), all of which occurs in the northwest corner of the property proximal to the Whitehorse Road. The majority of the claim is covered by a large spruce swamps, and in the western portion of the property, an open beg which hydromagnesite is currently precipitating.

Relief on the property is minimal, rarely exceeding 10 meters.

2.2 Property Definition

The Jack 29 claim, comprised of 6 units (2E, 3S), was recorded on October 2, 1986 (Rec. No. 2750). The claim is truncated by a Mineral Reserve to the south and east, and two Crown Grants (L905, L906) not owned by Homestake Mineral Development Company occupy the west-central portion of the claim.

The Jack 29 claim is owned and operated by Homestake Mineral Development Company. All work described in this report was carried out by HMDC.

No record of previous exploration activity on the claim exists, other than that completed by HMDC in 1986.

2.3 Work Completed

During the period July 14 through 15 , 1987, HMDC personnel completed approximately 4 kilometers of geological traverses on the property, employing hip-chain and compass emplaced flag-lines for control. In the course of mapping, 6 samples were collected and subsequently analyzed for a suite of 30 elements.

2.4 General Geological Setting and Economic Assessment

The Jack 29 claim lies near the western edge of the northwest trending Atlin Terrane, which is underlain by upper Paleozoic oceanic crustal rocks (Monger, 1975). It is correlated with the Cache Creek Group of rocks in southern and central British Columbia.

Within the Atlin Terrane, intermediate to mafic flows are overlain by cherts, immature clastic sediments, and thick shallow water carbonate rocks. Discordant granitic plutons, ranging in age from Late Jurassic to early Tertiary, locally intrude the stratigraphy. Some remnant Tertiary volcanics and sediments are found within the area.

Also within the Atlin Terrane, and co-eval or immediately post dating the Cache Creek group rocks, are large ultramafic bodies which define a discordant belt trending west across the tectonic fabric of the terrane. The ultramafic bodies are commonly intensely serpentinized, and in places extensively hydrothermally altered to a silica-carbonate and mariposite/fuchsite "listwanite" like assemblage.

The Jack 29 claim, with its very limited exposure, appears to be underlain by rocks of the Cache Creek Group.

The majority of known lode gold mineralization within the Atlin camp is associated with intensely altered (silica-carbonate-mariposite) ultramafic rocks proximal to their fault bounded or intrusive contacts with rocks of the Cache Creek Group. The mineralization is almost exclusively hosted in quar-tz/quartz-carbonate veins and vein stockworks within these altered packages of rocks, occurring as both often spectacular free gold, or in intimate association with gangue sulphides such as pyrite, arsenopyrite, chalcopyrite, sphalerite, galena and, sulphosalts such as tetrahedrite and pyrargyrite.

The economic potential of the Jack 29 claim is poorly understood, due to limited outcrop exposure and lack of detailed geophysical coverage.
3. DETAILED TECHNICAL DATA

3.1 Geological Mapping

3.1.1. Methods Employed

As mentioned, approximately 4 kilometers of geological reconnaissance mapping traverses were completed on the property.

A flagged baseline was established along the northern boundary of the property, extending 800 meters east of the Legal Corner Post, from which traverses extended south for 1,000 meters at 200 meter intervals.

All encountered outcrops were mapped with a view towards establishing their lithology, structural orientation, and the presence of any significant alteration, veining or mineralization. In addition to mapping outcrops encountered on the property, any outcrops proximal to the property were similarly mapped to provide additional much needed stratigraphic information. The results of the mapping appear in Appendix 1, as a 1:5000 Geology Plan Map of the property.

3.1.2. Results and Interpretation

The only exposures encountered during mapping were situated in the extreme northwest corner of the property, where several exposures of argillite were encountered. The argillite, predominantly siliceous to cherty, was characteristically black to gray, aphanitic, and contained only trace amounts of sulphide mineralization or secondary quartz veining. Bedding directions were difficult to ascertain, as bedding was very poorly developed within the argillites, and often where present, very tectonically disturbed. The most prominant direction observed was 120° with vertical to sub-vertical dips.

This member of the Cache Creek Group has little or no economic potential, historically, in the Atlin area. It is uncertain as to what degree the argillites underly the remainder of the property, but the airborne magnetic data (Ronning 1986) indicates that the property is uniformly a moderate magnetic low, that may be an expression of this lithology.

3.2 Lithogeochemical Sampling

3.2.1. Methods Employed

In the course of mapping, six samples were collected and forwarded to Acme Analytical Laboratories in Vancouver for multi-element ICP geochemical analysis and Au analysis by conventional AA technique.

All sample locations are plotted on the enclosed geology plan map in Appendix 1 , followed by the sample $A u$ content in $p p b$. The raw ICP geochemical data appears in Appendix 2.

3.2.2. Results and Interpretation

None of the 6 samples collected in the course of mapping returned significantly anomalous gold or trace-element values, re-affirming the geological interpretation of the property potential as being limited.

4. ITEMIZED COST STATEMENTS AND ALLOCATION OF EXPENDITURES

Field Costs

Salaries and Wages
P. Southam, July 14, 15
2 days @\$85/day................................. $\$ 170.00$
J. Bozek, July 14, 15
2 days @ $\$ 85 /$ day............................... $\$ 170.00$
Sub Total $\$ 340.00$
$+20 \%$ Overhead and Benefits............... \$ 68.00
TOTAL SALARIES AND WAGES \$408.00

Meals and Lodging
@ $\$ 50 /$ day per man, $x 4$ man days................................ $\$ 200.00$
Vehicle Costs

- one 4×4 suburban, 2 days fuel and
maintenance, @\$25/day........................ $\$ 50.00$
Analytical Costs
- 6 samples @\$15.75/sample.. $\$ 94.50$

Miscellaneous Equipment Costs

- topfil, flagging, sample bags, etc.......................... \$ 50.00

TOTAL FIELD COSTS $\$ 802.50$
Drafting and Report Preparation Costs
Salaries

$\$ 138.00$

Miscellaneous Costs

- reproduction costs, drafting material costs, etc...... \$25.00

TOTAL DRAFTING AND REPORT COSTS $\$ 163.00$
TOTAL COSTS $\$ \underline{\underline{9} 65} \underline{\underline{\underline{5}} \underline{\underline{0}}=0}$

Allocation of Expenditures

The expenditures outlined in this report are to be applied to the Jack 29 claim. Note that the claim already has $\$ 642.70$ of assessment credit, and thus, with this report ($\$ 965.50$), a total of $\$ 1,608.20$. The 6 unit claim, recorded in October of 1986, will therefore be in good standing until October of 1988.

AUTHOR'S QUALIFICATIONS

I, Duncan Forbes McIvor, do hereby state that;

- I am a graduate of the University of Waterloo, and hold an Honours Bachelor of Applied Science degree.
- I have been practising my profession as an exploration geologist on a full time basis since 1982.
- I have personal knowledge that all information presented in this report is true and accurate.

Aitken, J.D.

1959: Atlin map area, B.C. Geological Survey of Canada, Memoir 307.
B.C. Department of Mines Annual Report: 1901, p. 757-759

1902, p. 984
1903, p. H38
1904, p. H44
1905, p. G77-78
1933, p. A78 - A79
Larkin, Curtin and Hubert
1974: The Geochemistry of Gold in the weathering cycle, U.S. Geological Survey Bull 1330.

Monger, J.W.H.
1975: Upper Paleozoic rocks of the Atlin Terrane, Northwestern British Columbia and South-Central Yukon; Geological Survey of Canada, Paper 74-7.

Ronning, P.A.
1986: Summary Report; Diamond Drilling and Geophysical work, Arent 1 and Arent 2, Beama and Adjacent Claims, North and South Claim Groups, Yellowjacket Property, Atlin Mining Division. HMDC assessment report on file at the B.C. Ministry of Mines.
$\mathrm{DMc} / \mathrm{mm}$

ARIS SUMMARY SHEET

```
District Geologist, Smithers
Off Confidential: 88.07.16
ASSESSMENT REPORT 16821 MINING DIVISION: Atlin
PROPERTY: 
UTM 08 6605879 574355
NTS 104N12E
CLAIM(S): Jack 29
OPERATOR(S): Homestake Min. Dev.
AUTHOR(S): McIvor, D.F.
REPORT YEAR: 1987, 12 Pages
GEOLOGICAL
SUMMARY: Argillaceous sediments of the Permian-Pennsylvanian Cache Creek
    Group underly the majority of the property. No significant alteration
    or mineralization was encountered during mapping.
WORK
DONE: Geological
    GEOL 150.0 ha
    ROCK 6 sample(s) ;ME
```


. 500 gram Safple is digested hith 3ML 3-1-2 hCL-HNO3-H2O AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
 - SAMPLE TYPE: Pulp AU* ANALYSIS by as grom 10 graM sample.

ASSAYER: "ACRLLA!多, DEAN TOYE, CERTIFIED
B.C. ASSAYER

SWIF"IM MNEFALL E
File \# 87-9952F
Fage 1

FILE $487-6952 F$

SAMFLE*		Cu	FE	2 n	$A G$	AS	AU*
		FFM	PFM	FPM	FPM	FFM	FFE
6roon	2+604	38	5	64	- 1	2	13
6 tOON	1+75w	10	2	28	- 1	2	1
6toon	$1+50 \mathrm{~W}$	22	14	71	. 3	3	3
6toon	$1+25 w$	23	5	45	. 1	2	1.
$6+00 \mathrm{~N}$	0+75W	16	8	48	.1	2	2
6+OON	0+50W	16	5	48	. 1	2	2
$6+60 \mathrm{~N}$	0+25w	22	6	91	.1	2	1
$6+\mathrm{OON}$	O+OOE	59	6	75	. 1	5	1
$6+60 \mathrm{~N}$	O+5OE	37	7	60	. 1	8	2
$6+\mathrm{OON}$	O+75E	47	7	83	. 2	6	1
$6+00 \mathrm{~N}$	$1+00 E$	81	6	84	\ldots	6	2
$6+\mathrm{ONN}$	$1+25 E$	36	6	68	.1	8	4
$6+60 \mathrm{~N}$	$1+50 E$	63	4	77	.1	4	1
$6+\mathrm{OON}$	$1+75 E$	49	7	60	.1	2	1
$6+00 \mathrm{~N}$	2+00E	64	4	99	. 1	2	4
$6+60 \mathrm{~N}$	2+50E	25	7	47	- 1	13	3
$6+00 \mathrm{~N}$	$2+75 E$	66	8	98	. 6	2	24
$6+\mathrm{OON}$	3+60E	62	7	91	-6	5	13
$6+60 \mathrm{~N}$	3+25E	55	9	84	.2	23	2
6 +OON	3+50E	53	4	70	. 2	6	9
$6+00 \mathrm{~N}$	3+75E	64	4	67	. 2	2	1
$6+00 \mathrm{~N}$	4+00E	68	10	75	.5	7	3
$6+00 \mathrm{~N}$	$4+25 E$	43	7	74	.2	11	2
$6+00 \mathrm{~N}$	4+50E	64	4	79	. 2	9	24
$6+00 \mathrm{~N}$	4+75E	50	8	66	. 3	9	3
6toon	$5+60 \mathrm{E}$	48	14	54	.1	8	1
$5+00 \mathrm{~N}$	O+OOE	59	10	86	. 2	3	16
$5+\mathrm{OON}$	0+25E	34	9	56	. 1	2	2
$5+60 \mathrm{~N}$	O+5OE	23	3	47	.1	2	3
$5+\mathrm{OON}$	0+75E	77	4	68	.2	3	9
$5+001$	1+OOE	55	11	78	. 2	2	3
$5+\mathrm{OON}$	$1+25 E$	56	6	87	.1	2	3
$5+\mathrm{OON}$	$1+505$	20	10	17	. 1	2	1.4
$5+\mathrm{OON}$	$1+755$	58	7	51	. 2	4	6
$5+\mathrm{OON}$	2+60E	59	12	86	. 2	17	2
STD E/	AL-5	58	35	132	6.8	38	48

SANFLEN1	Cu	FB	ZN	$A B$		
	FFM	FFW	FFM	FFW	FPM	FPB
$5+00 N 2+25$	2 E	7	34	. 1	2	2
5400 N +50E	15	\pm	34	1.1	2	11.
$5+O O N$ 2+75	101	6	84	.6	11	13
5+OON $\mathrm{E}+\mathrm{OE}$	34	8	45	- 1	2	3
$5+00 N 3+25 E$	55	9	32	. 3	2	4
$5+00 N$ S+50E	101	9	9%	.8	7	5
ETOON $3+75 E$	76	7	92	- 2	6	8
5+OON $4+0 \mathrm{OE}$	71	10	89	- 3	2	4
$5+00 \mathrm{~N} 4+25 E$	29	8	57	. 3	2	142
$5+00 N 4+50 E$	49	7	77	$.1$	11	6
$5+0004+75 E$	79	7	108	. 1	3	10
4400 OH OWOE	52	11	82	.1	2	7
$4+00 N$ OH2SE	31	9	55	. 1	3	11
$4+O O N$ O+5OE	66	11	62	.2	2	7
$4+00 \mathrm{~N}$ O+75E	28	12	27	. 1.	2	1
$4 \mathrm{HOON} 1+25 E$	44	8	40	.1	2	1
4+OON 1+5OE	38	7	37	. 1	2	1
$4+00 \mathrm{~N} 1+75 \mathrm{E}$	36	6	58	-1	2	3
$4+\mathrm{OON} 2+\mathrm{OOE}$	29	11	30	.1	2	1
$4+60 N$ 2+2EE	31	13	27	. 1	2	1
$4+O O N 2+5 O E$	27	12	19	.1	2	1
$4+00 \mathrm{~N}$ 2+75E	73	11	78	.1	14	6
$4+00 \mathrm{~N}$ 3+OOE	50	7	52	$\ldots 1$	5	4
$4+00 \mathrm{~N}$ 3+25E	89	7	89	.3	8	5
$4+O O N$ 3+5OE	44	9	64	. 1	2	7
4+00N 3+75E	25	7	29	. 1	2	11
$4+00 \mathrm{~N}$ 4+OOE	47	7	64	. 3	2	3
$4+00 \mathrm{~N} 4+2 \mathrm{EE}$	85	8	30	. 2	2	1
S+OON O+2EE	40	8	45	. 1	4	9
3+OON $0+75 E$	38	5	54	.2	2	4
S+OON 1+00E	25	11.	20	.1	2	7
3+OON $1+25 E$	21	8	22	. 1	3	5
3+00N 1+50E	43	9	31	. 1	2	26
3+00n 1+75E	46	10	41	$\cdots 1$	5	3
3+OON 2+00E	22	10	26	. 1	2	1.
STD $\mathrm{C} / \mathrm{AU-S}$	57	37	130	6.6	41	52

SWIFT MNNEFALE
FTLE * $87-0952 \mathrm{~F}$

SAMPIEES	Cu	FE	ZN	AG	AS	AU*
	FPM	FFM	FFM	FFM	FFM	FFE
$3+60 N 2+25 E$	120	10	72	${ }^{-1}$	10	4
Fron 2raom	3	17	25	. 2	11	5
StoOn $2+75 E$	57	14	71.	. 2	26	7
STOON 3+OOE	67	9	61	. 3	1.4	1
3+OON 3+25E	32	17	56	. 2	7	5
3+OON 3+5OE	48	9	48	. 3	8	2
3+OON 3+75E	29	12	29	. 1	θ	1
StOON 4-tOOE	21	16	28	.2	3	31
3+OON 4+25E	33	12	37	. 1	8	1
2+OON 2+OOE	9	8	13	.1	7	6
2+OON 2+25E	90	11	66	. 4	14	2
$2+$ OON $2+75 E$	23	7	35	. 2	5	1
$2+O O N$ 3 + OOE	26	10	98	.1	7	1
2+OON 3+25E	29	13	87	. 1	8	1
$2+O O N$ 3+SOE	21	9	35	.2	9	9
$2+O O N 3+75 E$	16	5	16	. 1	6	3
2+OON 4+00E	42	11	38	. 8	9	94
$1+O O N$ OT2SE	14	1.0	23	.1	6	11
$1+00 \mathrm{~N}$ O+5OE	19	7	30	. 1	3	26
$1+00 \mathrm{~N}$ O+75E	27	5	17	. 1	7	1
$1+\mathrm{OON} 1+\mathrm{OOE}$	23	7	19	$\ldots 1$	8	1
$1+\mathrm{OON} 1+2 \mathrm{EE}$	29	5	12	.1	9	42
$1+00 \mathrm{~N} 1+50 \mathrm{E}$	44	13	67	. 4	10	1
1+OON $1+76 E$	90	9	79	.1	14	28
$1+00 \mathrm{~N} 1+75 \mathrm{EE}$ <A>	84	7	74	. 1	8	1
$1+O O N 2+O O E$	12	2	9	. 1	2	1
$1+00 \mathrm{~N}$ 2+25E	64	8	84	. 2	10	1
$1+O O N 2+505$	69	9	85	. 1	9	1
$1+$ OON $2+7 \mathrm{TE}$	82	6	74	. 1	10	1
$1+$ OON $3+O O E$	41	7	36	. 1	6	1
$1+00 N$ 3+2EE	23	12	71	. 2	6	38
$1+\mathrm{OON}$ 3+50E	34	19	45	. 4	9	21
BLL $1+00 \mathrm{~N}$	66	5	53	. 2	18	1
BL. $0+75 \mathrm{~N}$	93	6	57	. 3	12	3
BL $0+50 \mathrm{~N}$	127	10	74	. 3	14	2
EL. $0+2 \mathrm{EN}$	105	2	60	. 1	9	4
BLL O+OON	48	9	51	.1	9	6
STD C/AU-S	59	36	1.8	6.7	44	49

SAFFlyw	Cll	FB	ZN	AE	AS	AU\%
	PFH	FFM	FFM	FFM	FFM	FFB
$0+00 \quad 0+25 E$	94	B	73	. 1	9	51
O+OO O+SOE	57	7	40	. 1	1. 1	4
O+OO O+75E	40	10	41	. 2	9	7
O+OO $1+00 \mathrm{E}$	71	11	65	. 5	9	8
$0+001+2 E E$	47	8	51	.1	5	65
$0+001+50 \mathrm{E}$	81	7	57	. 3	9	6
O+00 1+75E	5	10	44		7	5
O+OO 2+OOE	40	9	60	. 2	7	1
O+00 2+25E	62	6	41	. 1	9	6
9+00 2+50E	70	14	46	-2	6	9
$0+002+75 E$	24	8	11	. 1	4	6
$0+00$ S+00E	32	13	45	. 1	9	2
$0+003+25 E$	10	E	10	.1	2	Ξ
$0+003+50 E$	42	6	40	. 3	5	1
$0+00$ 3+75E	43	8	69	. 2	1.5	1
$0+004+00 E$	70	7	81	. 3	9	13
$0+004+5 O E$	72	3	60	${ }^{-1}$	7	I
$0+004+75 E$	91	12	68	. 3	21	1
STD C/AU-S	61	36	136	7.0	42	51

 - SAMFLE TYPE: Pulp All ANALYSIS RY AA EROH 10 GRAN SAMPLE.

$18+O O N ~ 4+O O E$	$5 e$	5	68	-3	2	1
$18+O O N ~ 4+25 E$	41	5	38	1	2	1
$18+O O N 4+50 E$	45	5	57	1	2	1
$18+O O N 4+75 E$	54	14	61	.1	2	1
$18+00 N 5+O O E$	31	6	35	1	4	1
$18+O O N 5+25 E$	58	9	55	.2	4	1

SAMPLEM	Cu	FE	ZN	AG	AS	ALI*
	FFM	FFM	FFM	FFM	FFH	PFB
10roon 2roow	15	7	42	± 1	6	4
$10+00 \mathrm{~N}$ 1+750	35	10	42	. 1	2	3
$10+60 \mathrm{~N} \quad 1+50 \mathrm{~W}$	37	11	49	- 1	3	E
$10+00 \mathrm{~N} \cdot 1+25 \mathrm{~N}$	47	6	39	. 1	4	9
$10+00 \mathrm{~N}$ 1+OOW	19	9	29	. 1	2	1
$10+60 \mathrm{~N} \quad 0+75 \mathrm{~W}$	48	9	44	. 1	4	1
$10+00 \mathrm{~N}$ OH5OW	29	11	45	. 2	6	2
$10+00 \mathrm{~N} \mathrm{O+25W}$	55	13	64	.1	2	3
$1 . \mathrm{OHON}$ O+OOW	75	12	94	.1	10	5
10+OON 1+OOE	38	13	79	. 3	7	3
$10+\mathrm{OON} 1+25 E$	36	10	75	. 1	8	2
10+OON 1+5OE	93	11	74	. 1	8	7
$10+00 N 1+75 E$	41	10	63	. 1	4	8
10+OON 2+00E	18	8	27	.1	5	4
$10+\mathrm{OON} 2+25 E$	36	7	69	. 1	5	5
10+OON 2+50E	37	10	60	. 1	14	21
$10+O O N$ 2+75E	35	9	66	. 2	8	68
$10+O O N S+00 E$	21	10	38	. 1	10	215
3+OOE 10+OON	70	24	186	. 9	43	S
3+OOE 9+7EN	56	1.4	121	.1	22	4
3+OOE 9+50N	170	18	103	. 3	33	17
3+00E 9+25N	71	10	88	. 3	22	8
3+OOE 9+00N	54	1.4	111	. 2	12	1.
3+00E 8+75N	54	12	122	. 1	11	7
$3+O O E$ 8+5ON	32	12	104	. 1	15	4
3+OOE 8+25N	39	20	97	. 1	19	1
$3+O O E$ 8+OON	29	13	43	. 1	11	3
$3+O O E 7+75 N$	59	22	156	- 1	26	4
3+OOE 7+50N	53	17	145	. 1	15	8
3+OOE $7+25 N$	19	7	46	. 1	9	3
S+OOE $7+\mathrm{OON}$	15	7	33	. 3	7	1
$3+00 E 6+75 \mathrm{~N}$	27	8	50	${ }^{-1}$	10	7
$3+O O E \quad 6+50 \mathrm{~N}$	B0	1.	113	. 1	9	3
3+00E $6+25 N$	90	20	288	. 7	22	8
3+00E 5+75N	28	29	B3	. 2	20	5
3+00E S+50N	22	13	82	. 1	10	1
STD C\AU-S	62	40	140	7.5	38	50

GAMPLEE	cu	Fe	2N	AG	AS	AL*
	FFM	PFM	FFH	FFH	FFH	FFE
$3+0055+25 N$	13	11	50	. 2	2	1
3rOOE 4+75N	93	14	107	. 3	16	5
3+OOE 4+5ON	73	20	149	. 5	27	21
$3+O O E 4+2 \mathrm{EN}$	36	15	68	.1	25	1
3+OOE 4+OON	56	16	96	.7	25	2
$3+00 E 3+75 N$	22	14	71	. 1	26	1
3+OOE 3+5ON	21	17	67	. 3	27	1
3+oOE 3+25N	17	9	63	.1	9	1
3+OOE 3+OON	60	1.4	360	.9	44	1
3+OOE 2+7EN	17	8	109	. 2	14	1
3+OOE 2+5ON	50	14	249	. 2	19	1
3+OOE 2+25N	53	14	215	. 3	10	1
3rOOE $2+O O N$	22	8	50	. 3	13	3
3+OOE $1+75 \mathrm{~N}$	32	17	62	. 1	9	5
S+OOE $1+\mathrm{CON}$	63	13	162	.2	8	7
3+OOE $1+2 \mathrm{EN}$	22	16	48	. 1	5	1
3+OOE $\mathrm{i}+\mathrm{OON}$	31	13	77	.1	2	11
34OOE 0+75N	6.4	17	156	. 1	14	4
3+OOE O+5ON	42	10	82	. 1	12	1
3+60E O+25N	60	13	116	. 1	3	1
LA 0+25E	77	11	65	. 2	10	5
LA O+5OE	80	12	66	.2	7	280
LA O+75E	49	15	76	.1	9	19
LA 1+OOE	76	14	120	.1	15	4
LA $1+25 E$	80	13	113	. 2	3	1
LA 1+5OE	66	1.0	80	.1	10	1
LA 1+75E	164	13	103	.9	4	10
LA 2+OOE	38	12	56	. 1	2	7
LA 2+25E	68	12	91	. 1	4	1
LA 2+GOE	71	7	99	. 3	2	43
$1 \mathrm{~A} 2+75 \mathrm{E}$	60	1.3	65	.1	8	1
LA Stook	64	11	73	. 2	2	1
LC 10+OON O+25E	40	14	136	.4	13	6
LC $10+\mathrm{OON} \mathrm{O+50E}$	27	11	71	. 1	6	1
LE 1OtOON O+75E	1.9	1.0	36	. 1	7	1
LC $10+\mathrm{OON} 1+\mathrm{OOE}$	15	8	54	. 3	10	1
STD C/AU-	56	39	129	6.8	43	52

ACME ANALYTICAL LABOFATOFTES
ES2 E. HASTINGS ST" VANCOUVEF \#nc. VGA IR G
FHONE 25S-315E DATA LINE 251-1011 DATE REFOFT MAILED:

. 500 gray sample is digested with 3ML 3-1-2 hCL-hndz-h20 at 95 deg.c for one hour and is diluted to io ml with hater.
 - sample type: pulp all analysis by aa from 10 gray sample.

CAMFLEm		Cu	FE	ZN	Ag	AS	AL*
		FFM	FFM	FFW	FPM	FFM	FFB
$16+00 \mathrm{~N}$	6-75E	52	19	62	. 2	10	10
$16+00 N$	7+OOE	57	1.4	63	.1	g	8
$16+\mathrm{ON}$	$7+25 E$	76	20	87	. 3	13	26
$16+00 \mathrm{~N}$	7+5OE	24	17	54	.2	9	20
$1.6+60 \mathrm{~N}$	7+75E	78	20	73	. 1	12	2
$16+00 \mathrm{~N}$	8+OOE	54	19	99	. 3	7	5
$16+00 \mathrm{~N}$	8+25E	60	18	83	. 2	10	3
$16+00 \mathrm{~N}$	$8+505$	140	24	87	. 1	14	1
$16+00 \mathrm{~N}$	8+75E	21	16	31	. 2	6	32
14 tOON	उ+OOE	18	12	37	.2	4	1
14 tOON	3+25E	26	19	51	. 2	7	1
1.4 -00N	$3+505$	42	22	75	.2	6	2
14 tOON	$3+75 E$	66	17	73	. 2	4	1
14 OOON	4+25E	103	17	57	.1	13	8
$14+\mathrm{OON}$	$4+50 \mathrm{E}$	25	19	58	.2	7	1
$14+00 \mathrm{~N}$	4+75E	45	20	69	.2	6	1
$14+00 \mathrm{~N}$	5+00E	27	21	81	. 1	2	7
$14+\mathrm{OON}$	5+25E	44	17	83	.1	9	5
$1.4+00 \mathrm{~N}$	5+50E	23	15	69	. 2	4	1
$14+\mathrm{OON}$	$5+75 E$	4.1	21	52	.1	13	13
$14+00 \mathrm{~N}$	6+OOE	36	13	86	.1	10	2
$14+00 \mathrm{~N}$	6+25E	76	11	79	.2	7	3
$14+\mathrm{OON}$	6+50E	37	13	49	.1	6	1
$14+00 \mathrm{~N}$	7+o0E	90	23	98	.1	16	1.4
$14+00 \mathrm{~N}$	$7+25 E$	85	13	82	. 3	10	1
$14+00 \mathrm{~N}$	$7+50 E$	18	9	40	. 1	з	12
$14+\mathrm{OON}$	7+75E	91	12	83	. 6	15	6
$1.4+00 \mathrm{~N}$	8+00E	50	20	69	.1	13	2
$12+00 \mathrm{~N}$	0+75E	54	11	48	. 2	7	1
$12+00 \mathrm{~N}$	1+00E	43	15	85	.2	9	7
$12+00 \mathrm{~N}$	$1+25 E$	20	7	57	.1	2	1
$12+$ OON	$1+505$	33	1,7	69	. 1	7	2
$12+00 \mathrm{~N}$	$1+75 E$	41	19	65	. 1	8	5
$12+\mathrm{ONN}$	2+oot	119	23	68	. 2	9	1
$12+\mathrm{OON}$	2+50E	16	16	34	. 1	2	I.
$12+00 \mathrm{~N}$	$2+75 E$	20	13	39	. 2	7	5
STD C/A	AU-S	55	38	130	7.0	43	51

SANFLEE	Cu	FE	ZN	AG		AU*
	FFW	FFM	FFM	FPM	FPM	FFB
1. $2+\mathrm{OON} \mathrm{O}+\mathrm{OOE}$	9	8	\%	. 1.	2	1
$12+90 N$ 3+2EE	25	5	47	$\cdots 1$	8	4
$12+00 \mathrm{~N}$ 3+5OE	37	7	76	. 1.	6	2
$12+00 N 3+75$	46	11	48	. 2	5	1
$12+O \mathrm{~N} 4+\mathrm{OQE}$	128	9	69	\cdots	8	1
12+OON $4+25 E$	24	13	42	- 2	7	1
1. $2+0$ ON 4+75E	उ	10	55	. 2	8	260
$12+00 N 5+00 E$	צ\%	7	40	1	6	9
$12+00 N$ 5+25E	85	13	72	- 3	15	49
$12+00 \mathrm{~S}$ 5+75E	37	7	73	. 3	4	7
$12+00 \mathrm{~N}$ 6+OOE	44	10	75	\cdots	5	1
$12+00 N 6+25 E$	89	16	68	. 1	11	1
$12+O \mathrm{~N}$ 6+5OE	35	12	64	. 2	5	2
$12+O O N$ 6+GOECA	27	13	59	. 1	8	1
$12+00 N 6+75 E$	47	6	76	. 2	11	\%
$12+00 N 7+60 E$	77	15	76	- 5	15	6
$12+00 N 7+25 E$	141	46	122	. 6	3	38
$10+00 N$ 3+2EE	54	7	57	. 2	6	5
$10+00 N$ 3+50E	58	5	68	-3	11	2
$10+00 \mathrm{~N} 3+75 E$	27	1. 1	52	. 1.	7	4
$10+O O N 4+O O E$	50	12	77	- 2	8	21
$10+00 N 4+25 E$	9	7	19	${ }^{-1}$	3	14
$10+0 \mathrm{ON} 4+5 \mathrm{SE}$	B6	8	54	. 2	9	1
$10+00 N 4+75 E$	39	6	56	. 1	5	1
$10+00 N$ StOOE	S8	9	74	.2	2	1
$10+00 N 5+2 E 5$	31	13	48	- 2	9	25
$10+00 N 5+50 E$	97	8	76	. 1	16	5
$10+00 N 5+75 E$	44	7	37	. 1	11	9
$10+0 \mathrm{NN}$ C+OOE	49	15	43	. 1	10	1
$10+00 N$ b+2EE	71	9	69	. 1	8	4
$10+0 \mathrm{~N} \quad 6+5 \mathrm{EE}$	35	7	40	. 1	6	1
$5+$ OON $1+0 \mathrm{OW}$	37	5	50	. 2	5	4.3
$5+O O N$ Ot 750	31	9	41	. 1	11	57
$5+O O N$ OtSOW	75	10	86	-	5	1
$5+00 \mathrm{~N}$ O+25W	区5	15	37	. 1	6	1
$5+O O N$ OtOW	48	13	59	. 1	6	3
STD C/AU-S	59	36	124	6.9	38	52

GAMPLE\#	$\begin{array}{r} \mathrm{CU} \\ \mathrm{PFM} \end{array}$	$\begin{array}{r} \mathrm{FE} \\ \mathrm{FFM} \end{array}$	$\begin{array}{r} Z N \\ \mathrm{FFN} \end{array}$	$\begin{array}{r} \mathrm{AG} \\ \mathrm{FPM} \end{array}$	$\begin{array}{r} \mathrm{AS} \\ \mathrm{FFM} \end{array}$	AU*
$4+00 \mathrm{~N} 1+2 \mathrm{LW}$	28	13	51	. 2	5	9
$4+\mathrm{OON} 1+\mathrm{OON}$	53	1.4	66	. 3	6	1.0
$4+\mathrm{OON}$ O+75W	43	18	42	.1	7	5
$4+\mathrm{OON} 0+50 \mathrm{~W}$	g	8	12	\ldots	4	8
$4+\mathrm{OON}$ O+25W	25	19	48	. 3	5	3
4 toon 0toon	63	12	อ]	. 2	2	13
TL 4E 2O+OON	31.	22	55	. 1	4	5
TL 4E 19+75N	17	9	56	. 1	2	4
TL 4E 19+50N	60	15	91	. 3	8	3
TL. 4 E 19+25N	131	21	110	. 1	23	5
TL 4E 19+60N	19	10	46	. 1	4	2
TL 4E 18+75N	26	10	53	. 1	7	4
TL 4E 18+50N	38	6	87	. 1	2	2
TL 4E 18+25N	79	7	137	. 3	2	5
TL 4E 18+OON	53	9	67	. 1.	2	21
TL 4E 17+75N	21	10	43	.1	6	3
TL. 4E 17+50N	45	12	51	. 1	9	2
TL 4E 17+25N	80	19	60	. 2	21	2
TL 4E 17+60N	60	16	62	. 2	1.4	8
TL. 4E 16+75N	34	14	53	.1	4	7
TL 4E 16+50N	56	23	74	. 2	15	63
TL 4E 16+25N	71	17	77	.1	8	25
TL 4E 16+OON	51	14	94	. 1	7	22
TL 4E 15+75N	74	13	76	. 1	8	72
TL AE 15+50N	38	11	62	. 1	5	9
TL 4E 15r25N	76	16	96	. 2	6	7
TL 4E 15+00N	37	11.	61	. 3	3	33
TL. $4 \mathrm{EE} 14+75 \mathrm{~N}$	42	14	70	.2	6	4
TL. 4E 14+50N	26	14	52	- 1	5	7
TL. 4E 14+25N	90	15	70	.2	5	2
TL AE 14tOON	51	12	61.	. 1	5	29
3+00N 1+75W	41	11	64	.1	4	21
$3+\mathrm{OON} 1+50 \mathrm{~W}$	37	13	63	. 1	8	16
$3+00 \mathrm{~N}$ 1+25W	44	9	71	. 2	9	36
3+OON $1+00 \mathrm{~W}$	45	13	79	. 2	8	10
$3+00 N 0+75 W$	41.	15	87	. 4	12	8
STD C/AU-S	57	39	127	6.7	38	49

SAMFLE*	Cu	Fe	zN	AG	AS	AU*
	FFM	FFM	FFM	FFH	FFM	FFB
$3+00 N$ Ota5w	35	20	39	. 4	10	1.
+00N O+OOW	T	1.6	44	. 3	6	71
2+OON $2+0 \mathrm{OW}$	13	15	22	.1	4	16
$2+00 \mathrm{~N} 1+7 \mathrm{WW}$	54	22	127	. 4	8	¢
$2+O O N 1+506$	39	22	115	. 4	5	1.
2+00N $1+250$	23	8	59	. 5	5	15
2+00N $1+00 \mathrm{~W}$	72	2 S	100	-	10	6
$2+00 \mathrm{~N} 0+7 \mathrm{FW}$	区8	16	107	.4	7	44
$2+00 \mathrm{~N}$ O+5OW	27	14	81	- 3	6	1
$2+000.0+254$	25	19	70	. 2	4	2
$2+O O N$ O+OOW	1.17	17	88	. 1	7	11
$2+00 N$ O+25E	1.06	17	83	.2	7	240
$2+O O N O+5 O E$	59	20	89	. 1	8	1
$2+00 \mathrm{~N}$ O+75E	$\underline{2}$	14	31	. 1	3	2
$2+\mathrm{OH} 1+\mathrm{OEE}$	13	20	89	. 2	9	1.
$2+00 \mathrm{~N}$ 1+25E	43	16	44	. 3	7	1
$2+60 N$ 1+75E	72	15	59	- 3	8	4
$1+00 \mathrm{~N} 2+506$	58	20	63	- 2	2 S	1
$1+00 \mathrm{~N}$ 2+25w	45	18	76	. 3	5	5
$1+00 \mathrm{~N} 1+50 \mathrm{~W}$	17	18	31	- 3	8	10
$1+\mathrm{OON} 1+2 \mathrm{SW}$	38	16	40	. 2	6	5
$1+60 \mathrm{~N}$ 0+75W	15	18	61	. 1	6	7
$1+00 \mathrm{~N}$ - +50 W	34	11.	62	. 1	7	17
$1+00 \mathrm{~N}$ O+25w	44	24	48	.1	10	1
O+60W $9+75 \mathrm{~N}$	36	19	61	.2	2	1
9+004 $9+50 \mathrm{~N}$	34	17	63	. 1	2	1
O+6OW 9+25N	54	10	83	. 1	6	1
O+OOW $9+0 \mathrm{ON}$	29	16	55	. 4	10	1
O+004 8+75N	67	11	66	. 1	10	1
O+00W 8+50n	96	17	68	.1	9	8
0+00W 8+25N	56	10	74	.1	8	1
O+006 $7+75 \mathrm{~N}$	22	8	40	. 1	5	2
O+OOW $7+50 \mathrm{~N}$	40	12	52	.2	E	1
O+00W $7+25 \mathrm{n}$	26	5	29	.1	12	1.
Otoon $7+$ OON	61	14	$5 \pm$.2	6	1
0+00W $6+75 N$	26	7	34	.1	4	1
STD C/AU-S	55	\bigcirc	125	6.8	$\Xi 7$	50

SAMFLEEW	Cu	FE	$2 N$	AB	AS	AU*
	FFM	FFW	FFW	PFW	FPM	FFE
O+OON $6+50 \mathrm{~N}$	17	8	24	* 1	6	4
O+OOW $6+25 N$	5	18	73	. 2	11	\%
OtOOW $5+75 N$	65	15	70	. 1	7	1
O+OON 5+50N	37	10	55	.1	10	1
Otoow $5+2 \mathrm{EN}$	22	15	32	. 2	6	4
$0+6048750$	37	16	64	. 2	10	1
O+OON 445ON	35	18	55	. 2	14	5
OtOOW 4t25N	52	16	74	. 2	9	79
O+OOW $\mathrm{O}+7 \mathrm{SN}$	11	12	15	. 2	4	3
O+OOW $\mathrm{F}+\mathrm{ON}$	70	10	74	. 2	5	1
O+OON T +5N	18	14	19	${ }^{-1}$	10	1
O+00W 2+75N	30	19	3 S	.1	8	92
O+OOW 2+5ON	17	10	16	. 1	3	1
O+00W $2+25 N$	73	15	69	. 1	12	14
O+OOW 1+75N	124	8	74	. 1	10	227
O+00W $1+50 \mathrm{~N}$	110	9	76	. 2	9	9
O+OOW 1+25N	125	14	76	.1	11	204
LA E+7EW	14	7	12	. 1	3	7
LA StSow	25	18	30	. 1	14	1
LA $5+25 W$	71	9	51	. 1	7	1
1 A Stow	50	9	44	. 1	4	1
LA $4+75 \mathrm{~W}$	15	13	22	. 2	5	1
LA $4+5 \mathrm{OW}$	37	11	44	. 1	9	1
LA 4t3OW	46	14	35	. 1	8	J
L.A 4+OOW	43	13	42	. 1	5	1
LA $3+504$	29	15	34	. 3	16	4
LA $\mathrm{B}+2 \mathrm{SW}$	18	18	22	. 1	8	1
LA L +OWW	40	10	38	- 1	Q	1
LA $2+75 W$	10	12	13	.1	5	1
LA $2+50 W$	55	11	37	. 1	3	1
$1 \mathrm{~A} 2+2 \mathrm{~W}$	23	10	35	. 1	4	1
LA 1+75W	15	8	45	. 1	2	3
LA 1+50W	1.8	16	24	. 1	I	5
$1.41+2 \mathrm{~W}$	15	9	16	. 1	T	7
LA $1+004$	54	12	58	. 1	Q	1
LA O+75W	36	9	82	. 3	2	1.
$57 \mathrm{C} / \mathrm{AU} 5$	57	5	128	7.0	38	51

SAMFIIEM	MINERAL. S		FTLE \# 87-1056R			
	Cu	FB	ZN	$A G$	AS	AU*
	FFM	FFM	FFM	FFil	FFM	FFB
LA OH5Om	123	18	68	. 8	13	11.
LA O+2EW	134	17	E1.	2.5	23	31
LA O+OOW	68	10	52	. 1	10	3
1 E 6+25w	84	12	45	.1	8	1
$1 . \mathrm{B} 6+\mathrm{OOW}$	26	12	25	.1	9	1.
LB 5 5 +75	26	15	34	. 1	7	1
LE 5-5OW	29	16	26	. 1	9	1
$1 \mathrm{~B} 5+254$	72	7	48	.1	9	1
LE 5+oow	62	10	39	. 1	10	5
LE 4+75W	59	5	45	.1	9	1
L.E 4+50w	40	8	38	.1	6	1
LE 4+25W	29	13	30	. 1	6	1
LE 4+00W	27	3	30	.1	9	38
LB 3+75W	14	9	19	.1	6	5
LE 3 3 50w	84	9	48	. 1	5	4
LE 3+25W	25	17	34	.1	8	2
LE 3 +oow	31	7	35	.1	9	3
LE 2+75W	23	9	40	. 1	6	1
LE 2+50W	12	12	26	.1	3	23
LE 2+25W	46	14	46	. 1	6	1
LE 2+00W	21	15	35	- 1	10	5
LE 1+75W	42	13	43	. 1	8	3
STD C/AU- 5	55	36	129	6.7	42	49

ACME ANALYTICAL LAEOFATOFMEE LID.

IC - . 500 gram sample is digested with SaL 3-1-2 hCl-hmoz-h20 at 95 dec. C for one hour and is diluted to 10 hl with mater. this leach is partial far min fe ca la cr mg ba ti b h and limited for na k and al. al detection limit by icy is 3 ppm. - SAMPLE TYPE: SOIL AU\# ANALYSIS by aA FrOM 10 GRAM SAMPLE.

SAMFIEE拌		Cu	$F E$	ZN	AG	AS	AU*
		PFM	PFH	PFM	FPM	FFM	FFE
124 N	$5+7 \mathrm{E}$	129	26	121	. 8	30	49
1240	6+OOE	65	13	54	. 9	9	4
1.2 N	2+750	89	17	84	. 1	19	7
12 N	2+506	45	22	50	، 5	7	2
L22N	1.75w	3	9	50	.4	4	1
$122 N$	$1+50 \mathrm{~W}$	75	17	72	, 5	8	8
122 N	$1+254$	40	14	62	- ${ }^{\text {S }}$	7	1
L22N	1+60W	55	11	72	. 1	15	1
L22N	0+75w	51	10	56	. 1	12	1
L22N	0+50w	54	14	69	. 1	14	1
12 N	O+2EW	50	15	65	. 1	6	8
$122 N$	$0+25 E$	37	16	5	-2	4	8
L22N	O+50E	± 7	16	52	-2	2	1.
122 N	$1+00 \mathrm{E}$	47	18	65	. 1	4	1
L22N	$1+2 \mathrm{EE}$	39	19	56	-2	2	106
L22N	$1+50 \mathrm{E}$	31	12	62	4	2	5
L2aN	1+7EE	$\underline{1}$	13	52	. 1	6	9
L22N	$2+00 E$	136	17	95	n ${ }^{\text {a }}$	10	8
L22N	$2+25 E$	79	16	86	-2	6	14
12 NN	2+75E	81	17	117	1. 4	6	2
L22N	$3+00 \mathrm{E}$	22	15	59	. 2	5	1
L22N	3+25E	57	10	72	. 1	12	4
1.2 N	$3+50 \mathrm{E}$	25	9	51	.1	5	1
L22N	$3+75 E$	88	11	71	${ }_{*} .3$	7	6
L22N	4+00E	55	15	52	. 3	4	12
L22N	$4+25 E$	42	9	61	. 3	4	5
L2YN	4+75E	37	15	79	-5	6	6
L22N	$5+005$	29	18	39	-	7	8
1 mN	$5+25 E$	25	15	38	-2	9	1
$122 N$	$5+50 \mathrm{E}$	24	18	49	- 3	8	4
L22N	5+75E	35	12	56	. 3	6	2
L22N	6+00E	106	15	71	$\cdots 1$	6	3
1220	$6+25 E$	19	2	3	. 1	E	6
L22N	$6+50 E$	60	10	49	.1	4	7
L2SN	$6+75 E$	28	9	38	.1	6	1
$122 N$	$7+00 E$	19	6	$\square 7$.1	4	1
STD	$\mathrm{E} / \mathrm{AU}-5$	57	40	135	7.4	43	48

SAMFLE*		Cu	PB	ZN	AE	AS	AU*
		PPM	PFM	FPN	FFM	FFH	FFE
L2N	$7+25 E$	26	ε	68	- 1	6	
L22N	$7+506$	24	8	45	. 4	4	
L22N	7+75E	65	7	68	$\ldots 2$	10	
L22N	G+OEE	73	10	64	\cdots	8	
L22N	$8+25 E$	47	7	94	. 5	6	4
L22N	8+5OE	85	7	75	\ldots	13	
L2\%N	$8+75 E$	37	8	42	. 1	11	4
L22N	9+00E	32	7	44	.2	g	72
L22N	9+25E	50	7	81	. 8	11	18
L22N	9+50E	26	4	45	. 4	6	65
120 N	$5+00 \mathrm{~W}$	36	6	45	. 5	6	17
L2ON	$4+75 \mathrm{~W}$	34	6	30	.2	11	16
L2ON	$4+50 \mathrm{~W}$	46	5	46	. 3	9	5
$\mathrm{L2ON}$	4+25w	23	12	39	. 3	2	
12 ON	4+oow	24	6	42	. 2	2	1
L2ON	3+25w	26	6	34	. 2	2	1
STD	C/AU-S	59	38	129	7.2	43	51
L2ON	3+oow	41	16	38	. 3	16	990
L2ON	2+75W	24	11	46	. 2	5	4
L2ON	$2+50 \mathrm{~W}$	35	8	61	. 3	2	3
L2ON	2+25w	9	8	19	. 2	2	
L2ON	$2+$ ow	52	6	70	. 2	5	1
L2ON	$1+75 \mathrm{~W}$	15	12	47	. 3	2	
L2ON	$1+50 \mathrm{w}$	68	6	74	. 5	8	
L2ON	1+25w	62	11	88	. 4	6	1
L2ON	1+oow	46	11	70	. 4	7	
12 ON	O+75w	73	9	80	. 4	4	
L2ON	O+50w	53	8	61	.1	5	
LZON	O+25w	37	11	65	. 5	5	5
L2ON	O+25E	38	11	59	. 4	7	4
120 N	$1+50 \mathrm{E}$	172	10	102	. 7	22	25
L2ON	$1+75 E$	129	12	208	. 8	10	13
L2ON	2+OOE	130	17	184	. 6	15	
L2ON	2+25E	42	6	11.0	. 5	10	
L 2 NN	$2+50 E$	35	7	60	. 1	5	1
L20N	2+75E	19	6	94	. 2	3	1
L2ON	3+25E	62	12	118	. 3	12	

SAMFLEFH	[il	FB	ZN	AO	AS	AU*
	FFW	FFH	FFW	FFlv	FFM	FFE
LOON $3+50 \mathrm{E}$	58	2	66	. 2	3	2
LOON $3+75 E$	45	3	\#1.	$\cdots 1$	2	1.
$1.20 N$ 4+OOE	56	4	49	. 1	2	6
LIBN 5450 W	30	8	5	" 1	2	1.
LIEN 4+0\%W	27	5	48	. 1	5	3
LIBN SOW	1.4	7	25	. 2	2	1
L18N $\mathrm{T}+2 \mathrm{WW}$	19	9	32	. 1	2	1
1.18N $\mathrm{I}+\mathrm{OOW}$	13	11	38	. 1	2	1
L18N $2+50 W$	50	8	38	. 3	3	73
L18N 2+25w	28	8	47	. 2	4	6
L18N $2+0 \mathrm{OW}$	3 B	5	50	. 3	3	1
L18N 1+75W	22	9	41.	.1	2	22
L18N 1+50w	50	11	71	${ }^{4} 4$	6	3
LIBN $1+00 \mathrm{~W}$	45	8	45	$\cdots 1$	3	4
L18N 9+75W	44	6	62	.1	4	1
L1BN O+GOW	80	10	55	. 2	2	1
LIBN 0+25W	11	10	24	.1	2	1
LIEN O+5OE	88	3	100	. 5	2	14
$1.18 N 0+75 E$	36	7	59	. 1	2	1
$1 \mathrm{LCN} 1+25 \mathrm{~F}$	4.5	7	1.08	.2	\pm	1
LIBN 2+OOE	55	24	104	. 3	2	1
L18N 2+25E	67	19	116	.4	Ξ	1
LIEN $2+50 \mathrm{E}$	67	11	88	- 2	Ξ	4
LIBN $\mathrm{S}+2 \mathrm{SE}$	172	9	95	. 8	6	20
$118 N 3+75 E$	88	12	64	.9	6	11
LIBN 4+OOE	83	12	86	. 4	4	4
STD C/AU-5	62	38	127	7.2	40	51
$\underline{L 6 N ~ 5+75 w ~}$	51	10	77	. 2	9	3
116 N 5+50W	61	10	74	. 4	2	1
L16N 5+25w	44	10	54	. 1	2	1
L16N 5+OOW	29	8	58	.1	2	2
L16N 4+750	23	12	31	${ }^{\circ} 1$	2	3
L16N 4+50W	36	6	51	. 1	2	1
L16N 4+25W	13	10	28	. 1	2	1
$116 \mathrm{~N} 4+\mathrm{OWW}$	65	7	65	. 1	7	6
L16N $3+750$	22	5	$2 \pm$. 2	13	1
L16N $\mathrm{S}+50 \mathrm{~W}$	21	4	30	. 3	3	1

SWIFT MINEFALS FTLE \# 87-5625 Fage 5

Samflem	Cu	FE	2 N	As	AS	AU*
	pew	FFM	FPM	PFM	PFM	FFE
$116 n 3+250$	25	12	44	. 5	2	2
L16N 3+00W	42	9	49	. 7	2	1
L16N $2+75 W$	45	10	53	. 5	7	8
L16N $2+500$	31	15	49	. 3	3	\%
L16N $2+25 W$	36	8	56	. 2	10	2
L16N 2+00n	17	g	32	. 2	2	1
L16N 1+75 ${ }^{\text {L }}$	25	11	37	. 4	7	1
L16N 1+5OW	51	11	43	. 6	5	11
L16N 1+25W	63	18	63	. 7	5	2
L16N 1+00W	25	9	53	. 3	4	3
L16N O+75w	34	6	59	. 3	5	2
L16N O+5OW	19	10	35	. 3	2	1
L16N 0+25W	43	17	65	. 1	6	1
LIGN O+25E	56	14	65	. 4	9	28
LIGN O+5OE	20	12	43	. 1	4	12
L16N O+75E	28	11	53	- 1	6	3
L16N 1+00E	75	1.0	79	. 4	3	2
LIGN 1+25E	39	15	60	. 5	ε	1
L16N 1+50E	113	11	73	. 6	16	4
L16N 1+75E	53	12	81	. 2	S	10
L16N 2+OOE	82	12	68	. 4	10	6
L16N 2+25E	49	10	117	.1	2	1
L16N 2+50E	38	12	85	. 1	6	7
LIGN 3+OOE	21	14	56	. 2	2	17
L16N 3+2EE	42	6	79	. 4	7	1
L16N 3+75E	36	9	59	. 2	4	1
LIGN 4+OOE	62	11.	81	. 3	5	9
L14N 4+75w	33	10	78	. 3	6	1
L14N 4+50W	57	11	77	- 1	7	6
L14N 4+25W	23	12	55	.1	4	7
L14N 4+00W	33	13	61	\cdots	2	3
L14N 3+75w	28	12	73	${ }^{1} 1$	2	1
L14N 3+50W	36	12	42	.2	2	1
L14N S+25w	37	11	60	.1	5	1
L14N 3+oow	32	13	61	. 1	3	1
L14N 2+75W	75	12	74	. 1	5	1
STD C/AU-S	57	40	135	7.3	42	52

SAMPLE*	Cu	FE	ZN	AE	$A E$	AU*
	FFM	PFM	FFW	FFW	FFH	FFE
L14N 2+50w	35	15	59	4.4	3	10
$1.4 N^{2+2 W W}$	15	11	43	$\ldots 1$	2	5
L. 4 N $2+$ OOW	81	9	61	. 5	5	8
L.4N 1+750	12	11	34	$\cdots 1$	2	\cdots
L14N $1+50 \mathrm{~W}$	1.8	7	$\square 7$.1	4	1
L14N 1+25w	36	11	5	\%	2	7
L. $14 \mathrm{~N} 1+\mathrm{OW}$	18	7	41	-1	2	1
$14 \mathrm{Na} 0+7 \mathrm{Wm}$	16	8	45	. 2	3	3
L. 4 N	79	10	71	- 3	7	8
L14N O+2EW	4%	12	59	. 4	3	Ξ
14 N O+25E	62	19	64	. 1	2	3
L14N O+50E	49	13	56	. 4	6	4
L14N O+7SE	1.4	12	≤ 4	\cdots	3	1
Li4N 1+OOE	80	17	77	.6	7	5
L14N 1+25E	40	9	50	. 2	2	2
L14N 1+5OE	15	9	5	. 1	2	8
L14N 1+75E	45	10	76	-3	6	7
L14N 2+OOE	28	14	54	, ${ }^{\text {S }}$	2	1
L14N 2+2EE	14	7	26	.1	5	4
$L 14 N 2+50 E$	71.	10	68	. 4	4	4
L14N 2+7EE	22	14	47	- 2	J	5
L14N $\mathrm{F}+0 \mathrm{EE}$	34	12	55	. 1	4	41
LI2N 4+25W	79	8	62	- 3	9	20
LI2N $4+0 \mathrm{OW}$	52	13	59	- 1	8	5
L12N 3+75w	32	9	49	. 2	4	1
112 N +50W	46	11	68	. 1	7	1
L12N S+25W	30	18	53	.1	6	1
L12N $3+004$	21	11	38	. 3	3	4
L12N 2+75W	58	14	50	$\times 1$	6	1
L12N 2450W	22	10	58	. 1	5	1
L12N $2+250$	20	7	31	. 1	2	3
L12N 2+60W	22	13	38	${ }^{-1}$	5	1
L12N 1+75W	29	8	42	. 1	2	1
L. $2 \mathrm{~N} 1+25 \mathrm{~W}$	26	17	88	.1	5	1
L12N 1+OOW	23	12	39	. 3	2	5
L12N +750	31	14	51	.1	2	37
$5 \mathrm{TD} \mathrm{C/AU-5}$	59	43	132	7.2	42	50

SAMFLE*	Cu	$F E$	ZN	$A \mathrm{~B}$	As	AU*
	FFM	FFly	PFW	FFM	FFM	FFG
L12N O+5OW	21	9	44	. 1	2	5
LI2N 0+2EW	46	7	58	. 2	6	4
LIEN O+2EE	59	10	7%	. 1	4	12
1.2 ON +GOE	80	10	90	, 3	6	4
LISN +75 F	27	8	57	.1	2	20
12 LCOE	19	e	42	${ }^{\circ} 1$	6	5
112 N 1+25E	56	10	82	. 5	T	3
L12N $1+50 \mathrm{E}$	41	8	88	. 4	2	1
$110 \mathrm{~N} 9+5 \mathrm{OW}$	38	11.	6.3	. 2	4	1
L10N $9+25 W$	68	12	100	. 3	4	1
L1ON $9+00 W$	44	11	80	. 3	2	2
L1ON 8+7EW	96	10	71	.1	5	1
L10N B+50W	48	10	81	- 3	5	1
L1ON 8+250	41	9	72	. 1	2	1
L1ON 8+OOW	89	11	70	$\cdots 1$	2	1
$110 \mathrm{~N} 7+7 \mathrm{~W}$	92	\square	87	. 1	8	1.
L10N 7 +25w	28	6	57	. 1	2	2
L1ON 7+OOW	30	11	70	. 1	2	1
L10N $6+75 W$	40	9	84	. 1	2	1
L1ON 6+50W	≤ 5	8	79	.1	2	1
L10N 6+25w	60	15	84	. 1	6	2
LION 6+OOW	42	11	71	. 1	5	3
110 S +25W	50	10	72	.1	2	2
1.10N 5+oow	79	12	76	. 1	4	8
L1ON $4+5 \mathrm{OW}$	64	1.4	78	.1	7	5
L1ON 4+25W	78	12	85	. 1.	2	1
L10N 4+00W	48	18	69	.1	4	2
L10N $3+75 W$	49	14	54	.2	8	3
$110 \mathrm{~N}+5 \mathrm{OW}$	15	7	38	. 1	2	7
L1ON $\mathrm{O}+2 \mathrm{SW}$	22	15	49	.1	2	9
1.10 OH OOW	51	14	66	.1	2	10
$1 \mathrm{LON} 2+750$	29	\square	71	.1	2	3
$110 \mathrm{~N} 2+5 \mathrm{OW}$	42	12	70	.1	3	6
L1ON 2+2EW	76	17	63	.2	9	2
LeN $11+\mathrm{OWW}$	74	9	79	* I	7	4
LSN 10+50W	70	7	74	. 3	2	67
STD $\mathrm{C} / \mathrm{AU} \mathrm{C}$	57	S8	135	6.9	40	50

EWIFTM MINEFALE
FTLE 挂 $97-5625$

SAMFLEA	Cu	FE	ZN	A6	AS	AU\%
	FPM	PFPM	FFM	FFM	FFH	FFE
L8N 10+2w	42	11	72	. 2	6	4
Len 10+OOW	24	10	5	"5	2	1
$18 N 8+75 W$	42	14	78	- 1	9	10
L9N $9+2 \mathrm{EW}$	01	12	92	, 3	7	11
LEN $9+$ OOW	117	14	82	-	8	6
LEN B+75W	109	9	70	. 4	8	10
L8N 8+50W	79	7	65	.1	6	6
LgN 8+25w	47	13	56	. 1	5	2
LEN 8+OOW	3	8	60	. 2	4	2
L8N 7+75W	20	9	46	. 5	2	3
LEN 7+5OW	41	5	61	.1	2	1
Len $7+25 \omega$	122	11	81	.6	12	7
L. BN 6+75W	86	12	89	. 4	3	1
LgN $6+506$	44	10	69	. 3	5	1
L8N broow	30	14	62	. 2	S	1
L8N 5+75w	36	11	71	. 4	2	2
L8N 5450W	41	13	51	. 2	2	1
L8N 5+25w	44	12	56	. 1	2	26
L6N 6+50W	31	7	62	. 2	Σ	3
LoN $6+25 W$	102	10	75	, 3	7	4
L6N 6+00W	23	12	64	- 2	2	S
L6N 5+75W	64	10	86	. 2	5	1
L6N 5+25w	72	12	90	. 2	7	3
L6N S+OOW	27	I	65	. 1	4	9
L6N 4+75w	25	7	40	. 2	7	12
L6N $4+50 \mathrm{~W}$	55	7	71	-2	\pm	8
L6N 4+25W	49	11	69	. 3	3	11
L6N 4+00W	15	4	49	-1	2	4
L6N 3+75W	48	7	65	. 1	2	2
$16 N 3+500$	81	8	68	. 1	7	6
$16 N 3+250$	37	12	52	. 2	4	1
LGN $3+000$	1.6	5	3	-1	2	1
L6N 2+75w	35	8	56	. 1	5	17
STD C/AU-S	57	38	135	7.1	41	49

