an the second states of the second		5. 5 T	W's mapping and
LOG NO:	0105		
	and the second	n an management att	
میناد بر می این این می میرد. وی ا	analina anin' any indrina GMU (an GMU)	and the second second second	
11. 0.			

GEOLOGICAL BRANCH ASSESSMENT REPORT

16,821

SUMMARY REPORT; RECONNAISSANCE GEOLOGICAL MAPPING AND LITHOGEOCHEMICAL SAMPLING PROGRAMS ON THE JACK 29 CLAIM AND SURROUNDING AREA, ATLIN MINING DIVISION, BRITISH COLUMBIA

SU . ش.	B-RECO RECEIV	
DE	C 22	1987
8	ICOUVE	

NTS:	104N.	12E
------	-------	-----

LATITUDE: 59° 35' NORTH

LONGITUDE: 133°41' WEST

OWNER: HOMESTAKE MINERAL DEVELOPMENT COMPANY LTD.

OPERATOR: HOMESTAKE MINERAL DEVELOPMENT COMPANY LTD.

BY: DUNCAN MCIVOR

DATE: DECEMBER 1987

and the second division of the local divisio					
	FIL	M	EL)	

TABLE OF CONTENTS

1.	SUMMARY	1
2.	INTRODUCTION 2.1 LOCATION, ACCESS, AND PHYSIOGRAPHY 2.2 PROPERTY DEFINITION 2.3 WORK COMPLETED 2.4 GENERAL GEOLOGIC SETTING AND ECONOMIC ASSESSMENT	1 1 2 2
3.	DETAILED TECHNICAL DATA 3.1 GEOLOGIC MAPPING 3.1.1. METHODS EMPLOYED 3.1.2. RESULTS AND INTERPRETATION	2 2 2 3
	3.2 LITHOGEOCHEMICAL SAMPLING 3.2.1. METHODS EMPLOYED 3.2.1. RESULTS AND INTERPRETATION	3 3 3
4.	ITEMIZED COST STATEMENT AND ALLOCATION OF EXPENDITURES	4
5.	AUTHOR'S QUALIFICATIONS	6
6.	SELECTED BIBLIOGRAPHY	7

PAGE

LIST OF FIGURES

- 1. LOCATION MAP, ATLIN AREA
- 2. LOCATION MAP, JACK 29 CLAIM
- 3. GENERAL GEOLOGY OF THE ATLIN AREA

LIST OF APPENDICES

1. 1:5000 GEOLOGY MAP, JACK 29 CLAIM

1

2. ICP GEOCHEMICAL DATA

1. SUMMARY AND RECOMMENDATIONS

The Jack 29 claim is located 1.5 kilometers due east of the town of Atlin in Northwestern British Columbia. In July 1987, Homestake Mineral Development Company completed a reconnaissance scale geological mapping and lithogeochemical sampling program over the claim.

Outcrop exposure constituted less than 1% of the property area, all of which occurred in the extreme northwest corner of the claim.

All encountered outcrops were argillaceous sediments of the Cache Creek Group, which are believed to underlie the majority of the claim. Six samples collected from the encountered outcrops failed to return anomalous precious metal or associated trace element values. No further work is recommended. Total incurred expenditures by Homestake Mineral Development Company for the brief program were \$965.50.

2. INTRODUCTION

2.1 Location, Access and Physiography

The Jack 29 claim is located 1.5 kilometers due east of the town of Atlin, northwestern British Columbia (see Figures 1 and 2). The claim is in the Atlin Mining Division, on NTS map sheet 104N.12E.

The property is readily accessible, with the Surprise Lake Road extending east from Atlin across the southern portion of the claim, and the Whitehorse Road extending north from Atlin to cross the extreme northwest corner of the claim.

Outcrop exposure on the claim is minimal (less than 1%), all of which occurs in the northwest corner of the property proximal to the Whitehorse Road. The majority of the claim is covered by a large spruce swamps, and in the western portion of the property, an open beg which hydromagnesite is currently precipitating.

Relief on the property is minimal, rarely exceeding 10 meters.

2.2 Property Definition

The Jack 29 claim, comprised of 6 units (2E, 3S), was recorded on October 2, 1986 (Rec. No. 2750). The claim is truncated by a Mineral Reserve to the south and east, and two Crown Grants (L905, L906) not owned by Homestake Mineral Development Company occupy the west-central portion of the claim.

The Jack 29 claim is owned and operated by Homestake Mineral Development Company. All work described in this report was carried out by HMDC.

No record of previous exploration activity on the claim exists, other than that completed by HMDC in 1986.

Ϊľ

CENOZOIC LEC	END	-
PLEISTOCENE AN	D RECENT	
17 GLACIAL DRIF	T ; ALLOVIU	w.
TERTIARY AND QUATE	ERNARY	
16 OLIVINE BASA	IT AND SCOL	RIA ; ISTOCENE
TERTIARY (?)		
150 QUARTE N 150 GABBRO		156 GRANOPHYRE
CRETACEOUS OR TER	TIARY	
A SLOKO GROUP ANDESITE, BAS ALBITE RHYOL PVROCLASTIC R SANDSTONE	ALT : ALBITE	TRACHITE,
CRETACEOUS		
IS ALASKITE		
JURASSIC (MAY BE IN I	PART DLOER C	R YOUNGER)
12 COAST INTRUSIO		IC ROCKS
JURASSIC		
UNDERANCE GROUN	P YWACKE SIL	STONE,
TRIASSIC		
GREYWACKE, C ERATE, TUFF IMPURE LIMES	HERT, ARGIL SLATE GREE TONE JASP	NSTONE,
PALEOZOIC PENNSYLVANIAN AND		
ATLIN INTRUSIC PERIDOTITE; N GABBRO; SERI SERPENTNITE JUTRAMAFIC R	NS AETA - DIORIT PENTINITE ; TALC - BEA	E AND META- CARBONITIZED RING (STEATITIZED)
T. GREENSTON WACKE ; C MINOR 6 6 CHERT, AR CONGLOME	AND LIMES	RT - PEBBLE
NUNDIFFERENTIA ROCKS OF UNC SEVERAL, AG	ERTAIN , PO	VOLCANIC SSIBLY
~, w FAULT (ASSUM		IMATE.)
FAULT (DEFIN	5.2.5	
GEOLOGICAL C		
HOMESTAKE		
MINERAL DEVEL	OPMENT	COMPANY
ATLIN P	ROPERTIE	S
	COLUMBI	
REGIONA	L GEOLO	ay I
0 20 40	60 80 1 53,440	all ware
DRAWN DATE	FILE CODE	
KMs	104N/12	FIGURE 3
Revised	5653780 577	

GEOLOGICAL BRANCH

14) 2) 2)

. -

• .

.

A + •

ţ

Mittroffe eigenet in

.

2.3 Work Completed

During the period July 14 through 15, 1987, HMDC personnel completed approximately 4 kilometers of geological traverses on the property, employing hip-chain and compass emplaced flag-lines for control. In the course of mapping, 6 samples were collected and subsequently analyzed for a suite of 30 elements.

2.4 General Geological Setting and Economic Assessment

The Jack 29 claim lies near the western edge of the northwest trending Atlin Terrane, which is underlain by upper Paleozoic oceanic crustal rocks (Monger, 1975). It is correlated with the Cache Creek Group of rocks in southern and central British Columbia.

Within the Atlin Terrane, intermediate to mafic flows are overlain by cherts, immature clastic sediments, and thick shallow water carbonate rocks. Discordant granitic plutons, ranging in age from Late Jurassic to early Tertiary, locally intrude the stratigraphy. Some remnant Tertiary volcanics and sediments are found within the area.

Also within the Atlin Terrane, and co-eval or immediately post dating the Cache Creek group rocks, are large ultramafic bodies which define a discordant belt trending west across the tectonic fabric of the terrane. The ultramafic bodies are commonly intensely serpentinized, and in places extensively hydrothermally altered to a silica-carbonate and mariposite/fuchsite "listwanite" like assemblage.

The Jack 29 claim, with its very limited exposure, appears to be underlain by rocks of the Cache Creek Group.

The majority of known lode gold mineralization within the Atlin camp is associated with intensely altered (silica-carbonate-mariposite) ultramafic rocks proximal to their fault bounded or intrusive contacts with rocks of the Cache Creek Group. The mineralization is almost exclusively hosted in quartz/quartz-carbonate veins and vein stockworks within these altered packages of rocks, occurring as both often spectacular free gold, or in intimate association with gangue sulphides such as pyrite, arsenopyrite, chalcopyrite, sphalerite, galena and, sulphosalts such as tetrahedrite and pyrargyrite.

The economic potential of the Jack 29 claim is poorly understood, due to limited outcrop exposure and lack of detailed geophysical coverage.

3. DETAILED TECHNICAL DATA

3.1 Geological Mapping

3.1.1. Methods Employed

As mentioned, approximately 4 kilometers of geological reconnaissance mapping traverses were completed on the property.

A flagged baseline was established along the northern boundary of the property, extending 800 meters east of the Legal Corner Post, from which traverses extended south for 1,000 meters at 200 meter intervals.

All encountered outcrops were mapped with a view towards establishing their lithology, structural orientation, and the presence of any significant alteration, veining or mineralization. In addition to mapping outcrops encountered on the property, any outcrops proximal to the property were similarly mapped to provide additional much needed stratigraphic information. The results of the mapping appear in Appendix 1, as a 1:5000 Geology Plan Map of the property.

3.1.2. Results and Interpretation

The only exposures encountered during mapping were situated in the extreme northwest corner of the property, where several exposures of argillite were encountered. The argillite, predominantly siliceous to cherty, was characteristically black to gray, aphanitic, and contained only trace amounts of sulphide mineralization or secondary quartz veining. Bedding directions were difficult to ascertain, as bedding was very poorly developed within the argillites, and often where present, very tectonically disturbed. The most prominant direction observed was 120° with vertical to sub-vertical dips.

This member of the Cache Creek Group has little or no economic potential, historically, in the Atlin area. It is uncertain as to what degree the argillites underly the remainder of the property, but the airborne magnetic data (Ronning 1986) indicates that the property is uniformly a moderate magnetic low, that may be an expression of this lithology.

3.2 Lithogeochemical Sampling

3.2.1. Methods Employed

In the course of mapping, six samples were collected and forwarded to Acme Analytical Laboratories in Vancouver for multi-element ICP geochemical analysis and Au analysis by conventional AA technique.

All sample locations are plotted on the enclosed geology plan map in Appendix 1, followed by the sample Au content in ppb. The raw ICP geochemical data appears in Appendix 2.

3.2.2. Results and Interpretation

None of the 6 samples collected in the course of mapping returned significantly anomalous gold or trace-element values, re-affirming the geological interpretation of the property potential as being limited. 4.

ITEMIZED COST STATEMENTS AND ALLOCATION OF EXPENDITURES

Field Costs

Salaries and Wages

P. Southam,	July 14, 15 2 days @\$85/day	\$170.00						
J. Bozek,	July 14, 15 2 days @\$85/day	\$ <u>170.00</u>						
	Sub Total + 20% Overhead and Benefits	\$340.00 \$ <u>68.00</u>						
	TOTAL SALARIES AND WAGES	\$408.00						
Meals and Lod	ging							
@ \$50/day per	man, x 4 man days	\$200.00						
Vehicle Costs								
- one 4 x 4 s	uburban, 2 days fuel and maintenance, @\$25/day	\$ 50.00						
Analytical Co	sts							
- 6 samples @	- 6 samples @\$15.75/sample							
Miscellaneous	Equipment Costs							
- topfil, fla	gging, sample bags, etc	\$_50.00						
	TOTAL FIELD COSTS	\$ <u>802.50</u>						
Drafting and	Report Preparation Costs							
Salaries								
D. McIvor	<pre>1 day @\$115/day + 20% Overhead and Benefits</pre>	\$115.00 \$ <u>23.00</u>						
		\$138.00						
<u>Miscellaneous</u>	Costs							
- reproductio	n costs, drafting material costs, etc	\$_25.00						
	TOTAL DRAFTING AND REPORT COSTS	\$ <u>163.00</u>						
	TOTAL COSTS	\$ <u>965.50</u>						

Allocation of Expenditures

The expenditures outlined in this report are to be applied to the Jack 29 claim. Note that the claim already has \$642.70 of assessment credit, and thus, with this report (\$965.50), a total of \$1,608.20. The 6 unit claim, recorded in October of 1986, will therefore be in good standing until October of 1988.

AUTHOR'S QUALIFICATIONS

- I, Duncan Forbes McIvor, do hereby state that;
- I am a graduate of the University of Waterloo, and hold an Honours Bachelor of Applied Science degree.
- I have been practising my profession as an exploration geologist on a full time basis since 1982.
- I have personal knowledge that all information presented in this report is true and accurate.

Duncan McIvor

6.

SELECTED BIBLIOGRAPHY

Aitken, J.D.

1959: Atlin map area, B.C. Geological Survey of Canada, Memoir 307.

B.C. Department of Mines Annual Report:

1901, p. 757 - 759 1902, p. 984 1903, p. H38 1904, p. H44 1905, p. G77 - 78 1933, p. A78 - A79

Larkin, Curtin and Hubert

1974: The Geochemistry of Gold in the weathering cycle, U.S. Geological Survey Bull 1330.

Monger, J.W.H.

1975: Upper Paleozoic rocks of the Atlin Terrane, Northwestern British Columbia and South-Central Yukon; Geological Survey of Canada, Paper 74-7.

Ronning, P.A.

1986: Summary Report; Diamond Drilling and Geophysical work, Arent 1 and Arent 2, Beama and Adjacent Claims, North and South Claim Groups, Yellowjacket Property, Atlin Mining Division. HMDC assessment report on file at the B.C. Ministry of Mines.

DMc/mm

ACME ANALYTICAL LABORATORIES

FHONE 253-3158 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

DATA LINE 251-1011 MASTER Nts: ATL:n District 11.BC. 104N 131

PAQ.

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NH FE CA P LA CR NG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AUT ANALYSIS BY AA FROM 10 GRAM SAMPLE. 0 1

	DATE REC	EIV	ED:	JUL	29 1987	D	ATE	REF	ORT	MAI	LEDI	G	lug	5K	37	A	SSA	ÆR.	Ø	- de	£1.	DEA	ΝΤΟ	DYE.	CEF	RTIF	IED	B.C	. A5	, . SAY	ER		
							но	MEST	ГАКЕ	MIN 3	NERA		1	'						- 1	, 2828		Fag	e i									
	SAMPLE	NO PPM	CU PPH	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	NN PPN	FE X	AS PPN	U PPM	AU Ppn	TH PPN	SR PPN	CD PPM	SB PPM	BI PPN	V PPK	CA Z	P I	LA PPN	CR PPN	NG Y	BA PPM	τι 2	B PPM	AL %	NA Z	K Z	W PPH	au i PPB	
	BR-02-1-36332 BR-02-1-36333 BR-02-1-36334 BR-02-1-36402 BR-02-1-36403	2 1 1 2 1	1 76 2 2 2	2 8 2 2 2	34 79 6 15 11	.1 .5 .1 .2 .1	1726 23 325 959 829	67 27 12 39 35	1099 269 573	4.53 8.24 1.20 3.61 3.27	53 45 15 347 92	12 9 7 5 5	ND ND ND ND	1 1 1 1 1 1	2 69 84 13 6	1 1 1 1	2 2 3 2 2	2 2 4 3	12 52 3 8 10	.22 3.29 1.77 .41 .19	.008 .089 .002 .004 .004	2 2 2 2 2 2		2.19 5.03 16.26	7 37 3 6 9	.01 .01 .01 .01	43 2 2 2 2 2	.10 .60 .02 .06 .03	.01 .01 .01 .01 .01	.01 .19 .02 .04 .03	1 1 1 1	2 15 5 1 1	:
JACK 29 GEOCHEM	PA-01-1-36326 PA-01-1-36327 PA-01-1-36414 PA-01-1-36415 PA-01-1-36416	1 1 1 2	29 64 18 33 40	2 3 2 2 2 2	43 168 26 9 18	.1 .5 .1 .1 .1	26 26 9 5 11	6 10 2 1 4	709 383 89	1.68 3.78 2.24 1.66 1.44	6 2 2 3 2	5 6 5 5 5	ND ND ND ND ND	3 1 5 2 1	3 255 5 4 2	1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	37 94 43 12 17	1.96 .02 .04	.015 .072 .012 .019 .024	7 2 12 3 3	25 57 38 10 10	.80 2.02 .98 .22 .46	332 92 388 33 41	.07 .24 .16 .01	2	1.00 4.46 1.42 .33 .53	.03 .22 .03 .02 .02	. 88 . 09	1 2 1 1	1 1 2 1 1	
an and a france of the second s	PA-01-1-36417 PA-01-1-36418 PA-01-1-36419 PA-01-1-36420 PA-01-1-36421	20 1 1 5	33 48 4 118 36	3 5 9 2 2	11 23 23 107 36	.1 .1 .2 .2	9 15 2 66 1262	1 4 1 11 54	187 341 168 263 404	.83 .90 .91 2.71 3.93	2 4 5 2 11	6 5 5 5 5 5	ND ND ND ND ND	2 1 38 4 1	1 14 1 4 4	1 1 1 1 1	2 2 2 2 2 2	3 2 3 2 4	45 10 2 94 41	.07 .12 .02 .05 .08	.028 .006 .006 .014 .027	4 2 7 7 2	11 8 2 55 712	.12 .27 .05 .72 10.86	9 117 14 74 4	.05 .02 .01 .10 .02		.20 .55 .32 1.38 1.05	.02 .01 .04 .04 .04	.04 .14 .09 .51 .01	1 1 1 1	1 38 1 2 1	
	PA-01-1-36422 PA-01-1-36423 PA-01-1-36424 PA-01-1-36425 PA-01-1-36426	1 1 3 1	20 66 19 2 29	5 4 3 2 3	47 25 64 38 39	.2 .1	1693 40 22 1665 21	70 4 2 54 8	146 245 347	5.41 1.42 1.92 3.20 2.34	23 5 4 836 2	5 7 5 5 7	ND ND ND ND	i 2 4 1 1	5 12 7 1 49	1 1 1 1	2 2 13 2	3 2 2 3 2	19 33 38 3 78	.10 .09 .05 .02 .69	.005 .010 .025 .004 .078	2 3 9 2 4	29 36	16.85 1.44 1.26 15.24 .85	28 316 553 12 331	.01 .06 .11 .01 .24	8	.40 .59 1.29 .06 1.54	.01 .05 .04 .01 .16	.01 .15 .76 .01 .78	1 1 1 1 1	3 1 140 1	
	PA-01-1-36427 PA-01-1-36428 PA-01-1-36429 <u>PA-01-1-36430</u> PA-01-1-36431	1 2 1 1 3	2 2 90 47 41	8 2 3 5 2	41 105 16 37 31		20 436 1137 1078 39	1 36 43 51 13	671 291 576	1.21 6.30 1.95 <u>3.79</u> 2.67	6 5 37 46 4	5 5 5 5 5	ND ND ND ND	45 2 1 1 3	1 53 20 22 19	1 1 1 1	2 4 2 3 2	2 4 2 2 2		.07 2.98 1.78 2.04 .49	.193 .004 .015	13 7 2 2 4	818	.22 9.04 3.73 <u>5.44</u> 1.13	18 51 24 <u>27</u> 347	.05 .03 .01 .01 .16	14 19	.38 5.10 .24 .72 1.51	.04 .01 .01 .01 .15	.26 .04 .01 .01 .61	1 3 1 2 1	1 1 2 1 1	
JACK 29 GEOCHEM	PA-01-1-36452 PA-01-1-36453	.: 2 4	6	23 Z	50 8	.1	7	1	24 22	.10 .51	9 27	9 5	ND ND	1	126	1	2 3	2 2	3	.17		2 2	4	22.00	23	.01	36	.06 .06	.01	.01	1	1	
	PA-01-1-36454 PA-01-1-36455 PA-01-1-36455	1 1 1	1 1 2	2 3 2	11 4 15	.3 .1 .1	3		31 33 54		3 2 3	11 5 5	ND ND ND	1	438 734 246	1 1 1	3 3 5	5 6 3	2	37.08 40.14 36.66	.012	2 2 3	4 2 4	.49 .22 1.99	30 35 44	.01 .01 .01	36 2 2	.02 .01 .01	.01 .01 .01	.01 .01 .01	5	1 1 2	
	PA-01-1-36457 PA-01-1-36458 PA-01-1-36459 PA-01-1-36460 PA-01-1-36461	1 1 1 1 1	1 2 62 1	5 2 2 3 2	6 16 13 34 23	.1 .1 .1 .2	1 2 1 34 2	1 1 15 1	33 61 50 333 69		3 4 3 2 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	598 223 273 18 567	1 1 1 1	3 7 5 2 8	7 4 3 2 6	2 1 60	40.19 34.85 38.12 1.93 31.88	.019 .034 .036	5 2 3 2 3	2 20	3.66	27 30 23 65 45	.01 .01 .01 .32 .01	2 2 2 2 2	.03 .02 .02 1.26 .01	.02 .01 .01 .01	.02 .01 .01 .15 .01		∞ 1°11 ∞12 ∵1	
	PA-01-1-36462 STD C/AU-R	1 20	33 58	2 42	30 132	.1 7.7	1549 70	59 29		4.29 4.12	4	5 17	UN B	1 39	7 51	1 19	2 15	2 20	23 60	. 41 . 51	.003 .089	2 39		17.40 .90	183 183	.01	32 34	.48 1.79	.01 .06	.01 .14	1 12	1 500	

ARIS SUMMARY SHEET

District G	eologist, Smithers Off Confidential: 88.07.16
ASSESSMENT	REPORT 16821 MINING DIVISION: Atlin
PROPERTY: LOCATION:	Jack LAT 59 35 11 LONG 133 41 00 UTM 08 6605879 574355 NTS 104N12E
AUTHOR(S): REPORT YEA GEOLOGICAI	Jack 29 5): Homestake Min. Dev. McIvor, D.F. AR: 1987, 12 Pages
SUMMARY:	Group underly the majority of the property. No significant alteration or mineralization was encountered during mapping.
WORK DONE :	Geological GEOL 150.0 ha ROCK 6 sample(s) ;ME

ACME ANALYTICAL LABORATORIES DATE RECEIVED: 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

MAY 1 1987 May 6/87.

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P CR MG BA TI B AL NA K W SI ZR CE SN Y NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Pulp AU* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: . Ally DEAN TOYE, CERTIFIED B.C. ASSAYER

SWIFT MINE	/ RALS	File #	\$ 87-09	952R	Page	1
SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* FPB
9+00N 0+00E 9+00N 0+25E 9+00N 0+50E 9+00N 0+75E 9+00N 1+00E	95 44 28 30 98	14 14 12 15 13	96 55 46 42 74	• 1 • 3 • 1 • 1	13 2 5 5 11	5 4 2 13 1
9+00N 1+25E 9+00N 1+50E 9+00N 1+75E 9+00N 2+00E 9+00N 2+25E	50 17 70 37 58	11 12 9 15 10	72 24 93 43 59	.1 .1 .3 .2	5 7 16 12 10	3 6 7 10 8
9+00N 2+50E 9+00N 2+75E 9+00N 3+00E 9+00N 3+25E 9+00N 3+50E	64 26 70 24 45	11 11 16 15 14	63 28 64 39 60	.3 .1 .4 .4 .1	9 10 9 9 9	7 3 210- 1 4
9+00N 3+75E 9+00N 4+00E 9+00N 4+25E 9+00N 4+50E 9+00N 4+75E	109 49 69 26 52	13 15 14 7 14	63 43 48 39 52	.4 .1 .2 .1	9 15 11 9 10	15 14 1 1
9+00N 5+00E 9+00N 5+25E 9+00N 5+50E 9+00N 5+75E 8+00N 5+00W	61 75 66 55	12 11 13 14 13	94 72 95 72 83	.3 .3 .2 .2	2 8 11 11 3	1 2 4 11 1
8+00N 4+75W 8+00N 4+50W 8+00N 4+25W 8+00N 4+00W 8+00N 3+75W	23 69 17 16 53	12 13 10 12 13	71 101 51 53 67	.2 .1 .1 .1	6 13 5 2 5	2 2 4 295 2
8+00N 3+50W 8+00N 3+25W 8+00N 3+00W 8+00N 2+75W 8+00N 2+50W	7 14 91 30 22	6 13 16 14 13	22 43 85 57 57	.1 .3 .1	2 4 10 2 2	5 2 3 1 4
8+00N 2+25W STD C/AU-S	22 58	10 37	65 133	.1 7.3	3 44	1 50

۰.

٢

Page	2
------	---

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
8+00N 2+00W	16	12	44	.1	10 N N N N	22
8+00N 1+75W	13	9	37	.1		1
8+00N 1+50W	11	10	31	.2		2
8+00N 1+25W	32	13	40	.2		1
8+00N 1+00W	16	10	43	.1		4
8+00N 0+75W	23	11	48	.1	6	1
8+00N 0+50W	37	15	48	.2	10	3
8+00N 0+25W	73	11	56	.1	9	6
8+00N 0+00E	41	12	64	.1	2	3
8+00N 0+25E	46	14	57	.2	3	8
8+00N 0+50E 8+00N 0+75E 8+00N 1+00E 8+00N 1+25E 8+00N 1+50E	24 29 27 62 29	16 13 17 13 15	39 58 52 100 44	.1 .2 .6 .1	4 7 4 2 9	4 1 3 24 1
8+00N 1+75E	59	12	74	.3	9	2
8+00N 2+00E	48	13	85	.3	10	72
8+00N 2+50E	32	13	73	.1	5	11
8+00N 2+75E	81	14	95	.2	10	176
8+00N 3+00E	39	18	55	.1	9	2
8+00N 3+25E 8+00N 3+50E 8+00N 3+75E 8+00N 4+00E 8+00N 4+25E	55 77 57 49 43	11 16 12 13 11	63 82 84 76 69	.3 .4 .1 .1	7 5 10 7 4	9 2 1 1 32
8+00N 4+50E 8+00N 4+75E 8+00N 5+00E 8+00N 5+25E 8+00N 5+50E	41 62 49 38 44	12 13 13 11 14	30 88 55 34 31	.1 .6 .1 .5 .2	11 9 12 15 7	1 5 1 6
7+00N 5+00W 7+00N 4+75W 7+00N 4+50W 7+00N 4+25W 7+00N 4+25W 7+00N 4+00W	39 27 36 17 64	9 12 13 11 13	98 77 79 56 69	.1 .2 .1 .1 .1	4 6 7 4 6	2 2 1 5 4
7+00N 3+75W	38	12	77	.1	2	11
STD C/AU-S	58	41	135	7.0	42	49

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
7+00N 3+50W 7+00N 3+25W 7+00N 3+00W 7+00N 2+75W 7+00N 2+50W	86 30 40 10 21	6 9 17 15	83 68 69 38 69	. 1 . 1 . 1 . 1	2 2 2 2 2 2	21 2 4 3 6
7+00N 2+25W 7+00N 2+00W 7+00N 1+75W 7+00N 1+50W 7+00N 1+25W	44 18 72 32 44	9 9 10 8 10	80 43 79 82 74	.1 .1 .1 .2	2 N N N N N N N N N N N N N N N N N N N	2 3 26 5 1
7+00N 1+00W 7+00N 0+75W 7+00N 0+50W 7+00N 0+25W 7+00N 0+00E	68 75 45 36 36	11 9 8 6 7	83 78 71 64 53	.1 .3 .2 .1 .1	4 3 2 3 3 2	2 2 3 2
7+00N 0+25E 7+00N 0+50E 7+00N 0+75E 7+00N 1+00E 7+00N 1+25E	27 61 70 60 52	9 9 11 8 7	43 82 89 87 75	. 1 . 2 . 1 . 1 . 1	2 2 2 6 3	1 3 4 3 2
7+00N 1+50E 7+00N 1+75E 7+00N 2+00E 7+00N 2+50E 7+00N 2+75E	74 71 56 31 39	13 11 7 6 14	90 103 98 35 61	.6 .3 .1 .6	2 10 14 5 9	14 9 17 26 31
7+00N 3+00E 7+00N 3+25E 7+00N 3+50E 7+00N 3+75E 7+00N 4+00E	55 61 106 24 70	8 9 11 6	66 84 98 57 78	.2 .1 .2 .1 .4	6 3 6 7 7	4 8 2 3
7+00N 4+25E 7+00N 4+75E 7+00N 5+00E 6+00N 2+50W 6+00N 2+25W	31 85 51 62 38	11 6 10 13 11	44 139 78 78 67	、.3 .3 .1 .2	7 6 3 2 2	14 10 5 3 4
STD C/AU-S	50	43	135	7.0	43	50

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
6+00N 2+00W 6+00N 1+75W 6+00N 1+50W 6+00N 1+25W 6+00N 0+75W	38 10 22 23 16	5 2 14 5 8	64 28 71 45 48	. 1 . 1 . 3 . 1 . 1	2 3 2 2 2	13 1 3 1 2
6+00N 0+50W 6+00N 0+25W 6+00N 0+00E 6+00N 0+50E 6+00N 0+75E	16 32 59 37 47	5 6 7 7	48 91 75 60 83	. 1 . 1 . 1 . 2	2 2 5 8 6	2 1 1 2 1
6+00N 1+00E 6+00N 1+25E 6+00N 1+50E 6+00N 1+75E 6+00N 2+00E	81 36 63 49 64	6 4 7 4	84 68 77 60 89	. 1 . 1 . 1 . 1	6 8 4 2 2	2 4 1 1 4
6+00N 2+50E 6+00N 2+75E 6+00N 3+00E 6+00N 3+25E 6+00N 3+50E	25 66 62 55 、 53	7 8 7 9 4	47 98 91 84 70	.1 .6 .2 .2	13 2 5 23 6	3 24 13 2 9
6+00N 3+75E 6+00N 4+00E 6+00N 4+25E 6+00N 4+50E 6+00N 4+75E	64 68 43 64 50	4 10 7 4 8	67 75 74 79 66	.2 .5 .2 .2 .3	2 7 11 9 9	1 3 2 24 3
6+00N 5+00E 5+00N 0+00E 5+00N 0+25E 5+00N 0+50E 5+00N 0+75E	48 59 34 23 77	14 10 9 3 4	54 86 56 47 68	.1 .2 .1 .1	8 3 2 3	1 16 2 3 7
5+00N 1+00E 5+00N 1+25E 5+00N 1+50E 5+00N 1+75E 5+00N 2+00E	55 56 20 58 59	11 6 10 7 12	78 87 17 51 86	.2 .1 .1 .2 .2	2 2 4 17	3 3 14 6 2
STD C/AU-S	58	35	132	6.8	38	48

SWIFT MINERALS FILE # 8

FILE # 87-0952R

SAMPLE	**	CU PPM	· PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
5+00N	2+25E	28	7	34	. 1	2	2
5+00N	2+50E	15	5	34	1.1	2	11
5+00N	2+75E	101	6	84	.6	11	13
5+00N	3+00E	34	8	45	. 1	2	3
5+00N	3+25E	55	9	32	.3	2	4
5+00N	3+50E	101	9	93	.8	9	5
5+00N	3+75E	96	7	92	.2	6	8
5+00N	4+00E	71	10	89	.3	2	4
5+00N	4+25E	29	8	59	.3	2	142
5+00N	4+50E	49	9	97	. 1	11	6
5+0ŐN	4+75E	79	7	103	. 1	3	10
4+00N	0+00E	52	11	82	. 1	2	. 9
4+00N	0+25E	31	9	35	. 1	3	11
4+00N	0+50E	66	11	62	.2	2	7
4+00N	0+75E	28	12	27	. 1	2	1
4+00N	1+25E	44	8	40	. 1	2	1
4+00N	1+50E	38	7	37	.1	2	1
4+00N	1+75E	36	6	58	. 1	2	3
4+00N	2+00E	29	11	30	.1	2	
4+00N	2+25E	31	13	27	• •	2	1 1
440014	27295	1. C.	C- 1	<i>4</i> . /	- 1		T
4+00N	2+50E	27	12	19	. 1	2	1
4+00N	2+75E	73	11	78	. 1	14	6
4+00N	3+00E	50	7	52	. 1	5	4
4+00N	3+25E	89	9	89	.3	8	5
4+00N	3+50E	44	9	64	• 1	2	9
4+00N	3+75E	25	7	29	. 1	2	11
4+00N	4+00E	47	7	64	.3	2	3
4+00N	4+25E	35	8	30	.2	2	1
3+00N	0+25E	40	8	45	. 1	4	9
3+00N	0+75E	38	5	54	.2	2	4
3+00N	1+00E	25	1 1	20	. 1	2	7
: 1 1	1+25E	21	8	22	. 1	3	5
1111	1+50E	43	9	31	. 1	2	26
3+00N		46	10	41	. 1	5	3
3+00N		22	10	26	. 1	2	1
STD C/	AU-S	57	37	130	6.6	41	52
		•••••••••••••••••••••••••••••••••••••••					

SWIFT MINERALS

FILE # 87-0952R

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
3+00N 2+25E 3+00N 2+50E 3+00N 2+75E 3+00N 3+00E 3+00N 3+25E	120 33 57 67 32	10 17 14 9 17	72 25 71 61 56	.1 .2 .3 .2	10 11 26 14 9	4 5 7 1 5
3+00N 3+50E 3+00N 3+75E 3+00N 4+00E 3+00N 4+25E 2+00N 2+00E	48 29 21 33 9	9 12 16 12 8	48 29 28 37 13	.3 .1 .2 .1 .1	8 3 8 7	2 1 31 1 6
2+00N 2+25E 2+00N 2+75E 2+00N 3+00E 2+00N 3+25E 2+00N 3+50E	90 23 26 29 21	11 9 10 13 9	66 35 98 87 33	.4 .2 .1 .1 .2	14 5 7 8 9	2 1 1 9
2+00N 3+75E 2+00N 4+00E 1+00N 0+25E 1+00N 0+50E 1+00N 0+75E	16 42 14 19 27	5 11 10 7 5	16 38 23 30 17	.1 .8 .1 .1	6 9 5 7	3 94 11 26 1
1+00N 1+00E 1+00N 1+25E 1+00N 1+50E 1+00N 1+75E 1+00N 1+75E <a>	23 29 44 90 84	7 5 13 9 7	19 12 67 79 74	- 1 - 1 - 1 - 1	8 9 10 14 8	1 42 1 28 1
1+00N 2+00E 1+00N 2+25E 1+00N 2+50E 1+00N 2+75E 1+00N 3+00E	12 64 69 82 41	2 8 9 6 7	9 84 85 74 36	.1 .2 .1 .1	2 10 9 10 6	1 1 1 1
1+00N 3+25E 1+00N 3+50E BL 1+00N BL 0+75N BL 0+75N BL 0+50N	23 34 66 93 127	12 19 5 6 10	71 45 53 57 74	.2 .4 .2 .3 .3	6 9 18 12 14	38 21 1 3 2
BL 0+25N BL 0+00N STD C/AU-S	105 48 59	2 9 36	60 51 133	.1 .1 6.7	9 9 44	4 6 49

ς

÷.,

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
0+00 0+25E	94	8	73	. 1	9	51
0+00 0+50E	59	7	40	. 1	11	4
0+00 0+75E	40	10	41	.2	9	7
0+00 1+00E	71	11	65	.5	9	8
0+00 1+25E	47	8	51	. 1	5	65
0+00 1+50E	81	7	57	.3	9	6
0+00 1+75E	52	10	44	.3	7	5
0+00 2+00E	40	9		.2	7	1
			60			
0+00 2+25E	62	6	41	. 1	9	6
0+00 2+50E	70	14	46	.2	6	9
0+00 2+75E	24	8	11	. 1	4	6
0+00 3+00E	32	13	45	. 1	9	2
0+00 3+25E	10	8	10	. 1	2	3
0+00 3+50E	42	6	40	.3	5	1
0+00 3+75E	43	8	69	.2	13	.1
0+00 4+00E	70	7	81	.3	9	13
0+00 4+50E	72	3	60	. 1	7	3
0+00 4+75E	91	12	68	.3	21	.1
STD C/AU-S	61	36	136	7.0	42	51

DATE RECEIVED: MAY 1 1987 ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 Mar 6 DATE REPORT MAILED: PHONE 253-3158 DATA LINE 251-1011

ANALYSIS GEOCHEMICAL ICF

,500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P CR MG BA TI B AL NA K W SI ZR CE SN Y NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. AU* ANALYSIS BY AA FROM 10 GRAN SAMPLE. - SAMPLE TYPE: Pulp

> . A child dean toye, certified B.C. Assayer ASSAYER:

SWIFT MINERALS	File #	87-10	76R	Page	1
SAMPLE# CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
18+00N4+00E5818+00N4+25E4118+00N4+50E4518+00N4+75E5418+00N5+00E31	5 5 14 6	68 38 57 61 33	.3 .1 .1 .1	2 2 2 4	1 1 1 1
18+00N5+25E5818+00N5+50E2818+00N5+75E3318+00N6+25E2518+00N6+50E34	9 10 8 11 6	55 34 46 32 33	.2 .1 .1 .1 .2	4 5 3 5 5	1 1 1 1
18+00N6+75E1718+00N7+00E5418+00N7+25E8718+00N7+50E11218+00N7+75E13	11 9 10 10 14	20 45 60 72 26	.1 .2 .1 .2 .1	2 4 5 4 2	2 3 9 12 1
18+00N8+00E3618+00N8+25E15118+00N8+50E9218+00N8+75E3418+00N9+00E30	13 13 9 6 14	30 75 82 33 30	. 1 . 1 . 1 . 1	7 6 4 7	7 13 6 1 1
18+00N9+25E6415+00N4+75E3415+00N5+00E4315+00N5+25E3515+00N5+50E38	9 8 13 9 10	67 48 86 41 44	.2 .1 .1 .1 .2	4 2 3 4 3	2 1 1 29 6
15+00N5+75E2815+00N6+00E3915+00N6+25E2915+00N6+50E1815+00N6+75E57	5 12 7 11 12	38 38 54 36 69	. 1 . 1 . 1 . 1 . 1	5 2 2 3 7 7	4 1 43 15 20
15+00N7+00E3915+00N7+50E8815+00N7+75E3415+00N8+00E7415+00N8+25E93	7 8 7 8	54 75 56 59 67	.1 .1 .2 .2 .1	8 4 7 7	6 21 1 69 5
12+00N 1+50E 35 STD C/AU-S 61	9 42	95 138	.1 7.0	7 43	4 49

2015 25 B. J. 1975 1 1	(754)	5++** *****,	"7 K I	<u>م ص</u>	۸ ۳	ALLY
SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
· .	1 1 1 1	1 1 1 1				112.2
10+00N 2+00W	15	7	42	. 1	6	4
10+00N 1+75W	35	10	42	. 1	2	3
10+00N 1+50W	37	11	49	. 1	3	8
10+00N 1+25W	47	6	39	. 1	4	9
10+00N 1+00W	19	9	29	1	2	1
10+00N 0+75W	48	9	44	. 1	4	1
10+00N 0+50W	29	11	45	.2	6	2
10+00N 0+25W	55	13	64	. 1	2	3
10+00N 0+00W	75	12	94	. 1	10	5
10+00N 1+00E	38	13	79	.3	9	3
10+00N 1+25E	36	10	75	. 1	8	2
10+00N 1+50E	93	1 1	74	. 1	8	7
10+00N 1+75E	41	10	63	. 1	4	8
10+00N 2+00E	18	8	27	. 1	5	4
10+00N 2+25E	36	7	69	. 1	5	5
10+00N 2+50E	37	10	60	. 1	14	21
10+00N 2+75E	35	9	66	.2	8	68
10+00N 3+00E	21	10	38	. 1	10	215
3+00E 10+00N	70	24	186	.9	43	3
3+00E 9+75N	56	14	121	. 1	22	4
3+00E 9+50N	170	18	103	.3	33	17
3+00E 9+25N	71	10	88	.3	22	8
3+00E 9+00N	54	14	111	.2	12	1
3+00E 8+75N	54	12	122	. 1	11	7
3+00E 8+50N	32	12	104	. 1	15	4
3+00E 8+25N	39	20	99	. 1	19	1
3+00E 8+00N	29	13	43	. 1	11	3
3+00E 7+75N	59	22	156	. 1	26	4
3+00E 7+50N	53	17	145	. 1	15	8
3+00E 7+25N	19	7	46	. 1	9	3
3+00E 7+00N	15	9	33	.3	7	1
3+00E 6+75N	27	8	50	. 1	10	7
3+00E 6+50N	80	11	113	. 1	9	3
3+00E 6+25N	90	20	288	.7	22	8
3+00E 5+75N	28	29	83	.2	20	5
3+00E 5+50N	22	13	82	. 1	10	1
STD C\AU-S	62	40	140	7.5	38	50

P	a	a	e	3
---	---	---	---	---

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
3+00E 5+25N	13	11	50	.2	2	1
3+00E 4+75N	83	14	107	3	16	3
3+00E 4+50N	73	20	149	.5	27	21
3+00E 4+25N	36	15	68	. 1	25	1
3+00E 4+00N	56	16	96	.7	25	2
3+00E 3+75N	22	14	71	. 1	26	1
3+00E 3+50N	21	17	67	.3	27	1
3+00E 3+25N	17	9	63	. 1	9	1
3+00E 3+00N	60	14	360	.9	44	1
3+00E 2+75N	17	8	109	.2	14	1
3+00E 2+50N	50	14	249	.2	19	1
3+00E 2+25N	53	14	215	.3	10	1
3+00E 2+00N	22	8	50	.3	13	3
3+00E 1+75N	32	17	62	. 1	9	5
3+00E 1+50N	63	13	162	.2	8	7
3+00E_1+25N	22	16	48	. 1	5	1
3+00E 1+00N	31	13	77	. 1	2	11
3+00E 0+75N	64	17	156	. 1	14	4
3+00E 0+50N	42	10	82	. 1	12	1
3+00E 0+25N	60	13	116	. 1	3	1
LA 0+25E	77	11	65		10	5
LA 0+50E	80	12	66	.2	7	280
LA 0+75E	49	15	96	. 1	9	19
LA 1+00E	76	14	128	. 1	15	4
LA 1+25E	80	13	113	.2	3	1
LA 1+50E	66	10	80	. 1	10	1
LA 1+75E	164	13	103	.9	4	10
LA 2+00E	38	12	56	. 1	2	7
LA 2+25E	68	12	91	. 1	4	1
LA 2+50E	71	7	99	.3	2	43
LA 2+75E	60	13	65	. 1	8	1
LA 3+00E	64	11	73	.2	2	1
LC 10+00N 0+25E	40	14	136	.4	13	6
LC 10+00N 0+50E	27	11	71	. 1	6	1
LC 10+00N 0+75E	19	10	36	. 1	9	1
LC 10+00N 1+00E	15	8	54			1
STD C/AU-S	56	39	129	6.8	43	52

. ...**/**-

۰.

SWIFT MINERALS FILE # 87-1076R

Page 4

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
LC 10+00N 1+25E LC 10+00N 1+50E LC 10+00N 1+75E LC 10+00N 2+00E LC 10+00N 2+25E	50 37 41 34 28	18 11 13 10	143 90 119 77 192	.1 .2 .3 .2 .3	24 8 25 2	16 1 1 1
LC 10+00N 2+50E LC 10+00N 2+75E LC 10+00N 3+00E LC 10+00N 3+25E LC 10+00N 3+50E	50 53 31 52 77	18 24 15 11 24	85 201 59 85 175	.5 .3 .2 .1 2.1	20 20 15 10 37	2 4 1 15
LC 10+00N 3+75E LC 10+00N 4+00E LC 10+00N 4+25E LC 10+00N 4+50E LC 10+00N 4+75E	60 30 56 63 21	17 12 14 24 15	162 72 154 198 152	.5 .1 .8 1.0 .3	13 12 9 11 2	1 1 1 1
LC 10+00N 5+00E LC 8+00N 0+25E LC 8+00N 0+50E LC 8+00N 0+75E LC 8+00N 1+00E	56 69 24 11 21	11 21 18 9 12	111 134 150 38 51	.2 .4 .2 .1 .1	10 21 9 10 15	1 6 1 16
LC 8+00N 1+25E LC 8+00N 1+50E LC 8+00N 1+75E LC 8+00N 2+00E LC 8+00N 2+25E	34 30 49 119 52	11 11 23 38 15	86 122 192 190 169	.1 .5 .4 .7 .4	21 12 34 43 21	6 1 17 410 1
LC 8+00N 2+50E LC 8+00N 2+75E LC 8+00N 3+00E LC 8+00N 3+25E LC 8+00N 3+50E	40 52 32 42 28	17 15 14 12 20	127 152 114 70 113	.1 .4 .5 .1 .3	13 18 4 9 13	4 4 1 1
LC 8+00N 3+75E LC 8+00N 4+00E LC 8+00N 4+25E LC 8+00N 4+50E LC 8+00N 4+75E	37 17 23 34 17	15 18 8 11 12	136 77 119 106 45	.5 .1 .3 .1 .1	13 11 6 9 10	1 2 1 1
LC 8+00N 5+00E STD C/AU-S	39 56	14 38	73 128	.2 6.9	35 38	1 51

ACME ANALYTICAL LABORATORIES DATE RECEIVED: MAY 1 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: May 7/87

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2D AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P CR MG BA TI B AL NA K W SI ZR CE SN Y NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: Pulp AU* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: . Nothing dean toye, certified B.C. Assayer

SWIFT MINE	RALS	File #	87-10	056R	Page	1
SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
20+00N 4+25E 20+00N 4+50E 20+00N 4+75E 20+00N 5+75E 20+00N 6+00E	10 30 48 70 22	15 10 12 5 9	36 58 66 97 61	.1 .2 .3 .2	7 3 19 10 6	4 3 16 1 3
20+00N 6+25E 20+00N 6+50E 20+00N 6+75E 20+00N 7+00E 20+00N 7+25E	53 28 62 24 20	15 13 12 5 10	70 54 77 43 51	.1 .2 .1 .2 .1	7 5 9 8 2	6 3 10 3 1
20+00N 7+50E 20+00N 7+75E 20+00N 8+00E 20+00N 8+25E 20+00N 8+50E	41 60 59 75 101	16 13 7 12 16	63 85 131 78 91	.1 .2 .4 .3 .1	3 11 6 19 14	4 5 3 3
20+00N 8+75E 20+00N 9+00E 20+00N 9+25E 20+00N 9+50E 20+00N 9+75E	73 27 65 54 62	8 16 10 14 16	89 57 74 80 75	.2 .1 .3 .3	10 5 4 5 6	11 4 5 1 4
16+00N 4+25E 16+00N 4+50E 16+00N 4+75E 16+00N 5+00E 16+00N 5+25E	55 73 40 46 104	8 13 10 9 12	65 92 80 57 78	.1 .2 .1 .1	9 12 4 3 7	25 3 2 8 16
16+00N 5+50E 16+00N 5+75E 16+00N 6+00E 16+00N 6+25E 16+00N 6+50E	109 62 60 51 57	12 18 14 13 14	86 82 69 68 62	.1 .1 .2 .1 .1	8 N M A D	5 14 14 19 11
STD C/AU-S	57	39	132	6.7	37	48

• •

P	a	a	e	2

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
16+00N 6+75E	52	19	62	.2	10	10
16+00N 7+00E	57	14	63	.1	8	8
16+00N 7+25E	76	20	89	.3	13	26
16+00N 7+50E	24	19	54	.2	9	20
16+00N 7+75E	78	20	73	.1	12	2
16+00N 8+00E	54	19	99	.3	7	5
16+00N 8+25E	60	18	83	.2	10	3
16+00N 8+50E	140	24	87	.1	14	1
16+00N 8+75E	21	16	31	.2	6	32
14+00N 3+00E	18	12	37	.2	4	1
14+00N 3+25E	26	19	51	.2	7	1
14+00N 3+50E	42	22	75	.2	6	2
14+00N 3+75E	66	17	73	.2	4	1
14+00N 4+25E	103	17	57	.1	13	8
14+00N 4+50E	25	19	58	.2	7	1
14+00N 4+75E	45	20	69	.2	6	1
14+00N 5+00E	27	21	81	.1	2	7
14+00N 5+25E	44	17	83	.1	9	5
14+00N 5+50E	23	15	69	.2	4	1
14+00N 5+75E	41	21	52	.1	13	13
14+00N 6+00E	36	13	86	.1	10	2
14+00N 6+25E	76	11	79	.2	7	3
14+00N 6+50E	37	13	49	.1	6	1
14+00N 7+00E	90	23	98	.1	14	14
14+00N 7+25E	85	13	82	.3	10	1
14+00N 7+50E	18	9	40	.1	3	12
14+00N 7+75E	91	12	83	.6	15	6
14+00N 8+00E	50	20	49	.1	13	2
12+00N 0+75E	54	11	48	.2	7	1
12+00N 1+00E	43	15	85	.2	9	7
12+00N 1+25E 12+00N 1+50E 12+00N 1+75E 12+00N 2+00E 12+00N 2+50E	20 33 41 119 16	7 17 19 23 16	57 69 65 68 34	.1 .1 .2 .1	2 7 8 9 2	1 2 5 1
12+00N 2+75E	20	13	39	.2	7	5
STD C/AU-S	55	38	130	7.0	43	51

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
12+00N 3+00E 12+00N 3+25E 12+00N 3+50E 12+00N 3+75E 12+00N 4+00E	9 25 37 46 128	8 5 11 7	35 47 76 48 69	. 1 . 1 . 2 . 1	2 2 3 3 4 5 3 3 3 3 3 5 3 3 3 3 5 3 3 3 3 3	1 4 2 1 1
12+00N 4+25E	24	13	42	.2	7	1
12+00N 4+75E	33	10	55	.2	8	260
12+00N 5+00E	33	7	40	.1	6	9
12+00N 5+25E	85	13	72	.3	15	49
12+00N 5+75E	37	7	73	.3	4	7
12+00N 6+00E 12+00N 6+25E 12+00N 6+50E 12+00N 6+50E <a> 12+00N 6+75E	44 89 35 27 47	10 16 12 13 6	75 68 64 59 70	.3 .1 .2 .1 .2	5 11 5 8 11	1 2 1 3
12+00N 7+00E	77	15	96	.3	15	6
12+00N 7+25E	141	46	122	.6	33	38
10+00N 3+25E	54	7	57	.2	6	5
10+00N 3+50E	58	5	68	.3	11	2
10+00N 3+75E	29	11	52	.1	7	4
10+00N 4+00E 10+00N 4+25E 10+00N 4+50E 10+00N 4+75E 10+00N 5+00E	50 9 36 39 38	12 7 8 6 9	77 19 54 56 74	.2 .1 .2 .1 .2	839 95 2	21 14 1 1 1
10+00N 5+25E 10+00N 5+50E 10+00N 5+75E 10+00N 6+00E 10+00N 6+25E	31 97 44 49 71	13 8 7 15 9	48 76 37 43 69	.2 .1 .1 .1	9 16 11 10 8	23 5 9 1 4
10+00N &+50E	35	7	40	.1	- 6	1
5+00N 1+00W	37	5	50	.2	5	43
5+00N 0+75W	31	9	41	.1	11	57
5+00N 0+50W	75	10	86	.3	5	1
5+00N 0+25W	35	15	37	.1	6	1
5+00N 0+00W	48	13	59	.1	6	3
STD C/AU-S	59	36	124	6.9	38	52

.

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
4+00N 1+25W 4+00N 1+00W 4+00N 0+75W 4+00N 0+25W	28 53 43 8 25	13 14 18 8 19	51 66 42 12 48	.2 .3 .1 .1	5 6 7 4 5	9 10 5 8 3
4+00N 0+00W TL 4E 20+00N TL 4E 19+75N TL 4E 19+50N TL 4E 19+25N	63 31 17 60 131	12 22 9 15 21	88 55 56 91 110	.2 .1 .3 .1	2 4 2 8 23	13 5 4 3 5
TL 4E 19+00N TL 4E 18+75N TL 4E 18+50N TL 4E 18+25N TL 4E 18+00N	19 26 38 79 53	10 10 6 7 9	46 53 87 137 67	.1 .1 .3 .1	4 7 2 2 2	2 4 2 5 21
TL 4E 17+75N TL 4E 17+50N TL 4E 17+25N TL 4E 17+00N TL 4E 16+75N	21 45 80 60 34	10 12 19 16 14	43 51 60 62 53	.1 .2 .2 .1	6 9 21 14 4	3 2 2 8 9
TL 4E 16+50N TL 4E 16+25N TL 4E 16+00N TL 4E 15+75N TL 4E 15+50N	56 71 51 74 38	23 17 14 13 11	74 77 94 76 62	.2 .1 .1 .1	15 8 7 8 5	63 25 22 72 9
TL 4E 15+25N TL 4E 15+00N TL 4E 14+75N TL 4E 14+50N TL 4E 14+25N	76 37 42 26 90	16 11 14 14 15	96 61 70 52 70	.2 .3 .2 .1	47400	7 33 4 7 2
TL 4E 14+00N 3+00N 1+75W 3+00N 1+50W 3+00N 1+25W 3+00N 1+00W	51 41 37 44 45	12 11 13 9 13	61 64 63 71 79	.1 .1 .2 .2	5 4 8 9 8	29 21 16 36 10
3+00N 0+75W STD C/AU-S	41 57	15 39		.4 6.7	12 38	8 49

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
3+00N 0+25W	35	20	39	. 4	10	1
3+00N 0+00W	33	16	44	.3	6	71
2+00N 2+00W	13	15	22	. 1	4	16
2+00N 1+75W	54	22	129	. 4	8	8
2+00N 1+50W	39	22	115	.4	5	1.
2+00N 1+25W	23	8	53	.5	5	15
2+00N 1+00W	72	23	100	.3	10	6
2+00N 0+75W	38	16	107	. 4	7	44
2+00N 0+50W	29	14	81	.3	6	1
2+00N 0+25W	25	19	70	.2	4	2
2+00N 0+00W	117	17	88	. 1	7	11
2+00N 0+25E	106	17	83	.2	9	240
2+00N 0+50E	59	20	89	.1	8	1
2+00N 0+75E	32	14	31	- 1	3	2
2+00N 1+00E	133	20	89	.2	9 9	1
2100M IFOUL	.k. •)•)	2. Q	67	•	7	Ŧ
2+00N 1+25E	43	16	44	.3	7	1
2+00N 1+75E	72	15	59	.3	8	4
1+00N 2+50W	58	20	63	.2	23	1
1+00N 2+25W	45	18	76	.3	5	5
1+00N 1+50W	17	18	31	.3	8	10
1+00N 1+25W	38	16	40	.2	6	5
1+00N 0+75W	15	18	61	. 1	6	7
1+00N 0+50W	34	11	62	. 1	7	19
1+00N 0+25W	44	24	48	. 1	10	1
0+00W 9+75N	36	19	61	.2	2	1
04000 74730	O	17	01	8 <i>d</i> .	£.	T
0+00W 9+50N	34	17	66	. 1	2	1
0+00W 9+25N	54	10	83	. 1	6	1
0+00W 9+00N	29	16	55	. 4	10	1
0+00W 8+75N	69	11	66	. 1	10	1
0+00W 8+50N	96	17	68	. 1	9	8
0+00W 8+25N	56	10	74	. 1	8	1
0+00W 7+75N	22	8	40	. 1	5	2
0+00W 7+50N	40	12	52	.2	8	1
0+00W 7+25N	26	5	29	. 1	12	1
0+00W 7+00N	61	14	53	.2	6	1
0+00W 6+75N	26	7	34	. 1	4	1
STD C/AU-S	55	38	125	6.8	37	50

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
0+00W 6+50N 0+00W 6+25N 0+00W 5+75N 0+00W 5+50N 0+00W 5+25N	17 52 65 37 22	8 18 15 10 15	24 73 70 55 32	.1 .2 .1 .1 .2	6 11 9 10 6	4 3 1 1 4
0+00W 4+75N 0+00W 4+50N 0+00W 4+25N 0+00W 3+75N 0+00W 3+50N	37 35 52 11 70	16 18 16 12 10	64 55 74 15 74		10 14 9 4 5	1 5 79 3 1
0+00W 3+25N 0+00W 2+75N 0+00W 2+50N 0+00W 2+25N 0+00W 1+75N	18 30 17 73 124	14 19 10 15 8	19 33 16 69 74	. 1 . 1 . 1 . 1	10 8 3 12 10	1 92 1 14 227
0+00W 1+50N 0+00W 1+25N LA 5+75W LA 5+50W LA 5+25W	110 125 14 25 71	9 14 7 18 9	76 76 12 30 51	.2 .1 .1 .1	9 11 3 14 9	9 204 7 1 1
LA 5+00W LA 4+75W LA 4+50W LA 4+30W LA 4+00W	50 15 37 46 43	9 13 11 14 13	44 22 44 33 42	. 1 . 2 . 1 . 1 . 1	4 5 9 9 8 5	1 1 3 1
LA 3+50W LA 3+25W LA 3+00W LA 2+75W LA 2+50W	29 18 40 10 35	15 18 10 12 11	34 22 38 13 37	. 3 . 1 . 1 . 1 . 1	16 8 5 3	4 1 1 1
LA 2+25W LA 1+75W LA 1+50W LA 1+25W LA 1+20W	23 15 18 15 54	10 8 16 9 12	33 45 24 16 53	. 1 . 1 . 1 . 1	4 2 3 8	1 3 5 7 1
LA 0+75W STD C/AU-S	36 57	9 35	32 128	.3 7.0	2 38	1 51

•

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
LA 0+50W	123	18	68	.8	13	11
LA 0+25W	134	17	81	2.5	23	31
LA 0+00W	68	10	52	. 1	10	
LB 6+25W	34	12	45	. 1	8	1
LB 6+00W	26	12	25	. 1	9	1
LB 5+75W	26	15	34	. 1	7	1
LB 5+50W	29	16	26	. 1	9	1
LB 5+25W	72	7	48	. 1	9	1
LB 5+00W	62	10	39	. 1	10	5
LB 4+75₩	59	5	45	. 1	9	1
LB 4+50W	40	8	38	. 1	6	1
LB 4+25W	29	13	30	. 1	6	1
LB 4+00W	27	3	30	. 1	9	38
LB 3+75W	14	. 9	19	. 1	6	5
LB 3+50W	84	9	48	. 1	5	4
LB 3+25W	25	17	34	. 1	8	2
LB 3+00W	31	7	35	. 1	9	3
LB 2+75W	23	9	40	. 1	6	1
LB 2+50W	12	12	26	. 1	3	23
LB 2+25W	46	14	46	. 1	6	1
						-
LB 2+00W	21	15	35	. 1	10	5
LB 1+75W	42	13	43	. 1	8	3
STD C/AU-S	55	36	129	6.7	42	49
						• •

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: NOV 13 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: Jbu. 2007...

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* ANALYSIS BY AA FBOM 10 GRAM SAMPLE.

SWIFT MIN	ERALS	File	# 87-5	5625	Page	1
SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
L26N 1+25W L26N 0+75W L26N 0+25W L26N 0+25E L26N 0+50E	50 57 39 100 23	18 9 19 17 14	110 62 50 77 27	.1 .2 .1 .1	14 6 4 14 5	6 1 3 32
L26N 0+75E L26N 1+00E L24N 3+50W L24N 3+00W L24N 2+75W	44 61 56 60 41	13 12 16 16 16	44 79 112 70 42	.1 .1 .3 .1 .4	11 12 12 6 2	3 4 1 5
L24N 2+25W L24N 2+00W L24N 1+75W L24N 1+50W L24N 1+25W	40 33 66 62 66	26 22 13 20 9	37 46 60 148 58	. 1 . 1 . 1 . 1	4 6 10 7 13	1 1 1 1
L24N 1+00W L24N 0+75W L24N 0+50W L24N 0+50E L24N 1+00E	60 60 16 48 43	20 17 14 13 15	65 64 38 46 37	.2 .1 .2 .1 .2	5 11 8 9 4	1 1 1 1
L24N 1+50E L24N 1+75E L24N 2+00E L24N 2+50E L24N 2+75E	39 13 28 62 34	20 10 13 14 16	39 32 46 70 74		11 4 3 12 6	1 10 1 22 1
L24N 3+00E L24N 3+25E L24N 3+50E L24N 3+75E L24N 4+00E	31 44 32 51 70	27 22 19 18 10	62 65 66 73 59	.2 .4 .1 .2	14 10 4 4	47 15 1 3 1
L24N 4+25E L24N 4+50E L24N 4+75E L24N 5+00E L24N 5+25E	33 34 15 170 35	7 9 7 5 7	48 45 38 105 49	.1 .4 .2 .2	M M M M	1 1 2 1
L24N 5+50E STD C/AU-S	34 57	22 37	75 134	.1 7.5	5 40	1 50

SWIFT MINERALS FILE # 87-5625 Page 2

•

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
L24N 5+75E L24N 6+00E L22N 2+75W L22N 2+50W L22N 1+75W	129 65 89 45 32	26 13 17 22 9	121 54 84 50 50	.8 .9 .1 .5 .4	36 9 19 7 4	49 4 7 2 1
L22N 1+50W L22N 1+25W L22N 1+00W L22N 0+75W L22N 0+50W	73 40 55 51 54	17 14 11 10 14	72 62 72 56 69	.5 .3 .1 .1	8 7 15 12 14	8 1 1 1 1
L22N 0+25W L22N 0+25E L22N 0+50E L22N 1+00E L22N 1+25E	50 37 37 47 39	15 16 18 19	65 58 52 65 56	.1 .2 .2 .1 .2	6 4 2 4 2	8 1 1 106
L22N 1+50E L22N 1+75E L22N 2+00E L22N 2+25E L22N 2+75E	31 31 136 79 81	12 13 17 16 17	62 52 95 86 117	.4 .1 .3 .2 1.4	2 6 10 6	5 9 8 14 2
L22N 3+00E L22N 3+25E L22N 3+50E L22N 3+75E L22N 4+00E	22 57 25 88 35	15 10 9 11 15	59 72 51 71 52	.2 .1 .3 .3	5 12 5 9 4	1 4 1 6 12
L22N 4+25E L22N 4+75E L22N 5+00E L22N 5+25E L22N 5+50E	42 37 29 25 24	9 15 18 15 18	61 79 39 38 49	.3 .5 .3 .2 .3	4 7 9 8	5 6 1 4
L22N 5+75E L22N 6+00E L22N 6+25E L22N 6+50E L22N 6+75E	33 106 19 60 28	12 15 2 10 9	56 71 33 49 38	.3 .1 .1 .1	6 3 4 6	2 32 6 7 1
L22N 7+00E STD C/AU-S	19 57	6 40	37 133	.1 7.4	4 43	1 48

P	a	a	e	3

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
a state print as a similar , part splan plane	,, ,	,,			,	
L22N 7+25E	26	8	68	. 1	6	1
L22N 7+50E	24	8	45	. 4	4	1
L22N 7+75E	65	7	68	. 2	10	9
L22N 8+00E	73	10	64	.2	8	1
L22N 8+25E	47	7	94	.5	6	4
L22N 8+50E	85	7	75	. 1	13	1
L22N 8+75E	37	8	42	. 1	11	4
L22N 9+00E	32	7	44	.2	8	72
L22N 9+25E	50	7	81	.8	11	18
L22N 9+50E	26	4	45	.4	6	65
L20N 5+00W	36	6	45	.5	6	17
L20N 4+75W	34	6	30	.2	11	16
L20N 4+50W	46	5	46	.3	9	5
L20N 4+25W	23	12	39	.3	2	1 .
L20N 4+00W	24	6	42	.2	2	1
L20N 3+25W	26	6	34	.2	2	1
STD C/AU-S	59	38	129	7.2	43	51
L20N 3+00W	41	16	38	.3	16	990
L20N 2+75W	24	11	46	.2	5	4
L20N 2+50W	33		61	.3	2	3
	السرة السرة	6	01	* 🗠	aline	
L20N 2+25W	9	8	19	.2	2	1
L20N 2+00W	52	6	70	.2	5	1
L20N 1+75W	15	12	47	.3	2	1
L20N 1+50W	68		74	.5	8	1
L20N 1+25W	62	11	88	. 4	6	1
kana akan 'ny' i 'i ofa ' olan kanf ♥ ♥	the star		tur tur			***
L20N 1+00W	46	11	70	. 4	7	1
L20N 0+75W	73	9	80	. 4	4	1
L20N 0+50W	53	8	- 61	. 1	5	1
L20N 0+25W	37	11	65	.5	5	5
L20N 0+25E	28		59	. 4	7	4
L20N 1+50E	172	10	102	.7	22	25
L20N 1+75E						
L20N 2+00E			184			
L20N 2+25E	42		110			1
L20N 2+20E	35	7	60			1
					<u>ل</u>	1
L20N 2+75E	19	6	94	.2	3	1
	62					

P	a	q	e	4
---	---	---	---	---

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
L20N 3+50E L20N 3+75E L20N 4+00E L18N 5+50W L18N 4+00W	58 45 56 30 27	2 3 4 5	66 51 49 55 48	. 2 . 1 . 1 . 1	U N N N N	2 1 6 1 3
L18N 3+50W L18N 3+25W L18N 3+00W L18N 2+50W L18N 2+25W	14 19 13 50 28	7 9 11 8 8	25 32 38 38 47	.2 .1 .3 .2	2 2 2 3 4	1 1 73 6
L18N 2+00W L18N 1+75W L18N 1+50W L18N 1+00W L18N 0+75W	38 22 50 45 44	5 9 11 8 6	50 41 71 45 62	. 3 . 1 . 4 . 1 . 1_	3 2 6 3 4	1 22 3 4 1
L18N 0+50W L18N 0+25W L18N 0+50E L18N 0+75E L18N 1+25E	38 11 88 36 43	10 10 3 7 7	55 24 100 59 108	.2 .1 .5 .1 .2	2 2 2 2 3	1 14 1 1
L18N 2+00E L18N 2+25E L18N 2+50E L18N 3+25E L18N 3+75E	55 67 67 172 88	24 18 11 9 12	104 116 88 95 64	.3 .4 .2 .8 .9	2 7 7 8 8 8 8 8	1 4 20 11
L18N 4+00E STD C/AU-S L16N 5+75W L16N 5+50W L16N 5+25W	83 62 51 61 44	12 38 10 10 10	86 129 77 74 54	.4 7.2 .2 .4 .1	4 40 9 2 2	4 51 3 1 1
L16N 5+00W L16N 4+75W L16N 4+50W L16N 4+25W L16N 4+25W	29 23 36 13 65	8 12 6 10 7	58 31 51 28 65	. 1 . 1 . 1 . 1	2 2 2 7	2 3 1 1 6
L16N 3+75W L16N 3+50W	22 21	5 4	23 30	.2 .3	13 3	1 1

SWIFT MINERALS FILE # 87-5625 Page 5

SAMPLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
L16N 3+25W	25	12	44	.5	2	2
L16N 3+00W	42	9	49	. 7	2	1
L16N 2+75W	45	10	53	. 5	7	8
L16N 2+50W	31	15	49	.3	3	3
L16N 2+25W	36	8	56	.2	10	2
L16N 2+00W	17	8	32	.2	. 2	1
L16N 1+75W	25	11	37	. 4	7	1
L16N 1+50W	51	11	43	. 6	5	11
L16N 1+25W	63	18	63	.7	5	2
L16N 1+00W	25	9	53	.3	4	3
L16N 0+75W	34	6	59	.3	5	2
L16N 0+50W	19	10	33	.3	2	1
L16N 0+25W	43	17	65	. 1	6	1
L16N 0+25E	56	14	65	. 4	9	28
L16N 0+50E	20	12	43	. 1	4	12
L16N 0+75E	28	11	53	. 1	6	3
L16N 1+00E	75	10	79	. 4	3	2
L16N 1+25E	39	15	60	.5	8	1
L16N 1+50E	113	11	73	. 6	16	4
L16N 1+75E	53	12	81	.2	3	10
L16N 2+00E	82	12	68	. 4	10	6
L16N 2+25E	49	10	117	. 1	2	1
L16N 2+50E	38	12	85	. 1	6	7
L16N 3+00E	21	14	56	.2	2	17
L16N 3+25E	42	6	79	. 4	7	1
L16N 3+75E	36	9	59	.2	4	1
L16N 4+00E	62	11	81	.3	5	9
L14N 4+75W	33	10	78	.3	6	1
L14N 4+50W	57	11	77	. 1	7	6
L14N 4+25W	23	12	55	. 1	4	7
L14N 4+00W	33	13	61	. 1	2	3
L14N 3+75W	28	12	73	. 1	2	1
L14N 3+50W	36	12	42	.2	2	1
L14N 3+25W	37	11	60	. 1	5	1
L14N 3+00W	32	13	61	. 1	3	1
L14N 2+75W	75		74		5	1
STD C/AU-S	57	40	133	7.3	42	52

P	a	a	e	6
•	·	~	5	· · · · ·

SAMPLE#	CU	PB	ZN	AG	AS	AU*
	PPM	PPM	PPM	PPM	PPM	PPB
L14N 2+50W L14N 2+25W L14N 2+00W L14N 1+75W L14N 1+50W	35 15 81 12 18	15 11 9 11 7	53 43 61 34 37	.4 .1 .5 .1	3 2 5 2 4	10 5 8 3 1
L14N 1+25W	36	11	53	.3	2	7
L14N 1+00W	18	7	41	.1	2	1
L14N 0+75W	16	8	45	.2	3	3
L14N 0+50W	79	10	71	.3	7	8
L14N 0+25W	43	12	59	.4	3	3
L14N 0+25E	62	19	64	.1	2	3
L14N 0+50E	49	13	56	.4	6	4
L14N 0+75E	14	12	34	.3	3	1
L14N 1+00E	80	17	77	.6	7	5
L14N 1+25E	40	9	50	.2	2	2
L14N 1+50E L14N 1+75E L14N 2+00E L14N 2+25E L14N 2+50E	15 45 28 14 71	9 10 14 9 10	33 76 54 26 68	.1 .3 .1 .4	2 6 2 5 4	8 7 1 4 4
L14N 2+75E	22	14	47	.2	3	5
L14N 3+00E	34	12	55	.1	4	41
L12N 4+25W	79	8	62	.3	9	20
L12N 4+00W	52	13	59	.1	8	5
L12N 3+75W	32	9	49	.2	4	1
L12N 3+50W L12N 3+25W L12N 3+00W L12N 2+75W L12N 2+50W	46 30 21 58 22	11 18 11 14 10	68 53 38 50 38	.1 .3 .1 .1	7 6 3 6 5	1 1 4 1 1
L12N 2+25W L12N 2+00W L12N 1+75W L12N 1+25W L12N 1+00W	20 22 29 26 23	7 13 8 17 12	31 38 42 38 39	. 1 . 1 . 1 . 3	N Ю N 0 N	3 1 1 1 5
L12N 0+75W	31	14	51	.17.2	2	37
STD C/AU-S	59	43	132		42	50

.....

P	æ	a	e	7

SAMPLE#	CU PPM	РВ РРМ	ZN PPM	AG PPM	AS PPM	AU* PPB
L12N 0+50W L12N 0+25W L12N 0+25E L12N 0+50E L12N 0+75E	21 46 59 80 27	9 7 10 10 8	44 58 73 90 57	.1 .2 .1 .3 .1	2 6 4 2	5 4 12 4 26
L12N 1+00E L12N 1+25E L12N 1+50E L10N 9+50W L10N 9+25W	19 56 41 38 68	8 10 8 11 12	42 82 88 63 100	.1 .5 .4 .2 .3	6 3 2 4 4	5 3 1 1
L10N 9+00W L10N 8+75W L10N 8+50W L10N 8+25W L10N 8+00W	44 96 48 41 39	11 10 10 9 11	80 91 81 72 70	.3 .1 .3 .1 .1	2 5 5 2 2 2	2 1 1 1 1
L10N 7+75W L10N 7+25W L10N 7+00W L10N 6+75W L10N 6+50W	92 28 30 40 33	8 6 11 9 8	87 57 70 84 79	. 1 . 1 . 1 . 1	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 1 1 1
L10N 6+25W L10N 6+00W L10N 5+25W L10N 5+00W L10N 4+50W	60 42 50 79 64	15 11 10 12 14	84 71 72 76 98	- 1 - 1 - 1 - 1 - 1	6 5 2 4 7	2 2 2 3 2 5
L10N 4+25W L10N 4+00W L10N 3+75W L10N 3+50W L10N 3+25W	78 49 49 15 22	12 18 14 9 15	85 69 54 38 49	.1 .2 .1 .1	2 4 8 2 2	1 2 3 7 9
L10N 3+00W L10N 2+75W L10N 2+50W L10N 2+25W L8N 11+00W	31 29 42 76 74	14 8 12 17 9	66 71 70 63 79	. 1 . 1 . 2 . 1	2 2 3 9 7	10 3 6 2 4
L8N 10+50W STD C/AU-S	70 57	7 38	74 133	.3 6.9	2 40	67 50

SAM	PLE#	CU PPM	PB PPM	ZN PPM	AG PPM	AS PPM	AU* PPB
L8N L8N L8N L8N L8N	10+25W 10+00W 9+75W 9+25W 9+00W	42 24 42 81 117	11 10 14 12 14	72 52 78 92 82	. N . J . N . N	6 2 9 7 8	4 10 11 6
L8N	8+75W 8+50W 8+25W 8+00W 7+75W	109 79 47 35 20	9 7 13 8 9	70 65 56 60 46	.4 .1 .2 .3	8 6 5 4 2	10 6 2 2 3
L8N L8N L8N L8N L8N	7+50W 7+25W 6+75W 6+50W 6+00W	41 122 86 44 30	5 11 12 10 14	61 89 69 62	.1 .6 .4 .3 .2	2 12 3 5 3	1 7 1 1
	5+75W 5+50W 5+25W 6+50W 6+25W	36 41 44 31 102	11 13 12 7 10	71 51 52 75	.4 .2 .1 .2 .3	2 2 2 7	2 1 26 3 4
L6N L6N L6N	5+25W	23 64 92 29 25	12 10 12 3 7	64 86 90 65 40	.2 .2 .1 .2	2 5 7 4 7	3 1 3 9 12
L6N L6N L6N	4+50W 4+25W 4+00W 3+75W 3+50W	55 49 15 48 81	9 11 4 7 8	71 69 49 65 68	.2 .3 .1 .1	3 3 2 7	8 11 4 2 6
L6N L6N	3+25W 3+00W 2+75W C/AU-S	37 16 35 57	12 5 8 38	52 33 56 133	.2 .1 .1 7.1	4 2 5 41	1 1 17 49