GEOLOGICAL and GEOCHEMICAL SURVEYS

ON THE

VIC PROPERTY

LOG NO: 0113	RD.
ACTION:	
	ŭ
FILE NO:	

Taseko Lake Area Clinton Mining Division, B.C. NTS Ref. 92 O/5E Latitude : 51 22.5' Longitude: 123 39'

FOR

KINGSVALE RESOURCES LTD. and STRYKER RESOURCES LTD. by

Kingsvale Resources Ltd.

Vancouver, B.C., V6B 1N2

904 - 675 West Hastings Street

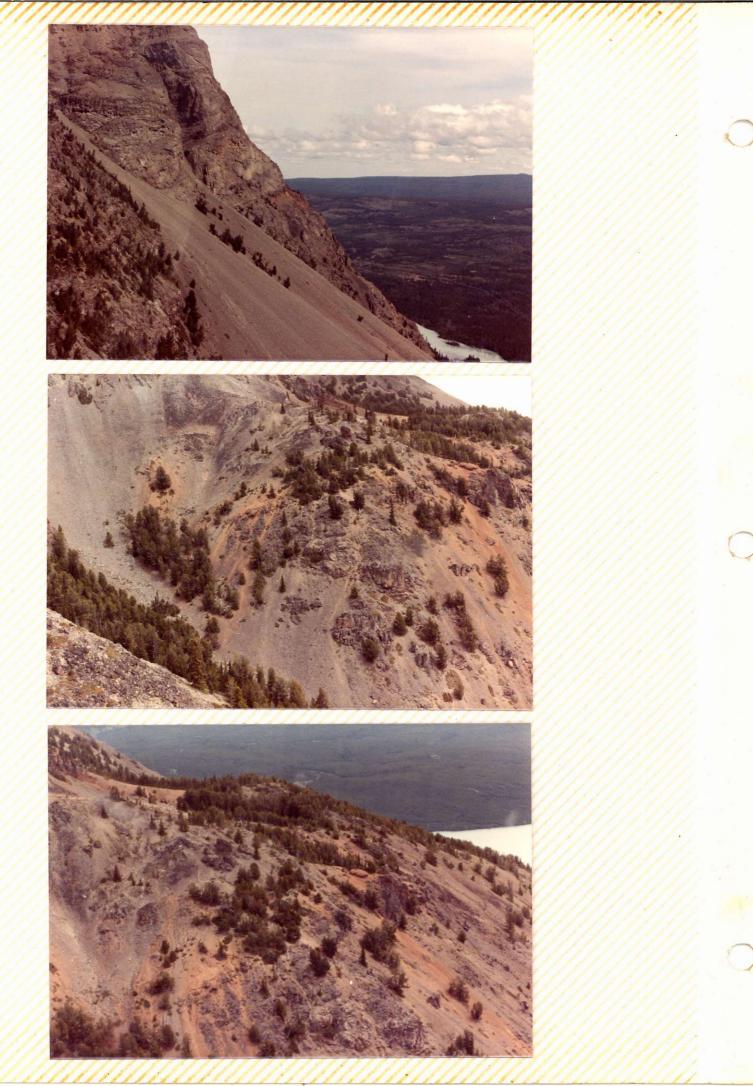
FILMED

SUB-REGORDER RECEIVED	
JAN - 3 Isod	
M.R. #\$ VANCOUVER, B.C.	

C.M. Lalonde B.Sc., F.G.A.C. ► **ମ** SE 50 **F** 0 N ົດ Z H E O November 1987 ZÞ 35 8 (F) 🛪 ≫ ≫ o Z 30 0 ード

ţ

TABLE OF CONTENTS


	raye
INTRODUCTION	1
CONCLUSIONS AND RECOMMENDATIONS	1
PROPERTY	3
LOCATION AND ACCESS	4
TOPOGRAPHY, VEGETATION AND CLIMATE	5
HISTORY	6
CURRENT 1987 PROGRAM	7
GEOLOGY	8
MINERALIZATION	14
GEOCHEMISTRY PROGRAM	19
Sample Analysis	
DISCUSSION OF RESULTS	22
COST STATEMENT	27
CERTIFICATE OF QUALIFICATIONS	30
REFERENCES	31

Page

LIST OF ILLUSTRATIONS

<u>In Text</u> Figures			Scale
Figure Figure Figure	2 Cl 3 As 4 Hi	ocation Map Laim Map ssay Plan - Old Pits Lstogram - Gold (ppb)	1:250,000 1:50,000 1:500
Figure <u>In Pocke</u> Figures		lstogram - Copper (ppm)	-
Figure	7 Ge	eology Plan eochemical Survey Gold and Copper Values	1:5000 1:5000
	-	ain Fault Zone Trenches No 1, No 2, and No 3 -Geology and Assays renches No 4, No 5, and No 6	3 1:100
Figure 1		-Geology and Assays renches No 7 to No 11	1:100
Figure 1	1 Ro	Geology and Assays Dadcuts No 1 to No 8	1:100
Figure 1	.2 De	Geology and Assays etail Soil Geochemistry Anomaly 18+OOE, 21+OON	1:1000
Figure 1		etail Soil Geochemistry Anomaly 22+OOE, 25+5ON	1:1000
Figure 1 Figure 1		etail Soil Geochemistry Anomaly 28+OOE, 38+5ON etail Soil Geochemistry	1:1000
Figure 1		Anomaly 28+00E, 42+50N etail Soil Geochemistry	1:1000
Figure 1	L7 De	Anomaly 28+OOE, 47+5ON etail Soil Geochemistry	1:1000
Figure 1		Anomaly 30+00E, 44+00N etail Soil Geochemistry Anomaly 36+00E, 44+00N 36+00E, 44+00N	1:1000
Figure 1	L9 De	36+OOE, 45+5ON etail Soil Geochemistry Anomaly 36+OOE, 56+OON 38+OOE, 21+5ON	1:1000

Figure	20		Geochemistry 42+00E, 21+50N 43+00E, 21+50N	1:1000
Figure	21		Geochemistry 40+00E, 24+50N 40+00E, 25+50N 42+00E, 37+50N	
				1:1000
Figure	22		Geochemistry 42+00E, 48+00N	1:1000
Figure	23		Geochemistry	1.1000
riguie	2.5		42+00E, 57+50N	
		1	44+00E, 57+50N	1:1000
Figure	24		Geochemistry	
_		Anomaly	44 + 00E, 59 + 50N	1:1000
Figure	25		Geochemistry	
			46+00E, 60+00N	1:1000
Figure	26		Geochemistry	
		Anomaly	46+00E, 44+00N	1:1000
Figure	27	Dotail Soil	46+OOE, 49+OON Geochemistry	1:1000
rigure	21		46+00E, 50+50N	
		Allomary	46+00E, 50+00N	1:1000
Figure	28	Detail Soil	Geochemistry	212000
			46+00E, 28+50N	
		**	48+00E, 49+50N	1:1000
Figure	29		Geochemistry	
		Anomaly	48 + 00E, 55 + 00N	
			49+00E, 54+00N	1:1000
Figure	30		Geochemistry	
	24		48+00E, 45+00N	1:1000
Figure	31		Geochemistry	
		Anomary	50+00E, 23+75N 50+00E, 30+50N	1:1000
Figure	30	Detail Soil	Geochemistry	1:1000
riguie	52		50+00E, 53+50N	1:1000
Figure	33	Detail Soil	Geochemistry	1.1000
-			50+00E, 41+50N	
		-	51+50E, 41+00N	
			51+50E, 42+00N	1:1000

INTRODUCTION

This report has been prepared at the request of the directors of Kingsvale Resources Ltd. It describes the results of a geological mapping program, soil geochemical program and an excavator trenching program conducted on the VIC property, Taseko Lake Area, B.C. during July, August and September, 1987.

Most of the previous work on this property has been concentrated on a poorly exposed gold-bearing fault zone extending up the steep and hazardous eastern face of VIC Mountain. The 1987 program has focussed on surface exploration of the more moderate western slope of the mountain.

A geological map and a soil geochemical map, at a 1:5000 scale, are enclosed with this report. Detailed geology and assay maps of the trenches and roadcuts and follow-up soil sampling results are enclosed.

CONCLUSIONS AND RECOMMENDATIONS

Geological mapping at a 1:5000 scale has demonstrated that most of the VIC property is underlain by andesitic flow breccias with interlayers of dacitic pyroclastic breccia and minor massive andesite flows. The volcanic sequence is cut by numerous narrow diorite dykes, predominantly striking southwestward, that have introduced iron suphide mineralization along their contact borders. Dacite dykes have also been noted in four separate areas. Goldcopper mineralization is associated with increased sulphide mineralization in quartz veining within southwesterly trending shear zones. Fourteen new veins have been located on the steep

-1-

eastern mountain face and three new vein systems were mapped on the more moderate western slope. Assays up to 0.443 oz. gold per ton over 30 cm. widths were sampled on the steep eastern face. New veins located 750 m southeast of the main vein carry gold assays up to 0.878 oz. per ton over a width of 20 cm. Sulphide-bearing quartz vein boulders found in talus slopes require more prospecting work to sample their source in bedrock.

Excavator trenching of the main vein structure returned high grade assays over narrow widths at the northeast end but encountered permafrost covering the bedrock in three trenches cut along strike to the southwest. Trenches cut in a rusty weathered zone near 38+00E to 39+00E and the 35+00N Baseline found carbonate alteration zones and 2 to 3 metre wide fault zones but no quartz veining or gold mineralization. Roadcuts in limonitic fault zones along the access road built downslope of soil gold anomalies on Line 50+00E contain low grade (0.049 oz. per ton) gold mineralization in only one of eight sampled zones.

Coarsely spaced soil geochemical sampling on the property grid was successful in outlining four general anomaly trends. A large anomalous copper area with local gold anomalies was located in the most northern corner of the grid. Gold anomalies highlight the strike of new veins discovered in outcrops 700 to 800 metres southeast of the main vein structure. The deep talus material and permafrost covering the main vein structure probably hindered development of any geochemical response.

An aggressive excavator trenching program is recommended for the 1988 season following building of access roads by a D-8 bulldozer into three areas:

- (1) continue the access road built downslope of Line 50+00 E to the northwest to investigate several gold anomalies within the large copper anomaly area.
- (2) strip the talus material in valley slopes below

÷2-

the new veins discovered on the ridges 700 to 800 metres southeast of the main vein.

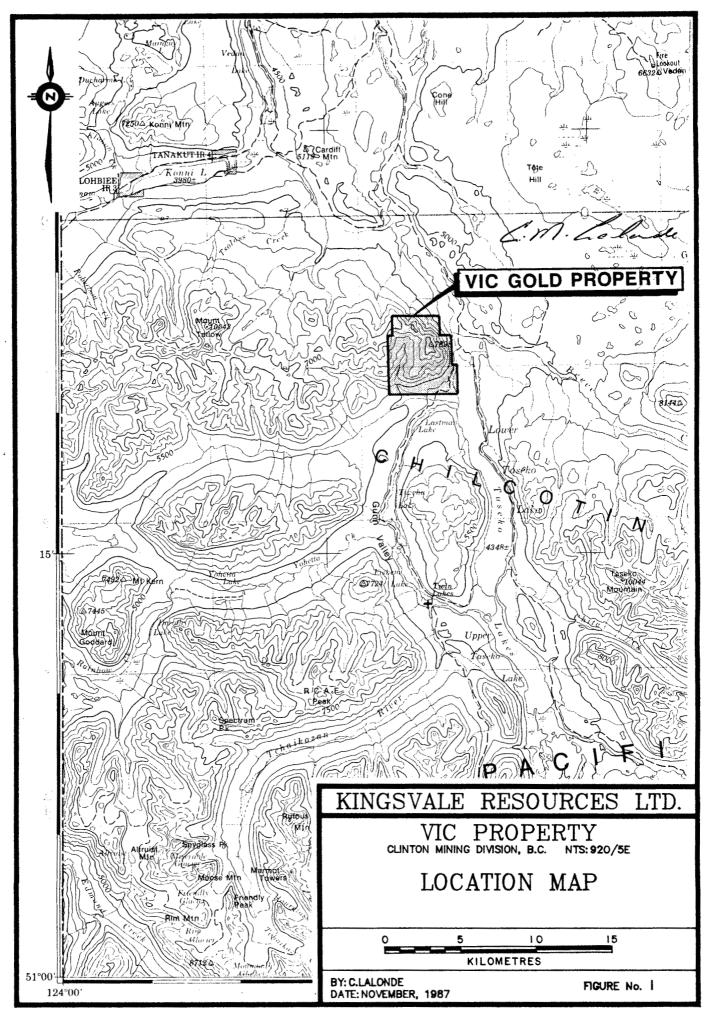
(3) examine the limonitic mineralization discovered in float boulders in the main valley at the southwest end of the grid (Line 26+00E, 39+00N)

Some anomalies did not receive sufficient detailed follow-up soil sampling. More sampling is recommended before beginning excavator work on these anomalies.

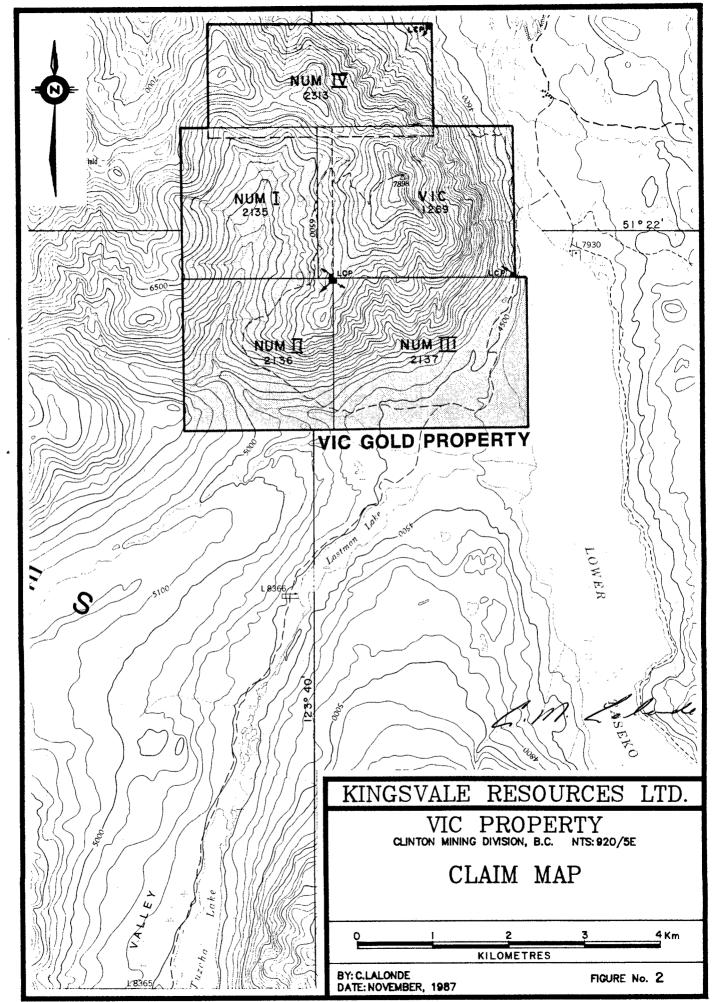
The steep eastern mountain face deserves further examination by Chris Hrkac to map and sample veins missed during the 1987 program. If possible, trenching with a portable gas drill and blasting may assist in better vein definition. The strike projection of these veins on to the western slope must be examined.

Depending on the success from sampling results of the surface veins, a small diamond drilling program should be considered for the latter part of the exploration season to test for increased widths of the veins at depth.

PROPERTY


The VIC property consists of five contiguous claims totalling 90 units:

Claim Name	Record No.	Units	Record Date	Expiration
VIC	1269	20	14 October 1987	14 October 1997
NUM I	2135	16	22 January 1987	22 January 1998
NUM II	2136	16	22 January 1987	22 January 1998
NUM III	2137	20	22 January 1987	22 January 1998
NUM IV	2313	18	13 July 1987	13 July 1998


Stryker Resources Ltd. is the registered owner of the VIC claim and they have entered into an agreement with Kingsvale Resources Ltd. to explore the five contiguous claims.

An application for \$159,000 of assessment work credit was filed at the Mining Recorders Office on October 9, 1987 to hold the claims

-3-

Prepared by: RWR MINERAL GRAPHICS LTD.

Prepared by: RWR MINERAL GRAPHICS LTD.

in good standing until 1997 and 1998 respectively.

The locations of these are shown on Figure 2.

LOCATION AND ACCESS

The claims adjoin the northwest end of Lower Taseko Lake 210 kilometres by road from Williams Lake, B.C. Provincial Highway 20 is paved from Williams Lake to Hanceville, a distance of 90 kilometres, and an excellent gravel surfaced road is available from Hanceville to a turn-off 25 kilometres northwest of the property. A development road, normally accessible in two-wheel drive, 25 kilometres in length along the west side of the Taseko River passes below the original VIC adits. An average total driving time from the property to Williams Lake is 3.5 hours.

Two roads on the property provide access to old working areas. A steep switch-back road, now useable only by bulldozers, climbs rapidly from the Taseko River up the east facing slope to within a few hundred feet of the lower adit. Another road around the south side of VIC Mountain climbs on a moderate grade into meadow areas on the western slope before steeper grades (up to 20%) require four-wheel drive vehicles to reach the summit.

The property is easily accessible by float plane directly from Vancouver to the north end of Lower Taseko Lake in 1.5 hours, a distance of 225 kilometres. Helicopter access is also available from Pemberton in 50 minutes flight time.

Two excellent campsites are available for exploration crews on this property - one on the west shore of Taseko Lake and another beside a small pond at the 6400 foot elevation. The site on Taseko Lake, used in 1987, offered warmer temperatures at the lower elevation but required a 30 to 45 minute drive each morning to reach areas of work. Trailers were used for living quarters

-4-

and it would have been difficult to tow them to the pond area.

TOPOGRAPHY, VEGETATION, AND CLIMATE

VIC Mountain is located on the eastern edge of the Chilcotin Range in the Coast Mountains at the junction with the Chilcotin Plateau. The eastern and southern flanks of VIC Mountain rise steeply from Taseko Lake (elevation 4348') to the summit at 7898 feet. They are extremely rugged with precipitous rock faces cut by clefts and ravines. The bottoms of these faces have slopes of rock debris reaching down to the lake and river levels.

The area west of the summit is much less severe but still hosts topography with 20 and 30 degree slopes and 2,000 foot changes in elevation to the western claim boundary. Alpine vegetation covers the slopes above the 6,700 foot elevation. The vegetation on the lower slopes is predominently pine trees interspersed with grassy meadows hosting abundant flowers in July and August. The western slope is mainly covered by extensive overburden and talus debris so that outcrops are generally sparse.

Five mountain goats inhabit an area southeast of the mountain peak and the steep eastern slopes. Several deer were observed during traverses throughout the property. The grassy meadows in the upper mountain slopes are tunneled by hundreds of marmots.

Snow was still prevalent on the mountain slope in early June which delayed commencing the 1987 program until the end of June. An exceptionally dry summer permitted exploration work to proceed with very few interruptions. Strong winds were noted many days on the ridges of the property. Snow flurries were encountered a couple of days in July and a 15 centimetre snowfall hit the highest elevations of the property on September 2 but had melted by September 5.

-5-

HISTORY

Gold mineralization was first discovered on the steep eastern face of VIC mountain in 1932 by C. M. Vick who recorded the first claims. Two adits were driven during the years 1935 to 1937 to test the gold bearing veins encountered in surface prospecting. The lower adit, at elevation 5,534 feet, was driven 370 feet along a shear structure but encountered only spotty low values. The upper adit, at elevation 5,792 feet, was driven 126 feet along a separate shear structure and also encountered only low gold values.

The property was purchased by C. E. Cartwright in 1939 and he ground-sluiced the main vein gully from the summit to uncover 800 feet of vein material up to 7 feet in width with an average grade of 8.66 ounces gold per ton. Cartwright disappeared during World War II, the claims eventually lapsed and the property remained dormant until 1974.

In 1974, the main vein area was staked for Nemco Explorations and exploration funding over the next three years was provided by New Pyramid Gold Mines and associated companies. Several available engineering reports outline the work completed:

- (a) locating and sampling the vein systems which included hazardous rope climbing on the eastern cliff faces.
- (b) sampling and surveying of the two short adits to confirm that they had tested the adjacent high-grade veins.
- (c) construction of two 4-wheel drive roads up the eastern and western slopes of the mountain.
- (d) drilling of three short holes with a rock sampling drill into the high grade surface vein above the upper adit.
- (e) an effort to remove the snow and ice in the gully on the east face near the summit using a slusher and scraper failed to expose definite bedrock.
- (f) reconnaissance with geochemistry and EM-16 methods on the west slope near the summit suggested these techniques could

be utilized in tracing the extension of the fault structure.

(g) three BQ holes were drilled into the main vein structure on the western slope near the summit. These holes intersected the vein 55 m below three old pits but encountered only highly oxidized shear zones where core recoveries ranged from 30% to 60%.

In 1980 the property was staked by Mervin Boe and the summit pits were re-opened by blasting, trenching, and sampling. The property was later optionned to Stryker Resources Ltd.

In August-September, 1984 four flat underground drill holes, a total of 800 feet, were drilled from the face of the lower adit to test for structures to the north. They failed to intersect any significant mineralization.

In December, 1984, G. Von Rosen prepared an air photo fracture density study for M. Boe and Sunmark Mines Ltd.

In May and October, 1985 a VLF-EM and magnetometer survey was completed over a portion of the VIC claim by D.A. Perkins for Stryker Resources Ltd.

Stryker Resources Ltd. optionned the VIC claim to Kingsvale Resources Ltd. in April, 1987 and the peripheral claims NUM I, NUM II, NUM III, and NUM IV are now part of that option agreement.

CURRENT 1987 PROGRAM

In spite of all the exploration work which has been carried out on the VIC property, the western slope of the mountain has never had a grassroots program of geological mapping and soil geochemical sampling. A mapping and sampling program began on June 29 and continued until September 26, 1987 under the management of Cordilleran Engineering Ltd. An initial geological and prospecting

-7-

examination conducted by J. D. Rowe and E. A. Balon assisted in laying out a linecutting program performed by Bill Chase & Associates Ltd. Secant chaining and compass bearings on four baselines and perpendicular tie lines totalling 18.7 km provided the survey control. Flagged lines were installed by the soil sampling crew.

Soil samples were taken on 50 metre intervals along lines spaced 200 metres apart. These lines and stations served as survey points to determine outcrop locations. Geological mapping over an area of 1032 hectares at a scale of 1:5000 was performed by C. M. Lalonde an an assistant while two technicians carried out the soil sampling. C. Hrkac and J. Buffery, experienced mountain climbers, mapped 108 hectares and sampled the steep eastern and southern slopes during ten days of rope climbing traverses. A total of 2291 soil samples, 14 silt samples and 73 rock chip samples were collected for geochemical analysis. A 1:5000 geological map and a soil geochemical map are enclosed in the pockets of this report showing results of this work. Results of anomaly follow-up soil sampling are shown on 1:1000 scale maps.

A Caterpillar 225 excavator trenching program commenced on August 31 and concluded work on September 24, 1987. Eleven trenches, for a total of 740 square metres, were excavated and 900 metres of new road were built to provide access to eight roadcuts. Geological mapping sketches (scale: 1:100) and assay results of trench and roadcut samples are shown on maps accompanying this report.

GEOLOGY

A recent publication by the Geological Survey of Canada for the Taseko Lake area, Open File 534 published in 1978, shows the VIC property is underlain by the Kingsvale Group, an Upper Cretaceous sequence of varicoloured andesitic, dacitic and basaltic pyroclastics with minor flows and volcanic sediments. The claims

-8-

adjoin the southwest side of the Taseko Fault, probably a branch off the Yalakom Fault, located only five km to the northeast of the property. The Yalakom Fault appears to be a major plumbing system for gold and copper mineralizing fluids. Two major porphyry copper-gold deposits lie along the northeast border of the Yalakom Fault - the Poison Mountain deposit and the Fish Lake deposit. Published tonnages and grades for each deposit are in the order of 200 million tonnes averaging approximately 0.25% copper and 0.015 ounces gold per ton. The Blackdome Mine is located 25 kilometres northeast of the Yalakom Fault.

Most of the VIC property is underlain by andesitic flow breccias (autobreccias) interlayered with minor massive andesite flows and thin volcanic siltstone horizons. A thick dacitic pyroclastic breccia forms the top of one volcanic cycle trending southwesterly through the northern portion of the claim group. The volcanic formations generally strike northwesterly and have shallow dips to the west. dioritic dykes trend Numerous southwestward cutting steeply through all volcanic formations. Porphyritic dacite dykes intrude the andesite flow breccia at steep angles in four locations found to date. Faults and shear zones trending southwestward and dipping steeply southeastward carry quartz stringers with gold, silver and copper mineralization.

The andesite flow breccia consists of angular to sub-rounded greenish-grey and maroon porphyritic andesite fragments in а matrix of fine to medium grained porphyritic andesite. The breccia fragments are identical to the host rock groundmass and formed during movement of the lava flow as it was cooling and consolidating. Some of the partly molten fragments were reabsorbed into the molten lava mass and developed sub-rounded shapes during the rolling motion of the flow. The andesite consists of 35% to 40% plagioclase feldspar phenocrysts ranging in size up to 1.5 mm.

-9-

Two maroon coloured andesite breccia beds, located at the 7200foot elevation and up to 25 metres thick, can be traced over a strike length of 1100 metres across the cliff area. The two beds vary from maroon to almost purple in colour and contain abundant white feldspar phenocrysts in both the matrix and fragments. Subrounded to angular fragments are usually more competent then the matrix. These thin maroon andesite breccia beds are likely subaerial equivalents to the overlying and underlying green andesite breccias. Maroon andesite fragments are commonly found in flow breccias throughout the property.

Except for sets of fractures, the outcrops have massive structural characteristics and weather with knobby surfaces formed from differential weathering of the fragments and groundmass. Narrow volcanic siltstone horizons up to 2 m thick form bedding planes These siltstone within the massive volcanic breccia sequence. horizons are more evident on the steep eastern mountain slope and were observed in only a few places on the more moderate western Bedding generally strikes at azimuths of 300 degrees to slopes. 320 degrees and dips range from 20 degrees to 45 dearees southwestward. Local changes in bedding were observed striking northeastward (060 degrees) with dips 15 degrees - 20 degrees southeastward.

Massive porphyritic andesite flows are interlayered within the flow breccias. The rock consists of 25% to 40% plagioclase feldspar phenocrysts in a predominantly plagioclose groundmass. Their weathered surfaces are light grey but on freshly broken surfaces they are a dark maroon grey colour. Hematite stain is commonly found along fracture planes. In a few places along the ridge southwest of the Legal Corner Post the andesite flows change rapidly into andesite flow breccias along strike and across the dip of the formations.

A large area of dacitic pyroclastic breccia was mapped along the ridges on tie line 50+00E in the vicinity of the 50+00N Baseline

-10-

and the crosslines northwestward to the 60+00N Baseline. Rather than forming as a flow breccia, this rock unit is probably a product of an explosive volcanic eruption where ejected andesite and dacite bombs settled into volcanic ash or lithic fragments. The formation is made up of andesite and dacitic rock fragments in a dacitic groundmass. Many fragments are sub-rounded indicating that they were partly or wholly molten when discharged and the globules solidified or cooled with rounded surfaces. A minor amount of disseminated pyrite (1%) can be found in local areas. Laminated ash tuff horizons formed narrow layers during brief periods of volcanic eruption. Although these layers are rare, they offer the only true bedding plane surfaces. Fracture sets through the pyroclastic breccias strike northeastward and dip shallow The upper contact of the dacitic breccia formation southeasterly. is interlayered with darker andesite horizons southeast of the 60+00N baseline as part of a transition zone from totally dacite breccia to andesite breccia topographically and stratigraphically above it.

A small area of light grey dacite pyroclastic breccia is located on the ridge above Line 50+OOE from 28+OON to 29+OON. These outcrops are medium grained and have small greenish-grey and maroon andesite fragments. The whole talus slope appears to have a lighter grey colour than adjacent greenish-grey andesite outcrops and talus. Two thin maroon beds mapped on the cliff area line up on strike with this formation but do not outcrop in this vicinity.

All volcanic formations are intruded by massive medium grained diorite dykes generally striking southwestward with dips of contacts vertical to steep southeastward. The diorites are composed of 80 to 90% light grey feldspar with a variable content of black hornblende laths and prismatic needles. Minor amounts of biotite and disseminated pyrite make up the remainder of the rock. Widths are generally 10 to 20 metres and maximum widths reach up to 40 metres. Iron staining is commonly found along the borders of

-11-

Porphyritic dacite dykes were found in four locations on the VIC property:

- (1) four small outcrops in the area around Line 28+OOE at 40+OON.
- (2) in float on the ridge southwest of the Legal Corner Post for NUM I, II, and III claims.
- (3) in one small outcrop east of the southeast end of Line 46+OOE.
- (4) in large outcrops southeast of the 20+00N Baseline near 38+00E to 42+00E.

The porphyritic dacite consists of phenocrysts of plagioclase feldspar and quartz eyes in a groundmass of beige coloured plagioclase and quartz with minor sericite. The only visible contacts of the dacite and andesite breccia formation were discovered in outcrops southeast of the 20+00N Baseline where the dacite is definitely an intrusive dyke striking O8O degrees and the contact dips 80 degrees to the southeast. These dacite outcrops are exposed on ridges over lengths of 100 metres. The isolated locations of the other three dacite occurrences suggests that they are probably dykes also.

Hornfelsed siltstones in outcrops above the main access road at the 5500' elevation on the NUM IV claim are cut by many narrow diorite dykes. The siltstones, containing up to 3% disseminated pyrite in local areas, are marked by a prominent iron gossan. The diorite dykes strike approximately east-west and dip steeply southward.

Zones of orange weathering carbonate alteration, predominantly siderite and ankerite with minor calcite, occur in many areas throughout the andesite flow breccia formation. These zones consist of numerous narrow carbonate stringers with an increased carbonate flooding through the adjacent andesite rock. Although they show as a bright orange weathering gossan, very little

-12-

disseminated pyrite, if any, can be found. Numerous soil and rock chip samples confirm that they seldom carry any gold or copper mineralization. A few carbonate alteration zones also contain narrow quartz veinlets which carry sulphides and gold-copper values -- for example the zones at 46+50E, 24+80N and 37 +00E, 27+00N.

Intrusion of the diorite dykes has produced silicification and pyritization alteration along their borders. A large area of iron gossan was noted in diorite float and soils in the area between Lines 34+OOE and 40+OOE from 40+OON to 44+OON. Rock chip and soil samples did not reveal any anomalous gold or copper content. Other heavily pyritized areas of outcrops and talus are located as follows:

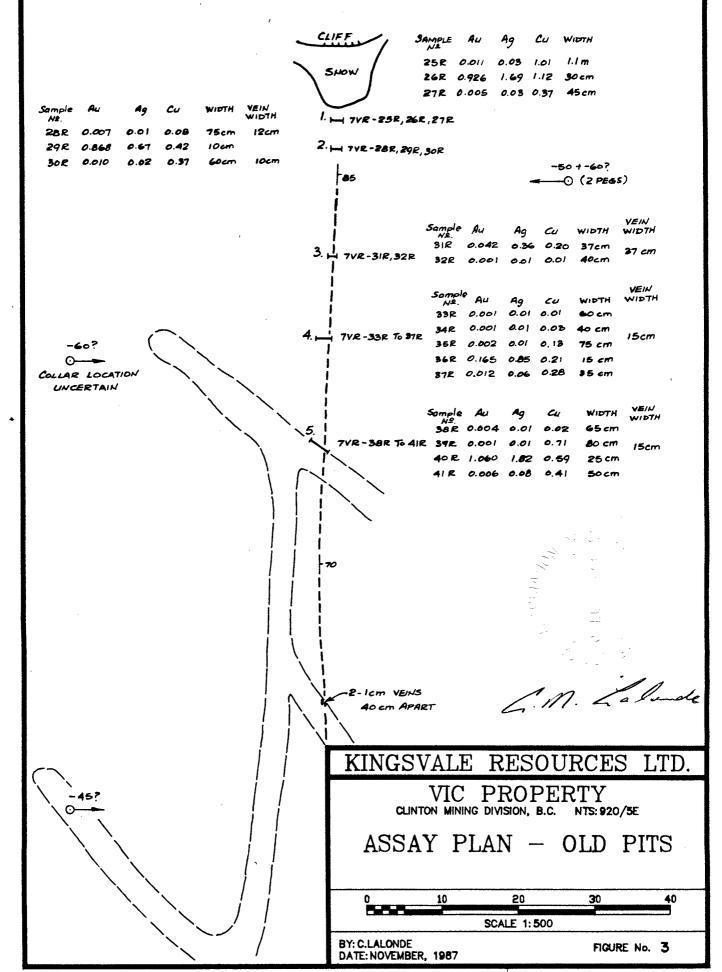
- (1) along baseline 50+00N near Line 46+00E
- (2) on the north-facing slope on Lines 47+00E to 50+00E northwards from 54+00N
- (3) in the saddle area on Line 51+50E

The volcanic breccias contain many local areas of epidote alteration developed from replacement of plagioclase phenocrysts and epidote-chlorite replacement of hornblende. These areas of alteration are recorded in the field notes and do not appear to play any significant role in the location of gold and copper mineralization.

The predominant orientation of fault zones and shear zones is 040 degrees to 060 degrees with steep dips to the southeast. The fault structure hosting the main vein on the top of the ridge is 1.5 metres wide and is reported to reach 8 metres in width on the steep east slope. Several sub-parallel and branching faults were located with dips sometimes to the northwest (e.g. southeast end of Line 50+00E). Another dominant set of fault structures strikes approximately due North and dips are steep eastward. A major fault zone, over 2 to 3 metres in width, was encountered in the trenches excavated in the vicinity of Line 38+00E striking 115 degrees to 120 degrees with moderate dips to the south. The faults offset the

-13-

diorite dykes on the steep east slope proving that they are younger than the period of dyke emplacement.


MINERALIZATION

Previous work on the VIC property has been concentrated on a major fault zone down the steep east face striking southwestward and High grade gold, silver and copper dipping steeply southeast. mineralizatin has been identified in guartz-sulphide veins within a strong fault structure which reaches widths of eight metres. The quartz veins vary in width from a few centimetres up to 1.7 metres and consist of well-ribboned guartz with local lenses and disseminations of chalcopyrite and pyrite parallel to the Sampling by previous workers has confirmed schistosity planes. that the higher gold values correlate with the high sulphide sections. The fault structure cuts both andesite flow breccias and diorite dykes but the veins are best developed where they transect the diorite. Intermittent rubble and snow cover on the steep slope has made it difficult to trace the continuity of the veins.

In 1987 the old pits on the main structure near the crest of the ridge were cleaned out and resampled. A sketch is shown on the following page which provides a summary of the assay results from the various sample intervals. Gold mineralization is confined to quartz veins varying in width from ten centimetres to 37 centimetres. The adjacent shear zone consists mainly of bleached clay alteration with limonitic gouge stringers that do not carry any significant gold mineralization.

A Caterpillar 225 excavator stripped a trench along strike from Pit No 5 and exposed the fault zones and quartz veins in the floor of the trench. Two parallel fault structures strike O42 degrees to O47 degrees and dip 60 degrees to 75 degrees southeastward within andesite flow breccia that shows very little alteration. The fault zones vary in width from 10 centimetres to 30 centimetres and are separated by 50 centimetres to 1.0 metre of chloritic andesite host

-14-

Prepared by: RWR MINERAL GRAPHICS LTD.

rock. The footwall fault zone consists of limonitic gouge and chloritic clay alteration with patchy black manganese oxide along schistosity planes. Only a minor amount of quartz could be found along the entire strike length. The hanging wall fault zone carries 10 to 15 centimetres of vuggy limonitic quartz with minor patchy malachite along fractures and very little sulphides. Although the trench is 71 metres long, only two sections are free of perma-frost (total 27 metres).

The footwall fault zone carried negligible gold and silver values. The hanging wall quartz-bearing fault zone contains exceptionally high gold values (2.67 and 3.64 oz per ton) over 10 to 15 cm widths at the northeast end of the trench then moderate grade values (0.217 and 0.537 oz. per ton) adjoining on strike to the southwest. The remainder of the exposed vein fault contains only low quantities of gold.

Two more trenches were excavated in step-outs 70 m and 140 m along strike to the southwest. Trench No 2, 70 m southwest, located a narrow limonitic gouge zone but permafrost prevented any sampling or mapping. Trench No 3, 140 m southwest of Trench No 1, also encountered permafrost at the northwest end where limonitic stain is visible.

Examination of the steep eastern face by C. Hrkac and J. Buffery was successful in locating fourteen quartz and quartz-carbonate veins within shear zones. Massive to ribboned quartz veins vary in width from one centimetre to more than a metre and contain sulphide lenses and disseminations. Pyrite, chalcopyrite, malachite and azurite are the most common sulphide and oxide minerals. One vein in the northernmost area also carried galena, sphalerite and possibly barite.

The main shear zone in the central cliff area carries the highest gold values - up to 1.26 oz. per ton in Sample #2154 (refer to this location on the 1:5000 Geology Map). Quartz veins vary in

-15-

width from 10 cm to greater than 1 metre and strike southwestward, dipping steeply to the southeast. Intermittent lenses of pyrite and chalcopyrite carry moderate to intense malachite and minor azurite staining. The highest gold values are associated with the sulphide lenses.

Two wide, up to 1 metre, mineralized quartz veins were found along the cliff area. Samples #2161 and #2162 were taken from one wide the southern section at vein located in an elevation of approximately 6520 feet. This vein varies in width from 10 cm. to 1 metre, trends easterly to southeasterly and dips steeply to the northeast. The narrow sections are highly weathered with abundant limonite and minor goethite. In wider sections malachite and azurite are more abundant. Less weathered sections show disseminated pyrite, chalcopyrite, malachite and azurite, as well as small amounts of an unidentified silver-grey mineral. Sample #2161, taken from the highly weathered section, carried 0.202 oz. gold per ton and sample #2162, from the 1 metre wide section, carried 0.024 oz. gold per ton.

The second wide vein occupies a large shear located in the northern portion of the cliff area where samples #2174 to #2177 This vein has a northeast strike and dips steeply to were taken. the southeast. Widths vary from 10 cm to 1 metre where it has been traced from the 6720-foot elevation to the 6000-foot elevation. Mineralization consists of disseminated cubic pyrite, minor chalcopyrite, galena, sphalerite, malachite and azurite with amounts of small a white mineral, possibly barite. This disseminated mineralization is usually concentrated near the vein walls and some highly weathered areas contain abundant limonite and goethite lining boxwork. Only low gold values (0.001 to 0.014 oz. per ton) were encountered in these samples.

Two narrow veins, less than 40 cm, in the northern part of the cliff area at an elevation of 7400 feet carry significant gold values. Sample #2170 returned a gold content of 0.122 oz. per ton

-16-

and sample #2173 carries 0.443 oz. per ton.

The remainder of the veins were narrow, less than 10 cm, and some carried significant gold and copper values. Their limited widths will downgrade their priority for further investigation.

Gold mineralization is present in newly discovered quartz veins in the vicinity of Lines 45+00E to 51+00E from 27+00N to 28+00N. A 15 to 20 cm wide quartz-carbonate stringer in a limonitic shear zone strikes O35 degrees to O45 degrees and has a vertical dip. The drusy limonitic vein material carries 1 - 2 % disseminated pyrite with malachite stain. A sample across 20 cm on the ridge above Line 50+00E returned an assay of 0.878 oz. gold per ton. This vein was located in the valley slope and on strike on the ridge to the southwest where samples across a 15 cm width of vuggy limonitic quartz veins within 60 cm to 1 m wide shear zones carried low gold values (0.032 and 0.073 oz. gold per ton). Another sub-parallel quartz vein was located 90 m to the southeast on the ridge above A sample across a 25 cm quartz-siderite vein in a Line 50+00E. clay shear zone carried 0.352 oz. gold per ton. Rock chips from selected grab samples of quartz vein rubble with malachite stain downslope carried gold assays of 0.286 oz. per ton. Plans to put in an access road for the excavator with a bulldozer had to be postponed because the bulldozer contractor encountered bureaucratic interference.

The excavator built 900 metres of access road along the west side of the ridge below the gold-copper soil geochemical anomalies on Line 50+00E from 46+50N to 49+00N. The large amount of bedrock and steep topography made it impossible for the excavator to reach the top of the ridge up slope above the soil sample points. Limonitic shear zones were stripped to bedrock in eight roadcuts to permit examination and sampling. Only a few of the limonitic zones contain dark iron oxidized quartz stringers. The geological sketch maps and the assay results enclosed in the pockets of this report show that only Roadcut No 8 carries low grade gold values

-17-

(0.049 oz gold per ton over a 1.5 m width). These limonitic fault stringers strike northeasterly toward the anomalous gold value (159 ppb) at 49+00N. This work does not provide any explanation for the good anomalous values (350 ppb and 905 ppb) at 48+00N and 47+50N. More excavation work will be considered for the 1988 season.

Interesting limonitic boulders (up to 30 cm. X 40 cm) were located in the south-facing slope at 39+20N, 26+23E. The boulders consist of limonitic schistosity planes with rhyolite or dacite fragments and drusy quartz vein material. Three trenches dug by pick and shovel failed to locate the source. Rock chips sent for assay returned only low gold values (0.016 oz per ton) but the boulders looked similar to quartz vein material seen at the Blackdome Mine. This area definitely deserves investigation with an excavator but will require at least three days bulldozer work to build an access road.

Quartz vein boulders with malachite stain were found in the talus slope at 25+50N, 48+50E and a sample of rock chips returned values of 3670 ppb gold and 2665 ppm copper. Preliminary prospecting up slope failed to locate the source of this mineralization. Similar quartz material was found at 25+25N, 42+00E that returned geochem. values of 445 ppb gold and 194 ppm copper. A prominent gully up slope of this talus material deserves more prospecting work.

As previously mentioned, two carbonate alteration zones carried significant gold and copper values. The orange-weathering zone at 24+80N, 46+50E is exposed in the valley bottom over a 55 metre length and 3 to 5 metre width. The original andesite breccia is flooded with siderite, ankerite and some calcite and also contains Minor shearing was noted at 335 degrees carbonate stringers. azimuth along the strike length of the outcrop exposure. Pieces of drusy quartz vein material up to 8 cm wide were found in float at the north end of the zone. The crystalline quartz contains coarse disseminated bornite and pyrite with malachite stain. Pieces of selected mineralized quartz vein assayed 0.732 oz. gold

-18-

Pieces of selected mineralized quartz vein assayed 0.732 oz. gold per ton, 16.29 oz. silver per ton and 15.58% copper. Examination of the surrounding area failed to locate the bedrock source of this mineralization. The second mineralized carbonate alteration zone, at 27+00N, 37+00E, carries vuggy limonitic carbonate stringers with malachite stain near the west end of a long northeasterly-striking outcrop. Rock chips of the stringers returned geochem. values of 450 ppb gold and 12136 ppm copper.

Three trenches, No 4, 5, and 6, were cut by the excavator in the limonitic gossan zone at 39+OOE on the 35+OON Baseline. Mapping of the trenches revealed only limonite and manganese oxide staining along shallow dipping faults with no sign of the expected main fault structure projected from the main zone at the ridge crest. Massive vuggy carbonate zones and carbonate stringers were observed in the central area of Trench No 5. Samples taken on the northeast wall of Trench No 5 in the limonitic carbonate zone returned negligible gold and silver values.

When the main fault structure was not cut in the above three trenches, Trench No 7 was excavated in the gully immediately to the southeast. Only narrow shallow dipping structures were encountered. A sample taken from a limonitic fault zone carried negligible gold and silver values.

The excavator also cut four trenches in an area of orange coloured soil near 33+50N, 38+50E - Trenches No 8, 9, 10 and 11. Major fault zones up to 4 metres wide and striking 115 degrees and 145 degrees were exposed in these trenches. The fault zones consist of unconsolidated grey feldspathic sand with limonitic stringers and narrow maroon-grey gouge seams. Samples taken in the limonitic areas returned nil values in gold and silver.

GEOCHEMISTRY PROGRAM

The soil sampling program was designed to test the entire western

-19-

slope of the claim group to determine areas of significant gold mineralization that warranted more detailed work. Exploration in previous years has proven an association of gold with copper mineralization and because copper is a more mobile element it was decided to analyze all samples for copper and gold values.

A metric grid was established by the line-cutters with four baselines, striking at azimuth 050 degrees, at 20+00N, 35+00N, 50+00N and 60+00N. Tie-lines were chained and picketed at 50+00E, 36+OOE, 26+OOE, and 16+OOE to control accuracy. The sampling crew chained and flagged lines perpendicular to the baseline at 200 metre spacing between lines and took soil samples at 50 metre intervals along the lines. Samples were taken from the "B" horizon wherever possible by digging holes up to 45 centimetres deep using a mattock and trowel. On felsenmeer and talus slopes samples were taken from shallow horizons within soil creep islands Sample records have been amongst the rocks. kept noting characteristics such as slope, physiography, drainage, sample horizon, depth, texture and colour for each sample.

After receipt of analytical results from the sampling described above, more detailed sampling was carried out surrounding anomalous gold values above 50 ppb. Intermediate lines were chained and flagged at 25 metre and 50 metre intervals parallel to the original sample line and samples were taken at 25 metre spacings. This sampling continued until the final day of the 1987 program. The final analytical results were received in Vancouver within two weeks from the end of the program. Examination of these anomalous areas will be carried out in 1988.

Rock chip samples were collected from several iron gossan showings and from orange weathering carbonate alteration areas encountered on the property. Silt samples were taken above the junction of several streams.

-20-

Sample Analysis

The samples were partially dried and shipped by bus to Acme Analytical Laboratories in Vancouver. A - 80 mesh fraction of soil was analyzed for copper by the inductively coupled argon plasma (ICP) method and a separate analysis for gold was carried out by atomic absorption (A.A.)

The ICP sample is prepared by dissolving 0.5 grams in hot aquaregia (3:1:2 hydrochloric acid to nitric acid to water) at 95 degrees C for one hour. This solution is diluted to 10 ml with water and converted to an aerosol.

A brief description of the ICP analysis is as follows: high frequency currents in a few turns of induction coil (powered by a high frequency generator) surround a plasma cell and generate a The cell consists of argon plasma enclosed magnetic field. between two concentric quartz tubes surrounding a glass sample injector. The plasma gas is seeded with electrons - resulting temperatures range from 7000 to 10000 degrees K. The sample, in aerosol form, is injected into the center of the cell and rises into the doughnut-shaped plasma ring. The high temperatures vaporize the sample and separate molecular species. Spectral intensities of the excited samples are recorded and compared with standards by a computer-controlled spectrometer.

Gold values were determined using a 10.0 gram sample ignited at 550 degree C, digested with hot aqua regia, extracted by an organic compound MIBK and analyzed by graphite furnace atomic absorption.

A statistical analysis was prepared for each element and the following anomalous/threshold values, closest to the mean plus two standard deviations, were determined.

-21-

	AU (ppb)	<u>Cu (ppm)</u>
Possibly anomalous (80th Percentile)	>17	>101
Definitely anomalous (90th Percentile)	>40	>154

Histograms showing the distribution of analytical values for gold and copper are enclosed on the following pages.

Copies of the statistical analysis for each element and the certificates of analysis are retained in Kingsvale Resources files. Analyses for gold and copper are plotted on a 1:5000 scale map enclosed in the pockets of this report.

DISCUSSION OF RESULTS

The main mineralized fault structure failed to show any geochemical dispersement of gold and copper mineralization probably due to the thick talus cover and the permafrost ice coating the bedrock-talus surface on the north-facing slope. The abscence of an anomolous signature on Line 50+00E at 36+00N to 37+00N downslope of the high grade mineralization in Trench No 1 suggests these two factors play an important role in masking this mineralization.

Four general geochemical anomaly trends can be distinguished striking southwesterly across the grid lines. Their locations are as follows:

(1) a large anomalous copper area in the most northern corner of the grid between BL 60+00N and BL 50+00N, with two gold anomaly provinces:

(a) between 57+00N and 60+00N; (b) 53+00N to 54+00N

- (2) anomalies on the ridge from 46+50N to 49+00N on Line 50+00E southwestward at least to Line 36+00E at 44+00N
- (3) anomalies near 41+00N between Lines 51+50E to 44+00E
- (4) anomalies near 27+00N to 26+00N between Lines 50+00E to possibly 40+00E

CORDILLERAN ENG. (PROJ-VIC)

AU*

(PPB) 2 (1106) 4 (249) 6 (136) 8 (98) 10 (74) 👭 12 (**6**()) 1 225 14 (53) 15 16 (46) 📷 39) 🔳 18 (23/ 20 (22 (37) 🚻 24 (22) 11 28) 📲 25 (19) 📕 28 (30 (16) 👭 32 14) 🔢 1 34 - C フェ 11 36 (13/ 1 38 (11) 目 9) 40 (11 42 (11) 1 44 5 17) 🔢 46 (ćι L. M. Lelade 48 (91 11 50 (5) 1 52 (11) 1 54 (3/ 1 56 (8) - 11 58 (5) 1 2) 1 60 (Over (149) 1 t 1 900 1200 1500 600 Ú 300 ۰, Number of Samples 22 Maximum: 2190 Mean: 2286 Samples

Minimum:

•

1

Median:

3

CORDILLERAN ENG. (PROJ-VIC)

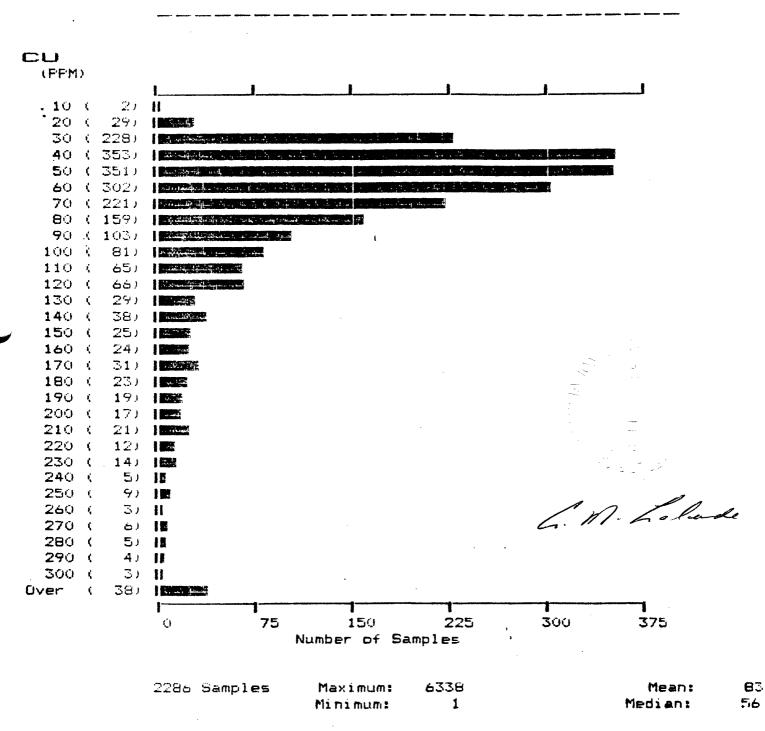


FIGURE No. 5

TREND NO 1

This area is underlain by dacitic pyroclastic breccia near the upper transition zone with a second cycle of andesite flow breccia. Many narrow diorite dykes cut the volcanic sequences producing silicification alteration and disseminated sulphide Limonitic fault zones with malachite gossan mineralization. carrying low gold and copper values have been located in outcrops at 59+00N, 38+10E and 58+50N, 39+75E. These fault zones strike between 015 degrees and 345 degrees with steep dips northwestward and southeastward. Follow-up sampling of anomalies to the northeast, between 41+00E and 45+00E, returned 13 anomalous gold values between 57+25N and 58+00N in samples taken at 25 metre intervals along lines spaced 50 metres apart.

Similar success was achieved in follow-up sampling of the anomaly at 59+50N on line 44+00E. Five anomalous surrounding gold values indicate a north-south strike to a talus-covered mineralization zone.

Follow-up sampling of the gold-copper anomalous value at 46+00E on th 60+00N Baseline has turned up 18 anomalous gold values and 9 anomalous copper values in samples taken at 25 metre spacings between Lines 45+00E to 47+00E and 59+50N to 60+50N. A general strike of these anomalous values appears to be southwestward.

The gold anomalies between 53+00N and 55+00N on Lines 50+00E to 48+00E lie along the north side of the east-west ridge above the north-facing valley containing numerous anomalous copper values. Abundant iron stain is visible in silicified outcrops of dacitic breccia and diorite dykes containing disseminated pyrite and pyrrhotite (generally 1% but local concentrations to 5%). The strike of the gold anomalies is east-west parallel to the ridge.

-23-

TREND NO 2

Five soil samples on Line 50+00E taken at 50 metre intervals between 46+50N and 49+00N returned anomalous gold values (as high as 905 ppb). Preliminary examination of the ridge above the line turned up rock chips of limonite-goethite-quartz mineralization in talus slopes within recessive saddles formed from weathering of shear zones. At the end of the exploration program an excavator built an access road into this area and exposed several limonitic shear zones with narrow dark iron stained (probably goethite) quartz stringers in a few zones. As mentionned previously in the section on "Mineralization" only one of these fault zones carried low grade gold values.

The strike of the limonitic fault zones in the roadcuts on the access road ranges from due South (180 degrees) to 215 degrees. A trend of gold anomalies strikes across the grid lines at 220 degrees indicating that these mineralized structures could be fairly extensive and deserve more exploration work.

Sampling follow-up at 25 metre spacings on the anomaly on Line 48+00E at 48+50N and the anomaly on Line 46+00E at 49+00N encountered several more anomalous gold and copper values. Both of these areas are covered by overburden and they will require excavator work to explore the source of these anomalies.

Closer spaced soil sampling in the vicinity of the 285 ppb gold value on Line 42+00E at 48+00N did not locate any other anomalous gold mineralization. Anomalous copper values follow the stream valley southwestward through this area.

The gold and copper anomalous area around Line 36+OOE from 43+OON to 44+5ON is underlain by silicified and chloritic diorite with 1% to 5% disseminated pyrite mineralization. The diorite boulders have limonite coating fracture planes and the soils weather a bright orange colour. Closer spaced soil sampling and rock chip

-24-

sampling did not show any continuity of anomalous values.

Results of the follow-up sampling around the gold anomaly on Line 30+00E at 44+50N failed to show any anomalous values. The anomalous gold value on Line 28+00E at 42+50N could be aligned on a strike of 200 degrees with four more anomalous values produced by the follow-up soil sampling.

TREND NO 3

Follow-up sampling of anomalous gold-copper values on Lines 51+50E and 50+00E from 40+50N to 42+50N has confirmed the presence of a strong mineralized zone trending southwestward. Out of 70 soil samples collected in this area, 50 samples show anomalous gold values reaching as high as 2190 ppb. Rusty soils and limonite stain on bleached andesite fragments with disseminated pyrite in the talus slopes were noted in this area. The topography slopes moderately to the northwest on the nose of a ridge spreading the mineralization over a broad area.

Limonite-goethite stained rock fragments were found in the talus slope above the gold-copper anomaly (106 ppb Au, 278 ppb Cu) on Line 44+OOE at 39+50N. Selected rock chips of this mineralization returned a gold content of 690 ppb and a copper content of 2860 ppm.

Soil sampling follow-up work on the gold anomaly on Line 42+OOE at 37+50N returned three scattered anomalous gold values. No further work can be recommended in this area.

TREND NO 4

Gold and copper anomalies highlight the southwestward trend of the quartz veins containing chalcopyrite and pyrite sulphides discovered early in the 1987 program. Samples of quartz veins in narrow shear zones on the ridge above Line 50+00E at 28+00N

-25-

carried a gold content of 0.878 oz. per ton. Other samples of quartz vein float scattered down the talus slopes below Line 50+00E as far southwest as Line 42+00E have produced similar grades (e.g. 2.345 oz. per ton, 51,100 ppb, 32,900 ppb). The topography changes several hundred feet from ridge tops to the valley bottoms along strike of the veins therefore most of the veins are covered by talus material.

Soil samples at 25 metre spacing around gold-copper anomalies on line 40+00E at 24+50N and 25+50M suggest this mineralization will continue further southwest. The copper anomalies on strike on Line 38+00E indicate that the mineralization may continue to this line.

A weak parallel trend is located 400 metres to the southwest. Closer spaced sampling of anomalies near the southwest end of Lines 50+00E, 43+00E, 42+00E and 38+00E showed generally poor results. A trend of copper anomalies continues southwestward on adjacent grid lines. Examination of this area is required during the next exploration season.

Single gold anomalies on Lines 26+00E, 22+00E and 18+00E failed to locate any other significant mineralization.

COST STATEMENT - VIC PROPERTY (May 1 - September 30, 1987)

Salaries

Professional, Technical and Geological Services

- J. Stollery (Geological Consultant) May 30, June 10, July 13, Aug. 29, Sept. 2 5 days @ \$550/day \$2,650
- A. Reeve (Geological Consultant) June 10,11; July 26,27; Sept. 2,3 6 days @ \$550/day 3,300
- J. Rowe (Geologist) June 9-11, 28-30; July 1-13 19 days @ \$250/day 4,750
- E. Balon (Prospector) June 9-11, 28-30; July 1-13 19 days @ \$250/day 4,750
- J. Hyland (Geological Consultant) June 16 1 day @ \$500/day 500
- C. Lalonde (Geologist, Supervisor) June 19-30; July 6-31; Aug. 1-7; Aug. 11-31; Sept. 1-27 88 days @ \$300/day 26,400
- C. Hrkac (Geologist) Aug. 7-11 4.5 days @ \$225/day 1,012
- B. Clegg (Soil Sampler) July 6-12 7 days @ \$62.50/day 438
- J. Gamma (Soil Sampler) July 23-31; Aug. 1-31; Sept. 1-27 67 days @ \$80.29/day 5,380

C. Kind (Soil Sampler) July 6-31; Aug. 1-31; Sept. 1-26 83 days @ \$86.41/day	\$7,173	
D. Mahoney (Soil Sampler) July 6-22 17 days @ \$62.49/day	1,062	
L. Spence (Soil Sampler) July 15-22 8 days @ \$70.36/day	563	
P. Starlund (Soil Sampler) July 23-31; Aug. 1-31; Sept. 1,2 42 days @ \$71.38/day	2,998	\$60 , 976
Special Services		
1. Fixed Wing	\$ 640	
2. Helicopter	4,416	
3. Geochemical Analyses		
2291 Soils, 14 Silts, 73 Rocks	18,560	
4. Assays	2,887	
5. Mountaineering - Quest	7,162	
6. Linecutting - Chase & Associates	7,662	
7. Expediting	550	
8. Trenching		
K. Bolster: 244 hrs + mobe, demobe	24,560	
9. Road - J. Murdoch	1,081	\$67,518
Rentals		
1. Vehicle Rental - Hertz	\$3,314	
2. Equipment Rentals	6,624	410 F11
3. Radio Rental & Licences	573	\$10,511

General

Freight, Express, Delivery	\$ 477	
Travel (Hotels, Meals, Mileage)	3,192	\$ 3,669
<u>ld</u>		
Camp Supplies & Equip.	\$9,937	
Food	7,467	
Gasoline	239	
Aviation Fuel	600	
Vehicles - Gas	2,140	\$20,383
	Travel (Hotels, Meals, Mileage) <u>eld</u> Camp Supplies & Equip. Food Gasoline Aviation Fuel	Travel (Hotels, Meals, Mileage) <u>3,192</u> <u>eld</u> Camp Supplies & Equip. \$9,937 Food 7,467 Gasoline 239 Aviation Fuel 600

TOTAL:

\$<u>163,057</u>

L.M. Lala _ C.M. Lalonde

-29-

CERTIFICATE OF QUALIFICATIONS

I, Carl Michael Lalonde, of 8331 Cullen Crescent, Richmond, British Columbia, hereby certify that:

- 1. I am a consulting geologist with offices at 901-675 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of Michigan College of Mining and Technology, Houghton, Michigan (B. Sc. Geology, 1962)
- 3. I have practiced my profession as a Geologist continously since graduation for various companies in Canada and commenced private geological consulting in Vancouver in 1982.
- 4. I am a registered member in good standing as a Fellow of the Geological Association of Canada.
- Field work on the VIC Property was carried out under my supervision during the period from July 6 to September 27, 1987.

December, 1987 Vancouver, B.C.

M. Lola

C.M. Lalonde, B. Sc., F.G.A.C.

SELECTED REFERENCES

- 1935 B.C. Minister of Mines Annual Report, pgs. F26-28
- 1974 Progress Report on the Vic Gold Property for Nemco Explorations. Private report by L.J. Manning & Associates dated November 28, 1974.
- 1976 Exploration Report on the Vic Claim Gruop for Cop-Ex Mining Corp. Private report by R.D. Westervelt, P.Eng., dated July 23, 1976.
- 1977 Summary Report on the Vic Gold Holdings for Gilford Mines Ltd. Private report by G. Von Rosen, P.Eng., dated November 24, 1977.
- 1980 Summary Report on the "Vic" Gold Property for Stryker Resources. Private report by G. Von Rosen, P.Eng., dated December 3, 1980.
- 1983 Engineering Report on the Vic Gold Property by M.K. Lorimer, P.Eng., June 10, 1983.
- 1984 Summary Report on the Vic Gold Property for Sunmark Mines Ltd. Private report by G. Von Rosen, P.Eng., dated May 25, 1984.
- 1984 Assessment Report on the Underground Diamond Drilling on the Vic Claim. Prepared by G. Von Rosen, P.Eng., dated June 7, 1984.
- 1984 Assessment Report on Airphoto Fracture Density Analyses on the Vic mineral claim. Prepared by G. Von Rosen, P.Eng., dated December 12, 1984.
- 1986 Geophysical Report on the Vic Mineral Claim for Stryker Resources by D.A. Perkins. Date uncertain - probably January, 1986.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253-3158 COMPUTER LINE:251-1011

ASSAYER

DATE RECEIVED JULY 14 1987

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE

SAMPLE TYPE : SOIL -BO MESH Cu - by AA Aut - 10 GM, IGNITED, HOT ADUA REGIA LEACHED, MIBK EXTRACTION, AA ANALYSIS. P-20 MESH F PULVERIZED A chefy DEAN TOYE. CERTIFIED E.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT VIC #1 FILE# 87-2437

FAGE# 1

SAMPLE	Cu ppm	Au* ppb
L44+00E 50+00N	230	11
L44+00E 49+50N	205	9
L44+00E 49+00N	114	24
L44+00E 48+50N	79	2
L44+00E 48+00N	102	5
L44+00E 47+50N	76	29
L44+00E 47+00N	67	1
L44+00E 46+50N	41	1
L44+00E 46+00N	33	3
L44+00E 45+50N	43	4
L44+00E 45+00N L44+00E 44+50N L44+00E 44+00N L44+00E 43+50N L44+00E 43+00N	172 54 32 51 49	8 3 5 6
L44+00E 42+50N	38	2
L44+00E 42+00N	37	3
L44+00E 41+50N	31	20
L44+00E 41+00N	29	8
L44+00E 40+50N	31	8
L44+00E 40+00N	29	1
L44+00E 39+50N	278	106
L44+00E 39+00N	45	15
L44+00E 38+50N	35	2
L44+00E 38+00N	22	1
L44+00E 37+50N	31	2
L44+00E 37+00N	34	1
L44+00E 36+50N	35	1
L44+00E 36+00N	36	1
L44+00E 35+50N	38	1
L44+00E 35+00N	41	1
L50+00E 50+00N	98	40
L50+00E 49+50N	148	22
L50+00E 49+00N	96	159
L50+00E 48+50N	102	12
L50+00E 48+00N	78	350

CORDILLERAN ENGINEERING PROJECT VIC #1 FILE# 87-2437 PAGE# 2

· 、 • · · · · · ·

--

SAMPLE	Сч ррт	Au¥ ppb
L50+00E 47+50N P	172	905
L50+00E 47+00N	88	112
L50+00E 46+50N	245	98
L50+00E 46+00N	214	26
L50+00E 45+50N	68	11
L50+00E 45+00N	103	43
L50+00E 44+50N	92	13
L50+00E 44+00N	64	14
L50+00E 43+50N	56	4
L50+00E 43+00N	85	39
L50+00E 42+50N	72	4
L50+00E 42+00N	47	1
L50+00E 41+50N	196	69
L50+00E 41+00N	102	41
L50+00E 40+50N	63	20
L50+00E 40+00N	86	9
L50+00E 39+50N	226	18
L50+00E 39+00N	87	2
L50+00E 38+50N	77	3
L50+00E 38+00N	43	1
L50+00E 37+50N L50+00E 37+00N P L50+00E 36+50N L50+00E 36+00N L50+00E 35+50N P	54 56 45 42 62	4 1 5 4
L50+00E 35+00N	47	1
L50+50E 50+00N	148	86
L51+50E 45+50N	71	13
L51+50E 45+00N	68	48
L51+50E 44+50N	118	61
L51+50E 44+00N	205	14
L51+50E 43+50N	148	24
L51+50E 43+00N P	165	14
L51+50E 42+50N	332	26
L51+50E 42+00N	375	137
L51+50E 41+50N	119	21

CORDILLERAN ENGINEERING PROJECT VIC #1 FILE# 87-2437

ø.

SAMFLE	Cu ppm	Au x ppb
L51+50E 41+00E	104	82
L51+50E 40+50E	102	48
L51+50E 40+00E	102	42
L51+50E 39+50E	64	2
L51+50E 39+00E	84	5
L51+50E 38+50E	55	12
L51+50E 38+00E P	44	1
L51+50E 37+50E	59	2
L51+50E 37+00E	118	1
L51+50E 36+50E	37	1
L51+50E 36+00E	47	5
L51+50E 35+50E	62	1
L51+50E 35+00E	88	39

ACME ANALYTICAL LABORATORIES DATE RECEIVED: JULY 25 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR DNE HDUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-ROCK P2 TO P12750)L P13-SILT AU** BY FA+AA FROM 20 GM SAMPLE. AU* BY AA FROM 20 GM SAMPLE.

ASSAYER: DEAN TOYE, CERTIFIED B.C. ASSAYER CORDILLERAN ENGINEERING PROJECT-VIC #2 File # 87-2723 Page 1

Garian Kock

SAMPLE#	AG PPM	AU** PPB
G 2101	.8	560
G 2102	.7	141
G 2103	. 6	6

•

SAMPLE#	AG PPM	AU* PPB
L28+00E 50+00N L28+00E 49+50N L28+00E 49+00N L28+00E 48+50N L28+00E 48+00N	.1 .1 .3 .1 .2	1 1 2 9
L28+00E 47+50N L28+00E 47+00N L28+00E 46+50N STD C/AU-S L28+00E 46+00N	.8 .1 .2 7.4 .1	108 11 6 53 4
L28+00E 45+50N L28+00E 45+00N L28+00E 44+50N L28+00E 44+00N L28+00E 43+50N	.1 .1 .2 .1	15 3 1 3 4
L28+00E 43+00N L28+00E 42+50N L28+00E 42+00N L28+00E 41+50N L28+00E 41+00N	.1 .1 .1 .2	1 164 8 13 11
L28+00E 40+50N L28+00E 40+00N L28+00E 39+50N L28+00E 39+00N L28+00E 38+50N	.1 .3 .2 .1	6 18 9 2 56
L28+00E 38+00N L28+00E 37+50N L28+00E 37+00N L28+00E 36+50N L28+00E 36+00N	. 1 . 1 . 4 . 1	1 21 3 6 1
L28+00E 35+50N L28+00E 35+00N L28+50E 35+50N L29+00E 35+00N L29+50E 35+00N	. 1 . 1 . 1 . 1	1 1 2 3
L30+00E 49+00N L30+00E 48+50N	. 1 . 7	1 1

SAMPLE#	AG PPM	AU¥ ₽₽₿
L30+00E 48+00N L30+00E 47+50N L30+00E 47+00N L30+00E 46+50N L30+00E 46+00N	. 5 . 4 . 3 . 3 . 2	3 1 2 1 1
L30+00E 45+50N L30+00E 45+00N L30+00E 44+50N L30+00E 44+00N L30+00E 43+50N	.4 .2 .4 .3	1 1 1 820 4
L30+00E 43+00N L30+00E 42+50N L30+00E 42+00N L30+00E 41+50N L30+00E 41+00N	.3 .5 .3 .7 .2	3 4 1 1 1
L30+00E 40+50N L30+00E 40+00N L30+00E 39+50N L30+00E 39+00N L30+00E 38+50N	.2 .2 .1 .5 .6	1 8 1 2 4
L30+00E 38+00N L30+00E 37+50N L30+00E 37+00N L30+00E 36+50N L30+00E 36+00N	.6 .3 .3 .4 .3	1 2 1 1 2
L30+00E 35+50N L30+00E 35+00N L30+50E 35+00N L31+00E 35+00N L31+50E 35+00N	.2 .3 .3 .3 .7	1 4 1 3
L32+00E 50+00N L32+00E 49+50N L32+00E 49+00N L32+00E 48+50N L32+00E 48+00N	.3 .2 .4 .1 .3	1 5 3 1
L32+00E 47+50N STD C/AU-S	.4	2 48

a

SAMPLE#	AG PPM	AU* PPB
L32+00E 47+00N	.1	16
L32+00E 46+50N	.3	4
L32+00E 46+00N	.1	5
L32+00E 45+50N	.1	28
L32+00E 45+00N	.1	3
L32+00E 44+50N	.2	44
L32+00E 44+00N	.1	2
L32+00E 43+50N	.2	3
L32+00E 43+00N	.1	2
L32+00E 42+50N	.2	4
L32+00E 42+00N L32+00E 41+50N L32+00E 41+00N L32+00E 40+50N L32+00E 40+00N	. 4 . 3 . 4 . 1 . 2	3 14 1 2
L32+00E 39+50N L32+00E 39+00N L32+00E 38+50N L32+00E 38+00N L32+00E 37+50N	.3 .1 .3 .4 .3	1 1 1 1
L32+00E 37+00N	.3	2
L32+00E 36+50N	.5	6
L32+00E 35+00N	.3	1
L32+50E 35+00N	.4	1
L33+00E 35+00N	.3	1
L33+50E 35+00N L34+00E 50+00N L34+00E 49+00N L34+00E 48+50N L34+00E 48+00N	.3 .2 .3 .2	1 1 1 2
L34+00E 47+50N	.4	2
L34+00E 47+00N	.8	1
L34+00E 46+50N	.4	2
STD C/AU-S	7.5	47

.

SAMPLE#	ı.	AG PPM	AU* PPB	
L34+00E L34+00E	45+50N 45+00N	. 1 . 2 . 4 . 5	5 1 1 1 1	•
L34+00E L34+00E L34+00E	42+50N	.2 .3 .1 .3	7 13 4 2 19	
L34+00E L34+00E L34+00E L34+00E L34+00E	40+50N 40+00N 39+50N	.4 .2 .3 .1 .1	16 28 6 1 3	
L34+00E L34+00E L34+00E L34+00E L34+00E	37+50N 37+00N	.1 .3 .3 .3	16 43 4 7 3	
L34+00E L34+00E L34+00E L34+50E L35+00E	35+50N 35+00N 35+00N	.1 .5 .2 .4 .5	1 4 2 1	
L35+50E L36+00E L36+00E L36+00E L36+00E	50+00N 49+50N 49+00N	. 1 . 3 . 2 . 2 . 4	2 4 5 4 11	
L36+00E L36+00E L36+00E STD C/AL	47+50N 47+00N	.3 .1 .1 7.3	2 2 8 52	

SAMPLE#	AG PPM	AU* PPB
L36+00E 46+50N L36+00E 46+00N L36+00E 45+50N L36+00E 45+00N L36+00E 44+50N	.1 .2 .1 .1 .2	2 15 80 5 155
L36+00E 44+00N L36+00E 43+50N L36+00E 43+00N L36+00E 42+50N L36+00E 42+00N	. 5 . 5 . 2 . 4 . 2	1960 20 20 5 12
L36+00E 41+50N L36+00E 41+00N L36+00E 40+50N L36+00E 40+00N L36+00E 39+50N	.5 .4 .3 .5	2 1 10 3
L36+00E 39+00N L36+00E 38+50N L36+00E 38+00N L36+00E 37+50N L36+00E 37+00N	. 4 . 3 . 1 . 3 . 4	1 4 10 5
L36+00E 36+50N L36+00E 36+00N L36+50E 35+00N L37+00E 35+00N L37+50E 35+00N	. 2 . 4 . 2 . 6 . 2	3 5 2 1 5
L38+00E 50+00N L38+00E 49+50N L38+00E 49+00N L38+00E 48+50N L38+00E 48+00N	1.1 .3 .3	6 4 3 2 1
L38+00E 47+50N L38+00E 47+00N L38+00E 46+50N L38+00E 46+00N L38+00E 45+50N	.3	6 5 18 10 15
L38+00E 45+00N STD C/AU-S	1.2 7.1	45 49

. **.**

SAMFLE#	AG PPM	AU* PPB
L38+00E 44+5	50N .1	4
L38+00E 44+0		7
L38+00E 43+5		, 9
L38+00E 43+0		18
L38+00E 42+5		
L08400E 4240		1
L38+00E 42+0	.3 NO	2
L38+00E 41+5		1
L38+00E 41+0		16
L38+00E 40+5		3
L38+00E 40+0		1
		T
L38+00E 39+5	50N .1	5
L38+00E 39+0	DON .1	2
L38+00E 38+5	50N .1	9
L38+00E 38+0)ON .2	11
L38+00E 37+5		1
		-
L38+00E 37+0)ON .2	8
L38+00E 36+5		1
L38+00E 36+0		1
L38+00E 35+5		1
L38+00E 35+0		1
		-
L39+00E 35+0	DON .1	1
L39+50E 35+0	OON .1	1
L40+00E 50+0	OON .4	1
L40+00E 49+5	50N .3	6
L40+00E 49+0		12
		_
L40+00E 48+5		2
L40+00E 48+0		1
L40+00E 47+5		12
L40+00E 47+0		7
L40+00E 46+5	50N .4	8
L40+00E 46+0	.4	2
L40+00E 45+5		1
L40+00E 45+0		2
L40+00E 44+5		11
L40+00E 44+C		1
	NUM INI	1
L40+00E 43+5	ion .3	1
STD C/AU-S	6.9	47

SAMPLE#	AG PPM	AU* PPB
L40+00E 43+00N	. 4	3
L40+00E 42+50N	.2	1
L40+00E 42+00N	. 1	1
L40+00E 41+50N	.1	1
L40+00E 41+00N	. 1	2
L40+00L 41+00M	- 1	ж.,
L40+00E 40+50N	.2	1
L40+00E 40+00N	. 1	1
L40+00E 39+50N	. 1	4
L40+00E 39+00N	. 1	1
L40+00E 38+50N	. 1	1
EHOTOUE COTION	• 1	1
L40+00E 38+00N	.2	1
L40+00E 37+50N	. 1	2
L40+00E 37+00N	. 1	1
L40+00E 36+50N	.1	4
L40+00E 36+00N	.1	1
Read - El Nurl Al Nurl York Read - I had Nurl Al Nurl York El He	* 1	*
L40+00E 35+50N	. 1	1
L40+00E 35+00N	. 1	1
L40+50E 35+00N	.2	1
L41+00E 35+00N	. 1	1
L41+50E 35+00N	. 1	1
		-
L42+00E 49+50N	. 1	3
L42+00E 49+00N	.2	3
L42+00E 48+50N	.1	8
L42+00E 48+00N	.7	285
L42+00E 47+50N	.4	24
L42+00E 47+00N	.4	1
L42+00E 46+50N	.6	1
L42+00E 46+00N	1.0	1
L42+00E 45+50N	. 4	2
L42+00E 45+00N	.7	1
L42+00E 44+50N	.3	1
L42+00E 44+00N	. 3	1
L42+00E 43+50N	.2	1
L42+00E 43+00N	. 1	2
L42+00E 42+50N	.5	4
L42+00E 42+00N	4	4
	. 1	1
STD C/AU-S	7.4	46

SAMPLE#	AG PPM	AU* PPB
L42+00E 41+50N L42+00E 41+00N L42+00E 40+50N L42+00E 40+00N L42+00E 39+50N	.2 .3 .1 .3 .4	3 1 2 1 1
L42+00E 39+00N L42+00E 38+50N L42+00E 38+00N L42+00E 37+50N L42+00E 37+00N	.1 .1 .2 .3 .1	1 3 80 25
L42+00E 36+50N L42+00E 36+00N L42+00E 35+50N L42+00E 35+00N L42+50E 35+00N	.3 .1 .1 .2 .1	1 1 1 1
L43+00E 35+00N L43+50E 35+00N L44+00E 35+00N L45+00E 35+00N L45+50E 35+00N	.3 .2 .1 .1	2 1 3 1
L46+00E 49+50N L46+00E 49+00N L46+00E 48+50N L46+00E 48+00N L46+00E 47+50N	.2 .1 .1 .4 .1	1 72 8 6 8
L46+00E 47+00N L46+00E 46+50N L46+00E 46+00N L46+00E 45+50N L46+00E 45+00N	.5 .2 .1 .5 .1	1 2 1 10
L46+00E 44+50N L46+00E 44+00N L46+00E 43+50N L46+00E 43+00N L46+00E 42+50N	.4 .5 .1 .1 .1	3 108 1 4 3
STD C/AU-S	7.3	50

	SAMFLE#		AG PPM	AU* PPB
	L46+00E	42+00N	. 1	4
	L46+00E	41+50N	. 1	7
	L46+00E	41+00N	. 1	63
	L46+00E		.1	3
	L46+00E	40+00N	.1	1
	L40100L	401001	a .i.	Ŧ
	L46+00E	39+50N	. 1	1
	L46+00E	39+00N	. 1	1
	L46+00E	38+50N	. 1	1
	L46+00E	38+00N	. 3	2
	L46+00E	37+50N	. 1	1
			• 1	I
	L46+00E	37+00N	. 1	3
	L46+00E	36+50N	. 1	1
	L46+00E	36+00N	. 1	1
	L46+00E	35+50N	. 1	1
	L46+00E	35+00N	. 1	1
			* 1	*
	L46+50E	35+00N	.2	18
	L48+00E	50+00N	. 1	225
	L48+00E	49+50N	. 1	6
	L48+00E		. 1	12
	L48+00E	48+50N	. ż	58
		10710-014	•	00
	L48+00E	48+00N	. 1	16
	L48+00E	47+50N	. 1	8
	L48+00E		. 6	18
	L48+00E	46+50N	.2	10
	L48+00E	46+00N	.3	7
		1010014	a	,
	L48+00E	45+50N	. 1	5
	L48+00E	45+00N	. 1	560
	L48+00E	44+50N	. 1	1
	L48+00E	44+00N	. 1	22
	L48+00E		. 1	1
			• •	4.
	L48+00E	43+00N	.2	8
	L48+00E	42+50N	.3	1
	L48+00E	42+00N	.3	7
•	L48+00E		. 1	1
	L48+00E		.1	ż
		i na (nitati)¶	• •	ة
	L48+00E	40+50N	. 1	1
	STD C/AL	1-5	7.6	47

.

CORDILLERAN ENGINEERING PROJECT VIC #2 FILE# 87-2723

•

PAGE# 11

SAMPLE		çA mqq	Au* ppb
L48+00E L48+00E L48+00E L48+00E L48+00E	39+50N 39+00N 38+50N	.1 .1 .1 .2	1 2 1 1 1
L48+00E L48+00E L48+00E L48+00E L48+00E	37+00N 36+50N 36+00N	.2 .1 .1 .2 .1	1 1 3 15 1
L48+00E	35+00N	.2	1

.

Souls Jacobiece

•

SAMPLE#	CU PPM	AU* PPB
 سین استور استور او	0.0	
50+00N 32+50E	24	1
50+00N 33+00E	32	4
50+00N 33+50E	36	25
50+00N 34+50E	21	5
50+00N 35+00E	31	1
50+00N 35+50E	39	1
50+00N 46+00E	76	12
STD C/AU-S	62	52

.

SAMPLES																											AL X				
7VL-01L	-		-					-		-	-																				
7VL-02L	2	92	6	125	.3	12	11	555	4.43	21	5	ND	2	55	1	2	2	83	.58	.090	6	17	1.27	71	.09	3	1.91	.05	.07	1	19

Page 13

ĸ

C

(

(

(

(

C

C

C

€

C

€

C

€

C

(

Ł

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253-3158 COMPUTER LINE:251-1011 DATE RECEIVED AUG 05 1987

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE I

SAMPLE TYPE : SOIL -BO MESH $P\delta - \kappa c \kappa$

AUT - 10 6M, IGNITED, HOT ADUA REGIA LEACHED, MIBK EXTRACTION, AA ANALYSIS.

ASSAYER _____ Nelfij DEAN TOYE , CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009

FAGE# 1

SAMFLE	Cu ppm	Au x ppb
6000N 36+50E	89	3
6000N 37+00E	73	53
6000N 37+50E	64	4
6000N 38+00E	321	36
6000N 38+50E	48	2
6000N 39+00E	71	3
6000N 39+50E	118	5
6000N 41+00E	69	9
6000N 41+50E	58	1
6000N 42+00E	71	3
6000N 42+50E 6000N 43+00E 6000N 43+50E 6000N 44+00E 6000N 44+50E	65 54 68 57 47	1 1 14 1
6000N 45+00E	114	29
6000N 45+50E	63	12
6000N 46+00E	244	910
6000N 46+50E	159	16
6000N 47+00E	95	31
6000N 47+50E	132	14
6000N 48+00E	105	17
5000E 60+00N	117	6
5000E 59+50N	139	9
5000E 59+00N	125	35
5000E 58+50N	161	13
5000E 58+00N	117	26
5000E 57+50N	204	7
5000E 57+00N	126	5
5000E 56+50N	181	34
5000E 56+00N	168	11
5000E 55+50N	114	47
5000E 55+00N	175	13
5000E 54+50N	192	25
5000E 54+00N	181	16
5000E 53+50N	183	280
5000E 53+00N	212	540

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009 PAGE# 2

•

•

• 12 • •

•

SAMFLE	Cu ppm	Au* ppb
5000E 52+50N	223	15
5000E 52+00N	99	14
5000E 51+50N	134	12
5000E 51+00N	170	14
5000E 50+50N	147	11
5000E 50+00N	91	45
4900E 59+50N	148	335
4900E 59+00N	669	1
4900E 58+50N	73	8
4900E 58+00N	116	4
4900E 57+50N	149	12
4900E 57+00N	94	6
4900E 56+50N	174	22
4900E 56+00N	201	49
4900E 55+50N	178	12
4900E 55+00N	162	18
4900E 54+50N	363	37
4900E 54+00N	229	315
4900E 53+50N	162	96
4900E 53+00N	195	9
4900E 52+50N	155	26
4900E 52+00N	281	22
4900E 51+50N	101	24
4900E 51+00N	111	26
4900E 50+50N	116	24
4900E 50+00N	112	11
4800E 59+50N	91	13
4800E 59+00N	179	35
4800E 58+50N	89	18
4800E 58+00N	98	37
4800E 57+50N	84	9
4800E 57+00N	161	10
4800E 56+50N	156	10
4800E 56+00N	107	12
4800E 55+50N	177	43
4800E 55+00N	183	84

•

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009

۰ **د**

.

PAGE# 3

SAMFLE	Cu ppm	Au x ppb
4800E 54+50N	198	4
4800E 54+00N	149	25
4800E 53+50N	124	3
4800E 53+00N	137	15
4800E 52+50N	199	44
4800E 52+00N	139	17
4800E 51+50N	101	24
4800E 51+00N	72	11
4800E 50+50N	110	13
4800E 50+00N	154	19
4700E 59+50N	145	13
4700E 59+00N	114	8
4700E 58+50N	112	13
4700E 58+00N	120	8
4700E 57+50N	132	7
4700E 57+00N	102	25
4700E 56+50N	353	5
4700E 56+00N	118	8
4700E 55+50N	104	21
4700E 55+00N	113	1
4700E 54+50N	104	4
4700E 54+00N	366	9
4700E 53+50N	3615	46
4700E 53+00N	895	42
4700E 52+50N	354	32
4700E 52+00N	378	12
4700E 51+50N	160	1
4700E 51+00N	163	30
4700E 50+50N	112	4
4600E 59+50N	122	26
4600E 59+00N	97	9
4600E 58+50N	114	31
4600E 58+00N	165	40
4600E 57+50N	90	18
4600E 57+00N	107	4

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009 PAGE# 4

•

SAMFLE	Cu ppm	Au* ppb
4600E 56+50N	83	2
4600E 56+00N	167	28
4600E 55+50N	179	8
4600E 55+00N	212	7
4600E 54+50N	245	23
4600E 54+00N	712	10
4600E 53+50N	346	29
4600E 53+00N	161	11
4600E 52+50N	213	4
4600E 52+00N	174	33
4600E 51+50N	268	25
4600E 51+00N	201	37
4600E 50+50N	239	71
4400E 60+00N	53	29
4400E 59+50N	116	174
4400E 59+00N	53	35
4400E 58+50N	76	64
4400E 58+00N	147	43
4400E 57+50N	78	119
4400E 57+00N	96	16
4400E 56+50N	91	10
4400E 56+00N	81	12
4400E 55+50N	114	8
4400E 55+00N	301	14
4400E 54+50N	230	9
4400E 54+00N	86	16
4400E 53+50N	279	25
4400E 53+00N	153	9
4400E 52+50N	88	3
4400E 52+00N	194	4
4400E 51+50N 4400E 51+00N 4400E 50+50N 4200E 60+00N 4200E 59+50N	85 84 91 67 62	11 8 3 1

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009 PAGE# 5

•

.

· •

,

SAMFLE	Cu ppm	Au* ppb
4200E 59+00N 4200E 58+50N 4200E 58+00N 4200E 57+50N 4200E 57+00N	49 54 64 63	4 8 18 290 8
4200E 56+50N	68	1
4200E 56+00N	76	14
4200E 55+50N	65	4
4200E 55+00N	89	6
4200E 54+50N	70	1
4200E 54+00N	79	18
4200E 53+50N	74	13
4200E 53+00N	77	7
4200E 52+50N	124	1
4200E 52+00N	108	1
4200E 51+50N	175	6
4200E 51+00N	131	1
4200E 50+50N	132	3
4000E 60+00N	106	39
4000E 59+50N	140	2
4000E 59+00N	71	1
4000E 58+50N	87	720
4000E 58+00N	78	10
4000E 57+50N	71	3
4000E 57+00N	92	37
4000E 56+50N	92	1
4000E 56+00N	111	9
4000E 55+50N	51	1
4000E 55+00N	114	7
4000E 54+50N	52	1
4000E 54+00N	60	8
4000E 53+50N	103	1
4000E 53+00N	75	1
4000E 52+50N	76	3
4000E 52+00N	56	1

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009

.

FAGE# 6

SAMFLE	Cu ppm	Au * ppb
4000E 51+50N 4000E 51+00N 4000E 50+50N 4000E 50+00N 3800E 58+50N	66 51 51 33 222	6 5 1 3
3800E 58+00N	93	23
3800E 57+50N	63	43
3800E 57+00N	41	19
3800E 56+50N	50	1
3800E 56+00N	76	13
3800E 55+50N 3800E 55+00N 3800E 54+50N 3800E 54+00N 3800E 53+50N	69 54 42 47 49	2 5 9 8
3800E 53+00N	52	9
3800E 52+50N	53	20
3800E 52+00N	48	3
3800E 51+50N	85	4
3800E 51+00N	57	1
3800E 50+50N	41	2
3800E 50+00N	51	8
3600E 60+00N	60	1
3600E 59+50N	54	1
3600E 59+00N	61	10
3600E 58+50N	55	1
3600E 58+00N	91	5
3600E 57+50N	39	2
3600E 57+00N	37	4
3600E 56+50N	52	3
3600E 56+00N	72	95
3600E 55+50N	49	9
3600E 55+00N	44	23
3600E 54+50N	31	10
3600E 54+00N	42	6
3600E 53+50N	59	6
3600E 53+00N	53	4

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009

,

P	Δ	G	F	#	7
F .	~	ີ	-	77	

SAMPLE	Cu ppm	Au* ppb
3600E 52+50N	34	13
3600E 52+00N	24	1
3600E 51+50N	3 8	1
3600E 51+00N	22	1
3600E 50+50N	38	1
3600E 50+00N	24	2
3200E 49+00N	41	4

CORDILLERAN ENGINEERING PROJECT VIC FILE# 87-3009 PAGE# 8

¥ . .

SAMPLE	Cu	bbw	Au*
Grandense	ppm	Mđđ	ppb
52+50N 5000E	107	• 9	18
52+50N 4900E	17	• 3	191
42+50N 35+75E	112	• 1	15
41+10N 38+05E	35	• 4	14
2106	18	• 2	9
2107	47	.2	3
2108	35	.2	7
2109	29	.4	8
2110	2860	7.3	690

ACME ANALYTICAL LABORATORIES DATE RECEIVED: AUG 12 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 (UIA) DATE REPORT MAILED: PHONE 253-3158 DATA LINE 251-1011

ICP GEOCHEMICAL ANALYSIS

.500 BRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE CA P LA CR NG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-ROCK P2-SILT P3 TO P7-SOIL AU+ ANALYSIS BY AA FROM 10 BRAM SAMPLE.

> A Alyn. DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER:

CORDILLERAN ENG. LTD. PROJECT-VIC File # 87-3204 Page 1

Kor

R. Goroham	E#	CU PPM		AU* PPB	
54+10 52+70 51+37 51+30 51+20 49+87 49+85 49+85	N 47+10E N 51+30E N 50+70E N 50+70E N 50+70E N 26+37E N 26+37E N 26+22E N 26+22E N 25+30E	72 71 79 17 101 103 61	.1 .3 .3 .9 2.4 .3	225 / 9 / 46 / 5 /	
48+90) 46+50) 44+00) 41+55) 41+55)	N 25+30E N 25+30E N 43+20E N 36+63E N 28+22E N 28+22E N 28+22E N 34+28E	137 33 28	.2 .1 .1 .1	1 - 49 - 13 - 8	50i/
40+00 38+19 38+19 27+08 26+35	N 34+BOE N 35+65E N 25+30E N 25+10E N 44+00E N 42+00E N 42+00E N 42+00E	251 18 2398	.1 .6 .1 92.8 18.3 1.8	7 - 25 - 4 - 51100 - 32900 - 445 - 490	

ASSAY REQUIRED FOR CORRECT RESULT -

1. L' M' M'

•

SAMFLE	ŧ	CU PPM	AU* FPB	
	30+60E 42+00E 40+53E 26+00E 31+19E	54 135 52 39 56	afin.	silt silt v
	28+76E 31+53E 32+00E	55 76 26 60	2 · 4 · 1 ·	/

•

CORDILLERAN	ENG.	LTD.	PROJECT-VIC	FILE	#	87-3204
				T the floor loss	••	And a constant of a

Page 3

SAMFLE#	CU PPM	AU* PPB
26+20E 39+25 27+48E 39+92 28+22E 41+55 36+63E 44+00 43+00E 27+00	N 85 N 232 N 55	58 6 17 14 6
43+00E 26+75 43+00E 26+50 43+00E 26+25 43+00E 26+00 43+00E 25+75	N 134 N 98 N 209	3 28 13 8 2
43+00E 25+50 43+00E 25+25 43+00E 25+00 43+00E 24+75 43+00E 24+50	N 49 N 47 N 33	4 2 3 1 1
43+00E 24+25 43+00E 24+00 43+00E 23+75 43+00E 23+50 43+00E 23+25	N 55 N 48 N 38	1 1 1 1
43+00E 23+00 43+00E 22+75 43+00E 22+50 43+00E 22+25 43+00E 22+00	N 45 N 61 N 38	1 27 1 1 17
43+00E 21+75 43+00E 21+50 43+00E 21+25 43+00E 21+00 43+00E 20+75	N 76 N 85 N 66	7 131 6 12 1
43+00E 20+50 43+00E 20+25 43+00E 20+00 43+25E 27+00 43+50E 27+00	N 28 N 38 N 147	1 1 1 7
43+75E 27+00 STD C/AU-S	N 112 60	

:

SAMPLE#	CU PPM	AU* PPB
44+00E 35+00N	37	7
44+00E 34+75N	43	10
44+00E 34+50N	36	6
44+00E 34+25N	31	5
44+00E 34+00N	31	5
44+00E 33+75N 44+00E 33+50N 44+00E 33+25N 44+00E 33+00N 44+00E 32+75N	37 29 37 30 37	1 2 1 4
44+00E 32+50N 44+00E 32+25N 44+00E 32+00N 44+00E 31+75N 44+00E 31+50N	38 48 41 40 40	1 3 1 5
44+00E 31+25N	52	2
44+00E 31+00N	57	8
44+00E 30+75N	44	5
44+00E 30+50N	45	2
44+00E 30+25N	41	3
44+00E 30+00N	37	4
44+00E 29+75N	43	7
44+00E 29+50N	38	6
44+00E 29+25N	64	8
44+00E 29+00N	45	2
44+00E 28+75N	54	21
44+00E 28+50N	65	7
44+00E 28+25N	48	8
44+00E 28+00N	40	8
44+00E 27+75N	57	2
44+00E 27+50N	63	8
44+00E 27+25N	99	175
44+00E 27+00N	239	63
46+00E 35+00N	41	9
46+00E 34+50N	40	5
46+00E 34+00N	61	7
STD C/AU-S	61	53

F	a	g	e	5
---	---	---	---	---

SAMPLE#		CU PPM	AU+ P₽₿
46+00E	33+50N	42	3
	33+00N	40	1
	32+50N	41	1
	32+00N	48	1
	31+50N	40 55	
464002 .	21+3014	55	1
46+00E	31+00N	41	1
46+00E	30+50N	49	4
46+00E :	30+00N	47	8
46+00E	29+50N	62	1
46+00E :	29+00N	58	1
- 46+00E :	28+50N	52	87
46+00E	28+00N	44	1
46+00E (27+50N	47	2
	27+00N	54	16
	26+50N	45	1
A. A	7		5
	26+00N	35	8
	25+50N	41	1
	25+00N	34	17
	24+50N	43	1
46+00E 2	24+00N	52	3
46+00E 2	23+50N	ക	15
46+00E (23+00N	51	7
46+00E 2	22+50N	51	1
	22+00N	41	4
	21+50N	40	9
46+00E 2	21+00N	60	1
	20+50N	61	1
	20+00N	50	2
	5+00N		1
48+00E 3		45 52	1
			-
48+00E 3		44	1
48+00E 3		46	1
48+00E 3		49	1
48+00E 3		60	6
48+00E 3	52+00N	36	1
48+00E 3	\$1+50N	56	23
STD CZAL		59	54
	- 	141 1	т

ć

SAMFLE#	CU PPM	AU* PPB
48+00E 31+00N	92	2
48+00E 30+50N	72	41
48+00E 30+00N	58	27
48+00E 29+50N	68	9
48+00E 29+00N	72	16
48+00E 28+50N	90	2
48+00E 28+00N	86	4
48+00E 27+50N	106	7
48+00E 27+00N	57	5
48+00E 26+50N	65	4
48+00E 26+00N	51	4
48+00E 25+50N	40	11
48+00E 25+00N	78	1
48+00E 24+50N	61	2
50+00E 35+00N	47	1
50+00E 34+75N 50+00E 34+50N 50+00E 34+25N 50+00E 34+00N 50+00E 33+75N	49 39 40 44 49	1 28 1 1
50+00E 33+50N	41	2
50+00E 33+25N	47	1
50+00E 33+00N	73	4
50+00E 32+75N	72	1
50+00E 32+50N	91	1
50+00E 32+25N 50+00E 32+00N 50+00E 31+75N 50+00E 31+50N 50+00E 31+25N	75 68 48 62 87	1 3 1 4
50+00E 31+00N	53	4
50+00E 30+75N	73	8
50+00E 30+50N	258	173
50+00E 30+25N	83	9
50+00E 30+00N	80	13
50+00E 29+75N	75	15
STD C/AU-S	60	48

a standar a re

.

سقانات) ا

SAMPLE#	CU	AU*
	PPM	PPB
50+00E 29+50N	91	6
50+00E 29+25N	72	4
50+00E 29+00N	57	3
50+00E 28+75N	50	3
50+00E 28+50N	42	3
50+00E 28+25N	34	З
50+00E 28+00N	28	84
50+00E 27+75N	79	36
50+00E 27+50N	41	8
50+00E 27+25N	84	530
50+00E 27+00N	64	22
50+00E 26+75N	47	6
50+00E 26+50N	78	108
50+00E 26+25N	45	17
50+00E 26+00N	61	12
50+00E 25+75N	73	3
50+00E 25+50N	57	4
50+00E 25+25N	41	12
50+00E 25+00N	55	12
50+00E 24+75N	44	2
50+00E 24+50N	68	1
50+00E 24+25N	37	5
50+00E 24+00N	48	16
50+00E 23+75N	55	75
50+00E 23+50N	70	2
STD C/AU-S	60	50

ACME ANALYTICAL LABORATORIES DATE RECEIVED: AUG 19 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: 049.268

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR DNE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: A. AMM. DEAN TOYE, CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING FROJECT-VIC File # 87-3423 Page 1

SAMPLE#	CU PPM	AU* FFB
26+00E 50+00N 26+00E 49+75N 26+00E 49+50N 26+00E 49+25N 26+00E 49+00N	58 69 66 70 79	19 1 1 2
26+00E 48+75N 26+00E 48+50N 26+00E 48+25N 26+00E 48+00N 26+00E 47+75N	81 73 81 80 56	1 1 3 2
26+00E 47+50N 26+00E 47+25N 26+00E 47+00N 26+00E 46+75N 26+00E 46+50N	61 63 78 37	8 3 1 1 2
26+00E 46+25N 26+00E 46+00N 26+00E 45+75N 26+00E 45+50N 26+00E 45+25N	49 32 26 23 46	7 1 1 4 3
26+00E 45+00N 26+00E 44+75N 26+00E 44+50N 26+00E 44+25N 26+00E 44+00N	38 27 29 30 61	1 1 2 1 14
26+00E 43+75N 26+00E 43+50N 26+00E 43+25N 26+00E 43+00N 26+00E 42+75N	43 52 52 29 44	1 6 8 1 1
26+00E 42+50N 26+00E 42+25N 26+00E 42+00N 26+00E 41+75N 26+00E 41+50N	62 39 22 39 31	5 1 13 13
26+00E 41+25N STD C/AU-S	65 61	4 47

. . . .

.

SAMPLE#	CU	AU*
	PPM	PPB
26+00E 41+00N	44	1
26+00E 40+75N	63	1
26+00E 40+50N	64	2
26+00E 40+25N	112	6
26+00E 40+00N	96	12
angen hand 'n er en en er er er er er er		
26+00E 39+75N	67	8
26+00E 39+50N	61	3
26+00E 39+25N	197	31
26+00E 39+00N	115	7
26+00E 38+75N	60	3
26+00E 38+50N	134	5
26+00E 38+25N	32	1
26+00E 38+00N	37	1
26+00E 37+75N	37	1
26+00E 37+50N	32	1
26+00E 37+25N	50	1
26+00E 37+00N	33	1
26+00E 36+75N	32	1
26+00E 36+50N	46	1
26+00E 36+25N	34	1
and and a set of the s		_
26+00E 36+00N	38	1
26+00E 35+75N	27	2
26+00E 35+50N	31	1
26+00E 35+25N	74	2
26+00E 35+00N	36	1
34+00E 35+00N	31	1
34+00E 34+50N	26	1
34+00E 34+00N	33	1
34+00E 33+50N	29	2
34+00E 33+00N	42	2
34+00E 32+50N	42	2
34+00E 32+00N	26	1
34+00E 31+50N	21	1
36+00E 35+00N	31	2
36+00E 34+50N	42	2
36+00E 34+00N	32	3
STD C/AU-S	60	48
مستحد مستحد مستحد مستحد مستحد مستح	****/ ****	• •

.

•

SAMPLE#	CU PPM	AU* PPB
36+00E 33+50N 36+00E 33+00N 36+00E 32+50N 36+00E 32+00N 36+00E 31+50N	22 34 31 37 40	1 1 3 1
36+00E 31+00N	59	1
36+00E 30+50N	49	12
36+00E 30+00N	17	1
36+00E 29+50N	30	1
36+00E 29+00N	53	1
36+00E 28+50N	49	2
36+00E 28+00N	43	1
36+00E 27+50N	41	9
36+00E 27+00N	53	1
36+00E 26+50N	66	12
36+00E 26+00N 36+00E 25+50N 36+00E 25+00N 36+00E 24+50N 36+00E 24+00N	15 25 28 30 43	1 1 1 3
36+00E 23+50N	47	1
36+00E 23+00N	30	1
36+00E 22+50N	45	2
36+00E 22+00N	48	4
36+00E 21+50N	113	2
36+00E 21+00N	173	5
36+00E 20+50N	116	1
36+00E 20+00N	82	2
38+00E 35+00N	57	1
38+00E 34+50N	42	1
38+00E 34+00N	38	3
38+00E 33+50N	34	9
38+00E 33+00N	71	1
38+00E 32+50N	32	4
38+00E 32+00N	28	1
38+00E 31+50N	28	1
STD C/AU-S	59	47

4

÷ . . ,

SAMPLE#	CU PPM	AU* PPB
38+00E 31+00N	47	6
38+00E 30+50N	33	3
38+00E 30+00N	51	3
38+00E 29+50N	40	11
38+00E 29+00N	36	7
38+00E 28+50N	44	2
38+00E 28+00N	35	1
38+00E 27+50N	36	3
38+00E 27+00N	150	1
38+00E 26+50N	38	1
38+00E 20+00M	00	J .
38+00E 26+00N	41	3
38+00E 25+50N	58	6
38+00E 25+00N	325	7
38+00E 24+50N	121	3
38+00E 24+00N	85	4
		• .
38+00E 23+50N	53	2
38+00E 23+00N	41	3
38+00E 22+50N	39	2
38+00E 22+00N	31	1
38+00E 21+50N	39	81
00.000 21.000		01
38+00E 21+00N	39	1
38+00E 20+50N	46	· 4
38+00E 20+00N	42	3
40+00E 35+00N	26	2
40+00E 34+50N	24	2
TO TOOL OF TOOL	4 ⊆ ~ T	4
40+00E 34+00N	23	1
40+00E 33+50N	24	3
STD C/AU-S	60	48
40+00E 33+00N	26	2
40+00E 32+50N	28	4
40400C 70100N	28	
40+00E 32+00N		1
40+00E 31+50N	29	2 3
40+00E 31+00N	32	
40+00E 30+50N	43	1
40+00E 30+00N	32	2
40+00E 29+50N	27	3
40+00E 29+00N	35	10
TV VVC 27TVVN		τO

. ' ¥ . .

SAMPLE#	ł	CU PPM	AU* PPB
40+00E 40+00E	28+50N 28+00N	25 41	2
40+00E	27+50N	27	1 -
40+00E	27+00N	41	2
40+00E	26+50N	49	3
40+00E	26+00N	49	3
40+00E	25+50N	59	61
40+00E	25+00N	108	8
40+00E	24+50N	118	86
40+00E	24+00N	73	7
40+00E	23+50N	60	4
40+00E	23+00N	53	1
40+00E	22+50N	60	10
40+00E	22+00N	51	2
42+00E	35+00N	56	3
42+00E	34+50N	32	2
42+00E	34+00N	32	2
42+00E	33+50N	22	8
42+00E	33+00N	33	1
42+00E	32+50N	33	3
42+00E	32+00N	35	1
42+00E	31+50N	35	1
42+00E	31+00N	35	1
42+00E	30+50N	51	1
42+00E	30+00N	32	2
42+00E		44	1
42+00E	29+00N	43	1
42+00E	28+50N	40	1 -
42+00E	28+00N	59	1
42+00E	27+50N	74	8
42+00E		67	3
42+00E	26+50N	56	2
42+00E	26+00N	70	4
42+00E	25+50N	57	4
42+00E	25+00N	98	3
42+00E		52	5
STD C/4	1U-S	59	51

SAMPLE#	CU PPM	AU* PPB
42+00E 24+00N	101	1
42+00E 23+50N	132	1
42+00E 23+00N	136	4
42+00E 22+50N	134	1
42+00E 22+00N	274	34
42+00E 21+50N	69	86
42+00E 21+00N	43	1
42+00E 20+50N	81	1
42+00E 20+00N	75	1
STD C/AU-5	58	51

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR ME BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: . N. A. DEAN TOYE, CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT-VIC File # 87-3660 Page 1

SAMFLE#	CU	AU*
	PPM	PPB
L18+00E 25+00N	60	16
L18+00E 24+50N	51	1
L18+00E 24+00N	60	1
L18+00E 23+50N	50	1
L18+00E 23+00N	29	1
L18+00E 22+50N	37	1
L18+00E 22+00N	45	1
		_
L18+00E 21+50N	32	1
L18+00E 21+00N	35	96
L18+00E 20+50N	54	1
L18+00E 20+00N	26	1
L20+00E 35+00N	30	7
L20+00E 34+50N	30	
		1
L20+00E 34+00N	52	1
L20+00E 33+50N	27	1
L20+00E 33+00N	45	1
L20+00E 32+50N	55	1
L20+00E 32+00N	51	1
	46	2
L20+00E 31+00N	35	1
L20+00E 30+50N	32	1
STD C/AU-S	59	46
L20+00E 30+00N	31	1
L20+00E 29+50N	32	1
L20+00E 29+00N	29	1
	27	.
L20+00E 28+50N	29	2
L20+00E 28+00N	32	1.
L20+00E 27+50N	29	1
L20+00E 27+00N	18	1
L20+00E 26+50N	33	1
L20+00E 26+00N	21	1
L20+00E 25+50N	23	1
L20+00E 25+00N	33	1
L20+00E 24+50N	60	1
L20+00E 24+00N	27	1
L20+00E 23+50N	46	1
L20+00E 23+00N	36	1

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3660 Page 2

11

Page	1
------	---

SAMPLE#	CU PPM	AU* PPB
L20+00E 22+50N	44	1
L20+00E 22+00N	62	4
L20+00E 21+50N	58	2
L20+00E 21+00N	53	13
L20+00E 20+50N	33	1
L20+00E 20+00N	26	2
L22+00E 35+00N	33	1
L22+00E 34+50N	36	3
L22+00E 34+00N	39	2
L22+00E 33+50N	58	3
L22+00E 33+00N	33	1
L22+00E 32+50N	27	6
L22+00E 32+00N	37	1
L22+00E 31+50N	26	2
L22+00E 31+00N	24	1
L22+00E 30+50N L22+00E 30+00N L22+00E 29+50N L22+00E 29+00N L22+00E 28+50N	25 39 25 54 55	1 3 2 1
L22+00E 28+00N L22+00E 27+50N L22+00E 27+00N L22+00E 26+50N L22+00E 26+00N	46 38 39 37 28	1 1 1 1
L22+00E 25+50N	36	161
L22+00E 25+00N	28	2
L22+00E 24+50N	22	1
L22+00E 24+00N	24	4
L22+00E 23+50N	33	1
L22+00E 23+00N	37	2
L22+00E 22+50N	21	1
L22+00E 22+00N	41	1
L22+00E 21+50N	39	1
L22+00E 21+00N	36	1
L22+00E 20+50N	54	1
STD C/AU-S	57	49

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3660 Page 3

1 =m

SAMFLE#	CU FPM	AU⊁ . ₽₽₿
L22+00E 20+00N L24+00E 35+00N L24+00E 34+50N L24+00E 34+00N L24+00E 33+50N	57 29 37 35 34	4 22 29 1 1
L24+00E 33+00N L24+00E 32+50N L24+00E 32+00N L24+00E 31+50N L24+00E 31+00N	28 47 44 87 28	1 1 1 1
L24+00E 30+50N L24+00E 30+00N L24+00E 29+50N L24+00E 29+00N L24+00E 28+50N	46 28 13 30 20	2 2 1 2 1
L24+00E 28+00N L24+00E 27+50N L24+00E 27+00N L24+00E 26+50N L24+00E 26+00N	84 106 52 48 45	1 1 2 1
L24+00E 25+50N L24+00E 25+00N L24+00E 24+50N L24+00E 24+00N L24+00E 23+50N	90 81 95 100 44	1 1 2 1 1
L24+00E 23+00N L24+00E 22+50N L24+00E 22+00N L24+00E 21+50N L24+00E 21+00N	36 90 34 28 19	1 1 1 1
L24+00E 20+50N L24+00E 20+00N L26+00E 34+50N L26+00E 34+00N L26+00E 33+50N	17 26 29 590 25	1 1 8 4
L26+00E 33+00N STD C/AU-S	29 58	1 47

<u>`</u>

-1/- 3

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3660 Page 4

SAMPLE#	CU PPM	AU* . PPB
L26+00E 32+50N	19	2
L26+00E 32+00N	27	9
L26+00E 31+50N	30	3
L26+00E 31+00N	27	1
L26+00E 30+50N	21	3
L26+00E 30+00N L26+00E 29+50N L26+00E 29+00N L26+00E 28+50N L28+00E 34+50N	19 48 82 55 27	1 156 3 1
L28+00E 34+00N	28	1
L28+00E 33+50N	23	3
L28+00E 33+00N	32	2
L28+00E 32+50N	16	2
L28+00E 32+00N	22	1
L28+00E 31+50N	30	1
L28+00E 31+00N	27	3
L28+00E 30+50N	25	1
L28+00E 30+00N	23	1
L28+00E 29+50N	23	2
L28+00E 29+00N L28+00E 28+50N L28+00E 28+00N L28+00E 27+50N L28+00E 27+00N	23 31 34 48 34	1 1 1 13
L28+00E 26+50N L28+00E 26+00N L28+00E 25+00N L28+00E 24+50N L28+00E 24+00N	28 31 62 36 41	1 1 1 2
L28+00E 23+50N	52	1
L28+00E 23+00N	53	1
L28+00E 22+50N	122	2
L28+00E 22+00N	72	1
L28+00E 21+50N	83	1
L28+00E 21+00N	51	1
STD C/AU-S	58	53

.

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3660 Fage 5

۰ ۱

•

1-

SAMFLE#		CU. PPM	AU* PPB
L28+00E 2 L30+00E 2 L30+00E 2	20+50N 20+00N 35+00N 34+50N 34+00N	41 59 21 26 29	1 .3 12 1
L30+00E : L30+00E : L30+00E :	33+50N 33+00N 32+50N 32+00N 31+50N	27 45 27 24 22	1 3 1 2
L30+00E : L30+00E : L30+00E :	31+00N 30+50N 30+00N 29+50N 29+00N	20 19 29 31 30	5 1 1 3
L30+00E (L30+00E (L30+00E (28+50N 28+00N 27+50N 27+00N 26+50N	22 47 50 52 52	1 2 1 1 6
L30+00E 2 L30+00E 2 L30+00E 2	26+00N 25+50N 25+00N 24+50N 35+00N	40 53 39 44 21	1 1 1 1
L32+00E : L32+00E :	34+50N 34+00N 33+50N 33+00N 32+50N	41 34 24 24 33	1 1 2 1
L32+00E L32+00E L32+00E L32+00E L32+00E L32+00E	31+50N 31+00N 30+50N	22 78 28 31 33	1 1 1 1
L32+00E : STD C/AU		56 59	1 49

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3660 Fage 6

SAMPLE#		CU PPM	AU* PPB	
L32+00E	29+00N	76	2	
L32+00E	28+50N	65	2	
L34+00E	31+00N	28	1	
L34+00E	30+50N	24	1	
L34+00E	30+00N	28	1	
L34+00E	29+50N	30	1.	
L34+00E	29+00N	28	1.	
L34+00E	28+50N	36	1	
L50+00E	33+22N	94	1	
L51+09E	34+42N	33	1	
are 1 .				
L54+50E	60+00N	110	1	
STD C/A	J-S	57	47	

ACME ANALYTICAL LABORATORIES DATE RECEIVED: SEPT 3 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-6 SOIL P7 ROCK _ AU+_ANALYSIS BY AA FROM 10 GRAM SAMPLE.

 $\boldsymbol{\nu}$

ASSAYER: A DEAN TOYE, CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT-VIC File # 87-3865 Page 1

SAMPLE#	CU PPM	AU* PPB	
L 16+00E 35+00N L 16+00E 34+50N L 16+00E 34+00N L 16+00E 33+50N L 16+00E 33+00N	34 60 54 26 34	1 1 2 2 1	
L 16+00E 32+50N L 16+00E 32+00N L 16+00E 31+50N L 16+00E 31+00N L 16+00E 30+50N	69 42 44 21 44	1 2 1 1	
L 16+00E 30+00N	50	2	
L 16+00E 29+50N	36	2	
L 16+00E 29+00N	100	11	
L 16+00E 28+50N	34	2	
L 16+00E 28+00N	47	1	
L 16+00E 27+50N L 16+00E 27+00N L 16+00E 26+50N L 16+00E 26+00N L 16+00E 25+50N	39 44 41 26 39	1 2 1 1	
L 16+00E 25+00N	25	2	
L 16+00E 24+50N	22	1	
L 16+00E 24+00N	29	1	
L 16+00E 23+50N	37	2	
L 16+00E 23+00N	28	1	
L 16+00E 22+50N	36	2	
L 16+00E 22+00N	28	1	
L 16+00E 21+50N	40	2	
L 16+00E 21+00N	61	2	
L 16+00E 20+50N	89	10	
L 16+00E 20+00N	50	5	
L 18+00E 35+00N	97	1	
L 18+00E 34+50N	43	10	
L 18+00E 34+00N	78	2	
STD C/AU-S	62	53	
L 18+00E 33+50N	73	1	
L 18+00E 33+00N	27	1 1	

SAMPLE#	CU PPM	AU* PPB
L18+00E 32+50N	47	2
L18+00E 32+00N	82	1
L18+00E 31+50N	65	2
L18+00E 31+00N	65	2
L18+00E 30+50N	57	1
L18+00E 30+00N	54	3
L18+00E 29+50N	54	4
L18+00E 29+00N	51	2
L18+00E 28+50N	60	3
L18+00E 28+00N	59	33
L18+00E 27+50N L18+00E 27+00N L18+00E 26+50N L18+00E 26+00N L18+00E 25+50N	58 63 74 63 73	1 5 3 1
L26+00E 25+00N L26+00E 24+50N L26+00E 24+00N L26+00E 23+50N L26+00E 23+00N	69 78 51 54 84	1 1 1 2
L26+00E 22+50N	95	2
L26+00E 22+00N	51	1
L26+00E 21+50N	53	1
L26+00E 21+00N	54	1
L26+00E 20+50N	49	1
L30+00E 23+00N	58	2
L30+00E 22+50N	64	3
L30+00E 21+50N	58	1
L30+00E 21+00N	64	2
L30+00E 20+50N	55	1
L32+00E 28+00N	50	1
L32+00E 27+50N	67	2
L32+00E 27+00N	64	1
L32+00E 26+50N	54	1
L32+00E 26+00N	91	2
STD C/AU-S	61	49
L32+00E 25+50N	46	3

SAMPLE#	CU PPM	AU* PPB
L32+00E 23+00N	59	1
L32+00E 22+50N	44	3
L32+00E 22+00N	70	1
L32+00E 21+50N	74	2
L32+00E 21+00N	67	1
170.005 DO. 50N	59	
L32+00E 20+50N		1
L34+00E 28+00N	54	1
L34+00E 27+50N	45	2
L34+00E 27+00N	43	1
L34+00E 26+50N	67	22
L34+00E 26+00N	67	3
L34+00E 25+50N	50	1
L34+00E 25+00N	34	1
L34+00E 24+50N	43	3
L34+00E 24+00N	39	1
204.002 24.00M		-
L34+00E 23+50N	65	- 1
L34+00E 23+00N	59	1
L34+00E 22+50N	108	1
L34+00E 22+00N	60	2
L34+00E 21+50N	45	1
	10	*
L34+00E 21+00N	67	2
L34+00E 20+50N	108	1
L34+00E 20+00N	109	1
L35+00E 46+00N	54	3
L35+00E 45+75N	56	3
	69	3
L35+00E 45+50N		
L35+00E 45+25N	35	1
L35+00E 45+00N	35	3
L35+00E 44+75N	28	2
L35+00E 44+50N	43	1
L35+00E 44+25N	68	8
L35+00E 44+00N	96	8
L35+00E 43+75N	108	26
L35+00E 43+50N	98	17
L35+00E 43+25N	111	19
L35+00E 43+00N	78	1
STD C/AU-S	61	48

۰.

۰ د

SAMPLE#	CU PPM	AU* PPB
L35+50E 46+00N L35+50E 45+75N L35+50E 45+50N L35+50E 45+25N L35+50E 45+00N	36 27 38 46 73	1 3 1 1 1
L35+50E 44+75N L35+50E 44+50N L35+50E 44+25N L35+50E 44+00N L35+50E 43+75N	68 105 81 56 77	10 1 1 1
L35+50E 43+50N L35+50E 43+25N L35+50E 43+00N L36+50E 46+00N L36+50E 45+75N	69 104 86 72 51	1 1 1 1
L36+50E 45+50N L36+50E 45+25N L36+50E 45+00N L36+50E 44+75N L36+50E 44+50N	77 53 76 88 82	8 1 1 5
L36+50E 44+25N L36+50E 44+00N L36+50E 43+75N L36+50E 43+50N L36+50E 43+25N	73 99 47 81 59	22 4 1 3 1
L37+00E 46+00N L37+00E 45+90N L37+00E 45+80N L37+00E 45+70N L37+00E 45+60N	33 38 48 53 48	3 5 1 1 1
L37+00E 45+50N L37+00E 45+40N L37+00E 45+30N L37+00E 45+20N L37+00E 45+10N	48 55 44 67 72	1 1 1 63
L37+00E 45+00N STD C/AU-S	67 60	6 47

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3865 Page 5

•

•

•

SAMPLE#	CU PPM	AU* PPB
L37+00E 44+90N	43	8
L37+00E 44+80N	57	3
L37+00E 44+70N	63	1
L37+00E 44+60N	62	2
L37+00E 44+50N	117	11
L37+00E 44+40N	73	14
L37+00E 44+30N	61	13
L37+00E 44+20N	55	2
L37+00E 44+10N	53	1
L37+00E 44+00N	80	2
L37+00E 43+90N	66	2
L37+00E 43+80N	67	2
L37+00E 43+70N	88	1
L37+00E 43+60N	70	15
L37+00E 43+50N	58	3
L37+00E 43+40N	68	1
L37+00E 43+30N	48	2
L37+00E 43+20N	56	2
L37+00E 43+10N	56	2
L20+00N 16+50E	42	1
L20+00N 17+00E	40	3
L20+00N 17+50E	38	1
L20+00N 18+50E	32	2
L20+00N 19+00E	30	1
L20+00N 19+50E	32	1
L20+00N 20+00E L20+00N 21+00E L20+00N 21+50E L20+00N 22+50E L20+00N 23+00E	35 40 49 54 49	1 2 445 2
L20+00N 23+50E	25	2
L20+00N 24+00E	33	1
L20+00N 24+50E	25	2
L20+00N 25+00E	42	1
L20+00N 25+50E	26	1
L20+00N 26+00E	28	1
STD C/AU-S	61	46

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3865 Fage 6

SAMPLE#	CU PPM	AU* PPB
L20+00N 26+50E L20+00N 27+00E L20+00N 27+50E L20+00N 28+00E L20+00N 28+50E	29 45 35 53 90	1 2 1 1
L20+00N 29+00E L20+00N 29+50E L20+00N 30+00E L20+00N 30+50E L20+00N 31+00E	105 64 67 144	1 1 2 1
L20+00N 31+50E L20+00N 32+00E L20+00N 32+50E L20+00N 33+00E L20+00N 33+50E	100 70 108 115 95	1 1 1 1
#1-24+80N 46+50E	674	660
#2-24+80N 46+50E	170	66
#3-24+80N 46+50E	72	1
#4-24+80N 46+50E	109	14
#5-24+80N 46+50E	154	6
59+50N 38+00E	64	1
33+75N 38+43E	42	3
29+23N 35+82E	68	3
28+25N 34+00E	62	1
27+15N 32+45E	103	11
27+00N 37+00E	6338	300
25+00N 42+22E	96	5
24+05N 39+10E	134	120
23+00N 32+63E	75	1
19+04N 38+00E	74	6
19+00N 38+00E	127	6
STD C/AU-S	59	49

٠

...

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3865 Page 7

SAMPLE#	CU	AG	AU*
	PPM	PPM	PPB
34+10N 38+57E	737	2.2	4
30+30N 38+34E	105	.1	2
28+25N 34+00E	83	.1	1
27+00N 37+00E	12136	46.8	450
27+00N 50+44E	680	12.0	16120
26+00N 50+00E	166	- 4	27
25+70N 42+85E	173	- 1	71
25+50N 48+50E	2665	1 - 4	3670
25+00N 42+22E	112	- 4	5
24+80N 46+50E	35	- 1	3
24+60N 44+06E	37	.1	2
23+82N 42+31E	100	.1	1
STD C/AU-R	63	7.5	510

ACME ANALYTICAL LABORATORIES DATE RECEIVED: SEPT 4 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: MAL. 19/87.

GEOCHEMICAL ICP ANALYSIS

.500 BRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEG.C FOR ONE HDUR AND IS DILUTED TO 10 ML WITH WATER. THIB LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-7 SOILS PS-ROCK AU: ANALYSIS BY AA FROM 10 BRAM SAMPLE.

ASSAYER: A Allen DEAN TOYE, CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT-VIC File # 87-3967 Page 1

SAMPLE#	CU PPM	AU¥ PPB
30+32N 25+85E	23	1
27+75N 28+50E	28	1
27+00E 44+00N	46	1
27+00E 43+75N	27	4
27+00E 43+50N	49	2
2770000 4010014	-+ /	£)
27+00E 43+25N	43	78
27+00E 43+00N	45	3/
27+00E 42+75N	48	1
27+00E 42+50N	59	6
27+00E 42+25N	13	3
		_
27+00E 42+00N	46	1
27+00E 41+75N	50	1
27+00E 41+50N	27	150
27+00E 41+25N	54	1
27+00E 41+00N	30	5 /
		- 1
27+50E 49+00N	45	1
27+50E 48+75N	114	1
27+50E 48+50N	62	15
27+50E 48+25N	70	2
27+50E 48+00N	141	1:
		-
27+50E 47+75N	60	3
27+50E 47+50N	42	1
27+50E 47+25N	56	1)
27+50 47+00N	164	24
27+50E 44+00N	36	3/
27+50E 43+75N	40	3
27+50E 43+50N	52	2 5
27+50E 43+25N	41	5
27+50E 43+00N	38	2
27+50E 42+75N	40	2
27+50E 42+50N	64	1
27+50E 42+25N	67	22
27+50E 42+00N	42	6
27+50E 41+75N	13	3
27+50E 41+50N	46	1
n my i pozzisteni za z znatenia i		
27+50E 41+25N	41	2
STD C/AU-S	61	47

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3967 Page 2

SAMFLE#	CU PPM	AU* PPB
27+50E 41+00N 28+00E 43+75N 28+00E 43+25N 28+00E 42+75N 28+00E 42+25N	87 53 64 42 33	1 1 1 107
28+00E 41+75N 28+00E 41+25N 28+25E 44+00N 28+25E 43+75N 28+25E 43+50N	88 48 53 32	4 3 1 1 3
28+25E 43+25N 28+25E 43+00N 28+25E 42+75N 28+25E 42+50N 28+25E 42+25N	46 29 57 53	1 24 2 1
28+25E 42+00N	45	1
28+25E 41+75N	89	65
28+25E 41+50N	66	2
28+25E 41+25N	108	6
28+25E 41+00N	53	3
28+50E 49+00N	53	1
28+50E 48+75N	93	1
28+50E 48+50N	89	1
28+50E 48+25N	78	2
28+50E 48+00N	58	43
28+50E 47+75N	60	20
28+50E 47+50N	94	1
28+50E 47+25N	91	1
28+50E 47+00N	58	1
29+00E 45+00N	47	1
29+00E 44+75N	40	13
29+00E 44+50N	23	1
29+00E 44+25N	36	1
29+00E 44+00N	33	2
29+00E 43+75N	27	1
29+00E 43+50N	122	1
STD C/AU-S	60	51

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3967 Page 3

SAMPLE#	CU PPM	AU* PPB
29+00E 43+25N	41	1
29+00E 43+00N	31	1
29+00E 42+75N	71	79
29+00E 42+50N	71	7
29+00E 42+25N	46	1
29+00E 42+00N 29+00E 41+75N 29+00E 41+50N 29+00E 41+25N 29+00E 41+00N	34 53 51 34 89	3 1 1 5
29+50E 45+00N	25	1
29+50E 44+75N	36	7
29+50E 44+50N	20	1
29+50E 44+25N	97	3
29+50E 44+00N	36	6
29+50E 43+75N	21	2
29+50E 43+50N	27	1
29+50E 43+25N	26	1
29+50E 43+00N	23	3
30+00E 44+75N	29	1
30+00E 44+25N 30+00E 43+75N 30+00E 43+25N 30+50E 45+00N 30+50E 44+75N	37 51 33 35 34	1 5 4 1
30+50E 44+50N	29	6
30+50E 44+25N	42	3
30+50E 44+00N	36	1
30+50E 43+75N	47	1
30+50E 43+50N	28	1
30+50E 43+25N	33	3
30+50E 43+00N	70	1
31+00E 45+00N	52	1
31+00E 44+75N	42	1
31+00E 44+50N	25	1
31+00E 44+25N	48	1
STD C/AU-S	62	47

SAMF'LE	ŧ	CU PPM	AU* PPB
31+00E	44+00N	45	1
31+00E	43+75N	31	2
31+00E	43+50N	33	27
31+00E	43+25N	34	1
31+00E	43+00N	41	1
36+00E	45+75N	39	1
36+00E	45+25N	76	1
36+00E	44+75N	32	1
36+00E	44+25N	79	2
36+00E	43+75N	122	12
36+00E	43+25N	135	31
41+00E	58+50N	78	1
41+00E	58+25N	76	1
41+00E	58+00N	81	2
41+00E	57+75N	58	3
41+00E	57+50N	56	5
41+00E	57+25N	72	1
41+00E	57+00N	79	42
41+00E	56+75N	68	6
41+00E	56+50N	60	1
41+00E	49+00N	36	1
41+00E	48+75N	50	1
41+00E	48+50N	47	2
41+00E	48+25N	31	1
41+00E	48+00N	27	1
41+00E	47+75N	125	1
41+00E	47+50N	100	2
41+00E	47+25N	134	5
41+00E	47+00N	102	1
41+50E	58+50N	51	1
41+50E 41+50E 41+50E 41+50E 41+50E	58+00N 57+75N 57+50N	58 57 54 76 73	1 150 2 6
41+50E		73	1
STD C/A		60	50

أفتعده		

•

· ,

SAMPLE	Ħ	CU PPM	AU* PPB
41+50E	56+75N	76	14
41+50E	56+50N	68	1
41+50E	49+00N	44	2
41+50E	48+75N	36	1
41+50E	48+50N	52	2
41+50E	48+25N	39	1
41+50E	48+00N	68	2
41+50E	47+75N	52	1
41+50E	47+50N	56	1
41+50E	47+25N	133	10
41+50E 42+00E 42+00E 42+00E 42+00E	47+00N 58+25N 57+75N 57+25N 56+75N	52 53 63 65 71	2/ 5/ 11/ 24/
42+00E	48+75N	51	2
42+00E	48+25N	57	1
42+00E	47+75N	92	1
42+00E	47+25N	46	1
42+50E	58+50N	77	2
42+50E	58+25N	138	215
42+50E	58+00N	66	10
42+50E	57+75N	83	52
42+50E	57+50N	77	21
42+50E	57+25N	58	1
42+50E	57+00N	62	12
42+50E	56+75N	72	6
42+50E	56+50N	64	1
42+50E	49+00N	68	2
42+50E	48+75N	60	7
42+50E	48+25N 48+00N 47+75N	95 45 56 221 78	1 1 2 1 1
42+50E	47+25N	48	1
STD C		62	47

SAMPLE# 42+50E 47+00N 43+00E 58+50N 43+00E 58+25N 43+00E 58+00N 43+00E 57+75N

CU

32

63

74

75

83

PPM

AU*

FPB

1

19/

16

22

60 |

	الد, الما	00
43+00E 57+50N	51	6
43+00E 57+25N	76	15
43+00E 57+00N	68	5
43+00E 56+75N	56	5
43+00E 56+50N	67	50 Ý
43+00E 49+00N	71	13
43+00E 48+75N	53	5
43+00E 48+50N	47	12
43+00E 48+25N	110	6
43+00E 48+00N	144	10
43+00E 47+75N	106	5
43+00E 47+50N	34	2
43+00E 47+25N	46	23
43+00E 47+00N	53	81
43+50E 58+50N	83	30 /
43+50E 58+25N	149	26
43+50E 58+00N	106	13
43+50E 57+75N	111	42
43+50E 57+50N	75	67
43+50E 57+25N	81	52
43+50E 57+00N	68	12
43+50E 56+75N	67	7
43+50E 56+50N	60	34
44+00E 58+25N	97	10
44+00E 57+75N	93	12
44+00E 57+25N		,
	76	5
44+00E 56+75N 44+50E 58+50N	177	61
	179	16
44+50E 58+25N 44+50E 58+00N	140	32
44+50E 58+00N	197	43
44+50E 57+75N	9 8	26
STD C/AU-S	- 7 8 60	28 51
ω ω νυγειών	00	I.

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-3967 Page 7

SAMPLE	4	CU PPM	AU* PPB
44+50E	57+50N	530	280 /
44+50E	57+25N	287	170
44+50E	57+00N	293	31
44+50E	56+75N	129	6
44+50E	56+50N	66	54
45+00E	58+50N	53	1
45+00E	58+25N	24	1
45+00E	58+00N	165	25
45+00E	57+75N	169	66
45+00E	57+50N	96	63
45+00E	57+25N	103	14
45+00E	57+00N	86	18
45+00E	56+75N	1677	84
45+00E	56+50N	632	310
STD C		61	

CORDILLERAN ENGIN				87-3967	
SAMF	LE Ror	6 Geochina	Cu ppm	Au* ppb	
31+	37 25N 25+40	DE	38	7	

PAGE# 8

1

11

.

• (

「「「「「「「」」

ACME ANALYTICAL LABORATORIES DATE RECEIVED: SEPT 15 1987 952 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: MAL. 2981.

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IB 3 PPM. - SAMPLE TYPE: SOIL AU+ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: . A Sefer. DEAN TOYE, CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT-VIC File # 87-4246 Page 1

	SAMPLE#	CU PPM	AU* PPB		and the second sec
	2000N 74400F				
	2000N 34+00E	73	1		à
	2000N 35+00E 2000N 35+50E	89	1		-,4
	2000N 33+30E 2000N 36+50E	134	1		
	2000N 37+00E	83	1		
	2000N 37+00E	37	T		, 1
	2000N 37+50E	40	1		
•	2000N 38+00E	47	1	•	
	2000N 38+50E	63	1		
	2000N 39+00E	60	1		
	2000N 39+50E	133	1		
	2000N 40+00E	98	32		
	2000N 40+50E	102	4		
	2000N 41+00E	75	4		
	2000N 41+50E	46	5		
	2000N 42+00E	68	4		
	2000N 43+00E	89	2		
	40+00E 21+00N	38	22		
	40+00E 20+50N	45	8		
	43+50E 59+75N	42	11		
	43+50E 59+50N	48	21		
	43+50E 59+25N	85	88		
	4350E 59+00N	66	52		
	4375E 60+00N	47	2		
	4375E 59+75N	35	· 12		
	4375E 59+50N	80	210		
	4375E 59+25N	86	130		
	4375E 59+00N	70	29		
	4400E 59+50N	197	1820		
	4400E 59+25N	46	25	¢.	
	4425E 60+00N	53	2		
	4425E 59+75N	62	28		
	4425E 59+50N	58	9		
	4425E 59+25N	44	6		
	4425E 59+00N	85	5		
	4450E 59+75N	87	6		
	4450E 59+50N	76	10		
	STD C/AU-S	58	47		

)

SAMFLE#	CU PPM	AU* PPB
4450E 59+25N	68	14
4450E 59+00N	63	7
4500E 60+50N	44	2
4500E 60+25N	75	1
4500E 60+00N	77	11
4500E 59+75N	112	110
4500E 59+50N	48	85
4525E 60+50N	47	3
4525E 60+25N	52	9
4525E 60+00N	109	44
4525E 59+75N	75	40
4525E 59+50N	73	27
4550E 60+50N	45	13
4550E 60+25N	49	15
4550E 59+75N	84	37
4550E 57+50N	120	27
4550E 51+00N	86	3
4550E 50+75N	406	151
4550E 50+50N	770	156
4550E 50+25N	195	21
4575E 60+50N	95	39
4575E 60+25N	123	23
4575E 60+00N	78	20
4575E 59+75N	71	720
4575E 59+50N	90	5
4575E 51+00N	156	10
4575E 50+75N	223	18
4575E 50+50N	259	75
4575E 50+25N	243	26
4575E 50+00N	211	9
4600E 60+50N	125	1
4600E 60+25N	170	765
4600E 59+75N	196	52
4600E 59+50N	111	126
4600E 50+75N	266	36
4600E 50+25N	151	21
STD C/AU-S	62	50

AU* PPB

SAMF'LE#	CU PPM
4625E 60+50N	158
4625E 60+25N	109
4625E 60+00N 4625E 59+75N	138
4625E 59+75N	118
4625E 59+50N	124
4625E 51+00N	191
4625E 50+75N	351
4625E 50+50N	235
4625E 50+25N	160
4625E 50+00N	86
4650E 60+50N	184
4650E 60+25N	203
4650E 59+75N	170
4650E 59+50N	93
4650E 51+00N	262
4650E 50+75N	396
4675E 60+50N	132
4675E 60+25N	83
4675E 60+00N	127
4675E 59+75N	116
4675E 59+50N	88
4700E 60+50N	205
4700E 60+25N	130
4700E 59+75N	123
4700E 59+50N	94
49+50E 54+50N	118
49+50E 53+75N	150
49+50E 53+50N	136
49+50E 53+25N	200
49+50E 53+00N	126

49+50E	52+75N	173	54
49+50E	52+50N	160	18
49+50E	52+25N	93	9
49+50E	52+00N	258	5
49+50E	47+50N	208	134
4950E 4	17+25N	90	24
STD C/4	4U-S	60	51

-

÷.,

٠

, •

SAMF'LE#	CU PPM	AU* PPB
4950E 46+75N	85	25
4950E 46+50N	48	8
4975E 54+50N	165	27
4975E 54+25N	178	17
4975E 54+00N	203	15
4975E 53+75N	247	22
4975E 53+50N	383	30
4975E 53+25N	188	43
4975E 52+75N	208	28
4975E 52+50N	128	38
4975E 52+25N	148	36
4975E 52+00N	281	26
4975E 47+50N	150	14
4975E 47+25N	102	4
4975E 47+00N	102	21
4975E 46+75N	67	5
4975E 46+50N	71	6
5000E 54+25N	165	23
5000E 53+75N	176	42
5000E 52+75N	216	29
5000E 52+25N	604	21
5000E 47+50N	105	9
5000E 47+25N	126	18
5000E 46+75N	96	10
5025E 54+50N	191	8
5025E 54+25N	189	13
5025E 54+00N	320	37
5025E 53+75N	167	27
5025E 53+25N	116	14
5025E 53+00N	183	131
5025E 52+75N	192	55
5025E 52+50N	169	32
5025E 52+25N	225	55
5025E 52+00N	151	10
5025E 47+50N	93	8
5025E 47+25N	85	4
STD C/AU-S	61	51

SAMPLE#	CU PPM	AU* PPB
5025E 47+00N	93	26
5025E 46+75N	71	12
5025E 46+50N	56	18
5050E 54+50N	148	46
5050E 54+25N	270	42
5050E 54+00N	1421-	62
5050E 53+75N	171	33
5050E 53+50N	137	15
5050E 53+25N	155	48
5050E 53+00N	150	38
5050E 52+75N	182	189
5050E 52+75N A	208	31
5050E 52+25N	117	25
5050E 52+00N	127	29
5050E 47+50N	114	16
5050E 47+25N	112	29
5050E 47+00N	64	16
5050E 46+75N	88	15
5050E 46+50N	51	66
STD C/AU-S	60	49

.

•

• • •

ACME ANALYTICAL LABORATORIES DATE RECEIVED: SEPT 20 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: Out. 3/2.7.

GEOCHEMICAL ICP ANALYSIS

.500 BRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MB BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-7 SOIL P8-ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER: W. Alf. DEAN TOYE, CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT-VIC File # 87-4320 Page 1

ST P 1000

SAMPLE#	CU PPM	AU¥ ₽₽₿
3950E 2600N 3950E 25+75N 3950E 25+50N 3950E 25+00N 3950E 25+00N A	56 70 85 138 84	1 2 4 71 330
3950E 24+75N 3950E 24+50N 3950E 24+25N 3950E 24+00N 3975E 26+00N	82 94 105 81 124	1 1 1 72
3975E 25+75N 3975E 25+50N 3975E 25+00N 3975E 25+00N A 3975E 25+00N A	118 73 37 177 107	15 5 25 14 700
3975E 24+50N 3975E 24+25N 3975E 24+00N 4000E 25+75N 4000E 25+25N	116 50 70 78 36	6 1 3 4
4000E 24+75N 4000E 24+25N 4025E 26+00N 4025E 25+75N 4025E 25+50N	540 104 57 60 72	690 1 1 106
4025E 25+25N 4025E 25+00N 4025E 25+00N A 4025E 24+50N 4025E 24+25N	61 141 97 50 113	3 7 40 1 57
4025E 24+00N 4050E 26+00N 4050E 25+75N 4050E 25+50N 4050E 25+25N	62 41 39 160 59	7 1 1200 60
4050E 25+00N STD C/AU-S	69 59	1 51

SAMPLE#	CU PPM	AU* PPB
4050E 2500N A 4050E 24+25N √4050E 24+00N √4050E 24+00N √4150E 37+00N √4150E 38+00N	68 71 67 42 24	21 1 1 106
✓ 4150E 37+75N 4150E 37+50N 4150E 37+25N ✓ 4150E 37+00N ✓ 4150E 22+00N	24 80 28 27 74	4 21 1 1 2
4150E 21+75N 4150E 21+50N 4150E 21+25N 4150E 21+25N 4175E 38+00N	48 62 59 82 25	1 1 1 1
✓4175E 37+75N ✓4175E 37+50N ✓4175E 37+25N ✓4175E 22+00N ✓ 4175E 21+75N	34 35 31 49 49	1 8 2 1 1
 4175E 21+50N 4175E 21+25N 4175E 21+25N 4200E 37+75N 4200E 37+25N 	85 48 51 51 56	10 1 9 1 1
✓4200E 21+75N ✓4200E 21+25N ✓4225E 38+00N ✓4225E 37+75N ✓4225E 37+50N	52 79 33 34 34	1 1 1 1
4225E 37+25N 4225E 37+00N 4225E 22+00N 4225E 21+75N 4225E 21+50N	44 24 76 93 105	1 1 1 1
✓4225E 21+25N STD C/AU-S	67 60	2 51

٠

ţ

.

· .

SAMF'LE#	CU PPM	AU* PPB
✓4225E 21+00N ✓4250E 38+00N ✓4250E 37+75N ✓4250E 37+50N ✓4250E 37+25N	69 48 30 42 31	2 8 1 1
<pre>/4250E 22+00N /4250E 21+75N /4250E 21+50N STD C/AU-S /4250E 21+25N</pre>	92 68 49 59 70	2 1 4 53 1
√4250E 21+00N	64	1
✓ 4750E 55+25N	168	10
4750E 55+00N	131	3
4750E 54+75N	106	3
4750E 54+50N	215	390
4775E 55+25N	131	37
4775E 55+00N	116	8
4775E 54+75N	244	58
4775E 54+50N	222	146
4800E 55+25N	188	16
4800E 54+75N	141	13
4825E 55+50N	169	16
4825E 55+25N	197	9
4825E 55+00N	177	18
4825E 54+75N	155	17
4825E 54+50N	97	11
4850E 55+50N	180	7
4850E 55+25N	159	17
4850E 55+00N	185	8
4850E 54+75N	184	290
4850E 54+50N	125	18
4850E 54+25N	238	35
4850E 54+00N	317	27
4850E 53+75N	297	24
4875E 54+50N	230	20
4875E 54+25N	203	320
4875E 54+00N	309	4 5

.

SAMFLE#	CU PPM	AU* PPB
✓ 4875E 53+75N	204	78
✓ 4900E 54+25N	195	33
✓ 4900E 53+75N	205	72
STD C/AU-S	59	50
✓ 4925E 54+50N	131	70
4925E 54+25N	132	50
4925E 54+00N	160	16
4925E 53+75N	170	21
√4950E 54+50N	150	94
√4950E 54+25N	153	4
 ✓4950E 54+00N ✓4950E 42+00N ✓4950E 41+75N ✓4950E 41+50N ✓4950E 41+25N 	156 39 47 66 92	16 1 23 8
✓4950E 41+00N	64	47
✓4950E 31+00N	61	3
✓4950E 30+75N	83	17
✓4950E 30+50N	98	5
✓4950E 30+25N	70	17
 ✓4950E 30+00N ✓4950E 24+25N ✓4950E 24+00N ✓4950E 23+75N ✓4975E 42+00N 	56 74 49 54 62	3 6 3 1 9
-4975E 41+75N	80	1
-4975E 41+50N	70	14
-4975E 41+25N	163	17
-4975E 41+00N	87	9
√4975E 31+00N	56	1
✓4975E 30+75N	67	30
✓4975E 30+50N	86	21
✓4975E 30+25N	93	140
✓4975E 30+00N	57	1
✓4975E 24+25N	48	1
√4975E 24+00N	52	1
√4975E 23+75N	49	1

.

÷ +

SAMPLE#	CU PPM	AU* PPB
J5000E 53+25N ✓ 5000E 41+75N ✓ 5000E 41+25N ✓ 5025E 53+50N ✓ 5025E 42+00N	171 44 101 294 96	52 1 3 36 13
<pre>>5025E 41+75N >5025E 41+50N >5025E 41+25N >5025E 41+00N >5025E 31+00N</pre>	65 269 153 392 83	1 37 21 590 158
√5025E 30+75N √5025E 30+50N √5025E 30+25N √5025E 30+00N √5025E 24+25N	45 42 49 93 46	17 1 2 2
<pre>>5025E 24+00N >5025E 23+75N >5025E 23+50N >5050E 42+00N >5050E 41+75N</pre>	63 39 72 83 43	1 1 3 5 1
✓5050E 41+50N ✓5050E 41+25N ✓ 5050E 41+00N ✓5050E 31+00N ✓ 5050E 30+75N	115 186 115 56 70	710 48 26 35 6
∕5050E 30+50N ∕5050E 30+25N ∕5050E 30+00N ∕5050E 24+25N ∕5050E 24+00N	73 154 56 45 60	1 1 3 2
 ✓ 5050E 23+75N ✓ 5050E 23+50N 5100E 42+50N 5100E 42+25N 5100E 42+00N 	50 67 278 187 76	5 1 5 26 15
5100E 41+75N 5100E 41+50N STD C/AU-S	125 204 60	19 66 52

	¥ 46 467	• • • • • • • • • • • • • • • • • • •
SAMF'LE#	CU PPM	AU* PPB
5100E 41+25N	171	46
5100E 41+00N	169	90
5100E 40+75N	124	24
5100E 40+50N	116	43
5125E 42+50N	592	44
	264 442 134 210 184	26 95 17 315 43
5125E 41+00N	108	29
5125E 40+75N	84	14
5125E 40+50N	120	56
5150E 42+25N	248	63
5150E 41+75N	166	48
5150E 41+25N	71	15
5150E 40+75N	104	27
5175E 42+50N	286	129
5175E 42+25N	186	43
5175E 42+00N	189	41
5175E 41+75N	207	56
5175E 41+50N	428	2190
5175E 41+25N	91	52
5175E 41+00N	66	44
5175E 40+75N	76	19
5175E 40+50N	115	88
5200E 42+50N	211	51
5200E 42+25N	224	35
5200E 42+00N	139	83
5200E 41+75N	86	20
5200E 41+50N	137	21
5200E 41+25N	129	52
5200E 41+00N	119	24
5200E 40+75N	97	9
5200E 40+50N	55	5
9-11-1	400	147
STD C/AU-S	60	51

.

Soll

SAMPLE	Cu ppm	Au* ppb	
9-11-2	205	9	5.1
9-11-3	210	146	50.1

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-4320 Page 8

SAMPLE#	CU PPM	AU* PPB
52+75N 49+50E	72	3
55+00N 50+00E	38	1
9-11-4	54	11

Rock Geochem

ACME ANALYTICAL LABORATORIES DATE RECEIVED: SEPT 28 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

GEOCHEMICAL ICP ANALYSIS

.500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MB BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PI-8 SOIL P9-ROCK AU* ANALYSIS BY AA FROM 10 BRAM SAMPLE.

ASSAYER: . N. A. DEAN TOYE, CERTIFIED B.C. ASSAYER

CORDILLERAN ENGINEERING PROJECT-VIC File # 87-4578 Page 1

SAMPLE#	CU PPM	AU* PPB	
17+50E 21+50N 17+50E 21+25N 17+50E 21+00N 17+50E 20+75N 17+50E 20+50N	20 25 37 34 40	1 2 1 1 1	OCT 13 1961
17+75E 21+50N 17+75E 21+25N 17+75E 21+00N 17+75E 20+75N 17+75E 20+50N	27 38 50 37 38	1 4 1 1	
18+00E 21+25N 18+00E 20+75N 18+25E 21+50N 18+25E 21+25N 18+25E 21+00N	32 45 35 37 41	2 1 1 1 1	
18+25E 20+75N 18+25E 20+50N 18+50E 21+50N 18+50E 21+25N 18+50E 21+00N	40 45 39 36 36	1 4 1 1	
18+50E 20+75N 18+50E 20+50N 19+50E 23+00N 19+50E 22+75N 19+50E 22+50N	38 52 58 74 63	1 10 1 3	
19+50E 22+25N 19+75E 23+00N 19+75E 22+75N 19+75E 22+50N 19+75E 22+25N	49 75 57 52 48	1 1 1 2 7	
20+00E 22+75N 20+00E 22+25N 20+25E 23+00N 20+25E 22+75N 20+25E 22+50N	49 50 41 38 38	1 3 1 1	*a;
20+25E 22+25N STD C/AU-S	54 61	20 / 52	

SAMPLE#	CU PPM	AU* PPB
20+25E 22+00N 20+50E 23+00N 20+50E 22+75N 20+50E 22+50N 20+50E 22+25N	1 44 36 47 74	
21+50E 26+00N	26	1
21+50E 25+75N	26	2
21+50E 25+50N	19	1
21+50E 25+25N	23	1
21+50E 25+00N	19	3
21+75E 26+00N	48	1
21+75E 25+75N	27	1
21+75E 25+50N	18	1
21+75E 25+25N	34	11
21+75E 25+00N	22	1
22+00E 25+75N	26	1
22+00E 25+25N	23	1
22+25E 26+00N	32	1
22+25E 25+75N	35	1
22+25E 25+50N	42	1
22+25E 25+25N	48	1
22+25E 25+00N	32	1
22+50E 26+00N	48	1
22+50E 25+75N	36	1
22+50E 25+50N	56	1
22+50E 25+25N	35	2
22+50E 25+00N	39	1
22+50E 29+50N	47	1
22+50E 29+25N	24	1
22+50E 29+00N	50	1
22+50E 28+75N	55	1
22+75E 29+50N	45	1
22+75E 29+25N	38	2
22+75E 29+00N	34	1
22+75E 28+75N	75	1
22+75E 28+50N	51	1
STD C/AU-S	62	50

SAMPLE#	CU FFM	AU* PPB
26+00E 29+25N	76	47
26+00E 28+75N	67	1
26+25E 29+50N	62	1
26+25E 29+25N	113	1
26+25E 29+00N	94	1
26+25E 28+75N 27+50E 39+00N 27+50E 38+75N 27+50E 38+50N 27+50E 38+25N	109 53 27 23 -32	2 2 1 1
27+50E 38+00N	27	1
27+75E 39+00N	36	5
27+75E 38+75N	25	1
27+75E 38+50N	28	1
27+75E 38+25N	64	42
27+75E 38+00N	29	5
28+00E 38+75N	31	1
28+00E 38+25N	23	1
28+25E 39+00N	21	1
28+25E 38+75N	36	1
28+25E 38+50N 28+25E 38+25N 28+25E 38+00N 28+50E 39+00N 28+50E 38+75N	35 36 36 31 43	1 1 205 1
28+50E 38+50N	27	1
28+50E 38+25N	19	1
28+50E 38+00N	24	21
35+50E 56+50N	59	67
35+50E 56+25N	44	2
35+50E 56+00N	41	5
35+50E 55+75N	37	4
35+50E 55+50N	43	1
35+75E 56+50N	63	2
35+75E 56+25N	60	1
35+75E 56+00N	48	1
STD C/AU-S	59	48

.

÷.,

•

SAMPLE#	CU F'PM	AU* PPB
35+75E 55+75N	36	1 /
35+75E 55+50N	34	1
36+00E 56+25N	62	4
36+00E 55+75N	55	33
36+25E 56+50N	34	5
36+25E 56+25N 36+25E 56+00N 36+25E 55+75N 36+25E 55+50N 36+50E 56+50N	49 53 70 55 32	1 1 1 2
36+50E 56+25N	46	1
36+50E 56+00N	37	19
36+50E 55+75N	53	1
36+50E 55+50N	59	3
37+50E 22+00N	52	2
37+50E 21+75N 37+50E 21+50N 37+50E 21+25N 37+50E 21+00N 37+75E 22+00N	34 31 37 38 35	2 1 1 2
37+75E 21+75N	38	1
37+75E 21+50N	32	1
37+75E 21+25N	31	2
37+75E 21+00N	37	1
38+00E 21+75N	25	1
38+00E 21+25N	35	11
38+25E 22+00N	36	1
38+25E 21+75N	42	2
38+25E 21+50N	53	1
38+25E 21+25N	63	1
38+25E 21+00N	51	1
38+50E 22+00N	63	21
38+50E 21+75N	64	16
38+50E 21+50N	62	3
38+50E 21+25N	65	8
42+50E 22+00N	67	1 ⁄
STD C/AU-S	62	48

۴,

SAMPLE	ŧ	CU F'F'M	AU* PPB
42+50E 42+50E 42+50E 42+75E 42+75E	21+50N 21+25N	243 116 79 32 70	99 90 13 2 44
42+75E 42+75E 42+75E 43+25E 43+25E	21+50N 21+25N 21+00N 22+00N 21+75N	77 95 61 45 45	15 1 39 67
	21+50N 21+25N 21+00N 22+00N 21+75N	103 73 57 48 46	6 2 17 1 1
43+50E 43+50E 43+50E 45+50E 45+50E	21+50N 21+25N 21+00N 49+50N 49+25N	58 55 34 42 39	49 2 7 1 3
45+50E 45+50E 45+50E 45+50E 45+50E	49+00N 48+75N 48+50N 44+50N 44+25N	47 53 72 58 58	1 55 2 73
45+50E 45+50E 45+50E 45+50E 45+50E	44+00N 43+75N 43+50N 29+00N 28+75N	51 54 33 54 50	3 2 1 4 3
45+50E 45+50E 45+50E 45+75E 45+75E	28+25N 28+00N 49+50N	44 37 42 68 47	56 2 1 25 3
45+75E STD C/A		48 59	1 / 51

SAMPLE#	CU F'F'M	AU* PPB
45+75E 48+75N	77	22
45+75E 48+50N	70	9/
45+75E 44+50N	48	12
45+75E 44+25N	62	5
45+75E 44+00N	54	7
45+75E 43+75N	48	3
45+75E 43+50N	50	61
45+75E 29+00N	56	4
45+75E 28+75N	61	1
45+75E 28+50N	110	50
45+75E 28+25N	52	16
45+75E 28+00N	50	6/
46+00E 49+25N	52	8
46+00E 48+75N	70	97/
46+00E 44+25N	56	13
46+00E 43+75N	41	10
46+00E 28+75N	51	61
46+00E 28+25N	53	4
46+25E 49+50N	76	13
46+25E 49+25N	65	58
46+25E 49+00N	127	30
46+25E 48+75N	79	6
46+25E 48+50N	53	12
46+25E 44+50N	70	5
46+25E 44+25N	49	28
46+25E 44+00N 46+25E 43+75N 46+25E 43+50N 46+25E 29+00N 46+25E 28+75N	50 67 63 56 57	8 4 11 1 1 1
46+25E 28+50N	53	2 /
46+25E 28+25N	50	1 /
46+25E 28+00N	48	1 /
46+50E 49+50N	70	15 /
46+50E 49+25N	67	18 /
46+50E 49+00N	70	21√
STD C/AU-S	62	48

٠.

.

•

SAMPLE#	CU PPM	AU* PPB
46+50E 48+75N	65	12
46+50E 48+50N	96	9
46+50E 44+50N	72	1
46+50E 44+25N	57	2
46+50E 44+20N	54	6
46+50E 43+75N	72	3
46+50E 43+50N	81	2
46+50E 29+00N	53	1
46+50E 28+75N	69	1
46+50E 28+50N	48	2
46+50E 28+25N	49	1
46+50E 28+00N	44	3
47+50E 49+00N	59	11
47+50E 48+75N	70	6
47+50E 48+50N	96	10
47+50E 48+25N	66	51
47+50E 48+00N	53	7
47+50E 45+50N	158	21
47+50E 45+25N	186	28
47+50E 45+00N	109	11
47+50E 44+75N	83	275
47+50E 44+50N	72	3
47+75E 49+00N	67	31
47+75E 48+75N	79	56
47+75E 48+50N	73	19
47+75E 48+25N	106	21
47+75E 48+00N	54	2
47+75E 45+50N	94	9
47+75E 45+25N	209	18
47+75E 45+00N	73	5
47+75E 44+75N	55	24
47+75E 44+50N	42	2
48+00E 48+75N	87	16 √
48+00E 48+25N	214	52 √
48+00E 45+25N	111	2 ∽
48+00E 44+75N	104	35√
STD C/AU-S	59	47

.

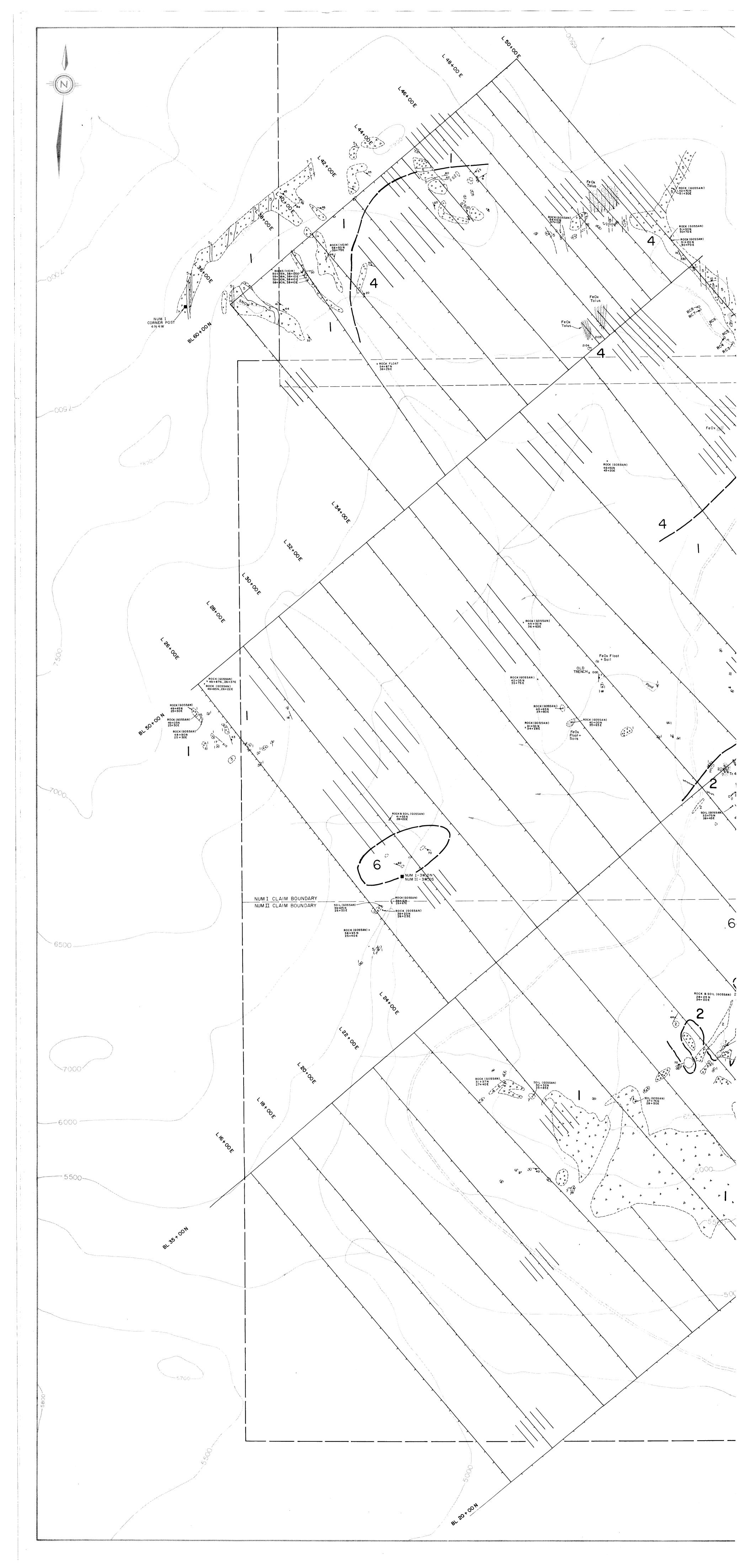
۰,

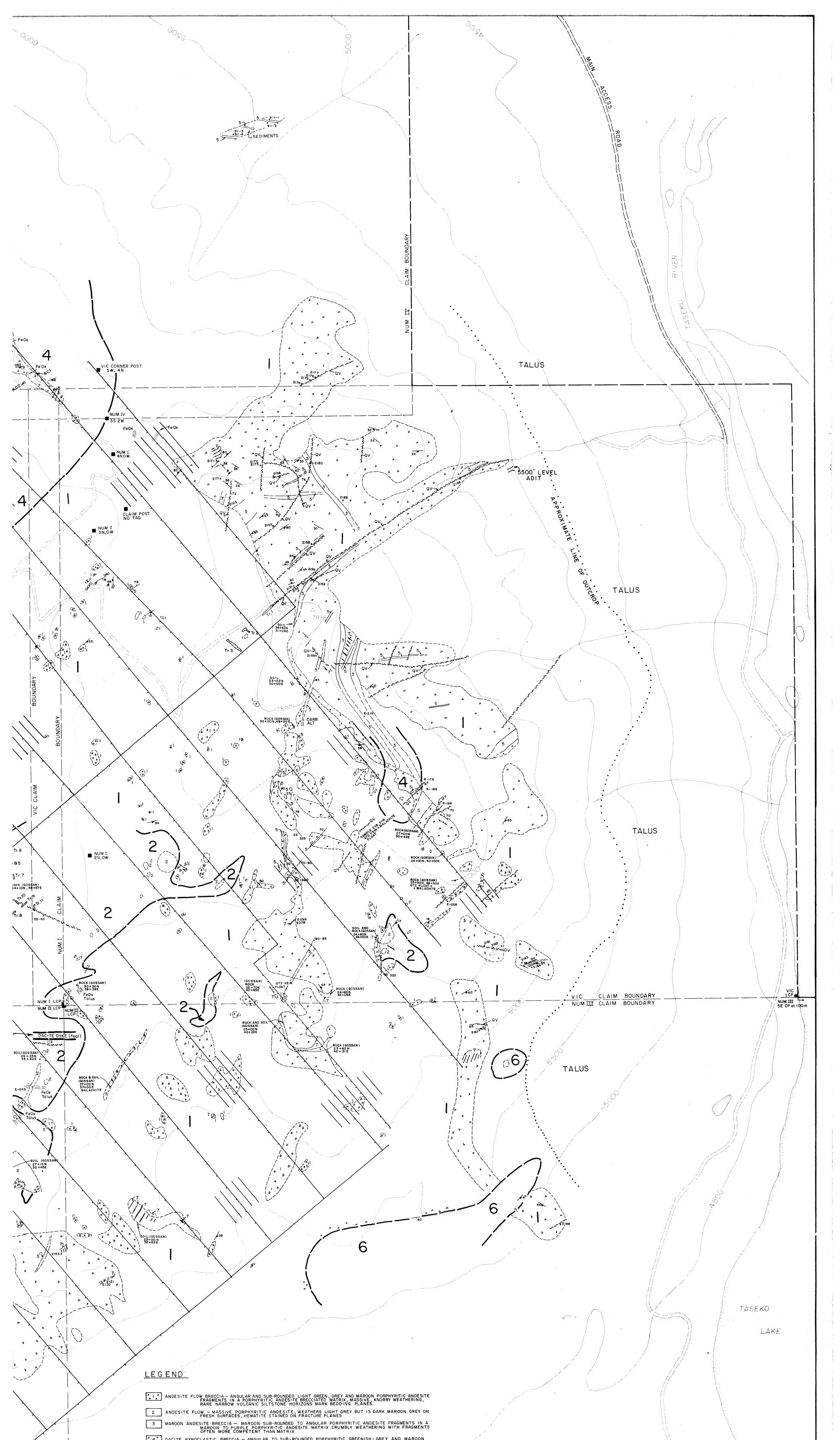
CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-4578 Page 8

SAMPLE#	CU PPM	AU* PPB
48+25E 49+00N	41	7 /
48+25E 48+75N	103	7
48+25E 48+50N	109	31
48+25E 48+25N	132	28
48+25E 48+00N	247	69
48+25E 45+50N	81	9 /
48+25E 45+25N	68	87 /
48+25E 45+00N	65	5 /
48+25E 44+75N	45	1 /
48+25E 44+50N	56	10 /
48+50E 49+00N	90	10
48+50E 48+75N	163	31
48+50E 48+50N	147	22
48+50E 48+25N	94	21
48+50E 48+00N	213	32
48+50E 45+50N	100	18
48+50E 45+25N	65	16
48+50E 45+00N	57	1
48+50E 44+75N	50	6
48+50E 44+50N	60	132
STD C/AU-S	60	50

٠,

۰.

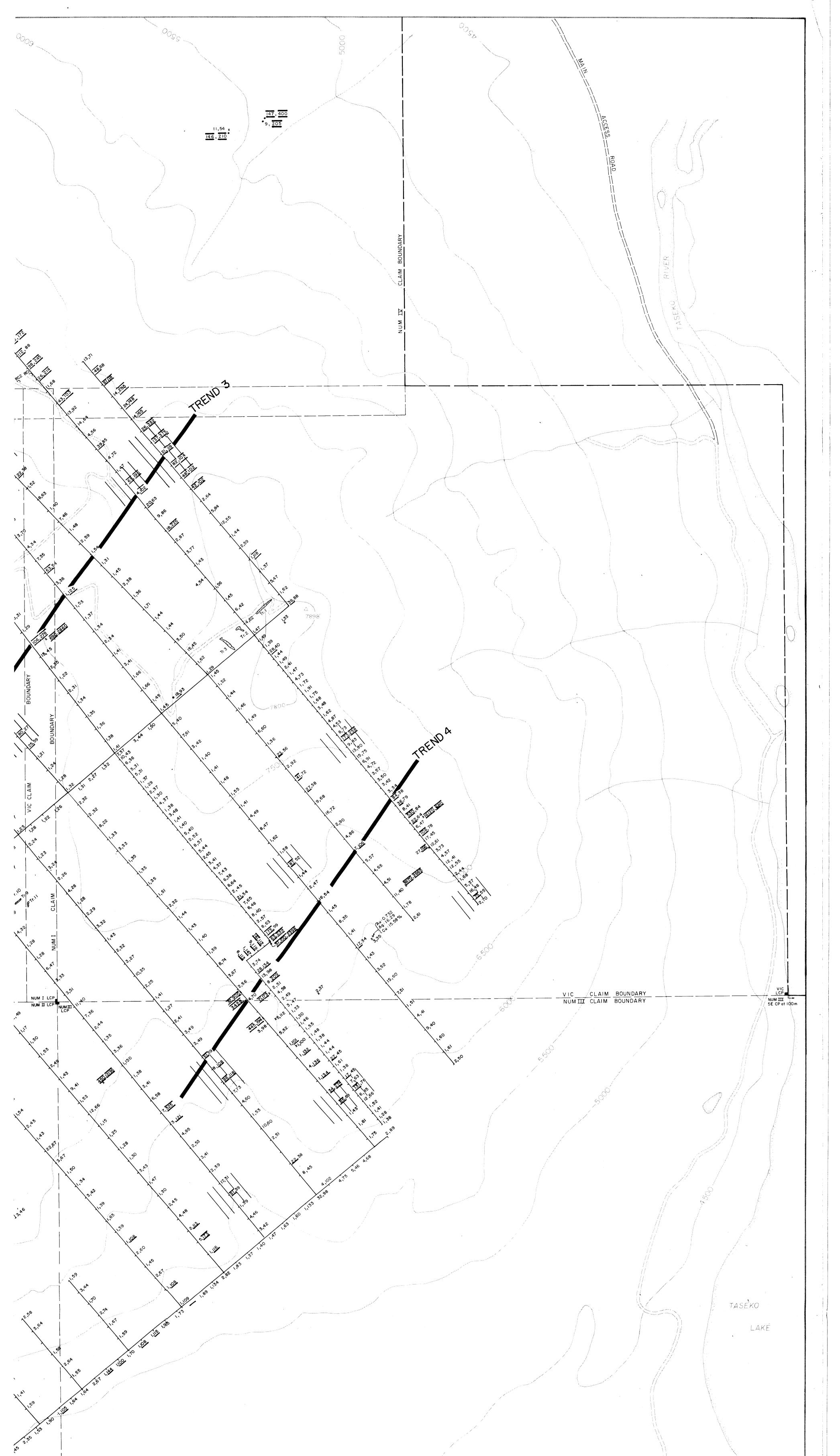

CORDILLERAN ENGINEERING PROJECT-VIC FILE # 87-4578 Page 9


SAMPLE# Rock Grochem

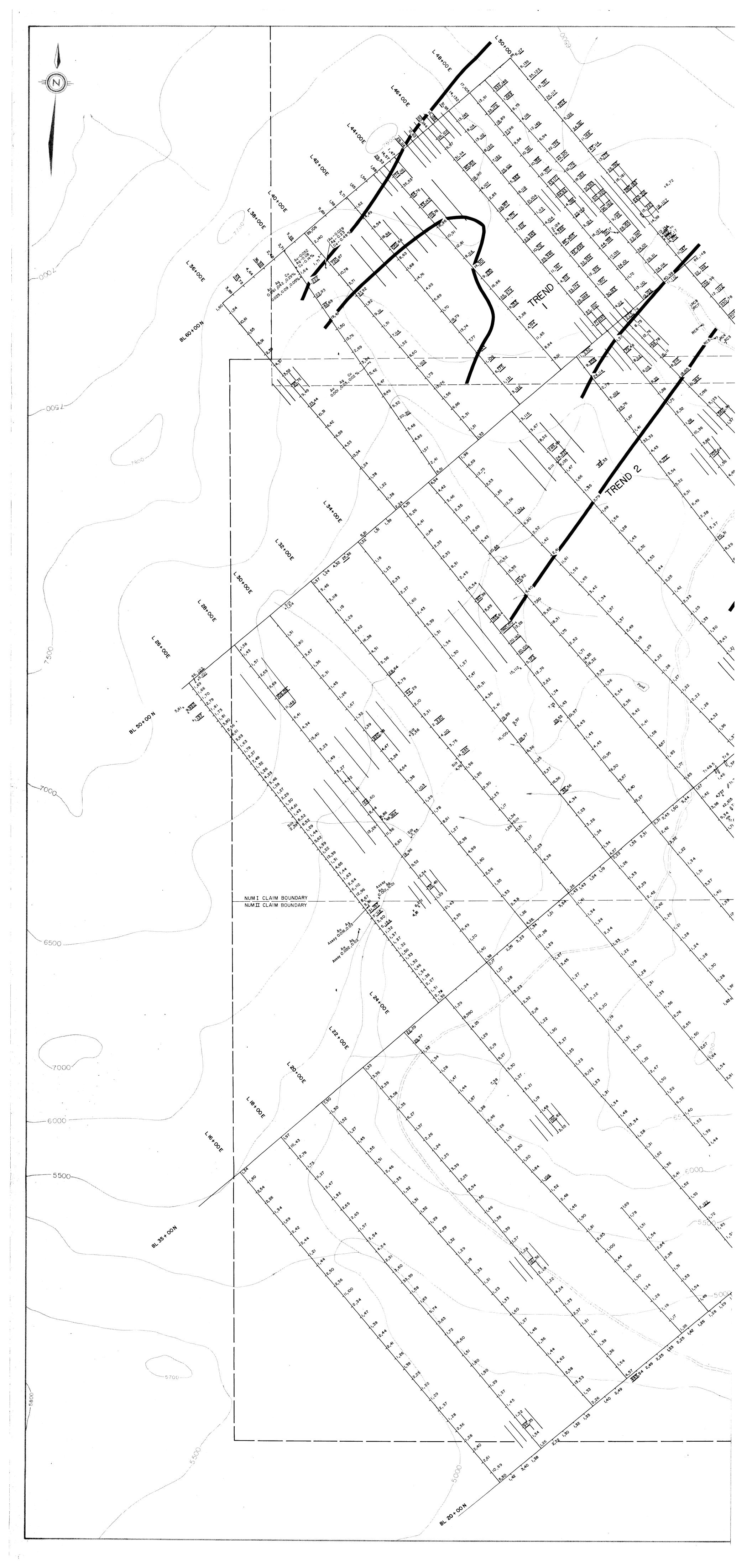
AG	AU*
PPM	PPB

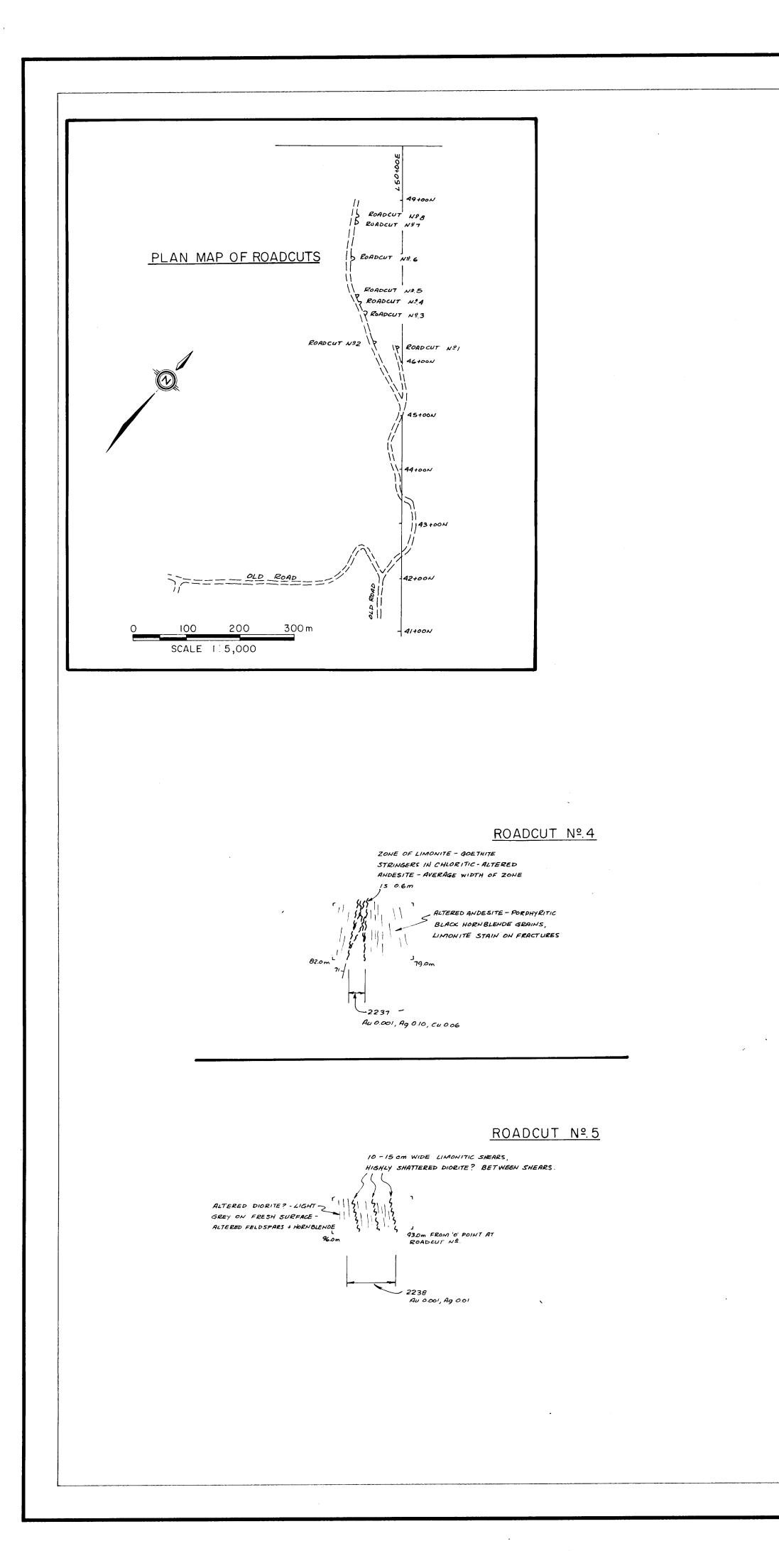
٠.

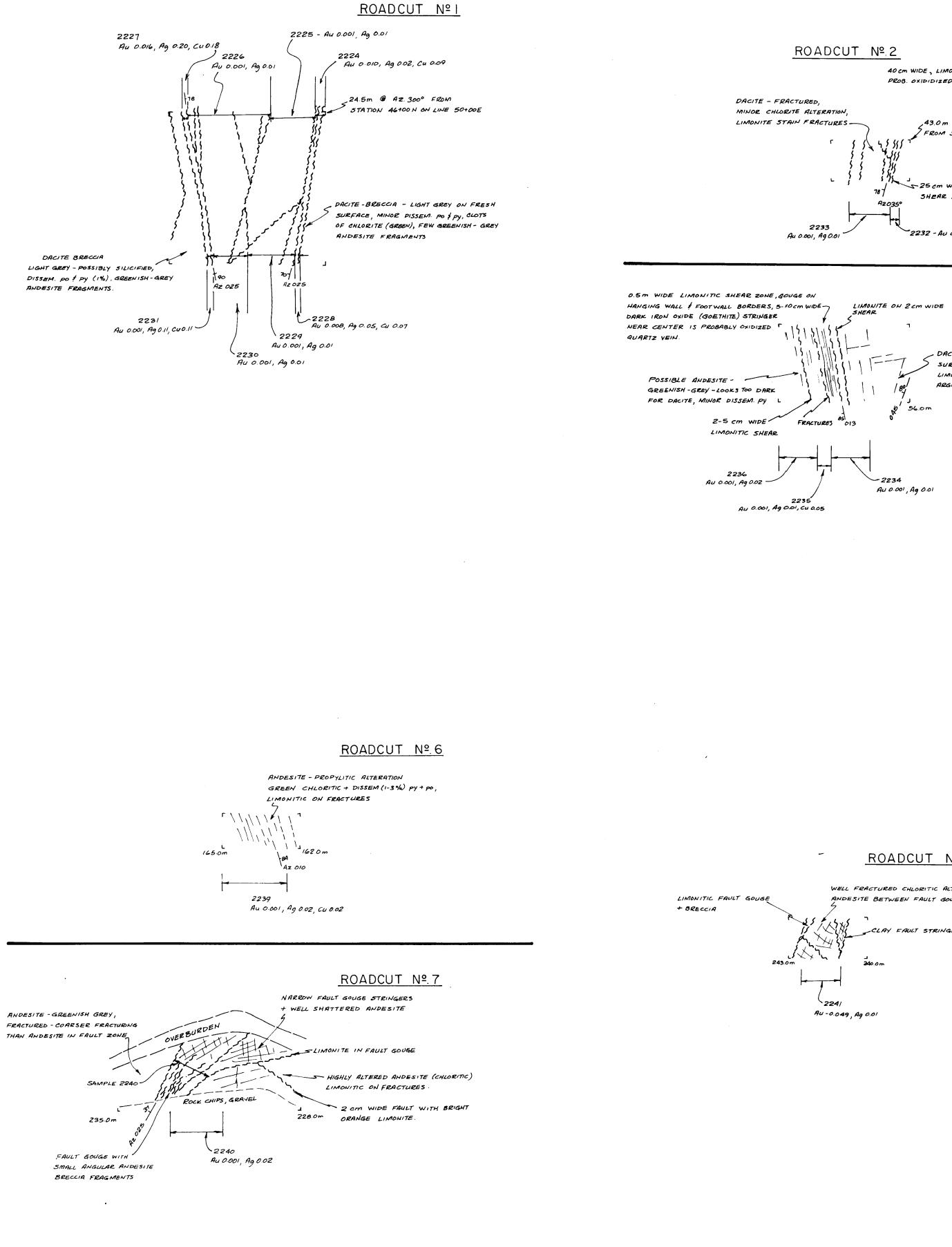
28+75N 26+25E #1 .1 2 28+75N 26+25E #2 .2 2



		C BRECCIA — ANGULAR TO SUB-ROUNDED PORPHYRI TTE FRAGMENTS AND LIGHT GREY DACITE FRAGMEN GREY PORPHYRITIC DACITE MATRIX, MINOR LAMIN/ MINATED PYRITE (<1%) AREAS. ASSIVE, MEDIUM GRAINED, PREDOMINANTLY LIGHT (6 HORNBLENDE LATHS OR NEEDLES, LOCAL DISSEMIN		
	6 PORPHYRITIC DACIT QUART FLOW	E DYKES – BEIGE TO LIGHT GREY COLOUR, PHENC Z-EYES IN A PLAGIOCLASE-QUARTZ GROUND MASS BRECCIA, WEATHERS WHITE TO BEIGE.	CRYSTS OF PLAGLIOCLASE AND , STEEP CONTACTS WITH ANDESITE	F GEOLOCICAT DE LES
	7 CARBONATE ALTERA (MOST	TION — ORANGE WEATHERING CARBONATE-RICH LY SIDERITE OR ANKERITE) VEINLETS.	ALTERATION WITH CARBONATE	GEOLOGICAL BRANCH ASSESSMENT REPORT
	SYMBOLS			
	~~~~	QUARTZ VEINS		TAVIZ
	~~~~	FAULT ZONE		L0,0/2
an a		DISSEMINATED PYRITE or IRON GOSSAN	QV QUARTZ VEIN	G.M. Lelade
- 30 000.	</td <td>OUTCROP</td> <td>RC ROADCUT</td> <td></td>	OUTCROP	RC ROADCUT	
		GEOLOGICAL CONTACT Approximate	TR TRENCH	
	45	BEDDING STRIKE AND DIP		KINGSVALE RESOURCES LTD.
	60	FRACTURE STRIKE AND DIP		VIC PROPERTY
		SCHISTOSITY STRIKE AND DIP		CLINTON MINING DIVISION, B.C. NTS: 92-0/5E
	x	GOSSANOUS SAMPLE LOCATION		
	•	CLAIM I.D. POST		
				GEOLOGY PLAN
			j 160 200 300 400	SCOmetres
			SCALE 1 5000	DRAWN BY CILALONCE SCALE I 5000
				DATE NOVEMBER, 1987 DRAWING NUMBER 6


•


NUM II CLAIM BOUNDARY NUM III CLAIM BOUNDARY



	and the second s		GEOLOGICA ASSESSMEN	
	<u>_EGEND:</u> 63,239	GRID SOIL SAMPLE (Au value ppb, Cu value ppm)	16,8	873 C.M. Calada
······································	9,78 ₀ Silt 2,390 1600,239 _x	SOIL SAMPLE TAKEN OFF GRID (Au value ppb, Cu value ppm) SILT SAMPLE (Au value ppb, Cu value ppm) ROCK SAMPLE (Au value ppb, Cu value ppm)	8	ESOURCES LTD.
Ad	u - 0.029 x g - 0.23 u - 0.98 %	ROCK SAMPLE ASSAY Au oz/t, Ag oz/t, Cu %		ROPERTY SION, B.C. NTS: 92-0/5E
		≥40 ppb (90th Percentile) - Definitely Anomalous ≥17 ppb (80th Percentile) - Possibly Anomalous ≥154 ppm (90th Percentile) - Definitely Anomalous ≥101 ppm (80th Percentile) - Possibly Anomalous		CAL SURVEY PPER VALUES
		0 (0) 200 300 400 <u>50</u> 0metres SCALE I 5000	DRAWN BY CLAUDNOL	SCALE I 5 GW
		·	DATE OCT.,1987	DRAWING NUMBER 7

NUM II CLAIM BOUNDARY NUM III CLAIM BOUNDARY

-

ROADCUT Nº8	
ACTURED CHLORITIC ALTERED E BETWEEN FAULT GOUGE STRINGERS	
CLAY FAULT STRINGER	GEOLOGICAL BRANCH ASSESSMENT REPORT
J 840.0m	4/077
0.01	16.8/5
	L'111. Lolade
Ň	KINGSVALE RESOURCES LTD.
	VIC PROPERTY CLINTON MINING DIVISION, B.C. NTS: 920/5E
	ROADCUTS
	GEOLOGY & ASSAY RESULTS
	0 2 4 6 8 SCALE 1:100
	DATE: NOVEMBER, 1987 BY: C.LALONDE FIGURE No. 11
	Prepared by: RWR MINERAL GRAPHICS LTD.

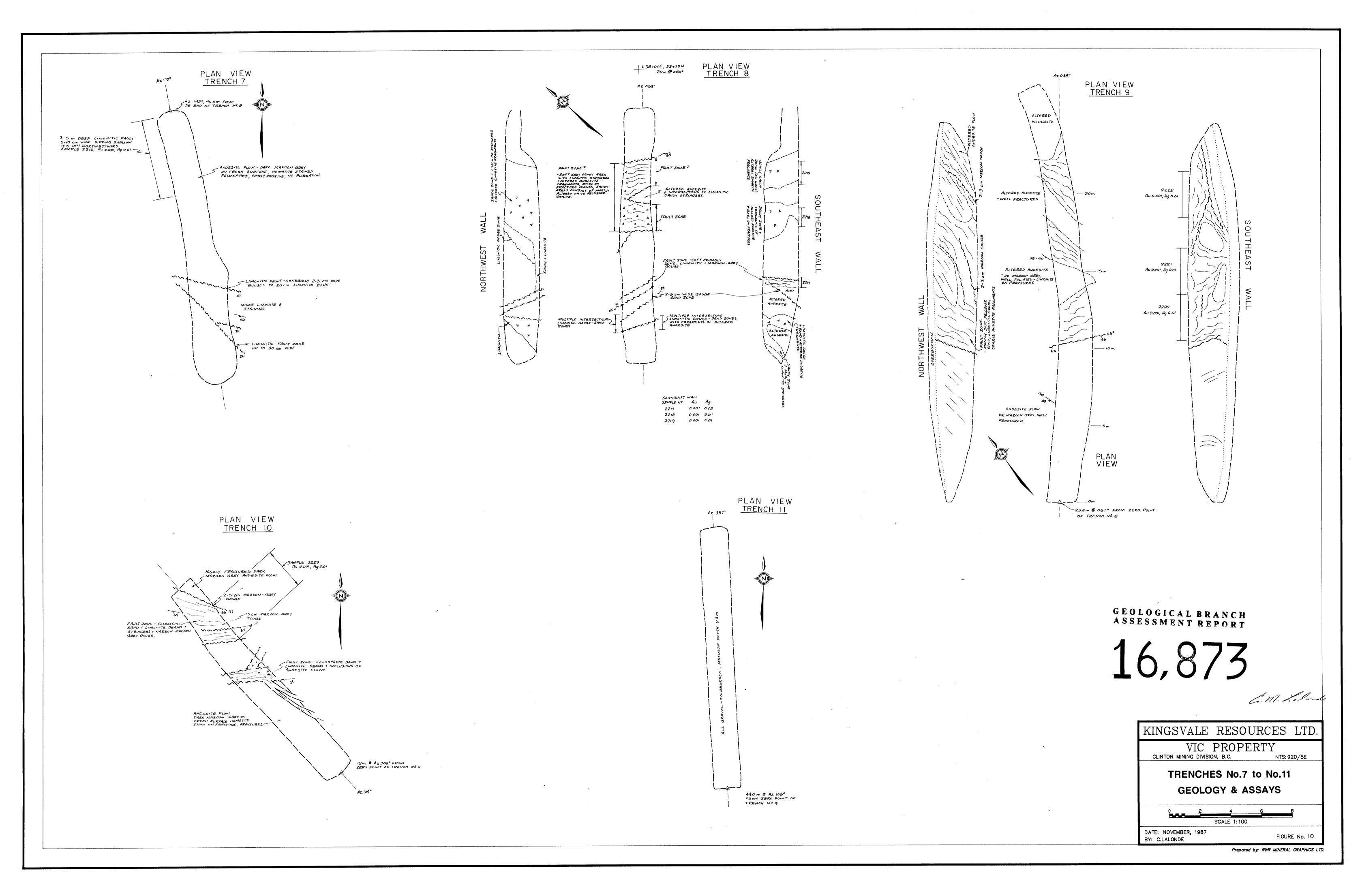
240.0m

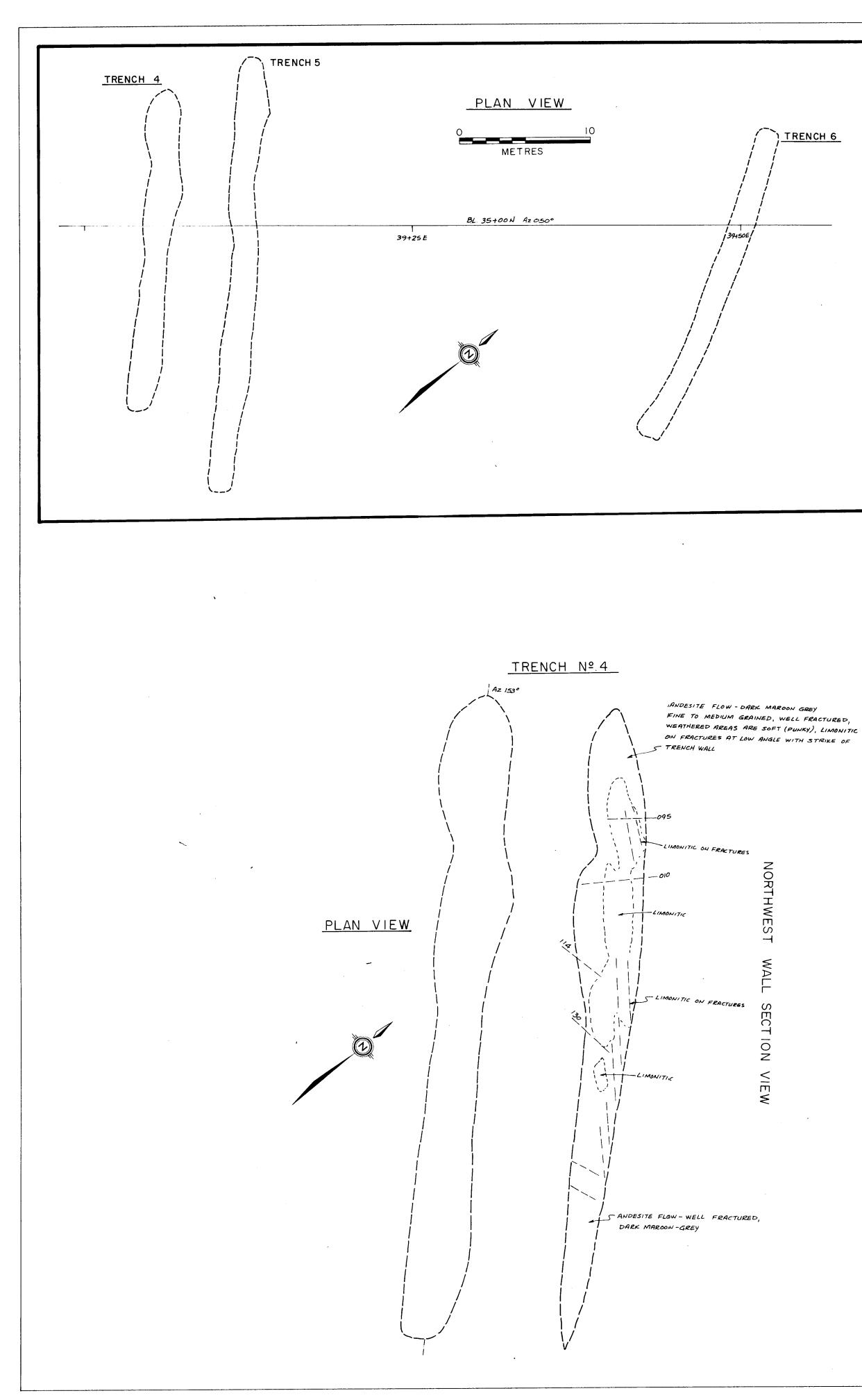
ROADO

SURFACE, MINOR PURITE + CHLORITE CLOTS, LIMONITE + MNOX ON FRACTURES, SOME ARGILLIC ALTERATION ADJACENT TO FRACTURES. 56.0m

-2234

AU 0.001, Ag 0.01

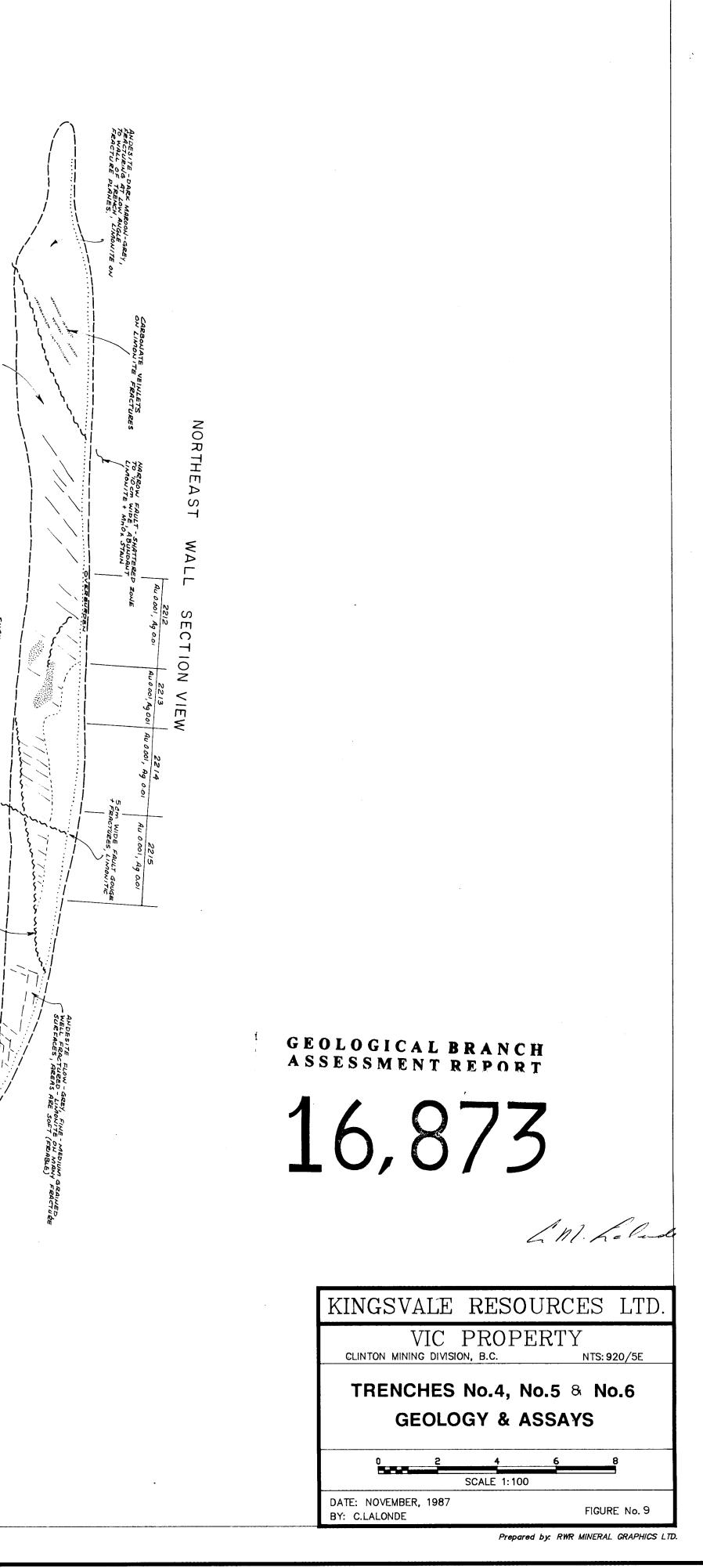

DACITE - LIGHT GREY ON FRESH

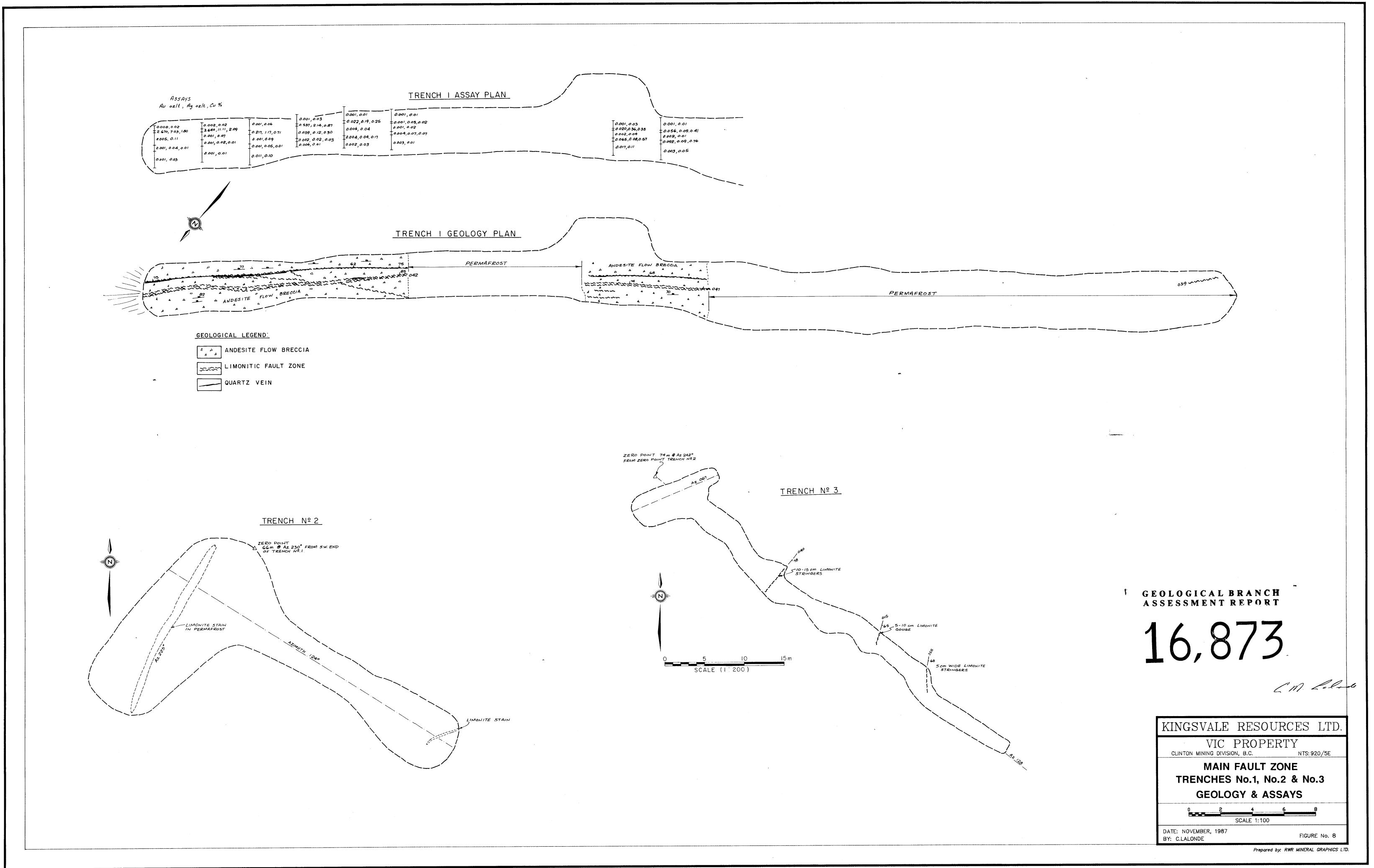

N

ROADCUT Nº3

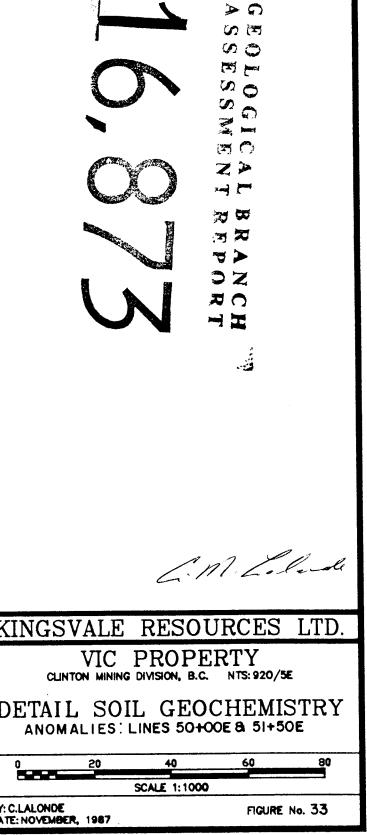
,43.0 m @ Az 244º (SLOPE DISTANCE) FROM STA 46+00N ON LINE 50+00E 5-25 cm WIDE LIMONITE - GOETHITE SHEAR ZONE 2232 - AU O.OIB, Ag O.OT, CU O.O4

40 cm WIDE, LIMONITE - GOETHITE SHEAR ZONE, PROB. OXIDIDIZED QUARTZ VEIN INCLUDED

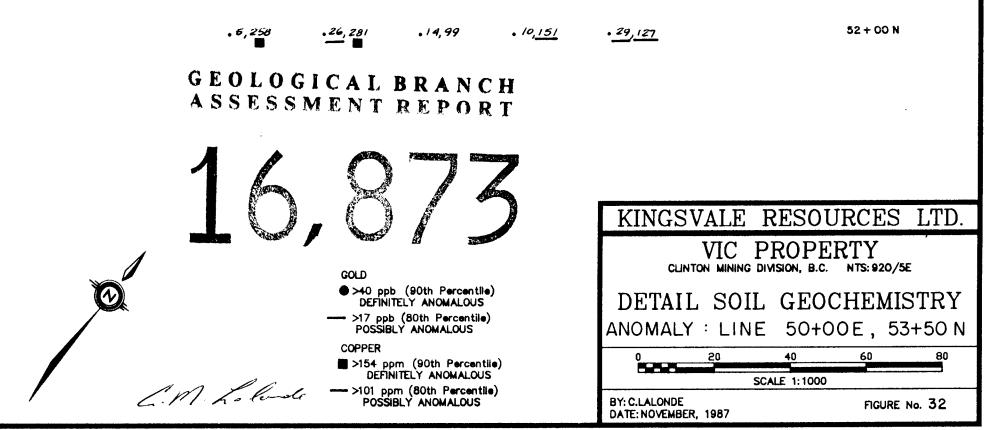



Az.152° TRENCH 5 TRENCH 6 <u>plan view</u> B.L. 35+00N RED RES PLAS × ilts Ionat

1


-

.



					L51+00E		51+50E I	L52+00E			
						5, 278	44,592 • • •	• <u>26,</u> 332	129, 286	51,211 • • •	42+50 N
. L 49+50Е		- L 50+00 E	×	- L50+50E		.26, 187	26, 264	• 63, 248 • •	• • • •	. <u>35, 224</u>	
. 1, 39	,9,62	.1,47	. 13, 96	. <i>5</i> , 83		.15,76	• 95, 442 • 4	• 137 <i>,3</i> 75	• 41 , 189 • •	• 83, (39	42+00 N
. 1,47	. 1,80	. 1,44	.1,65	.1,43		.19,125	. 17, 134	• 4 8, 166 • 1	56, 207 • •	. <u>20,</u> 86	
. 23, 66	.14,70	• 69 , 196	. <u>31,</u> 269	• 710, <u>115</u>		. 66, 204 • B	• ³¹⁵ , 210 ● ■	21,119	•2190, 428 • •	• <u>21</u> , <u>137</u>	41 + 50 N
. 8,92	. 17, 163	. 3 <u>, 101</u>	. 21, 153	. 48 , 186 • •		. 46 , 171 • • •	43,184 • • •	• ¹⁵ ,71	• • •	• 5 2,129	
. 41, 64	. 9, 87	• 41, <u>102</u>	. 590, 392 • •	. 26,115		• 90, 169 • 1	• <u>29,108</u>	• 82, <u>104</u>	. 44, 66	• <u>24, 119</u>	41 + 00 N
AN	OMALY : l	_INE 50+0	DOE,41+50) N		.24,124	. 14, 84	. 27, 104	• <u>19</u> ,76	.9,97	
					ANOMAI	- <u>⁴₃,יי</u> ≼ _IES : LINE : LINE :	• 🍎 <u>, 120</u> 51+50E,41 51+50E,42	+00N +00N -	28, 115 240 ppb (90th P DEFINITELY ANOI >17 ppb (80th Pr POSSIBLY ANOMA OPPER. >154 ppm (90th DEFINITELY ANON >101 ppm (80th POSSIBLY ANON	arcentile) ILOUS Percentile) OMALOUS	-+ T DI BY: C. DATE:

.

	- L 49+50 E		- L 50+00E		- L 50 + 50 E	
	<u>. 36,118</u>	27, 165	.25, 192 	.8,191	• 46 , <u>148</u>	54+50N
	4 , <u>153</u>		23,165 • 8	• '3, '89 •	• 42 , 270 • •	
	, 16 , 156 B	• ¹⁵ , 203	• ¹⁶ , 181	• <u>37</u> , 320	• 62, 1421 • 1	54+00 N
	,22,150	. 22, 247	• 42, 176 • E	. <u>21</u> , 167 B	. 33, 171	
	• 4 7, 136	• ³⁰ ,383 ── ■	• 280, 183 • •	. <u>36</u> , 294	.15, <u>137</u>	53 + 50 N
	. 265, 200 • •	. 43, 188 ● ■	52,171 •	. 14, <u>116</u>	• 48, /65 • 1	
ч. Ч	• 6, <u>126</u>		• 540, 212 • 1	• 131 , 183 • 1	• <u>38</u> , 150	53+00 N
	• 54, 173 • 2	, 28, 208 — –	• 29 _. 216	• 55, 192 • •	• 189, 182 • •	
	<u>. 18</u> , 160	. 38, 128	• ¹⁵ ,223	• <u>32</u> , 169	• <u>3</u> 1,208	52+ 50 N
	o 9, 93	<u>. 36, 168</u>	• <u>21,</u> 604	• 55, 225 • •	• <u>25, 117</u>	

- L49+50E		E 1,68		- L 50+50E	24+50 N	- L49+50E
. 6,74	. 1,48	. 5,37	. 2, 46	. 3, 45		
. 3,49	.1,52	. 16, 48	. 1, 63	. 2, 60	24+00 N	. 3, 61
. 1, 54	, 1 _, 49	. 75, 55 ●,	. <i>1,39</i>	.5, <i>≤</i> 0		. <u>17</u> ,83

. 1,67 . 2, 70 . 3,72 23+50N

GEOLOGICAL BRANCH ASSESSMENT REPORT

•

 \odot

16,873

ANOMALY : LINE 50+00E, 23+75N

ANOMALY: LINE 50+00E

L50+00E

l • 1,62

. 4,87

. 4, 53

. 8,73

. 173,250

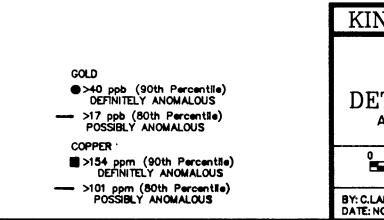
.9,85

15,80

. 1,56

.30,67

.21,86

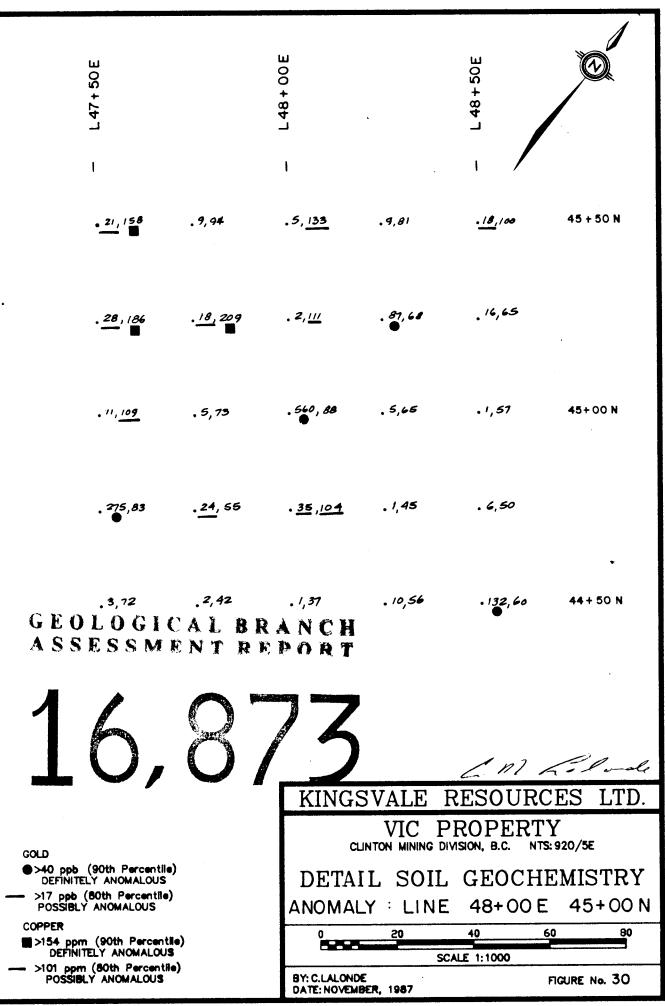

.140,95

.1,57

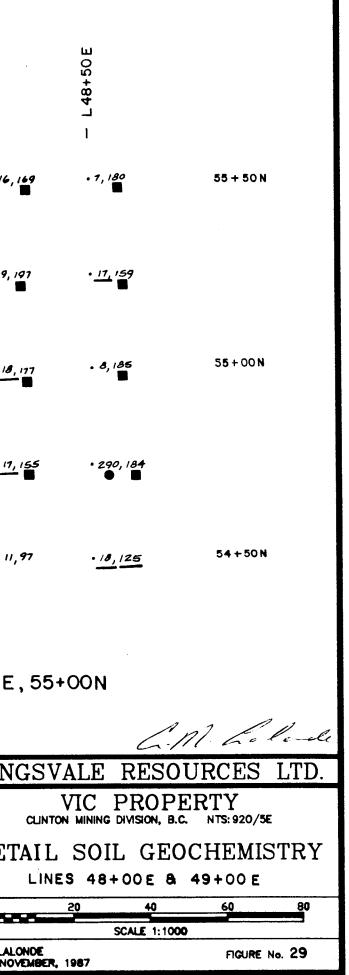
5,98

17,70

.3,56



23+00N


.

L. M. L. Conde

	- L 50+50 E	
. 158, 83 •	,35,56	31 + 00 N
<u>. /7,</u> 45	.6,10	
.1, 42	. • <i>1</i> ,7 3	30+50 N
. 1, 49	• ¹ , /5 4	
. 2,93	, ¹ ,56	30+00 N
)E, 30+5	50 N	
INGSVA	LE RES	OURCES LTD.
	IC PROI	PERTY b.c. nts: 920/5e
		COCHEMISTRY 0+00 E, 23+75 N 30+50 N
0 <u></u> á	20 40	60 80
	SCALE 1:1	
LALONDE NOVEMBER, 1	987	FIGURE No. 31
P	repared by: RI	MR MINERAL GRAPHICS LTD.

- L 43 +50 E		- L 49+00E	•	- L49+50E		- L47+50E	`	- L48+00E	
. <u>18, 125</u>	• <u>20, 230</u>	• <u>37</u> , 363	• 70, <u>131</u>	94, <u>150</u> 36, 118	54+50 N			• 43 , 177	• 16, 14
• <u>35,</u> 238	• 320, 203 • B	• 33, / 95	• 50,132	• 4 <u>, 153</u>		• 10, 168	• <u>37, (3)</u>	• 16, 188 B	• 9, 19
• 27, 317	• 45 , 309 • •	• 315 , 229	• 16,160	• 16,156	54+00 N ●	• 3, <u>/3/</u>	. 8, <u>1/6</u>	• <i>84</i> , 183 • •	• 18, 1
• <u>24</u> , 297	• 78 , 204 • •	• 72, 205 • •	• <u>21</u> , 170	• <u>22,150</u>		• 3 <u>, 106</u>	• 58, 244 © 1	• 13 <u>, 14/</u>	• <u>17,</u> /
GEOLOC	CAT	• 96,162 • •	• 1 4	• 47, <u>136</u>	- 53 + 50 N	• 390, 215 • •	• 146 , 222	• 4, 198	• 11,5
ASSESS	MENT	REPOR	Z	• 265 , 200	· · ·	۵	NOMALY	LINE 48	3+00E,
	, U			.6 <u>, 126</u>	53 + 00 N				KINC
	ANOMAL	Y : LINE 4	9+00E,	54+00 N		>17 ppb (84 POSSIBLY /	Oth Percentile) ANOMALOUS Dth Percentile) NOMALOUS		DET
						COPPER	90th Percentile) Y ANOMALOUS 80th Percentile) ANOMALOUS		0 BY: C.LALO DATE: NOV

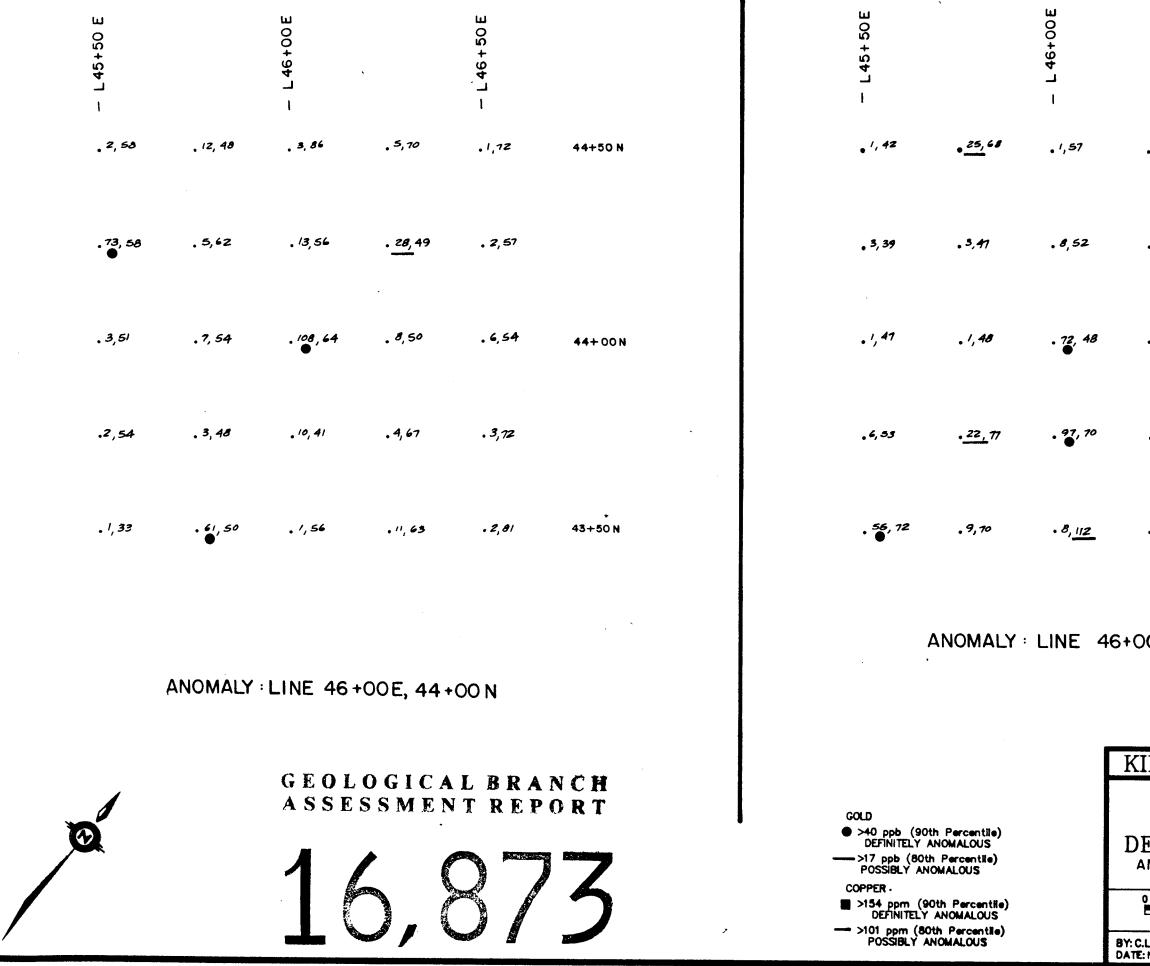
L 47+50E		L 48+00E		L 48+50E			L 45+50E	`	L 46 + 00E		L 46+50E	
۱ ۱۱, 59	<u>. 31,</u> 67	 . ^{[2,76}	. 7, 41	l . 10, 90	49+00 N		l • 4 , 54	. 4, 56	, <i>1,58</i>	, 1, 56	, 1, 53	29+00 N
.6 , 70	. 54 , ⁷⁹	. 16, 87	7, <u>103</u>	•163			3,50	. 1,61	• 61, 51	.1,57	. 1, 69	·
, 10,96	• <u>/9</u> ,73	. 58,78 • ●	.31,109	. <u>22, 47</u>	48 + 50 N		. 56, 44	. <u>50, 110</u>	. 81, 52 ●	. 2, 53	. 2,48	28 + 50 N
. 51,66	. 21,106	. 52, 214 ● ■	• <u>28,132</u>	. <u>21</u> , 94			<i>. 2</i> , 37	. 16,52	. 4, 53	. 1, 50	. 1,49	
7,53	, 2, 5 4	. <i>16,<u>111</u></i>	69, 247 • • •	, 32, 2/5 . ━, ■	48+00 N		, <i>1</i> , 1 2	. 6 ,50	,1, 44	. 1, 48	. 3,44	28+00 N
	ANOMALY	LINE 48	+00E,48+	50 N	· .		AN	NOMALY : l	_INE 46+	00E,28+5		
	,		ESSME							KINGS		SOURCES LTD. PERTY
Ø		1	6,	87	73	ļ	>17 ppb (8 POSSIBLY / COPPER =>154 ppm DEFINITEI	(90th Percentile) LY ANOMALOUS	·		ISOIL G	, b.c. NTS: 920/5E EOCHEMISTRY a 48+00 E
	,	A 5 5	ESSME	NTRE 0	73	7	 >40 ppb (S DEFINITELY >17 ppb (8 POSSIBLY / COPPER >154 ppm DEFINITELY 	0th Percentile) ANOMALOUS			VIC PR fon mining divisi J SOIL (IES 46+00 20 SCAL	

	3,86	. 10,15 6	• <u>37</u> , 201	. 108, 191 •	. 63 , 262 • •	51+00 N		• 66,51 •	. 15,88	16,64 • 4 <u>,112</u>	•.
-	. 151, 406 • •	. <u>18</u> ,223	. <u>36</u> , 266	. 22, 35/ • 1	• 111, 396 • •			. 18, 56	. 12,7/	. <u>26,</u> 9 3	•
	• 156,770 • •	. 75,259 • 1	. 7/ ,239 • •	• <u>37</u> , 235		50 + 50 N			. 10,9 6	. 225 , 14	
	• <u>21</u> , 195	• <u>26</u> , 243	• 21 , 151	• 140,160		•		. 6,71	. 5, 67	. 21,102	
		. 9, 21/	.12,76	• <u>18</u> , 86		50+00 N		. <i>8</i> , 48	. <u>75</u> 85	. 6, 75	
	ž	ANOMALY :		+00E,50+				AN	IOMALY : LI		
Š	a					BRANCH REPORT	_	GOLD			INC ET#
			l C	1. M7 C	, Carde			COPPER >154 ppm (90th DEFINITELY AN 	Percentile) OMALOUS	BY: C DATE	0 C.LALOI E: NOVE

L 45 + 50 E

ł

L 46 + 50 E


ł

L 47+00 E

1

		`	
		l	
4	. 29,112	• 16, <u>114</u>	50+50 N
73	. 4, 85	. 8,93	1
,74	. <i>18,126</i>	• 9, <u>105</u>	50+00 N
102	. 4, <u>102</u>	. 14 <u>,150</u>	
5	. <u>24</u> , 90	. 134, 208 • •	49+50 N
7+00	E,50+00	N	
KI	NGSVAL	E RESOU	IRCES LTD.
		C PROPE	
חת		NING DIVISION, B.C.	
		01L GEOG 46+00E 8	
0	20	40	60 80
		SCALE 1:1000	FIGURE No. 27
UATE:	NOVEMBER, 1987 Prec		MINERAL GRAPHICS LTD.
	· · •		

47 + 50 E

	- L46+50E						
. 13, 76	.15,70	49+50 N					
• 58, 65 •	. 18, 67						
• <u>30, 127</u>	• <u>21</u> , 70	49+00N					
. 6, 79	.12,65						
• <i>12,5</i> 3	.9,96	48 + 50 N					
0 E, 49+00 N							
	6.	M.Lolande					
INGSV	ALE RES	OURCES LTD.					
7	VIC PRO	PERTY					
ETAIL	SOIL GE	OCHEMISTRY					

ANOMALY: LINE 46+00E, 44+00N 49+00N 0 20 40 60 80 SCALE 1:1000 BY: C.LALONDE DATE: NOVEMBER, 1987 FIGURE No. 26

L 46+50E L 45 + 00 E ш L 45+50E L 47+00E L 46 + 00 E . 1 1 1 ŧ I. .19,168 41,184 .1,125 . 4,205 .14,132 13,45 . 2, 44 . 3, 43 . 39,95 .765,170 .126,130 .1,75 9,52 . 15,49 . 23, 123 51,109 .18,203 . 20, 85 . 11,77 .12,63 16,159 . 20, 127 . 20,78 .31,95 55,138 44,109 910.244 • 29,114 . 52, 196 .<u>29</u>, 170 . 37, 84 17, 051. . 73, 116 . 110,112 40,75 . 17, 123 134,118 + 126,111 23,94 13,<u>145</u> . 5,90

· 26 , 122

P

GEOLOGICAL BRANCH ASSESSMENT REPORT

.

27,120

. 27, 73

• 85,48

Ø

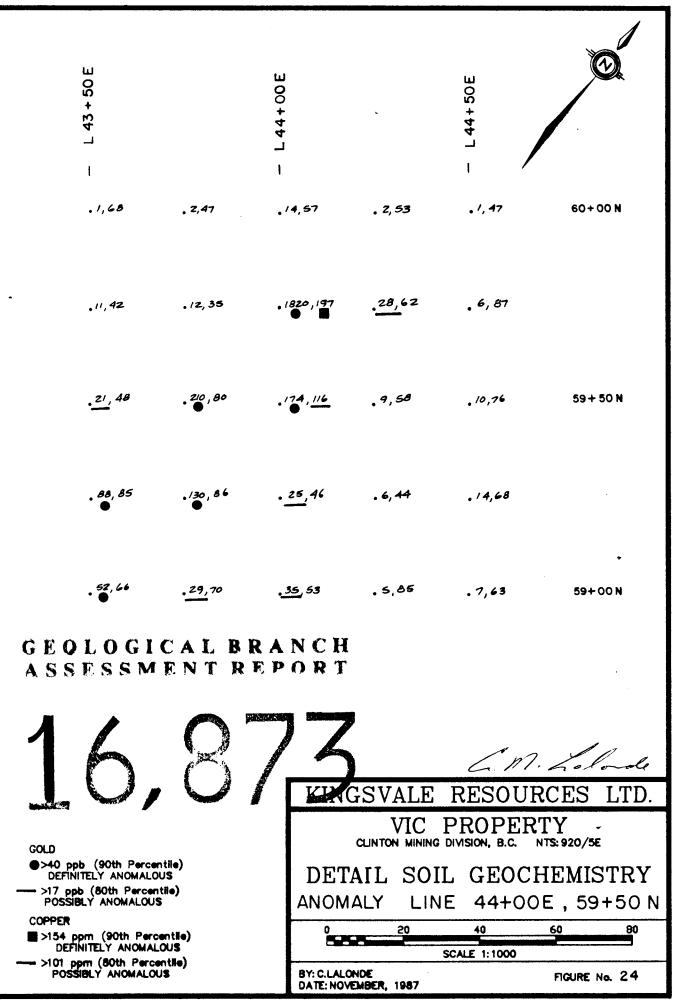
GOLD >40 ppb (90th Percentile) DEFINITELY ANOMALOUS

• 255, 93

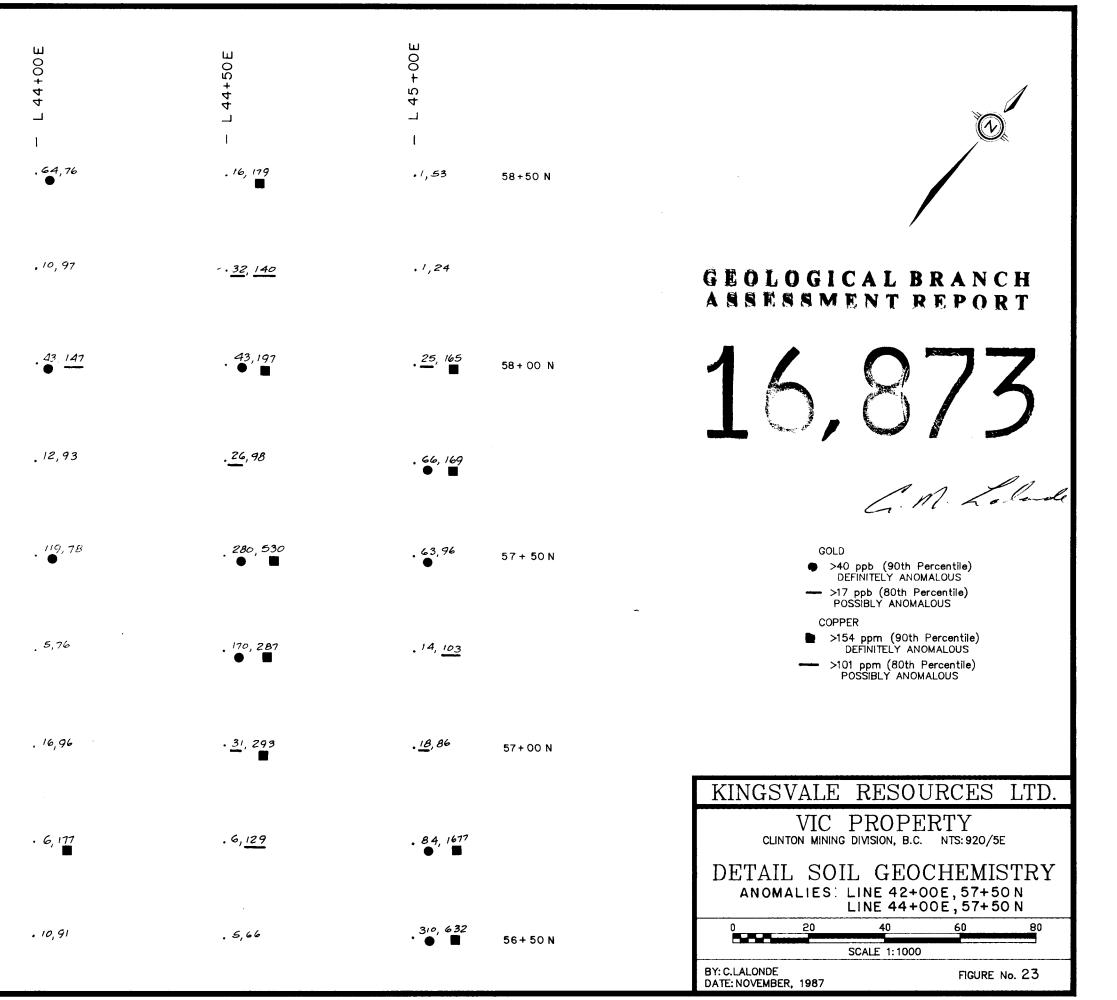
· 105, 124

• 65,88

COPPER


>154 ppm (90th Percentile) DEFINITELY ANOMALOUS

KIN DE ANON 0 BY: C.LAL DATE: NO


	59 + 5	50 N		
	2	(. M	1.4	lade
IGSV	ALE R	ESOU	JRCE	ES LTD.
	VIC PI		RTY NTS: 92	20/ 5E
TAIL	SOIL	GEO	CHEI	MISTRY
MALY	LINE	46+0)OE,	60+00 N
	20	40	60	80
LONDE DVEMBER,		LE 1:1000	FIG	URE No. 25
	Prepared b	y. RWR	MINERAL	GRAPHICS LT

60+00 N

60 + 50 N

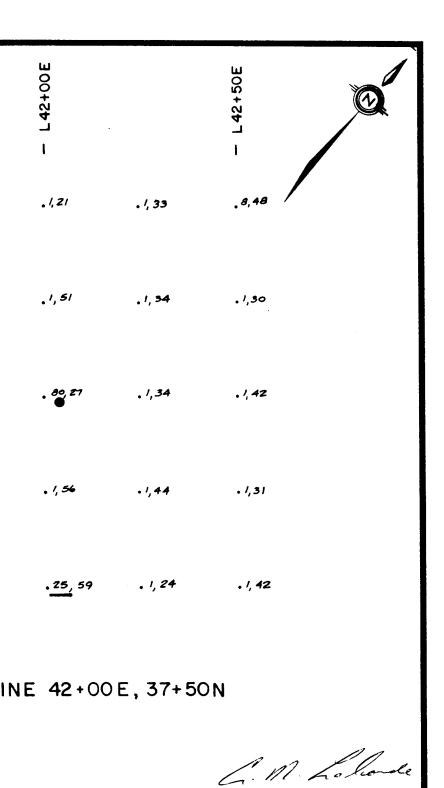
	. ^{1,51}	ШОО Н Ц . <i>8,54</i>	Н Н 1 21, 77	, I L 43+00E . <u>19</u> ,63	Ц Н Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц
. 1,76	. 1, 58	5,53	. 215, <u>138</u>	. 16, 74	. <u>26</u> , <u>149</u>
.2,81	. 1, 67	• <u>18</u> , 6 4	. 10,66	. <u>22</u> , 75	, ¹³ , <u>106</u>
. 3, 58	. 150, 54	. //, 63	. ⁵ 2, 83 ●	• 🙆 , 83	• 4 2, 111
. 5, 56	. 2, 76	. 290 , 68 •	• <u>2</u> 4, 77	. 6,51	. 67, 75 •
. 1, 72	. 6, 73	. 1,65	. 1, 58	_ : 5 , 76	• 52,81
. 42, 79 ●	. 1, 73	8,63	. 12, 62	. 5,68	. 12,68
. 6, 68	. 14, 76	• <u>24</u> , 7/	. 6,72	. 5, 56	. 7,67
. 1,60	.1,68	. 1,68	• 1, 64	. 50,67 •	. 3,60

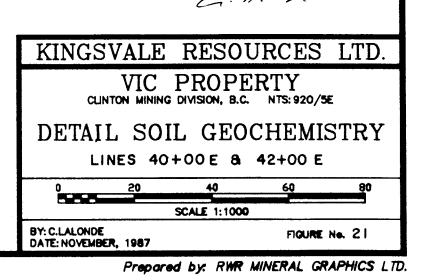
- L 4I+00E	- L 41+50E	- L 42+00 E	- L 42+50E	- L 43+00E
. 1,36	. 2,44	. 3, 67	. 2, 68	13,71 49+00 N
, I, 5 ⁰	. 1,36	. 2,51	. 7, 60	. క, 5 రి
. 2, 47	2, 52	. 8, 52	, <i>1,95</i>	. <i>12,4</i> 7 4 8 + 50 N
. 1, ³¹	. 1,39	. 1, 57	. /,45	• 6 <u>,110</u>
. 1, 27	. 2, 68	. 285, 69	. 2,56	.10 <u>,144</u> 48+00 N
, ¹ , <u>125</u>	, 1, 52	, <i>1,92</i>	, 1, 221 •	• 5, <u>106</u>
2,100	,,56	. 24 , 221	, 1, 78	. 2, 34 47 + 50 N
. 5 <u>, 13 4</u>	. 10, <u>133</u>	. 1, 46	.1,48	• <u>23</u> ,46
. 1 <u>,102</u>	. 2, 52	. 1, 47	. 1,32	.8,53 47+00 N

GEOLOGICAL BRANCH ASSESSMENT REPORT

	16873	
Ø	GOLD ● >40 ppb (90th Percentile)	KINGSVA V CLINTON
	DEFINITELY ANOMALOUS >17 ppb (80th Percentile) POSSIBLY ANOMALOUS COPPER >154 ppm (90th Percentile)	DETAIL S ANOMALY
/	DEFINITELY ANOMALOUS 	BY: C.LALONDE DATE: NOVEMBER, 19

L. M. Lolonde

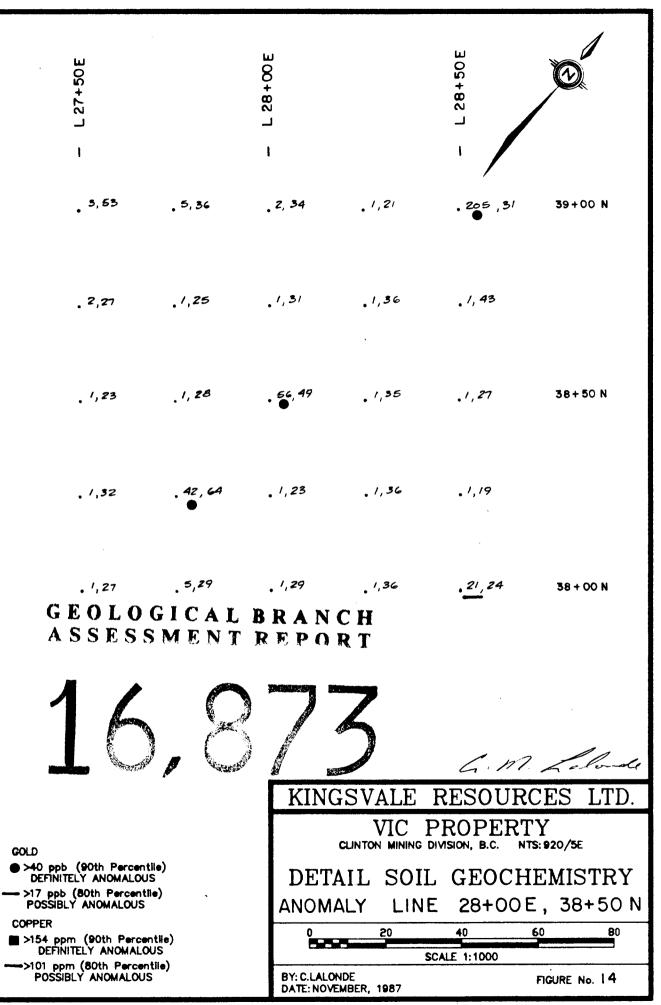

KINGSV	'ALE F	ESO	URCE	S	LTD.	
VIC PROPERTY CLINTON MINING DIVISION, B.C. NTS: 920/5E						
DETAIL	SOIL	GEO	CHEN	۸IS	TRY	
ANOMALY	LINE	42+0	00E,	48	+00 N	
	20	40	60		80	
	SCA	LE 1:1000	1			
BY: C.LALONDE	1987		FIGL	JRE N	o. 22	


		- L 39+50E		- L 40+00E		- L 40+50E		- L41+50E
		. 1,56	• 72, <u>124</u>	. 3, 49	, 1, 57	.1, 4)	26+00 N	, ¹⁰⁶ , 24 , 1,25
ANCH PORT	M	. 2, 70	, 15 <u>, 118</u>	. 3, 74	.1,60	, 1, 39		.4,24 .1,34
ALBR NTRF	·	. 4,85	° 5,13	• • • 59	, ¹⁰⁶ , 72 ●	, 1200, 160 • •	25+50 N	.21,60 .6,35
LOGIC	\mathbf{O}	• ●	. 25, 37	.4,36	. 3,61	. 60 59 •		.1,28 .2,31
G E O A S S		• ³³⁰ , 64	•14, <u>177</u>	8, <u>108</u>	. 7, <u>141</u>	.1,69	25 + 00 N	. 1, 27
		, /,82	• 700,107	. 690, 540 • B	. 40, 97 •	. <u>21</u> ,68	:	ANOMALY LIN
		.1,94	. 6, <u>//6</u>	• 8 6,118	. 1,60		24+50 N	
		. 1, <u>105</u>	, 1, 60	. 1 <u>, 104</u>	• 5 7, <u>// 3</u>	. 1, 71	ANOMALIES : LINE 40+00E, 25+50N 40+00E, 24+50N	69 D
		. 1,81	. 1, 70	. 7, 73	. 1, 62	.1,67	24 +00 N	GOLD >40 ppb (90th Percentile) DEFINITELY ANOMALOUS >17 ppb (80th Percentile) POSSIBLY ANOMALOUS COPPER >154 ppm (90th Percentile) DEFINITELY ANOMALOUS
							2	

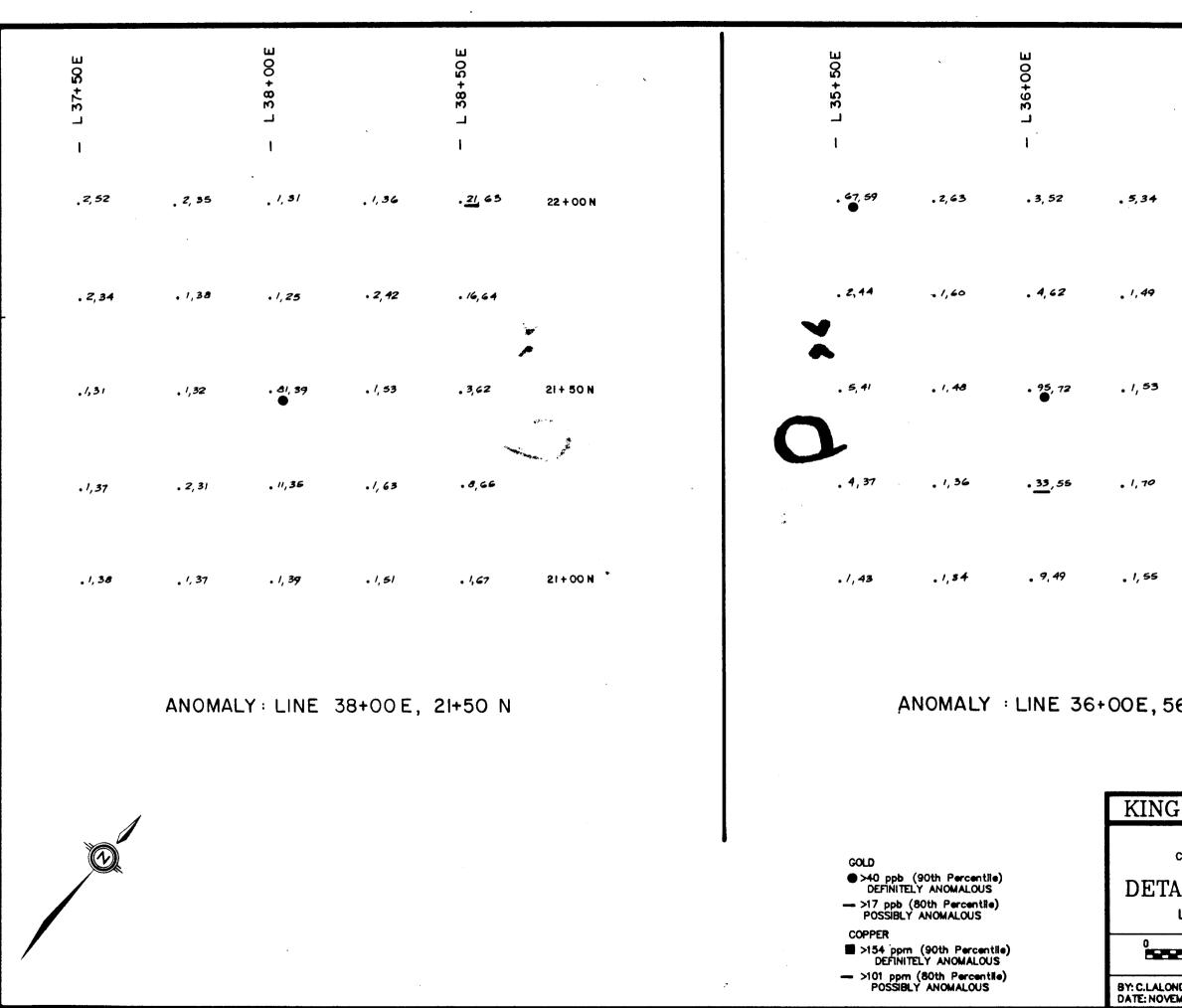
•

,

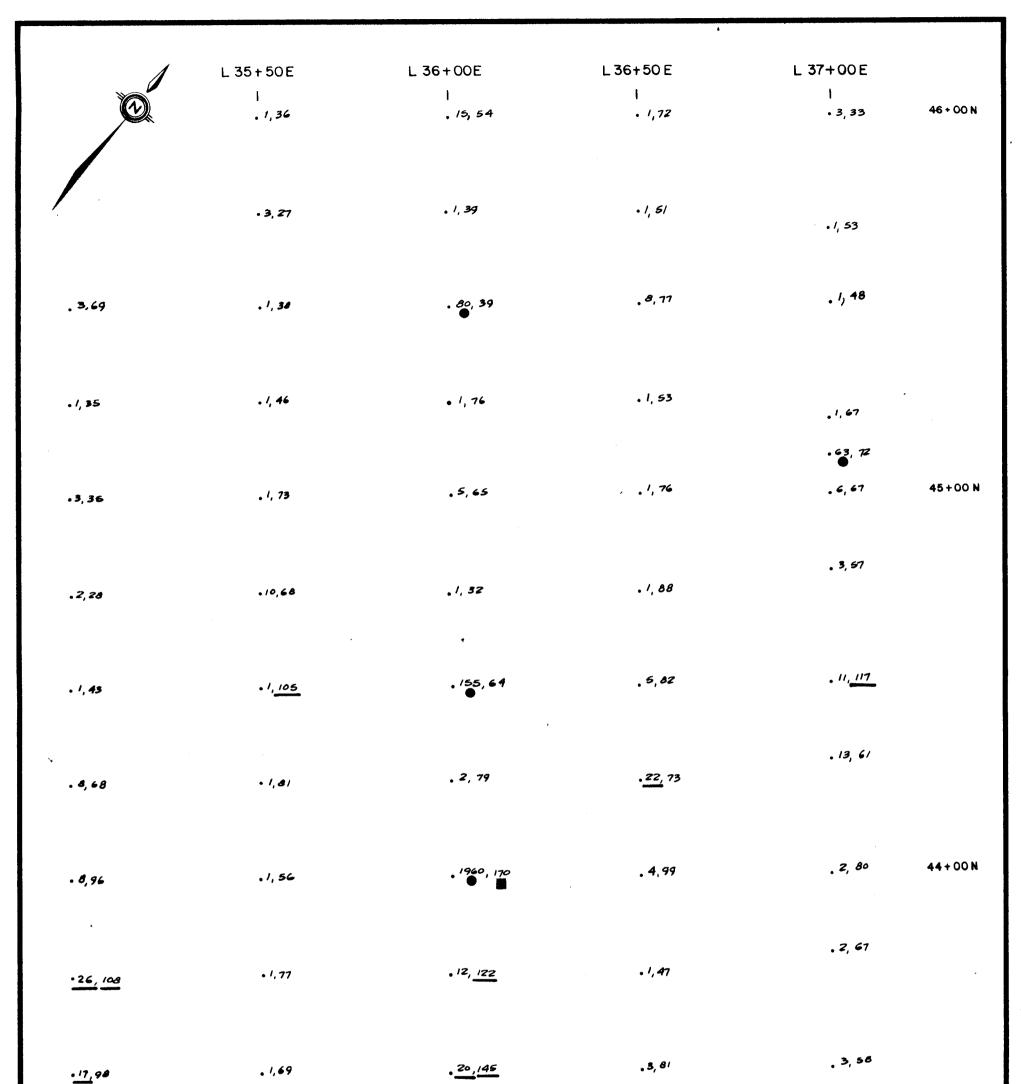
.



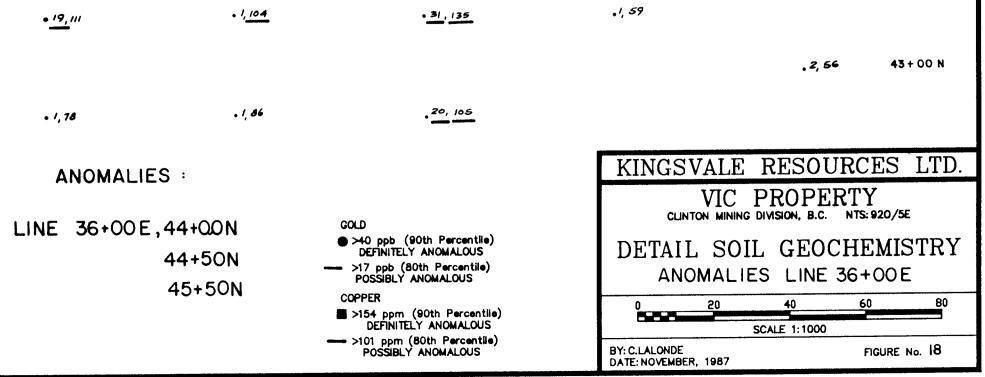
50 E		00 E		50 E	1	20 Е 2	``````````````````````````````````````	ОО Е		42 +50E	
L 42+50E		L 43+00E		L 43+		L 41+!		L 42+		L 42+	
ł		I		1		1		l		I	
.1,67	.2,32	<u>.(1,</u> 45	<u>. 39,</u> 45	. 1, 48		, 2, 7 4	.1, 49	.34,274	. 1, 76	, 2 _, 92	22 + 00 N
- . 99, 243	• 4 4, 70	.7, 63	• 67, 45	, ¹ , 46		, 1, 48	, /, 49	, I, 52	, 1, 93	. 1,68	
• 90 ,116	• 15,77	• 🖣	• •, <u>103</u>	• 49, 58		, <i>!</i> , 62	. 10, 85	.86,69 ●	. 1 <u>,105</u>	. 4,94	21 + 50 N
. <i>13, 79</i>	. 1, 95	. 6, 85	. 2, 73	, 2, 55		• 1, 59	. 1, 48	. 1, 79	. 2, 67	.1,70	
	. 1, 61	° 12, 66	• <u>/7,</u> 57	• 7, 34		.1,82	. 9, 51	. /,43	. 2, 69	.1,64	21+0CN
				·		AN	NOMALY : L	INE 42+	00E, 2I+		
	ANOMAL	(:LINE 4	43+00E, 2	21+50 N							C.M. Lolade
				BRANCH		• •				VIC PR	ESOURCES LTD. ROPERTY NON, B.C. NTS: 920/5E
<u> </u>		A D D L D					9 (90th Percentile) TELY ANOMALOUS 9 (80th Percentile) LY ANOMALOUS		DETAI	L SOIL	GEOCHEMISTRY
		16), (3/5	,	COPPER >154 pp DEFIN	LY ANOMALOUS m (90th Percentil IITELY ANOMALOUS m (80th Percentile BLY ANOMALOUS	•)		20 SCAL	+00E, 21+50N +00E, 21+50N 40 60 80 E 1:1000 FIGURE No. 20
					· · · · · · · · · · · · · · · · · · ·				DATE: NOVEME		RWR MINERAL GRAPHICS LTD.


.

•


.

Prepared by: RWR MINERAL GRAPHICS LTD.



- L 36+50E	
<i>. 2, 32</i>	56+50 N
. 1, 46	
• <u>/9,</u> 37	56+00 N
• I, 53	
• 3, <i>5</i> 9	55+50 N
6+00 N	
	L.M. Lalorde
SVALE	RESOURCES LTD.
	PROPERTY Division, b.c. nts: 920/5e
	L GEOCHEMISTRY
20	40 60 80
NDE	SCALE 1:1000
MBER, 1987	FIGURE No. 19

6. M. Lalade

. 2, 48

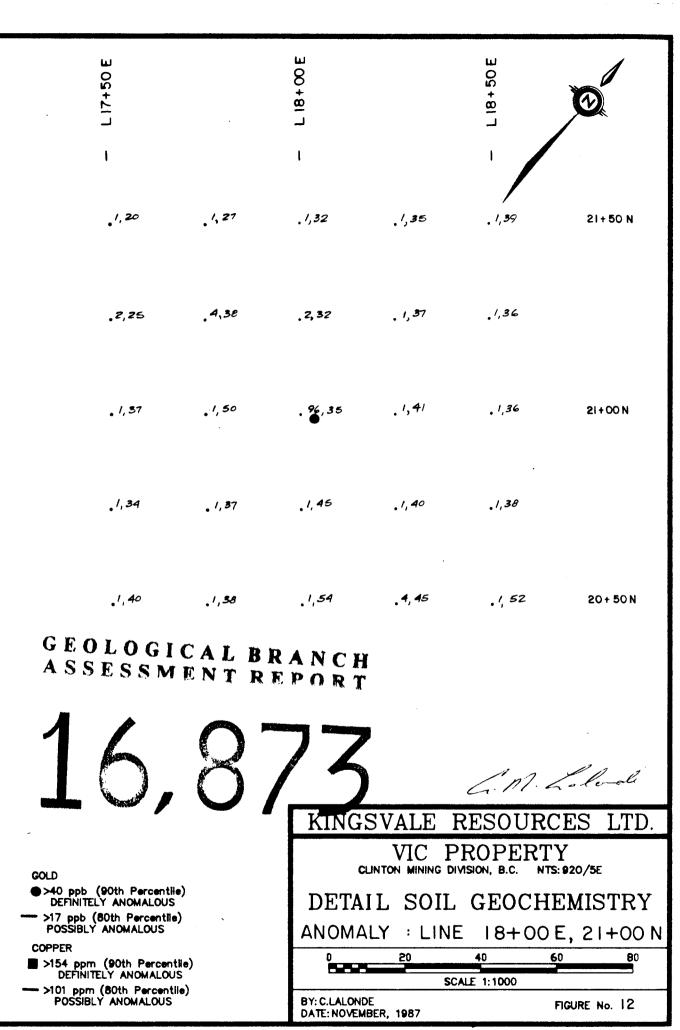
. <i>',5</i> 0	.1,34	. 154, 82 •	. 1,94	29+00 N		, 1, 19	, 1,18	• (61, 36	
.1,55	./,75	. 1, 67	2 <u>, 109</u>			.1,23	. 11,34	.1,23	•
	.1,51	. 3,55		- 28+ 50 N		. 3, 19	. ',22	. 2, 28	•
						А	NOMALY	LINE 2	2+0
		LY : LINE JOLOGI SESSM	CAL BR	ANCH			90th Percentile) Y ANOMALOUS		KI Di
	1	6,	8,	15	,	>17 ppb (8 POSSIBLY COPPER ■>154 ppm DEFINITE >101 ppm (POSSIBLY	(90th Percentile) (90th Percentile) LY ANOMALOUS (80th Percentile) ANOMALOUS		BY: C. DATE

29+ 50 N

26+00 E 26+50 E 25+50 E _ _ ∟ 1 L l 1,45 . 1,62 1,48 .1,47

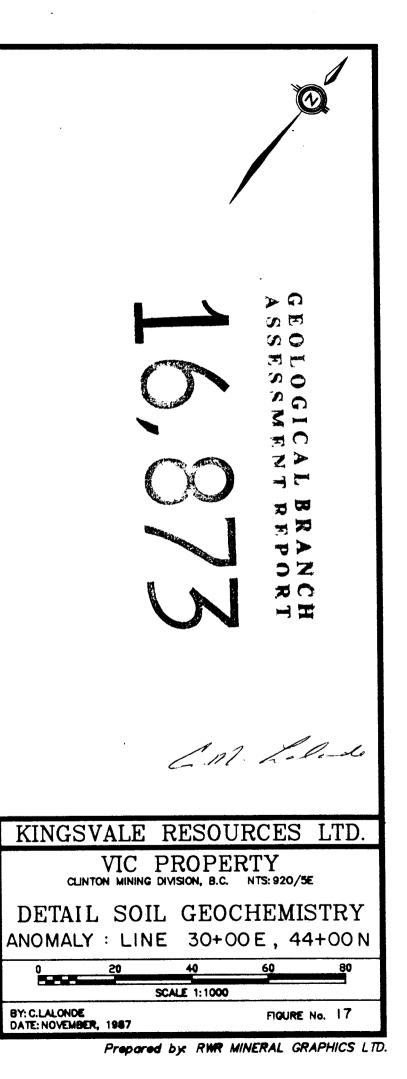
• 47,75 . 2, 38 • 1, 113 .1,24

1,26 . Z, 26 . 1, 27

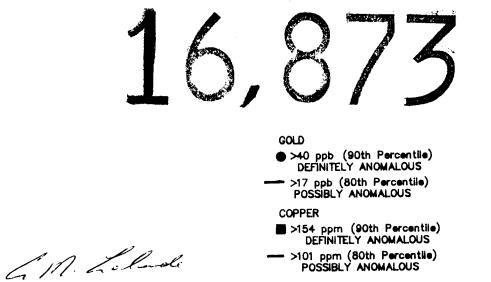

I 1,28 .1,48 •

L 22+00E L 21+50E ł 1,26

.


	L 22+50E	
	I	
. 1,32	. 1, 48	26 + 00 N
.1,35	.1,36	
. 1, 42	.1,56	25+50 N
. 1, 48	• 2, 35	
• 1,32	. 1 _, 39	25+00 N
·00E,2		
	<i></i>	L. M. Lolende
KINGS	VALE RE	SOURCES LTD.
CLINI	VIC PRO	DPERTY N, B.C. NTS: 920/5E
DETAIL	SOIL G	EOCHEMISTRY
		E & 26+00 E
	20 4	0 60 80
	SCALE	
Y: C.LALONDE	, 1 987	FIGURE No. 13

Prepared by: RWR MINERAL GRAPHICS LTD.

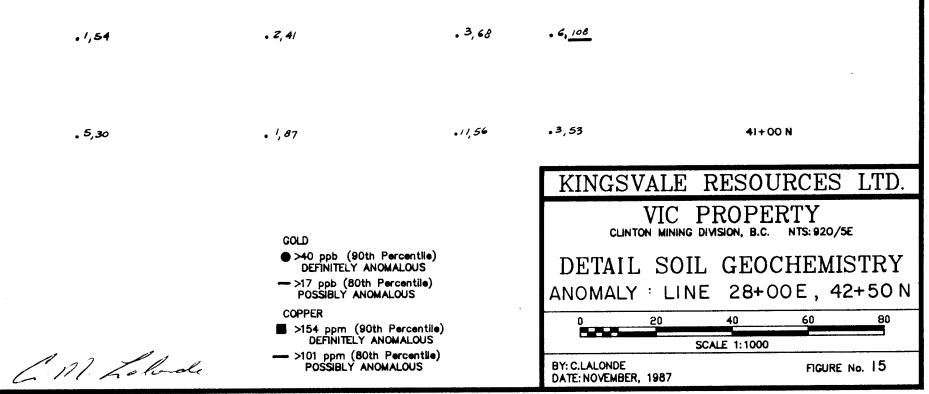

L 29+50E	L 30+00E , /, <i>32</i>	L 30+50E I . /, 35	L 31+00E 1 . <i>1,52</i>	45+00 N
, 7, 36	, 1, 29	, 1, 34	. I, 4Z	
. 1,20	. 1,39	. <i>6</i> , <i>29</i>	.1,25	44+50 N
, 3, 97	. /, 37	3 , 42	.', 48	
. G, 3E	.820, 38	. 1, 36	.1,45	44 + 00 N
. 2, 2/	.5,51	. / . 47	. 2, 31	
• ¹ , 27	. 4, 47	. 1, 28	. <u>27,</u> 35	43+50 N
. 1, 26	. 4, 33	3,33	.',34	-
• ³ , 23	, 3, 24	.1,70	,', 4/ GOLD ●>40 ppb (90th Per DEFINITELY ANOMA	43+00 N centile) LOUS
			 → >17 ppb (80th Perc POSSIBLY ANOMALC COPPER ⇒ >154 ppm (90th Perc DEFINITELY ANOM → >101 ppm (80th Perc POSSIBLY ANOMALC 	arcentile) IALOUS
	1, 25 . 7, 36 . 1, 20 . 3, 97 . 6, 36 . 2, 21 . 1, 27 . 1, 27 . 1, 26	$ \begin{array}{c} 1,25\\ 1,32\\ .7,36\\ .7,36\\ .1,29\\ .1,29\\ .1,39\\ .3,97\\ .1,37\\ .6,36\\ .5,51\\ .2,21\\ .5,51\\ .1,27\\ .4,47\\ .1,26\\ .4,33 \end{array} $	1,25 $1,32$ $1,35$ $7,36$ $1,27$ $1,34$ $1,20$ $1,37$ $6,29$ $3,97$ $1,37$ $3,42$ $6,36$ $.820, 30$ $.1,36$ $.2,21$ $.5,51$ $.1,47$ $.1,27$ $.4,47$ $.1,20$ $.1,27$ $.4,47$ $.1,20$ $.1,27$ $.4,47$ $.1,20$ $.1,26$ $.4,33$ $.3,33$ $.3,23$ $.3,24$ $.1,70$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

•

L 28+00E L 28+50E L 27+50E I ł i 49+00 N •1, 53 •1,45 .1,57 . 1, 114 • 1,93 . 2,63 •1,89 .15,62 . 2,70 .2,78 48+00 N • 43, 58 • 9,69 • 1, 141 . · 20,60 • 3,60 • 108,139 • 1,94 • 1, 42 •1, 91 . 1, 56 47+00 N • 11, 148 •1,58 •2,164

GEOLOGICAL BRANCH ASSESSMENT REPORT

>101 ppm (80th Percentile) POSSIBLY ANOMALOUS


KINGSVALE F	RESOURCES LTD.					
VIC PROPERTY CLINTON MINING DIVISION, B.C. NTS: 920/5E						
DETAIL SOIL	GEOCHEMISTRY					
ANOMALY : LINE	28+00E, 47+50N					
0 20	40 60 80 ALE 1:1000					
BY: C.LALONDE DATE: NOVEMBER, 1987	FIGURE No. 16					

L 27+00E I	L 27+50E I	L 28+00E L 28+25 E	
.1,46	• ³ , 36	• 3, 27 • 1, 48	44 +00 N
. 4, 27	.3,40	•1,53 •1,53	
, 2, 4 5	• 2, 52	. <i>4</i> , 32 . 3, 23	
• 78, 43	. 5, 41	•1,64 •1,46	, ,
. 3 , 4 5	. 2, 38	•1,41 .1,29	43+00 N
. 1, 4 8	. 2, 40	• <i>1,4</i> 2 • <u>24</u> ,57	
. 6, 5 9	. 1,64	• 164, 60 • 2, 53 ●	
. ³ , /3	. 22, 67	• <i>107,33</i> •1,53	
. 1, 46	. 6, 42	. 8, 4 4 . 1, 45	42+00N
. 1, <i>5</i> 0	. 3, /3	. 1 ,82 65,89 • ●	

. *1*, 46 . 13, 26 . 2

. 150, 27

• 2,66

