LOG NO: 0104 RD. ACTION:			
FILE	NO: SUB-RECORDER RECEIVED		
	DEC 2 3 1987		
	M.R. # \$ VANCOUVER, B.C.		

GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL AND DIAMOND DRILLING REPORT ON THE NEW 7 & 8 MINERAL CLAIMS IKSUT RIVER AREA, B.C.

> Latitude 56⁰57' North Longitude 130⁰59' West NTS 104B/14E, 15W Liard Mining Division

FOR

Ticker Tape Resources Ltd. 1590 - 609 Granville Street Vancouver, B.C. V7Y 1C6

BY

Denis A. Collins, B.Sc., Ph.D. and George R. King, B.Sc., Hi-Tec Resource Management Ltd. 1500 - 609 Granville Street Vancouver, B.C. V7Y 1G5

December, 1987

OLOGICAL BRANCH

 $> \Omega$

四两

TABLE OF CONTENTS

		Page No.
1.0	SUMMARY	1
2.0	INTRODUCTION	2
2.2 2.3	Property and Ownership Location and Access Physiography History and Previous Work	2 3 4 4
3.0	GEOLOGY	5
3.2	Regional Geology and Mineralization Property Geology Mineralization	5 9 12
4.0	PROPERTY GEOCHEMISTRY	14
4.1.	Discussion of Geochemical Results 1 Rock Geochemistry 2 Stream Sediment Survey	15 15 16
5.0	GEOPHYSICS	17
5.1	Results of VLF-EM and Magnetometer Survey	17
6.0	DIAMOND DRILLING PROGRAM	19
6.2	Introduction Drill Core Mineralization Diamond Drill Log Synopsis	19 21 22
7.0	CONCLUSIONS AND RECOMMENDATIONS	27

LIST OF APPENDICES

APPENDIX I References

- APPENDIX II Statements of Qualifications
- APPENDIX III Geochemical Preparation and Analytical Procedures
- APPENDIX IV-A Geochemical Results
- APPENDIX IV-B Statistical Analysis of Data for Stream Sediment Geochemical Survey
- APPENDIX V Description of Rock Grab Samples
- APPENDIX VI Analytical Data for Core Samples
- APPENDIX VII-A Diamond Drill Logs
- APPENDIX VII-B Diamond Drill Cross Sections
- APPENDIX VIII Statement of Costs
- APPENDIX IX Magnetometer Total Field and Vertical Gradient Data (see pocket)

LIST OF FIGURES

<u>After Page</u>

è

Figure	1.	Location Map		3
Figure	2.	Claim Map		3
Figure	3.	Regional Geology Map		6
Figure	4.	Rock Chip Sample Locations on North Zone		15
Figure	5.	Property Geology	in	pocket
Figure	6.	Geochem for Au/Ag	in	pocket
Figure	7.	Geochem for As/Sb	in	pocket
Figure	8.	Geochem for Cu, Pb, Zn	in	pocket
Figure	9a.	VLF-EM Survey (Fraser Filtered)	in	pocket
Figure	9b.	VLF-EM Survey (Profiles)	in	pocket
Figure	9c.	Magnetometer Survey	in	pocket
Figure	10.	Plan of Drill Site Location and Diamond Drill Holes		20
Figure	11.	Cross Section Showing Diamond Drill Holes 1, 2, 3, 6		22

1.0 SUMMARY

Pursuant to a request by the Directors of Ticker Tape Resources Ltd., an exploration program involving prospecting, geological mapping and geochemical sampling was conducted on the New 7 and 8 mineral claims by Hi-Tec Resource Management Ltd. in July and August, 1987. Subsequently a Phase II program, consisting of a geophysical survey and diamond drilling project, was undertaken during September and October, 1987.

The property is located within the eastern boundary of the Coast Range Mountains approximately 275 km northwest of Smithers, B.C. The claims lie within the Liard Mining Division, NTS 104-B/14E; 104-B/15W. This area has been the focus of intense mining exploration activity in recent years, which has resulted in several economic discoveries.

The New 7 and 8 claims lie within the westernmost part of the Intermontane Tectonic Belt, close to the boundary of the Coastal Crystalline Tectonic Belt. The property is underlain by a suite of carbonate and clastic sediments intruded by a granodioritic-tonalitic stock with minor volcanics.

Significant mineralization, including visible gold, occurs within a flat-lying auriferous quartz vein, herein termed the King Vein. Gold values of up to 1,725.0 g/t (50.313 oz/t) were recorded in grab samples.

A stratiform lead-zinc-silver occurrences were discovered in two separate zones: the North Zone and the South Zone. Assay values of up to 31.3% zinc, 6.4% lead and 890 g/tonne silver were recorded in samples taken on surface from these zones. The North and South

zones are separated by a distance of approximately 300 meters.

In phase II of the exploration program a detailed grid was established and 4.1 kms of ground geophysical surveying were completed over the North Ag-Pb-Zn zone. A number of magnetic and VLF anomalies were delineated. Subsequently a total of 408.03 m (1,337') were diamond drilled and 368 split core samples were collected. Silver values ranging from 2.0 g/t to 219.0 g/t (6.39 oz/t) and gold values from 0.01 g/t to 7.30 g/t (0.213 oz/t) were detected.

2.0 INTRODUCTION

Pursuant to a request by the Directors of Ticker Tape exploration involving Ltd. program Resources an geological prospecting, mapping and qeochemical sampling, was conducted on the New 7 and 8 mineral claims by Hi-Tec Resource Management Ltd. in July and The purpose of this program was to evalu-August, 1987. ate the precious metal and/or base metal potential of Subsequently a Phase II program, involthe property. ving a geophysical survey and diamond drilling project, was undertaken. This report is based on the results of the Phase I and Phase II programs and on the available literature pertaining to the area.

2.1 Property and Ownership

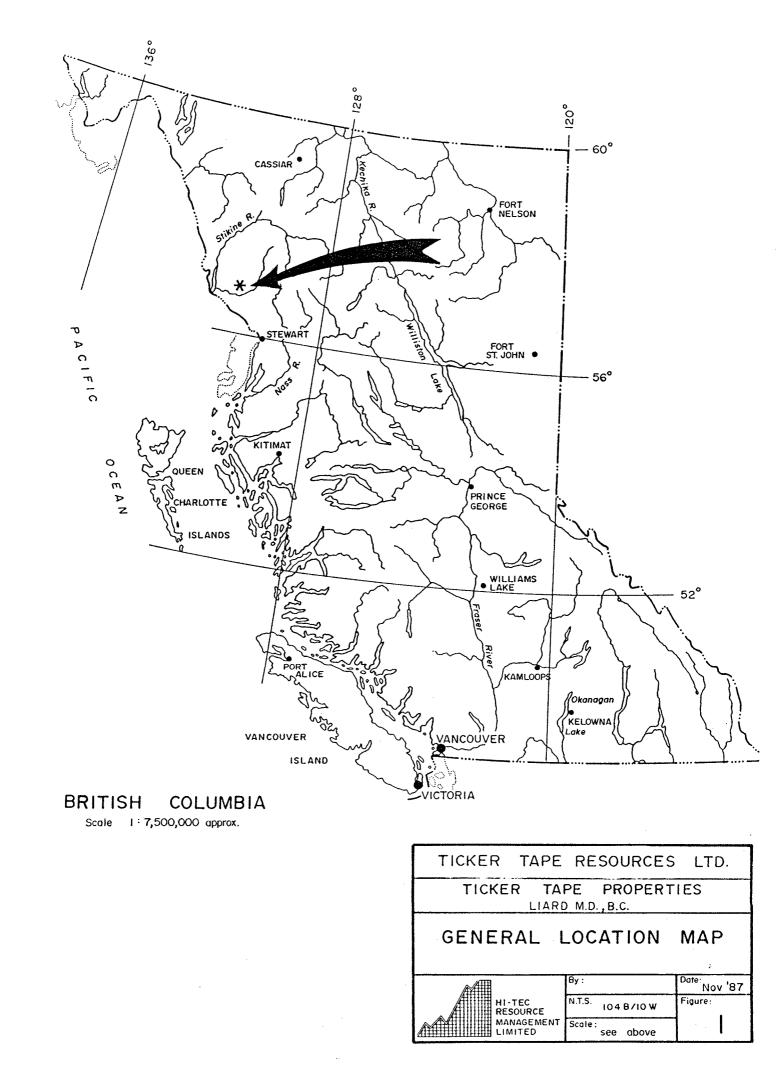
The property is recorded at the British Columbia Ministry of Energy, Mines and Petroleum Resources as follows:

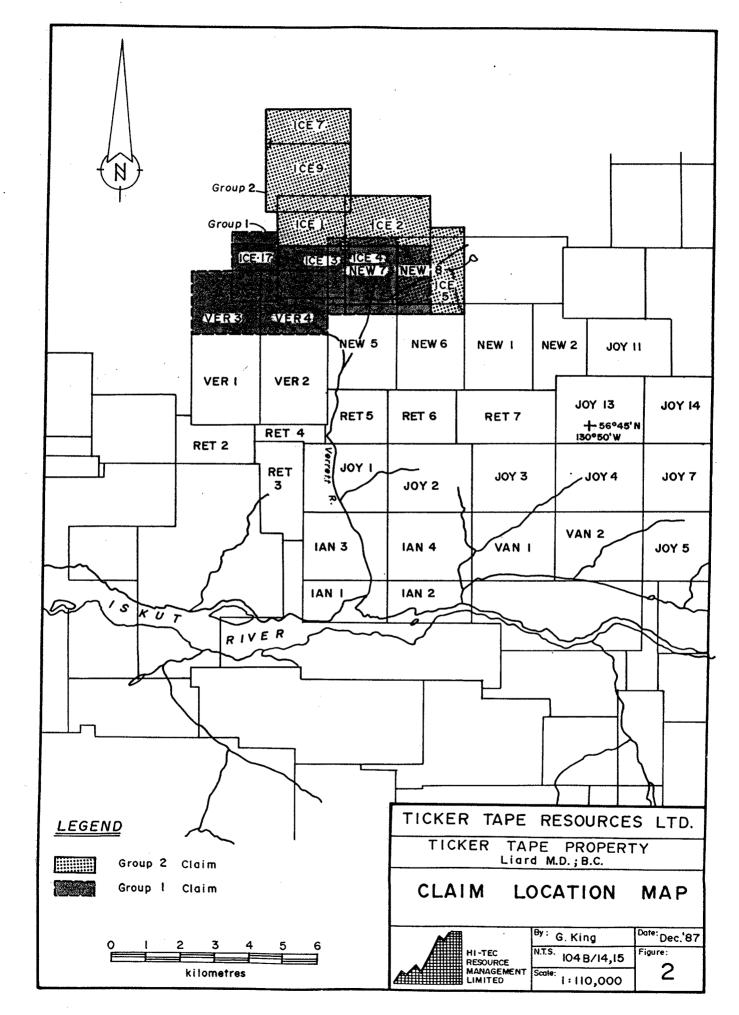
<u>Claim Name</u>	<u>No. of Units</u>	Record No.	<u>Record Date</u>
New 7 Ice 4 Ice 3 Ice 17 Ver 3 Ver 4	16 20 12 16 16	3919(2) 4198(9) 4197(9) 4225(9) 3895(2) 3896(2)	Feb. 19/87 Sept. 2/87 Sept. 2/87 Sept. 17/87 Feb. 19/87 Feb. 19/87
	<u>Group 2</u>		
New 8 Ice 5 Ice 2 Ice 9 Ice 7 Ice 1	16 10 15 20 10 12	3920(2) 4199(9) 4196(9) 4217(9) 4215(9) 4195(9)	Feb. 19/87 Sept. 2/87 Sept. 2/87 Sept. 17/87 Sept. 17/87 Sept. 2/87

The property consists of two (2) contiguous claim groups held in the name of Ticker Tape Resources Ltd.

2.2 Location and Access

The Ticker Tape property is located within the eastern boundary of the Coast Range Mountains approximately 275 km northwest of Smithers, B.C. (Figure 1). The claims lie within the Liard Mining Division, NTS 104-B/14E; 104-B/15W (Figure 2).


The area is accessed by using fixed wing aircraft from Smithers to the Bronson Creek airstrip located on the southern side of the Iskut River. Daily travel to the property is via helicopter only.


Alternate access to the Bronson Creek airstrip, by fixed wing aircraft is possible via Terrace, Stewart or Wrangell. Personnel and material delivered via the Stewart-Cassiar Highway to Bob Quinn Lake can be transported via helicopter to the property.

3

Group 1

2.3 Physiography

The Ticker Tape claims are situated in a mountainous, heavily glaciated terraine at the head of the Verrett River. Relief ranges from 500 meters above sea level to approximately 1800 meters along the northern boundary. The Forrest Kerr Icefield lies immediately to the northwest of the area.

Tree line is at approximately 1200 meters above sea level. Dense vegetation below this is predominantly coniferous with an undergrowth of devil's club. Steep, erosional side creeks provide the best access and geologic control in this area.

Snow cover is a limiting factor on the field season. The period of least snow cover occurs between July and mid-September.

2.4 History and Previous Work

The Iskut River area has been actively explored since Hudson's Bay Mining and Smelting located the Pick Axe showing and high grade Au-Ag-Pb-Zn float on the upper slopes of Johnny Mountain in 1954. During the 1960's several claims were staked on Johnny Mountain and Sulphurets Creek. Airborne geophysical surveys were carried out on a reconnaissance basis by several major mining companies. Massive sulphide float was located at the head of Bronson Creek in 1969 by Skyline Exploration Ltd.

During the period 1980-1986, Skyline completed a followup exploration program on the Stonehouse Gold Zone. This revealed the presence of high grade gold mineral-

ization with significant values in silver and copper. In response to this an extensive and ongoing underground development and diamond drill program was undertaken in 1987.

DuPont of Canada Explorations Ltd. staked the McLymont property (formerly Warrior claims), located approximately two kilometers to the northeast, on the basis of a regional stream sediment survey in 1980. A number of geophysical and geochemical targets plus gold-silver bearing quartz veins were discovered (Kowalchuk, 1982).

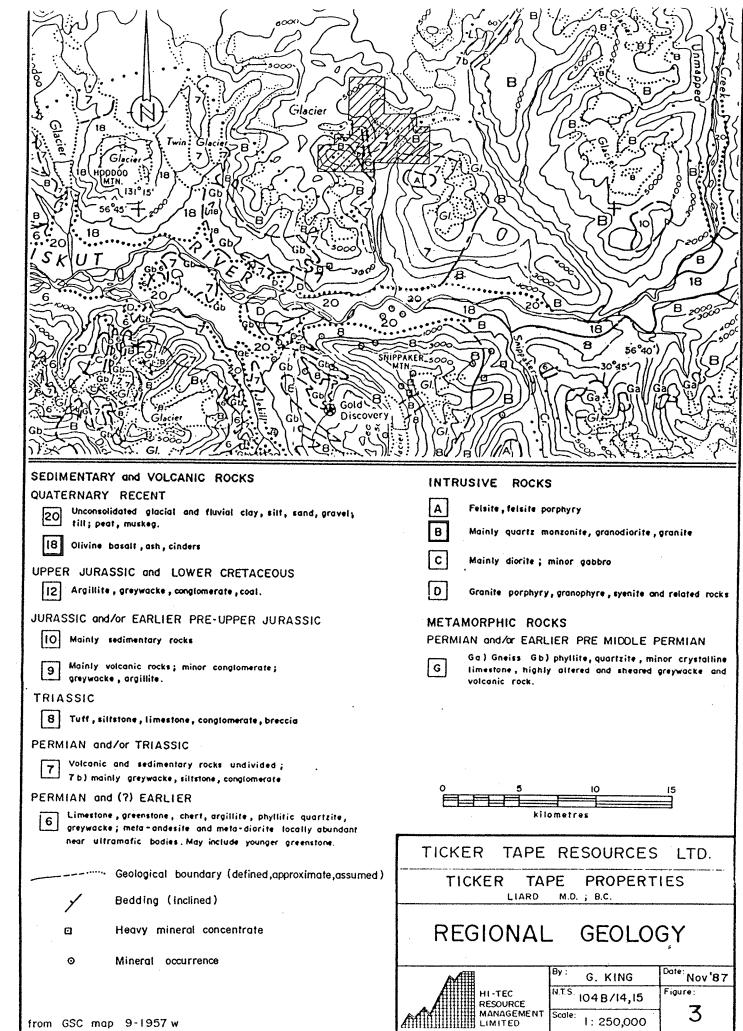
Gulf International Minerals Ltd. acquired the major part of the McLymont claims and are conducting a diamond drill program at present. Previous drilling results gave values averaging 0.164 Au oz/ton (5.6 g/tonne) over 4.3 feet (1.31 m) for three holes (Yeager and Ikona, 1987).

Between 1962 and 1972 Newmont Mining Corporation of Canada Ltd. investigated several copper-bearing skarn zones northwest of Newmont Lake. In 1980 DuPont staked the Bach and Bax claims as a result of a 10 kg anomalous Au stream sediment sample of 1,350 ppb (-100 mesh) from a tributary of the Verrett River. A limited follow-up silt sampling program encountered some anomalous gold values but subsequently no further work was done.

3.0 GEOLOGY

3.1 Regional Geology and Mineralization

The subject property lies within the western most part of the Intermontane Tectonic Belt, close to its boundary with the Coastal Crystalline Tectonic Belt. As a result of the proximity of this area to a regional tectonic


boundary, geologic relationships tend to be quite complex. The geology of this area has been studied by Kerr (1930, 1948), and by Grove (1986), and is represented in Geological Survey of Canada Maps 9-1957, 1418A and 1505A. Figure 3 in this report is a generalized map of regional geology for the area.

The oldest rocks in the area are complexly folded and metamorphosed schists and gneisses of probable mid-Paleozoic age. The metamorphism occurs within and adjacent to a plutonic system. The metamorphic rock is commonly overlain by a white to grey crystalline limestone which is believed to belong to a Late Paleozoic sedimentary sequence that includes some minor greenstone units. This oceanic assemblage is part of the Stewart Complex, a tectonic unit which has been correlated with the Cache Creek Group.

The principal component of the Intermontane Tectonic Belt in the Iskut River area is Mesozoic volcanic and sedimentary sequence. This was originally regarded as a Late Triassic sequence, relative with the time equivalent Stuhini Volcanics; a theory which is supported by the presence of Monotis fossils on the north slope of Snippaker Peak and to the west of Newmont Lake. Grove (1986), however, correlates this unit with the Middle Jurassic Unuk River Formation of the Stewart Complex.

On the north slopes of Johnny Mountain and Snippaker Peak, Paleozoic metasedimentary rocks are found to overlie the Mesozoic sequence. These apparently represent the upper plate of a regional, east-west trending thrust fault, which pushed up and over to the south in a manner similar to that of the King Salmon Thrust Fault.

rom	GSC	map	9-	1957
-----	-----	-----	----	------

In the Coast Crystalline Tectonic Belt, Paleozoic and Mesozoic sequences are commonly intruded by plutonic rocks of quartz monzonite to quartz diorite composition. These intrusions are Late Cretaceous to Early Tertiary in age. To the east of the main intrusive complex, smaller granitic plugs and stocks are prevalent.

Quarternary flows and ash deposits of olivine basalt are the youngest rocks in the area. Hoodoo Mountain is underlain by this unit, which also occurs in parts of the valleys of the Iskut River and Snippaker Creek.

The first mineral showing to be discovered in the western Iskut River area was located on Bronson Creek, two miles upstream from its confluence with the Iskut This is in the vicinity of the property cur-River. rently being explored by the Delaware Resources-Cominco joint venture. The original showing was marked by a gossan and extensive alteration prominent zone of peripheral to an orthoclase porphyry intrusion. In this vicinity, there is a zone of sheared and altered volcanic and sedimentary rocks which is 3.2 kilometers (2 miles) long by 305 to 610 m (1,000 to 2,000 feet) In this alteration zone, pyritization varies from wide. fracture fillings and disseminations to nearly massive Other sulfides which occur in lesser abundance pyrite. include arsenopyrite, chalcopyrite, galena, sphalerite, tetrahedrite and molybdenite in fractures and quartz veinlets within the adjacent to the intrusion. Significant values of gold, copper and silver were revealed by early work on this zone.

Numerous quartz-sulfide veins and skarn deposits have been reported from various locations along the Iskut River. Low gold values, and good grades of silver, copper, lead and zinc have been reported from these.

Mineralized float has been observed below several glaciers in the area.

Near the headwaters of Snippaker Creek, Silver Standard Mines Ltd. and later Sumitomo Metal Mining did extensive surface and underground work on a copper and nickel bearing gabbro intrusion. A total of 3.2 million tons of 0.80% nickel and 0.60% copper have been confirmed in this deposit. However, this has been a low priority target over the past several years, as a result of depressed base metal prices and the relative remoteness of the location.

The two most significant mineral deposits subject to current investigation in the Iskut River area are the Skyline Explorations Ltd. Reg property on the north slope of Johnny Mountain and the Delaware Resources-Cominco Ltd. joint venture Snip property near Bronson Creek. These properties are only five kilometers apart and appear to be similar in nature.

At least seven auriferous, mineral rich quartz veins are known to occur on Skyline's Reg property (Grove, 1986). These are collectively known as the Stonehouse Gold Zone. This zone is hosted in an east-west striking, northerly dipping sequence of Jurassic volcaniclastics and porphyritic flows. A sequence of Middle Jurassic volcanic breccias and well stratified volcanic tuffs and sediments unconformably overlie the mineralized unit. Steeply dipping northeast trending fractures are the only known mineralization environment in the Stonehouse Gold Zone. These are developed in a zone some 4,700 feet long and 900 feet wide. The mineralized zones consist of pods, lenses and quartz veins which contain a variety of sulfide and sulfosalt mineralization in addition to native gold and electrum. Adjacent to the

> HI-TEC RESOURCE MANAGEMENT

zones, extensive K-feldspar alteration occurs in the wallrock.

In addition to gold, copper and silver also occur in significant quantities. Grove (1986) estimated the known reserves at that time to be 938,446 tons grading 0.73 oz Au/ton, 0.85 oz Ag/ton and 0.76% Cu.

On the Delaware-Cominco joint venture's Snip property, four quartz-carbonate-pyrite shear veins with high gold values have been discovered. These strike 110° to 120° and dip 65° to the southwest, and occur in Mesozoic tuffs and arenites that have been intruded by a dikelike orthoclase porphyry. Extensive K-feldspar, silica, and pyrite alteration is associated with these zones.

3.2 Property Geology

The section of the property which lies to the east of the Verrett River Valley is underlain by plutonic and sedimentary rocks. The vast majority of the sedimentary package consists of medium to coarse grained clastic material of quartz arenaceous to arkosic composition. This is a very ferruginous sequence, with ubiquitous limonite alteration. Hematitization is frequently encountered in fractures.

The clastic sedimentary package is very extensive and appears to be quite homogenous. Distinct bedding planes are rarely encountered. Argillite horizons of minor extent were noted in a few locations near the southern border of the New 8 claim. These were found to strike at 110° to 120° and dip approximately 65° to the south.

Much of the northern portion of the New 8 claim is underlain by plutonic material of tonalitic to

granodioritic composition. This is a medium to coarse grained intrusive, with pervasive hematitization and sericitization. Saussuritization of plagioclase is encountered occasionally in this material.

The contact between the plutonic rocks and the coarse clastic sediments is not readily discernable in outcrop. characteristic of the contact, which is а This consequence of the pervasive alteration of both lithologies, presented a great deal of difficulty for The lack of an obvious geological mapping purposes. contact zone may indicate that the sedimentary package is post-intrusive in age.

Mafic dykes are plentiful in both the sedimentary and plutonic rocks. These vary in width from a few centimeters to over ten meters. A peculiar feldspar porphyry dyke of intermediate composition was observed in the southern part of the New 8 claim. This dyke, which contains 2 cm wide white feldspar phenocrysts in a purplish, aphanitic groundmass, was spatially associated with a small granitoid intrusive body which also contained feldspar porphyry.

The structural geology of the eastern portion of the property is not well defined in outcrop. There is, however a distinct linear depression in the north central part of this area, which begins at the edge of the Verrett River Valley and trends at 115° for approximately one kilometer. This is quite probably a major fault zone.

The coarse clastic unit also underlies much of the western portion of the New 7 claim. However, a sequence of andesitic volcanics occurs in the northwestern portion of the property. These are a series of flows

> HI-TEC RESOURCE MANAGEMENT

and ash fall deposits, with abundant horizons of coarse volcaniclastics, including well developed volcanic breccias. Breccia clasts are generally polymictic in composition, and pumice fragments appear to become more predominant towards the top of the sequence. Several breccia horizons were observed to fine upwards to the west, and this appears the to be direction of stratigraphic younging in the sequence.

A significant amount of contact alteration is observed in clastic sediments immediately below the base of the volcanic unit. Manganese staining, which is prevalent throughout much of the volcanic unit, is intense in rocks on either side of the volcanic-sedimentary contact, commonly appearing as a metallic, black sheen on outcrop surfaces. In the coarse clastic sediments near the contact, dendritic pyrolusite growths are commonly found in fractures.

There is а lithologically, stratigraphically and structurally complex unit of rocks which occurs near the western edge of the New 7 claim, immediately overlying the volcanics. This has been designated as the Ticker Tape Unit, and has been the focus of much attention in the 1987 exploration program, it as contains а stratiform lead-zinc-silver deposit. The unit consists of interbedded jasperoid ironstones, carbonates, waterlain tuffs and other volcaniclastics, minor beds of argillite and a few minor lenses of barite.

Oxidization in the Ticker Tape unit varies from moderate to intense, and in many cases it renders the original lithology indistinguishable. The structural regime in this unit is very complex, and it appears to have undergone several episodes of folding and faulting.

Stratigraphic relations in the Ticker Tape Unit are also complex, and several abrupt facies changes, and lateral thickening of beds were observed. The Ticker Tape unit appears to be the product of an episode of quiescence and "black smoker" mineralization in a subaqueous volcanic regime.

3.3 Mineralization

The most significant occurrences of sulphide mineralization on the New 7 claim are found in the stratiform lead-zinc-silver deposit which occurs within the Ticker Tape unit. This deposit is of variable width, although a 26 meter thick zone of mineralization was calculated by data generated by the drilling This mineralization varies from disseminations program. and mineralized stringers to massive galena, sphalerite and pyrite. Minor arsenopyrite and stibnite were observed in drill core. A yellowish-green mineral which was frequently encountered in outcrop is believed to be greenockite (cadmium sulfide).

Two mineralized exposures of the Ticker Tape unit were observed. These were designated as the North Zone and the South Zone, the South Zone being approximately three hundred meters southwest of the North Zone. These two zones are separated by a lobe of glacier, and thus it was not possible to determine whether these represent outcroppings of one major zone, or separate entities.

Rock grab samples taken from the South Zone tended to be richer in lead and silver than those from the North Zone. However, the highest recorded silver assay value, 890.0 g/t (25.96 oz/ton), comes from a high grade sample taken from the North Zone. One sample taken from the North Zone yielded over 31% zinc.

Gold values recorded in samples taken from the North and South zones were rarely above background levels. However, very high gold values were recorded in samples taken from the King Vein, a guartz vein which lies roughly 100 meters south of the South zone. This is an almost flat-lying quartz vein which strikes at roughly 150° and dips 8° to the southwest. It has a maximum thickness of 35 centimeters and is exposed over a considerable strike length estimated by geologist J.P. Sorbara to be at least 150 m. Snow cover precluded trenching and a precice appraisal of the dimensions of the King Vein.

The King Vein is hosted in coarse clastic sediments close to the contact with the andesitic sequence. Limestones and argillites are interbedded with the coarse clastic sediments near the King Vein, a feature which is not observed elsewhere in the vicinity of the andesite-clastic sediments contact.

Much of the interior of the King Vein appears to be devoid of sulfide mineralization, although massive pyrite, with minor associated galena and sphalerite is found in pods near the footwall of the vein. Visible gold and (?) bismuthinite or possibly native bismuth were found adjacent to these sulfide zones, in the vein interior. A high grade grab sample of this material yielded an assay value of 1725.0 g/t (50.313 oz Au/ton), and a 20 centimeter chip sample taken across the vein and adjacent wall rock yielded 864.0 g/t (25.200 oz Au/ton) in addition to 122.0 g/t (3.56 oz Ag/ton).

Elevated gold values in King Vein are consistently associated with highly anomalous bismuth values. Sample

KV-3, which yielded 1725.0 g/t (50.313 oz Au/ton) also contained 5,825 ppm bismuth.

The highest silver value recorded from the King Vein was 11.61 oz/ton in sample KV-1, which was taken from a massive sulfide pod near the margin of the vein. This sample also yielded values of 2.27% lead and 5,829 ppm zinc. This sample was also highly anomalous in antimony (560 ppm) and slightly anomalous in arsenic, cadmium, cobalt and copper. Gold and bismuth values from this sample were considerably lower than those of samples from the interior of the vein.

Few significant mineralization situations were encountered east of the Verrett River Valley, although a sample of chalcopyrite and malachite bearing mafic dyke material in this area yielded an assay value of 3.11% copper. A sample of pyrite-bearing granodiorite taken from the New 8 claim contained 205 ppb gold.

4.0 PROPERTY GEOCHEMISTRY

The objective of the 1987 program was to identify areas of interest on the property on which to focus future exploration efforts. A total of 108 rock grab samples, 41 chip samples and 15 stream sediment samples were taken on the New 7 & 8 mineral properties.

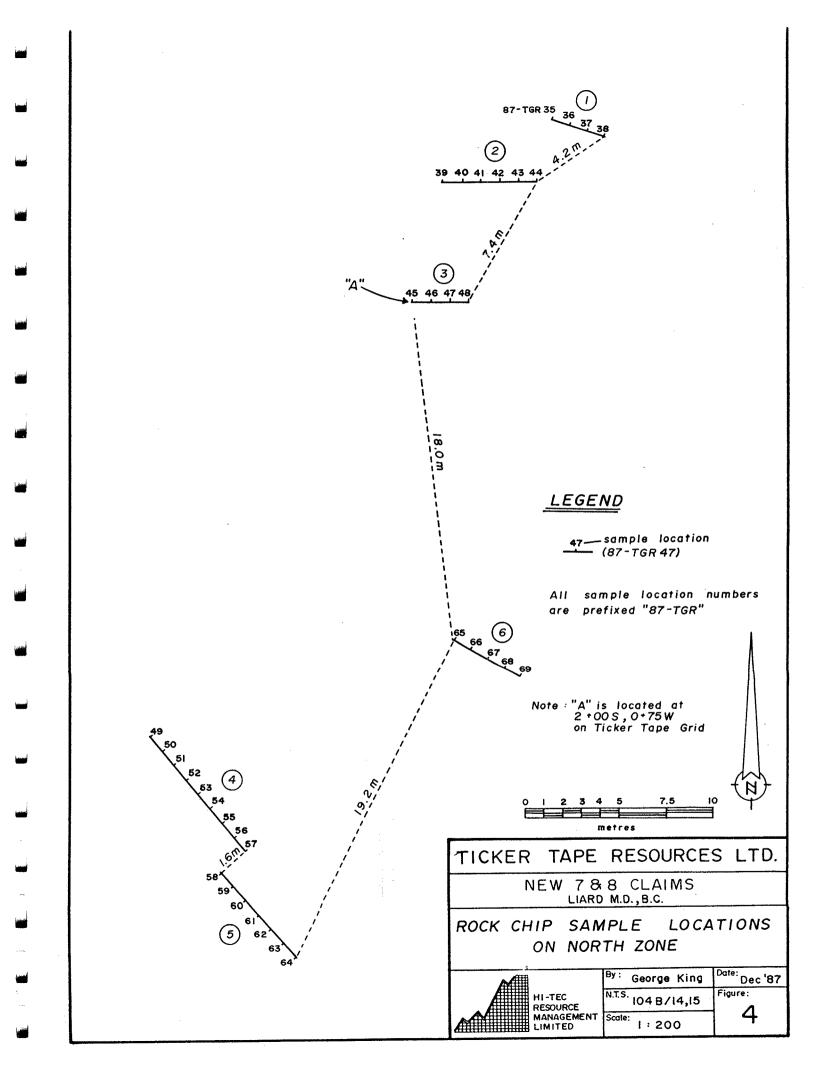
An effort was made during the 1987 field season to collect stream sediment samples from all drainages on the property. These samples generally consisted of silt and/or fine sand taken from stream beds.

Rock grab samples were taken in the course of the prospecting and geological mapping program. These samples generally contained sulphide mineralization.

A total of 40 chip samples: samples 87-TGR-035 to 069, and samples 87-TKR-013 to 017 were taken on the North zone. These were, in most cases, one meter in length (see Figure 4). Sample KV-2 was a 20 cm long chip sample taken across the King Vein.

All samples collected were analyzed for gold, copper, lead, zinc, silver, arsenic and antimony. In addition, samples KV 1-6 were subjected to a 31 element ICP analyses and were fire assayed for gold, silver, and tellurium. A11 samples were analyzed at Min-En Ltd. Laboratories of 705 West 15th Street, North Vancouver, B.C.

4.1 Discussion of Geochemical Results


4.1.1 Rock Geochemistry

Anomalous precious and base metal values were recorded in many of the rock grab samples taken on the property. Results for each analyzed element are discussed below:

Gold: Anomalous gold values exceeding 50 ppb were recorded in thirty rock samples. An extremely high assay value of 1725.0 g/t (50.313 oz/ton) was recorded in sample KV-3, a high grade grab sample from the King Vein. KV-2, a chip sample taken across the King Vein and adjacent wall rock, yielded a gold value of 864.0 g/t (25.200 oz/ton).

Silver: Anomalous silver values of over 5 ppm were recorded in seventy-five of the rock samples. Extremely high values were recorded in samples from the North and South zones and the King Vein. The highest value was recorded in sample 87-TSR-04, a grab sample from the

North zone, which yielded an assay value of 890 g/t (25.96 oz/ton).

Arsenic: Seventy-five of the rock samples yielded anomalous arsenic values exceeding 50 ppm. Several samples from the North zone yielded highly anomalous values. The highest value was 2,496 ppm in sample 87-TGR-063.

Antimony: Anomalous values in antimony exceeding 15 ppm were recorded from seventy-nine of the rock samples. Highly anomalous values were recorded in samples from the North and South Zones, and in a sample from the margin of the King Vein. The highest value was recorded in sample 87-TMR-17: 1,591 ppm.

Copper: Anomalous copper values exceeding 400 ppm were recorded from nineteen rock grab samples. The highest copper value, 31,890 ppm (3.14%) was recorded in sample 87-TGR-005.

Lead: Anomalous lead values exceeding 100 ppm were recorded in eighty-seven rock samples. The highest value, 64,777 ppm (6.48%) was recorded in sample 87-TSR-09, which was taken from the South Zone.

Zinc: Anomalous zinc values exceeding 500 ppm were recorded from seventy-one samples. Extremely high values were recorded in several samples from the North Zone. The highest value, 313,009 ppm (31.3%) was recorded in sample 87-TGR-035.

4.1.2 Stream Sediment Geochemistry

Anomalous base and precious metal values were recorded in some of the stream sediment samples taken from the

New 7 & 8 claims. Results for each analyzed element are discussed below:

Gold: One sample yielded an anomalous gold assay value of 50 ppb. This was recorded in sample 87-TML-001.

silver: An anomalous silver value of 7 ppm was recorded in sample 87-TKL-021.

Arsenic: Anomalous arsenic values exceeding 30 ppm were recorded in five samples. The highest value, 207 ppm was recorded in sample 87-TSL-015.

Antimony: Anomalous antimony values exceeding 10 ppm were recorded in five of the samples. The highest value, 43 ppm was recorded in sample 87-TKL-021.

Copper: A slightly anomalous copper value of 92 ppm was recorded in sample 87-TML-005.

Lead: Anomalous lead values exceeding 100 ppm were recorded in five of the samples. The highest value, 1,138 pm was recorded in sample 87-TKL-021, a polymetallic anomaly which was taken from a drainage immediately below the North Zone.

Zinc: Anomalous zinc values exceeding 500 ppm were recorded in five samples. The highest value, 1,901 ppm was recorded in sample 87-TSL-015.

5.0 GEOPHYSICS

5.1 Results of VLF-EM and Magnetometer Survey

A detailed grid of 4.1 line kilometers was established over the North Zone Showing in order to provide control

for a VLF-EM/magnetometer survey. The location of the survey origin (0+00, 0+00) is the LCP for the ICE 1, 2, 3 and 4 claim group. The baseline was chained 500 meters south (180°) with detailed east-west crosslines at 25 meter intervals. Stations were chained and picketed and a total of 304 readings were then taken at 12.5 meter intervals.

The geophysical survey was conducted with an EDA Omni Plus VLF-EM/magnetomter (Serial #208035) as the field system and the EDA Omni IV Magnetometer as the recording base station. Both systems are microprocessor-based. Using a Toshiba T1100 computer the data was stored, corrected, contoured or profiled.

Three VLF transmitting stations were recorded: Jim Creek, Washington (24.8 Khz); Cutler, Maine (24.0 Khz); and Annapolis, Maryland (23.4 Khz). For interpretation purposes, the data from Jim Creek has been used as it most closely aligns with the geological contacts and trends.

North Zone Showing Results

The results of the Fraser Filtered, VLF-EM in-phase component show several anomalous zones of varying magnitudes. Most striking is a conductive zone trending north-south, extending 250 meters from LN 2+50S through LN 0+00, and open to the unsurveyed ground to the north (Figure 9a). The symmetrical slope, sharp gradient of large amplitude, and slow roll-off to both sides of the in-phase crossovers is interpreted to indicate a near vertical sheet type conductor (Figure 9b). The strong quadrature response of the same polarity, particularly on LN 1+00S, suggests that the central portion of the anomalous body is a weak conductor in non-conductive ,

MANAGEMENT

ground or at surface. It is noted that to the south the character, or "signature", of the anomaly changes. The weak response and slightly reversed polarity of the quadrature component on LN 1+25S through LN 2+00S can arise from a combination of factors; a more highly conductive body and/or conductive overburden.

The magnetic survey results, corrected for diurnal variations, and contoured to bring out the magnetic highs and their flanks can be seen in Figure 9c. Readings ranged approximately 4000 gammas from 56500 gammas to 60500 gammas. Two zones of high magnetics are noted. A smaller anomalous zone is centered at LN 1+50S, 2+00W and a larger trend spans LN 0+75S through LN 2+25S. They are separated by a sharply contrasting band of low magnetics. The larger trend is adjacent and parallel to the predominant VLF-EM anomaly.

In conclusion, two zones of high magnetics flank the predominant VLF-EM anomaly. Also noted are several small VLF-EM anomalies, some of which are coincident with the high magnetics. The author concludes that the VLF anomaly and adjacent high magnetics anomaly are prime drill targets. As previously mentioned, the character of the VLF anomaly is in transition and varies along its strike, therefore at least two drill intersections are recommended to delineate the source and nature of this conductor.

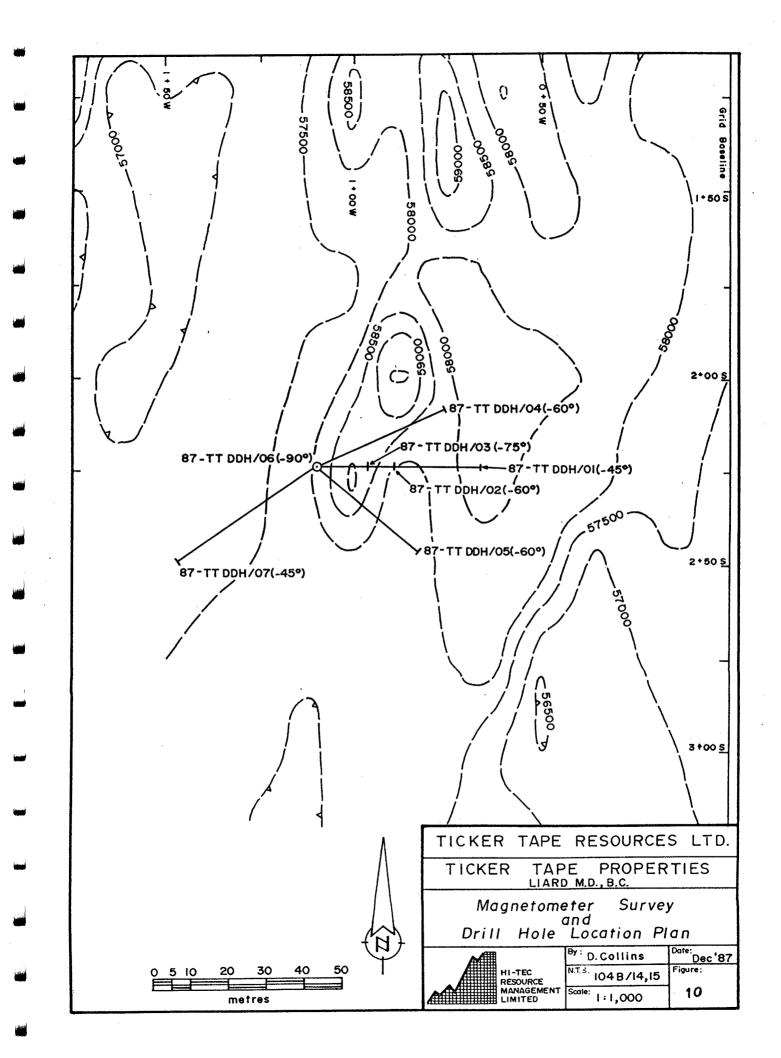
6.0 DIAMOND DRILLING PROGRAM

6.1 Introduction

Pursuant to a request by the Directors of Ticker Tape Resources Ltd., a diamond drilling program was undertaken on the New 7 & 8 claims in the Iskut River Valley

of British Columbia by Hi-Tec Resource Management Ltd. during October 1987. The purpose of the diamond drilling program was two-fold:

- a) to test, at depth, an anomalous Zn/Ag zone located during surface geologic mapping, and
- b) to investigate a series of VLF and magnetic anomalies defined by a geophysical survey of the property in September 1987.


The drilling contractors were Falcon Drilling Ltd. who used BQ diamond bits for all holes.

Four drill sites were initially chosen on the Ticker Tape property. However, due to adverse weather conditions and the accumulation of over two meters of snow on some sites, drilling was restricted to one site (grid coordinates 2+23S/1+10W, Figure 10).

Seven holes were collared (a) to test at depth an anomalous Zn/Ag zone located during surface mapping and (b) to investigate a series of VLF and magnetic anomalies delineated during the geophysical survey.

A total of 408.03 meters (1337 feet) were diamond drilled on the Ticker Tape claim. All of the core was measured and marked at one meter intervals. Discrepancies in measurements between Falcon Drilling Ltd. and Hi-Tec Resource Management Ltd. were resolved on site. The complete length of core was split and sampled. Twenty-one lithological representative segments were removed for thin sectioning and four samples were taken to illustrate the form of the mineralization. Each diamond drill hole is summarized below and the detailed logs and cross-sections are presented in Appendix VII.

All of the core boxes are stored at the base camp at the Verrett River.

Three hundred and sixty-eight split core samples were collected and all of the samples were submitted to Min-En Laboratories Ltd., in North Vancouver, B.C. 274 samples were processed by Fire AA and AA for Au and Ag respectively and 94 samples were assayed for Au, AG, Pb and Zn. Nineteen samples were furthermore analysed by ICP for As, Ba, Cd, Cu and Sb. Analytical procedures are reported in Appendix III and all analytical data for the core samples is given in Appendix VI.

The presence of carbonates, banded iron-stone formation and mafic intrusives has been confirmed by the diamond drilling program. Alteration zones and inclusions within the carbonates consisted of serpentine(?) and tuffaceous, rhyolitic banding.

6.2 Drill Core Mineralization

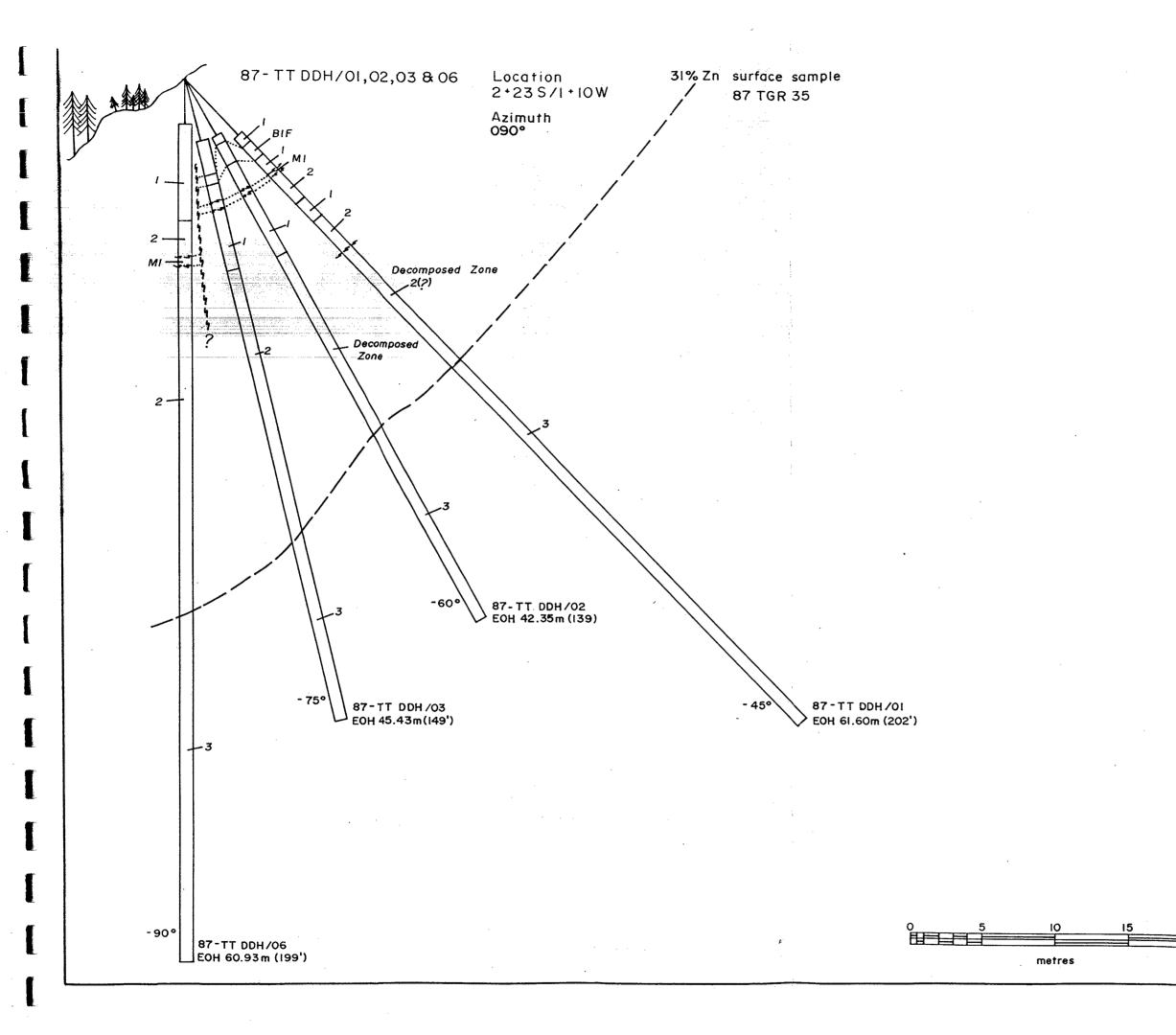
The recognized mineralization in the core consisted of pyrite, galena, sphalerite, arsenopyrite, magnetite and trace antimonite (stibnite).

The main form of mineralization occurs as fine grained disseminated pyrite and galena within altered recrystallized carbonates. Occasional mineralized pods occur and are restricted to the serpentine alteration bands within the carbonate sequence. Recrystallized arsenopyrite is evident occasionally.

Decomposed, altered, leached zones and fault gouge zones frequently exhibited positive reactions to "zinc - zap". Magnetite is ubiquitous both as stringers and as a constituent of the interstitial matrix in the core.

Significant mineralization, including visible gold, occurs within an almost flat-lying auriferous quartz vein (the King Vein). A detailed description may be found in Section 3.3 - Mineralization. An attempt at trenching of this area was curtailed by adverse weather conditions, however, a number of hand specimens and grab samples were collected. Gold values ranging up to 1,725 g/t (50.313 oz/t) were recorded.

6.3 Diamond Drill Log Synopsis


87-TTDDH/1

The layout for this hole was -45° at azimuth 090° and it was drilled to a depth of 61.60 m (202'). Casing was reamed to 5.18 m (17'). The core showed the existence of two distinct assemblages. The upper portion from 5.18 m (17') to 27.74 m (91') consisted of a sequence of carbonates and interbedded tuffaceous, rhyolite banded units. A jasperoid banded iron stone formation and a mafic intrusive were intersected in the top 9 m (30') of core (Figure 11). The lower portion of the hole consisted of a massive, predominantly fine grained recrystallized, blue/grey calcareous sequence with occasional solution breccia zones.

Large segments of the upper part of the hole were decomposed and leached which made identification of lithologies and mineralization difficult.

Recognized mineralization consisted of disseminated pyrite, galena, magnetite, with trace, fault associated, antimony at 8.0 m (26'). Fifty-eight samples were collected which after analysis confirm that the upper portion of the hole constitutes the mineralized zones with

LEGEND

BIF	Banded iron formation		
МI	Mafic intrusive		
I	Carbonate and visible mineralization		
2	Banded carbonate and visible mineralization		
3	Massive carbonate and breccia zones, poorly mineralized		
	Coarse red/purple clastics		
.	Shear zone and/or fault		
·	——— Geological boundary		
	ſ		
	TICKER TAPE RESOURCES LTD.		
	TICKER TAPE PROPERTIES LIARD M.D., B.C.		
	CROSS SECTION		
20	DDH 1,2,386		
	HI-TEC RESOURCE MANAGEMENT LIMITED HI-TEC RESOURCE Scale : 1:250 HI Scale : 1:250		

the lower portion being largely barren. Silver values range from 110.0 g/t (3.21 oz/t) to 2.1 g/t (0.06 oz/t)in the mineralized zone. Gold values range from 0.01 g/t to 0.07 g/t (0.002 oz/t). A number of samples produced above background readings in lead, zinc, arsenic and barium. Sample 16017B recorded 6.82% Zn.

An attempt was made to drill a strong magnetic anomaly from this layout but after the rods jammed at 61.60 m (202') the hole was abandoned. Eleven rods broke off in the hole.

87-TTDDH/2

The layout for this hole was -60° at azimuth 090° and it was drilled to a depth of 42.35 m (139'). Casing was reamed to 4.57 m (15'). Two distinct assemblages, previous hole, were in the eguivalent to those recognized in the core. The upper portion extended from 4.57 m (15') to 27.50 m (90') and again constitutes the mineralized zone. The mafic intrusive and banded iron formation marker beds were intersected (Figure 11). Thirty-six samples were collected and silver values vary from 75.0 g/t (2.19 oz/t) to 3.0 g/t (0.09 oz/t) in the upper portion of the hole. Gold values range from 0.01 g/t to 0.03 g/t (0.001 oz/t).

87-TTDDH/3

The layout for this hole was -75° at azimuth 090° and was drilled to 45.43 m (149'). Casing was reamed to 4.57 m(15'). The best mineralized portion of the hole extended from 4.57 m (15') to 32.19 m (106') and exhibited disseminated pyrite, galena, sphalerite and trace arsenopyrite. Bedrock consisted of a carbonate sequence interbedded with banded tuffaceous and altered serpen-

tized units. The marker beds were again intersected. In common with all the other holes the core appears tectonized, altered and recrystallized throughout. Α buff-pinkish coloured dolomitic sequence from 24.18 m to 27.40 m (791 to 90!) contained abundant dendritic manganese staining. Forty samples were collected and silver values range from 114.0 g/t (3.33 oz/t) to 3.9 q/t (0.11 oz/t) in the upper portion of the hole. The lower more massive carbonate units show consistently lower values. Gold values throughout range from 0.01 g/t to 0.03 g/5 (0.001 oz/t).

87-TTDDH/4

The layout for this hole was -60° at azimuth 065° and it was drilled to a depth of 73.94 m (242'). Casing was reamed to 3.05 m (10'). The target from this layout was a strong VLF and magnetic anomaly delineated by the geophysical survey (Figure 10). Bedrock consisted of three distinct lithological assemblages. The top (3.05 - 30.0 m) and mid (30.0 m - 64.0 m) zones equate with the mineralized altered carbonate sequence and the massive recrystallized units respectively of previous holes. The lower portion comprised a series of interbedded coarse arenites, arkoses and fine grained conglomerates predominantly red/purple in colour. These contained trace recrystallized pyrite associated with minor shear Lack of suitable drill bits for this lithology planes. necessitated the stopping of the hole ...

Seventy samples were collected for analysis and silver values from 64.0 g/t (1.87 oz/t) to 4.5 g/t (0.13 oz/t) in the top mineralized assemblage. The altered carbonate mid-zone shows predominantly low values ranging from 0.2 g/t to 2.4 g/t (0.07 oz/t) but values increase to a 6.0 g/t to 12.0 g/t (0.35 oz/t) range near its contact

with the underlying coarse clastic sequence. The silver values in the red/purple arenaceous assemblage range from 1.9 g/t to 6.2 g/t (0.18 oz/t) but the conglomerates and shear planes exhibit values of from 12.0 g/t to 28.0 g/t (0.35 oz/t). Gold values throughout the hole range from 0.01 g/t to 0.21 g/t (0.006 oz/t).

87-TTDDH/5

The layout for this hole was -60° at azimuth 130° and it was drilled to 60.98 m (200'). Casing was reamed to 3.05 m (10'). The mafic intrusive marker bed was intersected at 12.20 m (40'). An alteration zone adjacent to this was well mineralized with disseminated and partially recrystallized pyrite and galena. The best mineralized zone of altered carbonates and tuffaceous beds extended from 3.05 m to 30.0 m (98'). Patches of disseminated fine-grained pyrite and recrystallized arsenopyrite were intersected in a few solution-breccia zones of the massive recrystallized calcareous sequence in the remainder of the core.

Fifty-seven samples were collected and silver values range from 2.2 g/t to 123.0 g/t (3.59 oz/t) in the upper portion of the hole. Gold values range from 0.01 g/t to 7.30 g/t (0.213 oz/t). The higher values occur within a well mineralized 2.0 m portion of core adjacent to the mafic intrusive at 13.02 m depth.

87-TTDDH/6

This hole was drilled at an angle of -90° to confirm a decrease in dip and an increase in thickness of the mineralized zone. This could have reflected the hinge zone of a syncline where extensional zones would provide favourable sites for the concentration of any mineral-

ization. An increase in thickness of the mineralized zone was confirmed overlying the mafic intrusive which was intersected at 11.90 m (39'). This was underlain by a well mineralized altered, interlaminated carbonate, serpentine sequence of increased width (Figure 11). Pyrite and galena occurred disseminated and as stringers from 5.05 m to 37.33 m (111') with 3.93 m (13') of core loss. A marked decrease in the angle of dip was not confirmed.

An increase in the number and thicknesses of solution breccia zones was evident from 37.33 m (111') to the end of hole but only trace pyrite was encountered. There was 5.23 m (17') of core loss over this zone.

Forty-eight samples were collected and silver values ranging from 2.5 g/t to 219.0 g/t (6.39 oz/t) were recorded from the upper mineralized assemblage. The high values were associated with fault gouge zones. Gold values range from 0.01 g/t to 0.04 g/t (0.001 oz/t).

87-TTDDH/7

The layout for this hole was -45° at azimuth 235° and it was drilled to 62.80 m (206') to test a VLF anomaly defined by geophysics. Casing was reamed to 3.05 m Bedrock consisted of pale grey recrystallized (10'). carbonates with alteration zones throughout. The mafic intrusive and banded iron stone were intersected. Stringers of fine grained pyrite and galena were evident penetrate hole did not the The throughout. interlaminated carbonate/serpentine sequence which was associated with the better mineralization in previous holes.

Fifty-nine samples were collected for analysis and silver values ranging from 2.0 g/t to 20.0 g/t (0.58 oz/t) were recorded. Gold values range from 0.01 g/t to 0.18 g/t (0.005 oz/t). The higher Ag/Au values were generally associated with fault gouge zones.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Following the discovery of high grade gold mineralization with significant values in silver by Skyline on the Stonehouse Gold Zone and the collection of a 10 kg stream sediment sample of 1350 ppb Au recovered by DuPont from a tributary of the Verrett River, a geological survey was undertaken on the Ticker Tape property. This work defined a number of anomalous Au, Ag and Zn zones and a geophysical and diamond drilling program was recommended.

A number of VLF and magnetic conductors were delineated and drilling commenced on 9/10/87. Three distinct lithological assemblages were identified in the core (a) an upper sequence consisting of well mineralized (Pb-Zn-Ag) interbedded multicoloured carbonates with tuffaceous rhyolitic bands (b) a middle, grey, fine grained poorly mineralized calcareous unit and (c) at depth a lower siliceous red/purple coarse clastic assemblage with occasional mineralized portions. A total of 408.03 m (1,337') were drilled and 368 samples were analyzed. Silver values ranging from 2.0 g/t to 219.0 g/t (6.39 oz/t) and gold values from 0.01 g/t to 7.30 g/t (0.213 oz/t) were detected.

Due to adverse weather conditions only one drill site could be set up. The presence of a well mineralized assemblage of up to 26.0 m (85') thick and mineralized fault zones at depth imply that further exploration work

is warranted. The ground geophysical survey should be extended across adjacent parts of the property to delineate additional diamond drill targets. A selective drilling program should be carried out on the remaining, already defined, mineralized zones during the field season from July to mid-September. This would determine the geometry and enhance the grade characteristics of the mineralized zone. A special effort should be made to delineate the extent of the South Zone and to determine its relationship to the North Zone.

An intense program of mapping and prospecting should be directed at areas of the newly acquired Ice Claims which contain geologic environments similar to those which hosted the mineralization in the western part of the New 7 claim. Special attention should be paid to areas adjacent to the contact of the volcanic package with the coarse clastic sediments, as this is the lithology which hosts the King Vein, and there is reason to believe that there is considerable potential for the occurrence of other analogous mineralization situations.

Respectfully submitted,

HI-TEC RESOURCE MANAGEMENT LTD.

Denis A. Collins Denis A. Collins, B.Sc., Ph.D.

George R. King, B.Sc.

December 1987

APPENDIX I

References

REFERENCES

- Geological Survey of Canada, Map No. 9-1957: Operation Stikine 1956.
- Geological Survey of Canada, Map No. 1418A and 1505A: Iskut River (1979).
- Grove, E.W. (1986). Geological Report, Exploration and Development Proposal on the Skyline Exploration Ltd.'s Reg Property.
- Kerr, F.A. (1930). Preliminary Report on the Iskut River Area, B.C. GSC Summary Report, 1929, Part A, pp. 30-61.
- Kerr, F.A. (1948). Lower Stikine and Western Iskut Rivers Area, B.C., GSC Memoir 246.
- Kowalchuk, J.M. (1982). Assessment Report of Geological, Geochemical and Geophysical Work Performed on the Warrior Claims, Liard Mining Division. British Columbia Ministry of Energy, Mines and Petroleum Resources, Assessment Report 10, 418.
- Yeager, D.A. and Ikona, C.K. (1987). Geological Report on the McLymont Group for Gulf International Minerals Ltd.

APPENDIX II

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, DENIS A. COLLINS, of the City of Vancouver, Province of British Columbia, hereby certify that:

- I am a geologist employed by Hi-Tec Resource Management 1. Ltd. My office is at 1500 - 609 Granville Street, Vancouver, British Columbia, Canada, V7Y 1G5.
- I obtained a Bachelor of Science degree in Geology from 2. University College Cork, Ireland in 1980 and a Ph.D. in Structural Geology from the same university in 1985.
- I have been practising my profession as a geologist in 3. Ireland, South Africa and Canada since 1980.
- I have no interest in the property described herein, 4. nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- I consent to the use of this report in a Prospectus or 5. Statement of Material Facts for the purpose of private or public financing.

Dated in Vancouver, B.C. this 2157 day of December, 1987.

Denies A. Collins, Denis A. Collins, B.Sc., Ph.D.

STATEMENT OF QUALIFICATIONS

I, GEORGE R. KING, of Suite 5, 736 West 14th Avenue, Vancouver, British Columbia, do hereby certify:

- That I am a geologist in the employment of Hi-Tec 1. Resource Management Ltd., with offices at Suite 1500 -609 Granville Street, Vancouver, British Columbia.
- graduate from the University of 2. That Ι am a Saskatchewan in Saskatoon (1985) with a Bachelor of Science Degree in Geology.
- That my primary employment since 1981 has been in the 3. field of mineral exploration.
- That my experience has encompassed a wide range of 4. geologic environments, and has allowed considerable familiarization with geological mapping, prospecting, geochemical and geophysical techniques.
- That I have no interest in the property described 5. herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- That I hereby grant permission to Ticker Tape Resources 6) Ltd. for the use of this report in any prospectus or other documentation required for any regulatory authority.

Dated at Vancouver, British Columbia this 2/5 T day of December, 1987.

George R. King, B.Sc.

Geologist

APPENDIX III

Geochemical Preparation and Analytical Procedures

TELEX: 04-352828

PHONE: (604) 980-5814 or 988-4524

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C.

CANADA V7M 1T2

FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb. 'HONE 980-5814

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK - 26 ELEMENT ICP

Ag,Al,As,B,Bi,Ca,Cd,Co,Cu,Fe,K,Mg,Mn,Mo, Na,Ni,P,Pb,Sb,Sr,Th,U,V,Zn

Samples are processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sedimint samples are screened by 80 mesh sieve to bbtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized by ceramic plated pulverizer.

1.0 gram of the samples are digested for 6 hours with HNO_3 and $HClO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by Computer operated Jarrell Ash 9000ICP. Inductively coupled Plasma Analyser. Reports are formated by routing computer dotline print out.

APPENDIX IV-A

Geochemical Results

(VALUES IN PPM) AG	AS	CU	PB	SE	ZN	AU-PPB	
87T6R1	.2	3	8	12	1	10	10	
87T6R2	.9	12	53	6	1	12	63	
87TGR3	2.7	20	51	34	6	75	2	
· 87TGR4	.2	4	6	6	1	7	J	수 방송 사용 수 수 수 가 가 가 있는 것 것 같은 것 것 같은 것 수 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가
87T6R5	-11.6	12	31890	ʻ 82	37	78	28	
87T6R6	.6	16	76	4	1	7	165	
8716R7	1.2	3	13	17	2	8	205	
87TGR8	.9	2	161		1	25	4	
87TGR9	2.9	428	1552	130	9	99	103	지수가 하려 다 다 다 다 다 드는 다 다 다 다 다 다 다 다 다 다 다 다 다
87TGR10	•8	1	11	10	1	33	9	
E778R 11	1.6	5	1998	98	1	429	5	
87TSK 12	.;	5	::0	53	2		130	
E7TSR 13	.1	3	51	14	1	58	3	í
87185 14	1.2	15	47	63	4		6	•
E7TER 15	.6	1	125	16	2			
E7TOR 15	.9	2	83	18	1	47	13	
87TSR 17	.5	í	38	14	1	32	4	
9715R 18	1.5	12	121-	15	4	155	5	
8776R 19	2.3	11	3645	30	3	<u>k</u> 2	6	•
87768 21 97758 22	$-\frac{1.7}{3.3}$	1	12	!2		25	·	
		19	10090	124	43	245	210	
6773R 23	. 6	5	20	31	3	74		
E7TER 24	2.9	14	4692	23	5	58	~ S	
57768 23.	1.3	11	119	12	1	38	55 55	
97735 26		·	83	14	2	33	4	
87168 27	-5	18	139	4		71	5	
87199 29 57755 59	5	1	63	11	1	28	4	
57T6P CP	1.8	148	413	33	4	47	45	
8718R 30 8718F 31	.5	Ļ	132	12	1	40	20	
67107 31 67107 32		5	£5°	5	1	30	5	
87758 33	1.5	3	1193	• ?	1	39	164	
E716R 14	.9	Ÿ	10	19	2	33	3	
871GR35		25	70	21	2	44	3	
8716R36	45.7	498	295	15639	316	313009	2	
87TGR37	16.0	85	85	5867	780	44459	2	
8716R38	7.4	30	36	3057	138	13432	i	
87T6R39	14.8 4.3	-405	96	4640	117	34005	2	
87T6R40	7.6		32	934	230	7156	2	
8716R41	10.9	29	25	10224	296	11049	. 3	
87TGR42	6.8	94	44	11282	204	33528	5	
8716R43	9.3	-257	33	6332	174	13234	2	
87TGR44	7.3 18.5	25	38	10941	115	11194	3	
8716R45	3.3	38	79	8778	132	52614	2	
B7T6R46	21.1	7	16	553	91	3113	1	
87TGR47	19.5	49	117	8485	648	19362	1	
87TGR48	15.1	·59	84	6828	204	34974	3	
	1911	20	67	7183	229	21952	3	

ŝ

'n

IVALUES IN PPK)	Ĥ6	AS	CU	PB	98	ZN	
87 TGR 49	36.8	9	109	9321	60	22456	********
87 TGR 50	31.4	61	124	11235	101	20847	
87 T6R 51	8.4	31	23	3024	7	4254	
87 TGR 52	10.6	52	39	3189	23	4609	
87 TGR 53	18.3	42	52	3631	31	7136	
87 TGR 54	55.7	45	212	4440	139	19913	***************************************
87 TGR 55	35.3	52	114	5390	78	16893	
87 TGR 56	10.2	46	19	2468	12	5233	
87 TGR 57	25.1	63	24	5958	28	6515	
87 TGR 58	15.0	-263	- 38	2961	33	3314	
87 TGR 59	32.0	1553	162	2492	173	16035	
87 TGR 60	29.6	88	166	2085	107	24454	
87 TGR 61	40.4	122	258	1925	180	27248	
87 TGR 62	18.7	79	103	3016	167	18702	
87 TGR 63	25.1	2496	179	2465	111	12752	
87 T6R 64	29.5	·345	157	3680	90	20930	
87 TGR 65	28.7	14	210	6222	71	46722	
(B7 TGR 66	68.4	4	335	17425	189	299414	
87 TGR 67	82.8	1	281	39317	211	93590	
87 TGR 68	28.9	1159	191	6292	256	26880	
87 TGR 69	26.2	985	69	4625	379	13747	* ********
					2		
					2		

.

.

.

.

(VALUES IN PPH)	AG	<u>A9</u>	CU	PB	SB	ZN	AU-PPB	
87TKR1	1.2	6	12	11	1	- 36	3	
97TKR 63	1.0	i	13	132	1	192	4	
STIKS 04	1.4	6	38	128	2	156	72	
871K5 03	Ę.4	1	223	54	4	82	149-	
- 87TFR - 95	1.3	i3	60	87	3	174	176	
** 877KE 07	1.1	14	266		3	96	5100	
- E7TKR 18	74.6	144	25	561	28	.1629	23000	
8778R 09	1.2	6	7	257	1	246	15 ·	
577KE 10	9.3	5	16	577	5ċ	782	5	
871KE 11 .	£.9	73	27	2025	260	5679	4	
27788-12	:4,1			9014	125	31657	ć	
87TKR13	5.2	215	10	585	107	780	2	
87TKR14	4.6	800	11	1926	447	41374	3	
B7TKR15	3.9	989	9	683	333	16908	1	
87TKR16	3.9	669	11	442	144	2910	2	
87TKR17	3.7	938	11	371	220	1036	3	
87 TKR 18	1.3	B	4	10	14	90		
87 TKR 19	9.1	136	56	3380	295	19452		
87 TKR 20	11.6	307	10	3658	175	9569 .		
87 TKR 22	2.3	9	1553	82	22	4723		
87 TKR 23	.6	12	25	58	• 5	134		
87 TKR 24	15.0	9	786	323	15	463		
87 TKR 25	1.6	10	61	38	5	111		
87 TKR 26	1.5	6	403	28	3	30		
87 TKR 27	1.5	327	82	23	24	122		
87TKR30	.4 .	10	72	15	1	45	58	•
87TKR31	.6	8	8	23	1	108	28 ·	
87TKR32	.4	17	9	12	1	32	113 -	
87TKR33	.6	2	5	14	1	108	54 ·	
87TKR34 -	.5	12	4	20	2	79	40 .	
87TKR35	.9	9	5.	30	2	97	29 -	
B7TKR36	1.8	16	42	31	1	51	40 1	
87TKR37	1.0	27	5	37	2	190	22	
87TKR38	1.6	12	9	26	12	210	82	
87TKR39	.7	9	7		9	30	77	*** ** ** ***
871KR40	1.8	41	18	33	29	309	66	
87TKR41	2.3	36	1	22	11	53	19	
87TKR42	4.5	82	15	129	21	51	27	

a day Ville shares we are a face any

.

(VALLES IN FPM)	45	és	CU	FB	53	ZK	PU-FPB	
B7TKR 10	. 4	3	60		1	45	14	
677KR 11	.1	5	59	31	:	33	4	
67.TMR 12	.3	5	34	26	1	70	3	
87TMF 13	.9	21	39	104	. 5	137	9	
187TMR 14	.5	3	99	47	- 4	395	21	
87TKR 15	8.0	1235	13	1199	25	7460	5	
87TKR 16	28.4	101	77	3876	1019	35473	5	
67TMR 17	112.0	113	69	28401	1551	143150	40	
S7TKR 18	23.2	153	23	1399	12	1790	6	
87TER 19	26.3	153	52	2561	218	\$202	5	
ETTER 20	2.9	202	36	225	<u>-</u>	151	5	
E7178 21	5.9	16215	64	6329	220	10197	4	
87TMR 22	3.7	3057	25	1705	574	14938	3	
87 THE 23	19.7	553	52	3525	70	10795	4	
871KE 24	10.2	9	69	16833	51	43789	5	
677KR 25	\$1.2	5	344	51345	245	79953	3	
-67TMR 25	31.3	63	107	12599	284	63514	4	
87TKR 27	46.6	69	216	51515	1630	57561	5	
271MR 23	16.2	52	61	1385	5	17728	5	
E7TKR 29	559.9	25	551	51976	694	81531	11 -	
87 THR 50	2.1	18	21	26	17	145		• · · · · · · · · · · · · · · · · · · ·
/			**					
1								

.

ء

.

. .

(VALUES IN PPN)	A8	AS	CU	PB	SB	ZN	AU-PPB	
B7TSR1	.4	4		3		51		
6778R 02	438.5	660	627	52625	\$39	250500	*	
5775R 03	349.1	71	265	50399	451	231100	0 =	
e7ter (*	454.0	1575	225	44301			3	
3713R 05	137.4	44	925	49337	177	204582	11	
87T3R (6	119.5	20	439		565	220091	5	
17TEA 17	2,5			30940		107115		
BTTSROB	49.6		17	157	23	£63	4	
37TSR09		58	80	35750	223	33030	2	
7TSR10	473.1	61	1568	64777.	1438	44854	2	
7TSR11	. 4.9	10	113	768	16	559	1600	
	5.8	5	20	816	15	450	10	
7TSR12	.7	16	17	94	6	226	8500	
7TSR13	1.1	25	56	52	4	87	1350	
7TSR14	12.5	7	19	66	7	134		

/

٠

(VALUES IN PPM)	AG	AS	CU	PB	SB	ZN	AU-PPB
87 TJPR 01 87 TJPR 02 87 TJPR 03 87 TJPR 04	2.5 .6 16.0 .4	15 10 42 3	29 64 22 20	290 52 41 4	7 6 54 2	367 64 1 1	· •

•

`

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (504) 980-5814 DR (604) 988-4524

TELEX:VIA USA 7601067

<u>Certificate of ASSAY</u>

Company:GALVESTON EXPL./HI TEC RESOURCE Project:87 BC 018 Attention:

File:7-1204/P1 Date:SEPT 2/87 Type:ROCK ASSAY

<u>He hereby certify</u> the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON	
87 TGR 49	.02	0.001	
87 TGR 50	.04	0.001	
87 TGR 51	.13	0.004	
87 TGR 52	.01	0.001	
87 TGR 53	.01	0.001	
87 TGR 54	.21	0.006	
87 TGR 55	.03	0.001	
87 TGR 56	.01	0.001	
87 TGR 57	.07	0.002	
87 TGR 58	.14	0.004	,
87 TGR 59	.04	0.001	
87 TGR 60	.02	0.001	
87 TGR 61	.06	0.002	
87 TGR 62	.20	0.006	•
87 TGR 63	.21	0.006	
87 TGR 64	.17	0.005	
87 TGR 65	.01	0.001	
87 TGR 66	.01	0.001	
87 TGR 67	.12	0.004	
87 TGR 68	.03	0.001	
87 TGR 69	.01	0.001	
87 TJPR 01	.01	0.001	
87 TJPR 02	.02	0.001	
87 TJPR 03	340.00	9.917	
87 TJPR 04	.16	0.005	
87 TKR 18	.08	0.002	
87 TKR 19	.01	0.001	
87 TKR 20	.01	0.001	
87 TKR 22	.02	0.001	
87 TKR 23	.01	0.001	

Certified by

MIN-EN LABORATORIES LTD.

PHONE: (604) 980-5814 OR (6	N41988-4524				TELEX:VIA USA 760
	<u>Cert</u> .	ifici	ate d	of Ass	<u>AY</u>
Company:HI-TEC Froject:87 BC (Attention:P. SC	B				File:7-893/Pl Date:AUGUST 17 Type:PULP ASSA
He hereby certi	fy the follow	ving rest	ults for	samples sub	mitted.
Sample Number	AG G/TONNE	AG DZ/TON	AU G/TONNE	AU DZ/TON	
FI7 IMR 16	29,9	Ú.87	44 84 11 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
07 TMR 17	127.5	3.72			
87 TMR 18	23.8	0.69			
87 TMR 19 87 TMR 23	31.9 18.6	0.93 0.54			
					,
87 TMR 24	8.0	0.23 '	1		
87 TMR 25 87 TMR 26	104.0 32.0	3.03 0.93			
87 TMR 27	56.2	1.64			
87 THR 28	14.7	0.43			
87 TMR 29	790.0	23.04			**********
87 TKR 07		0.11	5.40	0.158	
87 TKR 08	89.8	2.62	28.90	0.843-	
87 TSR 02	775.0	22.60		1,	
87 TSR 03	620.0	18.08			
87 TSR 04	890.0	25.96			
87 TSR 05	212.0	6.18			
87 TSR 06	158.0	4.61			

.

•,

· · •

.

MIN-EN				
Specialis	ts in	Mineral	Environments	

705 West 15th Street North Vancouver, B.C. Canada V7H 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 760106

<u>Certificate of Assay</u>

Company:GALVESTON EXPL./HI TEC RESOURCE Project:87 BC 018 Attention: File:7-1204/P2 Date:SEPT 2/87 Type:ROCK ASSAY

<u>We hereby certify the following results for samples submitted.</u>

.

Sample Number	AU G/TONNE	AU OZ/TON	
87 TKR 24	. 66	0.019	
37 TKR 25	.01	0.001	
87 TKR 26	.04	0.001	
87 TKR 27	.01	0.001	
87 TMR 50	.03	0.001	

Certified by

(VALUES IN PPH)	AG	AS	CU	PB	SB	ZN	AU-PPB	
67T6L620	1.7	16	34	32	2	205	3	
67TKL002	.7	7	23	11	4	169	12	
87TKL 21	7.0	136	36	1138	43	1702	5	····
87TKL 43	4.3	70	35	357	26	726	5	
B7THLI 40M	1.4	2	22	11	2	233	50	
87THL2 40H	.9	3	11	13	1	210	39	
. 87TML3	1.0	12	19	15	5	176	. 4	
B7THL4 20H	.5	5	15	6	1	Ż3	3	
87THL5	.9	6	92	4	1	89	2	
87TML6	.9	6	17	8	2	154	5	** * * * * * * * * * * * * * * * * * * *
87THL7 40H	.6	4	29	5	1	60	3	
87THL8	1.7	2	10	8	1	235	1	
87THL9	1.6	- 39	31	157	12	534	2	
87TSL 15 40M	4.7	207	42	630	40	1901	5	****
87TSL 16 40M	2.0	125	34	328	17	772	10	

•

•

۵ .

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 765 West 15th Street North Vancouver, B.C. Canada VVV 112

PHONE: (604)980-5814 DR (604)988-4524

TELEX: VIA USA 7401087 US

Certificate of ASSAY

Company:HI-TED RESOURCES Inclient:037 Attention:P.SORBARA File:7-1721/Fi Date:CCT 26/8* Type:RDCK 688AY

<u>e hereby certify</u> the following results for samples submitted.

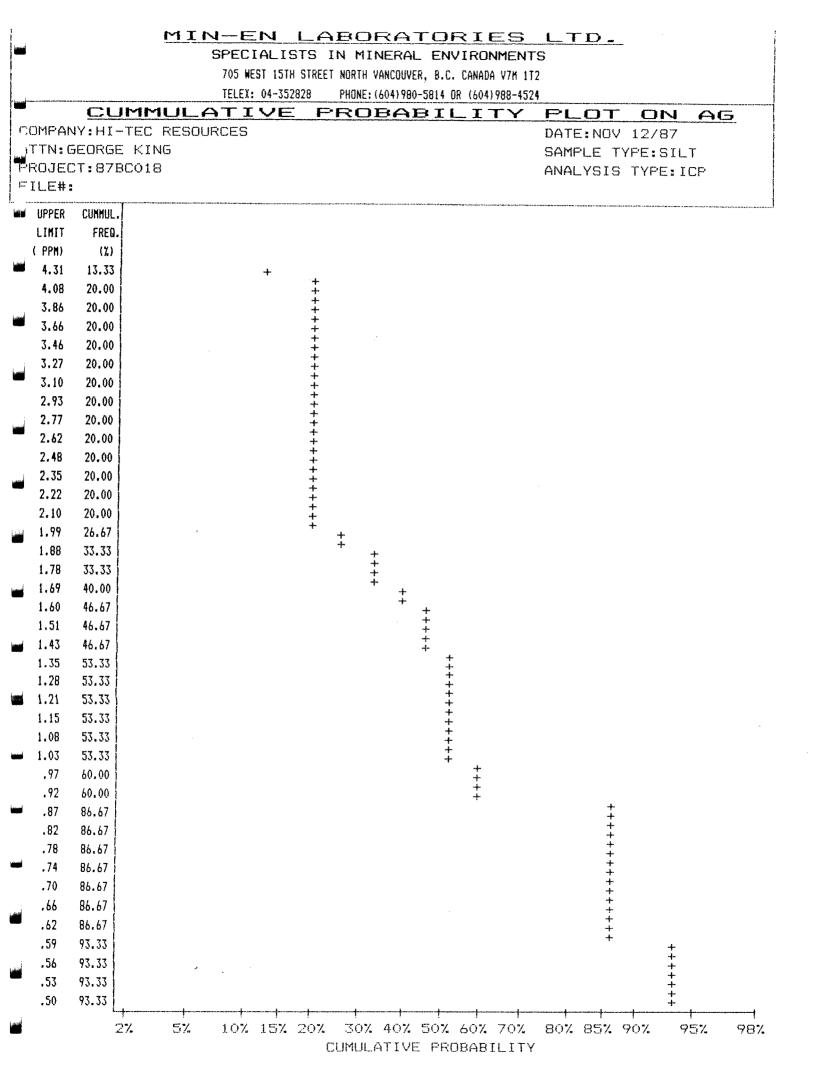
ample Lumber	AU G/TONNE	AU ƏZ/TON	AG G/TONNE	AG DZ/TON	TE PPM	
177 1 22 RV 3 KV 4 L7 5	1725.00	25.200 50.313 12.542	122.0 99.0 26.3	3.36	23.2 9.6 7.4 21.8 21.3	
KV 6	503.00	14.671	16.2	0.47	17.2	

der Liffed by ...

MINHER MAGRATORIES LED.

ATTENT					041986-581	4 GR (604)788-	4324	+ 775E A	BER BEDEREN	• 087E:507-26, 17
L PEN N			1743 * 224 *	SV 4	82.5					
AG	293.1	85.7	58.8	20.3	8.1	τ.υ 				
AL.	12040	7930	3640	1950	1930	7130				
AS	67	44	24	25	6	17				
5	22	B	5		10 10					
3A	131		190			429				
9E	4.3	1,2	.8	.7		1,4	~ ~ ~			
6I	141	1869	5825	755	971	1533				
SA .	2130	14080	38¢		210	550				
				340 7 0						
2D	67.4	19.4	9.6		1.9 (1					
10 		12	12	10	18	14				
28			74	20	17	22				
Ē	156720	39050	27370	25610	51010					
ι. (138720 5370	37030 4110	1160			48190				
				740	480	3490				
4	10	ų	1	1	1	2				
16 	9320	6600 	1110	1000	650	3690				
IN	2652	1744	- 695	332	203	413				
10	i	1	3	1	1	1				
IA A	90	50	30	20	20	50				
1	6	6	5		1	1				
	310	:90		50	ر 99	140				
			7V 		vr 	14V • • • • • • • •				
B	22708	5373	3058	960	226	172				
B	560	161	71	37	18	11				
R	13	íó	15	5	5	8				
Ή	1	1	1	1	1	1				
	i	1	i	1	1	1				
		. .					• • • • • • • •			
	22.1	22.0	9.9	5.1	7.7	17.5				
H	5827	1551	847	374	150	94				
A	6	4	2	i	2	2				
N	2	ź	í	1	3	Ë.				
	8	3	2	1	1	2				
R	99	146	200	317	146	188				

APPENDIX IV-B


Statistical Analysis of Data for Stream Sediment Geochemical Survey

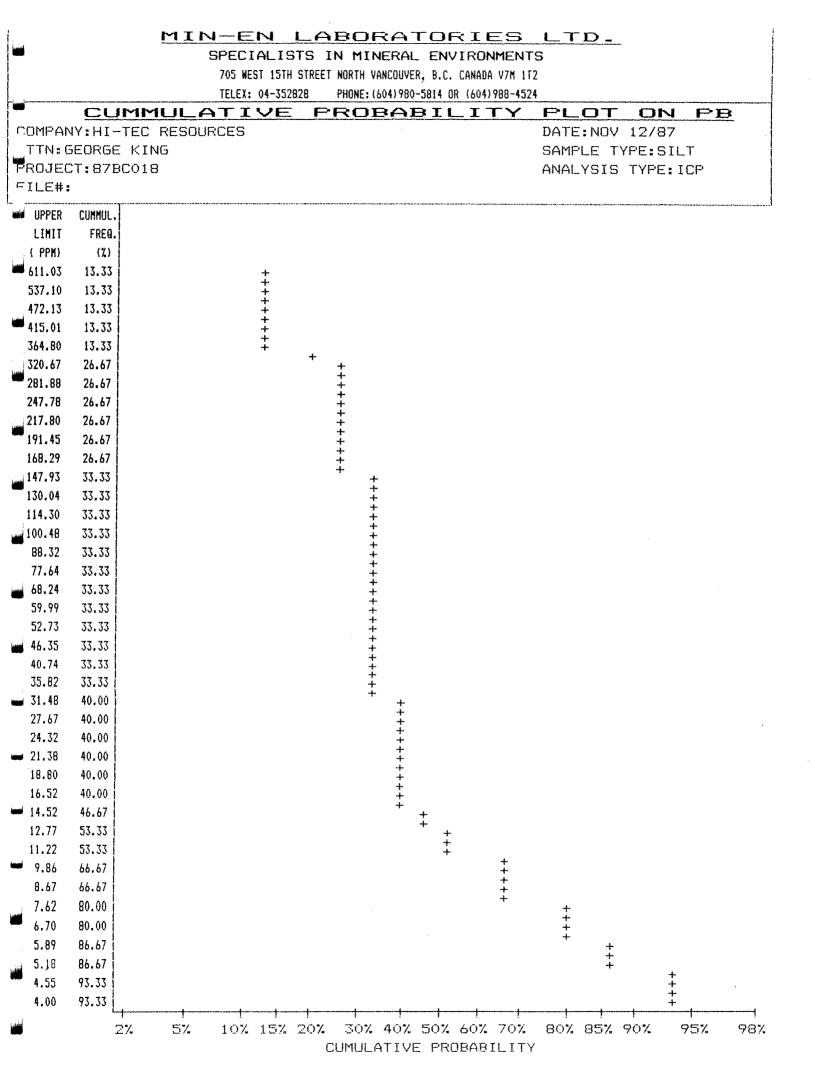
	ATORIES LTD.
SPECIALISTS IN MINE	
705 WEST 15TH STREET NORTH VAN	COUVER, B.C. CANADA V7M 1T2
TELEX: 04-352828 PHONE: (60	
CORRELATION C	DEFFICIENTS
COMPANY:HI-TEC RESOURCES	DATE:NOV 12/87
JTTN:GEORGE KING	SAMPLE TYPE:SILT
PROJECT: 87BC018	ANALYSIS TYPE: ICP
FILE#:	
THE TABLE BELOW REPRESENTS THE PEARSON	CORRELATION MATRIX
THE TABLE BELOW REPRESENTS THE PEARSON	
SHOWING THE INTER-ELEMENT CORRELATION	COEFFICIENTS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION	COEFFICIENTS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION	COEFFICIENTS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION EXCEED THEIR CRITICAL VALUE FOR .01 LE IN DARKER PRINT AND UNDERLINED.	COEFFICIENTS. THOSE VALUES THAT
SHOWING THE INTER-ELEMENT CORRELATION EXCEED THEIR CRITICAL VALUE FOR .01 LE IN DARKER PRINT AND UNDERLINED.	COEFFICIENTS. THOSE VALUES THAT VEL OF SIGNIFICANCE ARE SHOWN
SHOWING THE INTER-ELEMENT CORRELATION EXCEED THEIR CRITICAL VALUE FOR .01 LE IN DARKER PRINT AND UNDERLINED. AG AS CU PB SB 2	COEFFICIENTS. THOSE VALUES THAT VEL OF SIGNIFICANCE ARE SHOWN N AU 06163
SHOWING THE INTER-ELEMENT CORRELATION EXCEED THEIR CRITICAL VALUE FOR .01 LE IN DARKER PRINT AND UNDERLINED. AG AS CU PB SB 2 AG 1.000 <u>.796</u> .169 <u>.954</u> <u>.944</u> <u>.90</u>	COEFFICIENTS. THOSE VALUES THAT VEL OF SIGNIFICANCE ARE SHOWN N AU 06163 16194
SHOWING THE INTER-ELEMENT CORRELATIONEXCEED THEIR CRITICAL VALUE FOR .01 LEIN DARKER PRINT AND UNDERLINED.AGAGAGSCUCUPBSBS1.000.234.842.924.925CU1.000.188.206	COEFFICIENTS. THOSE VALUES THAT VEL OF SIGNIFICANCE ARE SHOWN N AU 06163 16194 12276
SHOWING THE INTER-ELEMENT CORRELATION EXCEED THEIR CRITICAL VALUE FOR .01 LE IN DARKER PRINT AND UNDERLINED. AG AG AG AS CU PB S 1.000 .796 .169 .954 .944 .90 .234 .842 .924 .95 1.000 .100 .188 .90 .169	COEFFICIENTS. THOSE VALUES THAT VEL OF SIGNIFICANCE ARE SHOWN AU 06163 06194 02276 09174
SHOWING THE INTER-ELEMENT CORRELATION EXCEED THEIR CRITICAL VALUE FOR .01 LE IN DARKER PRINT AND UNDERLINED. AG AG AG 1.000 .776 .169 .954 .900 .234 .842 .900 .1000 .188 .98 .1.000 .952 .99 .97	COEFFICIENTS. THOSE VALUES THAT VEL OF SIGNIFICANCE ARE SHOWN N AU 06163 16194 12276

÷

			NERAL ENVIRONMENTS	
			VANCOUVER, B.C. CANADA V7M 1T2 (604)980-5814 OR (604)988-4524	
e-			UMMARY ON A	F
OMPANY:HI-TEC				NOV 12/87
TTN:GEORGE KI				LE TYPE:SILT
ROJECT:87BC01				YSIS TYPE: ICP
ILE#:				a many any games of a to trave Will ally frame of
NUMBER OF S	SAMPLES: 15		5 HIGHEST AG V	ALUES:
MAXIMUM VAL	.UE: 7.	OO PPM	87TKL 21	7.0 PPM
MINIMUM VAL	.UE: .	50 PPM	87TSL 15 40M	
MEAN:	2.	02 PPM	87TKL 43	4.3 PPM
STD. DEVIAT	ION: 1.	86 PPM	87TSL 16 40M	2.0 PPM
COEFF. OF V	ARIATION: .	92	87TML8	1.9 PPM
HISTOGRAM FO	IR AG	CLASS INT	ERVAL = .21	******
MID CLASS				
	6.67			******
	13.33			
	26.67		INTER FALLERING HALING MARKING AND	
	6.67			
	0.00			
1.44				
	13.33			
	<u> </u>			
1.86				
1.86 2.07	6.67			
1.86 2.07 2.28	6.67 0.00			
1.86 2.07 2.28 2.49	6.67 0.00 0.00			
1.86 2.07 2.28	6.67 0.00			
1.86 2.07 2.28 2.49 2.70 2.91	6.67 0.00 0.00 0.00			
1.86 2.07 2.28 2.49 2.70	6.67 0.00 0.00 0.00 0.00	DER RESERVE SKARTER DER RESERVE		
1.86 2.07 2.28 2.49 2.70 2.91 3.12	6.67 0.00 0.00 0.00 0.00 0.00			
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33	6.67 0.00 0.00 0.00 0.00 0.00	DER FRANK OK HER HER DER FRANK HER DER F Her der Frank her der Frank h		
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33 3.54	6.67 0.00 0.00 0.00 0.00 0.00 0.00	DERFECTOR STATE		
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33 3.54 3.75	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33 3.54 3.75 3.96	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33 3.54 3.75 3.96 4.17	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00		· •	
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33 3.54 3.75 3.96 4.17 4.38	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33 3.54 3.75 3.96 4.17 4.38 4.59	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
1.86 2.07 2.28 2.49 2.70 2.91 3.12 3.33 3.54 3.75 3.96 4.17 4.38 4.59	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		13.33%	

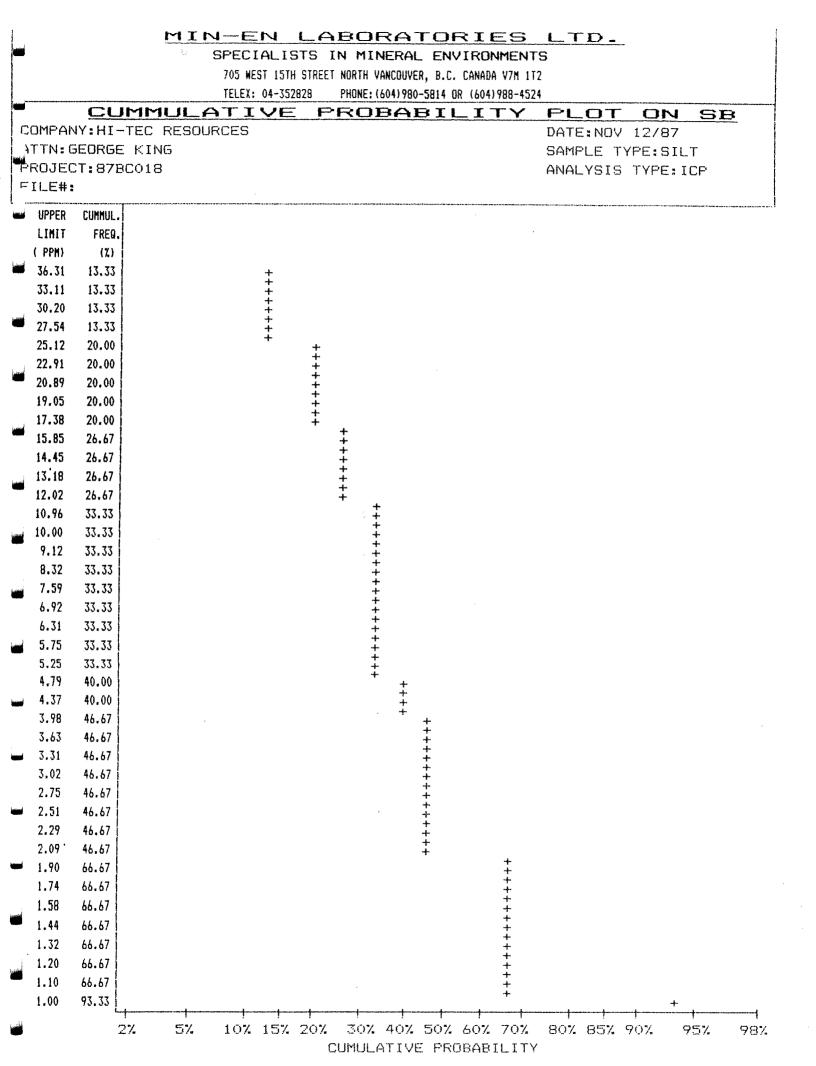
			N MINERAL ENVIR		
			NORTH VANCOUVER, B.C. CAN		
			PHONE: (604) 980-5814 DR (60	و زیر سین در این در این است است است این و برای و می و مین و با این و مشاو مشاور در افغان و است است رو در	
COMPANY:HI-TEC			SUMMARY		<u>></u> :NOV 12/87
ATTN:GEORGE KI					LE TYPE:SILT
ROJECT:87BC01					YSIS TYPE: ICP
FILE#:				/ // TI Jua	
······································			W e and W a		
NUMBER OF S			G. 11.	GHEST AS V	
	HELES: 13 UE: 207.(15 15 $40M$	
	UE: 207.0			(L 21	
MEAN:	42.6				125 PPM
	ION: 63.6			(L 43	70 PPM
	ARIATION:1.4		1	1L9	39 PPM
turturtunt titt turði ¥	,,, (a,) ; ; <u>1</u> (a) (3 m d. 8				
HISTOGRAM FO	R AS	CLASS	INTERVAL = 6.7	4	
MID CLASS	a a a a a a a a a a a a a a a a a a a		······································		
MID ULASS PPM	LLASS %				
<u>r r i i</u>	/=				
	6.67				
	53.33		u Hran Hank Hank Han ya		
12.05	6.67				
18.75					
25.45					
32.15					
38.85	6.67				
45.55					
52.25	0.00	į			
58.95	0.00				
65.65	0.00				
72.35	6.67				
79.05	0.00				
85.75	0.00				
92.45	0.00				
99.15	0.00				
105.85	0.00				
112.55	0.00				
119.25	0.00				
1 ~~ ~ ~ ~ ~	6.67				
125.95	0.00	1			
132.65					
	8.00				
132.65	8.00	0.00%		·····	53.33%

ŝ

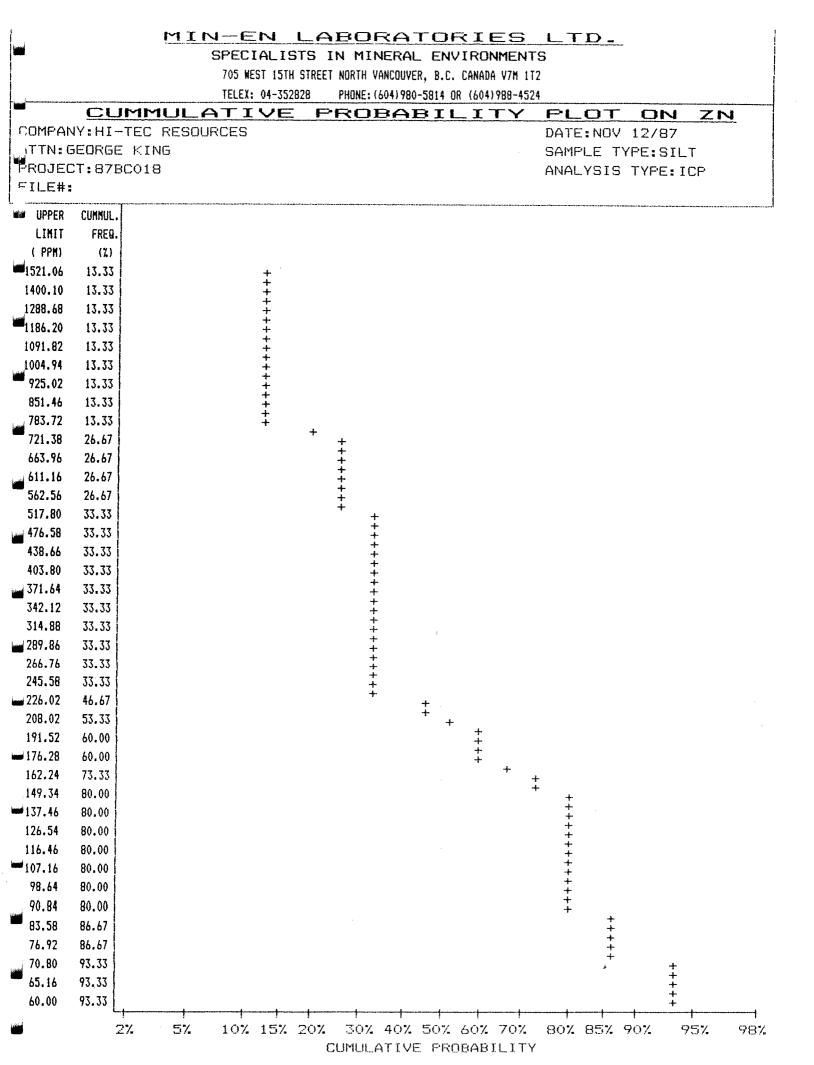

			705 WEST 15TH TELEX: 04-352							NADA V71 604)988:						
	CU	MMULA	TIVE	F		*****		******	****	IT		PL		ON	AS	3
		TEC RESOUR	CES								I	DATE:	NOV	12/87		
TTN:	GEORGE	KING												/PE:SI		
ROJE	CT:878	C018									f	ANALY	/SIS	TYPE:	ICP	
ILE#																
UPPER	CUMMUL.															
LIMIT	FREQ.															
(PPM)	(%)															
124.46	20.00			+ +												
111.95	20.00			++												
100.70 90.58	20.00 20.00			+												
90.38 81.48	20.00			* * * * * * * * * *												
73.29	20.00			++												
65.92	26.67			4	+											
59.30	26.67				+ + + + + + + + + +											
53.34	26.67				+++++++++++++++++++++++++++++++++++++++											
47.98	26.67															
43.15	26.67				+ +											
38.82	33.33				+	+										
34.92	33.33					++										
31.41	33.33					+ +										
28.25	33.33					+++										
25.41	33.33					+										
22.86	33.33			•		+										
20,56	33.33					+										
18.49	33.33					+										
16.64	33.33					+ + +	+									
14.96	40.00						++									
13.46	40.00						+ +									
12.11	40.00			•			+	+								
10.89 9.80	46.67 46.67							++								
8.81	46.67							++								
7.93	46.67							++								
7.13	46.67							++++++++								
6.41	53.33							Т.	+ + +							
5.77	66.67								+	÷						
5.19	66.67									+ + +						
4.67	73.33										+ +					
4.20	73.33										+ + +					
3.78	80.00										•	+ +				
3.40	80.00											+ + + +				
3.06	B0.00											++				
2.75	86.67											-	+ +			
2.47	86.67												+ + + + + + + + + +			
2.22	86.67												+ +			
2.00	93.33												+	+		

				1)980-5814 OR (604)98	****		
			<u>. su</u>	MMARY			10/07
MPANY:HI-TEC TN:GEORGE KI		•				ATE: NOV	PE:SILT
OJECT:878C01							TYPE:ICP
LE#:	* *						E E I Laye II die Yaaf E
	·····						
NUMBER OF S	AMPLES: 15	i		5 HIGH	EST C	U VALUES	3:
MAXIMUM VAL				87TML5			92 PPM
MINIMUM VAL				87TSL		М	42 PPM
MEAN:		.13 PPM		87TKL			36 PPM
STD. DEVIAT				87TKL			35 PPM
COEFF. OF V	ARIATION:	. 65		87TGLO	20		34 PPM
HISTOGRAM FO	R CU	CLASS	INTER	√AL = 1.55		*****	7 12 1 21 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2
MID CLASS							
	%						
< 11.00	13.33						
11.77	6.67						
13.32	0.00						
14.87	6.67						
16.42	6.67						
17.97	0.00						
19.52	6.67						
21.07							
22.62	6.67						
24.17	0.00						
25.72	6.67						
27.27	0.00						
28.82	6.67						
30.37 31.92	6.67 0.00						
33.47	13.33	Manual Vicinitian					
35.02	10.00 6.67	EMILITURITOR AND A			nn unn nen An ti		13 1
36.57	6.67	Hand the second s	Republic restances of the state				
38.12	0.00		ni në së në shtë në shtë së	***************************************			
39.67	0.00						
41.22	0.00						
> 42.00	8.00						
		0.00%		6.67%	t-	ۍ ا	-+
		tur withur tur Am		FREQUENCY (7.)	.d. *	π, «α ^{τ,*} αα ^τ β ΒΙ

			MINERAL ENVIRO		
			NORTH VANCOUVER, B.C. CANAD		
		******	PHONE: (604) 980-5814 OR (604		
COMPANY: HI-TEC			SUMMARY		B NOV 12/87
TTN: GEORGE KI				*	LE TYPE:SILT
PROJECT: 87BC01					YSIS TYPE:ICP
-ILE#:				minter.	IDID ITELLU
ι					
NUMBER OF SI	AMDI 60. 15	**********	S. LIT	SHEST PB VI	
MAXIMUM VAL				_ 21	
MINIMUM VAL				 _ 15 40M	
	181.5				357 PPM
STD. DEVIAT				_ 16 40M	
COEFF. OF VI			87TMI		157 PPM
· · · · · · · · · · · · · · · · · · ·		-			
HISTOGRAM FO	R PB	CLASS	INTERVAL = 31.3		
MID CLASS	era annan en anna ar a bhair an	1977 - 1977 - 19 J 2000 - 19 - 2000 - 20 ^{- 2} 977 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		80 2 1 10 1 10 10 2 2 2 2 2 2 2 2 2 2 2 2	
	ULH35 %				
< 4.00					
19.65					
50.95	0.00				
82.25	0.00				
113.55					
144.85					
176.15	0.00				
207.45					
238.75	0.00				
270.05	0.00				
301.35	0.00				
332.65 363.95	6.67				
395.25	6.67 0.00				
426.55	0.00				
+∠O.JJ	0.00		· .		
457 OS	0.00				
457.85		1			
489.15		1			
489.15 520.45	0.00				
489.15 520.45 551.75	0.00				
489.15 520.45 551.75 583.05	0.00 0.00 0.00				
489.15 520.45 551.75 583.05 614.35	0.00				
489.15 520.45 551.75 583.05 614.35	0.00 0.00 0.00 0.00				

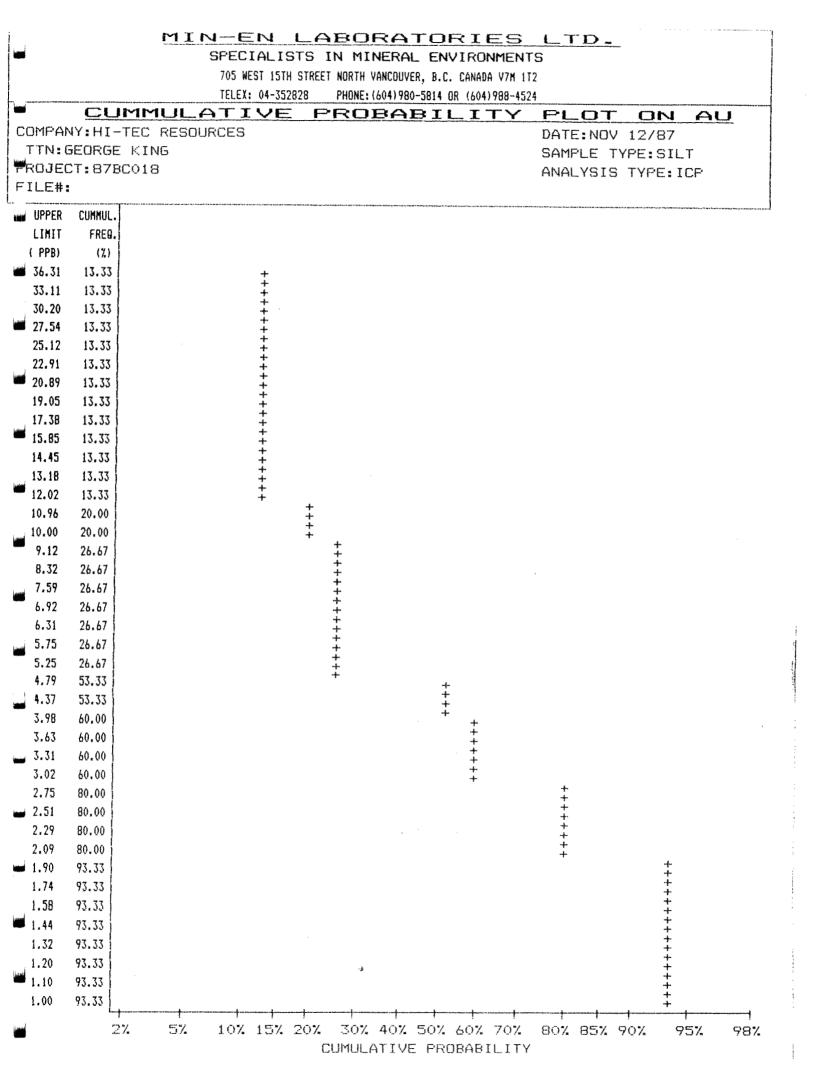


Jés


			MINERAL ENVIRON ORTH VANCOUVER, B.C. CANAD		
			HONE: (604) 980-5814 OR (604		
		ICAL	SUMMARY		≛ NOV 12/87
MPANY:HI-TEC TN:GEORGE KI					E TYPE:SILT
OJECT:87BC01					SIS TYPE:ICP
LE#:	O .				515 ITC:ICF
					1
NUMBER OF S	AMDIEC. 15		S UTO	SHEST SB VAI	
MAXIMUM VAL		OO PPM	1	_ 21	
MINIMUM VAL					
	10.			. 43	
STD. DEVIAT			i	_ 16 40M	
COEFF. OF V			87TML		12 PPM
					د و در این مراجع و مراجع و این این این مراجع و
HISTOGRAM FO	R SB	CLASS	INTERVAL = 1.95		
MID CLASS	CLASS	****			****
	7.				
< 1.00	6.67				
	53.33				
3.93	6.67			nono nananya analaka anananana ata	741(1779) (1799) (12) (12)
	6.67				
7.83	0.00				
9.78	0.00				
11.73	6.67				
13.68	0.00				
15.63	0.00				
17.58	6.67				
19.53	0.00				
21.48	0.00				
23.43	0.00				
25.38	6.67				
27.33	0.00				
29.28	0.00				
31.23	0.00	1			
33.18	0.00				
35.13	0.00				
37.08	0.00				
39.03	0.00				
> 40.00	8.00				
		0.00%	26.67%	1	53.33%

i .

	SPECI	ALISTS IN MI	RATORIES L NERAL ENVIRONMENTS VANCOUVER, B.C. CANADA V7M 1T2	
		********	(604)980-5814 DR (604)988-4524	
		ICAL S	UMMARY ON	
OMPANY:HI-TE				ATE:NOV 12/87
TTN:GEORGE K ROJECT:87BCO	1			MPLE TYPE:SILT
ILE#:	18		HI	ALYSIS TYPE: ICP
NUMBER OF	SAMPLES: 15		5 HIGHEST ZN	I VALUES:
MAXIMUM VA	_UE: 1901.0	O PPM	87TSL 15 401	1 1901 PPM
MINIMUM VA	_UE: 60.0	O PPM	87TKL 21	1702 PPM
MEAN:	482.6	O PPM	87TSL 16 40M	I 772 PPM
STD. DEVIA	TION: 580.7	O PPM	87TKL 43	726 PPM
COEFF. OF Y	VARIATION:1.2	20	87TML9	534 PPM
				44 4 4 4 4 5 5 5 1 5 1 5 1 5 1 5 1 5 1 5
HISTOGRAM F	DR ZN	CLASS INT	ERVAL = 82.1	
MID CLASS	CLASS			
PPM	7.			
< 60.00	6.67			
101.05				
183.15				
265.25	13.33			
347.35	0.00			
429.45	0.00			
511.55	6.67			
593.65	0.00			
675.75	0.00			
757.85	13.33			
839.95	0.00			
922.05	0.00			
1004.15	0.00			
1086.25	0.00			
1168.35	0.00			
1250.45	0.00			
1332.55	0.00			
1414.65	0.00			
	0.00			
1496.75	0.00			
1496.75 1578.85				
1496.75 1578.85 1660.95	0.00			
1496.75 1578.85				
1496.75 1578.85 1660.95	0.00 8.00		16.67%	33.33%


ŕ

			ERAL ENVIRONMENTS COUVER, B.C. CANADA V7N 1T2	
			4)980-5814 DR (604)988-4524	
<u>S</u> _	TATIST	TICAL SU	MMARY ON AL	L
MPANY:HI-TEC				NOV 12/87
TN:GEORGE KI				E TYPE:SILT
DJECT:87BC01	8		ANALY	SIS TYPE:ICP
LE#:		4r mer manne (sealt a sea a sea ta	N# 501100 201116 8/ 19 21 8-21 (01)	
NUMBER OF S			5 HIGHEST AU VA	
MAXIMUM VAL			87TML1 40M	50 PPB
MINIMUM VAL		.00 PPB	87TML2 40M	39 PPB
MEAN: STD. DEVIAT		.93 PPB	87TKL002	
COEFF. OF V			87TSL 16 40M 87TKL 43	10 PPB 5 PPB
uullin Uf" V	·›። ·›። ·›። ·›። ·›።	ه د است		U FFD
ISTOGRAM FO	IR AU	CLASS INTER	VAL = 1.9	
1ID CLASS				
11D CLASS PPB				
	6.67			
	20.00			
	26.67			
	26.67			
/.60	0.00	PROJECTI (STOREST (STORESTORE) STORESTORESTORESTORESTORESTORESTORESTORE		
0 ==	L 17	· · · · · · · · · · · · · · · · · · ·		
9.55				
11.45	6.67			
11.45 13.35	6.67 0.00			
11.45 13.35 15.25	6.67 0.00 0.00			
11.45 13.35	6.67 0.00 0.00 0.00			
11.45 13.35 15.25 17.15	6.67 0.00 0.00 0.00 0.00			
11.45 13.35 15.25 17.15 19.05	6.67 0.00 0.00 0.00			
11.45 13.35 15.25 17.15 19.05 20.95	6.67 0.00 0.00 0.00 0.00			
11.45 13.35 15.25 17.15 19.05 20.95 22.85	6.67 0.00 0.00 0.00 0.00 0.00			
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75	6.67 0.00 0.00 0.00 0.00 0.00 0.00			·
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75 26.65	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			. `
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75 26.65 28.55	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			.`
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75 26.65 28.55 30.45	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			.`
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75 26.65 28.55 30.45 32.35	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			. `
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75 26.65 28.55 30.45 32.35 34.25	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			·
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75 26.65 28.55 30.45 32.35 34.25 36.15	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			.`
11.45 13.35 15.25 17.15 19.05 20.95 22.85 24.75 26.65 28.55 30.45 32.35 34.25 36.15 38.05	6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00			

i din

ونفأو

APPENDIX V

Description of Rock Grab Samples

ذ

DESCRIPTION OF ROCK GRAB SAMPLES

- TKR-001 Quartz, calcite <u>+</u> siderite vein in quartzite (4 cm wide).
- TKR-003 Pyrite bearing fracture in quartzite, with minor associated galena.
- TKR-004 Pyrite bearing shear zone in quartzite.
- TKR-005 Quartz, pyrite rich shear zone in quartzite.
- TKR-006 Pyrite in quartz vein (4 cm wide) host rock quartzite, near limestone contact.
- TKR-007 Pyrite bearing, quartz vein material in limestone.
- TKR-008 Pyrite bearing quartz from 30 cm wide vein, in quartzite.
- TKR-009 Minor pyrite from shear zone in quartzite, intense Fe and Mn staining on outcrop.
- TKR-010 Pyritiferous rhyolitic material, very probably tuffaceous.
- TKR-011 Sp, ga bearing limestone.
- TKR-012 As above.
- TKR-013 A 1.5 m long chip sample containing finely banded, calcareous iron-stone, containing finely disseminated galena and sphalerite.
- TKR-014 A 106 cm long chip sample of calcareous ironstone, with finely disseminated galena. There is considerable limonite staining associated with this one.
- TKR-015 An 82 cm long chip sample taken across a calcareous ironstone bed. There is disseminated galena in this sample.
- TKR-016 A 98 cm long chip sample of banded carbonate material.
- TKR-017 A 78 cm long chip sample of calcareous ironstone. The bedding at the locality of samples TKR-013 to TKR-017 strikes 356° , and dips $53^{\circ}W$.
- TKR-018 Andesitic tuff breccia, with pumice fragments.

- TKR-019 Whitish-grey, silicified limestone, with jasperoid horizons.
- TKR-020 Pb-Zn rich horizon in calcareous ironstone.
- TKR-022 Pyrite and chalcopyrite in 1 cm wide veinlet in volcaniclastic rocks.
- TKR-023 A quartz-calcite vein (7 cm wide) which runs perpendicular to a fault with intense clay alteration. Minor pyrite.
- TKR-024 Sample from a 5 cm wide pyritiferous quartz veinlet in arkosic wacke.
- TKR-025 From a tourmaline bearing quartz vein in grits just below the contact with the volcanics.
- TKR-026 From a 3 cm wide quartz-calcite vein in grits with minor pyrite.
- TKR-027 Pyrite bearing quartz vein in volcaniclastics (float).
- TKR-028
 - -029 Do not exist
- TKR-030 Quartz in tension gash in shear zone in intermediate volcanics
- TKR-031 As above.
- TKR-032 As above.
- TKR-033 As above.
- TKR-034 As above.
- TKR-035 Quartz + chlorite vein in andesites.
- TKR-036 8 cm wide quartz vein with minor chlorite(?) in andesite.
- TKR-037 Quartz-filled tension gashes in shear zone in andesite.
- TKR-038 A 30 cm chip across jasperoid iron stone, limestone <u>+</u> barite, Ticker Tape unit.
- TKR-039 Bleached tuffaceous (rhyolitic) material with 3% disseminated pyrite.
- TKR-040 Gossan associated with ironstone.

- TKR-041 Gossan associated with ironstone.
- TKR-042 Dark carbonate bed with minor pyrite.
- TGR-001 Pyrite bearing granite.
- TGR-002 Intrusive, sm. % of pyrite.
- TGR-003 Sphalerite? along fracture.
- TGR-004 Float, with pyrite.
- TGR-005 Dike material, pyrite and some malachite?
- TGR-006 Float, maj. pyrite, very calcareous.
- TGR-007 Disseminated pyrite with limonite.
- TGR-008 Float; limonite, quartz, pyrite, dark green powder.
- TGR-009 Float; maj. pyrite, quartz, epidote?
- TGR-010 Float; disseminate pyrite.
- TGR-011 Float; pyrite along limestone fractures.
- TGR-012 Float; massive pyrite, in heavily siliceous rock with jasper and quartz.
- TGR-013 Float; quartz with pyrite, moly., and limestone.
- TGR-014 Outcrop; disseminated pyrite in limestone, rotten rock.
- TGR-015 Outcrop; pyrite veining.
- TGR-016 Outcrop; gossan, pyrite, arsenopyrite, small amount of limestone, and quartz in quartzite.
- TGR-017 Outcrop/Subcrop; heavily disseminated pyrite, arsenopyrite(?) in quartzite.
- TGR-018 Float; pyrite, sphalerite, quartz.
- TGR-019 Float; sphalerite, copper (malachite staining).
- TGR-021 Outcrop?; large number of disseminated pyrite (arsenopyrite?).
- TGR-022 Float; malachite (staining), pyrite, limonite, grey/black min.

- TGR-023 Float; hematite? in quartzite.
- TGR-024 Outcrop; pyrite well mineralized.
- TGR-025 Outcrop; good disseminated pyrite.
- TGR-027 Outcrop; good disseminated pyrite (in quartzite?)
- TGR-028 Outcrop; large number of pyrite (arseno?) in quartzite.
- TGR-029 Float and Outcrop; band of pyrite in quartzite.
- TGR-030 Outcrop; pyrite in quartz stringer and disseminated pyrite in quartzite.
- TGR-031 Outcrop; large number of pyrite, biotite, feldspar.
- TGR-032 Outcrop; (small fault/vein); pyrite, copper and magnetite.
- TGR-033 Float; pyrite, copper?, hematite in limestone.
- TGR-034 Float; pyrite crystals? in limestone.
- TSR-001 Talus fine grained inter. intrusive with minor disseminated pyrite and hematite on fracture surfaces.
- TSR-002 Outcrop; rusty wx. silic. zone in argillite. 20 cm wide with limonte, fine grained gal.
- TSR-003 Outcrop; Irregular calcite vein 1-15 cm wide, exposed over 12 m. Contains .5-2% fine grained gal.
- TSR-004 Outcrop; As above.
- TSR-005 Outcrop; composite sample of galena bearing, altered limestone.
- TSR-006 Outcrop; silic. zone near above, cont fine gr. hematite.
- TSR-007 Outcrop; 3m wide felsic dyke with pyrite.
- TSR-008 Outcrop; limestone with gal., sphalerite.
- TSR-009 Outcrop; higrade grab gal, sphalerite.
- TSR-010 Outcrop; King Vein rep. grab of silic. wallrock.

- TSR-011 Outcrop; 10-15cm quartz vein. Milky white, some xtal terminations. Minor pyrite, chalcopyrite in wall rock.
- TSR-012 Outcrop; vein 8-10cm wide. Blobs of pyrite. Higrade grab.
- TSR-013 Outcrop; siderite and pyrite in wall rock above vein.
- TSR-014 Outcrop; vein with 10cm wide contains gal., stibnite and visible gold.
- TMR-010 Outcrop; large amount of sulphide seeps massive pyrite, chalcopyrite, arsenopyrite, possible sphalerite quartz in altered intr.?
- TMR-011 Outcrop; minor pyrite, host rock, altered intr/sed? some quartz.
- TMR-012 Outcrop; silic., pyrite, ars., chalcopyrite random grab.
- TMR-013 Outcrop; high grade grab, massive pyrite, chalcopyrite, poss. sphalerite, arseno.
- TMR-014 Outcrop; 5 cm S. of R-13 grab <u>c</u> massive pyrite, ars., chalcopyrite.
- TMR-015 Outcrop; pyrite and wax out sulphides.
- TMR-016 Outcrop; altered sed. pyrite, hematite, poss. Zn oxide.
- TMR-017 Outcrop; same as above only north side exposure.
- TMR-018 Float; altered sed., good pyrite in quartz.
- TMR-019 Outcrop; altered rhyolite, occ. pyrite, heavily oxidized faces.
- TMR-020 Outcrop; disseminated arsenopyrite throughout sed. below altered limestone dykes.
- TMR-021 Outcrop; bedded shales and limestones, occasional pyrite.
- TMR-022 Outcrop; same as above 5 m south.
- TMR-023 Outcrop; limestone beds with good pyrite, hematite and mag.

- TMR-024 Outcrop; banded dolomite and limestone with galena and sphalerite, pyrite, occasional chalcopyrite.
- TMR-025 Outcrop; series of limestone and dolomite beds with Pb, Zn, Py, occasional chalcopyrite up to 2m wide.
- TMR-026 Outcrop; same as TMR-025
- TMR-027 Outcrop; same as TMR-025
- TMR-028 Oucrop; banded pyrite and disseminated Pb in limestine.
- TMR-029 Outcrop; limestone with Pb and Zn close to shear.

TMR-50 Narrow (2.5 cm) quartz vein @ 5300'.

KV-1 Vein margin - 3-4 cm pod grab.

KV-2 20 cm chip across vein and wallrock (incl.)

KV-3 High grade grab of vein material.

KV-4 Grab of vein material.

KV-5 Grab of vein material.

KV-6 Random grab sample of vein material.

APPENDIX VI

Analytical Data for Core Samples

i ante

1987 TICKER TAPE DRILLING

TTDDH#1 Grid Coordinates: 2+235 1+10W 090⁰ @ -45⁰ Total Depth: 202' (61.6 m) Assay Tag #s 16001-16058 Bag #1: 16001-16012 Total 58 Samples: 39 - Au fire AA, Ag AA Bag #2: 16013-16024 19 - Au, Ag, Pb, Zn Assay Bag #3: 16025-16038 Cu, Cd, Ba, As, Sb ICP Bag #4: 16039-16049 Bag #5: 16050-16058 TTDDH#2 Grid Coordinates: 2+23S 1+10W 090° @ -60° 139' (42.4 m) Total Depth: Assay Tag #s 16059-16094 Bag #6: 16059-16068 Total 36 Samples: 35 - Au fire AA, Ag AA Bag #7: 16069-16078 1 - Au, Ag, Pb, Zn Assay Bag #8: 16079-16087 Bag #9: 16088-16094 TTDDH#3 Grid Coordinates: 2+235 1+10W 090⁰ @ -75⁰ Total Depth: 149' (45.4 m) Assay Tag #s 16095-16134 Bag #10: 16095-16103 Total 40 Samples: 22 - Au fire AA, Aq AA Bag #11: 16104-16112 18 - Au, Ag, Pb, Zn Assay Bag #12: 16113-16123 Bag #13: 16124-16134 TTDDH#4 Grid Coordinates: 2+23S 1+10W 065⁰ @ -60⁰ Total Depth: 242' (73.9 m) Assay Tag #s 16135-16204 Bag #14: 16135-16143 Total 70 Samples: 56 - Au fire AA, Aq AA Bag #15: 16144-16154 14 - Au, Ag, Pb, Zn Assay Bag #16: 16155-16164 Bag #17: 16165-16174 Bag #18: 16175-16186 Bag #19: 16187-16196 Bag #20: 16197-16204

TTDDH#5 Grid Coordinates: 2+23S 1+10W 130° e -60° Total Depth: 200' (61 m) Assay Tag #s 16205-16261 Bag #21: 16205-16214 Total 57 Samples: 41 - Au fire AA, Ag AA Bag #22: 16215-16224 16 - Au, Ag, Pb, Zn Assay Bag #23: 16225-16233 Bag #24: 16234-16242 Bag #25: 16243-16252 Bag #26: 16253-16261 TTDDH#6 Grid Coordinates: 2+23S 1+10W 130° @ -60° Total Depth: 200' (60.9 m) Assay Tag #s 16262-16309 Bag #27: Total 48 Samples: 16262-16271 22 - Au fire AA, Ag AA Bag #28: 16272-16281 26 - Au, Ag, Pb, Zn Assay Bag #29: 16282-16291 Bag #30: 16292-16301 Bag #31: 16302-16309 TTDDH#7 Grid Coordinates: 2+23S 1+10W 235° @ -45° Total Depth: 206' (62.8 m) Assay Tag #s 16310-16368 Bag #32: 16310-16319 Total 59 Samples: 59 - Au fire AA, Ag AA Bag #33: 16320-16329 Bag #34: 16330-16339 Bag #35: 16340-16349 Bag #36: 16350-16359 Bag #37: 16360-16368

TTDDH #1

÷.

Grid Coordinates: 2+23S 1+10W Drilled @ 090⁰/-45⁰

E

E

Tag No.	Meters	A.A.	Assay	Tag No.	Meters	A.A.	Assay
16001	5.18 - 6.0	Х		16030	32.0 - 33.0	X	
16002	6.0 - 7.0	Х		16031	33.0 - 34.0	x	
16003	7.0 - 7.49	Х		16032	34.0 - 35.0	x	
16004	7.49 - 8.05		х	16033	35.0 - 36.0	X	
16005	8.05 - 8.40	Х		16034	36.0 - 37.0	X	
16006	8.40 - 9.39		х	16035	37.0 - 38.0	x	
16007	9.39 - 10.0	Х		16036	38.0 - 39.0	x	
16008	10.0 - 11.0		х	16037	39.0 - 40.0	x	
16009	11.0 - 12.0		х	16038	40.0 - 41.0	x	
16010	12.0 - 13.0	Х		16039	41.0 - 41.96	x	
16011	13.0 - 14.0		х	16040	41.96 - 43.0	x	
16012	14.0 - 15.0		х	16041	43.0 - 44.0	x	
16013	15.0 - 16.0		х	16042	44.0 - 45.0	X	
16014	16.0 - 17.0		х	16043	45.0 - 46.0	x	
16015	17.0 - 18.0		X	16044	46.0 - 47.0	x	
16016	18.0 - 19.0		х	16045	47.0 - 48.0	X	
16017	19.0 - 20.0		х	16046	48.0 - 49.0	x	
16018	20.0 - 21.0		Х	16047	49.0 - 50.0	X	
16019	21.0 - 22.0		Х	16048	50.0 - 51.0	X	
16020	22.0 - 23.0		х	16049	51.0 - 52.0	X	
16021	23.0 - 24.0		Х	16050	52.0 - 53.0	X	
16022	24.0 - 25.0		Х	16051	53.0 - 54.0	X	
16023	25.0 - 26.0		Х	16052	54.0 - 55.0	X	
16024	26.0 - 27.0		Х	16053	55.0 - 56.0	x	
16025	27.0 - 28.0		Х	16054	56.0 - 57.0	x	
16026	28.0 - 29.0	х		16055	57.0 - 58.0	x	
16027	29.0 - 30.0	х		16056	58.0 - 60.0	x	
16028	30.0 - 31.0	х		16057	60.0 - 61.0	x	
16029	31.0 - 32.0	х		16058	61.0 - 61.6	x	

EOH

E

E

TTDDH #2

÷.

Grid Coordinates: 2+23S 1+10W Drilled @ 090⁰/-60⁰

E

Tag No.	No. Meters A.		Meters A.A. Assay		Assay	Tag No.	Meters	A.A.	Assay
16059	4.71 - 6.0	х		16077	23.0 - 24.0	х			
16060	6.0 - 7.0	Х		16078	24.0 - 25.0	x			
16061	7.0 - 8.0	Х		16079	25.0 - 25.61	x			
16062	8.0 - 9.0	х		16080	26.0 - 27.0	X			
16063	9.0 - 10.0	Х		16081	27.0 - 28.0	x			
16064	10.0 - 11.0		Х	16082	28.0 - 29.0	X			
16065	11.0 - 12.0	Х		16083	29.0 - 31.0	X			
16066	12.0 - 13.0	Х		16084	31.0 - 32.0	x			
16067	13.0 - 14.0	х		16085	32.0 - 33.0	X			
16068	14.0 - 15.0	х		16086	33.0 - 34.0	X			
16069	15.0 - 16.0	х		16087	34.0 - 35.0	X			
16070	16.0 - 17.0	х		16088	35.0 - 36.0	X			
16071	17.0 - 18.0	х		16089	36.0 - 37.0	X			
16072	18.0 - 19.0	х		16090	37.0 - 38.0	X			
16073	19.0 - 20.0	х		16091	38.0 - 39.0	X			
16074	20.0 - 21.0	x		16092	39.0 - 40.0	X			
16075	21.0 - 22.0	х		16093	40.0 - 41.0	X			
16076	22.0 - 23.0	x		16094	41.0 - 42.38	x			
				··· • •	EOH				

Ĩ

TTDDH #3

ŧ.

L

ſ

Grid Coordinates: 2+23S 1+10W Drilled @ 090⁰/-75⁰

E.

E

E

Tag No.	Meters	A.A.	Assay	Tag No.	Meters	A.A.	Assay
16095	4.57 - 6.0	х		16115	25.0 - 26.0		х
16096	6.0 - 7.0	Х		16116	26.0 - 27.0	х	
16097	7.0 - 8.0	х		16117	27.0 - 28.0	x	
16098	8.0 - 9.0		х	16118	28.0 - 29.0	x	
16099	9.0 - 10.0		x	16119	29.0 - 30.0	x	
16100	10.0 - 11.0		x	16120	30.0 - 31.0	x	
16101	11.0 - 12.0		x	16121	31.0 - 32.0	x	
16102	12.0 - 13.0		x	16122	32.0 - 33.0	x	
16103	13.0 - 14.0		x	16123	33.0 - 34.0	x	
16104	14.0 - 15.0		x	16124	34.0 - 35.0	x	
16105	15.0 - 16.0		x	16125	35.0 - 36.0	x	
16106	16.0 - 17.0		x	16126	36.0 - 37.0	x	
16107	17.0 - 18.0		x	16127	37.0 - 38.0	x	
16108	18.0 - 19.0		x	16128	38.0 - 39.0	x	
16109	19.0 - 20.0		x	16129	39.0 - 40.0	x	
16110	20.0 - 21.0		x	16130	40.0 - 41.0	x	
16111	21.0 - 22.0		x	16131	41.0 - 42.0	x	
16112	22.0 - 23.0		x	16132	42.0 - 43.0	x	
16113	23.0 - 24.0		x	16133	43.0 - 44.0	x	
16114	24.0 - 25.0		X	16134	44.0 - 45.43	x	

EOH

1987 TICKER TAPE DRILLING

TTDDH #4

۰.

Grid Coordinates: 2+235 1+10W Drilled @ 065⁰/-69⁰

Tag No.	Meters	A.A.	Assay	Tag No.	Meters	A.A.	Assay
16135	3.05 - 4.0	X		16170	39.0 - 40.0	х	
16136	4.0 - 5.0	X		16171	40.0 - 41.0	X	
16137	5.0 - 6.0	X		16172	41.0 - 42.0	X	
16138	6.0 - 7.0		X	16173	42.0 - 43.0	X	
16139	7.0 - 8.0		x	16174	43.0 - 44.0	X	
16140	8.0 - 9.0		x	16175	43.0 - 44.0	X	
16141	9.0 - 10.0		x	16176	44.0 - 45.0 45.0 - 46.0	X	
16142	10.0 - 11.0		x	16177	46.0 - 47.0	X	
16143	11.0 - 12.0		x	16178	47.0 - 48.0	x	
16144	12.0 - 13.0		x	16179	47.0 - 48.0 48.0 - 49.0	X	
16145	13.0 - 14.0		x	16180	49.0 - 50.0	X	
16146	14.0 - 15.0		x	16181	49.0 - 50.0	X	
16147	15.0 - 16.0	х	1	16182	51.0 - 52.0	X	
16148	16.0 - 17.0	x		16183	51.0 - 52.0 52.0 - 53.0	X	
16149	17.0 - 18.0	X		16184	52.0 - 53.0	X	
16150	18.0 - 19.0	x		16185	53.0 - 54.0 54.0 - 55.0	X	
16151	19.0 - 20.0	21	х	16186	54.0 - 55.0 55.0 - 56.0	X	
16152	20.0 - 21.0		X	16187	56.0 - 57.0	X	
16153	21.0 - 22.0		X	16188	57.0 - 58.0	X	
16154	22.0 - 23.0		X	16189	57.0 - 58.0	X X	
16155	23.0 - 25.0		X	16190			
16156	25.0 - 26.0	х	Λ	16191	59.0 - 60.0	X	
16157	26.0 - 27.0	X			60.0 - 61.0	X	
16158	27.0 - 28.0	x		16192 16193	61.0 - 62.0	X X	
16159	28.0 - 29.0	X		16193	62.0 - 63.0		
16160	29.0 - 30.0	X		16195	63.0 - 64.0	X	
16161	30.0 - 31.0	X			64.0 - 65.0	X	
16162	31.0 - 32.0	x		16196	65.0 - 66.0	X	
16163	32.0 - 33.0	X		16197 16198	66.0 - 67.0 67.0 - 68.0	X X	

	f	ſ	E						E.	E.	
B	 	•	•								

TTDDH #4 - Cont'd

6,

Tag No.	Meters	A.A.	Assay	Tag No.	Meters	A.A.	Assay
16164	33.0 - 34.0	х		16199	68.0 - 69.0	x	
16165	34.0 - 35.0	Х		16200	69.0 - 70.0	х	
16166	35.0 - 36.0	Х		16201	70.0 - 71.0	х	
16167	36.0 - 37.0	Х		16202	71.0 - 72.0	х	
16168	37.0 - 38.0	Х		16203	72.0 - 73.0	х	
16169	38.0 - 39.0	X		16204	73.0 - 73.94	x	
					EOH		

1987 TICKER TAPE DRILLING

TTDDH #5

Grid Coordinates: 2+23S 1+10W Drilled @ 130^O/-60^O

Tag No.	Meters	A.A.	Assay	Tag No.	Meters	A.A.	Assay
16205	3.05 - 4.0	x		16234	32.0 - 33.0	x	
16206	4.0 - 5.0	Х		16235	33.0 - 34.0	x	
16207	5.0 - 6.0	х		16236	34.0 - 36.0	x	
16208	6.0 - 7.0	Х		16237	36.0 - 37.0	x	
16209	7.0 - 8.0	Х		16238	37.0 - 38.0	x	
16210	8.0 - 9.0		Х	16239	38.0 - 39.0	x	
16211	9.0 - 10.0		Х	16240	39.0 - 40.0	x	
16212	10.0 - 11.0		Х	16241	40.0 - 41.0	x	
16213	11.0 - 12.0		Х	16242	41.0 - 42.0	x	
16214	12.0 - 13.0		Х	16243	42.0 - 43.0	x	
16215	13.0 - 14.0		Х	16244	43.0 - 44.0	х	
16216	14.0 - 15.0		Х	16245	44.0 - 45.0	х	
16217	15.0 - 16.0		Х	16246	45.0 - 46.0	x	
16218	16.0 - 17.0		Х	16247	46.0 - 47.0	х	
16219	17.0 - 18.0		Х	16248	47.0 - 48.0	x	
16220	18.0 - 19.0		Х	16249	48.0 - 49.0	x	
16221	19.0 - 20.0		Х	16250	49.0 - 50.0	x	
16222	20.0 - 21.0	Х		16251	50.0 - 51.0	х	
16223	21.0 - 22.0	Х		16252	51.0 - 52.0	х	
16224	22.0 - 23.0	Х		16253	52.0 - 53.0	х	
16225	23.0 - 24.0		х	16254	53.0 - 54.0	х	
16226	24.0 - 25.0		х	16255	54.0 - 55.0	х	
16227	25.0 - 26.0		х	16256	55.0 - 56.0	х	
16228	26.0 - 27.0		х	16257	56.0 - 57.0	х	
16229	27.0 - 28.0	Х		16258	57.0 - 58.0	x	
16230	28.0 - 29.0	Х		16259	58.0 - 59.0	x	
16231	29.0 - 30.0	Х		16260	59.0 - 60.0	x	
16232	30.0 - 31.0	Х		16261	60.0 - 60.98	х	
16233	31.0 - 32.0	Х			EOH		

Æ

TTDDH #6

۰3

E

E

f

h

E.

Grid Coordinates: 2+23S 1+10W Drilled @ -90⁰ (vertical)

Tag No.	Meters	A.A.	Assay	Tag No.	Meters	A.A.	Assay
16262	3.05 - 5.0	v					
		X		16286	28.0 - 29.0		Х
16263	5.0 - 6.0	X		16287	29.0 - 30.0		Х
16264	6.0 - 7.0	X		16288	30.0 - 33.23		Х
16265	7.0 - 8.0	X		16289	33.23 - 35.5		х
16266	8.0 - 9.0	Х		16290	35.5 - 37.0		х
16267	9.0 - 10.0		Х	16291	37.0 - 38.0		х
16268	10.0 - 11.0		X	16292	38.0 - 39.0		х
16269	11.0 - 12.0		Х	16293	39.0 - 40.0	х	
16270	12.0 - 13.0		Х	16294	40.0 - 41.0	х	
16271	13.0 - 14.0		X	16295	41.0 - 42.0	x	
16272	14.0 - 15.0		Х	16296	42.0 - 42.8	X	
16273	15.0 - 16.0		Х	16297	45.45 - 46.0	x	
16274	16.0 - 17.0		x	16298	46.0 - 46.9	x	
16275	17.0 - 18.0		x	16299	49.57 - 51.0	x	
16276	18.0 - 19.0		X	16300	51.0 - 52.0	x	
16277	19.0 - 20.0		x	16301	52.0 - 53.0	X	
16278	20.0 - 21.0		x	16302	53.0 - 54.0	X	
16279	21.0 - 22.0		x	16303	53.0 - 54.0	X	
16280	22.0 - 23.0		x	16304			
16281	23.0 - 24.0		X	16304	55.0 - 56.0 56.0	X	
16282	24.0 - 25.0		x		56.0 - 57.0	X	
16283	25.0 - 26.0			16306	57.0 - 58.0	X	
16284			X	16307	58.0 - 59.0	X	
	26.0 - 27.0		X	16308	59.0 - 60.0	х	
16285	27.0 - 28.0		х	16309	60.0 - 60.93	х	

EOH

£

£

TTDDH #7

ŵ,

Grid Coordinates: 2+23S 1+10W Drilled @ 235⁰/-45⁰ (vertical)

Tag No.	Meters	A.A.	Assay	Tag No.	Meters	A.A.	Assay
16310	3.3 - 4.0	х		16340	33.0 - 34.0	x	
16311	4.0 - 5.0	Х		16341	34.0 - 35.0	х	
16312	5.0 - 6.0	Х		16342	35.0 - 36.0	x	
16313	6.0 - 7.0	Х		16343	36.0 - 37.0	х	
16314	7.0 - 8.0	Х		16344	37.0 - 38.0	х	
16315	8.0 - 9.0	Х		16345	38.0 - 39.0	Х	د
16316	9.0 - 10.0	Х		16346	39.0 - 40.0	х	
16317	10.0 - 11.0	Х		16347	40.0 - 41.0	х	
16318	11.0 - 12.0	Х		16348	41.0 - 42.0	х	
16319	12.0 - 13.0	Х		16349	42.0 - 43.0	х	
16320	13.0 - 14.0	Х		16350	43.0 - 44.0	х	
16321	14.0 - 15.0	Х		16351	44.0 - 45.0	х	
16322	15.0 - 16.0	Х		16352	45.0 - 46.0	х	
16323	16.0 - 17.0	Х		16353	46.0 - 47.0	х	
16324	17.0 - 18.0	Х		16354	47.0 - 48.0	х	
16325	18.0 - 19.0	Х		16355	48.0 - 49.0	х	
16326	19.0 - 20.0	Х		16356	49.0 - 50.0	х	
16327	20.0 - 21.0	Х		16357	50.0 - 51.0	х	
16328	21.0 - 22.0	Х		16358	51.0 - 52.0	х	
16329	22.0 - 23.0	Х		16359	52.0 - 53.0	х	
16330	23.0 - 24.0	Х		16360	53.0 - 54.0	х	
16331	24.0 - 25.0	Х		16361	54.0 - 55.0	х	
16332	25.0 - 26.0	Х		16362	55.0 - 56.0	х	
16333	26.0 - 27.0	Х		16363	56.0 - 57.0	х	
16334	27.0 - 28.0	Х		16364	57.0 - 58.0	х	
16335	28.0 - 29.0	Х		16365	58.0 - 59.0	x	
16336	29.0 - 30.0	Х		16366	59.0 - 61.0	x	
16337	30.0 - 31.0	Х		16367	61.0 - 62.0	x	
16338	31.0 - 32.0	Х		16368	62.0 - 62.8	x	
16339	32.0 - 33.0	х			EOH		

E

Specialists in Mineral Environments 765 West 15th Street North Vancouver, B.C. Canada V7M 172

P-NE: (604)980-5814 OR (604)988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: HI TEC RESOURCE Project: 37 BC 037 (__tention:

File:7-1679/P1 Date:CCT 22/87 Type:RCCE ASSAY

He hereby certify the following results for samples submitted.

Sample Number	P'B %	ZN %	AG G/TONNE	AG OZ/TON	AU G/TONNE	AU OZ/TON	
15 001 14 002 1 003 12 004 16 005	. 42	2.51	4.1 4.6 7.5 18.0 2.1	0.12 0.13 0.22 0.53 0.06	.02 .01 .02 .01 .01	0.001 0.001 0.001 0.001 0.001 0.001	
1. 006 16 007 14 008 1 009 1 010	. 77 . 34 . 60	1.63 2.48 1.28	39.4 34.0	0.58 1.15 0.99 0.81 0.22		0.001 0.001 0.001 0.001 0.001 0.001	
1 011 1012 15 013 1' 014 1 015		1.84 2.54 2.30 1.73 3.35	40.2 72.0	0.94 1.05 1.17 2.10 0.77	.01 .02 .01	0.001 0.001 0.001 0.001 0.001 0.001	
16 016 1 017 1₩ 018 16 019 1 020	.66 1.16 .38 .55 .12	3.72 6.82 1.60 2.63 1.28	37.4 66.0 23.6 36.2 15.7	1.09 1.93 0.69 1.06 0.46	.01 .06 .05 .01 .01	0.001 0.002 0.001 0.001 0.001	
16 021 14 022 1 023 16 024 16 025	.35 .38 .78 .34 .34 .35	1.42 .90 1.13 .83 1.40	39.5 (10.0)4.4	0.99 1.13 3.21 6.42 1.37	. O 🖀	0.001 0.001 0.001 0.001 0.001 0.001	
i 026 16 027 17 028 i 029 16 030			31.0 39.0 7.9 1.8 3.4	0.70 1.72 0.27 0.02 0.102		O. OCL	

Certified Ly

HIN-EN LEGATORIES LTD.

COMPANY: HI TEC RES	SOURCES			MIN-EN	I CARS I	CP REPORT				(AC	(:F31) PAGE 1	ÛF
PROJECT NO: 87 BC	337		705 KEST	151H ST	NORTH	ANCOUVER, B.C.	V7K 112				FILE NO: 7-	-16
ATTENTION:				(604) 980-5	814 08	(604)988-4524	÷	TYPE	ROCK 6	OCHEN +	DATE: DCT 22,	198
(VALUES IN PPH)	AS	AQ	CD	CU	SB							
16 004	59	542	725.8	96	34							
16 005	58	1179	177.4	60	34							
16 008	1214	331	282.7	121	94							
16 009	86	630	147.0	112	122							
16 011	75	884	217.0	106	77							
16 012	263	2017	290.8	111	77	**********	******					
16 013	544	2607	277.8	141	163							
16 014	136	1073	155.9	\$47	151							
16 015	154	363	323.5	149	121							
16 016	275	647	362.9	127	94							
16 017	497	444	681.9	227	505							
16 018	82	2858	162.8	79	167							
16 019	40	543	234.9	193	273							
16 020	73	1049	97.3	49	45							
16 021	114	2071	122.8	136	603							
16 022	1016	977	137.0	72	363							
16 023	493	1278	138.5	85	617							
16 024	278	594	57.3	32	480							
16 025	93	427	116.2	129	142							

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 112

PHONE: (404)930-5814 DR (604)988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company:HI TEC RESOURCES F oject:87 BC 037 Autention: File:7-1679/P2 Date:OCT 22/87 Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

					*** = * * * * * * * * * * * * * * * * *	
Sample N mber	AG G/TONNE	AG OZ/TON	AU 67 TONNE	AU OZ/TON		
16 031 17 032 1. 033 16 034 16 035	1.9 1.7 0.3 2.0 1.4	0.04 0.05 0.01 0.04 0.04	.03 .02 .02 .01 .01	0.001 0.001 0.001 0.001 0.001		
100036 16037 1038 10039 16040	0.9					
1 041 15 042 16 043 1 044 1 045	0.7 0.5 0.4 0.6 0.6	0.01 0.01 0.02	.01 .01 .03 .05 .05	0.001 0.001		
1 046 1 047 16 048 16 049 1 050		0.01 0.01 0.02 0.01 0.01	.01 .01	0.001 0.001 0.001 0.001 0.001 0.001		
14 051 1 052 1 053 14 053 14 055	10.4	0,30 0.01	. O i	0.001 0.001		
15 056 16 057 1 058 10 059 16 060	4	6.40 6.13	.07 .05 .01 .01 .01	01001		

Certified by

MIN-EN WABORATORICS LTD.

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7N 172

TELEX:VIA USA 7601067 UC

Certificate of ASSAY

Company:HI TEC RESOURCES Project:27 BC 037 f_tention:

File:7-1679/P3 Date:OCT 22/87 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

|--|

Sample Number	PB %	ZN %		AG OZ/TON	AU G/TONNE	AU OZ/TON	
16 061 16 062 1 063 10 064 16 065	.71	3.30	31.7	0.21 0.24 0.57 0.92 1.46	.01 .02 .03	0.001 0.001 0.001 0.001 0.001	
14 066 16 067 14 068 1 069 16 070			38.0 47.4 58.0	1.56 1.11 1.38 1.69 0.88	.01 .02 .02	0.001 0.001 0.001 0.001 0.001 0.001	
1 071 10 072 16 073 11 074 10 075			18.1 12.7 15.5	0.48 0.53 0.37 0.45 0.93	.01 .01 .01	0.001 0.001 0.001 0.001 0.001 0.001	
16 076 1 077 10 078 16 079 16 079 1 080			35.2 26.3 14.0		.02 .01	0.001 0.001 0.001 0.001 0.001 0.001	
16 081 17 082 1 083 18 084 16 085			36.4 24.0 30.0 54.2 14.8	0.70 0.83 1.58	. 02 . 01 . 01 . 03 . 02	0.001 0.001 0.001	
1 086 16 087 1 088 1 089 16 090			1.0 0.5	0.04 0.01 0.01	.01 .01 .01 .01 .01 .01		

Certified by

HIN-EN CABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, E.C. Canada V7K 172

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company:HI TEC RESOURCES Project:87 BC 037 (itention:

. .

File:7-1679/P4 Date:OCT 22/87 Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

Sample Munber	PB X	ZN Z			AU G/TONNE	AU OZ/TON	
16 091 16 092 1) 093 10 093 16 095			1.9 2.4	0.06 0.05 0.07 0.07 0.15	.01 .02 .01	0.001 0.001 0.001 0.001 0.001	
14 096 16 097 14 098 1 099 18 100	. 22	1.32		O.47	.01 .02 .01	0.001 0.001 0.001 0.001 0.001 0.001	
1 101 102 16 103 1 104 1 105	.89 .70 .58 .70 1.17	1.34 2.36 2.07 1.95 3.01	34.2 32.2 30.0	0.64 1.00 0.94 0.88 2.00	.01 .01	0.001 0.001 0.001 0.001 0.001 0.001	
1A 106 1 107 1₩ 108 16 109 1 110	1.00 .18 .14 4.21 2.45	3.14 3.40	29.6 34.2 114.0		.01 .02 .01	0.001 0.001 0.001 0.001 0.001 0.001	• • • • • • • • • • •
16 111 17 112 1 113 15 114 16 115	.32 .45 .13 .27 .43	4.90 N 50	53.0 64.5 44.0 25.0 34.5		.02 .04	0.001 0.001 0.001 0.001 0.001 0.001	
1 116 16 117 1 118 1 119 15 120			34.2 48.4 37.5	0.60 1.06 1.41 1.99 2.41	.01 201	0.001 0.001 0.001 0.001 0.001 0.001	

Certified by Mc Mans

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7K 1T2

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: HI TEC RESOURCES Project: 87 BC 037 6 tention:

File:7-1679/PS Date:0CT 22/87 Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

- # Sample		ZN		AG	 AL}	AU
N mber	7.	1/2	G/TONNE	0Z/TON	G/TONNE	OZ/TON
16 121 16 122			50.0	0.41 1.46	. os	0.001 0.001
1 123			29.5 26.6	0.86 0.78	.01 .01	0.001 0.001
16 125			10.0	0.29		0.001
1 <u>-</u> 126			5.4	0.16	.01	0.001
15 127 14 128			16.2	0.47	. 01	0.001
1, 129			14.0 11.9	0.41 0.35	. 01 01	0.001 0.001
			3.9	0.11 0.11		0.001 0.001
1 131			1.7	o.os	. 02	0.001
1 132			2.1	0.06	. 01	0.001
16 133			1.6	0.05	. O 1	0.001
i′ 134			14.5	0.42	.01	0.001
1135			6.2	0.18	. 01	0.001
16 136			12.6	0.37		0.001
1 137		nin		0.27	. 1	
1 ₩ 138 16 139	.06 . <i>0</i> 8	.30 TEA	9.0 4.3	0.24 0.26 0.13	、〇1 . 〇1	0.001 0.001
1 140	. 43	1.21	13.4	0.39	n wan NGC	0.001
16 141	.54	Q.4	18.2	0.53	. (\1	0.901
	1.12	. 30	20.0			0.001
1 143	. 64	1.69	24.00	\$. O 1	0.001
••• ••••••••••••••••••••••••••••••••••						~~~~~~
U C						
					\sim	Λ
				/	\mathcal{I}	
				ſ	KAN	ha.h
		Cert.	ific" by	ί. Ú	$\mathcal{O}\mathcal{V}$	ring
				ИЦНА-Е	N LAKORA	TORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7N 112

PHONE: (604) 980-5814 08 (604) 988-4524

Certificate of ASSAY

Company: H1 TEC RESOURCE MANAGEMENT Project: wittention: P. SORBARA File:7-1738/P1 Date:OCT 28/87 Type:ROCK ASSAY

TELEX: VIA USA 7601067 UC

He hereby certify the following results for samples submitted.

Sample Jumber	52B 7.	Z N 74	AG G/TONNE	AG OZ/TON	AU. GZTONME	AU 07770N	
.6 144	1.68	3.68	48.0	1.40	. 02	0.001	* *
6 i45	1.27	2.40	64.0	1.87	. 02	0.001	
6 146	1.64	2.25	48.8	1.42	.02	0.001	
6 147		1.24	21.8	0.64	.01	0.001	
6 148	.63	1.78	21.5	0.63	. O I	0.001	
6 149	,74	1.02	14.9	0.43	.01	0,001	
6 150	. 79	. 98	14.7	0.43	.03	0.001	
6 151	. 50	1.19	20.0	0.58	. O 1	0,001	
6 152	a statisticae Marinae	2.03	22.0	0.64	.01	0.001	
6 153	, 28	1.24	16.2	0.47	. O I	0.001	
6 154	.41	3,84	31.0	0.90	. O3	0.001	
6 155	.34	2.70	31.6	0.92	. 02	0.001	
6 156	. 60	2.05	44.2	1.29	.02	0.001	
6 157	. 49	1.42	39.4	1.15	.02	0.001	
6 158	.86	1.35	44.0	1.28	" Q.Z.	0.001	
6 (59	, 52	1.22	38.2	1.11	. 02	0.001	
5 160	.48	1.17	49.0	1.43	. 02	0.001	
6 161	- 22.35	.50	8. t	0.24	.02	0.001	
6 162	. 24	, 39	(4, 0)	O.43	.01	0.001	
6 163	ा है। •	. 58	18.2	0.53	.01	0.001	
6 164	, 28	.71	23.6	0.69	.01	0.001	
6 i 65	. 29		22.0	0.64	.oi	0.001	
6 166	- 1 1	-18	10.0	0.29	. O 🕃	O , OO (
4 (6 7	.03	• 1 th	0.6	\odot , \odot 2	, O i	0.001	
A 148	. O (. 0%	ξ.ζ	0.03	O t	0.001	
6 (69	. QI	.02	1.2	<u>о.</u> 04	. 04	the College	•
s 170	. O 1	, Oj	0.7	0.02	. 02	9,00H	
6 171	, ()	. 08	2. 4	0.07	. O L	$(X_{\mu},Q) \in \mathbb{C}$	
6 172	, x x	, ()S	2.0	9.0Z	.03	$\chi_{\lambda_{\mu}}(0)$ (
6 173	ц Q (" Ö 2	0.3	0.01	. O 1	Q_(0)) {	

Certified by

MIN ELABORADORIES LTD.

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V/H 1T2

PHONE; (604) 980-5814 08 (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company:HI TEC RESOURCE MANAGEMENT Project: Attention:P. SORBARA File:7-1738/P2 Date:OCT 28/87 Type:RUCK ASSAY

We hereby certify the following results for samples submitted.

Sample Yumber	9B %	Z N Z	AG G/TONNE	AG 07/TON	AU GZTOMNE	AU 07/TON	
16 174	.01	.02	0.5	o.ot	.02	0.001	
6 175	.01	. 03	0.4	0.01	. OS	0.001	
16 176	• ()],	.02	0.4	0.01	. O 1	0.001	
6 177	. () I	.04	0.2	0.01	,02	0.001	
.6 178	. 04	. 05	0.2	0.01	. O I	0.001	
6 179	. G (.08	0.3	0.01	.01	0,001	
6 180	.0i	.07	0.2	0.01	.02	0.001	
.6 181	.01	.08	0.3	0.01	. O 1	0,001	
6 182	, O j	.03	0.2	0.01	.03	0.001	
6 183	<i>t</i> O .	.03	0.2	0,01	. 02	0.001	
6 184	.01	. 05	0.2	0.01	.01	0.001	****
A 185	.Oi	.04	0.3	0.01	.01	0.001	
6 186	.01	.02	0.5	0 . O 1	.01	0.001	
6 187	. O I	, 06	1.0	0,03	. 02	0.001	
6 188	, C) \$.02	0.6	0.02	. 02	0.001	
.6 (89	.01	. o t	Q_4	0.01	. 0 t	0.001	
6 190	.13	, 30	8.0	0.23	. 04	0.001	
5 191		. 71	12.0	0.35	. O 1	0.001	
6 192	.16	. 19	. . 3	0.18	.01	0.001	
6 193	、 〇4	.12	6Q	0.18	.01	0.00t	
A 194	.07	. 1 Í	6.2	0.18	, O <u>(</u>	0.001	
长 主保持	10 M	, 03	2 Z.	0.06	.21	0.006	
8. 196		, 02	1.9	0.06	. O (0.00i	
A 197	, ())	. 3 O	3.3	0.10	. 02	O.OOI	
6 TV8	, €) \$. 09	5.9	0 . 17	.01	0.001	
4. 1993	. 61	. 0 3	2.3	6.07	. 01	0.00t	
$S_{A} = D(M)$. Ö <i>i</i>	. 672	N. 8	0.10	. 01	0.001	
$\phi = 2604$. 62	2.2	\odot , \odot \odot	. O 1	0.091	
1. 1. 1. 1. 1. 1.	. () i	. Ö.	15.7	0.46	. O.t.	C. COL	
1997 - 19 63 - 19		, ्रिवे	28.0	0.82	. C.L	Ó, OO t	

Certified by

MINNEN LANDRATORIES LTD.

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 112

PHONE: (504) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company:HI TEC RESOURCE MANAGEMENT Project: Mitention:P. SORBARA File:7-1738/P3 Date:OCT 28/87 Type:ROCK ASSAY

Te hereby certify the following results for samples submitted.

Sample Jumber	PB 2	ZN %	AG G/TONNE	AG OZZTON	AU G/TONNE	AU OZ/TON
16 204	.02	.01	12.0	0.35	 01	0.001
.6 205	.09	1.70	8.6	0.25	. O 1	0.001
6 206	.07	. 61	6.2	0.18	.01	0.001
16 207	.04	.60	2.2	0.06	. 02	0.001
16 208	.03	.38	2.4	0.07	" O 1	0.001
6 209	,08	. 21	3.6	0.11	.01	0,001
(6 210	.15	. 27	4,0	0.12	. 01	0.001
6 211	.72	2.00	29.2	0.85	.04	0.001
6 212	.38	, <i>94</i>	13.7	0.40	.15	0.004
16 213	1.4t	3.12	36.2	1.06	.02	0.001
6 214		. 74	14.8	0.43	. 10	0.003

Constituted by

MIN EN LOCOBATORTES LTD.

Specialists in Hinerai Environments

705 West 15th Street North Vancouver, B.E. Canada V78 172

PHONE; (204)980-5914 OR (204)988-4324

TELEX: VIA USA 7601067 UC

<u>Certificate of ASSAY</u>

Company:HI-TEC RESOURCES ^-oject:037 L:tention:P.SORBARA

File:7-1721/P2 Date:OCT 26/87 Type:ROCK ASSAY

 $\mu_{e,hereby,certify}$ the following results for samples submitted.

Sample Imber	AU G/TDNNE	AU OZ/TON		AG OZ/TON		ZN Z
16215	7.30	0.213	37.9	1.11	1.10	i.89
1 5216	.80		108.0	3.15	2.08	2.20
217	.01	0.001	123.0	3.59	2.31	3.92
16218	. OB	0.001	30.4	0.89	. 63	1.30
16219	. 02	0.001	28.5	0.83	. 51	1.43
× 220	. 02	0.001	45.7	1.33	. 68	2.19
16221	.01	0.001	66.0	1.93		3.84
: 3222	" () <u>1</u>	0.001		1.53		
223	. 02	0.001		2.01		
16224	. 02	0.001	90.0	2.63		
: <u></u> 225	" OQ	0.001	142.0	4.14	1.57	5.10
16226	.03	\circ . $\circ \circ :$	103.0	3.00		7.40
16227	. O 1		37.8	1.10	يعنى يورد. ماني ورود	2.18
: .228	. O 1	0.001		0.47	. 19	1.22
# 229	. 01	0.001	18.4	0.54		
(<u>)</u> 230	. O1	0.001	44.3	1.27	*************	
	.Oi	0.001	45.7	1.33		
17232	, () <u>1</u>	o.ooi	28. O	0.82		
14233 1-234	. O L	0.001		0.76		
	. 01	o 001	34.0	0.99		
16235	. 01	0.001	25.0	0.75		
: 236	" O 1		5.9	0.17		
	"O1	0.001		0.13		
16238	" O 1			0.06		
1 239	. 24	0.001	an a	0.06		
16240	.01		4.1			
16241		0.001	3.7	Ö. 11		
1 242	.01	õ.õ⊖l	4.3	0.13 (
1 - 2 4 3 	(C) <u>1</u> .	0.001	5.0	0.15		
16243	. C. 1	0.001	3.9	$\sum_{i=1}^{n-1} \frac{1}{i} = \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i}$		

Certified by

MIN-EN LAGRATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street Worth Vancouver, B.C. Caneda V7N 172

PHONE: (504)980-3614 OR (604)988-4324

TELEX:VIA USA 7601067 UC

<u>Certificate of Assay</u>

Company:HI-TEC RESDURCES 1 'dject:037 /_tention:P.SORBARA

File:7-1721/P3 Date:OCT 26/87 Type:ROCK ASSAY

<u>*P- hereby certify*</u> the following results for samples submitted.

			******			" 바 ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ
Sample t mber	AU G/TONNE	AU OZ/TON	AG G/TONNE	AG OZ/TON	PB X	ZN %
16245 15246 15247 16248 16248	.02 .01 .01 .01 .01	0.001 0.001 0.001 0.001 0.001	8.2 1.8 1.7 .7 .4	0.24 0.05 0.06 0.02 0.01		
1€250 16251 1 252 1€253 16254	.01 .01 .04 .01 .01	0.001 0.001 0.001 0.001 0.001	1.6 2.0 1.7 1.4 .9	0.05 0.06 0.05 0.04 0.03		
1,255 16256 16257 1 258 1 258	.01 .01 .01 .01 .01	0.001 01001 0.001 0.001 0.001	1.8 2.3 1.4 1.8 4.0	0.03 0.07 0.04 0.05 0.12		
1 260 1-261 16262 14263 1 264	.01 .01 .01 .01 .01	C.001 0.001 0.001 0.001 0.001	2.4 2.0 3.8 7.4 4.3	0.07 0.06 0.17 0.22 0.13		
16263 1 266 1-267 15268 11269	.01	0.001 0.001 0.001 0.001 0.001	6.0 7.2 6.3 17.9 17.8	0.18 0.27 0.19 0.01 0.01	. 58 . 50	1.00 2.31
15270 16271 1 272 19273 16274	. O i	0.00. 0.001 0.001 0.001 0.001	0.7 30.0 24.7 01.0 07,7	0.17 0.86 0.71 1.49 1.10	.13 1.04 .80 .91 1.00	. 72 194 197 2.50 2.17

Car Célar Cuy

MIN-EN LABORATORIES LTD.

Specialists in Hineral Environments 705 West 15th Street North Vancouver, 3.C. Canada V78 172

PHONE: (604) 980-5614 OR (604) 988-4524

TELEX: VIA USA 7601067 UC

<u>Certificate of Assay</u>

Company:HI-TEC RESOURCES F to ject:037 Letention:P.SORBARA

÷

File:7-1721/F4 Date:OCT 26/87 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample	AU	AU	AG	AG	FB	ZN	
h anber	G/TONNE	OZ/TON	G/TONNE	OZ/TON	1.	%	
16275	.01	0.001	42.0	1.23	.99	1.68	
1/276	.01	0.001	39.6	1.16	.95	1.97	
277	.01	0.001	30.¢	0.88	. 64	1.42	
16278	.01	0.001	49.0	1.43	.82	1.86	
16279	.04	0.001	219.0	6.39	4.50	8.30	
1 280	.01	0.001	68.5	2.00	1.97	2.45	
16281	.01	0.001	50.O	1.46	. 40	1.27	
1 282	. 01	0.001	32.0	0.93	.84	1.35	
283	.01	0.001	31.7	0.92	1.03	1.16	
16284	.01	0,001	20.3	0.59	. 91	<u>,</u> 94	
	, 01	0,00j	22.4	0.65	. 4.3	. 88	. ** ** ** ** ** ** **
18286	.01	0.001	43.0	1.25	.64	1.52	
6287	.01	O.OOi	55.6	1.62	1.40	2.19	
1 ,288	.01	0.001	21.8	0.64	.33	1.10	
10287	ы () (Д	0.001	34.5	1.01	.20	1.30	
L 290	.02	0.001	22. 3	0.65	. 22	. 68	
1. 291	.01	0.001	24.O	0.70	. 27	.69	

Certified by

NIN EN LABORATORIES LTD.

₩240XE:(6041990-5814 CR (6041998-4524

TELENVIA USA 766-067-00

Certificate of ASSAY

Companys - FEC (HECHROFF) - Hecht At Hallons

The Francis (77479) Defection (7787) Types DDPF (680)

Hendered certify, the following results for second submitted.

Samole Number	AG G7T9ANE	AG 07/ton	AU G/TONNE	AU DZ/TOW	PB Z	Z N X	
16 292 16 293 46 294 16 295 16 296	34.2 28.0 12.3 5.7 8.6	1.00 0.82 0.36 0.17 0.25	, 02 .01 .01 .04 .04	0,001 0,001 0,001 0,001 0,001 0,001	. 39	1.07	
16 297 16 298 16 299 16 300 16 301	9.8 2.5 .7 1.3 .5	0.29 0.07 0.02 0.04 0.04 0.01	# 02 # 03 - 01 . 02 # 01	0.001 0.001 0.001 0.001 0.001			
16 302 16 303 16 304 16 305 16 305	1 - 8 1 - 9 2: 0 - 4 - 4	0.05 0.06 0.06 0.02 0.01	.01 .01 .02 .04 .03	0.001 C.001 C.001 C.001 C.001 C.001			
(6 307 16 303 16 309 16 330 16 321	2 8 1 2 9 22 0 4 7 4 7	0.00 0.05 0.05 0.14 0.14 0.14	, 02 , 03 , 01 , 04 , 03	0.007 0.007 0.007 0.007 0.007			
11 3 2 16 197 16 197 16 197 16 197	4	0.12 0.12 0.12 0.14 0.14	, 01 , 01 , 0 , 01 , c :	0.001 0.001 0.001 0.001 0.001			
4 7 2 5 1 2 6 1 2		5. 17 6. 3 6. 8		0-19-1 0-0-9 <u>1</u> 0-003			

Cartersterat

Asie

 \mathcal{U}

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 112

ONE: (504)980-5814 DR (604)988-4524

TELEX: VIA USA 7601067 UC

<u>Certificate of ASSAY</u>

pmpany:HI TEC RESOURCES
Project:037
Attention:

File:7-1762/P1 Date:DCT 28/87 Type:ROCK ASSAY

the hereby certify the following results for samples submitted.

amp1∈	AG	AG	AU	AU	
Number	GZTONNE	MUT 120	G/TONNE	OZ/TON	
<u>6310</u>	2.7	0.08	. O I	0.001	
16311	2.2	0.06	.01	0.001	
16312	4.5	0.13	. 02	0.001	
5313	2.3	0.07	.01	0.001	
5314	2.4	0.07	.03	0.00t	
5315	2.2	0.06	, 05	0.001	
316	4.5	0.13	.02	0.001	
16317	4.0	0.12	.01	0.001	
14318	8.2	0.24	.01	0.001	
, 3319	4.3	0.13	.06	0.002	

16330	4.0	0.12	. O t	0.001	
5331	3.8	0.11	.01	0.001	
6 332	2.4	0.07	. O I	0.001	
16333	2.0	0,06	.03	0.001	
5334	4.1	0.12	.11	0.003	
16335	6.0	0.18	Ал		
16336	2.4		.04	0.001	
337	∠	0.07 0.13	.01	0.001	
			.01	0.001	
16339	3.2	0.09 0.18	.02 .01	0.001 0.001	
an langanan nananan nana	· · · · · · · · · · · · · · · · · · ·	ылы да Қа	8 36 4. 		
6 340	4.2	0.12	. 0 1	0.001	
16341	4.1	0.12	.01	0.001	
15342	4.4	0.13	.05	0.001	
343	2.2	0.06	0.03	0.001	
17.344	14.0	0.41	" (D.3)	Ŏ., ŎŎ <u>1</u>	
- 345	7.7	0.22	. O <u>t</u>	0.001	
34 6	2.2	0.06	. 17	0.005	
16347	9.0	6.26	• (D)]]	6,001	
1 348	3.9	0.11	.02	0.001	
1_349	3.4	0.10	, õt	0.001	

Certified by

MIN EN LABORATORIES LTD.

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

ONE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

pmpany:HI TEC RESOURCES
Project:037
Attention:

File:7-1762/P2 Date:OCT 29/87 Type:ROCK ASSAY

The hereby certify the following results for samples submitted.

imikmp1.e	AG	AG	AU	AU
Number	G7 TONNE	OZ/TON	G/TONNE	OZ/TON
ي يو ي يو ي ي ي ي ي ي ي ي ي ي ي ي ي ي ي	ه به مد به به به م ه م م م م م م م به به به به به م م م م			
<u>, 3350</u>	3.8	0.11	.02	0.001
16351	3.9	0.10	.06	0.002
16332	20.0	0.58	. O I	0.001
5353	10.0	0.29	.03	0.001
4 5354		0.41		0.001
5335		0.31		0.001
	3.6	0.11		0.001
16357	11.6	0.34	.01	0.001
1.6358	7.9	0.23	"O1	0.001
339	12.2	0.36		0.001
14360	7.6	0.22	.01	0.001
: 5361	6.7	0.20		0.005
3 82		0.29		0.001
16363	8.4	0.25	.02	0.001
15364	4.3	0,13		0.001
16365	14.0	0.41	.01	0.001
16366	7.3	0.21	.03	0.001
5367	10.5			0.001
H 368	12.3			0.001

Certified by

MIN EN LABORATORIES LTD.

APPENDIX VII-A

Diamond Drill Logs

تعميا

LIST OF ABBREVIATIONS USED IN DIAMOND DRILL LOGS

Ang	Angular				
Bdg	Bedding				
BIF	Banded Iron Formation				
Bl	Blue				
Blk	Black				
Br	Brown				
C/A	Core Axis				
Calc	Calcareous				
C.L.	Core Loss				
Diss'm	Disseminated				
Flt					
Gr	Fault				
	Green				
Gy	Grey				
HEM	Hematite				
Lst	Limestone				
Min	Mineralized				
Mn	Manganese				
000	Occasionally				
Pyr	Pyrite				
Rnd	Rounded				
Rx	Recrystallized				
Serp	Serpentine				
Tr	Trace				
V	Very				
V'ing	Veining				
+	Plus				
<u><</u>	"Less-than or equal-to"				
	=				

`

orill Hole Record		HI-TEC RESOURCE
roperty TICKER TAPE RESOURCE Ltd District LIARD	Hole No. 87-TTDDH /01	LIMITED
commenced 9/10/87 Location ISKUT RIVER AR	EA Tests at	Hor. Comp.
completed 12/10/87 Core Size B Q	Corr. Dip -45°	Vert. Comp.
co-ordinates LINE 2+235 / 1 + 10 W	True Brg. 090°	Logged by D. Collins
Objective TEST MINERALIZATION AND GEOPHYSICAL	% Recov. 95 %	LENGTH. 61.60m (202'
ANOMALIES AT DEPTH.	,	
METERS Description		· · · · · · · · · · · · · · · · · · ·
1.00 - 5.18 CASING		
5.18 - 5.40 POCK CORE RECOVERY V. WEATHERED 10	cm C.L.	
5.40 - 6.19 CALC. FIGHT GY, FINE GRAINED, NUGGY CAL	CILUTITE, TECTONIZED, ABUN	DENT CALCITE U'ING . C/AIT
FINE DISS'M PYR. CONCENTRATED ALONG VEIN		
19- 6.70 INCOMING OF RED, JASPEROID B. I.F., TECTO		
5.70 - 7.08 TECTENIZED, GY LST., RECRYSTALLIZED	NO FABRIC V. FINE GRAINE	D. RARE PYR.
7.03 - 7.09 I CM FAULT GOUGE-Gy/GR C/A	60°	
7.09 - 7.27 TECTONIZED FINE GRAINED GY CALCILUT	ITE	
7.27 - 7.50 POOR CORE RECOVERY V. FRACTURED AN		
7.50 - 7.90 GY FINE GRAINED CALCILUTITE + ABUNDENT C		
7.90 - 8.05 FLT. ZONE. IDEM C.L. ABUNDENT ZN STAINING		SE RADIATING, FIBROUS
	/A 60°	2
5.05 - 8.40 INTRUSIVE. GR FINE GRAINED MAFIC		
3.40 - 8.80 FLT. BRECCIA. CALC + UDLCANIC FRAGMENTS -	ANG. 5 CM IN WHITE NON-0	CALC. GROUNDMADS. 105. TIVE
ZM STOT-TEST WITH ZN-ZAP.	P	
8.90 - 9.14 BR/GY MICRITE + ABUNDENT CALCITE VING		4
RX Fyr + DIGS'M GALENA, SPHALERITE.		TICHES OF VINE.
9.14 - 9.23 FLT ZONE WITH ZM STAINING. TR SPHAL		
9.23 - 9.39 BR/GY MICRITE + CALCITE VINE, POSITIVE		
939- 9.83 INCOMING OF BANDED LOT GR, GREASY SER	AT. C.J LAMINAE, RHYOLITIC I	YFE FLOW STRUCTURES.
LAMINAE 6 0.5 cm. RX FUR + GALENA ASSOCIATE	D WITH CAMINAE. INTRE 14	SCHOLYN INDRIC OTH 45

Drill Hole Record property TICKER TAPE 87-TT DDH OI SHEET 2 OF 5 HI-TEC MANAGEMENT LIMITED
METERS Description
9.83 - 10,10 PALEGYRX CALCILUTITE C/A 35°, DOLOMITIC PATCHES. FINE RX PYR + GALENA, THIN 1-3.mm MAGNETITE SEAMS 10.10 - 10.12 FLT. GY/GR. MAGNETIC GOUGE. C/A 57°
10.12 - 10.48 Gy RX, TECTONIZED CALCILUTITE. DISS'M PYR + GALENA THROUGHOUT. TR ARSENOPYR. ZM STAINING
10.48 - 10.60 PALE GY RX CALCILUTITE + MINOR HEM. STAINING
10.60 - 10.64 GY RX CALCILUTITE + DISS'M PYR AND GALENA.
10.68 - 10.75 FLT ZONE GOUGE, POSITIVE ZM SPOT TEST C/A 47°
10.75 - 11.58 ALTERED RX GY TECTONIZED LOT., GR SERP. LAMINAE. FINE DISS'M RYR + GALENA THROUGHOUT.
11.58 - 11.70 BRECCIATED ZONE V. FINE DISS'M PYR AS STRINGERS IN MATRIX. TR. SPHALERITE C/A 55°
11.70 - 13-24 PALE GY RX CALCILUTITE + OCCASIONAL THIN (= 1mm) CALCITE V'ING, MASSIVE TEXTURE, TR SPHALERITE
INTERBEDDED BR. DOLOMITIC ZONES C/A48°
13.24 - 14.28 PALE GY RX CALCILUTITE + DISPERSED PYR + GALENA IN STRINGERS.
14.28 - 16.23 V. DECOMPOSED TECTONIZED UNIT. EQUIUALENT to GR/GY LAMINATED UNIT AT 9.39m?
POOR RECOVERY IN PLACES. TR RX PYR. ABUNDENT DENDRITIC MM STAINING.
ZN STAINING EVIDENT IN PLACES. V. TECTONIZED THROUGHOUT.
16.23-16.76 SHEARED ZONE C/A 50° V. DECOMPOSED RARE DISPERSED PYR. CALC.
16.76 - 18.00 BL/GY MICRITE - ARGILLACEOUS - U. VEINED. DISSM Pyr + GALENA THROUGH-OUT.
18.00 - 19.00 INTENSELY SHEARED ZONE, ABUNDENT ZO STAINING, CALC. U. ALTERED, DECOMPOSED
UNGS DEVELOPED OCC. TR PYR. MYLONITIC TEXTURE IN PLACES. MAGNETIC 19.00 - 19.20 MORE COMPETENT ZONE PALE GY CALCILUTITE + MINOR HEM STAINING, BANDED
RHYCLITIC APPEARANCE. DISS'M PYR + ABUNDENT MAGNETITE
19.20 - 20.12 FLT ZONE, DECOMPOSED. INCORPORATED BUFF PINK, MM STAINED LENSES. ABUNDENT ZN STAINING 4A 58"
20.12 - 21.35 V. SHEARED GYFINE CALCILUTITE + HEM. STAINING, V. DECOMPOSED. DISS'M PYR + GALENA C/A 750
21.35 - 21.50 COMPETENT SHEARED GY BANDED IST. DARK GR, GREASY SERP. INTERBEDDED . V. ALTERED. DISS M RX
PYR + GALENA. RARE SPECKS OF CHALCOPYR.

Drill Hole R	RECORD PROPERTY TICKER TAPE 87-TT DDH / 01 SHEET 3 OF 5 HI-TEC MANAGEMENT LIMITED
METERS	Description
21 EN- 22 35	
22 35 - 23 95	DECOMPOSED EQUIVALENT OF OVERLYING UNIT? BOCK C.L.
23.95 - 25.50	PINKISH TINGED, DENDRITIC MASTAINED, DOLOMITIC + LSE. WAIT, DECOMPOSED, MINOR ZM STAINING. V. DECOMPOSED CALC. TECTONIZED ZONE. FINE DISS'M PYR EUIDENT IN PLACES. ABUNDENT CALCITE VING ROLLCE
25.50 - 27.13	FALE GY RX CALCILUTITE, MASSIVETEXTURE, ABUNDENT CALCITE VING. TR FINE DISS'M PYR
······································	BOTTOM CONTACT GROUND
27.13 - 27.41	ALTERED V. DECOMPOSED SLIGHTLY PINK STAINED UNIT. TR ZN STAINING
27.41 - 27.74	DARK GY ARGILLACEOUS FINE GRAINED WACKESTONE (3) DUCTILE DEFORMATION FABRICS + PRESSURE
	SULUTION EFFECTS, CALC+LITHIC INTRACLASTS SICM PREDOMINANTLY MM SCALE. MINOR RX PyR. CALS
27.74 - 27.96	FALE GY CALC. VUGGY CARBUNATE, V. SOFT DRANGE (BR Mm (3) in VUGS. C/A 65"
	DARK GY FINE GRAINED WACKESTONE + INTERBEDDED PALER, LESS ARGILLACEOUS, SHEARED BEDS 5500 THE
	TR ARSENOPYR + GALENA IN SOME INTRACLASTS. DIFFUSE LOWER CONTACT.
28.66 - 29.03	SHEARED WACKESTONE. LITHIC + CALC INTRACLASTS, V. FINE TR RX PYR + DISS'M GALENA. FABRIC C/A 65
29.03 - 29.26	DECOMPOSED UNIT, PINKISH TINGE, CALC IN PLACES. FLTZONE (3)
29.26 - 29.42	GY FINE GRAINED CALCILUTITE . DISS'M GALENA EVIDENT.
	FLT ZONE C/A 30°
	A MASSIVE FINE GRAINED GY BL CALCILUTITE. FINE RX DISS'M PYR.
· · · · · · · · · · · · · · · · · · ·	PALER GY BE LESS ARGILLACEOUS CALCILUTITE BX. RARE PYR
	BELT. ZONEGABRE NO VISIBLE MINERALIZATION CALC. GOUGE.
32.48 - 32.60	PALE Gy BL MASSIVE CALCILUTITE
	FLT. ZUNE - GROUND
	5 RX CALCILUTITE
33.55 - 33.84	RECOVERY
	7 RX CALCILUTITE
34.51- 57.53	MASSIVE DARK GY/BE ARGILLACEOUS RX MICRITE. OCC. CALCITE VING TR. DISS'M PYR.
159.55-51.40	BRECCIA + CALCITE V'ING CA 65° DISPERSED FINE RX (YR INVING.

Drill Hole Record property Ticker TAPE 87-TTODH/01 SHEET 4 OF 5 HI-TEC MANAGEMENT
METERS Description
39.40-40.53 DARK BL/GY ARGILLACEOUS RX MICRITE + MINOR MAGNETITE STRINGERS.
4053-40.58 FLT + SLICKENSIDES C/A 30°
40.58-41.95 AS ABOVE
41.95-4200 FLT ZONE C/A 120
42.03-44.10 DARK BR/GY RX CALCILUTITE, COARSER THAN ABOVE. OCC. MAGNETITE STRINGER
44.10 - 44.16 ENCLUTION BRECCIA CALCITE INFILLED C/A 50°
44.16 - 44.82 RX CALCILUTITE 44.82 - 44.58 BRECCIA ZONE C/A45° FRAGMENTS 55mm. MAGNETITE STRINGERS
44.38 - 45.00 BL/GY RX CALCILUTITE
45.00 - 45.07 FLT ZONE C/A 80° MINOR HEM STAINING
45.07 - 45.28 MASSINE RX BR/GY SHEARED CALCILUTITE, MINOR CALCITE U'ING
45,28-45.88 CALCITE IN FILLED CAVITIES 4 0.5 cm RND + ANG.
45-88-46.00 C.L
46.00-48.00 MASSIVE BL/GY CALCILUTITE + THIN CALCITE VING MINOR HEM STAINING, U. DENSE.
48.00-50.97 DIFFUSE TOPPED BRECCIA ZONE - SOLUTION CAVITY INFILL (?)
INTRAFORMATIONAL CLASTS & I CM IN A RED/PURPLE, HEM TYPE STAINED, MATRIX.
50.97 - 51.75 SHEARED DARK BL/GY RX MICRITIC UNIT. 51.75 - 53.04 SULUTION BRECCIA - SIMILAR TO ABOVE, RX CALCILUTITE
53.04 - 53.05 SHEAR PLANE C/A 26°. MAGNETITE STRINGERS
53.05-55.69 SOLUTION BRECCIA - AS ABOVE
55.69 - 56.63 SOLUTION BRECCIA IN DARK BR/GY ARGILLACEOUS MICRITIC UNIT. FRAGMENTS SIGN INTRAFORMATIONA
56.63 - 56.90 27 cm CORE LOSS
56.90 - 58.40 BR/GY RX INTRACLASTIC CARBONATE. GR-ISH VOLCANIC + CALC INTRACLASTS. RANGE 2 cm -
GRANULE SIZE. ABUNDENT CALCITE U'ING . NO VISIBLE MINERALISATION
58.40-58.63 BRECLIA ZONE SICH FRAGMENTS IN RX CALCILUTITE

.

HI - TEC 87-TTOOH 101 Drill Hole Record PROPERTY TICKER TAPE SHEET 5 OF 5 METERS Description rom 58.63-58.84 RX WACKESTONE TYPE CARBONATE. CLASTS = 3 mm INBL/GY MATRIX 58.84-59.18 34 cm C.L 59.18 - 59.28 BANDED TUFFACEOUS, PARTLY CALC, DARK GY/BER ARGILLITE. FINE LAMINATIONS C/A 60" 59.28 - 60.80 POUR RECOVERY. CARBONATE, INTRACLASTS 300 - GRANULE SIZE, GY CALC + TUFFACEON CLASTS. SUB-RND to ANG. LOWER 5 cm SHEARED C/A 350 60.30- 60.90 PALE GY VIGGY, BLOTCHY CARBONATE. BUFF BR / WHITE COLOUR, SIMILAR TO UNIT AT 27. 74 m. 60.90- 61.40 TECTONIZED UNIT. PINKISH TINGE. FRAGMENTS OF CALC, WHITISH, ANG & SUB-ANG 53 cm IN A BR/GY FINE GRAINED NON-CALC UNIT. DECOMPOSED, SLIGHTLY BANDED AT BASE C/A 56° 61.40-61.48 FLT GOUGE - SLIGHT ZN STAINING 61.46- 61.60 BANDED WHITE CALC. LAMINAE IN BUR FINE GRAINED MATRIX. V. POOR RECOVERY EOH (202')RODS JAMMED, 11 RODS BROKEN OFF HOLE IN HOLE ABANDONED

rill Hole Record			HI-TEC
OPERTY TICKER TAPE RESCURCE Ltd Dist	rict LIARD	Hole No. 87-TTDD	H 02 MANAGEMENT
	ation ISKUT RIVER ARE		Hor. Comp.
	e Size BQ	Corr. Dip -60°	Vert. Comp.
D-Ordinates LINE 2+235 / 1 + 10 W		True Brg. 090°	Logged by D. Collin
bjective TEST MINERALIZATION	AND GEOPHYSICAL	% Recov. 95%	LENGTH 42.35m (13
ANOMALIES AT	DEPTH.	/ 0	
METERS Description			
00- 4.57 CASING			
57 - 4.71 CORE LOSS + V-POUR	RECOVERY	ŦĸĸŦĸĊĸĸĸĊĸĊĸĊĸĸġġĊĬĊĊŎġġġġġġġġġġġġġġġġġġġġġ	
.71- 6-33 TECTONIZED LST. BI	Gy FINE GRAINED, ABO	INDENT CALCITE V'	ING. FINE DISS'M PVR.
33- 6.65 INCOMING OF JASPER	OID BIF FINE DISS'		
1.65 - 7.17 TECTONIZED UNGGY	LST / DOLOMITIC UN	UIT. RARE FINE F	YR.
17-7.48 " LIGHT	GY LGT . INTENSE CA	LO VING FINE DI	ssim fyr
46 - 7.67 FLT ZONE C/A 27°	ABUNDENT DOLOMITIC	+ CALC VING	BSITIVE ZM SPOT TESTS
1.87- 5.48 BANDED GY LST +	GR APATITE + DARK GR	SERP. INTERBEDS	GRBANDS CONTAIN FINE PYR
STRINGERS			
2.84 - 8.92 MAFIC INTRUSIVE .	Top C/A 300 Low	ER C/A 45°	
12- 9.32 BANDED GY LST + GRISE	PP. MINOR BRECCIATION	. FINE RX DISS	MPYR.
32 - 10.69 Gy FINE GRAINED R	KLST., MASSIVE, BL	OTCHY APPEARAN	CE OCC. ABUNDENT CALCITE
VING IN PLACES +	NE DISSPERSED PYR	THROUGH - OUT	•••••••••••••••••••••••••••••••••••••••
0.69-10.85 FLT GougE C/A	22° ZN STAINIA	<u>C</u>	
10.45 - 11.10 FRACTURE FINE	GRAINED LST.		
11.10 - 11.16 FLT ZONE C/A			
11.16 - 11.70 FAINTLY BANDED G	YLST + GR SERP.	LAMINATIONS . H	BUNDENT KX FINE PYR
11.70 - 11-89 Gy MASSIVE FINE	GRAINED Lat . FI	NE DISSPERSED 1	YR
11.89 - 12.11 BANDED GY LST + 6		TH ABUNDENT F	INE PYR C/H 32°
12.11 - 12.37 Gy MASSIVE LST.	- AS ABOUE		
12.37 - 12.70 BANDED GYLST-A	> ABOVE		

Drill Hole F	Record PROPERTY TICKER TAPE	DDH <u>02</u> SHEET 2 OF 3	HI-TEC RESOURCE MANAGEMENT LIMITED
METERS	Description		
2.70 - 12.82	DOLOMITIZED FLT ZONE C/A 72	° ZN STAINING +	GALENA.
2-82 - 13.34		STAINING	
3.34 - 13.43	GY FINE GRAINED LST.		
	BANDED CARBONATE WITH GR SERP	ABUNDENT RX FINE	PYR. N. DISTURBED.
	+ DISCONTINUOUS LAMINAE, V. RX RHYOLITIC	TYPE BANDING. SOME	FLOW-LIKE FEATURES
	DECOMPOSED EQUIVALENT OF ABOUE		
	DECALCIFIED / LEACHED BANDED CARBON	ATE AS ABOVE, M	INOR FINE RX PYR
	DECOMPOSED UNIT-AS ABOVE		· · · · · · · · · · · · · · · · · · ·
	TECTONIZED CARBONATE - BANDED - A	S ABOVE	
	DECOMPOSED UNIT - AS ABOVE	•	
	BANDED UNIT-AS ABOUE	~	
1.67 - 21.04	CLEANER GY MORE MASSIVE CALCILUTITE.		
21 0/ - 21 59	ARSENOPYR. FLT ON LOWER CONTACT WI		
21.04 - 21.50	BANDED LIGHT GY LST. + DARK GY BLE ARG		
	BEDS. MINOR GRADING - TURBIDITE LINE FEATO GALENA, ARSENOPYR + PYR. C/A 60		ED WITH FINE DISS!
21.58- 24.56	DECOMPOSED LEACHED UNIT, DOLOM,		C/A 48°
<u> </u>	SLIGHTLY TUFFACEOUS . BUFF PINK,		
24.56-26.23	TECTONIZED GR SERP. UNIT + INTERLA,	MINATED CALC + WHIT	FRINK LENGES FINE
	DISPERSED GALENA, PYR. 39 Cm C.L		o priore or
26.23-26.44	PALE GYLST + THIN PINKISH DOLOMITIC LA		FINE DISPERSED RX
	RYR IN LAMINAE . FLT LOWER CONTACT C,		
26.44 - 27.50	DECOMPOSED LAMINATED UNIT . PREDOMINI		SPERSED RX PUR EVIDER
	MINOR ZM STAINING . DIFFUSE LOWER		

	ecord property TICKER TAPE 87-TTOOH /02
DUIL HOLE K	ecord property TICKER TAPE 81-1100H 102 MANAGEMENT SHEET 3 OF 3 LIMITED
METERS From To	Description
	SHEARED GREYWACKÉ TYPE UNIT. DARK GY/BLE FINE GRAINED MATRIX WITH CALC, UNLANIC, CHERTY, REPPLES - ANG TO SUB-RND. & 2 cm POOR SORTING MATRIXNON-CALC. RARE FINE DISS'M ARSENOPYR (RX). MATRIX SUPPORTED.
	PALE GY, VUGGY, LET + SHEARED COARSE GRAINED INTERBEDS . V. FINE RARE RYR. U TECTON 12ED, SAME TYPE UNIT AS AT EOH 87-TT DDH /01.
29.42 - 31.00	DECOMPOSED LAMINATED UNIT CALC. RARE PYR BR-15H COLOUR WITH OCC Gy LST LENDES EVIDENT.
31.00 - 32.07	DARK GY GREYWACKÉ TYPE UNIT. FINE GRAINED CALCMATRIX. SAME ASSEMBLAGE AS ABOVE AT 27.50M. C/A 70°
32-83-33-54	VUGGY PALE GY LST + INTERBEDDED DECOMPOSED UNITS. C/A 470 DARK GY /BLE MATRIX SUPPORTED SHEARED VOLCANIC BRECCIA (?) CLASTS = 3 cm + BLR MON - CALC GRANULES DIFFUSE LOWER CONTACT.
33-54 - 35.10	MASSIVE FINE GRAINED PALE GY CALCILUTITE . DISS'M SPHALERITE + GALENA EVIDENT ALTERED BL/GY FINE GRAINED RX CALCILUTITE + BR YELLOW CALC INTERSTITIAL MATRIX, DIFFUSE CONTACTS.
	BL/GY MORE ARGILLACEOUS RX CALCILUTITE V. FINE GRAINED SLIGHTLY DARKER BLOTCHES EVIDENT IN PLACES.
	ALTERED CALCILUTITE - AS AT 35.10 m. DARK BL/GY SPECKLED ARGILLACEOUS FINE GRAINED CALCILUTITE. OCC. SOLUTION BRECCIATED ZONES
EOH (139')	

Drill Hole Re	cord	HI-TEC RESOURCE MANAGEMENT
Property TICKER	TAPE RESCURCE LED DISTRICT LIARD HOLE NO. B7-TTDDH /03	LIMITED
Commenced 12/	10/87 Location ISKUT RIVER AREA Tests at	Hor. Comp.
Completed 13/	$10/47$ Core Size BQ Corr. Dip -75°	Vert. Comp.
Co-ordinates LINE	$2+235$ / 1 + 10 W True Brg. 090°	Logged by D. Collin.
Objective TEST	MINERALIZATION AND GEOPHYSICAL % Recov. 95%	LENGTH 45.43m (149
	ANOMALIES AT DEPTH.]
METERS D	escription	
0.00-4.57	CASING	
4.57-6.47	ALTERED GY RX LST. ABUNDENT CALCITE VING. V. FINE GRAINED]	DISS'M PYR
	JASPERCID-BIF. FRACTURED JASPER LENSES S200, GLC 5.	1
7.00 - 8.02	DARK BU/GY CARBONATE, FINE GRAINED + SEATTERED INTERBEDDE	D CHERTS SZEMTHICK
	HOUNDENT CALCITE VINE FINE DISS'M PUR, V. TELTONIZED	UNIT
S.02 - F. 23	FIT ZONE FINE DISS M PYR ALONG SHEAR PLANES TOPS A 4	40° BOTTOM C/A 46"
8.23-8.92	BRECCIATED CARBONATE, BR/GY, ABUNDENT CALCITE VING. ABUND	ENT DISS MEALENA +
	PYR. PYR IS COARSE RX AT BASE	
8.92 - 9.25	MAFIC INTRUSIVE - GR FINE GRAINED TOP C/A 450	Bottom C/A 47°
9.25 - 13.23	BRECCIATED FINE GRAINED BL/GY CARBONATE . WELL MINERALIZ	ZED WITH FINE PYR
	ABUNDENT CALCITE VING . INTERBEDDED DARK GR GREADY SERP	
	V TECTONIZED AND ALTERED. FABRIC OF BANDINE C/A 52°	TR GALENA.
	DIFFUSE LOWER CONTACT.	
13.23-15.27	THEFACEOUS, RHYOLITIC TYPE BANDING, CALE. OCC. INTERBEDI	DED SIDERITIC UNIT
	BANDING & ICM THICK. DISS'M PYR, GALENA + ARSENEPYR. TR	SPHALERITE
	LOWER CONTACT SHEARED CA65°, BANDING CAA 650	~
15.27 - 15.63	GY FINE GRAINED CARBONATE + PATCHES OF DECOMPOSED BR CAL.	C MATERIAL. FINE
	DISS'M GALENA. ZN STAINING AT BASE.	
15.63-16.23	DECOMPOSED CARBONATE UNIT FLIAT BASE C/A 30° 2m	STAINING.
16.23 - 16.25	FALE GY RX LOT ABUNDENT CALCITE VING - FINE DISS'M PYR + (GALENA C/A 350

Drill Hole F	RECORD PROPERTY TICKER TAPE 87-TTODH 03 HI-TEC RESOURCE SHEET 2 OF 3 LIMITED
METERS	Description
16.25-17.92	CARBONATE + VITREOUS RHYOLITIC BANDING, OCC DARK GR SERP. (3) BANDS. + OTHER
~	MOBE CHEORITIC LAMINAE FUE DECM PUR ADDIDIR GOLDING SIMULAR TO UN
17.92-18.77	DECOMPOSED CARBONATE, APPEARS BANDED. ABUNDENT ZN STAINING. FLT AT BAZE C/A 22"
18.77 - 22.66	BANDED, RHYOLITIC, CARBONATE - AS ABOVE AT 13.23M.
22-66- 22-96	MORE MASSIVE REDDISH - SIDERITIC' UNIT + DISS'M PYR, GALENA, ARSENOPYR.
22-96 - 23.23	FLT ZONE ABUNDENT ZN STAINING C/A 30 - 35"
	SIDEITIC NUIT - AS ABOUE, LOWER FLT CONTACT C/A 40"
24.19 - 27.40	DECOMPOSED, BR COLOURED UNIT. PARTLY CALC. BUFF PINK COLOUR IN PLACES APPROX. 20 CM C.L. ABUNDENT MASTAINING. TR V.FINE DISS'M PYR.
27.40-27.97	MORE COMPETENT UNIT, GABERHYOLITIC TYPE FLOW STRUCTURES. SIMILAR TO ABOVE.
	INCOMING OF BANDED WNIT - SAME AS AT 13.23M.
	PREDOMINANT FABRIC C/A 65° BOTTOM CONTACT C/A 75°
32.19 - 32.73	SHEARED BLK ARGILLITIC, MATRIX SUPPORTED, POCRLY SORTED GREYWACKE. VELCHIN
	+ LITHIC CLASTS = 3 cm. V. FINE GRAINED NON-CALC MATRIX, TR DISE in PYR.
	BASAL CONTACT C/A 80"
32.73-33.03	PALE GY CARBONATE + PATCHES OF ALTERED BR CALC MATERIAL. DISS'M PYR.
	IN PLACES. DIFFUSE BASE CONTACT
33.03- 34.00	SIMILAR to 13.23 M. ZONE
34.00-34.7	3 V. FINE GRAINED MATRIX SUPPORTED SMALL PEBBLE GREYWACKE, ANG 10 SUB-RND
	CALC + VOLCANIC, LITHIC FRAGMENTS. CALC V. FINE GRAINED ARGILLACEOUS MATRIX
	V. FINE DISS'M PYR.
k	

	ORD PROPERTY TICKER TAPE 87-TTODH 03 SHEET 3 OF 3 HI-TEC MANAGEMENT LIMITED
METERS Descri	ription
34.73-36.78 DAR PALE	RK GY/BLR, FINE GRAINED PREDOMINANTLY NON-CALC, ARGILLITE WITH PERVASIVE E GY CARBONATE VING. FINE DISPERSED PYR + TR V. FINE GALENA.
36.78-37.42 V.	FINE GRAINED CALCIRUDITE UNIT. MATRIX SUPPORTED ANG ESUB-RND INTRA- 4573. V. FINE DISS'M PYR SLIGHTLY CONCENTRATED AT BASE CONTACT.
37.42-38.85 FIN	FINE DISSIM PYR.
33.35 - 39.50 ALT	TERED RX BR/ GY FINE GRAINED CALCILUTITE WITH BR YELLOW CALC.
	LT ZONE CORE GROUND.
	ALTERED UNIT-AS ABOUE.
40.65 - 41.43 Fin	VE GRAINED CALCIRUDITE UNIT. BR/GY - SLIGHT PURPLE HUE.
41.43-41.53 IN	NTRUSIVE LIKE DOLERITIC MATERIAL - GR/BL V. FINE GRAINED.
41.53-42.38 BR	R/GY RX CALCILUTITE + OCC. BRECCIATION ZONES.
42.38 - 45.43 MA	ASSIVE BR/GY RX CALCILUTITE WITH FINE GRAINED WHITE/PINKISH INTERSTITIAL MATRIX.
EUH (149')	
·	

Drill Hole Re	ecord	,	HI-TEC RESOURCE MANAGEMENT
Property TICKER	TAPE RESCURCE Ltd District LIARD	Hole No. 87-TTDDH /04	LIMITED
Commenced 13	10/87 LOCATION ISKUT RIVER AREA	Tests at	Hor. Comp.
Completed 15	10/87 Core Size B Q	Corr. Dip -60°	Vert. Comp.
Co-ordinates LINE	= 2+235 / 1 + 10 W	True Brg. 065°	Logged by D. Collins
Objective TEST	- MINERALIZATION AND GEOPHYSICAL	% Recov. 95%	LENGTH 73.94m (242
The second s	ANOMALIES AT DEPTH.	70	
METERS	Description		
0.00- 3.05	CASING		
3.05 - 4.00	Gy FINE GRAINED CARBONATE, WEATHERED	>.	
4.00 - 4.36	BIF-JASIER + Gy LST INTERBEDDED.		
4.36- 6.54	WEATHERED DARK GY FINE GRAINED LST.	TE MAGNETITE IN VEIN	LETS, SHEARED IN PLACES
	IRREGULAR BASAL CONTACT		
6.54- 7.28	BL/GY LST. OCC HEM STAINING. FINE I	PISS'M PYR.	
7.28 - 7.33	FLT ZONE C/A 83" ABUNDENT MAGNET,		
7.33 - 7.90	BR/GYLST + INTERBEDDED PARK GR VITRED	LS SERP BANDS . TECTO	ONIZED - BRECCIATED
	FINE DISS'M PYR.		
7.90 - 8.18	MAFIC INTRUSIVE. TOP CONTACT C		CONTACT GROUND
8.18 - 9.25	Bl/GyLST - SAME AS ABOVE FINE DI	SS'M PYR + GALENA	
9.25 - 11.08	MASSIVE BK/GyLST+MINOR HEM STAININ	G. BRECCIATION IN	PLACES.
11.08 - 14.83	Gy LST + INTERBANDED DARK GR SER	P. WELL MINERALIZE:	D-FINE PYR.
·	INCREASE IN RHYOLITIC, TUFFACEON	BANDING DOWNWI	ARDS. Dissim
	ARGENOPYR + GALENA THROUGHOUT.	C/A 80" TOP CONTA	ACT
14.83-15.70	ALTERED, DECOMPOSED CALC UNIT. +	APPEARS BANDED. FINE DIS	55'M PYR + GALENA.
15.70 - 17.30	TECTONIZED CALC GR/GY MNIT + GRS	ERPLIKE LAMINAE. J	DISS'M PYR + GALENA.
	BASE CONTACT C/A 300 FLT.		
17.30-19.28	ALTERED GY/BR CALC UNIT. VOL	CANIC LIKE TEXTURE	IN PLACES
	OCC. V. SHEARED. TR. FINE DISS		
	BASE CONTACT FLT. C/A 50°	-	

Drill Hole Re	ECORD PROPERTY TICKER TAPE 87 - TTOOH 104 NANAGEMENT SHEET 2 OF 5
METERS I	Description
19.28 - 19.90	GR FINE GRAINED INTRUSIVE . BRECC, ATED AT BASE. DISPERSED RX FYR
	TEP CONTACT FLT C/A 75° BOTTOM FLT CONTACT C/A 32°
19.90 - 22.70	ALTERED BANDED CALC THEFACEONS (RHYOLITIC TYPE BANDING). GY, BR HNIT
	V. FINE GRAINED, TECTONIZED. DISS'M PYR, GALENA + ARSENOPYR THROUGHOUT.
	BANDING C/A 75°
	INTENSELY SHEARED DARK GY ARGILLITE + CALC INTERLAMINAE
23.26 - 29.16	INCOMING OF BUFF PINK UNIT. DECOMPOSED, DENDRITIC MA STAINING, CALC IN PATCH
	WHERE IT IS ALSO MORE COMPETENT. FINE GRAINED PALE GR INTRA CLASTS EVIDENT
	OCC. MINCE 2M STAINING . BASE CONTACT C/A 70°
	BUR ARGILLITE + PALE GY CARBONATE LAMINAE INTERBEDDED. FINE DISS'M PYR.
30.04 - 30.43	PALE BANDED CARBONATES, FINE GRAINED RX, RHYOLITIC, TUFFACEOUS TYPE BANDING
	+ FLOW STRUCTURES. DISS'M PYR THROUGHOUT. TOPCONTACT C/A 80"
30.43 - 30.48	INTERBEDDED DARK GY/BER FINE GRAINED GREYWACKE + PALE GY CALC LAMINAE.
	FINE DISS'M PYR.
30.98 - 35.65	ALTERNATING SEQUENCE OF CALC RHYOLITIC BANDED UNITS SOGN THICK
	, WITH DISS'M PYR, AND DARK GY SHEARED CALCIRUDITES OF EQUAL THICKNESS
	THE INTRACLASTS IN THE LATTER ARE POORLY SORTED, MATRIX SUPPORTED =/a
	+ PREDOMINANTLY FINE GRAINED 2mm SIZE. ANG TORND. BUR SHALY CLASTS +
	BIF LIKE FRAGMENTS + CALC GY PEPPLES SOME EXHIBIT PRESSURE SOLUTION
· ·	GROWTHS. DECREASE IN VISIBLE DISS'M PYR. FABRIC IN CALCIRUDITE C/A 65
	IRREGULAR BOTTOM CONTACT.
35.65 - 37.50	DARK BL/GY FINE GRAINED KX CALCILUTITE WITH A YELLOW/BR. CALC INTERSTITUT
	MATRIX. BRECCIATED IN PATCHES. NO VISIBLE MINERALIZATION.

Drill Hole F	RECORD PROPERTY TICKER TAPE 87-TTOON 104 SHEET 3 OF 5 HI-TEC MANAGEMENT LIMITED
METERS rom To	Description
37.60 - 40.20	INCOMING OF PINKISH STAINING IN THE CALC INTERSTITIAL MATRIX. INCREASE FROM
	FINE TO MEDIUM GRAIN SIZE, BRECCIATED ZONES OCC WITH HEM STAINING IN
	GROUNDMASS - FRAGMENTS SIGM. PREDOMINANTLY SO. 5cm.
40.20 - 42.10	SIMILAR RX CALCILUTITE UNIT WITH YELLOW/BR CALC INTERSTITIAL MATRIX - SAM
	AS AT 35.65 M. DIFFUSE LOWER CONTACT.
	DARK GY/BL RX CALCILUTITE MEDIUM GRAINED - AS ABOUE.
43.10 - 44.33	INCREASE IN AMOUNT OF INTERSTITIAL MATRIX IN BL/GY RX CALCILUTITE
	FLT GOUGE C/A 22° NO VISIBLE MINERALIZATION
	SAME AS ABOVE
45.45-46.01	GA/GY FINE GRAINED CALCILUTITE. ABUNDENT BRECLIATION - GROWNDMASS GY JING
1107 51	FRAGMENTS U. ANG -4 cm to GRANULE SIZE. BL/GY RX CALCILUTITE, ABUNDENT BRECCIATION. NO VISIBLE MINERALIZATION
	Occ. RARE CALCITE VEIN.
	WHITE / PINK STAINED CALCITE FRAGMENTS
	2 BL/GY RX, BRECCIATED CALCILUTITE, SLIGHT PINK TINGED GROWNDMASS
A	- CALC.
54.32-54.41	BRECCIA ZONE C/A 57° PROMINANT RX CALCITE IN GOUGE
54.41 - 54.5	7 AS ABOVE AT 51.79M
	HEM STAINED CALCITE BRECCIA ZONE C/A 62°
	RX CALCILUTITE TR RX PYR IN PLACES WHERE BRECCIATION OCCURS
56.25 - 56.90	BLE V. FINE GRAINED RX MICRITIC UNIT. ABUNDENT THIN CALCITE VEINS
	WITH DISS'M RX FINE PYR. FIFFUSE CONTACTS
56.90 - 58.50	DARK GY BL MICRITE. 20 cm C.L NO UISIBLE MINERALIZATION
	PALER GY/BE BRECCIATED CALCILUTITE.

E E E E E E E E E E E E E E E E E E E
Drill Hole Record property Ticker Tape 87 - TTODH 04 HI-TEC SHEET 4 OF 5 HI-TEC MANAGEMENT LIMITED
METERS Description
59.00 - 59.48 MATRIX SUPPORTED FINE GRAINED WACKESTONE. MATRIX BL/GY CARBONATE. RX PYR ABSOCIATED WITH HEM STAINED CALC CLASTS
59.48 - 61.73 FINE GRAINED DARK BR/EY RX WACKESTONE + INTERBEDDED WHITE CALC LAMINAE E2CM. INTRACLASTS 60.5 cm. MATRIX SUPPORTED, V. ALTERED. RARE FINE BYR EUIDENT IN PLACES. FLT ZONE AT 60.70M C/A 70° 5 cm THICK
61.73 - 62.30 V. FINE GRAINED ALTERED DARK BL/GY ARGILLACEOUS UNIT WITH BR/YELLOW CALC INTERSTITIAL MATRIX. OCC SCATTERED CALC INTRACLASTS.
62.30-63.64 FINE GRAINED DARK BL/GY ARGILLITE. OCC INTERBEDDED CALC PALE GY LAMINAE + COARSE GRAINED INTERBEDS' THIN 2 MM CALC SHEAR PLANE AT BASE C/A 90°
63.64-63.80 PURPLE MEDIUM GRAINED QUARTZITE 63.80-64.55 MEDIUM / COARSE GRAINED PURPLE (ISH) ARKOSE + PHYLLITE INTERBEDS BEDDING C/A 70°
64.55-64.66 FINE GRAINED POLYMICTIC CONGLOMERATE, POORLY SORTED, SHEARED. ABUNDENT PRESSURE SOLUTION OF GRAINS. PEBBLES = 0.5 cm. Some
CALC GRAINS. BEDDING C/A 80° 64.66-66.30 PREDOMINANTLY FINE GRAINED PURPLE PHYLLITE WITH INTERBEDDED SIDERITIC UNITS (- MEDIUM /FINE GRAINED CALC) FLT AT BASE C/A 70°
66.30 - 67.00 RED PURPLE MEDIUM + COARSE GRAINED ARKOSES ARENILES INTERBEDDED 17.00 - 69.82 COARSE GRAINED PURPLE RED CONGLOMERATES INTERBEDDED WITH THIN
FINER GRAINED QUARTZITES. RND CLASTS & 14 cm. BUT PREDOMINANTLY 20.5 cm. ANG to SUB-RND.
PRESSURE SOLUTION EFFECTS EVIDENT IN PLACES. BEDDING C/A 56°

E. E.	
	CORD PROPERTY TICKER TAPE 87-TTOON /04 NANAGEMENT SHEET SOF S
METERS From To	Description
69.32 - 70.56	COARSE / MEDIUM GRAINED ARENACEOUS CLASTICS + FINE GRAINED PHYLLITES INTER BEDDED. FLT AT BASE - GROUND.
	BANDED SILICEOUS UNIT WITH HEM RICH LAMINAE, CALC LAMINAE + THIN QUARTZITE BEDS (=5cm) INTERBEDDED. FINING-UP GRADING VISIBLE IN QUARTZITE INTERBEDS. FLT C/A 90° AT BASE
71.29 - 71.46	COARSE QUARTZITE INTERBED FLT ATBASE - (A 90° WITH ICM CALC, SLICKENSIDED FLT PLANE. NO VISIBLE MINERALIZATION
71.46- 72.40	FINING-UP CONGLOMERATE. MATRIX SUPPORTED, POORLY SORTED (9m to GRANNLE SIZE) RND TO SUB-ANG. POLYMICTIC, SOME VOLCANIC CLASTS WHITISH SHEAR ZONE, U. ALTERED; SOME PATCHES OF PINK STAINING
	CALC IN PLACES. POSSIBLY K-FELDSPAR RICH (BL TINGED) TR RX PYR.
EOH (242')	
· · · · · · · · · · · · · · · · · · ·	
······	

Drill Hole Record			HI-TEC
Property TICKER TAPE RE	ESCURCE Ltd District LIARD		RESOURCE
Commenced 15 /10 /87	Location ISKUT RIVER ARE	Hole No. 87-TTDDH /05	
Completed 16/10/87	Core Size B Q	Corr. Dip -60°	Hor. Comp.
Co-ordinates LINE 2+23		True Brg. 130°	Vert. Comp.
Objective TEST MINER	RALIZATION AND GEOPHYSICAL		Logged by D. Collins
HNOMALI	IES AT DEPTH.	% Recov. 95%	LENGTH 60.98m (200
METERS Description			
0.00 - 3.05 CASING			
3.05 - 4.17 GY FI	NE GRAINED CARBONATE . W	EATHERED TO 3 48m	
4.17 - 4.28 JASPER	ROID BIF + LST INTERBEDDE	EA. TO DISS'M PUR	
4:20 0.10 BL/GY	FINE GRAINED LST ABUNI	DENT CALCITE IL'ING	To Pue Disale
	EXILLE DRECCIATED	IN PLACES DEFU	SE CONTACTO
6.70 - 8.74 Bl/Gy	FINE GRAINED CARBONA	TE + INTERBEDDED	ALTERED ZONIES
	NETTE SIKINGERS	· · · · ·	
18.74 - 9.22 BRECC	IATED ZONE AROUND FLT	PLANE 18 cm THICK	C/A 45° TO DISS'M
	INCOMING OF DARK GR VIT	TREOUS GREASY 'SERI	BANDING.
IARILY	SHEARED.	•	
9.22-10.10 DECON	POSED CALC UNIT FA	IBRIC C/A 60°	· · · · · · · · · · · · · · · · · · ·
10.10 - 10.67 PALE	BR/GY MASSINE LST. FL	T AT BASE GROUN:	D, ZM STAINING
FULDE	NI IN GOUGE)
10.67-10.81 INTRU	ASIVE - PALE GR DOLERITI	C BASE C/A 55°	
10.81 - 11.68 Bl/G		RK GR SERP LAMINA	EINTERBEDDED
	M MK THROUGHOUT		
The second s	POSED ALTERED ZONE AL		NG
12.20-13.02 FINE	GRAINED GR INTRUSIVE	BASE C/A 40°	
13.02-13.33 CAKBOA	DATE + INTERLAMINATED DA	ARK GR VITREOUS SE	RP BANDS. TECTON -
	AROUGHOUT. RHYOLITIC TYPE	FLOW STRUCTURES	ABUNDENT
DISS'I	M PYR, GALENA.		

Drill Hole Record PROPERTY TICKER TARE 87-TTDON 05 MANAG	C JRCE SEMENT D
METERS Description	
15.55 - 15.80 FLT ZONE GOUGE, ABUNDENT ZN STAINING, CORE GROUND 15.80 - 17.00 SIMILAR UNIT TO ABOVE BUT LESS MINERALIZED.	<u>).</u>
15.80-17.80 SIMILAR UNIT TO THOUSE DUT 2005 THREATER LED. 17.00-17.90 ALTERED CALC ZONE. INTERBEDDED GY CALCILUTITE - FLT CON	UTACTS
TOP C/A 50° BOTTOM C/A 60°. TR DISS'M PYR	and a start way and a start of a start of
17.90- 19.26 CALC, RHYOLITIC (TUFFACEOUS BANDED UNIT. 50.5 cm THICK	
TE DISS'M PUR, BEDDING (3) 38° C/A	
19.26 - 20.17 DECOMPOSED BR UNIT NON - CALC. DOLOMITIZED LEACHED L	INIT.
TR Zn STAINING. BEDDING C/A 50°	and water and water and a state of the
20.17-21.12 BANDED UNIT AS AT 19.00M. TR DISS'M PYR + GALENA	
21.12-21.43 FLT ZONE TOP C/A 45° BASE C/A 50° MINOR ZN STAININGIN	GOUGE
21.43-21.70 BANDED UNIT AS ABOVE. TR PYR	and the second diverse in the second second diverse in the
21.70-22.07 FLT ZONE C/A 50° 10 CM C.L. TR ZN STAINING.	Andrew Manager - Annald - I an Annald - I an Annald - Ann
22.07 - 23.55 BANDED UNIT AS ABOUE TR ARSENOPYR.	
23.55-24.04 FLT ZONE C/A 40° TR. ZN STAINING	- PUP
24.04-24.64 BANDED UNIT AS ABOVE. DISS'M RX PYR THROUGOUT + TR ARSEN	NING
24.64-26.18 PINKISH DOLOMITIC UNIT WITH ABUNDENT DENDRITIC MM STAI INTERLAMINATED WITH PALE GY FINE GRAINED LST. DISS'M RY	R + GALEN
MINOR ZN STAINING . TOP C/A 47°	<u><u> </u></u>
26.18 - 26.82 INCOMING OF DARK GR SERP LAMINAE, JERY CONTORTED. BRECH	CIATED
1N PLACES DISS'M RX PYR THROUGHOUT.	
26.82-26.94 FLT ZONE BRECCIA C/A (TOP) 80° (BASE) 47° NONISIBLE MINERI	ALIZATION
2691-2715 GO SERP + GY LST UNIT	
27.15-29.93 DECOMPOSED, LEACHED WNIT. EQUIVALENT TO ABOVE UNIT (:))
TR ZN STAINING CALC IN PATCHES	
BOTH CONTACTS GROUND	

Drill Hole R	RECORD PROPERTY TICKER TAPE 87-TTODH 05 SHEET 3 OF 4
METERS	Description
29.93 - 30.27	DARK GR, MAFIC SHEARED AGGLOMERATE, NON-CALC. CLASTS =0.5 an
۲۰۰۰,۰۰۰ و منطقات ه کې ر موت وليو وارد ورو ورو ورو ورو ورو و	POORLY SORTED, FINING - UP WARDS, IGNEOUS CLASTS.
30.27 - 30.65	ALTERED PALE GY VUGGY CARBONATE + MM STAINING.
30.65 - 31.15	SHEARED AGGLOMERATE - AS ABOUE C/A 47° TOP CONTACT.
	TR BX PYR IN SOME CLASTS. TECTONIZED DUCTILE DEFORMATION
	FABRIC C/A 33°
31.15 - 33.00	ALTERED TECTONIZED CARBONATE + BLOTCHY MN STAINING.
	SHEARED LOWER CONTACT C/A 35°
\$3.00-34.15	SHEARED FINE GRAINED CALC WACKESTONE. INTRACLASTS = 0.5 cm
•	IN DARK GY BER ARGILLACEOUS CALE MATRIX. INTERBEDDED CALC
0, 1 - 21	GY FINE GRAINED BEDS 5500. DISSIM RYR IN MATRIX
	ALTERED CALC BR/GY TECTONIZED UNIT. MINOR MM STAINING.
34.40 - 35.60	AS ABOVE
· · · · · · · · · · · · · · · · · · ·	SHEARED FINE GRAINED MATRIX SUPPORTED WACKESTONE. DARK GY/BLK MATRIX
20.03 20.00	INTRACLASTS 50.5 cm. MAGNETITE STRINGERS. FABRIC C/A 30°
36.80 - 38.60	DARK BL/GY CARBONATE MATRIX + POOLY SORTED ANG SAUB-RND
<u> </u>	INTRACLASTS = 2cm.
38.40-39.70	INCOMING OF BRIORANGE MATRIX. C/A 25°
39.70 - 40.10	
	MATRIX GY/BR CLASTS GY/GR CALC
40.10 - 42.68	ABUNDENT MAGNETITE WITHIN DARK BR/GY RX CALCILUTITE.
42.68 - 43.10	
•	BEDDING CIA 27°

Drill Hole Record PROPERTY TICKER TAPE 87-TTOON 65 NETERS Description TOT TO		
Drill Hole Record PROPERTY TICKER TARE 87-TTOON/05 SHEET 4004 METERS Description Tom To Description Tom To 20 Cm C.L. BEDDING C/A 27° 45.25-45.25 AS ABOVE + MINOR HEM STAINING IN MATRIX 45.25-45.25 AS ABOVE + MINOR HEM STAINING IN MATRIX 45.25-45.47 ALTERED GY FLT ZONE MYLONITIC TEXTURES C/A 17° 44.47-49.70 PALE BR/ GY TUFFACEOUS ZONE C/A 25° 47.70-50.40 DARK BR/GY RK GARBONATE MEDIUM/COARSE GRAINED 50.40-53.20 INTENSE BRECCIATION ZONE, CALC + WILCANIC TYPE REAMENTS SZM IN PARTIALLY CALC GROWND MASS. TR DISS'M PYR, MINOR MAGNETITE 54.47 STAILLY CALC GROWND MASS. TR DISS'M PYR, MINOR MAGNETITE 54.48 STO DARK GY /BR RK ARGILLACEOUS MICRITIC UNIT. CALCITE V'ING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC. MILONITIC TEXTURES EVIDENT V RX GREENISH TINGE. No VISIBLE MINERALIZATION 58.20-60.60 DARK GY /BR ARGILLACEOUS FINE GRAINED GARSE AT A CONTACT. 58.20-60.60 DARK GY REALIZATION CCC. NO VISIBLE MINERALIZATION 58.20-60.60 DARK GY REALIZATION. 60.60-60.74 BLR CALC MUSTONE - SOME INTRAFORMATIONAL FRACMENTS. TR RS ARSENOPYR. 60.60-60.74 BLR CALC MUSTONE - SOME INTRAFORMATIONAL FRACMENTS. FOH		
METERS Description To To TO 43.10-45.25 DARK BR/GY RX CALCILUTITE WITH ORANGE/BR INTERSTITIAL MATRIX 20 cm C.L. BEDDING C/A 27° 45.25-48.25 AS ABOVE + MINOR HEM STAINING IN MATRIX 42.25-48.47 ALTERED SY FLT ZONE MYLONITIC TEXTURES C/A 17° 46.47-41.70 PALE BR/GY TUFFACEOUS ZONE C/A 25° 47.70-50.40 DARK BR/GY RK GARGONATE MEDIUM/GARSE GRAINED 50.40-52.20 INTENSE BRECCIATION ZONE, CALC + VOLCANIC TYPE RAGMENTS SZM IN PARTIALLY CALC GROUNDMASS TR DISS'M P/R, MINOR MAGNETITE SHEARING IN PLACES C/A 58° DIFFUSE LOWER CONTACT. 52.20-55.70 DARK GY/BR RX ARGILLACEOUS MICRITIC UNIT. CALCITE VING + BRECCIATION OCC. NO USIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO USIBLE MINERALIZATION 53.20-60.06 DARK GY/BR ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. V. RX SLIGHT DINKISH TINGE AT 60.00-60.50M NO UISIBLE MINERALIZATION. 60.06-60.60 BLR RX CALC MUSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARGENPER. 60.60-60.94 BLR CALC MUDSTONE. MINOR CALCITE VING - HOMO RENEDUS. EOH	Drill Hole Re	CORD PROPERTY TICKER TAPE 87 - TTODH 05 SHEET 4 OF 4 HI-TEC RESOURCE MANAGEMENT LIMITED
43.10 - 45.25 DARK BR/GY RX CALCILUTITE WITH ORANGE/BR INTERSTITIAL MATRIX 20 cm C.L. BEDDING C/A 27° 45.25-48.25 AS ABOVE + MINOR HEM STAINING IN MATRIX 48.25-48.47 ALTERED GY FLT ZONE MYLONITIC TEXTURES C/A 17° PALE BR/GY TUFFACEOUS ZONE C/A 25° 44.70-50.40 DARK BR/GY RX CARBONATE MEDIUM/GOARSE GRAINED 50.40-50.20 INTENSE BRECCIATION ZONE, CALC + WELCANIC TYPE RAGMENTS SZM IN PARTIALLY CALC GROUNDMASS TR DISS'M PYR, MINOR MAGNETITE SHEARING IN PLACES C/A 55°. DIFFUSE LOWER CONTACT. 52.20-55.70 DARK GY/BR RX AREILLACEOUS MICHTIC LANIT. CALCITE VING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC, M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20-60.66 DARK GY/BL ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES V. RX SLIGHT PINKISH TINGE AT 60.00-60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BLR CALC MUDSTONE. MINOR CALCITE V'ING - HOMO RENETS. TR RX ARSENOPYR. 60.60-60.98 BLR CALC MUDSTONE. MINOR CALCITE V'ING - HOMO RENEOUS. EDH	METERS D	
45.25-48.25 AS ABOUE + MINOR HEM STAINING IN MATRIX 48.25-48.47 ALTERED GY FLT ZONE MYLONITIC TEXTURES C/A 17° 48.47-49.70 PALE BR/ GY TUFFACEOUS ZONE C/A 25° 49.70-50.40 DARK BR/GY RK CARBONATE MEDIUM/COARSE GRAINED 50.40-52.20 INTENSE BREECIATION ZONE, CALC + UDICANIC TYPE FRAGMENTS S3CM IN PARTIALLY CALC GROUNDMASS TR DISS'M PYR, MINOR MAGNETITE SHEARING IN PLACES C/A 58°. DIFFUSE LOWER CONTACT. 52.20-55.70 DARK GY /BR RX ARGILLACEOUS MICRITIC UNIT. CALCITE V'ING + BREECIATION OCC. NO VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BREECIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20-60.06 DARK GY /BL ARGILLACEOUS FINE GRAINED CARBONATE. BREECIA IN PLACES V. RX SLIGHT PINKISH TINGE AT 60.00-60.50M NO VISIBLE MINERALIZATION. 60.00-60.94 BLR CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. EOH		DARK BE/BY RX CALCILUTITE WITH ORANGE/BR INTERSTITIAL MATRIX
48.25-48.47 ALTERED GY FLT ZONE MYLONITIC TEXTURES C/A 17° 48.47-49.70 PALE BC/ GY TUFFACEOUS ZONE C/A 25° 49.70-50.40 DARK BC/GY RX CARBONATE MEDIUM/COARSE GRAINED 50.40-52.20 INTENSE BRECCIATION ZONE, CALC + VOLCANIC TYPE RAGMENTS S300 IN PARTIALLY CALC GROUNDMASS TR DISS'M PYR, MINOR MAGNETITE SHEARING IN PLACES C/A 58°. DIFFUSE LOWER CONTACT. 52.20-55.70 DARK GY /BC RX ARGILLACEOUS MICRITIC UNIT. CALCITE V'ING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20-60.06 DARK GY /BC ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES V. RX SLIGHT PINKISH TINGE AT 60.00-60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BCR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENO PYR. 60.60-60.94 BCR CALC MUDSTONE. MINOR CALCITE V'ING - HOMO RENEOUS.	45.25-48.25	
48.47 - 49.70 PALE BL/ GY TUFFACEOUS ZONE C/A 25° 49.70 - 50.40 DARK BL/GY RK GARBONATE MEDIUM / GARSE GRAINED 50.40 - 52.20 INTENSE BRECCIATION ZONE, CALC + VOLCANIC TYPE FRAGMENTS S3M IN PARTIALLY CALC GROUND MASS TR DISS'M PYR, MINOR MAGNETITE SHEARING IN PLACES C/A 58°. DIFFUSE LOWER CONTACT. 52.20 - 55.70 DARK GY / BL RX ARGILLACEOUS MICRITIC UNIT. CALCITE V'ING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70 - 58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20 - 60.06 DARK GY / BL ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES V. RX SLIGHT PINKISH TINGE AT 60.00 - 60.50M NO VISIBLE MINERALIZATION. 60.06 - 60.98 BLK CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARGENOPYR. 60.60 - 60.98 BLK CALC MUDSTONE MINOR CALCITE V'ING - HOMO RENEOUS.	48.25- 48.47	ALTERED GY FLT ZONE MYLONITIC TEXTURES C/A 170
50.40 - 52.20 INTENSE BRECCIATION ZONE, CALC + WELCANIC TYPE FRAGMENTS SZAM IN PARTIALLY CALC GROUNDMASS. TR DISS'M PYR, MINOR MAGNETITE SHEARING IN PLACES C/A 58°. DIFFUSE LOWER CONTACT. 52.20 - 55.70 DARK GY / BL RX ARGILLACEOUS MICRITIC UNIT. CALCITE VING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70 - 58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20 - 60.06 DARK GY / BL ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. V. RX SLIGHT PINKISH TINGE AT 60.00 - 60.50 M NO VISIBLE MINERALIZATION. 60.06 - 60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARGENOPYR. 60.60 - 60.98 BLR CALC MUDSTONE. MINOR CALCITE VING - HOMO RENEOUS.	48.47 - 49.70	PALE BL/ GY TUFFACEOUS ZONE C/A 250
IN PARTIALLY CALC GROUNDMASS. TR DISS'M PYR, MINOR MAGNETITE SHEARING IN PLACES C/A 58° DIFFUSE LOWER CONTACT. 52.20-55.70 DARK GY /BR RX ARGILLACEOUS MICRITIC UNIT. CALCITE V'ING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20-60.06 DARK GY /BR ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. U. RX SLIGHT PINKISH TINGE AT 60.00 - 60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 BLR CALC MUDSTONE. MINOR CALCITE V'ING - HOMO RENEOUS.	49.70 - 50.40	DARK BL/GY RX CARBONATE MEDIUM/COARSE GRAINED
SHEAR ING IN PLACES C/A 58°. DIFFUSE LOWER' CONTACT. 52.20-55.70 DARK GY /BL RX ARGILLACEOUS MICRITIC UNIT. CALCITE VING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. No VISIBLE MINERALIZATION 58.20-60.06 DARK GY /BL ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. V. RX SLIGHT PINKISH TINGE AT 60.00 - 60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARGENOPYR. 60.60-60.94 BLR CALC MUDSTONE. MINOR CALCITE VING - HOMO RENEOUS.	50.40 - 52.20	INTENSE BRECCIATION ZONE, CALC + VOLCANIC TYPE FRAGMENTS S300
52.20-55.70 DARK Gy /BC RX ARGILLACEOUS MICRITIC UNIT. CALCITE VING + BRECCIATION OCC. NO VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20-60.06 DARK GY /BC ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. V. RX SLIGHT PINKISH TINGE AT 60.00 - 60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BCR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 BCR CALC MUDSTONE - MINOR CALCITE VING - HOMO RENEOUS. EOH		IN PARTIALLY CALC GROUNDMASS. TR DISS'M PYR, MINOR MAGNETITE
BRECCIATION OCC. No VISIBLE MINERALIZATION 55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. No VISIBLE MINERALIZATION 58.20-60.06 DARK Gy/BL ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. V. RX SLIGHT PINKISH TINGE AT 60.00-60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 BLK CALC MUDSTONE. MINOR CALCITE VING - HOMO RENEOUS. EOH		SHEAKING IN PLACES C/A 58°. DIFFUSE LOWER CONTACT.
55.70-58.20 TECTONIZED, BRECCIATED ZONE, CALC. M LONITIC TEXTURES EVIDENT V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20-60.06 DARK Gy/Bl ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. V. RX SLIGHT PINKISH TINGE AT 60.00 - 60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 BLR CALC MUDSTONE. MINOR CALCITE VING - HOMO RENEOUS. EOH	52.20 - 55.70	DARK GY /BE KX ARGILLACEOUS MICRITIC UNIT. CALCITE VING +
V. RX GREENISH TINGE. NO VISIBLE MINERALIZATION 58.20-60.06 DARK Gy/BL ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES. V. RX SLIGHT PINKISH TINGE AT 60.00-60.50M NO VISIBLE MINERALIZATION. 60.06-60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 BLR CALC MUDSTONE. MINOR CALCITE VING - HOMORENEOUS. EOH		
58.20-60.06 DARK Gy/Bl ARGILLACEOUS FINE GRAINED CARBONATE. BRECCIA IN PLACES V. RX SLIGHT PINKISH TINGE AT 60.00-60.50M NO UISIBLE MINERALIZATION. 60.06-60.60 Blk RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 Blk CALC MUDSTONE. MINOR CALCITE VING - HOMO RENEOUS. EOH	55.10-20.20	
PLACES V. RX SLIGHT PINKISH TINGE AT 60.00 - 60.50M NO UISIBLE MINERALIZATION. 60.06-60.60 Blk RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 Blk CALC MUDSTONE. MINOR CALCITE V'ING - HOMO RENEOUS. EOH	$a_{20} = (0.01)$	
NO VISIBLE MINERALIZATION. 60.06-60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60.98 BLR CALC MUDSTONE. MINOR CALCITE V'ING - HOMOGENEOUS. EOH	D0.70 P0.00	
60.06-60.60 BLR RX CALC MUDSTONE - SOME INTRAFORMATIONAL FRAGMENTS. TR RX ARSENOPYR. 60.60-60-98 BLR CALC MUDSTONE. MINOR CALCITE V'ING - HOMORENEOUS. EOH		
TR RX ARGENOPYR. 60.60-60.98 Blk CALC MUDSTONE. MINOR CALCITE V'ING - HOMORENEOUS. EOH	60.06 - 60.60	
60.60-60.98 Blk CALC MUDSTONE. MINOR CALCITE V'ING - HOMOGENEOUS.		
EOH	60.60 - 60.98	
	EOH	

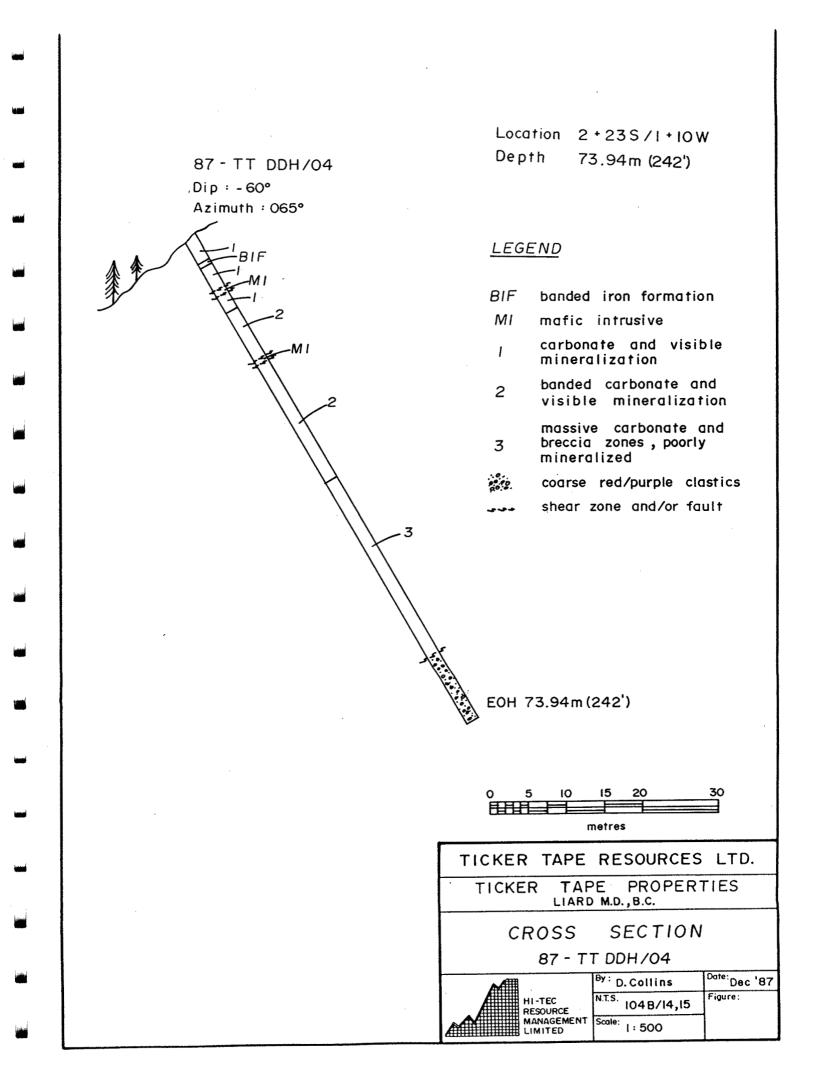
Drill Hole Re	cord				ſ		HI-TEC
					,		RESOURCE MANAGEMEN
Property TICKER T	APE RESCURCE		LIARD		DDH/06		LIMITED
Commenced 16/10	/67	Location Is	SKUT RIVER AR	EA Tests at		Hor. Com	p
Completed 18/10	/87	Core Size	BQ	Corr. Dip -90°	VERTICA		
Co-ordinates LINE	2+235 /1-	- 10 W		True Brg.			by D. Colli
Objective TEST	MINERALIZAT	ION AND	GEOPHYSICAL	% Recov. 83 /		LENGT	H 60.93m (
		9T DEPT	н.	10			
METERS De	scription						
0.00-3.05 0	ASING						
3.05- 5.05	V. POOR REC	DUERY G	ty LST. 75	cm C.L.			······
5.05 - 9.58	PALE GY FINI	EGRAINED	LST. BLOTCH	Y APPEARANCE	, ABUNI	SENT CAL	CITE
<u> </u>	I'ING. SCA	TTERED 7	DOLOMITIZED	ZONES. TR	DISS'M	FINE PY	<u>'R.</u>
	BEDDING	C/A 54	•				
9.58 - 11.90	INCOMING O	F DARK	GR VITREOUS	S SERP BANDI	NG + PAL	LERGR F	ALTER ATIO
z	ONES. BR	Gy CALC	INTERBEDS	- NOT WELL D	EVELOPE	D. SHEAL	RED.
				NISS'M PYR +	TR GA	LENA.	
	BANDING						
11.90 - 12.69	•		VE TOP CON			SE CA	<u>49°</u>
12.69-17.80	AS ABOVE			BRIC C/A 4			
				07m HAS Z		NG. C	<u>1A 40°</u>
17.80 - 18.22	SOFT BR C	ALC ZONG	E. V. IRREG	AULAR CONT	TACTS		
18.22-19.95				LITIC TYPE)	BANDI	NG.	
			+ GALENA.		0	-	
		•		GE + GY LST	BRECCIA	1	
			UNIT AS F				
1 1				JITH ZM STI			
		. Some	E CONCENTR	RATION OF G	ALENA 1	N PODS	
30.60-33.23				~ ^ ·			a para any amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr
33.23-33.37	Gy/GR FLT	Gouge .	SLIGLTLY	CALC.			

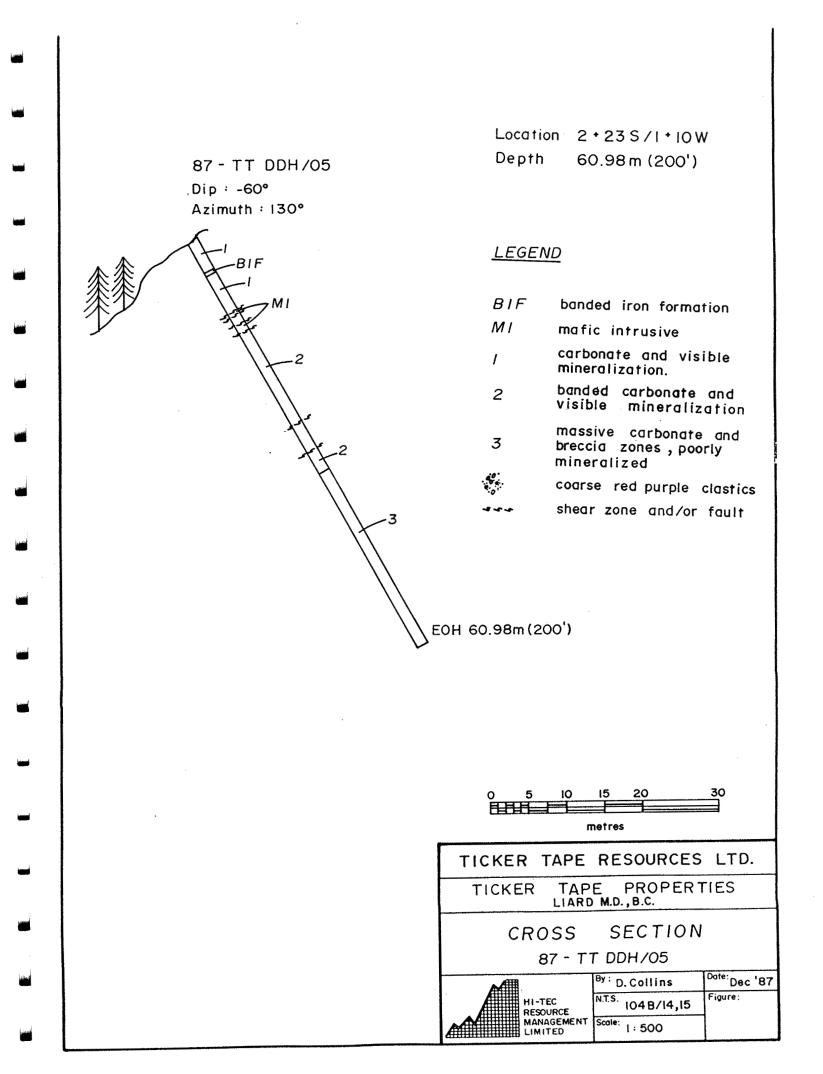
EE	E. E
Drill Hole Re	BCORD PROPERTY TICKER TAPE 87-TTODH 06 NANAGEMENT SHEET 2 OF 2 LIMITED
METERS From To	Description
33.37 - 34.20 34.20 - 35.50	DARK GR BRECCIA IN GY CALC MATRIX. TR DISS'M PYR. C.L.
and and a second s	PALE GY RX FINE GRAINED CALCILUTITE. OCC BE ALTERED PODS SIDCM CORE LENGTH . FAIR MINERALIZATION FINE DISS'M PYR, FRGALENA
	PALE GY THEFACEOUS BED. PINK TINGE AT BASE 5 cm. FLT CONTACTS TOPC/A 55° BASE 73° C/A.
37.33 - 42.80	DECOMPOSED, LEACHED CALC ZONE. GY/BR COLOUR MINOR MM STAINING IN PLACES
42.80 - 45.43	
46.90 - 49.50	
49.50- 50.00 50.00 - 53.50	V. BOOR RECOVERY, BROKEN/GROUND CORE. AS ABOVE CARBONATE - DIFFUSE LOWER CONTACT
53.50 - 55.00	
55.00-57.00	COARSER GRAINED, RX, PARTIALLY BRECCIATED CARBONATE. SHEARED, MAGNETITE RICH. INCREASE IN BRECCIATION TOWARDS BASE.
57.00-58.50	ABUNDENT MAGNETITE LIKE FRAGMENTS. SIGM.
58.50-60.0	BL/ EY CALC BRECCIA ZONE, POSSIBLY SOLUTION BRECCIA. FAINT HEM STAINING EVIDENT. OCC.
60.03-60.10	FLT ZONE C/A 60° TOP C/A 47° BASE. MINOR RX PYR ALONG FLT PLANE BL/GY CALC BRECCIA ZONE AS ABOUE
EOH (199')	

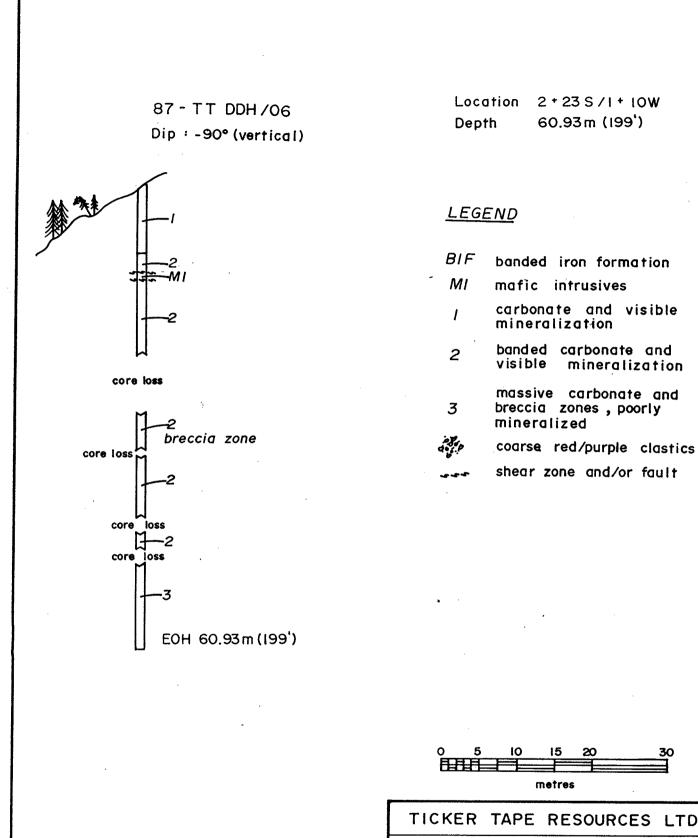
Drill Hole Record
Property TICKER TAPE RESCURCE Ltd District LIARD Hole NO. 87-TTDDH/07
Commenced 18/10/87 Location ISKUT RIVER AREA Tests at Hor. Comp.
Completed 20/10/87 Core Size B Q Corr. Dip -45° Vert. Comp.
Co-ordinates LINE 2+235 / 1+10W True Brg. 235° Logged by D. Collin
Objective TEST MINERALIZATION AND GEOPHYSICAL % Recov. 90% LENGTH 62.80m (2
ANOMALIES AT DEPTH. 10
METERS Description From To
0.00-3.05 CASING
3.05-4.57 BR ALTERED CARBONATE. MINOR DENDRITIC MM STAINING.
4.57- 5.00 PALE GY V. FINE GRAINED RX MICRITIC LST. TR DISS'M PYR. C/A 550
5.00-5.79 BR ALTERED CARBONATE + PATCHES OF GY MICRITE
5.79 - 9.20 PALE GY V. FINE GRAINED: RX LST. FINE DISS'M PYR + GALENA IN STRINGER
ALTERATION TO BR CALC LITHOLOGY OCCURS ALONG MINUTE FRACTURES.
9.20 - 10.37 AS ABOVE AT 3.05m. 67° C/A BEDDING(3)
10-37 - 10-50 C.L.
10.50 - 11.00 MAFIC INTRUSIVE CONTACTS GROUND
11.00 - 11.35 BR ALTERED UNIT + FLT GOUGE WITH ZN STAINING. BOR RECOVERY
11.35-11.80 PALE GY RX LST-AS ABOUE AT 5.79m
11.80-18.40 BR ALTERED UNIT-AS ABOUE.
18.40-18.72 PALE GY RX LST - AS ABOVE
1872-1900 BR ALTERED ZONE - AS ABOVE.
19.00-19.20 PALE RX LST - AS ABOUE
19.20-22.42 BR ALTERED ZONE - AS ABOVE.
22.42-22.75 GYLST + STRINGERS BETTER MINERALIZATION THAN ABOVE
22.75-25.20 BR ALTERED UNIT + GY BLOTCHES OF LST. ALL CONTACTS V. IRREGUL
AR. CA NOT DEFINED.
25.20-29.40 PALE GY RX LST + STRINGERS OF U. FINE PYR + GALENA
SCATTERED ALTERED PATCHES OF BR CALC MATERIAL.

-

Drill Hole Record property Ticker TAPE 87-TTODH 07 SHEET 2 OF 4 HI-TEC MANAGEMENT LIMITED
METERS Description
29.40 - 29.85 BANDED JASPER + GY LST. DISPERSED V. FINE RX PYR + MAGNETITE. BEDDING C/A 37°
29.85-30.58 TECTONIZED BANDED GY LST. TUFFACEOUS BANDS 60.5 cm. MINOR
JASPER DISPERSED FINE PYR + GALENA
30.58 - 30.68 FLT ZONE C/A 41° CALCITE INFILLED
30.66 - 31.70 PALE GY SLIGHTLY COARSER GRAINED LST THAN ABOVE . No STRINGERS. MASSIVE TEXTURE.
31.70-32.50 PALE GY RX LST + BLOTCHES OF CALC ALTERED BR MATERIAL
STRINGERS OF PYR + GALENA.
32.50 - 32.80 FLT ZONE C/A 80° MINOR HEM STAINING, WELL MINERALIZED WITH FINE PYR IN GOUGE
32.80-34.10 PALE GY RX LST + BLOTCHES - AS ABOVE
34.10 - 35.82 BR ALTERED CALC UNIT - AS ABOVE
35.82-36.10 FLT ZONE C/A 25° MINOR HEM STRINING. WELL MINERALIZED WITH
FINE PYR + GALENA
36.10-36.66 BR ALTERED UNIT-AS ABOUE
36.66 - 37.70 GY LST COARSER THAN ABOVE - STRINGERS OF FINE PYR. C/A 35°
37.70-37.80 FLT ZONE C/A 70°. ORANGE/BR GOUGE, WELL MINERALIZED FINE PYR.
37.80-39.04 BANDED LOT + FINE GRAINED STRINGERS OF PYR
38.04-39.45 PALE GY MEDIUM GRAINED LST, IRREGULAR TOP CONTACT C/A 25°.
NO VISIBLE MINERALIZATION
OCC. SCATTERED ALTERATION ZONE-AS ABOVE
39.45-39.55 FLT ZONE, + ZN STAINING . CORE GROUND
39.55-40.00 MASSIVE MEDIUM GRAINED PALE GY LST.
40.00 - 40.30 ALTERATION ZONE CLASS. MINOR ZN STAINING.


	EFEEEEEEEEEEEEEEEEEE
Drill Hole Red	CORD PROPERTY TICKER TAPE 87-TTOOH 107 NANAGEMENT SHEET 3 OF 4
METERS De	escription
40.30-42.05 6	FAINTLY BANDED FINE GRAINED BR/GY CARBONATE + SCATTERED BR
<i>F</i>	ALTERATION ZONES. STRINGERS OF PYR + GALENA.
12.05-42.38	FLT GOUGE C/A 43° NO VISIBLE MINERALIZATION
12.38-42.90	MASSIVE MEDIUM GRAINED PALE GY CARBONATE
42.90-43.10	FLT GOUGE C/A 30° + ZN STAINING
43.10-44.92	FAINTLY BANDED BL/GY RX CARBONATE. TR FINE PYR.
	FLT AT 43.90 M - ZM STAINED.
4.92 - 45.27	INCOMING OF FAINTLY RED TINGED LAMINAE. FABRIC C/A 27°
	FLT GOUGE C/A55° ZN STAINING
f i	GY RX LST .
	FLT ZONE C/A 32° ZN STAINING
	BR ALTERED ZONE - AS ABOVE
17.39 - 47.61	BANDED TECTONIZED BIF. FINE DISS'M PYR. C/A 60° FLT'ED
	BR ALTERED UNIT - AS ABOVE
19.14 - 51.25	GY RX FINE GRAINED LST. TECTONIZED HEM RICH BANDS
	TR DISS'M PYR. POOR CORE RECOVERY
	FLT AT BASE C/A 25°
51.25 - 52.03	GY LST + STRINGERS OF V. FINE PYR.
	U. ALTERED RX UNIT. DENDRITIC MA STAINING EVIDENT.
52.03-52.79	BANDED LST UNIT + FAULTED INTRUSIVE C/A 0°
iz-	TRACE RX PYR ALONG CA. FLT AT BASE CA 50° TRUNCATES
	INTERVAL.
	HEM RICH BANDING IN GY RX LST. TR RX PYR 4/4 80°
53.50-54.40	GY MEDIUM /FINE GRAINED MASSIVE LST.


Drill Hole Record PROPERTY TICKER TAPE 87-TTODH 67 SHEET 4 OF 4 METERS Description TO 54.40-57.34 FLT GOUGE ZONE. APPROX 30 Cm C.L. BR CALC THROUGHOUT. C/A 60° 57.34-58.10 FAINTLY BANDED, BL/GY + HEM LAMINAE, RX 4ST. TR FINE RYR IN STRINGERS C/A TOP 65° BASE C/A 55° 58.10-59.00 DECOMPOSE BR ZONE AS ABOVE 59.00-60.37 GY MASSIVE RX LST + BLOTCHES OF ALTERED BR LST-AS ABOVE 60 Cm C.L. 60.37-62.80 BLOTCHY GY LST UNIT AS ABOVE
METERS From To 54.40-57.34 FLT GOUGE ZONE, APPROX 30 Cm C.L. BR CALC THROUGHOUT. C/A 60° 57.34-58.10 FAINTLY BANDED, BR/GY + HEM LAMINAE, RX 4ST. TR.FINE PYR IN STRINGERS C/A TOP 65° BASE C/A 55° 58.10-59.00 DECOMPOSE BR ZONE AS ABOVE 59.00-60.37 GY MASSIVE RX 4ST + BLOTCHES OF ALTERED BR 1ST-AS ABOVE 60 Cm C.L.
54.40-57.34 FLT GOUGE ZONE. APPROX 30 cm C.L. BR CALC THROUGHOUT. C/A 60° 57.34-58.10 FAINTLY BANDED, BL/GY + HEM LAMINAE, RX 4ST. TR.FINE PYR IN STRINGERS C/A TOP 65° BASE (A 55° 58.10-59.00 DECOMPOSE BR ZONE AS ABOVE 59.00-60.37 GY MASSIVE RX 4ST + BLOTCHES OF ALTERED BR 1ST-AS ABOVE 60 cm C.L.
57.34-58.10 FAINTLY BANDED, BL/GY + HEM LAMINAE, RX LST. TR.FINE PYR IN STRINGERS C/A TOP 65° BASE C/A 55° 58.10-59.00 DECOMPOSE BR ZONE AS ABOUE 59.00-60.37 GY MASSIVE RX LST + BLOTCHES OF ALTERED BR LST-AS ABOVE 60 cm C.L.
58-10-59.00 DECOMPOSE BR ZONE AS ABOVE 59.00-60.37 GY MASSIVE RX LST + BLOTCHES OF ALTERED BR LST-AS ABOVE 60 cm C.L.
EOH (206')


APPENDIX VII-B

Diamond Drill Cross Sections

 metres

 TICKER TAPE RESOURCES LTD.

 TICKER TAPE RESOURCES LTD.

 TICKER TAPE RESOURCES LTD.

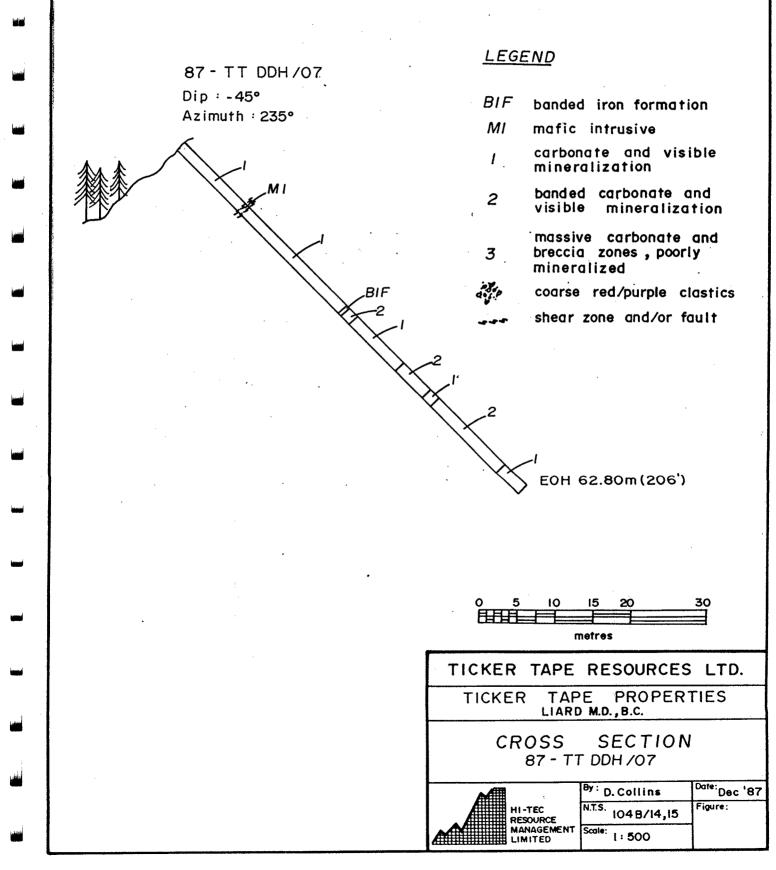
 TICKER TAPE PROPERTIES

 LIARD M.D., B.C.

 CROSS SECTION

 87 - TT DDH/06

 HI-TEC


 HI-TEC

 NT.S. IO4 B/14,15

 Figure:

 Scole: 1: 500

Location 2+23 S / I + IOW Depth 62.80m (206')

APPENDIX VIII

Statement of Costs

. . . .

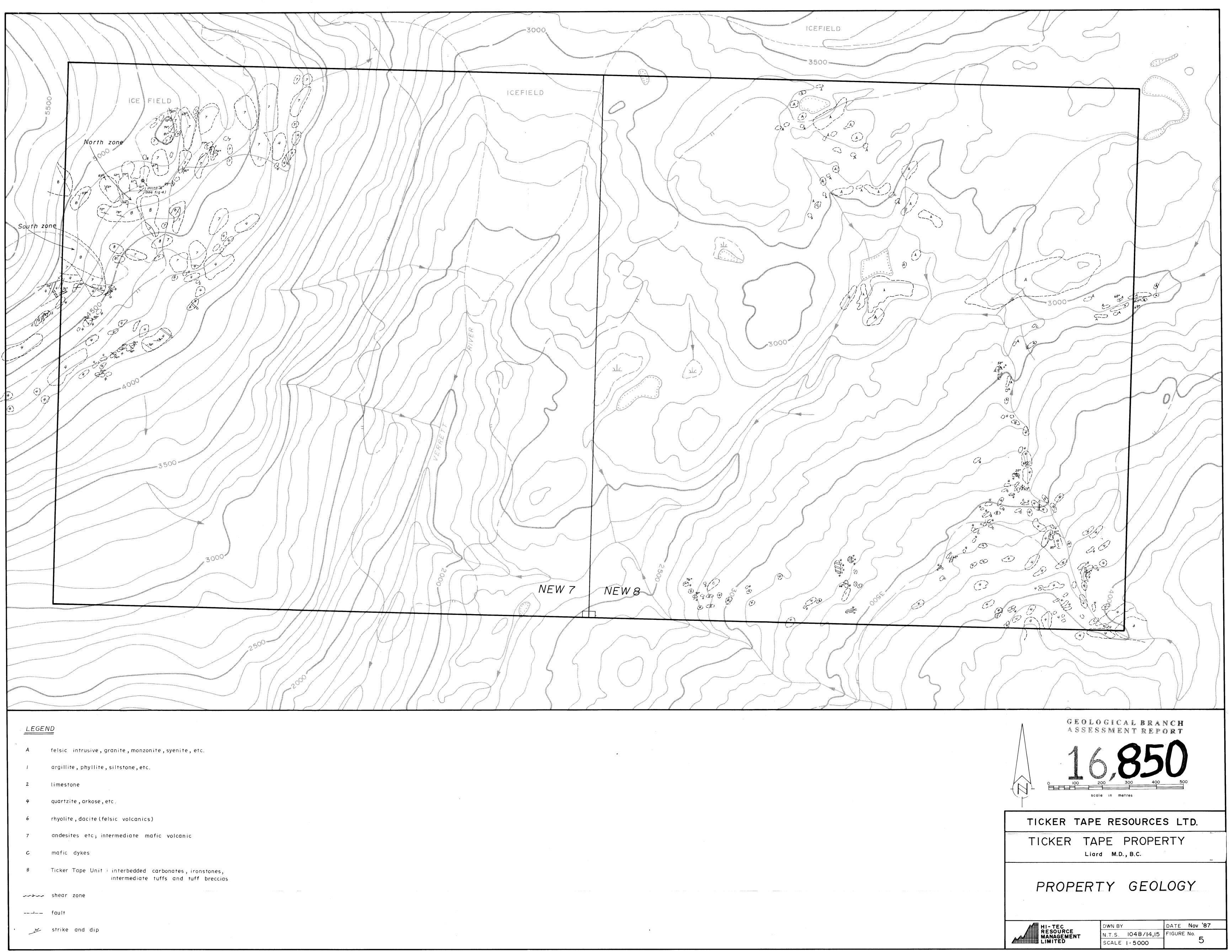
STATEMENT OF COSTS

Ticker Tape Resources Ltd. - Project 87BC037

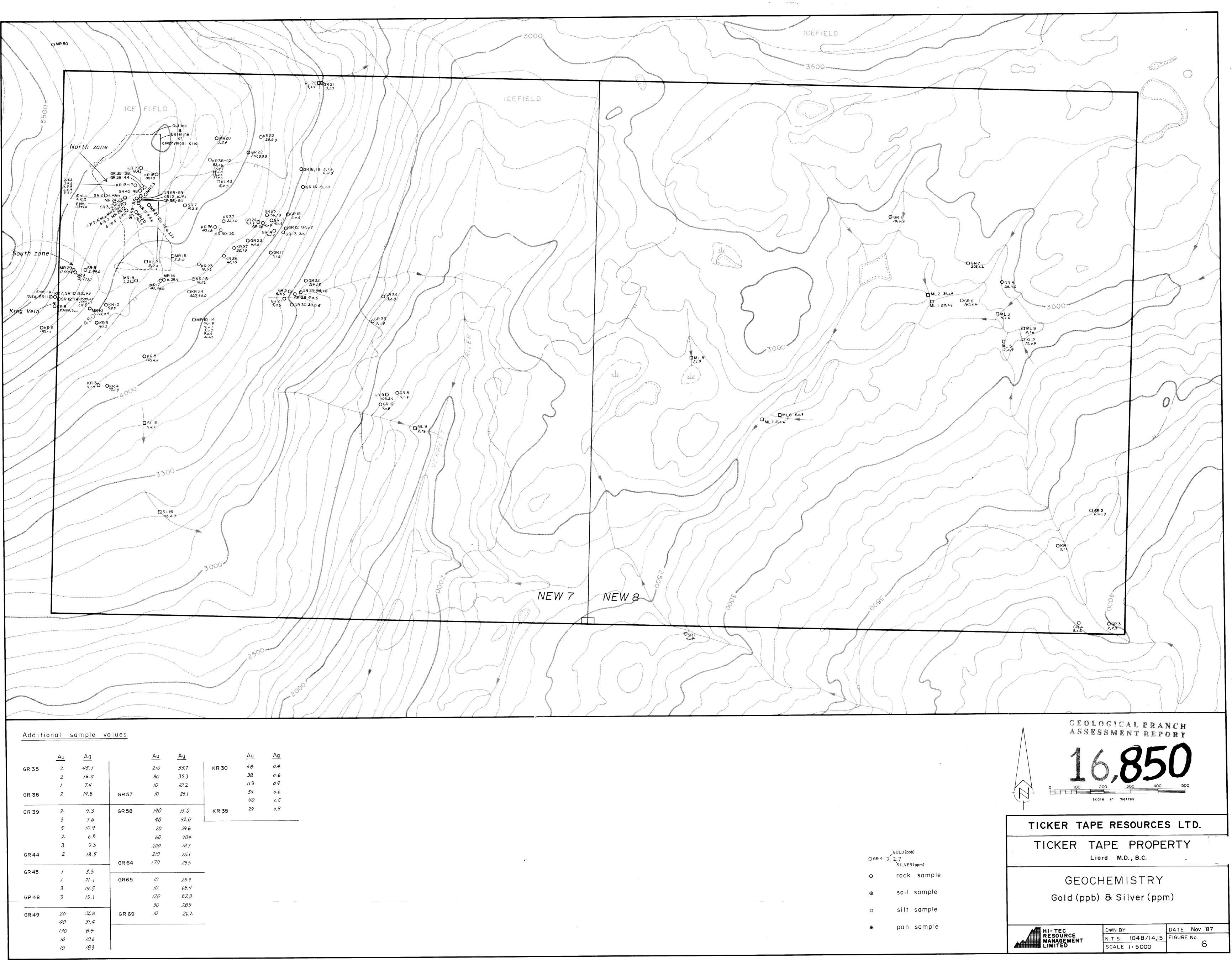
Personnel - Field Days A. Smallwood, Project Manager 29.0 days @ \$350.00/d \$10,150.00 D. Collins, Project Geologist 30.0 days @ \$475.00/d 14,250.00 G. King, Geologist 11.0 days @ \$475.00/d 5,225.00 R. Ney, Technician 23.0 days @ \$300.00/d 6,900.00 J. Shields, Cook 31.0 days @ \$300.00/d 9,300.00 \$ 45,825.00 Supervision J.P. Sorbara 8.0 days @ \$400.00/d 3,200.00 Project Preparation 1,000.00 Mobilization/Demobilization 2,000.00 9,741.34 Field Supplies Geochemistry 71 rocks FA Au, AA Ag \$ 1,242.50 @ \$17.50 FA Au, AA Ag 303 rocks-rush @ \$28.10 8,514.30 Pb, Zn 151 rocks @ \$12.00 1,812.00 19 rocks 5 element ICP @ \$ 4.50 85.50 6 rocks 31 element ICP @ \$11.50 472.95 12,196.25 Camp Costs Food 149 man days @ \$70.00/day \$10,430.00 Camp Rental 31 days @ \$300.00/day 9,300.00 Freight 779.81 1,656.44 Expediting and Communications Radio Rental 742.00 22,908.25 Air Support - Helicopter \$39,872.76 - Fixed Wing 13,972.60 53,845.36 Geophysics 4.1 km of Magnetometer and Vertical Gradient @ \$200.00/km 820.00 4.1 km of VLF-EM @ \$200.00/km 820.00 1,640.00

STATEMENT OF COSTS

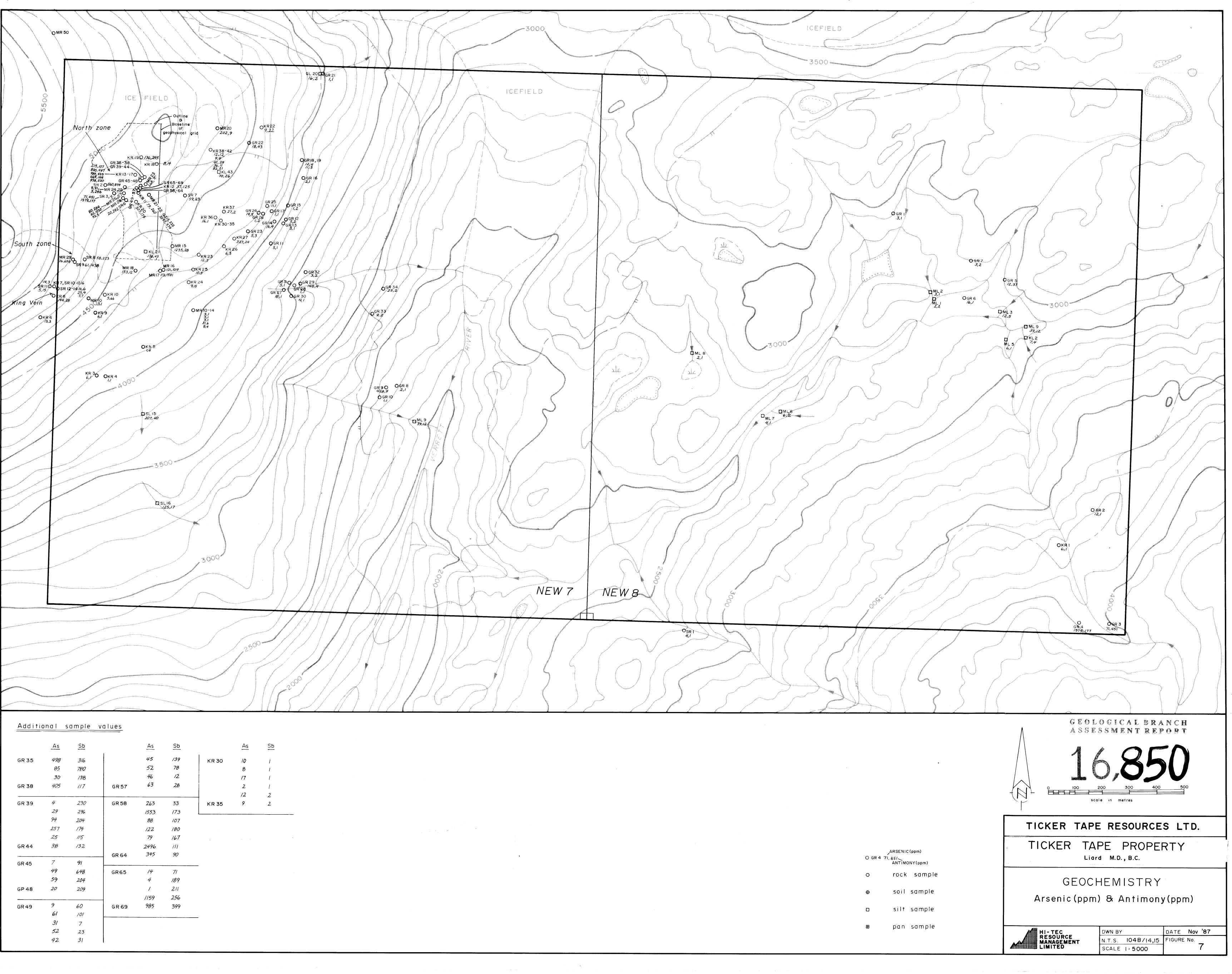
Ticker Tape Resources Ltd. (Project 87BC037)

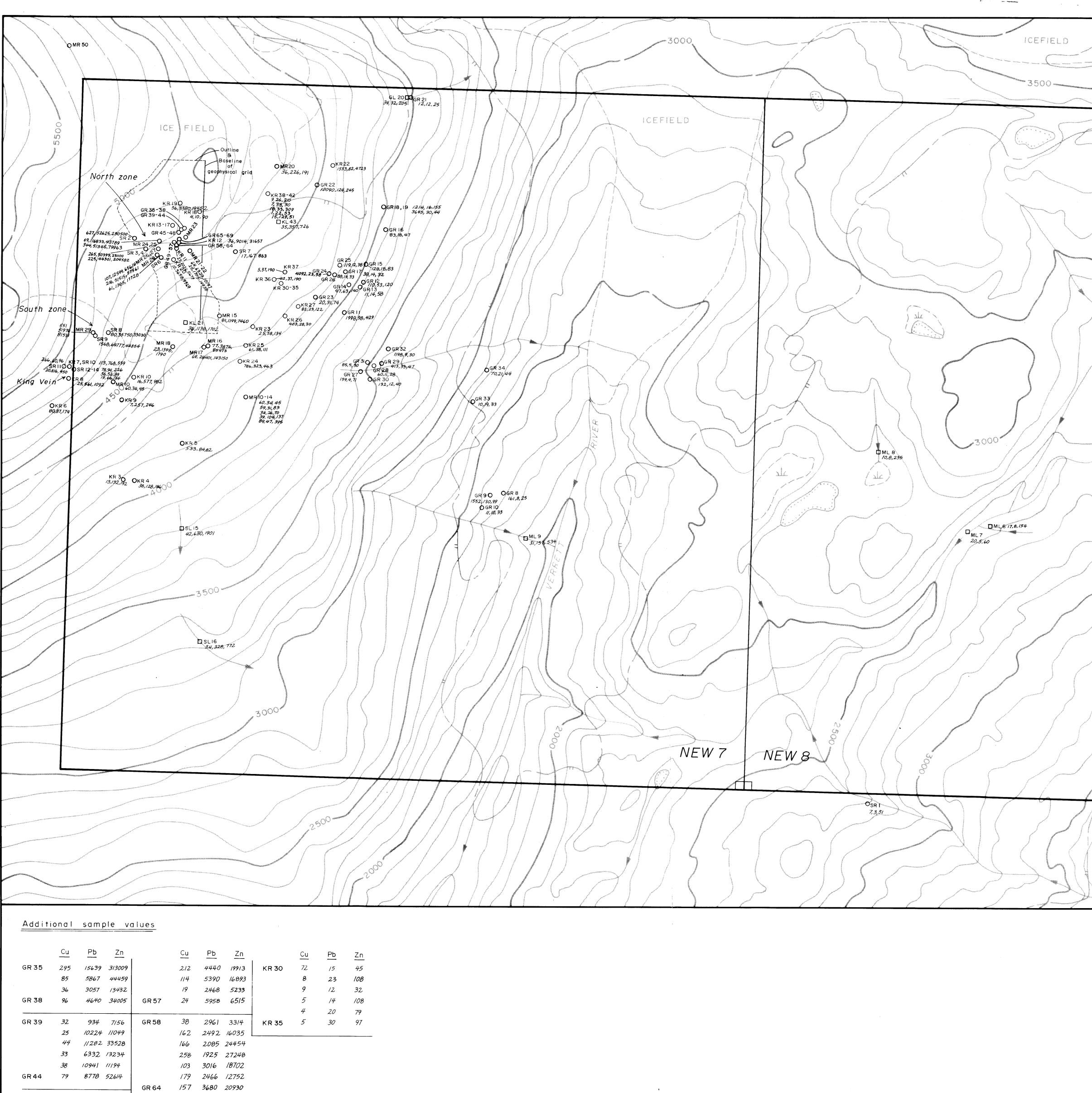

Ticker Tape - Phase II

SUPERVISION J.P. Sorbara	5.5	d 0	\$400.00/d	\$	2,200.00
LABOUR CHARGES					
A. Smallwood, Project Manager D. Collins,	35.5	d (9	\$350.00/d	\$12,425.00	
Project Geologist	32.0	d @	\$475.00/d	15,200.00	
G. King, Project Geologist	9.0	a @	\$475.00/d	4,275.00	
R. Ney, Technician	17.5	d @	\$300.00/d	5,250.00	
J. Shields, Cook	33.5	d (9	\$300.00/d	10,050.00	47,200.00
PROJECT PREPARATION Labour					
D. Collins G. King Microfilms			\$475.00/d \$475.00/d	1,662.50 1,187.50 26.72	2,876.72
MOBILIZATION/DEMOBILIZ Labour	ATION				
A. Smallwood D. Collins G. King C. Basil R. Ney J. Shields	.5 .5	d @ d @	\$350.00/d \$475.00/d \$475.00/d \$350.00/d 	875.00 237.50 237.50 175.00 1,525.00	
Communications Freight Travel (Tickets)				51.16 223.00 <u>1,404.40</u> 1,678.56	3,203.56
CAMP COSTS 14	0 man da	vs	@ \$80.00/d		11,200.00
FIELD SUPPLIES			_ , / / _		9,741.34
LIED SOLLTES		HI	TEC		-,



FI	EIGHT			406.16
ΕX	PEDITING			1,061.00
ΕÇ	UIPMENT RENTAL			1,222.00
GI	COCHEMICAL ASSAYING			12,692. 61
F	XED WING SUPPORT			13,973.00
HI	LICOPTER SUPPORT			39,872.76
GI	COPHYSICAL SURVEY 4.1 km of Magnetometer Gradient @ \$200 4.1 km of VLF-EM @ \$200	.00/km	820.00 820.00	1,640.00
DI	RILLING			61,628.41
	PORT COMPILATION			
	A. Smallwood D. Collins G. King C. Basil S. Topham	2.5 d @ \$350.00/d 7.5 d @ \$475.00/d 6.0 d @ \$475.00/d 9.0 d @ \$350.00/d 4.5 d @ \$350.00/d	875.00 3,562.50 2,850.00 3,150.00 1,575.00 12,012.50	
	Drafting charge - G.E. Reproduction	Lillos	142.50 39.76	12,194.76
W	EATHER DAYS - 5.0 days @	\$1,300.00/day	·	6,500.00
			TOTAL:	\$227,612.32



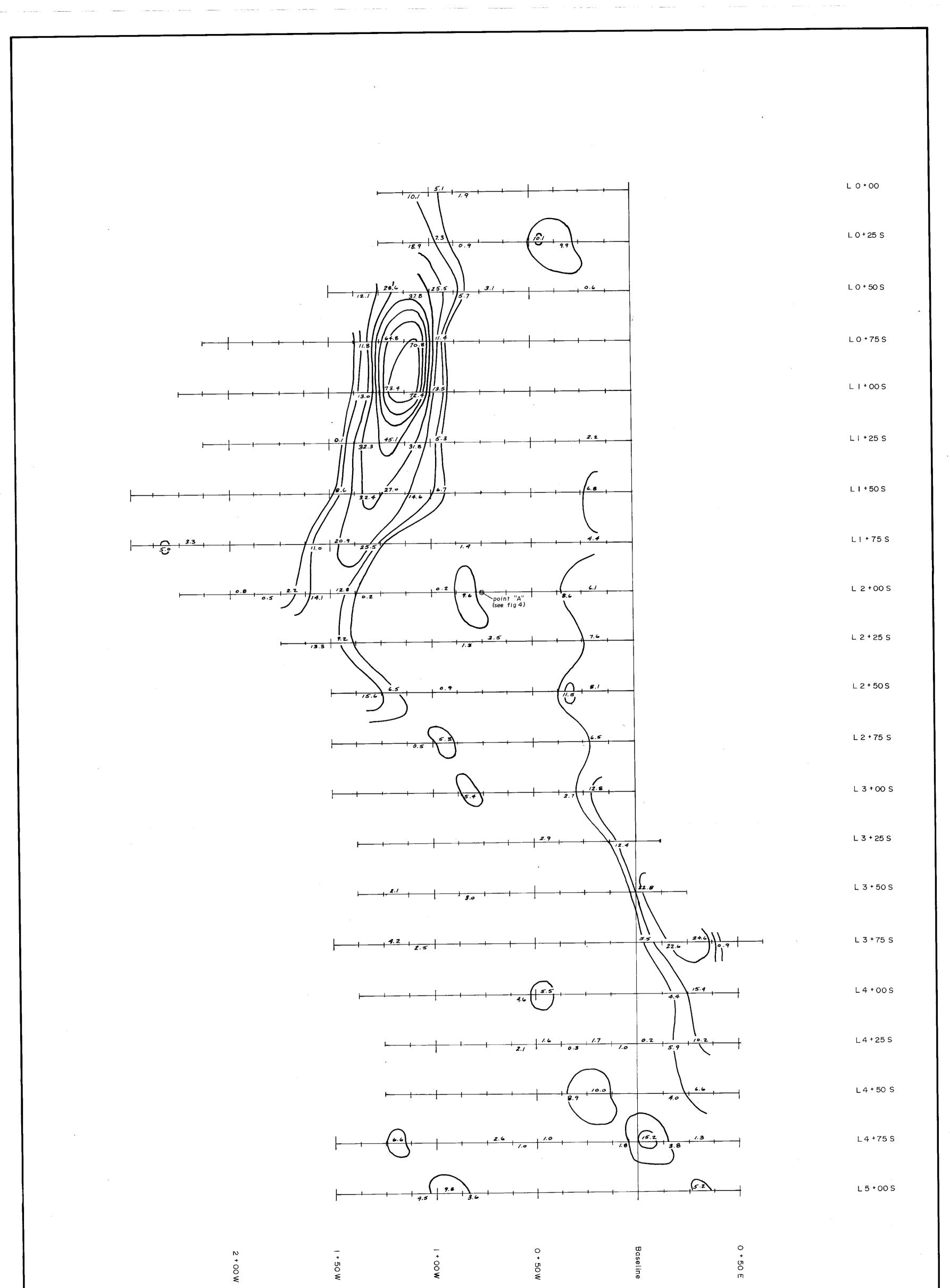

A	felsic intrusive, granite, monzonite, syenite, etc.
1	argillite, phyllite, siltstone, etc.
2	limestone
4	quartzite , arkose , etc.
6	rhyolite, dacite (felsic volcanics)
7	andesites etc; intermediate mafic volcanic
С	mafic dykes
8	Ticker Tape Unit : interbedded carbonates, ironstones, intermediate tuffs and tuff breccias
~~~	shear zone
	fault
	strike and dip

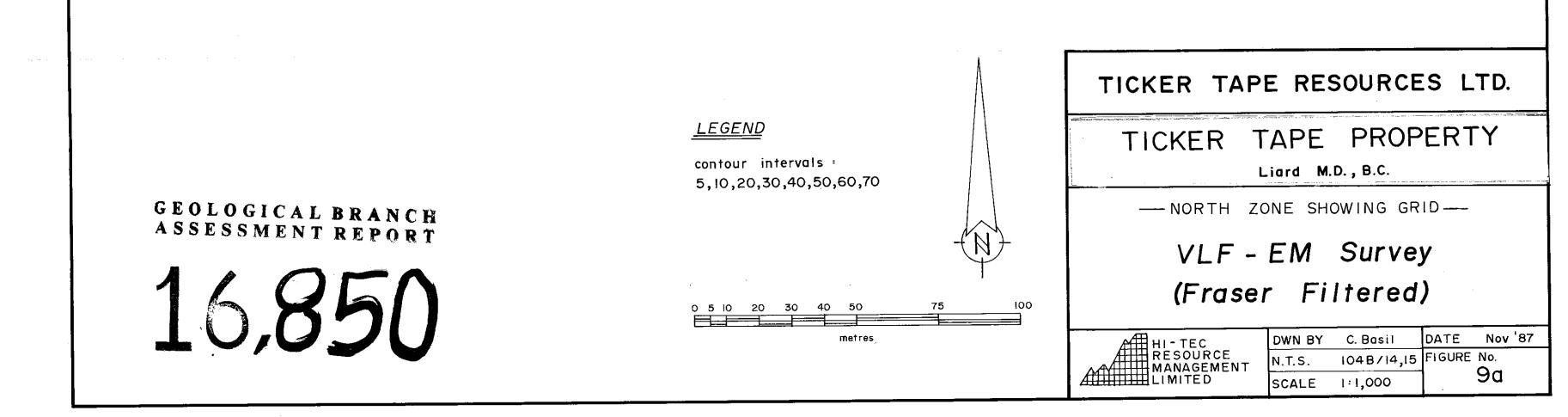


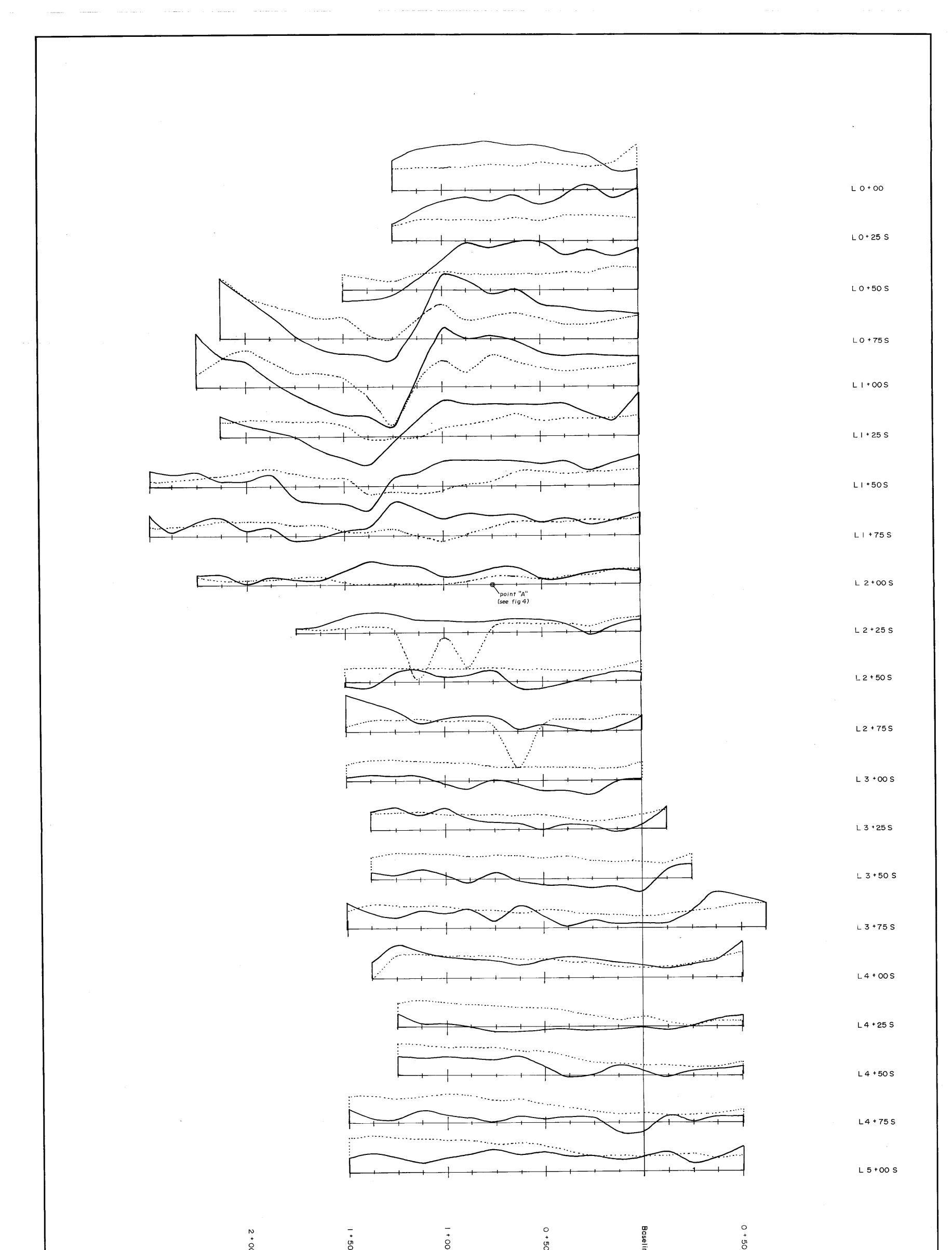
	Au	Ag		Au	Ag		Au
GR 35	2	45.7		210	55.7	KR 30	58
	2	16.0		30	35.3		38
	/	7.4		10	10.2		//3
GR 38	2	14.8	GR 57	70	25.1		54
						4	40
GR 39	2	4.3	GR 58	140	15.0	KR 35	29
	3	7.6		40	32.0		
	5	10.9		20	29.6		
	2	6.8		60	40.4		
	3	9.3		200	<i>\B</i> .7		
GR 44	2	/8.5		210	25.1		
			GR 64	170	29.5		
GR 45	/	3.3			· · · · · · · · · · · · · · · · · · ·		
	/	21.1	GR65	10	28.9		
	3	19.5		10	68.4		
GP 48	3	15.1		120	82.8		
<b></b>			_	30	28.9		
GR 49	20	36.8	GR 69	10	26.2		
	40	31.4				_	
	130	8.4					
	10	10.6					
	10	/8.3					

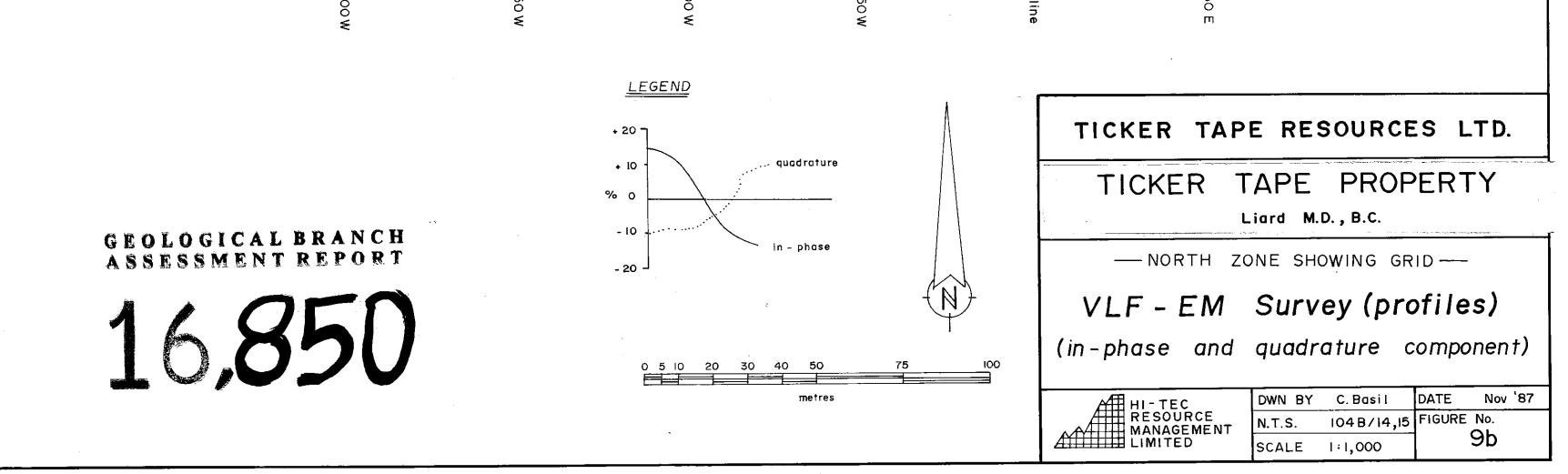


	As	Sb		As	Sb		As	Sb	
GR 35	498	316		45	/39	KR 30	10	1	
	85	780		52	7 <i>8</i>		8	i	
	30	/38		46	12		/7	1	
GR 38	405	//7	GR 57	63	28		2	1	
							12	2	
GR 39	4	230	GR 58	263	33	KR 35	9	2	
	29	296		1553	173			······	
	94	204		88	107				
	257	/74		122	180				
	25	115		79	167	ţ	and the second		
G <b>R 4</b> 4	3B	132		2496	///				
			GR 64	345	90				
GR 45	7	91							
	49	648	GR65	14	71				
	59	204		4	189				
GP 48	20	209		/	211				
<b></b>			_	//59	256				
GR 49	9	60	GR 69	985	399				
	61	101							
	31	7							
	52	23							
	42	31							

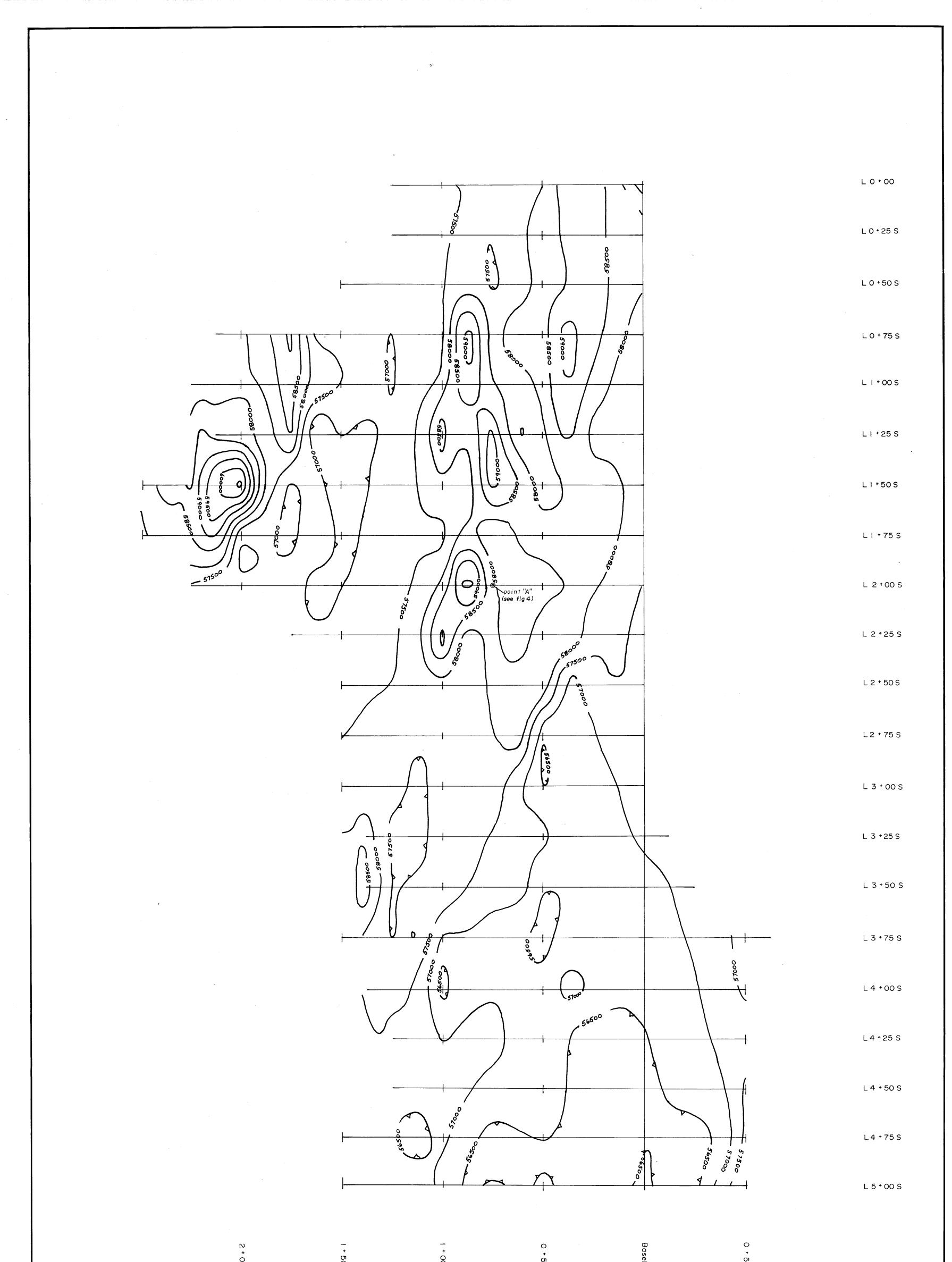




GR 64 /57 3680 20930 GR 45 16 553 3113 117 8485 19362 GR65 210 6222 46722 84 6828 34974 335 17425 299414 G**P 48** 67 7/83 2/952 281 39317 83590 191 6292 26880 ····· GR49 /09 9321 22466 GR69 69 4625 /3747 124 11235 20847 _____ 23 3024 4254 39 3189 4809 52 3631 7136

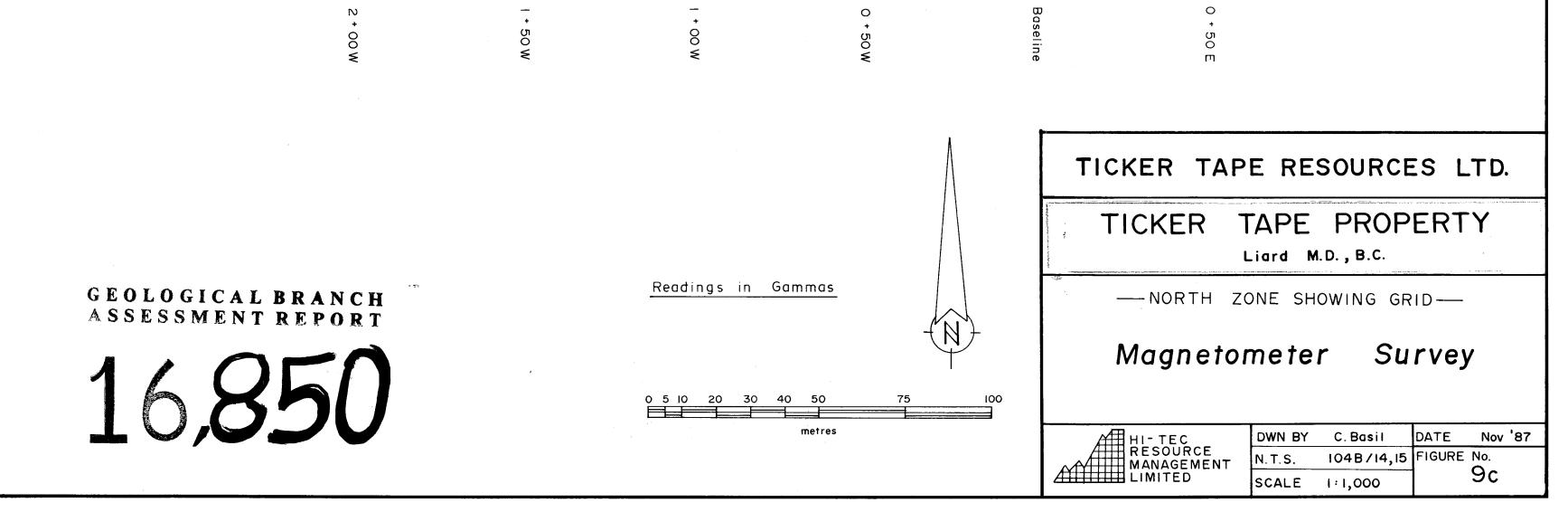

i di


LD		
O,12,40 OGR 7 /3,/7,8	O G R 5 3/8970 92,72	
ML 2 //,/3;2/0 ML 1 22,/1,233	$\begin{array}{c} 92,72 \\ \hline 92,72 \\ \hline 92,72 \\ \hline 92,72 \\ \hline 92,4,89 \\ \hline 92,4,89 \\ \hline 92,4,89 \\ \hline 92,72 \\ \hline 92,$	
	O GR 2 53, 6, 12 OKR 1 12, 11, 36	
	O O O O O O O O O O O O O O O O O O O	
	GEOLOGIC ASSESSMI	CALBRANCH ENTREPORT <b>8550</b> 300 400 500 etres
COPPER(ppm) OGR 4 6, 6, 7	TICKER TAPE RE TICKER TAPE Ligrd M.	PROPERTY
OGR 4 6,6,7ZINC(ppm) O rock sample ⊕ soil sample □ silt sample	GEOCHEM Copper(ppm), Lead (	ISTRY
⊞e pan sample		DATE Nov '87 1048/14,15 FIGURE No. 1:5000 8

an internet








----



∾ +



EDA OMNI-IV Tie-line MAG Ser #208035 TOTAL FIELD DATA (Base stn. corrected) & GRADIENT Date: 19 SEP 87 Operator: 5001 Reference field: 56800.0 Datum subtracted: 0.0 Records: 81 Bat: 15.5 Volt Lithium: 3.46 Volt Last time update: 9/19 8:26:00 9/19 13:35:13 * Start of print: Base stn. Pos: 19+00 E Line: 30+00 N 9/19 8:26:00 Last time update: Start of print: 9/19 13:35:14 #1 55949.8 .00 419,9 10:06:31 88 4+00 S Date: 19 SEP 87 #2 Line: POSITION FIELD ERR TIME DSDRIFT 420.0 10:08:16 88 0+50 E 56874.1 .07 -18.2 419.8 10:10:47 88 0+375E 57279.0 .09 66.6 419.7 10:12:12 88 0+25 E 56940.8 .06 -11.8 0+125E 56759.2 .06 419.5 10:13:27 88 -4.6 0+00 E 56761.4 .07 419.6 10:14:53 88 35.5 419.4 10:16:10 88 0+125W 56508.9 .06 -3,7 419.1 10:17:05 88 0+25 W 56870.5 .07 50.4 419.2 10:17:52 88 0+375W 57188.9 .10 94.O 419.2 10:18:29 88 0+50 W 56594.6 .11 -58.3 419.3 10:19:10 88 0+625W 56736.6 .07 44.5 419,2 10:19:57 88 0+75 W 56926.3 .06 15.0 419.3 10:20:42 88 0+875W 56705.6 .06 -22.3 419.1 10:21:29 88 1+00 W 56442.4 .11 -54.7 418.9 10:23:07 88 1+125W 57363.0 .10 -64.7 418,5 10:24:28 88 1+25 W 57947.9 .10 155.4 1+375W 57594.3 .12 418.1 10:25:43 88 -132.6 4+25 S Date: 19 SEP 87 #18 Line: POSITION FIELD ERR DRIFT TIME DS 417.9 10:28:41 88 1+25 W 57110.4 .06 -12.5 1+125W 57399.0 .07 417.6 10:30:02 88 45.6

	45	n (5)	2 . L 2 K L. J	. 12 H 12 12 14 14 14	
	1+00 W 56914 -55		417.5 1	0:30:48	88
	0+875W 57194 44		417.5 1	0:31:28	88
	0+75 W 57286	,9 ,10	417.2 1	0:32:19	88
	130 0+625W 56638		417.1 1	0:32:55	88
	-13	. 6			88
	· ·	. 9			
	0+375W 56467 -173		417.0 1	0:34:28	88
	0+25 W 56330	<b>4</b> .05	417.0 1	0:35:08	88
	-35 0+125W 56378		417.1 1	0:35:56	88
	1 4	"A			
	0+00 E 56451 -8	.7 .06 .6	416.9 1	10:36:35	88
	0+125E 56726	.9.05	417.1	10:38:31	88
	0+25 E 56864	.2.06	417.0	10:39:37	88
	-20 0+375E 57106		416.9 :	(0:40:49	88
	-17	_4			
		,3,06 ,1	416.7	10:41:45	88
,			40 CEC	87 #3	
	ine: 4+50 E Position FIEL		DRIFT	TIME	DS
	0+50 E 57528 -29		416.5	10:42:53	88
	0+375E 56881	.3.05	416.3	10:43:50	88
	-30 0+25 E 56718	),3 3.6 .06	416.3	10:44:44	88
	-15 0+125E 56547		A14 A	10:45:37	99
	0+00 E 56410 -13		416.4	10:46:17	88
	0+125W 56341	,4 ,05	416.5	10:47:06	88
	0+25 W 56339	8.9 7.4 .07	416.5	10:48:25	88
	-43	5. O			
	0+375W 56451 -52	2,2		10:49:06	
	0+50 W 56776	5.5 .08 1.3	416.6	10:50:22	88
	0+625W 5679:	1.5.08	416.7	10:51:10	88
	0+75 W 5677	1.9	416.6	10:51:55	88
		3.2		10:52:44	
	- 4.3	2.2.07 2.1			
	1+00 W 57393	2.2 .07 1.9	416.9	10:53:35	88
	1+125W 5716	3,6,06	416.9	10:54:35	88
	14 <u>1+25_W_5707</u>	7.7 3 <del>.5 .07</del>	416-4	10:55:20	-98
		3.8			
	Line: 4+75 (				
	POSITION FIE			TIME 10:57:38	
	-4	2 . C			
	1+375W 5708 -3	/.1 .06 3.8	416.8	10:58:32	BO
	1+25 W 5703	7.9.11 3.5	416.9	10:59:14	88
	 1+125W 5683		416.8	11:01:46	88
	-2 1+00 W 5712	4.6 8.3 .07	416.9	11:02:31	88
	4	3.6			
	0+875W 5659 —8		416.9	11:05:44	88
	0+75 W 5640	4.1 .07 6.7	416.8	11:04:30	88
	0+625W 5648		416.6	11:05:10	88
	-1 0+50 W 5651	6.6 0.2 .05	416.6	11:05:56	88
		1.0			
	0+375W 5646	6.9.06 0.3	416.6	11:06:27	88
	0+25 W 5645	0.9 .06 9.8	416.1	11:07:12	88
	0+125W 5635		416.2	11:07:46	88
	0+00 E 5648	0.1 4.8.08	414.2	11:08:28	88
	4	3.3			
	0+125E 5643 -2	1.2.06 7.7	416.4	11:09:21	88
-	0+25 E 5636	0.9.06	416.6	11:10:52	88
	0+375E 5653	2.4 6.0 .06	416.5	11:13:06	. 88
	-4 0+50 E 5763	4,4 5.2.05	416.7	11:14:27	. 88
		0.6	,		
	Line: 5+00				65
	POSITION FIE 0+50 E 5785	LD ERR	DRIFT	TIME 11:17:48	
	E:: 3-::	1.8			
	0+375E 5730 15	2.4 .12 i0.6	416.9	11:18:49	88
	0+25 E 5636	7.0 .07	417.0	11:19:33	\$ 88
	-4 0+125E 5638	1.3 38.9 .06	416.8	11:20:15	88
		·0.2	A12 0	11:21:23	; 99
	, Ale	26.3			
	0+125W 5646	.6.8 .06 -2.7	416.7	11:22:05	- 88 -
	0+25 W 5640	8.8.07	416.6	11:22:44	88
	0+375W 5642	4.6 24.9 .06	416.6	11:23:21	88
		24.0	-	11:23:53	
		2.9			
	0+625W 5642	20.3 .05 59.8	416.6	11:24:37	7 88
	0+75 ₩ 5658	53.0 .05	416.3	11:25:20	) 88
	0+875W 5641	-4.8 19.6 .06	416.3	11:26:13	3 88
		14.9		11:28:0	
n	<u>1+00 W 5678</u> -3	3 <u>2.2.05</u> 38.3			
		74.9 .10 06.9	416.1	11:29:30	) 88
	1+25 ₩ 5727	70.6 .06	415.8	11:31:04	4 88
	1+375W 5730	SO.3 53.8 .06	416.0	11:32:0	5 88
	۵۲۰۰۰ ۳ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	-3.4			
	1+50 W 5700 -:	64.8 .06 16.3	416.2	11:33:0	. 25
	*				

EDA OMNI-IV Tie-lir TOTAL FIELD DATA (Bas & GRADIENT Date: 18 SEP 87	
Date: 10 Der 67 Operator: 5001 Reference field: 568 Datum subtracted: Records: 251 Bat: 15.1 Volt Li Last time update: 97 Start of print: 97 Base stn. Pos: 19+00	0.0 thium: 3.46 Volt (18 8:09:00 (18 17:45:16
Last time update: 9/ Start of print: 9/ #1 55945.4 .00 Line: 3+75 S Date POSITION FIELD ERR	<pre>/18 8:09:00 /18 17:45:18 424.3 9:50:01 88 e: 18 SEP 87 #2</pre>
0+50 E 56670.4 .06 -22.7 0+375E 57241.2 .06 -6.4 0+25 E 57127.8 .06 -2.0	
0+00 E 56564.1 .07 -32.3 0+125W 56663.7 .05 -18.1 0+25 W 56771.3 .07 -36.6 0+375W 56648.4 .10 -80.7 0+50 W 56408.0 .10	419.2 9:59:06 88 419.3 9:59:53 88 419.4 10:00:58 88
-57.6 0+625W 56545.3 .05 -32.1 0+75 W 56682.1 .05 -39.4 0+875W 56991.3 .06 3.2 1+00 W 56956.1 .07	418.6 10:03:36 88 418.7 10:04:28 88
-49.1 1+125W 58167.0 .11 195.0 1+25 W 57449.9 .07 25.4 1+375W 57867.6 .06 23.0 1+50 W 58464.8 .09 141.9	417.4 10:08:06 88 417.8 10:08:56 88 420.8 10:11:20 88 420.8 10:12:20 88
Line: 3+50 S Date POSITION FIELD ERR 1+375W 58652.4 .12 183.7 1+25 W 57495.3 .08 55.6 1+125W 57553.6 .06 50.6	DRIFT TIME DS 421.0 10:15:23 88
1+00 W 57938.2 .07 38.3 0+875W 57478.0 .07 5.5 0+75 W 57405.1 .04 2.0 0+625W 57269.1 .12 -74.9	419.3 10:19:23 88 420.2 10:20:23 88 420.5 10:21:05 88 420.1 10:22:03 88
0+50 W 56520.1 .08 -44.8 0+375W 56515.8 .08 -51.7 0+25 W 56774.9 .06 -6.5 0+125W 56857.1 .07 10.3 0+00 E 56823.0 .06	420.1 10:22:52 88 420.0 10:23:42 88 420.0 10:24:29 88 420.2 10:25:12 88 420.3 10:26:14 88
-18.4 0+125E 56947.3 .05 -14.7 0+25 E 57384.9 .06 29.3 Line: 3+25 S Date POSITION FIELD ERR	420.2 10:27:26 88 420.1 10:28:45 88 : 18 SEP 87 #34 DRIFT TIME DS
0+125E 57328.1 .09 64.8 0+00 E 57095.9 .06 -2.6 0+125W 56915.3 .06 -1.5 0+25 W 56729.7 .06 -19.8 0+375W 56724.3 .06	420.2 10:30:31 88 418.8 10:38:33 88 418.7 10:39:43 88 418.9 10:41:10 88 418.9 10:42:02 88
-21.5 0+50 W 57100.5 .10 73.6 0+625W 57270.0 .06 -33.9 0+75 W 57478.2 .06 42.2 0+875W 57628.9 .06	417.6 10:43:29 88 417.9 10:44:13 88 417.3 10:44:59 88
23.4 1+00 W 57734.4 .06 20.4 1+125W 57329.4 .11 -66.6 1+25 W 57351.4 .11 -102.8 1+375W 58236.7 .05 25.0	417.1 10:47:20 88 416.7 10:49:49 88 415.3 10:50:51 88 415.4 10:52:04 88
POSITION FIELD ERR 1+50 W 57761.8 .06 36.4 1+375W 57752.2 .07 -0.1 1+25 W 57763.4 .06 17.6	: 18 SEP 87 #47 DRIFT TIME DS 416.2 10:54:37 88 416.1 10:56:53 88 416.0 10:57:53 88
1+125W 57327.0 .06 -27.2 1+00 W 57773.0 .10 69.1 0+875W 57845.8 .06 -24.3 0+75 W 57842.8 .06 28.2 0+625W 57106.0 .11	415.3 10:59:04 88 416.0 11:00:08 88 416.1 11:01:51 88 416.1 11:02:41 88 415.7 11:04:02 88
134.5 0+50 W 56501.3 .05 -7.2 0+375W 56855.0 .06 -35.4 0+25 W 56844.9 .07 9.6 0+125W 57005.9 .06 -38.3	416.2 11:05:22 88 416.6 11:06:32 88 416.4 11:07:55 88 416.1 11:07:21 88
0+00 E 57341.0 .06 51.8 Line: 2+75 S Date POSITION FIELD ERR 0+00 E 57413.5 .08 65.3 0+125W 57268.0 .05	DRIFT TIME DS
1.9 0+25 W 56962.9 .06 -33.9 0+375W 56845.3 .06 -13.2 0+50 W 56557.5 .10 -135.3 0+625W 58440.6 .09 99.6	415.7 11:26:08 88 415.2 11:28:17 88 414.6 11:29:12 88 414.9 11:32:00 88
0+75 W 57982.8 .06 34.0 0+875W 57614.2 .06 -0.4 1+00 W 57519.4 .10 76.7 1+125W 57550.1 .05 8.6 1+25 W 57731.2 .06	414.0 11:34:24 88 413.9 11:35:21 88 414.0 11:36:11 88 413.4 11:37:53 88
31.2 1+375W 57579.1 .06 11.8 1+50 W 57487.0 .06 1.9 Line: 2+50 S Date POSITION FIELD ERR	DRIFT TIME DS
1+50 W 57376.0 .06 21.2 1+375W 57442.4 .07 1.2 1+25 W 57506.7 .06 4.7 1+125W 57618.8 .05 4.4 1+00 W 57920.8 .09	414.4 11:43:12 88
66.7 0+875W 57629.5 .09 -82.8 0+75 W 58122.2 .05 11.6 0+625W 58200.9 .05 20.7 0+50 W 58463.5 .06 54.5	411.9 11:50:42 88 412.8 11:51:47 88 413.3 11:52:57 88 413.8 11:53:48 88
54.5 0+375W 56733.0 .23 -262.5 0+25 W 57280.8 .06 -1.5 0+125W 57548.1 .07 52.5 0+00 E 57249.2 .06 -24.8	414.2 11:55:25 88 414.6 11:56:24 88 415.2 11:57:59 88 415.7 11:59:13 88
Line: 2+25 S Date POSITION FIELD ERR 0+00 E 57322.4 .06 6.7 0+125W 57617.4 .06 0.9 0+25 W 57647.2 .05 -23.3	DRIFT TIME DS 416.3 12:01:39 88 416.7 12:04:02 88 416.9 12:04:51 88
0+375W 58527.5 .09 98.9 0+50 W 58233.6 .05 23.0 0+625W 57630.8 .10 -66.7 0+75 W 58129.3 .10 111.6 0+875W 57740.4 .14	416.9 12:05:53 88 417.0 12:06:39 88 417.1 12:07:29 88 417.1 12:08:19 88 417.7 12:12:38 88
-199.9 1+00 W 59100.8 .08 81.8 1+125W 57783.7 .05 -5.2 1+25 W 57402.5 .06 -6.4 1+375W 57267.6 .06	417.7 12:14:14 88
	418.2 12:22:45 88 418.2 12:24:29 88 418.4 12:25:20 88
31.2 2+125W 57123.2 .06 -32.8 2+00 W 57296.6 .07 63.2 1+875W 57104.6 .10 -58.1	418.4 12:30:04 88 418.4 12:31:12 88 418.5 12:32:42 88 418.5 12:34:03 88
1+75 W 57172.1 .07 16.0 1+625W 56839.2 .07 -38.1 1+50 W 56992.4 .06 -2.1 1+375W 57121.1 .06 -3.7 1+25 W 57356.9 .06	418.9 12:35:14 88 418.4 12:37:21 88 417.8 12:38:13 88 417.6 12:38:46 88 417.9 12:39:40 88
-5.7 1+125W 57541.9 .06 -33.8 1+00 W 58053.4 .10 -99.4 0+875W 59935.8 .12 122.2 0+75 W 58033.4 .07 -13.2	
0+625W 57809.2 .06 -15.5 0+50 W 57806.9 .06 -24.4 0+375W 58039.0 .06 3.0 0+25 W 58075.7 .06 17.1 0+125W 57818.9 .07	419.7 12:44:47 88 420.0 12:45:31 88 420.2 12:46:30 88 420.3 12:47:34 88 420.6 12:48:39 88
2.4 0+00 E 57480.5 .06 -20.5 Line: 1+75 S Date:	420.9 12:49:36 88 18 SEP 87 #120 DRIFT TIME DS 422.1 13:06:59 88 422.7 13:08:51 88
-7.0 0+25 W 58280.1 .06 39.2 0+375W 58314.6 .07 60.4 0+50 W 58258.8 .05 46.4 0+625W 58036.9 .05 -22.3	423.0 13:10:27 88 423.1 13:11:42 88 423.1 13:13:03 88 423.2 13:13:47 88
0+75 W 57610.5 .05 -17.3 0+875W 58260.4 .06 51.0 1+00 W 57378.3 .09 -60.2 1+125W 57487.5 .05 -12.5	423.4 13:14:26 88 423.6 13:15:33 88 423.4 13:16:33 88 423.9 13:17:58 88
1+25 W 57264.8 .06 -10.9 1+375W 57065.2 .06 3.4 1+50 W 56853.1 .06 -8.3 1+625W 57447.7 .12 204.2 1+75 W 56866.6 .06	423.6 13:18:43 88 423.2 13:19:45 88 423.5 13:20:26 88 424.0 13:22:14 88 423.7 13:23:20 88
-37.9 1+875W 57108.9 .06 -26.3 2+00 W 57130.8 .16 -221.4 2+125W 59320.7 .15 128.0 2+25 W 58478.7 .15 -204.1	423.6 13:24:13 88 423.6 13:25:19 88 423.1 13:26:21 88 422.3 13:27:07 88
2+375W 58236.4 .11 -95.9 2+50 W 57920.9 .05 -9.0 Line: 1+50 S Date: POSITION FIELD ERR	423.2 13;28;31 88 18 SEP 87 #141
2+375W 58712.4 .10 118.1	424.1 13:30:22 88 424.1 13:30:57 88 424.0 13:31:43 88 424.0 13:32:54 88
91.0 1+75 W 56956.7 .11 -112.1 1+625W 57237.2 .07 29.6 1+50 W 56531.5 .11 -57.0 1+375W 56976.4 .05	424.6 13:34:09 88 425.2 13:35:13 88 424.5 13:36:16 88 424.4 13:37:38 88 424.0 13:38:49 88
-9.7 1+25 W 57282.8 .05 -10.4 1+125W 57480.9 .06 -8.5 1+00 W 57920.6 .05 4.7 0+875W 57614.0 .13 -78.8	423.9 13:40:22 88 424.1 13:41:23 88 424.2 13:42:29 88 424.6 13:43:49 88
0+75 W 59186.6 .19 306.9 0+625W 58613.5 .86 472.3 0+50 W 57666.7 .11 -67.2 0+375W 58107.4 .06 31.7 0+25 W 58176.7 .05	424.5 13:45:34 88 424.4 13:46:28 78 424.6 13:47:20 88 424.5 13:48:18 88 424.3 13:49:32 88
9.5 0+125W 58092.4 .06 46.1 0+00 E 57588.2 .06 8.4 Line: 1+25 S Date:	424.9 13:50:36 88 424.8 13:52:05 88 18 SEP 87 #162 DRIFT TIME DS
9.2 0+125W 57826.1 .06 5.8 0+25 W 57858.2 .10 -88.1 0+375W 58728.3 .76 105.2 0+50 W 57910.4 .08 -47.7	422.4 13:57:39 88 424.0 13:58:48 88 426.0 14:00:23 88 427.2 14:02:01 88
0+625W 57342.7 .11 -122.5 0+75 W 59142.8 .28 222.8 0+875W 57942.7 .09 -54.5 1+00 W 58644.9 1.8 362.2	427.2 14:03:27 88 427.1 14:04:10 88 426.9 14:05:02 88 426.8 14:05:51 78
1+125W 57363.2 .07 -13.4 1+25 W 57147.7 .05 -13.5 1+375W 56855.3 .06 -11.5 1+50 W 57058.6 .06 23.9 1+625W 56520.0 .13	426.7 14:07:13 88 427.4 14:08:29 88 428.4 14:09:30 88 428.4 14:11:01 88 428.3 14:12:15 88
-173.4 1+75 W 58587.4 .16 172.2 1+875W 57656.8 .72 -294.4 2+00 W 58314.4 .05 13.5 2+125W 58364.7 .06 39.8	427.6 14:13:22 88 427.1 14:14:28 78 426.8 14:15:14 88 427.2 14:16:16 88
-15.0 2+00 W 57955.3 .06 -6,3	DRIFT TIME DS 426.0 14:19:48 88 425.7 14:21:29 88 426.0 14:22:54 88
1+875W 58016.5 .06 -34.6 1+75 W 58866.9 .11 167.8 1+625W 57764.7 .16 -178.0 1+50 W 57499.5 .11 -73.0 1+375W 57477.1 .08 62.7	425.9 14:23:24 88 425.8 14:23:58 88 425.8 14:25:01 88 425.7 14:25:51 88 425.8 14:26:47 88
1+25 W 56943.7 .06 -19.7 1+125W 57345.9 .05 -34.0 1+00 W 57526.3 .13 -170.4 0+875W 59048.8 .11 217.5	425.7 14:28:06 88 426.0 14:30:58 88 426.7 14:33:53 88 426.9 14:34:36 88
0+75 W 57877.6 .20 -249.2 0+625W 57738.4 .97 -54.5 0+50 W 58151.0 .51 -307.3 0+375W 59127.1 .10 88.5 0+25 W 58362.6 .06	426.8 14:35:44 88 426.6 14:37:01 88 426.5 14:38:58 78 426.3 14:40:18 88 426.4 14:41:14 88
-21.5	DRIFT TIME DS
0+125W 58200.0 .06 55.2 0+25 W 58706.105 46.1 0+375W 59245.4 .11 184.0 0+50 W 58279.8 .06 -36.1	427.1 14:50:28 88 427.4 14:51:31 88
0+625W 58375.3 .10 93.0 0+75 W 57765.1 .11 -73.5 0+875W 59356.8 .12 170.3 1+00 W 57359.5 1.2 -322.8 1+125W 57305.3 .06	427.6 14:52:43 88 427.8 14:54:07 88 427.9 14:54:40 88 427.8 14:55:14 88 428.1 14:57:02 88
-25.1 1+25 W 56988.2 .05 -30.2 1+375W 57243.3 .06 7.6 1+50 W 57288.1 .05 -17.2 1+625W 57216.0 .11 -86.4 1+75 W 59110.8 .13	428.2 14:58:38 88 428.3 14:59:14 88 428.2 15:00:07 88 428.2 15:03:49 88 428.3 15:04:54 88
255.8 1+875W 58348.3 .10 99.0 2+00 W 57864.9 .06 5.6 2+125W 57710.4 .07 6.7	428.7 15:07:14 88
Line: 0+50 S Date: POSITION FIELD ERR 1+50 W 57334.2 .07 -9.2 1+375W 57272.1 .05 -6.9 1+25 W 57176.5 .05 -14.8 1+125W 57173.5 .05 -17.1	DRIFT TIME DS 429.0 15:10:09 88 429.1 15:11:29 88 429.1 15:11:57 88
-6.6 0+875W 57859.7 .11 70.1 0+75 W 57478.3 .06 -17.2 0+625W 57525.9 .11 -65.4	429.1 15:12:59 88 429.5 15:13:43 88 430.0 15:14:24 88 430.1 15:15:07 88 430.2 15:16:23 88
-36.0 0+375W 58496.2 .05 -47.4 0+25 W 58714.2 .08 62.4 0+125W 58357.1 .06 43.1 0+00 E 58093.9 .06	429.6 15:19;30 88
18.2 Line: 0+00 N Date: POSITION FIELD ERR 0+00 E 58268.9 .06 40.2 0+125W 58287.7 .05 15.9 0+25 W 58771.2 .10	18 SEP 87 #230 DRIFT TIME DS
138.5 0+375W 58816.9 .11 189.8 0+50 W 57974.2 .07 -27.3 0+625W 57646.1 .06 -24.0 0+75 W 57631.0 .07 1.5	429.1 15:28:51 88 429.0 15:29:33 88 429.0 15:30:10 88 428.9 15:30:56 88
0+875W 57520.2 .06 -7.4 1+00 W 57470.6 .05 2.1 1+125W 57398.7 .06 1.3 1+25 W 57309.3 .06 -4.1	428.8 15:31:29 88 428.9 15:32:13 88 429.1 15:32:48 88 429.1 15:33:23 88
POSITION FIELD ERR 1+25 W 57206.8 .06 -14.3 1+125W 57311.7 .06 -7.9 1+00 W 57459.3 .06 3.4 0+875W 57546.5 .06	18 SEP 87 #241 DRIFT TIME DS 429.1 15:34:42 88 429.0 15:35:33 88 428.9 15:36:02 88 429.0 15:36:33 88
14.0 0+75 W 57515.8 .05 -14.0 0+625W 57848.6 .06 -33.3 0+50 W 58211.1 .06 21.6 0+375W 58596.3 .05 40.5	428.9 15:37:08 88 429.0 15:38:05 88 429.1 15:38:52 88 429.4 15:39:55 88
0+25 W 58644.5 .07 57.9 0+125W 58380.1 .06 54.4	429.8 15:40:53 88 429.7 15:42:07 88 429.8 15:42:31 88

(ì

1.