LOG NO: 011	RD.
ACTION:	
FILE NO:	-

Prospecting Assessment Report

on the

GOLD RIDGE GROUP Kamloops Mining Division

> Nahatlatch Area Boston Bar, B.C.

Lat.50 05N; Long. 121 38W (Field work July 14 - Sept. 28, 1987)

Prepared by:

FILMED

D.G. Cardinal, P.Geol.

Geologist

Hope, B.C.

December 11, 1987.

TABLE OF CONTENTS

Page

Α.	LOCATION AND ACCESS	1
в.	CLAIMS INFORMATION	2
с.	HISTORY	3
D.	REGIONAL GEOLOGY	4
Ε.	PROSPECTING AND SAMPLING SURVEYS	5
F.	RECONNAISSANCE PROPERTY GEOLOGY	6
G.	CONCLUSION	7
н.	COST BREAKDOWN	8

FIGURES:

- 1. Location Map
- 2. Claims Map
- 3. Heavy Metal Sampling
- 4. Prospecting Geology Map

APPENDICES:

- I Professional Certificate
- II References
- III Analytical Report

B. CLAIMS INFORMATION

The Gold Ridge Group consists of 120 contiguous claim units covering 2,800 (7,000 acres). The claims are registered in the Kamloops Mining Division and records can be examined at the Kamloops Mining Recording office or at the Sub-recorder's Office in Vancouver.

Pertinent claim data is outlined below:

Clain	<u>Name</u>	No	<u>o.</u> <u>of</u>	Units	Record	No.	Expir	y <u>Dat</u>	<u>e</u>
Gold	Ridge	1	20		6850		November	17,	1988
11		2	20		6851		11	11	11
"		3	20		6852		11	11	11
18		4	20		6853		18	n	11
н		5	20		6854		17	11	17
"		6	20		6855		17	98	n

A. LOCATION AND ACCESS

The claim group is situated some 25km (17mi) northwest of Boston Bar, B.C.. Boston Bar is located on the Trans Canada Highway and is about a 40 minute drive from the town of Hope which inturn, is a 2 hour drive from the city of Vancouver, B.C..

The southern portion of the claims are accessible by a recently constructed 4-wheel-drive road. The northern section also has road access but would have to be upgraded. This road was constructed in 1972 for fire guard purposes. The southern road currently most used, leads to Boston Bar by connecting to a well-maintained logging and public access road, approximately 30km (19mi) in distance. Presently the most efficient access to the northern section of the claims is by helicopter. It should be noted that watersheds on parts of the claims are progressively being logged by British Columbia Forest Products (B.C.F.P.) further opening the area for better access and mineral exploration.

C. HISTORY

Gold was first documented on the northern section of Gold Ridge claims in 1935 by H.C. Horwood (1936) of the G.S.C., then referred to as the Serpentine and Summit Claims. Gold was reported to have been found associated with massive quartz vein structures. During the prospecting and mapping traverses several old trenches and open cuts exposing large quartz vein systems were observed.

It is also reported that about as early as 1926-27 that a small diamond drill program was conducted on the Serpentine-Summit claims. The camp and drill equipment were hauled in by a horse-pack train. During the reconnaissance surveys an old horse trail was noted but no evidence of drilling was found it is believe that any signs of the drilling was destroyed over the years by natural elements and coverd by vegetation.

In the summer to 1984, Hudson Bay Exploration & Development Co. Ltd. conducted resonnaisssance work on the Gold Ridge Claims. The work consisted of widely spaced geophysical, geochemical and general geological surveys. The surveys outlined some major structures and strong arsenic anomalies along with some isolated, above background gold values. Hudson Bay also did extensive road building allowing for good access into the southern portion of the property. The claims subsequently lapsed and were staked in October 1986 by prospector R.A. Lacombe.

D. REGIONAL GEOLOGY

Regionally, a major northeast-southeast trending ultramafic belt can be traced for some 30km (19mi) along strike. The belt can first be observed just west of the confluence of the Nahatlatch and the Fraser Rivers, and terminating north and northeast of Skihist Mountain near the Stein River watershed. The ultramafic belt which is of uncertain age, is serpentinized and fault bounded by low grade metasedimentary and metavolcanic rocks composed predominantly of phyllites, schists, shales, and greenstone schists. The metamorphic package has been tentatively dated as Triassic and earlier.

The belt has subsequently been intruded by the Coast Range granites of Cretaceous age and locally with quartz monzonitic plugs which may be of a younger age. Tectonically, the serpentinized ultramafic rocks are faulted and sheared along strike and in fault-contact with the sediment-volcanic package. Mineralization characteristically occurs along the fault-contact in shear zones and adjacent to the serpentine. The quartz monzonitic plugs noted above may also have played an important role in the localization of precious metals along portion of the belt.

E. PROSPECTING AND SAMPLING SURVEYS

The objective of the preliminary prospecting and sampling surveys was to attempt to locate areas of interest on the property and where follow-up surveys can be carried out. Because majority of old trenches

are located on the Gold Ridge #3 claim most of the prospecting, mapping, and sampling was done in this area. Heavy Mineral (H.M.) silt sampling was carried out on the Gold Ridge #4 claim, on a series of small tributaries which make up a creek locally known as Four-Barrel Creek. A total of 7 H.M. samples each weighing between 2 to 5 kg were obtained along this small watershed and the creek was followed out to it's confluence with Fraser River. The writer wishes to note that the creek is very treacherous along its' lower portions because of the precipice nature and becomes almost an unsurmountable task to complete the last leg of this creek.

All surveys were controlled by using a combination of topographic maps, hipchain, altimeter, compass, and geographic features. H.M. sample points were fixed by elevation (altimeter & topomap) and approximate position along the creek. Reconnaissance mapping and sampling were tied to a grid which was established to tie-in any old trenches , rock outcrops, and fault zones. Prospecting was also conducted over the grid.

F. RECONNAISSANCE PROPERTY GEOLOGY

Most of the prospecting and mapping was centered around and along strike of old trenches found on the property. A baseline was surveyed for 1600m striking N325W with crosslines every 200m apart and used for control during the reconnaissance work.

Generally, the property is underlain by steeply dipping, northwesterly trending volcanic greenschist intercalated with lesser phyllites and argillites. This lithological package is in fault contact near the western claim boundary by a large northwesterly striking belt of serpentinized ultramafic. The intensely foliated greenschist and fine clastic sediments are intruded along the central portion of the property by a light colored, biotite-quartz monzonite intrusive plug. At and adjacent to the volcanic/sedimentary-intrusive contact boundary, and intruding the predominant greenschist is a northerly striking, coarse to medium grain ultramafic dyke. Parallelling the dyke and quartz monsonite contact are a series of strong northwesterly striking shear zones in which massive, dyke-like quartz veins have been introduced herein referred to as the Apex Zone.

The Apex Zone is characteristically marked by the massive veins noted above associated with strong shear zones. At least 3 mineralized areas were outlined along the zone during the mapping and prospecting. These areas or zones commonly host alteration features which include iron carbonate-siderite/ankerite/mariposite mineralization; silicification with abundant quartz veining; sericite and actinolite; and abundant fine dissiminated sulphides consisting of arsenopyrite, pyrrhotite, pyrite, and lesser chalcopyrite and minor galena. The sulphides occur in the wall rock immediately adjacentto the quartz and replace part of the host rock which is predominately greenschist. Three of five grab rock samples obtained from theses altered zones had above background in gold values assaying, 160ppb, 380ppb, and 2,300ppb. Arsenic was also high ranging upto 13,691ppm. It should also be noted that 3 of the 7 H.M. samples collected from the creek were anomalous in gold ranging between 90ppb and 630ppb.

G. CONCLUSION

The reconnaissance surveys have outlined anomalous gold along altered and sheared zones which also host quartz veins and disseminated sulphides. Heavy Minerāl sampling along Four Barrel Creek also appears to have outlined anomalous gold. It is evident that follow-up will be required and additonal work is currently planned for the 1988 field season.

H. COST BREAKDOWN

	PERSONNEL:	COST
	Geologist, 18 days @ \$300/d	\$ 5,400.00
	Prospector, 20.5 days @ \$150/d	3,075.00
	TRANSPORTATION:	
	Helicopter, 2 hours @ \$450/hr.	900.00
	Truck, 4x4-Wheel, 8 days gas & oil	535.44
	CAMP:	
	Food, fuel, chain saw, survey materials	535.25
	ANALYSES:	
	Assays, 5 rock & 7 Heavy Metal	677.00
٠.	OFFICE:	
	Report & Copies	900.00

Total

\$ 12,021.69

APPENDIX I

Professional Certificate:

I, Daniel G. Cardinal of the Municipality of Hope, B.C., do hereby certify that:

- I'am a graduate of the University of Alberta (1975) and hold a B.Sc. degree in Geology.
- 2. I'am registered as a Fellow in the Geological Association of Canada, (F.G.A.C.); a member in good standing with the Association of Professional Engineers, Geologists and Geophysicists of Alberta, (P.Geol.); and a member in the The Yukon Professional Geoscientists Society.
- I have been practising my profession for the past eleven years.
- 4. The findings in this report are from a personal property examination conducted by me on the Gold Ridge Group between July 14 to September 28, 1987.

 I'am a professional geologist residing in Hope, B.C., mailing address, P.O. Box 594, Hope, B.C. VOX 1LO.

Mr. D.G. Cardinal, P.Geol.

II References

Boyle, R.W., (1979). The Geochemistry of Gold and Its Deposits, G.S.C. Bul 280

Duffel, S., and McTaggart, K.C., (1952) Ashcroft Map Area, G.S.C. Memoir 262.

Monger, J.W.H., and McMillan, WJ., (1982) Bedrock Geology of the Ashcroft (921) map area, G.S.C. O.F. 980

Cardinal, D.G., (1987), The Gold Ridge Claim Group, A Geological and Precious Metal Overview (Private Report).

Harwood, H.C., (1936) Preliminary Report on the Nahatlatch Region, G.S.C. Paper 36-7.

III ANALYTICAL REPORT

MIN-EN LABORATORIES LTD.

Specialists in Hineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 GR (604) 988-4524

TELEX: VIA USA 7601067 UC

An	a	I	7	t	Ĵ	\sim	a	1	Re	$\cdot \rho$	\mathbf{C}	r	t
						The second s			and the second se	_			

Company:RANDALL LACOMBE	File:7-951 Date:AUGUST 18/87
ACTENCION RANDALL LALUNDE	Type:menvy mineral
Date Samples Received :JULY 30/87 Samples Submitted by :RANDALL LACOMBE -	
Report on	
Copies sent to:	
1. RANDALL LACOMBE, HOPE, B.C.	
Χ.	
Samples: Sieved to mesh Ground to mes	
Prepared samples stored:X discarded: rejects stored: discarded:	* * * * * * * * * * * * * * * * * * * *
Methods of analysis:	
HM - SPECIFIC GRAVITY FLOTATION.	
AU, PT - FIRE.	
31 ELEMENT TRACE ICP.	

Remarks

IFPM 3 38-30064 48-43064 48-40064 48-4006 48-400	COMPANY PROJECT ATTENTI	/: R.LACOMB T ND: ION: R.LACO	E MBE		705 WEST :	NIN-EN 15th St., 1 (604)980-58	* TYPE HM *	(ACT:G31) PAGE 1 OF 1 FILE NO: 7-951 DATE:AUGUST 17. 1987			
4045 -4046 -4047 -40474 -40575 -40474	(PPM)	48-700A-	48-2000A	48-4300A	4B-4900A	48-40008	4B-4000C	4B-2900D	*****		****************
AB 1.4 1.2 7 1.1 1.2 1.1 .7 AL 1520 1980 1550 1550 1550 1550 1550 BA 55 65 52 253 57 52 47 BA 55 63 52 53 57 52 47 BA 56 63 8120 10310 97.0 114 17 BA 5.6 57 7 8 11 8 6.3 6.3 CD 7.3 9.7 8.10 10310 9740 12470 8500 1.3 CD 7.3 9.7 7.9 27.8 5.0 8.3 1.1 CD 7.3 9.7 7.9 7.9 2.5 1.5 1.1 <td< th=""><th></th><th>40HN</th><th>-40HM</th><th>-40HM</th><th>-40HM</th><th>-40HM</th><th>-40HM</th><th>-40HM</th><th></th><th></th><th></th></td<>		40HN	-40HM	-40HM	-40HM	-40HM	-40HM	-40HM			
AL 16520 18650 13500 13690 12290 18460 25460 3 57 114 177 221 1152 2 126 9 10 10 7 6 5 7 12 84 55 53 52 53 57 62 49 BE 1.6 1.5 1.7 1.7 1.2 1.5 1.7 91 5 6 7 7 8 11 9 CA 8740 8670 8120 1010 9740 12470 6500 10 7.3 9.7 6.9 7.9 27.8 5.0 8.3 CD 17 20 13 12 15 22 15 CU 84 79 33 66 46 58 45 72 55160 35400 42449 43550 59299 49180 52423 CU 84 79 33 66 46 58 45 72 55160 35400 42449 43550 59299 49180 52423 CU 84 79 37 66 9 720 990 1070 580 L1 15 13 19 16 14 16 25 M8 20480 26420 11479 10400 8100 12010 18920 HH 642 686 4453 468 372 578 725 M0 2 1 2 1 2 1 1 2 1 M8 20480 26420 11479 10400 8100 12010 18920 PB 4 5 13 6 14 8 12 SF 48 52 40 55 60 74 54 TH 1 1 1 1 1 1 1 1 1 1 1 1 1 Y 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZM 87 79 77 4 80 30 55 90 Y 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZM 87 79 77 4 80 30 55 90 PB 4 5 13 6 14 8 12 SF 48 52 40 55 60 74 54 TH 1 1 1 1 1 1 1 Y 2 1 1 4 2 6 3 Y 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZM 87 79 77 4 80 30 55 90 PB 4 5 13 6 14 7 1 7 CF 58 57 52 67 29 43 50 ZM 87 77 74 80 30 55 90 ZM 87 79 77 4 80 30 55 90 ZM 87 79 77 74 80 30 55 90 ZM 87 79 77 74 80 30 55 90 ZM 87 79 77 4 80 30 55 90 ZM 87 79 77 4 80 30 55 90 ZM 87 79 77 74 80 30 55 90 ZM 97 55 57 52 67 29 43 50 ZM 97 55 57 52 67 29 43 50 ZM 97 55 57 52 57 51 41 ZM 77 55 58 57 52 57 51 41 ZM 77 57 58 57 52 57 29 443 50 ZM 78 78 78 78 78 78 78 78 78 78 78 78 78	AG	1.4	1.2	.9	1.1	1.2	1.1	.9			
AS 57 114 177 211 L152 2 124 B 10 10 7 6 5 9 12 BA 56 53 52 53 57 62 49 BE 1.4 1.5 1.7 1.1 9 9 10 10 7 6 17 BA 5.5 7 7 6 11 9 9 9 12 15 C0 7.3 6.7 7.9 7.9 27.8 5.0 8.3 3 22 15 C0 17 20 13 12 15 22 15 3 3 12 15 22 15 C0 7.7 7.9 7.8 5.7 8.7 9 410 52620 8.45 3 3 14 16 25 15 14 16 25 14 17 14 17 14 17 17 14 17 17 17 16 17 1	AL	16520	18850	15500	13890	12290	18450	25460			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AS	57	114	177	221	<u>U52</u>	2	126			
BH 5a 6.3 52 53 57 62 49 BE 1.6 1.5 1.3 1.2 1.5 1.7 BI 5 5 7 7 8 11 8 CA S740 8570 8120 10310 9740 12470 8500 CD 7.3 5.7 6.9 7.9 27.8 5.0 8.3 CU 84 79 39 60 -46 58 45 7E 55150 55490 42490 43555 37299 49180 52620 K 720 730 114 14 14 14 14 R 20480 20420 11470 10400 9109 12010 19920 MM 6442 686 463 488 372 578 725 MO 2 1 2 1 2 i N 121 100 130 2050 2170 2380 1120 P8 4 5 13 6 14 8 12 S9 4 4 1 1 1 1 U <td>3</td> <td>10</td> <td>10</td> <td>. 7</td> <td>5</td> <td>5</td> <td>9</td> <td>12</td> <td></td> <td></td> <td></td>	3	10	10	. 7	5	5	9	12			
BE i.6 i.6 i.3 i.3 i.2 i.5 i.7 BI 5 5 7 7 8 11 B CA 8740 8670 8120 10316 9740 12470 8500 CD 7.3 8.7 8.8 7.9 27.8 5.0 3.3 CU 84 79 37 60 -46 58 45 FE 55140 54240 42490 43350 37290 49180 52220 K 720 730 790 720 100 1070 540 L1 15 19 19 16 14 16 25 M4 20480 26420 11400 810 1200 130 70 M4 130 100 180 220 170 130 70 112 NI 121 10 2650 2170 2300 1120 120 P8 4 4 1 1 1 1	BA	56	రస	52	53	57	52	49			
BE 1.6 1.3 1.3 1.2 1.5 1.7 BI 5 5 7 7 8 11 8 CA 9740 8673 9120 10310 9740 12470 8500 CD 7.3 8.7 6.9 7.9 27.8 5.0 8.3 CO 17 20 13 12 15 22 15 CU 54 79 37 40 46 58 45 FE 55160 35140 42440 43350 39290 49180 52520 K 720 730 780 778 725 M6 20480 26420 11470 10400 8100 12010 18920 M4 130 100 180 220 170 130 70 N1 121 102 57 77 42 48 47 P 1590 1810 1310 2050 2170 2390 1120 SB 4 <td></td>											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BE	1.5	1.5	- 1.3	1.3	1.2	1.5	1.7	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BI	5	5	7	7	8	11	8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CA	8740	8670	8120	10310	9740	12470	8200			
CO 17 20 13 12 15 22 15 CU 84 79 37 60 45 58 45 FE SEL40 52440 42490 43550 33290 49180 52220 K 720 730 730 720 790 1070 560 L1 15 19 19 16 14 16 25 MB 20480 20420 1470 10400 8100 12010 1870 MM 642 680 463 458 372 578 725 MO 2 1 2 1 2 1 MA 130 100 180 220 170 130 70 MI 121 102 57 77 42 48 49 7 PB 4 5 13 6 14 6 12 130 V 51.4 49.7 50.3 47.4 42.2 55.5 59.8	CD	7.3	9.7	6.9	7.9	27.8	5.0	8.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	17	20	_ 13	12	15	22	15			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
FE 55150 55400 42490 43550 37290 44910 52620 K 720 730 730 730 730 730 730 720 990 1070 560 L1 15 13 13 16 14 16 25 MB 20430 20420 11470 10400 8100 12010 19920 MN 642 640 463 488 372 579 725 MO 2 1 2 1 1 2 1 HA 130 100 180 220 170 130 70 NI 121 102 57 77 42 48 47 P 1590 1610 1310 2050 2170 2300 1120 PB 4 5 13 6 14 8 12 SB 4 4 1 4 5 4 V 51.4 49.7 50.3 47.4 42.2 <td>CU</td> <td>84</td> <td>79</td> <td>39</td> <td>60</td> <td>- 48</td> <td>58</td> <td>45</td> <td></td> <td></td> <td></td>	CU	84	79	39	60	- 48	58	45			
K 720 730 720 790 1070 560 L1 15 19 19 15 14 16 25 MB 20480 20420 11470 10400 8100 12010 18920 MN 642 680 463 488 372 578 725 MO 2 1 2 1 1 2 1 HA 130 100 180 220 170 130 70 NI 1211 102 57 77 42 48 49 P 1590 1610 1310 2050 2170 2330 1120 PB 4 52 40 56 60 74 54 3 SR 48 52 40 56 60 74 54 TH 1 1 1 1 1 1 1 1 U 2 1 1 2 5 5 59.8 IN	FE	55150	5 <u>540</u> 0	42490	43550	39290	49180	<u>5262</u> 0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K	720	780	780	720	990	1070	560			
AB 20420 20420 11470 10400 8100 12010 18920 MN 642 680 463 486 372 578 725 M0 2 1 2 1 1 2 1 HA 130 100 180 220 170 130 70 N1 121 102 57 77 42 48 49 P 1590 1810 1310 2050 2170 2380 1120 PB 4 5 13 6 14 8 12 SB 4 4 1 4 5 4 SR 48 52 40 56 60 74 54 TH 1 1 1 1 1 1 1 U 2 1 1 4 2 5 3 V 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZN 87 7	11	15	19	19	15	14	16	25			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	М6 	20480	20420	11470	10400	8100	12010	18920			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MN	/ 10	180		100	7-0	ena	70.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nn VA	542	680	463	486	5/2	8/C	/25			
NH 130 100 160 220 170 130 70 NI 121 102 57 77 42 48 49 P 1590 1810 1310 2050 2170 2380 1120 PB 4 5 13 6 14 8 12 SB 4 4 1 4 5 4 SR 48 52 40 56 60 74 54 TH 1 1 1 1 1 1 1 U 2 1 1 4 2 6 3 V 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZN 87 87 74 90 90 95 70 GA 2 7 6 41 4 1 7 U 2 7 6 41 4 1 7 CR 58 57 52 67	nu NA		1	100	1	1	470	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ลก มา	100	100	107	220	17V 80	130	79			
PB 4 5 13 6 14 8 12 SB 4 4 1 4 5 4 SR 48 52 40 56 60 74 54 TH 1 1 1 1 1 1 1 1 U 2 1 1 4 2 6 3 V 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZN 87 74 80 80 85 90 SA 2 3 2 2 1 1 2 SN 1 3 2 2 2 3 4 V 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 AU-PPB 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16	ат Б	141	102	י ג ו דו: י ג ו דו:	. //	42 97170	64 Aote	97 1170			
PB 4 5 13 6 14 8 12 SB 4 4 1 4 5 4 SR 48 52 40 56 60 74 54 TH 1 1 1 1 1 1 1 U 2 1 1 4 2 6 3 V 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZN 87 87 74 80 80 95 90 GA 2 3 2 2 1 1 2 SN 1 3 2 2 2 3 W 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 AU-PPB 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16 2	, 		1910			2170	200V	1120			
SB 4 4 1 4 5 4 SR 48 52 40 56 60 74 54 TH 1 1 1 1 1 1 U 2 1 1 4 2 6 ZN 87 87 74 80 90 95 90 GA 2 3 2 2 1 1 2 SN 1 3 2 2 1 1 2 SN 1 3 2 2 2 3 W 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 All-PPB 20 100 530 90 25 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 8.63 9.66 7.33 6.84 15.68 15.16	28	4	5	17	4	14	B	17			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SB	4	4	10	1	4	5	12			
TH 1	SR	48	52	40	54	40	74	54			
U 2 1 1 4 2 6 3 V 51.4 49.7 50.3 47.4 42.2 55.5 59.8 ZN 87 87 74 80 80 85 90 GA 2 3 2 2 1 1 2 SN 4 3 2 2 2 2 3 W 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 AU-PPR 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 8.63 9.66 7.33 6.84 15.68 15.16	TH	1	1	1	. 1	1	1	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U	2	1	1	- 4	2	- 5	3			
V 51.4 47.7 50.3 47.4 42.2 55.5 57.8 ZN B7 B7 74 B0 B0 B5 90 GA 2 3 2 2 1 1 2 SN 1 3 2 2 2 2 3 41 1 7 CR 58 57 52 67 29 43 50 50 AU-PPR 20 100 530 70 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 8.63 7.66 7.33 6.84 15.48 15.16											
ZN B7 B7 74 B0 B0 B5 70 GA 2 3 2 2 1 1 2 SN 1 3 2 2 2 2 3 W 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 AU-PPB 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 3.63 9.65 7.33 6.84 15.48 15.16	V	51.4	49.7	50.3	47.4	42.2	55.5	59.8			
SA 2 3 2 2 1 1 2 SN 1 3 2 2 2 2 3 W 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 AU-PPB 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 8.63 9.65 7.33 6.84 15.48 15.16	ZN	87	87	74	90	80	85	90			
SN i 3 2 2 2 2 3 W 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 AU-PPR 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 3.63 9.65 7.33 6.84 15.46 15.16	64	2	3	2	. 2	1	1	2			
W 2 7 6 41 4 1 7 CR 58 57 52 67 29 43 50 AU-PPB 20 100 630 70 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 3.63 9.66 7.33 6.84 15.48 15.16	SN	·i	3	2	. 2	2	2	3			
CR 58 57 52 67 29 43 50 AU-PPB 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 8.63 9.65 7.33 6.84 15.48 15.16	¥.	2	7	6	41	å,	1	7			
CR 58 57 52 67 29 43 50 AU-PPB 20 100 630 90 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 3.63 9.66 7.33 6.84 15.16											
<u>AU-PPH</u> 20 <u>100 630 90</u> 26 5 14 PT-PPB 1 12 2 18 16 2 1 HMX 7.61 8.63 9.66 7.33 6.84 15.68 15.16	CR AVI. COD	58	57	52	67	29	43	50			
HITTPE 1 12 2 18 16 2 1 HMX 7.61 8.63 9.66 7.33 6.84 15.68 15.16	HU-PPH	20	<u>100</u>	<u>530</u>	<u>90</u>	26	5	- 14			
лка /.61 в.65 7.66 /.33 6.84 15.68 15.16	F1-FFB		12	2	18	16	2	1			
	лпа 	/.61	d.0)	7.55	/.33	á.84	13.58	13.15			

COMPANY: RANDALL L	ACOMBE		746 400		IN-EN LA	BS ICP		11734	170			(ACT:616)	PAGE	1 OF 1
ATTENTION: RANDALL	LACOMBE		/VJ WES	(604)	980-5814	n verili OR (6	04)988-4524	, v/n. L	112 # TY	PE ROCK	GEOCHEN	FI # DATE:A	LE NU: UGUST	/-401 8. 1987
(VALUES IN PPM)	AG	AS	CU	NI	PB	ZN	AU-PPB P	-PPB			********			21_2222
GR-DC-1-87	.1	23	20	1354	13	11	4		*****					
6R-DC-2-87	.8	13691	105	63	77	32	160							
GR-DC-3-07	.1	6772	16	46	18	24	73							
GR-5-87A	1.6	5165	119	6	11	31	380							
GR-4-87	.2	38	13	2115	16	1	1	8						
GR-5-87B	2.9	12136	260	f ~22 2	13	196	2300							