Consulting Geological Services

· ·	900-625 Howe Street
Vancouver,	B.C., Canada V6C 2T6
Tele	phone (604) 684-5887

	LOG NO: 0111 RD.	
	ACTION:	
	FILE NO:	SUB-RECORDER RECEIVED
	REPORT ON A	JAN 6 1988
GEOLOGICAL AND GEOCHEMICAL SURVEY		M.R. # \$
	on the CAY PROPERTY	

INCLUDING CAY #1 TO CAY #13 CLAIMS

Liard Mining Division

GEOLOGICAL BRANCH ASSESSMENT REPORT

Longitude Latitude NTS Map 1230 55' W 550 45' N 94G/12

FILMED

OWNER:

OPERATOR:

CONSULTANT:

AUTHORS:

SUBMITTED:

Equinox Resources Ltd.

Equinox Resources Ltd.

Beaty Geological Ltd.

D. G. Leighton, B.Sc., F.G.A.C. J. A. Pell, Ph.D., F.G.A.C.

6 January 1987

TABLE OF CONTENTS

1.	SUMMARY	1
2.	INTRODUCTION	1.
з.	ACKNOWLEDGEMENTS	2
4.	HISTORY	2
5.	PROPERTY 5.1 Location and Access 5.2 Ground Control	3 3 3
6.	CLAIMS	5
8.	GEOLOGY 7.1 Regional Geology 7.2 Property Geology 7.2.1 Stratigraphy 7.2.2 Structure 7.2.3 Mineralization 7.2.4 Trace Element 7.2.5 Economic Considerations 7.3 Drill Program 7.3.1 General 7.3.2 Results GEOCHEMISTRY 8.1 Previous Work 8.2 1986 Orientation Program 8.3 1987 Program 8.4 Sampling and Analytic Procedure 8.5 Results	7 9 9 10 10 19 23 23 23 23 23 24 24 24 24 26
9.	TRENCHING	27
10.	METALLURGY	28
11.	CONCLUSIONS	28
12.	REFERENCES	29
13.	CERTIFICATE OF QUALIFICATIONS	31

LIST OF TABLES

		FAG
1	Analytical Data	22
2	Drill Hole Summary	25

LIST OF FIGURES

1	Location Map	4
2	Claims	6
3	Regional Stratigraphy	8
4	Geology 4A. North Half 4B. South Half	(In Pocket) (In Pocket) (In Pocket)
5	Property Index 5A. North Half 5B. South Half	(In Pocket) (In Pocket) (In Pocket)
6	Geochemistry 6A. Zinc 6B. Lead 6C. Copper 6D. Barium	(In Pocket) (In Pocket) (In Pocket) (In Pocket) (In Pocket)
7	Drill Collar Plan (DDH5 to DDH21)	(In Pocket)
8	Drill Hole Sections	(In Pocket)

LIST OF APPENDICES

I	Cost Statement	33
II	Analytical Results IIA Geochemical IIB Assay	37 69
III	Petrography	73
IV	Structural Analysis	84
v	Drill Logs	91

1. SUMMARY

The Cay property is a lead-zinc-germanium prospect located in the northern Rocky Mountains of British Columbia. It consists of 13 claims (168 units) owned by Equinox Resources Ltd. The claims are 55 kilometres west of Trutch on the Alaska Highway between the Muskwa and Prophet Rivers. A road extends towards the property from Trutch a distance of 12 km, and it could be extended.

The property is underlain by a well bedded sequence of strata which includes: limestones, dolomite, shales, sandstone, cherty limestone and thick bedded black chert. These rocks range between Silurian and Triassic in age.

Work carried out on the property after it was identified as an important germanium target in early 1986 has involved: orientation geochemical work; prospecting and preliminary geological mapping in the fall of 1986; detailed geochemical surveys; mapping; geophysical work; trenching; and diamond drilling in 1987.

Showings consist of numerous zinc-lead occurences found at or near the contact of Middle Devonian Dunedin Fm. limestone with Besa River Fm. shales and Stone Fm. limestone. Mineralization occurs on both limbs of a tightly folded anticline. Sampling has yielded assays of up to 13 percent zinc over several metres and showings occur over a strike length in excess of 15 kilometres.

Zinc occurs as the mineral sphalerite which itself contains exceptionally high levels of germanium. Zinc concentrate from the Cay property contains 0.03% gallium and 0.25% germanium on average. The gallium and germanium occur within the sphalerite latice and in the mineral germanite which is present as inclusions in sphalerite. Assuming current values for these elements the trace element content would add over \$1100 (U.S.) to the gross value of any sphalerite produced in ore concentrate.

Excellent potential exists for delineating ore reserves by drilling down dip and along strike from mineralized exposures on the Cay property.

2. INTRODUCTION

In 1986 Beaty Geological Ltd. launched a gallium-germanium exploration program. The object was to identify mineral prospects in the Western Cordillera of North America with previously unrecognized potential to be significant gallium and/or germanium sources. Attention was focused on zinc properties. It was hoped that a sub-economic deposit would be found which could be elevated to an economic category by virtue of its trace element gallium and germanium content.

The program involved an extensive literature search followed by the sampling of over three hundred deposits and prospects. Although several of these were found to have anomalous values in gallium and/or germanium, one exceptional property, the Cay, located in the Rocky Mountains of northeastern B.C., was identified.

An exploration program was carried out on the Cay property in the fall of 1986 and summer and fall of 1987. The 1986 work consisted of preliminary geologic mapping, geochemical orientation work and prospecting. In 1987 an integrated exploration program was carried out starting with detailed grid controlled geological, geochemical and geophysical surveys followed by trench sampling and diamond drilling. The program was augmented through metallurgical studies on a bulk sample, petrological work and a study of fossils from the property.

It has been determined that sphalerite from the Cay prospect averages 0.25% Ge and 0.034% Ga. This is very high indeed. By comparison the richest source of germanium in a zinc concentrate currently being mined is Pennarroya's St. Salvy mine in France, which contains about 0.07% Ge. Equally significant is the size potential of the Cay. Mineralization has been traced for over 15 kilometres in a geological environment analogous to that of a classic petroleum trap. Furthermore "ore" from the property is metallurgically clean and the economics of extraction appear close to ideal.

This report contains a summary of work completed to date on the Cay property and recommendations for the next stage of work.

3. ACKNOWLEDGEMENTS

The writers would like to acknowledge work by others which has assisted in the development of the Cay property. Bruce Mawer of Cominco Ltd. should be credited with discovery of the deposit. Apart from the writers, a number of other field personnel contributed to the unraveling of field relations leading toward an understanding of geology and mineralization controls. Other geologists who worked on the property at various times include Ross Beaty, Diane Howe and John Knox. We would particularly like to acknowledge the work done by John Knox who contributed significantly to geologic interpretation as well as to operations in general.

4. HISTORY

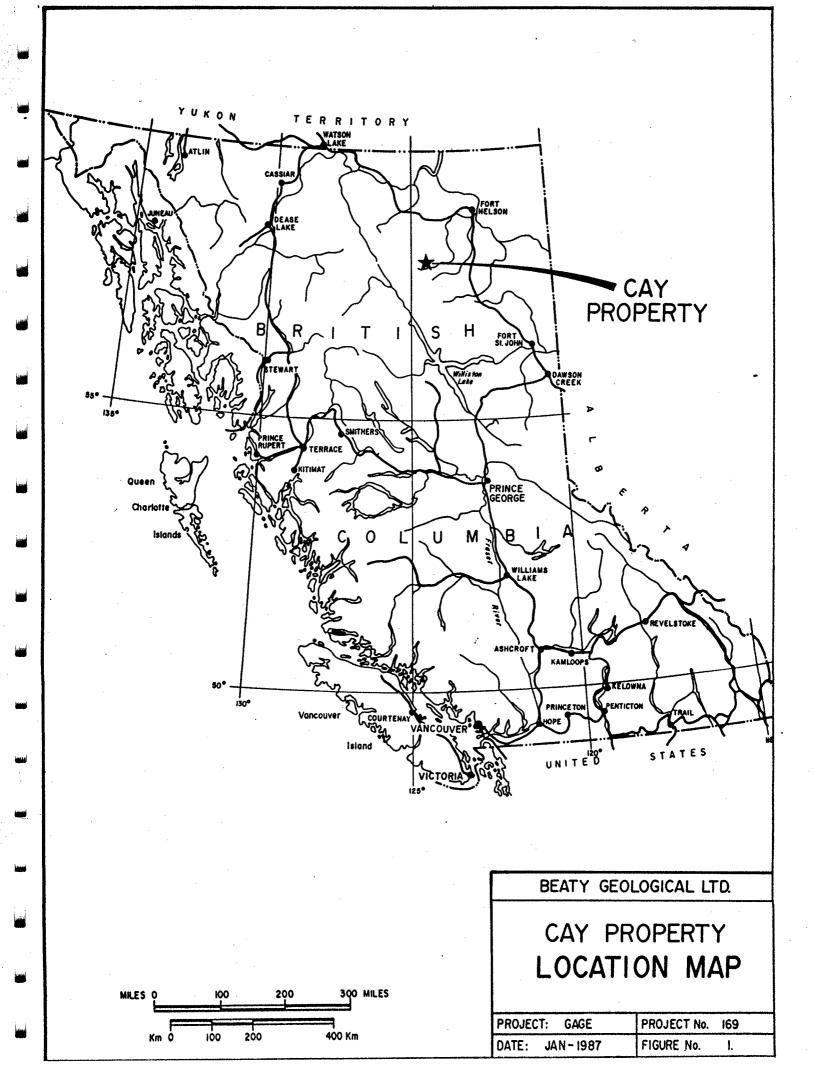
The discovery of lead-zinc mineralization by Arrow Inter-America Corp. near Robb Lake in 1971 sparked a staking rush in the northern Rocky Mountains of B.C. that led to the recognition of a new lead-zinc belt. Numerous showings were discovered though few were sufficiently large or rich enough to merit further development.

The original discovery at Robb Lake contains a proven reserve of about six million short tons of 7.3% combined lead-zinc. Other significant prospects include ones located at Mt. Burden, Nabesche River, Mt. McCusker, Redfern Lake and Richards Creek. A considerable amount of exploration work was devoted to these and other prospects in the early 1970's.

Cominco Ltd. was actively involved in the Robb Lake exploration rush and staked a number of properties including Richards Creek mentioned above. About 15 kilometres north of Richards Creek, Bruce Mawer, a Cominco geologist, discovered high grade lead-zinc mineralization associated with barite at the contact of Dunedin limestones with Besa River shales. Fifty-four claims were staked by Cominco to protect the area of interest. The Cominco work program included soil geochemistry and geological mapping in 1972 and 1973. The original claims were abandoned in 1974 and allowed to lapse.

5. **PROPERTY**

5.1 Location and Access


The Cay property lies between the Prophet and Muskwa Rivers in the Rocky Mountains of northeastern B.C. Topographic coordinates for the centre of the claim block are approximately $57^{0}45'$ N latitude, $123^{0}55'$ W longitude. Elevations range between 900 and 1700 metres. The principal showings occur about tree line which occurs at 1500 metres (5,000 ft.) in this area.

Practical access for purposes of exploration is by means of helicopter. The nearest significant town is Fort Nelson which is 50 kilometres to the northeast. Fort St. John, a major supply point, is 260 kilometres to the southeast. The most convenient staging point is Trutch, about 40 kilometres east of the Cay property on the Alaska Highway. It would be relatively easy to extend a road to the property from the Alaska Highway.

5.2 Ground Control

The Cay property covers an area of approximately 4200 hectares in a relatively remote semi-mountainous area. Ground control during 1986 was provided by a combination of standard 1:50,000 topographic maps, government aerial photographs and a "loose" topofil grid now referred to as the "old grid". This proved adequate for orientation geochemical work, prospecting purposes and establishing the overall geologic picture.

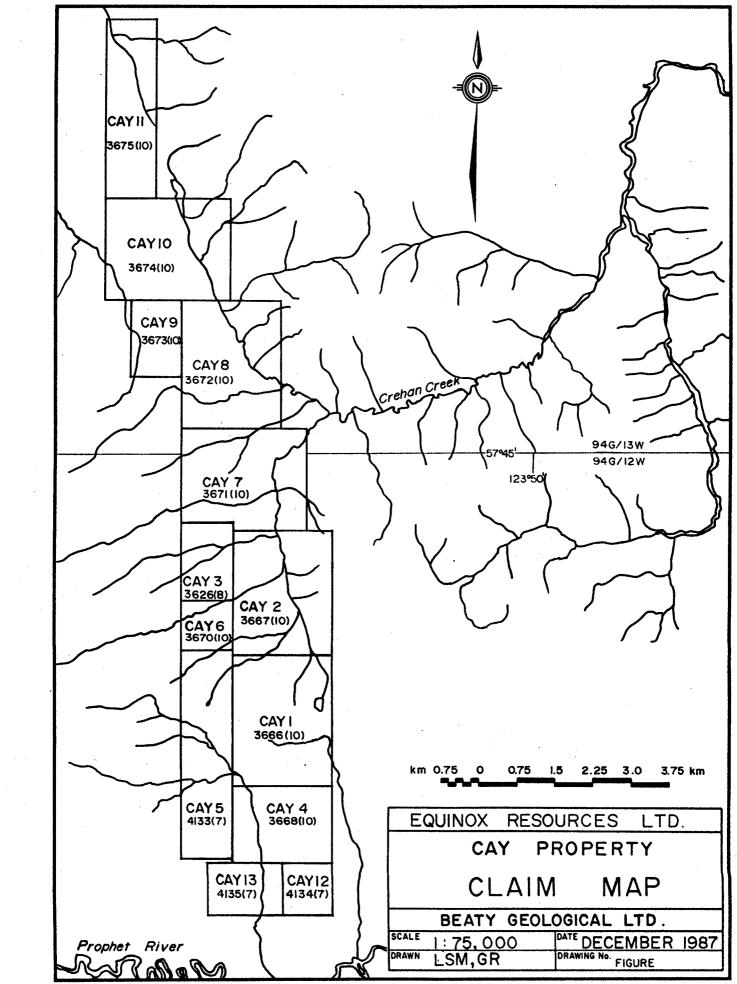
The 1987 program required relatively precise ground control. Eagle Mapping Services Ltd. of Port Coquitlam, B.C. were contracted to prepare a 1:5,000 scale topographic map with 10 metre contours of the southern half of the claims - the priority target region. This map was produced from aerial photographs.

Also, a new grid was surveyed over a key portion of the property. The baseline for the new grid runs parallel to geologic structure $(020^{\circ} \text{ a.s.t.})$. Stations were placed at 25 metre intervals on lines spaced 100 metres apart. While the old grid was measured with a hip chain the new grid was carefully chained out and "slope corrected" using inclinometers. Drill hole collars are located relative to stations in the new grid system.

6. CLAIMS (See Fig. 2)

The Cay property, owned by Equinox Resources Ltd. of Vancouver, B.C., consists of thirteen metric claims comprising one contiguous block. The claims have been grouped, for assessment purposes, as follows:

a) North Group


<u>Claim</u>	Group	<u>Units</u>	Record No.	Rec	cord I	Date	Exp	<u>piry E</u>	Date
Cay	3	6	3626	25	Aug.	86	25	Aug.	89
Cay	6	4	3670	7	Oct.	86	7	Oct.	89
Cay	7	20	3671	7	Oct.	86	7	Oct.	89
Cay	8	20	3672	7	Oct.	86	7	Oct.	89
Cay	9	6	3673	7	Oct.	86	7	Oct.	89
Cay	10	2	3674	7	Oct.	86	7	Oct.	89
Cay	11	14	3675	7	Oct.	86	7	Oct.	89

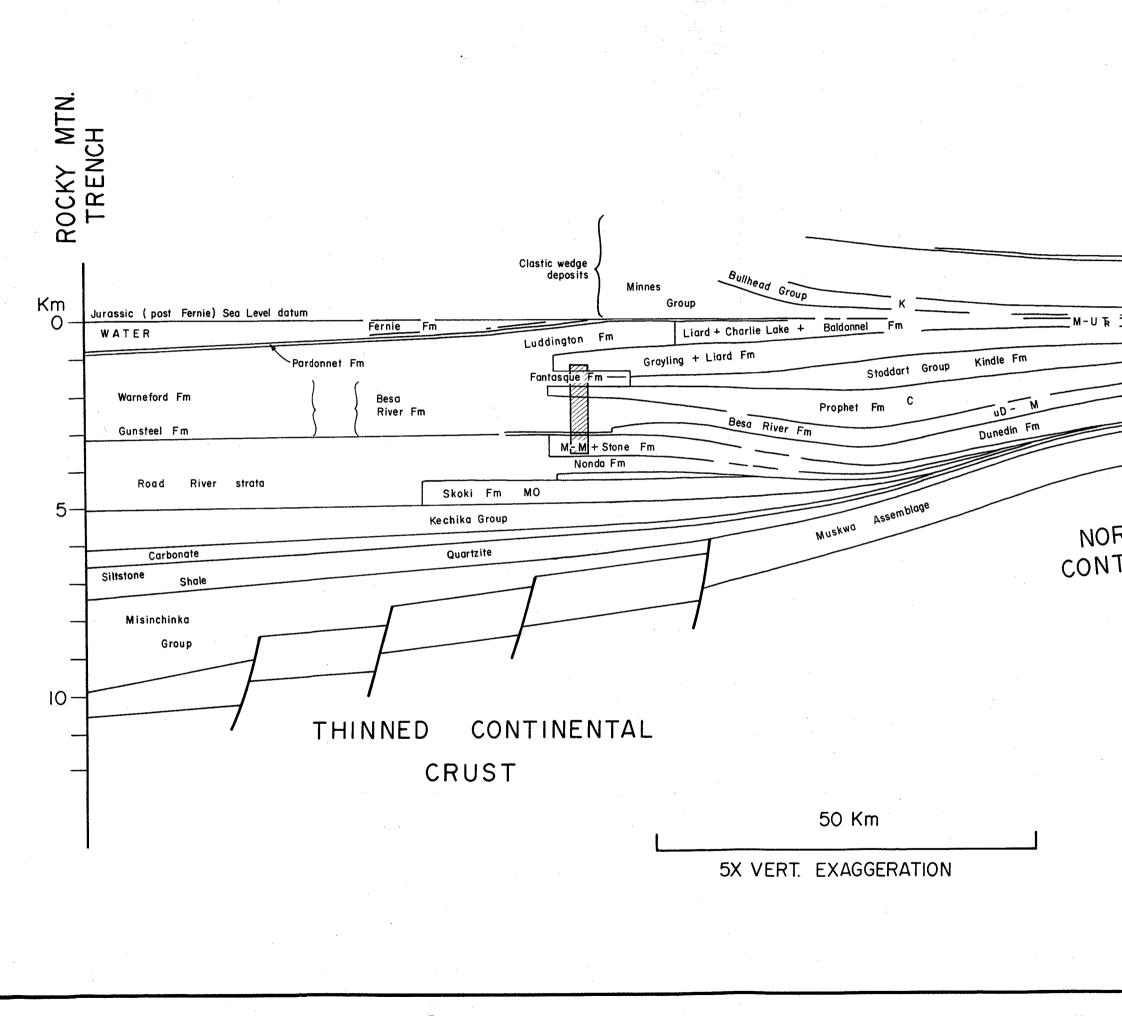
b) South Group

Claim Group Units Record No. Record Date Expiry Date 20 3666 7 Oct. 86 7 Oct. 89 Cay 1 Cay 2 20 3667 7 Oct. 86 7 Oct. 89 12 3668 7 Oct. 86 7 Oct. 89 Cay 4 Cay 5 16 4133 28 July 87 28 July 90 Cay 12 4 4134 28 July 87 28 July 90 28 July 87 Cay 13 6 4135 28 July 90

The Cay mineral claims are all located in the Liard Mining Division. There are 90 units in the North Group and 78 units in the South Group.

- 5 -

- 6 -


7.

7.1 <u>Regional Geology</u>

In the Rocky Mountains of northeastern British Columbia, between the Peace and Muskwa rivers, an Upper Silurian (?) and Lower to Devonian platform carbonate succession, which Middle is approximately 1500 metres in thickness, is exposed. The succession comprises, in order of decreasing age, the Muncho-McConnel and Stone Formations, which consist almost entirely of dolomite and sandy or argillaceous dolomite and the Dunedin/Pine Point/Sulphur Point and Slave Point Formations, which contain dolomites, limestones and dolomitized limestones (MacQueen and Thompson, 1978). The carbonates give way laterally, to the north and west, to deeper water shales, siltsones and carbonaceous limestones of the Besa River Formation. Most of the lead-zinc showings in the northeastern Rocky Mountains occur within the carbonate succession, near the platform margin, ie. the carbonateshale facies boundary (MacQueen and Thompson, 1978). The leadzinc showings, the best known of which is the Robb Lake deposit after which the belt is named, may occur in any of the above formations.

The characteristics of the lead-zinc deposits in northeastern British Columbia may be summarized as follows:

- a) Mineralization occurs in a variety of textures and spatial settings, for example as part of a breccia matrix, as vein and fracture filling, as fine grained replacements of host carbonates, as open-space (eg. vug) fillings or as massive, coarsely crystalline pods with uncertain relationships to the host rocks (MacQueen and Thompson, 1978).
- b) None of the occurrences show evidence of solution of carbonate on any sigificant scale, nor do they show evidence of control by overlying unconformities (MacQueen and Thompson, 1978).
- c) There is no obvious evidence of control of mineralization by late Mesozoic-Tertiary tectonism (MacQueen and Thompson, 1978).
- d) The main ore minerals present are sphalerite and/or galena (average ratio of 10:1), with some pyrite of marcasite. The main gangue minerals are sparry white dolomite, bitumen and quartz (MacQueen and Thompson, 1978).
- e) Barite and fluorite do not appear to be closely associated with the lead-zinc mineralization (MacQueen and Thomson, 1978).

1

	ł	
	Durances Francisk	
	Dunvegan Fm uK	
	Ft. Saint John Group	
F		-0
		0
		- 1
		-2
		-
		-3
	THE VIESS	
PM	AL THICKNESS	
	IENTAL CRUST	
11 11	ENIA	
	· · · · · · · · · · · · · · · · · · ·	
	BOX SHOWS PART OF STRATIGRAPHIC SECTION APPLICABLE TO	
	CAY PROPERTY VICINITY	
	:	
	EQUINOX RESOURCES LTD	
		•

CAY PROPERTY

REGIONAL STRATIGRAPHY

NORTHERN ROCKY MOUNTAINS, B.C.

BEATY GE	OLOGICAL LTD.
PROJECT. GAGE	PROJECT No. 169
DATE. DECEMBER 1987	FIGURE No. 3

Although it has not been unequivocally established, some workers (MacQueen, 1976; MacQueen and Thompson, 1978) believe that mineralization took place long after deposition of the host rocks, possibly during early Mesozoic times, synchronous with maturation of hydrocarbons.

Folds with relatively minor thrust faults dominate the structural style of the northern Rocky Mountains, whereas thrusting dominates the southern Rockies.

7.2 Property Geology

7.2.1 Stratigraphy

The Cay property is the most northerly of the lead-zinc showings in the Robb Lake belt. The area is underlain primarily by the Stone, Dunedin and Besa River Formations of late Silurian (?) to upper Devonian age (Figure 3 and 4). On the eastern side of the property, sandstone, cherty limestone and black chert of probable Mississippian or Permian age, disconformably overlain by dark grey shales of the Triassic Greyling Formation (Leighton, 1987). These strata may be in fault contact with the Devonian sequence (Leighton, 1987).

On the Cay property, the Stone Formation is the oldest outcropping unit. Its base is not exposed. Lithologies consist primarily of medium to thick bedded, laminated (algal?) dolostones which are light grey in colour. Metre thick horizons of sandstone and sandy dolomite occur in the lowest beds exposed. The upper few tens of metres of Stone Formation strata on the Cay property consist of limestones or partially dolomitized limestones and, locally, sandy limestones. These lithologies were probably deposited in a shallow water, near shore lagoonal environment (Danner, 1986).

The Stone Formation is conformably overlain by the Dunedin Formation. The contact was chosen at the break between medium bedded, laminated non-fossiliferous limestones and the overlying thin, wavy bedded, medium grey fossiliferous Dunedin limestones (Plate 1). Mineralization commonly occurs at or near this contact. The Dunedin Formation on the Cay property is 10 to 25 metres thick. It contains abundant coral, brachiopod, crinoid and bryozoan fragments in a matrix of lime mud which is locally dolomitized. These strata were likely deposited in a back-reef environment (Danner, 1986).

The Dunedin Formation is overlain, with apparent conformity, by black carbonaceous and locally calcareous shales of the Besa River Formation, which were deposited in deeper water and are representative of a basinal facies. These shales contain pyrite framboids and host some minor copper showings (Leighton, 1987). The top of this unit is not exposed on the property.

7.2.2 Structure

The predominant structure in the area of economic interest on the Cay property is a plunging anticline (Figure 4). Stone Formation strata are exposed in the core of this structure; Dunedin and Besa River formations outcrop along the limbs. The major creeks on the property dissect the anticline approximately perpendicular to its axis and therefore provide cross-sections through the various units. The anticline is an upright box fold with angular hinges, steeply dipping limbs and a shallow east-dipping crest region (Plate 2, Figure 4). It is a slightly conical fold, with a small half apical angle; bedding data do not best fit a great circle girdle distribution (Appendix IV, Structural Data Analysis). The axial plane is subvertical and strikes northerly (350°). The fold plunges at approximately eight degrees towards the south (170°), and opens in that direction, exposing progressively higher sections towards the south end of the property. Near the southern limit of outcrop (Figure 4), mineralization which occurs along the Stone/Dunedin Formation contact is exposed in the crest of the fold, which dips parallel to topography and results in a large area of mineralized outcrop (Figure 4). Subsurface exploration potential exists to the south of the limit of outcrop. Although no evidence exists at surface, drilling results indicate that, locally, some faulting occurs along the eastern limb of the anticline (Figure 7); east-side-down displacements in the order of 10 to 12 metres have occurred along steeply dipping breccia zones.

Flanking the central anticline are marginal synclines in which Besa River shales are exposed. To the west of the property, a thrust fault places Stone and Dunedin Formation carbonates on the Besa shales. A second thrust fault is present on the eastern portions of the Cay 7, 8, 10 and 11 claims, its trace paralleling Crehan Creek, marked by a scarp line of black chert and dirty limestone (Leighton, 1987). This fault places the mineralized Devonion strata upon younger rocks. To the south, the displacement along this fault is apparently transferred to a series of folds (see GSC Open File Map 606).

7.2.3 Mineralization

The lead-zinc showings on the Cay property are carbonate hosted stratabound, ie. confined predominantly to a and single stratigraphic horizon with only minor crosscutting relationships. Mineralization generally occurs along the contact between the fossiliferous Dunedin Formation, which is quite porous and permeable, and the Stone Formation, which is a much less permeable The basal beds of the Dunedin Formation are commonly unit. brecciated and mineralizaed; less commonly the mineralization crosscuts Stone Formation strata. The Dunedin Formation on the property is relatively thin, and therefore mineraliztion generally occurs within a few metres, stratigraphically, of the overlying Besa River shales. The mineralized horizons occur as two parallel bands which converge towards the south end of the property, outlining the major anticline (Figure 4).

Plate 1. Contact between the Stone and Dunedin formations as exposed on the south bank of Alpha Creek, west limb of the anticline. Photo facing south. Strata are west dipping. Medium to thick bedded Stone Formation strata are expose on the east (left) and thin bedded Dunedin limestones on the west (right) end of the outcrop. The person in the center of the photograph is standing above the contact. This is the one location on the property where the contact is exposed and mineralization absent.

> Plate 2. The Cay property anticline, outlined by Stone Formation strata. This outcrop occurs on the south side of Gamma Creek, and the photograph is taken facing south. The anticline is an upright box fold, with steep dipping limbs, a shallow dipping crest region and subangular hinges.

Plate 3. Silicified Type 1 mineralized horizon exposed on the north band of Alpha Creek, photographed looking north. Mineralization occurs in the apparently massive, dark grey, resistant unit which comprises the outcrop

į,

Plate 4. Malachite/azurite (turquoise) on the weathered surface of outcropping Type 1 mineralization, Alpha Creek.

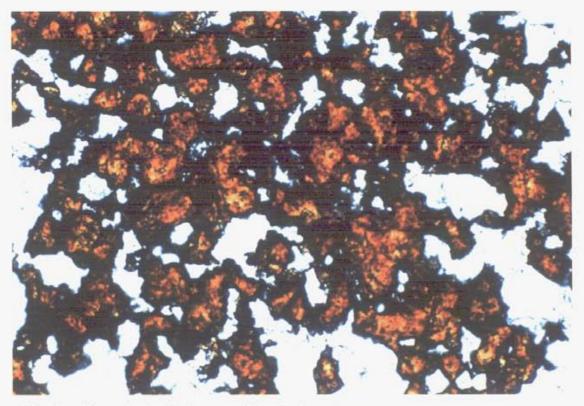
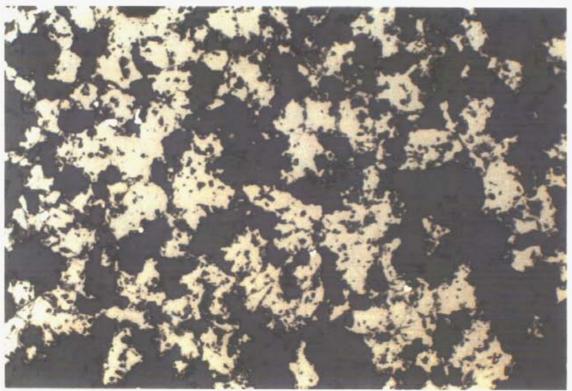
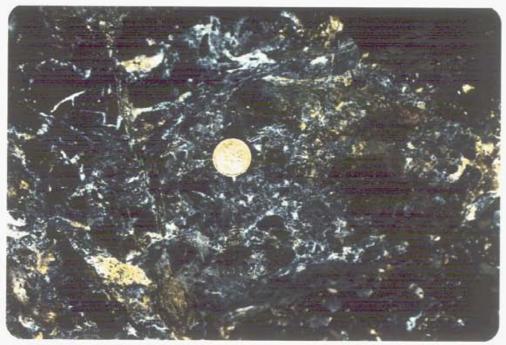




Plate 5a. Fine grained reddish-orange sphalerite in quartz, typical of Type 1 mineralization, viewed with transmitted light. Scale is 1 cm = 85 microns.

Plate 5b. Same section, reflected light. Dark grey material is quarts, light grey is sphalerite and highly reflective yellowish white grains are pyrite. Scale as above.

Plate 6. Silicified breccia, Type 1 mineralization. Dark silicified fragments in a quartz, bitumen, galena +/- sphalerite matrix (lighter coloured). Some crosscutting barite veins present.

.....



Plate 7. Gradational upper contact of Type 1 silicified some, north of Alpha Creek, photo facing morth. Dark grey silicified limestones with bedding preserved exist from the level of the hammer, downsection. The light grey beds, exposed in the upper portion of the photograph are unaltered Dunedin Formation strata.

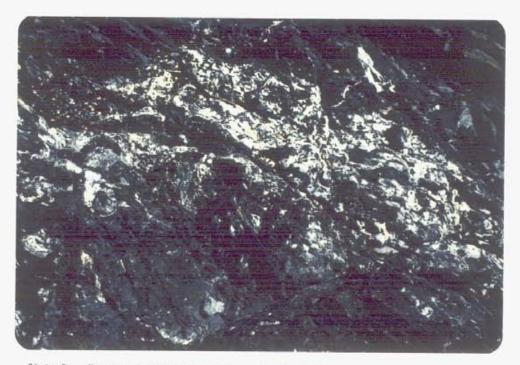


Plate 8a. Massive white barite replacement and veining (Type 2 mineralization) superimposed on black silicified Type 1 alteration. This outcrop occurs on the west limb of the anticline, north side of Gamma Creek.

Plate 8b. Massive white barite replacement (Type 2 mineralization) in Stone Formation. Note the "islands" of unaltered carbonate within the barite and the fact that the bedding is continuous and uninterrupted between the "islands" and host strata. This photograph was taken facing north, the outcrop is on the west limb of the anticline, north of Alpha Creek, a few meters downsection of Plate 2.

Plate 9a. Detailed view of barite replacement. Massive, coarse grained white barite present in the upper right of photograph, a zone of radiating acicular barite crystal rosettes in altered carbonate occurs in the central portion of the photograph, and fresh carbonate is present in the lower left of the photograph.

Plate 9b. Closeup of the radiating acicular barite crystal rosettes.

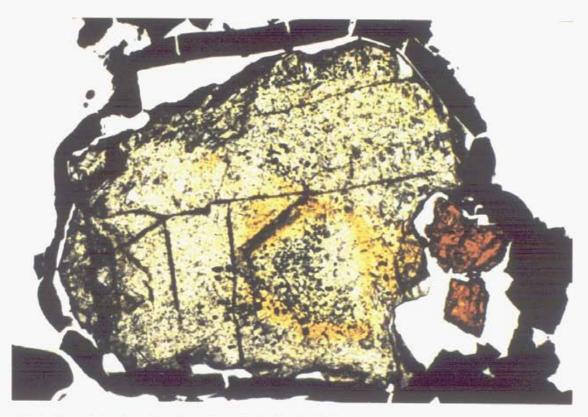
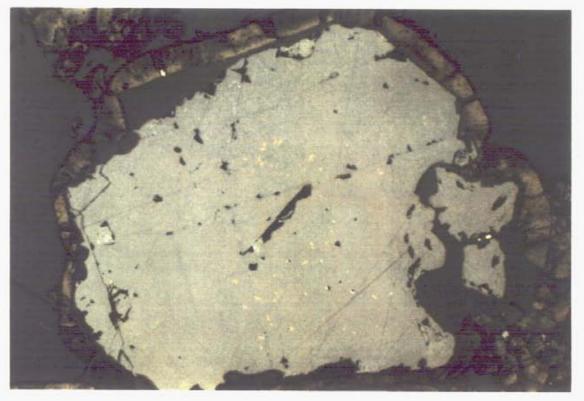



Plate 10a. Colourless to pale yellow sphalerite, typical of Type 2 mineralization, rimmed by black, colloform bitumen. Two small grains of red sphalerite also present. Transmitted light. Scale is 1 cm = 42 microns.

Plate 10b. Same field of view, reflected light. Note abundant small yellow inclusions of chalcopyrite in large grain of sphalerite.

Two types of mineralization occur of the Cay property. Type I mineralization consists intensely silicified podiform replacement alteration zones up to 10 metres in thickness and generally Significant amounts of lead and zinc parallel to stratigraphy. occur in these zones, as do extremely anomalous concentrations of gallium and germanium. This type of mineralization is absent only in one location on the property, where the Stone/Dunedin contact is exposed (west limb of the anticline, on the south side of Alpha Creek, Figure 4). In outcrop, the alteration zones are massive, dark grey to black in colour and resistant (Plate 3). Locally, malachite/azurite and anglesite are present on weathered surfaces (Plate 4). Mineralized material consists of quartz, fine-grained disseminated sphalerite which has a pinkish to purplish tinge, bitumen, some euhedral crystals of galena and minor pyrite (sphalerite>>galena). Quartz bitumen veinlets are common. In polished section, minor chalcopyrite inclusions in sphalerite, and germanite, an germanium sulphide mineral, were identified (Bernstein, 1987; Harris, 1987). The sphalerite has a distinct reddish-orange colour in transmitted light (Plate 5), and scanning electron microscopy indicates that it contains almost no iron and up to one percent copper (Bernstein, 1987).

Where sulphides are present in greatest abundance (sphalerite may comprise up to 50% of the volume), the rock is masssive and no original textures are preserved. In areas of slightly less intense alteration, the rock has a distinctly brecciated texture. Silicified, angular fragments a few millimetres to a few centimetres in size are hosted in a matrix of silica, bitumen and disseminated sulphides (Plate 6). Locally breccia fragments are replaced by massive pyrite, or replaced or rimmed by sphalerite. The silicified breccias locally grade throught partially silicified breccias into unaltered carbonate breccias containing angular fragments, ranging from a millimetre to a few tens of centimetres in size, contained in a vaguely layered matrix. The origin of these breccias has not been established; however, they are commonly stratabound, predate mineralization and their presence appears to be fundamentally important to the localization Stratigraphically upsection of sulphide mineral deposition. silicified breccias commonly grade into unbrecciated silicified limestones which display the thin, wavy bedding characteristic of the Dunedin Formation (Plate 7). The dark grey silicified limestones are commonly overlain by unaltered medium grey Dunedin strata.

Type II mineralization consists of sulphides with barite replacements and veining. This type of mineralization postdates Type I mineralization and locally crosscuts both silicified zones and unaltered strata (Plate \$a & b). Barite may be massive and coarse grained (Plate \$) or may occur as rosettes of acicular crystals replacing the host rock (Plate 9). Galena, sphalerite and galena, or galena and fluorite may occur with the barite. Bitumen is also commonly present. The sphalerite associated with the barite-type mineralization is honey coloured in hand specimen and coarser grained (1 - 5 mm) than the sphalerite associated with the siliceous breccia type mineralization. In transmitted light, the sphalerite forms zoned, yellow to colourless crystals (Plate 10). Chalcopyrite inclusions are more abundant in this type of sphalerite than in the red-coloured grains.

The Cay property is the most northerly of the showings in the Robb Lake belt, and the one apparently located closest to the platform margin. It displays many similarities to the other occurrences in the belt; the mineralization is hosted in Devonian carbonates, associated with breccia zones, bitumen in present, and sphalerite > galena. As well, the age of mineralization and the timing relationships between mineralization and deformation are not unequivocally established. Fundamental differences do occur, however, between the Cay prospect and the other showings in the Robb Lake belt, by far the most important of which is the anomalous concentrations of gallium and germanium present at the Cay. As well, the intense silicification, red sphalerite, barite and fluorite are all absent from the other deposits in the belt.

7.2.4 Trace Element Content

Representative samples were collected from principal showings and drill core during the 1986 and 1987 field seasons. The object was to determine the distribution of germanium and gallium. Table I summarizes the results from surface sampling and Appendix IIB assay from provides data representative diamond drill intersections. To provide a basis for comparison, the Ge and Ga content of each sample listed in Table I was normalized to that of a typical concentrate running 60% Zn (see last two columns). This is based on the assumption that essentially all the Ge and Ga in zinc ores is present in the sphalerite component. The normalized extrapolations derived from the least zinc-rich samples involve the largest extrapolations and, hence, the greatest uncertainty. However, based on this work the following conclusions can be made:

- Germanium (and gallium) is associated with zinc-specifically the mineral sphalerite;
- (2) The average germanium content in sphalerite is about 700 ppm in Type II mineralization and 4000 ppm in silica breccia Type I mineralization; and
- (3) The average gallium content in sphalerite from the property is about 340 ppm.

7.2.5 Economic Considerations

The Cay property potentially contains major reserves grading 2 -5% zinc and significant areas grading 5 - 10% Zn/Pb The zinc contains an average 0.25% germanium. Mineralization is stratabound. It occurs mainly in a silicified brecciated unit of the Middle Devonian age Dunedin Formation reef complex. Initial work on surface showings demonstrated the existence of relatively high grade zones with unknown lateral extent. Drilling proved the existence of a relatively widespread, lower grade mode of

Two types of mineralization occur of the Cay property. Type I mineralization consists intensely silicified podiform replacement alteration zones up to 10 metres in thickness and generally parallel to stratigraphy. Significant amounts of lead and zinc occur in these zones, as do extremely anomalous concentrations of gallium and germanium. This type of mineralization is absent only in one location on the property, where the Stone/Dunedin contact is exposed (west limb of the anticline, on the south side of Alpha Creek, Figure 4). In outcrop, the alteration zones are massive, dark grey to black in colour and resistant (Plate 3). Locally, malachite/azurite and anglesite are present on weathered surfaces (Plate 4). Mineralized material consists of quartz, fine-grained disseminated sphalerite which has a pinkish to purplish tinge, bitumen, some euhedral crystals of galena and minor pyrite Quartz bitumen veinlets are common. (sphalerite>>galena). Tn polished section, minor chalcopyrite inclusions in sphalerite, and germanite, an germanium sulphide mineral, were identified (Bernstein, 1987; Harris, 1987). The sphalerite has a distinct reddish-orange colour in transmitted light (Plate 5), and scanning electron microscopy indicates that it contains almost no iron and up to one percent copper (Bernstein, 1987).

Where sulphides are present in greatest abundance (sphalerite may comprise up to 50% of the volume), the rock is masssive and no original textures are preserved. In areas of slightly less intense alteration, the rock has a distinctly brecciated texture. Silicified, angular fragments a few millimetres to a few centimetres in size are hosted in a matrix of silica, bitumen and disseminated sulphides (Plate 6). Locally breccia fragments are replaced by massive pyrite, or replaced or rimmed by sphalerite. The silicified breccias locally grade throught partially silicified breccias into unaltered carbonate breccias containing angular fragments, ranging from a millimetre to a few tens of centimetres in size, contained in a vaguely layered matrix. The origin of these breccias has not been established; however, they are commonly stratabound, predate mineralization and their presence appears to be fundamentally important to the localization of sulphide mineral deposition. Stratigraphically upsection silicified breccias commonly grade into unbrecciated silicified limestones which display the thin, wavy bedding characteristic of the Dunedin Formation (Plate 7). The dark grey silicified limestones are commonly overlain by unaltered medium grey Dunedin strata.

Type II mineralization consists of sulphides with barite replacements and veining. This type of mineralization postdates Type I mineralization and locally crosscuts both silicified zones and unaltered strata (Plate 8a & b). Barite may be massive and coarse grained (Plate 8) or may occur as rosettes of acicular crystals replacing the host rock (Plate 9). Galena, sphalerite and galena, or galena and fluorite may occur with the barite. Bitumen is also commonly present. The sphalerite associated with the barite-type mineralization is honey coloured in hand specimen and coarser grained (1 - 5 mm) than the sphalerite associated with the siliceous breccia type mineralization. In transmitted light, the sphalerite forms zoned, yellow to colourless crystals (Plate 10). Chalcopyrite inclusions are more abundant in this type of sphalerite than in the red-coloured grains.

The Cay property is the most northerly of the showings in the Robb Lake belt, and the one apparently located closest to the platform margin. It displays many similarities to the other occurrences in the belt; the mineralization is hosted in Devonian carbonates, associated with breccia zones, bitumen in present, and sphalerite > galena. As well, the age of mineralization and the timing relationships between mineralization and deformation are not unequivocally established. Fundamental differences do occur, however, between the Cay prospect and the other showings in the Robb Lake belt, by far the most important of which is the anomalous concentrations of gallium and germanium present at the Cay. As well, the intense silicification, red sphalerite, barite and fluorite are all absent from the other deposits in the belt.

7.2.4 Trace Element Content

Representative samples were collected from principal showings and drill core during the 1986 and 1987 field seasons. The object was to determine the distribution of germanium and gallium. Table I summarizes the results from surface sampling and Appendix IIB provides assay data from representative diamond drill intersections. To provide a basis for comparison, the Ge and Ga content of each sample listed in Table I was normalized to that of a typical concentrate running 60% Zn (see last two columns). This is based on the assumption that essentially all the Ge and Ga in zinc ores is present in the sphalerite component. The normalized extrapolations derived from the least zinc-rich samples involve the largest extrapolations and, hence, the greatest uncertainty. However, based on this work the following conclusions can be made:

- Germanium (and gallium) is associated with zinc-specifically the mineral sphalerite;
- (2) The average germanium content in sphalerite is about 700 ppm in Type II mineralization and 4000 ppm in silica breccia Type I mineralization; and
- (3) The average gallium content in sphalerite from the property is about 340 ppm.

7.2.5 Economic Considerations

The Cay property potentially contains major reserves grading 2 -5% zinc and significant areas grading 5 - 10% Zn/Pb The zinc contains an average 0.25% germanium. Mineralization is stratabound. It occurs mainly in a silicified brecciated unit of the Middle Devonian age Dunedin Formation reef complex. Initial work on surface showings demonstrated the existence of relatively high grade zones with unknown lateral extent. Drilling proved the existence of a relatively widespread, lower grade mode of

TABLE I

ANALYTICAL DATA

Sample	Zn %	Pb %	Ga	Ge	Ga+	Ge+
			ppm	ppm	ppm	ppm
959	11.12		4 9	510	265	2750
960	10.75		110	92	614	513
966	2.25		7	134	190	3570
967	16.49		49	112	178	407
968	19.37		85	1465	263	4530
970	16.84		48	157	170	560
972	19.98		112	1360	335	4080
367	2.58	.59	28	270	650	6280
369	7.20	.08	156	370	466	3083
391	.51	1.62	11	26	118	3060
392	21.14	1.01	105	110	300	312
393	8.26	.64	30	80	218	581
394	1.44	.75	70	260	(2917)	(10833)
395	4.61	.11	6	62	78	807
1625	11.39	.44	50	1080	211	5689
1634	.11	7.31	10	80	()	930
1635	6.31	.07	70	620	666	5895
ALPHA	6.26	.45	30	80	287	767
1639	16.78	.15	10	10	(36)	(36)
1641	.95	.01	10	30	631	1895
1777	1.26	2.02	10	120	476	5714
1763	5.26	1.29	50	70	570	798
WOLVERINE	6.28	0.36	30	400	286	3822
NOSE	22.69	0.01	40	1500	106	4090
87-28A	0.10	3.81	10	70	157	1102
87-33	0.63	34.80	10	10	()	()
106A	1.75	0.01	10	80	()	(
106B	1.22	0.14	10	60	()	()

()

NOT INCLUDED IN AVERAGES

ESTIMATED Ga/Ge IN 60% Zn CONCENTRATE

- 22 -

mineralization. Given sufficient size (so far unproven) and assuming that concentrate could be marketed as a zinc-germanium product gross values are sufficient to support an underground mine. The lower grade material identified through drilling corresponds to a possible "open pit" exploration target with the economic advantages inherent with this type of mining.

Although the Cay property has no proven reserves, work to date has demonstrated the main mineralization controls and provided a model which will permit development of reserves through detailed drilling. This is based on the assumption that zinc produced there can be upgraded to economic levels by virtue of its trace element content.

7.3 Drill Program

7.3.1 General

Advance drilling Ltd. of Surrey, B.C. were contracted to drill a minimum 914.4 m (3000 ft.) and produce B.Q. diameter core on the Cay property. The machine used was a Hydra Core 28. Drilling commenced on 4 September and was completed 16 October 1987. In total 1078 m of core were produced from eight sites and a total of 21 holes. Location of the drill sites is indicated on accompanying geological maps in pocket. All core, except for one or two metres selected for study purposes, remains stored on the property in a shack constructed for that purpose. Location of the core shack is shown in the property index map (Figure 5). About 72 metres of core was split and assayed for Pb, Zn, Ga and Ge. Table II summarizes drill hole data.

7.3.2 Drill Program Results

Drill core from the fall 1987 program was logged on site. Results are summarized in Appendix V (logs) and in Figure 8 (drill hole sections). Information obtained from the drill work has been incorporated into the geologic map and cross-sections (Figure 4). The main result was to help clarify mineralization controls.

8. GEOCHEMISTRY

8.1 Previous Work

A geochemical survey was carried out over a portion of the Cay property by Cominco Ltd. in 1973. About 1000 hectares were soil sampled using a 200 x 400 ft. ($60 \times 122 m$) grid spacing. Samples were tested for lead, zinc, silver and magnesium. The Cominco survey delineated a coincident lead-zinc anomaly 500 x 2000 metres in extent. Anomalous silver values turned out to be small and scattered and occasional high magnesium samples did not correlate with the other metals. Cominco results are reported in assessment documents.

8.2 1986 Orientation Program

The 1986 geochemical program on the Cay program was primarily an orientation survey. The objectives were to identify key trace elements, to establish the most effective sampling procedure, and to find the parameters crucial to interpretation. In 1986, 194 soil samples were collected.

During this phase rock, soil and silt samples were collected from various areas including known mineralized zones. Data was recorded on parameters such as bedrock character, soil type, physiographic features, etc. Sample locations were recorded with respect to a loose control grid ("old grid") and samples were analyzed for a variety of elements. While the key objective to the Cominco work was to find a lead-zinc deposit the emphasis in the current program is to find a germanium-zinc deposit.

Contrary to expectations Ge (and Ga) does not show up in anomalous concentrations in soils even over heavily mineralized zones. Zinc produces clearly anomalous conditions but tends to be disbursed. Lead in soil produced well defined anomalous zones in most, but not all, places. Copper was selected as a potentially important soil parameter due to an observed mineralogical correlation between high copper zinc and particularly high germanium levels. Barium was also selected as a soil parameter due to the ubiquitous association between lead-zinc mineralization on the Cay property with barite. Rock geochemistry was not seen to provide a useful guide to ore at least through any of the 30 odd elements evaluated.

8.3 1987 Program

During 1987 a detailed grid controlled soil sampling program was carried out over two places of geologic interest. This included the anticlinal nose area; a region of extensive overburden but a place where surface mineralization is predicted to reappear based on geologic projections. The other target area was the surface trace of Dunedin Fm. especially on the southern part of the claim group where the better mineralization is known to occur. The results of the 1986 and 1987 soil sampling are shown in figure 6. In 1987, 851 soil samples were collected.

8.4 Sampling and Analytic Procedure

Soil development on the Cay property has been complicated by forest fires. As a result of the burning, in most areas there is now as repetition of the various soil horizons. Wherever possible soil was collected from the lowest B horizon using special shovels. In most cases this layer occurs between 25-35 cm below surface. Where no B type soil was present samples were collected from the C horizon immediately below organic rich topsoils.

- 25 -TABLE II

SUMMARY OF HOLES DRILLED IN 1987

<u>Site #</u>	Location	<u>Elevation</u>	<u>Hole #</u>	<u>Bearing</u>	Dip	Length (core/m)
1	L90N-0+52W	1563m	1	070	-45	36.58
			2	070	-75	50.29
			3	040	-45	47.85
2	L89N-0+60W	1560m	4	070	-45	1.83*
3	L87+65N	1490m	5		-90	38.10
	5+50E		6	250	-45	32.61
			7	250	-60	23.16
			8	250	-75	28.96
			9 -	250	-80	37.19
4	L87+65N	1480m	10		-90	82.60
	5+70E		11	250	-45	55.47
			12	250	-80	86.56
5	L87+70N	1473m	13	250	-50	103.93
	6+20E		14	250	-60	131.06
			15	250	-70	106.68
			16	280	-55	82.30
6	L87+85N	1503m	17	250	-45	24.69
	5+25E		18		-90	31.10
7	L87+90N	1520m	19		-90	29.26
	4+60E		20	250	-45	10.97
8	L87+25N 5+90E	1471m	21	250	-45	36.88

1078.01

* Hole abandoned due to overburden wedging.

Samples were sent to Acme Analytical Laboratories Ltd. at 852 E. Hastings Street, Vancouver, B.C. for geochemical analysis. The analysis method used by Acme is as follows:

- 1) Soils are dried at 60°C and sieved to -80 mesh size.
- 2) Pulp is digested with 3 mls 3-1-2 HC1-HNO3-H2O at 95°C for one hour and then diluted with water. This leach is near total.
- In the case of copper, lead and zinc analysis is by Atomic Absorption.
- 4) In the case of barium, analysis is by ICP.

8.5 <u>Results</u>

Results of soil sampling on the Cay property are shown on Figures 6A-6D (in pocket). These maps show zinc, lead, copper and barium in soil. Stream sediment and rock chip orientation work did not produce useful data, therefore rather than clutter the maps, results from this work are not given. It should be mentioned that the commercially prepared indicator "Zinc Zap" proved to be very useful. It is common to find that rock with no obvious sulphide mineralization assays 1 - 2 percent combined Pb/Zn - its presence being flagged with a positive Zinc Zap test.

There are three main conclusions from the soil sampling work, they are as follows:

- (1) The broad anomaly in lead and zinc located on the east side of the new grid between lines 80 and 92 north seems to be directly related to bedrock mineralization. The area contains several significant lead-zinc occurrences and abundant mineralized float. Zinc in soil here seems more disbursed than lead which likely better reflects proximity to mineralization. No useful information is apparent in the barium and copper data.
- (2) Highly mineralized bedrock occurs over a broad area in the vicinity of grid station 0L20S2+75W. This is referred to as the Nose Showing. Mineralization located here is not reflected in soil geochemistry in any of the elements tested for in either 1986 orientation work or in the more intensive grid coverage completed during 1987. This negative result is somewhat enigmatic. Possible residual soils were scraped off by glaciers and bedrock mineralization has not yet had time to generate an anomalous soil signature. As a consequence the lack of any anomalous values on the south end of the Cay property do not necessarily rule out exploration potential.
- (3) Anomalous lead and zinc samples from 1988 sampling in the vicinity of 0L5N-4+00W do not conform to mineralization that fits the present exploration model. Perhaps, as suggested

by John Knox, east-west trading structures are involved in the mineralizing process one or more of which may pass through this area. Alternately, the OL5N anomaly, which is close to the contract valley axis, might coincide with the surface trace of a major thrust fault suspected of occurring there. This fault, if it exists, may have been involved with sulphide mineral deposition on the Cay property. In any case, more detailed soil sampling is merited in this area.

(4) The west limb of the Cay anticline, mineralized or not, does now show up in the soil sample results. Drilling in the vicinity of the Alpha Creek showing encountered unexpectedly deep overburden. This may explain the negative geochemical results rather than lack of mineralization.

As a general conclusion, although the geochemical work did produce some useful results, it cannot be relied on to identify bedrock mineralization in areas covered by overburden in the Cay property.

9. TRENCHING

Numerous lead-zinc showings have been found on the Cay property. Three that are particularly significant are referred to as the Alpha, Wolverine and Nose showings. The main characteristics of these are as follows:

a) <u>Alpha</u> (Grid Location L87N-0+55W)

Both silicified (Type I) and Barite (Type II) mineralization occur. Site of bulk sample collected in 1986. Barite (Type II) mineralization was sampled. Galena and sphalerite occur as lenses or pods with massive barite within Stone Fm. limestone. Little or no silica associated with sulphides. Mineralization is typically near Dunedin Fm. contact.

b) <u>Wolverine</u> (Grid Location L88+50N-4+50E)

Referred to as silica breccia (Type I) mineralization. Sphalerite occurs with silica as breccia and/or stratabound in Dunedin Fm. reef limestone. Galena present.

c) <u>Nose</u> (Grid Location 0L20S-0+75W)

Generally similar to silica breccia mineralization observed at Wolverine showing; however, sulphides seem to be more clearly zoned with replacement sphalerite grading through galena-sphalerite breccia to galena breccia, going up stratigraphically. Same trend is apparent at Wolverine showing but pattern less clear.

The bulk sample collected from the Alpha showing in 1986 was subjected to metallurgical tests under the direction of G. Hawthorn. The Alpha and Wolverine showing were systematically sampled during the summer of 1987 with the aid of a "Cobra" drill. Due to the extremely tough character of siliceous type mineralization, blasting is required to obtain anything other than hand specimens which are not generally representative of bedrock. Trenching at the Nose and Wolverine sites produced enough material to permit additional metallurgical test work and gave an idea of tenor realistic for this class of mineralization. Results of the "bulk" sampling are summarized below:

<u>Showing</u>	Width	<u>Pb%</u>	<u>Zn%</u>	<u>Ga (ppm)</u>	<u>Ge (ppm)</u>	<u>Ge(normalized)</u> *
Alpha	2.5 m		6.26	30	80	767
Wolverine	2.1 m	0.36	6.28	30	400	3822
Nose	1.3 m	0.01	22.69	40	1500	4090

*NB. Estimated Ge in 60% Zn concentrate.

10. METALLURGY

A 500 kilogram sample was collected from the west limb Alpha Creek showing on the Cay property. Mineralization here consists of pale honey coloured sphalerite within a gangue of massive barite (Type II). Laboratory testing determined that a high grade (60%) zinc flotation concentrate could be produced which contained the majority of gallium and germanium. This work demonstrates that metallurgical problems are not likely, at least from this type of material. Furthermore, the material tested was found to be low in mercury, iron, and other elements that smelters traditionally find undesirable (Hawthorne, 1986)..

A bulk sample of siliceous breccia (Type I) mineralization was collected from the Wolverine and Nose showings during the 1987 field season. Metallurgical test work will be carried out on this material in the future. Since it is the sphalerite from this type of mineralization that carries, by far, the greater percentage of germanium, results of test work on these samples are likely to critically affect the economic viability of the Cay property.

11. CONCLUSIONS

The Cay property is an important lead-zinc-germanium prospect. Mineralization occurs in showings over a wide area as the sulphide minerals galena and sphalerite. The germanium, in very significant quantities, is contained in sphalerite. Host rocks are Middle Devonian age limestones of the Dunedin and Stone Formations. Mineralization may have been derived from metal rich overlying graphitic shales of the Besa River Formation or a more remote source. There are two important types of mineral occurence in the property. One style is referred to as Type II or barite type. In this case lead and zinc are present in large barite pods in Stone Formation limestone, albeit typically near the Dunedin Fm. contact. Zinc in this environment contains 700 ppm germanium, in average. The other style of mineralization (Type I) involves highly silicified and frequently brecciated limestone. Sphalerite in Type I occurences contains about 4000 ppm Ge. Type I mineralization is usually confined to Dunedin Formation rock.

Although grades found in the barite pods are often quite high (up to 13% Zn) the silica type mineralization (1.5 to 6% Zn) is more likely to form ore. This is due to the higher contained Ge component plus the potential for open pit mining. The recommended follow-up program is to drill untested parts of the property with a view to developing ore reserves. The north end of the Cay property remains essentially unexplored and a thorough prospecting program is merited there.

12. <u>REFERENCES</u>

Anonymous 1986. The economics of gallium 4th-Ed. Roskill Information Services Ltd., London, England. pp. 1-134.

Bamber, E.W., Taylor, G.C., and Proctor, R.M. 1986. Carboniferous and Permian stratigraphy of northeastern British Columbia. Geological Survey of Canada. Paper 68-15. 25 p.

Bernstein, L.R. 1968. Gallium and germanium exploration opportunities (unpublished report). 25 p.

Danner, W.R. 1968. Report on thin sections made from rocks from Cay property (unpublished report).

Evans, T.L., Campbell, F.A., and Krouse, H.R. 1968. A reconnaissance study of some western Canadian lead-zinc deposits. Economic Geology, 63, pp. 349-359.

Griffin, D.L. 1967. Devonian of northeastern British Columbia. An International Symposium on Devonian System. Vol. I. Edited by D.H. Oswald. Alberta Society of Petroleum Geologists, Calgary, Alta. pp 803-826.

Hawthorn, G. 1986. Progress Report No. 1. Metallurgical testing, Cay property. Private company report dated December, 1986.

Leighton, D.G. 1987. Cay property completion report on phase I exploration program. Private company report dated February, 1987.

Macqueen, R.W. 1976. Sediments, zinc and lead, Rocky Mountain Belt, Canadian Cordillera. Geoscience Canada, 3, pp. 71-81.

Macqueen, R.W. and Thompson, R.I. 1978. Carbonate hosted lead-zinc occurrences in northeastern British Columbia with emphasis on the Robb Lake deposit; Canadian Journal of Earth Sciences, 15, pp. 1737-1762.

Macqueen, R.W., Williams, G.K., Foscolos, A.E., and Barefoot, R.R. 1975. Devonian metalliferous shales, Pine Point region, District of Mackenzie. Report of Activities, Part A Geological Survey of Canada, Paper 75-1A, pp. 553-556. Morrow, D.W. 1975. The Florida aquifer: a possible model for a Devonian paleoaquifer in northeastern British Columbia. Report of Activities, Part B. Geological Survey of Canada, Paper 75-1B, pp. 261-266.

Norford, B.S., Gabrielse, H., and Taylor, G.C., 1966. Stratigraphy of Silurian carbonate rocks of the Rocky Mountains, northern British Columbia. Bulletin of Canadian Petroleum Geology, 14, pp. 504-519.

Taylor, G.C., and MacKenzie, W.S. 1970. Devonian stratigraphy of northeastern British Columbia. Geological Survey of Canada, Bulletin 186. 62 p.

Taylor, G.C., Macqueen, R.W., and Thompson, R.I. 1975. Facies changes, breccias, and mineralization in Devonian rocks of Rocky Mountains, northeastern British Columbia (94B,G,J,N). Report of Activities, Part A. Geological Survey of Canada, Paper 75-1A, pp. 577-585.

Thompson, R.I. 1976. Some aspects of stratigraphy and structure in the Halfway River map-area (94B), British Columbia. Report of Activities, Part A. Geological Survey of Canada, Paper 76-1A, pp. 471-477.

Zabo, N.L. 1973. Soil geochemical survey on the Cay claims, Liard Mining Division, British Columbia Department of Mines and Petroleum Resources, Assessment Report No. 4201.

CERTIFICATE OF QUALIFICATION (D.G.L.) 13.

- I, Douglas G. Leighton, do hereby certify that:
- I am a graduate of the University of Ottawa with a Bachelor of 1. Science Honours degree in Geology, 1979.
- I am a graduate of the University of Calgary with a Doctorate of 2. Philosophy degree in Geology, 1984.
- I am a Fellow of the Geological Association of Canada. 3.
- I was employed as an Assistant Professor in the Department of 4. Geology, University of Windsor, teaching Economic Geology and Structural Geology from July, 1985 to July, 1986.
- I have been engaged in mineral exploration and geologic mapping in 5. Manitoba and British Northwest Territories, Columbia the periodically since 1977.
- This report is based on my work on the Cay property as well as a 6. study of available literature.

Dated at Vancouver, B.C. this day of January, 1988.

Douglas G. Leighton, B.Sc., F.G.A.C.

13. CERTIFICATE OF QUALIFICATION (J.A.P.)

I, Jennifer A. Pell, of #4, 1719 Yew Street, Vancouver, British Columbia, do hereby certify that:

- 1. I am a professional geologist with offices at 900 625 Howe Street, Vancouver, B.C.
- I am a graduate of the University of British Columbia, B.Sc., (1968).
- 3. I am a Fellow in the Geological Association of Canada.
- 4. I have practiced my profession as a geologist since 1968 mostly in British Columbia.
- 5. I personally supervised exploration work carried out on the Cay property during 1986 and 1987, for Equinox Resources Ltd.

Dated at Vancouver, B.C. this

day of January, 1988.

ennifer Pell Ph.D., F.G.A.C.

APPENDIX I

STATEMENT OF COSTS

1987 Work Program

Wages *				\$51 , 780		
Benefits	(WCB,	CPP,	UIC)	<u>12,937</u>		
					\$ 64	1,687

Disbursements	
Transport (mainly helicopter)	\$122,094
Geochemical and Assay	16,826
Drilling	129,056
Building Supplies	11,737
Groceries (Safeway)	10,231
Topographic Map (Eagle Mapping)	3,710
Expense Accounts (mainly meals, accommodations)	15,568
Expendible Supplies	7,982
Miscellaneous: expediting, secretarial,	
freight, etc.	5,821

TOTAL

\$387,712

1986 Work Program

Wages	33,500	
Benefits (WCB, CCP, UIC)	8,375	
	\$41,	,875
Disbursements		
Transport (mainly helicopter)	\$23,	,140
Geochemical and Assay	11,	,600
Expense Accounts (mainly meal	Ls, accommodation) 6,	, 334
Expendible Supplies	2,	,489
Miscellaneous: secretarial,	freight,	
communications, etc.	1	762

TOTAL

\$87,200

TOTAL 1986 AND 1987

\$474,912

Allocation:	Cay North Group	\$ 94,982.40
	Cay South Group	\$379 , 929.60

* Breakdown showing pay rates and days worked follows.

TIME SHEET SUMMARY

GAGE PROJECT - CAY PROPERTY

T.

Year _____ 1987 _____

NAME	RATE	MONTH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Time Total
		July	x	x	X	x	x	x	x	X	X	x	x	x	X	x	x	x	X	x	X	X	X	x	X	X	x	x	x	x	X	х	x	31
Leighton	200.00	August	x	x	x	x	x	x	x	x																		x	x	x	X	x	x	14
		Sept.	x	x	X	x	x	x	x	x	x	x	x	x	X							X	x	X	x	x	x	x	x	x	x	x	X	25
	·	Oct.	x	x	X	x	x	x	x	x	x	x	x	x	X	x	x	x	x	x	X	x	x	X				ļ.,	ļ					22
	100.00	July									x	x	X	x	x	x	x	x	x	X	X	x	X	x	x	x	↓x	x	X.	x	x	x	x	23
MacKenzie	100.00	August	x	x	X	x	x	x		+		x	x	x	x	x		x	X	x	X	_		x	x			x	X	-	X	x	X	31
		Sept.	X	x	X	X	x	X	X	X	X	X	x	x	X		x	X	X	X	X	i —	X	X	X	X	X	X	X	<u>x</u>	X	x	X	31
		Oct.	X	x	X	X	x	X	X	X	X	x	x	x	x	x	x	x	X	X	X	X	X	X					–	<u> </u>		\square		22
Knox	100.00	July	x	x	x	X	x	x	x	x	x	x	X	x	x	x	x	X	X	x	X	X	x	x	X	X	X	x	X	X	X	x	<u>x</u>	31
		August	X	x	X	x	x	x	X	x	x	x	x	x	x	x	x	x	X	x	x	X	X	x				-	_	–	<u> </u>			22
	.	Sept.		<u> </u>	-	ļ	 	ļ	ļ	<u> </u>		<u> </u>	<u> </u>	1	ļ			 	x	-0	X	-	X	X	X	LX.	+	x	X.	X.	X.	X	X	15
		Oct.	X	X	X	x	X	X	+	+	+	X	X	X	X		X	X	X	<u> </u>	X		X	X	X				<u> </u>	+_		-		<u>25</u> 30
Hopping	70.00	July	-	x	X	X	X	X	X			X	X	X	X	<u> </u>	x	X	X		X	 	X	X	x	x		x	X	X	X	X	<u>x</u>	23
nopping	/0.00	August		x	X	X	X	X	X	 	+	X	X	X	X		x	X	x	<u>+</u>	X	<u>+</u>	X	X	-		+-	+-	+	+	<u> </u>		<u> </u>	31
Read	70.00	July		x	X	X	1	X	+	1		X	X	X	X	<u> </u>	<u> x</u>	X	X			-	X	X	X	1		x	X	x	X	X	X	27
		August	X	X	X	X	X	x	x	<u>x</u>		X	X	X	X		X.	-	X	1-	1		X	X	X	X		X	X	+	┢─			1
Heberlein	120.00	July	-	+-	+	+	+		╂	┢──	-			+		\vdash	┢──	<u> X</u>	X.	X.	X	┝─	-			+	+	+	+	+	\vdash	+	-	4
		August	+	–	+	┼	╂	╂	\vdash	X	<u> ×</u>	4-	X	X	μ4	\vdash	╋	┢	-	┼─-	x	┢─	 	┢─	\vdash	┢	┼─	+	+	+	┼	+-	\vdash	4 1/4
Beaty	200.00	July August	\vdash	+-	+-	+	$\left \right $			\vdash	┢	┼─	$\left \right $	+		\vdash	-				^		Ĺ		x	x	1			\pm				2 1/2
Total chargeal	bie		T				ŀ			! ; !	Γ																							

34

.

TIME SHEET SUMMARY

Year_

1987

GAGE PROJECT - CAY PROPERTY

:

÷

NAME	RATE	MONTH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	9 3	30 3	ιŦ	i me Total
	175.00	August						Γ	•								Γ									x	X	x	X	xy		x	X I	8
Pell	175.00	Sept.	x	x	x	x																									\downarrow	$- \downarrow$		4
	120.00	August																						X	x	x	X	x	X	X X		x	x 1	14
Howe	120.00	Sept.	X	x	x	x																L									_			4
																				L_					I					\square	_		_	
																				L												_		
															L															\vdash	\downarrow	_	_	
																															\downarrow	$ \rightarrow $		
																		ļ		L	L.				L		L			\square	\downarrow	-+	_	
																								_						\square	_		_	
																		ļ				L									_			
																					L				ļ					\square	_			
							<u> </u>			1					L	Ļ		<u> </u>	ļ	L	L	L	<u> </u>		<u> </u>		<u> </u>			\vdash	_			
																		· .				L					L				\downarrow	_		
													L									\vdash			L	ļ				\square	4			
																										<u> </u>	L			\square	_	_		
													L			1				<u> </u>	<u> </u>	<u> </u>	L		L	Ļ	L	ļ		\square	_	\rightarrow		
																														\square	$ \downarrow$	\square	_	
																														\square	_	_		
Total charges			T					Γ		!	Γ				Γ																			
Total chargea	DIC							1		T				1	1	1	1		1	1	1					1		1						

. ა ე

TIME SHEET SUMMARY

GAGE	PROJECT	-	CAY	PROPERTY
01100	1100001		~	*

E

E

E

E

Ē

Year _____ 1987 _____

1992 A. 1997 A.

NAME	RATE	MONTH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Time Tota
NAMB		July	x	x	x	x	x	x	x	x	X	x	x	x	X	x	x	x	X	x	X	X	x	x	X	x	X	x	x	x	x	X	x	31
Leighton	200.00	August	x		x	x	x	x	x	X																		x	x	x	x	x	X	14
<u></u>		Sept.	x	ļ	x	x	x	x	x	x	x	x	x	x	X							X	x	x	x	х	х	x	x	x	x	x	x	25
		Oct.	x		x	x	<u> </u>	x	x			x	x	x	X	x	x	x	x	x	x	x	x	x										22
		July			T .							x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	X	x	x	x	x	x	x	23
MacKenzie	100.00	August	x	x	x	x	x	x	x	x		x	x	x	X	x	x	x	x	x	x	x	X	x	x	x	x	x	x	x	x	x	x	31
		Sept.	x	x	X	x	x	x	X	x	X	x	X	X	X	x	X	X	X	X	X	X	X	x	X	x	x	x	X	X	X	X	X	31
		Oct.	x	x	X	x	x	x	X	x	X	x	x	x	X	x	x	x	x	x	X	x	x	x		L	L	\bot	ļ	<u> </u>	<u> </u>	<u> </u>	 	22
	100.00	July	x	x	X	x	x	x	X	x	x	x	x	x	x	X	x	x	X	x	x	X	x	x	x	x	x	X	x	x	x	<u>x</u>	X	31
Knox	100.00	August	x	x	X	x	x	x	x	x	X	X	x	x	x	x	x	x	x	x	x	X	x	x		L		<u> </u>	<u> </u>	\downarrow	ļ	 		22
		Sept.													L			1	x	x	x	↓x	x	Lx_	x	x	L X	X.	<u>x</u>	<u> x</u>	X.	<u>↓x</u>	<u> </u>	1
		Oct.	x	x	X	x	x	x	x	x	X	x	x	x	x	+	X	X	X		x	1	X	x	x		-			–	-	+	+	25
		July		X	X	X	X	X	x	X	X	X	X	X	X		X	X	X	X	+	<u>+</u>	X	x	X	X	X	X	X	X	X	X	X	-
Hopping	70.00	August	X	x	X	x	X	x	X	X	X	x	x	x	X	X	X	X	X	X	X	<u>x</u>	X	X	 	<u> </u>	 	4	_	+-	_	+	–	23
Read	70.00	July	x	x	x	x	x	x	X	X	x	x	x	x	x	X	X	X	X	x	X	X	X	X	X	<u> x</u>	<u> ×</u>	<u>x </u>	X	X	<u> x</u>	<u> </u>	<u> x</u>	7
Kead	70.00	August	x	x	x	x	x	X	x	x	<u>x </u>	<u>x</u>	x	x	X	<u>x</u>	X	<u>x</u>	X	<u> x</u>	X	<u>_x</u>	X	X	X	X	<u> ×</u>	<u> x</u>	X	┿	┝	+	+	27
Heberlein	120.00	July				\bot	<u> </u>	1	\downarrow	 		4	<u> </u>	1	_		+-	<u> </u>	X	↓x	Ļx	_		₋		-		+	+	+-	┢╌	+-	+	4
		August			1_				\bot	x	x	:	x	X	Ľ	_		4_	_			_	-	_	\vdash		╞		╇	╇	+		+	4 1/
Beaty	200.00	July August	 	-	+	+	_	-	╞	╞	╂─	+-		+	-		╀	╄	┢	+	X		1/	┢	x	x	+	,	┼╴	+	╀	╀╴	┼╴	1 1/
Total chargea	 ble		+				+	1		<u>+</u>		+	+	+	1		+-		\uparrow	1	1			T			T			T	T			

BEATY GEOLOGICAL LTD.

APPENDIX II

ANALYTICAL RESULTS

BEATY GEOLOGICAL LTD.

APPENDIX IIA

ANALYTICAL RESULTS

(GEOCHEMICAL RESULTS)

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: OCT 16 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: OCT 26/87...

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU** ANALYSIS BY FA+AA FROM 10 GM SAMPLE. HG ANALYSIS BY FLAMLESS AA.

ASSAYER: . N. ALM. DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL File # 87-5007 Page 1

SAMPLE#	AG PPM	AS PPM	SB PPM	AU** PPB	HG PPB
92+00E 92+00N 92+00E 91+75N	.1	12	2	22 17	20 5
92+00E 91+50N	. 1	14	2	4	10
92+00E 91+25N	. 1	18	2	33	5
92+00E 90+75N	. 1	17	2	4	10
92+00E 90+50N	. 1	8	2	2	5
92+00E 90+25N	. 1	4	. 2	10	5
92+00E 90+00N	- 1	16	2		- 5
92+00E 89+75N				6	
	. 1	30	2	13	30
92+00E 89+50N	- 1	27	2	23	20
92+00E 89+25N	. 1	10	2	4	30
92+00E 89+00N	. 1	20	2	3	20
92+00E 88+00N	.2	13	2	4	10
93+00E 91+75N	. 1	17	2	2	20
93+00E 91+50N	. 1	21	2	35	10
93+00E 91+25N	. 1	13	2	21	5
93+00E 90+75N	. 1	19	2	24	20
93+00E 90+50N	- 1	3	2	24	10
93+00E 90+25N	нл. - 1	18			
93+00E 90+00N	. 1	13	2	4 12	10
YOTOME YOTOON	• 1	1.0	<i>£</i> .	12	20
93+00E 89+75N	- 1	2	2	4	5
93+00E 89+50N		10	2	1	10
93+00E 89+25N	. 1	6	2	2	5
93+00E 89+00N	. 1	12	2	2	20
93+00E 88+00N	. 1	13	2	`1	10
94+00E 91+75N	. 1	4	2	22	5
94+00E 91+50N	. 1	20	2	1	20
94+00E 91+25N	. 1	20	2	2	
94+00E 90+75N	.2	22			10
94+00E 90+50N			2	13	40
74+00E 90+30N	. 1	20	2	24	30
94+00E 90+25N	. 1	20	2	12	10
94+00E 90+00N	. 1	24	2	59	20
94+00E 89+75N	. 1	6	2	1	10
94+00E 89+50N	. 1	6	2	1	5
94+00E 89+25N	. 1	12	2	3	5
94+00E 89+00N	1.	20	2	1	10
STD C/AU-S	7.3	39	17	50	1400
አስተቀም አንድ በግለማ ለማ	7 u)		J. 7		ж -т ("С)

FILE # 87-5007

SAMPLE#	AG	AS	SB	AU * *	HG
	PPM	ррм	PPM	PPB	PPB
94+00E 88+00N 98+00E 96+00N 98+00E 95+50N	. 1	26 7 4	2 2 2	36 1 2	20 10 20
98+00E 95+25N 98+00E 95+00N	. 1 . 1	7 10	2	1	10 10
98+00E 94+75N 98+00E 94+50N	• 1 • 1	6 8	2	7	. 30 5
98+00E 94+25N 98+00E 94+00N	. 1 . 1	8 8	2 2	1 1	5 10
98+00E 93+75N	. 1	12	2	2	10
98+00E 93+50N 98+00E 93+25N 98+00E 93+00N 98+00E 92+75N 98+00E 92+50N	" 1 " 1 " 1 " 1	7 12 24 8 12	2 2 4 2	1 1 2 50	5 10 20 5
98+00E 92+25N 98+00E 92+00N 98+00E 91+75N 98+00E 91+50N 98+00E 91+25N	. 1 . 1 . 1 . 1	28 16 18 16 6	2 2 2 3 4	1 14 3 1	20 10 10 20 5
98+00E 91+00N 98+00E 90+75N 98+00E 90+50N 98+00E 90+25N 98+00E 90+00N	. 1 . 1 . 1 . 1	16 13 14 14 16	N N N N N	1 1 1 1 1	20 5 10 50 20
98+00E 89+75N 98+00E 89+50N 100+00E 97+00N 100+00E 96+75N 100+00E 96+50N	. 1 . 1 . 2 . 1	10 20 19 21 8	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 6 1 4 1	40 30 30 50 10
100+00E 96+25N 100+00E 96+00N 100+00E 95+75N 100+00E 95+50N 100+00E 95+25N	. 1 . 1 . 1 . 1	3 8 5 21 57	2 2 2 5 2	1 4 62 13 1	10 20 5 10 20
100+00E 95+00N STD C/AU-S	.2 7.2	11 38	2 18	1 52	- 10 1300

FILE # 87-5007

SAMPLE#	AG PPM	AS PPM	SB PPM	AU** PPB	HG PPB
	111 (MAS 5,)		<i></i>	3	20
100+00E 94+		7	2		
100+00E 94+		4	2	8	20
100+00E 93+		8	2	3	20
100+00E 93+		5	2	1	10
100+00E 93+	25N .1	9	2	1	10
100+00E 93+		7	2	2	30
100+00E 92+		16	2	1	20
100+00E 92+	50N .2	8	2	1	20
100+00E 92+	25N .1	19	3	1	50
100+00E 92+	00N .1	4	2	6	10
	×				
100+00E 91+	75N .1	12	2	7	20
100+00E 91+	50N .1	19	2	9	20
100+00E 91+	25N .1	21	2	1	60
100+00E 91+	00N 1	23	2	1	30
100+00E 90+		63	2	19	20
100+00E 90+	50N .1	40	2	17	70
100+00E 90+	25N .1	31	2	1	20
100+00E 90+		20	2	7	30
100+00E 89+		2	2	19	40
100+00E 89+		17	2	1.	20
100+50E 96+	00N .1	3	2	1	10
101+00E 96+		26	2	1	10
101+00E 96+			3	1	20
101+00E 96+			2	1	5
101+00E 96+			2	1	5

101+00E 95+	75N .1	12	2	1	5
	50N .1	9	2	6	5
	25N .1		2	1	5
		-		1	5
101+00E 94+ 101+00E 94+			2	1	10
TOTAOOC 244		. 1. . 1 .	-tim	·	
101+00E 94+	25N .1	37	2	1	30
101+00E 94+			2	1	5
101+00E 93+				. 1	5
101+00E 93+			2	. 1	10
101+00E 93+				1	40
an a	ատեսաքեղ հետև	-T 4-17			
101+00E 93+	. 1.	6	2	1	10
STD C/AU-S	7.2		18	52	1300
· · · · · · · · · · · · · · · · · · ·					

FILE # 87-5007

SAMPLE#	AG PPM	AS PPM	SB PPM	AU** PPB	HG PPB
101+00E 92+75N 101+00E 92+50N STD C/AU-S 101+00E 92+25N 101+00E 92+00N	.1 .1 7.3 .1 .2	10 7 41 23 8	2 2 17 2 2	1 51 22 1	20 10 1300 20 10
101+00E 91+75N 101+00E 91+50N 101+00E 91+25N 101+00E 91+00N 101+00E 90+75N	. 2 . 1 . 1 . 1 . 1	7 7 6 12 2	NNNNN	1 1 1 1	20 10 20 20 30
101+00E 90+50N 101+00E 90+25N 101+00E 90+00N 101+00E 89+75N 101+00E 89+50N	.1 .2 .1 .2	6 7 13 11 14	N N N N N N N	1 5 9 1	30 20 10 20 10
101+50E 96+00N 102+00E 97+00N 102+00E 96+75N 102+00E 96+50N 102+00E 96+25N	• 1 • 1 • 1 • 1	75 3 2 7 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 5 4 3	20 20 30 20 5
102+00E 96+00N 102+00E 95+75N 102+00E 95+50N 102+00E 95+25N 102+00E 95+00N	.1 .2 .3 .2	15 16 36 10 11	NNNN	1 4 4 1	10 30 30 20 5
102+00E 94+75N 102+00E 94+50N 102+00E 94+25N 102+00E 94+00N 102+00E 93+75N	• 1 • 1 • 1 • 1	20 13 4 14 11	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 5 1	5 5 20 30
102+00E 93+50N 102+00E 93+25N 102+00E 93+00N 102+00E 92+75N 102+00E 92+50N	. 1 . 1 . 1 . 1	17 23 17 17 7	N 4 N N N	1 3 1 4	20 60 20 10 20
102+00E 92+25N 102+00E 92+00N	11 11 12 11 13 11	21 24	2 2	3 - 1	30 50

BEATY GEOLOGICAL FILE # 87-5007

SAMPLE#	• •	AG PPM	AS PPM	SB PPM	AU** PPB	HG PPB
102+00E	91+75N	. 1	4	2	1	50
102+00E	91+50N	. 1	5	2	1.	20
102+00E	91+25N	.2	20	2	166	40
102+00E	91+00N	.2	12	2	11	50
102+00E	90+75N	.2	16	2	1	.30
102+00E	90+50N	. 3	14	2	1	40
102+00E	90+25N	.3	5	2	1	1100
102+00E	90+00N	. 1	27	3	11	30
102+00E	89+75N	. 4	6	2	1	400
102+00E	89+50N	. 4	12	2	1	70
	25.25 · 25.25 •	4		2	1	20
102+00E	89+25N	. 1	2	2	1	20 30
102+00E	89+00N	• 1. -	18 7	2	1	80
103+00E	97+00N	• 4	5	2.	1	30
103+00E	96+75N	• 1	5	2	2	10
103+00E	96+50N	. 1	0	æ		10
103+00E	96+25N		51	2	17	30
103+00E	96+00N	. 1	191	2	1	40
103+00E	95+75N	. 1	25	2	1.	40
103+00E	95+50N	. 1	16	2	1	10
103+00E	95+25N	. 1	40	2	1	5
4	MELAAN	. 4	25	2	1	10
103+00E	95+00N	. 1		2	2	10 5
103+50E	96+00N		6	2	1	5
104+00E	96+00N	• 1	8	2	1	10
104+00E	95+75N	. 1	29	2	1	50
104+00E	95+50N	. 1	103	đ	1.	00
104+00E	95+25N	. 1	20	2	1	20
104+00E	94+75N	. 1	187	2	4	80
104+00E	94+50N	. 1	224	2	1	70
	94+00N	. 1	21	2	· 1	20
104+00E	93+75N	. 1	124	2	1	60
104+00E	93+50N	. 1	46	2	1	120
	93+00N	. 1	461	2	-1	130
104+50E		. i	154	2	1	60
123+00E		 . 1	11	2	2	30
	98+75N	• 1	4	2	1	20
a an an Colorada	7007019	# . <u>}</u>	-1	atin	*	atuu ""
123+00E		. 1	5	3	1	180
STD C/A	U-S	7.4	41	17	52	1300

BEATY GEOLOGICAL FILE # 87-5007

SAMPLE#	AG	AS	SB	AU**	HG
	PPM	PPM	PPM	PPB	PPB
123+00E 98+00N	. 1	2	2	1	20
123+00E 97+75N		. 4	2	3	10
123+00E 97+50N	.2	6	2	4	5
123+00E 97+25N	.3	3	2	4	5
123+00E 97+00N	. 1	3	2	5	5
123400E 47400N	# J.	·'	.tim	e	
123+00E 96+75N	.2	4	2	1	5
123+00E 96+50N	.2	7	2	ŝ	5
123+00E 96+25N	. 1	9	2	3	10
123+00E 96+00N	.2	8	2	1	10
	.3	3	2	1	5
123+00E 95+75N		ال	.st.,	4.	.
123+00E 95+50N	. 1	2	2	4	20
123+00E 95+25N	. 1	7	2	1	5
123+00E 95+00N	.2	5	3	1	5
124+00E 99+00N	.2	6	2	Ĵ	80
	. 1	16	2	1	60
124+00E 98+50N	n 1	10	atu.	7.	00
124+00E 98+25N	. 1	10	2	1	40
124+00E 97+50N	.2	10	2	4	5
124+00E 97+25N	* 2	10	2	3	10
124+00E 97+00N	. 1	10	2	1	5
124+00E 96+75N	1	6		1	10
1244000 707700		(_)	tim	7	
124+00E 96+50N	. 3	8	2	4	20
124+00E 96+25N	. 1	5	2	1	10
124+00E 96+00N	. 1	8	2	1	10
124+00E 95+75N	.2	3	2	1	10
124+00E 95+50N	. 3	8	2	1	20
The second s	31 *··· ³	<u></u>	4	+	
124+00E 95+25N	.2	2	2	1	5
124+00E 95+00N	. 1	5	2	2	5
124+50E 96+00N	. 2	53	2	1	70
125+00E 99+00N	. 2	34	2	1	20
125+00E 98+75N	. 1	2	2	1	10
ale ellars foral (1977-147 40000) a fant i fann a f					
125+00E 98+50N	.2	10	2	1	
125+00E 98+25N	. 1	12	2	1.	110
125+00E 98+00N	.2	11	2	2	10
125+00E 97+75N	. 1	8	2	1.	20
125+00E 97+50N	. 1	7	2	1	60
125+00E 97+00N	. 1	4	2	1	10
STD C/AU-S	7.3	39	18	50	1300

SAMPLE#		AG PPM	AS PPM	SB PPM	AU** PPB	HG PPB
125+00E	96+50N	.2		2	1	10
125+00E	96+25N	.2	4	2	1	10
125+00E	96+00N	. i	11	2	1	5
	95+75N	• · ·	2	3	1	5
125+00E						5
125+00E	95+50N	. 1	5	4	1	0
125+00E	95+25N	. 1	5	2	1	10
125+00E	95+00N	. 1	2	3	9	10
125+50E	96+00N	. 1	8	2	1	30
126+00E	99+00N	. 1	15	2	8	20
126+00E	98+75N	. 1	14	2	1	40
all close here " "a" "at" from						
126+00E	98+50N	. 1	6	2	3	[`] 20
126+00E	98+25N	.2	4	2		30
126+00E	98+00N	. <u>1</u>	11	2	1	100
			16	• 2	1	130
126+00E	97+25N	. 1				
126+00E	97+00N	. 1	18	2	1	80
126+00E	96+75N	. 2	21	2	1	620
126+00E	96+50N	. 1	10	41 	1	30
	96+25N			2	1	150
126+00E		. 1	10			
126+00E	96+00N	. 1	10	2	1.	10
126+00E	95+75N	.2	2	2		20
126+00E	95+50N	. 3	7	2	1	40
		. 1	12	2	1.	50
126+00E	95+25N					
126+00E	95+00N	. 1	6	2	1	10
126+50E	96+00N	. 2	12	2	1.	110
127+00E	99+00N	. 1	27	2	2	40
1071005	98+00N	. 1	19	2	1	190
127+00E		.3		2	. 1	2000
127+00E	97+75N		16			
127+00E	97+50N	2	13	2	1.	60
127+00E		. 1	2	2	1	40
127+00E	97+00N	. 1	5	3	1	10
4 200 100 1 20 20 101	()/ ("7EE b)		4 (7)	~	4	20
127+00E		. 1	12	2	1	
127+00E		- n 1		2	7	30
127+00E		. 1	3	2	1	20
127+00E	96+00N	.2		2	1	10
127+00E	95+75N	.2	3	3	191	20
. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ensign a service a	ł.	5	/~	Ą	65 AN
127+00E		. 1	5	2	1	50
STD C/AU	1-8	7.3	42	17	48	1400

SAMPLE#	AG PPM	AS PPM	SB PPM	AU** PPB	HG PPB
127+00E 95+25N	. 1	15	2	1	110
127+00E 95+00N	.2	4	2	1	30
127+50E 96+00N	. 1	3	2	1	20
128+00E 98+50N	.2	Ģ	2	2	60
128+00E 98+25N	. 2	5	2	1	40
an an that is the second and is that is an third to	¥		****		
128+00E 98+00N	. 1.	5	2	1.	10
128+00E 97+75N	.2	4	2	1	10
128+00E 97+50N	. 1	10	3	1	10
128+00E 97+25N	. 2	17	2	1	140
128+00E 96+75N	. 1	6	2	1	40
STD C/AU-S	7.3	39	19	49	1400
128+00E 96+50N	. 2	9	2	1	20
128+00E 96+25N	. 1	5	2	1	20
128+00E 96+00N	. 4	5	2	· 1.	40
128+00E 95+75N	. 1	5	2	2	10
					2011 . 10.
128+00E 95+50N	. 2	12	2	1	20.
128+00E 95+25N	. 1	7	2	1.	20
128+00E 94+75N	. 1	8	2	1.	10
128+00E 94+50N	. 4	2	2	2	30
128+00E 94+25N	. 3	4	2	1.	30
128+00E 94+00N	. 2	10	2	2	20
128+00E 93+00N	• .t 	3	2	1	30
94+00N L97 93+00E	. 1.	13	2	1	20
94+00NL97 93+25E	•	16	2	.7	20
94+00NL97 94+25E	1	10	2	1	30
94+00ML97 94+20C	• J.	1.0		м.	
94+00NL97 94+50E	. 1	2	3	1	30
94+00NL97 94+75E	. 1	6	2	1.	10
94+00NL97 95+00E	. 1	3	2	1	20
94+00NL97 95+25E	. 1	7	2	4	5
94+00NL97 95+50E	.2	6	3	1	5
94+00NL97 95+75E	. 1	10	3	1	5
94+00NL97 96+25E	. 1.	9	2	1	5
94+00NL97 96+50E	. 1	7	2	1	5
94+00NL97 96+75E	. 1	12	2	20	5
94+00NL97 97+00E	. 1	18	2	5	5

DATE RECEIVED AUG 19 1987 ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

DATE REPORT MAILED:

ANALYSIS GEOCHEMICAL L. Cart Frank

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL

> ALL. DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER:

> BEATY GEOLOGICAL PROJECT-160 File # 87-3168 Page 1

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM /
		•••		
~ OL308 0+00E	50	20	96	542
0L305 0+25E	54	24	167	641
OL309 0+50E	46	20	114	365
0L305 0+75E	44	20	112	546
OL30S 1+00E	17	18	96	446
OL308 1+25E	44	13	143	363
OL308 1+50E	19	6	95	232
OL308 1+75E	49	22	173	384
0L30S 2+00E	30	6	134	352
OL308 2+25E	41	16	181	420
∿n' han 'nat' ∖nat' sant atau 'r stan ∖nat han i	r	.1. 4.3	T. (") T.	"T dia 34"
OL308 2+50E	49	22	170	290
OL308 3+00E	35	29	90	460
OL308 3+25E	21	11	97	188
0L30S 3+50E	56	30	157	619
0L305 3+75E	21	16	153	320
0L308 4+00E	38	14	181	408
0L308 4+25E	18	16	91	354
OL308 4+50E	21	7	272	813
OL30S 4+75E	11	6	211	433
0L30S 5+00E	19	22	161	578
an found found for found and a found of the	<i>A</i>	101 411		vite 6 1446
0L30S 5+25E	15	10	120	220
0L308 5+50E	18	14.	72	358
0L30S 5+75E	19	18	76	449
0L308 6+00E	7	2	75	194
0L30S 6+25E	16	23	99	325
"a" tau tan' "a" "an" "and " atao had kan	ak har		· ·	"ear" stere taut
OL308 6+50E	11	3	126	124
OL305 6+75E	24	6	104	451
0L30S 7+00E	18	13	110	343
0L30S 7+25E	11	14	102	355
0L30S 7+50E	15	18		502
OL30S 7+75E	28	25	216	495
0L308 8+00E	45	25	213	613
0L328 0+00E	18	$\mathbb{Z}4$	73	371
0L328 0+25E	50	25	94	983
01325 0+50E	27	24	81	362
0L328 0+75E	46	26	135	159
STD C	62	39	131	181

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
L328 1+00E	27	22	108	263
L328 1+25E	16	17	65	344
L328 1+50E	40	32	93	531
L328 1+75E	29	21	84	384
L328 2+00E	18	13	66	367
L328 2+25E	10	13	4.1	168
L328 2+50E	35	22	130	497
L328 2+75E	37	20	197	237
L328 3+00E	35	19	180	269
L328 3+25E	34	10	105	729
L328 3+50E	33	16	93	788
L328 3+75E	15	16	67	197
L328 4+00E	15	13	65	168
L328 4+25E	23	23	144	394
L328 4+50E	33	19	71	677
L328 4+75E	46	26	158	764
L328 5+00E	25	20	106	444
L328 5+25E	26	22	150	698
L328 5+50E	20	20	84	378
L328 5+75E	26	21	199	501
L328 6+00E	25	19	184	507
L329 6+25E	25	25	165	435
L328 6+50E	23	16	174	488
L329 6+75E	43	19	214	876
L328 7+00E	36	18	160	768
L328 7+25E	15	17	92	354
L328 7+50E	22	21	191	578
L328 7+75E	31	20	249	511
L328 8+00E	31	19	154	331
STD C	60	40	131	181

ACME ANALYTICAL LABORATORIES $2 \frac{1}{2} \frac{1}{2} \frac{1}{987}$ 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 D

DATE REPORT MAILED:

DATE RECEIVED:

AUG 4 1987

(JUG []

GEOCHEMICAL ICP ANALYSIS

47

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PI TO P8-SOIL P9-ROCK

BEATY GEOLOGICAL PROJECT-160 File # 87-2974 Page 1

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
• •				
110N 1+25W	4	21	57	172
110N 0+75W	9	23	98	400
110N 0+50W	11	23	125	399
110N 0+50E	6	15	58	393
110N 0+75E	9	22	99	483
110N 1+00E	16	28	124	759
110N 1+25E	9	24	103	321
-STD-C	57-	40	128	175
✓110N 1+75E	2	10	42	87
109N 1+00W	11	29	113	427
109N 0+75W	16	26	125	393
109N 0+50W	11	23	112	368
109N 0+25W	16	19	119	492
109N 0+00W	23	25	175	395
109N 0+25E	18	25	152	558
109N 0+50E	24	20	116	408
109N 0+75E	10	26	119	307
109N 1+00E	13	27	136	397
109N 1+25E	18	28	205	366
109N 1+50E	18	26	145	345
	4	,, y	4	© A /
109N 1+75E	12	27	131	246
✓109N 2+00E	15	34	135	401
108N 1+25W	39	15	267	859
108N 1+00W	42	24	186	837
108N 0+75W	31	25	283	704
108N 0+50W	14	31	182	382
108N 0+25W	36	36	325	679
108N 0+00E	22	38	166	384
108N 0+25E	30	37	240	782
108N 0+50E	31	30	338	801
108N 0+75E	23	38	277	695
108N 1+00E	26	32	238	843
108N 1+25E	18	20	105	766
108N 1+20E	25	21	194	600
108N 1+75E	18	37	229	565
TOOM TANDE	тO	·	stin stin 7	And And Sol
108N 2+00E	17	41	244	488
106N 2+00W	31	30	199	1098

160

BEATY GEOLOGICAL PROJECT-160

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA
106N 1+75W	32	27	186	1020
106N 1+50W	30	26	191	822
106N 1+25W	28	25	187	907
106N 1+00W	22	13	113	1032
106N 0+75W	30	23	193	998
T CONTRACTOR 1	·* ·*	daar "aas"	** * **	
106N 0+50W	31	30	211	833
106N 0+25W	31	29	162	962
106N 0+00W	24	20	191	776
✓ 106N 1+50E	23	31	252	806
105N 2+00W	23	17	200	1186
	-Face " - +++			
105N 1+75W	27	25	175	507
105N 1+50W	24	16	128	798
105N 1+25W	23	22	145	530
105N 1+00W	24	13	173	413
105N 0+75W	21	11	188	703
105N 0+50W	14	17	104	337
105N 0+25W	17	22	153	356
✓105N 0+00W	24	26	156	461
104N 2+00W	14	24	132	719
104N 1+75W	8	17	93	226
104N 1+50W	23	26	136	559
104N 1+25W	11	25	87	771
104N 1+00W	24	28	147	975
104N 0+75W	12	28	107	716
104N 0+50W	18	23	152	1320
104N 0+25W	30	28	167	817
✓104N 0+00₩	25	28	-186	822
103N 2+00W	18	23	160	1070
103N 1+75W	31	25	135	1865
103N 1+50W	32	23	273	1032
103N 1+25W	19	21	175	880
103N 1+00W	19	11	282	829
103N 0+75W	20	15	183	723
103N 0+50W	30	20	140	947
103N 0+25W	33	29	318	980
				سور مر و
✓103N_0+00W	23	22	161	1108
STD C	59	39	133	182

BEATY GEOLOGICAL PROJECT-160 FILE # 87-2974 Page 3

SAMPLE#	CU	PB	ZN	BA
Add Carl and the second	PPM	PPM	PPM	PPM
*	F" F" 1'1	FFU	1.1.11	1 1 1 1
a seconda a anti-a seconda a		<i>~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mm7
102N 2+00W	36	27	300	993
102N 1+75W	30	19	170	1613
102N 1+50W	30	22	168	1383
102N 1+25W	43	44	403	1104
102N 1+00W	23	36	230	1055
102N 0+75W	25	20	221	1266
102N 0+50W	21	23	173	1629
102N 0+25W	35	37	297	1643
		27	174	1500
✓102N 0+00W	30			
101N 2+00W	23	23	222	964
101N 1+75W	26	22	193	1431
STD C	-58		-134-	175
101N 1+50W	16	18	188	1120
101N 1+25W	29	26	259	1067
101N 1+00W	23	29	332	1161
101N 0+75W	29	26	166	1772
101N 0+50W	12	15	106	231
101N 0+25W	14	-30	143	420
		22	335	779
✓101N 0+00W	33			
100N 2+00W	44	18	303	1310
				. •
100N 1+75W	23	22	89 -	
100N 1+50W	29	28	306	1119
100N 1+25W	27	3	210	1331
100N 1+00W	18	6	259	1256
~ 100N 0+00W	24	30	258	776
98N 2+00W	20	21	118	1148
98N 1+75W	20	26	136	1000
98N 1+50W	30	30	196	1230
98N 1+25W	23	31	138	2111
			158	628
98N 1+00W	11	24	100	020
1996 1996 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		it. 2?	414 AT E	4
98N 0+75W	20	32	225	1031
98N 0+50W	32	35	223	1703
98N 0+25W	23	23	147	1376
✓98N 0+00W	29	24	101	1739
96N 2+00W	6	12	75	334
96N 1+75W	17	17	122	191
96N 1+50W	18	10	158	496

Pa

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
96N 1+25W	8	10	62	89
96N 1+00W	1 9	14	73	177
96N 0+75W	16	20	113	342
96N 0+50W	1 6	9	51	178
96N 0+25W	1 5	10	40	163
54N 0+00W	I 15	11	111	170
94N 2+004	•	25	181	1040
94N 1+750	1 23	25	174	1039
94N 1+504	17	11	198	753
94N 1+250	1 22	21	516	708
94N 1+00W	J 29	15	361	598
94N 0+750	4 30	17	303	476
94N 0+50W	1 12	12	83	374
94N 0+250	1 24	18	214	592
~94N 0+00W	1 30	28	121	799
80N 0+008		24	85	330
80N 0+258		21	110	267
80N 0+50B	E 69	25	107	398
80N 0+758	: 44	20	158	343
80N 1+00E	E 38	17	132	289
80N 1+25E	38	15	131	277
80N 1+50B	E 45	25	127	210
80N 1+75B		102	289	423
80N 2+00B	: 35	29	204	450
80N 2+25E	29	15	122	288
80N 2+508	5 41	28	122	467.
80N 2+75B	50	38	197	847
80N 3+00B		105	545	1182
80N 3+25E	E 57	30	284	1208
80N 3+508	: 58	21	351	701
80N 3+758		24	175	796
80N 4+008		28	194	684
80N 4+258		43	334	1560
80N 4+50B	E 30	17	111	1235
80N 4+75E	e 43	29	309	1366
80N 5+008		43	550	1358
STD C	62	38	133	186

BEATY GEOLOGICAL PROJECT-160 F

FILE # 87-2974

SAMF	PLE#	CU PPM	PB PPM	ZN PPM	BA PPM
80N	5+25E	39	76	984	1069
80N	5+50E	67	73	2101	1206
			23	801	1390
BON	5+75E	43			
80N	6+00E	36	18	264	972
80N	6+25E	53	97	1644	1233
80N	6+50E	42	54	1138	923
80N	6+75E	29	21	247	684
✓ 80N	7+00E	30	22	96	889
79N	0+00E	43	22	107	278
79N	0+25E	44	24	98	285
79N	0+50E	38	22	81	284
79N	0+30E 0+75E	43	22	101	317
79N	1+00E	46	20	113	350
79N	1+25E	53	24	134	250
79N	1+50E	48	19	133	394
79N	1+75E	43	22	109	335
79N	2+00E	52	27	135	360
79N	2+25E	38	22	108	317
79N	2+50E	44	24	163	297
79N	2+75E	41	24	162	364
79N	3+00E	48	24	172	337
79N	3+25E	45	39	177	755
				167	475
79N	3+50E	20	27		
79N	3+75E	46	20	114	618
79N	4+00E	34	36	156	683
79N	4+25E	50	50	301	1047
79N	4+50E	52	67	300	1102
79N	4+75E	32	45	147	552
79N		20	25	111	499
79N	5+25E	36	27	211	1105
79N	5+50E	56	31	209	653
	5+75E)	28	25	214	1074
79N		42	79	415	1216
\ 1	10				
79N	6+25E	56	71	348	961
[79N	6+50E	44	19	252	1046
79N	6+75E	29	49	738	798
STD	C	58	42	132	181
	•				

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
				4 (7) [7] 77
∽79N 7+00E	45	26	257	1857
✓ 78N 0+00E	58	26	137	373
34S 0+00E	17	20	64	269
349 O+25E	34	23	113	310
349 O+50E	25	25	108	323
34S 0+75E	13	20	60	301
34S 1+00E	14	18	68	307
349 1+25E	19	21	89	411
34S 1+50E	17	22	70	371
34S 1+75E	30	22	116	510
348 2+00E	23	10	85	688
348 2+25E	20	24	84	539
34S 2+50E	17	18	91	347
34S 2+75E	20	24	97	372
348 3+00E	24	25	89	534
349 3+25E	12	14	72	315
348 3+50E	18	26	93	428
348 3+75E	33	29	156	578
34S 4+00E	18	22	139	474
348 4+25E	23	24	141	460
34S 4+50E	20	21	159	441
34S 4+75E	23	31	173	449
348 5+00E	32	28	182	504
34S 5+25E	17	20	107	322
345 5+50E	11	16	108	217
34S 5+75E	10	16	60	332
345 6+00E	10	19	69	339
348 6+25E	20	24	86	218
348 6+50E	17	25	134	427
345 6+75E	13	23	95	354
345 7+00E	37	14	94	89i
348 7+25E	25	15	97	541
34S 7+50E	26		229	532
34S 7+75E	17	8	63	
345 8+00E	11	2	143	
CAY88 4+00E	17	29	219	1063
STD C	61	42	132	180

SAMPLE	E#	CU	PB	ZN	BA
		PPM	РРМ	PPM	PPM
CAY88	4+25E	29	59	681	1114
CAY88	4+50E	18	160	802	1064
CAY88	4+75E	35	796	1320	1689
CAY88	5+00E	27	405	1136	1582
CAY88	5+25E	37	130	966	1209
CAY88	5+50E	68	131	1661	1914
V CAY88	5+75E	43	126	751	1729
CAY90	4+00E	37	82	360	2227
CAY90	4+25E	12	71	341	1301
CAY90	4+50E	10	22	134	549
CAY90	4+75E	25	31	196	1041
CAY90	5+00E	20	25	285	678
CAY90	5+25E	27	148	727	2080
CAY90	5+50E	30	110	598	1473
- CAY90	5+75E	21	62	460	873
					· .,
STD C		59	41	129	178

- 54 -

BEATY GEOLOGICAL PROJECT-160 FILE # 87-2974

SAMPLE#	CU	PB	ZN	BA
	PPM	PPM	PPM	PPM
110N 1+00W	9	18	60	326
110N 0+25W	10	21	135	301
110N 0+00W	14	21	86	434
110N 0+25E	14	29	116	631
110N 1+50E	9	26	82	355
<pre>/110N 2+00E /109N 1+25W 106N 0+25E 106N 0+50E 106N 0+75E</pre>	5	17	58	332
	19	26	130	414
	27	15	196	896
	26	24	197	1037
	27	30	217	1170
106N 1+00E	30	25	228	888
106N 1+25E	37	39	230	1169
STD C	61	42	133	183

ACME ANALYTICAL LABORATORIES DATE RECEIVED: JULY 28 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: AUG.5.87.

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS <u>PARTIAL</u> FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL

ASSAYER: DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL PROJECT-160 File # 87-2773 Page 1

SAMPLE#	CU	PB	ZN	BA
	PPM	PPM	PPM	PPM
195 1+50W	56	36	190	1173
195 1+25W	33	26	138	637
195 1+00W	24	32	168	556
195 0+75W	15	24	136	791
195 0+50W	21	27	128	516
 ✓ 195 0+25W ✓ 20+25S 0+25W ◆ 245 0+00E 245 0+25E 245 0+50E 	40	27	173	881
	27	25	262	520
	37	27	157	373
	19	13	116	243
	16	18	85	340
24S 0+75E	15	12	100	340
24S 1+00E	21	15	90	389
24S 1+25E	38	24	126	482
24S 1+50E	22	18	119	349
24S 1+75E	21	31	133	455
24S 2+00E	19	21	110	329
24S 2+25E	32	23	125	536
24S 2+50E	34	27	145	519
24S 2+75E	77	31	301	916
✓24S 3+00E	22	21	162	564
258 0+25E	16	20	119	242
258 0+50E	24	25	107	347
258 0+75E	35	17	186	464
258 1+00E	22	19	134	394
258 1+25E	85	35	128	957
25S 1+50E	15	23	106	314
25S 1+75E	33	17	166	419
25S 2+00E	20	4	131	286
25S 2+25E	20	21	130	455
25S 2+50E	20	22	125	349
255 2+75E	16	18	110	289
255 3+00E	20	20	134	394
365 0+00E	19	24	80	397
365 0+25E	20	25	95	385
365 0+50E	20	21	66	453
368 0+75E	23	12	81	378
STD C	60	42	132	180

AUG - 7 1987

Corry 7 DK1

- 55 -

SAMPLE		CU	PB	ZN	BA
	í	PPM	PPM	PPM	PPM
365 1+0	OOE	16	14	59	244
	25E	26	24	110	302
	50E	24	23	129	295
	75E	22	20	144	483
	DOE	17	19	118	498
				a 11 11%	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	25E	27	23	149	500
	50E	44	10	180	1067
	75E	14	18	113	346
	DOE	25	16	226	604
365 3+3	25E	20	23	127	479
368 3+	50E	17	19	105	463
368 3+3	75E	16	21	97	511
365 4+0	DOE	30	20	244	566
368 4+:	25E	29	18	158	586
365 4+	50E	32	20	196	666
365 4+1	75E	10	2	128	519
	 20E	19	11	109	654
	25E	45	23	237	872
	50E	17	24	163	530
	75E	30	18	241	795
	/ w.H		1.0	2.471	770
365 6+0	OOE	15	17	135	401
368 6+3	25E	12	7	164	441
368 6+5	50E	17	21	152	582
368 6+3	75E	12	4	88	312
	DOE	32	24	164	641
365 7+2	25E	12	4	163	252
	50E	17	4	90	485
			·		
	75E Doe	22 20	•	393	316
	25E		8 2	168	317
чоз от.	212.	20	. .	169	331
	50E	13	16	194	464
	75E	57	19	208	685
	DOE	42	15	147	870
	25E	11	6	105	405
369 9+5	50E	18	6	128	412
365 9+7	75E	16	4	239	496
STD C		61	39	132	176
	,				

SA	MPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
36	S 10+00E	22	9	121	443
38	IS A'E	15	3	157	520
38	S 2+00W	56	30	309	658
38	IS 1+75W	27	23	82	360
38	S 1+50W	37	20	107	506
38		18	21	55	321
38		32	26	84	517
38		17	16	48	286
38		24	18	93	344
38	S 0+25W	37	24	103	567
38		12	6	80	561
38		14	7	134	485
38		23	10	147	592
38		37	17	189	615
38	S 1+00E	29	14	147	734
38	S 1+25E	13	18	78	392
38	S 1+50E	11	21	85	488
38	S 1+75E	10	25	80	392
38	S 2+00E	12	20	132	508
38	S 2+25E	8	21	56	215
38		8	18	86	301
38		24	23	97	589
38		7	22	131	354
38	S 3+25E	18	19	98	521
38	S 3+50E	10	23	88	388
38		12	16	62	160
38		8	24	64	461
38		17	21	187	652
38		9	18	145	371
38	S 4+75E	17	25	232	546
	3 5+00E	10	22	261	427
	3 5+25E	26	21	337	520
	5 5+50E	25	28	169	502
	3 5+75E	24	23	152	554
38 <u>8</u>	3 6+00E	24	10	79	1258
	3 6+75E	21	7	192	484
STI) C	59	42	132	180

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
385 7+00E	30	25	248	413
38S 7+25E	22	20	129	359
38S 7+50E	19	11	178	429
38S 7+75E	14	34	169	414
385 8+00E	30	27	267	555
385 8+25E	22		133	594
38S 8+50E	20	21	174	499
38S 8+75E	9	21	154	308
385 9+00E	16	20	192	420
385 9+25E	27	19	219	479
385 9+50E	22	22	249	453
385 9+75E	9	29	207	344
✓385 10+00E	22	30	220	591
40S 2+00W	22	20	85	475
40S 1+75W	20	22	91	313
40S 1+50W	20	27	66	267
40S 1+25W	15	21	52	335
40S 1+00W	25	17	87	488
40S 0+75W	28	19	154	433
40S 0+50W	25	28	95	308
408 0+25W	17	24	56	221
40S 0+00W	12	15	100	379
40S 0+25E	14	23	90	364
40S 0+50E	22	24	93	231
405 O+75E	12	12	83	208
405 1+00E	9	1.7	71	239
40S 1+50E	13	28	90	466
15 RERUN*	19	26	88	306
40S 1+75E	25	18	228	523
40S 2+00E	16	22	168	432
405 2+25E	22	39	109	364
40S 2+50E	12	25	113	451
40S 2+75E	12	29	104	382
40S 3+00E	9	26	95	426
405 3+25E	12	12	152	534
40S 3+50E	9	21	168	261
STD C	63	38	134	183

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
40S 4+75E	19	8	50	586
40S 5+00E	16	29	118	260
40S 5+25E	10	14	122	279
40S 5+50E	10	19	257	531
40S 5+75E	7	4	122	274
405 6+00E	10	24	152	372
40S 6+25E	15	32	119	249
40S 6+50E	31	11	182	569
40S 6+75E	7	10	99	349
40S 7+00E	13	25	113	280
40S 7+25E	8	22	97	345
40S 7+75E	14	17	146	369
40S 8+00E	19	14	150	464
408 8+25E	25	16	172	630
408 8+50E		17	152	361
40S 8+75E	29	15	122	1416
40S 9+00E	18	16	68	522
40S 9+25E	9	18	81	259
40S 9+50E	31	23	199	789
40S 9+75E	24	24	191	775
✓ 405 10+00E	9	16	199	489
STD C	60	35	133	180

60

ACME ANALYTICAL LABORATORIES DATE RECEIVED: JUL 25 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 Ung (1/87 DATA LINE 251-1011 PHONE 253-3158

DATE REPORT MAILED:

GEOCHEMICAL TCF ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEG.C FOR DNE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR MG BA_TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: P1-3 SOIL P4-ROCK

> . A AUM. DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER:

BEATY GEOLOGICAL PROJECT-160 GAGE File # 87-2709 Page 1

SAMPLE#	CU	PB	ZN	BA
	PPM	PPM	PPM	PPM
0L18S 1+50W	33	29	104	439
OL18S 1+25W	29	38	126	771
0L18S 1+00W	40	33	91	640
0L185 0+75W	27	33	101	471
0L185 0+50W	20	38	133	456
	dan 701		1.00	-ruu
0L18S 0+25W	37	29	185	839
0L185 0+00	27	21	138	
OL185 0+00 OL185 0+25E	42			642
		34	221	773
OL185 0+50E	32	83	185	1411
0L18S 0+75E	38	29	123	1429
	<i>a</i>		.1 .005.000	
0L185 1+00E	40	47	185	1055
OL18S 1+25E	. 47	41	180	916
OL18S 1+50E	39	30	181	912
✓OL18S 1+75E	34	39	206	765
0L195 0+00E	30	- 30	138	567
0L19S 0+25E	37	37	176	665
0L19S 0+50E	52	43	140	901
0L19S 0+75E	27	24	112	659
0L195 1+00E	25	32	185	867
OL198 1+25E	45	23	141	1307
OL195 1+50E	36	50	198	1315
✓OL19S 1+75E	42	37	234	1231
0L205 3+50W	30	22	116	372
0L205 3+25W	40	22	141	433
0L20S 3+00W	21	24	124	250
	<i>i J</i> .	T	1 2. 4	200
0L20S 2+75W	36	21	156	302
0L205 2+50W	18	25	128	290
0L205 2+25W	21	17	128	
0L203 2+23W 0L205 2+00W				312
	21	23	199	424
0L20S 1+75W	13	74	172	562
0L20S 1+50W	13	30	179	636
OL20S 1+25W	27	44	160	559
0L20S 1+00W	44	27	184	838
0L20S 0+75W	22	29	161	539
OL205 0+50W	18	22	154	478
0L20S 0+25W	18	80	133	377
STD C	61	41	138	182

160

SAMPLE#	CU PPM	PB PPM	ZN PPM	BA PPM
0L205 0+00E	26	30	155	533
	39	23	540	650
0L20S 0+25E				
0L208 0+50E	22	20	231	449
0L20S 0+75E	43	14	516	603
0L20S 1+00E	29	14	105	357
OL208 1+25E	24	13	127	318
∕0L205 1+50E	37	20	505	456
0L235 3+00W	36	11	186	493
OL238 2+75W	28	14	85	509
0L238 2+50W	34	12	153	357
0L235 2+25W	24	15	144	303
0L235 2+00W	46	16	220	482
0L23S 1+75W	11	12	130	277
0L239 1+50W	11	14	113	230
0L235 1+25W	18	14	113	263
"na" Saara addan "nas" "nas " in " indan "nas" ¥ ¥	<i></i>	± (a. a	
0L23S 1+00W	17	7	86	194
0L238 0+75W	14	18	103	176
0L238 0+50W	24	11	87	251
0L235 0+25W	7	12	56	156
0L23S 0+00	17	15	80	202
"Au" Bana alkan Tani" Band - "An" - "An" - "An"				
0L235 0+25E	16	13	78	288
0L239 0+50E	19	6	98	287
0L238 0+75E	14	15	82	207
0L239 1+00E	14	14	86	182
0L235 1+25E	21	17	94	306
				,
OL235 1+50E	43	9	89	754
OL238 1+75E	27	15	148	241
0L238 2+00E	25	13	98	355
0L238 2+25E	38	12	116	402
✓OL239 2+50E	16	16	111	464
CAY L-84 3+00E	23	35	477	925
CAY L-84 3+25E	23	55		835
CAY L-84 3+50E	24	44	459	841
CAY L-84 3+75E	18	19	463	476
CAY L-84 4+00E	12	31	361	633
나님! 느끼여서 새끼나??!!	di din	L (->01	0.2.2
CAY L-84 4+25E	14	55	359	647
STD -E	60	39	134	183

SAME	N F#		CU	PB	ZN	BA	
winn	L., I., I		PPM	PPM	PPM	PPM	
CAY	L-84	4+50E	19	241	653	715	
CAY	L-84	4+75E	44	296	2940	2101	
CAY	L-84	5+00E	33	75	769	851	
CAY	L-84	5+25E	18	48	473	627	
CAY	L-84	5+50E	17	27	385	948	
CAY	L-84	5+75E	41	69	1056	1203	
CAY	L-84	6+00E	47	98	1198	1452	
CAY	L-84	6+25E	35	149	1672	1790	
CAY	L-84	6+50E	15	15	106	456	
CAY	L-84	6+75E	28	23	95	922	
CAY	L-84	7+00E	34	25	111	332	
CAY	L-86	3+00E	27	22	154	298	
CAY	L-86	3+25E	25	17	146	406	
CAY	L-86	3+50E	24	44	387	428	
CAY	L-86	3+75E	30	53	457	678	
CAY	L-86	4+00E	29	82	724	1187	
CAY	L-86	4+25E	48	379	1533	1690	
CAY	L-86	4+50E	34	240	653	1522	
CAY	L-86	4+75E	29	131	591	925	
CAY	L-86	5+00E	61	229	934	2382	
₩.e r ¶ T	1	say y sarsartan	7.3 A	stin stin 1	/T	din "m" huf din	

59

133

40

190.

STD C

ACME ANALYTICAL LABORATORIES LTD. -852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATA LINE 251-1011 PHONE 253-3158

DATE REPORT MAILED:

DATE RECEIVED:

CAY

AUG 8 1986

SOIL

lug 19/86

ANALYSIS GEOCHEMICAL ICP

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOILS -BO MESH GAT HF+AR AND ANALYSIS BY AA. GET HF+AR AND ANALYSIS BY AA.

Many DEAN TOYE. CERTIFIED B.C. ASSAYER. ASSAYER:

/ BEATY GEOLOGIC	AL	PROJEC	T-160	FILE #	\$ 86-1923	5
SAMPLE#	Pb PPM	Zn PPM	Cd PPM	Ga PPM	Ge FFM	
10+00N 1+00W 10+00N 0+50W 10+00N 0+00E 10+00N 0+50E 10+00N 1+00E	29 25 24 19 16	206 249 258 209 114	1 1 2 1	15 14 15 9 9	10 12 19 15 18	
10+00N 1+50E 10+00N 2+00E 10+00N 2+50E 10+00N 3+00E 10+00N 3+50E	23 19 19 20 18	148 116 117 174 177	1 2 1 1 1	4 16 18 11 12	16 19 22 21 20	
10+00N 4+00E 10+00N 4+50E 10+00N 5+00E 5+00N 15+00W 5+00N 14+75W	17 16 20 44 21	263 154 215 345 209	M M M M M	13 8 10 9 7	18 20 20 21 14	
5+00N 14+50W 5+00N 14+25W 5+00N 14+00W 5+00N 13+75W 5+00N 13+50W	22 27 25 31 32	210 206 413 365 257	34758	12 11 12 18 15	11 16 16 7 12	
5+00N 13+25W 5+00N 13+00W 5+00N 12+75W 5+00N 12+50W 5+00N 12+25W	26 29 24 21 26	228 205 192 359 332	1 1 3 3 3	11 12 13 9 12	10 12 16 12 14	
5+00N 12+00W 5+00N 11+75W 5+00N 11+50W 5+00N 11+25W 5+00N 11+00W	24 42 28 36 47	353 345 638 356 762	NNNND	12 15 18 12 10	15 18 8 18 17	
5+00N 10+75W 5+00N 10+50W 5+00N 10+25W 5+00N 10+00W 5+00N 9+75W	31 30 40 65 77	886 599 374 357 556	8 M M 8	13 12 11 18 12	15 13 15 12 14	
5+00N 9+50W STD C	54 40	282 138	1 19	10	12	

FAGE 1

AUG 19 1900

- 63 -

PROJECT-160 FILE # 86-1923

PAGE 2

SAMPLE	#	Pb PPM	Zn PPM	Cd PPM	Ga PPM	Ge FFM
5+00N	9+25W	147	661	4	16	13
	9+00W	66	975	4	13	16
	8+75W	39	894	4	17	13
	8+50W	33	712	2	13	$2\ddot{0}$
	8+25W	35	394	2	19	17
5+00N	0TLUW	ل. ت.	.07m	<u>A</u> ur	. .	A. 1
5+00N	8+00W	74	190	1	. 6	16
5+00N	7+75W	58	374	2	12	14
5+00N	7+50W	86	395	2	14	20
5+00N	7+00W	66	335	2	15	12
	6+50W	38	408	1	10	16
5+00N	6+00W	37	358	1	12	15
,	5+50W	102	620	2	14	17
	5+00W	80	1232	3	13	18
	4+50W	38	474	3	12	16
				5		15
5+00N	4+00W	145	3947		16	ت ۱ ت
5+00N	3+50W	83	1028	5	17	16
5+00N	3+00W	24	200	2	14	17
5+00N	2+50W	41	2394	4	12	11
5+00N	2+000	196	1429	9	16	12
5+00N	1+50W	22	247	1	17	18
5+00N	1+00W	10	67	1	12	12
				1	15	13
5+00N	0+50W	18	68			
5+00N	0+00E	20	154	1	19	14
5+00N	0+50E	23	159	1	16	17
5+00N	1+00E	56	691	2	12	19
5+00N	1+50E	20	349	2	11	10
5+00N	2+00E	18	184	3	15	10
5+00N	2+50E	16	265	5	14	12
5+00N	3+00E	13	82	2	12	9
5+00N		21	165	2	16	14
5+00N	4+00F	13	78	1	15	17
5+00N		15	182	1	14	14
5+00N		17	149	2	16	10
					21	12
	14+00W	22	146	2		
0+00N	11+00W	26	162	1	13	14
0+00N	10+50W	19	240	2	16	12
STD C		42	144	19		

PROJECT - 160 FILE # 86-1923

PAGE

3

SAMPLE#	Pb	Zn	Cd	Ga	Ge
	PPM	PPM	FFM	PPM	FFM
0+00N 9+50W 0+00N 9+25W 0+00N 9+00W 0+00N 8+75W 0+00N 8+50W	75 39 61 85 83	248 162 223 256 439	1 1 1 2	11 12 10 8 14	18 22 16 23 26
0+00N 8+25W	110	924	5	13	21
0+00N 8+00W	129	589	4	17	24
0+00N 7+75W	146	594	5	15	22
0+00N 7+50W	180	613	5	13	23
0+00N 7+25W	30	701	5	16	20
0+00N 7+00W	120	597	4	13	19
0+00N 6+50W	66	182	1	6	20
0+00N 6+00W	73	592	4	12	17
0+00N 5+50W	8981	4364	10	11	28
0+00N 5+00W	168	389	1	10	20
0+00N 4+00W 0+00N 3+00W 0+00N 2+00W 0+00N 1+50W 0+00N 1+00W	13 29 25 16 31	199 238 140 84 163	2 1 1 1	11 15 18 14 13	20 22 28 21 25
0+00N 0+50W 0+00N 0+00W 0+00S 0+00E 0+00S 0+50E 0+00S 1+00E	35 18 15 21 11	245 75 58 151 83	1 1 1 1	10 12 12 17 21	27 25 22 23 24
0+00S 1+50E	14	133	1	16	24
0+00S 2+00E	25	194	1	14	25
0+00S 2+50E	96	1002	2	8	29
0+00S 5+00E	12	68	1	14	27
0+00S 5+50E	14	101	1	11	28
0+00S 6+00E 0+00S 6+50E 0+00S 7+00E 5+00S 14+00W 5+00S 13+00W	15 13 12 9	80 94 70 88 121	1 1 4 2	6 9 10 3 4	32 31 25 22 26
5+00S 12+00W	15	141	3	10	28
STD C	44	143	20	-	

BEATY GEOLOGICAL	PI	ROJECT	- 160	FILE	# 86-1923
SAMF'LE#	Pb	Zn	Cd	Ga	Ge
	PPM	PPM	PPM	PPM	PFM
5+00S 11+00W 5+00S 10+00W 5+00S 9+00W 5+00S 8+00W 5+00S 7+00W	19 19 17 35 18	139 108 177 169 128	3 2 1 2	11 10 14 12 18	18 20 23 22 19
5+00S 6+50W	69	275	5	11	17
5+00S 6+00W	30	434	2	12	18
5+00S 5+75W	22	319	4	10	20
5+00S 5+50W	61	999	7	11	27
5+00S 5+25W	155	1112	3	14	24
5+00S 5+00W 5+00S 4+75W 5+00S 4+50W 5+00S 4+25W 5+00S 4+00W	33 58 30 61 32	701 896 182 285 601	4 2 1 3	17 16 14 15 17	19 21 16 20 22
5+00S 3+75W	89	493	1	15	20
5+00S 3+50W	21	203	1	14	21
5+00S 3+25W	44	265	3	15	19
5+00S 2+75W	31	102	1	11	17
5+00S 2+25W	34	193	2	15	14
10+00S 15+00W 10+00S 14+50W 10+00S 14+00W 10+00S 13+50W 10+00S 13+00W	12 20 17 18 21	103 134 144 157 147	1 1 1 1	4 3 11 5 11	18 17 14 10 12
10+00S 12+50W	16	105	2	16	14
10+00S 12+00W	19	194	2	12	19
10+00S 11+50W	19	115	1	11	14
10+00S 11+00W	19	131	2	15	16
10+00S 10+50W	20	166	2	13	18
10+00S 10+00W 10+00S 9+50W 10+00S 9+00W 10+00S 8+50W 10+00S 8+00W	20 16 19 15 15	92 149 115 129 131	2 2 1 1	15 12 4 10 14	18 19 20 19 16
10+005 7+50W	14	140	1	13	15
STD C	42	141	20	-	

PAGE 4

BEATY GEOLOGICAL	
------------------	--

PROJECT - 160 FILE # 86-1923

PAGE 5

SAMPLE#	:	FЪ	Zn	Cd	Ga	Ge
		PPM	PPM	PPM	PPM	PPM
					••••	
10+005	7+00W	20	119	1	12	24
10+005	6+50W	18	158	ż	15	18
10+005	6+00W	20	102	1	17	16
	5+50W	16	117	1	15	18
10+005		17	140	1	14	16
10+005	5+00W	17	140	L	T ++	10
10+005	4+50W	18	131	1	16	22
10+005	4+00W	95	1058	1	15	26
10+005	3+50W	37	448	1	13	21
10+005	3+00W	28	550	3	14	18
10+005	2+50W	49	339	2	11	16
10+005	2+00W	147	1265	4	12	20
	1+50W	50	799	2	14	15
10+005					12	15 31
10+00S	1+00W	52	3466	6		
10+005	0+50W	16	92	1	14	20
10+005	0+00E	17	62	1	13	19
10+005	0+50E	16	73	1	13	22
10+005	1+00E	19	111	1	16	18
10+005	1+50E	14	96	1	12	19
10+005	2+00E	17	258	3	17	20
10+005	2+50E	21	197	1	14	20
104005	27005	بله شند	T 3.1	ئد .	9 T	aline 'w'
20+00S	9+50W	18	94	1	20	25
20+005	9+00W	19	111	1	24	26
20+005	8+50W	32	96	1	22	28
20+005	8+00W	18	114	1	23	22
20+005	7+50W	20	118	1	19	18
20.000	71004	- "a"		-		
20+005	7+00W	23	138	1	21	25
20+005	6+50W	22	124	1	20	26
20+005	6+00W	19	117	1	17	22
20+005	5+50W	21	130	1	20	17
20+005		20	140	1	14	23,
.	a. (*******	~ 4	4 77	-	20	21
20+00S		21	128	1		
20+005		20	132	1	21	24
20+00S		17	143	1	21	21
20+00S	3+00W	22	143	1	20	22
20+005	2+50W	24	185	3	18	24
20+005	2+00W	23	170	1	17	19
STD C	and the Set Vit	41	140	19	, ata . F	
່ວເມີພ		-T L	T	1.7		

BEATY GEOLOGICAL PROJECT 160 FILE# 86-1923 PAGE	,
SAMPLE Pb Zn Cd Ga Ge	\checkmark
DDW DDW DDW DDW DDW	
20+008 1+50W 29 407 3 20 20	
20+005 1+00W 40 165 1 18 22	
20+00S 0+50W 29 185 2 18 25	
20+00S 0+00E 36 153 2 14 22	
20+005 0+50E 18 174 2 16 23	
20+005 1+00E 19 139 1 23 25	
20+008 1+50E 16 414 3 21 22	
20+00S 2+00E 17 149 1 15 24	
20+00S 2+50E 14 92 1 16 26	
20+008 3+00E 11 72 1 17 24	
20+008 3+50E 9 154 1 8 22	
20+00S 4+00E 15 88 1 14 20	
20+00S 4+50E 17 154 2 13 18	
20+00S 5+00E 20 102 2 14 16	

`

,

..

BEATY GEOLOGICAL LTD.

APPENDIX IIB ANALYTICAL RESULTS (ASSAY RESULTS)

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: OCT 19 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: Nov. 6/87.

ASSAY CERTIFICATE

- SANPLE TYPE: Core

ASSAYER:

1. DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL PROJECT-160 File # 87-5108

Page 1

SAMPLE#	PB	ZN	GA	GE
	%	Z	%	%
E 65001	.28	2.46	.001	.008
E 65002	.07	.36	.001	.001
E 65003	.33	.45	.001	.002
E 65004	.30	.81	.001	.002
E 65005	.27	1.34	.001	.002
E 65006	.07	1.63	.002	.003
E 65007	.13	1.23	.001	.003
E 65008	.10	.18	.001	.001
E 65009	.02	.42	.001	.002
E 65010	.02	.32	.001	.001
E 65011	.03	1.27	.001	.002
E 65012	.04	.43	.002	.001
E 65013	.14	.43	.001	.001
E 65014	.04	.08	.001	.001
E 65015	.08	.20	.002	.001
E 65016	.01	3.05	.002	.003
E 65017	.05	1.13	.002	.002
E 65018	.37	.82	.001	.001
E 65019	.06	.06	.001	.001
E 65020	.01	.08	.001	.001
E 65021	.04	.63	.001	.001
E 65022	.02	.98	.001	.003
E 65023	.12	4.31	.004	.025
E 65024	.02	.11	.001	.001
E 65025	.26	.03	.001	.001
E 65026	.04	.01	.001	.001
E 65027	.02	.04	.001	.001
E 65028	.01	.01	.001	.001
E 65029	.17	.08	.001	.001
E 65030	.01	.03	.001	.001
E 65033 E 65034 E 65035 E 65036 E 65037	.01 .29 .46 .52 .20	3.56 .81		
E 65038	.09	.77	.001	.001

- 69 -

BEATY GEOLOGICAL PROJECT-160 FILE # 87-5108

Page 2

SAMPLE#	FB	ZN	GA	GE
	%	%	%	%
E 65039 E 65040 E 65041 E 65042 E 65043	.09 .08 .07 .05	1.50 .32 .05 .55 3.84	.001 .001 .001 .002 .001	.003 .001 .001 .001 .004
E 65044	.07	1.64	.001	.001
E 65045	.02	6.95	.004	.038
E 65046	.34	.24	.001	.001
E 65047	.01	2.73	.001	.006
E 65048	.05	2.33	.001	.002
E 65049 E 65050	.30 .46	1.24	.001	.006

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: OCT 23 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

- 71 -

ASSAY CERTIFICATE

- SAMPLE TYPE: Core

ASSAYER: D. Jeyn. DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL PROJECT-160 File # 87-5144

SAMPLE#	PB %	ZN %	GA %	GE %
E 65051	.13	.57	.001	.003
E 65052	6.28	7.52	.004	.007
E 65053	.14	1.72	.001	.007
E 65054	.20	.44	.001	.001
E 65055	.14	.69	.001	.002
E 65056	.17	1.35	.001	.003
E 65057	.11	1.33	.001	.002
E 65058	.10	1.75	.001	.003
E 65059	.16	.41	.001	.001
E 65060	. 11	1.33	.001	.002
E 65061	.22	1.35	.001	.002
E 65062	.03	1.08	.001	.002
E 65063	.01	1.42	.001	.001
E 65064	.01	1.02	.001	.001
E 65065	.01	1.08	.001	.001
E 65066	.02	.31	.002	.001
E 65067	.01	.96	.001	.001
E 65068	.01	1.67	.001	.001
E 65069	.10	1.46	.001	.002
E 65070	.06	1.40	.001	.003
E 65071	.01	1.83	.001	.002
E 65072	.04	1.22	.001	.001
E 65073	.01	1.37	.001	.007
E 65074	.05	1.00	.001	.001

ACME ANALYTICAL LABORATORIES DATE RECEIVED: SEPT 14 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Rock Chips

ASSAYER: Nothing. DEAN TOYE, CERTIFIED B.C. ASSAYER

BEATY GEOLOGICAL PROJECT-160 File # 87-4219

SAMPLE#	PB %	ZN %	GA %	GE %	IN 7
JP87-28A	3.81	.10	.001	.007	.001
JP87-28C	36	6.28	.003	.040	.001
JF87-33	34.80	.63	.001	.001	.001
JP87-37	1.41	. 11	.001	.002	.001
JP87-59	2.39	.06	.001	.001	.001
JP87-90	.11	.07	.001	.001	.001
JP87-99C	.22	.51	.001	.001	.001
JP87-101	.01	.01	.001	.001	.001
JP87-106A	.01	1.75	.001	.008	.001
JP87-106B	.14	1.22	.001	.006	.001
JP87-110B	2.89	.02	.001	.001	.001
JP87-113	.03	.09	.001	.001	.001
JP87-118A	.05	.49	.001	.001	.001
JP87-TRIANGLE	.08	.01	.001	.001	.001
NOSE ZN	.01	22.69	.004	.150	.001
NOSE GN	11.00	.27	.001	.001	.001
ES-1330	3.06	.03	.001	.001	.00i ·
DGL B EAST LINES	23.55	6.75	.006	.003	.001

SEP _ 9 1987.

160

BEATY GEOLOGICAL LTD.

APPENDIX III

PETROGRAPHY

PETROLOGIC AND MINERALOGIC ANALYSES OF SOME SAMPLES FROM THE CAY PROSPECT, BRITISH COLUMBIA

Lawrence R. Bernstein, Ph.D. Mineral Search 380 Willow Road, Menlo Park, CA 94025

May, 1987

These analyses, opinions, and interpretations are based on observations and material supplied by the client for whom this report is made. The interpretations and opinions expressed represent the best judgment of Mineral Search, but Mineral Search and its employees assume no responsibility and make no warranty or representations as to the productivity, proper operations, or profitableness of any mineral property, plant, or process in connection with which such report is used or relied upon.

PETROLOGIC AND MINERALOGIC ANALYSES OF SOME SAMPLES FROM THE CAY PROSPECT, BRITISH COLUMBIA

Lawrence R. Bernstein, Ph.D. Mineral Search 380 Willow Road, Menlo Park, CA 94025

INTRODUCTION

The Cay prospect consists primarily of zinc and lead sulfide mineralization within fossiliferous back-reef facies Middle Devonian limestone (Dunedin Formation). This formation is overlain by Upper Devonian or Mississippian graphitic shale (Besa River Formation), and underlain by the Middle Devonian Stone Dolomite. Structurally, the mineralization is concentrated towards the crest of a southward plunging anticline in a "trap"-like configuration. The mineralization is of particular interest due to its high concentration of germanium (as much as 1500 ppm) and, to a lesser extent, of gallium (as much as 160 ppm). Knowing the mineralogic locations of the Ge and Ga is essential to further prospecting and to mapping of the ore, and to the development of optimal ore processing and extractive metallurgical methods. The focus of this preliminary study is to determine the mineralogy of the ore, and the likely sites for the Ge and Ga.

MATERIALS AND METHODS

Three hand samples from the Cay prospect were received for study: (1) reddish-brown to black, fine-grained siliceous rock (labelled #1827) (high Ge and Ga); (2) pale-gray carbonate rock containing abundant white barite crystals and pale brown sphalerite crystals (no sample number) (moderate Ge and Ga); and (3) dark gray to black siliceous rock containing abundant galena (labelled S-6) (very low Ge and Ga). Two polished thin sections were received for sample 1, and two more were prepared. An additional thin section (labelled BG-3) was received, which appears very similar to sample 2. As sample 1 represents the high Ge-Ga ore, it was given the most detailed study.

The polished thin sections were observed in both transmitted and reflected light in a petrographic microscope. The sections were also observed in a scanning electron microscope (SEM) equipped with energy dispersive x-ray elemental analysis equipment (EDX). A few rough samples were also examined this way. In addition, the samples were analyzed by powder x-ray diffraction, using an automated diffractometer with monochromatized CuK_{α} radiation. In the descriptions below, minerals confirmed by powder x-ray diffraction are indicated by an "x", and those confirmed by SEM-EDX analysis are indicated by an "s".

DESCRIPTIONS

Sample 1 (#1827)

Megascopic: This is a fine-grained dark reddish-brown to black highly siliceous rock. Indistinct to distinct, highly irregular boundaries separate zones of concentrated reddish-brown fine-grained sphalerite (ranging in size from less than 1 mm to several cm across) from black, carbonaceous siliceous material containing disseminated fine grains of the red-brown sphalerite, which forms the matrix of the rock. Some wispy, distorted relict foliation appears present at various orientations throughout the rock, suggesting that the rock is a silicified argillite or shale breccia. Discontinuous veins and irregular segregations of white quartz (as much as 1 cm across) are common. These contain abundant black, coal-like carbonaceous matter ranging from tiny specks to masses several mm across, as well as scarce pyrite crystals. Small vugs in the quartz are common, in places containing terminated prismatic quartz crystals. The rock is very tough, and has a strong sulfurous odor, particularly when freshly broken.

Microscopic: The sample consists predominately of varying proportions of intergrown anhedral reddish-orange sphalerite (x,s) and quartz (x,s). The grain size is fairly homogeneous, ranging mostly from 20 to 100 µm. Where abundant, the sphalerite grains commonly coalesce and form a loose network. The sphalerite contains almost no Fe (<500 ppm to about 0.5%), but does contain about 0.5 - 1% Cu, which probably gives it the distinct reddish color. No other elements were detected in the sphalerite, including Ge and Ga, at the detection limit of about 500 Disseminated subhedral to euhedral cubic pyrite (x,s) crystals $10-150 \,\mu$ m ppm. across are fairly common, and are locally concentrated. No minor elements were detected in the pyrite (< 500 ppm). Some of the pyrite crystals are partially altered to iron oxides. A few elongated, corroded areas of pyrite appear pseudomorphous after a bladed mineral (barite?). Finely disseminated black carbonaceous matter (s) (<1 μ m - 100 μ m) is common throughout the rock, and is locally concentrated. Also fairly common, generally surrounding sphalerite, is material containing mostly Si with lesser Al, S, Fe, and Ca (s). This is probably a cryptocrystalline to amorphous mixture of silica, clays, calcite, pyrite, and organic matter. A few tiny (< 20 μ m) grains of barite (s) and galena (s) were also observed.

The quartz segregations consist mostly of intergrown subhedral to euhedral quartz (x,s) crystals 0.1 to several mm across. Grains of the black carbonaceous material (s) as much as several mm across and of pale yellow to colorless transparent sphalerite (x,s) as much as 1 mm across are common. A few of the smaller red-orange sphalerite grains are also present. The carbonaceous material generally occurs in rounded colloform shapes. In reflected light it has a beige color, and most of it is highly anisotropic from light yellow to gray, with a polycrystalline texture similar in appearance to thermally altered coal (or coke). Some of the carbonaceous matter, however, is isotropic with no evident The two varieties are commonly concentrically layered, though crystallinity. elsewhere occur in irregular shapes. Shells of the polycrystalline material commonly form around the coarse sphalerite grains. Most of the carbonaceous material has a high S content (about 5-15%), though some of the isotropic material has less. Powder x-ray diffraction of the carbonaceous matter showed no diffraction peaks, indicating an extremely small grain size. The sphalerite contains no detectable minor elements (< 500 ppm), though it does locally contain tiny (1-5 μ m) spindle-shaped exsolution blebs of chalcopyrite (s) and, more rarely, tiny crystals of pyrite (s). These can be observed in both reflected and transmitted light. The sphalerite crystals have highly irregular edges that commonly appear Many crystals are contained wholly or partially in the broken or corroded. carbonaceous material. Small anhedral $(5-50 \,\mu\text{m})$ to larger euhedral $(0.1-2 \,\text{mm})$ pyrite (x,s) crystals are fairly common in the quartz segregations. Significantly, small (5-40 µm) anhedral, nearly isotropic grains of yellow-orange germanite (s) are fairly common in these segregations. These grains are always found with the carbonaceous material, though they can be adjacent to quartz, sphalerite, or pyrite. They contain a large amount of Cu, with several percent each of Ge, Zn, and generally of Fe and V. In some grains, As and Sb are also present. The usual composition is probably like $Cu_{10}Ge_{3}Zn_{2}(Fe,V)_{2}S_{16}$ something to $Cu_{10}Ge_2Zn_4(Fe,V)_2S_{16}$ (see Fig. 1). A few grains, as much as 150,4m across, associated with carbonaceous material on a rough sample observed in the SEM, were found to have a composition of about $Cu_{10}Zn_3Ge_2S_{12}$ (see Fig. 2). A few bladed crystals of barite (s) (as much as 200 µm) were also observed, always highly corroded and porous.



Figure 1. Energy dispersive x-ray spectrum of a 30 μ m germanite grain in sample 1, adjacent to carbonaceous matter.

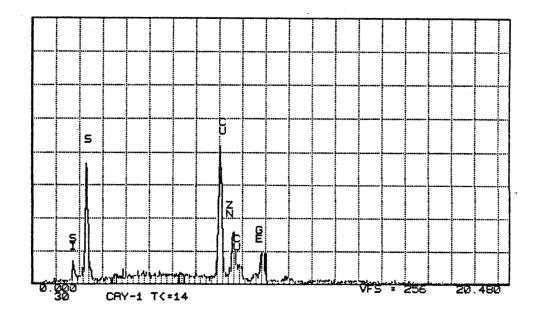


Figure 2. Energy dispersive x-ray spectrum of a 10 μ m grain of a Ge-rich sulfide adjacent to carbonaceous matter in sample 1. The grain has a composition of approximately $Cu_{10}^{2n} 3^{Ge} 2^{S} 12$, and is probably related to germanite.

Megascopic: The rock consists mostly of massive fine-grained gray calcite (x) and quartz (x). Yellow-brown, nearly equant, subhedral sphalerite (x) crystals 1-5 mm across are abundantly disseminated and locally concentrated. Thin tabular white barite (x) crystals, 0.2-3 mm thick by 3-20 mm long, are common. These generally occur as radiating to subradiating aggregates. A few coarse (up to 1 cm) subhedral galena crystals are also present. Concentrations of black carbonaceous material, as wispy stringers and as blebs a few mm across, are fairly common. A few segregations of fine-grained pyrite a few mm across were also observed. No trace of any foliation or other original texture remains in this sample.

Slide BG-3 (very similar to Sample 2)

The sample consists primarily of intergrown subhedral to Microscopic: euhedral quartz (s) and anhedral calcite (s) with varying amounts of bladed barite (s), all about $50-200 \,\mu$ m in grain size. Some patches of calcite are as much as 1 mm across. No minor elements could be detected in the calcite (including Fe and Mg) and barite (including Sr) (<500 ppm). Also in this matrix are fairly common grains (as much as 200 μ m) of the barium feldspar celsian (s), and scarce grains of orthoclase (s) containing a trace of Ba. Coarse (as much as several mm) anhedral crystals of sphalerite (s) are abundant, containing irregular colorless and pale These grains hvae irregular, corroded-appearing edges. yellow zones. They commonly contain tiny ($< 1 \, \mu m$ to 5 μm) inclusions of subhedral pyrite (s) and, more rarely, of chalcopyrite (s). A few coarser (to $200 \,\mu$ m) cubic pyrite (s) inclusions also occur. Pyrite (s) also occurs as scarce cubic crystals as much as 100 µm across throughout the sample. A coarse (1 cm) galena crystal is present that has irregular, corroded-appearing edges against the quartz, barite, and calcite. Finer galena is common throughout the sample, locally intergrown with sphalerite.

Sample 3 (S-6)

Megascopic: This is a massive, black, cherty siliceous rock containing mostly quartz (x) with abundant coarse (1-10 mm) anhedral grains of galena (x). Relict textures indicate argillite or shale breccia, with clasts ranging from less than one mm to many cm across. Abundant fractures, veinlets (from wispy to 3 mm wide), and rounded vugs (1-4 mm) are filled with fine-grained anglesite (x) and lesser barite (x). Some fractures and parts of fractures are open, covered with drusy quartz crystals. The black color suggests abundant carbonaceous matter; pyrite was not detected by powder x-ray diffraction.

DISCUSSION

Sample 1 represents a pervasively silicified breccia. The protoliths of the clasts could not be determined, though they were probably very fine grained (possibly argillite or limestone), and were probably carbonaceous. The rock was altered by siliceous solutions that contained abundant Zn and S, with lesser Ba, Cu, Pb, Ge, Ga, V, As, and Sb. Silicification took place along with deposition of fine-grained red-orange Cu-bearing sphalerite and lesser pyrite. (Note that silicification is commonly associated with mineralization at many Mississippi Valley deposits, such as the Picher field briefly discussed below). Sphalerite-rich areas could represent pre-existing reactive limestone clasts while quartz-rich areas could represent pre-existing argillite clasts. Some of the metals, particularly those with high organic affinities such as Ge, Ga, As, Ag, and V, may have been derived in part, however, from the carbonaceous material and not from outside solutions. The mineralizing solutions may have leached out these elements and redeposited them as sulfides, as discussed below.

In sample 1, the segregations of coarse, vuggy quartz with coarse carbonaceous material and pale yellow sphalerite indicate a later period of remobilization and redeposition. Exsolution blebs of chalcopyrite in the sphalerite indicate initially moderate temperatures, probably at least 125°C, during crystallization. Fairly slow cooling with some re-equilibration is indicated by the exsolution blebs and the slightly corroded sphalerite grain boundaries. Partial solution of the pre-existing fine-grained sphalerite would have concentrated the less compatible elements, such as Cu and Ge, into the solutions and thus into the quartz segregations. Carbonaceous material could have aggregated into large clumps, and some of the contained metals such as Ge, Ga, As, and V could have been removed and redeposited in sulfides such as germanite. That these metals were at least partially derived from the carbonaceous matter is strongly suggested by the fact that germanite is only observed adjacent to the carbonaceous matter. It is also possible that the carbonaceous matter served as a reducing agent to precipitate the germanite.

Late concentration of Ge and Ga is observed at the St. Salvy deposit in France. At this deposit, early bedded sphalerite contains relatively low amounts of Ge and Ga (generally <500 ppm Ge and <100 ppm Ga), whereas late, reworked sphalerite-quartz veins contain several hundred ppm Ga and as much as 3000 ppm Ge (Geldron, 1981; Barbanson and Geldron, 1983). Carbonaceous material is

abundant in the calcareous shale host rock at St. Salvy, as are organic-rich phosphate nodules.

The nature of the carbonaceous matter at the Cay prospect requires further investigation. A preliminary examination showed that this material has little if any solubility in methanol or acetone, and is therefore not typical "bitumen". The polycrystalline texture, as mentioned, is very similar to that of thermally altered coal, and probably reflects a period of elevated temperatures, possibly from hot mineralizing solutions. The temperatures apparently were not high enough, however, to produce graphite. The high sulfur content (5-15%) is typical of marine or brackish peat deposits, and has also been found in some Mississippi Valley organics that were probably derived from oil. It is possible that both the metals and the sulfur were partially derived from the carbonaceous matter at the Cay prospect. Such material is probably the single best indicator for high Ge concentrations, followed by Cu, V, and As.

The presence of 0.5 to at least 1% Cu in the fine-grained reddish sphalerite is unusual, and would not generally be stable. I have observed at other localities that the concentrations of Cu and Ga are correlated in sphalerite, with Cu(I)+Ga(III) substituting for 2Zn(II), thus balancing the valences. Although Ga was not detected in the SEM, it actually may be present in small quantities. Unfortunately, the $Cu_{k\beta}$ fluorescence partially obscures the $Ga_{k\alpha}$ fluorescence. Ga may also be present in germanite, though probably less than 0.5%. It is also probable that Ga is present in the aluminous clay minerals of any relict argillite or shale, substituting for Al.

At the Picher field in Oklahoma and Kansas (a highly silicified, high-Ge and Ga Mississippi Valley deposit), red "ruby jack" sphalerite was found to contain as much as 0.2% Cu, and only about 0.1-0.3% Fe (McKnight and Fischer, 1970). This red variety of sphalerite has particularly high Ge and Ga concentrations: as much as 1000 ppm and 600 ppm Ga. It is also notable that coal beds are present in the stratigraphic section at the Picher field, commonly in close proximity to ore bodies.

At the Cay prospect, germanium appears to be present predominately in germanite (and related Cu- and Ge-rich sulfides), which contains several percent Ge. These phases are always closely associated with the carbonaceous matter. As much as 500 ppm Ge may also occur in the sphalerite and carbonaceous matter, though it could not be detected in this study.

Sample 2 was probably a fairly permeable carbonate breccia that was a host for barite, sphalerite, and galena mineralization, and partial silicification.

Germanium and to some extent gallium should be most concentrated in late veins or segregations in this material, and with high concentrations of Cu and carbonaceous matter. Gallium may also be concentrated in the most sphaleriterich zones.

Sample 3 is a pervasively silicified shale or argillite breccia that was host to galena and lesser barite mineralization. Some brecciation may have occurred after galena deposition, and late solutions deposited some anglesite. If reworked veins containing late sphalerite, chalcopyrite, and coarse organic material can be found in this rock, they may contain higher Ge and Ga concentrations. Otherwise, this rock is not likely to have much Ge or Ga. Unsilicified aluminous shales may, however, contain elevated Ga concentrations.

SUMMARY AND CONCLUSIONS

1. Sample 1 (#1827) is a fine-grained pervasively silicified breccia containing abundant though inhomogenously distributed fine-grained reddish Cubearing sphalerite and sulfur-rich carbonaceous material, with lesser pyrite and barite. Quartz-rich segregations contain coarser pale yellow sphalerite with tiny exsolution blebs of chalcopyrite, masses of carbonaceous material, and lesser pyrite. Germanite, containing Cu, Ge, Zn, and commonly Fe, V, As, and Sb, is fairly common as tiny grains always associated with the carbonaceous material.

2. The quartz-rich segregations in sample 1 represent remobilization and recrystallization of pre-existing material at moderate (>125°C) temperatures. Some of the metals (particularly Ge), and perhaps some sulfur, were probably derived from the carbonaceous matter. Much of the carbonaceous matter is highly anisotropic with a polycrystalline texture, suggesting thermal alteration.

3. The germanium in the ore is concentrated in germanite (several percent Ge), primarily in the quartz-rich segregations. As much as several hundred ppm Ge may also exist in all the sphalerite, and some may remain in the carbonaceous matter, though this needs to be investigated.

4. Germanium should be highly correlated with the carbonaceous matter, and fairly well correlated with Cu, V, and As. It will not, however, consistently be correlated with Zn, Pb, or Ba.

5. Gallium was not directly detected, but probably is concentrated in the Cu-rich reddish sphalerite. It may also occur in the germanite, and in any aluminous clay minerals in shales or argillites. Correlations with Cu or Al may be present.

1. Mineral separates should be obtained from the high Ge-Ga ore to determine the Ge and Ga contents of the sphalerite and carbonaceous matter.

2. The carbonaceous matter could be further investigated to determine if it is derived from coal, oil, or another source.

3. Complete chemical analyses should be obtained on the samples, particularly for Cu, As, V, Sb, Hg, Ag, and Fe in addition to Ge, Ga, Zn, and Pb. This could lead to better correlations being derived. Analyses for Ge and Ga must be done carefully, as both form volatile fluorides and chlorides, particularly if heated. Solutions containing HCl or HF should be avoided. Emission spectroscopy may be useable, as it has a sensitivity of a few ppm for Ge and Ga.

4. Fluid inclusion studies could be undertaken to get a rough idea of the salinities and deposition temperatures of the ore-forming fluids. The presence or absence of hydrocarbon inclusions in the sphalerite could also be established, thus determining whether hydrocarbons were a part of these fluids.

REFERENCES

- Barbanson, Luc and Geldron, Alain (1983) Distribution du germanium, de l'argent et du cadmium entre les schistes et les minéralisations stratiformes et filoniennes à blende-sidérite de la région de Saint-Salvy (Tarn). Chronique de la Recherche Minière, 470, 33-42.
- Geldron, Alain (1981) Le germanium: données bilbliographiques, étude du cas de Saint-Salvy (Tarn). D.E.A. Thesis, University of Orleans, France.
- McKnight, E.T. and Fischer, R.P. (1970) Geology and ore deposits of the Picher Field, Oklahoma and Kansas. U.S. Geological Survey Professional Paper 588, 165 p.

BEATY GEOLOGICAL LTD.

APPENDIX IV

STRUCTURAL ANALYSIS

Orientation data:

121 points

.0 82.0	.0	173.0	40.0	190.0	51 O	180.0	10 0	173.0	AL O	193.0	AL O
82.0					01.0	100.0	40.0	an Ar an an Ar	40.V	170.0	40.0
	48.0	173.0	57.0	173.0	40.0	172.0	39.0	254.0	34.0	352.0	14.0
50.0	18.0	31.0	46.0	342.0	55.0	357.0	45.0	357.0	66.0	358.0	70.0
58.0	74.0	.0	87.0	358.0	33.0	358.0	51.0	26.0	26.0	167.0	38.0
87.0	30.0	345.0	53.0	347.0	38.0	355.0	38.0	335.0	37.0	.0	39.0
53.0	36.0	353.0	50.0	.0	44.0	178.0	63.0	177.0	52.0	161.0	65.0
		182.0	74.0	163.0	60.0	170.0	37.0	153.0	12.0	45.0	18.0
2.0	27.0	334.0	57.0	357.0	63.0	334.0	65.0	354.0	57.0	359.0	42.0
59.0	42.0	20.0	30.0	65.0	18.0	158.0	10.0	158.0	49.0	143.0	65.0
58.0	45.0	6.0	25.0	3.0	46.0	4.0	45.0	354.0	60.0	334.0	48.0
36.0	54.0	343.0	52.0	357.0	69.0	359.0	58.0	38.0	15.0	344.0	46.0
53.0	60.0	342.0	67.0	28.0	26.0	54.0	13.0	350.0	39.0	354.0	33.0
45.0	42.0	.0	41.0	345.0	40.0	343.0	39.0	8.0	57.0	9.0	57.0
47.0	64.0	351.0	65.0	359.0	66.0	3.0	63.0	345.0	78.0	340.0	75.0
		342.0	85.0	356.0	73.0	340.0	71.0	344.0	67.0	337.0	76.0
		170.0	68.0	335.0	64.0	3.0	66.0	173.0	47.0	350.0	42.0
50.0	40.0	356.0	62.0	183.0	54.0	168.0	45.0	175.0	35.0	337.0	51.0
51.0	65.0	264.0	29.0	144.0	46.0	153.0	52.0			152.0	57.0
53.0	18.0	153.0	64.0	150.0	51.0	149.0	59.0	5.0	40.0	353.0	
47.0	44.0	7.0	49.0	350.0	29.0	350.0	31.0	344.0	47.0	3.0	57.0
	50.0 58.0 57.0 53.0 53.0 59.0 59.0 58.0 58.0 53.0 45.0 45.0 51.0 51.0 53.0	50.0 18.0 50.0 18.0 58.0 74.0 57.0 30.0 53.0 36.0 53.0 36.0 53.0 27.0 59.0 42.0 59.0 42.0 58.0 45.0 58.0 45.0 58.0 42.0 58.0 42.0 58.0 42.0 53.0 40.0 45.0 81.0 45.0 47.0 50.0 40.0 51.0 45.0 53.0 18.0 47.0 44.0	50.0 18.0 31.0 58.0 74.0 .0 57.0 30.0 345.0 53.0 36.0 353.0 54.0 36.0 353.0 54.0 27.0 334.0 59.0 42.0 20.0 58.0 45.0 6.0 58.0 45.0 6.0 58.0 45.0 343.0 58.0 42.0 342.0 45.0 42.0 .0 47.0 64.0 351.0 48.0 81.0 342.0 45.0 40.0 354.0 50.0 40.0 356.0 51.0 65.0 264.0 53.0 18.0 153.0	50.0 18.0 31.0 46.0 58.0 74.0 .0 87.0 37.0 30.0 345.0 53.0 53.0 36.0 353.0 50.0 53.0 36.0 353.0 50.0 54.0 36.0 353.0 50.0 54.0 27.0 334.0 57.0 20.0 27.0 334.0 57.0 59.0 42.0 20.0 30.0 58.0 45.0 6.0 25.0 53.0 45.0 343.0 52.0 53.0 42.0 343.0 52.0 53.0 42.0 342.0 47.0 47.0 42.0 351.0 45.0 48.0 81.0 342.0 85.0 45.0 40.0 356.0 42.0 50.0 40.0 356.0 42.0 51.0 45.0 264.0 29.0 53.0 18.0 153.0 64.0	50.0 18.0 31.0 46.0 342.0 58.0 74.0 .0 87.0 358.0 37.0 30.0 345.0 53.0 347.0 53.0 36.0 353.0 50.0 .0 53.0 36.0 353.0 50.0 .0 54.0 353.0 50.0 .0 54.0 45.0 182.0 74.0 163.0 2.0 27.0 334.0 57.0 357.0 59.0 42.0 20.0 30.0 65.0 58.0 45.0 6.0 25.0 3.0 58.0 45.0 343.0 52.0 357.0 53.0 40.0 342.0 67.0 28.0 45.0 42.0 .0 41.0 345.0 47.0 64.0 351.0 65.0 356.0 48.0 81.0 342.0 85.0 356.0 45.0 40.0 354.0 42.0 183.0 51.0 65.0 264.0 29.0 144.0 53.0 18.0 153.0 64.0 150.0	50.0 18.0 31.0 46.0 342.0 55.0 58.0 74.0 .0 87.0 358.0 33.0 87.0 30.0 345.0 53.0 347.0 38.0 53.0 36.0 353.0 50.0 .0 44.0 54.0 353.0 50.0 .0 44.0 54.0 353.0 50.0 .0 44.0 54.0 353.0 50.0 .0 44.0 57.0 27.0 334.0 57.0 357.0 59.0 42.0 20.0 30.0 45.0 18.0 58.0 45.0 6.0 25.0 3.0 46.0 58.0 45.0 6.0 25.0 3.0 46.0 58.0 45.0 343.0 52.0 357.0 69.0 53.0 40.0 342.0 67.0 28.0 26.0 45.0 42.0 .0 41.0 345.0 40.0 47.0 44.0 351.0 45.0 359.0 64.0 47.0 44.0 351.0 45.0 356.0 73.0 47.0 40.0 356.0 42.0 183.0 54.0 45.0 40.0 356.0 42.0 183.0 54.0 51.0 65.0 264.0 29.0 144.0 46.0 53.0 18.0 153.0 64.0 150.0 51.0	50.0 18.0 31.0 46.0 342.0 55.0 357.0 58.0 74.0 .0 87.0 358.0 33.0 358.0 87.0 30.0 345.0 53.0 347.0 38.0 355.0 53.0 36.0 353.0 50.0 .0 44.0 178.0 54.0 353.0 50.0 .0 44.0 178.0 54.0 353.0 50.0 .0 44.0 178.0 54.0 45.0 182.0 74.0 163.0 60.0 170.0 2.0 27.0 334.0 57.0 357.0 43.0 334.0 59.0 42.0 20.0 30.0 65.0 18.0 158.0 58.0 45.0 6.0 25.0 3.0 46.0 4.0 58.0 45.0 343.0 52.0 357.0 49.0 359.0 53.0 40.0 342.0 67.0 28.0 26.0 54.0 47.0 44.0 351.0 45.0 359.0 46.0 3.0 47.0 44.0 351.0 45.0 359.0 46.0 3.0 48.0 81.0 342.0 85.0 356.0 73.0 340.0 45.0 40.0 356.0 42.0 183.0 54.0 168.0 50.0 40.0 356.0 42.0 168.0 355.0 144.0 46.0 51.0 45.0 264.0 29.0 144.0 46.0 <t< td=""><td>50.0$18.0$$31.0$$46.0$$342.0$$55.0$$357.0$$45.0$$58.0$$74.0$.0$87.0$$358.0$$33.0$$358.0$$51.0$$87.0$$30.0$$345.0$$53.0$$347.0$$38.0$$355.0$$38.0$$53.0$$36.0$$353.0$$50.0$.0$44.0$$178.0$$63.0$$53.0$$36.0$$353.0$$50.0$.0$44.0$$178.0$$63.0$$53.0$$36.0$$353.0$$50.0$.0$44.0$$178.0$$63.0$$50.0$$27.0$$334.0$$57.0$$357.0$$43.0$$334.0$$65.0$$20.0$$30.0$$65.0$$18.0$$158.0$$10.0$$59.0$$42.0$$20.0$$30.0$$65.0$$18.0$$158.0$$57.0$$42.0$$20.0$$30.0$$45.0$$46.0$$4.0$$58.0$$45.0$$6.0$$25.0$$3.0$$46.0$$4.0$$58.0$$54.0$$343.0$$52.0$$357.0$$69.0$$343.0$$57.0$$42.0$.0$41.0$$345.0$$40.0$$343.0$$39.0$$47.0$$44.0$$351.0$$45.0$$356.0$$73.0$$340.0$$71.0$$48.0$$81.0$$342.0$$85.0$$356.0$$73.0$$340.0$$71.0$$48.0$$81.0$$342.0$$85.0$$355.0$$44.0$$3.0$$64.0$$51.0$$40.0$$356.0$$42$</td><td>50.018.031.046.0342.055.0357.045.0357.058.074.0.087.0358.033.0358.051.026.087.030.0345.053.0347.038.0355.038.0335.053.036.0353.050.0.044.0178.063.0177.054.067.0182.074.0163.060.0170.037.0153.02.027.0334.057.0357.063.0334.065.0354.059.042.020.030.065.018.0158.010.0158.058.045.06.025.03.046.04.045.0354.058.054.0343.052.0357.069.0359.058.0354.058.045.06.025.03.046.04.045.0354.058.054.0343.052.0357.069.0359.058.038.053.060.0342.067.028.026.054.013.0350.064.0351.065.0359.066.03.063.0344.047.064.0351.065.0356.073.0340.071.0344.045.067.0170.068.0335.064.03.066.0173.060.047.045.026.0183.054.0168.045.0175.0<t< td=""><td>50.0$18.0$$31.0$$46.0$$342.0$$55.0$$357.0$$45.0$$357.0$$66.0$$58.0$$74.0$.0$87.0$$358.0$$33.0$$358.0$$51.0$$26.0$$26.0$$87.0$$30.0$$345.0$$53.0$$347.0$$38.0$$355.0$$38.0$$335.0$$37.0$$53.0$$36.0$$353.0$$50.0$.0$44.0$$178.0$$63.0$$177.0$$52.0$$54.0$$45.0$$182.0$$74.0$$163.0$$60.0$$170.0$$37.0$$153.0$$12.0$$2.0$$27.0$$334.0$$57.0$$357.0$$63.0$$334.0$$65.0$$354.0$$57.0$$2.0$$27.0$$334.0$$57.0$$357.0$$63.0$$334.0$$65.0$$354.0$$57.0$$57.0$$42.0$$20.0$$30.0$$45.0$$18.0$$158.0$$10.0$$158.0$$49.0$$58.0$$45.0$$42.0$$20.0$$30.0$$45.0$$18.0$$158.0$$354.0$$60.0$$58.0$$343.0$$52.0$$357.0$$49.0$$359.0$$58.0$$38.0$$15.0$$53.0$$44.0$$345.0$$40.0$$343.0$$39.0$$8.0$$57.0$$44.0$$342.0$$67.0$$28.0$$26.0$$54.0$$13.0$$345.0$$78.0$$44.0$$45.0$$351.0$$45.0$$356.0$$356.0$$356.0$$340.0$$71.0$$344.0$</td><td>50.0 18.0 31.0 46.0 342.0 55.0 357.0 45.0 357.0 66.0 358.0 58.0 74.0 .0 87.0 358.0 33.0 358.0 51.0 26.0 26.0 167.0 87.0 30.0 345.0 53.0 347.0 38.0 355.0 38.0 335.0 37.0 .0 53.0 36.0 353.0 50.0 .0 44.0 178.0 63.0 177.0 52.0 161.0 54.0 67.0 182.0 74.0 163.0 60.0 170.0 37.0 153.0 12.0 45.0 2.0 27.0 334.0 57.0 357.0 63.0 334.0 65.0 354.0 57.0 359.0 57.0 42.0 20.0 30.0 65.0 18.0 158.0 10.0 158.0 49.0 143.0 58.0 45.0 64.0 25.0 3.0 46.0 4.0 45.0 354.0 60.0 344.0 58.0 54.0 345.0 70.0 28</td></t<></td></t<>	50.0 18.0 31.0 46.0 342.0 55.0 357.0 45.0 58.0 74.0 .0 87.0 358.0 33.0 358.0 51.0 87.0 30.0 345.0 53.0 347.0 38.0 355.0 38.0 53.0 36.0 353.0 50.0 .0 44.0 178.0 63.0 53.0 36.0 353.0 50.0 .0 44.0 178.0 63.0 53.0 36.0 353.0 50.0 .0 44.0 178.0 63.0 50.0 27.0 334.0 57.0 357.0 43.0 334.0 65.0 20.0 30.0 65.0 18.0 158.0 10.0 59.0 42.0 20.0 30.0 65.0 18.0 158.0 57.0 42.0 20.0 30.0 45.0 46.0 4.0 58.0 45.0 6.0 25.0 3.0 46.0 4.0 58.0 54.0 343.0 52.0 357.0 69.0 343.0 57.0 42.0 .0 41.0 345.0 40.0 343.0 39.0 47.0 44.0 351.0 45.0 356.0 73.0 340.0 71.0 48.0 81.0 342.0 85.0 356.0 73.0 340.0 71.0 48.0 81.0 342.0 85.0 355.0 44.0 3.0 64.0 51.0 40.0 356.0 42	50.018.031.046.0342.055.0357.045.0357.058.074.0.087.0358.033.0358.051.026.087.030.0345.053.0347.038.0355.038.0335.053.036.0353.050.0.044.0178.063.0177.054.067.0182.074.0163.060.0170.037.0153.02.027.0334.057.0357.063.0334.065.0354.059.042.020.030.065.018.0158.010.0158.058.045.06.025.03.046.04.045.0354.058.054.0343.052.0357.069.0359.058.0354.058.045.06.025.03.046.04.045.0354.058.054.0343.052.0357.069.0359.058.038.053.060.0342.067.028.026.054.013.0350.064.0351.065.0359.066.03.063.0344.047.064.0351.065.0356.073.0340.071.0344.045.067.0170.068.0335.064.03.066.0173.060.047.045.026.0183.054.0168.045.0175.0 <t< td=""><td>50.0$18.0$$31.0$$46.0$$342.0$$55.0$$357.0$$45.0$$357.0$$66.0$$58.0$$74.0$.0$87.0$$358.0$$33.0$$358.0$$51.0$$26.0$$26.0$$87.0$$30.0$$345.0$$53.0$$347.0$$38.0$$355.0$$38.0$$335.0$$37.0$$53.0$$36.0$$353.0$$50.0$.0$44.0$$178.0$$63.0$$177.0$$52.0$$54.0$$45.0$$182.0$$74.0$$163.0$$60.0$$170.0$$37.0$$153.0$$12.0$$2.0$$27.0$$334.0$$57.0$$357.0$$63.0$$334.0$$65.0$$354.0$$57.0$$2.0$$27.0$$334.0$$57.0$$357.0$$63.0$$334.0$$65.0$$354.0$$57.0$$57.0$$42.0$$20.0$$30.0$$45.0$$18.0$$158.0$$10.0$$158.0$$49.0$$58.0$$45.0$$42.0$$20.0$$30.0$$45.0$$18.0$$158.0$$354.0$$60.0$$58.0$$343.0$$52.0$$357.0$$49.0$$359.0$$58.0$$38.0$$15.0$$53.0$$44.0$$345.0$$40.0$$343.0$$39.0$$8.0$$57.0$$44.0$$342.0$$67.0$$28.0$$26.0$$54.0$$13.0$$345.0$$78.0$$44.0$$45.0$$351.0$$45.0$$356.0$$356.0$$356.0$$340.0$$71.0$$344.0$</td><td>50.0 18.0 31.0 46.0 342.0 55.0 357.0 45.0 357.0 66.0 358.0 58.0 74.0 .0 87.0 358.0 33.0 358.0 51.0 26.0 26.0 167.0 87.0 30.0 345.0 53.0 347.0 38.0 355.0 38.0 335.0 37.0 .0 53.0 36.0 353.0 50.0 .0 44.0 178.0 63.0 177.0 52.0 161.0 54.0 67.0 182.0 74.0 163.0 60.0 170.0 37.0 153.0 12.0 45.0 2.0 27.0 334.0 57.0 357.0 63.0 334.0 65.0 354.0 57.0 359.0 57.0 42.0 20.0 30.0 65.0 18.0 158.0 10.0 158.0 49.0 143.0 58.0 45.0 64.0 25.0 3.0 46.0 4.0 45.0 354.0 60.0 344.0 58.0 54.0 345.0 70.0 28</td></t<>	50.0 18.0 31.0 46.0 342.0 55.0 357.0 45.0 357.0 66.0 58.0 74.0 .0 87.0 358.0 33.0 358.0 51.0 26.0 26.0 87.0 30.0 345.0 53.0 347.0 38.0 355.0 38.0 335.0 37.0 53.0 36.0 353.0 50.0 .0 44.0 178.0 63.0 177.0 52.0 54.0 45.0 182.0 74.0 163.0 60.0 170.0 37.0 153.0 12.0 2.0 27.0 334.0 57.0 357.0 63.0 334.0 65.0 354.0 57.0 2.0 27.0 334.0 57.0 357.0 63.0 334.0 65.0 354.0 57.0 57.0 42.0 20.0 30.0 45.0 18.0 158.0 10.0 158.0 49.0 58.0 45.0 42.0 20.0 30.0 45.0 18.0 158.0 354.0 60.0 58.0 343.0 52.0 357.0 49.0 359.0 58.0 38.0 15.0 53.0 44.0 345.0 40.0 343.0 39.0 8.0 57.0 44.0 342.0 67.0 28.0 26.0 54.0 13.0 345.0 78.0 44.0 45.0 351.0 45.0 356.0 356.0 356.0 340.0 71.0 344.0	50.0 18.0 31.0 46.0 342.0 55.0 357.0 45.0 357.0 66.0 358.0 58.0 74.0 .0 87.0 358.0 33.0 358.0 51.0 26.0 26.0 167.0 87.0 30.0 345.0 53.0 347.0 38.0 355.0 38.0 335.0 37.0 .0 53.0 36.0 353.0 50.0 .0 44.0 178.0 63.0 177.0 52.0 161.0 54.0 67.0 182.0 74.0 163.0 60.0 170.0 37.0 153.0 12.0 45.0 2.0 27.0 334.0 57.0 357.0 63.0 334.0 65.0 354.0 57.0 359.0 57.0 42.0 20.0 30.0 65.0 18.0 158.0 10.0 158.0 49.0 143.0 58.0 45.0 64.0 25.0 3.0 46.0 4.0 45.0 354.0 60.0 344.0 58.0 54.0 345.0 70.0 28

337.0 75.0

cay project, bedding

```
Data distribution:
```

Uniformity test:

The data do not differ significantly from uniform at the .95 level

Test of distribution:

! <pected type of distribution: Girdle</pre>

```
Data have weak preferential orientation
```

Test of rotational symmetry (s(g)):

s(g) = 22.21 This differs significantly from a girdle form at the .95 level

Best-fit girdle on data: Strike : 79.6 (N80.E) Dip : 82.3 (82.NW) Dip azimuth : 349.6

Pi-point : 8.,169.6 (8., S10.E)

2

** 2

**2 *

*

2** *

**2

*

**

2

3

* 2 *

2**2**

Ν

lotting of data points and interpretation on an equal-area stereonet
Lower hemisphere projection:

2

*

Single points : * Center : + Best-fit girdle : X Multiple points : 2 - 9

**

22

2*

* 2

*

*

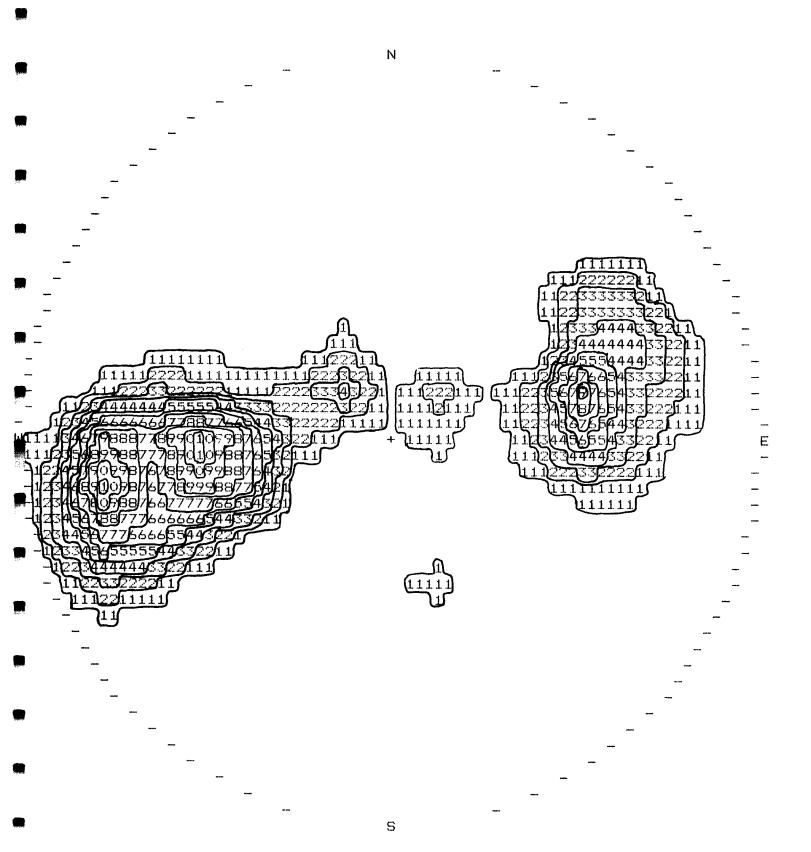
*

ж

E

Pi-point of girdle : P

Number of points = 121


S

P

¥

121 Points contoured using Schmidt (1925) method:

Counting area = .010 Order of symbols is 1 2 3 4 5 etc. With contour interval = 1 percent points per one percent area Order of symbols is repeated every 10 contours

:		
i c	cay data fold axes and lineations	
, C	Orientation data:	
	7 points	
	0.0 5.0 348.0 19.0 340.0 23.0 180.0 14.0 190.0 8.0 175.0 5 2.0 4.0	.0
	cay data fold axes and lineations	
	Data distribution:	
alcu	** CAUTION: ulated distributions may not be statistically valid n less than 30 data points **	
I	Uniformity test:	
he (data differ significantly from uniform at the .95 level	
ا	Test of distribution:	
(pe	ected type of distribution: Cluster	
• 1	Data have moderate preferential orientation	
)	Test of spherical variance (S*): S* = *****	
	This is not significantly different from a strongly clustered distribut	
¢.		
, 5 mi 111 :		: ::::: ::::
,		

Plotting of data points and interpretation on an equal-area stereonet lower hemisphere projection:

*

*

Single points : * Center : +

Multiple points : 2 - 9

Е

Number of points = 7

ж

S

- 88

BEATY GEOLOGICAL LTD.

APPENDIX V

DIAMOND DRILL RECORD

```
caydata S1 and axial planes
   Orientation data:
   10 points
                     183.0 78.0
                                          175.0 90.0
           10.0 70.0
                                329.0 90.0
                                                     185.0 70.0
 160.0 80.0
                    338.0 90.0 169.0 70.0
           335.0 83.0
 178.0 87.0
   caydata S1 and axial planes
   Data distribution:
   ** NOTE:
Calculated distributions may not be statistically valid
w th less than 30 data points **
   Uniformity test:
The data differ significantly from uniform at the .95 level
   Test of distribution:
E pected type of distribution: Cluster
   Data have weak preferential orientation
   Test of spherical variance (S*):
   S * = * * * * * * *
   This is not significantly different from a strongly clustered distribution
```

caydata S1 and axial planes

Plotting of data points and interpretation on an equal-area stereonet L wer hemisphere projection:

Single points : * Center : +

Multiple points : 2 - 9

Ε

Number of points = 10

Ν

- 90 -

DIAMOND DRILL RECORD

ſ

Property CAY - Area 1

Logged by D.G. Leighton Date Logged 18 Sept. 87 Drilling Begun 6 Sept 87 Drilling Finished 10 Sept 87 Hole Bearing____070° Collar Dip Angle___45°@__1563m. Dip Test: Depth___50m___Angle__45° Total Depth___54.9m

Site #1 JDH#1 Hole No._ Core Size_ B.Q. Claim Group <u>Ca., Nortz</u> Location <u>290N - 0+52W</u>

			T	SAMPL	ES						
ROM	то	DESCRIPTION	NUMBER	FROM	TO	WIDTH		1]	T	T
0	18.3	OVERBURDEN									
9.3	30.5	BESA RIVER FORMATION - Shale-Black Cachonassous	·							<u> </u>	+
		@ 20.8 Bedding at 90° to core axis @ 24.4-22.9 Gouge and Broken Shale Fragments @ 22.9-30.5 Shale Broken.								1	T
		@ 24.4-22.9 Gouge and Broken Shale Fragments									T
		@22.9-30.5 Shale Broken.					٤				
30.5 40.5	DUNEDIN FORMATION - Limestone & Silica Breccia				·			<u> </u>		┢	
		@ 30.5 - 31.0 Limer Shale		1 1		1		1	1	1	+
		@ 30.5-31.0 Limey Stale @ 30.0-34. Limestone Rect with abundant tossil frags. @ 34.0-36 Black Limestone partially silicitied. @ 36.0-41. Silicitied Broccia containing abundant sparry barite especially from 36.4-37.6									
		@ 34.0-36 Black Limestone partially silicitied.									
		@ 36.0 - 41. Silicitied Broccia containing abundant	 	<u> </u>			~		L	<u> </u>	\bot
		sparry barite especially from 36.4-37.6		<u> </u>					 	<u> </u>	+-
105		STONE FORMATION - Limestone								<u> </u>	+-
<u> </u>	- 1. 1-	@ 41.2 - 42. Scattered Fassile		<u>├</u>				+	<u> </u>		+
		@ 45.8 Bedding at 85' to core axis				1				1	+-
		@ 47.0-54.9 Styplitic Linestone with pyrobitumen and						1		1	\uparrow
		@ 45.8 Bedding at 85' to core axis @ 47.0-54.9 Styplitic Linestone with pyrobitumen and pyrite on seams.		,							T
	C1/0					<u> </u>		ļ	ļ	ļ	_
	54.9	E.O. 14.							ļ		╋
										<u> </u>	┢
											+
								<u> </u>			+-
											T

Sheet_/____of___

E

E

E

E.

i

E

DIAMOND DRILL RECORD

Property CAY - Firea 1

Logged by D.G. Leighton
Date Logged 18 Sept. 87
Date Loggeo
Drilling Begun 10 Sept 87
Drilling Finished 12 Scot 87

Hole Bearing 070	
Collar Dip Angle - 75° @	1563m
Dip Test: Depth_54.9	Angle - 75 °
Total Depth 54.9 m	

Hole No. DDH to Site #1	
Core Size	
Claim Group Cay North Location 290N-0+52W	
Location $\angle 90N - 0 + 52W$	

				SAMPL							
ROM	TO	DESCRIPTION	NUMBER	FROM	TO	WIDTH	P5 %.	25%	Ga%	Ge %	
0	17.1	OVERBURDEN									
7./	33.0	BESA RIVER FORMATION - Shale - Black Carbonaceons			I						
		@ 18.5 Bodding at 70° to core axis			ļ			L	L		
		@ 17-28 Occasional pyrite bod 2-4 cm thick.			ļ						
		@ 28.1 Broding at 500 t. core axis			ļ			· · ·			
		@ 28-32 Pyrite mainly as blebs to 2cm long.			<u> </u>			ļ	L		L
		@ 30 - 33 Shale to Linestone ransilion Zone - alternating			ļ			ļ	<u> </u>		⊢
		layers Shall & Lst.							<u> </u>		┣_
		@ 28.1 Bedding at 50° to core axis @ 28-32 Ryrite mainly as blebs to 2cm long. @ 30-33 Shale to Linestone Transilion Zone - alternating [ayers Shale & List. @ 33 Formation Contact, bedding at 60° to core axis.			<u> </u>			 			
3.0	57 4	DUNEDIN FORMATION - Limestone & Silica Breccia									┢
5.0	02.7	2330-378 May Gra Lis and south I fail of				+					⊢
	·	278 - 42.4 Mainly Facult Faculty The			<u> </u>	+		<u> </u>			⊢
		a 42.4-43.8 Med Gree linestone sectional fissil Lange				1					
	··················	043.8 Reet-Silica Bx Contact:	·····								F
		@ 33.0 - 37.8 Med. Grey Limestone, Scattered tossil trags. @ 37.8 - 42.4 Mainly Fossil Fragments. @ 42.4 - 43.8 Med. Grey Limestone Scattered tossil trags. @ 43.8 Reet - Silica Bx Contact. @ 43.8 - 52.4 Siliceous Breccia contains secondary 		1							Γ
		Fractures containine calcite & barite		1							
		@ 50.9-52.2 Sphalerite plas mod. to heavy pyrobitumm	65073	50.9	52.0	1.1	0.0/	1.37	0.001	0.007	—
52.4 6	67.1	STONE FORMATION - Limestone				┨┨					┢
		a 55.0 Bedding at 65° to core axis									
		@ 53.0-67. Studitic Grey Limestone with trained									
		pyrobitumm and purit filled scame.									
	@ 53.0-67. Styplitic Grey Limestone with typical pyrobitumen and pyrite filled scame. @ 62.0 Bedding at 60° to core axis										
		C C									L_
	67./	E.O. H.									L
						1			1		

Sheet______ of___

E

E

F

ſ

DIAMOND DRILL RECORD

Property CAY - Area 1

Logged by D.G. Leighton Date Logged 18 Sept. 87 Drilling Begun 12 Sept. 87 Drilling Finished 14 Sept. 87

Hole Bearing	040		
Collar Dip Angle_	-45°@	0 1563 m	
Din Test Denth	69.5	Angle -45°	
Total Depth6	9.5m (22817.)	-

Hole No. DDH#3 Site#1 Core Size BQ Claim Group <u>Cay North</u> Location <u>190 N 0752W</u>

[SAMPL	ES					
FROM TO	DESCRIPTION	NUMBER	FROM	TO	WIDTH				
0 21.	OVERBURDEN								
21.7 33.3	BESA RIVER FORMATION - Black Shale - Carbonaceous	<u> </u>							 ļ
	@ 23.2 Gouge Seam 0.2 m Rick.			<u></u>			L		
	@ 25.0 Bedding at 50° to core axis								
	@ 29.0-33.3 Shale to Limestone Transition Zone with						ļ		
	@ 23.2 (Jouge Seam 0.2 m Rick. @ 25.0 Bedding at 50° to core axis @ 29.0-33.3 Shale to Limestone Transition Zone with alternating layers of black shale and med grey Lst.						 		 <u> </u>
	@ 30.0 Bedding at 50° to core axis								 <u> </u>
	@ 31.6 Bedding at 45° to core axis			<u> </u>		····	<u> </u>		 <u> </u>
22 2 1/7	" DUNEDIN FORMATION - Rect Limestone & Silica Breccia.				┼╌┈╴┨				
33.3 7.	223 - 38 May Gua 1st scattered these of the				+		<u> </u>		
	@ 38 - 40.9 Rock Mainly Fascil Francist				1		<u> </u>		
	@ 350 Berline at 50' to care a vie								
	@ 33.3-38 Med. Grey Lst. scattered tossil fragments. @ 38 - 40.9 Rock Mainly Fossil Fragments. @ 35.0 Bedding at 50° to core axis. @ 41.4 - 47.4 Silicrows Breccia with up to 50% of rock comprised of sparry Barib								
	comprised of Sparny Barily								
									 Į
47.4 69.	5 STONE FOR MATION - Limestone.		,						 ļ
	@ 48.2 Bedding at about 50° to core axis					····			 ļ
	@ 47.4 - 50.0 Transition Zone with limestone grading								
	from med grey to normal light grey, colour						ļ		 <u> </u>
	@ 50-69.5 Styplitic Limestone with typical pupite						 		
	plus bitumen containing seams				- <u> </u>		l		 <u> </u>
	© 48.2 Bedding at about 50° to core axis @ 47.4 - 50.0 Transition Zone with limestone grading from med grey to normal light grey, colour @ 50-69.5 Styplitic Limestone with typical pypite plus bitamen containing Seams @ 58.9 Bedding at 50° to core axis @ 61.9 - 63.1 Fault Zone with limenite stained gouge. @ 66.5 Bedding at 60° to core axis. 5 E.O.H.					·····			 <u> </u>
}	10 61.9 - 65.1 Fault tone with limon a stained gouse.						 		 <u> </u>
	@ 66.5 Gedding at 60° To core axis.		+		┼───┤				
67.		L					<u> </u>	L	 <u> </u>

Sheet___/ of__/

E

f

F

F

DIAMOND DRILL RECORD

Property CAY - Area 1

Date Logged <u>18 Sept. 1987</u> Date Logged <u>18 Sept. 1987</u> Drilling Begun <u>15 Sept. 87</u> Drilling Finished <u>17 Sept. 87</u>.

Hole Bearing 070°
Collar Dip Angle 45° @ 1560 m
Dip Test: DepthAngle
Dip Test: DepthAngle Total Depth <i>15 m (50 ft.</i>)

Hole No. DDH#4 Site 2 Core Size B.Q. Claim Group Cay North Location LEF+65N, S+50E

			SAMPLES								
FROM	то	DESCRIPTION	NUMBER	FROM	то	WIDTH		· ·			
		HOLE ABANDONED AFTER SEVERAL ATTEMPTS FAILED TO PENETRATE OVERBURDEN								<u> </u>	<u> </u>
 +		FAILED TO PENETRATE OVERBURDEN									
											<u> </u>
			<u> </u>	. <u> </u>	 			<u> </u>		ļ	_
 			<u> </u>	. <u> </u>	ļ	<u> </u>		<u> </u>		 	<u> </u>
 +						++					+
├ ───┼			+	+	<u> </u>	<u> </u>		<u> </u>			<u> </u>
}+			1	1	 		<u> </u>	t			
								<u> </u>			
			· · · · · · · · · · · · · · · · · · ·	. <u> </u>	ļ	<u> </u>		ļ		ļ	_
L		· 			ļ	╂────╂		<u> </u>		<u> </u>	<u> </u>
 +			<u> </u>			┨─────┣					+
 +			<u> </u>			┟────╂				<u> </u>	1
+				+		1					
				>							
										<u> </u>	
			ļ		 	<u> </u>				ļ	
 +		· · · · · · · · · · · · · · · · · · ·			 	·				<u> </u>	<u> </u>
 +						┼┼					+
} +			<u> </u>	+		┼╂					<u> </u>
+			<u> </u>								1
			l	1		11					
]						

Sheet_____ of_

DIAMOND	DRILL	RECORD

Property CAY - Area 2

F

Logged by D.G. Leighton
Date Logged 20 Sept: 1987
Drilling Begun 18 Sept '87
Drilling Beguit 70 Ser , e7
Drilling Finished 19 Sept. 87

Hole Bearing <u>Vertical</u> Collar Dip Angle<u>-90 @ 1490m</u> Dip Test: Depth<u>NR</u> Angle<u>-</u> Total Depth<u>42.7 m (140ft)</u>

Angle NA

Hole No. <u>DDH#5</u> Site#3 Core Size<u>B.Q.</u> Claim Group<u>Cay Sout</u> Location<u>87+65N</u>, 5+50E

			SAMPL	ES						
ROM TO	DESCRIPTION	NUMBER	FROM	то	WIDTH					
0 4.9	OVERBURDEN									
1.9 15.0	BESA RIVER FORMATION - Black Carbinaceons Shale.									L
-/	@ 4.9-14 Black Shale - quite broken with gouge scams @ 9.8 Bedding at 60° to core axis. @ 14.0-15 Shale to Lines tone Transition Zone with									<u> </u>
	@ 9.8 Bedding at 60° to core axis.									
	@ 14.0-15 Shale to Lines tone Transition Zone with							<u> </u>		
	alternation black shale - List. lanup, the lances									
	alternating black shale - List. layus, the layers average 60° to core axis						<u> </u>	<u> </u>	L	L
								ļ		
5.0 33.Z	DUNEDIN FORMATION - Rect Limestone & Silica Breccia.						<u> </u>		<u> </u>	Ļ
	@ 15.0-17.8 Light to Med. Grey Lst scattered tossils @ 17.8-20.5 Trock Mainly Fossil Fragments, frequent calcil and barite filled tractures with gradually increas- ing silica content.							L		
	@ 17.8-20.5 Trock Mainly Fossil Fragments, frequent calib						<u> </u>	ļ		ļ
	and barit filler fractures with gradually increas.						<u> </u>	<u> </u>		
	ing silica contant.						<u> </u>	ļ		
	20.5-133.2 Siliceous Breccia generally dark gray, permeated by silica, fly scattered tossil						<u> </u>			<u> </u>
	Dermeated by silica few scattered tossil						<u> </u>	<u> </u>		
	Frasments. Occasinal PSS & ZnS @ 31.0. Good						ļ	ļ	· · · ·	
	strong ZnS between 30.1-31.1. associated with						<u> </u>			
	barite.		,				<u> </u>		ļ	<u> </u>
						·	<u> </u>	<u> </u>	ļ	_
3.2 42.7	STONE FORMATION - Limestone							<u> </u>		
	@ 33.2-42.7 Grey Limestone - Stylitic with seams						<u> </u>	ļ		_
	outlined with bitymon							ļ		
	a 35.6 Remnant bedding at 60° to core axis								ļ	
	@ 42.2 0.2 m siliceous zone pule green- grey zone seem to lie parallel to bedding.						_	ļ		
	seem to lie parallel to bedding.							ļ	ļ	┣
	~							l	ļ	–
42.7	E.O.H.								<u> </u>	

Sheet____

of...

DIAMOND DRILL RECORD

Property_CAY - Area 2

Logged by D. G. Leighton Date Logged 26 Sept. 198 Drilling Begun 19 Sept. 87 Drilling Finished 20 Sept. 87 1987

Hole Bearing 250°	
Collar Din Angle -45° @ 1490m	
Dip Test: Depth_ <u><u>41.5</u>_Angle_<u>-<u>45</u>°_ Total Depth_<u><u>41.5</u> (13647.)</u></u></u>	
Taket Depth $\frac{415}{1364}$	

Hole No. $\mathcal{DDH}^{\#} G$ Site \mathcal{F}_3 Core Size \mathcal{B} . Claim Group Cay South Location $\mathcal{LBF} \neq 65N$, $s \neq 50E$

				SAMPL	ES						
FROM	τO	DESCRIPTION	NUMBER	FROM	ΤO	WIDTH					
FROM	00	OVERBURDEN.								 	
										 	
88	13.2	BESA RIVER FORMATION - Black Shale							ļ		
0.0								<u></u>	ļ		
		© 8.8-13.2. Shar to Zimestone Fransition Lone. Almay shale with increasing percentage of gray Lat. Layera. This zone contains abundent timely disseminated pyrite. @ 11.2 Bedding at 70-75° to core axis.			<u> </u>			_			
		lavera. This some contains abundent finely						<u> </u>	<u> </u>		
		disseminated purity.							+		
		@ 11.2 Bedding at 70-75° to core axis.									
	1							+	<u> </u>		
13.2	28.6	DUNEDIN FORMATION - Rect Linestone & Siliceons Breccia			<u>_</u>				 		
		13.2-17.8 Med Grey SugarTexture Limestone, grades to increasing center & scattered Assil Arapmenty 21.7.8-21.1 Rect Breccin consisting mainly of fossil frags. 21.1 Genge seam per pendicular to core axis. 21.1-28. Siliceons Breccia. Cark grey to black preccia permeated with silica, contains numerous preccia permeated with silica, contains numerous				+					
		increasing content scattered tossil training							<u> </u>		
		@ 17.8-21.1 Rect Breccia consisting mainly of forsil trags.									<u> </u>
		621.1 Gouge seam perpendicular to core axis.									1
		10 21.1-28. Siliceons Breccia. Oark grey to black							+		[
		pressia permeated with silica, contains numerous						+			
	<u> </u>	calci & filled fractiones, bitumen community calci te also up to 2012 pyri te with bitumen 10 24.2 - 26. Fine Mineralization est. 0.5% disseminated.						· [
	L	calcite also up to 20% pyrile with bilamen.						+			
	ļ	a 24.2-26. Zinc Mineralization est. 0.5% disseminated.						-			
		1						1			
28.0	41.5	STONE FORMATION - Limestone				+		1			
	ļ	a 28-41.5 Typical Studitic Grey Limistures Stypicitis							1		
	ļ	a 28-41.5 Typical Structure Grey Limes Vince stystites outlined by bitumen and containing mines							1		
		@ 29.4 Bedding at \$5° to core axis		+		1					
	 	Q 27.4 Heddin, 42 35 is core axis				-					<u> </u>
		@ 37.5 "Mylonite" Zone - Siliceous Parch parallel to				1	1				ļ
	4.5	@ 37.5 "Mylonite" Zone - Siliceous Parch parallel to broking with pyrite blebo and flowage texture E.O.H.		1							1
L	71.5	12.0.11.	L _{eve}					Sheet	1	of	

Sheet_

BEATY GEOLOGICAL LTD. Consulting Geological Services D.G. Leighton Logged by <u>D. G</u> Date Logged <u>Z6</u> Sept. 1987

Drilling Begun <u>20 Sept 87</u> Drilling Finished <u>21 Sept 87</u>

DIAMOND DRILL RECORD

Property CAY Aread

Hole Bearing 2	50°		
Collar Dip Angle.	- 60°	@ 1490m	
Din Test: Denth	30.0	Angle - 60°	
Total Depth 3	0.5 (100ft.)	
Dip Test: Depth_ Total Depth3	30.0 0.5 (Angle 60° /0044.)	

Hole No. DDH#7 Site#3 Core Size <u>B. Q</u> Claim Group <u>Cay Sourt</u> Location <u>287+65N - 5+50E</u>

			SAMPL	ES		•			
FROM T		NUMBER	FROM	TO	WIDTH				
0 7.	OVERBURDEN							L	<u> </u>
							 		<u> </u>
7.3 12	8 BESA RIVER FORMATION - Black Shale				1		 	L	<u> </u>
	@ 7.3-11. Black Carbingceons Shale, occasional narrow						 	Ļ	┥
	med. grey limestone bed to I con thick.						 	 	<u> </u>
	@ 11.0-12.8 Shale to Limestone Transition Zone, liney,						 	ļ	4
	shale with increasing frequency of med. grey 1st. band Imm to 10 cm thick.						 	ļ	
	band Imm to 10 cm thick.					· · · ·	 	 	+
	@ 9.8 Several cm. gourse @ 10.6 Bedding at 750 to core axis.				- <u> </u>		 	 	–−
	@ 10.6 Bedding at 75% to core axis.		<u> </u>			<u>+</u>	 		–
							 	<u> </u>	
12.8 24	6 DUNEDIN FORMATION-Reef Limestone & Siliceons Breccia						 		+
	@ 12.8-15.2 Med. Grey Sugar Texture Limestone, occasional fossil fragments and calcite filled fractures.	ļ					 	 	+
	fossil tragments and calcite tilled tractures.				·}		 	<u> </u>	+
	@ 15.3 Specimen for petrologic study @ 15.2 - 19. Reef Limestone, a breccia consisting almost		4				 		+
	a 15.2 - 19. Reet Limestone, a breccia consisting almost						 		+-
	entirely of fossil fragments, minor pyrite cont.						 ·····, <u>·····</u> ····	<u> </u>	+
	@ 19.0-21. Limestore Breccia. with fossil fragments.		- <u> </u>				 	<u> </u>	+
	@ 19.0.21. Limestone Breccia, with fossil tragments.		·				 		+
	@ 21.0-23.4 Siliceous Bieccia, black med. grained Bx. totall, permeated with guartz, occasional calcite						 	<u> </u>	+
	Totall, permeated with guartz, occasional calcile		+		,		 		1-
<u></u>	tilled stringer						 		+
2110 20	S STONE FORMATION - Limestone				+		 		1
-7.0 30	S SIVICE FURFINITION - LIMESIONE				┼───┼		 	t	1
	10 47.6-20.5 STUDILIE Ore, Almestone, scame contain						 		1
	@ 24.6-30.5 Studits Gra, Limestone, scame contain minor pitumen and pyrite, occasional forsil trag. @ 27.0 Bedding at 80° to core axis.				+		 		1
	5 E.O.H.				┼───┤	{	 	t	1

Sheet__/ of_

E

- 1 E

E

E

DIAMOND DRILL RECORD

E

Property CAY Area 2

Logged by D.G. Leighton
Date Logged a Sept. 1987
Drilling Begun 21 Scot. 87
Drilling Finished 22 Sept. 87

-

Hole No.	<u></u>	Sile	<u> "3</u>	
Core Size				
Claim Gro	Dun Cay So	with		
	Up <u>Cay So</u> 287465	N - 5	+50E	

		SAMPLES									
ROM	то	DESCRIPTION	NUMBER	FROM	TO	WIDTH					
0	6.7	OVERBURDEN	·							L	
5.7	14.0	BESA RIVER FORMATION - Black Shale	·						L	ļ	
		@ 6.7-10 Broken Black Shale, numerous gouge seams								L	
		@ 10-13 Broken Shale though more com Seten & than									ļ
		@ 6.7-10 Broken Black Shale, numerous gouge seams @ 10-13 Broken Shale though more com fetent than above Bedding here at 70° to core axis. @ 13.0-14. Shale to Limestone Transition Zone, alter- nating limestone and shale layus, Bedding at 70°.									
		@ 13.0-14. Shale to Linestone Transition Zone, alter-			·				ļ		<u> </u>
		nating limeslanc and shale layus, Bedding at 70°.							ļ	<u> </u>	
								<u> </u>	ļ	ļ	<u> </u>
4.0	27.8	DUNEDIN FORMATION - Reef Limestone & Sil. Breccin.						<u> </u>		ļ	
		@ 14.0 - 16.5 Grey Limestone, weakly prescripted and a fow scattered foss il fragments. @ 16.5-20.5 Reef Bx. rock mainly fossil tragments in lime						+		<u> </u>	<u> </u>
		scattered fossil trayments			<u>-</u>				<u> </u>	 	
		@ 16.5-20.5 Reet Bx. rock mainly tossil tragments in line				┽───┤	<u> </u>				<u> </u>
									<u> </u>		┝
		and aphalerite 23.8 -24.4 about 0.5m Basey with							<u> </u>		┢
		permeated with silica, light coloured truct.									ŀ
		filled 37 Sarite 20-20.6 weak & spotty galena								<u> </u>	
		and sphallerite 23.8-24.4 about 0.5m Basey with	·····			_		+			╂──
		bitumen & P65.		<u> </u>		_ 				<u> </u>	╂──
	2 - 1			-}}					<u> </u>	<u> </u>	┼──
7.8	55.1	STONE FORMATION - Limestone	· · · · · · · · · · · · · · · · · · ·						<u> </u>		<u> </u>
		@ 27.8-35.1 Light Grey Limestime with indistinct bedding which runs 60-80° (aug. 70°) to core axis.					·····				
		Which tuns 60-80 (aug. 70) To core axis.				+	•	+	{	<u> </u>	-
	2= 1	E.O.H.				+			<u> </u>	<u> </u>	1
	33.1	<u>F.U.</u>						+		 	1
			· · ·	1							
				++				+		·	1
				<u> </u>					·	of_	1

ſ F F

F

BEATY GEOLOGICAL LTD. Consulting Geological Services

DIAMOND DRILL RECORD

Property CAY Area 2

Logged by D.G. Leighton Date Logged 27 Sept. 1987 Drilling Begun 22 Sept. 187 Drilling Finished 23 Sept. 187 1987

Hole Bearing	50°		
Collar Dip Angle.	~ 20°	@ 1490m	
Dio Test: Depth_	40m	Angle - 80	ס
Dip Test: Depth_ Total Depth	+3.6 m	(143 ft.)	

DDH#9 Site#3 Hole No. DDH Core Size <u>3. Q.</u> Claim Group Cay South Location 287465N.5+50E

		· · · · · · · · · · · · · · · · · · ·						 	
			SAMPLES				 	 	
FROM	ТО	DESCRIPTION	NUMBER	FROM	TO	WIDTH			
0		OVERBURDEN							
6.0	18.8	BESA RIVER FORMATION - Black Shale.							
		@ 6.0-10.1 Broken Black Shale minin mixed everybunden		1 1			I		
		© 6.0-10.1 Broken Black Shale, minu mixed oursburden debris to 10.1 (end of casing). minor pyrite @ 10.1-16. Broken Black Shale bedding at 50° to core axis, calcite filled tractures.							
		@ 10.1-16 Broken Black Shale bert ding at 50° to							
		come axis calcite filled fractures		1.					
1		@ 160-178 Shale & Liney Shale occasional light				1			
		@ 16.0 - 17.8 Shale to Limey Shale, occasional light coloured limestone band @ 17.8-18.8 Shale to Limestone Transition Zone, typical							
1		@ 178-18.8 Shale to Limestone Transition Zone tunical							
		alternating linestone and shale layers							
188	38.0	DUNEDIN FORMATION - Limestone & Siliceous Breccia							
10.0		@ 18.8-20.4 Lt. t. Mod. Grey Limestone, few scattered fossil							
}		Arcoments calite Anotheres also analite and							
		Fragments, calcite fractures, also graphite and bitumen filled fractures.							
		1070.4-22.8 Reaf Brenzie rack main le fossil charments		1					
		@ 20.4-22.8 Rect Breccia, rock mainly fossif trayments flooded with carbonaccous material trau purite @ 22.8-38. Siliceous Breccia - silica flooded black bx.							
		217 B-38 Siliceous Breezes silice flanded black by		,					
		fere contened front from to fractione cartain		1					
	}	schite a de herite 20 8-30 vine another							
1	<u> </u>	LL 8-38. SITTLE ous pressia - sur la traver & prace DX. few scattered fossil fragments, fractures contain calcite and barite 29.8-30 vuggy fractures with clay gangue, 32-36 limey section		1					
	l	way Jungue,		11				 	
38.0	43.6	STONE FORMATION - Limestone.		++		11			
	10-	@ 38.0-43.6 Light Grey Limestme, bedding at 50° to							
	<u> </u>	cure axis.		<u> </u>		+		 	
				11		11			
	436	E.O.H.		<u> </u>		+1			
	11.2.0	1		11		است بر مرجع الم		 	 1

Sheet_____ of_

BEATY GEOLOGICAL LID. Consulting Geological Services	
Logged by D.G. Leighton Date Logged 28 Sept. 1987	
Date Logged 28 Sept 1987	
Drilling Begun 25 Sept. '87 Drilling Finished 26 Sept. 87	
Drilling Finished 26 Sept. 87	

a tra

E

E

DIAMOND DRILL RECORD

Property CAY Aread

Hole Bearing Vertical	
Collar Dip Angle - 90@ 1480m	
Dip Test: Depth NA Angle NA	
Total Depth9/.8 (30144)	

Hole No. \underline{DDH}_{10} Site $\underline{\#}_{4}$ Core Size $\underline{B.Q.}$ Claim Group Cay South Location $\underline{-87+65N-5+70E}$

[SAMPL	ES				
ROM	TO	DESCRIPTION	NUMBER	FROM	TO	WIDTH			
0	9.2	OVERBURDEN							
9.2	30.3	BESA RIVER FORMATION - Black Carbonaceous Shale.							
		@ 9.2-29.3 Broken Black Shale containing both liney							
		as well as siliceous patches, without corres-				<u> </u>			 _ _
		ponding colour change. Fractures are calcite filled, pyrite occurs as scattered blebs, v.f.g. disseminations and occasionally tracture filling. @ 11.2 bedding at 50° to core axis. @ 29.3-30.3 Black Shale permeated with silica	<u> </u>			ļ			
		filled, pyrite occurs as scattered blebs, v.f.g.				ļ			
		disseminations and occasionally fracture filling.							
		@ 11.2 bedding at 50° to core axis.							
	L	@ 29.3-30.3 Black Shale permeated with silica		ļ					
	1					┦───┤──			
3.3	91.8	DUNEDIN FORMATION - Reet Limestone & Siliceous Breccia.	·····	ļ		┦			
		F N.B. Siliceon Breccia has been included with The		ļ					
		Dunodin Formation for core logging purposes. In		ļ		<u> </u>			
		fact the precia unit is not projectly a formatimal				╂━━━━╋━━			
	ļ	Dunodin Formation for core logging purposes. In fact the breccia unit is not propuly a formational unit but part of an alteration zone @ 30.0-31.7 Siliceous Breccia, barite filled fracture							
		(a 30.0-31.7 Siliceous Breccia, barite filled tracture	·····			<u> </u>			
		matrix and disseminated pyrite @ 31.7 - 35.4 Siliceons Breccia, unusually liney, contains fossil fragments, dissem pyrite & 0.2m pyrite frag?		ļ		<u> </u>			
		@ 31.7 - 35.4 Siliceons Breccia, unusually liney, contains		•		<u> </u>		 	
	ļ	fossil tragments, dissem pyrite & 0.2 m pyrite fras?							
		@ 33m. (31.7-35.4 may be large block?). @ 35.4-73.5 Siliceous Breech, contains blocks up to				<u> </u>			
		@ 35.4 - 73.5 Siliceous Briccia, contains blocks up to				<u> </u>			 +
		0.5 m diam, of sil. shale, limes/one freet material.							
		Highly siliccous material mainly restricted to so called tingernail bressia which is timen grained Bx, which has barite throughout.				┨───┨──			 +
		so called tingernail pressue which is timen	• • • • • • • • • • • • • • • • • • • •	 		┼───┼──	<u> </u>		
		scained bx, which has barile Throughout.		<u> </u>		╂───╂──			 +
		@ 50.3 blebs galena associated with calcile veinlet.	· · · · · · · · · · · · · · · · · · ·	┟───┤		╂╂			 +
	!	10 51.2 - 51.6 - galena as above with calcite		L		1I	l	et_/	 <u> </u>

E

E

DIAMOND DRILL RECORD

E

ſ

Property_

Logged by	
Date Logged	· · · · · · · · · · · · · · · · · · ·
Drilling Begun	· · · · · · · · · · · · · · · · · · ·
Drilling Finished	

Hole Bearing_____ Collar Dip Angle_____ Dip Test: Depth_____Angle___ Total Depth_____

Hole I	NO	DDH	#/0	Site	#4	Cont	()
Core	Size_						
Claim	Grou	p					
		•					

E

			SAMPL							
ROM TO		NUMBER	the second s		WIDTH			Ga%	Ge %	
	@ 56.0 disseminated orange sphalerite	65053	63	64	1m			.00/	.007	
	@ 56.8-73.5 mainly strongly prescripted section	65054	64	65	11m	0.20		. 00/	.00/	
	containing galena & sphalerite associated barit	65055	65	66	1 m	0.14		. 00 /	.002	
	@ 56.0 disseminated orange sphalerite @ 56.8-73.5 mainly strongly steeciated section containing galena & sphalerite associated barity some v.f.z. pyrite.	65056	66	67	1 m	0.17		.001	.003	
	211	65057	67	68	1 m	0.11	1.33	. 00/	.002	1
		65058	68	69	Im	0.10	1.75	. 00/	.003	
		65059	70	7/	Im	0.16	.41	.00/	. 00/	
		65060	7/	72	Im	0.11	1.33	. 00/	.002	
		.65061	72	73	1m	0.22	1.35	. 00/	.002	
	@ 73.5-80.1 rock brecciated but much less intensely									1
	@ 73.5-80.1 rock brecciated but much less intensely Than above, some particles very liney which might reflect degree of Sifferential siticities time									1
	reflect dearge of differential siticities time									
	@ 79.6 - 0.3 m highly prescripted									1
	@ 80.4. 82. large block reef material to hom diameter, some									1
	@ 79.6 - 0.3 m highly prescigted @ 60.4. 82. large block feet material to 1.0 m diameter, some barite				1					
	@ 86.4-90.5 cone with scattered Ens plus minor PS									
	@ 86.4-90.5 zone with scattered Ens plus miner PLS & diss. purite. @ 89-89.8 SPECIMEN collected for detailed study.									
	@ 89-89.8 SPECIMEN collected for detailed study.	· · · · · · · · · · · · · · · · · · ·								
			•							
	@ 9/8 E.O.H.				T					
					1					
	·	·····					1			
								1		
		· · ·			1					
					1		[1		
			1						Γ	
		······································					I		1	
					<u></u>		<u></u>	2	of_	-2

E

E

E

BEATY GEOLOGICAL LTD. Consulting Geological Services eighton Logged by 1987 20

Date 1	naaed_	<u>~</u> _	Sept.	170	<i>T</i>	
Duito -	• • • • • • • •	21	C. A	.07		
Drilling	Beaun.	<u>~ 0</u>	Sept.	07		
. Or ming			- 6 -			
Drilling	Finishe	d a	<u>7 Sept.</u>	<u>ک</u>	*	
Unimity.						

Hole Bearing	250		
Collar Din Angle	-45° @	1480	m
Dip Test: Depth_	62.0	Angle_	-45°
Dip Test: Depth_ Total Depth	52.5 (/	0077.)	

DIAMOND DRILL RECORD

Hole No	DH# 11	Site #4	
Core Size	B.Q.		
Claim Group_ Location	<u>Cay Sou</u> 82+651	<u>TK</u> [5+705	

Property CAY Area 2

				SAMPL	ES	I				
FROM	TO	DESCRIPTION	NUMBER	FROM	то	WIDTH				
0	7.0	OVERBURDEN								
							<u></u>			
7.0	13.5	BESA RIVER FORMATION - Black Carbonaccous Sale. @7.0-13.5 Black Friable Shale, weak dissem. pyrite, weathered and rusty to about 11m, bedding at 30° to core axis.					···-		ļ	
		@7.0-13.5 Black Friable Shale, weak dissem. pyrite,		ļ				ļ		
		weathered and rusty to about 11m, bedding								
		at 30° to core axis.				<u> </u>		· [ļ	
1. [<u> </u>		
13.5	41.2	DUNEDIN FORMATION - Limestone & Silicified Limestone		·}}						
·		@ 13.5-24. Fossilil your Limestone, weakly silicitied		l			.	<u> </u>		
		scattered tossils bedding at BO-90° to core		ļ				<u> </u>	ļ	
		axis pyrite weak to mode mainly as		<u> </u>					<u> </u>	
		DUNEDIN FORMATION - Limestone & Silicilied Linestone (@ 13.5 - 24. Fossili/crous Linestone, weakly silicified, scattered tossils, bedding at BO-90° to core axis pyrite weak to mod. mainly as disseminations but occasionally as blebs, light coloured tractures with calcite, in some cases with bitumm. @ 24.0 - 35.0 Limestone low speratic tossil content; hedding at BS° to core axis @ 35 41.2 Reef to Limeston Transition Zone, colour changes from Cark grey to light stey, tossil; Dissegment at 36.5, pyrite content drops off to endy trace amounts by 41.		ļ		<u> </u>		<u> </u>		
		light coloured tractures with calcite, in							ļ	
		Some cases with Situmm		<u> </u>				· · · · · · · · · · · · · · · · · · ·		
		@ 24.0-35.0 Lines The low sporatic tossil content;		ļ				<u> </u>		
		bedding at 85° to core axis				┼───┤				
		@3541.2 Reet to Linestone Transition tone, colour								
		changes from Cark grey to light grey, tossils								
ļ		dissagreen at 36.5 pyrite content drops off		ľ						
ļ		to enly trace amounts by 41.		┦────┤					<u> </u>	
	1			╂─────┤						
#1.2	62.5	STONE FORMATTON. Grey dimestone generally				┦───┥				
<u>}</u>		typical light grey Stonetm. rock, stypical		<u> </u>					 	
<u> </u>		with carbonateous trugture infillings includ.		┼─────┤						
ļ		STONE FORMATTON. Grey dimestone generally typical lisht grey Stone Fm. rock, styolitic with carbonateous trugture infillings in clud. some CaCO2, bedding at 80° to core axis.		<u> </u>				+	{	
ļ								+		
<u>}</u>	72 0			┨━━━━━━┨				+		
	64.3	E.O. H.		<u> </u>		I		1	L	L

Sheet_

of

E

F

BEATY GEOLOGICAL LTD. Consulting Geological Services ogged by _____G. ton 987

Date Logged <u>30 Sept</u>. Drilling Begun <u>27 Sept</u>. 187-Drilling Finished 28 Sept. 87

DIAMOND DRILL RECORD

Property CAY Area 2

Hole Bearing <u>250°</u> Collar Dip Angle<u>80° @ 1480m</u> Dip Test: Depth<u>90m</u> Angle<u>s</u> Total Depth<u>93.3m (30677)</u> Angle__ 80*

Hole No. _____ Sile #4 Core Size B.Q. Claim Group <u>Cay South</u>. Location <u>287+65N</u>, 5+70 E

<u></u>				SAMPL	ES	T	······································	 *****		
FROM	то	DESCRIPTION	NUMBER	FROM	то	WIDTH				
0	6.7	OVERBURDEN								
6.7	16.0	BESA RIVER FORMATION - Black Shale						 		
		@ 6.7-9.2 Liney Rubble, O.3 m gouse @ 7.5 min. dissem f.g. pyrite.						 		
		dissem f.g. purite		· ·						
		@ 9.2 - 16. Black Carbmaccons Shale. with very lime						 		
		sections, bedding at 50° to core axis.						 		
		@ 12.2 - 16. Shall to Limestone Transition Zone with						 		
		@ 9.2-16. Black Carbinaccous Shale with very liney sections, bedding at 50° to core axis. @ 12.2-16. Shale to Limestone Transition Zone, with alternating shale & grey imestone bands.				<u> </u>		 		
		_				<u> </u>		 		
16.0	93.3	DUNEDIN FORMATION - Reet Limestone 4Si Bressia.				┦────┤		 		
		@ 16.0 - 21.3 Limestone, dark grey time grained 1st. with minor scattered tossil tragments bending at 50°, irregular barite and calcite veinlets						 		
		minor scattered tossil tragments bending at 50°,						 <u> </u>		
		irregular barite and calcite veinlets				<u> </u>		 		
·		@21.8 - 24. Reet Breccia, rock composed mainly		I		ļ		 		
		tossil tragments, matrix mainly carbonaccous.	. <u></u>							
. <u></u>		@24-57.5 Limestone, scattered tossil tragmint,								
		generally preciated, very high bitumen and graphite						 <u></u>		
		content beyond Hym core anite yuggy (parama		ľ		<u> </u>		 		
		bitumen washed and by drill water, seyand						 		
		51.5 to 57 markedly less prescription rock here								
·		mostly light grey limestone (blocke?), metally		·				 		
·		Irregular barili and calor to veinlels @21.8 - 24. Reef Breccia, rock composed mainly tossil tragments, matrix mainly carbonaccous. @24-57.5 Limestone, scattered toscil tragments genually precciated very high bit umen and graphile content beyond 44m core and to yugg, (portaga) bitumen washed ont by drill water, 'se, and 51.5 to 57 markedly tess precciation rock here mosily light grey limestone (blocks?), metallig content yery low. This section contains calci to & baria filled tractures - typically accompanied by bitumen				┼───┼		 		
		bari a tilled fractures - Typically accompanied by				┼───┼		 		
·		bitumm.		 		┼───┼		 		
		@ 57-5-93.3 Breccin - Strong I. Silicitiad - sulphide mineralization from 57.8, Strong 58.5-66, mod.				┼───╂		 		
		mineralization from 57.8, Strong 58.5-66, mod.				┼───╂		 ·····		
		66 - 74 m.					ł		L	l

Sheet

01

	BEAT	Y GEOLOGICAL LTD. DIAMOND DRILL REC ; Geulogicul Serveces	ORD	Property								
illing	Beau	nDip Test: DepthAngle.	Hole Bearing Collar Dip Angle Dip Test: DepthAngle Total Depth			Claim Group						
				SAMPL								
NOF	то	DESCRIPTION				the second s			Gail.		<u> </u>	
		<u> </u>	65062	58.5			0.03		0.00/		┢	
			65063	59.5			0.01		0.001		┣	
			65064	60.5			0.01		0.001		┢	
			65065		62.5		0.01		0.001		┣	
			65066	62.5	63.5	1m	0.02		0.00/		┢──	
			65067		65.5		0.0/			0.00/	┢─	
			65069	66.5					0.001		┢─	
			65070	67.5					0.00/		\vdash	
			65070	67.5	60.3	1m	0.00	1. 10	101007	1		
		258-740 back is fill situation breast minule							+			
		058-74.0 Lock is highly silicified breccia minualization grade occurs in association with finer particle							1	f	\square	
	<u></u>	Size (up so called finger nail precise	<u> </u>					1	1			
		a 74.0-93.3 black piliceons breccia - rock seems to		1				1		1		
		be silicified limestone (no tossil traiments).						1	1			
	. <u> </u>	Weak to moderate zinc \$4.5 - \$6.5 bedding at						1	1			
		60° to core axis.	65071	84.5	85.5	Im	0.01	1.83	0.00/	0.002		
			65072	85.5			0.01	1.22	0.001	0.001		
		Towards bottom of hole, limestone blocks		•								
		start to appen										
								<u> </u>		<u> </u>		
								<u></u>	<u> </u>	Ļ	_	
·								ļ	<u> </u>		_	
								ļ			–	
				ļ				.	<u> </u>		┢	
								ļ			┢	
								ļ			┢	
		L	L			L	L	Sheet.	1		L	

Shee

E

E

ſ

E

E

DIAMOND DRILL RECORD

a la constante da la constante

Property CAY Area 2

ogged by D.G. Leighton
late logged SV SCPI. 1997.
Irilling Begun 29 Stor. 87
rilling Finished 30 Sept. 87

Hole Bearing_ <u>250°</u>	
Collar Dip Angle50°	@ 1473m
Dip Test: Depth 100m	Angle50°
Total Depth	(361FA)

Hole No.	DDH#13 Site#s
Core Size	<u></u> <u></u>
Claim Gro	up Cay South LB7470N - 6+20E
Location	LOF470N - 6+20E

				SAMPL	ES						
OM	TO	DESCRIPTION	NUMBER	FROM	TO	WIDTH	P3 · 1.	25%	Gail.	Ge %	
0	6.1	OVERBURDEN									
.7	53.8	BESA RIVER FORMATION - Black Shale									
-		@ 6.1-52. Shale and Limen Shale, rock relativel						ļ	· ·		<u> </u>
		soft disseminated public (occasing a upinlat)			L	<u> </u>	<u> </u>	L	ļ		
		@ 52 58.8 Shale To Limestone Transilion Zone, alternating shale & limestone bands.						<u> </u>			<u> </u>
		@ 52 58.8 Shale To Limestone Transition Zone,				ļ					<u> </u>
		alternating shale & linestone bands.						ļ	ļ		
		S						ļ	l	ļ	
8	110.1	DUNEDIN FORMATION - Limestone & Siliceous Breccia.		<u> </u>	ļ			1	ļ		_
		@ 53.8-60.2 Fossiliterons Reef Limestone rock is			ļ			ļ	ļ		–
		@ 60.2-61.8 Siliceous (limestone?) Rock downot		<u> </u>		Į		<u> </u>	 		
		@ 60.2-61.8 Siliceous (limestone ? Rock downet		<u></u>					 		┼──
		react to tel in spite of liney appending and			ļ						–
		foscil tragments:		ļ	ļ			ļ	 		╂
		261.8 - 65.4 Possiliterous Limestone over all rock similar			ļ			 	ļ		
		to 54-60 but much lower percentage of fussils.									┢──
		2 65.4-89.2 Similar to Siliceons Limestone (60-61)			 				<u> </u>		┼──
		above scattered fossil fragments, liney sections		<u> </u>					ļ		┼─
		gradually give way to streight sitile and		<u> </u>							
		gradually give way to streight sitilia and calcite Alled fractures give way to barite filled									+
		Tractures, rock becomes progressively more	·						<u> </u>		1
		brecciated atty 70.5m. Weakly mineralized with		· [····	<u> </u>			<u>├</u>			+
		galena & sphalerite acrociated with rock containing	15003	72.0			0.07	0.36	0.00/	0.00/	┢──
		Obarite @ 89.2 intense brecciation gone ends @ 89.2-91 Mainly Black Shale with 5-10% U.t.s. FeS.	65002			1.5m					\vdash
		@ 89.2- 11 Mainly Black Shale with 5-10% U.T. e. Tes	65001	13	17.3	1.3 m	0.28	4.70	10.007	1.200	\vdash
		Zone contains minor line, & sherly sub-zones.		1	ļ			{	 	ł	

Sheet_____ of___

Ē

E

E

ſ

E

DIAMOND DRILL RECORD

Property CAY Area 2

Logged by D.G. Leighton Date Logged <u>30 Sept. 1987</u> Drilling Begun Drilling Finished

Hole Bearing_____ Collar Dip Angle_____ Dip Test: Depth_____Angle_____ Total Depth_____

Hole No	(cont.)
Core Size <u>B.a.</u>	
Claim Group	
Location	

6				SAMPL	ES		 		
FROM	TO	DESCRIPTION	NUMBER	FROM	τo	WIDTH			 <u> </u>
		@ 91-97 Mixed Zone, contains very to mod siliccous black shale, breccialed and non brecciated plus minor scattered fossil tragments, bedding at 80° to core axis, minor purite @ 97-104.6 Brecciu - Fingernail or Fing Grained Type, weakly to mod. well mineralized with galenn sphalerite = pyrite, from 103-104.5 sulphidar only visible on split surfaces & pyrite main component:				<u> </u>	 		ļ
		black shale, brecciated and non brecciated plus	<u>.</u>				 		ļ
		minor scattered fossil fragments, bedding at 80°					 		 ļ
		to core axis, minor pyrite					 		 <u></u>
		@ 97-104.6 Breccia - Fingernail or Fing Grained Type,					 		 _
		weakly to mod well mineralized with galena					 		 <u> </u>
1		sphalerite + pyrite, from 103-104.5 sulphidas		ļ			 <u> </u>		 <u> </u>
		only visible on split surfaces & pyrite main		ļ			 		
		component.		ļ			 		 <u> </u>
		· · · · · · · · · · · · · · · · · · ·					 		 <u> </u>
104.6	<u>//0./</u>	STONE FORMATION - Siliceous Limestone. @ 104.6-110 Gradatinal from mod. to weakly siliceons limestone		ļ			 		 <u> </u>
		@ 104.6-110 Gradational from mod. to weakly		<u> </u>			 		
	<u> </u>	siliceons limestone					 		<u> </u>
3 <u>.</u>							 		
1	<u>//o./</u>	E.O.H.					 		 <u> </u>
<u>i.</u>							 		 +
1	. <u>.</u>						 		 +
4							 		 +
2				ľ — –			 		
							 		 +
1							 		
2				<u> </u>			 		
<u>}</u>							 		 <u> </u>
							 		 1
				<u> </u>			 +		 1
							 		 t
<u>{]</u>				11			 Sheet_	2	 2

1

E

DIAMOND DRILL RECORD

F

E

Property CAY Area 2

.

Logged by D.G. Leighton
Date Logged 4 Oct. 1987
Drilling Begun 1 Oct. 187
Drilling Finished 2 Oct. '87

Hole Bearing 250		
Collar Dip Angle60°	@ 1473m	
Dip Test: Depth 135	Angle - 60°	
Dip Test: Depth <u>135</u> Total Depth <u>137.3 m</u>	(450 ft.)	

Hole No	DH#14	Sile#	5
Core Size	B.Q.		
Claim Group	Car So	with	
Location	87+70	N 6+	20E

		· · · · · · · · · · · · · · · · · · ·	Į	SAMPL	ES						
FROM	то	DESCRIPTION	NUMBER	FROM	то	WIDTH	P6%.	22%	Gail.	Ge %	
0	6.1	OVERBURDEN									
								L			
6.1	54.6	BESA RIVER FORMATION - Black Shale						<u> </u>	l		
		@ 6.1-18.6 Broken Shale, pyrite bed to Hem	l					ļ	ļ		
		Tickbest	Į					ļ	<u> </u>		
		@ 18.6 - 54.6 Typical Black Carbonaccous Shale		ļ					ļ		
		occasional pyrite bed to 4cm thickness &									
		pyrite blebs, bedding 60-80'to core axis,						ļ	ļ		
		accasional clay couse seam generally parallel						ļ	<u> </u>	<u> </u>	
		to bedding, pyrite in some areas up to 10%							<u> </u>		
		to bedding, pyrite in some areas up to 10%. of rock volume. increasing downward.	[<u> </u>	ļ		
	1200			<u> </u>							
54.6	120.5	DUNEDIN FORMATION - Limestone & "Chert Breccia.									
<u></u> <u> </u> <u> </u>		@ 54.6-102.5 Coarse Brescia, blocks of lineslone							<u></u>		
[]		shale and fossiliterous limestone to 0.2 m dia.	65033	(AC	710	2m	0.01	0.01	0.00/	0.00/	
		matrix mainly barite (some calcite). 70. Sarea low silica - high line content, section variably	65034	71.5	72	15	0.29	0.06	1	0.00/	
<u> </u>		mineralized. PSS & ZnS disseminated and fract.	65035	72	73				0.004		
		filling with Basoy Bi-coloured sphalerite is	65036	173	74				0.00/		
		red and pale yellow (askind).	65037	74	75			the second s	0.00/		
		@ 87 Start patches 10-20 cm finger nail breccia	65038	75	76				0.001		
		@ 96-100 Rock Fingen Nail Bx with Basoy	65039	76	77				0.00/		
		@ 1025-120 Chart Braccia - highly siliconys and									
		fractured with barite veinlets, silica content	65042	96.5	97.5	Im	0.05	0.55	0.002	0.00/	
6		ARANUALL INCREASES - MB WITHIN DIECCIA	65043	97.5	98.5	Im	0.07	3.84	0.001	0.004	
		section & block to 2.5 m diam also SPECIMENS							L		
		collected for further study @ 61.0, 87.1, 95.6.	65021	115	116.5	1.5m	0.04	0.63	0.001	0.00/	
		108.4.						<u> </u>	I		

Sheet_____ of____

BEATY GEOLOGICAL LTD. Consulting Geological Services
any D.G. Leighton

DIAMOND DRILL RECORD

E

E

Property CAY Area 2

Logged by D.G. Leighton Date Logged 4 Oct. 1987 Drilling Begun 1 Oct. 187 Drilling Finished 2 Oct. 187

E

Angle

Hole No.	JDH#	14	(con	<u> </u>	
Core Size					
Claim Gro	up				
Location_					

		SAMPL	ES				 	
FROM TO DESCRIPTION	NUMBER	FROM		WIDTH				
120 137.3 STONE FORMATION - Limestone 120 137.3 STONE FORMATION - Limestone, siliceous in vicinity of contrict, Score content decreasing gradually bedding at 70° to core axis, SPECIMEN collected @ 133 for additional study.								
@ 120-137.3 Light Grey Limestone, siliceous in vicinity							 	ļ
of contact, Sill content decreasing gradually, bedding							 	ļ
at 70° to core axis, SPECIMEN collected @ 133 for							 	
additional study.							 	
				<u> </u>			 	
				<u> </u>			 	· · · · ·
	ļ				·		 	
				+			 	
		1		<u> </u>	<u></u>		 	
		1						
		,						
		1						
								L
								ļ
							 	
							 	
		1					 	
							 ·	
		L					 	
	L					L	 	Ļ

Sheet _____ of ___

f

F

E

DIAMOND DRILL RECORD

Property CAY Area 2

ogged by D.G. Leighton
Date Logged 5 Oct. 1987
Vrilling Regun 3 Oct 87
Filling Finished 4 Oct ' 87

Hole Bearing 250°
Collar Dip Angle -70° @ 1473m
Dip Test: Depth <u>115</u> Angle <u>-70°</u> Total Depth <u>115.9 (380.44.)</u>
Total Depth (380ff.)

Hole No. DDH#15 Site #5	
Core Size	
Claim Group Cay South	
Location 287+70N-6+20E	

44

				SAMPL							
ROM	то	DESCRIPTION	NUMBER	FROM	TO	WIDTH	P5%.	25%	Gail.	Ge %	
0	6.4	OVERBURDEN									
								ļ			<u> </u>
5.4	67.2	BESA RIVER FORMATION. Black Carbonaccous Shale						ļ			<u> </u>
		@ 6.4-66.4 Black Shale, bedding at 60-70° to core axis, occasional pyrite beds 1-2cm thick, also									
		axis, occasional pyrite beds 1-2 cm thick, also						<u> </u>			
	` 	axis, occastonal pyrile pros 1-20m /210K, also occasional pyrile blebs @ 65.7 harrow gouge seam. @ 66.4-67.2 Black Shale to Limestone Transition Zone, alternating shale & limestone layers @ 67m, Zom sphalerite parallel to bedding.						 		 	┣───
		@ 66.4-67.2 Black Shale to Linestone Transition Zone,						<u> </u>		<u> </u>	
		alternating shale & limestone layers a 6/m, Zem						<u> </u>			├
		sphalerite parallel to bedding.					· · · · · · · · · · · · · · · · · · ·	[<u> </u>
								<u> </u>			
7.2	///.0	DUNEDIN FORMATION - Siliceous Breccia @ 67.2-111. Flight, Siliceous Breccia @ 67-2-70 matrix grades from calciti through calcite plus bar to to Oburite @ 67.8-70 minor ZnS, large blocks black						<u> </u>			
		@ 67.2-111. Flighty Siliceous Breecile @ 67-2-10 matrix						<u> </u>			<u> </u>
		arudes from calculi through calcule plus bar & to									<u> </u>
		hurile @ 61.8. 10 minor Zns, large blocks black						}			
		shale to 1.5 m diam. between 73-77.5 (banded pyrite						<u> </u>			
		& blobs in shale blocks), zinc weak to moderate from 82-103 with accompanying galena SPECIMEN for firther study collected 108-0108.6, @ 111. narrow	65048	97.8	984	0.60	0.05	2.33	0.001	0.002	—
		AL-103 WITH accompanying galena SFECINIEN TON	03078	11.0	70.7		0.0 5				
		vein of red sphalarite.		,				<u> </u>			
		Vein of Tex Sphaleriu.						1			
110	1150	STONE FORMATION - Silicitied Limestone?						İ			
//. 0	113.1	Rach from 111-115.9 not contain but seens to be									
		silicities Star En 1st with accord & see hant		1.							
		bedding at 70° to come axis - no evident pressic Time									
	115.9	STONE FORMATION - Silicified Limestone? Rock from 111-115.9 not certain but seems to be silicified Stone Fm. Lst. with apparent remnant bedding at 70° to core axis - no evident brecciation E.O.H.		1							
											Ĺ

Sheet_____ of_

BEATY GEOLOGICAL LTD. Consulting Geological Services
· · · · · · · · · · · · · · · · · · ·

DIAMOND DRILL RECORD

Property CAT Area 2

£.

ogged by D.G. Leighton	
into Longed 6 Ucl. 1787	
Trilling Begun 5 Oct. 87	
rilling Finished <u>50ct. '87</u>	

Hole Bearing	<u> 80°</u>		
Collar Dip Angle.	-55	•	
			-55
Dip Test: Depth_ Total Depth	93.3	(306 ft.)	

Hole No #16 Site # 5
$C_{\alpha\alpha\alpha}$ Simo $B_{\alpha}Q_{\alpha}$
Claim Group Cay South Location 287+70N-6+20E
Location <u>287+70N-6+20E</u>

				SAMPL							
ROM	то	DESCRIPTION	NUMBER	FROM	TO	WIDTH	Ps %.	Zn%	Ga'l.	Ge '/.	
0	11.6	OVERBURDEN									
									1		
1.6	49.6	BESA RIVER FORMATION - Black Shale						<u> </u>		!	
		@ 11.6-48.5 Typical Black Carbonaceous Shale,									
		bedding 80-85° to core axis, pyrite as fine								!	Ļ
		bedding 80-85° to core axis, pyrite as fine Aisseminations, blebs & bedding layers @ 48.5-49.6 Shale to Limestone Transition Zone,						ļ			
		@ 48.5- 49.6 Shale to Limestone Transition Zone,							1	ļ!	<u> </u>
		alternating shale - limestone layers our 1.5m.						ļ	ļ	!	\vdash
			L					ļ	ļ	ļ	┡
9.6	68.0	DUNEDIN FORMATION - Reet Limestone & Sil. Breccia @ 49.6 - 58.4 Fossiliterous Limestone, medium stey limestone consisting of fossil tragmat commuted in lime mud, fossil tragments increase from minor component to major component with								 	┢
		@ 49.6 - 58.4 Fossiliterous Limes Tone, medium ster	l	ļ		ļ				 	┢
		limestone consisting of fossil trasmonts cemented				L			<u> </u>	 !	┣
		in line mud, tossil tragments increase from								<u> </u>	⊢
		minor component to major component with							<u> </u>	 '	┢
		a se.4-64.8 Siliceous Breccia, matrix salcite srading			10.5		A 116	1.00	1.001	4 9 7 1	┢
		a 58.4-64.8 Siliceous Breccia, matrix calcite smaring	65050	61.5				0.05		0.00/	┣
		To praite and card lead compart increases from	65049	62.5					0.00/		⊢
		week to moderate with increasing barite a 64.8 - 68.0 Limestone Breccia, grading in colour from	65051	63.5	64.5	/m	0.13	0.57	0.001	0.003	┢
		10 64.8 - 68.0 Linestone Breccia, grading in colour from	(ľ (co	(7.0		(10		0.00 //		┢
		black to med grey calcitet filling, well mineralized.	6305Z	66.0	67.0	1m	0.28	1.52	0.004	0.00 2	\vdash
									<u> </u>	 	┢
<u>9.0</u>	93.3							<u> </u>			+-
		068.0 - 93.3 Lizzt Grey Stylite Limestone heavy								<u> </u>	┢
		Bitumen and pyrite on seams, bedding at 65° to						1			\vdash
		core axis from 80.0 m Lst. Las cherif looking oppearance due to v.t.g. nature. SPECIMEN at						<u> </u>	<u> </u>		F
		oppearance due to v.t.g. hature. STECIMEN aC									t
	923	92m E.O.H.						 			\vdash
	12.2		L			است		L	1	·	

Sheet_____of_

E

E

E

BEATY GEOLOGICAL LTD.

DIAMOND DRILL RECORD

f

CAY Area 2 Property_

ogged by D.G. Leig	Lton
late Logged 7 Oct	1987
Filling Begun 6 Oct.	'87
rilling Finished 6 Oct.	'87

Hole Bearing 250°
Collar Dip Angle45°@ 1503 m
Dip Test: Depth 27.8 Angle -45°
Dip Test: Depth_ <u>27.8</u> _Angle_ <u>-45°</u> Total Depth_ <u>27.8 (9/44)</u>

Hole No. DDH#17 Site#6 Core Size_B.Q. Claim Group<u>Cay Sout</u> Location_L87+85N-5+25E

				SAMPL							
ROM	то	DESCRIPTION	NUMBER	FROM	TO	WIDTH	P5%.	2.1%	Gail.	Ge %	
0 .	3.1	OVERBURDEN									
								L			
3.1 1	16.0	DUNEDIN FORMATION - Siliceous Breccia - minor Lst.		<u> </u>				<u> </u>	ļ		
		@ 3.1-4.4 Limestone, dark grey, bedding at 25° to core axis, blebs pyrite @ 4.4-16. Siliceous Breecia, fractures barite filled, minor late stage calcite filled vugs @ 1111.5 calcite veine with galena, 11.5-14 mod. galena and sphalerite, 14-15 blebs pyrite				1		ļ	ļ		
		axis blebs pyrite	ļ	<u> </u>				ļ		ļ	
		@ 4.4-16. Siliceous Breecia, Fractures barite filled,	65045	11	/2	1m				0.038	
		minor late stage calcite filled vugs @ 1111.5	65046	12	13	1m		0.24			
		calcite veine with galena, 11.5-14 mod. galena	65047	13	14	1m	0.0/	2.73	0.00/	0.006	
		and sphalerite 14-15 blebs pyrite						ļ			
								<u> </u>			
6.0 2	27.8	STONE FORMATION - Grey Limestone						<u> </u>			
		@ 16.0 - 27.8 Typical styplitte Limestone occasional calsite filled tracture, bedding at \$5° to core	[<u> </u>			
		Calcile tilled tracture, bedding at 185 to core	[┨─────							
		atis, minor carbonaceous content on tractures.	l								
¥	27.8	E.O.H.	<u> </u>					+			
								<u> </u>			
				l							
											_
			<u> </u>					1			
<u> </u>						1		1			
				1		1		1	1	+	
				t				1	t		
				1				<u> </u>	1		
								1	<u> </u>		

Sheet_____ of_

DIAMOND DRILL RECORD

£

F

Property CAY Area 2

ogged by D.G. Leig	hton
Date Longed 10 Oct.	1987
Julling Regun 7 Oct.	87
Drilling Finished 9 Oct.	187

Hole Bearing Vertical Collar Dip Angle <u>90°</u> Dip Test: Depth <u>NA</u> Angle <u>NA</u> Total Depth <u>35.4 (11677)</u>

				SAMPL	ES	1				
FROM	TO	DESCRIPTION	NUMBER	FROM	TO	WIDTH				
0	4.3	OVERBURDEN								L
4.3	19.4	DUNEDIN FORMATION-Limestone Siliceous Breccia								
		@ 4.3 - 12 Limestone and Limestone Breccia prescia						<u> </u>		
		begins at 5.2, matrix CaCOs, bedding at 45°						ļ		
		@ 4.3 - 12 Limestone and Limestone Siliceous Breccia begins at 5.2, matrix CaCOs, bedding at 45° To core axis, scattured tossi is from 5.2-11.0, gouge seams at 4.6 & 10.8. @ 12.00-19.4 Siliceous Breccia, two stages of brecciation with SiO2 cement on first stage & Basoy in second stage. 12.5-13. fine dissem.				ļ		ļ		
		gouse seams at 4.6 & 10.8.				ļ		 		
. <u></u>		@ 12.00-19.4 Siliceous Breccia, two stages of								
		breechalion with Siloz cement on first stage &						 		
		Basoy in second stage, 12.5-13. fine dissem.								
		pyrite & occasional bleb of galena, 13-16.6 minor sphalerite and dissem, galena (sulphides) apparently associated with barite), some bitumen throughout this section.				┼───┤				
		sphalerill and dissem, galera (sulphidest								
		apparently associated with parile), some								
,		Billimen Throughout INS Section.								
1011	254	STONE FURMATION - Massive Grey Limestone.						1		
14.7	53.7	@ 19.4-35.4 Typical hight Grey Limestone, bedding at 55-60° to core axis, occasional hairline fracture parallel to bedding containing Carbonaccous material.		+		<u> </u>	<u> </u>			
<u></u>		at sea 60° to came axis accorianel hair line				1				
		fractive accellent produce configure		,				1		
		Cachen accents material						1		
	35.4	E.O.H.								
.										
										L
										
										
								Į		
								L	l	ليسب

Sheet_____ of___

E

E

F

E

- E

DIAMOND DRILL RECORD

CAY Area 2 Property_

Logged by D.G. Leighton	
Logged by Date Logged /3 Oct. 1987	•
Drilling Begun 9 Oct. 87	
Drilling Finished 12 Oct. '87	•

Hole Bearing <u>Vertical</u> Collar Dip Angle<u>90°</u> Dip Test: Depth<u>NR</u>Angle_ Total Depth<u>30.8 m (101ft)</u> Angle_NR

DDH#19 Site #7 Hole No. DDH#19 Si Core Size B.Q. Claim Group Cay Sourth Location 287+90N 4+60E

[SAMPL	ES					
FROM	TO	DESCRIPTION	NUMBER	FROM	TO	WIDTH				
0	1.5	OVERBURDEN								L
		·							· ·	<u> </u>
1.5	7.0	DUNEDIN FORMATION Siliceous Breecia								
		@1.5-7. Siliceons Breccia, massive black rock	<u> </u>							ļ
		with barite, limonite of fractures to 45m,								
		minon galence associated with the barite, no								<u></u>
		sphaltrite, few blebs pyrite especially near				·			1	<u> </u>
		DUNEDIN FORMATION Siliceous Breccia @1.5-7. Siliceous Breccia, massive black rock with barits, limonite of fractures to 45m, minon galena associated with the barits, no sphaltrite, few blabs pyrite especially near limestone contact.	I	ļ						
			ļ			┦───┦──				
7.0	30.8	STONE FORMATION - Massive Lt. Grey Linestone. @ 7.0-30.8 Styplittic Limestone typical of Fm., bitumen on seams, bedding 50-60° to core axis, some pyrite associator with bitumen	ļ			┦┦				
		@ 7.0-30.8 Studitic Limestone typical of Fm.	<u> </u>	1		<u> </u>				
		bitumen on seams, bedding 50-60° to core				<u> </u>				
		axis, some pyrite associator with bitumen								
	50.8	E.O.H.	_							
						__				
			ļ							
			_	1		<u> </u>				
			 							
 			[ľ		- <u>{</u> {				
<u> </u>										+
				<u> </u>		╉━━━━╉━━				1
			<u> </u>	<u> </u>		┨				
 						╂───┤──				1
 				<u> </u>		┨───┨──			+	+
			·····	<u> </u>		+			+	1
			· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>			+	1
L			I			<u></u>	<u></u>	et		1

DIAMOND DRILL RECORD

CAT Area 2 Property_

Logged by D.G. Leighton	
Date Logged 15 October 1987	
Drilling Regul /2 OCC. 87	
Drilling Finished 13 Oct. 187	

Hole Bearing 250°	
Collar Dip Angle - 45°@ 1520m	
Dip Test: Depth_NA_Angle_NA	_
Dip Test: DepthAngle_Angle_Ang	-

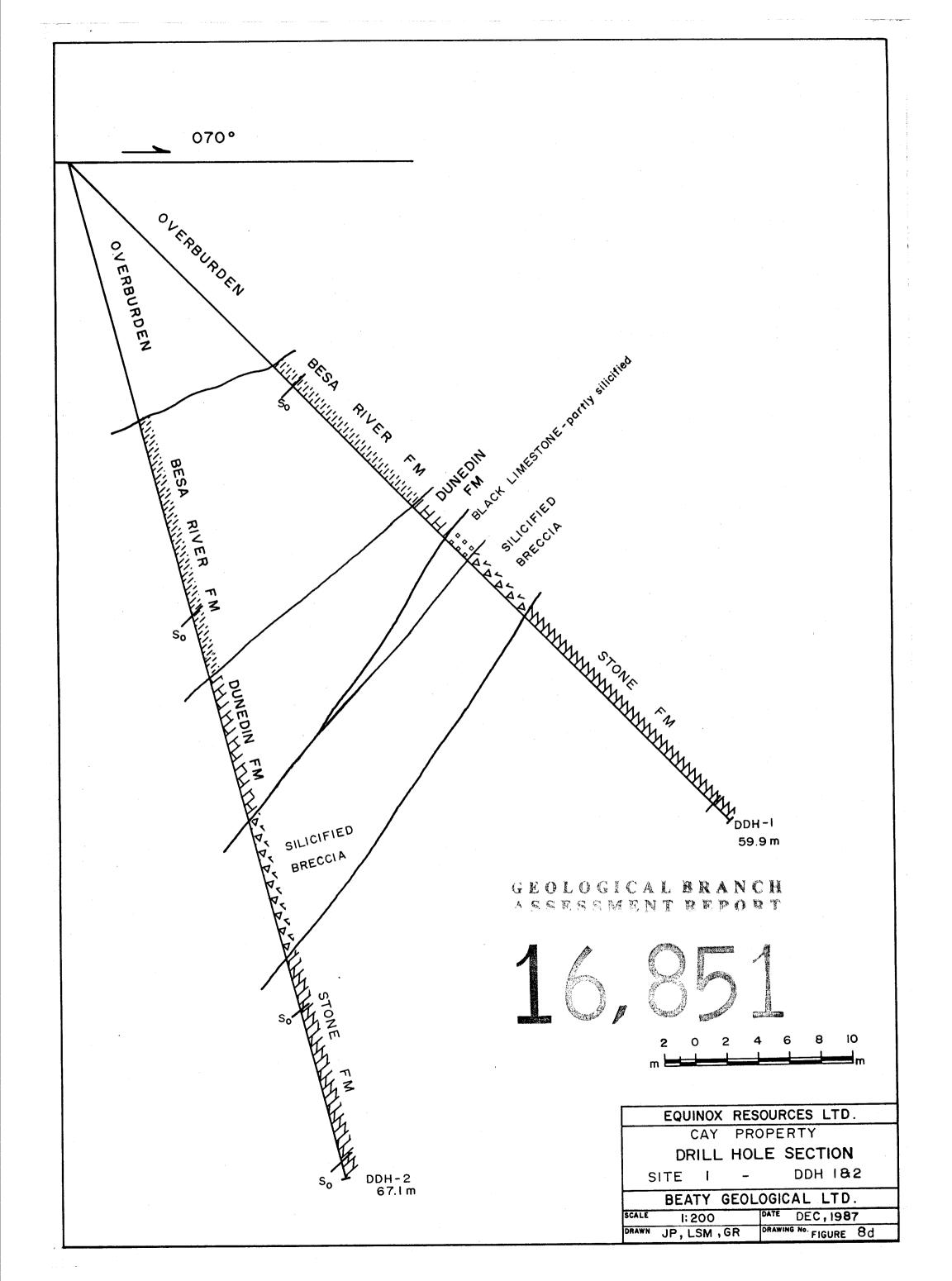
DDH#20 Site #7 Hole No. $D \mathcal{D} \mathcal{H}^{\#} \mathcal{Q} \mathcal{O}$ Site $\# \mathcal{F}$ Core Size $\mathcal{B} \mathcal{Q}$. Claim Group Cay South Location $\mathcal{L} \mathcal{B} \mathcal{F} + \mathcal{G} \mathcal{O} \mathcal{N}$ - $\mathcal{H} + \mathcal{G} \mathcal{O} \mathcal{E}$

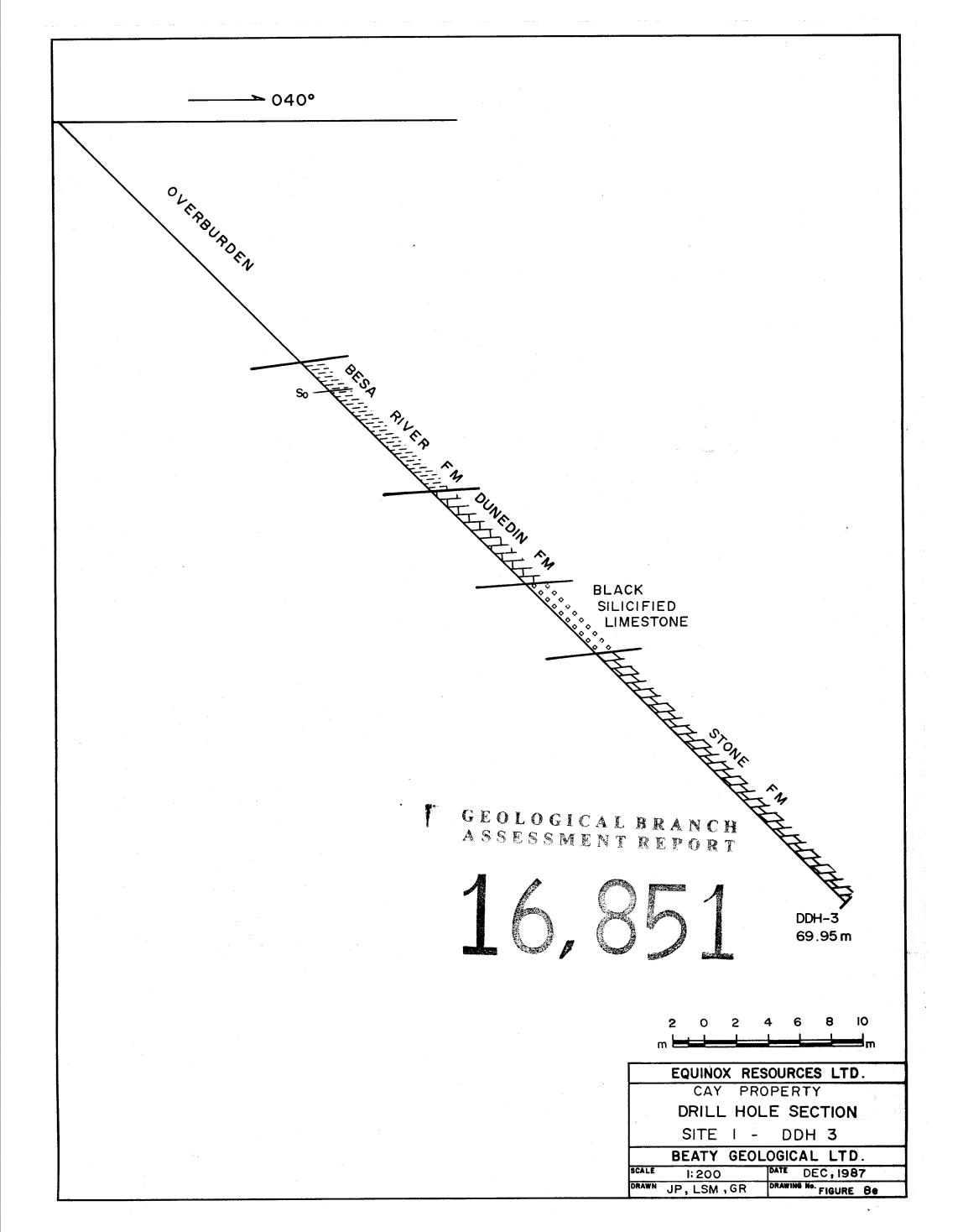
			Γ	SAMPL	ES					
FROM	TO	DESCRIPTION	NUMBER	FROM		WIDTH				[
0	3./	OVERBURDEN								
5.1	5.8	DUNEOIN FORMATION - Siliceous Breccia @3.1-5.8 Siliceous Breccia, massive black rock with barite.								
		@ 3.1-5.8 Siliceous Breccia, massive black rock						l		 ļ
		with barite.								
		· · · · · · · · · · · · · · · · · · ·		<u> </u>						 ļ
5.8	14.3	STONE FORMATION - Massive Lt. Grey Linestone								 ļ
		@ 5.8-14.3 Styplitic Linestone, mind silicification						ļ		 ļ
		@ 5.8 associated with narrow preceive zone,								
		bedding @ 85° to core axis, mino gonze		ļ						 Į
		STONE FORMATION - Massive Lt. Grey Linestone @ 5.8-14.3 Styplific Linestone, mind silicification @ 5.8 associated with newsons breccia zone, bedding @ 85° to core axis, mind gonge seams purwilled to bedding				ļ				
				ļ						
								L		
│				ļ						
				ļ						
 						· · · · · · · · · · · · · · · · · · ·				
				ľ						 <u> </u>
						┦───┤	<u></u>			
				 						
				<u>├───</u>						
			<u> </u>							
				<u> </u>		╉────┤				
				┨────┨		╂				
						<u> </u>				
↓ <u>↓ </u>			·	L		1			/	 7

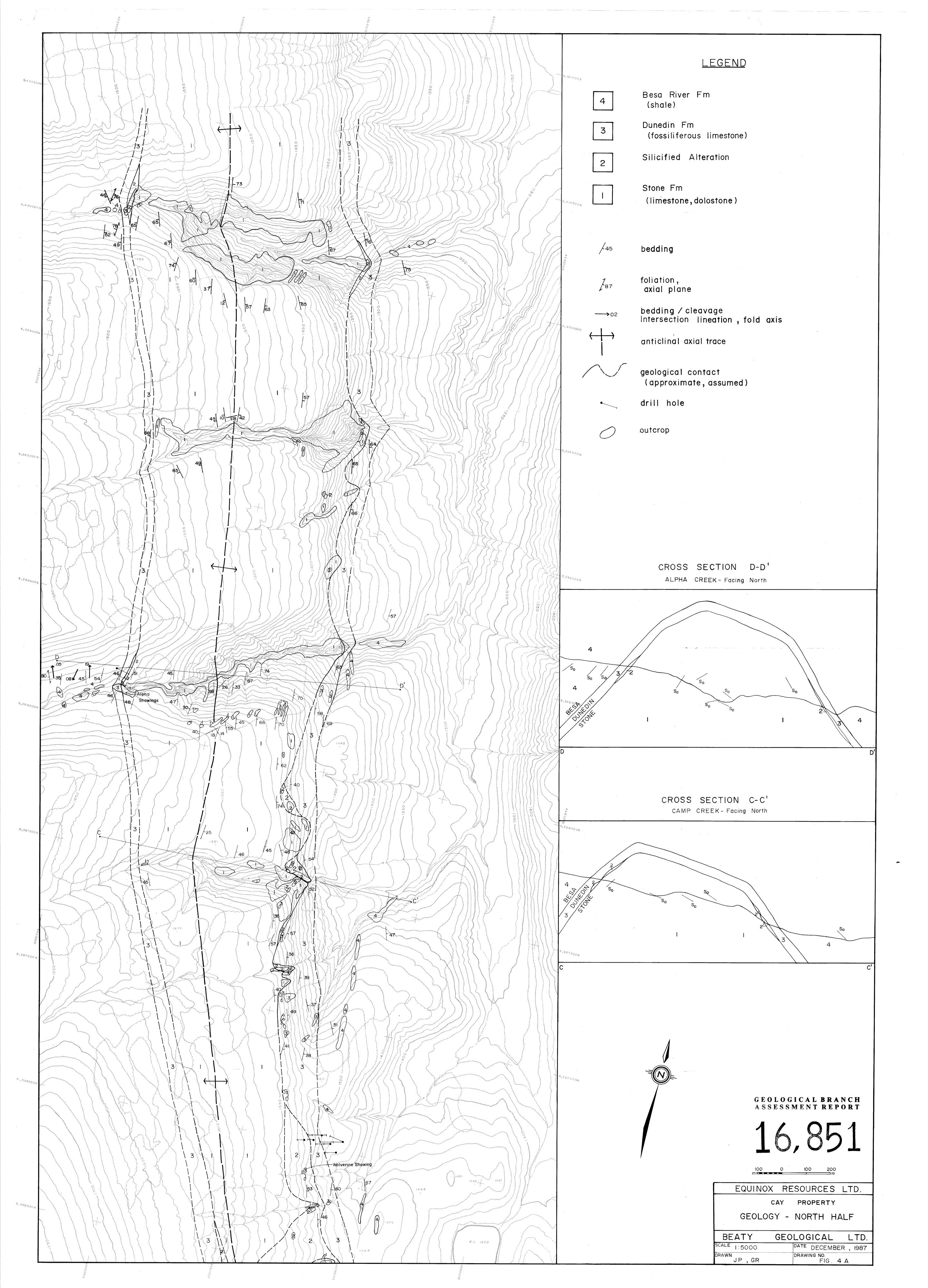
Sheet_____ of

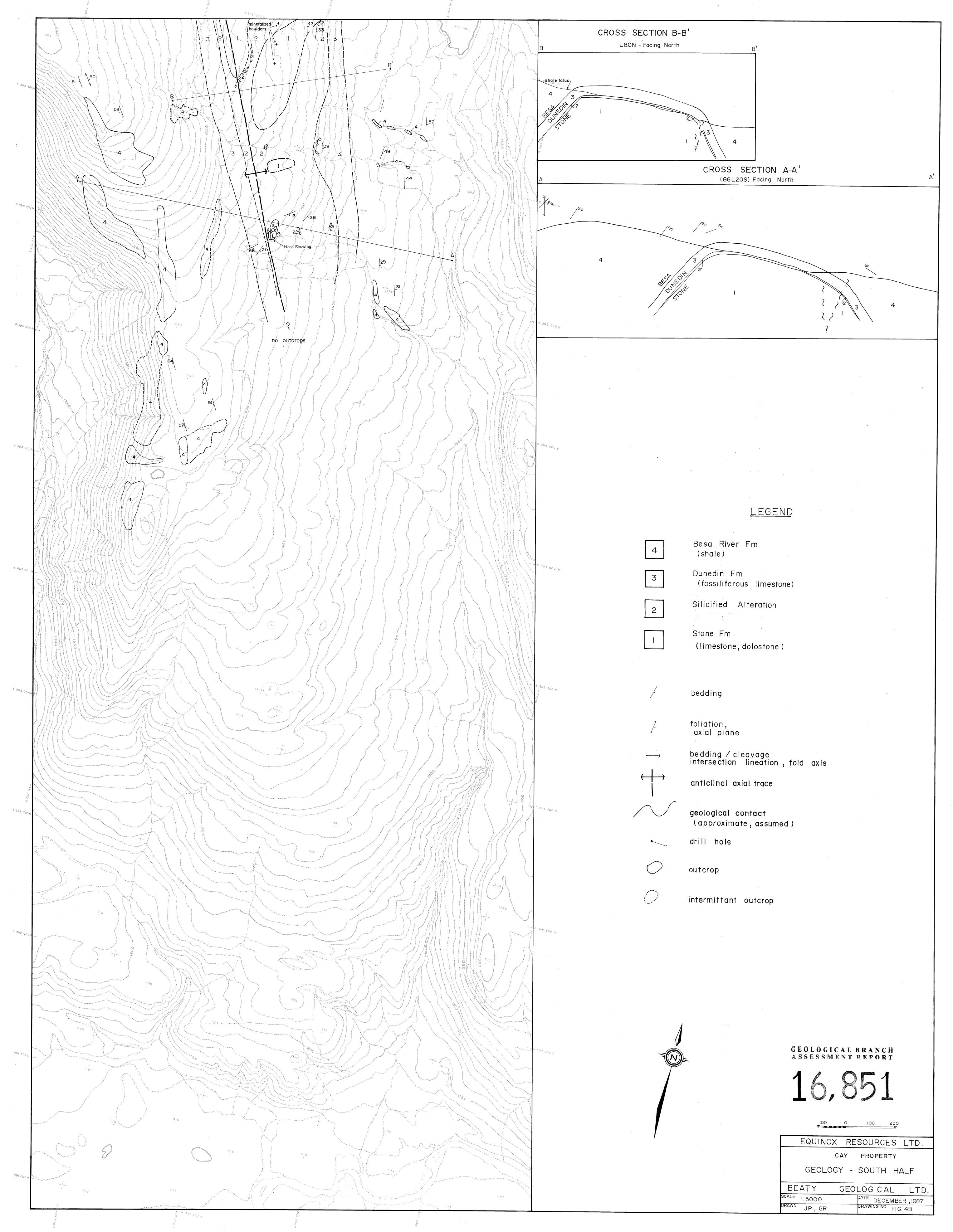
DIAMOND DRILL RECORD

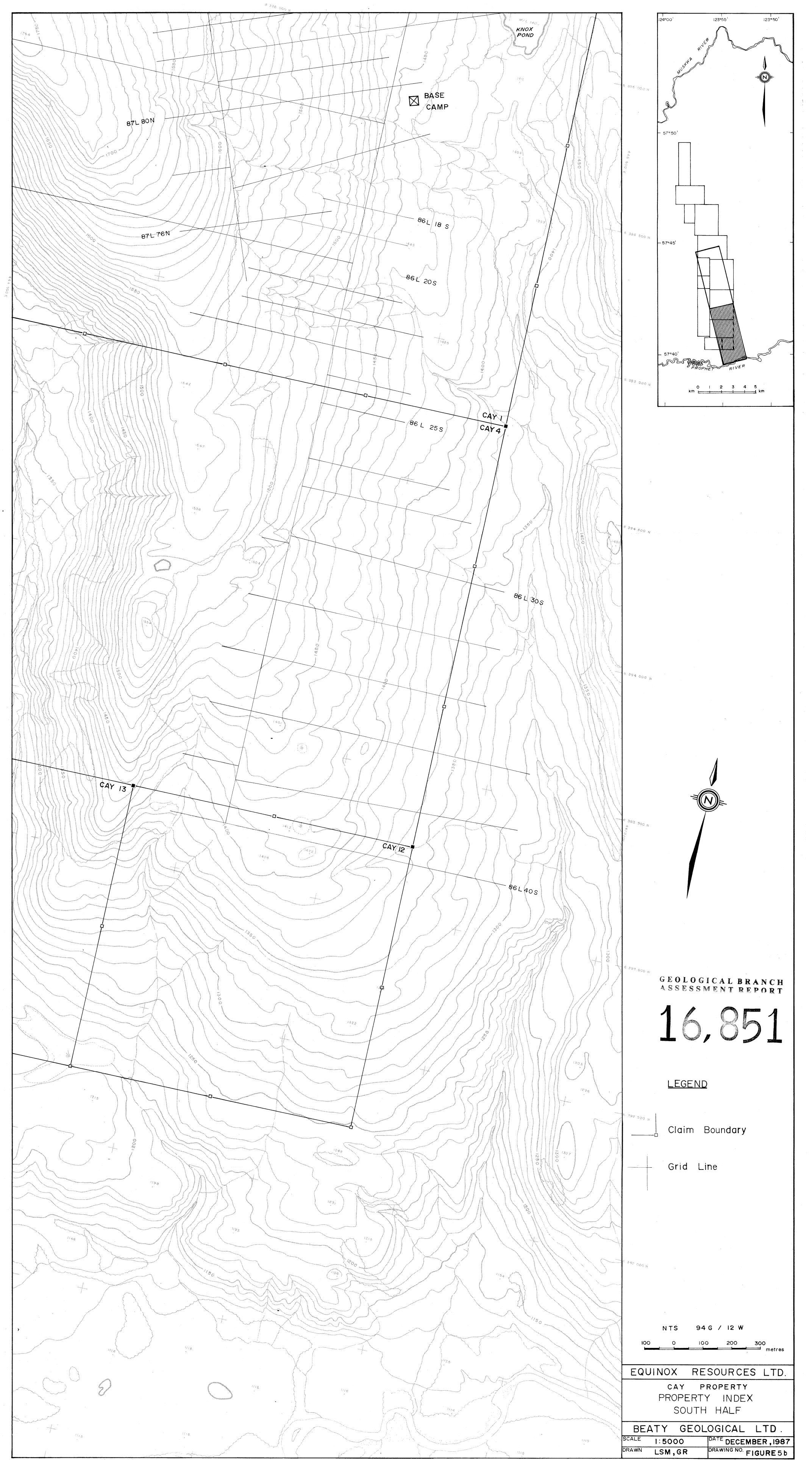
Property CAT Area 2


Logged by	D.G.Le	ighton	
Data Loggad	15 Uct.	1987	
Delling Rooun	14 Oct.	· 87	
Drilling Finishe	d 14 Oct.	187	


Hole Bearing <u>250°</u> Collar Dip Angle <u>-45° @ 1471 m</u>	
Din Test: Denth NR Angle NA	
Total Depth 65.9 (21677.)	,


Hole No. DDH#21 Site # 8 Core Size B.Q. Claim Group Cay South Location L87 +25N - 5+90E


				SAMPL	ES					
FROM	то	DESCRIPTION	NUMBER	FROM	TO	WIDTH				
0	9.2	OVERBURDEN								
9.2	37.8	BESA RIVER FORMATION Black Shale								L
		@ 9.2-37 Black Carbonaceous Shale bedding at 80-								
		85° to core axis, occasional gouge scam parallel							L	[
		to core axis bands of pyrite parallel to the							L	
		BESH RIVER FORMATION Black Shale @ 9.2-37 Black Conbonaceous Shale, bedding at 80- 85° to core axis, occasional gouge scam parallel to core axis, bands of pyrite parallal to the bedding (many with dissem pyrite enveloper), some pyrite blass especially below 14m, attin 25m pyrite contant up significantly with 5cm bands not uncommon. @ 37-37.8 Shale to Limestone Transition Zone, alt- scrnating shale & limestone bods acom 0.8m.							 	ļ
		pyrite blass especially below 14 m., atta 25m	·						 	
		pyrite content up significantly with 5cm bands							 	
		not uncommon.				_ _			 	
		@ 37-37.8 Shale to Limestone Transition Zone, alt-							 	
1		ernating shale & limestone bods accors 0.8m.							 	<u> </u>
						- 			 	·
37.8	65.9	DUNEDIN FORMATION - Siliceous Breccia							 	
		@ 37.8-39.5 Siliceous Breccia with blocks of Transition Zone "stoped in"?, barit and carbonate							 	[
		Zone stoped in"?, baria and carbonate				- 			 	
		veining							 	
<u> </u>		@ 39.5-65.9 Siliceous Breccia, occasional scattered				-			 	
		fossily occasional large block to 2m dia of		· / · · · · · · · · · · · · · · · · · ·		╉╾╍╍╸┨	<u>.</u>	+	 	<u> </u>
		shale with pyrite bands (variously silicitied),							 	
		minon pphalinite esp. 15-16.5 & 57-63, mod. zinc							 	
	1.7.0	239.5-6519 Siliceous Breccia, occasional scattered fossil, occasional large block to 2m dia of shale with pyrite bands (variously silicified); minor phalmite enp 15-16.5 & 57-63, mod. 2000 and lead sulphide mineralization from 63-65.9 E.O.H.							 ├	
	65.9	E. O. H.								
						┨────┨			 	
								+	 ┟┦	
									 ┟┦	
1									 	
				1				Sheet	 	L


Sheet_____ of

