LOG NO: 0119	RD.
ACTION:	
FILE NO.	

1987 GEOLOGICAL AND GEOCHEMICAL REPORT on the JEKILL RIVER PROJECT

> N.T.S. 104-B/11 Latitude 56°35' North Longitude 131°08' West

> > FOR

COVE ENERGY CORPORATION Vancouver, B.C.

October 62 642 GICAL BRANCH ASSESSMENT REPORT

by: M.J. Burson, B.Sc., F.G.A.C. Taiga Consultants Ltd. 800 - 900 West Hastings St. Vancouver, B.C. V6C 1E5

ľ	SUS-RECORDER
	RECEIVED
	NOV 27 1987
	M.R. # \$ VANCOUVER, B.C.

SUMMARY

During 1987 a Taiga Consultants Ltd. field crew, under contract to Cove Energy Corporation, completed an exploration program designed to evaluate the gold and other mineral potential of the HAG 2, 4 and 8 claims, located in the Iskut River area of British Columbia.

The property is underlain by Triassic and older sedimentary rocks and Triassic and Jurassic volcanic and sedimentary rocks which form part of the "Snippaker Volcanics" which host the Delaware/ Cominco and Skyline deposits, seven kilometers to the north.

A total of 1599 soil, silt, rock and heavy mineral samples were analyzed for gold and silver. Subsequent to receiving the results, which indicated a number of anomalous areas, two grids were established and detailed sampling and reconnaissance mapping was completed. Results from the East Grid indicate a number of areas anomalous with respect to silver but generally very low in gold, while those from the West Grid have areas anomalous with respect to gold but in general very low in silver.

The results of the geochemical sampling and geological mapping indicate the potential for significant mineralization and a vigorous exploration program including extending the West Grid, geophysical and further geochemical surveys, and detailed geological mapping should be pursued.

TABLE OF CONTENTS

	Page
Introduction	1
Location and Access	1
Topography and Climate	1
Claim Status	3
Regional Geology	3
Local Geology	6
Geochemistry	6
Conclusions and Recommendations	9
Bibliography	10
Itemized Cost Statement	11
Statement of Qualifications	12

APPENDIX	I:	Geochemical Results
APPENDIX	II:	Rock Descriptions
APPENDIX	111:	Assessment Report No. 9190, DuPont of Canada Exploration Limited
APPENDIX	IV:	Assessment Report No. 11,342, Energex Minerals Ltd.

LIST OF FIGURES

.

FIGURE	1:	Property Location	Page	2
FIGURE	2:	Claim Location		4
FIGURE	3:	Snippaker Volcanic Belt		5

MAPS

MAP	1:	Sample Location										
MAP	2:	Gold Geochemistry (ppb)										
MAP	3:	Silve	Silver Geochemistry (ppm)									
MAP	4:	Geolo	рду									
MAP	5:	East	Grid	-	Gold Geochemistry (ppb)							
MAP	6 :	H	11	-	Gold Geochemistry (contoured)							
MAP	7:	"	17	-	Silver Geochemistry (ppm)							
MAP	8:	"	"	-	Silver Geochem. (contoured)							
MAP	9:	"	"	-	Geology							
MAP	10:	West	Grid	-	Gold Geochemistry (ppb)							
MAP	11:	"	"	-	Gold Geochemistry (contoured)							
MAP	12:	"	"	-	Silver Geochemistry (ppm)							
MAP	13:	"	"	-	Silver Geochem. (contoured)							
MAP	14:	78	11		Geology							

INTRODUCTION

Cove Energy Corporation has acquired three mineral claims (47 units) in the Iskut River area, 60 kilometers west of Bob Quinn Lake on the Stewart-Cassiar highway (see Fig.1).

There is no record of any mineral exploration in the vicinity prior to 1980, at which time a brief reconnaissance program was carried out by DuPont of Canada Exploration Limited, mainly south of the HAG Claims (see Appendix III). However, one sample of float from a creek in the extreme south of the property returned values of 0.123 oz/ton Au and 1.10 oz/ton Ag.

In 1983, Energex Minerals Ltd. staked a large block of ground including that now covered by the HAG claims (see Appendix IV). A very limited exploration program managed to substantiate DuPont's efforts but, once again, most of the work was in areas other than the HAG claims (see Appendix IV).

This report summarizes the results of a prospecting/geochemical field program during July and August, 1987. The main objective of this work was to delineate areas of high geochemical background which might lead to discoveries of mineralization similar to those found within the Skyline Exploration and Delaware/Cominco properties, 7 kilometers to the north.

LOCATION AND ACCESS

The HAG claims are located near the junction of the Craig and Jekill Rivers at 56°35' north latitude and 131°08' west longitude. Access is by fixed-wing aircraft from Terrace or Smithers, 160 kilometers to the southeast, to the Snippaker Creek airstrip, 30 kilometers east of the claims and thence by helicopter to the property. More proximal airstrips exist on the Skyline property and on the Delaware property, but they are private facilities requiring permission for use by outsiders.

Future road access to the area will likely follow the Iskut River Valley from Bob Quinn Lake. The site of B.C. Hydro's planned development of a hydroelectric generating facility on the Iskut River is about 20 kilometers from the property.

TOPOGRAPHY AND CLIMATE

The property covers the moderate to rugged north-facing slopes of Brunt Mountain, with elevations ranging from 500 feet to 3400 feet. In certain areas exploration becomes fairly hazardous due

PROPERTY LOCATION - LIARD, M.D.

FIGURE 1

TAIGA CONSULTANTS LTD.

to the large number of cliffs with steep moss-covered talus slopes beneath them.

Climate in the area typically consists of cold snowy winters and warm, wet summers. Snow at higher elevations would normally exceed 15 feet, whilst 3-5 feet would accumulate near the Jekill River.

Vegetation ranges from mature conifer forest at the lower elevations to alpine meadow above tree-line. Much of the property is covered by slide alder and devils club.

CLAIM STATUS

The property consists of three modified grid claims (see Figure 2), comprising 47 units, staked within the Liard Mining Division. These include:

Clai	m	No. of Units	Record No.	Expiry Date
HAG	2	20	3760	December 5, 1987
HAG	4	20	3764	December 5, 1987
HAG	8	7	3761	December 5, 1987

REGIONAL GEOLOGY

The regional geological setting consists of several sedimentary and volcanic series that are intruded by younger granitic rocks and, in places, are overlain by recent volcanic flows.

These occur within the Stewart Complex (Grove, 1986), an area of diverse rock types and complicated structure which is bounded on the west by the intrusive margin of the Coast Plutonic Complex, on the east by the Bowser Basin, the north by the Iskut River, and on the south by Alice Arm.

The oldest sequence comprises Permian to Lower Triassic limestones, siltstones, shales and conglomerates that overlie metamorphosed sedimentary and volcanic rocks.

In the Iskut Valley region, these rocks are extensively deformed and are thought to have been emplaced by thrust faulting which pushed up and over to the south across Middle Jurassic and older units.

The Upper Triassic to Lower Jurassic section is comprised of miogeosynclinal volcanics and sediments which have been

FIGURE 2.

correlated with the Unuk River Formation of the Hazelton Group. Locally referred to as the "Snippaker Volcanics" (see Figure 3), these range compositionally from andesite to dacite and rhyolite (see Fig.2). Breccias and tuff breccias are common and siliceous pyroclastic rocks are locally abundant.

The Middle Jurassic Betty Creek Formation comprises rhyolite breccia, volcaniclastics, conglomerate, carbonate chert, and volcanics which unconformably overlie the Unuk River Formation.

The Stewart Complex has been invaded by granitic rocks of the Coast Plutonic Complex. Granodiorite is the predominant rock type of the major intrusions, although a large variety of rock types occur as smaller satellite diapiric stocks as well as dykes and sills.

Small Quaternary volcanic piles and flows are scattered throughout the Stewart Complex, the most prominent in the area being Hoodoo Mountain, a volcanic cone which has been built up over a period of time which continued nearly to the present.

LOCAL GEOLOGY

The claims are underlain by Triassic and older sedimentary rocks and Triassic and Jurassic volcanic and sedimentary rocks which form part of the "Snippaker Volcanics". All have been intruded by younger diorite plugs or sills.

The sediments include quartz sandstones, siltstones, cherts and dolomitic limestones, occasionally with intercalated mafic tuffs or flows. The majority of the volcanics are mafic to intermediate tuffs and flows with minor lapilli tuff and breccia. There are two beds of felsic tuff on the eastern portion of the property which consist of fissile rhyodacite, usually having good clay alteration, 5% pyrite and occasional quartz eyes. At least four plugs or sills of diorite have intruded all units. These are medium-grained, usually magnetic and often contain good epidote alteration.

All units have been affected by chlorite alteration to some degree and pyrite is ubiquitous.

GEOCHEMISTRY

A total of 1347 soil samples, 142 silt samples, 86 rock samples, and 24 heavy mineral samples were collected and analyzed for Au and Ag.

Sample depths range from 20-31 cm.

The sampling technique involved filling a 4"x6" kraft bag with Bhorizon soils or fine silt from the active portion of the stream. samples were obtained by screening the silt to a Heavy mineral -10 mesh fraction (2mm x down) and panning this fraction in the field to obtain a concentrate of heavy minerals. Representative samples of all lithologies, as well as any vein material, alteration products and/or sulphide mineralization were routinely sent for analysis to Bondar-Clegg and Company Ltd., North Vancouver, B.C., or to Terramin Research Labs, Calgary, Alberta. Soil and silt samples were screened to obtain the -80 mesh while heavy mineral and rock samples were crushed to fraction, The elements Cu, Pb, Zn and Ag were analyzed using -150 mesh. atomic absorption methods after a HNO3 - HCl hot extraction, while Au was analyzed by conventional fire assay AA.

Initial sampling was accomplished by traversing along contours and sampling B-horizon soils every 100 metres. Rock and silt samples were collected whenever outcrop or streams were encountered. This method has had good success as a reconnaissance tool, as it enables the rapid acquisition of data while providing good coverage of the areas of interest. The results of this sampling indicated two areas which had elevated backgrounds and a number of samples which were anomalous with respect to gold. Grids were then established over these areas and soil samples were collected every 25 metres along lines spaced 100 metres apart.

EAST GRID

The results from the East Grid were surprisingly low with respect to gold, although numerous samples were anomalous in silver. The best results were from rock samples collected between lines 18+00W and 19+00W in the vicinity of the base line (15+00N), which returned values up to 2066 ppb gold and 64 ppm silver (1.87 oz/ton). These were collected from quartz <u>+</u> carbonate veins, within a mafic flow proximal to a diorite dyke or sill, which contained poddy concentrations of pyrite, chalcopyrite and malachite. The samples were purposely biased to provide results from the best looking material and do not reflect the average values from these veins.

Two zones anomalous with respect to silver in soils exist between lines 13+00W and 19+50W at approximately 12+50N and 17+00N. In general, the values are highest northeast and southeast of the anomalous rock samples [the mean of anomalous values is 2.8 ppm with values up to 65.0 ppm (1.9 oz/ton)], but the soils in the vicinity of the rock samples are unexpectedly low. The area to the east contains moss-covered boulders and talus without a well-developed soil horizon which may explain the lack of results, but there is good soil developed west of the anomalous veins, yet the results here are also low. One possible explanation is that the soils in this area are underlain by the diorite which may not contain the extensions of the veins.

WEST GRID

The results from the West Grid indicate a much stronger response, especially with respect to gold, than those from the East Grid. One of the better anomalies is centered at L42+00W/18+00N. Prospecting in the vicinity of a soil anomaly of 962 ppb Au has uncovered a narrow but strong gossan associated with quartz veins. This contains 5-10% pyrite, has undergone strong chlorite and carbonate alteration and several rock samples have returned elevated values up to 1780 ppb Au.

Determining the causes of other anomalies has proven more A geochemical high at approximately 20+75N between difficult. lines 40+00W and 44+00W (values up to 172 ppb Au) occurs within a steep moss- and undergrowth-covered talus slope. Similarly, an anomaly centered at L39+65W/19+25N also occurs in very blocky, moss-covered talus. (Note that a duplicate sample taken from the vicinity of the 2300 ppb Au value returned only 12 ppb Au.). Possibly the lack of good soil development in these areas has tended to produce exaggerated background levels due to the absence of the dilution found in areas with a well developed regolith. Another factor may be that the talus is producing magnified values because there is more surface area to produce weathering products that found over any particular outcrop area. However, an argument against these hypotheses is the fact that other samples north of these anomalies are also in talus but contain only background values. Other spot highs (including the 2060 ppb Au at L39+00W/ 23+50N) were examined but no obvious reasons were found to explain the anomalies.

ł

The silver values are, for the most part, only background levels and the anomalies which do exist are generally not coincident with the gold anomalies.

Anomalous zones are for the most part relatively weak, but several spot highs are present ranging from 12 ppm to 56 ppm (0.3 to 1.6 oz/ton). These were not evaluated in the field as the emphasis was directed towards the gold anomalies.

In a comparison between the East and West Grid results it is interesting to note that while the East Grid contains relatively high silver and low gold values, the reverse is true of the West Grid suggesting different styles of mineralization between the two.

CONCLUSIONS AND RECOMMENDATIONS

The limited geological mapping, coupled with the geochemical results, indicates a potential for significant mineralization especially in the West Grid area. A primary area for follow-up would be in the vicinity of L42+00W/18+00N where trenching and blasting would be necessary to evaluate the widths and grades of the gossan zone. Also, more detailed soil sampling (say at 10-metre intervals) in this area may define strike extensions of the zone.

The West Grid should be extended to the east in order to evaluate several areas with anomalous gold values. Ideally, the grid should also be extended to the west, but the topography and undergrowth may make this physically impossible for exploration crews to use conventional compass and chain methods. Perhaps rather than a full grid, a number of tie-in lines could be emplaced to provide control for prospecting and further contour sampling. Contour sampling should also be completed on the southern part of the claims which have yet to be examined.

Geophysics, in the form of magnetics and electromagnetics, would be useful in helping to define geological contacts and conductors especially since much of the property is covered by extensive overburden. Finally, the property should be mapped in greater detail since the mapping to date has largely been of a reconnaissance nature and there are many gaps in the present knowledge of the property.

The results of the geochemical sampling and geological mapping, coupled with the fact that previous workers have found mineralized float south of the claims, suggest that this property deserves a vigorous exploration program to truly evaluate its potential.

BIBLIOGRAPHY

- Cathro, R.J. (1983), Summary Report on Mineral Occurrences and Geology of the Iskut Property, Apex Energy Corp. (private company report).
- Caulfield, D.A. and Ikona, C.K. (1983), Assessment Report on the Star 1-8, 10 Mineral Claims (# 11,342).
- Eccles, L. (1981), Geological and Geochemical Report, Burton and Cummings Claims (Assessment Report # 9190).
- Geological Survey of Canada (1956), Map No. 9-1957: Operation Stikine.
- Grove, E.W. (1986), Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area.

Kerr, F.A. (1929), Map 311-A, Stikine River Area, Cassiar District.

STATEMENT OF EXPENDITURES

1. TRANSPORTATION

Mobilization-Demobilization (airfare, hotel & misc. expenses) \$1,522.97 Northern Mountain Helicopters, 16.3 hrs @ \$580.56 9,463.13 Central Mountain Air 644.24 Share of Airstrip Construction 5,000.00 \$ 16,630.34 3. SALARIES AND CAMP SUPPORT Consultant 3.00 days @ \$412.50 1,237.50 Project Supervisor 3.25 days @ \$375 1,218.75 14.74 " Project Geologist 0 325 4,790.50 20.06 " Prospectors 6 250 5,015.00 Samplers 62.60 " 0 175 10,955.00 103.49 " Camp Support 85 8,796.65 0 32,013.40 4. ASSAYS & ANALYSES 1599 soil, silt, rock and heavy minerals samples 16,122.46 5. MISCELLANEOUS (Disposable supplies, xerox, expediting, radio rental, courier, freight, etc.) 1,442.02 6. POST-FIELD EXPENDITURES Project Geologist 6.95 days @ \$325 2,258.75 Drafting 33 hrs @ \$24.20/hr 798.60 Printing Maps 217.43 Copying & Binding Reports 213.00 Computer/Secretarial 6 hrs @ \$20 120.00 3,607.78 ТОТАЬ.... \$ 69,816.00

STATEMENT OF QUALIFICATIONS

I, Michael J. BURSON, of 7357 Celista Drive, Vancouver, British Columbia, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd., with offices at #800 - 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I have attained a B.Sc. (Hons.) from the Faculty of Earth Sciences, University of Waterloo, in 1975.
- 3. I have practiced my profession continuously since graduation.
- 4. I am a Fellow of the Geological Association of Canada (F-5220).
- 5. I have done, or caused to be done, the work described within this report.
- 6. I have not received nor do I expect to receive any interest in the property described herein, nor in the securities of Cove Energy Corporation in respect of services rendered.

Dated at Vancouver, British Columbia, this 31st day of October, 1987.

M. J. Burson, B.Sc., F.G.A.C.

CERTIFICATE

- I, Lawrence John Nagy, of 3020 Abbott St., in the City of Kelowna in the Province of British Columbia, do hereby certify that:
- 1. I am a Consulting Geologist with the firm of L.J. Nagy and Associates Inc., with offices at 201 1433 St.Paul Street, Kelowna, British Columbia.
- 2. I am a graduate of the Faculty of Arts and Science, University of Saskatchewan, B.A. Geol.Sci. (1969).
- 3. I have practiced my profession worldwide, continuously since graduation, including 14 years as a Senior Project Geologist with Cominco Ltd.
- 4. I am a Fellow in good standing in the Geological Association of Canada.
- 5. I have done, or caused to be done, the work described within this report.
- 6. Other sources of information supplied in this report include data from published material, including assessment files, and from my own experience gained from involvement in several major exploration programs conducted in the Iskut -Stikine River areas, beginning in 1965-66.
- 7. I have not received, nor do I expect to receive, any interest (direct, indirect, or contingent) in the properties described herein, nor in the securities of Cove Energy Corporation in respect of services rendered in the preparation of this report.

DATED at Vancouver, British Columbia, this 31st day of October, A.D. 1986.

B.A.Geøl.Sci G.A.C. Nagy, Ŧ

APPENDIX I

١

.

GEOCHEMICAL RESULTS

ي و لا Company Ltd. بerton Ave. /arcouver, B.C. به (504) 985-0681 به: (64-352667

Geochemical Lab Report

.

.....

REPORT: 12	7-5392		• .	÷			PROJECT: KBC-14	PAGE 1
sample Number	ELEMENT UNITS	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Au PPB		n na de seu de la se Fina construction de la seu de l
1 CE-01479	5	6,4	9	142	0.6	15)	~ ~	
11 CE-0148	5	50	19	75	0.4	<5 /	SILT	
T1 CE-01499	S	100	131	63	1.0	15		
C2 -80 CE-	0147HM	8 6	16	140	0.8	350	11 1:400	
C2 -80 CE-1	0148HM	53	16	58	0.2	150	MEANY MINERAL	
2 -80 CE-	0149HM	89	29	45	0.3	5		
2 - 10+80 (CE-0147HM	40	7	79	0.3	<5		
2 -10+80	CE-0148HM	40	12	60	0.1	<5		
C2 -1[1+8]	CE-0149HM	90	12	47	<0.1	5		

٠

.

REPORT: 127-5418 PROJECT: 156-7 PAGE 1 SAMPLE ELERENT UNITS Cu Pb Zn Ag Au Au/At	Bondar-Gegg & Company Ltd 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 T 04-352667							}=©	LEC .	Geochemical Lab Report
SAMPLE HUMBER ELERENT JURITS Co PPR PPR PPR PPR PPR PPR PPR PPR PPR PPR PPR Auf Auf/At PPR Auf/At Auf/At Co S1 ELEST 0.6 CS 10.0 S1 EEST 1.0 CS 10.0 S1 EEST 0.7 CS 10.0 S1 EEST 0.7 CS 10.0 S1 EESTS 0.5 S1 0.0	REPORT: 127-5	6418						P	ROJECT: KBC-7	PAGE 1
NUMBER DUITS PM	SOMPLE	FLEMENT	<u> </u>	Db] 70	A				
Si CE150 Si CE150 Si CE151 Si CE152 Si CE153 Si CE153 Si CE153 Si CE153 Si CE153 Si CE154 Si CE155 Si CE156 Si CE157 Si CE164 Si CE157 Si CE164 Si CE163 Si CE164 Si CE163 Si CE164 Si CE175 Si CE164 Si CE175 Si CE164 Si CE175 Si CE1	NUMBER	UNITS	PPM	PPN	211 PPM	PPM	PPB	AU/WE G	Au/wt G	
SI CELSO SI CEL			2							
Si CE150 0.6 c5 10.0 Si CE151 1.0 c5 10.0 Si CE152 0.7 c5 10.0 Si CE153 0.7 c5 10.0 Si CE153 0.7 c5 10.0 Si CE153 0.7 c5 10.0 Si CE155 0.7 c5 10.0 Si CE156 0.5 c5 10.0 Si CE157 1.6 c5 10.0 Si CE156 0.5 c5 10.0 Si CE157 1.6 c5 10.0 Si CE164 2.1 5 10.0 Si CE162 2.0 15 10.0 Si CE164 0.4 c5 10.0 Si CE164 0.2 c5 10.0 Si CE164 0.1 c5 10.0 Si CE179 1.2 c5 10.0 Si CE170 0.5 10.0 10.0 Si CE174 2.8 c5 10.0									Soil	-
Si CE150 0.6 CS 10.0 Si CE151 1.0 CS 10.0 Si CE153 0.7 CS 10.0 Si CE153 0.7 CS 10.0 Si CE153 0.7 CS 10.0 Si CE154 1.2 50 10.0 Si CE155 0.7 CS 10.0 Si CE155 0.7 CS 10.0 Si CE159 0.5 CS 10.0 Si CE159 0.5 CS 10.0 Si CE159 0.5 CS 10.0 Si CE162 2.0 15 10.0 Si CE164 2.1 CS 10.0 Si CE170 0.5 15 10.0 Si CE170 0.5 15 10.0										
S1 CE150 0.6 <5										
S1 CE150 0.6 <5										
Si CE152 0.7 <5 10.0 Si CE153 0.7 <5 10.0 Si CE154 1.2 50 10.0 Si CE155 0.7 <5 10.0 Si CE155 0.7 <5 10.0 Si CE155 0.7 <5 10.0 Si CE156 0.5 <5 10.0 Si CE159 0.5 <5 10.0 Si CE160 1.5 <5 10.0 Si CE162 2.0 15 10.0 Si CE163 2.1 5 10.0 Si CE164 2.1 <5 10.0 Si CE163 0.2 <5 10.0 Si CE164 0.2 <5 10.0 Si CE164 0.2 <5 10.0 Si CE170 0.5 15 10.0 Si CE172 1.2 <5 10.0 Si CE175 0.8 15 10.0	S1 CE150 S1 CE151					0.6 1.0	<5 <5	10.0 10.0		i
31 CE135 0.7 C5 10.0 S1 CE154 1.2 S0 10.0 S1 CE155 0.7 C5 10.0 S1 CE156 0.5 C5 10.0 S1 CE157 1.6 C5 10.0 S1 CE159 0.5 45 10.0 S1 CE160 1.5 C5 10.0 S1 CE162 2.0 15 10.0 S1 CE164 2.1 5 10.0 S1 CE164 2.1 5 10.0 S1 CE164 2.1 5 10.0 S1 CE164 0.8 5 10.0 S1 CE164 0.1 C5 10.0 S1 CE166 0.8 5 10.0 S1 CE168 0.2 C5 10.0 S1 CE170 0.5 15 10.0 S1 CE172 1.2 C5 10.0 S1 CE172 1.2 S 10.0 S1 CE174 2.8 S 10.0 S1 CE175 0.8 C5 10.0 S1 CE176 <	S1 CE152					0.7	<5	10.0		
S1 CE155 0.7 10.0 S1 CE156 0.5 5 10.0 S1 CE157 1.6 5 10.0 S1 CE159 0.5 45 10.0 S1 CE160 1.5 5 10.0 S1 CE160 1.5 5 10.0 S1 CE162 2.0 15 10.0 S1 CE163 2.1 5 10.0 S1 CE164 2.1 5 10.0 S1 CE164 2.1 5 10.0 S1 CE164 0.2 5 10.0 S1 CE172 1.2 5 10.0 S1 CE172 1.2 5 10.0 S1 CE175 0.8 5 10.0 S1 CE176 1.7 5 10.0 S1 CE177 0.8 5 10.0 S1 CE176 1.0	S1 CE153					0.7	<5 50	10.0		
S1 CE156 0.5 <5 10.0 S1 CE157 1.6 <5	S1 CE155					0.7	5u 5	10.0		• •
S1 CE157 1.6 <5 10.0 S1 CE159 0.5 45 10.0 S1 CE160 1.5 <5 10.0 S1 CE162 2.0 15 10.0 S1 CE163 2.1 <5 10.0 S1 CE164 2.1 <5 10.0 S1 CE164 2.1 <5 10.0 S1 CE166 0.8 <5 10.0 S1 CE168 0.2 <5 10.0 S1 CE169 C.1 <5 10.0 S1 CE170 0.5 15 10.0 S1 CE172 1.2 <5 10.0 S1 CE173 1.5 <5 10.0 S1 CE174 2.8 <5 10.0 S1 CE175 0.8 15 10.0 S1 CE176 1.7 <5 10.0 S1 CE177 0.8 <5 10.0 S1 CE176 1.0 10.0 10.0 S1 CE179 0.4 <5 10.0 S1 CE179 0.4 5 10.0	\$1 CE156					0.5	<5	10.0		:
S1 CE159 0.5 45 10.0 S1 CE160 1.5 <5 10.0 S1 CE162 2.0 15 11.0 S1 CE163 2.1 5 10.0 S1 CE164 2.1 5 10.0 S1 CE166 0.8 <5 10.0 S1 CE166 0.8 <5 10.0 S1 CE168 0.2 <5 10.0 S1 CE169 <0.1 <5 10.0 S1 CE170 0.5 15 10.0 S1 CE172 1.2 <5 10.0 S1 CE174 2.8 <5 10.0 S1 CE174 2.8 <5 10.0 S1 CE174 2.8 <5 10.0 S1 CE175 0.8 15 10.0 S1 CE176 1.7 $5 10.0 S1 CE177 0.8 <5 10.0 S1 CE178 1.0 10.0 10.0 S1 CE179 0.4 5 10.0 S1$	S1 CE157					1.6	<5	10.0		
31 CE160 1.5 <5	S1 CE159					·0.5	45	10.0		
S1 CE163 2.1 5 10.0 S1 CE164 2.1 5 10.0 S1 CE166 0.8 5 10.0 S1 CE166 0.8 5 10.0 S1 CE166 0.8 5 10.0 S1 CE168 0.2 5 10.0 S1 CE179 C0.1 5 10.0 S1 CE170 0.5 15 10.0 S1 CE172 1.2 5 10.0 S1 CE173 1.5 5 10.0 S1 CE174 2.8 5 10.0 S1 CE175 0.8 15 10.0 S1 CE176 1.7 5 10.0 S1 CE177 0.8 5 10.0 S1 CE176 1.7 5 10.0 S1 CE176 0.8 5 10.0 S1 CE177 0.8 5 10.0 S1 CE178 1.0 10 10.0 S1 CE178 1.0 10 10.0 S1 CE178 1.0 10.0 0.6 S1 CE180 0.6<	S1 CE160					1.5	<5 1 E	10.0		4. Turke - 4. A
S1 CE164 2.1 <5	\$1 CE163					2.0	15 5	10.0		
S1 CE166 0.8 <5 10.0 S1 CE168 0.2 <5 10.0 S1 CE169 <0.1 <5 10.0 S1 CE170 0.5 15 10.0 S1 CE172 1.2 <5 10.0 S1 CE173 1.5 <5 10.0 S1 CE173 1.5 <5 10.0 S1 CE174 2.8 <5 10.0 S1 CE175 0.8 15 10.0 S1 CE176 1.7 <5 10.0 S1 CE176 0.8 <5 10.0 S1 CE176 1.0 10.0 $<5 S1 CE179 0.4 5 10.0 S1 CE179 0.4 5 10.0 S1 CE180 0.6 <5 10.0 $	\$1 CE164					2.1	<u> </u>	11 ព		
S1 CE168 0.2 <5	S1 CE166					0.8	<5	10.0		, ,
S1 CE167 C0.1 C5 10.0 S1 CE170 0.5 15 10.0 S1 CE172 1.2 C5 10.0 S1 CE173 1.5 C5 10.0 S1 CE174 2.8 C5 10.0 S1 CE175 0.8 15 10.0 S1 CE176 1.7 C5 10.0 S1 CE176 1.7 S1 0.0 10.0 S1 CE178 1.0 10 10.0 S1 CE179 0.4 S1 0.0 S1 0.0 S1 CE179 0.4 S1 0.0 S1 0.0 S1 CE181 0.8 10 10.0	S1 CE168					0.2	<5	10.0		
S1 CE172 1.2 <5	S1 CE170					<0.1	< <u>5</u>	10.0		
S1 CE172 1.2 <5	C4 65470						13	10.0		
S1 CE174 1.5 <5	51 CE172 S1 CF173					1.2	<5	10.0		
S1 CE175 0.8 15 10.0 S1 CE176 1.7 <5	S1 CE174	•		•		1.5 2.8	· <5	10.0		
S1 CE176 1.7 <5 10.0 S1 CE177 0.8 <5	S1 CE175					0.8	15	10.0		
S1 CE177 0.8 <5	S1 CE176	• •			-	1.7	<5	10.0		
S1 CE178 1.0 10 10.0 S1 CE179 0.4 5 10.0 S1 CE180 0.6 <5	\$1 CE177		-			0.8	<5	10.0		
S1 CE179 0.4 5 10.0 S1 CE180 0.6 <5	S1 CE178					1.0	10	10.0		
0.6 <5 10.0 S1 CE181 0.8 10 10.0	51 CE179					0.4	5	10.0		
	S1 CE181					0.6 ກຸຂ	ל5 נו	10.0		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telary: 04-352667

Geochemical Lab Report

REPORT: 127-	5418].			P	ROJECT: KBC-7	PAGE 2
SAMPI F	ELEMENT	Cu	РЬ	Zn	Aq	Au	Au/wt	Au/wt	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPB	G	G	
\$1 CE182					2.7	<5	10.0		<u>`````````````````````````````````````</u>
51 CE183					1.5	<5	10.0		Soil
S1 CE184					0.7	<5	10.0		
S1 CE186					0.3	<5	10.0		
S1 CE187					0.4	<5	10.0		
\$1 CE188					1.4	<5	10.0		
S1 CE189					0.4	5	10.0		
S1 CE190					0.3	10	10.0		
S1 CE191					0.2	30	5.0		
\$1 CE192					0.2	5	2.0	8.0	
\$1 CE193					1.2	5	10.0		
S1 CE194					0.6	30	10.0		
S1 CE195					0.4	<5	10.0		
S1 CE196	, the second				0.8	<5	10.0		
S1 CE197					0.4	10	10.0		·
S1 CE198					0.2	20	10.0		
S1 CE199					0.2	5	10.0		
S1 CE200					0.6	5	10.0		
S1 CE202					0.3	<5	10.0	4	
S1 CE204					2.2	5	10.0	• .	
S1 CE205					1.6	10	10.0	·	
S1 CE207					•0.5	10	10.0		
S1 CE208					2.0	10	10.0		
S1 (E211					0.4	5	10.0		
51 CE212	•				U.8	10	10.0		
S1 CE213					0.6	5	10.0		
S1 CE214					0.6	<5	10.0		
S1 CE215					0.4	10	10.0		
S1 CE216					0.9	<s< td=""><td>10.0</td><td></td><td></td></s<>	10.0		
							· · · · · · · ·		
C1 CE1100									
S1 (E1177)	•				2.2	CS -	10.0	·	
01 CE1200					1.2	5 .r	10.0		
					. U./	<.	. 10.0	1. 	
S1 CE1202					0.2	<5	10.0		
S1 CE1203					0.7	<5	10.0	:	
S1 CE12D4					0.8	<5	10.0	4.2	
S1 CE1205					0.1	<5	10.0		
S1 CE1206					1.2	<5	10.0		

.pany Ltd.

, B.C. . 5 .45-0681 .2667

.

Bondarrelecci

Geochemical Lab Report

1	REPORT: 127-	5418					•	P	ROJECT: KBC-	7	PAGE 3	-
	CAMDI E	EI ENENT	<u>Cu</u>	Pb	70	Δa	Au	Au/ut	Au/wt			-
, E	NUMBER	UNITS	PPM	PPH	PPM	PPM	PPB	G	6	:		
L			-					40.0	, 			-
40.44	S1 CE1207					11.C 12.7	(3) 26	10.0		C		
:	01 CE1208					0.7	< D- 4 C	10.0		JOIL		
	SI CE1209					0.0	15	10.0				
	S1 CE1210					0.2	с	10.0				
	S1 (E1211					0.6	<u>ر</u>	10.0	:			
}	S1 CE1212					0.9	10	10.0				
1	S1 CE1213					1.5	10	10.0				
;	S1 CE1214					2.2	<5	10.0				
	S1 CE1215					2.8	<5	10.0				
í 1	S1 CE1216					0.5	<s< td=""><td>10.0</td><td></td><td></td><td></td><td></td></s<>	10.0				
	S1 CE1217					1.4	<5	10.0	······	······		
	S1 CE1218	•				0.7	10	10.0				
	S1 CE1228					1.7	<5	10.0				
•	S1 CE1221					0.3	40	10.0				
	S1 CE1222					0.5	<5	10.0				
	S1 CE1226					0.9	<5	10.0				
-	S1 CE1228					1.8	<5	10.0				
	S1 CE1229					0.3	<\$	10.0				•
	S1 CE1231					0.6	10	10.0				
	S1 CE1234					0.6	15	10.0				•
· · · · · · · · · · ·	S1 (F1236					ñ.9	<5	10.9				
	S1 CF1237					1.8	600	10.0	2			
	S1 CE1240					0.4	18	16.9				1
	S1 CE1242					0.3	5	10.0				!
	S1 CE1244					1.0	<5	10.0				
	S1_CE1245					1 5	(5	16.0				
	S1 (£1245					n 1	بي ج	10.0				Ì
	S1 CF1247					0.3	<5	10.0				
	S1 CE1249					0.3	10	10.0				
	\$1 CE1251					0.3	5	10.0				
	S1 (51252					1 በ	20	10.0				
	S1 CE1252					1.0	20	10.0				
	S1 CE1255					1.8	ر ، ح	10.0				
	S1 (F1256					1 0	10	10.0				
	S1 CE1257					2.1	10	10.0				
		·										
	S1 CE1258					0.6	140	10.0				
	1 CE1259					U.4	30	10.0				
						1./	15	10.0				
						0.7	10	10.0				
	51 401262					0.3	10	10.0				

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Tr-¹ 94-352667

Geochemical Lab Report

REPORT: 127-5418			P	ROJECT: KBC-7	PAGE 4
SAMPLE ELEMENT CIL Ph	Ζη Ασ	Au	Au/wt	Au/wt	
NUMBER UNITS PPM PPM	PPM PPM	PPB	G	G	
\$1 CF1263	n.4	10	19.9		~
S1 CE1264	0.4	<5	10.0		Soil
S1 CE1265	0.9	. <5	10.0		\sim
S1 CE1266	0.4	<5	10.0		
\$1 CE1267	0.9	<5	10.0		
S1 CE1268	2.3	10	10.0	na para mining bina kan kan kan yang bah kan ya da yang mana para mining bina kan ya	
S1 CE1269	0.4	10	10.0		
S1 CE1270	0.2	<5	10.0		
S1 CE12/2	0.7	<5	10.0		
S1 CE1274	0.5	<5	10.0	······	
S1 CE1275	0.4	<5	10.0		
S1 CE1276	0.7	<5	10.0		
S1 CE1277	1.8	<5	10.0		
S1 CE1279	0.8	<5	10.0		
S1 CE1280	1.6	- 20	10.0		
\$1 CE1282	0.4	<5	10.0		
S1 CE1284	1.0	<5	10.0		
S1 CE1285	0.3	110	10.0		
S1 CE2237	0.4	<5	10.0		
S1 CE2236	0.3	<5	10.0	•	
S1 CE2239	0.4	<5	10.0		
S1 CE2240	• 0.5	5	10.0		-
S1 CE2241	0.4	65	10.0		
S1 CL2242	0.3	5	10.0		
51 CE2243	U.2		10.0		
S1 CE2244	0.3	5	10.0		
S1 CE2245	1.7	20	10.0		
S1 CE2246	0.3	10	10.0		
S1 CE2247	0.0	5 25	10.0		
51 CE2248	0.8		10.0		
S1 CE2249	0.9) <5	10.0		
S1_CE2250	0.2	? <5	10.0		
S1 CE2251	0.0	s <s< td=""><td>10.0</td><td></td><td></td></s<>	10.0		
SÍ CE2252	0.2	? <5	10.0		
S1 CE2253	0.4	10	10.0		
S1 CE2254	0.:	1 95	10.0		
1 CE2255	1.1) <5	10.0		
\$1 CE2256	0.4	د ۲	10.0		
\$1 CE2257	1.4	4 <5	10.0		
\$1 CE2271	1.3	2 5	10.0		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone; (604) 985-0681 T 4-352667

Geochemical Lab Report

REPORT: 127-	5418 ′						P	ROJECT: KBC-7	PAGE 5
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	P5 PPN	Zn PPM	Ag PPM	Au PPB	Au/wt G	Au/wt G	
\$1 CE2273		i			2.0	20	10.0		
S1 CE2274					0.3	<5	10.0		C
S1 CE2275					0.7	25	10.0		DOIL
S1 CE2276					0.7	15	10.0		
S1 CE2277					1.0	<5	10.0		
S1 CE2278					0.6	1100	10.0	>	
S1 CE2280					0.6	15	10.0		
\$1 CE2281					0.4	<5	2.0	8.0	
S1 CE2282					0.3	<5	10.0		
S1 CE2283	•				0.5	<5	10.0		
S1 CE2284					1.4	5	10.0		
S1 CE2285					0.5	15	10.0		
S1 CE2286					8.2	15	10.0		
S1 CE2287					0.2	<u><</u> 5	2.0	8.0	
S1 CE2288					0.3	10	10.0		
S1 CE2289					0.5	5	10.0		
S1 CE2290					0.3	<5	10.0		
S1 CE2291					0.4	<5	10.0		
S1 CE2292					1.0	5	10.0		
S1 CE2293					7.4	5	10.0	•	
S1 CE2294					23.0	5	10.0		
S1 CE2296					-0.8	50	10.0		
S1 CE2297					0.5	<5	5.0		
S1 CE2298					1.0	<s< td=""><td>10.0</td><td></td><td></td></s<>	10.0		
S1 CE2299					0.4	<5	10.0		
\$1 CE2300					0.4	<5	10.0		
S1 CE2301					0.8	<5	10.0		
\$1 CE2302					0.7	10	10.0		
S1 CE2303					1.0	<5	10.0		
S1 CE2304	anderstaans is annistration on anothering ages				1.2	<5	10.0		
S1 CE2305					1.2	<5	10.0		
S1 CE2306					0.4	10	10.0		
S1 CE2310	· · ·				1.7	<5	10.0		
\$1 CE2312					1.2	<5	10.0		
S1 CE2313					0.5	<5	10.0		
\$1 CE2315					1.2	<5	10.0		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

REPORT: 127	-5418						P	ROJECT: KBC-7	PAGE 6
SAMPLE NUMBER	ELEMENT	Cu PPM	Pb PPM	Zn PPM	Ag PPM	PP8 Au	Au∕⊮t G	Au/wt G	
			AN 281900 99						
ma 1								evenue distance	
-									
-									
S1 CE3242					v.6	<5	10.0		C
S1 CE3245					0.1	<5 (5	3.0	7.0	JOIL
31 CE3240					U.6		3.0	7.0	
S1 CE3249					0.6	<s< td=""><td>10.0</td><td>48.0</td><td></td></s<>	10.0	48.0	
S1 CE3250		•			U.4 0.3	<5 <5	10.0	10.0	
S1 CE3254			•		0.8	. <5	10.0		
S1 CE3256		•			0.9	<5	10.0		
\$1 CE3257					0.3	<5		10.0	
S1 CE3258					•1.8	<5	10.0		
S1 CE3260					0.6	10	10.0		
S1 CE3263					0.4	<5	6.U 3.0	7.0	
S1 CE3264				• • • • • • • • • • • • • • • • • • •	1.0	<5	7.1		
S1 CE3266	• .				0.9	<5	10.0		
S1 CE3267					1.0	<5	10.0		
S1 CE3268					1.1	<5	10.0		
S1 CE3269		•			1.3	35	10.0		· · · · · · · · · · · · · · · · · · ·
S1 CE3270	e e e e e		*** ****		0.5	15	10.0		
S1 CE3271					0.9	<5	10.0		
SI (E32/2)					0.9	10	10.0		
S1 CE3273	المعنير 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				3.6 D.8	<5 5	6.U 10.0		
\$1 CE3275					<u>0.8</u>	<5	10.0		
S1 CE3277					0.1	5	10.0		
S1 CE3279					0.2	<5		10.0	· .
S1 CE3280					<0.1	<5	10.0		
S1 CE3281					0.5	<5	10.0		

Bondar-Clegg & Company Ltd.

Geochemical Lab Report

-

Rf=90k7 : 127	-5418			. 4			Ĩ	ROJECT: KBC-7	MOE Y
SAMPLE	ELEMENT	Çu	f H.,	in de la companya de La companya de la comp	Λq	Au	Au/wt	AU/WL	
NUMBER	UNITS	hot	<u>P</u> PM	<u></u>	FIPh	PHB	G	G	
		anganan a so n a . Ay ay an a an a			*1	· · · · · · · · · · · · · · · · · · ·	1/3 y		C
S1 CE3283					0.4	0	10.0		2012
S1 CE3284					0.3	<5	7.0		
S1_CF3285					0.6	<5	10.0		
51 CE 3286					0.4	<5	10.0		
\$1 CH3287			• •		1.0	S	5,0	· · · · · · · · · · · · · · · · · · ·	
St. CE3288					0.2	<5	5.6		
51 CE3289					0.8	<5	15.0		
S1 CE3298					0.2	<5	10.0		
\$1 CE3291					0.2	5	5.0		
\$1 CE3292					0.5	<5	2.0	8.0	
S1 CE3293					0.2	50	10.0	•••	
\$1 CE3294					0.3	<5	4.0		
S1_CE3295					0.5	20	10.0		
S1 CE3296					0.7	10	10.0		
S1 CE 3297		* • • •			0.6	5	10.0		
51 CF 3298					1.3	- <5	10.0		
S1 CI 3299					0.2	10	12.p		
\$1 CE3300					11.2	11)	1.1		
\$1 CE3301					0.2	90	10.0		
S1 (51852			·····	• • • • •	· · · · · · · · · · · · · · · · · · ·			· ···	·····
51 TE 6358					. 0. 2	15	10 11		
G1_CE3304					1.19	10	10.10		
DT. CF 1305					0.6	<5	111.0		
SI C 1916			,		0.9	<5	10.0		
S1 C1:3307		· ••				15	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
\$1 CE3308					11.1	211	• • •		
51 Cf 3309					2.6	25	19.9		
SF C53311					0.4	1		19.0	
SE \$13412					1.2	:20			
61 CE 335 Y			· · · · · · · · · · · · · · · · · · ·	 	1./	<5	4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
S1 CF (314					n /.	5	10.1		
S1 CF3315					8.6	15		111.0	
\$1 CE3316					0.4	<5	16.0		
S1 CE3317					0.1	<5	10.0		
S1 CE3318	1999 - Barlin Barli, Barli, Barlin Barlin, Bar				0.2	<5	10.1		1
💓 G1 (C 3319					1.0	<5	10.0		
S1 CF 3320	.•				0.6	10	7.0		
\$1 CE3321					0.2	120	10.0		
\$1 CE3322					2.7	<5	10.0		
The second second second second second second second		Non Anno 19 19 19 19 19							the second second of second

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Tel=v: 04-352667

Geochemical Lab Report

REPORT: 127-5	6418						Р	ROJECT: KBC-7	PAGE 8
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Au PPB	Au∕⊬t G	Au/wt G	
\$1 CE3323					1.3	50	10.0		Carr
S1 CE3324					1.2	<5	10.0		JOIL
S1 CE3325					0.8	20	10.0		
S1 CE3326					0.8	<5	10.0		
S1 CE3327					0.8		10.0		
S1 CE3328					1.4	<5	10.0	ann an a fanalland, nag galain dag ^a 1998 (konsernation of a	
S1 CE3329					0.8	<5	10.0		
S1 CE3330					0.8	<5	10.0		
S1 CE3331					1.0	<5	10.0		
S1 CE3332	<u>1. at 1. – 4. – 4. – 4. – 4. – 4. – 4. – 4. –</u>			المحاف اليريون ومديرين وما مناسبة والمحافظ ويور	. 0.9	110	10.0		
S1 J/H2210					0.6	<5	10.0		······································
S1 J/H2211					0.2	<5	10.0		
S1 J/H2212		· . •.			0.7	<5	10.0		
S1 J/H2213		5 11 A.S	, en l		0.6	<5	10.0		
S1 J/H2214		·.			0.3	<5	10.0	·····	
₩S1 J/H2215					0.7	<5	10.0		
S1 J/H2216					0.3	20	10.0		
S1 J/H2217					<0.1	<5	10.0		
S1 J/H2218					0.2	<5	10.0	-	
S1 J/H2219					0.2	<5	10.0	•	
\$1 J/H2220					1.8	5	10.0		
S1 J/H2221					<0.1	<5	10.0		
S1 J/H2222					0.7	<5	10.0		
S1 J/H2223					0.8	<5	10.0		
\$1 J/H2224					0.2	<5	10.0		· · ·
S1 J/H2225					1.0	<5	10.0		
S1 J/H2229	.÷.				8.2	<5	10.0		
S1 J/H2230					0.8	5	10.0		
S1 J/H2231					1.0	<5	10.0		
S1 J/HZ232	4				9.6	<5	10.0		n an an ann ann ann an an ann an ann an
S1 J/H2233					0.3	<5	10.0		
S1 J/H2234					1.0	<5	10.0		
S1 J/H2235					0.8	< <u>\$</u>	10.0		
S1 J/H2236					2.4	<5	10.0		

.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telev: 04-352667

Geochemical Lab Report

REPORT: 127-54	418]			P	ROJECT: KBC-7	PAGE 9
SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	РЪ PPM	Zn PPM	Ag PPM	Au PPB	∩u∕wt G	Au/wt G	
T1 CE158S					1.2	5	(0.5	10.0	SILT
F1 CE161S					0.7	80	10.0		
T1 CE165S					9.4	3	10.0		
T1 CE167S					0.2	2200	10.0	`	
11 CE1055					(1.1	2300	10.0)	
11 CE2013					0.4	<5	10.0		
T1 CE206S					0.5	<5	10.0		
11 CE209S					1.2	5	5.0		
T1 CE210S				·	0.6	<5		10.0	
11 CE1219S					1.0	10	5.0		
T1 CE1223S	·····				0.2	<5	10.0		
11 CE1224S					0.2	<5	7.0		
11 CE1225S					0.2	<5	2.0	8.0	
T1 CE1227S					0.1	<5	10.0		
T1 CE1230S					0.2	<5	10.0		
T1 CE1232S					0.1	<5	10.0	•	
T1 CE1233S	·····				0.2	<5	5.0		
11 CE1235S					-0.3	<5	10.0		
11 CE12385					U.4	<5	10.0		
T1 CE1241S					0.4	. <5	2.0	8.0	
11 CF1243S	····				<u> </u>	10	10 0		
T1 CE1248S					0.1 N.4	5	10.0		
T1 CE1250S					0.2	15	10.0		
11 CE1254S					0.4	5	10.0		
T1 CE1271S	·				0.4	200	10.0		
T1 CE1273S	· ·				0.8	5	10.0		
T1 CE1278S	n an Antar Magazar			•	0.6	110	10.0		
T1 CE1281S			•		1.4	5	10.0		
11 CE1283S					0.4	160	10.0		
11 CE1286S					0.3	5	10.0		
T1 CE2258S					0.2	<5	10.0		
11 UE22595					0.3	5	10.0		
- 11 UEZZOUS					U.2	10	10.0		
11 UE22613 T1 CE22/20					U.4 n/	<5 20	10.0		
11 CE22025					U.4	(3	10.0		

Bondar-Clegg & Company Ltd. 130 Pemberion Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0581 Telav: 04-352667

REPORT: 127-5418

٢

PROJECT: KBC-7

PAGE 10

	CI CHELLT	<u>C</u>	DL-	7-	A-	۸	A.1/1.1	A /+	•
NUMBER	UNITS	PPM	PD PPN	PPM	Hg PPM	PPB HU	нил мт G	нолис G	
T1_CE22638					0.4	<5	10.0		· •
T1 (F22655					0.6	<5	10.0		SILT
T1 CF22690					ก.4	5	10.0		
TI CE22030					0.4	25	10.0		
T1 CE22003					0.4 N 4	ري ج	10.0		
11 (22675					0.0	J	10.0		
T1 CE2268S					0.4	320	10.0		
T1 CE2269S					0.9	<5	10.0		
T1 CE2270S					0.3	85	10.0		
T1 CE2272S					0.4	90	10.0		
T1 CE2279S					0.5	30	10.0		
T1 CE2295S					0.5	<5	10.0		
T1 CE2307S					9.2	<5	10.0		
11 CE2308S					0.3	<5	10.0		
T1 CE2311S		· · .			0.1	5	10.0		
11 CE2314S					0.4	<5	10.0		-
T1 CE3241S					0.2	15	10.0		
T1 CE3241S T1 CE3244S					0.2	15 25	10.0 10.11		
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3247S					0.2	15 25 <5	10.0 10.0 7.0		
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3247S T1 CE3248S T1 CE3251S					0.2 •0.3 0.3 <0.1 0.1	15 25 <5 <5 <5	10.0 10.0 7.0 10.0 10.0		
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3247S T1 CE3248S T1 CE3251S T1 CE3253S					0.2 •0.3 0.3 <0.1 0.1 0.4	15 25 <5 <5 <5 <5	10.0 10.1 7.0 10.0 10.0 2.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3253S T1 CE3255S					0.2 •0.3 0.3 <0.1 0.1 0.4 0.4	15 25 <5 <5 <5 <5 <5 10	10.0 10.0 7.0 10.0 10.0 2.0 10.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3255S T1 CE3255S T1 CE3259S					0.2 •0.3 0.3 <0.1 0.1 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 <5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	10.0 10.0 10.0 10.0 10.0 	8.0	
T1 CE3241S T1 CE3244S T1 CE3247S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3255S T1 CE3259S T1 CE3262S					0.2 • 0.3 0.3 <0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 <5 .5 .5 10 <5 5	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3247S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3255S T1 CE3255S T1 CE3259S T1 CE3262S T1 CE3265S		· · · · · · · · · · · · · · · · · · ·			0.2 • 0.3 0.3 <0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 <5 10 <5 5 130	10.0 10.0 7.0 10.0 10.0 2.0 10.0 6.0 10.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3247S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3255S T1 CE3259S T1 CE3262S T1 CE3265S T1 CE3278S	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0.2 • 0.3 0.3 <0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 5 10 <5 5 130	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0 10.0 10.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3247S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3255S T1 CE3255S T1 CE3262S T1 CE3265S T1 CE3276S T1 J/H2226S	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0.2 • 0.3 0.3 <0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 5 10 <5 5 130 180 15	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0 10.0 10.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3248S T1 CE3251S T1 CE3251S T1 CE3255S T1 CE3255S T1 CE3255S T1 CE3265S T1 CE3265S T1 CE3278S T1 J/H2226S T1 J/H2227S		· · · · · · · · · · · · · · · · · · ·			0.2 • 0.3 0.3 <0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 5 10 <5 5 130 180 15 <5	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0 10.0 10.0 10.0 10.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3247S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3253S T1 CE3259S T1 CE3262S T1 CE3265S T1 CE3278S T1 JH2226S T1 JH2227S T1 JH2228S		· · · · · · · · · · · · · · · · · · ·			0.2 • 0.3 0.3 <0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 10 <5 130 180 15 <5 <5	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0 10.0 10.0 10.0 10.0 10.0 10.	8.0	
T1 CE3241S T1 CE3244S T1 CE3247S T1 CE3247S T1 CE3248S T1 CE3251S T1 CE3253S T1 CE3253S T1 CE3259S T1 CE3262S T1 CE3262S T1 CE3265S T1 J/H2226S T1 J/H2228S					0.2 • 0.3 0.3 <0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 10 <5 5 130 180 15 <5 <5	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0 10.0 10.0 10.0 10.0	8.0	
T1 CE3241S T1 CE3244S T1 CE3247S T1 CE3247S T1 CE3247S T1 CE3247S T1 CE3247S T1 CE3247S T1 CE3248S T1 CE3253S T1 CE3253S T1 CE3259S T1 CE3265S T1 CE3265S T1 J/H2226S T1 J/H2228S T1 J/H2228S					0.2 • 0.3 0.3 <0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 10 <5 5 130 180 15 <5 <5	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0 10.0 10.0 10.0 10.0 10.0 10.	8.0	8
T1 CE3241S T1 CE3244S T1 CE3248S T1 CE3248S T1 CE3253S T1 CE3253S T1 CE3253S T1 CE3253S T1 CE3259S T1 CE3265S T1 CE3278S T1 J/H2226S T1 J/H2228S R2 CE2309 R K4 LEAUDON					0.2 • 0.3 0.3 <0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 10 <5 130 180 15 <5 <5	10.0 10.0 10.0 10.0 10.0 2.0 10.0 6.0 10.0 10.0 10.0 10.0 10.0 10.	8.0	Коск
T1 CE3241S T1 CE3244S T1 CE3244S T1 CE3248S T1 CE3253S T1 CE3253S T1 CE3253S T1 CE3255S T1 CE3255S T1 CE3255S T1 CE3265S T1 CE3265S T1 J/H2226S T1 J/H2228S T1 J/H2228S R2 CE2309 R K4 CE4060N R2 CE4069R					0.2 • 0.3 0.3 <0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	15 25 <5 <5 <5 10 <5 130 180 15 <5 <5 <7 <i>o</i>	10.0 10.0 10.0 10.0 2.0 10.0 2.0 10	8.0	Коск

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2RS Phone: (604) 985-0681 T 04-352667

Geochemical Lab Report

S.

REPORT: 127-5	5418]			F	ROJECT: KBC-7	PAGE 11
SAMPLE	ELEMENT	Cu	Pb		Âa	Δ	Δu/ut	<u> </u>	
NUMBER	UNITS	PPM	PPM	PPM	PPM	PPB	G	G	
R2 CE4074R					<u> </u>	• ;7	(1) <i>(</i>)		
R2 CE4076R					<0.1	25	10.0		
R2 CE4077R					<0.1	<5 <5	10.0	P	
R2 CE4078R					0.1	<5 <5	10.0	Voci	K
R2 CE4086R					0.8	<5	10.0		
R2 CF50748					0			-	
R2 CF50758					0.3	<3	10.0		
R2 CE5076R					<u.1< td=""><td><5 (5</td><td>10.0</td><td></td><td></td></u.1<>	<5 (5	10.0		
R2 CE50778					(0.1	0	10.0		
R2 CE5078R					<u.1 20.4</u.1 	<5 (5	10.0		
				······································	<u.1< td=""><td><3</td><td>10.0</td><td></td><td></td></u.1<>	<3	10.0		
R2 CE5079R					<0.1	<5	10.0		
R2 CES080R					0.2	<5	10.0		
R2 CE5081R					0.2	<5	10.0		
R2 CE5082R					<0.1	150	10.0		
R2 CE5083R	•				<0.1	<5	10.0		
R2 CE5084R					<u>ر</u> ا 1	20	10.0		
R2 CE5085R		-			20.1	20	10.0		
R2 CE5086R					20.1	27 27	10.0		
R2 CE5087R					0.1	(5)	10.0		
R2 CE5088R					0.5	<5 (10	111.0		
					40.0	44U	10.0	•	
R2 CE5089R					9.3	<5	10.0		
R2 CE618UR					0.2	<5	10.0		
R7 CE6181R					<0.1	<5	10.0		
NZ CEGIOZK					<0.1	<5	10.0		
KZ CE6183K					<0.1	<5	10.0		
R7 CE6184R					<0.1	<5	10.0		
R2 CE6185R					<0.1	<5	10.0		
R7 CE6186R					<0.1	<5	10.0		
R2 CE6187R					<0.1	100	10.0		
R2 CE6188R					<0.1	<5	10.0		
R2 CE6189R					<u></u>	70	10.0		
R2 CE6190R					<0.1	ر. ۲۲	10.0		
R2 CE6191R					0.2	25	40 0 10.U		
R2 CE6192R					<0.1	20 15	10.0		
R7 CE6193R					<0.1	. 5	10.0		
R2 CF619/8									
82 CEA195R					<0.1	<5	10.0		
R2 CF6196R					U.1	<5	10.0		
82 CF41978					<0.1	<5	10.0		
R2 CFA198R	•				U.1	<5	10.0		
					U.2	<5	10.0		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telev: 04-352667

Geochemical Lab Report

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

	REPORT: 127-5418								PROJECT: KBC	-7	PAGE 13
	SAMPLE NUMBER	ELEMENT UNITS	Cu PPM	P5 PPM	Zn PPN	Ag PPM	Au PPB	Au/wt G	Au∕wt G		
	C1 -80CE3276Hr C1 -80CE3310Hr C1 -80CE3333Hr	1 1 1	27 24 68	6 8 9	106 135 88	0.3 0.2 0.5	110 320 10	10.0 10.0 10.0		HEAVY	MINERAL
	C5 +80-10CE32 C5 +80-10CE32	LHM 43HM 76HM	35 53 28	8 7 3	53 93 115	0.3 0.2 0.2	(5) (1200) 10	10.0 > 10.0 10.0			
	C5 +80-10CE33 C5 +80-10CE33	10HM 33HM	16 32	1 8	108 75	0,3 0,3	<5 <5	10.0 10.0			
- -											
						2					
									······································		
		· · · · · · · · · · · · · · · · · · ·				ar 19 ann an Ann An Anna Ann					

Јођ 87-317	Sample	Number	Au	Ag
-			ррь	ppm

	Silts	CE 2591 2592 2593 2594 2595	44 8 6 4 2	0.28 0.10 0.10 0.14 0.08
		2596 2597 9002 9003 9004	2 2 12 6	0.08 0.06 0.16 0.14 0.12
		9005 9006	8 4	0.08 0.14
HM	-10+80 -80 -10+80 -80 -10+80 -80 -10+80 -80	CE 2590 CE 2598 CE 9001 CE 9007 "	4 6 2 6 282 4 6	0.04 0.08 0.04 0.06 0.10 0.17 0.05 0.08
	Sample Number	Cu ppm	Рb ppm	Zn ppm
-10+80 -80 -10+80 -80 -10+80 -80	CE 2590 CE 2598 CE 9001	50 60 21 30 64 90	2 4 1 2 5 6	75 92 43 62 77 103
-10+80 -80	CE 9007 "	42 61	2 4	57 81

ΗМ

Page 9

14 - 2235 30th Ave. N.E., Calgary, Alberta, T2E 7C7 (403) 250-9460

.

J _ #:	87-319 "SNIP"	Sample	Number	Ац ррђ	Ag ppm	
	CE L	17+00 W	19+25 N	2	0.13	S
			19+50	12	0.27	201L
			19+25	2	0.20	
			19+00	4	0.18	
			18+75	8	0.12	
			18+50	8	0.36	
			18+25	22	0.30	
			18+00	2	0.36	
			17+75	2	1.33	
			17+50	4	2.30	
			17+25	4	1.80	
			17+00	2	3.20	
			16+75	18	0.54	
			16+50	4	1.06	
			16+25	4	0.50	
			16+00	4	1.14	
			15+75	8	6.20	
			15+50	4	3.10	
			15+25	8	0.80	
\smile			14+75	8	0.44	
-			14+50	8	0.52	1
			14+25	4	0.61	
			14+00	8	0.80	
			13+75	6	0.22	
		6	13+50	4	0.22	
			13+25	8	0.44	
			13+00	4	0.38	
			12+75	4	1.24	
			12+50	8	0.08	

1 aya 1

14 - 2235 30th Ave. N.E., Calgary, Alberta, T2E 7C7 (403) 250-9460

,

Job#:87-324-B	Sample	Au	Ag
"SNIP"	Number	ррр	ppm

CE	L	44	W	23+00	N	4	0.30
				22+75		4	0.22
	L	38	W	22+50	N	4	0.10
	L	36	W	20+75	N	8	0.14
				17+25		4	0.38
	1	35	1.J	21+00	N	a	0.22
	L	00	**	19+25		4	0.28
	L	34	ω	21+00	N	8	0.14
				19+45		4	0.36
				17+45		4	0.30
				16+60		20	0.16
				11+50		8	0.24
	L	17	W	15+25	N	84	0.80
				13+75		96	0.28

SILT

,

1

Page 1

14 - 2235 30th Ave. N.E., Calgary, Alberta, T2E 7C7 (403) 250-9460

Job#:87-324-B	Sample	Ац	Ag
	Number	ррЪ	ppm
			F F

CE	L47	W	21+00	N	2	0.81
			20+75 20+50 20+25 20+00 19+75		4 2 4 6	0.70 0.32 0.56 0.58 0.98
			19+50 19+25 18+50 18+25 18+00		2 4 6 2 2	0.09 0.28 0.41 0.08 0.20
			17+75 17+50 17+25 17+00 16+75		4 2 8 2 6	0.07 0.24 0.36 0.52 0.48
			16+50 16+25 16+00 15+75 15+50		4 10 12 12 4	0.21 0.08 0.52 0.69 0.29

Soil

Page 7

14 - 2235 30th Ave. N.E., Calgary, Alberta, T2E 707 (403) 250-9460
Job#:87-324I	3 Sample	Au	Aa	
	Number	ppb	ppm	
CE / 47 //	15.00 0	_	-	_
CE L 47 W	15+25 N	6	0.38	Sa
1 46 11	13+00	30	0.67	~
L 46 W	21+00 N	4	0.16	
	20+75	2	0.59	
	20+30	В	0.48	
	20+25	56	0.48	
	20+00	4	0.17	
	19+75	4	0.04	
	19+50	20	0.16	
	19+25	24	0.30	
	19+00	4	0.16	
	18+75	2	0.07	
	18+50	132	0.52	
	18+25	84	0.42	
	17+75	40	0.24	
	17+50	4	0.09	
	17+25	16	0.08	
	17+00	10	0.24	
	16+75	4	1 40	
	16+50	52	0.26	
	10.00	52	0.36	
	16+25	36	0.74	
	16+00	2	0.30	
	15+75	4	0.15	
	15+50	4	0.40	
	15+25	2	19	
	15+00	2	0.78	
L 45 W	24+00 N	4	0.16	
	23+75	4	12	
	23+50	4	0.40	
	23+25	4	1.12	
	22+75	8	0.24	
	22+50	8	0.18	
	22+25	2	1.41	
	22+00	4	0.64	
	21+75	28	0.58	
	21+50	4	0.28	
	21+25	4	0.06	
	21+00	4	0.28	
	20+75	10	0.31	
	20+50	4	0.14	
		-		

SOIL

Job #: 87–3241	3 Sample Number	Au ppb	Ag ppm	
CE L 45 W	20+25 20+00 19+75 19+50 19+25	12 4 4 4 4	0.16 0.44 0.16 0.20 0.06	So
	19+00 18+75 18+50 18+25 18+00	12 8 28 36 12	0.06 0.14 0.22 0.18 0.06	
	17+75 17+25 17+00 16+75 16+50	4 4 2 4	0.46 0.20 26 0.22 0.92	
	16+25 16+00 15+75 15+50 15+25	6 18 4 4 4	2.50 0.38 0.54 2.48 0.30	
	15+00 14+75 14+50 14+25 14+00	4 228 8 4 4	0.50 0.94 0.36 0.38 0.40	
	13+75 13+50 13+25 13+00 12+75	4 4 4 2	0.12 0.42 0.64 0.41 0.33	
L 44 W	12+50 12+25 12+00 24+00 N 23+75	2 4 4 12 4	1.06 0.37 0.22 0.40 0.02	
	23+50 23+25 22+50 22+25 22+00	4 4 4 4	0.62 0.78 0.28 0.62 0.30	

Soil

Job#:87-324-H	3 Sample Number	Au ppb	Ag mqq	
CE L 44 W	21+75 N 21+50 21+25 21+00 20+75	4 4 8 12 12	0.18 0.40 0.32 0.28 18	Soi
	20+50 20+25 20+00 19+75 19+50	116 8 52 4 4	0.16 0.24 0.26 28 0.16	
	19+25 19+00 18+75 18+50 18+25	4 4 76 28 28	0.66 0.52 0.34 1.22 0.52	
	18+00 17+75 17+50 17+25 17+00	4 12 24 4 2	0.18 0.42 0.20 0.40 0.23	
	16+75 16+50 16+25 16+00 15+75	8 68 4 4 4	0.38 0.44 0.12 0.04 0.10	
	15+50 15+25 15+00 14+75 14+50	4 4 4 2 4	0.16 0.06 0.36 0.30 0.30	
• •	14+25 14+00 13+75 13+50 13+25	4 2 36 2 4	0.44 0.10 0.12 0.15 0.26	
	13+00 12+75 12+50 12+25 12+00	10 4 4 4 4	0.17 0.76 0.26 0.34 0.44	

.

,

4

.

Page 10

Job#:87-324-B Sample	Au	Ag	
Number	ppp	ppm	
CE L 43 W 24+00 N	4	0.18	S
23+50	4	0.32	<u> </u>
23+25	8	0.14	
23+00	4	0.28	
22+75	4	0.42	
22+50	8	0.46	
22+25	4	0.98	
22+00	4	0.44	
21+75	8	0.26	
21+50	14	0.37	
21+25	12	0.22	
21+00	36	0.18	
20+75	26	0.07	
20+25	36	0.10	
20+00		0.10	
20.00	-4	0.10	
19+75	8	0.04	
19+50	4	0.10	
19+25	4	0.16	
19+00	4	0.50	
18+75	6	0.54	
18+50	4	0.14	
18+25	4	0.84	
18+00	4	0.40	
17+75		0.40	
17+50	4	0.34	
17+25	8	0.10	
17+00	12	0.24	
16+75	4	0.04	
16+50		0.20	
16+25	4	0.08	
10.23	4	0.20	
16+00	14	0.24	
15+75	4	0.26	
15+50	4	0.28	
15+25	4	0.22	
15+00	4	0.16	
14+75	4	0.14	
14+50	4.	0.24	
14+25	0	0.24	
14+00	440	0.24	
17475	440	0.60	
137/0	4	0.28	

SOIL

Page 11

.

٠

Soil

Job#:87-324-B Sample	Ац Ад
Number	ррb ррт
CE L 43 W 13+50 N	4 0.92
13+25	6 0.17
13+00	2 0.34
12+75	4 1.76
12+50	4 1.02
12+25	4 0.26
12+00	4 0.52
L 42 W 24+00 N	4 1.38
23+75	4 1.02
23+50	2 0.78
23+25	4 0.52
23+00	6 3.00
22+75	2 1.16
22+50	4 0.26
22+25	8 1.10
22+00	4 0.28
21+75	44 0.70
21+50	8 0.72
21+25	4 0.54
21+00	96 0.21
20+75 20+50 20+25 20+00 19+50	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
19+25	8 0.14
19+00	28 0.12
18+75	4 0.48
18+50	64 0.13
18+25	76 0.16
18+00	962 0.95
17+75	6 0.21
17+50	44 0.06
17+25	8 0.08
17+00	2 0.10
16+75 16+50 16+25 16+00 15+75	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Page 12

Job#:87-324-B Sample Au Number ppb	Ag ppm
CEL 42 W 15+50 N 2 15+25 4 15+00 8 14+75 4 14+50 6	0.37 0.50 0.40 0.16 0.11
14+25 4 14+00 2 13+75 4 13+50 2 13+25 2	1.58 0.37 0.20 0.20 0.31
13+00 14 14 12+75 2 12+50 2 12+25 2 12+00 6	0.16 0.64 0.84 0.62 0.21
L 41 W 24+00 N 2 23+75 2 23+50 4 23+25 2 23+00 2	0.19 0.52 0.64 0.17 0.32
22+75 2 22+50 4 22+25 6 22+00 4 21+75 6	0.51 0.14 0.17 0.46 0.05
21+50 4 21+25 8 21+00 58 20+75 4 20+50 8	0.18 0.32 0.13 0.04 0.28
20+25 14 0 20+00 4 0 19+75 36 0 19+50 4 0 19+00 14 0	0.35 0.16 0.10 0.06 0.36
18+75 4 18+50 2 18+25 2 18+00 4 17+75 2	0.69 0.28 0.44 0.08 0.22

Job#:87-324-	B Sample	Au	Ag	
	Number	ррь	ppm	
CE L 41 W	17+25 N	624	0.48	C
	17+00	24	0.12	20
	16+75	4	0.32	
	16+50	4	0.46	
	16+25	42	0.18	
	16+00	2	0.12	
	15+75	12	0.50	
	15+50	6	0.73	
	15+25	2	0.96	
	15+00	4	0.38	
	14+75	2	0.28	
	14+50	8	0.56	
	14+25	4	0.16	
	14+00	4	0.80	
	13+75	6	0.56	
	13+50	26	0.32	
	13+25	32	0.63	
	13+00		0.54	
	12+75	2	1.20	
	12+50	4	1.72	
. *	12+25	2	0.72	
	12+00	ŝ	1.36	
L 40 W	24+00 N	2	0.86	
	23+75	8	0.41	
	23+50	2	0.90	
	23+25	4	0.33	
	23+00		0.47	
	22+75	6	0.73	
	22+50	2	0.18	
	21+75	16	0.40	
	21+50	4	0.30	
	21+25	132	0.10	
	21+00	8	0.08	
	20+75	8	0.56	
	20+50	4	0.31	
	20+25	6	0.08	
	20+00	$\overline{2}$	0.12	
	19+75	2	0.05	
	19+50	176	0.12	
	19+25	16	0.24	

SOIL

Job#:87-324-	B Sample	Au	Ag	
	Realizer	944	որդա	
CE L 40 W	19+00 N	2	0.18	S
	18+75	44	0.20	-1016
	18+50	2	0.30	
	18+25	2	0.64	
	18+00	2	0.44	
		_		
	17+75	6	1.60	
	17+50	4	0.76	
	17+25	2	0.56	
	17+00	4	1.34	
	16+75	4	0.64	
	16+50	2	0.71	
	16+25	2	0.81	
	16+00	2	0.32	
	15+75	2	0.80	
	15+50	48	0.27	
			··	
	15+25	6	0.36	
	15+00	2	0.48	
	14+75	26	0.65	
	14+50		0.22	
	14+25	2	0.33	
2		<i>2</i>	0.20	
	14+00	4	0.75	
	13+75	6	0.27	
	13+50	38	2.00	
	13+25	22	0.94	
	13+00		0.04	
	10,00	<u>~</u>	0.44	
	12+75	2	0.60	
	12+50	2	1.00	
	12+25	24	0.96	
	12+00	2	1.24	
L 39 W	24+00 N	4	0.40	
		•	V. 4V	
	23+75	2	0.31	
	23+50	2060	3.20	
	23+25	14	1.67	
	23+00		0.70	
	22+75	5	0.70	
		2	0.18	
	22+50	8	0.10	
	22+25	6	0.06	
	22+00	2	0.16	
	21+75	98	0.22	
	21+50	50	0.04	
		0	0.24	

Job#:87-324-B Sample	Au	Ап	
Number	ppb	ם ביי	
	•••	F F	
CE L 39 W 21+25 N	4	0.56	Sa
21+00	8	0.32	00
20+75	8	0.68	
20+50	8	0.68	
20+25	8	0.00	
	U	0.20	
20+00	8	0.44	
19+75	â	0 44	
19+50	4	0.24	
19+25	-7	0.24	
19+00	- -	0.20	
15400	~	1.38	
18+75	2	0.20	
18+50	4	1 41	
19+05		1.41	
18+23	2	0.25	
18+00	4	0.62	
17+75	2	0.48	
17+50		0.74	
17:05	4	0.74	
17+23	8	0.24	
17+00	4	0.58	
16+75	8	0.40	
16+50	4	0.94	
10,05			
16+20	10	0.36	
16+00	4	1.04	
15+75	76	0.48	
15+50	14	0.46	
15+25	£	0.95	
15:00	-	• • -	
13+00	2	0.16	
14+75	2	0.36	
14+50	2	0.32	
14+25	6	0.52	
14+00	2	1.13	
10.75			
13+/5	2	0.64	
13+50	4	0.62	
13+25	6	1.26	
13+00	2	0.35	
12+75	2	1.72	
10,50	-		
12+30	2	0.49	
12+25	2	0.47	
12+00	4	0.80	
L 38 W 24+00 N	2	0.40	,
23+75	4	0.64	

SOIL

.

Page 16

.

Job#:87-324-B San	nple /	Au da	Ag
Nun	nber p		om
CEL38W23+5	50 N	10 0.3	33 Soil
23+2	25	10 0.3	20
23+0	00	2 0.4	48
22+7	75	4 0.3	28
22+5	50	18 0.3	23
22+2	25	2 0.	76
22+0	00	2 0.	40
21+7	75	4 0.	50
21+5	50	5 0.	22
21+2	25	4 0.	28
21+0 20+7 20+5 20+5 20+6	00 75 50 25 00	8 0.3 8 1.3 16 1.4 2 0.3	32 22 00 55 96
19+7	75	8 0.	68
19+5	50	4 0.	82
19+2	25	8 0.	32
19+0	00	2 0.	28
18+7	75	4 0.	14
18+5	50	2 0.1	20
18+2	25	4 0.	38
18+0	00	4 0.	44
18+0	75	2 0.	52
17+5	50	4 0.	48
17+2 17+0 16+3 16+3	25 20 75 50 2 5	4 0. 4 0. 2 0. 2 0. 2 0.	10 50 85 64 32
16+(20	4 0.	90
15+)	75	4 0.	40
15+9	50 ::	28 0.	82
15+0	25	2 0.	46
15+(20	2 0.	88
14+5	75	6 0.	82
14+5	50	2 0.	63
14+1	25	4 1.	14
14+0	00	4 0.	62
13+5	75	2 0.	57

Job#:87-	324-B Sample Number	Au ppb	Ag ppm	
CE L 3	B W 13+50 N 13+25 13+00 12+75 12+50	2 2 4 2 2	0.76 0.54 0.15 0.86 0.32	S
L 3	12+25 12+00 7 W 24+00 N 23+75 23+50	8 26 4 4 4	0.88 0.57 0.24 0.58 0.23	
	23+25 23+00 22+75 22+50 22+25	8 8 8 8 8	0.44 0.16 0.20 0.32 0.76	
	22+00 21+75 21+50 21+25 21+00	8 8 2 2 8	0.92 2.00 0.52 1.32 0.64	
	20+75 20+50 20+25 20+00 19+75	4 4 4 8	0.86 0.80 0.62 0.32 0.28	
	19+50 19+25 19+00 18+75 18+50	4 2 2 4 4	0.46 0.48 1.20 1.48 0.40	
	18+25 18+00 17+75 17+50 17+25	2 4 4 4	0.88 0.94 0.74 0.24 0.46	
	17+00 16+75 16+50 16+25 16+00	8 4 2 4 4	0.88 0.82 0.16 0.54 1.70	

SOIL

Job#:87-324-	B Sample Number	Au ppb	Ag ppm	
CE L 37 W	15+75 N 15+50 15+25 15+00 14+75	· 2 2 4 4	1.15 1.14 0.68 0.58 56	
	14+50 14+25 14+00 13+75 13+50	2 4 2 4 2	1.25 0.84 0.63 0.18 0.40	
	13+25 13+00 12+75 12+50 12+25	2 4 4 2	0.33 0.46 1.28 0.90 0.48	
L 36 W	12+00 24+00 N 23+75 23+50 23+25	4 4 8 8 8	1.10 0.06 0.16 0.12 0.44	
	23+00 22+75 22+50 22+25 22+00	2 4 4 4	0.36 0.46 0.20 0.62 0.48	
	21+75 21+50 21+25 21+00 20+50	8 2 10 4 2	0.86 0.12 0.08 0.34 0.08	
	20+25 20+00 19+75 19+50 19+25	4 2 2 2 4	0.10 0.24 0.48 0.71 1.18	
	19+20 19+00 18+75 18+50 18+25	2 2 4 4 2	0.48 0.76 0.26 0.10 0.20	

Soil

.

.

Job#:87-324-H	3 Sample Number	Au	Ag	
	Number	444		0
CE L 36 W	18+00 N	2	0.80	Source
	17+75	4	0.28	
	17+60	2	0.50	
	17+50	4	0.64	
	17+00	48	0.40	
	16+75	. 4	0.40	
	16+50	2	0.64	
	16+00	2	1 24	
	15+75	<u>-</u> .4	0.60	
	15+75	4	0.80	
	13+30	8	0.76	
	15+25	8	0.24	
	15+00	8	0.36	
	14+/5	4	0.14	
	14+50	2	0.42	
	14+25	2	0.20	
	14+00	2	0.10	
	13+75	4	0.40	
	13+50	4	1.66	
	13+25	2	0.07	
	13+00	2	0.15	
			0110	
	12+75	4	0.44	
	12+25	6	0.59	
	12+00	10	0.73	
L 35 W	24+00 N	4	0.24	
	23+75	18	0.14	
	23+50	2	0.40	
	23+25	2	0.16	
	23+00	8	1.84	
	22+75	6	0.20	
	22+50	4	0.20	
		-4	0.20	
	22+25	68	0.16	
	22+00	4	0.34	
	21+75	4	0.24	
	21+50	4	0.32	
	21+25	4	0.34	
	20+75	1.4	0 19	
	20+50	1 "T	0.19	
	20-00	0	0.23	
	20720	4	0.35	
	20+00	4	0.30	
	134/3	6	0.24	

.

Job #:87-324-B Sample	Au	Ag	
Number	ppb	ppm	
CE L 35 W 19+50 N	2	0.20	Soil
19+00	2	0.18	
18+75	26	0.16	
18+50	2	0.59	
18+25	4	0.47	
18+00	4	0.36	
17+75	2	0.51	
17+50	4	0.42	
17+25	2	0.22	
17+00	4	1.20	
16+75	10	0.16	
16+50	6	0.14	
16+25	4	0.18	
16+00	8	0.40	
15+75	4	0.16	
15+50 15+25 15+00 14+75 14+50	4 8 2 4	0.36 0.08 0.12 0.07 0.70	
14+25 14+00 13+75 13+50 13+25	8 6 4 2	0.28 0.61 0.80 0.92 0.11	
13+00	6	0.21	
12+75	2	0.24	
12+50	8	0.88	
12+25	4	0.36	
12+00	880	1.64	
11+75 11+50 11+25 11+00 10+50	4 4 4 4	0.24 0.32 0.50 0.78 0.58	
10+25	4	1.36	
L 34 W 24+00 N	14	0.24	
23+75	6	0.25	
23+50	4	0.15	
23+25	42	0.34	

Ag	Au	Job #:87- 324-B Sample
ppm	ppb	Number
0.80	8	CE L 34 W 23+00 N
0.80	4	22+75
0.36	76	22+50
0.54	22	22+25
0.52	4	22+00
0.88	8	21+75
0.18	4	21+50
0.30	4	21+25
0.19	26	21+00
0.28	6	20+75
0.86	다	20+50
0.14	다	20+25
0.58	다	20+00
0.68	다	19+75
0.08	다	19+50
0.40 0.32 1.06 0.62 0.48	4 8 4 8	19+25 19+00 18+75 18+50 18+25
0.28	4	18+00
0.71	18	17+75
0.10	4	17+50
0.84	6	17+25
0.62	4	17+00
0.22	4	16+75
0.58	4	16+50
0.70	14	16+25
0.37	6	16+00
0.32	8	15+75
0.34	4	15+50
0.52	4	15+25
0.20	8	15+00
0.48	8	14+75
0.44	4	14+50
0.26	8	14+25
0.32	4	14+00
0.22	8	13+75
0.24	4	13+50
0.04	4	13+25

Soil

Page 22

14 - 2235 30th Ave. N.E., Calgary, Alberta, T2E 7C7 (403) 250-9460

,

Job#:87-324-	B Sample Number	Αυ ρρb	Ag ppm	
CE L 34 W	13+00 N 12+75 12+50 12+25 12+00	8 4 4 14 2	0.08 0.10 0.06 0.20 0.12	
	11+75 11+50 11+25 11+00 10+75	4 2 4 8 4	0.06 0.15 0.22 0.60 0.20	
L 18 W	10+50 10+25 10+00 20+00 N 19+75	12 12 4 4 2	0.44 1.08 0.40 0.30 0.48	
	19+50 19+25 19+00 18+75 18+50	22 6 10 4 4	0.09 0.49 0.48 0.44 0.64	
	18+25 18+00 17+25 16+75 16+50	4 8 14 6 4	2.20 0.80 0.90 0.32 0.51	
	16+25 16+00 15+75 14+75 14+50	4 6 2 4 2	1.38 0.55 0.14 1.16 0.64	
	14+25 14+00 13+75 13+50 13+25	10 8 6 2 4	0.51 0.60 0.23 0.65 0.34	
	13+00 12+75 12+50	4 2 4	0.30 0.86 3.60	

r

Soil

.

Page 23

J	87-353	Sample	Number	Au	Ag
~ <i>P</i>				ррь	ppm

.

•				
Rock	CE 18+40 N	14+20 W	42	0.30
	17+250N	12+35 W	2	0.18
	16+98 N	12+95 W	2	0.06
	16+95 N	13+03 W	4	0.29
	16+75 N	12+60 W	2	0.17
	16+25 N	18+50 W	678	3.80
	15+75 N	18+50 W	2	0.04
	15+50 N	16+85 W	4	7.10
	BL15+00 N	18+25 W	2	0.04
	14+70 N	18+25 W	2060	64.0
	14+50 N	18+30 W	296	24.0
	14+20 N	18+60 W	4	0.17
	14+00 N	18+50 W	130	9.00

Page 2

/

J00#:	87-353	Sample	Number	Au ppb	Ag ppm
Soil	CE	L 20+00 W	20+00 N 19+75 19+25 19+00 18+75	6 4 2 2 2	0.72 0.78 0.65 0.56 0.73
			18+25 18+00 17+75 17+50 17+25	4 8 2 2 4	0.68 0.64 1.13 0.68 2.60
			17+00 16+75 16+50 16+25 16+00	4 4 2 2 2	0.22 0.11 1.05 0.48 1.26
14.00°			15+75 15+50 15+25 14+75 14+50	4 2 4 2 2	0.36 1.48 0.91 0.46 0.40
			14+25 14+00 13+75 13+50 13+25	2 6 2 4 2	0.58 0.26 0.16 0.44 0.68
			13+00 12+75 12+50 12+25 12+00	12 2 2 8 8	0.54 0.66 0.32 0.20 0.24
		1/2 2/2 1/2	11+75 11+50 11+25 11+25 11+00	8 8 2 8 2	0.48 0.56 0.44 1.28 0.56
		2/2	11+00 10+75 10+50 10+25 10+00	8 2 2 4 2	0.44 0.36 0.54 0.30 0.30

Joe#:	87-353	Sample	Number	Au ppb	Ag ppm
SOIL	CE	L 19+00 W	19+75 N 19+50 19+25 19+00 18+75	2 14 2 2 2	0.58 1.18 0.82 0.62 1.34
		٤	18+50 18+25 18+00 17+75 17+50	2 4 2 2 2	0.44 0.56 0.28 0.82 0.60
			17+25 17+00 16+75 16+50 16+25	2 2 2 2 2 2	1.82 0.56 0.60 1.04 0.30
~			16+00 15+75 15+50 15+25 15+00	2 2 2 2 2 2	0.56 0.66 0.60 0.28 0.48
			14+75 14+50 14+25 13+75 13+50	2 2 6 4 4	0.24 0.38 0.40 1.68 1.32
			13+25 13+00 12+75 12+50 12+25	4 2 6 2 2	1.22 1.96 1.18 0.64 0.86
			12+00 11+75 11+50 11+25 11+00	2 2 2 2 2	2.40 0.12 0.56 0.10 0.32
		1/2 2/2	10+75 10+50 10+50 10+25 10+00	2 4 4 2 8	0.18 0.20 1.00 0.30 0.16

J 35 #:	87-353	Sample	Number	Au ppb	Ag ppm
Soil	CE	L 18+00 W	12+00 N 11+75 11+50 11+25 11+00	2 8 4 4 2	0.26 0.22 0.14 0.72 0.84
		L 17+00 W	10+75 10+50 10+25 10+00 11+50	2 2 70 8 4	0.46 0.34 0.42 0.80 0.12
			11+25 11+00 10+75 10+50 10+25	2 2 2 2 2 2	0.46 0.98 0.36 1.00 0.56
•		L 16+00 W	10+00 17+75 N 17+50 17+25 17+00	2 20 6 2 2	0.58 0.38 0.76 0.50 0.82
			16+75 16+50 16+25 16+00 15+75	2 2 6 8	0.18 2.00 2.00 2.50 0.52
			15+50 15+25 14+75 14+50 14+25	2 2 2 2 4	0.62 0.28 0.24 0.26 4.00
			14+00 13+75 13+50 13+25 13+00	2 2 2 2 2 2	7.00 2.80 0.74 1.28 4.60
			12+75 12+50 12+25 12+00 11+75	2 2 2 2 2	1.74 5.00 4.40 1.04 0.52

.

J ð# #:	87-353	Sample	Number	Ац ррб	Ag ppm
Soil	CE	L 16+00 W	11+50 N 11+25 11+00 10+75 10+50	2 2 4 6 2	0.54 0.58 0.30 0.36 0.18
		L 15+10 W L 15+07 W L 15+00 W	10+25 10+00 19+00 N 18+75 N 18+50 N	2 2 124 12 2	0.46 0.12 0.28 0.60 0.64
			18+25 18+00 17+75 17+50 17+25	120 2 2 2 2	0.68 0.62 0.78 0.70 0.48
			17+00 16+75 16+50 16+25 15+25	2 4 6 2 12	1.08 0.74 1.74 0.24 1.08
			15+00 14+50 14+25 14+00 13+75	184 8 2 4 8	0.34 0.24 0.30 0.48 0.28
			13+25 13+00 12+75 12+50 12+25	8 2 4 2	6.00 0.24 0.52 1.74 9.60
			12+00 11+75 11+50 11+25 11+00	22 2 2 2 44	3.60 3.20 3.30 0.50 0.72
		L 14+00 W	10+75 10+50 10+25 10+00 20+00 N	2 2 2 2 2	0.24 0.14 0.26 0.48 0.30

Page 6

,

.

J)#: 87-353	Sample	Number	Au ppb	PDW PDD
SOIL CE	L 14+00 W	19+75 19+50 19+00 18+75 18+25	2 10 8 4 10	0.42 0.50 0.56 0.44 0.58
	·	18+00 17+75 17+50 17+00 16+75	12 2 8 2 2	0.36 0.56 1.16 2.00 2.10
		16+50 16+25 16+00 15+75 15+50	2 2 2 4 2	0.64 0.82 1.36 0.28 0.94
~		15+25 14+75 14+50 14+25 14+00	2 2 2 2 2 2	0.34 0.90 0.78 0.62 0.72
		13+75 13+50 13+25 12+75 12+50	2 2 6 2 2	0.28 0.74 2.40 0.32 2.00
		12+25 12+00 11+75 11+50 11+00	2 2 4 4 16	0.94 1.52 0.62 0.22 0.26
	L 13+00 W	10+75 10+50 10+25 10+00 19+75 N	10 2 2 2 4	0.26 0.74 0.26 0.74 6.80
		19+50 19+25 19+00 18+75 18+50	12 8 2 12 10	2.00 2.70 1.54 1.14 0.66

•

Page 7

Soit CE L 13+00 W 18+25 N 8 0.48 18+00 2 0.26 17+75 2 1.80 17+50 2 1.78 17+25 10 2.30
18+00 2 0.26 17+75 2 1.80 17+50 2 1.78 17+25 10 2.30
17+75 2 1.80 17+50 2 1.78 17+25 10 2.30
17+73 2 1.30 17+50 2 1.78 17+25 10 2.30
17+30 2 1.78 17+25 10 2.30
17+23 10 2.30
2 MY . A A 2 A A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4
1/+00 106 0.90
16+75 2 0.56
16+50 4 0.42
16+25 2 0,66
16+00 2 2.00
15+50 2 1.40
15+25 2 0.70
15+00 2 0.74
14+75 8 0.76
14+50 4 1.62
14+25 2 1.02
13+75 2 0.98
13+50 2 0.64
13+25 2 0.36
12+75 2 0.66
12+50 2 1.06
12+25 2 1.18
12+00 2 0.38
11+75 2 0.24
11+50 4 0.28
11+25 2 0.24
11+00 2 0.16
10+75 2 0.82
10+50 2 0.38
10+25 2 0.66
10+00 4 0.44
L 12+00 W 19+00 N 6 0.10
18+75 4 0.12
18+50 2 0.10
18+00 2 0.20
17+75 2 0.44
17+50 2 0.26
17+25 4 0.42
17+00 2 0-62

.

J ~#:	87-353	Sample	Number	Au ppb	Ag Ppm
Soil	CE	L 11+00 W	13+50 N 13+25 13+00 12+75 12+25	8 2 2 2 4	0.78 0.48 0.74 0.26 0.58
			12+00 11+75 11+50 11+00 10+75	2 2 4 6	0.86 0.34 1.34 1.16 0.72
		L 10+00 W	10+50 10+25 16+00 N 15+75 15+50	2 8 4 120 10	0.30 1.32 0.32 0.26 0.34
			15+25 15+00 14+75 14+50 14+25	14 8 4 4 4	0.80 1.08 0.32 1.20 1.00
			14+00 13+75 13+50 13+00 12+75	2 24 2 2 2	0.54 0.20 1.64 0.56 0.38
			12+50 12+25 12+00 11+75 11+50	6 2 32 2 4	1.46 0.46 0.68 0.44 0.72
			11+25 11+00 10+75 10+50 10+25	8 20 4 2 2	0.64 0.76 1.88 1.00 0.88

J def: 87	-353	Sample	Number	Ац ррЪ	Ag ppm
Silt	CE	L 19+00 W	10+50 N	24	0.18
		L 14+00 W	19+25 N	8	0.48
			17+25	4	1.28
	,		15+35	4	0.52
			15+00	2	0.30
			13+00	4	0.68
			11+25	2	0.98
		L 13+00 W	15+75 N	2	0.26
			14+00	6	0.54
		L 12+00 W	18+58 N	4	0.46
			18+25	2	0.14
			16+00	84	0.46
			14+70	2	0.56
			12+25	2	0.44
		L 11+00 W	16+55 N	2	0.34
			15+70	6	0.52
			14+50	40	0.66
			12+50	90	0.64
			11+25	2	0.50
W			10+00	2	0.28
		L 10+00 W	16+25 N	4	0.24
			13+70	2	0.40
			13+25	10	0.74
			12+85	4	0.50
			11+35	2	0.20

:

J om: 87-353	Sample	Number	Au ppb	Ag ppm
Soil CE	L 12+00 W	16+75 N 16+50 16+25 15+75 15+50	2 2 2 2 2 2	0.38 0.26 0.58 0.84 0.38
East Grid		15+25 15+00 14+75 14+50 14+25	2 2 4 2 4	1.06 0.22 0.66 0.40 1.16
		14+00 13+50 13+25 13+00 12+75	8 4 2 16	0.40 0.36 0.30 0.18 0.76
~		12+50 12+00 11+75 11+50 11+25	2 8 8 12 6	0.46 0.54 0.98 0.26 0.24
	L 11+00 W	11+00 10+75 10+25 10+00 17+50 N	2 4 4 8 16	0.70 0.60 0.88 1.16 1.56
		17+25 17+00 16+75 16+50 16+25	4 2 2 4 4	0.28 0.44 0.80 0.20 0.44
		16+00 15+75 15+50 15+25 15+00	4 4 2 4	0.28 0.40 0.32 0.72 1.22
		14+75 14+50 14+25 14+00 13+75	2 2 4 2 2	0.48 0.56 0.54 0.22 0.26

,

Jobr:	87-371	Sample	Number		Au ppb	Ag mqq
SNIP						
Rock	CE	18+25 N	14+80 E		2	0.02
		16+00 N	12+10 W		6	0.25
		15+25 N	11+75 W		2	0.22
		42+00 W	18+00 N	A	112	0.07
				В	136	0.03
				C	268	0.06
				D 1	.760	0.31
				Ε	80	0.08
				F 1	.780	0.36
		41+05 W	17+23 N		6	0.02
			CESO90		12	0.44

Page 1

TERRAMIN RESEARCH LABS LTD.

J	87-371	Sample	Number	Au	Ag
				ppb	ppm

Soil

CE	L	44+50 42+50	W W	17+75 17+75	N N	4 30	0.08 0.28
				17+25 16+90 16+75		96 8 4	0.42 0.24 0.14

Page 2

.

Jrh#: 87-394 ❤️	Sample	Number	Ац ррb	Ag Ppm
Soil CE	L 44+50 W	21+25 N	4	0.16
		21400	2	0.28
		20470	4	0.35
		20730	4	0.14
		20720	0	0.22
		19+75	4	0.20
		19+50	2	0.30
		19+25	36	0.40
		19+00	4	0.24
		18+75	2	0.40
(Silt)	L 44+20 W	14+50 N	44	0.22
	L 44+00 W	21+00 N	4	0.50
	L 42+50 W	19+00 N	2	0.28
	L 40+75 W	22+25 N	4	0.22
		22+00	2	1.84
		19+75	10	0.16
		19+50	4	0.14
	L 40+00 W	21+25 N	24	0.24
	L 39+50 W	22+00 N	2	0.34
10- J		21+75	2	0.40
\checkmark		21+50	2	1.00
		21+25	8	0.74
		21+00	2	0.46
		20+75	2	0.32
		20+50	4	0.36
		20+25	2	0.30
		20+00	2	0.58
		19+75	2	0.62
		19+50	76	1.00
		19+25	980	2.30
		19+00	24	0.28
		18+75	2	0.28

÷

Job#:	87-394 SNIP		Sample	I	Number	•		Au ppb	Ag mqq	
Rock	CE	L	45+00	W	18+50	Ν		2	0.11	
		L	45+00	Ψ	18+25	N		4	0.03	
		L.	44+50	W	18+75	Ν		12	0.03	
		L	44+00	W	20+50	N		4	0.02	
		L	44+00	W	20+00	Ν		2	0.02	
		L	42+10	W	20+10	Ν		6	0.03	
		L	41+85	W	18+25	Ν		2	0.04	
		L	41+25	W	21+65	N	Α	10	0.03	
		Ł	41+25	W	21+65	Ν	В	8	0.08	
		L	41+00	W	2#+00	Ν		74	0,08	
		L	40+80	W	19+75	N	A	26	0.09	
		L	40+80	ω	19+75	Ν	в	10	0.02	
		L	40+75	ω	20+60	Ν		22	0.05	
		L	40+25	W	23+25	Ν		8	0.07	
		L	39+60	W	23+25	Ν		4	0.08	
		L	39+00	W	23+50	Ν		8	0.05	

.

.. .

. ۲

,

:

SNIP	87-403 Sample Number	Au	Ag
Soil		[- [- w.	P P III
	CE 0185	B 12	0.32
	123	7 4	0.60
	1237+5m	N 2	0.86
	1237-5m	5 2	0.68
	CE L 16+50 N 18+75 18+50 18+25 18+00 17+75	₩ 2 4 2 2	1.02 0.58 0.42 0.54 0.76
	17+50	4	0.28
	L 16+00 N 19+00 J	2	0.16
	18+75	6	0.36
	18+25	4	1.54
	18+00	2	0.70
	17+75	2	0.68
	17+50	2	0.42
	L 15+50 N 18+75 W	2	0.30
	18+50	2	0.54
	17+50	16	8.80
	17+25	4	2.40
	L 15+00 N 19+00 W	5	0.36
	18+75	2	0.74
	18+50	10	0.40
	17+50	12	0.20
	17+25	4	2.60
	17+00	2	0.40
	16+75	2	2.50
	16+50	2	1.80
	L 14+50 N 18+75 W	2	0.54
	18+50	2	0.36
	17+75	2	0.46
	17+50	8	0.28
	17+25	4	0.54
	L 14+00 N 18+75 W	4	0.34
	17+75	2	0.60
	17+50	4	0.40
	17+25	2	0.82
	16+75	2	3.10
	16+50	2	2.80

Page 1

TERRAMIN RESEARCH LABS LTD.

. _ _ _ _

J _ #:	87-403	Sample	Number	Au ppb	Ag mqq
Soil	CE	L 13+50 N	18+75 W	1. 2	2.30
			18+50	4	4.40
			18+25	2	0.22
			17+75	4	0.14
			17+50	4	0.18
			17+25	2	0.44
			16+75	2	1.62
			16+50	2	3.30
		ROCK	CE5104	146	0.11

,

.

Page 2

APPENDIX II

ROCK DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS:

f

COVE ENERGY

...

(

SAMPLE #	NORTHING	/EASTING	DESCRIPTION	COMMENT
CE 2309 R	72.05	71.48	Intermediate intrusion, fine grained, bluish-greenish fresh surface, highly altered to gossan for most part; silicified in parts, some quartz veining, pyrite	
CE 4068 R	73.32	69.60	showings (< 5%), minor galena. Intermediate tuff, light blue to greenish colors, wavy lenses and stringers of light and dark minerals, > 15% clay minerals - soapy, powdery texture - well bedded, possible foliation, no visible sulphides.	
CE 4069 R	72.97	69.75	Intermediate tuff (as CE 4068), highly sheared and altered, high clay content (approx. 40%), very soft, beige/bluish weathered surface, no visible sulphides.	Irregular small scale folds due to shear
CE 4070 R	72.99	69.70	Intermediate tuff, sheared and altered as above (4069)	
CE 4071 R	72.98	69.75	Intermediate tu ff, medium grained, blue to light grey, brittle, well bedded, no visible sulphides.	
CE 4072 R	72.97	69.76	Felsic tuff, medium grained, light green-white color, inter-bedded with finer grained layers, greenish-white fresh surface, no visible sulphides.	
CE 4073 R	72.87	69.76	Intermediate tuff, fine grained, bluish green, Fe-oxide staining on weathered surface, well bedded, no visible sulphides.	
CE 4074 R	72.07	68.47	Intermediate tuff, fine grained, bluish green fresh surface, Fe-oxide staining on weathered surface, brittle, thinly bedded, slightly schistose, no visible sulphides.	

.

ROCK SAMPLE DESCRIPTIONS:

COVE ENERGY

ſ

SAMPLE #	NORTHING/	EASTING	DESCRIPTION	COMMENT
CE 4075 R	73.43	67.63	Intermediate tuff, fine grained, light blue, alteration to light brown clay mineral, alteration to Fe-oxide, minor quartz veining, wavy weathering surface, no visible sulphides.	Possible foliation at 100 ⁰
CE 4076 R	73.33	67.51	Intermediate tuff, same as above (CE 4077 R) with more quartz veins - isoclinal small scale folding, associated chlorite precipitated, no sulphides visible however	Isoclinal small scale folding in quartz veined areas – shear zone
CE 4077 R	73.33	67.51	Quartz veining from above wall rock, medium grained, much chlorite associated, dark orange powdery (Fe-oxide) also common, some pyrite, shiny green mica present.	
CE 4078 R	73.07	67.36	Intermediate tuff, light blue color, greenish in areas altered to chlorite, weathered out calcite leaving small "birds eye" shaped vugs; pyrite present (oxidation around crystals).	
CE 4079 R	73.01	67.11	Intermediate tuff, exactly as above (CE 4078 R); slight schistosity or foliation present	
CE 4080 R	72.87	66.86	Intermediate tuff as above (CE 4078 R) with heavy chlorite alteration in parts, no visible sulphides.	
CE 4081 R	72.64	66.77	Chlorite schist, fine grained, bluish-green color, definite schistosity at 130 ⁰ , brittle, chlorite altered, no sulphides are visible; originally same rock unit as above - just more heavily foliated.	
CE 4082 R	72.57	66.79	Intermediate tuff, fine grained, blue-green color, chlorite altered, rather unfoliated - massive, calcite blebs, light brown clay mineral as weathering product, no visible sulphides.	

ROCK SAMPLE DESCRIPTIONS:

COVE ENERGY

l

SAMPLE #	NORTHING/	'EASTING	DESCRIPTION	COMMENT
CE 4083 R	72.28	70.40	Chlorite schist, originally - volcanic tuff as below (CE 4084), brittle, green in color, some calcite veining, no visible sulphides.	
CE 4084 R	72.51	70.34	Intermediate tuff, intermediate composition, greenish- blue color, slightly chlorite altered, slight schistosic fabric, some calcite veining, no visible sulphides.	
CE 4085 R	72.83	70.25	Diorite, medium grained, heavy chlorite alteration, dark green color, minor calcite veining, whitish weathered surface; no visible sulphides.	
CE 4086 R	72.94	71.21	Intermediate intrusive, fine grained, dark blue- greenish, slight chloritization, Fe-staining, some pyrite present, 2" quartz vein.	-
CE 5074 R	71.45	68.33	Mafic flow; non-magnetic, minor calcite veinlets.	
CE 5075 R	71.72	68.18	Diorite. Cut by epidote (+ quartz?) veinlets. Feldspars sausseritized. Strong chlorite in some areas.	
CE 5076 R	71.71	68.08	Siliceous, cherty unit, with sub-parallel (to So) quartz-veining. Moderately contorted. Joints have strong chlorite, often with molds of pyrite.	
CE 5077 R	71.71	67.90	Metasediment (metaquartzite?); very silicic with approx. 3% disseminated pyrite; minor carbonate, and minor quartz + pyrite veinlets.	
CE 5078 R	71.59	63.37	Dark green, massive, basic flow, well jointed, but no shearing; moderate carbonate alteration; there is also a more dioritic phase as well as a foliated phase (in float) with 1-5% pyrite.	-

-

l
.

SAMPLE #	NORTHING/EAST	ING DESCRIPTION	COMMENT
CE 5079 R	71.34 68.	21 Medium grained mafic flow with moderate to good epidote veining as well as pervasive alteration.	
CE 5080 R	71.83 68.	6 Thin-bedded (2 cm) chert/tuff; chert has 1% very fine grained pyrite (?)	
CE 5081 R	71.94 68.	0 Chert/tuff; chert is becoming more dominant and has coarse-grained pyrite (<<.5 cm).	
CE 5082 R	72.35 67.	87 Medium grained diorite, magnetic; moderate quartz veining as well as epidote and carbonate alteration.	
CE 5083 R CE 5084 R CE 5085 R	72.44 67. """	Hanging wall, quartz vein and footwall of a shear zone within diorite; total zone is 1.3 m wide; hanging wall and footwall are quite similar, i.e. are very schistose with good clay alteration and possibly pyrite, but hanging wall appears slightly more altered; the quartz vein is $10 - 30$ cm wide, is massive to sheared, contains some diorite inclusions and has moderate chlorite alteration and 2% pyrite cubes (1 mm^3) .	
CE 5086 R	73.04 66.	5 Mafic volcanic; very foliated and moderately schistose, with chlorite alteration, 1-2% pyrite and often good limonite and epidote alteration; contains interbeds of carbonate, as a rule, no more than centimeters wide.	
CE 5087 R	72.16 70.	8 Fine grained, light grey felsic tuff (?); good clay present, very fractured and fissile; contains 5% + pyrite.	

.

COVE ENERGY

	SAMPLE #	NORTHING	/EASTING	DESCRIPTION	COMMENT
•	CE 5088 R	72.26	70.40	Boulder. Thin-bedded sediment (?); unit has been very silicified and it is difficult to observe original unit. This contains 60% later quartz, mainly as concordant veins and veinlets, but also as large pods; sample is from a small area containing 3% galena within a 2 cm quartz vein.	· · · · · · · · · · · · · · · · · · ·
	CE 5089 R	72.48	70.42	Interbedded thin-bedded chert, tuff and felsic tuff (?). Latter was sampled and was very fractured, fissile and rusty; possible tiny quartz-eyes, similar to 5087 R.	
	CE 5090 R	13+75N	10+50W	Fine-grained, dark grey volcanic with 2% fine-grained disseminated pyrite; strong quartz-carbonate veining.	
		18+25N	14+80W	10 to 40 cm interflow carbonate vein with later 1 to 2 cm white quartz veins; often very strong chlorite alteration of volcanic inclusions; very minor vugs; no sulphides.	
ł	CE 5104 R	72.90	67.81	Talus of foliated diorite from soil hole location CE 0185 (2080 ppb Au).	
•	CE 6180 R	72.82	69.28	Fine grained, felsic tuff, minor chlorite alteration, soft sediment deformation(?), shear(?), no visible sulphides, no Fe-staining.	Bedding plane could be shear plane
(CE 6181 R	72.93	69.26	Calcite and quartz (60-40) alteration zone, trend 60 ⁰ parallel to bedding, dirt brown weathering, vuggy, chlorite alteration, altered siltstone.	
(CE 6182 R	72.9	69.50	Intrusive, intermediate, slight Fe-staining, small vugs (< 2mm) of dirt brown weathering, plagioclase, hornblende, quartz, biotite, muscovite, no visible sulphides - diorite.	Intruding granodiorite 4"-6" wide, 10'long, trend 30 ⁰

ROCK	SAMDIE	DECODIDTIONC.
NUCK	SHILLE	DESCRIPTIONS:

COVE ENERGY

ł

SAMPLE #	NORTHING/EA	ASTING	DESCRIPTION	COMMENT
CE 6183 R	73.28	69.33	Highly fractured outcrop, intruded by epidotized aplitic intrusive with a trend of ⁰ 08, wall rock is altered granodiorite to diorite, highly silicified and chloritized; sulphides < 1% (arsenopyrite) in silicified green alteration zone, associated with the aplitic intrusives.	Near contact with intrusives and sediments
CE 6184 R	72.08 6	58.88	Fine grained sediments, sandstone, minor sericitic alteration; arsenopyrite < 2%, Fe staining along beds, green coloration of fresh surface, chalky weathering, non magnetic.	Outcrop(?)
CE 6185 R	72.42 6	58.62	Shear(?), bedding(?), Fe-stain along plane, non magnetic, fine grained chert; pyrite < 1%, minor chlorite alteration.	
CE 6186 R	73.34 6	37.98	Abundant Fe-stain, clay altered on weathered surface, soft interbedded layers within quartzite, no visible sulphides, interbedded siltstone, quartz and calcite veins scattered throughout outcrop. (No associated sulphides.)	
CE 6187 R	73.37 6	37.98	Fe-staining on surface as well as disseminated throughout groundmass, slight saussuritization, fine to medium grained, porphyroblasts of pyrite < 0.5cm, euhedral, cubes with red-brown tarnish (pyrite); chalcopyrite << 1%, sheared tuff(?).	In contact with quartzite, foliation parallel to assumed contact, could indicate a sheared intrusion (diorite?) with flow banding

2

,

COVE ENERGY

SAMPLE #	NORTHING	/EASTING	DESCRIPTION	COMMENT
CE 6188 R	73.25	67.81	Pyrite (rust) euhedral < 1%, porphyroblasts, < 0.5cm, Fe-staining along fractures, foliation (schistose) parallel to contact of quartzite; fine grained, intermediate, sheared tuff, some minor calcite stringers, minor clay alteration (muscovite).	
CE 6189 R	73.21	67.67	Clay altered tuff, similar to 6187, more Fe staining, no visible sulphides, schistose fabric, parallel(?) to bedding, vuggy appearance on some weathered surface, associated with gossan stringers.	
CE 6190 R	72.96	67.29	Sheared tuff, altered to clay minerals and chlorite, pods of chlorite and quartz intruding across foliation, calcite vugs (minor) present, no visible sulphides, Fe- staining (minor).	Fe-staining along fracture and disseminated in groundmass
CE 6191 R	72.96	67.29	Quartz vein, white, opaque, no crystal formation, homogenous, no visible sulphides, chlorite and Fe- staining along contact.	Intrudes across foliation of tuff
CE 6192 R	72.79	67.00	Fine grained, intermediate, Fe-stain along weathered surface and disseminated up to 0.5cm into sample, chlorite alteration, sheared tuff, broken to highly fractured outcrop.	Not as sheared as similar samples
CE 6193 R	72.67	66.94	Sheared, cherty, tuff (mafic), sulphide (pyrite), fine grained, << 1%, chunky bedded (sheared?), slight schistose fabric, chlorite alteration especially along cleavage, minor saussuritization.	Cliff outcrop
CE 6194 R	72.59	66.95	- as above	- as above

COVE ENERGY

ł

SAMPLE #	NORTHING	/EASTING	DESCRIPTION	COMMENT
CE 6195 R	71.77	70.92	Gossan, Fe staining, sulphide yellow on weathered surface; felsic tuff - host rocks, very brittle, soft, chalky appearance, convoluted bedding, fresh surface difficult to find, fresh is greenish with layers of white quartz (some pods), no visible sulphides, shear(?), parallel to creek, unable to determine orientation.	
CE 6196 R	71.85	70.96	Fine grained, pods and stringers of calcite and quartz, along foliation, quartz eyes(?), tuffaceous trace sulphides in calcite, Fe stains, shear(?), schistose fabric (mafic).	Calcareous mudstone possible
CE 6197 R	72.36	70.75	Gossan tuff, fine grained, intermediate, Fe-staining, sulphides < 3% (chalcopyrite, pyrite, arsenopyrite), blue-green on fresh surface, convoluted layers, shear(?), cherty layers.	
CE 6198 R	72.45	70.70	Breccia tuff with mafic flow(?), gossan, Fe-stain, pyrite, arsenopyrite and chalcopyrite < 3%; varieties of tuff, coarse to fine grained, calcite pods, cherty tuff, breccia of mafic volcanics.	Samples of several types of tuff in one outcrop
CE 6199 R	72.58	70.65	Pyroclastic, felsic clasts, gossan, confined to green brittle tuff, sulphides < 5%, pyrite, along cleavage/bedding.	Extends through the traverse, trend of 320 ⁰
A	18+00N	42+00W	Very strong chlorite altered unit on the hanging wall (?) of a gossan. Often 1 mm cubes of pyrite disseminated in the matrix (<< 1%). Minor quartz veinlets and strong buff carbonate staining on the weathered surface.	

COVE ENERGY

ł

MPLE #	NORTHING	G/EASTING	DESCRIPTION	COMMENT
В	18+00N	42+00W	Gossan - very weathered and has a low density. Strong limonite and buff coloured carbonate staining. Many small (1 - 2 mm) quartz <u>+</u> carbonate veinlets; no sulphides seen.	
С	18+00N	42+00W	Zone of quartz-carbonate veining on the footwall of the gossan. Clean, white to translucent quartz and orange- brown carbonate. When the vein encloses the wallrock, the latter has undergone very strong chloritization and usually contains $1 - 2\%$ pyrite. The maximum width is 0.2 metres.	
D	18+00N	42+00W	Gossan - on hanging wall of quartz vein zone; resulting from pyrite weathering out of a chloritic zone; it appears to be at least 0.7 m wide, but is very poddy.	
Ε	18+00N	42+00W	Three to four metres south of sample 'D'. Relatively unaltered wacke or sandstone. Moderate quartz veining throughout. Somewhat bleached and possibly contains minor sericite. $1 - 2\%$ pyrite especially proximal to the quartz veins; the latter range from 1 mm to 1 cm.	
F	18+00N	42+00W	Ten metres north of sample 'D'. Very fine-grained sediment or volcanic. 5 - 10% pyrite disseminations. Light grey, often fissile when weathered. Moderate pervasive carbonate alteration.	
	17+23N	41+05W	Interbedded volcaniclastic, fine-grained sandstone and dirty limestone. Volcanic is schistose due to 5% chlorite component. It has also been reworked and contains rounded pebbles of sandstone. Minor cross- cutting quartz-carbonate veinlets; occasional large pyrite crystals, i.e. 2+ cm ³ .	

COVE ENERGY

•

÷

SAMPLE #	NORTHIN	G/EASTING	DESCRIPTION	COMMENT
	20+60N	40+75W	Mafic flow - 5-10% pyrite. Strong pyritization and possibly quartz-carbonate veining at 090/70S.	
	23+50N	39+00W	Site of soil sample containing 2060 ppb Au. No apparent reason for the anomaly. About one foot of soil has developed over talus of slightly pyritic and carbonaceous siltstone and felsic intrusive. The latter contained moderate quartz veining, but no sulphides were seen.	
A & B	21+65N	41+25W	Mafic flow, very magnetic. Strong quartz <u>+</u> carbonate veining, usually with associated pyrite in the wallrock. Trace chalcopyrite, trace galena (?).	
			'A' - 10% quartz and carbonate veins with trace galena. 'B' - Mainly quartz vein with minor pyrite.	
	20+90N	41+00W	Cliff of mafic flow. Sample is from a 0.4 metre thick section of gossan containing 10% pyrite and minor quartz veins.	
A	19+75N	40+80W	Quartz sandstone with minor tuff containing 5% pyrite.	
В	19+75N	40+80W	Quartz vein - very clean; occurs as float on a ledge below the cliff.	
	18+25N	41+85W	Mafic flow; moderate quartz-carbonate veinlets with pyrite in the wallrock. Moderate chlorite.	
	20+10N	42+10W	Mafic flow; very magnetic. Fairly strong quartz- carbonate veinlets at this location, i.e. one veinlet every 2 - 3 cm over at least 2 metres. Veins trend at 130/45W.	

COVE ENERGY

ς.

SAMPLE # NORTHINC/EASTINC	DECORTERION	
Sind 22 " NONTHING/EASTING	DESCRIPTION	COMMENT

(

/

18+50N	45+00W	Sample is from a quartz vein within a lapilli tuff. Quartz veins are relatively minor, usually 1 cm wide but widening to 15 x 20 cm (sample). Contains trace pyrite and minor chalcopyrite stringers.	
23+25N	39+60W	Dolomite with narrow (2 - 5 cm) interbeds of sandstone.	
23+25N	40+25W	Small boulder of a felsic unit. Very good quartz veining and very siliceous with minor pyrite.	
18+75N	44+50W	Massive, altered basalt with sericite and chlorite. Disseminated crystals of magnetite (2 - 3%).	Believed to be sub- outcrop, but it could be a boulder.
18+25N	45+00W	Massive lava flows (basalt?) with minor quartz veining (approx. 1%), minor carbonate (siderite) (3 - 5%). Disseminated pyrite approx. 0.5%.	Nearby outcrop with vesicular (20 - 30%) massive lava flows with carbonate alteration and disseminated pyrite <1%.
14+50N	18+30W	Volcanic tuff with quartz stringers (approx. 4 mm wide), some weathered out carbonate, much goethite and Fe- stain, 1 – 2% pyrite, < 1% chalcopyrite, minor malachite.	
14+20N	18+60W	Quartz; white to orangy (Fe-stain), contains minor sphalerite, malachite, goethite present on vein margin, minor pyrite (<1%).	2 1/2" wide quartz vein.
14+00N	18+50W	Volcanic tuff with quartz veinlets penetrating in 1 1/2' wide zone. Some chlorite alteration of volcanic, minor pyrite (<1%), minor malachite staining, bright red hematite staining; 1 - 2% chalcopyrite, goethite present, some weathered out carbonate.	

COVE ENERGY

SAMPLE # NORTHING/EASTIN	DESCRIPTION	COMMENT
14+70N 18+25W	Volcanic tuff with quartz veining across 1' wide zone, much goethite present, good malachite staining, up to 3 - 4% chalcopyrite.	
18+40N 14+20W	Volcanic tuff?; light to dark blue fresh surface, carbonate weathered out leaving slightly pitted outcrop surface, heavily gossan-stained, fine-grained pyrite present in small masses and disseminated throughout rock (average = 3 - 4%), non-magnetic.	Gossan in 3 - 4' wide zone subparallel to nearby horizontal bedding. Gossan extends for approx. 10 m along outcrop exposure.
17+25N 12+35W	Volcanic tuff; light blue fresh surface, heavy orange to dark brown Fe-weathering throughout entire outcrop along fractures and microfractures, some carbonate weathered out leaving pitted weathering surface; minor visible weathered out fine-grained pyrite (cubes), and extreme lack of sulphides visible on fresh surfaces.	Outcrop not flagged.
15+00N 18+25W	White quartz, fine-grained, from 3' wide quartz-rich zone in diorite, some granular chlorite associated, small (1" round) "spot" of malachite staining; no visible sulphides.	
15+75N 18+50W	Quartz-carbonate vein, 8" wide through diorite; location close to diorite/volcanic contact.	
16+25N 18+50W	Quartz from 3' wide silicious zone through diorite; some orange Fe-stained quartz with showings of chalcopyrite, malachite staining, minor chlorite present, minor pyrite.	Quartz zone trend = 165 ⁰
15+50N 16+85W	Heavily silicified sediment or volcanic? light blue- green colour with 1 - 2 mm quartz veinlets in a mesh pattern throughout rock, slightly calcareous, minor malachite stain; no visible sulphides.	

COVE ENERGY

And the second descent data and the second descent data and the second descent data and the second data and the					والمتكاف فيتحدث والمستعلي والمستعدين والمستعد والمستعد والمتعاوين والمتقون والمستعد والمستعد والمتعاد والمستعد والم
CAMDIT TO H	1	110D m11 T 110	ITLOTTIC 1	DECONTRETON	
SHULLD #	- i	NOKIHING	/EASTING :	DESCRIPTION	
And in case of the local division of the loc					

16+95N 13+03W Same as 17+25N/12+35W Same as 17+25N/12+35W; with approx. 4" wide Fe-stained Possible shear at 16+98N 12+95W quartz vein parallel to possible shear, no visible 010°,32° W sulphides. 16+75N 12+60W Same as 17+25N/12+35W 16+00N 12+10W Same as 17+25N/12+35W gossan-staining trends through creek at approx. 310° from outcrop for 50 m. Intermediate volcanic tuff?; dark blue-grey fresh 15+25N 11+75W surface, evidence of weathered out carbonate, goethite present, disseminated pyrite approx. 1%.

APPENDIX III

ASSESSMENT REPORT No. 9190

DUPONT OF CANADA EXPLORATION LIMITED

DU PONT OF CANADA EXPLORATION LIMITED

GEOLOGICAL AND GEOCHEMICAL REPORT

BURTON AND CUMMINGS CLAIMS

LIARD MINING DIVISION

56⁰33'N Lat., 131⁰07'W Long.

NTS: 104-B-11E

Owner of claim(s): Du Pont of Canada Exploration Limited Operator: Du Pont of Canada Exploration Limited

files

Author: L. Eccles Date of Report: 1981 June 8

TABLE OF CONTENTS

E.		Page No.
E . ·	INTRODUCTION	1
II.	GEOLOGY	2
III.	GEOCHEMICAL SURVEY	6
IV.	COST STATEMENT	7
۷.	QUALIFICATIONS	10

Appendix A - Geochemical Analytical Procedure

Index Map

LIST OF FIGURES

Behind Page Location Map 1 1

Dwg. AR 80-173 / Burton & Cummings Claims, Geology In pocket Dwg. AR 80-174

Figure 1 1.4

Figure 2

Burton & Cummings Claims, Geochemistry: Au, Ag, Cu, Pb

INTRODUCTION

(a) Location & Access

The BURTON and CUMMINGS claim groups are located in northwestern British Columbia within the Liard Mining Division, NTS 104-B-11E. The property is situated immediately west of the Jekill River on the east and northeast slopes of Brunt Mountain and are centered by latitude 56°33'N and longitude 131°07'W.

At present, access into the property is exclusively via helicopter either from the Stewart-Cassiar Highway 70 kilometres to the west or from the town of Stewart 100 kilometres to the southeast. Stewart represents the major (Canadian) supply centre within the region.

(b) Physiography

The BURTON-CUMMINGS property is situated within the Boundary Ranges of the Coast Mountains. This geographic province consists of a mountainous and glaciated terrain that exhibits relief in excess of 2000 metres. Tree-line varies from 1000-1200 metres above sea level. Below this point, particularly within the lower valleys, vegetation predominantly consists of a dense growth of conifers. Active glaciation is prevalent in the area particularly in terrain above 1500 metres.

Relief over the BURTON and CUMMINGS claims range from 1750 metres at Brunt Mountain to 230 metres within the Jekill River valley. The entire claim group is drained by steep northeast orientated tributaries of the Jekill River. Slightly greater than half the property occurs above tree-line.

(c) Claim Status

The property consists of two adjoining claim groups which entail a total of 28 units. The BURTON claims comprise 8 units whereas the CUMMINGS, which adjoins to the south, constitutes 20 units. Pertinent data for each group is outlined below.

BURTON · (8 units)	Record No: Tag No: Date Recorded:	1457 64783 July 14, 1980
CUMMINGS (20 units)	Record No: Tag 'No: Date Recorded:	1458 64773 July 14, 1980

(d) History and Economic Assessment of Property

Prior to 1980 no known mineral exploration appears to have been conducted in the vicinity of the BURTON-CUMMINGS property.

The evaluation programme undertaken in 1980 encountered several float occurrences of gold bearing quartz and calcite veins that are hosted within tuffaceous sediments and andesites. The nature and extent of these occurrences are presently unknown.

(e) Summary of Work

Subsequent to staking the claims three traverses were run along streams. The geological mapping was conducted at a scale of 1:10 000 (Dwg. AR 80-173 and covered an area of 2000 by 900 metres. In addition to the mapping a total of 8 rock samples and 16 stream sediment samples were obtained.

GEOLOGY

II

(a) Regional Geology

The Boundary Ranges of the Coast Mountains occur along the contact of the Intermontane and Coast Crystalline geologic provinces. The latter, the bulk of which occurs across the border in the Alaskan panhandle consists of Tertiary and Cretaceous quartz monzonite and quartz diorite. The Intermontane belt within the Iskut River area consists of Carboniferous and Permian schists and Upper Triassic andesite, basalt and clastic sediments. Intruding the Intermontane belt within this region are a number of intrusives that include Triassic diorite and monzonite, Jurassic quartz diorite and Cretaceous and Tertiary quartz monzonite.

Pliocene - Recent aerial volcanism extruded rhyolites, basalts and tuffs within the Edziza Peak, Level Mountain and to a lesser extent Iskut River areas.

(b) Property Geology

Geological Survey of Canada map no. 1418A (1974) indicates that the BURTON-CUMMINGS property is underlain by a 7 km x 1 km remnant of Upper Triassic siltstone, chert, sandstone and tuffs. This unit is largely enveloped by Carboniferous and Permian schists and gneisses. The southern segment of these Upper Triassic rocks are truncated by an early Tertiary granodiorite intrusive.

Mapping conducted on the property to date indicates the presence of three prominent lithologies: - argillaceous tuffs, cherty tuffs and andesite. In addition a diorite sill(s)(?) has been observed in the north.

i) Argillaceous Tuffs

These tuffs located in the northern portion of the area investigated are dark grey to green in colour, fine grained and exhibit well developed foliation. The unit is noted to contain minor limestone interbeds.

ii) Cherty Tuffs

The unit is widely distributed throughout the area mapped. It is green-grey in colour, siliceous and is well banded. Along creek 'C' (Dwg. AR 80-173) these tuffs are interbedded with andesite.

iii) Andesite

The unit is green in colour, occurs as a massive flow or as an alternating sequence with cherty tuffaceous beds. Garnet, epidote, actinolite and chlorite are described as being associated with a skarn along streams B and C. Locally this unit is described as being amphibolitized.

iv) Diorite

This intrusive occurs along stream A and appears to represent a sill(s). It is dark green in colour, medium grained and exhibits propyllitic characteristics.

With respect to structure, information obtained to date has been minimal. Within the northern portion of the area the lithologies appear to exhibit a gentle-moderate (26-42°) south attitude.

(c) Mineralization

Several occurrences of sulphide mineralization with precious metal values have been encountered on the property. These occurrences which predominantly occur as float are noted in a variety of modes. Along stream A gold values have been obtained from galena bearing quartz fragments and within a massive pyrrhotite sample that is associated with a black limestone interbed. In outcrop, barren quartz veins have been encountered. These veins are up to 1.5 metres in width and appear to be conformable to the attitude of the enveloping sedimentary tuffs.

Along stream B, pyrite, galena, sphalerite and magnetite occur in outcrop within a quartz vein along a tuff-andesite contact and within calcite veins hosted by andesite.

Several rock samples were obtained on the property. The pertinent data is shown below:

Stream 2	A					
Samp. No.	Rock Type	Au (o/t)	Ag <u>(o/t)</u>	Pb %	Zn 8	Cu %
3482	q.vsulp (float)	0.123	1.10	0.64	0.14	0.256
3483	mass.Po (float)	0.030	0.07	0.02	0.02	0.041
Stream	B			•		
Samp. No.	Rock Type	Au (o/t)	Ag (o/t)	Pb %	Zn %	Cu
6447	q.v.(py, gn,sph, mt)	0.118	2.11	1.16	0.01	0.004
6448	andes: calc.v, sulp.	0.009	0.42	0.02	0.03	[.] 1.860
4701	Tuff- py,cpy	0.001	0.01	0.01	0.01	0.009
4702	andes: po,calc/ qtz.v	0.001	0.01	 0.01	0.01	0.005
Stream	c					
Samp. No.	Rock Type	Au (o/t)	Ag (o/t)	Pb <u>*</u>	Zn %	Cu %
6439	-	0.001	0.01	0.01	0.01	0.011
6443	andes: (py,gn, mt)	0.001	0.01	0.02	2 0.02	9 0.02

(d) Conclusions

The BURTON-CUMMINGS claim group is underlain by andesites and sedimentary tuffs that have been noted to host base metal and precious metal bearing quartz and calcite veins. The mode and extent of this mineralization is at present unknown.

5.

GEOCHEMISTRY

III

(a) Procedure

Sixteen stream sediment samples were obtained from three streams draining the BURTON-CUMMINGS property. In the case of each traverse, sampling was terminated as a result of excessively steep terrain. Sampling was performed at an average interval of 250 metres. The stream sediment samples were obtained from the stream bed and deposited in wet strength bags. Each individual station was flagged revealing its appropriate sample number.

The samples were submitted to Min-En Laboratories in North Vancouver, BC for preparation and analysis. The specific procedure with respect to preparation and analysis is outlined in Appendix "A" - Procedure for Gold Geochemical Analysis.

(b) Results

The stream sediment samples were prepared to a -80 mesh fraction and analyzed for gold (ppb), lead (ppm), copper (ppm) and silver (ppm). Drawing AR 80-174 contains the various sample locations and their corresponding results.

Gold values reveal a range of 5 to 9 ppb with a medium value of 20 ppb. No trend appears to be evident, and the results obtained, although weakly anomalous, would not seem to coincide with the gold bearing samples observed along the various streams. Silver and lead results range from 0.9 to 1.5 ppm and 17-36 ppm respectively. The values are uniformly distributed over the area with no clear trends apparent. Copper results in the case of Stream A and C both indicate increasing concentration upstream. Stream A increases from 96 to 135 ppm whereas within Stream C the results range from 140-156 ppm. The significance of these trends is unknown. In conclusion, with the possible exception of copper, the stream sediment geochemistry fails to collaborate the presence of base or precious metals mineralization observed on the property or the possible source of the mineralized float.

IV COST STATEMENT

(a) <u>Wages</u>

		Rate/ day	Spec. dates	No.days		9	Cost
1 1	geologist junior	\$102.37	July 25/80	1	\$		102.3
٦	geologist	50.82	Jul.25-27/80	2.5			127.0!
1	asst. ir. field	46.58	Jul.25-27/80	2.5			116.4
	asst.	39.18	July 25/80	1			39.1:
1	tech.asst.	39.18	November/80	1			39.1:
1	geologist	146.92	March 4-6/81	3			440.7
	•				- \$;	864.9

(b) Room and Board

The per diem rate of \$50.41 applies to 7 person days during July 25-27/80:

\$ 352.8

(c) Transportation

Costs to and from the project area during July, pertinent to the BURTON-CUMMINGS claims, are split amongst claims that had work conducted upon.

A. To/From Project Area - Scheduled Carriers

Date	From-To	<u>Via</u>	No.pe	rsons	
Jul.13 Jul.14 Jul.15-	Van./Stewart Van./Stewart Whitehorse/	СР/ТРА СР/ТРА	2 @ 3 @	\$150.10 \$150.10	300.2 450.3
16/80 Jul.16 Jul.21-	Van./Stewart Van./Stewart Whitehorse/	СР/ТРА СР/ТРА	1 @ 1 @	\$301.00 \$150.10	301.0 150.1
22/80	Van./Stewart	CP/TPA	16	\$301.00	301.0
			•		\$1,502.6

BURTON-CUMMINGS portion (7/34 person days) \$ 309.3

APPENDIX IV

ASSESSMENT REPORT No. 11,342

ENERGEX MINERALS LTD.

83-#797-#11342

GEOLOGICAL BRANCH ASSESSMENT REPORT

GEOLOGICAL AND GEOCHEDICAL ASSESSMENT REPORT

on the

STAR 1 - 8, 10 . MINERAL CLAIMS

LOCATED IN THE ISKUT RIVER AREA

LIARD MINING DIVISION NTS 104 B/11 E

56[°] 33' N Latitude 131[°] 10' W Longitude

for

ENERGEX MINERALS LTD.

by

DAVID A. CAULFIELD, GEOLOGIST

CHARLES K. IKONA, P. ENG.

November, 1983

TABLE OF CONTENTS

1.0		page
1.0	INTRODUCTION	1 _/
2.0	LIST OF CLAIMS	1,
3.0	LOCATION, ACCESS AND GEOGRAPHY	2 /
4.0	HISTORY	4
5.0	REGIONAL GEOLOGY	4 /
6.0	LOCAL GEOLOGY	6 /
•	6.1 Structure	7 .
	6.2 Economic Mineralization	8 🖌
7.0	GEOCHEMISTRY	9 /
8.0	CONCLUSIONS	10 /
9.0	BIBLIOGRAPHY	11

APPENDICES

1

APPENDIX

- I . ITEMIZED COST STATEMENT /
- II SAMPLE DESCRIPTIONS
- III ASSAY CERTIFICATES
- IV STATEMENT OF QUALIFICATIONS ,
- V ENGINEER'S CERTIFICATE

LIST OF FIGURES

FIGURE 1	PROPERTY LOCATION MAP	after page 1 ⁄
2	CLAIM MAP	2 /
×3	REGIONAL GEOLOGY (w/legend)	5 ,
4	"A" CREEK TRAVERSE	6,
5	"Bu 11 11 11	6.
6	"C" " "	6,
X_7	LOCAL GEOLOGY	6,
8	STREAM - SEDIMENT LOCATIONS WITH SIGNIFICANT ASSAYS	9

1.0 INTRODUCTION

Energex has completed a preliminary exploration program on its Star group of claims situated just south of the confluence of the Jekill and Craig Rivers in northwestern British Columbia (Fig.1). The group consists of 9 claims totalling 166 units which were staked in the fall of 1982 and during February and March of this year. Skyline - Placer's "Reg" group adjoins the northeast corner of the group. Renewed interest in the area resulted from the exceptional gold values encountered during Skyline's 1982 drill program.

This initial week long program on the claims consisted of reconnassance prospecting and geological mapping combined with silt and heavy concentrate sampling. These surveys generated the collection of the following samples:

(1) 31 rock samples (1 - assay, 30 - geochemistry)

- 1 -

- (2) 44 Silt samples
- (3) 26 heavy concentrate samples

The writer was retained by Energex Minerals Ltd. to assimilate all data received to date and report on any significant results produced by this year's fieldwork.

2.0 LIST OF CLAIMS

The B.C. Ministry of Mines, Energy and Petroleum Resources indicates the following claims (Fig. 2) are owned by Energex Minerals Ltd.:

CLAIM NAME	RECORD NO.	UNITS	RECORD DATE
Star 1	2546	20	Oct. 13/82
Star 2	2547	20	Oct. 13/82
Star 3	2548	20	Oct. 13/82
Star 4	2685	16	Mar. 3/83

Pamicon Developments Ltd._

- 2 -

1		
	2	(

LIST OF CLAIMS CONTINUED

CLAIM NAME	RECORD NO.	UNITS	RECORD DATE
Star 5	2686	20	Mar. 3/83
Star 6	2687	10.	Mar. 3/83
Star 7	2688	20	Mar. 3/83
Star 8	2689	20	Mar. 3/83
Star 10	2690	20	Mar. 3/83
		166	

3.0

LOCATION, ACCESS AND GEOGRAPHY

The Star group is located on the eastern flank of the rugged Coast Range Mountains and is approximately 110 kilometers northwest of Stewart, British Columbia. Brunt Mountain which is found south of the confluence of the Craig and Jekill Rivers is situated near the middle of the claim group. Co-ordinates of the property are 56[°] 33 North Latitude and 131[°] 10' West Longitude and the property falls under the jurisdiction of the Liard Mining Division.

To obtain access to the property, helicopter transport can be utilized from the Snippaker gravel air strip located 25 kilometers to the east. The 1983 field season saw daily scheduled flights to the strip from Terrace and Stewart using fixed wing STOL aircraft and the stationing of two independent helicopter bases on the strip. It is anticipated that similar services will be offered during the 1984 season.

The nearest road is the Stewart-Cassiar Highway that passes just to the east of Bob Quinn Lake.

Pamicon Developments Ltd.

LOCATION AND ACCESS CONTINUED

- 3 -

Recently, a proposal by C.K. Ikona of Pamicon Developments Ltd. has been submitted on behalf of Skyline Explorations for the construction of a road approximately 65 kilometers long, on the south side of the Iskut Valley to connect the Stewart-Cassiar Highway with the B.C. Hydro damsite on the Iskut River and the Skyline Explorations Ltd. 'Reg' prospect on Bronson Creek.

Geographically, the area is typical of mountainous and glaciated terrain with the elevations ranging from a few hundred meters in the river valley bottoms to in excess of 1700 meters at the top of Brunt Mountain. Major drainages are U - shaped whereas smaller side creeks tend to be steeply cut due to the intense erosional environment. Active glaciation is prevalent above 1200 meter contour with the tree-line existing at 1000 meters. The upper reaches of the area are covered with alpine vegetation whereas the lower slopes are predominately timbered with a variety of conifers with an undergrowth of devil's club. More open areas and steeper slopes contain dense " slide " alder growth. Both summer and winter temperatures would be considered generally moderate and in excess of 200 centimeters of rain may be expected during any given year.

Rugged topography, climate and vegetation, all inhibit traversing throughout the claim group. Therefore, operating by helicopter from the Snippaker air strip appears to be the most practical and cost effective means of exploring the Star group during reconnaissance style programs.

3.0

HISTORY

4.0

5.0

General mineral exploration activity in the region dates back to the turn of the century and continued on into the 1930's with interest in precious metals centering on the Stewart Camp. A revival of activity was seen in the 1950's and 1960's as active exploration progressed throughout the Stikine River area in search for porphyry copper deposits.

4.

In recent years, the marked increase in precious metal prices has prompted renewed interest and exploration activity in the Stewart Camp as well as in adjacent areas of similar geologic settings. As a results of these events, Skyline Explorations Ltd. intensified its gold exploration on both the "Inel" and "Reg" properties. Diamond drilling in the "Reg" during 1982 revealed a consistent gold bearing zone of considerable width. The area was subsequently blanketed by extensive claim staking. During the spring of this year, an agreement was signed allowing Energex Minerals Ltd. to acquire the Star group of claims.

The only previous work conducted on the Star claims was under the direction of Louise Eccles, geologist, of DuPont of Canada Exploration Ltd. A regional program undertaken in 1980 encountered several float occurrences of gold bearing quartz and calcite veins. The following year, the Burton and Cummings claims were staked and a limited exploration program was carried out (Assess. Rpt. 9190). The claims were allowed to lapse and remained open until the fall of 1982.

REGIONAL GEOLOGY

The Iskut River Gold Camp lies along the contact between the Intermontane and Coast Plutonic Complex geotectonic provinces.

and a second second

Pamicon Developments Ltd.

REGIONAL GEOLOGY CONTINUED

- 6 -

The greatest portion of the intrusive population is composed of mesozonal Cretaceous plutons (B,C) of the Coast Plutonic Complex. A smaller percentage of the intrusive rocks is comprised of epizonal or subvolcanic felsites or felspar porphyrys. Although their significance is as yet uncertain, these acidic porphyries are spatially related to the important gold occurrences on Skyline's "Reg" and "Inel" prospects. Without accurate age dating it is difficult to tell whether these felsites represent coeval roots of the auriferous felsic members of the "Snippaker " volcanics or perhaps, are from a much later event which may have remobilized and enriched existing mineralized horizons.

LOCAL GEOLOGY

Property mapping to date has been of a reconnaissance nature with more detailed geology being restricted to a few selected creeks (Figs. 4,5, 6) and ridge lines. Therefore, the local geology on Figure 7 is a compilation of various government and private sources and represents only a generalized plan of the geology with obvious omissions of structure and detailed outcrop geology. Modifications were made where ground control existed.

The most expansive package of rocks on the property is that of the metamorphic group (3) of Paleozoic sediments and volcanics which occupy most of the western half of the claim group. Massive dark green andesitic flows are found interbedded with limestones, rusty argillites, phyllites and more gritty units. The andesites or "greenstones" are resistant weathering and are commonly peppered with disseminated pyrite and pyrrhotite grains. Capping these units is the Permian, Cache Creek equivalent, white crystalline limestone (2) situated on the northern Brunt Mountain ridge line and just north of the claim group.

5.0

6.0

LOCAL GEOLOGY CONTINUED

6.0

Following an erosional period, the accumulation of the "Snippaker" volcanic and volcanoclastic rocks (1) occurred. It is the intermediate to acidic fragmental volcanic rocks of this sequence which are hosts to much of the economic mineralization on the "Reg" and "Inel" prospects. More detailed mapping will be required to determine if these favourable horizons occur on the Star claims. Typical rock types encountered in traversing were tuffaceous sediments with interbedded limey and cherty units and massive dark green andesites or its coarser grained " diorite " component. The diorite exhibits chilled and hornfelsed margins on both its upper and lower boundaries and is concordant with the local bedding. This may infer a " sill" like intrusive emplacement.

Two major intrusive units located in the area are the large quartz monzonitic or granodioritic stock (B) to the south and the extreme northwest and the smaller satellitic bodies and dykes (A) of felsite or felspar porphyry. These subvolcanic felsites are known to be spatially related to the "Reg" and "Inel" prospects and have been earmarked by various groups as important exploration targets in the Iskut River area.

6.1 Structure

Structural information obtained to date has been minimal. Both outcrop and property scale observations indicate a complex structural history of intensive folding and faulting. Assuming the government mapping to be generally correct, at least, two phases of deformation may be interpolated. One deformation results from folding along a northwest - southeast axial trace with the second represented by warping and shearing along a northeasterly direction.

- 7 --

6.1 Structure continued

This shear style of folding is best displayed by the limestone unit outcropping along the crest of Brunt Mountain and probably resulted from the emplacement of the two large intrusive phases to the southeast and northwest. The above is a preliminary interpretation only with no consideration given to thrust or block faulting. One major northeasterly fault has been mapped by Skyline personnel across the top of Johnny flats and projected down the Craig River Valley.

6.2 Economic Mineralization

Economic mineralization encountered during this year's field program basically confirmed and relocated the mineralization discovered by DuPont's exploration staff during 1980 and 1981. "A" and "B" creeks (Fig. 4,5) both contained mineralized quartz float with the bedrock source traced in both cases. In outcrop, the quartz veins are generally conformable with bedding and associated with pyritic silicious tuffs or sediments, particularily, its interbedded limestone members. A 0.5 meter vein on "A" creek returned values of 0.18% Cu, 8.70% Pb, 0.04% Zn, 10.72 oz/T Ag and 0.046 oz/T Au. A piece of float sampled by DuPont during 1981 assayed 0.256% Cu, 0.64% Pb, 0.14% Zn, 1.10 oz/T Ag and 0.123 oz/T Au. More than likely, the float was shed from the outcrop which was located this year. Sulphide mineralogy includes pyrite, galena, chalcopyrite, sphalerite, argentite and tetrahedrite. Another smaller (0.1 meter) quartz vein upstream returned anomalous values in some of the metals analyzed. In "B" creek, a similar occurrence had been discovered by DuPont along a sediment-andesite contact (0.004% Cu, 1.15% Pb, 0.01% Zn, 2.11 oz/T Ag and 0.118 oz/T Au.). A carbonate vein hosted by andesite was also sampled and found to contain 1.860% Cu.

Pamicon Developments Ltd.
GEOCHEMISTRY

Major drainages on the property were systematically sampled. It was decided to use both the heavy concentrate and silt sampling methods to determine which would respond to the element (Cu, Pb, Zn, Ag, Au, As, Sb, Hg, Ba, W and Ce) dispersion trains better; in particular, gold. A total of forty-four (44) silts and twenty-six (26) heavy concentrate samples were collected for analysis. At least nine (9) kilograms of sieved material was required for the heavy concentrate preparation at C.F. Mineral Research Ltd. in Kelowna, B.C. Sediment was taken from the active part of the creek and passed through a 20- mesh screen. The prepared samples (-60 mesh, nonmagnetic fraction) were forwarded to Nuclear Activation Services Ltd. of Hamilton, Ontario for analysis by Neutron Activation method for As, Sb, Ba, W, Au and Ce.Once the irradiated samples from Nuclear Activation Services " cool ", Cu, Pb, Zn, and Ag values will be received from Chemex Labs.

An examination of the results show that the heavy concentrate sampling method was much more successful in locating Au anomalous drainages. Where only three silt samples taken would be considered anomalous (70,660, and 2100 ppb Au), a total of seven heavy concentrate samples recorded anomalous values (14,000 - 72,000 ppb Au). Importantly, the highest values did not come from the drainages where there are known auriferous occurrences (ie "A", "B" creeks) but from the totally unexplored creeks on the western half of the property. These creeks should be a target of future exploration ventures. Locations and listing of the more significant results are presented on Figure 8.

- 9 -

7.0

8.0 CONCLUSIONS

The 1983 field program conducted on the Star claims saw reconnaissance prospecting, geological mapping, and sampling of the main drainage by both silt and heavy concentrate methods. The program was extremely successful in relocating the showings located by DuPont in 1980 - 81 and in uncovering highly anomalous drainages on the western portion of the claim block. A sample from an outcrop on "A" creek returned values of 0.18% Cu, 8.70% Pb, 0.04% Zn, 10.72 oz/T Ag and 0.046 oz/T Au. Values as high as 72,000 ppb Au in heavy concentrate samples and 2100 ppb Au in silt samples were received from drainages on the western side of the property.

Geological mapping has indicated that some of favourable geologic aspects on the "Reg" and "Inel" prospects may also occur on the Star claims. The Snippaker volcanic assemblage may be located on the Star property although the key felsic members, as of yet, have not been discovered. In addition, felsite or felspar porphyry bodies occur on and immediately adjacent to the property. These units are spatially associated with the mineralized zones on Skyline's two prospects.

In conclusion, the very successful geochemical survey coupled with a favourable geologic environment point to the Star project as being of definite merit and further follow-up exploration is fully warranted.

Respectfully submitted Caú1 Field. Geologist K. Ikona, P. Eng.

- 10 -

9.0 BIBLIOGRAPHY

Summary Report on the Josh, Josh 2 - 4 Mineral Claims;
G.C. Gutrath and T.C. Scott, 1983.

(2) Geological Report and Work Proposals on the Reg and Inel Properties of Skyline Explorations Ltd; E.W. Groves, 1981.

(3) Summary Report on the Inel Mineral Claims; C.K. Ikona and T.C. Scott, 1980.

(4) Geological & Geophysical Report, Inel and Hiho Mineral Claims;A. O. Birkeland, 1973.

(5) Government Publications:

G.S.C. Memoir 246; F.A. Kerr, 1929 Operation Stikine - 1956; Map 9 - 1957 Iskut River; Map 1418A, 1979

			·. ·			
· · ·						
					•	
	<u>د</u>	2000 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -				
÷.						
•		8		na an a		
an an she she she						
-						
ب این این ا					ан сайтаан ал	
		•				
					•	
1 - X						
• • • • •						
			•			
		·			n An an an An An	
			ж. — . К			
	х.).					
		1997) 1997 - State State (1997) 1997 - State State (1997)	•			
	and and an and an and an				на на селото и селото и селото на селото Селото на селото на се	
	National International Interna			and a second second Second second		
*						
	€Œ-2315	Soil Sample		GEOLOCI		
	A15-1308-5			ASSESSMI	AL BRA	NCH
	(E=1096-9	, Siir Sampie		and and a second se	in i the state of the	
	0	Rock Sample		1 1	MM	
	CE-3333-Ht	¹ Heavy Mineral Sam,	p/e	(A)		
		Claim Boundary			$\bigcirc 7$	
	-1500-	Contours - Flevation	s in Feet (Inter	val 500')		
			, , (
		Extent of Glaciers				
1 1 ³ 44		Tree-Line			n an an Anna a Anna an Anna an	
			f			
			COV	VE ENERGY	CORPOR	ATION
	* 			Antopologi Malanda in a dan dan ana ang kanang kanang kanang kanang kanang kanang kanang kanang kanang kanang Malanda kanang		n in the second seco
			S	OIL, SILT, ROCK,	HEAVY MINE	ERAL
				GEOCHE	MISTRY	
•				JAMPLE L	JUCATIONS	
			DATE: NOVE	EMBER, 1987	NTS: LIARD	M.D. 104 B/11
			PROJECT:	KBC-14	DRAWN BY:	M,J.B.
			SCALE: 1	: 10.000	0 25	0 500m
				· · · · · · · · · · · · · · · · · · ·	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	그 같은 것 같은

.

,					
•		•			
		- -			
•					
			•		
	•				
· -					-
				-	
					на стали и стал При стали и стал
•	Soil Sample				
Δ	Silt Sample				
-	Brok Comple	6			
	Rock Sample	E.	¹ ^S	CAL BI	RANCH
<5 \Box_5 , \Box_4^{6} ρ_{05}^{6} $42 2 5$	Heavy Mineral Samp	0 /@: -10≠80 mesh [] -80 mesh		n 1 1 2 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2	-10+BO mesh
	Claim Boundary	فت	1 0	A P	
-1500-	Contours - Elevations	in Feet (Interval 50			
	Extent of Glaciers		$\mathbb{L} \cup \mathcal{I}$		7 4
	Tree-Line				
		and the second			
		COVE	ENERGY	CORPOR	ATION
		SOIL,	SILT, ROCK, H	EAVY MINE	RAL
			GEOCHEM Au (on	b)	
	с. Х		\FF	-	-
		DATE: NOVEMBE	R, 1987	NTS: LIARD	M.D. 104 B/11
• •		PROJECT: KBC-	•14	DRAWN BY:	M.J.B.
		SCALE: 1:10,0	000	U 25	U 500m
		TAIGA O	CONSULTAN	TS LTD	MAP: 2
-					

G	E	0	L	0	G	J I	C	A	L	B	R	A	N	C	H
A	S	S	屘	S	S	M	E	M	F		R	P	0	Ř	T

394 Heavy Mineral Sample: -10+80 mesh -80 mesh

Claim Boundary

Soil Sample

Silt Sample

Rock Sample

ontours - Elevations in Feet (Interval 500')

Extent of Glaciers _ _ _

Tree-Line

COVE ENERGY CORPORATION

SOIL, SILT, ROCK, HEAVY MINERAL GEOCHEMISTRY Ag (ppm)

DATE: NOVEMBER, 1987	NTS: LIARD M.D. 104 B/H					
PROJECT: KBC-14	DRAWN BY: M.J.B.					
SCALE: 1: 10,000	0 250 500m					
TAIGA CONSULTA	INTS LTD MAP: 3					

e de la composition Recentration		
1 -		
EGENI	D	
	DIORITE.	
2	SILSTONE. SANDSTONE	. CHERT, LIMESTONE/DOLOMITE.
3	MAFIC TO INTERMEDIA	TE VOLCANICS: Tuff, Lapilli Tuff, Breccia, Flow; Minor Chert, Limestone.
4	FELSIC TUFF	
		에는 것은
YMBO	LS	
بر	Bedding Orientation.	~~~~ Shear Zone.
_	Foliation.	, × Outcrop : Large , Small .
- -	Cleavage.	Geological Contact.
_	Quartz Vein.	Helicopter Pad.
	lointing	
-	Claim Roundary	GEOLOGICAL BRANCH ASSESSMENT REPORT
	cium Boundury.	
1500-	Contours - Elevations in	Feet (Interval 500')
	Extent of Glaciers.	
	Tree-Line.	
		COVE ENERGY CORPORATION
د به در این مرکز در در مرکز		
		이 제가 많은 것이라. 이 것은 것 같은 것이라는 것이 못 들어야 한다. []는
(1) (1) (2)		
		GEOLOGY

DATE: NOVEMBER, 1987	NTS: LIARD M.D. 104 B/II
PROJECT: KBC-14	DRAWN BY: M.J.B.
SCALE: 1:10,000	0 250 500m
TAIGA CONSULTAN	TS LTD MAP: 4

13 W N 15 W 17 W 16 W 14 W 20 W 19 W 18 W ____ 20+00 N. 10 •5 0160 12 W ____ 19+00 N. 124 • <5 12. • <5 • 10 42 Δ_{5} 120 **⊙**² ____ 18+00 N. . 20 • <5 W II • 5 • 2 $\Delta^{<5}$ ____ 17+00 N. •2 Δ^{s} **₹**5 • 2 **~**5 • 10 •2 •4 •2 •² •4 , 10 W Δ^4 **⊙**678 ___ 16+00 N. •² •² 6 **Ο** Δ^{B4}_{μ0} •4 •6 •<5 •<5 **O**2 . 2 •4 • 16 •4 •2 . 10 8 84 O٢ .<5 •<5 B/L 15+00 N. _B/L 15+00 N 184 0 , •<5 2060 •2 . 8 •4 • 5 ,⁵⁰ ∆<5 ___ 14+00 N, •2 •4 •2 •2 •2 **()** 12

(N)-=1 14 W 1^{7.30} 13 W 18 W 17 W 20 W 19 W 16 W 15 W ____ 20+00 N. 0.72 0.30 0.13 0.42 6.80 0.48 0.58 0.78 • 0.50 2.00 0.09 0.27 1.18 . 0.60 \$0.40 \$ 0.48 0.49 2.70 0.20 0.82 0.65 12 W ____ 19+00 N. 1.54 0.48 0.18 0.28 0.56 0.10 0.62 0.56 0.40 0.12 0.60 0.44 1.14 0.44 0.12 0.73 1-34 **△***0.46* 0.64 0.80 0.66 0.10 0.64 0.36 0.44 .080 0.30 14 0.48 0.68 0 0.02 0.5B 2.20 0.30 0.56 4 0.14 0.68 ____ 18+00 N. 0.36 0.26 0.20 0.62 0.00 0-36 0.28 0.64 • |+6 | /+80 0.44 0.38 0.18 0.56 1.33 0.82 1.13 • 0.40 II W • 0.40 0.26 1.16 2.30 0.76 0.70 1.78 0.60 e 1.56 0.68 1.28 2.30 0.42 0.90 1.80 0.50 0.48 0.28 1.82 • 0.18 2.60 $\Delta_{1.60}$ ____ 17+00 N. 0.90 0.29 • 0.06 0.44 3.20 0.82 1.08 2.00 0.62 0.22 0.56 $\Delta^{\prime \cdot 2^{o}}$ 040 0.17 0.38 0.80 0.56 0.74 2.10 0.32 0.54 0.18 0.60 0.11 0.80 ↓0.34 0.20 2.0 0.64 0.42 0.26 0.42 028 1.06 1-74 1.04 1.02 0.51 0.76 0.58 2.00 1.05 IO W 0.44 0.82 0.24 0.66 0.58 0.30 1.38 0.50 2.00 A0.24 ⊙^{3.80} 0.4B 0 25 • • • • • • • • 0.28 ___ 16+00 N. 2.32 / 34 0.55 0.68 0.42 2.50 1.36 2.00 1-14 0.56 0.36 1.26 • 1.0 . 1.8 0.40 0.26 \$ 0.26 0.52 6.20 0.28 0.66 0.04 0.14 0.36 0.84 0.94 0.50 0.32 0.34 8.B0 240 1.40 0.62 0.38 3.10 37.10 0.60 0.30 0.54 • 1·4**8** 0.52 0.72 0.80 0.70 C.BO A 0.BO 0.28 1.08 0.28 1.06 ① 0.22 0.91 0.50 0.50 B/L 15+00 N. 1.22 _B/L 15+00 N 0.48 0.74 0.40 0004 0.40 2.50 1.80 0.74 1.08 2.60 020 0.22 0.34 0.30 1.6 • 0.10 0.66 \$0.56 0.32 0.76 0.4.8 ^{64.0}/_ 0.24 0.90 0.24 0.44 0.46 1.16 0.66 10.64 0.46 0.28 0.54 0.38 0.54 0.36 0 24.0 1.20 0.78 1.62 0.26 0.24 0.40 \$ 0.56 0.52 0.40 Talus (0.5) . . 2.2 0.54 1.00 0.62 1.02 1.16 0.40 0.30 400 0.5B 0.61 0.80 $\Delta^{0.50}$ \$0.54 0.54 ____ 14+00 N, 0.34 09.00 0.72 0.22 0.40 0.40 0.82 0.80 3.10 2.80 7.00 0.48 0.26 0.60 0.60 0.50 0.22 0.50 1.68 0.98 0.26 0.20 0.28 0.28 0.23 2.80 \odot 0.16

•

0.44	1-32 2- <i>30</i> 4-40 0-22	65·D 0.14 0.18 0.44	0.22 1.62 3.30 23.0	0.74		<i>U-1</i> 4-	0.64	0.36	0.78	1-64
060	J. 22	34.0	0.44	1.20	6.00	2.40 030	0.36	0.30	0.48	0.74
0.54	1.96	0.30	0.38	4.60	0.24	0.68	0.26	0.18	0.74 • 0.50	0.56 13+00 N.
0.66	<i> -18</i>	0.86	1-24	• 1-74	0.52	032	0.66 0.40	0.76	0.26	0.38
0.32	0.64	3 60	0.08	5.00	1.74	2.20	1.06	0.46	0 64 $\Delta_{0.80}$	1.46
0.20	0.86			4.40	9.60	0.94	1-18	0.44	0.58	0.46
0 24	2.40	0.26		1.04	3.60	j.52	0 60 • 0.38	0.54	0.66	0.68 I2+00 N.
0.48	0.12	0.22		0.52 •1.0	5.20	0.62	0.24	0.98	0.34	0.44
0.56	0.56	0.14	0.12	0-54	3.30	0.22	0.28	026	1-34	0.72 120 D 0.40
1-28	0.10	0.72	0.46	0.58	0.50	0.98	0.24	0.24 2	0.50	0.64
0.44	0.32	0.84	0.98	0.30	0.72	0.26	0.16 0.20	0.70	1-16	0.76 II+00 N.
0.36	O.IB	0 46	0.36	0.36	0.60	0.26	0.82	0.60	0.72	1.88
0.54 0.11	· ⁶ ▲ 1-∞	0.34	1.00	0.18	0.14	0.74	0.38		0.30	1.00
0 30	0.30	0.42	0.56	0.46	0.26	0.26	0.66	0.88	1.32	0.88
0.30	0.16	0.80	0.58	0.12	0.48	0.74	0.44	1.16	0.28	0.79 IO+OO N.
20W 19	9W 18	W 17	W 16	W 15	W 14	w 13	5W 12	W II	w ic	W
										• 0.40
							•			
		• 50//	SAMPLE							
						1 A A		COVE	ENERGY CO	RPORATION
		\triangle SILT	SAMPLE			NK			EAST GRI	D
		() ROCI	K SAMPLE					SOIL, S	SILT, ROCK GEOCH	IEMISTRY
		<u> </u>			Lao	ATH INTE			Ag (ppm)	
					A J N	ICAL BRA	CEOLOG	DATE: OCTOBER	, 1987 NTS	2: LIARD M.D. 104 B/11
							-	PROJECT : KBC-14	DRA	WN BY: M.J.B.
								SCALE : 1:2500	0	50 l00m
 ومناز مناطق والمراجع المناطقة والمناطقة والمناطقة والمعارية والمحاوي والمحاوي والمحاوي والمحاوي والمح								TAIGA CO	ONSULTANTS	L <i>TD</i> MAP: 7

.

13 W 20 W 17 W 16 W 15 W 14 W 19 W 18 W ____ 20+00 N. 2 12 W ____ 19+00 N. ۸ ____ 18+00 N. ΗW 2 tr. ps \triangle ____ 17+00 N. Δ_{i} 10 10 W Qtz Vein ______ (2-5') . [] Δ ____ 16+00 N. ٠ Q Qtz: Vein (8") Qrz Vein (4") mal 2 heavily Silicified ۵ ۱% مرا B/L 15+00 N. . _B/L 15+00 N heavily Silicified Cherty tuff . ٠. ۵ heavily Silicified

.

___ 14+00 N,

 \odot

X Qtz Veins (2·51) in boulder

 \triangle

- SOIL SAMPLE
- \triangle silt sample
- ROCK SAMPLE
- H HELICOPTER PAD

18+00 N _____

17+00 N ____

16 + 00 N _____

B/L 15+00 N ____ 47 W .

14+00 N ____

13+00 N ____

12+00 N 11 + 00 N _____

10+00 N _____

.<5 44+50W Cliff Cliff • 4 228)), 46 W Δ

44 W

43 W

· ···

45 W 44 W 43 W

-

and a second of the second of the second second

- SOIL SAMPLE
- \triangle silt sample
- ROCK SAMPLE
- H HELICOPTER PAD

34 W ____ 24+00 N 0.24 0 25 0.15 0.34 ____ 23+00 N 0.80 0.00 0.36 0.54 ____ 22+00 N 0.52 0.68 0.18 0.30 0.19 ____ 21+00 N 0.28 0.86 0.14 ____ 20+00 N 0.58 ____ 19 +00 N ____ 18 + 00 N ____ 17 + 00 N 0.62 070 ____ 16+00 N 0.37 0.32 . 0.34 _ B/L 15+00 N 0.48 0.44 0.26 ____ 14+00 N 0.32 0.22 0-24 0.04 ____ I3+00 N 0.08 0.10 1 0.06 0.20 0.12 _____ 12+00 N 0.06 0.15 4 0.24 GEOLOGICAL BRANCH 0-22 ASSESSMENT REPORT 0.60 0.20 0.44 1.08 RATA N ____ 10 + 00 N 0.40 34 W • COVE ENERGY CORPORATION WEST GRID SOIL, SILT, ROCK GEOCHEMISTRY Ag (ppm) DATE OCTOBER, 1987 NTS LIARD M.D. 104 B/II PROJECT KBC-14 DRAWN BY M.J.B. 50 100 m 0 SCALE 1: 2500 TAIGA CONSULTANTS LTD MAP: 12

22+00 N _____

.....

47 W

.

19+00 N _____

18+00 N ____

17+00 N ____

16 + 00 N _____

B/L 15+00 N ____

47 W

14+00 N ____

• 13+00 N _____

12+00 N

11+00 N ____

10+00 N _____

,

45 W 44 W 43 W

LEGEND		SYMB
	DIORITE: Medium-grained, often strong Chlorite and Clay Alteration.	40
2	MAFIC TO INTERMEDIATE VOLCANICS: Tuff, Lapilli Tuff, Breccia, Flow; Minor Chert, Limestone.	() , ;
3	SILTSTONE, SANDSTONE, CHERT, LIMESTONE/DOLOMITE.	
		a community and

BOLS

BEDDING ORIENTATION. ,× OUTCROP: LARGE, SMALL. - GEOLOGICAL CONTACT. CREEK.

• SOIL SAMPLE

△ SILT SAMPLE.

• ROCK SAMPLE.

H HELICOPTER PAD

CALE	1:25	500	0 _	5	001 0
[<i>TA</i>	IGA	CONSULT	TANTS	LTD	MAP: 14

35 W