LOG NO: 0202	RD.
ACTION:	12188

GEOCHEMICAL REPORT

BEER 1 MINERAL CLAIM
KNUTSFORD, B.C.
KAMLOOPS MINING DIVISION

LATITUDE $50^{\circ} 36^{\prime} \mathrm{N}$
NTS 92I/9W
GEOZOGECADBRANCM Assesmathtran on

FOR
LARRY OVINGTON: OWNER AND OPERATOR RECORD NO. 4265(12)

BY
BRYAN ELLIOTT AND LARRY OVINGTON
TABLE OF CONTENTS I
LIST OF ILLUSTRATIONS II
Page
1.0 INTRODUCTION 1
2.0. OWNERSHIP AND CLAIM STATUS 1
3.0 HISTORY AND PREVIOUS WORK. 1 \& 2
4.0 GEOLOGY. 2
5.0 1987 SOIL SAMPLING PROGRAMME 2 \& 3
5.1 DISCUSSION OF RESULTS 3/
6.0 COST STATEMENTS 4
7.0 STATEMENT OF QUALIFICATIONS $5 \& 6$
8.0 LIST OF REFERENCES 7
LIST OF FIGURES
FIGURE 1 LOCATION MAP. . After Page 1
FIGURE 2 CLAIM MAP . After Figure 1
FIGURE 3. VEIN LOCATION. After Page 2
PLATE 1 GRID AND SAMPLE LOCATION MAP After Page 3 ,
APPENDICES
APPENDIX A GEOCHEMICAL ANALYTICAL PROCEDURES/ AND CERTIFICATE OF ANALYSIS.

1.0 INTRODUCTION

The Beer 1 mineral claim (6 units, $2 W \times 3 S$) is located 5 km eastsoutheast of the village of Knutsford on Highway 5 and 9 km southeast of downtown Kamloops. Access from Kamloops is by Trans Canada Highway west to the Highway 5 junction, south on this route 4 km to Knutsford, then southeast 1.8 km to a secondary gravel road leading east 4 km to the Beer 1 claim.

The property lies in open, gently rolling, treeless hills. The elevation is about 945 m and the relief does not exceed 60 m within the Beer 1 claim. Drainage of the claim area is via an unnamed meandering intermittantly dry streambed flowing southwest and terminating in a series of small, marshy, alkaline ponds, near, but unconnected to Separation Lake. The claim area is used for cattle grazing.

The claim area is largely covered by glacial till with drumlins mainly trending southeast. Rock outcrop is rare.

2.0 OWNERSHIP AND CLAIM STATUS

The Beer 1 claim is owned by Larry Ovington of 1559 Mount Dufferin Drive, Kamloops, B.C., V2E 1A3. The claims are currently in good standing. The anniversary date for the Beer 1 claim is December 7th.

3.0 HISTORY AND PREVIOUS WORK

The current claim area was referred to as the constant Group in the 1933 B.C. Minister of Mines Annual Report, Page 195.

The principal working on the Beer 1 claim is a 6 m deep inclined shaft follows a shear zone striking about 285° and dipping $40-50^{\circ}$ to the south.

Numerous other shallow pits and trenches were dug on the many quartz veins in the area. Some of these trenches have been recently filled. The claim area was largely ignored untill the Afton rush when it was restaked but no development work was done. In 1985 a small geochemical survey over the shaft area was done by J.D. Murphy, P. Eng. and in 1986 Dirk Moraal;
Geophysical operator, worked a Sabre VLF-EM Survey over a larger area. The results of these reports led to the current 1987 Geochemical Survey.

4.0 GEOLOGY

The Beer 1 claim is located within a narrow band of north-south trending metasedimentary schistose rocks of the Mississippian to Permian Age Cache Creek Group. This metasedimentary unit is bounded on the west by intrusive rocks of the Iron Mask Batholith and on the east by the Wildhorse Mountain Batholith, both upper Triassic in age.

The main showing exposed by the shaft is a quartz-carbonate vein in an oxidized shear zone. Minerals include pyrite, arsenopyrite and very minor malichite and chalcopyrite. Samples taken by Freeland (1933, P, 195) assayed: Au 0.70 ounces and Ag 11.5 ounces a ton, and Au 2.1 ounces and Ag 1 ounce a ton respectively.

$5.0 \quad 1987$ SOIL SAMPLING PROGRAMME

On November 3, 1987 sixty-five soil samples were collected on the Beer 1 claim on a grid surveyed with hip chain and compass. The grid baseline was established leading from a point 200 m distant at 70° from the shaft mouth. The baseline is oriented at 180° for a distance of 250 m with 5 lines spaced at 50 m intervals and reaching 150 m to the east with samples taken at 12.5 m intervals. The work was done by Larry Ovington and Bryan Elliott.

FIGURE 3
BEER I CLAIM- KNUTSFORD,B.C
KAMLOOPS M.D $92 I / 9 W$ VEIN LOCATION

B.E. $\quad 1 \approx 46500 |$| | Dec. $5 / 87$. |
| :--- | :--- | :--- |

Where possible "B" horizon soils were collected at an average depth of about 20 centimetres. Most of the area is glacial overburden and most samples were a greyish till material. A brownish red oxidized horizon was reached in some cases. Samples were collected using a soil mattock and placed in Kraft Wet Strength gussetted soil bags. Samples were shipped to Acme Analytical Laboratories Ltd. in Vancouver, B.C. and assayed for 30 element ICP plus gold as outlined in the analysis certificate; Appendix A.

5.1 DISCUSSION OF RESULTS

The glacial grey till material does not have good soil development for geochemical survey purposes. Two samples, at 71 ppb gold and 13 ppb gold are significantly anomalous, and 14 or 20% of the samples taken are over the 2 ppb gold levels considered background for the area. Arsenic and silver values are slightly anomalous. Since the higher gold values were mainly coincident with the higher arsenic values we plotted these together on the inclosed grid map (Figure 4 in pocket). However, the grid did not point to any particularly contourable element expression trends.

$$
-4-
$$

6.0 STATEMENT OF COSTS

November 3, 19872 man days X \$150.00/day	\$ 300.00
November 3, 19874×4 rental One day	45.00
Assays Acme Analytical Laboratories	715.00
Supplies - gas, topophil, ribbon etc.	70.00
Report preparation One day at $\$ 150.00$	150.00
Map D.B.M. Technical Services	40.00
- \cdots...	\$1320.00
15\% Contingencies	198.00
Total Costs	\$1518.00

STATEMENT OF QUALIFICATIONS

I, Bryan Elliott, of the City of Kamloops, in British Columbia, hereby state that:

1. I am a professional prospector and have carried out my profession since 1973.
2. I am a graduate of British Columbia Department of Mines Explorations Course 1979, and have completed college courses in mineralogy and geology, 1978.
3. I have been employed in field supervisory positions for El Paso Mining and Milling, Teck Explorations, and Noranda Explorations. I have held the Exploration Manager position for Tugold Resources and Mary Creek Resources, and I am currently President and Exploration Manager for Iota Explorations Ltd.
4. This report is based on information gathered during the 1987 field season, and opinions expressed reflect that knowledge and information gathered from local experience and research.

November, 1987

STATEMENT OF QUALIFICATIONS

I, Larry Ovington, of the City of Kamloops, in British Columbia, hereby state that:

1. I am a prospector and earn my living from the exploration and optioning of mining properties.
2. I have worked on various mining properties from 1958 to present, both for myself and for other mining companies.
3. I have optioned at least 13 properties to junior and major mining companies.
4. I have worked on large exploration programmes for Dr. Norman Keevil, Sherwin Kelly, P. Eng., Bill Pentland (Craigmont) and Morris Mathieu (Torwest Resources).
5. I am the sole owner and President of Whopper Holdings Ltd., a B.C. Incorporated company engaged in mineral exploration.
6. I am the Vice-President of Iota Explorations Ltd. a company exploring for precious metals in British Columbia.
7. This report is based on information gathered during the 1987 field season by myself and Bryan Elliott and the knowledge gathered from local experience and research. The work was done to comply with assessment requirements and to enhance the sale of the property.
8. I am the sole owner of the Beer 1 mineral claims.

November, 1987

8.0 LIST OF REFERENCES

Report of B.C. Minister of Mines, 1933
Cockfield, GSC Memoir 249
Murphy, J.D., P. Eng., Geochemical Report on the Beer 1 Mineral Claim, 1985 Moraal, D. Sabre VLF-EM Survey, 1986

GEDCHEMICAL ANALYSIS CEFTIFICATE

this leach is partial far nn fe ca pla cr mg ba ti b and linited for na k and al. all detection limit by icp is 3 pph.

- SAMPLE TYpE: Soil aut analysis by at from 10 grah safrle.

SAMPLE\#	M	Cu	PB	2N	AG	NI	Cl	WN	FE	AS	1	Alt	IH	SR	CD	SB	BI	ψ	CA	p	LA	CR	M6	BA	II	8	Al	NA	k	*	Alit
	PPM	PPY	7	PPM	PPH	PPM	PPM	PPM	PPM	PPM	PPM	PPF	$!$	2	PPM	PPM	$\%$	PPM	2	PPM	$\%$	$\%$	\%	PPY	PPP						
L! 1 BL	1	41	12	70	. 2	26	10	791	2.87	55	5	ND	1	69	1	2	2	55	. 87	. 077	13	39	. 59	184	. 10	9	2.18	. 03	. 34	1	3
LIS 12.5E	1	38	7	78	. 1	25	?	762	2.60	26	5	ND	1	86	1	2	2	49	. 93	. 094	11	35	. 63	195	. 09	6	1.85	. 03	. 31	1	5
L1S 25.05	1	38	8	63	. 1	27	10	686	2.73	26	5	ND	2	85	1	2	2	54	. 94	. 073	11	38	.76	141	. 10	4	1.64	. 04	. 33	1	1
L15 37.5E	1	38	7	65	. 1	31	10	680	2.75	10	5	ND	3	94	1	2	3	55	. 75	. 078	13	42	. 65	146	. 11	5	1.73	. 04	. 33	1	1
L1S 50.0E	1	36	10	65	. 1	29	?	688	2.64	13	5	ND	1	83	1	2	2	52	. 79	. 077	12	40	. 60	176	. 10	5	1.77	. 04	. 34	1	1
L15 62.5E	1	32	7	61	.1	30	9	638	2.65	6	5	ND	2	75	1	2	2	54	. 68	. 072	11	45	. 61	130	. 11	4	1.63	. 04	. 29	1	1
L15 75.0E	1	40	8	62	. 1	32	10	626	2.91	6	5	ND	1	78	1	2	2	60	. 70	. 070	13	46	. 73	127	. 12	5	1.76	. 04	. 29	1	1
L1S 87.5E	1	34	8	64	. 1	27	9	639	2.46	4	5	ND	2	117	1	2	2.	49	. 91	. 077	11	36	. 69	141	. 10	8	1.61	. 04	. 31	2	2
L15 100.05	1	36	10	65	. 1	29	9	670	2.63	6	5	ND	3	105	1	2	3	53	. 73	. 076	12	45	. 76	146	. 11	5	1.71	. 04	. 32	1	2
L15 112.5E	1	38	9	64	. 1	29	10	679	2.60	8	5	ND	2	82	1	2	2	51	. 75	. 078	12	41	. 62	165	. 10	9	1.77	. 04	. 31	1	1
575 C/AU-S	19	57	41	128	7.2	66	28	1096	3.90	40	20	7	37	47	17	18	19	59	. 49	. 082	37	58	. 86	162	. 06	38	1.79	. 06	. 13	13	52
LIS 125.0E	1	38	10	64	. 2	29	10	680	2.69	5	5	ND	3	76	1	2	2	53	. 75	. 078	12	41	. 60	175	. 11	8	1.90	. 04	. 32	1	3
LIS 137.5E	1	39	12	65	. 1	27	10	696	2.69	5	5	ND	3	69	1	2	2	53	. 75	. 079	12	40	. 56	174	. 11	7	1.84	. 03	. 31	1	1
L15 150.0E	1	36	12	64	. 1	28	?	671	2.65	4	5	N0	2	61	1	2	2	54	. 69	. 083	12	41	. 55	163	. 11	5	1.64	. 04	. 32	2	2
L2S BL	1	41	11	69	. 1	29	10	754	2.75	30	5	N	2	75	1	2	2	54	. 81	. 083	12	40	. 62	$18!$. 11	7	1.83	. 03	. 31	1	1
L2S 12.5E	1	39.	7	68	. 1	27	10	755	2.63	19	5	HD	1	78	1	2	2	51	. 84	. 083	12	39	. 61	175	. 10	6	1.75	. 04	. 30	1	1
12S 25.0E	1	39	8.	67	. 1	29	9	738	2.54	19	5	ND	1	72	1	2	2	50	. 94	. 084	11	39	. 58	171	. 09	8	1.65	. 03	. 29	1	2
12937.55	1	38	10	82	. 1	25	9	773	2.45	14	5	N0	2	79	1	2	2	46	1.10	. 098	12	34	. 51	213	. 09	8	1.94	. 03	. 32	$!$	1
L2S 50.0E	1	43	9	85	.1	28	10	849	2.75	45	5	NO	1	86	$!$	2	2	51	1.04	.079	12	35	. 60	171	. 09	9	1.80	. 03	. 37	1	9
L2S 62.5E	1	40	13	72	. 1	25	?	777	2.69	27	5	HD	1	91	,	2	2	52	. 95	. 076	12	33	. 66	186	. 10	8	2.06	. 03	. 37	1	3
L2S 75.05	2	36	6	67	. 1	28	10	662	2.73	12	5	ND	2	206	1	2	2	54	1.61	. 076	11	37	. 80	126	. 12	8	1.63	. 05	. 35	1	1
L29 87.5E	3	36	7	68	. 1	28	9	648	2.63	6	5	ND	3	166	1	2	2	53	1.05	. 081	11	39	. 76	112	. 11	8	1.62	. 05	. 42	1	3
12S 100.0E	2	34	10	66	. 1	27	?	857	2.58	3	5	ND	2	130	1	2	4	51	. 90	. 081	11	37	. 78	122	. 11	6	1.67	. 08	. 41	1	2
L2S 112.5E	1	32	15	64	. 1	26	9	632	2.58	2	5	ND	1	89	1	2		51	. 64	. 082	11	40	. 74	134	. 11	8	1.61	. 05	. 33	1	1
L2S 125.0E	1	35	12	66	. 1	27	?	698	2.60	3	5	ND	2	75	1	2	2	51	. 69	. 076	12	40	. 58	156	. 11	8	1.72	. 04	. 33	1	4
125137.55	1	36	8	69	. 1	27	10	711	2.71	4	5	ND	2	70	1	3	2	54	. 65	. 076	12	45	. 58	160	. 11	8	1.80	. 04	. 32	1	1
L2S 150.0E	1	37	7	66	. 1	27	?	707	2.64	6	5	ND	2	67	1	2	2	52	. 74	. 079	12	42	. 55	174	. 11	4	1.72	. 03	. 30	1	1
L3S BL	1	43	8	67	. 1	31	11	765	2.86	14	5	ND	2	67	1	2	2	58	. 80	. 086	13	45	. 61	179	. 11	4	1.79	. 03	. 33	1	1
L3S 12.5E	1	37	7	65	. 2	27	9	722	2.60	11	5	ND	2	69	1	2	2	53	. 84	.083	12	41	. 58	171	. 10	5	1.58	. 03	. 29	1	1
L3S 25.05	1	37	8	65	. 2	26	9	133	2.53	6	5	ND	2	71	1	2	2	50	. 82	. 087	11	40	. 57	170	. 10	6	1.56	. 03	. 31	$!$	2
L3S 37.5E	1	36	8	62	. 1	26	9	708	2.00	10	5	ND	2	73	1	2	2	52	. 72	. 077	12	40	. 56	164	. 10	6	1.70	. 03	. 29	1	4
LSS 50.0E	1	39	7	57	. 1	31	9	653	2.66	9	5	ND	2	76	1	2	2	55	. 85	. 099	12	42	. 62	147	. 10	7	1.51	. 04	. 29	$!$	2
L.3S 62.5E	1	38	10	63	. 1	27	10	710	2.67	8	5	ND	1	80	1	2	2	53	. 77	. 091	13	42	. 60	164	. 10	7	1.79	. 03	. 30	1	1
LSS 75.0E	1	35	7	58	. 1	28	9	660	2.71	12	5	$N D$	2	75	1	2	2	54	. 71	. 080	13	43	. 65	154	. 10	7	1.77	. 04	. 33	1	2
L39 87.5E	1	31	5	58	. 1	25	8	632	2.41	?	5	ND	2	80	1	2	2	48	. 83	. 077	11	39	. 57	138	. 10	6	1.39	.03	. 27	1	1
LSS 100.0E	2	31	8	56	. 1	23	8	575	2.14	7	6	ND	3	250	1	2	2	43	2.23	. 079	9	33	1.02	104	. 08	16	1.23	. 06	. 33	1	1
L3S 112.5E	1	39	5	64	. 3	29	9	687	2.44	7	5	ND	2	100	1	2	2	47	1.07	. 079	11	38	. 71	158	. 09	7	1.65	. 06	. 34	1	2

L3S 125.0E	1	32	14	64	. 1	27	$?$	584	2.67	7	5	ND	2	79	1	2	2	52	. 67	. 072	10	40	. 56	147	. 11	6	1.68	. 04	. 30	1	1
L3S 137.5E	1	40	9	68	. 1	39	9	592	2.91	9	5	ND	3	101	1	2	2	56	. 62	. 076	12	44	. 94	12!	. 12	12	1.77	. 07	. 33	1	1
L3S 150.0E	1	38	11	67	. 2	32	10	592	2.99	13	5	ND	2	96	1	2	2	57	. 88	. 075	12	46	. 75	131	. 12	9	1.86	. 05	. 32	1	1
145 BL	1	43	12	70^{-}	. 2	35	10	667	3.21	24	5	ND	2	65	1	2	2	63	. 66	. 078	13	49	. 72	$16!$. 12	6	1.99	. 04	. 30	1	$13<$
L4S 12.5E	1	43	13	74	. 2	33	11	703	3.05	18	5	ND	3	65	1	2	3	58	. 69	. 080	13	45	. 64	174	. 11	5	2.04	. 04	. 28	1	1
L45 25.0E	1	41	15	73	. 1	31	10	721	2.96	12	5	ND	2	68.	1	2	2	57	. 71	. 083	13	45	. 62	168	. 11	6	1.81	. 04	. 29	2	
L4S 37.5E	1	43	10	69	. 2	32	10	695	2.89	14	5	ND	2	66	1	2	2	56	. 76	. 082	12	43	. 62	165	. 11	9	1.75	. 04	. 29	1	1
L45 50.0E	- 1	36	3	65	. 1	27	?	641	2.85	12	5	ND	2	63	1	2	2	54	. 60	. 080	12	45	. 59	156	. 11	7	1.80	. 04	. 27	1	6
STI C/All-s	18	58	3 ?	129	7.2	68	28	1056	4.14	42	20	7	37	49	17	18	20	60	. 48	. 081	38	59	. 87	166	. 06	31	1.92	. 06	. 13	12	510
L4S 62.5E	1	30	8	67	. 2	24	9	623	2.73	7	5	HD	2	61.	1	2	2	51	. 55	. 073	12	44	. 56	136	. 11	6	1.76	. 06	. 27	1	1
L45 75.0E	1	40	8	68	. 1	27	9	673	2.57	11	5	ND	1	88.	1.	2	2	47	. 89	. 087	11	37	. 60	164	. 09	7	1.79	. 04	. 33	1	1
L4S 87.5E	,	46	6	83	. 1	29	10	823	2.73	20	5	ND	2	82	1	2	2	49	. 85	. 089	12	35	. 57	201	. 09	7	2.16	. 03	. 32	1	3
L45 100.0E		62	14	81	. 2	30	10	865	2.84	32	5	ND	1	89	1	2		53	1.08	. 100	12	. 34	. 64	207	. 09	8	2.20	. 03	. 32	1	5
L4S 112.5E	1	49	10	72	. 1	26	8	478	2.64	17	5	ND	1	90	1	2	2	47	1.01	. 081	12	36	. 70	164	. 09	6	2.04	. 04	. 26	,	1
L4S 125.0E	1	36	9	66	. 1	25	8	601	2.54	14	5	ND	1	95	1	2	2	48	. 87	. 077	11	38	. 60	142	. 09	7	1.55	. 04	. 27	1	1
14S 137.5E	,	47	8	80	. 2	35.	11	783	2.87	10	5	ND	2	109	1	2	3	52	1.02	. 080	13	42	. 73	186	. 11	9	2.08	. 07	. 39	1	1
L4S 150.0E		32	11	65	. 2	25	8	585	2.66	7	5	ND	3	76	1	2	2	51	. 68	. 072	10	39	. 58	144	. 10	?	1.65	. 04	. 30	1	1
L55 8L	1	54	8	61	. 2	38	11	566	3.05	46	5	ND	3	151	1	2	2	65	3.59	. 081	12	46	1.22	148	. 11	13	1.76	. 06	. 24	1	7
L5S 12.5E	1	45	11	79	. 1	33	11	751	3.18	15	5	ND	2	73	1	2	2	60	. 88	. 089	13	47	. 69	201	. 11	6	2.16	. 04	. 32	1	
L5S 25.0 E	1	45	10	92	. 1	32	10	752	3.00	12	5	ND	2	80	1	2	2	55	. 90	. 103	13	43	. 69	218	. 10	7	2.19	. 03	. 36	1	1
L5S 37.5E	-	46	10	80	. 1	39	11	679	3.03	11	5	ND	2	77	1	2	2	58	. 93	. 101	13	48	. 74	194	. 10	8	-1.96	. 04	. 32	1	,
L5S 50.0E	1	51	7	70	. 1	42	11	665	3.26	16	5	KD	3	101	1	2	2	67	1.80	. 090	13	53	1.22	171	. 11	7	1.85	. 05	. 30	1	5
L5S 62.55	1	40	10	67	. 1	36	11	634	3.16	14	5	ND	2	70	1	2	2	62	. 68	. 078	13	48	. 90	149	. 12	8	1.99	. 05	. 28	1	1
L55 75.0E	1	41	10	72	. 1	32	11	694	3.01	14	5	ND	1	70	1	2	2	57	. 66	. 077	13	43	. 65	179	. 11	7	2.11	. 04	. 30	1	
L5S 87.5E	1	50	9	75	. 1	32	11	739	3.15	16	5	ND	2	67	1	2	2	61	. 71	. 080	13	43	. 66	193	. 11	8	2.17	. 03	. 30	1	1
L55 100.0E	1	48	7	74	. 1	31	11	765	3.05	14	5	HD	1	64	1	2	2	59	. 70	. 080	13	38	. 67	204	. 11	3	2.17	. 03	. 28	1	9
L5S 112.5E	1	40	7	65	. 1	30	9	660	2.80	10	5	ND	1	66	1	2	2	53	. 77	.088	12	39	. 56	163	. 10	7	1.66	. 03	. 23	,	71 ¢
L.5S 125.0E	1	39	8	68	. 1	30	10	677	2.73	10	5	ND	2	78	1	2	2	52	. 90	. 087	12	41	. 55	178	. 10	6	1.64	. 03	. 25	1	1
L5S 137.5E	1	38	4	68	. 2	27	10	703	2.63	9	5	ND	2	82	1	2	2	49	. 92	. 088	11	40	. 55	177	. 09	9	1.66	. 03	. 25	1	1
155150.0 E	$!$	43	6	74	. 1	27	9	579	2.57	18	5	ND	1	127	1	2	2	47	1.30	. 095	11	37	. 81	152	. 08	14	1.69	. 05	. 34	1	1

