LOC NO: 0107	RD.
ACTION:	
······································	

FILE NO:

ASSESSMENT REPORT ON DIAMOND DRILLING, GEOCHEMICAL & GEOLOGICAL WORK ON THE FOLLOWING CLAIMS

TR 4 4960(9) TR 5 4961(9) TR 8 4964(9)

PART OF THE TR #1 GROUP

located

80 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 35 minutes latitude 130 degrees 09 minutes longitude

N.T.S. 1048/9E

PROJECT PERIOD: Aug. 16 - Sept. 29, 1987

	SUB-RECORDER RECEIVED
	DEC ≲ ∄ 1987
M.R	≇\$ VANCOUVER, B.C.

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 200-675 W. Hastings Vancouver, B.C.

Date: Dec. 28, 1987

> 🗘

TABLE OF CONTENTS

1. INTRODUCTI	ON	2
B. Statu C. Histo D. Refer		2 2 2 3 4
2. TECHNICAL	DATA AND INTERPRETATION	5
B. Prope C. Geoch a. b. c. D. Diamo a.	Introduction Rock Geochem Samples Silt Geochem Samples Ind Drilling Introduction Core Geochemistry	5 6 7 7 11 12 12 12 12 13
APPENDICES		
II Certi	Certificates	
ILLUSTRATIONS		
	Location Map Claims Map	Report Body Report Body
Map No.	<pre>1 Geochem Sample Locations (TR 4, 5 and 8 claims)</pre>	Map Pocket
Map No.	2 Rock and Silt Geochemistry: Au (ppb) and Ag (ppm) values (TR 4, 5 and 8 claims)	Map Pocket
Map No.	3 Konkin Gold Zone (Showing Sur- face sample, trench and drill hole locations; Au/Ag values; rock types) (TR 4, 5 and 8 claims)	Map Pocket

Page

1. INTRODUCTION

A. Property, Location, Access and Physiography

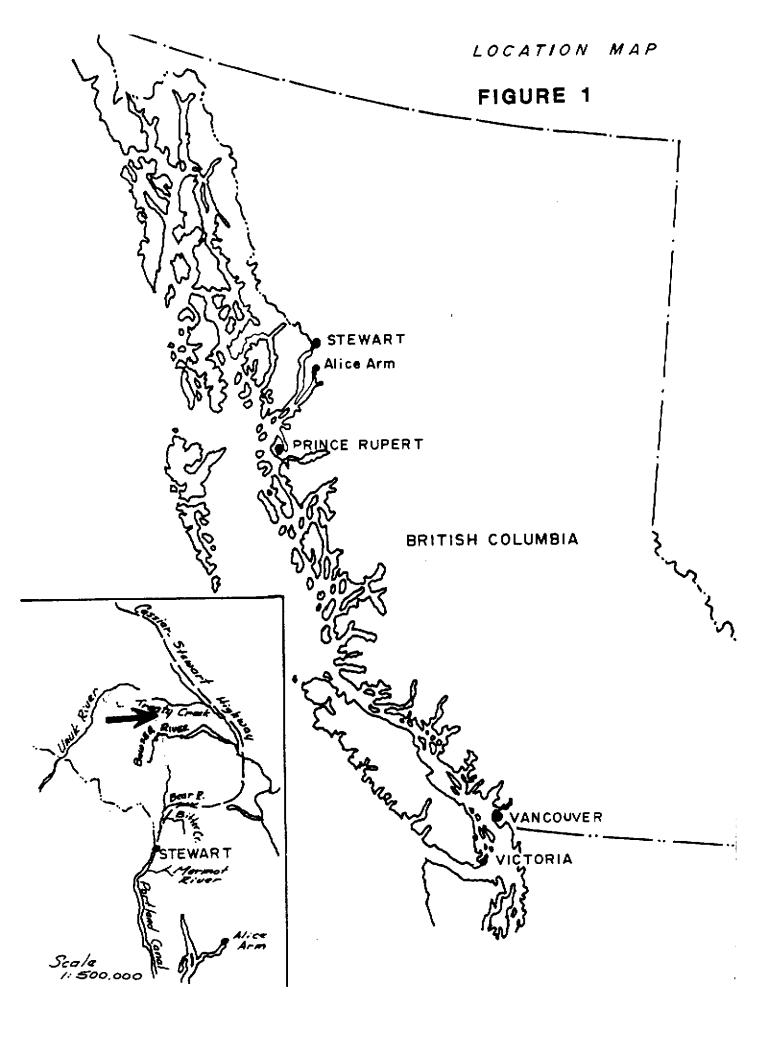
The property is located about 80 km north-northwest of Stewart, British Columbia. Nearest road is the Cassiar-Stewart Highway about 17 km to the east. Access is presently limited to helicopter, either from the base at Stewart or at Bob Quinn Lake (during the 1987 program helicopter service was provided by Vancouver Island Helicopters directly from the Catear Resources' base camp about 1 km north of Brucejack Lake. The recent completion of a temporary road from a barge terminal on Bowser Lake into the Sulphurets gold-silver prospect near Brucejack Lake has provided yet another alternative means of access.

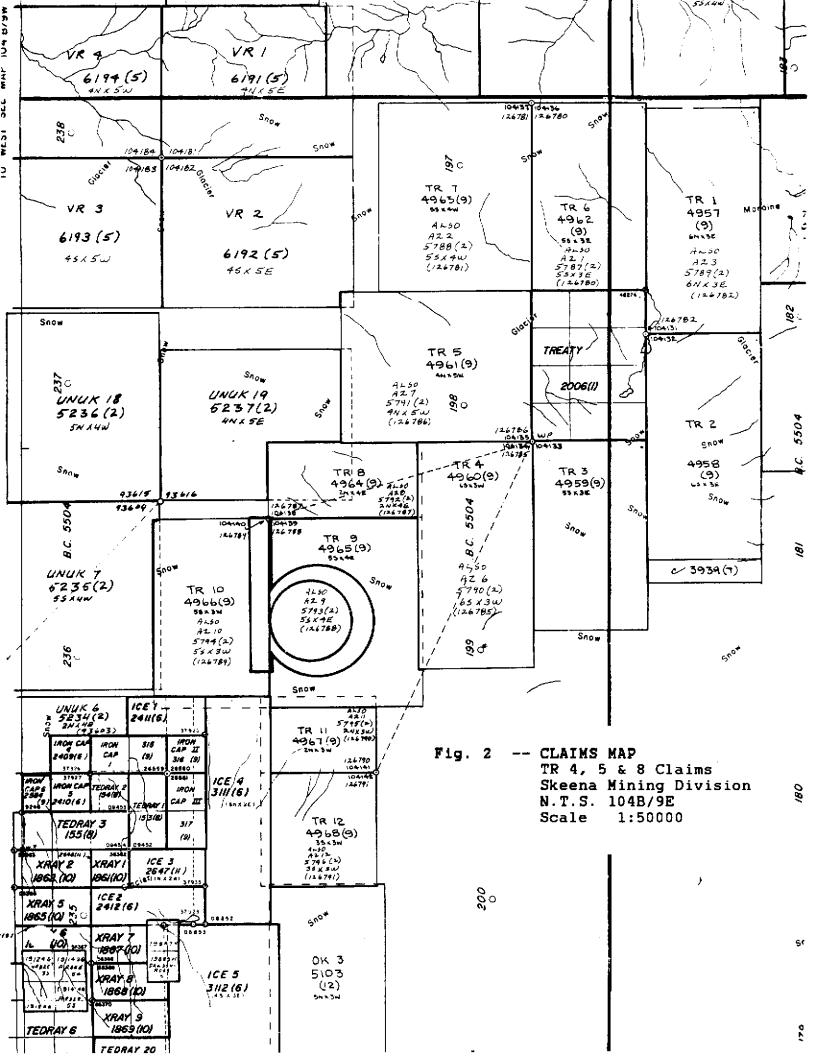
The claims cover an area of rugged, mountainous terrain at the head of the Treaty Creek Glacier. Elevations vary from approximately 1350m to 2000m. Vegetation in the area is limited to low-lying shrubs, mountain grasses and heather.

The best rock exposure occurs where glacial retreat has been most pronounced. These exposures are interspersed with areas covered by glacial debris and moraine. Although slopes are steep, well over half of the exposed areas can be accessed by foot without the help of mountaineering equipment.

Climate is severe, particularly at higher elevations. Heavy snowfalls in winter and rain in the short summer working season are typical of the Stewart area. Inclement weather conditions and reliance on helicopter transport make this a high cost area to explore for minerals.

B. Status of Property


Relevant claim information is summarized below:


Name	Record No.	No. of Units	Anniversary Date
TR 4	4960(9)	18	Sept. 30, 1987
TR 5	4961(9)	20	Sept. 30, 1987
TR 8	4964(9)	8	Sept. 30, 1987

Claim locations are shown on Fig. 2 after government N.T.S. map 104B/9E. The claims are owned by Teuton Resources Corp. of Vancouver, British Columbia.

C. History

Two, brief isolated accounts in the B.C. Department of Mines Annual Reports mention that the Consolidated Mining and Smelting

Company of Canada Ltd. (now Cominco) explored a large mineralized zone, parts of which are now covered by the TR 5 claim, during 1929 and 1930. Although Consolidated located 57 surveyed Crown-grant mineral claims in the area, exploration ended abruptly in 1931 and the claims were abandoned. Results of their exploration efforts were not published.

It is also reported that several prospecting syndicates explored the general Treaty Creek area during the 1950's (Ref. 1). In 1953, prospectors Charles Knipple and Tim Williams reported a small silver sulfide vein south of the Treaty Claim. Large boulders of tetrahedrite were also reported on the ice surface (source remains unlocated). Further work in 1967 ostensibly located a significant magnetic anomaly at the junction of Treaty Creek and South Treaty Glaciers.

This, and further work in the area appears to have concentrated on the highly visible alteration zones to the north and east of the TR 4, 5 & 8 claims (covered by other claims in the TR series). It appears that very little work, if any, has been carried out previously on the nunatak controlled by the TR 8 and TR 9 claims. Because this exposure lies on trend with the prolific gold-silver deposits now being explored at the Sulphurets property (just to the south), it became a priority target for investigation during the 1987 work program.

D. References

- 1. GROVE, E.W., P.ENG., PH.D. (1983): Private Report for Teuton Resources Corp. on the Treaty Claim.
- GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 3. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 4. ANNUAL REPORTS, MINISTER OF MINES, B.C.: 1929 -- p. Cl02; 1930 -- p. Allo.
- BRITISH COLUMBIA MINER (1928): "Portland Canal Notes" by W.R. Hull, p. 36, December 1, 1928.
- KRUCHKOWSKI, E.R. (1981): Geological Report Treaty Claim --Bowser-Unuk Project, NTS 104B/9E, for E & B Explorations Ltd.
- 7. CREMONESE, P.ENG. (1984): Assessment Report on Prospecting Work on the Electrum 1 and Electrum 6 Claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.

- CREMONESE, P.ENG. (1985): Assessment Report on Geological and Geochemical Work on the Treaty Claim, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- 9. CREMONESE, P.ENG. (Feb., 1987): Assessment Report on Geochemical Work on the Treaty & TR 2 claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.

E. Summary of Work Done.

In the first phase of exploration, a silt and rock geochemical survey was conducted over the claims by E.R. Kruchkowski Consultants of Calgary, Alberta. Kruchkowski Consultants used the Catear Resources camp on the Gold Wedge Fraction (about 1 km north of Brucejack Lake) as a staging ground for reconnaissance exploration programs mounted for several resource companies in the area. Vancouver Island Helicopters also provided flight services directly from the Catear camp, a circumstance which cut costs considerably (in previous years, helicopter service was provided either directly from Stewart, or from the Granduc air strip).

A complete field camp complete with generator was mobilized by helicopter from the Catear base camp to a moraine flat in the southwest corner of the Treaty claim on Aug. 16, 1987. Crew consisted of four men, working daily in parties of two. Party leaders were Ken Konkin, geologist, and Gordon Sinden, geol.technologist--two old hands in the Stewart area. Field supervision was the responsibility of E.R. Kruchkowski, P.Geol. The author also visited the claims area to monitor progress.

Personnel and samples were demobilized by helicopter on Aug. 24, 1987.

Thirty-eight rock geochemical samples and 3 silt samples were collected during the survey. The silt samples and 36 of the rock samples were analysed for gold and silver by standard AA techniques; 2 of the rock samples were analysed for gold by AA and for 29 elements by I.C.P. (Inductively Coupled Argon Plasma). Certain of the geochemical traverses were assisted by helicopter drop-offs and pick-ups in order to maximize amount of ground coverable from a single field camp.

[Author's note: certain of the costs included in the Work Cost Statement (Appendix I) have been prorated because work on an adjacent group, the "TR #2 Group", proceeded at the same time. Based on an estimation of division of effort, 25% of these shared costs have been allocated to the claims forming the subject of this report (TR #1 Group), 75% to those claims in the TR #2 Group.] Extremely high gold assays from the first phase samples quickly led to an expanded second phase of exploration spanning the period Sept. 7 to Sept. 29, 1987. This included minor rock geochemical sampling, blast trenching, helicopter pad construction, drill pad construction, mobilization by helicopter of a diamond drill, ancillary equipment, camp and supplies, etc., and drilling of a hole 61.1 meters in length (and sampling/analysis of drill core). The second phase was beset by difficulties: extremely severe weather conditions confounded attempts to mobilize the drill and supplies; to make matters worse the under-powered drill rig supplied by the contractor could not handle the hard skarn formation encountered in Hole 87-1. As a result, costs were sharply higher than originally estimated.

Additional gold (AA) and 30 element I.C.P. assays were performed on 41 drill core samples and 9 rock geochemical samples.

Contractor for the drill program was D. W. Coates Enterprises Ltd. of Delta, B.C. Geologist Ken Konkin of Kruchkowski Consultants monitored the drill program and logged and sampled the core.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The following capsule description of the geology in the Treaty Glacier vicinity has been excerpted from a private report (Ref. 1) by E.W. Grove, Ph.D., P.Eng.:

"The contact between thick Upper Jurassic Nass Formation sediments and the underlying Lower Jurassic Unuk River Formation volcanic assemblage lies along the toe of Treaty Creek Glacier and Treaty Creek. In this area the Nass Formation (old Bowser Assemblage) comprises cyclically banded dark siltstone beds generally from 0.3 to 2 meters thick intercalated within greywacke beds one to six m thick which form up to 75 per cent of the north dipping, complexly folded sequence in this area. This sequence unconformably overlies middle Lower Jurassic thinly banded siltstones (east of South Treaty Glacier), volcanic conglomerates, volcanic breccias, mixed cherty volcanic breccias, volcanic sandstones, andesitic flows, and minor rhyo-dacite Thin siltstone and sandstone members intercalated within flows. the dominantly epiclastic volcanic sequence provides evidence for the complexly folded nature of the country rocks in this area. Augite porphyry sills are found throughout this sequence and are well exposed along both flanks of the Treaty Creek Glacier.

All the country rocks in the area exhibit evidence of folding. The main feature in the Lower Jurassic sequence is a

northeasterly trending anticlinal warp. This is overlain unconformably by the tightly folded northeasterly dipping Upper Jurassic sedimentary sequence.

The country rocks in this area have been cut by numerous steep northeast trending faults which show left hand offsets of from several tens of meters to 150 meters, or right hand motion of a few tens of meters.

No major plutons have yet been uncovered in the area, but various small granitic to dioritic dikes cut across the Lower Jurassic sequence."

B. Property Geology/Mineralogy

Rocks observed during traverses by the geochemical sampling crew on the northwest slopes overlooking the upper reaches of the Treaty Glacier (TR 8, 5 claims) include: weak to moderately altered, crystal-lithic andesite tuffs, intensely altered crystal-lithic andesite tuffs (sericite schist), dolomite, limestone, quartzite, pillow lavas, red, purple, green volcanic breccias and porphyritc flows (minor chert).

Coarse native gold was discovered in 1987 associated with extremely vuggy, oxidized (limonitic) quartz and calcite veining (pods?) within a skarned, silicified and dolomitic crystal-lithic tuff host: the "Konkin Gold Zone" (see Map No. 3). The auriferous quartz and calcite injection was accompanied by pyrite and chalcopyrite mineralization characterized by intense limonite, azurite and malachite oxidation.

The extremely vuggy gold zone is about 1.2 meters wide and has been traced for a little less than 3 meters on surface. A second zone of chalcopyrite-bearing, highly auriferous mineralization located 30 meters to the northeast may be a related feature. Further geological observations were rendered impossible because of an earlier than expected snowfall which blanketed the ground by mid-September.

The near vertical quartz calcite vein system exposed in the gold pit (see Map No. 3) appears to plunge northerly into the steep glaciated valley wall. Because this structure was not intersected in drill core, it is hypothesized that it may be cigar shaped (pod-like). The skarn assemblage in the vicinity of the gold pit consists of a silicified dolomite/lithic-crystal tuff host with magnetite, calcite, chlorite, diopside, chalcopyrite, pyrite, specular hematite, epidote, trace sphalerite, malachite, azurite, and limonite.

Other mineralization encountered during the geochemical survey traverses includes sedex type pyrite seams, guartz veining

and quartz-sericite-pyrite alteration. Rough outlines of rock outcrops as observed in the field have been set out in Map No. 1. Locations are necessarily approximate and have been compiled from altimeter readings and notes/maps made in the field by reference to air photos.

C. Geochemistry

a. Introduction

Reconnaissance expeditions were undertaken daily during the first phase from a a well-equipped field camp located in the southwest corner of the Treaty claim. Individual parties of two investigated areas of interest on the TR 4, 5 and 8 claims. Access was directly by foot or by helicopter drop-off and pick-up. Rock and silt geochemical samples were taken to assess local mineral content.

Sample locations are shown in Map No. 1; gold values in ppb and silver values in ppm are shown in Map No. 2.

One of the first areas to be investigated, on the TR 8 claim, resulted in the discovery of an exposure of skarn-type mineralization. Subsequent receipt of assays showed extraordinarily high values in gold. This area is now referred to as the "Konkin Gold Zone" after its locater, geologist Ken Konkin. Relevant information is shown on Map. No. 3.

b. Rock Geochem Samples

An unusually high amount of the rock samples taken during the 1987 survey can be classed as anomalous based on a regional "rule-of-thumb" (by reference to similar reconnaissance surveys performed in the general area) that states values in excess of 200 ppb gold or 5 ppm silver merit additional investigation.

Sample values and sample descriptions are catalogued below according to somewhat loosely defined areas of interest.

b.1-Konkin Gold Zone

Samples KK 206-210, the "discovery samples", were taken by geologist Ken Konkin during the first day of fieldwork on the TR 8 claim. Sample notes are reproduced below:

<u>KK 206</u> --0.76 m chip; skarn assemblage, 25-30% coarse grained, blebby masses of chalcopyrite, 15-20% masses of coarse grained pyrite, in silicified limestone.

Assay: gold-22,500 ppb silver-102.5 ppm

<u>KK 207</u> --2.3 m chip; oxidized, massive pyrite (20-25%), seams up to .3m wide, limonitic skarn assemblage.

Assay: gold-6,700 ppb silver-17.2 ppm

<u>KK 208</u> --1.2 m chip; limestone, silicified skarn assemblage, 5-7% coarse grained pyrite.

Assay: gold-3,600 ppb silver-7.0 ppm

<u>KK 209</u> --1.2 m chip; massive pyrite seams, 15-20 cm wide, extremely limonitic.

Assay: gold-3,600 ppb silver-4.4 ppm

<u>KK 210</u> --1.2 m chip; oxidized zone, 80% limonite, 5% azurite and malachite, 5% coarse grained pyrite and chalcopyrite, trace garnet.

Assay: gold-890,600 ppb silver-267.4 ppm Check fire assay: gold-30.092 oz/ton silver-8.62 oz/ton

On Sept. 7, 1987, the author flew into the TR 8 claim with Ed Kruchkowski, P. Geol., to determine the source of the high values obtained in the samples noted above [Note: visible gold was not observed during the initial sampling by Ken Konkin]. Hand trenching of the KK-210 sample area unearthed several spectacular rock specimens containing abundant fine to coarse gold.

Further work, Sept. 9-10, 1987, resulted in an extension of the high-grade values in an area located approximately 30 meters to the northeast (see Map No. 3). Sample notes from geologist Ken Konkin's fieldbook follow:

<u>KK-290</u> --1.8 m chip; dolomite skarn; 15-20% coarse-grained, disseminated pyrite, 5-10% disseminated coarse-grained chalcopyrite, 7-10% calcite veinlet sweats.

Assay: gold-2590 ppb silver-8.6 ppm

<u>KK-291</u> --1.2 m chip; dolomite skarn, sample centered on 45 cm wide massive pyrite seam; 3-5% chalcopyrite, minor malachite and azurite, intensly limonitic and hematitic.

Assay: gold-77400 ppb silver-48.4 ppm <u>KK-292</u> --2.3 m chip; severely oxidized skarn. Same as KK-290

Assay: gold-3040 ppb silver-6.4 ppm <u>KK-293</u> --Same as KK-291; 1.0 m wide chip over 2.0 m zone (1.0 m is covered by overburden and glacial moraine).

Assay: gold-3860 ppb silver-19.8 ppm

<u>KK-294</u> --1.4 m chip; centered on massive pyrite seam; intense limonite oxidation; quartzite(?).

A blast trench was put in to open up the discovery area on Sept. 10, 1987. At the northern end of the trench, Ken Konkin took the following sample:

Assay: gold-36200 ppb silver-14.5 ppm

<u>KK-295</u> --1.2 m chip in Gold Pit; 90% limonite, 10% guartz crystals; coarse-grained native gold, 1-2% fine-grained pyrite; extremely vuggy.

Assay: gold-336400 ppb silver-120.7 ppm

b.2--Sericite Schist Zone

Samples KK-211 to KK-215 were taken from sericite schists exposed approximately 120 to 200 m northwest of the Konkin Gold Zone. Sample notes follow:

<u>KK-211</u> --2.0 m chip; limonite oxidation; silicified, leached and esite tuff, 5-7% ghost pyrite, weak sericite schist

Assay: gold-23700 ppb silver-5.8 ppm

<u>KK-212</u> --2.0 m chip; same as KK-211

Assay: gold-3500 ppb silver-2.6 ppm

<u>KK-213</u> -2.1 m chip; sericite schist, trace to 1% fine-grained pyrite, 2-3% coarse-grained pyrite ghosts. Schistosity poorly developed.

Assay: gold-224 ppb silver-0.4 ppm

KK-214 --0.9 m chip; same as KK-213

Assay: gold-1000 ppb silver-0.9 ppm

<u>KK-215</u> --1.1 m chip; same as KK-213

Assay: gold-230 ppb silver-0.5 ppm

b.3--Dolomite Zones

The KK-216 to KK-227 series investigates two outcrops

featuring dolomite and minor quartzite/sandstone, located 250 m and 500 m northeast of the Konkin Gold Zone (see Map No. 3). Gold values range from 400 to 2400 ppb. Sample notes follow:

<u>KK-216</u> --0.9 m chip; medium to dark grey dolomite. Sample centered on 2-3% disseminated blebs of chalcopyrite, 5-10% calcite veinlets (1-3mm); 35-40% green chert

Assay: gold-700 ppb silver-2.4 ppm

<u>KK-217</u> --2.7 m chip; same as KK 216

Assay: gold-1000 ppb silver-3.0 ppm

<u>KK-218</u> --grab; outcrop of severely sheared and crushed rock, jarositic, sericite schist; very fine-grained, disseminated pyrite, leached.

Assay: gold-2000 ppb silver-8.1 ppm

<u>KK-219</u> --0.6 m chip; same as KK-218

Assay: gold-400 ppb silver-2.2 ppm

<u>KK-220</u> --1.2 m chip; jarositic, leached, intense sericite alteration, blocky siliceous host; 2-3% fine-grained, disseminated pyrite.

Assay: gold-700 ppb silver-2.4 ppm

<u>KK-221</u> --1.2 m chip; same as KK-220

Assay: gold-500 ppb silver-1.1 ppm

<u>KK-222</u> -- 1.2 m chip; centered on massive, coarse-grained pyrite pod dimensions 1m by 2m; intensely sheared.

Assay: gold-640 ppb silver-3.8 ppm

<u>KK-223</u> -- 1.4 m chip; from pyrite rich layer in quartzite. 5-10% disseminated coarse-grained pyrite plus minor 5% 3-5 cm wide pyrite seams.

Assay: gold-1600 ppb silver-3.2 ppm

<u>KK-224</u> -- 1.5 m chip; massive decomposed coarse-grained pyrite

Assay: gold-2400 ppb silver-19.4 ppm

<u>KK-225</u> --1.2 m chip; massive pyrite layers (60%) in dolomite (25-3-%); quartz stockwork (10%) containing 3-5% galena. Quartz intrudes pyrite seam.

Assay: gold-1400 ppb silver-67.2 ppm

<u>KK-226</u> --Select grab; from quartz stockwork sample KK-225

Assay: gold-1980 ppb silver-113.9 ppm

<u>KK-227</u> --1.2 m chip; sheared, siliceous dolomite; sample centered on 2-3% coarse-grained pyrite seam.

Assay: gold-600 ppb silver--5.2 ppm

b.4--Tetrahedrite_Vein

A small quartz vein mineralized with tetrahedrite, maximum width 0.3m, was discovered in the northeast corner of the TR 8 claim by Dan Aldrick, geologist with the B.C. Department of Mines. Two samples (grab?), DA 1 and DA 2, were analysed and returned, respectively: gold-6230 ppb, silver-355; gold-5675 ppb, silver 395.1 ppm. Samples taken from altered andesites in the vicinity, TR 91-93, did not register appreciable gold values.

b.5--Northern Section of TR 5 Claim

A number of reconnaissance rock geochem samples were also taken from the slopes overlooking the Treaty Glacier in the northern part of the TR 5 claim. Mineralized float boulders were located close to the ice in a lateral moraine. General trend of the boulders was estimated at 60 degrees azimuth. The boulders featured quartz-calcite veinlets in an argillitic host (possibly a brecciated vein) carrying 3-5 % galena and pyrite. Samples KK-232 to KK-234 showed gold values ranging from 104 to 420 ppb and silver values from 13.8 to 362.0 ppm.

Only one in-place rock geochem sample from this part of the survey showed anomalous values. Notes for Sample KK-230 follow:

<u>KK-230</u> --1.1 m chip; sericite schist; excessive limonite, minor jarosite. No visible sulfides.

Assay: Gold-920 ppb Silver-0.3 ppm

c. Silt Geochemical Samples

Three silt geochemical samples were taken during the survey. Stream sediments were collected by sifting to minus 80 mesh in the field. The resulting fine silt was then carefully washed into a standard kraft bag and sent off for analysis by atomic absorption (sample size + 500 gm). These samples returned background values in gold and silver, only.

D. Diamond Drilling

a. Introduction

After viewing the Konkin Gold Zone on Sept. 7, 1987, E.R. Kruchkowski recommended that a series of short holes be drilled to test depth continuity of the Konkin Gold Zone. Shortly thereafter a contract was let with D. W. Coates Enterprises; at that time their rig was in the process of finishing a large program on Catear Resources' Gold Wedge Fraction.

A three week spell of bad weather began shortly before scheduled mobilization. The rig and attendant equipment/supplies were transported at great expense by various helicopters into the Konkin Gold Zone drillsite. Costly weather-related delays plagued the mobilization and interfered with attempts to supply the drill program with replacement materials and parts.

It was then revealed that the drill rig, which had performed well enough on the sericite schists at the Gold Wedge Fraction, was not equal to the hard skarn at the Konkin Gold Zone. Drilling advanced very slowly and was marked by an unusual consumption of materials because of caving in the hole. Due to bad ground conditions there was no circulation of water. Two storms during the period Sept. 23-29 almost led to a mutiny of the drill crew (camp was blown away by a heavy gust of wind). Costs were approximately two to three times higher than expected.

Drill Hole 87-1 was completed on Sept. 29, 1987 reaching a depth of 61.1 m. A plan view of the drill hole is shown on Map No. 3. Bearing of the hole was 65 degrees, dip minus 46 degrees, elevation approximately 1530 m, size - $\$\varphi$ (DC)

[Note: Two further holes were drilled <u>after</u> the anniversary date of the claims, Sept. 30, 1987. For this reason, data on these holes and costs associated with these holes (including demobilization) have not been incorporated into this report.],

b. Core geochemistry

Drill core was flown out of the property and logged by geologist Ken Konkin in a warehouse in Stewart rented by Teuton Resources Corp. Extreme weather conditions and lack of permanent building facilities at the drillsite necessitated this move. [The core will be returned to the site in the 1987 field season after construction of a suitable shack in a location free from slides.]

The core was split in the warehouse yielding 41 samples averaging approximately 1.5 m of core per sample. These samples were shipped to Acme Analytical Laboratories and assayed for gold values by routine atomic absorption methods. All of the core was sampled.

Rock type encountered from 1.8 meters (end of casing) to 61.1 meters (end of hole) can be classed generally as skarned volcanics. More specifically, rock observed in core consisted of weak to strongly skarned, silicified and dolomitic crystal-lithic tuffs. Skarn mineralization consisted of diopside, epidote, specular hematite, calcite, and chlorite; sulphide minerals predominantly pyrite with trace chalcopyrite. Minor quartz-calcite veinlets, vugs and limonite were in evidence along fracture planes and shears. More detailed information is contained in the drill logs appended to this report by K. Konkin of E.R. Kruchkowski Consulting Ltd. (Appendix IV).

Highest gold value obtained in the core was from sample #26227 representing the interval from 41.2m to 43.0m (1.8 m). This returned 1820 ppb gold or 0.053 oz/ton gold.

A review of the drill logs (see Appendix) and assay data shows a rough correlation between gold values and pyrite content. It also appears that the massive, coarse-grained pyrite is associated with the higher gold values.

Because of the limited data set, it was not possible to define statistically threshold and anomalous levels for gold content. It is noteworthy, however, that 18 of the 41 samples (about 44%) returned values in excess of 200 ppb. Gold values above 200 ppb are generally considered anomalous in the Stewart region.

Significantly, the native gold-bearing, limonitic zone exposed on surface in the gold pit was not encountered by Hole 87-1, nor was the abundant chalcopyrite (+ azurite/malachite) mineralization associated with it.

E. Conclusions

A routine rock/silt geochemical survey resulted in the discovery of a high-grade gold mineral occurrence on the TR 8 claim. Follow-up surface work isolated another highly auriferous occurrence about 30 m distant in a similar geological setting. Encouraging values, ranging from weakly to highly anomalous in gold, were also obtained in a suite of samples taken up to 600 m from the discovery point. An early snowfall unfortunately precluded a more comprehensive surface investigation in 1987.

Diamond drilling to test for a downward extension of the coarse gold-bearing mineralization exposed in the Gold Pit in the Konkin Gold Zone was unsuccessful in this regard. It is possible that this extension was intersected but not recovered in drill core: critical sections of the core, particularly those parts containing massive sulfides (pyrite), showed very poor recovery-as low as 10%. Another proposed explanation is that the gold pit mineralization has a cigar-like structure, making it tricky to intersect with only a few holes.

It is instructive to note however that the hole <u>did</u> encounter substantial intervals containing anomalous gold values (above 200 ppb). Since the surface high-grade showings appear to be bracketed by zones of lower-grade to anomalous values, it may be that the hole passed to one side of a hypothesized downward projection of the gold pit mineralization.

In any event, so little is known about this occurrence it seems premature to make elaborate conjectures. Much more surface work should be undertaken to determine limits and attitude of the auriferous zone(s). Surface trenching across the complete width of the known skarn exposures should be undertaken at regular intervals. This should also include removal of overburden in intervening areas. Detailed sampling and geological mapping, possibly with some bulk sampling of the high-grade zones, should follow.

Results from the reconnaissance geochemical program also suggest that the TR 5- TR 8 alteration zones may be similar to, or an extension of, the broad alteration zones characterized by unusually high background gold values on Newhawk-Granduc's Sulphurets gold-silver property, adjoining the TR#1 Group to the south. Potential for large tonnage, lower grade bodies as well as low tonnage, high grade bodies is indicated. A rock geochem survey should be undertaken to cover outcrops exposed on the nunatak extending southwest-northeast along the TR 9, 8 and 5 claims. Average grid density should be 25 meters, tightened up in promising areas. Anomalies should be trenched and mapped.

Some follow-up work is also warranted for the float boulders and the anomalous sericite schist sample discovered on the TR 5 claim.

Respectfully submitted:

P. hennen

D. Cremonese, P.Eng. December 28, 1987

APPENDIX I -- WORK COST STATEMENT

<u>A. Period Aug. 16-24 Rock and silt geochemical sam</u> minor geology	pling and
Field Personnel: K. Konkin, Geologist Aug. 17,18,19 3 days @ \$220/day I. Hayton, Assistant Aug. 17,18,19 3 days @ \$165/day	\$ 660 495
Field Supervision: E.R. Kruchkowski, Geologist 25%** of 1 day @ \$330/day	83
Helicopter Vancouver Island Hel. (Catear Base) Mob/demob camp & pesonnel, crew drop-offs/pick-ups 2.5 hrs. @ \$571.50 \$1429 4.4 hrs. @ \$588.75 <u>\$2590</u> 25%** of \$4019 **prorate with work going on simultaneously on adjacent TR #2 Group	1005
Food 6 man-days @ \$25/man-day	150
Camp equipment rental (generator, radios, tents etc.) 25% of 9 man-days @ \$30/man-day	68
Supplies (plywood and 2 by 4s for tent frames, plastic sample bags, gasoline, diesel etc. 25% of \$240	60
Sample transport 25% of \$200	50
Assays Acme Analytical Geochem Au, I.C.P. and rock sample preparation 2 @ \$13.25/sample Geochem Au & Ag, and rock sample preparation 36 @ \$9.50 Geochem Au & Ag, and silt sample preparation 3 @ \$ \$7.25	26 342 22
Share of Project Support Costs: Personnel: mob/demob (Calgary-Catear), Catear base camp set-up Supplies, transportation, equipment rental, truck rental, radio, wood frames, helicopter mob/demob, accommodation, etc.	
25% of estimated \$1000	250
Sub-total	\$ 3211

B. Period (Sept. 7-29, 1987) Minor rock geochemical sampling, blast trenching, helicopter pad construction, drill pad construction; mobilization by helicopter of drill, drill supplies, core boxes, etc., drill shack, cook and sleeping tents; diamond drilling of Hole 87-1; drill supervision and core logging.

Field personnel:

E.R. Kruchkowski, Project Geologist Sept. 7, 1987 330 1 day @ \$330/day D. Cremonese, P.Eng. Sept. 7, 1987 300 1 day @ \$300/day K. Konkin, Geologist Sept. 9, 10, 23-29 incl. 9 days @ \$220/day 1980 G. Sinden, Geol. Technologist Sept. 13 1 day \$181.50 181 D. Sloan, Assistant Sept. 13, 24 220 2 days @ \$110 B. Johannson Sept. 24 110 1 day @ \$110 Helicopter: V.I.H. from Catear Base, various machines (mobilization of drill and camp, personnel transport, and supplies --<u>no</u> demob costs included) 400 0.7 hrs @ \$571.50/hr. 2.6 hrs @ \$588.75/hr. 1531 8770 13.4 hrs @ \$654.50/hr. 450 Food: -- 15 days @ \$30/man-day Camp equipment rental (generator, radios, three tents, 350 etc.) 7 days @ \$50/day 320 Supplies: plywood, 2 by 4's, diesel, gasoline, etc. Assays: Rock geochem: Au, I.C.P., plus preparation charge 119 9 @ \$13.25/sample Core geochem: Au, plus preparation charge 41 @ \$7.25/sample 297 DRILL CONTRACT (D.W. Coates Enterprises): HOLE 87-1 5125 Drilling detail--61.1m @ \$83.88/m Reaming/hole stabilization--32 labor hrs @ \$28.50 912 --14 drill hrs @ \$28.00 392 Reaming/hole stabilization: materials consumed, including drill bits, rods, polymer, grease, etc. 2979 Mobilization charges--53 labor hrs @ \$28.50 1510 42 --1.5 drill hrs @ \$28.00 216 Mobilization materials: rods for anchor

Maintaining water lines: 4 labor hrs @ \$28.50 11 Re-align drill/set-up: 5.5 labor hrs @ \$28.50 15	57
Core boxes Standby rate (waiting for helicopter)	
27 labor hrs @ \$27.5 Crew batching bonus: 6 days @ \$200/day 120	
the second s	28
camp work and repairs, o rabor his 6 \$26,50	10
Sub-Total \$ 2906	50
<u>C. Report Costs</u>	
Report and map preparation, compilation and research	
D. Cremonese, P.Eng., 2 days @ \$300/day 60	10
Draughting F. Chong 30	
Word Processor - 5 hrs. @ \$25/hr. 12	25
Copies, report, jackets, maps, etc.	<u>70</u>
Sub-Total \$ 110	13
GRAND TOTAL \$33,37	4
Neuk filed new Statement of Euclemation	
Work filed per Statement of Exploration and Development dated Sept. 30, 1987	200
Extra [To be added to PAC account of Teuton Resources Corp. if possible]** \$14,17	'Ą
**Not requested at time of filing of Statement because of lack of complete information re costs.	

- I, Dino M. Cremonese, do hereby certify that:
- I am a mineral property consultant with an office at Suite 200-675 W. Hastings, Vancouver, B.C.
- I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practiced my profession since 1979.
- 5. This report is based upon work carried out on the TR 4, 5, and 8 mineral claims, Skeena Mining Division in August and September of 1987. Reference to field notes and maps made by geologist Ken Konkin and geol. technologist G. Sinden is acknowledged. I have full confidence in the abilities of all samplers used in the 1987 geochemical program (K. Konkin and G. Sinden have well over 5 years experience each in the Stewart area alone) and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Teuton Resources Corp., owner of the TR 4, 5, and 8 claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 28th day of December, 1987.

D. hennere

D. Cremonese, P.Eng.

APPENDIX III

ASSAY CERTIFICATES

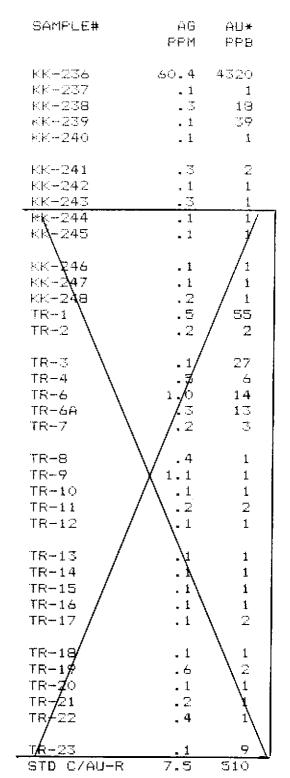
· .

ACME ANALYTICAL LABORATORIES DATE RECEIVED: A 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

AUG 25 1987

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEB.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PI-3 ROCK P4-5 SOIL _____ AU* ANALYSIS BY AA FROM 10 GRAM BAMPLE.


ASSAYER: . Nothing DEAN TOYE, CERTIFIED B.C. ASSAYER

TEUTON RESOURCES File # 87-3608 Page 1

SAMPLE#	AG PPM	
- 200 - 201 - 202 - 203 - 204	<u> </u>	
- <u></u>	4.6 102.5 17.2 7.0 4.4	6700
КК-210	267.4	890600
КК-212	2.6	3500
КК- 212	5.8	23700
КК-213	.4	224
КК-213	.9	1000
KK-215	.5	230
KK-216	2,4	700
KK-217	3.0	1000
KK-218	8.1	2000
KK-219	2.2	400
КК-220	1.1	700
КК-221	1.1	500
КК-222	3.8	640
КК-223	3.2	1600
КК-224	19.4	2400
КК-225	67.2	1400
КК-226	113.9	1980
КК-227	5.2	600
КК-228	1.1	24
КК-22 9	.1	1
КК-230	.3	920
КК-232	.4	20
КК-232	362.0	180
КК-233	307.8	420
КК-234	13.8	104
-KK-235	0.1	<u>440</u>
STD C/AU-R	7.7	480

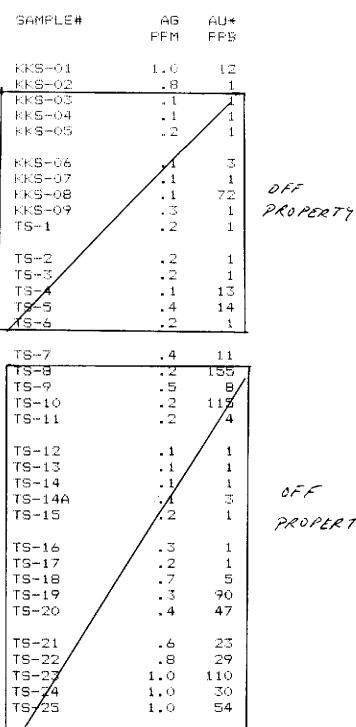
.

OH - property

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED SEPTEMBER 3 1987 AS2 E. HASTINGS, VANCOUVER B.C. I: (604) 253-3158 COMPUTER LINE: 251-1011 DATE REPORTS MAILED Jeff 9/87				- / /
ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED SEPTEMBER 3 1987 AS2 E. HASTINGS, VANCOUVER B.C.	1: (604)253-3158 (COMPUTER LINE: 251-1011	DATE REPORTS M	AILED Seff-1/0/
			DATE RECEIVED	SEPTEMBER 3 1987

ASSAY CERTIFICATE

	SAMPLE TYPE : PULP 45## 1 Aut by Fire Assay	
ASSAVEF	A Dylydean toye . DEFTIFIED B. J. ASSAYER	
	TEUTON RESOURCES FILE# 87-3608 F	PAGE# 1


 SAMPLE
 Ag**
 Au**

 bz/t
 bz/t
 bz/t

 KK-210
 B.32
 00.092

:

.

- 9

7.5

60

52

7S-26

.

STD C/AU-S

PROPERTY

TEUTON RESOURCES FILE # 87~5109

														-					•		CR	MC	54	TI	ъ	۵	NG	¥	R.	AUX		
SAMPLER	MO EU PPM PPM		ZN PPH	AG PPM	NI PPH	CO PPM	MN PPM	FE I	AS PPM	PPM	PPM PPM	FH PPM	SR PPM	PPN	SB PPM	PPM	PPM	ÇA I	ĩ	LA PPN	PPM	1	PPN	z	PPN	1	2	ĩ	PPN	PPB		
DA-1	6 28403	696	2863	355.0	1	6	4731	17.04	4709	5	6	1	111	34	6123	Z	4	4.73	.001	2	2	.60	1	.01	2	.01	.02	.01	1	6230	TETRAMEDRITE	•
PA-2	5 25879	549	1623	395.1	7	81	6192	14,37	2916	5	2	t	91	19	3126	2	4		,003	2	1	.71	5	.01	2	.01	.02	.01	<u> </u>	5675 90	VEIN	
Film	1 299				1		1110		48	5	MD		50		- 67	2	3		.005	2	4	.12	67	.01	- 1	.04 1.85	.02 .02	02. سقل	1	330		
FM-?				10.4	1	4	624		372	5	ND	2	ę Fa	1	20	2	6B	.20	.129	3	2	.71 .12	101 191	.01 .01	8	20-	_	ستند. 11.	1	17		
FN-3	9 93	-10242	16765	100.4	7	5	4235	6.01	33	5	NÐ	1	58	169	56	2	7	3.76	.477	•	•	.14	.,,						•	•		,
FW-4	9 56	12168	20481	55.3		_	2666		23	5	HD	1	788	187	30	2		17.76		7	1	- فتسب		.01	7	.13	.01	.03	1 10	505 33		
FN-S	• • •		36009		2	-	5183		27	5	ND	1	471	339	61	2		11.84	.001		- !	1.16	20 88	.01 .01	2 2	.01 .18	.01 .01	.02 .09	1	33 B		
FW-6					ģ		4254		75		NO	1	149 . 11	184	54	? مد		- 6، 6 25 .	.033		4	. 38 . 29	65	.01	3	.63	.02	.13	i	1220		Ĺ
FH-7	2 43			5.8	5 3	5	447 2481		11 22	5 5	ND		340	<u> </u>	ستسسه	2		5.03		5	ź	. 80	129	.01	6	.35	,02	.21	1	9		
FW-0	2 67	228	680	3. i	3	7	1401	4.20	"	2											-											ſ
FU-9	2 7			.8	3		3135	~	12-		ND	1	395	1	2	2		6.61		2	2	1.01	42	.01	2 3	.15	.01 .01	.09 .10	1	28 3		
FW-10	2 12			. 9	2	1	2823		27	5	ND	1	540	1	2	2	13				~~ <u>+</u>	1.23	61 - 5	.01	5	.16 .64	.04	. 20	1	23		
FW-11	3 176			6.5	ستسر	-15	919		147	5 5	ND ND	1	66 79	4	8 6	2	25 20			4	2	.50	137	,01 	i	.43	.03	,23	i	16		ţ
FW-12	2 78				3	10 10	673	5.85 5.44	31 107	5	MD MD	1	16	1	2	2			.151	3	i	.74	9	.01	6	- 71	03	,19	1	192		
KK-208			76	.9	3	14	3/7	3.77	197	J	.40		19	•	•	•	••			-			-				_					(
KK-289	4 67			1.5	3	13		8.70	64	5	MD	2	10		2	2	125	. 35	. 164	4	3	. 87	6	.01		1.40	.03	.08 .03	<u> </u> . 59	2590	h-,	
KK-290	3 790				6		2766		407	5	NÐ	2	88	1	2	2	53			4	15 1		15 2	.01		.51	.02	.03		77400		,
KX-291	2 7020				4	12		38.69	229	5	46 2	3 2	16	1	10 5	2				3	5	.65	16	. 11		1.00	.03	.04	54	3040	KONKIN	
KK-292	5 358			6.4 19.8	2		1086 2531		385 721	5	2	2	63 122	1		2		5.47		Š		1.32		.08		1.64	.02	.02	21		I	
KK-293	3 437.	1 12	, 134	17.9	11	17	7991	14.47	£4.1	4	•	•		•	-	-				_											GOLD	
KK-294	3 291	41		14.5		28		35.28	461	5	24	4	41	1		10				2	5	.27	2		3	,46 ,40	.02 .02	.03 .07		36200 336400 •	LONE	
KK-295	4 1470			120.7	1	5		32.63	301	<u> </u>	611	4	<u> 11</u>	<u> </u>	2	2			.052	- 2		.11 .02	42 58	.03	5		.01	.10	2		ř	,
KK-296	2 11			135.2	3	1	40 1615	1.22	79 50	7	ND ND	1	3 134	6 5	78 13	2		4.66		5	ľ	.44	126	.01	7	.3Z	.01_		للمسر	445	1	(
KK-297 KK-298		-			3		1257		19	ŝ	ND	1	245	ĭ	2	2		4.52		2	3		72	.01	J.		.02	. 16	2	Z3		
NK-270					-	•			.,	-		•	•••	•	_	_													_			(
KK-299	2 1	L 343	i 34	2,3	7		1097		67	5	ND:	1	35	1		2		3.80		3	بلسب		- 79	.01	4		.02	.15	2 2	40 170		
KK-300		5 17606		248.2	1	1	634			1	ND	E		131		2			.001		1	.01	9 177	.01	2	.01 1.14	.01 .01	.01 .16		335		
KK-301	1 50				3	3		5.70	415		!!!	2	11			2			.090		3	. 35 . 52	133 140	.01 .01	3		.03	. 23	2	23		(
KX-302		3 11307		56.0	1	1		4.51 7.50	27 10	5	ND ND	1	20 71		$-\frac{2}{2}$,	 185		,136 ,141	5		1.55	45	.01		1.93	.07	.10	1	5		
KK-303	1 6	3 59	7 63	.4	3	6	a)/	7.30	14	3				T									- •		•				-			(
KX-304	2 15	3 1766	5 1543	13.9	7	12	1343	4,73	<u>م</u> ر	<u> </u>	ND	1	116		13	2	99			6		1.13	192	.01		1.37	.05	. 16	1	7		
KK-305) 1593		2		616			5	ND.	1	49		11	2	15		. 179	-+		.08	110	.01	6		.02	. 22 . 24	1	16 12		
KK-304			8 18369		سجسر			3, 57	110	5	NID.	1	182		72	2	13		. 165	4		-16			- 1 - 7	.43 .45	.03 .02			15		(
KX-307) 761		- 6		1720		47	5	ND ND	Z 1	194 227			2		4.83 5.61		5	4	,44 ,79	92	.01				.17	i	12	1	
KK-30B	3 0	L-486	17650	204.2	3	10	2010	5.16	53	3	ηÿ	L	201	1.76	106	4	17	J.91		•	•	,,,,			·					_		ŧ
A. KK-307	2 236	6 481	7 1667	<u>30.8</u>	4			14.82		5	3	2	2	18		9			.016	2	1		2	. 91	2	. 68	.02		<u>T</u>	1760	-	-
STD C/AU-R	18 5	9 41	1 128	7.6	67	27	1028	3.89	39	21	6	37	50	18	18	17	54	. 46	.087	28	59	. 92	177	.08	33	1.76	.09	.16	10	490		
															c		<u> </u>				1										I	٩
						- 49	SA⊻	BEOI	JIBED	FOR	COP	REC	TRE	SULT	to	Cu	. 76	マ () トマニ 日 フ	0,00	° p	<u>(</u> ")											
								· ••••••••••••••••••••••••••••••••••••							•		2	ろうい	20 ₁ 44	~ r	pm.											C
																	₽	q ⊃ '	35 f	pm												
																	~	+	نهم ،	· · ·	7 M											

Page 2

:

ANALYTICAL LABORATORIES 1

1

1

1

£

1

(

C

1

GEOCHEMICAL ICP ANALYSIS

.SOO GRAN SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MY FE CA P LA CR NG DA TI B W AND LINITED FOR WA AND K. AU DETECTION LINIT BY ICP IS 3 PPM. AUX ANALYSIS BY AA FROM 10 GRAH SAMPLE. - SAMPLE TYPE: P1-3 ROCK P4-5 SILT

SILts - 40 MESH, PULYEALED, ASSAYER. A. July .. DEAN TOYE. CERTIFIED B.C. ASSAYER 181 DATE RECEIVED: SEPT 12 1987 DATE REPORT MAILED: 6

TEUTON RESOURCES File # 87-4101 Fage 1

SAMPLEO	MQ PPN	CU PPM	PB PPN	ZN PPM	AG PPh	NE PPN	CO PPN	MN PPN	FE 1	AS PPN	LI PPN	AU PPH	TH PPH	SR PPN	CD PPM	SB PPH	91 199	V PPN	CA T	P I	LA PPN	CR PPH	MS I	BA PPM	TI Z	B PPN	AL I	NA Z	K Z	N PPN	MJ1 PPB	
IH-01	ł	19	19	175	.6	25	á		3.01	22	5	MD	Ż	293	2	12	2	6			2	16		1147	.01	4	.11	.01	.08	1	1	
H-02	1	22	149	87	.7	29	5	707	3.12	40	5	ND	2	415	2		2	0	5.04		2	19		433	.01	1	.13	.01	.08	1	1	ł
[H-03	12	12	6	Z66	.7	6	1	73	. 58	13	5	MÐ		6	2	7	2	12	.11	.003	Ź	4	.01	93	.01	4	.05	,01	.03	2		
IM-04	2	<u>_</u> 46	17	36	.4	5	á		3.86	8	5	10	I.	668	1	2	2		15.88		4		3.18	86	.01	2	.25 .05	.01 .01	.04	~~	12	
14-05	t1	82	~1	1650	.7	15	1	57	.85	34	5	ND	1	12	20	5	2	16	.16	.010.	2	5	.01	15	.01	6	.03	.01	.03		12	
IH-06	1	50	n	13	.3	2			2.56	3	5	'nD	1	550	1	3	2		24.07		9	12		33	.01	2	. 62	.01	.02 .05	2 3	1	
[M-07	1	36	2	32	<.2	5	6		2.90	128	5	HD	1	834	2	2	2		18,14		3		5.86	93	.01	- '			106		1	
EM-09	1	64	1	36		1	1	769	3.75	5	5	ND	1	674	1	2	2		13.81		4		4.25	76	.01	~	.31	.01		2	2	
1M-09	1	105	- 4	55	.4		7		3.67	11	5	MD	1	500	1	2	2		11.41		6		3.71	87		7	.28	.02	.04	1	2	
KK-24¥	\$	30	21	79	.7	2	- H	934	5.95	1	6	94D	3	17	2	2	2	- 113	.91	.073	5	10	1.17	24	.27	2	2.03	.04	.02	I	4	
KK-250	4	33	12	78	.3	2	9	898	4.93	21	5	нÐ	2	33	1	4	2	64	1.11	.088	10	9	/75	60	, 05	2	1.38	.03	.06	1	5	
KK-251	8	13	20	38	2	3	2	99	3.36	49	5	ND.	3	17	2	6	2	7	. 06		9	<u></u>	. 05	378	.01	9	. 32	. 06	.10	I.	2	
KK-252	ī	23	12	78	.2	3	3	96	5.18	1	5	MĐ	3	22	I	5	2	14	.68		10	5	.07	21	.01	9	.41	.05	.17	I	1	
KK-253	3	26	10	117	.2	4	4	185	4,64	11	5	КÖ	2	12	1	3	2	18	.41	11	10	7	-11	29	, 91	10	.45	.07	-14	1	1	DEE
KK-254	2	6	15	24	.2	2	1	37	1.43	14	3	N	4	4	L	2	2	2	Jer	.005	21	2	.01	52	.01	2	.14	.03	.07	2	2	UFF
	•	-																														OFF PROPERTY
KK-255	2	22	14	38	.3	1	1	119	5.38	23	5	NÐ	~	5	1	3	2	- 3	.01	.027	24	5	. 22	53	.01	3	.88	.04	.08	2	1	100 2211
KK-256	2	59	2	97	.3	73	20	1420	6.31	92	5	ND	1	126	1	4.	~2	56	2.82	.081	3	74	3.01	41	.01	3	.54	.01	.13	1	1	٢
KK-257	1	9	17	3	.1	2	2	40	1.80	4	5	10	1	- 37	1	Ż	2	- 14	. 15	. 068	3	3	. 04	36	.15	2	.23	.03	.14	1	6	
KK-258	1	10	9	13	.3	1	Z	64	2.57	5	5	ඟ	2	- 14	<u>}</u>	2	2	10	.23	.074	3	3	.05	120	.13	2	.31	.03	. 14	1	1	
, KX-259	1	50	13	52	.4	29	6	825	3,40	120	5	ND .	1	_564	1	<u>``</u>	2	29	11.10	.052	à	23	2.65	67	.01	5	. 29	.01	.06	1	4	
					-			(37		70		NÐ		719		2	`,	~ 24	15.97	.037	•	10	4.73	117	.01	2	.18	.01	.05	2	2	
4 KK-260	1	21		20	-2	10		623		30	5	<u> </u>	· 1			2		· ·	13.57		2	3		122	.01	2	.19	.01	.06	Ĵ	- 1	
KK-261	1	23	4	19	.1	5	1	467	2.14	11	ستجسر			773 891	1	2	2	-	24.64		ź	1	5.46	101	.01	7	-05	.01	.01	i	ŕ	
· KK-261A	1	2	2	1	•1		1	262 787	.90	Å	~ 2	ND	3	56	;	2	ź	204			7	20		20	.72		1.35	.03	.04	1	î	
y KK-283	7	105	17	64	.6		16 3	101	8.93	21	5	ND	л 1	32		, í	ź	4			N.	5		39	.01	5	.14	.03	.11	i	1	
√ KK-264	4	13	16	48	.1		2	101	- Carl	21	J	NU/	1	75	•	•	4	•	•••	,,,,,	1	Ľ,	• • •	-,		Ū			•••	•	-	
KK-265	1	11	2	31	.1	2	ملر	588	. 84	2	5	WÐ	1	546	1	2	2	6	8.80	.009	2	•	. 20	14	.01	2	. 20	.01	. 02	1	2	
KK-265A	2	91	16	92	. 6	- 1 -	~ 5	322	4.30	19	5	ЯD	3	15	2	7	2	- 79	.21	.)11	8	- 24	. 76.	146	.01	- 4	1.47	.01	.13	1	3	
K K−267	3	8	2	42	.3_	6	1	54	.70	23	5	ND	1	15	1	2	2	5	. 20	.007	2	3	.01	- U	.01	4	.04	.01	.02	1	•	
v KK-268	1	52	11	23	1	12	2	84	1.94	54	5	ND	1	17	1	4	2	2	. 35	.007	2	5		10	<u>_</u>	2	.07	.01	.04	1	43	
, KK-269	1	5	2	1	.1	1	t	552	2.16	18	5	ND	1	663	1	2	2	7	21.49	.003	2	1	6.B4	90	-10.	\checkmark "	.07	.01	.01	2	1	
			/										_			-	_										\					
· KK-270	3	1	20	41	.1	8	11	846		11	5	ND	2	226	1	2	2	134			8	16		26	.01 .01	9	1	.03	.10		2	
√ KK-271	J.	76	5	47	.3	7	12			60	5	ND	1	429	1	2	2		13.74		2	15		60 = 1	.05	7	.70	~22	.04	2	3	
KK-272	2	111	9	51	.5	7	14	1125		15	5	ND	<u> </u>	346	1	3	2		10.56		6	15	3.03	53	.01	4	.46	.01	~ 04		2	
1K-273	17		11	51	.3	6	12		19.55	10	5	ND	2	45	1	15	2	121			4	18		10	.01	2	.79	. 02	.04	• :	2	
KE-TA	1	4	75	1	.5	1	1	34	.45	52	5	ND	1	5	1	2	3	1	. 05	.004	13	2	.02	117	.01	4	. 14	.01	.13	1	2	
STD C/AU-A	19	58	38	132	6.9	64	26	1017	3.97	36	25	7	37	48	18	18	21	55	. 46	.085	35	6 3	.83	174	. 07	32	1.73	. 06	.12	14	505	

TEUTON RESOURCES FILE # 87~5109

SAMPLE	HO		P8	ZN		NI	CD	MN	-		U	AU	TH	SR	CD	58	BI	Ŷ	CA	P	LA	CR	MG	BA	TE	8	AL	NA	ĸ	¥	AU1
	PPM	PPN	PPN	PPM	PPM	PPN	PPN	PPN	X X	PPM	PPN	PPH	PPN	PPN	PPM	PPN	PPM	PFM	1	2	PPH	PPM	ĩ	PPM	ĩ	PPN	I	I	I	PPN	PP8
KK-310	· 1	3374	908	1885	01.1	6	78	661	19.54	11587	12	3	2	44	17	212	30	32	1.86	.019	2	5	.33	7	.01	2	. 69	.03	.03	1	4810
KK-311	I	489	487	472	18.3	1	34	1337	13.92	1720	5	XD	2	13	4	5	9	52		.031	· 2	2	.61	¢	.01		1.12	.04	.03	,	2420
KK-312	L	1052	564	1457	28.1	5	64	217	23.92	3565	7	4	2	2	15	29	11	25	.03	.013	2	1	. 25	ž	.01	2		.01	.02	1	5515
KK-313	4	1262	734	8512	37.2	4	311	847	13.69	8923	5	3	2	3	92	299	56	52	.12	.028	2	i	.84	10	.01		1.56	.02	,01	i	3740
KK-314	1	1015	2144	253	155.3	7	194	28	30.87	34945	19	8	2	2	2	875	91	11	.01	.010	2	1	.03	3	. 01	2		.01	.02	2	11420
KK-315	1	237	1593	1020	44.7	5	62	25	24.54	4218	5	6	z	2	11	42	45	4	.01	.003	2	1	.03	3	.01	7	.02	.01	.02	,	7990
KK-316	6	1566	532	11890	22.2	8	109		10.62		5	ND	1	4	132	72	19	66	.20	.033	2	ŝ	1.32	7	.01		2.39	.02	.01	1 I	1805
KK-3 17	1	2359	960	1822	23.3	5	15	1035	10.51	675	5	ND	1	4	17	2	5	56	.19	.063	2	- Ŧ	.99	21	.01		2.44	.02	.03	i	780
KK-318	3	1649	903	2320	14.4	5	15	990	9.12	714	5	ND	1	\$	25	2	Ŷ	51	.22	.043	2	6	.94	7	.01		2.07	.02	.07	i	720
KK-319	13	20561	18421	28347	294,4	2	ó	6018	16.46	492	5	ND	3	28	310	15601	2	15	.49	.038	2	t	.15	49	.01	2	.26	.02	.09	1	1905
KK-320	3	105	427	1768	12.9	4	11	1552	4.35	25	6	ND	2	110	25	2	2	49	5.46	.145	7	2	1.16	107	.01	2	1.08	.03	. 16	,	23
KK-321	2	281	942	709	58.5	4	12	1066	4.83	14	5	KD	1	108	5	61	2	66		.148	5		1.31	103	.01		1.55	.04	.15	i	20
KK-322	3	146	4480	4211	35.2	3	5	626	2.56	70	5	ND	1	86	156	67	. 7	41 C	1.30	.085	3	Ī	.37	127	.01	23	.27	.03	.15	i	36
KK-323		392	2412	5310	28.3	5	13	940	5.15	30	5	ND	i	50	85	56	2	50	1.08	.158	6	- Å	1.06	87	.01		1.31	.04	.21	;	76
KK-324	6	294	925	5897	15.2	6	13	1319	4.99	17	5	ND	1	65	71	13	2	46	1.68	. 163	6	7	.99	116	.01		1.13	.04	.16	i	19
KK-325	E	122	67	246	2.5	5	13	1323	5.02	11	5	ND .	5	49	7	z	2	100	2.13	. 158	8	7	1.75	168	.03	3	2.14	.04	.16		9
KX-326	2	1372	731	2609	16.3	5	12	983	10.80	832	5	'ND	2	4	25	2	4	58		.047	Å		1.04	19	.01		2.37	.02	.07	i	1045
KK - 327	19	12	38	27	2.1	3	9	87	6.73	84	5	ND	2	11	1	2	2	3	.23	.099	10	1	.04	7	.03	ī	. 33	.05	.20	3	5
KK-328	26	15	25	35	.2	1	3	152	4.66	32	5	ND	1	9	ī	2	ž	i	.21	. 059	8	1	. 19	17	.12	į,	. 60	.05	.15	1	8
KK - 329	ι	14	28	35	7.1	t3	2	545		16	5	ND	1	1187	1	Z	2	ţ		.006	2	6	. 22	17	.01	2	. 25	.01	.03	3	3
TR-85	Z	7574	20	207	12.3	.7	11	3574	12.93	105	15	2	3	108	1	z	2	55	7.81	.047	8	13	Z.42	Z 1	.01	2	3.22	.01	.04	Z Z	2475
TR-86	14	37	35	27	3.9	6	29	182	14.39	291	5	ND	2	15	i	2	2	48	.17	.087	3	3	.27	3	.01	4	.36	.02	.21	3	905
FR-87	9	105	22	39	2.2	10	15	333	9.74	220	5	ND	1	9	i	2	2	50		.078	3	12	.48	5	.01	i	.57	.02	.17	2	560
FR-88	15	25	29	23	3.0	4	24	203	8.88	198	5	ND	3	18	ī	2	3	30		.177	10	1	. 34	5	.01	ż	.50	.03	.17	3	645
TR-89	2	47	н	61	1.1	1	6	910	5.54	67	5	ND	L	B	1	ž	2	128		. 169	3	5	1.69	40	10,		1.71	.03	.13	1	170
TR-90		21	24	28	2:5	1	34	266	18.27	238	5	ND	2	6	1	2	2	46	.25	.079	4	3	. 42	2	.01	•	.44	.02	. 10	4	695
TR-91	2	82	15	117	- 4	5	- 11	1017	6.11	54	3	ND	1	13	t	2	2	190		.153	5	11	1.50	34	.17		2.67	, 06	.09	2	117
TR-92	2	37	14	113	.5	22	29	1066	8.60	58	19	ND	1	12	1	2	2			.105	6		2.46	18	.44		2.15	.08	.03	ĵ	- n ⊁
TR-93	2	30	8	123	.3	11	28	1030	9.13	10	7	ND	2	18	1	2	2			.131	9		1.36	72	.54		2,90	.07	.01	2	- ; {
STI C/AU-R	19	61	39	132	7.4	69	28	1058	4.04	40	23	7	39	51	18	19	20	58		.080	38	60	.85	182	.08		1.81	.00	.19	13	500

Page C

1

(

1

(

(

(

t

(

(

ſ

ι

t

(

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: OCT 10 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604)253-3158 FAX (604)253-1716DATE REPORT MAILED: .Oct.17/24.

GEOCHEMICAL ICP ANALYSIS

- SAMPLE TYPE: Core AU+ ANALYSIS BY AA FROM 10 BRAN SAMPLE.

TEUTON RÉBOURCES CORP. File # 87-4771 Page 1

SAMPLE#	AU+	
omit CCM		
	ppb	
26201	25	
26202	61	
26203	9	
26204	29	
26205	88	
		DRILL CORE
26206	25	
26207	11	HOLE 87-1
26208	49	
26209	580	TR-8 CLAINI
26210	420	D.C.
		,) ₍ فر
26211	215	
26212	92	
26213	645	
26214	128	
26215	146	
26216	485	
26217	220	
26218	111	
26219	64	
26220	96	
26221	81	
26222	156	
26223	169	
26224	102	
26225	83	
26226	146	
26227	1820	
26228	610	
26229	520	
26230	168	
	4	
26231	121	
26232	255	
26233	350	
26234	32	
26235	230	
26236	685	
20200	000	

.

TEUTON RESOURCES CORP. FILE # 87-4771 Page 2

ς.

26237	310
26238	610
26239	270
26240	520
26241	690

APPENDIX IV

.

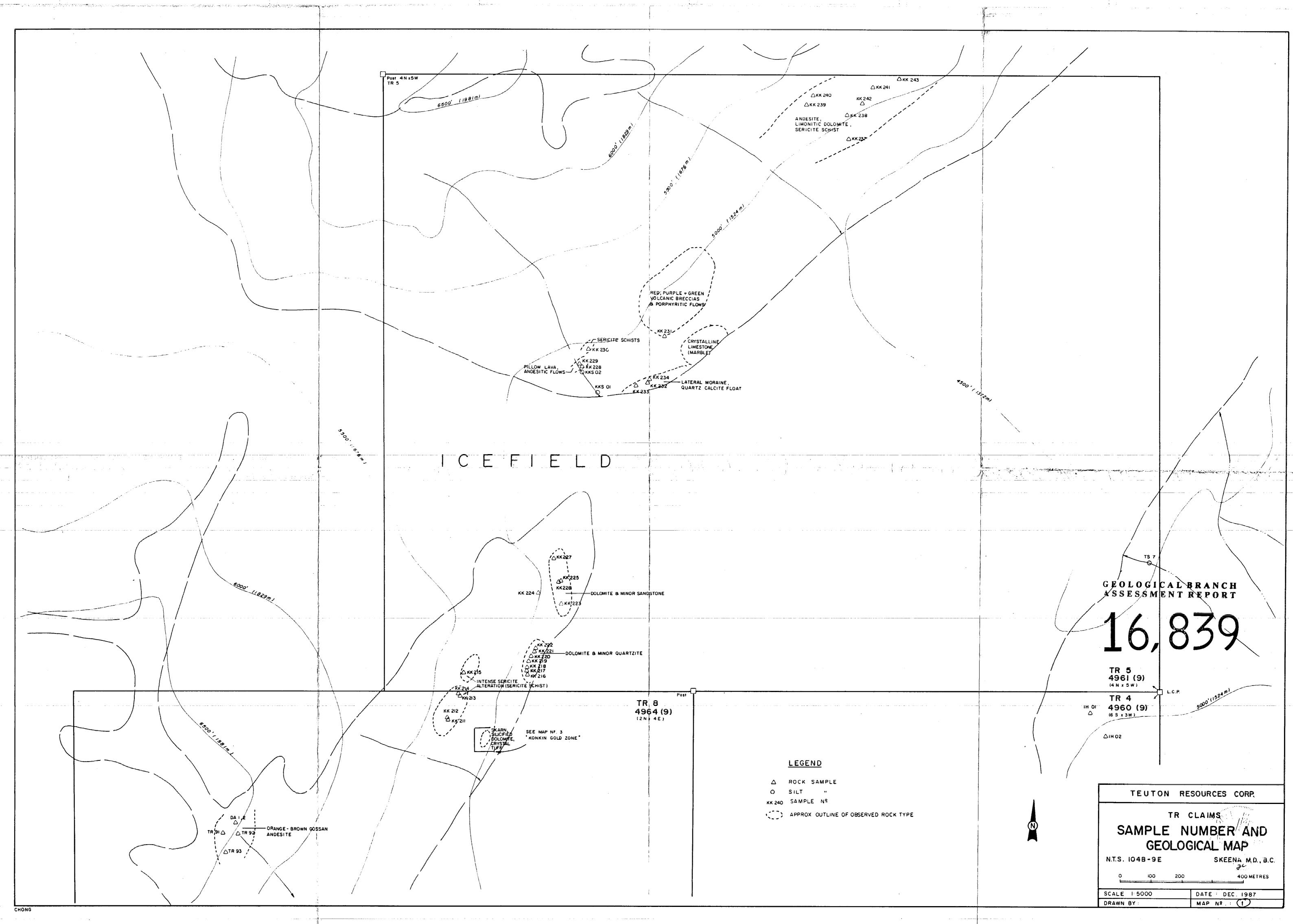
DRILL LOGS

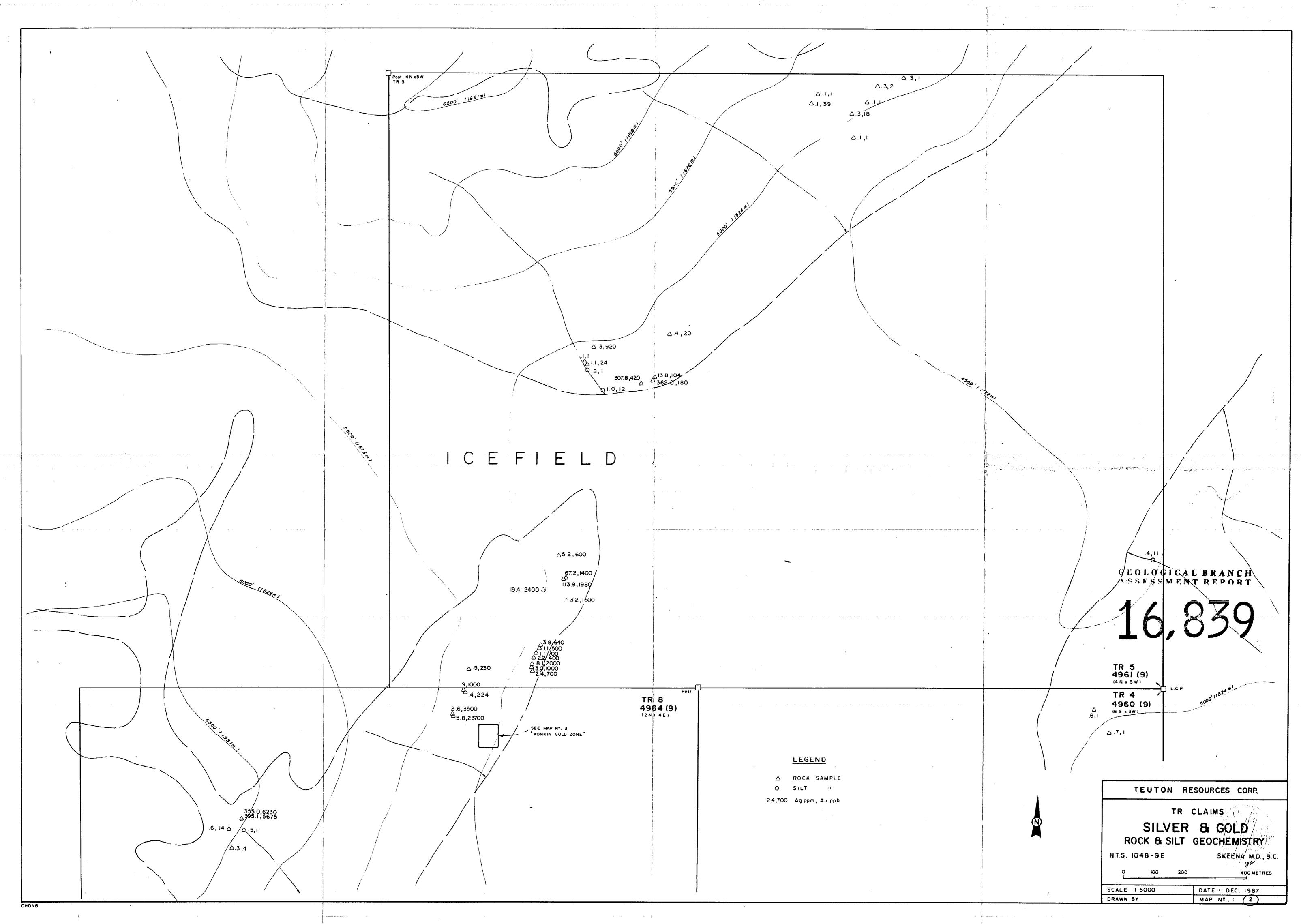
E.R. KRUCHKOWSKI CONSULTIN	<u>IG</u>			
PROPERTY TREATY #1 GROUP	DATE		STARTED 26 Sept/87	FINISHED 29 Sept/87
DRILL HOLE T-87-1	DEPTH	61 .1 m	<u>DIP -46⁰</u>	BEARING 650
INTERVAL METERS	SAMPLE NO.	ASSAYS GOLD IN IN PPB	DESCRIPTION	512E: 89 D.C.
1.8 1.8			Casing; overburden	
1.8- 61.1			f.s., mod-strong rhodochros planes, skarn consists of d hem.atite, calcite, chlorit	tic skarn assemblage k. green & pale - med. green ite and (hem. ?) along fault iopside, epidote, specular e, and pyrite ⁺ chalco- zation. Minor quartz-calcite ense vugs and limonite
1.8- 4.3	26201	25	-50% recovery, graveled blo epidote and rhodochrosite (Tr. 1% v.f.g. diss. py.	cky core, intense chl- hem. ?), weak-mod skarn alt.
4.3~ 5.9	26202	62	95% recovery, strong skarn,	2-3% f.gc.g. diss. py.
5.9- 6.9	26203	9	95% recovery, strong skarn,	2-3% f.gc.g. diss. py.
6.9- 8.8	26204	29	95% recovery, strong skarn,	2-3% f.gc.g. diss. py.
8.8- 10.4	26205	88	95% recovery, strong skarn,	2-3% f.gc.g. diss. py.
10.4- 11.6	26206	25	Modstrong skarn, 2-3% f.g	c.g. diss. py.
11.6- 13.2	2 <mark>6</mark> 207	11	Well fract. weak skarn, fra	ctured core.
13.2- 14.9	26208	49	Weakly skarned, ep-chl alt, f.g. Py.	lith-xtl tuff, Tr.
14.9- 16.5	26209	580	Weakly skarned, ep-chl alt, f.g. Py.	lith-xtl tuff, Tr.

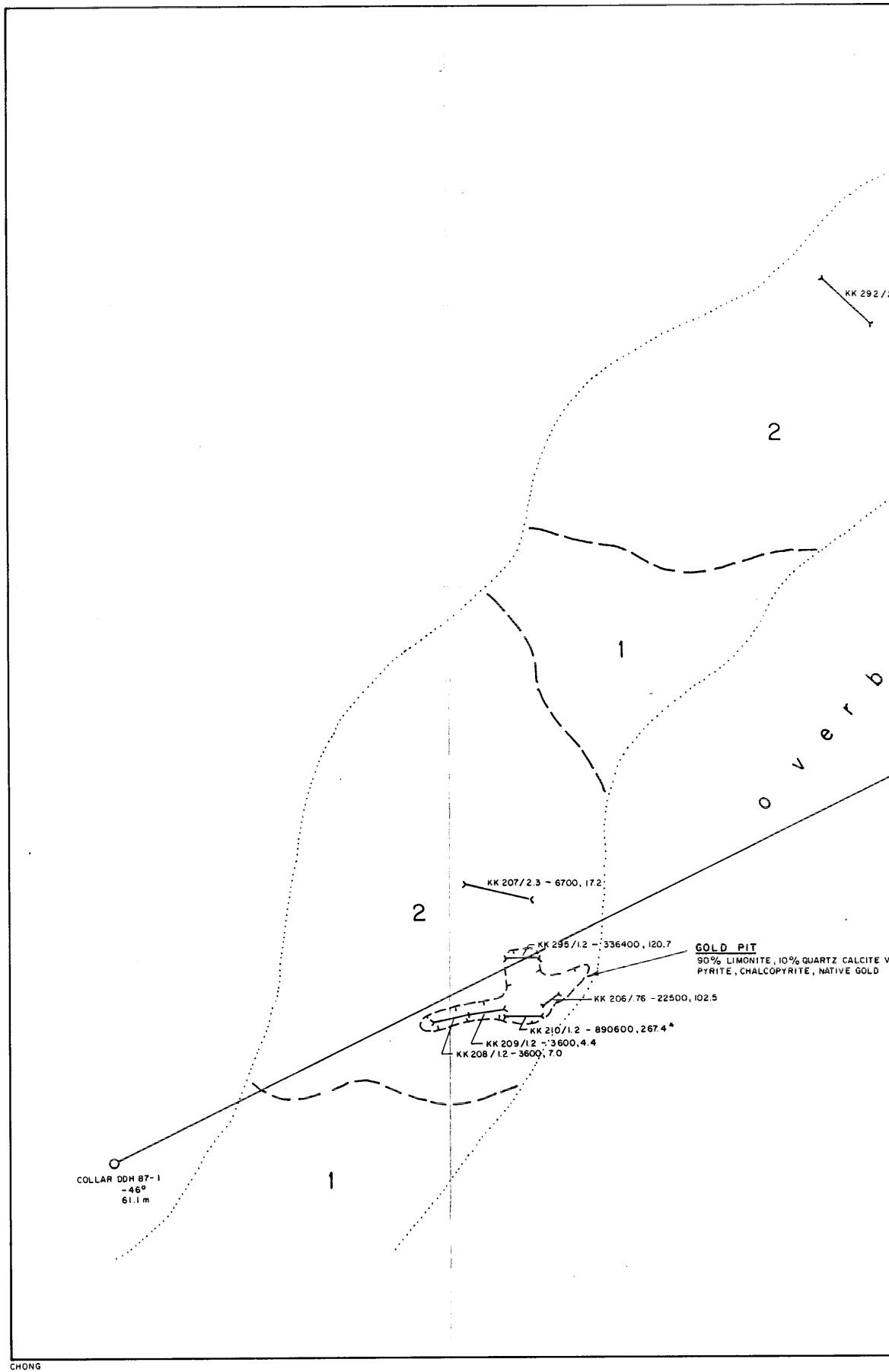
PAGE f4

E.R. KRUCHKOWSKI CONSULTING

PROPERTY TREATY #1 GROUP	DATE		STARTED 26 Sept/87 FINISHED 29 Sept/87
DRILL HOLE T-87-1	DEPTH	61.1 m	DIP -46 ⁰ BEARING 65 ⁰
INTERVAL METERS	SAMPLE NO.	ASSAYS GOLD IN IN PPB	DESCRIPTION
16.5- 18.0	26210	420	Weakly skarned, ep-chl alt., lith-xtl tuff, Tr. f.g. Py.
18.0- 19.8	26211	215	Mod skarn 1-2% f.gc.g. diss. Py, Strong calcite @ 19.23-19.26.
19.8- 21.0	26212	92	Weak skarn, chalcopyrite + chl. alt. lith-xtl tuff, Tr. f.g. Py.
21.0- 21.6	26213	645	50% recovery 5-7% f.gc.g. diss. py, weak-mod skarn.
21.6- 24.1	26214	128	50% recovery, 5-7% f.gc.g. diss. Py., weak-mod skarn.
24.1- 25.6	26215	146	80% recovery, 3-5% f.gc.g. diss. Py. weak-mod skarn.
25.6- 26.8	26216	485	7-10% recovery, 7-10% f.gc.g. diss. Py. weak-mod skarn.
26.8- 30.2	26217	220	Oxidized zone; intense limonite oxidation (lim. ox.), 7-10% :ss Py + 1% c.p.
30.2- 31.4	26218	111	Mod. dolomite skarn, 3-5% f.gc.g. Py + 1% Cp.
31.4- 33.3	26219	64	Mod. dolomite -cal. skarn, 1-2% f.gc.g. Py + 1% Cp.
32.6- 33.3	26220	96	Shattered core, gouge @ 108 & 109, 10-15% diss. py.


PAG ? of 4


E.R. KRUCHKOWSKI CONSULTING


PROPERTY TREATY #1 GROUP	DATE		STARTED 26 Sept/87 FINISHED 29 Sept/87
DRILL HOLE T-87-1	DEPTH	61.1 m	DIP -46 ⁰ BEARING 65 ⁰
INTERVAL METERS	SAMPLE NO.	ASSAYS GOLD IN IN PPB	DESCRIPTION
50.0- 52.0	26232	255	Strong, silicified cal skarn; 3-5% f.gc.g. diss. Py.
52.0- 52.6	26233	350	l cm qtz. veinlet, intense limonite oxidation (lim. ox.), 5-7 % c.g. diss. Py.
52.6- 53.0	26234	32	Strong silicified cal skarn 2-3% f.gc.g. diss Py.
53.0- 55.0	26235	230	Strong silicified cal skarn, 3-5% f.gc.g. diss. Py.
55.0- 55.8	26236	685	Strong silicified cal skarn, 2-3% f.gc.g. diss Py.
55 .8- 56. 7	26237	310	Strong silicified cal skarn, 2-3 f.gc.g. diss. Py.
56.7- 57.3	26238	610	Strong silicified cal skarn, 15-20% f.gc.g. Diss. Py.
57.3-58.8	26239	270	Strong silicified cal skarn 3-5% f.g-c.g. Diss. Py.
58.8- 60.3	26240	520	Strong silicified cal skarn, 3-5% f.gc.g. Diss. Py.
60.3- 61.1	26241	640	75% recovery, 25-30% f.g c.g. Diss. Py.

E.R. KRUCHKOWSKI CONSULTING

PROPERTY TREATY #1 GROUP	DATE		STARTED 26 Sept/87	FINISHED 29 Sept/87
DRILL HOLE T-87-1	DEPTH	61.1 m	DIP -46 ⁰	BEARING 650
INTERVAL METERS	SAMPLE NO.	ASSAYS GOLD IN IN PPB	DESCRIPTION	
33.3- 34.7	26221	81	Med-strong silicified skarn f.g-c.g. diss. Py.	, 7-10%,
34.7- 36.3	26222	156	Mod skarn, 5-7% f.gc.g. diss. Py.	diss. f.gc.g.
36.3- 38.1	26223	169	Mod. dol-cal skarn, 2-3% f.	gc.g. diss. Py.
38.1- 39.3	26224	102	Mod. dol-cal skarn, 3-5% f.	gc.g. diss. Py.
39.3- 40.5	26225	83	Mod. dol-cal skarn, 3-5% f.	gc.g. diss. Py.
40.5- 41.2	26226	146	Modstrong dol-cal skarn, diss. Py., limonite oxidati	
41.2- 43.0	26227	1820	60% recovery, 30-35% diss. c.g. Py.	interstitial
43.0- 45.4	26228	610	10% recovery 20-25% diss. f	.gc.g. Py.
45.4- 46.9	26239	520	90% recovery, shattered cor cal skarn, 5% Py.	e, blocky dol-
46.9- 48.5	26230	168	90% recovery, shattered cor cal skarn 5% Py.	e, blocky dol-
48.5- 50.0	26231	121	100% reovery, block core, s cal skarn, 3-5% Py.	trong dol-

	кк 293 / 10 - 3860, 19.8 2
• • • • • • • • • • • • • • • • • • • •	KK 290/18 - 2590, 8.6
:	
	K 29 I/I 2 - 77400/48 4
/2.3 -3040,6.4	- 36200,14 5
• • •	
:	
8	e ,
ر ب	
•	
	LEGEND CONTROP GEOLOGICAL CONTACT CONTROCH/PIT OUTLINE
	CRYSTAL - LITHIC TUFF; ZONE OF WEAK SKARN ALTERATION 2 DOLOMITE; ZONE OF MODERATE TO STRONG SKARN ALTERATION
	KK 290/18 - 2590,8.6 SAMPLE Nº. / WIDTH IN METRES - PPB Au , PPM Ag + FIRE ASSAY CHECK Au 30.092 oz/ion
VEINLETS	
	16,839
	TEUTON RESOURCES CORP.
	NT.S. 104B-9E NT.S. 104B-9E C C C C C C C C C C C C C
	SCALE 1:100 DATE: DEC 1987 MAP Nº 3