THE HAGAS FRDFEFTY FDF

PFOGOLD RESOURCES LTD.

FAFT II

OMENICA MINING DIVISION EFITISH COLUMEIA

NTS 93L 3E

JOHN E. FROEINS

COOKE GEOLOGICAL CONSULTANTS LTD. 107-325 HOWE STFEET

PACIFIC GEOPHYSICAL LTD.

GEOPHYSICAL REPORT
ON THE
INDUCED POLARIZATION AND RESISTIVITY SURVEY
ON THE
HAGAS CLAIM GROUP
OMINECA MINING DIVISION
BRITISH COLUMBIA

FOR

COOKE GEOLOGICAL CONSULTANTS LTD.

LATITUDE: $54^{\circ} 09$ ' N LONGITUDE: $127^{\circ} 01^{\prime} \mathrm{W}$
N.T.S. 93L/3E

CLAIMS: HAGAS 1, HAG 2, HAGAS 3-5, HAGAS 76-80, HAGAS 81 FR. HAGAS 85, HEM, FROST, FROST II

ONMER: PROGOLD RESOURCES LTD. (UNDER OPTION)

OPERATOR: COOKE GEOLOGICAL CONSLLTANTS LTD.

BY

PAIL A. CARTMRIGHT, P.Geoph. GEOPHYSICIST

DATED: December 3, 1987

TABLE OF CONTENTS

PAGE

PART A REPORT

1) Introduction 1
2) Description of Claims 2
3) Description of Geology 2
4) Presentation of Data 3
5) Discussion of Results 5
6) Sunmary and Recommendations 6
7) Assessment Details 8
8) Statement of Cost 9
9) Certificate: Paul A. Cartwright, P.Geoph 10
10) Certificate: Kevin Corman 11
11) Certificate: Martin M. Makulowich. 12
PART B ILLUSTRATIONS
Location Map Figure 1
Claim Map Figure 2
I.P. Data Plots (psuedosections) Dwg. Nos. I.P. 5881-1 to 25
Induced Polarization Plan Map (in pocket) Figure 3
Resistivity Plan Map (in pocket) Figure 4

PART A REPORT

1) Introduction

An induced polarization and resistivity survey has been completed on the Hagas claim group, Omineca Mining Division, B.C., at the request of Cooke Geological Consultants Ltd., project managers for Progold Resources Ltd.

The property is located approximately 32 kilometers southwest of the community of Houston, B.C. Access is via the Morice River Road from Houston to Mile 26 (km 41.6) and then by good logging road for 3 kilometers.

Previous work on the property has included geological mapping; geochemical soil, rock and sediment sampling; trenching and diamond drilling, and interesting silver-copper values have been encountered. Both ground and airborne E.M. and magnetic surveying have been carried out over the property.

The object of the present IP and resistivity survey was to further evaluate the property for the presence of sulphide mineralization similar to that found in the Equity Silver deposit.

A Phoenix model IPV-1 induced polarization and resistivity receiver unit was used, together with a Phoenix Model IPT-1 IP and resistivity transmitter powered by a 1 kw motor-generator. IP effects are recorded as Percent Frequency Effects (P.F.E.) at operating frequencies of 4.0 Hz and 0.25 Hz , while apparent resistivity values are normalized in units of ohm-meters. Dipole-dipole array was utilized to make all of the measurements, using an interelectrode distance of 50 meters. In addition, Line $31+00 \mathrm{~N}$ was first surveyed using electrode separations of 100,75 and 25 meters. This initial testing was required in order to optimize the dipole size selected for use on the rest of the grid to be surveyed. Four dipole separations are recorded in every case.

Field work took place during the period August 14, 1987 to September 8, 1987 initially under the direction of Paul A. Cartwright, P.Geoph., and later under the supervision of Kevin Corman (August 17, 1987 to August 28, 1987) and Martin Makulowich (August 29,1987 to September 8, 1987). Their certificates of qualification are included in this report.

2) Description of Claims

The Hagas claim group is composed of 15 contiguous claims, totalling 95 units. Details are as follows:

Claim No.	Units	Record No.	Expiry Date	
Hagas 1	1	108688	17 April	1989
Hag 2	2	5548	13 July	1988
Hagas 3	1	108690	17 April	1989
Hagas 4	1	198691	17 April	1989
Hagas 5	1	108692	17 April	1989
Hagas 76	4	507	22 November	1988
Hagas 77	4	564	14 April	1989
Hagas 78	18	7804	22 August	1988
Hagas 79	3	1161	12 May	1989
Hagas 80	8	1162	12 May	1988
Hagas 81 FR	1	1163	12 May	1988
Hagas 85	18	2073	19 October	1987
HEM	12	826	26 October	1987
Frost	6	6735	17 October	1988
Frost II	15	8690	18 August	1988

Progold Resources Limited is the owner, under option, of the Hagas group of claims. Cooke Geological Consultants Ltd. is the current operator.

3) Description of Geology

The following geological description of the property, as well as the preceding claim and introduction information, has been taken from a report written by Chris J. Sampson, P.Eng., for Cooke Geological Consultants Ltd. and dated 28 September 1987.
"The claim group is underlain by Lower Jurassic Hazelton group volcanics and Eocene Back Creek volcanics which have been intruded by an Eocene alkaline gabbro. The geology of the claim group thus closely resembles that on the nearby Equity Silver Mine property where silver-copper orebodies have been mined since 1979."

4) Presentation of Data

The induced polarization and resistivity results are shown on the following data plots in pseudo-section format.

Line	Electrode Interval	Dwg. No.
41+00 N	50 meters	IP-5881-1
$39+00 \mathrm{~N}$	50 meters	IP-5881-2
38+00 N	50 meters	IP-5881-3
$37+00 \mathrm{~N}$	50 meters	IP-5881-4
$36+00 \mathrm{~N}$	50 meters	IP-5881-5
$35+00 \mathrm{~N}$	50 meters	IP-5881-6
$34+00 \mathrm{~N}$	50 meters	IP-5881-7
$33+00 \mathrm{~N}$	50 meters	IP-5881-8
$32+00 \mathrm{~N}$	50 meters	IP-5881-9
$31+00 \mathrm{~N}$	100 meters	IP-5881-10
$31+00 \mathrm{~N}$	75 meters	IP-5881-11
$31+00 \mathrm{~N}$	50 meters	IP-5881-12
$31+00 \mathrm{~N}$	25 meters	IP-5881-13
$30+00 \mathrm{~N}$	50 meters	IP-5881-14
$27+00 \mathrm{~N}$	50 meters	IP-5881-15
26+00 N	50 meters	IP-5881-16
25+00 N	50 meters	IP-5881-17
24+00 N	50 meters	IP-5881-18
$23+00 \mathrm{~N}$	50 meters	IP-5881-19
22+00 N	50 meters	IP-5881-20

$21+00 \mathrm{~N}$	50 meters	IP-5881-21
$20+00 \mathrm{~N}$	50 meters	IP-5881-22
$19+00 \mathrm{~N}$	50 meters	IP-5881-23
$18+00 \mathrm{~N}$	50 meters	IP-5881-24
$17+00 \mathrm{~N}$	50 meters	IP-5881-25

Also enclosed with this report are Figure 3 and Figure 4, 1:5,000 scale contoured plan maps of the $N=1$ PFE and resistivity values collected on the geophysical grid. The definite, probable and possible IP anomalies are indicated by bars, in the manner shown on the legend, on these plan maps. These bars represent the surface projection of the anomalous zones as interpreted from the location of the transmitter and receiver electrodes when the anomalous values were measured. It should be noted that the interpreted anomalies have been derived using all available data, that is, $N=1$ through $N=4$.

Since the induced polarization measurement is essentially an averaging process as are all the potential methods, it is frequently difficult to pinpoint the source of an anomaly. Certainly, no anomaly can be located with more accuracy than the electrode interval length; i.e., when using a 50 meter electrode interval, the position of a narrow sulphide body can only be determined to lie between two stations 50 meters apart. In order to definitely locate and fully evaluate a narrow shallow source, it is necessaary to use shorter electrode intervals. In order to locate sources at some depth, larger electrode intervals must be used, with a corresponding increase in the uncertainties of location. Therefore, while the center of the indicated anomaly probably corresponds fairly well with the source, the length of the indicated anomaly along the line should not be taken to represent the exact edges of the anomalous material.

The grid information shown on Figures 3 and 4 has been provided by the staff of Cooke Geological Consultants Ltd.

5) Discussion of Results

Five zones of anomalous IP effects are interpreted in the data and are illustrated on Figure 3 and Figure 4, plan maps of the contoured N=1 IP effects and resistivity values respectively. Each of the zones are discussed separately below.

Zone 1

This feature is the most promising of the zones outlined by the present survey. It appears to be composed of moderately resistive material accompanied by moderately anomalous P.F.E. values. The orientation work initially carried out on Line $31+00 \mathrm{~N}$ suggests this signature to be diagnostic of the target zone. The depth to the top of the body of interest varies somewhat along the trend of the zone, but appears to be a maximum of 35 meters. Although it is weakening to the north, the zone may continue into the untested area west of the surveyed lines. The fact that this feature has yielded intersections of sulphide mineralization in previous drill holes is also encouraging.

Zone 2

Zone 2 is fairly similar in nature to Zone 1 except that the PFE values are lower in magnitude, while the apparent resistivities observed tend to be similar to those recorded in Zone 1. This may be the result of an increase in depth to the source and/or a decrease in the percentage of polarizable material present.

It should be noted that this zone has not previously been tested by diamond drilling and that it remains open to the south.

Zone 3

This feature appears to be composed of fairly weakly polarizable material exhibiting fairly high apparent resistivities. The depth to the top of the causative source appears to be within 25 meters of surface. It is felt that this zone is somewhat less anomalous than Zone 1 and Zone 2, although the northern and southern boundaries of the feature remain undefined.

Zone 4

Zone 4 is a very narrow trend exhibiting PFE values which are only slightly above the background values. It is felt that they are symptomatic of a weakly polarizable body which appears to be close to surface (less than 25 meters) and of limited depth extent.

Zone 5

Zone 5 is similar in nature to Zone 4 in that it appears to be a polarizable body which gives rise to moderately anomalous PFE values. Depth to the top of the source is felt to be on the order of 30 to 40 meters. As with Zone 3, this feature is still open to the north.

6) Summary and Recommendations

An IP and resistivity survey has been completed on the Hagas claim group by Pacific Geophysical Ltd. on behalf of Cooke Geological Consultants Ltd., project managers for the property owners, Progold Resources Ltd.

Five zones of anomalous IP effects have been interpreted from the data and are presented on Figure 3 and Figure 4, plan maps of the contoured N=1 IP effects and resistivity values respectively.

IP Zone 1 has been drilled previously, with encouraging intersections of
massive to semi-massive mineralization being reported in at least two holes. Therefore, it is recommended that additional drilling be carried out to test the source of IP Zone 1 along strike from the area of earlier drilling. A first priority diamond drill hole located on Line $34+00 \mathrm{~N}$ so as to pass approximately 50 meters beneath Station 875 E is recommended to better evaluate the northern part of the zone. The southwestern extent of Zone 1 could best be tested by a second priority diamond drill hole collared in the vicinity of Line 25+00E, Station 925E and drilled -45° northwest for a distance of 125 meters.

Diamond drilling should also be considered to test the source of IP Zone 2, with a hole collared near Line $25+00 \mathrm{~N}$, Station 1050 E , and drilled at -45° northwest for a distance of approximately 125 meters, on a second priority basis. The southwestern end of IP Zone 2 should also be drilled as a third priority target, by a drill hole situated so as to pass approxiately 50 meters beneath Line $19+00 \mathrm{~N}$, Station 910 E .

Drill testing of IP Zones $3,4 \& 5$ should await the results of drilling carried out to evaluate the causative sources of IP Zone 1 and IP Zone 2.

PACIFIC GEOPHYSICAL LTD.

Paul A. Cartwright, P.Geoph. Geophysicist.

7) Assessment Details

Property: Hagas Claim Group Mining Division: Omineca
Sponsor: Progold Resources Ltd. Province: British Columbia
Location: 32 km S.W. of Houston, B.C.
Type of Survey: Induced Polarization and Resistivity
Operating Days: 16.5
Date Started: August 14, 1987
Consulting Man Days: 8.0
Date Finished: September 8, 1987
Drafting Man Days: 4.0
Number of Stations: 410
Total Man Days; 28.5
Number of Readings: 2280
Km of Line Surveyed: 19.55
Consultant:
P.A. Cartwright, 4238 West 11th Avenue, Vancouver, B.C.

Field Technicians:

K. Carman, 5711 No. 2 Road, Richmond, B.C.
M. Makulowich, 669 Valdes Drive, Kamloops, B.C.
P. Mullen, 1440 Sandhurst Place, West Vancouver, B.C.
C. Trottier, P.O. Box 1327, Houston, B.C.
I. Campbell, P.O. Box 1083, Houston, B.C.

Draughtsman:
B. Counts, 4131 West 16th Avenue, Vancouver, B.C.

PACIFIC GEOPHYSICAL LIMITED

Paul A. Cartwright, P.Geoph. Geophysicist.

Dated: 3 December 1987.

8）Statement of Costs

Cooke Geological Consultants Ltd．

Induced Polarization and Resistivity Survey－Hagas Claim Group， Omineca Mining Division，British Columbia

Period：August 14－16， 1987
Crew：K．Corman，P．Mullan，P．Cartwright
Period：August 17－24， 1987
Crew：K．Corman，P．Mullan
Period：August 25－28， 1987
Crew：K．Corman，P．Mullan，C．Trottier
Period：August 27－September 4， 1987
Crew：M．Makulowich，P．Mullan，C．Trottier
Period：September 5－8， 1987
Crew：M．Makulowich，P．Mullan，I．Campbell
4．0 Operating Days © \＄1，050．00／day \＄4，200．00
16.5 Operating Days＠\＄1，175．00／day 14，687．50

1．5 Bad Weather Days＠\＄750．00／day 1，125．00
1.0 Days © N／C

Mobilization／Demobilization 3，500．00
$\$ 23,512.50$
ミニニニニニニニニニニ

PACIFIC GEOPHYSICAL LTD．

Paul A．Cartwright，P．Geoph． Geophysicist．

Dated： 3 December 1987

9) Certificate

I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify:

1. I am a geophysicist residing at 4238 W. 11th Avenue, Vancouver, B.C.
2. I am a graduate of the University of British Columbia, with a B. Sc. Degree (1970)
3. I am a member of the Society of Exploration Geophysicists, the European Association of Exploration Geophysicists and the Canadian Society of Exploration Geophysicists.
4. I have been practising my profession for 17 years.
5. I am a Professional Geophysicist licensed in the Province of Alberta.
6. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Progold Resources Ltd.
7. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

DATED AT VANCOUVER, BRITISH COLUMBIA this 3rd day of December 1987.

10) Certificate

I, Kevin Corman, of Richmond, British Columbia, do hereby certify that:

1. I am a th year student of Laval University, Quebec, P.Q.
2. I have been employed as a geophysical crew assistant by Phoenix Geophysics Limited, 200 Yorkland Blvd., Willowdale, Ontario for a period of 4 years.
3. I have been employed as a geophysical crew leader by Pacific Geophysical Ltd., 744 West Hastings Street, Vancouver, B.C., for one year.

DATED AT VANCOUVER, B.C. this 3rd day of December 1987.

11) Certificate

I, Martin Makulowich, of the City of Kamloops, Province of British Columbia, do hereby certify:

1. I am a geophysical crew leader residing at 669 Valdes Drive,Kamloops, British Columbia.
2. I am presently employed by Pacific Geophysical Ltd. of 224-744 West Hastings Street, Vancouver, B.C.
3. I have been practising my vocation about four years. DATED AT VANCOUVER, BRITISH COLUMBIA this 3rd day of December 1987.

$$
\frac{\text { Matin Makolowich }}{\text { Martin Makulowich. Par ae }}
$$

GOGKE GEGLOGIGAL

hhíhs froperty

OM1HESG M. ©. b.c.

LHE HOA -41+00H

ffequenicy (hefiz) 40.625

RESis cohtaupeo
at loghrithil
NTERUALS, $1 .-1$ S
$-2,-3,-5,7$
PFE CONTGURED
HE B Z5\% IHIERUALS
BETHEEH 日 $5 \% \% 5 \%$
AND 1% HTERUAIS
RND 1% THTERUAIS
GETMEEN $5 \% ~ 19 \%$
PRCIFIC GEDFHYSIEAL LTD

COOKE GEOLOGICAL

hagas property

MIHECA M D, B

LIME HO - -39+0011

surface projection of fhomalous zohe
effuite
PROBELE A.........

REEQUEHCY HEETI $40 . a . z 5$
RESIS. COHTOURE
IMIERUALS AMIC
THTERUALS,,-1.5
FfE $-3,-5,-7,-10$
-2,-3,-5,-7 5 CO 10

BETHEEAOMMIERUALS
BETNEEN 5\% \% 10\%
FACIFIC GEGFHYSICAL LTO

ID L39+0日N $\quad x=50 \mathrm{M}$ RHO (0H1-M)											
$\mathrm{H}=2$											
$\mathrm{H}=3$											$=3$
$\mathrm{N}=4$											$\mathrm{H}=$
$\mathrm{H}=5$											
$\mathrm{H}=6$											

COOKE GEOLOGICAL

hagas fropert

GMineca tho. oc

LINE NO - $-38+00 \mathrm{n}$

surface projection of anomalous zone
offinite
PROBA日LE
POSSIBLE
POSSIBLE

FREQUEHCY (HERTZ) 4.0.0.25

RESIS. CCNTOURED
AT LOGARITHMIC
INTERUALS AMI
$-2,-3,-5,-7,5,-10$
PFE CONTOUREEO
PFE CONTOURED
AT O. 25% INTERUALS
AT 日. 25% INTERUALS
BETWEEN $0.5 \% ~ 5 \%$

PACIFIC GEOFHYSICAL LTD. induced polarizfition and kesistivity survey

HAGAS GRID L38+00N . \quad ¢ $=50 \mathrm{M}$ PFE												
$\mathrm{H}=5 \mathrm{~N}$												
- $=6$												

GOOKE GEDLOGICAL

hagit froperty
hineca m.o.jb.c

INE NO - $-37+60 \mathrm{~N}$

SURFACE PROJECTION OF ANOMALOUS ZONE DEFINITE PROBABLE M, -utinat

frequency (hertz) 4.0.0.25

RESIS. CONTOURED AT LOGARITHMIC
THTERUALS $, 1,-1,5$
$-2,-3,-5,-7,5,-18$
PFE CONTOURED

ANO 1. 日\% INTERUALS
BETHEEN 5\% \& 10\%
FACIFIC GEGPHYSIEAL LTD inguced folarization ant kesistivity sufuey

COOKE GEOLOGICAL
hagas property
ominect m.o.se.c

LINE NO - $-36+80 \mathrm{~N}$

SURFACE PROJECTION of anomalous zone
DEFINITE

frequency (hertz) 4.0.0.25

RESIS CONTOURE
AT LOGARITHMIC
INTERUALS $1,-1$
$-2,-3,-5,-7,-10$ PFE COHTOURED
AT 0. 25\% 1NTERUALS
ANO 1.0% INTERVALS
BETWEEN 5\% 10\%
PACIFIC GEOPHYSICAL LTE. induced polarization ano resistivity survey

HAGAS GRID L36+OBN $X=S O M \quad$ RHO (OHM-M)

GOOKE GEOLOGICAL

haghs property

LINE NO. -35+0ON

surface projection of finomblous zone
PROGABLE WH......

FREQUENCY (HERTZ) $40: 0.25$
at Logarithmil
intervals.
INTERUALS $, 1,-1,5$
$-2,-3,-5,-7,5,-10$
FFE CONTOURED

OETWEEN 5% \& 10%
FACIFIC GEOPHYSICAL LTD induced folfrizfition fin resistivity survey

COOKE GEOLOGICAL

hagas property

OMINECA M.D.s.C

LINE NO - $34+00 \mathrm{n}$

surface projection of anomalous zone

> QEFINITE PROBABLE

FREQUENCY (HERTZ) 4.0:0.25

RESIS. CONTGURE at logarithmic INTERURLS $1,-1$ S PF, $-3,-5,-7,5,-1$
PFE COHTOURED AT 0. 25\% TNTERUALS GETWEEN 0.5% \& 5% AND 1. O\% INTERVA
PACIFIC GEUPHYSICAL LTD.
induceg palarization ano resistivity supuey

COOKE GEOLOGICAL

HAGAS PROPERTY

FREQUENCY (HERTZ) 4.0.0.25

RESIS. CONTBUREO at logarithmic INTERUALS. $1,-1,5$
$-2,-3,-5,-7$ PFE CONTOURED,-10 RT 0.25 \% INTERYPLS BETWEEH O 5\% \& 5\% ANE 1.0% INTERUAL
BETEEE 5% \& 10% ETHEEH 5\% \& 18
FACIFIC IEOPHYSICAL LTD
inguced folfrization and resistivity survey

EGOKE GEOLOGICAL

HAGAS FROPERTY
omineca m o.sb.c

LINE NO - $-32+60 \mathrm{n}$

FREQUEHCY (HERTZ 4.0;6.25

RESIS CONTOURED
INTEFYALSAMI, $1,-1$
PFE
$-2,-5,-7,5,-18$
PFE CONTOURED
AT $Q 25 \%$ INTERUALS
AT O 25\% INTERUALS
BETWEEN $5 \% ~ 2 \%$
AND 1 O $\%$ INTERUALS
OETUEEN 5\% \& 10\%
PACIFIC GEDFHYSIEAL LTD inguced folfrization fino resistigity survey

$\mathrm{H}=5$												
$\mathrm{N}=6$												

COOKE GEGLOGICAL
haghs property

Dhineca m o.,bec

LIME NO.-31+00n

surface projection of finomalous zone

frequehicy a hertz) 4.0.0. 25

KESIS. COHTOURS
at lagarithmic
HMFRUALS $, 1,-15$
$-2,-3,-5,-75,-10$
$-2,-3,-5,-75$
PFE CONTOURED
AT O. 25\% INTERVALS
BETVEEN 0.5\% \& 5%

FHCIFIE GEDFHYSICAL LTG

HAGAS GRID 1.31+80n		$x \rightarrow 100 \mathrm{~m}$	RHO	14-M>
$\mathrm{N}=2$				
$\mathrm{N}=3$				
$\mathrm{N}=5$ ($\mathrm{N}=5$				
$\mathrm{N}=6$				

COOKE GEOLOGICAL
hagas property

DHINECA M o.;日.

LIHE HIS -31+00n

surface projection of ahomalous zohe
DEFIHITE possible -a**

pesis con
RESIS COHTGURE
AT LOGARITHMIC
INTERUALS $1,-1$

- $2,-3,-5,7,5,10$

FFE COHTOURED BETHEEH B. 5% \& 5% ANO 1% IHTERUFLS

FAEIFIC GEDFHYGIEFL LTE ifluced folfrizhtion halit kesistivity survey
dite surveyeg hill sef gi apfonea PAC OATE - Dec $\sigma 2 / 87$

COOKE GEOLOGICAL

haghs property
ominech m o.iec

LINE HO -31+00n
PLOTTING \qquad $x=50 \mathrm{M}$
surface projection of amomflous zohe
\qquad
CROBABLE Cllorese
POSSIBLE

FREQUENCY (HERTZ) 4.0:0.25

RESIS. CONTOURED
NTERUARITHMIC

INTERUALS,
$-2,-3,-5,7,1$
5,10

AI D. 25% IMTERUALS BETWEEN 8.5\% 5%
ANO 1% INTERUALS
AND 1\% INTERUALS
BETHEEM 5\% 10\%
FACIFIE GEDPHYSICAL LTD intuced folfrizfiloh ant resistivity survey

HAGGAS GRID L31+0日N - \quad - 50 M PFE									
$\mathrm{N}=1 \quad 9.6 / 1 / 4.8 \mathrm{l}$									
$\mathrm{N}=2 \mathrm{l}$									
$\mathrm{N}=3 \quad 1.8 \mathrm{~N}$									
$\mathrm{N}=4 \mathrm{4}$									
$\mathrm{H}=5$ ($\quad \mathrm{H}=5$									
$\mathrm{H}=6 \quad \mathrm{H}=\boldsymbol{\epsilon}$									

EOOKE GEGLOGIEAL
hagas froperty
dhinech it a, b.c
I.INE HO $-31+00 \mathrm{~N}$

sidrface projection of hnamblous zone
definite

FEQUEHCY (hertz. 4.6 .025 KESIS COATOURE hitegurithmic $-2,-3,-5 ; 1.01$ fFE COHTOURED
ATO. 25: 1HTEKVAL BETHEEN A. 5% \& 5 AND 1\% JHIERUALS
BETWEEN 5\% \& 10\%
PGCIFIC GEDFHYSIEFL LTD induced folffization ano pesistiuity survey

GHTE SURDETEC MING SEF ST affriveg PAC DRTE Dec $62 / 82$

CODKE GEGLOGICAL
hagis froperty

GMINECA M o.;bec

Lithe HO - $30+00 n$

SURFACE frojection of ahomalous zohe
offinite
PROBABLE \quad POSSIELE.....

FPEGUEHCY
$4.6,6.25$
RESIS COUTOUEE
RESIS COHTOURE
AT LOGARITHMIC INTERUALS I, -2,-3,-5, \quad PFE CONTOURED PFE COHTOURED
AT 2.25% HAEVALS BETHEEN Q $5 \% 8$ E 5% AND 1% I INTERUALS
BETHEEN $5 \% ~ 10 \%$

PACIFIC GEOFHYSICAL LTO induced polarizatiun and resistivity survet

EOGKE GEOLGGIEAL

haghs property
omineca m D ; b

LINE HO -ztaO日

surface projection of anomalous zohe
OEFIHITE
PROBRELE BOST......
frequency
$4.6 ; 0.25$
FESIS COHTOURE at LoGARITHMIC INTERUALS $-2,-3,-5,75,18$ PFE CONTOURED
 AND 1% INTERUWL
GETWEEN 5\% \& 19
PACIFIC GEOPHYSICAL LTD
induced folfrization fht resistivity survey

GOGKE GEOLOGICAL

HAGAS PROPERTY

DHIHECAM. D. B ©

LINE HO - $-26+00 \mathrm{H}$

FREqUENCY (HERTZ.
RESIS. CONTOURED AT LOGARITHMIC INTERURLS $1,-1$ PFE CONTOUKEO PFE CONTOUKED BETHEEH O.5\% \& 5\% AND 1% INTERUALS
BETHEEN 5% \& 19%
FACIFIC GEOFHYSICAL LTD
ineuged folfarizatiún aild resistivity survey

$1026+88 \mathrm{H}$ (X 550 M RHO $\langle 0 \mathrm{HM}-\mathrm{M}$)															
$\mathrm{H}=1$															
$\mathrm{H}=2$															
$\mathrm{H}=3$															
$\mathrm{H}=4$															
$N=5$ $\mathrm{H}=5$															
$N=6 \quad N=\epsilon$															

COOKE GEGLGGIEAL

hagas proferty

MIHECFMO:B.c

LIHE ho - $25+60 \mathrm{n}$

SURFACE projection of bnahtious zone
DEFINITE
FRGBABLE CHA.....
POSSIbLE $\because=2=$

FREQUEHEA (HERTZ
4 0.0.as
RESIS CONTDUREO at loghrithmic INTERUALS, $1,-1$ s PFE COHTOURED
AT 9.25% THTERUGLS
EETHEEN A. 5% \% 5%
AND 1% INTERUAL AND 1% INTERUALS
BETHEEN 5% R 19%

FACIFIE EEDFH'SICFL LTD
induced folfrization aho kesistivity survey

$\mathrm{N}=1$										
$\mathrm{N}=2$										
$\mathrm{N}=3$										
$\mathrm{H}=4$										
$N=5$										
$N=6$										

GOGKE GEOLOGICAL

haghe froperty
aminech n d．ib c

LIHE NO $-24+00 \mathrm{~N}$

surface projection of anomblous zone
OEFINITE
PROBABLE
POSSIELE
AnO．．．．．．
possible •・マت。

FREQUENCY（HERTZ，
RESIS COH
RESIS COHTOURED
RT LOGARITHII
INTERUALS ，1，－1．5 $-2,-3,-5,75,10$ PFE CONTOMPED BETHEEH 日 5% R 5%
AHB 1\％INTERUALS

FACIFIC GEOFHYSICAL LTG induceg folfrizfidoh fill resistivity surue

HAGAS GIRO L24＋00n $\quad x=50 \mathrm{M}$										
$\mathrm{N}=3 \mathrm{~T}$										
$\mathrm{N}=5$										
$N_{2}=6$										

9S GIRO $1.24+00 \mathrm{C}$ K＝5日M METAL FACTOR									
INTERPRETATION									
$\mathrm{H}=5$									$\mathrm{H}=$
$N=6$									$\mathrm{N}=$

GOOKE GEOLOGICAL

HAGAS PROPERTY
onineca m．d．ib．c

LIne ho－23＋日Gn

SURFACE PROJECTION OF GNGMALQUS zOME
DEFINTTE MROBRELE

FREGUENCY（HERTZ
4．a；0．25
RESIS．COHTOMRED
GT LOGARITHMIC
INTERUALS， $1,-1.5$ PFE COHTOUREO
AT 0.25% IHTERVALS BETHEEN 0.5% 8 5
AND 1% INTERUALS
ANDTWEEN 5\％\＆10\％
PGCIFIC GEOPHYSICAL LTD
induced folfitizftiun bho kesietimity survey

HAGAS GPIO L23＋0日n \quad K＝5日M RHO（OHM－M）												
INTERPRETATIQM												
$\mathrm{H}=2 \mathrm{l}$												
$\mathrm{H}=5$												
$\mathrm{H}=6$												

EOOKE GEDLOGICAL

haghs property

GMIHECA M.D:

LIHE NO -Ez+00n
POINT - \qquad $x=5011$
surface projection of rnomblous zune

$$
\begin{aligned}
& \text { DEFINITE } \\
& \text { PROBABLE } \\
& \text { POSSIBLE } \\
& \hline
\end{aligned}
$$

FFEQUEHCY , HERTZ. 4.010.25

RESIS. COHTOURED interuals. 1,-1 $-2,-3,-5,7,5,10$ PFE COMTOURED
AT 9.25% IHIERUALS BETHEEM 0.5% E 5% and 1\% IHTERVALS
ETHEEN 5\% 10
PACIFIC GEOFHYSICAL LTO ingleceu polarization amb fesistivity survey

EOOKE GEOLOGICAL

hagas property
iminect m.o.ib.c

LINE NO $-21+$ bon

surface projection of anomalous zone
definite

FFEQUENCY ©HEFTZ
4.6.6.25

RESIS COHTOURED
AT LOGARITHMIC $\begin{array}{ll}\text { INTERUALS } \\ -2,-3,-5,3 & 1,-1 \\ \text { PFE }\end{array}$ PFE CONTOURED
AT O. 25\% INTERUALS

ANDTHEEN 5\% \& 10\%
FACIFIC GEOFHYSIGAL LTD
ihouced folarization and resistivity survey

COGKE GEOLOGICAL

haghs froperty
ominech mo:b.c.

LIME HO - $20+0$ R

surface projection of fimomblous zone
DEFINITE
PROGRBLE A.atarner

FREQUENCY (HERTZ) 40.0 .25

RESIS. COHTOURE
INTERUALS MMIC
INTERUALS:
$-2,-3,-5,7$
5,10
PFE COHTOIJRED
AT 0. 25\% INTERUALS

BETMEEN 5\% A 18\%
PACIFIC GEOFHYSICAL LTD imbuced folafizatigh fat resistivity survey

■OOKE GEOLOGICAL

hagfis property

OMINECA M D．ib．

LINE NO－19400N

Surface frojection of bnomglous zane
DEFINITE
PROBABLE
FOSSIGLE

－ッジ

FREQUEHCY（HERTZ） 0．0． 25
resis contoured at logarithmic INTERVALS $, 1,-19$
$-2,-3,-5,7,19$ $-2,-3,-5,7,5,1$
PFE CONTOURED HT 0.25% INTERVALS日ETHEEN O．5\％\＆ 5 AND 1% INTERUALS
BETUEEN 5% \＆ 10%
PACIFIC GEOPHYSICAL LTD induceg polfrization ano resistiuity surver

			gm metal fac								
COORDIMATE 8 O											
$\mathrm{H}=2$											
$\mathrm{N}=4$											
$\mathrm{N}=5$											
$H=6$											

GOOKE GEOLOGICAL
hagas property
omineca m.d.ig.c

LINE HO - $-18+80 \mathrm{~A}$

FREQUEHCY
$4 \boldsymbol{G}, 0.25$ 4010.25
RESIS CONT
at LOGARITHMIC INTERUALS, $1,-1,5$ PFE CONTOURED PFT CGNTOURED BETHEEH a 5\% K 5\% AND 1% INTERUALS
BETWEEN 5% \& 10% BETWEEN 5\% \& 16%
FACIFIC GEDPHYSICAL LTD. inguced folfatization ahtioresistivity survey

HAGAS GRID LIBtIAN $\quad \mathrm{X}=5014$ RHO (OHM-M)													
$N=1$	259 306												$\mathrm{N}=1$
$\mathrm{H}=2$													Na 2
$N=3$													$N=3$
$\mathrm{H}=4$													$N=4$
H=5													$\mathrm{N}=5$,
$N=6$													$\mathrm{H}=6$

GOGKE GEOLDGICFL

hagas property

GMInEGA M D.sbe

LINE HO - $-17+00 \mathrm{H}$

surffice projection of ahomalous zone

frequency (hertz) 4.0.0. 25
at loghrirtmic
THJERUALS $1,-15$
$-2,-3,-5,75,10$
PFE CONTOURED
BETWEEN O. 5\% \& 5\%
AHD $1:$ IHTERUALS
BETUEEH $5 \% ~ \& ~$
PHCIFIC GEDFHYSICAL LTD
induced folfrizftion fati resistivili survey

