LOG NO:	0119	RD.
ACTION:		
,		
FILE NO:		

1987 GEOLOGICAL AND GEOCHEMICAL REPORT on the CRAIG RIVER PROJECT

LIARD M.D.

N.T.S. 104-B/11 E Latitude 56°38' North Longitude 131°11' West

FOR

DUNDEE RESOURCES CORP. Vancouver, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

October 31, 1987

16,903

by: M.J. Burson, B.Sc., F.G.A.C. Taiga Consultants Ltd. 800 - 900 West Hastings St. Vancouver, B.C. V6C 1E5

> SUB-RECORDER RECEIVED

NOV 27 1987

SUMMARY

During 1987 a Taiga Consultants Ltd. field crew, under contract to Dundee Resources Corp., completed an exploration program designed to evaluate the gold and other mineral potential of the ROB 1-3, 5 claims, located in the Iskut River area of British Columbia.

The property is underlain predominantly by granodiorite of the Coast Plutonic Complex which intrudes volcanic flows and tuffs and carbonates of Triassic and older age.

A total of 257 soil, silt, rock and heavy mineral samples were analyzed for gold and silver. Several areas have returned results with elevated gold values and require more detailed evaluation. Option payments should be deferred until this evaluation is completed.

TABLE OF CONTENTS

		Page
Introduction		1
Location and A	ccess	1
Topography and	Climate	1
Claim Status		3
Regional Geolog	ЭĀ	3
Local Geology		6
Geochemistry		6
Conclusions and	d Recommendations	8
Bibliography		9
Itemized Cost :	Statement	10
Statement of Q	ualifications	11
APPENDIX I: APPENDIX II:	Geochemical Results Rock Descriptions	
	LIST OF FIGURES	
FIGURE 1: FIGURE 2: FIGURE 3:	Property Location Claim Location Snippaker Volcanic Belt	2 4 5
	MAPS	
MAP 1: MAP 2: MAP 3: MAP 4:	Sample Location Gold Geochemistry (ppb) Silver Geochemistry (ppm) Geology	

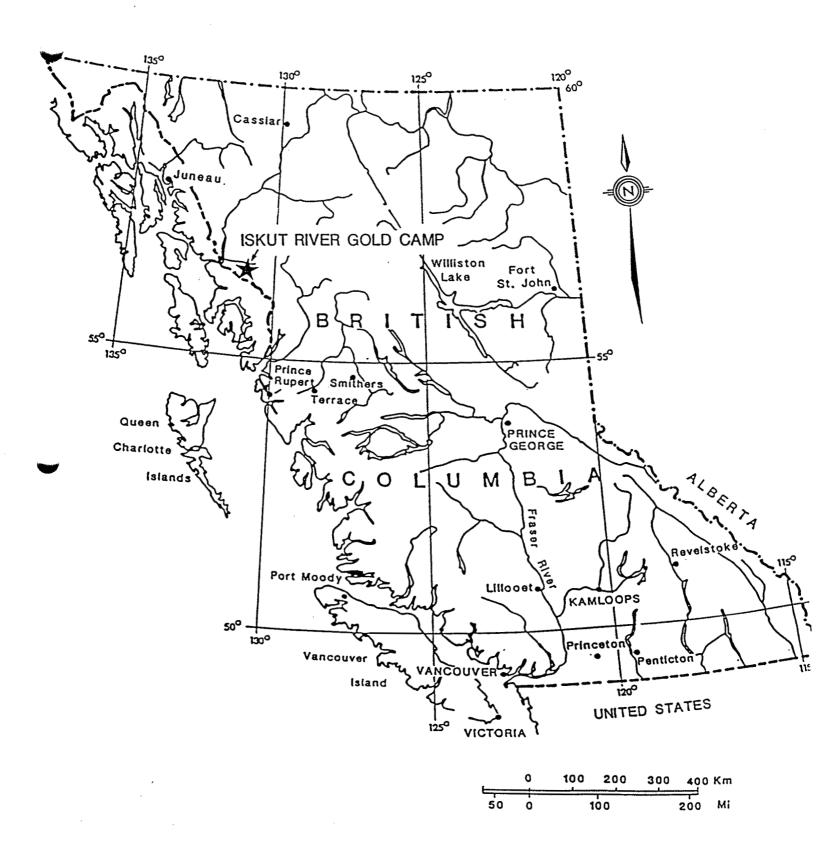
INTRODUCTION

Dundee Resources Corp. has acquired four mineral claims (80 units) in the Iskut River area, 60 kilometers west of Bob Quinn Lake on the Stewart-Cassiar highway (see Figure 1).

This report summarizes the results of a prospecting/geochemical field program during July and August, 1987. The main objective of this work was to delineate areas of high geochemical background which might lead to discoveries of mineralization similar to those found within the Skyline Exploration and Delaware/Cominco properties, 7 kilometers to the east.

LOCATION AND ACCESS

The ROB claims are located south of the Iskut River at 56°38' north latitude and 131°11' west longitude. Access is by fixed-wing aircraft from Terrace or Smithers, 160 kilometers to the southeast, to the Snippaker Creek airstrip, 30 kilometers east of the claims and thence by helicopter to the property. More proximal airstrips exist on the Skyline property and on the Delaware property, but they are private facilities requiring permission for use by outsiders.


Future road access to the area will likely follow the Iskut River Valley from Bob Quinn Lake. The site of B.C. Hydro's planned development of a hydroelectric generating facility on the Iskut River is about 20 kilometers upstream from the property.

TOPOGRAPHY AND CLIMATE

The property covers the very rugged north and east facing slopes of Seraphim Mountain. Elevations range from 300 to 5500 feet, with permanent ice fields being common at the higher elevations.

Climate in the area typically consists of cold snowy winters and warm, wet summers. Snow at higher elevations would normally exceed 15 feet, whilst 3-5 feet would accumulate near the Craig River.

Vegetation ranges from mature conifer forest at the lower elevations to alpine meadow above tree-line. Much of the property is covered by slide alder and devils club.

PROPERTY LOCATION - LIARD, M.D.

FIGURE 1

CLAIM STATUS

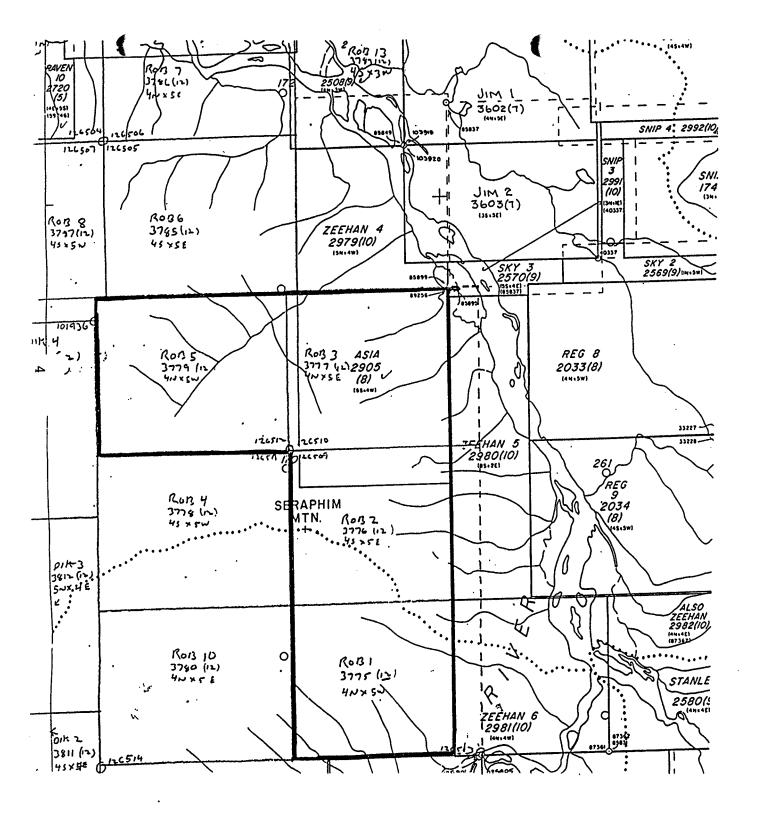
The property consists of four modified grid claims (see Figure 2), comprising 80 units, staked within the Liard Mining Division. These include:

Claim	No. of Units	Record No.	Expiry Date
ROB 1	20	3775	December 5, 1987
ROB 2	20	3776	December 5, 1987
ROB 3	20	3777	December 5, 1987
ROB 5	20	3779	December 5, 1987

REGIONAL GEOLOGY

The regional geological setting consists of several sedimentary and volcanic series that are intruded by younger granitic rocks and, in places, are overlain by recent volcanic flows.

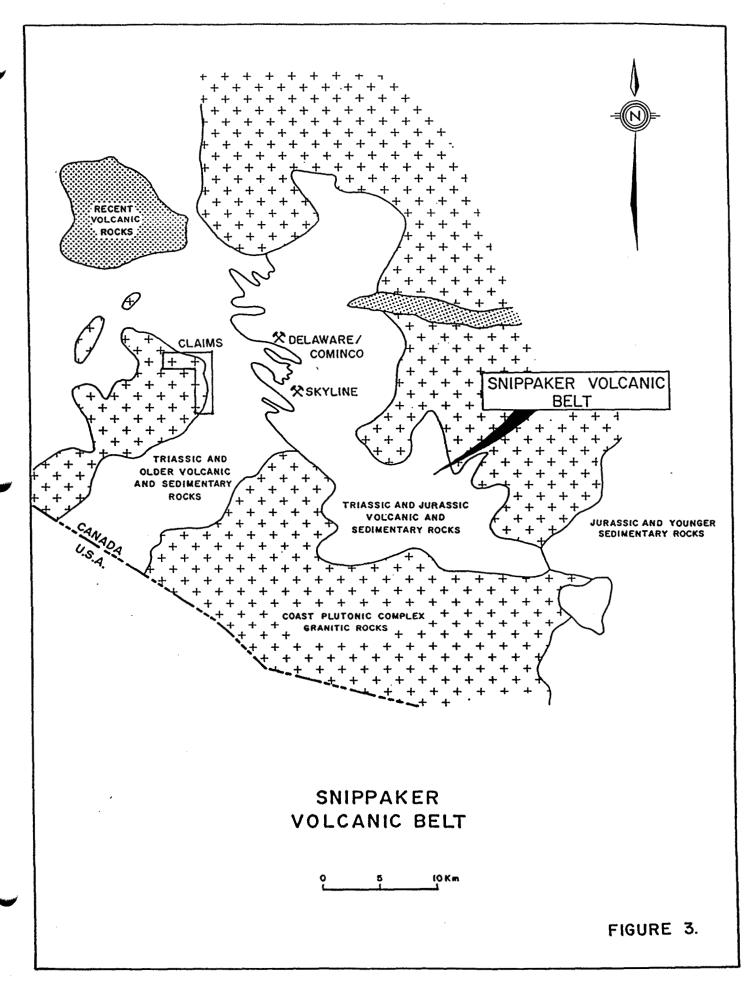
These occur within the Stewart Complex (Grove, 1986), an area of diverse rock types and complicated structure which is bounded on the west by the intrusive margin of the Coast Plutonic Complex, on the east by the Bowser Basin, the north by the Iskut River, and on the south by Alice Arm.


The oldest sequence comprises Permian to Lower Triassic limestones, siltstones, shales and conglomerates that overlie metamorphosed sedimentary and volcanic rocks.

In the Iskut Valley region, these rocks are extensively deformed and are thought to have been emplaced by thrust faulting which pushed up and over to the south across Middle Jurassic and older units.

The Upper Triassic to Lower Jurassic section is comprised of miogeosynclinal volcanics and sediments which have been correlated with the Unuk River Formation of the Hazelton Group. Locally referred to as the "Snippaker Volcanics" (see Figure 3), these range compositionally from andesite to dacite and rhyolite. Breccias and tuff breccias are common and siliceous pyroclastic rocks are locally abundant.

The Middle Jurassic Betty Creek Formation comprises rhyolite breccia, volcaniclastics, conglomerate, carbonate chert, and volcanics which unconformably overlie the Unuk River Formation.


The Stewart Complex has been invaded by granitic rocks of the

CLAIM LOCATION

104 B/11 1:50,000

FIGURE 2.

Coast Plutonic Complex. Granodiorite is the predominant rock type of the major intrusions, although a large variety of rock types occur as smaller satellite diapiric stocks as well as dykes and sills.

Small Quaternary volcanic piles and flows are scattered throughout the Stewart Complex, the most prominent in the area being Hoodoo Mountain, a volcanic cone which has been built up over a period of time which continued nearly to the present.

LOCAL GEOLOGY

The predominant rock type is granodiorite which underlies approximately 80% of the claims and is mainly in contact with mafic volcanic flows. Minor limestone occurs in the extreme southeast.

The granodiorite is equigranular, medium-grained and is relatively unaltered except for localized concentrations of chlorite and occasional areas containing iron-rich quartz veins.

The volcanics consist of mainly andesite flows with minor amounts of mafic tuffs. These are often highly iron-stained at or near the intrusive contact, but returned only negative geochemistry.

The carbonates consist of limestone and argillaceous limestone which interfinger with the volcanics in the southeast corner. Kerr (1929) describes a mineral locality in the extreme southeast which consists of coarsely crystalline galena and chalcopyrite within the limestone. This showing was not located.

GEOCHEMISTRY

A total of 143 soil samples, 48 silt samples, 45 rock samples, and 9 heavy mineral samples were collected and analyzed for Au and Ag.

The sampling technique involved filling a 4"x6" kraft bag with B-horizon soils or fine silt from the active portion of the stream. Heavy mineral samples were obtained by screening the silt to a -10 mesh fraction (2mm x down) and panning this fraction in the field to obtain a concentrate of heavy minerals. Representative samples of all lithologies, as well as any vein material, alteration products and/or sulphide mineralization were routinely sent for analysis to Bondar-Clegg and Company Ltd., North Vancouver, B.C., or to Terramin Research Labs, Calgary, Alberta. Soil and silt samples were screened to obtain the -80 mesh fraction, while heavy mineral and rock samples were crushed to

-150 mesh. The elements Cu, Pb, Zn and Ag were analyzed using atomic absorption methods after a ${\rm HNO_3}$ - ${\rm HCl}$ hot extraction, while Au was analyzed by conventional fire assay AA.

A number of areas have returned values which are anomalous with respect to gold but, in general, the silver values are very low.

The best values on the claims occur within silts taken from the major drainage bisecting the ROB 5 claim in the northwestern part of the claim group. Several values up to 728 ppb Au occur, beginning 500 meters upstream from the granite/volcanic contact. No apparent causes for the anomalies were observed, although quartz + pyrite veining (with negative values) does occur within the granodiorite on the ridge northwest of the creek. As well, the volcanics exhibit iron-staining at or near the intrusive contact, all of which suggests an increase in quartz + pyrite content in this area.

The easterly flowing creek draining the large icefield on the ROB 1 claim also has several gold anomalies up to 574 ppb. Although no quartz veins have been reported in this area, it is proximal to the contact with the intrusive and volcanic/limestone package and may represent a scenario similar to the above.

The only mineralization of consequence was found within a quartz boulder on top of the northwesternmost ridge on ROB 5. The boulder contained 65% massive and euhedral quartz with 35% euhedral and granular galena and minor malachite and azurite. A sample from this boulder returned values of 352 ppb gold and 537.3 oz/ ton silver. Several man-days were utilized searching for the source of the boulder with negative results.

CONCLUSIONS AND RECOMMENDATIONS

Initial reconnaissance has indicated a number of areas with elevated gold values which deserve some limited follow-up in the form of detailed prospecting and sampling.

While the results are encouraging, they can hardly be described as conclusive in determining the potential of the ROB claims and merely indicate areas for more detailed evaluation. To this end, it is recommended that option payments be deferred until such time that detailed analyses of the anomalous areas are completed.

BIBLIOGRAPHY

- Cathro, R.J. (1983), Summary Report on Mineral Occurrences and Geology of the Iskut Property, Apex Energy Corp. (private company report).
- Geological Survey of Canada (1956), Map No. 9-1957: Operation Stikine.
- Grove, E.W. (1986), Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area.
- Kerr, F.A. (1929), Map 311-A, Stikine River Area, Cassiar District.
- Montgomery, J.H. (1987), Report on the Rob 1, 2, 3 & 5 Mineral Claims, Liard Mining Division, British Columbia.

STATEMENT OF EXPENDITURES

(Crew	assembly,	prepare	maps,	progra	am
planni	ing, order	maps, ed	quipme	nt) - s	share:

Project Supervisor Project Geologist		@ \$375 @ \$325	\$ 187.50 487.50	\$	675.00
---	--	--------------------	---------------------	----	--------

2. TRANSPORTATION

1. PREFIELD EXPENSES

Mobilization-Demobilization		
(airfare, hotel & misc. expenses)	1,446.98	
Northern Mountain		
Helicopters, 4.6 hrs @ \$580.56	2,670.58	
Central Mountain Air	566.04	
Share of Airstrip Construction	5,000.00	9,683.60

3. SALARIES AND CAMP SUPPORT

Project Supervisor	2.05	days	<u>@</u>	\$375	768.75	
Project Geologist	4.48	11	@	325	1,456.00	
Prospectors	11.06	11	@	250	2,765.00	
Samplers	13.93	**	@	175	2,437.75	
Camp Support	29.23	11	0	85	2,484.55	9,912.05

4. ASSAYS & ANALYSES

Bondar Clegg	157.23	
Terramin Research Labs.	2,097.46	2,254.69

5. MISCELLANEOUS

(Dispo	sable s	upplies,	xerox,	expediting,		
radio	rental,	courier,	freigh	it, etc.)	1,469.63	3

6. POST-FIELD EXPENDITURES

Project Geologist 3.95 days @ \$325	1,283.75	
Drafting 16.5 hrs @ \$24.20/hr	399.30	
Printing Maps	98.83	
Copying & Binding Reports	94.50	
Computer/Secretarial 3.5 hrs @ \$20	70.00	1,946.38

T O T A L \$ 25,941.35

STATEMENT OF QUALIFICATIONS

- I, Michael J. BURSON, of 7357 Celista Drive, Vancouver, British Columbia, do hereby certify that:
- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd., with offices at #800 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I have attained a B.Sc. (Hons.) from the Faculty of Earth Sciences, University of Waterloo, in 1975.
- 3. I have practiced my profession continuously since graduation.
- 4. I am a Fellow of the Geological Association of Canada (F-5220).
- 5. I have done, or caused to be done, the work described within this report.
- 6. I have not received nor do I expect to receive any interest in the property described herein, nor in the securities of Dundee Resources Corp. in respect of services rendered.

Dated at Vancouver, British Columbia, this 31st day of October, 1987.

M. J. Burson, B.Sc., F.G.A.C.

CERTIFICATE

- I, Lawrence John Nagy, of 3020 Abbott St., in the City of Kelowna in the Province of British Columbia, do hereby certify that:
- I am a Consulting Geologist with the firm of L.J. Nagy and Associates Inc., with offices at 201 - 1433 St.Paul Street, Kelowna, British Columbia.
- I am a graduate of the Faculty of Arts and Science, University of Saskatchewan, B.A. Geol.Sci. (1969).
- 3. I have practiced my profession worldwide, continuously since graduation, including 14 years as a Senior Project Geologist with Cominco Ltd.
- 4. I am a Fellow in good standing in the Geological Association of Canada.
- 5. I have done, or caused to be done, the work described within this report.
- 6. Other sources of information supplied in this report include data from published material, including assessment files, and from my own experience gained from involvement in several major exploration programs conducted in the Iskut Stikine River areas, beginning in 1965-66.
- 7. I have not received, nor do I expect to receive, any interest (direct, indirect, or contingent) in the properties described herein, nor in the securities of Dundee Resources Corp. in respect of services rendered in the preparation of this report.

DATED at Vancouver, British Columbia, this 31st day of October, A.D. 1986.

L.J. Nagy, B.A.Geol.Soi. F.G.A.C.

PERMIT TO PRACTICE TAIGA CONSULTANTS LTD.

Signature Mull M. Date W. V. 13. 1.4.4.

PERMIT NUMBER: P 2399

The Association of Professional Engineers, Geologists and Geophysicists of Alberta 12

APPENDIX I

GEOCHEMICAL RESULTS

4 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

					•				
	REPORT: 127-	-4232	Professional Commission of the State of the					PROJECT: KBC-7	PAGE 1
	SANPLE Number	ELEMENT UNITS	Cu PPM	Pb PPM	Zn PPN	Ag PPM	Au PPB	·	
	रं। bkc-0005-	-HN Y	16	2	25	<0.1	70	HEAVY MINERAL	
	S1 DRC-0001-	-ни	28	3	63	<0.1	15 -	unanagamaju	
	S1 DRC-0002-	-HM	26	5	56	<0.1	< 5 .		***************************************
	S1 DRC-0003-		26	11	57	0.1	<5		
	S1 DRC-0004-	-HN	20	. 5	17	0.1	150		
	S1 PRC-0005-	- S -	16	2	31	<0.1	10 -	SILT	
·	,			_					
	T1 DRC-0001-		31	5	84	<0.1	< 5		
	T1 DRC-0002		32	9	95	<0.1	< 5		
	T1 DRC-0003- T1 DRC-0004-		26 2 6	10 5	80 21	<0.1 <0.1	<5 280		
** ** * * *** *********		-				T-111 B			
				Transaction of the second second	*****				
	•								
·									
-									

		Au PPb	17 q	Aq 02/102
Rock	DR 4151 4152	22 2	0.08 3.10	
	4153 4154 4155 4156 4157	6 2 2 4 6	0.07 0.05 0.05 0.06 0.02	
	4158 4159 4160 4161	8 12 2 4	0.07 0.27 0.12 0.06	
	4162 4163 4164 4165 4166 4167	8 2 4 6 24 352	0.26 0.34 0.41 11.7 18400	537.3

\

Joh#:	87-304	Sample Number	Au ppb	Ag ppm
Rock				
		DR 4138	2	0.02
		4139	2	0.02
		4140	2	0.01
		4141	2	0.07
		4142	4	0.20
		4143	8	0.33
		4144	6	0.18
		4145	6	0.04
		4146	2	0.09
		4147	8	1.08
		4148	2	0.04
		4149	2	0.01
		4150	4	0.15

Ag

ppm

J_#: 87-305 Sample Au Number ppb

SOIL	DR	346 347 348 349	2 2 2 6	0.06 0.13 0.11 0.06
		350 351 352 353 354	2 6 2 8 18	0.11 0.15 0.06 0.09 0.05
,		355 356 357 358 359	2 2 4 2 2	0.08 0.08 0.07 0.05 0.10

Page 4

J _ ♯:	87-305			mple mber	Au ppb	Ag
		SOIL	DR	360	2	0.03
		_		361	4	0.09
				362	6	0.21
				363	4	0.34
				364	8	0.08
				365	22	0.19
				366	4	0.15
				367	2	0.23
				368	2 2 2	0.37
				369	2	0.20
				370	2	0.18
				371	4	0.24
				372	4	0.22
				373	2 2	0.18
			•	374	2	0.13
				375	4	0.31
				376	6	0.21
				377	4	0.22
				378	10	0.18
Maria Maria de Caración de				379	4	0.25
				380	4	0.26
				381	2	0.21
				3499	6	1.21
				3500	10	0.35

Page 5

J ew :	87-305	Sample Number	Au ppb	Ag ppm
	SILT	DR 382 383 2480	6 2 2	0.20 0.16 0.11
		2481 2482 2483 2484 2485	88 2 2 18 2	0.11 0.13 0.15 0.22 0.18
		2486 2487 2488 2489 2490	12 2 4 6 2	0.10 0.10 0.07 0.09 0.09
_		2491 2492 2493 2494 2495	18 2 2 4 116	0.10 0.11 0.08 0.12 0.09
		2496 2497 2498 2499 2500	232 4 20 728 2	0.14 0.13 0.09 0.17 0.11
		2501 2502 2503 2504 2505	4 272 6 4 94	0.13 0.16 0.22 0.09 0.14
		2506 2507 2508 2509 2510	2 2 18 4 422	0.08 0.17 0.12 0.07 0.20
		2511 2512 2513 2514 2515	588 16 226 12 40	0.12 0.08 0.13 0.21 0.08

Page 11

⊭ b#:	87-305	Sample Number	Au ppb	Ag ppm
	SILT	DR 2516 2517 2518 2519 2520	2 34 4 56 44	0.06 0.08 0.23 0.20 0.05
		3472 3473 3474 3475 3476	88 14 4 4 52	0.10 0.07 0.06 0.07 0.08
		3477 3478 3479 3480 3481	16 18 22 28 4	0.07 0.06 0.08 0.14 0.05
_		3482 3483 3484 3485 3486	76 10 144 28 12	0.10 0.10 0.14 0.09 0.07
		3487 3488 3489 3490 3491	32 54 574 8 14	0.10 0.10 0.26 0.10 0.14
		3492 3493 3494 3495 3496	12 18 26 44 6	0.13 0.13 0.12 0.11 0.10
		3497 3498 3501 3502	4 68 404 4	0.13 0.13 0.12 0.08

Page 12

TERRAMIN RESEARCH LABS LTD.

J_#: 87-305	Sample Number	Au ppb	Ag PPm
HEAVY	MINERAL		
(-80) H (-10+80)	M-DR-0384 "	14 10	0.25 0.12
(-80) F	HM-DR-3471	52	0.27

TERRAMIN RESEARCH LABS LTD.

Job#:87-324-B	Sample	Au	Ag
	Number	bbp	ppm

Soir	DR 0423	8	0.16
	424	4	0.19
	425	4	0.16
	426	16	1.72
	427	8	3.40
	428	8	0.64

Page 4

	mple	Au	Ag
	imber	daq	ppm
Soil DR	429	2	1.04
	430	2	0.36
	431	2	0.07
	432	2	0.19
	433	2	0.16
å	434	2	0.65
	435	2	0.46
	436	2	0.18
	437	6	1.78
	438	16	0.14
	439	2	0.16
	440	2	0.07
	441	8	0.08
	442	2	0.04
	443	2	0.14
	444	2	0.09
	2554	2	0.19
	2555	2	0.06
	2556	2	0.09
	2557	2	0.10
	2558	2	0.05
	2559	2	0.07
	2560	4	0.03
	2561	4	1.29
	2562	8	0.04
	2563	14	0.10
	2564	2	0.23
	2565	2	0.88
	2566	4	0.02
	2567	4	0.98
	2568	2	0.10
	2569	2	0.02
	2570	2	0.02
	2571	2	0.06
	2572	4	0.06
	2573	4	0.14
	2574	6	0.05
	2575	4	0.02
	2576	4	0.02
	2577	2	0.02

Page 5

Job #: 87-324-B	Sample	Au	Ag
	Number	ppb	ppm
Soil	DR 2578	4	0.04
	3504	2	0.36
	3505	4	0.05
	3506	2	0.06
	3507	2	0.31
	3508	10	3.10
	3509	2	0.17
	3510	2	0.04
	3511	4	0.10
	3512	2	0.15
	3513	4	0.04
	3514	4	0.06
	3515	2	0.05
	3516	2	0.09
	3517	2	0.11
	3518 3519 3520 3521 3522	2 4 2 2 4	0.24 0.29 0.85 0.70
	3523	2	0.64
	3524	2	0.09
	3525	2	0.55
	3526	4	0.14
	3527	2	0.07
	3528	4	0.62
	3529	4	0.36
	3530	6	0.30
	3531	14	0.11
	3532	8	0.02
	3533	12	0.16
	3534	24	0.07
	3535	4	0.04
	3536	8	0.04
	3537	4	0.02
•	3538	4	0.02
	3539	2	0.21
	3540	4	0.04
	3541	2	0.03
	3542	6	0.07

Page 6

TERRAMIN RESEARCH LABS LTD.

Job#:87-324-	B Sample	Au	Ag
	Number	ppb	PPm
Sou	DR 3543 3544 3545	2 2 2 2	0.08 0.04 0.07
	3546	2	0.07
	3547	2	0.14
	3548	2	0.10
	3549	2	0.14
	3550	4	0.23
	3551	2	0.83
	3553	4	0.04
	3554 3555 3556 3557 3558	2 2 2 6 .	0.38 0.14 0.12 0.16 0.22
	3559	6	0.18
	3560	4	0.17
	3561	2	0.28
	3562	2	0.44

APPENDIX II

ROCK DESCRIPTIONS

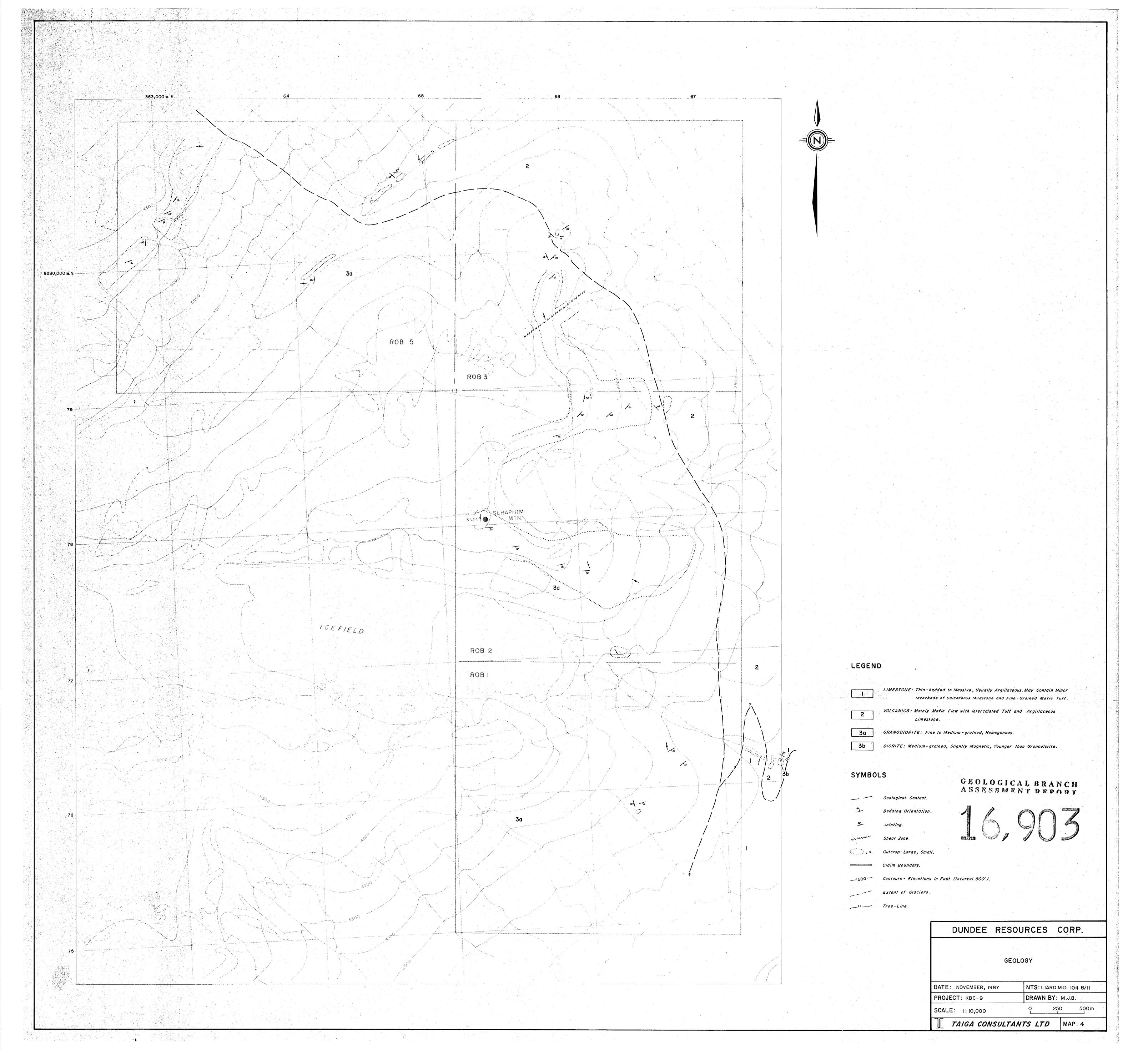
DUNDEE RESOURCES CORP.

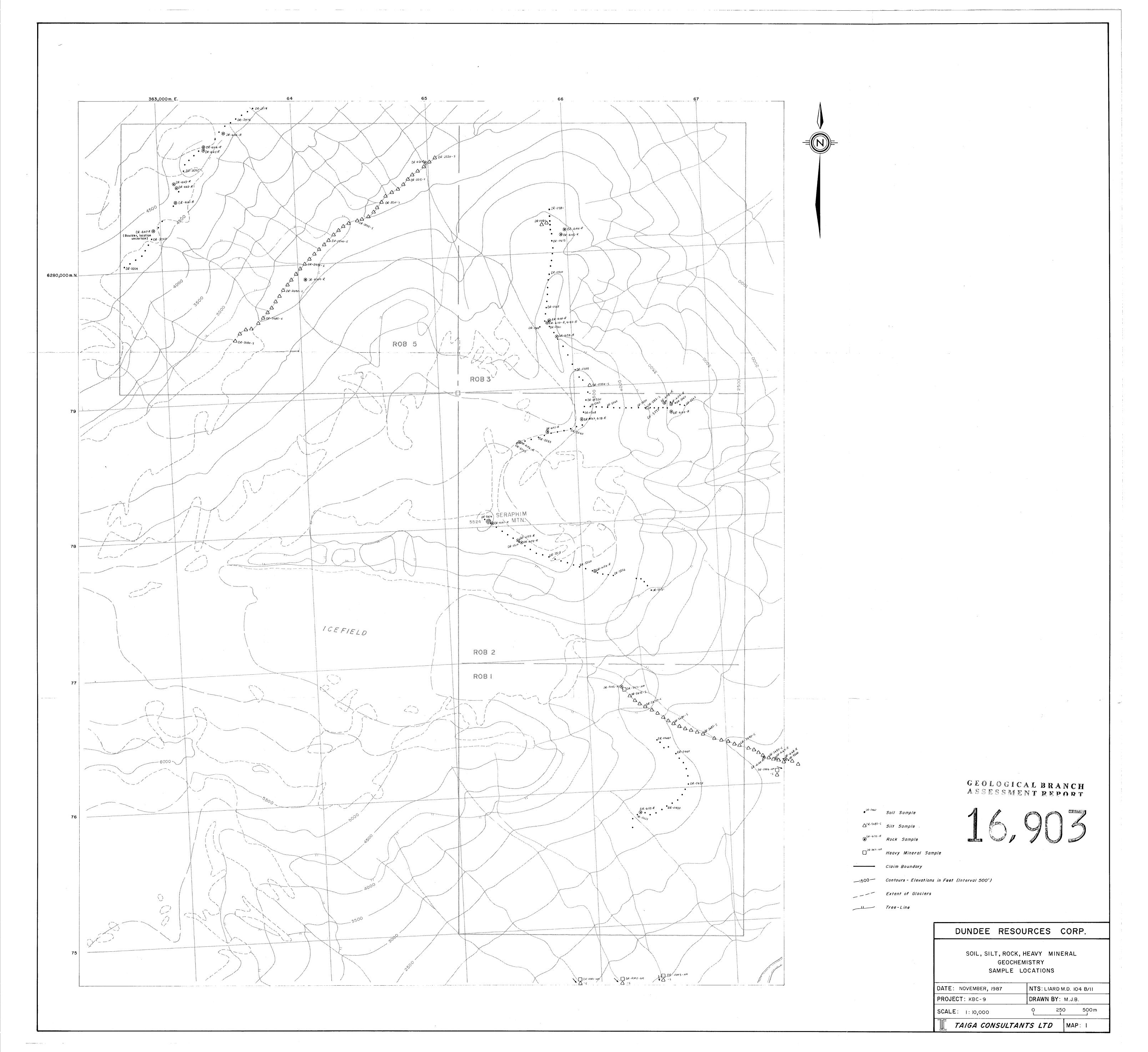
SAMPLE #	NORTHING	/EASTING	DESCRIPTION	COMMENT
DR-4138-R	78.75	66.05	Granodiorite; medium grained, contains quartz, plagioclase, K-spar, hornblende, magnetite, slightly magnetic; "salt & pepper" texture; no visible sulphides.	Slightly chloritized, saussuritized in parts.
DR-4139-R	79.38	65.90	Granodiorite, as above; with moderate to heavy Festaining throughout rock, no visible sulphides.	
DR-4140-R	79.50	65.84	Granodiorite, as 4138; slightly chloritized, epidotized, slightly magnetic, no visible sulphides.	
DR-4141-R	79.49	65.82	Granodiorite, highly altered to fine grained, heavily Fe-stained, very well fractured rock; also medium blue staining, reddish and yellowish staining; no visible sulphides.	Fault scarp.
DR-4142-R	79.49	65.82	Granodiorite, highly altered to dark green (chloritized), finer grained, well fractured rock; no visible sulphides.	Fault scarp.
DR-4143-R	80.13	65.96	Granodiorite, fine grained, dark blue-grey fresh surface, some large anhedral quartz crystals (ave. = 3 mm), slightly magnetic; no visible sulphides.	Chill margin (up to 25 m wide contact aureole).
DR-4144-R	80.17	65.99	Volcanic tuff, fine grained, dark blue fresh surface, light green weathered surface, highly gossan-stained for most part, non-magnetic, very fine-grained pyrite present.	
DR-4145-R	76.76	66.25	Granodiorite, medium-grained, (as 4138); slightly chlorite-altered in parts; no visible sulphides.	
DR-4146-R	76.19	67.29	Limestone, fine grained, well-bedded - shown by blue, beige-greenish layers; some euhedral crystals - glimmer like arsenopyrite; no visible sulphides.	

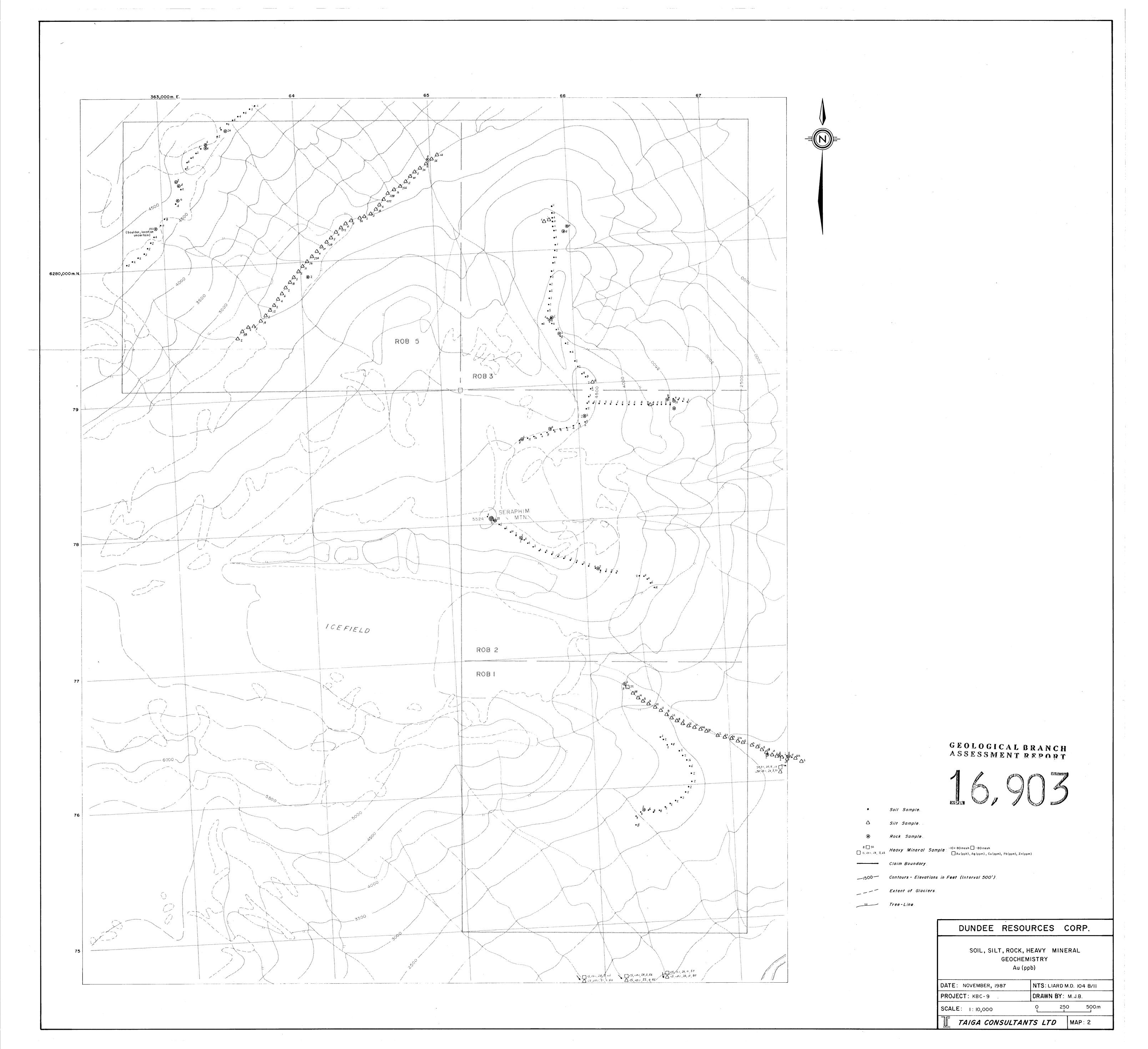
DUNDEE RESOURCES CORP.

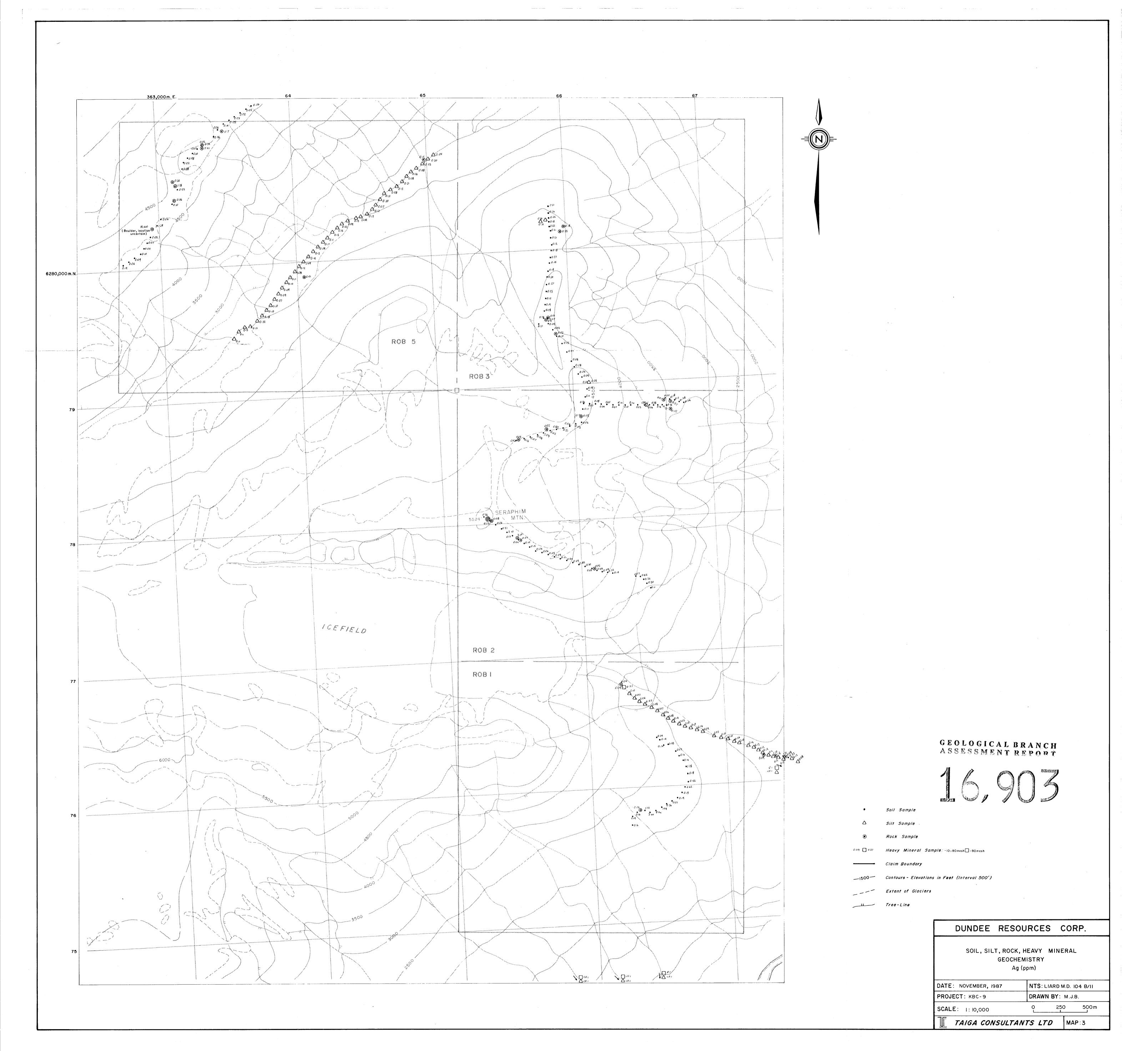
SAMPLE #	NORTHING	/EASTING	DESCRIPTION	
DR-4147-R	76.18	67.37	Volcanic flow, fine grained, intermediate composition, dark blue fresh surface, highly gossan-stained, well fractured throughout, slightly calcareous in parts, blue and yellowish staining; also, up to 5% pyrite.	
DR-4148-R	76.15	67.44	Diorite, medium grained; contains quartz, amphibole, plagioclase, biotite; blue-grey fresh surface, gossanstained weathered surface; small, well-fractured outcrop, very minor pyrite.	
DR-4149-R	79.90	64.05	Granodiorite, as 4138; no visible sulphides.	
DR-4150-R	80.72	64.99	Volcanic flow, fine grained, intermediate composition, greenish-blue fresh surface, part of outcrop highly gossan-stained, minor pyrite.	
DR-4151-R	78.02	65.35	Granodiorite, medium grained, slightly saussuritized in part, no visible sulphides, slightly magnetic.	
DR-4152-R	77.88	65.54	Granodiorite, as above; with heavy Fe-staining throughout, no visible sulphides.	
DR-4153-R	77.87	65.55	Granodiorite, medium grained, with 2" dyke of fine grained, very quartz-rich intrusive cutting it; no visible sulphides.	
DR-4154-R	77.62	66.09	Granodiorite, heavily Fe-altered as well as possibly silicified in part - $3'$ wide zone on 100° trend; no visible sulphides (not traceable for more than 5 m).	
DR-4155-R	75.82	66.34	Granodiorite, medium grained, no visible sulphides, slightly magnetic.	

(


COMMENT


DUNDEE RESOURCES CORP.


SAMPLE #	NORTHING/	EASTING	DESCRIPTION	COMMENT
DR-4156-R	78.60	65.58	Granodiorite, medium grained, feldspars slightly altered to clay minerals - orangy to pinkish colour, rock softer as a result, non-magnetic, no visible sulphides.	
DR-4157-R	78.69	65.79	Granodiorite, medium grained, slightly saussuritized, in contact with 1/2" wide zone of mylonitized material (very fine grained) on face of shear at 360; no visible sulphides.	
DR-4158-R	78.85	66.68	Volcanic flow, intermediate composition, fine grained, dark blue-grey, quartz is coarser grained proximal to the intrusive contact, no visible sulphides.	At granodiorite contact.
DR-4159-R	78.85	66.72	Volcanic flow, intermediate composition, fine grained, dark blue-grey, purplish sheen on some surfaces, non-magnetic, slightly gossan-stained, no visible sulphides.	
DR-4160-R	78.85	66.72	Fine to medium-grained (and slightly more felsic) version of granodiorite; in small dykes (up to 2' wide) cutting volcanic flow, (also found in 2 m "aureole" at contact between granodiorite pluton and volcanic flow); lack of euhedral hornblende, approx. 45% quartz, non-magnetic, no visible sulphides.	
DR-4161-R	80.50	63.10	Granodiorite, medium grained, most hornblende altered to chlorite, chlorite/quartz veins (= 1 cm wide) cutting rock, more greenish fresh surface than unaltered granodiorite, no visible sulphides.	
DR-4162-R	80.63	63.14	Granodiorite, medium grained, chlorite-altered fresh surfaces, much goethite present, well-fractured, non-magnetic, no visible sulphides.	Minor quartz veining (1 cm wide veins).
DR-4163-R	80.66	63.11	Granodiorite, heavily gossan-stained (same as 4162).	


DUNDEE RESOURCES CORP.

SAMPLE #	NORTHING/EA	STING	DESCRIPTION	COMMENT
DR-4164-R	80.91 6	33.36	Granodiorite, medium grained, heavily chloritized as well as silicified, also gossan-stained in parts; slightly magnetic on non-gossan-stained areas; no visible sulphides.	
DR-4165-R	80.90 6	3.36	Quartz from veining cutting volcanic flow, coarse grained, some fine-grained epidote, slight Fe-staining, no visible sulphides.	Quartz vein 10 cm wide.
DR-4166-R	81.01 6	3.51	Volcanic flow, fine grained, intermediate composition, dark blue-grey fresh surface; quartz is more visible (coarser grained) than volcanics further from contact, slightly magnetic, no visible sulphides.	
DR-4167-R	80.23 6	3.02	QUARTZ BOULDER (approx. 1' round), contains approx. 50% massive and euhedral quartz, 35% euhedral and granular galena, accessories include malachite, azurite, goethite, limonite.	BOULDER - found on top of northwestern-most ridge of Dundee property. (Location very approximate)

