SILVER FOND PROPERTY OMINECA MINING DIVISION North-Central British Columbia N.T.S. 94E/6

REPORT ON 1987 EXPLORATION PROGRAM

ST. JOE CANADA INC. in Joint Venture with NEXUS RESOURCE CORPORATION

GEOLOGICAL BRANCH ACCESSMENT PEPORT

16,952 Mat 1077

VANCOUVER, BRITISH COLUMBIA

DECEMBER 17, 1987

SUMMARY

1987 EXPLORATION PROGRAM SILVER POND PROPERTY

ST. JOE CANADA INC./NEXUS RESOURCE CORPORATION

JOINT VENIURE NORTH CENTRAL BRITTISH COLUMBIA

The Silver Pond property is located in the prospective Toodoggone epithermal gold/silver camp in north-central British Columbia. It is held under a joint venture between St. Joe Canada Inc. and Nexus Resource In 1987 Nexus Resource Corporation purchased Imperial Metals Corporation. Corporation's entire interest in the property. Nexus can earn a 36.25% interest in the 128 claim unit (3,200 ha) Silver Pond precious metal property in two stages with expenditures of \$3 million before February 28, To date Nexus has expended approximately \$2.43 million to fund a 1989. major 1987 exploration program that included 12,936m of diamond drilling in 98 drill holes. As a result of this program Nexus currently holds a 39.2% aggregate interest in the property. The remaining 9.8% Nexus interest can be secured in 1988 with the completion of the earn-in. St. Joe Canada Inc. is the operator of the project and currently holds a 60.8% interest. At the end of the acquisition period St. Joe will hold a 51% interest with Nexus' share being 49%.

The favourable Toodoggone geological environment continues to be one of the most intensely explored precious metal camps in the province. It is now accessible via the Cheni Gold Mines Inc. access road, which has been extended from the south. The road crosses the Silver Pond property to connect with the adjoining Cheni Lawyers' property to the east where gold production is scheduled at 500 tonnes per day in the first quarter of 1989.

The Cheni Lawyers' property hosts the AGB, Cliff Creek and Duke's Ridge precious metal deposits, the reserves of which were expanded by an aggressive 1987 exploration program to 1,761,818 tonnes grading 6.7g/t gold and 243g/t silver. Most of the Cheni reserves are hosted by the Cliff Creek Zone which trends southeast onto the Silver Pond property where it is known as the Amethyst Zone. A 1987 Cheni drill intersection on the Cliff Creek Zone 200m north of the Silver Pond property boundary returned 7.5g/t gold over 9.2m. In 1987 St. Joe's initial deep drilling intersected the Amethyst Zone in two holes which returned up to 6.25g/t over a 1m core length. The zone is open for extension along strike and at depth.

At least six significant mineralized zones (West, North, Amethyst, South, Silver Creek, Ridge) have been identified on the Silver Pond property to date. Gold mineralization is hosted by a number of parallel, steeply dipping, silicified and often brecciated structures that trend 320° to 340°. For example, a major auriferous structure having a total strike length of 6.8km on the Silver Pond property hosts the North, West and Silver Creek Zones. The three zones have been drilled to date over a total strike length of only 1.35km, leaving a 4.45km strike length of the prospective structure that requires drill testing.

total of 59 diamond drill holes (including four 1985 holes) Α comprising 6,565m have been drilled on the West Zone over a strike length of 500m and to a vertical depth of 200m. The mineralized zone is characterized by a 30 to 40m wide alteration zone containing at least three 1-3m wide auriferous zones (A Zone, B Zone, C Zone) of intense silicification, brecciation and minor amounts of sulphide. The A, B and C Zones are near parallel, trend 320°, have a subvertical dip and are separated by 10-20m. Ore grade intercepts ranging up to 12.3g/t gold and 324.4q/t silver over a true width of 2.12m have been returned from all the zones but significant gold and silver values generally lack vertical and lateral continuity. The A Zone is the most persistent having been traced by diamond drilling over a strike length of 375m and to a vertical depth of 200m. Using a cut off of 2.4q/t gold over a true width of 1.2m generates an initial drill indicated reserve of 62,101 tonnes at 5.86q/t gold over an average true width of 1.34m for the A, B and C Zones. Additional parallel zones also yield ore grade intercepts over mining widths. In view of the widespread gold mineralization, it is apparent that exploration persistence along strike and at depth could yield a Cheni-type economic gold deposit.

On the North Zone located 2.4km north-northwest of the West Zone, approximately 3,000m of trenching and 2,860m of diamond drilling in 18 holes were completed in 1987. Wide zones of low grade gold mineralization were exposed by the trenching, with gold values ranging up to 1.58g/t over 23.7m and 1.20g/t over 38.1m. Sporadic gold values range up to 28.8g/t over 1m. Drill intercepts range up to 2.05g/t over a true width of 3.0m including 5.98g/t over a 0.5m true width. Alteration patterns observed to date suggest that drilling has probably only tested the upper part of the epithermal system. Deeper drilling is thus needed to evaluate the potential for bonanza-type ore shoots predicted by epithermal models at depth.

On the Silver Creek Zone located 450m southeast of the West Zone, two 1987 diamond drill holes totalling 178m were drilled 100m southwest of the 1985 drilling to follow-up trench chip sampling that returned 13.7g/t silver over a 19m width including 32g/t silver over 6m. The holes returned up to 9g/t silver over a true width of 1.4m and only anomalous gold values were intersected. In 1985 the Silver Creek Zone was tested with 19 diamond drill holes comprising 1,330m over a strike length of 250m to a vertical depth of 166m. Drill intercepts returned up to 5.38g/t gold and 255g/t silver over a 1.1m true width. Anomalous precious metal values were intercepted in all holes and additional follow-up drilling is warranted along strike and at depth. The Amethyst Zone is the postulated southward continuation of Cheni's Cliff Creek Zone from which production is slated in 1989. Seven holes totalling 1,630m have been drilled to date on the Amethyst Zone. Four holes intersected the zone above a depth of 85m, producing geochemically anomalous values. Two deep holes intersected the zone returning intersections of 6.25g/t gold and 80g/t silver over a 1m core length and 1.88g/t gold and 15.3g/t silver over a 3m core length at depths of 185 and 282m below surface, respectively. The zone dips onto the Silver Pond property and is a very high priority follow-up drill target.

South Zone located between the West and Amethyst Zones is The associated with a 850m long soil geochemical anomaly peaking at 1,950ppb gold and is believed to be a splay off the Cliff Creek Zone. A total of 2,139m of drilling including 575m in 1985 have tested the zone to date. The zone is characterized by narrow silica stringers in hydrothermally altered andesite. Trenching in 1984 produced a 6m section averaging 1.0g/t gold with values up to 5.25g/t over 1m. This year's drilling returned 5.42q/t gold across a core length of one meter at a depth of 48m in the most northerly hole. A subsequent hole drilled under the above hole intersected the zone at 82m below surface where it contained anomalous values of gold. A hole drilled 50m to the south returned 3.5g/t gold across a core length of one meter at a depth of 35m. This zone is open to depth and along strike. Further drilling is required to evaluate this zone.

Three holes totalling 285m were drilled along the strike of the Ridge Zone. The center hole produced an intercept of 3.96g/t gold over a core length of one meter and the other holes produced only geochemically anomalous values. Deeper drilling is recommended on this zone.

A total of 665m was drilled in 6 holes on three other zones (Heavy Mineral, E, Junction Zones) producing anomalous gold values on the Heavy Mineral and E Zones. Other parts of the property are still in the reconnaissance stage and several soil geochemical anomalies, particularly on the western portion of the property remain to be followed up.

In view of the adjacent Cheni deposits and the major auriferous structures partially outlined to date on the Silver Pond property, a \$1,200,000 1988 program consisting of 7,000m of diamond drilling and 3,000m of trenching is recommended to follow-up the positive 1987 results. Follow-up diamond drilling is proposed on the North (2,000m), West (1,500m), South (800m), Amethyst (1,500m), Ridge (200m) and Silver Creek (1,000m) Zones. Additional trenching and resistivity geophysical surveys would be used to evaluate the along strike potential of the prospective targets prior to reconnaissance diamond drilling. The proposed program would be funded mainly be Nexus (\$900,000) with St. Joe's share being approximately \$300,000.

TABLE OF CONTENTS

m	
Dad	$\mathbf{\Delta}$
Fau	-
_	_

SUMMA 1. I	ARY	i 1
1	1 LOCATION AND ACCESS. 1.2 PROPERTY.	5 5
2. E	EXPLORATION HISTORY	7
3. R	REGIONAL GEOLOGY AND GOLD/SILVER MINERALIZATION	8
4. P.	ROPERTY GEOLOGY, MINERALIZATION	10
4	.1 WEST ZONE	10
	4.1.1 1987 DRILL PROGRAM 4.1.2 SOIL GEOCHEMICAL SURVEY 4.1.3 TRENCHING	11 13 13
4	.2 NORTH ZONE	16
	4.2.1 LITHOGEOCHEMISTRY. 4.2.2 TRENCHING. 4.2.3 INDUCED POLARIZATION SURVEY. 4.2.4 DIAMOND DRILLING RESULTS.	16 16 17 19
4 4 4 4 4 4 4	 AMETHYST ZONE. SOUTH ZONE. RIDGE ZONE. HEAVY MINERAL (HM) ZONE. E ZONE. JUNCTION ZONE. SILVER CREEK ZONE. 10 RECONNAISSANCE GEOLOGY ARCTIC GRID. 	20 21 22 22 22 23 23
5. O	CONCLUSIONS AND RECOMMENDATIONS	23
5 5 5 5 5 5 5 6. C	 WEST ZONE. NORTH ZONE. AMETHYST ZONE. SOUTH ZONE. FILGE ZONE. SILVER CREEK ZONE. OTHER AREAS. 	24 24 25 25 25 25 25 26 27

LIST OF FIGURES

Page

FIGURE 87-1	PROPERTY LOCATION MAP	2
FIGURE 87-2	CLAIM MAP	· 6.
FIGURE 87-3	REGIONAL GEOLOGY	.9

LIST OF TABLES

TABLE	1	SUMMARY OF THE 1987 SILVER POND EXPLORATION PROGRAM	1
TABLE	2	1987 EXPLORATION EXPENDITURES	3
TABLE	3	SILVER POND PROPERTY STATUS	5
TABLE	4	TONNAGE SUMMARY SILVER POND PROPERTY	12
TABLE	5	SIGNIFICANT WEST ZONE INTERSECTIONS	14
TABLE	6	NORTH ZONE - TRENCH RESULTS	17
TABLE	7	SIGNIFICANT NORTH ZONE INTERSECTIONS	18
TABLE	8	SOUTH ZONE DRILLING - SIGNIFICANT INTERSECTIONS	21

LIST OF APPENDICES

Α.	DIAMOND	DRILL	LOGS
_			

B. ASSAY SHEETS (2 VOLUMES)

FIGURES APPENDIX

PROPERTY GENERAL

FIGURE 8	7–4 GRI	ds and map	IOCATION	INDEX	
FIGURE 8	7 - 5 PRC	PERTY GEOI	OGY		
FIGURE 8	76 (A&	B) PROPERI	Y COMPILAT	ION MAP	(1:5000)

WEST ZONE

FIGURE	87-7	WEST	ZONE	COMPILATION MAP (1:500)
FIGURE	87-8	WEST	ZONE	LONGITUDINAL SECTION A ZONE
FIGURE	87-8A	WEST	ZONE	LONGITUDINAL SECTION A ZONE-POLYGONS
FIGURE	87-8B	WEST	ZONE	LONGITUDINAL SECTION A ZONE-GOLD EQUIVALENT
FIGURE	87–9	WEST	ZONE	LONGITUDINAL SECTION B ZONE
FIGURE	87 - 9A	WEST	ZONE	LONGITUDINAL SECTION B ZONE-POLYGONS
FIGURE	87 - 9B	WEST	ZONE	LONGITUDINAL SECTION B ZONE-GOLD EQUIVALENT
FIGURE	87-10	WEST	ZONE	LONGITUDINAL SECTION C ZONE
FIGURE	87-10A	WEST	ZONE	LONGITUDINAL SECTION C ZONE-POLYGONS
FIGURE	87-11	WEST	ZONE	CROSS SECTION 4+75NW
FIGURE	87-12	WEST	ZONE	CROSS SECTION 5+00NW
FIGURE	87-13	WEST	ZONE	CROSS SECTION 5+25NW
FIGURE	87-14	WEST	ZONE	CROSS SECTION 5+50NW
FIGURE	87-15	WEST	ZONE	CROSS SECTION 5+75NW
FIGURE	87-16	WEST	ZONE	CROSS SECTION 6+00NW
FIGURE	87-17	WEST	ZONE	CROSS SECTION 6+25NW
FIGURE	87-18	WEST	ZONE	CROSS SECTION 6+36NW
FIGIRE	87-19	WEST	ZONE	CROSS SECTION 6+75NW

LIST OF FIGURES APPENDED (CONTINUED)

WEST ZONE CONTINUED

FIGURE 8	87-20	WEST	ZONE	CROSS	SECTIO	DN 7+0	OON	Ñ
FIGURE 8	87-21	WEST	ZONE	CROSS	SECTIO	DN 7+2	25NV	N
FIGURE 8	37-22	WEST	ZONE	CROSS	SECTIO	ON 7+	50NV	V
FIGURE 8	87-23	WEST	ZONE	CROSS	SECTIO	DN 7+	75NV	N
FIGURE 8	37 - 24	WEST	ZONE	CROSS	SECTIO	DN 8+0	DON	V
FIGURE 8	37-25	WEST	ZONE	CROSS	SECTIO	XN 8+2	25NV	1
FIGURE 8	37-26	WEST	ZONE	CROSS	SECTIO	XN 8+9	50NV	v
FIGURE 8	37-27	WEST	ZONE	CROSS	SECTIO	XN 8+7	75NW	v
FIGURE 8	37-28	WEST	ZONE	CROSS	SECTIO	XN 9+(DON	۹.
FIGURE 8	37-29	WEST	ZONE	CROSS	SECTIO	XN 9+2	25NV	V
FIGURE 8	37-30	WEST	ZONE	CROSS	SECTIO	XN 9+7	75N	V
FIGURE 8	37 - 31		WEST	ZONE	LEVEL	PLAN	AT	1500m
FIGURE 8	37 - 32		WEST	ZONE	LEVEL	PLAN	ΑT	1525m
FIGURE 8	37-33	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1550m
FIGURE 8	37-34	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1575m
FIGURE 8	37-35	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1600m
FIGURE 8	37-36	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1625m
FIGURE 8	37-37	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1650m
FIGURE 8	37-38	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1675m
FIGURE 8	37-39	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1700m
FIGURE 8	37-40	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1725m
FIGURE 8	37-41	(A&B)	WEST	ZONE	LEVEL	PLAN	AT	1750m

NORTH ZONE

FIGURE 87-42	NORTH ZONE COMPILATION (1:2500)
FIGURE 87-43	NORTH ZONE TRENCHES AND LITHOGEOCHEMICAL RESULTS
	(NORTH SHEET) (1:2500)
FIGURE 87-44	NORTH ZONE TRENCHES AND LITHOGEOCHEMICAL RESULTS
	(SOUTH SHEET) (1:2500)
FIGURE 87-45	NORTH ZONE DETAIL TRENCH GEOLOGY (1:500)
FIGURE 87-46	IP PSEUDOSECTIONS A=50m 6+25N-14+25N
FIGURE 87-47	IP PSEUDOSECTIONS A=50m 18+25N-24+25N
FIGURE 87-48	IP PSEUDOSECTIONS A=50m 5+25N-10+25N
FIGURE 87-49	IP PSEUDOSECTIONS A=25m 12+25N-15+25N
FIGURE 87-50	IP PSEUDOSECTIONS A=25m 16+25N-22+25N
FIGURE 87-51	NORTH ZONE CROSS SECTION 6+25N
FIGURE 87-52	NORTH ZONE CROSS SECTION 10+25N
FIGURE 87-53	NORTH ZONE CROSS SECTION 14+25N (E)
FIGURE 87-54	NORTH ZONE CROSS SECTION 14+25N (W)
FIGURE 87-55	NORTH ZONE CROSS SECTION 16+25N
FIGURE 87-56	NORTH ZONE CROSS SECTION 17+25N
FIGURE 87-57	NORTH ZONE CROSS SECTION 17+75N
FIGURE 87-58	NORTH ZONE CROSS SECTION 18+25N (E)
FIGURE 87-59	NORTH ZONE CROSS SECTION 18+25N (W)
FIGURE 87-60	NORTH ZONE CROSS SECTION 18+50N
FIGURE 87-61	NORTH ZONE CROSS SECTION 18+75N
FIGURE 87-62	NORTH ZONE CROSS SECTION 19+25N

LIST OF FIGURES APPENDED (CONTINUED)

AMETHYST ZONE

FIGURE 87-63AMETHYST ZONE DDH LOCATION MAP (1:1000)FIGURE 87-64AMETHYST ZONE CROSS SECTION 0+59.5NWFIGURE 87-65AMETHYST ZONE CROSS SECTION 0+00FIGURE 87-66AMETHYST ZONE CROSS SECTION 1+35SE

SOUTH ZONE

FIGURE 87-67SOUTH ZONEDDH LOCATION MAP (1:1000)FIGURE 87-68SOUTH ZONECROSSSECTION 9+50NFIGURE 87-69SOUTH ZONECROSSSECTION 9+00NFIGURE 87-70SOUTH ZONECROSSSECTION 7+50NFIGURE 87-71SOUTH ZONECROSSSECTION 6+50nFIGURE 87-72SOUTH ZONECROSSSECTION 5+50NFIGURE 87-73SOUTH ZONECROSSSECTION 2+00WFIGURE 87-74SOUTH ZONECROSSSECTION 0+50E

RIDGE ZONE

FIGURE 87-75RIDGE ZONE RESISTIVITY SURVEY, DRILL HOLE AND
TRENCH LOCATIONS (1:1000)FIGURE 87-76RIDGE ZONE CROSS SECTION 2+00NFIGURE 87-77RIDGE ZONE CROSS SECTION 2+75NFIGURE 87-78RIDGE ZONE CROSS SECTION 3+75N

HEAVY MINERAL ZONE

FIGURE 87-79 HM ZONE RESISTIVITY SURVEY, DRILL HOLE LOCATION AND SAMPLE RESULTS (1:1000) FIGURE 87-80 HM ZONE CROSS SECTION 7+70S FIGURE 87-81 HM ZONE CROSS SECTION 7+00S

E ZONE

FIGURE 87-82 E ZONE SURFACE COMPILATION (1:1000) FIGURE 87-83 E ZONE CROSS SECTION 0+50W FIGURE 87-84 E ZONE CROSS SECTION 0+25E

JUNCTION ZONE

FIGURE 87-85 JUNCTION ZONE RESISTIVITY, DRILL HOLE LOCATIONS (1:1000) FIGURE 87-86 JUNCTION ZONE MAGNETIC SURVEY (1:1000) FIGURE 87-87 JUNCTION ZONE CROSS SECTION 3+00NW FIGURE 87-88 JUNCTION ZONE CROSS SECTION 3+50NW

LIST OF FIGURES APPENDED (CONTINUED)

SILVER CREEK ZONE

FIGURE 87-89 SILVER CREEK COMPILATION (1:1000) FIGURE 87-90 SILVER CREEK CROSS SECTION 3+00SE FIGURE 87-91 SILVER CREEK LONGITUDINAL SECTION MAIN ZONE FIGURE 87-91A SILVER CREEK LONGITUDINAL SECTION MAIN ZONE-POLYGONS FIGURE 87-92 SILVER CREEK LONGITUDINAL SECTION MAIN ZONE-GOLD EQUIVALENT

INTRODUCTION

St. Joe Canada Inc., in a joint venture with Nexus Resource Corporation, conducted an extensive \$2.43 million exploration program on the 128 claim unit Silver Pond property in the Toodoggone Gold/Silver Camp in north-central British Columbia between June 18 and October 04, 1987 (Figure 87-1).

The target for the 1987 program was epithermal gold/silver mineralization hosted by the Early Jurassic Toodoggone volcanics which had been delineated by St. Joe's previous exploration programs described in Assessment Work Reports #12877, 12911, 14700.

The \$2.43 million program comprised 12,936m of diamond drilling along with 3km of backhoe trenching, induced polarization (IP), EM-16R, and magnetometer surveys, soil geochemical and lithogeochemical surveys, minor reconnaissance geological mapping and sampling, and some reclamation work. A summary of the program and its distribution between the different targets is given in Table 1. A summary of 1987 exploration expenditures is given in Table 2.

Nine different zones were tested by drilling with 92.3% of the meterage going into the four zones in the most advanced exploration stage: West Zone, North Zone, South Zone and Amethyst Zone.

TABLE 1

SUMMARY OF THE 1987 SILVER POND EXPLORATION PROGRAM

Type of Activity	Scale	Target
Diamond Drilling	6,011.02m 2,858.36m 1,563.93m 1,373.61m 284.99m 248.99m 211.53m 205.43m 178.01m	West Zone North Zone South Zone Amethyst Zone Ridge Zone E Zone HM Zone Junction Zone Silver Creek
Trenching I.P. Survey EM-16R Survey Magnetic Survey Soil Geochemistry Lithogeochemistry Reconnaissance Geology Mapping/Sampling Sulphur Isotope Analysis Reclamation Work	3,000m (approx.) 19.30km 10.00km 10.00km 66 samples 485 samples 20 line km refill approx. 30 trenches	North, West, Ridge Zones North Zone Ridge, Junction Zones Junction Zone West Zone North Zone Arctic Grid Junction Area North Zone North, West, Silver Creek Zones

TABLE 2

SILVER FOND PROPERTY ST. JOE CANADA INC./NEXUS RESOURCE CORP. JOINT VENTURE 1987 EXPLORATION EXPENDITURES

	COSTS TO DECEMBER 10, 1987
Mob/Demob:	
• [autom	15,725.78
Freight:	3,407.07
Miscellaneous:	31.80
Total cost for Mob/Demob:	19,164.65
Fields Costs:	
Personnel:	
Permanent Staff	67,862.85
Temporary Assistants	<u>79,702.16</u>
Total Field Personnel Costs:	147,565.01
Support Costs:	
Accommodation:	0.000.01
Room	3,383.81
Board	3,878.72
Storage	217 55
Field accommodation	211.35
Transportation:	
Fixed wing	42,725.15
Helicopter	28,305.26
Vehicle	3,300.02
Communications:	
Supplies: Fuel, camp, field supply	52,484.09
Radio Phone	1,296.96
Postage	92.29
Total Support Costs:	136,428.85 *

- 3 -

	COSTS TO DECEMBER 10, 1987
Equipment Rental & Related Costs:	
Computer Prospecting equipment	9,508.47 <u>39,886.64</u>
Total Equipment Rental Costs:	49,395.11
<u>Contract Services</u>	
Drilling: Other: Contract Geophysics Staking/Land Costs Mob/Demob	1,596,035.55 18,803.89 24,266.50 6,322.24
Total Contract Costs:	1,648,648.21
Analyses:	
Rocks assay	263,166.24
Total Analyses Costs:	263,166.24
Report Writing:	
Drafting Other: Prints and demo material Supplies, Typing, Copying	16.94 6,529.74 <u>3,759.50</u>
Total Report writing costs:	10,306.18
<u>Other Costs:</u>	
Project Management	145,060.48
Total Other Costs:	145,060.48
TOTAL PROJECT COST	<u>\$2,419,734.73</u>
Estimated December Expenditures	10,000.00
GRAND TOTAL	\$2,429,734.73

- 4 -

1.1 LOCATION AND ACCESS

The claim group is located approximately 290km due north of Smithers in the Toodoggone River Area of north-central British Columbia (Figure 87-1). It constitutes the western boundary of the Cheni Gold Mines Inc. Lawyers property (Figure 87-2). The area has relatively low relief ranging from 1,400 to 1,800m in elevation. The treeline is at an elevation of about 1,630m.

Access to the property is by air from Smithers to the Sturdee Valley gravel airstrip. A road from Sturdee Valley via Baker Mine and the Cheni property, has been extended to the St. Joe exploration camp just east of Cloud Creek.

During 1987 an access road was completed by Cheni Gold Mines Inc. with the financial assistance of the Province of British Columbia. The road was extended from its previous terminus at Moose Valley to the Sturdee Valley airstrip. From there it passes through Lawyers Pass over the west and north portion of the Silver Pond property to the Cheni mine site (Figure 87-2).

1.2 PROPERTY

The Silver Pond property consists of 128 claim units (3200 ha) in the Omineca Mining Division of North Central British Columbia (Figure 87-2, Table 3).

TABLE 3

SILVER POND PROPERTY STATUS

<u>Claim Name</u>	Record	<u>Units</u>	<u>Anniversary Date</u>	Expiry Date
Silver Pond	1771	20	May 17	1997
Silver Pond Fr.	7145	1	July 18	1997
ASAP	4732	12	Aug. 23	1997
Silver Sun	2288	8	Nov. 13	1997
Silver Peak Fr.	2881	. 1	July 9	1997
Silver Grizzly Fr.	2879	1	July 9	1997
Silver Cloud 1	6656	20	Sept. 18	1997
Silver Cloud 2	6657	20	Sept. 18	1997
Silver Cloud 3	6836	20	Feb. 7	1997
Silver Marten	6734	4	Oct. 12	1997
Silver Creek	1772	20	May 17	1997
Silver Bullet Fr.	2880	_1	July 9	1997
			-	•

128

The claims were optioned by St. Joe in 1983 from Great Western Petroleum Corporation (now Cassidy Resources Itd.) which acquired the property from Charles F. Kowall of Whaletown, British Columbia. Under the agreement with Great Western Petroleum Corporation, St. Joe agreed to assume all obligations of the original Kowall agreement and the subsequent revision which involves an annual option payment of \$50,000 to year 2004. In addition, Kowall retains a 1% Net Smelter Return and Cassidy Resources retains a 12% Net Profits Interest if the option is exercised. Under a further option agreement in 1983, Imperial Metals Corporation acquired a 20% participating interest with St. Joe on the property. Finally under the terms of an agreement dated May 6, 1987 Nexus Resource Corporation can earn a 36.25% interest in the property by expending \$3,000,000 Cdn. over 2 St. Joe's interest at the end of this acquisition period will have vears. been reduced to 51.0%. In addition Nexus has since purchased Imperial's interest in the property so that Nexus' share on completion of the earn-in will be 49%.

With 1987 expenditures of \$2.43 million Nexus has earned an initial 24% interest and currently holds with the Imperial purchase an aggregate interest of 39.2% leaving St. Joe with a 60.8% interest.

2. EXPLORATION HISTORY

The Toodoggone River Area first attracted attention in 1925 due to the placer gold potential. Little mineral exploration was carried out in the area until the 1960's, when several companies pursued regional geochemical programs in the search for porphyry copper deposits.

The gold/silver mineralization on the Lawyers and Chapelle properties were discovered by Kennco Explorations during routine follow-up of silver silt geochemical anomalies. In the late 1970's and the 1980's the area developed into one of the most active epithermal gold/silver camps in British Columbia.

DuPont of Canada optioned the Chapelle property in 1974 and started production at the Baker Mine from the A-vein at a rate of 90 tonnes per day in March, 1980. Pre-production reserves were estimated at 90,000 tonnes grading 33.9g/t gold and 680.2g/t silver. Greater than anticipated dilution due to intense faulting and the failure to develop additional reserves led to the closure of the mine in December, 1983. The mineral rights for the Chapelle property were acquired by Multinational Resources Inc. in 1985 and the property is presently under active exploration.

The Amethyst Gold Breccia (AGB) zone, discovered in 1973, the Cliff Creek Zone and the Duke's Ridge Zone on the Lawyers property are presently being developed by Cheni Gold Mines Inc. (formerly S.E.R.E.M. Ltd.). Production is expected to commence in early 1989 on the AGB zone with a milling rate of 500t per day. The operation will produce an average of 38,000 cunces of gold and 1,000,000 cunces of silver annually. Published reserves (Northern Miner, November, 1987) for the AGB, Cliff Creek, and Duke's Ridge Zones are 1,761,818 tonnes with a grade of 6.7g/t gold and 243g/t silver. Several other properties (Shasta, Al, Mets) in the Toodoggone Camp are also in an advanced exploration stage. The Silver Pond claim group of the St. Joe Canada Inc./Nexus Resource Corporation joint venture is located immediately west of Cheni's Lawyers property (Figure 87-2). In 1984 and 1985 St. Joe conducted exploration programs on the property, entailing extensive grid establishment, geochemical and geophysical surveys, geological mapping and 3000m of diamond drilling (see Assessment Work Reports #12877, 12911, 14700). These two programs defined the targets for the 1987 exploration program.

3. <u>REGIONAL GROLOGY AND GOLD/SILVER MINERALIZATION</u> (Figure 87-3)

The Toodoggone River area is part of the Intermontane Belt of the Canadian Cordillera and lies close to the eastern margin of the Stikina terrane. The oldest rocks in the area are Permian aged tectonic wedges of crystalline limestone. Unconformably overlying the limestone are Late Triassic volcanic rocks of the Takla Group. The Omineca intrusions are of Jurassic age and range in composition from granodiorite to quartz monzonite. Some syenomonzonite intrusions and quartz-feldspar porphyry dikes may be the feeders to some of the Toodoggone volcanic rocks.

Representing an island-arc geotectonic environment, the Toodoggone Volcanics form a northwesterly trending belt of about 90km length and 15km width. The rocks consist of complexly intercalated volcanic-sedimentary rocks of Early to Middle Jurassic age. Two main volcanic cycles can be distinguished. The epithermal gold/silver mineralization seems to be associated with the waning stage of the first of these cycles. The Toodoggone Volcanics are extensively block faulted but generally deformation and metamorphic effects are slight. There is minor tectonic disruption of stratigraphy and little metamorphism beyond zeolite grade. Sedimentary rocks deposited in a shallow marine environment of Upper Cretaceous age, the Sustut Group, unconformably overlie the Toodoggone Volcanics.

Epithermal gold/silver mineralization is mainly hosted by the Toodoggone Volcanics and, to a lesser extent, by coeval felsic intrusions and the Takla volcanics. The mineralization includes a variety of genetic environments from porphyry stockwork to hot-spring-type environments.

Characteristic ore minerals are electrum, native gold, native silver and acanthite. The most common gangue minerals are amethystine and chalcedonic quartz, calcite, and barite. The mineralization in the Toodoggone area displays alteration assemblages and alteration zonations as well as vertical mineral zonations typical of epithermal deposits.

LEGEND CRETACEOUS UPPER CRETACEOUS BUSTUT GROUP (TANGO CREEK FORMATION) K POLYMICTIC CONGLOMERATE, SANDSTONE, SHALE, CARBONACEOUS MUDSTONE JURASSIC LOWER AND (?) MIDDLE JURASSIC "TOOOOGGONE VOLCANICS" = (7) HAZELTON GROUP 8 DARK TO PALE GREY OR GREEN QUARTZOSE BIOTITE HORNBLENDE PLAGIOCLASE ASH FLOWS OF ANDESITIC AND RARELY DACITIC COMPOSITION VARIABLY WELDED WITH LOCALLY WELL-DEVELOPED COMPACTION LAVERING. CONTAINS ABUNDANT GREY DACITE AND RARE GRANITIC CLASTS. OUTCROPS ARE COMMONLY BLOCKY AND STRONGLY JOINTED 15 TOODOGGONE CRYSTAL ASH TUFFS AND FLOWS 7 RECESSIVE, GREY, MAUYE, PURPLE QUARTZOSE PLAGIOCLASE CRYSTAL TUFF LAPILLI TUFF, AND BRECCIA, WITH LESSER AGGLOMERATE, LAMAR AND EPI-CLASTIC BEDS, INCLUDES SOME WELDED TUFFS AND PYROXENE HORNBLENDE FFLDSPAR PORPHYRY FLOWS WHICH ARE LOCALLY DOMINANT SOME MEMBERS CONTAIN NO QUARTZ. PINK WEATHERING WHERE LAUMONTITE IS ABUNDANT TUFF PEAK FORMATION 6 PALE PURPLE, GREY AND GREEN BIOTITE AUGITE HORNBLENDE PLAGIOCLASE PORPHYRY FLOWS: SOME AUTOBRECCIATED FLOWS, MINOR SILLS AND PLUGS. SOME CRYSTAL AND LAPILLI TUFF 6A CONGLOMERATE OR LAHAR DERIVED FROM UNITS 6 AND 68, WITH GRADED AND CROSSLAMINATED MUDSTONE AND SANDSTONE INTERBEDS: DEBRIS FLOWS. LAPILLI AND CRYSTAL TUFFS 68 FLOWS SIMILAR TO UNIT 6 BUT CONTAINING SPARSE ORTHOCLASE MEGACRYSTS MARIC FLOW AND TUFF UNIT 4 BASALT FLOWS-THIN BEDDED, PURPLE TO DARK GREEN, COMMONLY EPIDOTIZED FINE-GRAINED PYROXEME BASALT FLOWS AND TUFFS, INCLUDES SOME SILLS AND DYNKES -8 4A PURPLE TO MAUVE, MEDIUM-GRAINED PORPHYRITIC BASALT: LOCALLY MAUVE TO PINK, ZEOLITIZED WITH LAUMONTITE, POSSIBLE INTRUSIVE (LACCOLITH) 3 LOWER TO MIDDLE JURASSIC (DYKES AND STOCKS) E QUARTZ MONZONITE. GRANODIORITE-MEGACRYSTIC IN PART MINOR SYENITE う F FELDSPAR PORPHYRY HURNBLENDE FELDSPAR PORPHYRY - DYKES AND PLUGS TRIASSIC .90 UPPER TRIASSIC TALKA GROUP TAT MAY BE PART OF THE ASILKA GROUP PALEOZOIC PERMIAN P ASITKA GROUP? PREDOMINANTLY LIMESTONE (INCLUDING MARBLE AND MINOR SKARN) WITH SOME ARGILLITE, BLACK SHALE, AND CHERT UNITS COMPOSED OF LIMESTONE CHERT ARGILLITE, AND BASALT (IPV C) MAY BE IN PART OR TOTALLY TAKLA GROUP VVV HYDROTHERMAL ALTERATION FERRICRETE, QUATERNARY FERRUGINOUS BRECCIA SILICA, CLAY MINERALS ALUNITE, BARITE CLAY MINERALS ALUNITE, SILICA, HEMATITE Ŗ GOSSAN, LIMONITIC ZONE Ø ST. JOE CANADA INC. / NEXUS RESOURCE CORP. J.V. É SILVER POND PROPERTY REGIONAL GEOLOGY MAP 2, km

NOV. 1987

FIG. 87 - 3

4. PROPERTY GEOLOGY, MINERALIZATION

Most of the property (Figure 87-5) is underlain by Toodoggone volcanics comprised of green porphyritic andesite with minor tuff. These volcanics dip gently to the northwest. The southern portion of the claims is capped by younger Sustut Group conglomerates in slight angular unconformity with the underlying Toodoggone volcanics. Steeply dipping rhyolitic to rhyodacitic dikes cut the Toodoggone volcanics and are generally associated with steeply dipping fault zones. Several north-northwest striking faults have been identified and are slightly offset by east-west trending younger faults.

The north-northwest trending faults apparently were the conduits for the mineralizing fluids which gave rise to the North, West, Silver Creek and Amethyst gold zones.

Two general styles of epithermal gold/silver mineralization occur on the Silver Pond property: a) vein and breccia-type ore shoots and pods as exemplified by the West and Silver Creek Zones; and, b) high level stockwork-type mineralization as exemplified by the North Zone.

The porphyritic andesites are affected by a widespread, weak prophylitic alteration and weak matrix silicification. This alteration is regional in extent and is not directly related to gold/silver mineralization. Alteration associated with structurally controlled epithermal gold/silver mineralization consists of pervasive silicification with total obliteration of the original rock textures, grading outward into weaker silicification, sericitization, argillic and potassic alteration.

4.1 West Zone (See Figures 87-7 through 87-41)

The West Zone (Figures 87-4, 5, 6, 7) constitutes part of a regional northwest to north-northwest trending major structural element west of and parallel to Cheni's Cliff Creek Zone. Several other mineralized zones including the Silver Creek Zone and North Zone are related to the same structure that hosts the West Zone.

The host rocks for the mineralization at the West Zone are porphyritic andesitic flows, agglomerates, crystal and lapilli tuffs. Propylitic alteration at the West Zone is characterized by the chloritization and pyritization of the original mafic minerals and epidotization and albitization of the igneous plagioclase. Alteration associated with mineralization includes strong to pervasive silicification, sericitization, potassic and argillic alteration.

The West zone is defined by a southeast-northwest trending resistivity (EM-16R) high and partly coincident soil gold anomaly. Precious metals had been located by the 1985 trenching and drilling program. The four diamond drill holes of the 1985 program yielded the following results (true widths):

SP85-261.50@ 7.63g,SP85-271.50@ 6.68g,	<u>Gold Assay</u>		
SP85-27 1.50 @ 6.68g,	/t		
	/t		
SP85–28 1.50 & 5.3/g	/t		
SP85-29 1.50 @ 4.11g,	/t		

4.1.1 1987 Drill Program

In 1987 the West Zone was the main focus of the diamond drill program which comprised 6011m in 55 holes, equivalent to 46.5% of the total meterage. The main objectives were to define the nature of the mineralization, to test its continuity along strike and to depth, and to attempt to block out reserves.

The 1987 diamond drilling intersected gold mineralization over a 400m strike length and to a 200m vertical depth. The mineralized zone is characterized by a wide alteration zone containing at least three 1-3m wide auriferous zones (A Zone, B Zone, C Zone - Figures 87-8, -10) of intense silicification, brecciation and minor amounts of sulphide. The A, B and C Zones are parallel, trend 320°, have a subvertical dip and are separated by 10-20m. Significant intercepts range up to 12.3g/t gold and 324.4g/t silver over a 2.12m true width. The assay results are compiled by the individual zones in Table 5.

The correlation of mineralized intersections per zone from hole to hole was accomplished by using the following criteria:

- type and intensity of alteration
- structure (veining, brecciation, stockwork, etc.)
- style of mineralization, sulphide and gangue mineralogy, core angles
- gold/silver ratios
- spatial relationship to rhyolitic dikes

Three zones (Zone A, B and C) with some vertical and horizontal continuity were outlined. Longitudinal sections for these zones are included as Figures 87-8 through 10. The vertical continuity is illustrated in the cross sections (Figures 87-11 through 87-30) and the horizontal continuity is shown in level plans (Figures 87-31 through 87-41).

Using a cut off of 2.4g/t gold over a true width of 1.2m generates an initial drill indicated reserve of 62,101t grading 5.86g/t gold over an average true width of 1.34m for the A, B and C zones. Increasing the cut-off to 3g/t over a true width of 1.2m gives 47,820t grading 6.85g/t over an average true width of 1.40m. The polygons used in the calculation are shown on Figures 87-8, 8A, 9, 9A, 10, 10A. Reserves using the same cut-offs but using a gold equivalent (i.e., converting silver assays to gold equivalents and combining with gold values) have also been calculated. All the reserves are shown in the following table:

TABLE 4

ST. JOE CANADA INC./NEXUS RESOURCE CORPORATION JOINT VENTURE TONNAGE SUMMARY: SILVER POND PROPERTY WEST ZONE

a) Gold Assays

	@ Min 3.0g/t & 3.6 GMP			@ Min 2.4g/t & 2.88 GMP			
WEST ZONE	TONNAGE	AU GRADE	AVE. TW	TONNAGE	AU GRADE	AVE. TW	
ZONE A	27811.80	7.19	1.39	34806.60	6.23	1.33	
ZONE B	7464.00	5.37	1.25	14683.30	4.07	1.23	
ZONE C	<u>12543.80</u>	6.96	1.50	<u>12611.30</u>	6.94	1.50	
	47819.60			62101.20			
	Ave. Grade Ave. TW =	e = 6.85g/ 1.40m	t	Ave. Grade Ave. TW =	e = 5.86g/t 1.34m		

b) Gold Equivalent

	@ Min 3.0g/t	& 3.6 GMP	0 Min 2.4g/t & 2.88 GMP			
WEST ZONE	TONNAGE AU GRA	ADE AVE. TW	TONNAGE	AU GRADE	AVE. TW	
ZONE A	31513.80 7.83	1. 50	39770.20	6.74	1.41	
ZONE B	18105.60 4.03	3 1.23	20404.20	3.87	1.22	
ZONE C	<u>12543.80</u> 6.96	5 1.50	<u>12611.30</u>	6.94	1.50	
	62163.20		72785.70			
	Ave. Grade = 6.5 Ave. TW = $1.42m$	55g/t	Ave. Grade Ave. TW =	e = 5.97g/t 1.37m	2	

The apparent lack of vertical and along strike continuity accounts for the low tonnage. Except for a few silver values greater than 100g/t most values are in the 3-10g/t range.

The most intense mineralization and alteration occurs as an up to 40m wide stockwork zone both in the hangingwall and the footwall of a vertical to steeply southwest or northeast dipping rhyolitic dike (sections 7+25 NW to 8+75 NW). The dike is partly altered at its contacts and is in places crosscut by the stockwork type mineralization. Mineralization and alteration intensity on the sections to the northwest and to the southeast where the rhyolite dike was intersected is significantly less.

The mineralization consists of:

- 1. Narrow veinlets and stringers (up to 30 veinlets per meter core) of multi-stage silica with minor calcite, epidote, chlorite, pyrite and laumontite, rare amethystine quartz with traces of galena, chalcopyrite, sphalerite, electrum, native silver and acanthite. The veinlets and stringers are usually associated with weak, regional prophylitic alteration and matrix silicification. Coxcomb textures are common.
- 2. Zones of intense to pervasive silicification which are usually associated with hydrothermal brecciation and intense multi-phase veining.

The zones of intense veining and pervasive silicification/hydrothermal brecciation form a complicated system of numerous subzones of changing thickness and are separated by barren, weakly to moderately prophylitic altered andesite with no or minor calcite or calcite/silica stringers. Gold mineralization is sporadic both vertically and horizontally, and seems to shift between the several subzones of the wider stockwork zone.

4.1.2 <u>soil Geochemical Survey</u> "B" horizons at 20-46 cm depth were sampled

A total of 66 soil samples were taken covering the area from 1+00 NE to 3+00 SW on Lines 3+00, 3+50, 4+00 and 4+50 NW. The gold anomaly established by the previous geochemical survey as reflecting the West Zone mineralization continues towards the southeast to line 4+00 NW, as shown by this survey. The results of this survey are included on Figure 87-7.

4.1.3 <u>Trenching</u>

An area of coincident resistivity and magnetic highs southeast of the West Zone drilling was tested by backhoe trenching. No precious metal mineralization and only regional prophylitic alteration and weak matrix silicification were encountered in the new trenches.

Magnetic survey employed a Scintrex MP-Z Proton Precession Magnetometer.

Analyses were on-site using standard AA methods and procedures under the supervision of R. Darrah. Sample checks by Min-En Labs using standard fire assay and AA methods and procedures.

- 14 -

TABLE 5

March 1

in here

.

ide and

(in 1997)

19

SIGNIFICANT WEST ZONE INTERSECTIONS

				Core	True	Au	Ag		Aq/Au
<u>Hole</u>	<u>Zone</u>	From	<u>To</u>	Length	<u>Width</u>	<u>g/t</u>	<u>g/t</u>	<u>Elevation</u>	Ratio
SP87-30	A	33.00	34.00	1.00	0.42	3.80	4.20	1685.00	1.11
2	Α	36.00	38.50	0.50	0.21	1.04	6.30	1683.00	6. 06
3 SP87-32	Α	32.00	35.00	3.00	2.30	2.33	10.40	1686.00	4.46
^ч SP87–33	В	33.00	37.00	4.00	2.63	2.11	13.00	1685.00	6. 16
5	Α	42.00	44.00	2.00	1.41	5.29	50.00	1679.00	9. 45
sP87-36 ،	Α	35.00	36.00	1.00	0.50	1.10	3.00	1687.00	2. 73
7 SP87–37	С	5.00	6.00	1.00	0.64	4.72	8.00	1702.00	1.69
ઙ SP87–38	В	19.00	21.00	2.00	1.15	1.00	2.50	1690.00	2. 50
9	A	39.00	40.00	1.00	0.57	2.56	0.60	1673.00	0.23
r⊳ SP87−43	С	28.00	29.00	1.00	0.64	1.99	26.00	1675.00	13.07
II SP87-44	В	46.00	47.00	1.00	0.42	1.18	2.90	1663.00	2.46
12	bet. A/B	66.00	67.00	1.00	0.42	1.70	2.00	1645.00	1.18
13	A	84.00	84.43	0.43	0.22	4.02	6.10	1630.00	1.52
- SP87-45	bet. A/B	39.00	40.00	1.00	0.65	1.25	4.40	1673.00	3.52
:0	А	45.00	47.00	2.00	1.29	1.88	9.65	1667.00	5.13
16 SP87–46	В	40.00	42.00	2.00	1.29	1.06	14.40	1664.00	13. 58
17	А	69.00	70.00	1.00	0.52	2.26	24.40	1638.00	10. 80
81	A	73.00	74.00	1.00	0.52	1.46	4.10	1634.00	2.81
19 SP87-47	Α	51.00	53.00	2.00	1.29	1.49	3.85	1663.00	2.58
ટ ા SP87−48	В	68.00	69.00	1.00	0.34	1.00	3.80	1637.00	3.80
2.1	В	70.00	72.00	2.00	0.68	3.16	116.00	1636.00	36.71
∵2 SP87−49	С	75.00	77.00	2.00	1.29	1.23	10.60	1620.00	8.62
23	В	89.00	90.00	1.00	0.50	2.57	1.90	1610.00	0.74
24	bet. A/B	109.00	110.00	1.00	0.71	1.23	2.30	1593.00	1.87
25	A	114.00	115.00	1.00	0.71	3.80	3.00	1589.00	0.79
೭್ಲ SP87−50	В	78.00	79.00	1.00	0.71	2.24	2.50	1627.00	1.12
2 '	A	100.00	102.00	2.00	1.41	5.73	4.70	1611.00	0.82
ટ8 SP87−51	A bet.	48.00	49.00	1.00	0.34	12.60	8.40	1699.00	0.67
Z9	A/B	53.00	54.00	1.00	0.34	4.86	6.10	1694.00	1.26
്രSP87−73	С	41.00	42.00	1.00	0.71	3.40	4.00	1659.00	1.18
21	В	63.00	65.00	2.00	1.41	2.27	3.40	1643.00	1.50
ુટ SP87−74	Α	115.00	116.00	1.00	0.50	2.80	1.90	1583.00	0.68
33 SP87-75	С	58.00	59.00	1.00	0.71	17.90	3.80	1635.00	0.21
े SP87-76	Other	35.00	36.00	1.00	0.50	1.35	12.40	1645.00	9. 19
35	Other	47.00	48.00	1.00	0.50	1.21	2.10	1635.00	1.74
⊰್ಧಿSP87−77	С	109.00	110.00	1.00	0.71	19.25	6.10	1573.00	0.32
27	В	137.00	138.00	1.00	0.45	1.16	1.50	1549.00	1.29
38	Α	153.00	154.00	1.00	0.34	1.65	0.40	1535.00	0.24
3 ≧SP87−78	D	63.00	64.00	1.00	0.02	1.12	60.00	1614.00	53.57
40	Α	128.00	130.00	2.00	1.29	3.12	1.90	1568.00	0.61

<u>Hole</u>	<u>Zone</u>	From	<u>To</u>	Core <u>Length</u>	True <u>Width</u>	Au g/t	Ag <u>g/t</u>	<u>Elevation</u>	Ag/Au <u>Ratio</u>
4/ SP87-80	с	64.00	66.00	2.00	1.41	2.34	8.10	1634.00	3.46
42	В	85.00	94.00	9.00	6.69	1.57	6.60	1617.00	4.20
43	Α	103.00	104.00	1.00	0.71	12.60	7.60	1607.00	0.60
44 SP87-81	Α	119.00	120.00	1.00	0.64	1.80	5.00	1583.00	2.78
45	NE	139.00	140.00	1.00	0.34	1.10	2.00	1569.00	1.82
	of A								
46 SP87-82	Other	22.00	23.00	1.00	0.71	1.64	2.00	1632.00	1.22
47	Other	54.00	56.00	2.00	1.20	2.73	3.00	1608.00	1.10
48	Other	94.00	95.00	1.00	0.66	2.47	2.20	1561.00	0.89
49 SP87–105	Other	72.00	74.00	2.00	1.53	2.23	9.50	1592.00	4.26
ട്ര SP87–106	Other	54.00	59.13	5.13	3.63	1.63	1.80	1601.00	1.10
5(SP87–107	Other	39.00	40.00	1.00	0.26	1.20	2.00	1632.00	1.67
52 52	NE	163.00	164.00	2.00	1.29	1.08	2.25	1544.00	2.08
	of A								
5 SP87-108	C	78.00	81.00	3.00	2.12	5.65	5.30	1617.00	0.94
5 ⁶¹	Bet.	109.00	110.00	1.00	0.71	1.20	3.40	1596.00	2.83
t.c.	A/B								
50 66	A	119.00	120.00	1.00	0.71	16.40	725.00	1589.00	44.21
20	A	121.00	122.00	1.00	0.71	20.00	242.00	1588.00	12.10
SP87-112	A	55.00	56.00	1.00	0.64	1.67	2.10	1652.00	1.26
58 SP87-117	A	66.00	67.00	1.00	0.77	3.50	2.60	1647.00	0.74
	A	68.00	69.00	1.00	0.77	2.80	4.50	1646.00	1.61
(j. C)	NE	73.00	74.00	1.00	0.42	1.03	2.10	1643.00	2.04
la 1	OI A								
· ·	NE	93.00	94.00	1.00	0.17	1.20	1.00	1629.00	0.83
62 0007 110	OI A	10.00	15 00	0.00	• • •	~ ~~			
© ⊆ SP87-118	В	12.00	15.00	3.00	2.12	2.21	103.90	1703.00	47.01
SP87-119	A	14.00	17.00	3.00	2.30	1.97	53.50	1702.00	26.16
64 SP87-120	A	58.00	59.00	1.00	0.71	1.20	4.30	1657.00	3.58
	NE OF)	74.00	75.00	1.00	0.71	6.10	10.00	1645.00	1.64
C. CD07_107	D	77 00	00.00	2 00	0 00	1 05	0.00	1 (1 4 . 00	4 50
96 5F0/-12/	, D C	77.00	80.00	3.00	2.30	1.85	8.80	1614.00	4.76
ເ∳າ ໌ . ກ		95.00	96.00	1.00	0.57	3.30	13.60	1601.00	4.12
ູ່ 3 ເລເດຍອາ	D	103.00	104.00	1.00	0.57	1.90	4.10	1595.00	2.16
S. 2L01-150	C	20.00	20.30	2.00	U.1/ 1 75	5.30	4.00	1002.00	1.39
70		12.00	/4.00	2.00	T.12	5.15	13.30	1022.00	2.31
						3.29	23.24		

.

1 March

i and

NºSC P

1

-

1

-

4.2 North Zone (See Figures 87-42 through 87-62)

The North Zone is related to the same regional structure that hosts the West Zone and the Silver Creek Zone. It is located 2.4km north-northwest of the West Zone. Initially, the interest in this area was triggered by a widespread gossan and hydrothermal alteration. A soil geochemical survey carried out in 1984 outlined a linear north-northwest trending gold anomaly more than 800m long with values peaking at 250ppb gold. The anomaly occurs at the margin of the silica cap - the area of the strongest silica-kaolinite-alunite alteration on the North Zone.

A resistivity survey (EM-16R) conducted in 1985 located north-northwest trending linear resistivity anomalies with values four to five times background. An intensive follow-up trenching program was initiated during the 1987 field season between Lines 16+50N and 19+25N. The targets were the coincident soil geochemical and resistivity anomalies from the previous surveys.

An IP survey was conducted covering the area between Lines 5+25N and 22+25N. This survey generated additional trench and drill targets. Extensive lithogeochemical sampling was carried out in the area of the silica cap following the recommendations of Dr. R. Beane of the St. Joe American research laboratory. The study was initiated to determine the level of the North Zone in the epithermal system .

4.2.1 Lithogeochemistry

A lithogeochemical study (Figures 87-43, 44) was carried out over the North zone. An attempt was made to collect at least 40 rock chips each of at least ten cubic centimetres from every sample site. A total of 458 rock chip samples were collected and analysed for gold using an analytical technique with 1ppb gold detection limit. The results of the survey range up to 1000ppb.

The North Sheet (Figure 87-43) shows a number of samples with elevated gold values in the general area of the soil geochemical anomaly. Trenching and surface sampling indicate that gold is associated with siliceous rock often containing fine quartz stringers and in some cases rhyolite dikes.

On the South Sheet (Figure 87-44) anomalous values are noted at about 1+00E to 1+25E from Line 1+75N to Line 4+25N. These values are associated with barite in a silicified zone.

4.2.2 Trenching

About 3000m of backhoe trenching was conducted on the North Zone. The trenches were selectively sampled using a standard sample length of 1m. The results of this work are shown on Figure 87-45. Where the trenches were dug on soil gold anomalies and resistivity highs the trenching yielded widespread low-grade gold mineralization (see Table 6) with sporadic high values ranging up to 28.8g/t gold over 1m.

Wide zones of strongly pyritic-argillic alteration were encountered, with an irregular distribution pattern, being separated by weakly altered "islands" of propylitic andesite. Gold mineralization is restricted to zones with millimeter-wide, multi-stage silica stringers with minor sulphide content. The alteration of the surrounding host rock is not directly related to the mineralization.

Trenching of an IP chargeability anomaly located west of the baseline and a number of satellite IP chargeability anomalies on the North grid failed to locate any gold or silver mineralization. The trenching did encounter barren, strong argillic alteration with abundant disseminated pyrite. This is common in the upper levels of an epithermal system. The IP chargeability resistivity response located just east of the baseline is associated with locally sulphidized andesite that returned wide zones of low-grade mineralization (Table 6).

TABLE 6

NORTH ZONE - TRENCH RESULTS

Trench	<u>Sample True Width (m)</u>	<u>Au g/t</u>	
TR 17.50 N	3	1.50	
	8	0.92	
TR 18.00 N	6	0.78	
	1	2.88	
TR 18.50 N	24	1.57	
	6	1.17	

TR 18.75 N 38 1.20 4.2.3 <u>Induced Polarization Survey</u> Dipole-dipole electrode a ray using Elliot Ghappical An IP resistivity survey that we then the formultar formultar of a = 25,50 metro spacing

An IP resistivity survey was run over portions of the North Zone in an attempt to locate and define sulphide zones and zones of higher resistivity Model 15A perhaps reflecting silicification. IP chargeability anomalies associated with resistivity "highs" would be priority targets suggestive of silicified-pyritic zones known to host gold in the district. Data are presented as contoured "pseudosections" (Figures 87-46-50), Aucliular

Data are presented as contoured "pseudosections" (Figures 87-46-50), fully one for each traverse and dipole spacing. An IP interpretation (Figure 87-42) at a scale of 1:2500 also gives a projected IP response plus schematic contours of relative anomaly strength depicting interpreted line-to-line continuity.

Two main zones of anomalous IP response were defined as were several smaller satellite zones. The most interesting anomaly is present on Lines 16+25N to 20+25N directly east of the baseline. It shows good depth extent and is associated with higher resistivities, making it a high priority target, particularly considering that it corresponds in part to a gold geochemical high and high gold values in a trench. This multi-response target was extensively tested by drilling which intersected gold values as listed in Table 7.

TABLE 7

SIGNIFICANT NORTH ZONE INTERSECTIONS

			Core	True	Au	Ag		Ag/Au
<u>Hole</u>	From	<u>To</u>	<u>Length</u>	<u>Width</u>	<u>g/t</u>	<u>g/t</u>	<u>Elevation</u>	<u>Ratio</u>
	(m)	(m)	(m)	(m)			(m)	
						1 00	1500 00	1 (0
SP87-84	7.00	12.00	5.00	3.53	1.17	1.90	1529.00	1.62
	46.00	48.00	2.00	1.00	1.84	1.40	1502.00	0.76
	51.00	52.00	1.00	0.50	1.36	2.30	1499.00	1.69
	75.00	76.00	1.00	0.68	1.00	1.00	1482.00	1.00
	108.00	109.00	1.00	0.61	3.24	65.00	1458.74	20.06
SP87-85	278.00	282.00	4.00	2.00	1.25	0.35	1340.52	0.28
SP87-86	56.00	57.00	1.00	0.57	1.04	0.20	1483.00	0.19
SP87-88	49.00	52.00	3.00	1.72	1.52	0.90	1503.00	0.59
	111.00	117.00	6.00	3.00	2.05	1.50	1458.00	0.73
SP87-89	11.00	18.00	7.00	0.91	1.10	2.20	1525.00	2.00
	43.00	44.00	1.00	0.26	1.03	10.40	1504.00	10.10
	58.00	61.00	3.00	0.26	1.04	2.00	1492.00	1.92
SP87-93	31.00	32.00	1.00	0.57	1.78	1.60	1507.00	0.90
	35.00	37.00	2.00	1.15	1.10	0.60	1504.00	0.55
SP87-96	4.00	5.00	1.00	0.46	1.00	0.50	1542.00	0.50
	8.00	9.00	1.00	0.46	4.46	1.90	1539.00	0.43
	55.00	56.00	1.00	0.71	1.21	0.50	1505.00	0.41
SP87-97	75.00	76.00	1.00	0.17	1.43	0.80	1472.00	0.56
	78.00	79.00	1.00	0.17	1.66	2.00	1470.00	1.20
	88.00	91.00	3.00	1.48	1.11	1.50	1460.00	1.35
	148.00	149.00	1.00	0.50	2.32	0.20	1420.00	0.09
SP87-98	56.00	57.00	1.00	0.71	1.40	0.50	1556.00	0.36
	71.00	78.00	7.00	4.26	1.12	1.80	1544.00	1.61
	92.00	93.00	1.00	0.61	1.17	1.70	1531.00	1.45
SP87-99	34.11	34.75	0.61	0.35	1.40_	0.60	1508.00	0.43
		weighted	averace	~	1.44	1 QC	z 1 .	
4.2.4 E)iamond I	orill Resu	lts 🤍			1.10		

Approximately 2860m of diamond drilling in 19 holes (Figures 87-42, 51-62) was completed in 1987. Significant precious metal values (i.e. values greater than 1g/t) intersected on the North Zone are shown in Table 7. Gold values range up to 2.05g/t over a true width of 3.0m including 5.98g/t over a true width of 0.5m.

The second main zone of interest is an elongate IP anomaly extending from Line 5+25N to Line 12+25N, located about 200m west of the baseline and roughly parallel to it. It is open-ended and it becomes stronger to the south but appears to have a rather limited depth extent. Drill testing of this IP target shows only barren pyrite mineralization as the source.

The satellite anomalies are varied in character - some with associated high resistivities and some having limited depth extent. The most interesting anomalies have been tested by drilling or trench sampling. Only barren pyrite has been identified.

uniy barren pyrite has been identified. 4.2.4 <u>Diamond Drill Results</u> Ort loggers: Geologists (P. Onroy, 1982 B. Sc. University of British Clumbia British Clumbia

Approximately 2860m of diamond drilling in 19 holes (Figures 87-42, 51-62) was completed in 1987. Significant precious metal values (i.e. values greater than 1g/t) intersected on the North Zone are shown in Table 7. Gold values range up to 2.05g/t over a true width of 3.0m including 5.98g/t over a true width of 0.5m.

The drilling has outlined an area of widespread, low grade stockwork-type gold mineralization in the 1-2g/t gold range. Silver values are consistently low with an average gold/silver ratio of 0.92. Weakly mineralized intersections have been noted over about 200m vertically on the North Zone. No significant changes in alteration intensity or mineralization were noted over this vertical interval.

As in the case of the West Zone there is a close relationship between gold mineralization and rhyolitic dikes. At section 18+25N (Figure 87-59), for example, gold mineralization occurs mainly between two steeply (70° to 80°) east dipping, 5 to 20m wide dikes. These dikes represent a north-northeast trending splay off a north-northwest trending main dike, which occurs between Lines 12+00N and Line 16+25N.

Mineralization consists of a stockwork of multi-stage silica veinlets and stringers with variable amounts of pyrite, epidote, chlorite, and laumontite and occasionally traces of chalcopyrite and galena. The main orientation of the veinlets/stringers in the drill core is 70-90° to the core axis. The mineralization is sporadic and is difficult to correlate with adjacent drill holes. The alteration and mineralogy observed relative to epithermal models suggest that there is potential for economic gold mineralization deeper in the system.

The host rock displays widespread weak to moderate argillic alteration with ubiquitous disseminated pyrite. Gold is, however, strictly confined to multi-stage silica stringers and veinlets and is not associated with the disseminated pyrite.

Drill core is stored at the compation the property. 5893 drill corp samples analyzed.

4.3 Amethyst Zone (see Figures 87-63 through 87-66)

The Amethyst Zone is regarded as the southeast extension of the Cheni Cliff Creek Zone. Seven holes (including two 1985 holes) totalling 1630m have been drilled to date. The zone, its associated fault, and the hangingwall and footwall stockwork mineralization were intersected in six holes (Figures 87-64, 66), SP85-19, 20 and SP87-69, 70, 125, and 126 at 56, 57, 40, 82, 185, and 282m below surface, respectively.

The zone itself is developed as a strongly siliceous, multi-phase hydrothermal breccia with minor pyrite and is located at the footwall contact of a pronounced fault zone (Cliff Creek fault). Extensive zones of silica/carbonate veinlets and stringers with amethystine quartz are developed both in the hangingwall and the footwall of the hydrothermal breccia. The mainly siliceous alteration envelope is restricted to these stockwork zones.

The hydrothermal breccia itself has not yielded significant gold or silver values in any of the six intersections. Elevated gold and silver values were, however, encountered in the footwall stringers/veinlets of the two deeper intersections (SP87-125: 3.61g/t gold over a 1.5m true width and 48.3g/t silver over a 1.5m true width; SP87-126: 1.88g/t gold and 15.3g/t silver over a 2.7m true width).

Cheni Gold Mines surveyed their claim boundaries during the 1987 field season. As a result the Silver Pond/Cheni north-south property boundary has been relocated approximately 65m to the west and the east-west boundary approximately 35m to the south of its position as originally interpreted by St. Joe. Thus the current Cheni boundary is located inside what was thought to be the Silver Pond property. The strike length of the Amethyst Zone on the Silver Pond property was thus reduced by about 160m from 350m to 190m. However, the zone does dip westerly onto the Silver Pond property and has a 290m strike length at the 1800m elevation, a 390m strike length at the 1700m elevation and a 500m on property strike length at the 1600m elevation.

The best mineralization on the south end of Cheni's Cliff Creek Zone is reportedly at depth, and the best intercepts on the Silver Pond property were in the deeper holes SP87-125 and SP87-126 at the 1675m and 1580m elevations. There is sufficient room in this zone for an economic deposit, particularly when it is remembered that the original Cheni reserves of 420,200 tonnes grading 5.83g/t gold and 261g/t silver for the Cliff Creek Zone are hosted by a 160m strike length.

Cheni have recently announced the discovery of an new ore shoot on the south end of the Cliff Creek Zone. One hole reportedly returned 7.5g/t gold over a true width of 9.2m near the 1600 elevation. There is an excellent chance that the zone will continue across the mutual property boundary and this area must be considered one of the highest priority targets of the 1988 drilling program.

4.4 South Zone

The South Zone (Figures 87-67 through 74) is regarded as a southwest splay off the Cliff Creek Zone and was originally defined by a coinciding magnetic low, a VLF conductor, and a soil geochemical gold anomaly (peaking at 1950ppb gold). Following the initial geophysical and geochemical surveys the area was trenched in 1984 and tested with three 1985 holes.

In 1987 an additional seven holes were drilled. The first two holes, tested an east-west trend indicated by the soil geochemistry but failed to produce any anomalous gold or silver values.

A number of interesting mineralized intervals were intersected in the remainder of the holes (Table 8). Although gold mineralization is confined to mm to cm wide silica stringers and veinlets, which are partly subparallel to the core axis, the zone is open at depth and along strike. Further drilling is required to evaluate its potential.

TABLE 8

SOUTH ZONE DRILLING - SIGNIFICANT INTERSECTIONS

<u>DDH #</u>	<u>Interval</u> (m)	<u>True Width</u> (m)	<u>Au (g/t)</u>	<u>Ag (g/t)</u>
SP87-67	36 - 37	0.64	1.00	7.90
SP97-67	39-40	0.64	1.42	4.00
SP87-67	58-59	0.71	1.03	1.20
SP87-67	98-100	1.15	1.31	55.40
SP87-68	66-67	0.68	5.42	11.50
SP87-122	32-33	0.17	1.22	60.00
SP87-122	47-48	0.02*	14.60	24.00
SP87-123	48-49	0.50	3.50	18.20
			2.155	22.124

* 2cm wide stringer almost parallel to core axis.

4.5 Ridge Zone (see Figures 87-75 through 87-78)

The Ridge Zone is (Figure 87-75) characterized by a linear resistivity high, occurrence of gold mineralized float (values up to 5.43g/t gold) and a partly coinciding soil gold anomaly. The zone was tested by three drill holes (SP87-57, 58, 59) totalling 285m.

The best values were 1.29g/t gold over a 0.71m true width associated with 0.3 to 10cm wide quartz veins in hole SP87-57 and 3.96g/t gold over a 0.34m true width associated with grey quartz stringers in hole SP87-59.

No wide zone of silicification was intersected which could explain the resistivity high. The Ridge Zone Grid was extended towards the north-northwest to cover some of the soil gold anomalies of the 1985

reconnaissance survey. The grid extension was covered by an EM-16R survey. A few resistivity highs resulting from this survey were tested with short trenches but failed to yield any mineralization or alteration. Additional trenching was planned on this zone but was not carried out due to mechanical problems with the backhoe. Additional trenching is warranted and deeper drill testing of the resistivity highs coincident with gold values in soils and quartz float is recommended.

4.6 <u>Heavy Mineral (HM) Zone</u> (see Figures 87-79 through 87-81)

The Heavy Mineral (HM) Zone (Figure 87-41) is characterized by a resistivity high in the southern portion of the claim group. It is located in the possible source area for highly anomalous gold values (up to 71,000ppb gold) of a heavy mineral stream sediment survey. The zone was tested by holes SP87-55 and 56.

The best value encountered was 0.62g/t gold in a 0.57m true width intersection of hole SP87-56. The interval is essentially unaltered porphyritic andesite with mm-wide stringers of carbonate.

The drilling did not explain the resistivity high, as no significant zone of silicification was intersected. Additional work is warranted to locate the bedrock source of the very significant heavy mineral gold anomaly.

4.7 <u>E Zone</u> (see Figures 87-82 through 87-84)

The E Zone (Figure 87-4) consists of frothy barite mineralization associated with intense silicification about 1.5km due west of the West Zone. Trenching this area during 1985 indicated that the barite/silica is of limited extent and only silver values were encountered in the trenches.

A detailed EM-16R survey conducted in 1985 indicated an east-west trending, linear resistivity anomaly, which was the target for two diamond drill holes during the 1987 program (SP87-60, 61). The best values encountered in the drilling were 3.00g/t gold and 180g/t silver over a 0.75m true width in hole SP87-61. Mineralization occurs in grey silica stringers and is associated with weak, patchy matrix silicification. Follow-up trenching is warranted.

4.8 Junction Zone (see Figures 87-85 through 87-88)

The Junction Zone (Figure 87-4) is located between the Silver Creek and West Zones at the junction of Cloud Creek and Cariboo Creek. A resistivity high coinciding with a magnetic high was tested by two drill holes (SP87-71, 72). Both holes intersected an altered rhyolitic dike but all samples were below detection limit (0.01g/t gold). No additional work is warranted.
4.9 <u>Silver Creek Zone</u> (see Figures 87–89 and 87–92)

The Silver Creek Zone, a segment of the same structure which hosts the West Zone to the northwest, was tested in the 1985 program by 19 holes, covering a strike length of 250m. The best drill intercepts (5.01g/t gold and 238.85g/t silver over a true width of 1.20m and 2.57g/t gold and 118.25g/t silver over a true width of 1.80m) indicate a steeply southeast plunging ore shoot (see Figures 87-91, 92). Additional drilling is warranted to define the depth extension of this ore shoot as well as along strike of the Silver Creek fault segment.

Trenches along strike southeast of the area drilled in 1985 yielded high silver values (19m averaging 13.7g/t silver, including 6m averaging 32g/t silver) accompanied by low-grade gold values. To test the high silver mineralization of the trenches at depth, two holes were drilled during this program 100m to the southeast of the southernmost hole of the 1985 drilling. The two holes, which were drilled as scissor holes on the same section (3+00SE), intersected the Silver Creek structure with intensely developed hydrothermal alteration (strong silicification). The best values intersected were 0.3g/t gold and 12g/t silver over a 1m core length.

4.10 <u>Reconnaissance Geology Arctic Grid</u>

The Arctic grid is located approximately 1km west of the North Zone. A few of the linear soil geochemical anomalies (gold and silver) on the Arctic Grid, resulting from the 1985 reconnaissance survey (100m line spacing, 50m sample intervals) were followed-up with approximately two man days of prospecting. A few samples from this area of restricted outcrop yielded slightly anomalous silver values. Follow-up trenching is warranted.

5. CONCLUSIONS AND RECOMMENDATIONS

The \$2.43 million 1987 exploration program carried out on the Silver Pond property by the St. Joe/Nexus joint venture has identified several substantial auriferous zones that require follow-up drilling. Ore grade precious metal intercepts along with widespread low-grade qold mineralization is localized in several north-northwest trending fault Exploration persistence along the prospective fault zones resulted zones. in the discovery of an orebody on the adjacent Cheni Gold Mines property. The Cheni reserve was nearly doubled in 1987 with an appressive exploration program along strike of existing reserves.

Similar exploration persistence is warranted on the Silver Pond property. A \$1.2 million 1988 program comprising 7000m of mainly follow-up diamond drilling and 3000m of trenching is recommended on a number of high priority targets outlined to date. The potential for discovering a Cheni-type deposit on the Silver Pond property is viewed as excellent.

5.1 West Zone

Three auriferous zones (A, B and C Zones) have been identified within an alteration halo of the West Zone up to 40m in width. Initial drill indicated reserves of 62,100 tonnes grading 5.68g/t gold (using a 2.4g/t gold cut-off and 1.20m true width) have been outlined.

In view of the large number of gold-bearing and ore grade intersections further diamond drilling is warranted to test the major north-northwest trending fault structure along strike in both directions. The work is justified if we examine the Cheni Gold situation on the Cliff Creek Zone. The mineralized fault zone was identified and a significant orebody was outlined. Reconnaissance drilling was then carried out along the strike of the deposit. The discovery of a new deposit was announced near the St. Joe/Nexus-Cheni claim boundary in 1987.

Support for additional along strike drilling at the West Zone is found in the gold geochemical and resistivity anomalies which extend from line 4+00NW to 11+00NW. A few deeper holes should also be drilled on the West Zone to determine if the grade increases with depth as it reportedly does on the south end of Cheni's Cliff Creek Zone.

A few holes could be drilled in the central portion of the West Zone to more closely tie down the existing auriferous shoots, but due to their limited impact with regard to increasing tonnage this drilling should be deferred until the overall potential of the property is evaluated.

Approximately 1500m of diamond drilling should be allocated to following up the West Zone mineralization both along strike and at depth.

5.2 North Zone

The stockwork type gold mineralization as well as the alteration pattern suggests a structurally high position in the epithermal system. The occurrence of barren silica, barite and the low silver/gold ratio (0.92) further support the high level interpretation. Stockwork type gold mineralization encountered in the trenches and in drill holes may therefore represent subsidiary structures in the upper levels of an epithermal gold system which has the potential of hosting bonanza-type mineralization at depth. The presence of relatively low grade (1-2g/t) gold over wide areas dictates that heap leach mining targets should also be considered.

A further 2000m of drilling is recommended on the North Zone. It would be directed to locating bonanza-type mineralization below the currently known stockwork type mineralization. Reconnaissance drilling should also be carried out to further evaluate the geochemically anomalous area located between Line 12+50N and Line 26+00N.

5.3 Amethyst Zone

The Amethyst Zone is the southern extension of the Cliff Creek Zone which hosts Cheni Gold Mines' Cliff Creek Zone and newly discovered reserves just north of the Lawyers/Silver Pond property boundary.

Two deep holes drilled on the Silver Pond property in 1987 proved the continuation of the same mineralized structure onto the Silver Pond property. The zone therefore requires a number of holes to determine its economic potential on the Silver Pond property.

A total of 1500m should be allocated for four to five relatively deep holes on the Amethyst Zone. These holes should be drilled as the first holes of 1988 program so that additional follow-up meterage could be allocated to the zone should the results be positive.

5.4 South Zone

The South Zone is localized in an apparent splay off the Cliff Creek Zone. Near surface gold mineralization is indicated over an 850m strike length as evidenced by soil geochemistry which peaks at 1950ppb gold. Trenching and drilling have intersected gold mineralization in narrow silica stringers. The evidence that this zone is related to the gold-bearing Cliff Creek structure dictate that further work be carried out on the zone. An additional 800m of diamond drilling is recommended on the South Zone. Additional trenching on the zone is also warranted.

5.5 <u>Ridge Zone</u>

The presence of gold-bearing quartz float and resistivity highs with partly coincident soil geochemistry and anomalous gold values in drill core suggest that further work is warranted in this area. A deeper hole under drill hole SP87-57 is recommended. Trenching should also be carried out on this zone to evaluate the resistivity highs in a cost effective manner. An initial 200m of diamond drilling should be allocated to this zone with provision for additional drilling should the results of the trenching prove positive.

5.6 Silver Creek Zone

The Silver Creek Zone was drilled in 1985 producing values of up to 5.38g/t gold and 255g/t silver over a true width of 1.09m. An additional 1000m of drilling is warranted at depth and along strike to further delineate this possible ore shoot which occurs on the same structure as the West and North Zones.

5.7 Other Areas

A number of north-northwest trending gold geochemical anomalies are located to the west of the north-northwest trending fault zone which hosts the North, West and Silver Creek Zones. It is postulated that these geochemically anomalous zones are related to other parallel fault zones which could potentially host precious metal deposits. Overburden is deeper on this part of the property which may explain the weaker geochemical responses. Trenching should be attempted and the results will direct the drill testing of these anomalies. The use of a large trackmounted excavator which can now be easily mobilized on the Cheni Gold Mine Access Road is recommended.

The favourable geological environment of the property, the presence of numerous gold showings and the presence of a viable ore shoot immediately to the east make the Silver Pond property one of the most attractive targets in the Toodoggone precious metals camp.

CERTIFICATE OF QUALIFICATION

I, DAVID ROY KENNEDY, of 465 West 26th Street, North Vancouver, B.C. do hereby declare that:

- I am a geologist, having obtained the degree of B.Sc. (Major Geology) 1. from Acadia University in Wolfville, Nova Scotia in 1970.
- 2. I am a member in good standing of the Canadian Institute of Mining and Metallurgy.
- 3. I am a Fellow in good standing of the Geological Association of Canada.
- 4. I have continuously practiced my profession in Canada since graduation in 1970.
- 5. The statements in this report are based on field work and office compilation time on the Silver Pond property. The field work was carried out from June 17 to October 4, 1987. I have personally supervised or carried out the work documented in this report.

Dated at Vancouver, in the Province of British Columbia, this 17th day of December, 1987.

David R. Kennedv

CERTIFICATE OF QUALIFICATIONS

I, ANDREAS HANS VOGT of 3342 West 7th Avenue, Vancouver, B.C. do hereby declare that:

- 1. I have studied geology at the universities of Muenchen, Goettingen (West Germany), and Leoben (Austria).
- 2. I obtained a Magister rer.nat. degree (M.Sc. equivalent) in Mining Geology from the Mining University of Leoben (Austria) in December of 1982.
- 3. Since my graducation I have worked as exploration geologist in West Germany, Austria, Canada, Spain and Chile.
- 4. Presently I am employed as exploration geologist with St. Joe Canada Inc., Vancouver, B.C.
- 5. I am a member of SME/AIME, Society for Geology applied to mineral deposits, Bundesverband Deutscher Geologen, Deutsche Geologische Gesellschaft, Deutsche Geologische Vereinigung.
- 6. The statements in this report are based on field work on the Silver Pond Property from June 17 to October 4, 1987.

Dated at Vancouver, in the Province of British Columbia, this 17th day of December, 1987.

ans Voqt

•

DATE 11/17/1987 TIME

SII SECT V5.00

.

.

1

.

× * • • •

.

	150 W		100	0 W		50 W
			.07 .09	इन्द्रं क्षंत्रं थ्रं	.07 .20	
				-		
A HAT ALL ALL ALL ALL ALL ALL ALL ALL ALL A		.",				Type of Alteration S - Silicification A - Argillic Alteration
	13. 4 BU 27					 P - Propylitic Alteration K - Potassic Alteration
						C - Carbonatization
	150 W		100	W		50 W
÷		-				

•

V

2

-	-100		-5	50	
					1900
ŏ	່ານ ກາການ ຈະດີສ	à	·		
	2 88 87	3 111111111111111111111111111111111111			1850
					1800
			•		
					1750
	SILVER PO	ND PROPERTY -	LEGEND		
Iteration	Intensity 1 (weak) 2 3 (some rempant texture)	Mode of Occurrence a = ubiquitous	a = quartz/silica	ditional Features	
eration	4 5 (strong, no remnant tex 1 (weak) 2	ture) b = patchy	c = b with sulfic c = b with sulfic d = calcite strin e = quartz/silica f = e with sulfic g = quartz/silica	des gers with or without epidote a/calcite(+/- epidote) stringers des stockwork - single phase	
Alteration	3 (some remnant texture) 4 5 (strong, no remnant tex 1 (weak)	ture) d = matrix and phenos	h = quartz/silic; i = h with sulfic j = calcite stock k = qtz/silica/ca l = k with sulfic	a stockwork – multiphase des kwork with or without epidote alcite +/- epidote stockwork des	
teration	2 3 4 5 (strong)	e = phenos only [= prim reddening/pink	m = massive qtz, n = massive qtz, o = massive calo king p = massive qua veining	/silica veining - single phase /silica veining - multiphase cite +/- epidote veining rtz/silica/calcite +/- epidote	
	2 3 4 5 (strong)	G Electring Or G	q = p with suific precciation precciation precciation u = brecciation	ies with silica matrix - single with silica matrix filultiphase with calculate matrix	-+ 1700
ation	1 (weak) 2 3 4 5 (strong)	11	v = brecciation w = v with sulfid	with sil/cc/+/-ep, chl matrix fes	P.te
		10	\mathcal{A}		MIJ Ma
	SE	ECTIO	N7	+ 50N	04)
	100		-50	0	
	DRAWN BY	DATE ST. J	IOE CANADA	INC./NEXUS RESO	URCE CORP. J.V.
		SIL	VER POND	SOUTH Z	ONE
0 20	.0 m SCALE 1:	500 AU DDH	[g/t] / ALTE SP87-67, TF	ERATION PLOT	
	טאיט 87		KING NORTH -	- NUHIHWEST	

20/1987 TIME 9:4

II SECT V5.00 DA

e

•

.

	DRAWN BY	DATE	CT LOF CANADA ING (NEXULO DECOUDOE CORD
		DEC. 1987	SI. JUE CANADA INC. / NEXUS RESOURCE CORP. J.V.
	REVISED BY	DATE	SILVER POND SOUTH ZONE
			PROJECT 740 SECTION 9+00N
20.0 m SCALE		500	AU [g/t] / ALTERATION PLOT
	DWG 87-	69	LOOKING NORTH - NORTHWEST

. ---- · ·

.

•											
200	0 W 15	O W	100	O W	50	O W	В	L		50 E	• •
	SP87-68			-							•
		•									
.34	2 3 4 0										
34 4											
		-				•					
(SP8 199.9 ۱۹۹۳ ایسیسیسیسیس	7–123 5 1111111111111111111111111111111111	•	mununun			•					
		.16		2 2							
8666666 1000			.24 .38								-
											2
								<u> </u>			
				·							
	SP87-67 1 215.49						· · · · · · · · · · · · · · · · · · ·				
										65	
		•					SP85-22	2		SP87- 279.50	
					,		• 153.92			+	
.27 .27 .24			5								
-27 -27 -27 -27 -24 -24	.40 .19 .21 20 .667 .80	:16	;	83 843 852 852	.20 1.162			,			
.27 -∠8dS 1.18 5.25	.21 20 20 50 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 57 57 57 57 57 57 57 57 57 57 57 57	10 10 10	5	8. 824	.20			'		ŝ	
·9−∠8dS 1.18 5.25 .24	.21 20.662 .80 .19	5P85-21	;							ŝ	· ·
·9−∠8dS 1.18 5.25	.22 .40	SP85-21 /2.21		83 8 8 8 8	.20 .1			' '			
9-28dS 1.18 5.25	.21 .40	SP85-21 72.21			.20 162			'			
9-/8dS 1.18 5.25	22 40	SP85-21 72.21			.20 162	11111111111111111111111111111111111111				.8	
9-/8dS .27 1.18 5.25	4 4 23 4 4 24 5 5 5 5 5 5 5 7 5 7 5 7 5 7 5 7	SP85-21 72.21			.20 1.1.62						· · · · · · · · · · · · · · · · · · ·
-27 -27 -18dS -25 -25	1 1 1 1 1 1 1 1 1 1 1 1 1 1	SP85-21 22.21				11111111111111111111111111111111111111					
5-80	122 40 1 124 129 00 120 00	SP85-21 72.21									
5-80 hummmmmm		SP85-21 72.21									
5-80 hmmmmmmmm		SP85-21 72.21									
5-80 hmmmmmmm		SP85-21 /2.21		<u>SP87-66</u> 211.23						23	
5-80 hmmmmmmm		<u>SP85-21</u> 22.21		<u>SP87-66</u> 211.23							
5-80 hmmmmmmm		<u>SP85-21</u> 2.21		SP87-66 211.23							
5-80 hmmmmmmmm		<u>SP85-21</u> 72.21		<u>SP87-66</u> 211.23							
5-80 himmininini		SP85-21 72.21		<u>SP87-66</u> 211.23							
5-80 hmmmmmmm		SP85-21 72.21		SP87-66 211.23							
5-80 hmmmmmmmm 200	in in in	SP85-21 72.21		SP87-66 211.23	28 50					50 E	
5-80 hmmmmmmmm 200	in in in	SP85-21 72.21	100	SP87-66 211.23						50 E	DRAWN B
200	in in in	SP85-21 72.21		SP87-66 211.23						50 E	DRAWN B
		SP85-21 72.21		SP87-66 211.23						50 E	DRAWN B
5-80 hmmmmmmm 200		SP85-21 /2.21		SP87-66 211.23			20.0		20.0	40.0 m	DRAWN B REVISED 1

15.03 DATE 12/9 /1987 TIME

•

,

r

.

A CAR AND A CAR

. .**.**

1

•

,

,

.

.

· · · · · · ·

,

•

t

_ .___.

.....

DATE 11/18/1987 TIME 14:

6SII SECT V5.00

····

~____

L

	45	D W	400) W
1650 m				· · · ·
				·
1600 m				
	•			
1550 m	-			
1500 m ·		,,,,,,,,,,_		
			•	
				•
1450 m ·				
	450	W	400	₩

. . •

. . . .

.

· .

· · · · ·

concernence and an end

<u>.</u>

.

.

250 E 300 E 1550 r د بینید است میکند میکند. • 1500 m , 1450 m 1400 m G B.ST 250 E 300 E -

.

.

·

and the second se

.

5.00 DATE 11/18/1987 TIME 14:

and the second second

GSII SECT V5.00 DA

.____

SILVER POND PROPERTY - LEGEND 			ST. JOE CANADA INC. / NEXUS RESOURCE CORP. JV
x 4 5 (strong) a = ubiquitous · FEATURES = F a = quartz/silica strin b = patchy c = matrix only c = b with sulfides	x 9 gers - single phase .gers - multiphase	x 2	Silver Pond Property
d = matrix and phenosd = calcite stringers with e = quartz/silica/calcit f = prim reddening/pinkingd = calcite stringers with e = quartz/silica/calcit f = e with sulfides g = bleachingg = bleachingg = quartz/silica stock h = frothy silica injectionh = quartz/silica stock i = h with sulfides	ith or without epidote te(+/- epidote) stringers work - single phase work - multiphase		NORTH ZONE
<pre>j = calcite stockwork w intensity 1 (weak) j = calcite stockwork w k = quartz/silica/calci k = h with the stockwork w</pre>	ith ar without epidate te +/- epidate stockwark	ROCK SAMPLES (panel)	TRENCHES
2 I = k With sulfides 3 (some remnant texture) m = massive quartz/silic 4 n = massive quartz/silic 5 (strong; no remnant texture) o = massive calcite +/- • PROPYLITIC ALTERATION = P q = p with sulfides	ca veining - single phase ovbd -overburden ca veining - multiphase rylt - rhyolite epidote veining rylt - rhyolite ca/calcite/+/- epidote veining Ba - barite	x 20 — Gold in ppb (Fire assay-Vancouver) x 0.1 — Gold in pp m (AA Field) x ⁻ — below detection limit	& LITHOGEOCHEMICAL RESULTS
Intensity 1 (weak) 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	lica matrix - single phase lica matrix - multiphase		NORTH SHEET
4 u = brecciation with ca) 5 (strong) v = brecciation with si w = v with sulfides	lcite +/~ epidote matrix l/cc/+/~ep,chl matrix		SCALE 1:1000 GEOLOGIST: T.G. FIGURE No.
			NTS 94 E 6E/6W DATE DEC/87

In the second sec

4+00W

4+00W

L 6 + 25 N

L 13 + 25 N

.

L 12 + 25 N

GEOLOGICAL BRANCH ASSESSMENT REPORT

Resistivity contour intervals ; 1 , 2 , 3

0 25 50 75 100 125 m

•

3+00E 7+00E N = 1 N = 2 3 N= 3 N = 4 N = 5 N=6 7+00E 3+00E N = I N=2 62

104 127 N = 3 98 130 108 162 N = 4 83 139 78 94 122 115 176 102 N = 5 138 109 116 79 108 151 167 110 N = 6 109 182 197

L 22 + 25 N

.

1+00W

2099 1176 2016 2005 1336 5890 8347

N = 1

L 16 + 25 N

3+00E

GEOLOGICAL BRANCH ASSESSMENT REPORT

Chargeability contour intervals; 5,10,15

Resistivity contour intervals ; 1 , 2 , 3

.....

.

•

.

.

LI SECT V5.00

•

200) W 15	50 W	100 W
		as a ration to the set of the set	
		The second	
		\$\$ \$	
			Type of Alteration S - Silicification
			A - Argillic Alteration
			P – Propylitic Alteration
			K - Potassic Alteration
			C - Carbonatization
200	W 15	D W	100 W
			10.0 0 1

50 W	0 E	
	1	100V M
•		
	·	
	1	600 m
		,
		550 m
	1!	500 m
SILVER POND PROPERTY - LEG	GEND	
Intensity Mode of Occurrence	Additional Features	
2 a = ubiquitous 3 (some remnant texture) 4 5 (strong, no remnant texture) b > patchy	a = quartz/silica stringers - single phase b = quartz/silica stringers - multiphase c = b with sulfides d = calcite stringers with or without epidote	
l (weak) 2	e = quartz/silica/calcite(+/- epidote) stringers f = e with sulfides g = quartz/silica stockwork - single phase h = quartz/silica stockwork - multiphase	
4 5 (strong, no remnant texture) – e = matrix and phenos 1 (weak)	 i = h with sulfides j = calcite stockwork with or without epidote k = qtz/silica/calcite +/- epidote stockwork l = k with sulfides 	
2 real phenos only 3 4 5 (strong) fair prim reddening/pinking	<pre>m = massive qtz/silica veining - single phase n = massive qtz/silica veining - multiphase o = massive calcite +/- epidote veining p = massive quartz/silica/calcite +/- epidote</pre>	
1 (weak) 2 7 = bleaching 3	veining q = p with sulfides r = brecciation with silica matrix - single	
4 5 (strong) E = frothy silica injection 1 (weak)	s = brecciation with silica matrix - multiphase t = s with sulfides u = forediation with calcive +2- pridoze matrix v = forediation with the left +2- pridoze matrix v = forediation with the left +2- pridoze matrix	450 m
2 3 4 5 (strong)	* A SSESSESSMENT REPORT	
SECTIO	NHB425N	
50 W	De Lan	
DRAWN BY DATE	ST. JOE CANADA INC. / NEXUS RESOLIDO	F CORPLIN
NOV. 1987 REVISED BY DATE		
	PROJECT 740 SECTION 6+25M	
10.0 20.0 m SCALE 1: 500	AU [g/t] / ALTERATION PLOT	
DWG 87-51	LOOKING NORTH - NORTHWEST	

-f

1

SOUTH SHEET FIGURE No.

SILVER POND PROPERTY - LEGEND					ST. JOE CANADA NEXUS RESOURCE O	NC./ ;orp_jv
- SILICIFICATION = S intensity 1 (weak) 2 4 5 (strong) - FEATURES = F	a = guartz/silica stringers - single phase				Silver Pond Pro	perty
a = ubiquitous fremones b = patchy c = matrix only d = matrix and phenos e = phenos chly f = prim reddening/pinking	<pre>b = quartz/silica stringers = multiphase</pre>				NORTH ZONE	
g = bleaching h = frothy silica injection ARGILLIE ALTERATION = A Intensity 1 (weak)	g = quart/silica stockwork - Single plase h = quart/silica stockwork - multiphase 1 = h with sulfides j = calcite stockwork with or without epidote k = quart/silica/calcite +/- epidote stockwork h = h with culfides		ROCK SAMPLES (panel)		TRENCHES	
C Z (some remnant texture) 4 S (strong; no remnant texture)	<pre>n = massive quartz/silica veining - single phase n = massive quartz/silica veining - multiphase n = massive calcite +/- epidote veining p = massive quartz/silica/calcite/+/- epidote veining n = with sulfides</pre>	ovbd - overburden rylt - rhyolite Ba - barite	x 20 — Gold in ppb (Fire assay-Vancouver) x 0.1 — Gold in ppm (AA Field) x- — below detection limit	O Drill hole location	8 LITHOGEOCHEMICA	L RESULTS
- PROPYLITIC ALTERATION > P Intensity 1 (weak)	r = brecciation with silica matrix - single phase s = brecciation with silica matrix - multiphase					SOUTH SHEL
z 4 5 (strong)	t = s with sulfides 0 = brecciation with calcite +/- epidote matrix 9 = brecciation with sil/cc/+/-ep,chl matrix 0 = v with sulfides				SCALE I: 1000 GEOLOGIST : T.G.	
					NTS 94 E 6E/6W DATE DEC/87	

.

.

		,			
	600 W		550 W		500 W
)	
			•	• •• • • • • • • • • • • • • • • • • •	•
				н	
				•	
					_ ``
66					
2987			· · · · · · · · · · · · · · · · · · ·		ر
51cc 53cc 54c_ 51c		SPB7-40	P3 P3	· · · · · · · · · · · · · · · · · · ·	
		A .20 Sice	A 57	- SP87-41	
	÷. •	B	87-51	P2 P2ca Sic_ P1 Sic_ B	-115
	113		-114	P1	[8] [8] [8] [8] [8] [8] [8] [8] [8] [8]
7-112	Sp87-		СС СС 335_ - 235_ - 23		P4
₩ 					
				, ,	G E A S
	ı		v		
	600 W		550 W		
				DRAWN BY	DATE DEC. 1987
					SEC 1: 500
			10.0 0		

,

, . . .

*

븝

•

			· · · · · · · · · · · · · · · · · · ·	
	850 W	800 W		750 W
			5P87-54	
			P2_0	
			23 =	
·	· · ·		P2_d	
			S40c	
	- · · ·			
		1		CR
	37-118		P87-119	AS
	₽		• •	
	·			
	850 W	800 W		750 W
			DRAWN BY	DATE DEC. 1987
			REVISED BY	DATE
		10. <u>0</u> 0 10.0	20.0 m SCALE 1	SECTI
			DWG 87	- 40 A AU [

.

600 W 550 W	500 W
600 W 550 W	500 W
	·
	Q
66 	3PB7-48
B dy	
	•
	GEOL
	ACOL
550 W	>00 W
	ST. JOE
DRAWN BY D DEC	ATF
DRAWN BY D DEC REVISED BY D	SILVE
DRAWN BY D DEC REVISED BY D SCALE 1: 500	SILVE SECTIO

•

50 S

------650 W

650

· , •

•

L(6 00 //				
N	БОО W	<u> </u>	550 W		500 W
	and the second				
	•				· ·
					,
			₽		
			_SP87		
			-51		
			•		
				-	
					G
	-				£
					/
					, r,
					LE'
1	600 W		550 W		
					DEC. 1987
				REVIS	DATE SI
					eer
			10.0 0 10	SCAL	E 1: 500 LEVE
				DWG	87 - 41 B AII
······································			L		

.

			•			
· · · · · · · · · · · · · · · · · · ·	850 W		800 W		750 W	
				·		
	,		,			
				_		
				sp87-5,		
				_ ₽3 . ●		
				an a	~	
					GEOL ASSE	
					4 (
					V	
					J	
	, ,				, "	
	N UCO		800 ₩	DRAWN BY	DATE ST.	
				REVISED BY	DATE SI	
			10.0 0 10.0	20.0 m SCALE 1:	SEC 500 LEV	
				DWG 87-	41 A 11	

DWG 87-41A

· .

1 .

*

•

r^o

....

1000 W 950 V ---+---4 . 50 S 100 S . 150 S 🗕 200 S -----1000 W 950 W

•

•

.

	,			,	
	900 W		850 W		800 W
	••••				
-					
i					
		SP87-36	SP87-118		
SP87-37		.95	$\begin{array}{c} Sic \\ Sic \\$	-28dS, -70 - 19360	2 ³⁵
B $.30 = a$ $.20 = 53cc$ $4.72 = .50 = 55cc$	C	.20			5701-33 888 5301
		•		P3_ P3_	343 120
SP87-116					
P3	 •	87-73			
τ.		ि छि । ●			-
				,	
	900 W				
	500 M				800 W
-					10.00

•

¥

V5.03 DATE 12/1

.

6SII SECT V5.03

,

7

я

°∛ 6∛ ⊗ ⊗ ي _{وي}کو به -1650.0 - 1600.0

LEGEND — Au g/t + 1/50 Ag g/t -Pierce Point or Centre of Intersection -Drill Hole I.D. ---GM Product (Au Equivalent g/t x Thickness metre) GEOLOGICAL BRANCH ----Width (m) - Preliminary True Width ASSESSMENT REPORTZone not Developed CONTOUR INTERVALS - GM PRODUCT

1 - 2.88

E Part 6 of 7

AU EQUIVALENT

200.0 250.0 DATE Dec. 87 DRAWN BY ST. JOE CANADA /NEXUS RESOURCE CORP. JV DATE REVISED BY SILVER POND AG CREEK ZONE SECTIONS 0+50NW to 2+00SE LONGITUDINAL SECTION OF MAIN ZONE SCALE 1: 500 GM PRODUCT (G/T AU EQUIVALENT * METRE) DWG 87 - 92 AU EQUIVALENT = (AU g/t + 1/50 AG g/t)

-1550.0

Reference and the second secon

م بالمراجع مراجع مار من معنا من مديناً

150 S 100 S i 1650 m يريد المصح وربان الارتجاب المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم • . 1600 m 1550 m SILVER POND PROPERTY - LEGEND Type of Alteration Intensity Mode of Occurrence Additional Features a = ubiquitousa = quartz/silica stringers - simgle phase
b = quartz/silica stringers - multiphase
c = b with sulfides
c = b with sulfidesre)b = patchyd = calcite stringers with or without epidote
e = quartz/silica/calcite(+/- epidote) stringers
f = e with sulfides
c = matrix onlyc = matrix onlyg = quartz/silica stockwork - single phase
h = quartz/silica stockwork - multiphase
i = h with sulfidesre)d = matrix and phenosj = calcite stockwork with or without epidote
k = qtz/silica/calcite +/- epidote stockwork
l = k with sulfidesc = phenos onlym = massive qtz/silica veining - single phase
n = massive qtz/silica veining - multiphase
o = massive quartz/silica/calcite +/- epidote veiningf = prim reddening/pinkingp = massive quartz/silica/calcite +/- epidote
veining S - Silicification l (weak) 3 (some remnant texture) 5 (strong, no remnant texture) b = patchy 1500 m A - Argillic Alteration l (weak) 3 (some remnant texture) 5 (strong, no remnant texture) d = matrix and phenos P - Propylitic Alteration l (weak) 5 (strong) veining q = p with sulfides r = brecciation with silica matrix - single K - Potassic Alteration l (weak) g = bleaching breaching
 breaching
 breaching
 control of the second sec 5 (strong) C - Carbonatization l (weak) 5 (strong) 150 S 100 S `

······

•

•

-

1550 0 1550 <	1650 m +	200 5		t	S
1500 0 1500					
1000 m 1000 m <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1600 n 1500 n <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1600 n 1500 n <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1600 m 1500 m 1500 m					
1500 m					
1500 n 1500 n <td< td=""><td></td><td></td><td></td><td></td><td>n an an</td></td<>					n an
1550 n 1550 n 1500 n 1500 <	1600 m				1949 (1949) - 19 19 - 19 - 19 - 19 - 19 - 19
1550 m 1550 m 1500 m <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1550 m 1500 m					_
1550 #					
1550 m					
1550 a 1500 b 1500 a 1500 a 1500 a 1500 a 1500 a 1500 a 1500 b 1500 a 1500 b 1500 a 1500 a <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1550 m 1500 m 150					
1550 m 1500 m 150					
1550 m 1500 m					
1500 m SILVER FOND PROPERTY LEGEND 1500 m SILVER FOND PROPERTY LEGEND 1500 m Introlivy Mode of Occurrence 3. Stilledination Introlivy Mode of Occurrence 3. Stilledination Introlivy Mode of Occurrence A - Argilic Alteration Introlivy Mode of Occurrence Additional F A - Argilic Alteration Introlivy Introlive of the additional F Introlive of the additional F 1450 m C - Caeboastization Introlive of the additional F Introlive of the additional F Introlive of the additional F 1450 m C - Caeboastization Introlive of the additional F Introlive of the additional F Introlive of the additional F 1450 m C - Caeboastization Introlive of the additional F Introlive of the additional F Introlive of the additional F 1450 m C - Caeboastization Introlive of the additional F Introlive of the additional F Introlive of the additional F 1450 m C - Caeboastization Introlive of the additional F Introlive of the additional F Introlive of the additional F 1450 m C - Caeboastization Introlive of the additional F Introlive of the addition F Int	1550 m				
1500 m Silves Pond Property - Legend 1500 m Type of Alteration Intensity 1500 m Silves Pond Property - Legend 1500 m C - Certowatianten 1500 m Silves Pond Property - Legend 1500 S Silves Pond			•		
1500 m Silver POD PROPERTY - LEERD Type of Alteration S-Silic factors S-Silic factors A - Arguin: Alteration P - Propritic Alteration P - Propritic Alteration C - Carbossization 200 S S - Silver email (see a) (resk) S - Silver email (sec a) S - Propritic Alteration S - C - Carbossization S - C - Carbossization S - Silver email (sec a) S - Silver email (sec a) S - Propritic Alteration S - Propritic Alteration S - C - Carbossization S - Silver email (sec a) S -					
1500 m Silver POND PROPERTY - LEGEND Type of Alteration Intensity Solicitation in testing Mode of Occurrence A - Argilic Alteration I (weak) Solicitation in testing - and is and pheno Solicitation in testing - and is and phenot P - Progritic Alteration - and is and phenot Solicitation in testing - and is and phenot Solicitation in the intervent in testing - and is and phenot Solicitation in the intervent in testing - and is and phenot Solicitation in the intervent in testing - print redoning/pikeling, provide all testing Solicitation in the intervent in testing - print redoning/pikeling, provide all testing Solicitation in the intervent in testing - print redoning/pikeling, provide all testing Solicitation with all testing - print redoning/pikeling, provide all testing Solicitation with all testing - print redoning/pikeling, provide all testing Solicitation with all testing - print redoning/pikeling, provention with all testing Solici					
1500 m SILVER POND PROPERTY - LEGEND 1500 m SILVER POND PROPERTY - LEGEND 1500 m Intentity S-SUCIERation Intentity 1600 m (seat) S-SUCIERation Intentity 1600 m Intentity Source remnant texture) - natix and phens P - Propylic Alteration Istrong) Istrong) - phensenty Istrong) - brith altide					
1500 m SILVER POND PROPERTY - LEGEND Silver Pond Atteration S-Silcibration S-Silcibration (seek) A - Argilic Atteration P - Proprise Alteration (seek) C - Carbonalization C - Carbonalization 200 S 150 S 150 S					
1500 m 1500 m SILVER POND PROPERTY - LEGEND Type of Alteration Intensity Mode of Occurrence Additional F S-Suidification I(seek) a - start/sille a trigger b - grant/sille a trigger A - Argliic Alteration I(seek) c - matrix only a - start/sille a trigger B - Propytitic Alteration I(seek) c - matrix only c - matrix only B - Propytitic Alteration I(seek) c - matrix only c - start/sille a trigger P - Propytitic Alteration I(seek) c - matrix only b - masse attriation S (strong, no remnant testure) b - ptomstrike Alteration I (seek) c - stratifies etc. S (strong) I + prin redeening/prinking b - masse attributes c - stratifies S (strong) I + prin redeening/prinking c - stratifies c - stratifies S (strong) I - trothy silics injection - we with silide c - we with silide S (strong) I - trothy silics injection - we with silide - we with silide S (strong) I - trothy silics injection - we with silide - we with silide S (stron					
1500 m SILVER POND PROPERTY - LEGEND S-Silicification S-Silicif					
1500 m SILVER POND PROPERTY - LEGEND A - Argilic Alteration 1 (vesk) 3 (strong) no remnant texture) b = patchy 4 - Argilic Alteration 1 (vesk) 3 (strong) no remnant texture) b = patchy 4 - Argilic Alteration 1 (vesk) 5 - Stiled Retation 1 - Properties at the stiled 1 -					
1450 m C - Carbonstization (vesk) 200 S 150 S 150 S	1500 m				
1450 m C - Carbonstization C - Carbonstization 200 S 150 S					
Type of Alteration Intensity Mode of Occurrence, Additional F S - Silicification 1 (weak) 3 (strong, no remnant texture) 3 (strong, no remnant texture) a = ubiquitous a = quartz/silica stringer b = quartz/silica stringer c = b with sulfides A - Argillic Alteration 1 (weak) 3 (strong, no remnant texture) c = matrix only b = patchy c = patchy c = patchy c = patchy c = matrix and phenos c = phenos only m massive quartz/silica tockwe i = h with sulfides P - Propriitic Alteration 1 (weak) c = phenos only c = patchy c =	1			PROPERTY - LE	GEND
1450 m C - Carbonatization 1 (weak) a = ubiquitous a = quart/silica stringer 1450 m C - Carbonatization 1 (weak) c = matrix only g = quart/silica stringer 1450 m C - Carbonatization 1 (weak) g = bleaching g = calcie stockwork with sil/des 1450 m C - Carbonatization 1 (weak) g = bleaching g = bleaching 200 S 1 (weak) 1 (weak) 1 (weak) s = bleaching 200 S 150 S 150 S			SILVER POND		Additional Feat
1450 m C - Carbonatization 1 (weak) c = matrix only e = quart/slice/calcite/slice sockwow 1450 m C - Carbonatization 1 (weak) g = bleaching r = brecostion with slice 200 S 150 S		Type of Alteration S - Silicification	<u>SILVER POND</u> Intensity	Mode of Occurrence	a
1450 m C - Carbonatization 1 (weak) e = phenos only i = h with sulfides 2 6 (strong) f = prim reddening/pinking i = h with sulfides 2 6 (strong) f = prim reddening/pinking i = h with sulfides 3 (strong) f = prim reddening/pinking i = h with sulfides 4 0 i = nassive qatz/silica vents i = h with sulfides 5 (strong) f = prim reddening/pinking i = with sulfides 6 (strong) f = prim reddening/pinking i = with sulfides 7 breation with silica i = with sulfides i = with sulfides 9 (strong) h = frothy silica injection i = with sulfides 9 (strong) h = frothy silica injection i = with sulfides 9 (strong) j (strong) j = prim reddening/pinking i = with sulfides 9 (strong) h = frothy silica injection i = with sulfides i = with sulfides 200 S 150 S S i = sulfides i = sulfides		Type of Alteration S - Silicification	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture)	Mode of Occurrence a = ubiquitous b = patchy	a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or
1450 m 200 S 1450 S		Type of Alteration S - Silicification A - Argillic Alteration	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture)	Mode of Occurrence a = ubiquitous b = patchy c = matrix only	a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork - h = quartz/silica stockwork -
1450 m K - Potassic Alteration 1 (weak) g = bleaching g = p with sulfides 1450 m C - Carbonatization 1 (weak) h = frothy silica injection t = s with sulfides 2 3 3 (strong) h = frothy silica injection t = s with sulfides 2 3 3 (strong) y = brecciation with silic y = brecciation with silic 2 3 3 (strong) y = brecciation y = brecciation 2 3 3 (strong) y = brecciation y = brecciation 2 2 3 1 (weak) y = brecciation y = brecciation 2 3 3 (strong) y = brecciation y = brecciation y = brecciation 2 3 3 (strong) y = brecciation y = brecciation y = brecciation 2 3 3 1 1 (weak) y = brecciation y = brecciation 2 3 3 1 1 y = brecciation y = brecciation 2 3 3 1 1 y = brecciation		Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 4 5 (strong, no remnant texture) 1 (weak)	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos	 a = quartz/silica stringers - i b = quartz/silica stringers - i c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork - h = quartz/silica stockwork - i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epi l = k with sulfides
1450 m C - Carbonatization 2 3 4 5 (strong) h = frothy silica injection b = frothy silica injection b = brecitation with sil/c v = brecitation with sil/c v = v with sulfides 2 3 4 5 (strong) 200 S 150 S		Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong)	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking	 a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork - h = quartz/silica stockwork - i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epi l = k with sulfides m = massive qtz/silica veinin n = massive quartz/silica veinin o = massive quartz/silica/calcite
2 - October Ministry 3 4 3 5 (strong) 200 S 150 S	τ.	Type of AlterationS - SilicificationA - Argillic AlterationP - Propylitic AlterationK - Potassic Alteration	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (weak) 2 3	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching	 a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork - h = quartz/silica stockwork - i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epid l = k with sulfides m = massive qtz/silica veinin n = massive quartz/silica/calcite y = massive quartz/silica/calcite y = massive quartz/silica/calcite y = massive quartz/silica/calcite y = p with sulfides r = brecciation with silica m phase
200 S 150 S	1450 m	Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration K - Potassic Alteration	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (weak) 3 4 5 (strong) 1 (weak) 3 4 5 (strong) 1 (weak) 3 4 5 (strong) 1 (weak) 3 4 5 (strong) 1 (weak) 3 5 (strong) 1 (weak) 5 (strong) 5 (str	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching h = frothy silica injection	 a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork - h = quartz/silica stockwork - i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epides m = massive qtz/silica veinin n = massive quartz/silica veinin o = massive quartz/silica veinin c = p with sulfides r = brecciation with silica m t = s with sulfides u = brecciation with calcite ve brecciation with calcite
200 S 150 S	1450 m	Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration K - Potassic Alteration C - Carbonatization	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (weak) 2 3 5 (strong) 1 (weak) 2 3 5 (strong) 1 (weak) 2 3 5 (strong) 1 (weak) 2 3 5 (strong) 1 (weak) 2 3 5 (strong) 5 (Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching h = frothy silica injection	 a = quartz/silica stringers b = quartz/silica stringers c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork h = quartz/silica stockwork i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epide f = massive qtz/silica veinin n = massive quartz/silica veinin o = massive quartz/silica veinin o = massive quartz/silica/calcite y = p with sulfides r = brecciation with silica m t = s with sulfides u = brecciation with silica m t = s with sulfides u = brecciation with silica m t = s with sulfides u = brecciation with silica m t = s with sulfides
200 S 150 S	1450 m	Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration K - Potassic Alteration C - Carbonatization	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (str	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching h = frothy silica injection	 a = quartz/silica stringers b = quartz/silica stringers c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork h = quartz/silica stockwork i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epide l = k with sulfides m = massive qtz/silica veinin n = massive qtz/silica veinin o = massive qtz/silica veinin o = massive quartz/silica veinin g = p with sulfides r = brecciation with silica m phase s = brecciation with silica m t = s with sulfides u = brecciation with silica m t = s with sulfides u = brecciation with silica m t = s with sulfides
200 S 150 S	1450 m	Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration K - Potassic Alteration C - Carbonatization	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (weak) 2 3 4 5 (strong) 1 (weak) 2 3 4 5 (strong) 1 (weak) 2 3 4 5 (strong) 1 (weak) 2 3 4 5 (strong)	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching h = frothy silica injection	<pre>a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork - h = quartz/silica stockwork - i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epide l = k with sulfides m = massive qtz/silica veinin o = massive quartz/silica veinin o = massive quartz/silica veinin g = p with sulfides r = brecciation with silica m phase s = brecciation with silica m t = s with sulfides u = brecciation with silica m veining v = v with sulfides</pre>
	1450 m	Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration K - Potassic Alteration C - Carbonatization	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (strong) 1 (weak) 2 3 4 5 (strong) 1	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching h = frothy silica injection	<pre>a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork + h = quartz/silica stockwork + i = h with sulfides j = calcite stockwork with o k = qtz/silica/calcite +/- epi l = k with sulfides m = massive qtz/silica veinin o = massive quartz/silica veinin o = massive quartz/silica veinin g = p with sulfides r = brecciation with silica m phase s = brecciation with silica m t = s with sulfides u = brecciation with silica m v = v with sulfides</pre>
	1450 m	Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration K - Potassic Alteration C - Carbonatization 200 S	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (strong) 1 (weak) 2 3 4 5 (strong) 1 (st	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching h = frothy silica injection 150	<pre>a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork h = quartz/silica stockwork i = h with sulfides j = calcite stockwork with c k = qtz/silica/calcite +/- epi l = k with sulfides m = massive qtz/silica veinir n = massive qtz/silica veinir o = massive qtz/silica veinir o = massive qtz/silica veinir n = massive qtz/silica veinir s = brecciation with silica n phase s = brecciation with silica m t = s with sulfides u = brecciation with silica m t = s with sulfides u = brecciation with silica m veining v = v with sulfides S</pre>
	1450 m	Type of Alteration S - Silicification A - Argillic Alteration P - Propylitic Alteration K - Potassic Alteration C - Carbonatization 200 S	SILVER POND Intensity 1 (weak) 2 3 (some remnant texture) 4 5 (strong, no remnant texture) 1 (weak) 2 3 4 5 (strong) 1 (strong) 1 (weak) 2 3 4 5 (strong) 1 (strong)	Mode of Occurrence a = ubiquitous b = patchy c = matrix only d = matrix and phenos e = phenos only f = prim reddening/pinking g = bleaching h = frothy silica injection 150	<pre>a = quartz/silica stringers - b = quartz/silica stringers - c = b with sulfides d = calcite stringers with or e = quartz/silica/calcite(+/- f = e with sulfides g = quartz/silica stockwork i h = quartz/silica stockwork with o k = qtz/silica/calcite +/- epi l = k with sulfides m = massive qtz/silica veinin n = massive qtz/silica veinin o = massive qtz/silica veinin o = massive quartz/silica/calcite veining q = p with sulfides r = brecciation with silica m phase s = brecciation with silica m t = s with sulfides u = brecciation with silica m t = s with sulfides S S</pre>

`

-

