LOG NO: 0216 RD.	
ACYON:	
(101)	November 1987
FILE NO:	

Antony Resources ltd. LOGAN MINERAL CLAIMS

GEOLOGICAL BRANCH ASSESSMENT REPORT

FILMED

MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

FEB 1 2 1988

SUBJECT -

VANCOUVER, B.C.

Report on 1987 Exploration Program

ARIS SUMMARY SHEET

District Geologist, Victoria

Off Confidential: 89.01.27

ASSESSMENT REPORT 16982

MINING DIVISION: Victoria

PROPERTY:

Logan

LOCATION:

49 00 00 LAT

LONG 124 35 10

MTU NTS 10 5428448 383986 092F02E 092C15E

CLAIM(S):

Logan, Logan I-II

OPERATOR(S):

Antony Res.

AUTHOR(S):

Cukor, V.

REPORT YEAR:

1987, 70 Pages

COMMODITIES

SEARCHED FOR: Gold, Silver

GEOLOGICAL SUMMARY:

Volcanics and sediments of the Upper Triassic Vancouver Group and Paleozoic Sicker Group are intruded by Saanich granodiorite. Gold occurs in pyritic and silicified volcanics and in quartzcarbonate veins and/or stockwork.

WORK

DONE:

Geophysical, Geochemical

52.0 km;VLF

Map(s) - 1; Scale(s) - 1:5000

52.0 km MAGG

Map(s) - 1; Scale(s) - 1:5000 687 sample(s); AU, AG, NI, CU

Map(s) - 4; Scale(s) - 1:5000

制存引力**指置**

TABLE OF CONTENTS

		Page	
1.	INTRODUCTION	1	
2.	REVIEW 2.1 SUMMARY and CONCLUSIONS 2.2 RECOMMENDATIONS 2.3 COST ESTIMATE	2 2 - 3 -	
3.	PROPERTY 3.1 LOCATION 3.2 ACCESS 3.3 CLAIMS 3.4 TOPOGRAPHY and CLIMATE	5 5 6 6 -	7
4.	GEOLOGY 4.1 GENERAL GEOLOGY 4.2 LOCAL GEOLOGY 4.3 MINERAL SHOWINGS	8 8 - 9 -	
5.	GEOCHEMICAL SOIL SURVEY 5.1 FIELD METHOD 5.2 LABORATORY PROCEDURE 5.3 DATA PRESENTATION 5.4 DISCUSSION OF RESULTS	12 12 - 13 13 -	
6.	GEOPHYSICAL VLF-EM SURVEY 6.1 FIELD METHOD 6.2 DATA PRESENTATION 6.3 DISCUSSION OF RESULTS	17 17 18	
7.	GEOPHYSICAL GROUND MAGNETIC SURVEY 7.1 FIELD METHOD 7.2 DATA PRESENTATION 7.3 DISCUSSION OF RESULTS	19 19 19 -	20
	CERTIFICATES	21 -	22
	BIBLIOGRAPHY	23	
	APPENDIX "A": DESCRIPTION OF INSTRUMENT USED		

ILLUSTRATIONS

FIGURE	1	LOCATION MAP	In	text	after	page	5
FIGURE	2	CLAIMS and TOPOGRAPHY	H		H	11	5
FIGURE	3	CLAIM MAP	11		n n	n n	6
FIGURE	4	GEOLOGICAL MAP	ĮĮ.	n .	n	u	8
FIGURE	5	GEOCHEMICAL SURVEY PLAN, GOLD	In	pocke	et .		
FIGURE	6	GEOCHEMICAL SURVEY PLAN, SILVE	R "	o			
FIGURE	7	GEOCHEMICAL SURVEY PLAN, COPPE	R "				
FIGURE	8	GEOCHEMICAL SURVEY PLAN, NICKE	L "	n.			
FIGURE	9	VLF-EM SURVEY PLAN	11				
FIGURE	10	GROUND MAGNETIC SURVEY PLAN	11	н			

ANTONY RESOURCES LTD.

LOGAN MINERAL CLAIMS Vancouver Island

1. INTRODUCTION

The Vancouver based private company, Antony Resources Ltd., contracted NVC Engineering Ltd. to perform a grass root exploration program to evaluate the property potential. This Report is based on results of the program as well as on the published data on the general area.

The program consisting of geological, geochemical soil and geophysical magnetic and VLF-Electromagnetic surveys as well as extensive rock sampling was managed in the field by D. Cukor, geologist under the overall supervision of V. Cukor, P. Eng. A total of over \$80,000 was spent on these surveys.

All rock and soil samples were submitted for assays to General Testing Laboratories of Vancouver.

2. REVIEW

2.1 SUMMARY and CONCLUSIONS

The property consists of 3 contiguous Logan claims, comprising 40 units. Extensive exploration was carried out on the neighbouring properties, but no evidence of past exploration was found on the ground during the 1987 program. Part of the claims are underlain by the Sicker Volcanics, which host significant gold-silver base metal deposits, some of which were past producers elsewhere within the same volcanic belt. On the Logan Claims within this unit, samples containing gold values were collected; the best assay ran .372 oz/t gold and .25 oz/t silver. Gold bearing rock outcrops were found to be associated with extensive gold geochemical soil anomalies and zones of intensive fracturing, shearing and alterations. zones are of such size that they could easily contain economically important bodies, covered by extensive but mostly shallow overburden cover. Such areas should be considered valuable exploration targets and further work on them is fully warranted.

2.2 RECOMMENDATIONS

Further work on the Logan Property should consist of at least two stages. During the first stage all areas with gold bearing outcrops should be trenched, mapped in

2.2 RECOMMENDATIONS (Cont'd)

detail and extensively sampled. The same technique should be applied in the localities where very high gold values were encountered in the soil. If any mineralized structures are recognized in these localities, they should be followed by trenching and sampled.

During the second stage, diamond drilling should be applied to explore extensions of mineralization at depth and thus evaluate the potential of the property.

2.3 COST ESTIMATE

The following budget is estimated to be necessary for completion of the recommended program:

Stage 1

Bulldozer trenching, 300 hrs @ \$100/hr	\$ 30,000
Mobilization, demobilization	3,000
Geological mapping, sampling	6,000
Assays, 250 samples @ \$12 ea.	3,000
Room, board, transportation	5,000
Data correlation, report	7,500
그 회에 불인 생기에 있는 시기 사이트리아 모양을 하면 되었다.	
Stage 1 Subtotal	\$ 54,500
사람들이 얼마나 하나 얼마를 들어왔다. 그렇게 되었다고 있다는데 그	
Contingencies	<u>5,500</u>
그리 말로 그 이번 되어야 되지도 않는데 그로 무겁했다.	
Stage 1 Total	\$ 60,000
	the state of the s

2.3 COST ESTIMATE (Cont'd)

Stage 2 (Contingent on results of Stage 1)

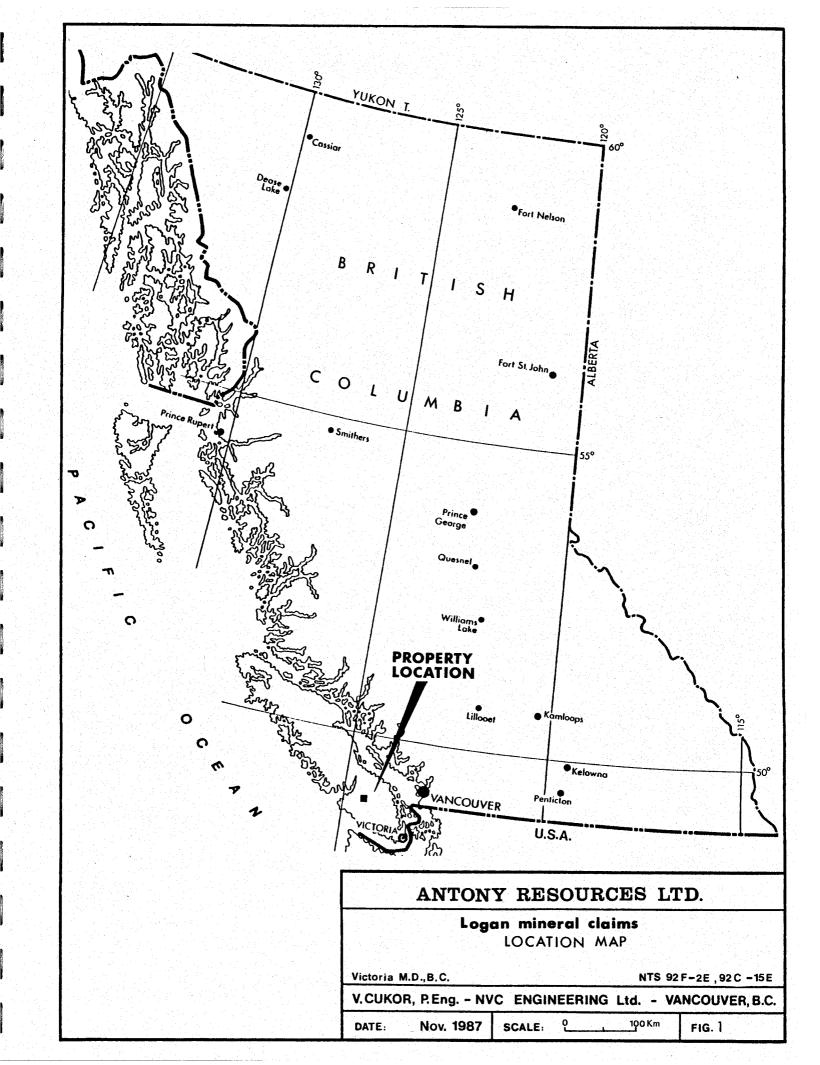
Diamond drilling, 2,000	ft. @ \$30/ft.	\$ 60,000
Bulldozer support		10,000
Geological supervision,	logging, sampling	10,000
Room, board, transportat	ion	7,500
Assays		3,000
Data correlation, report		10,000
		4
	Stage 2 Subtotal	\$100,500
		10 500
	Contingencies	19,500
	Chass 2 Mats1	c120 000
	Stage 2 Total	\$120,000

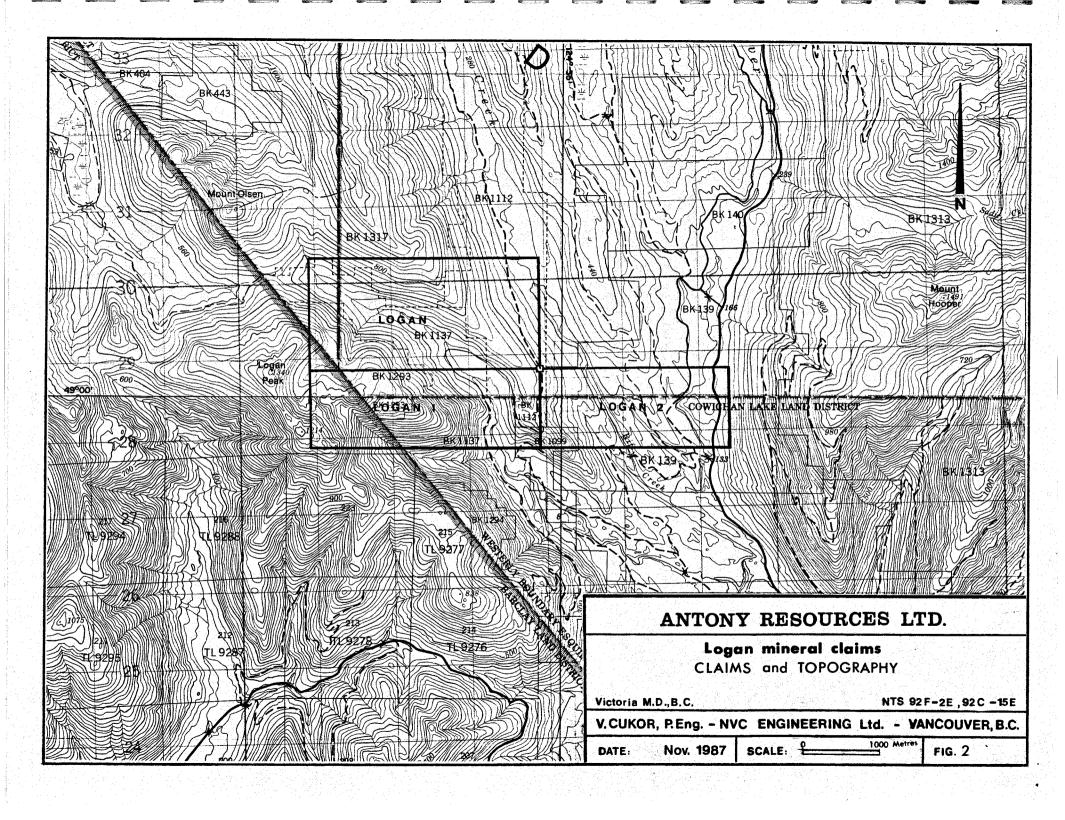
3. PROPERTY

3.1 LOCATION

The Logan Claims are located in the southern part of Vancouver Island, about 25 kilometres southeast of Port Alberni. They are in the Victoria Mining Division on NTS maps 92 F - 2 E and 92 C - 15 E. The property is centered at approximate north latitude 49° 00' and west longitude 124° 35'.

The largest part of the claims is located over the area covered by the MacMillan Bloedel Tree Farm and the performance bond had to be posted with the company prior to commencement of work.


Property location and claims are shown on Figures 1 and 2.


3.2 ACCESS

The Logan Property is readily accessible by roads.

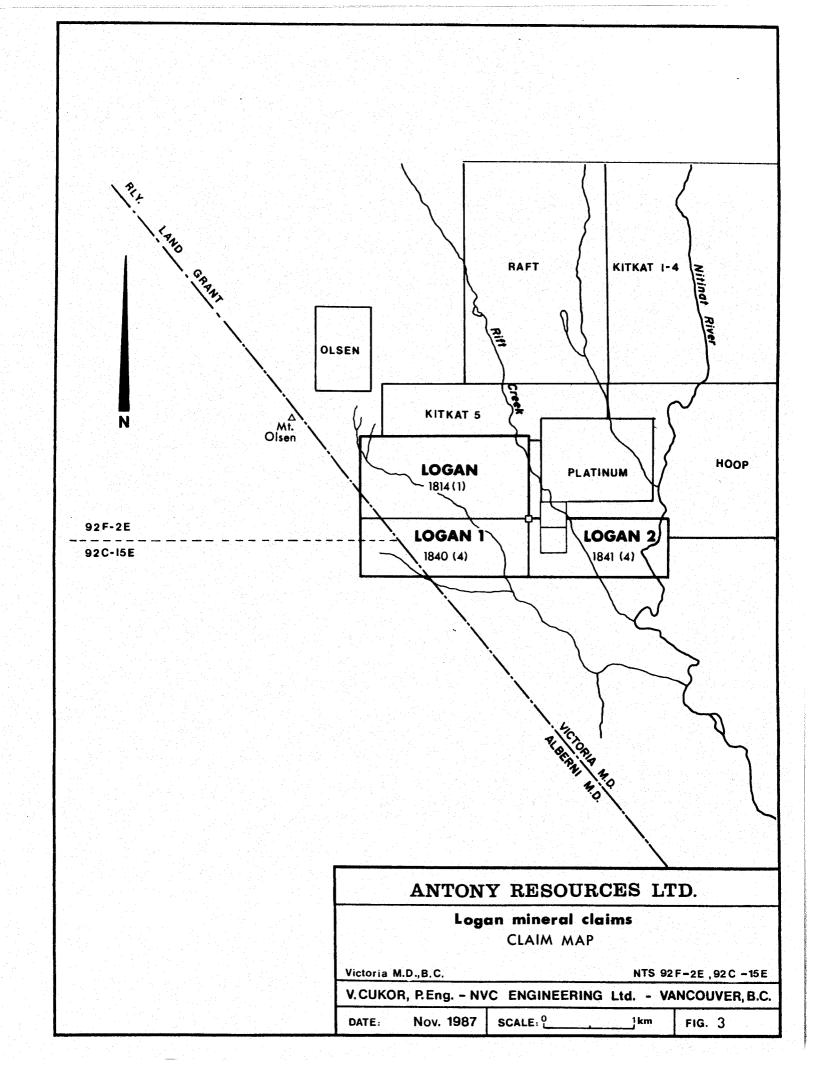
The northern and western portion of the claims can be reached from Port Alberni along Alberni Inlet and along Franklin Museum Creek. The eastern part of the property is easily reached from the lumber camp on Nitinat Lake by a good quality gravel road following Nitinat River.

A network of unused logging roads provide access to various parts of the claims.

3.3 CLAIMS

Three contiguous mineral claims comprise the property.

Claim names and corresponding record data are as follows:


Claim Name	No. Units	Record No.	Recording Date
Logan	18	1814	January 16, 1987
Logan I	10	1840	March 4, 1987
Logan II	<u>12</u>	1841	March 4, 1987
Total Units	<u>40</u>		

The claims were located on the modified grid system by Ruza Resources Ltd., from whom 100% interest was acquired by Antony Resources Ltd. The property is shown on Claim Map, Figure 3.

3.4 TOPOGRAPHY and CLIMATE

The property lies within the insular mountain belt of British Columbia, between elevations of 100 and 1,300 metres above sea level, for the total topographical relief of about 1,200 metres. The lowest elevations are at the eastern end of the property at the Nitinat River valley, and the highest are along the western claim border where Logan Peak lies just off the claims. Two northeast creeks, Rift Creek and the other unnamed tributary of Nitinat River, both running in a northwesterly direction, carved into the property's topography, forming steep canyons.

The climate of the property area is typical for the West Coast region. It is characterized with mild winters

3.4 TOPOGRAPHY and CLIMATE (Cont'd)

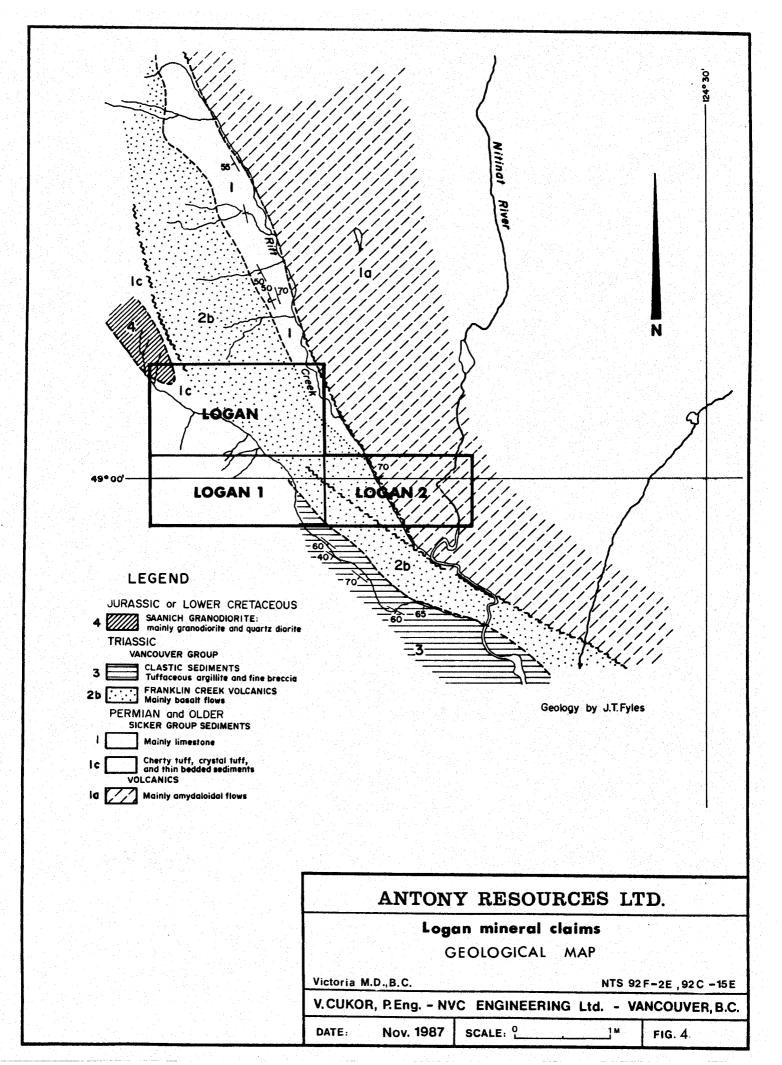
and moderately high summer temperatures with high humidity and high atmospheric precipitation. It is also characterized with dense forest growths.

The property area was logged some 20 years ago and is now covered by thick second growth and dense underbrush which hampers greatly surface examinations and imposes extensive and costly line cutting.

Topographical features of the property are shown on Figure 2.

4. GEOLOGY

4.1 GENERAL GEOLOGY


The Logan Claims lie at the edge of the recent geological mapping on Vancouver Island (BCDM - 1987/2). The map produced by Fyles (1955) covers most of the property area (see Figure 4). This map shows geological units striking northwest/southeast. The oldest are volcanics of the Permian Sicker Group, which are overlain by the Triassic Franklin Creek volcanics and tuffaceous rocks both of the Vancouver Group. In the northwest corner of the claims, Jurassic intrusives of Saanich granodiorites appear.

Two fault zones appear within the property area, one following Rift Creek Valley. This is interpreted as a regional trust by J. Fyles, with a wide area of fracturing, brecciation and shearing.

4.2 LOCAL GEOLOGY

Geological work on the property consisted of examinations of the rock outcrops, examination of alterations and rock sampling. Most of this work was concentrated on the Logan II Claim which is underlain mainly by Sicker Volcanics.

Numerous outcrops in this area showed intensive shearing, brecciation and fracturing. Most prominent type alterations included silicification, epidotization and

4.2 LOCAL GEOLOGY (Cont'd)

pyritization. Silicification appears as a stockwork of quartz veinlets and locally as narrow quartz veins.

Pyrite was observed in the rock as disseminations in silicified zones, vugs fillings and as fillings of narrow fractures.

On the northern part of the Logan 2 Claim high magnetic anomaly indicates underlying ultramafic rocks. However an extensive overburden mantle masks the bedrock and hampers mapping in this area.

4.3 MINERAL SHOWINGS

The Sicker Volcanic Belt is host to several gold-silver and base metals deposits. The best known are Lara, Lynx-Myra (1979 announced reserves of 15 million tons of 5.3% Zn., 2.2% Cu., .3% Pb., l.l oz/t Ag. and .07 oz/t Au.); Twin J. Mine (produced 300,000 tons averaging 6.12% Zn., 1.32% Cu., .6% Pb., 2.05 oz/t Ag. and .075 oz/t Au.).

The closest to the Logan Property are showings known as the Olsen Claims where extensive drilling and trenching returned gold values and assays of up to 3 oz/t gold reported from the Canon Vein. On the Kitkat Claim, grab samples assayed gold-silver-platinum, and the area of Mt. Olsen has a large gossan zone.

On the Logan Claims soil samples indicated the presence of gold in several localities and a number of rocks

4.3 MINERAL SHOWINGS (Cont'd)

samples returned excellent values. The following table summarizes sampling on the property:

Sample No.	<u>Claim</u>	<u>Description</u>	Oz/t Au.	Oz/t Ag.
951 052	Logan 2	Random chip contact	.008	.15
952 953	Logan 2 Logan 2	Pyritized volcanic - chip	.016	.16
	Logan Z	Several pieces of rusty volcanic	.006	.20
954	Logan 2	Chip - 8" pyritized quartz vein	-006	.05
955	Logan 2	Chip - sheared, silicified		•05
		rusty volcanic	.012	.08
956	Logan 2	Random - select silicified volcanic	.004	10
957	Logan 2	Select - silicified volcanic		.10
	, , , , , , , , , , , , , , , , , , , 	and quartz	.102	.18
958	Logan 2	Select, float from small		
050		stream	.114	.15
959	Logan 2	6" quartz vein and silici- fied walls	.372	.25
960	Logan 2	Zone of quartz carbonate	.312	.23
		stockwork, pyritized	.280	.30
961	Logan 2	Select sample of silicified,		
962	Logan 2	pyritized volcanic	.276	.29
902	Logan 2	Select quartz stockwork and narrow veins	.352	.32
963	Logan	Select pyritized, silicious	.552	.52
		volcanic	.016	.10
964	Logan	5" wide quartz vein, chip	.008	.20

For location of samples see Figure 5.

Samples 951 - 962 were all taken from the Logan 2 Claim, from the silicified and pyritized outcrops of Sicker Volcanics. In addition, the samples 957, 960, 961 and 962, all showing good gold values, are also within the outline of geochemical gold anomalies. The follow-up work of trenching, detailed geological mapping

4.3 MINERAL SHOWINGS (Cont'd)

and sampling is well warranted in these areas.

Although the samples with highest gold values show better silver content as well, from the limited number of samples taken so far it does not appear that there is a constant silver to gold ratio.

To date no samples have been assayed for platinum. Some soil samples assayed anomalous values in nickel, which should indicate the possible presence of an ultramafic intrusive, and therefore possibly a platinum content. During the surveys no outcrops of ultrabasic rocks were encountered, but very high magnetic readings at the northern end of the Logan 2 Claim should suggest the presence of such a body under the overburden cover. Any rock outcrops found in this area should be carefully examined.

5. GEOCHEMICAL SOIL SURVEY

In preparation for the survey extensive linecutting was performed. The broken topography, layout of the claims and complicated access to some parts of the property made the layout of the grid difficult. Subsequently, the grid was cut from four different baselines. The western part of the property has a very rugged topography, and this portion of the property was left unsurveyed.

5.1 FIELD METHOD 15-25 CM Sample depths

A total of 687 soil samples were taken along 100 metre spaced lines and at 50 metre intervals. Soil samples were taken from shallow holes dug by mattock, preferably from the B horizon. On a few locations there was poor soil development and the corresponding samples comprise of any fine material as was found.

Samples were packed in the kraft soil envelopes and partially dried in the field. All samples were then shipped to General Testing Laboratories in Vancouver to be assayed for gold, silver, copper and nickel.

5.2 LABORATORY PROCEDURE

All samples were oven dried and screened to -200 mesh. Different assaying procedures were then followed for gold and for the other elements.

5. 2 LABORATORY PROCEDURE (Cont'd)

Assays for gold were run on a 10 g portion of the -200 mesh fraction, which was processed by fire assay to produce a bead. This was crushed, dissolved and assayed by Atomic Absorption.

Assays for silver, copper and nickel were done on a l g portion of the -200 mesh fraction. This was dissolved in aqua regia, diluted and assayed by Atomic Absorption. Results were presented in parts per million.

5.3 DATA PRESENTATION

Four geochemical plans were prepared, one for each element assayed. They are appended in the pockets at the end of this Report as Figures 5, 6, 7 and 8.

Each Plan shows the grid, sample locations and assay values. Anomalous and significantly anomalous values were established and contoured.

5.4 DISCUSSION OF RESULTS

Gold

All results were grouped in four categories: back-ground values below 30 ppb anomalous values, from the anomalous threshold (30 ppb) to 50 ppb, significantly anomalous values between 50 and 70 ppb and highly anomalous values over 70 ppb Au. (see Figure 5).

5.4 DISCUSSION OF RESULTS (Cont'd)

Several zones of anomalous values are recognized and some of them seem to be aligned along the northwest/ southeast trend, which is also the main structural trend in the area. Some of the geochemical anomalous zones are identified in the same areas, where significant gold assays were also obtained from the rock samples (see sample locations 957, 959, 960, 961 and 962).

Although every zone with identified anomalous gold geochemical values should be further examined, the most promising target for gold exploration seems to be the large anomaly at the west part of the Logan 2 Claim.

Rock samples taken from pyritized and silicified outcrops and float in this area (sample locations 957, 958, 960 and 961) assayed between .102 to .280 oz/ton gold and between .18 and .30 oz/ton silver.

Silver

Although no significantly high silver values were encountered in any of the rock samples so far, the anomalous threshold for silver is fairly high on the property (see Figure 6). The anomalies are conspicuously aligned along the northwest/southeast trend and most of the anomalous values are located on the Logan and Logan 1 Claims. The size of these anomalies as well as the high anomalous

5.4 DISCUSSION OF RESULTS (Cont'd)

threshold indicates the probable presence of low silver values in the pyritized volcanics which are encountered in most of these areas.

Copper

All copper assays are presented on Figure 7. A number of copper anomalies are outlined, most of them following major structural trends. The significance of the copper anomalies is in the fact that gold carrying rock in the area also often contains small amounts of chalcopyrite. Some of the copper anomalies, indeed, coincide with the gold anomalies (especially on the Logan 2 Claim) which makes them excellent exploration targets. It is definitely recommended to further explore and sample all areas of high anomalous copper values.

Nickel

The nickel geochemical values are shown on Figure 8. Since the area immediately north of the Logan Claims was explored for platinum, the samples were assayed for nickel to possibly indicate the areas underlain by ultramafic intrusives as potential targets for platinum prospecting. It was expected that anomalous nickel geochemical areas might correlate with zones of high magnetic readings. However, although some anomalous nickel values were

5.4 DISCUSSION OF RESULTS (Cont'd)

received from the northern part of the Logan 2 Claim, where a high magnetic anomaly is outlined, there is not a good correlation between results of the two surveys.

Anomalous nickel geochemical values are present in other parts of the surveyed area, and they seem to follow the main structural trends. No further follow-up is recommended for the nickel at this time.

6. GEOPHYSICAL VLF-EM SURVEY

6.1 FIELD METHOD

The grid used for the geochemical surveys and the magnetometer was also used for the VLF-EM Survey. The instrument used was a Scintrex IGS-2, measuring both ground VLF-EM and ground magnetics. The VLF-EM readings comprise of measurements of the horizontal field strength and of the amplitudes of the vertical in-phase and quadrature (out-of-phase) components. For a more detailed description of the instrument, see Appendix A.

Readings in the field were taken along the cut lines with 100 metres spacing at 50 metre stations.

The instrument was programmed to receive two stations: Seattle, Washington, 24.8 KHz and Lualualei, Hawaii, 23.4 KHz.

6.2 DATA PRESENTATION

Profiles were generated in the field for both stations Seattle and Hawaii, however since the structures responded to Hawaii and not to Seattle, only the Hawaii data is presented as a plan (see Figure 10). The values for the in-phase component and quadrature were plotted as profiles along the lines. These were then interpreted and the cross-overs and reverse cross-overs were drawn.

6. GEOPHYSICAL VLF-EM SURVEY

6.3 DISCUSSION OF RESULTS

The VLF-EM data shows two semi-parallel cross-overs on the Logan property. The trend of these anomalies parallels the geological structure, the ground magnetic trends and the geochemical trends.

Both anomalies are located on the Logan and Logan 1 Claims (see Figure 9) and are separated by about 300 metres. The westernmost of the anomalies does not seem to be a conductor, since the anomalous readings occur only in the in-phase component and not in the quadrature. The easternmost of the anomalies is quite strong and deserves a detailed follow-up.

7. GEOPHYSICAL GROUND MAGNETIC SURVEY

7.1 FIELD METHOD

The grid used for the geochemical survey and VLF-EM survey was also used for magnetometer survey. The same instrument, described under "VLF-EM Survey" (see Appendix A) was also used to take readings of the total magnetic field. Along the cut and flagged grid lines, with 100 metre spacing, readings were taken at 50 metre intervals. For diurnal corrections a base station was used, with continuous readings taken at two second periods.

7.2 DATA PRESENTATION

All readings were corrected and from the total magnetic field a value of 57,000 gammas was deducted. Such obtained relative values were then plotted on the Grid Map appended as Magnetic Survey Plan, Figure 10 in the pocket at the end of the Report. For better evaluation of results, the map was contoured.

7.3 DISCUSSION OF RESULTS

Two distinct media are obviously present on the Logan Claims. At the north limit of the Logan 2 Claim there is an area with distinctively higher magnetic susceptibility than over the majority of the claims. The relative values in that area jump sharply from 200 - 300 gammas to over 10,000 gammas. The most plausible interpretation for the

7.3 DISCUSSION OF RESULTS (Cont'd)

cause of those high values are possible underlying basic intrusive rocks. Since the adjoining property to the north was explored for platinum, it is possible that the same ultrabasic intrusive extends to the northern part of the Logan 2 Claim.

The rest of the property shows a moderately low magnetic relief (a total of about 350 gammas). Contours in these areas follow the northwest/southeast trend, with a distinct low anomaly following the Rift Creek fault, with relative highs flanking both, then northeast and southwest sides. Geochemical nickel, copper and to some extent gold anomalies coincide fairly closely to those magnetic highs.

Although not directly associated with the potentially economic mineralization of the property, the distribution and trends of the magnetic high and low anomalies will be of great assistance to better understand and explain geological structure on the property and thus assist in further exploration.

Respectfully Submitted,

D. Cukor, Geologist

V. Cukor, P. Eng. NVC ENGINEERING LTD.

November 1987

CERTIFICATE

- I, DAMIR CUKOR, of 976 East 26th Avenue, Vancouver, British Columbia, DO HEREBY CERTIFY that:
- I graduated from the University of British Columbia in 1984 as a Bachelor of Science in Geology;
- 2. Since 1983 I have been employed as a geologist with NVC Engineering Ltd.;
- I have worked in the field of exploration geology and geophysics for 11 seasons and have held positions of responsibility since 1982;
- 4. I performed and/or executed work as documented in this Report.

D. Cukor, B. Sc.

NVC ENGINEERING LTD.

November, 1987

CERTIFICATE

- I, VLADIMIR CUKOR, of 304 1720 Barclay Street in the City of Vancouver, Province of British Columbia, DO HEREBY CERTIFY that:
- I am a Consulting Geological Engineer with NVC ENGINEERING LTD. and with business address as above;
- I graduated from the University of Zagreb, Yugoslavia in 1963 as a Graduated Geological Engineer;
- I am a Registered Professional Engineer in the Geological Section of the Association of Professional Engineers in the Province of British Columbia;
- I have practiced my profession as a Geological Engineer for the past twenty-four years in Europe, and North America in engineering geology, hydrogeology and exploration for base metals and precious metals;
- I have personally examined the property described in this Report and I have reviewed information on the general area available to me;
- 6. I have no interest, direct or indirect, in ANTONY RESOURCES LTD., nor do I expect to receive or acquire any.
- 7. I hereby consent to the use of this report for the Company Prospectus.

V. Čukor, P. Eng. NVC ENGINEERING LTD.

November 1987

BIBLIOGRAPHY

Allen, D. G., 1986: Geological Report on the WWW-Corrigan

Creek Gold Prospect.

Fyles, J. T., 1955: Geology of the Cowichan Lake Area,

Vancouver Island, B. C., BCDM Bull. 37.

Wahl, H., 1987: Evaluation Report on the Logan Mineral

Claims for Ruza Resources.

BCDM Mineral Inventory Maps 92C, 92F and Minfile.

Open File 1987-2: Geology of the Cowichan Lake Area,

Vancouver Island, B. C., Department

of Mines.

engineering ltd.

304 - 1720 Barclay Street, Vancouver, B.C. V6G 1K4 Tel. (604) 688-7959

ANTONY RESOURCES LTD

Vancouver, B.C.

September 28, 1987 Invoice # 501

Field Program and Report on the Logan Mineral Claims

Surveys

Linecutting, 52 km @ 300		\$ 15,600.00
Geochemical soil sampling 52 $\ensuremath{\mathrm{km}}$ @	150	7,800.00
Magnetometer Survey 52 km @ 125		6,500.00
VLF-EM survey 52 km @ 150		7,800.00
Geological mapping and rock samplig		7,000.00
Engineering, supervision, managemen	nt de la	10,000.00
Disbursements		
Equipment rental (Madnetometer, ele	ectromag,	
truck- 4x4)		9,000.00
Mobilization, demobilization, commu	nications	2,300.00
Data compilation and Reports		
Assays		9,850.00
Construction of maps, contouring		3,750.00
Drafting 110.00 Hrs @ 25		2,750.00
Reports		3,500.00
Licences, permits, reclamation		1,500.00
	Total expenditure \$	87,350.00

V.W

APPENDIX "A"

THE IGS-2 SYSTEM

1.0 INTRODUCTION

1.1 General Information

The IGS-2 Integrated Geophysical System is a portable microprocessor-based instrument which allows more than one type of survey measurement to be performed by a single operator during a survey.

The IGS-2 is a modular system which can easily be configured to suit different and changing survey requirements. Reconfiguring the system is easy and offers both operational flexibility and minimal redundancy with a minimum number of spare consoles and/or modules.

When configured with any of the available sensor options, the IGS-2 System Control Console becomes a method-specific instrument according to the sensor option(s) utilized. In addition, the IGS-2 Console is an electronic notebook into which geophysical, geological or other data may be manually entered and digitally stored.

Data is stored in the IGS-2 in an expandable, solid state memory and can be output in the field by connecting the instrument to a printer, tape recorder, modem or microcomputer.

The 32 character digital display uses full words in most cases, ensuring clear communication. Both present and previous data are displayed simultaneously, allowing comparisons to be made at a glance during a survey.

The IGS-2 records header information, data values, station number, line number, grid number and the time of each observation in its internal memory. Data are first sorted by grid number, then in order of increasing line number and, within each line, by increasing station number. In this way, the data are organized logically regardless of the sequence in which they were taken. Ancillary data can also be manually entered and recorded at a given station, along with the survey parameters.

The IGS-2 may appear complex because of the new microprocessor-based technology employed in its design. However, it does not perform any operation that is, in principle, unfamiliar to an experienced operator. Only the procedures have changed. For instance, data can now be recorded in the memory of the IGS-2 by a

Figure IGS:1
The IGS-2 as Worn by an Operator

series of simple keystrokes, rather than recording measurements by hand in a notebook. Likewise, an error spotted in the records, which would be corrected or erased by hand, is now corrected by means of the Edit function which allows the error to be removed from memory, corrected, and then refiled, or erased altogether.

1.2 Product Updates

At Scintrex we are continually working in improve our line of products. You may be notified as important changes occur to either the software or hardware of our products. We would appreciate hearing from you if you are interested in our latest developments. We would also value hearing from you about any successes, or problems you may have encountered so that we may advise you.

THE MP-3/4 MAGNETOMETER

1.0 INTRODUCTION

1.1 General Outline

This section of the manual describes in detail the proton magnetometer method.

A theoretical explanation of the magnetic method is given first. Then the table MAG SETUP MENUS is presented for reference. After this, the following topics are dealt with in detail:

- 1) method enabling procedures,
- 2) measuring procedures,
- 3) warning messages,
- 4) equipment setup procedures,
- 5) troubleshooting information,
- 6) specifications and
- 7) parts list.

1.2 The Magnetic Method

The magnetic method consists of measuring the magnetic field of the earth as influenced by rock formations having different magnetic properties and configurations. The measured field is the vector sum of induced and remanent magnetic effects. Thus, there are three factors, excluding geometrical factors, which determine the magnetic field. These are the strength of the earth's magnetic field, the magnetic susceptibilities of the rocks present and their remanent magnetism.

The earth's magnetic field is similar in form to that of a bar magnet's. The flux lines of the geomagnetic field are vertical at the north and south magnetic poles where the strength is approximately 60,000 nT. In the equatorial region, the field is horizontal and its strength is approximately 30,000 nT.

The primary geomagnetic field is, for the purposes of normal mineral exploration surveys, constant in space and time. Magnetic field measurements may, however, vary considerably due to short term external magnetic influences. The magnitude of these variations is unpredictable. In the case of sudden magnetic storms, it may reach several hundred gammas over a few minutes. It may be

necessary, therefore, to take continuous readings of the geomagnetic field with a base station magnetometer while the magnetic survey is being done. An alternative field procedure is to make periodic repeat measurements at convenient traverse points, although this is a very unreliable method during active magnetic storms when it is important to have proper reference data.

The intensity of magnetization induced in rocks by the geomagnetic field F is given by:

I = kF

where I is the induced magnetization
k is the volume magnetic susceptibility
F is the strength of the geomagnetic field

For most materials, k is very much less than 1. If k is negative, the body is said to be diamagnetic. Examples are quartz, marble, graphite and rock salt. If k is a small positive value, the body is said to be paramagnetic, examples of which are gneiss (k = 0.002), pegmatite, dolomite and syenite. If k is a large positive value, the body is strongly magnetic and it is said to be ferromagnetic, for example, magnetite (k = 0.3), ilmenite and pyrrhotite.

The susceptibilities of rocks are determined primarily by their magnetite content since this mineral is so strongly magnetic and so widely distributed in the various rock types. (Of considerable importance, as well, is the pyrrhotite content.)

The remanent magnetization of rocks depends both on their composition and their previous history. Whereas the induced magnetization is nearly always parallel to the direction of the geomagnetic field, the natural remanent magnetization may bear no relation to the present direction and intensity of the earth's field. The remanent magnetization is related to the direction of the earth's field at the time the rocks were last magnetized. Movement of the body through folding, etc., and the chemical history since the previous magnetization are additional factors which affect the magnitude and direction of the remanent magnetic vector.

Thus, the resultant magnetization M of a rock is given by:

 $M = M_n + kF$

where M_n is the natural remanent magnetization, and F is a vector which can be completely specified by its horizontal (H) and vertical (Z) components and by the declination (D) from true north. Similarly, M_n is specified when its magnitude and direction are known. Thus, considerable simplification results if $M_n = 0$, whereupon M merely reduces to kF. In the early days of magnetic

MP: 1 - 2

prospecting, it was usually assumed that there was no remanent magnetization. However, it has now been established that both igneous and sedimentary rocks possess remanent magnetization, and that the phenomenon is a widespread one.

1.2 Theory of Operation

The Very Low Frequency (VLF) Electromagnetic Method measures variations in the components of the electromagnetic fields, set up by communication stations operating in the 15 to 30 kHz frequency range. These stations, located around the world, generate signals for the purposes of navigation and communication with submarines.

In far field, above uniform earth, the groundwave of the vertically polarized VLF radiowave has three field components:

- 1) a radial, horizontal electrical field,
- 2) a vertical electrical field, and
- 3) a tangential, horizontal magnetic field.

When these three fields meet conductive bodies in the ground, eddy currents are induced causing secondary fields to radiate outwards from these conductors. In the Magnetic Field mode, the IGS-2/VLF-4 measures the horizontal field and two components of the

VLF: 1-1

VLF Horizontal Field Strength Measurement

Date: March 24, 1984; start 0600 Station: Annapolis 21.4 kHz

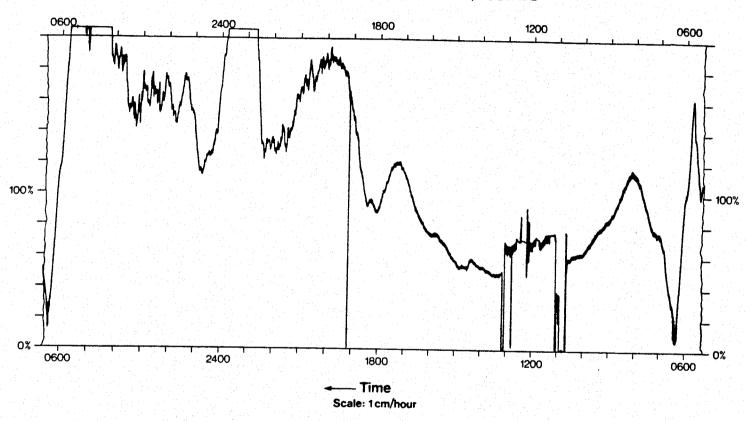
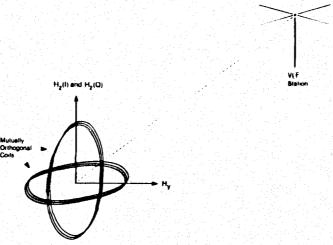
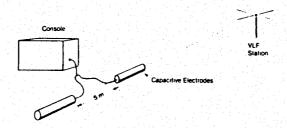


Figure VLF:1 Chart Recording of Primary Field Changing with Time

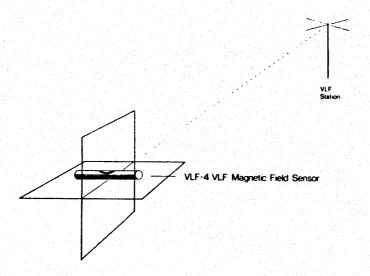
vertical field, normalized by the horizontal field measurement. In the Electrical Field mode, it measures the horizontal magnetic and electrical fields.


1.3 What the IGS-2/VLF-4 Measures

As its primary measurement, the IGS-2/VLF-4 employs two mutually orthogonal receive coils to determine three parameters of the VLF-magnetic field. These are: 1) the horizontal amplitude vector in a direction perpendicular to a line joining the operator to the station; 2) the amplitude of the component of the vertical field vector which is in phase with the horizontal vector; and 3) the amplitude of the component of the vertical field vector which is 90° out of phase with the horizontal vector. These three parameters, for the given VLF transmitter, are recorded simultaneously. Since the vertical components are expressed as a percentage of the horizontal vector, they are automatically normalized for any changes in the amplitude of the transmitted primary field.


The primary field from a VLF station can in fact, vary considerably. Figure VLF: I is a recording of the horizontal field strength from the Annapolis VLF station made in Toronto, Canada. For the most part, the field fluctuates moderately during the course of the day due to changes in atmospheric conditions. There are, however, more dramatic changes indicated on the recording. Towards evening there is a large upwards swing in the field strength, and at several points during the day, both partial and total drops in the field amplitude can be observed. In the light of these irregularities, the horizontal field data should always be considered with reservation as it is difficult to know whether changes are caused by conductors or by variations in the station's signal.

If the primary field strength is constant, changes in the amplitude of the horizontal magnetic field mainly reflect variations in the conductivity of the earth. Normally there will be no vertical magnetic field. However, near a conductor, a vertical field will be observed. The relative amplitudes of the in-phase and quadrature components may be used to interpret the conductivity-size characteristics of the conductor.


To permit measurement of the VLF-electric field, a dipole consisting of two cylindrical electrodes and 5 meters of wire is used. When this dipole is correctly laid out, the IGS-2/VLF-4 measures the in-phase and quadrature components of the horizontal electric field in the direction of the line joining the operator and the transmitter station. The phase reference is the horizontal magnetic field.

The VLF-magnetic field measurement comprises: 1) horizontal amplitude H_y , 2) the amplitude of $H_z(I)$ (the vertical field component which is in-phase with H_y) and 3) the amplitude of $H_z(Q)$ (the vertical field component which is 90° out-of-phase with H_y .

The VLF-4 is used to measure the in-phase $E_{\rm X}(1)$, and quadrature $E_{\rm X}(0)$, components of the horizontal electric field, $E_{\rm X}$, in the line joining the operator and the transmitter station. The phase is referenced to that of the horizontal magnetic field Hy. These components are not recorded but are used in the calculations of resistivity and phase made by the VLF-4.

An electronic level sensor on the axis of the horizontal vector receiver coil provides automatic side-to-side tilt compensation. The error in the vertical in-phase component is less than 1% for tilts up to 15° provided that the operator is facing the VLF station directly. Tilts in any other direction of up to 10° produce no significant error (1%) in the other components and, therefore, require no compensation.

Figure VLF:2 What the VLF-4 Measures

The IGS-2/VLF-4 uses the magnetic and electric field measurements to automatically calculate the apparent resistivity of the earth as well as the phase angle between the magnetic and electric field components. If the earth is uniform (not layered) within the depth of the VLF measurement, the phase angle between the horizontal magnetic and electric VLF fields will be 45 degrees. A non-uniform earth will give rise to other phase angles.

The following formulae are used for resistivity and phase calculations:

Apparent Resistivity Calculation:

$$\rho = \frac{1}{2\pi f \mu_0} \left| \frac{E_x}{H_y} \right|^2$$

where:

 ρ = apparent resistivity in ohm-meters

 E_x = horizontal electric amplitude, calculated E_x = $(E_x(I)^2 + E_x(Q)^2)^{\frac{1}{2}}$

H_v = horizontal magnetic amplitude, measured

f' = VLF station frequency in Hertz

Ho = permeability of the ground in Henries/meter, a constant

The resistivity calculation has a range of 1 to 100,000 ohm-meters with a resolution of 1 ohm-meter.

Phase Angle Calculation

The phase angle ϕ is expressed as:

$$\phi = arc tan \frac{E_X(Q)}{E_X(I)}$$

where:

 $E_{\mathbf{X}}(Q)$ = horizontal quadrature VLF electric field.

 $E_X(I)$ = horizontal in-phase VLF electric field, phase rferenced to the horizontal magnetic field, Hy.

The phase angle calculation has a range of -180° to $+180^{\circ}$ with a resolution of 1°. By definition the angle is positive when the electrical field leads the magnetic field.

9.0 SPECIFICATIONS

9.1 Standard Console Specifications

Digital Display	32 character, 2 line LCD display
Keyboard Input	<pre>14 keys for entering all commands, coordinates, header and ancillary information.</pre>
Languages	English plus French is standard.
Standard Memory	l6K RAM. More than sufficient for a day's data in most applications.
Clock	Real time clock with day, month, year, hour, minute and second. One second resolution, ±1 second stability over 12 hours. Needs keyboard initialization only after battery replacement.
Digital Data Output	RS-232C serial interface for digital printer, modem, micro-computer or cassette tape recorder. Data outputs in 7 bit ASCII, no parity format. Baud rate is keyboard selectable at 110, 300, 600 and 1200 baud. Carriage return delay is keyboard selectable in increments of one from 0 through 999. Handshaking is done through X-ON/X-OFF protocol.
	Allows IGS-2 to act as a master for other instrumenta-tion.
Analog Output	For a strip chart recorder. 0 to 999 mV full scale with keyboard selectable sensitivities of 10, 100 or 1000 units full scale.

Console Dimensions	240 x 90 x 240 mm includes mounted battery pack.
Weights	Console: 2.2 kg Console with Non-rechargeable Battery Pack; 3.2 kg. Console with Rechargeable Battery Pack: 3.6 kg.
Operating Temperature Range	-40°C to +50°C provided optional Display Heater is used below -20°C.
Power Requirements	Can be powered by external 12 V DC or one of the Battery Pack Options listed below.

9.2 Battery Pack Options

Battery Pack lifetime depends on which Battery Pack is selected, sensor(s) used, reading time and ambient temperature. Life expectancy would be 1 to 10, eight hour survey days.

Non-Rechargeable Battery Pack	Includes battery holder and 10 disposable 'C' cell batteries for installation on console. Used in low sensitivity total field magnetometry or VLF in temperatures above 0°C. Weight is 0.9 kg.
Rechargeable Battery Pack and Charger	Includes battery holder, 6 rechargeable, non-magnetic, sealed lead-acid batteries and charger for installation on console. Best for high sensitivity total field measurements, all gradient measurements and operation below 0°C. Pack weighs 1.3 kg. Charger specifications are: 140 x 95 x 65 mm, 115/230 V AC, 50/60 Hz, 20 VA, overload protected.

9.0 SPECIFICATIONS

Frequency Tuning	Automatic digital tuning. Can be tuned to any frequency in the range 15.0 to 29.0 kHz with a bandwidth of 150 Hz. Up to three frequencies can be chosen by keyboard entry for sequential measurements.
Field Strength Range	Fields as low as 100 mA/m can be received. In practice, background noise may require fields up to 5-10 times this level. Maximum received field is 2 mA/metre. These values are specified for 20 kHz. For any other frequency, calculate the above limits by multiplying by the station frequency in kHz and dividing by 20.
Signal Filtering	Narrow bandpass, low pass and sharp cut-off high pass filters.
Measuring Time	0.5 seconds sample interval. As many as 2 ¹⁶ samples can be stacked to improve measurement accuracy.
VLF-Magnetic Field Components Measured	1) Horizontal amplitude, 2) vertical in-phase component, and 3) vertical quadrature components. Vertical components are displayed as a percentage of horizontal component and are related in phase to the horizontal component. Their range is ±120%; reading resolution 1%.
VLF-Magnetic Field Sensor	Two air-cored coils in a backpack mounted housing with an electronic level for automatic tilt compensation. The error in the vertical in-phase component is less than 1% for tilts up to ±15°.

8.0 SPECIFICATIONS

8.1 Magnetometry Specifications

Total Field Operating Range	20,000 to 100,000 nT (1 nT = 1 gamma).					
Gradient Tolerance For Total Field:	±5000 nT/m.					
Total Field Absolute Accuracy	<pre>#1 nT at 50,000 nT #2 nT over total field operating and temperature range.</pre>					
Resolution	0.1 nT.					
Tuning	Fully solid-state. Manual or automatic mode is keyboard selectable.					
Reading Time	2 seconds. For portable readings this is the time taken from the push of a button to the display of the measured value.					
Continuous Cycle Times	Keyboard selectable in l second increments upwards from 2 seconds to 999 seconds.					

Date:

August 25, 1987

File:

8708-1151

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

General resting Laboratories Div

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING

(page 13)

We hereby certify that the following are the results of assays on:

soil smaples

	GOLD	SILVER	Copper	Nickel	******
MARKED	Au(ppm)	Ag(ppm)	Cu (ppm)	Ni (ppm)	
L #10					
5+50W	0.02	2.0	80	27	
6+00W	0.02	2.0	124 109	34 26	
6+50W 7+00W	0.02	2.1 1.6	109	24	
8+00W	0.03	2.0	122	41	병원 경기를 보는데 보는 호텔 이 전했다.
9+25W	0.03	1.6	149	40	있다. 그 기념소가 있는 내 것이 그렇게 말하는데 요?
<u>L #11</u>					
0+50W	0.02	1.6	53	14	
1+00W	0.02	1.5	45	10	
1+50W	0.02	0.8	34	8	기도 집 본데는 그렇게 되는 사람들은 나를 맞고 보장
2+00W	0.02	0.8	45	10	그렇게 되는데 하네 하지만 하는 물을 하다.
2+50W	0.02	$\begin{vmatrix} 1.1 \end{vmatrix}$	73	13	
3+00W	0.02	0.8	38	6	
3+50W 4+00W	0.02	1.5 1.9	117 88	28 21	교통으로 보고 사고를 만들는 그들은 일본다.
4+50W	0.02	1.1	82	24	
5+00W	0.05	0.8	117	31	
					: ^ [- [- [- [- [- [- [- [- [- [
BL 5+00N 0+00W	0.02	0.7	38	8	
					후 육 대통령사는 하늘날아라다 뱀으라고 받으
					되는데 이 사람들은 이 분들이 된 살았다. 그
					그리다 그리오 얼마나게 뭐 살아서 못했다며 말.
					왕 보고 [11] 공학 [4] [12] 회전하다.
					하네 그렇다 나는 이렇게 있는 밤에 없었다.
					보는 그를 모인하다 되었는데 하다 되었다
			<u> </u>		

OTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 25, 1987

700 1151

8708-1151

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

O: N.V.

N.V.C. ENGINEERING

(page 12)

We hereby certify that the following are the results of assays on:

soil samples

			GOLD	SILVER	Connon	Nickel		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	MARKED	Au	(ppm)	Ag(ppm)	Copper Cu (ppm)	Ni (ppm)	XXXXXX	XXXXXXXX	KAXAXXXXX	****
					Cu (ppm)	111 (PDIII)		1 - 1 - 1 - 1 - 1		
L #8										
						0.6				
	5+00W		0.02	1.6	111	36				
	5+00W		0.02	2.1	83	24				
	7+00W		0.02	1.4	61	15				
	7+50W		0.02	2.0	79	29				
	8+00W	*	0.02	1.6	70	24				
#9										
	0+50W		0.02	1.3	31	10				
	1+00W		0.02	1.0	104	21				
	1+50W		0.02	1.1	89	19				
	2+00W		0.02	1.7	34	6				
	2+50W		0.02	0.6	116	32				
	3+00W		0.02	1.6	191	37				
j	3+50W		0.02	1.7	191	40				
			0.02	2.8	112	32				
	4+00W				118	31				
	4+50W		0.02	1.9	95	30				
	5+00W		0.02	1.6		40				
	5+50W		0.02	2.0	138	41				
	6+00W		0.02	1.7	134 90	21				
	6+50W		0.02	1.9	90	21				
#10										
<u>#10</u>										
	0+50W		0.02	2.1	42	13				
	1+00W		0.02	1.4	65	15	To sales that the			
	1+50W	1 .	0.02	1.2	78	24				The Park
	2+00W		0.02	1.2	34	7				
	2+50W		0.02	0.8	80	16				
	3+00W		0.02	1.1	81	19				
	3+50W		0.02	1.6	161	36				
	4+00W		0.02	2.0	65	25				
	4+50W		0.06	1.5	143	48				
	5+00W		0.02	1.4	139	35		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	3100W						111			
							/ contin	ued on pag	e 13	•
									1	

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 25, 1987

File:

8708-1151

SGS SUPERVISION SERVICES INC. **General Testing Laboratories Division**

N.V.C. ENGINEERING

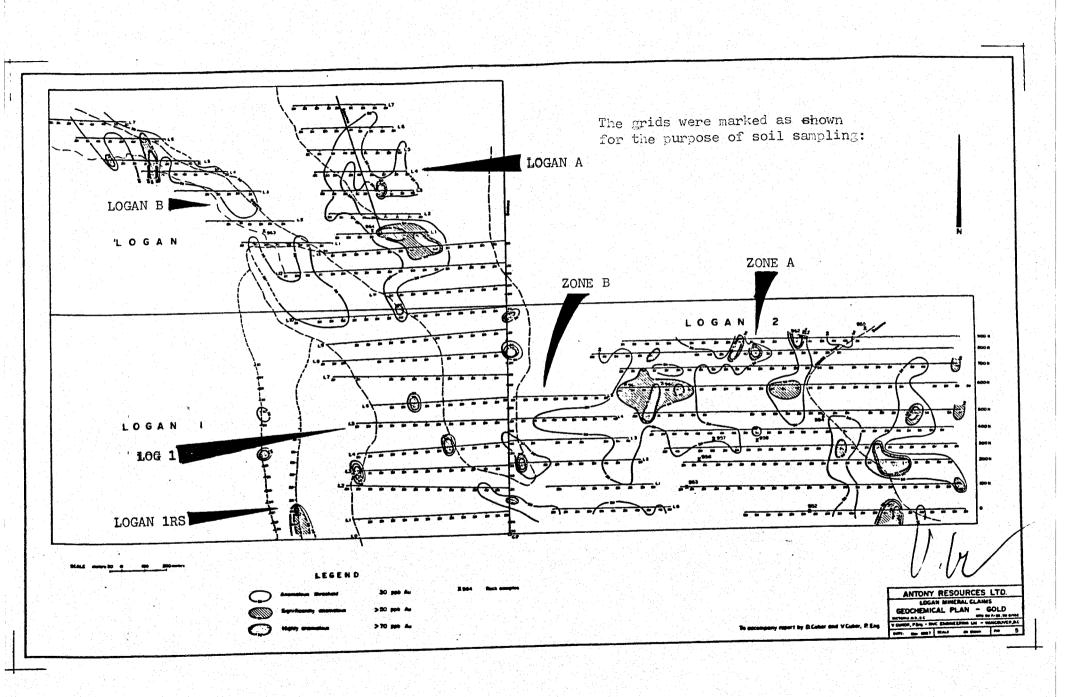
1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

(page 11)

Telex: 04-507514

We hereby certify that the following are the results of assays on:


soil samples

	GOLD	SILVER	Copper	Nickel	xxxxxxxxxxxxxxxxxxxxxxxxxxxx
MARKED	Au (ppm) Ag(ppm	Cu (ppm)	Ni (ppm)	
<u>L #6</u>					
0+50W 1+00W 1+50W 2+00W 2+50W	0.02 0.02 0.02 0.02 0.02	1.1 1.4 1.3 1.5 0.8	103 126 70 122 40	35 36 28 41 13 35	
3+00W 3+50W 4+00W 4+50W 5+00W	0.02 0.02 0.06 0.02 0.02	1.3 1.4 1.7 1.4 0.8	122 38 108 87 53	18 49 27 21	
0+50W 1+00W 2+00W 2+50W 3+00W 3+50W 4+00W 4+50W 5+00W 6+50W 7+50W	0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02	1.5 1.6 1.1 1.3 1.5 1.6 1.7 1.6 2.1	97 66 111 69 161 61 138 104 127 114	25 17 34 19 41 18 39 36 40 35 28	
L #8 0+50W 1+00W 1+50W 2+00W 2+50W 3+50W 4+00W 4+50W	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.3 1.1 2.1 0.6 1.3 1.6 1.4	38 61 105 39 131 73 91 210	14 15 32 12 30 23 30 51	/ continued on page 12

DTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date: August 10, 1987

File: 8707-2452

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING LTD. Ste. 304 - 1720 Barclay Street

Vancouver, B.C.

V6G 2Y1

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Nickel	Copper_	xxxxxxxx	xxxxxxxx	XXXXXXXX	xxxxxx
M	ARKED	Au (ppm)	Ag(ppm)	Ni (ppm)	Cu (ppm)				
ONE - A : L #0 -	0+50W 1+00W 1+50W 2+00W 2+50W 3+00W 3+50W 4+00W 4+50W	5.02 0.06 0.02 0.02 0.04 0.03 0.02 0.02 0.02	1.2 0.7 0.8 0.8 1.7 1.3 0.7	60 25 50 29 30 38 25 14 55	126 18 188 88 107 145 299 25 65 29				
	5+00W 6+00W 6+50W 7+00W 7+50W	0.02 0.02 0.02 0.02 0.02	0.3 0.7 0.5 0.8 0.8	11 31 29 42 37	47 57 57 50				
#1 -	0+50W 1+00W 1+50W 2+00W 2+50W 3+00W 3+50W 4+00W 5+00W 6+50W 7+50W 8+00W 8+50W 9+00W	0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.5 0.3 0.7 0.5 0.7 0.7 1.2 1.3 0.5 0.7 0.5 0.5	18 14 26 16 36 42 53 55 18 40 21 21 24 15 30	42 27 39 15 54 89 150 116 29 44 29 25 36 10 38				
L #2	0+50W 1+00W 1+50W 2+00W 2+50W 3+00W	0.02 0.03 0.04 0.02 0.02 0.02	1.3 1.3 0.7 1.0 0.7 0.3	36 27 38 24 52 16	76 47 51 21 58 10	/contin	ued on pa	ge 2	

TE: REJECTS RETAINED ONE MONTH, PULPS RETAINED THREE MONTHS, ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

V. Wong

Date:

August 10, 1987

File:

8707-2452

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647 Telex: 04-507514 TO: N.V.C. ENGINEERING LTD. Ste. 304 - 1720 Barclay Street

Vancouver, B.C.

(page 2)

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Nickel	Copper	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	xxxxxxxx	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VVVVVVVVV
	MARKED	Au(ppm)	Ag(ppm)	Ni (ppm)	Cu (ppm		******	*******	*******
L #2	2.500	0.02	0.3						
L #4	3+50W	0.02	0.3	23	41				
	4+00W	0.02	0.5	40	104				
	4+50W	0.02	0.5	22	33				
	5+50W	0.02	0.5	49	139				
	6+50W	0.02	0.3	11	10				
	7+00W	0.02	1.0	23	58				
	7+50W	0.02	1.2	20	38				
	8+00W	0.02	1.0	10	26				
L #3	0+50W	0.06	1.7	45	194				
	1+50W	0.02	1.5	41	118				
	2+00W	0.02	1.3	20	54				
	2+50W	0.02	0.7	12	30				
	3+00W	0.02	1.7	34	66				
	3+50W	0.02	1.2	24	47				
)	4+00W	0.02	1.0	19	29				
	4+50W	0.02	1.0	23	29				
	5+00W	0.03	1.3	33	66				
	5+50W	0.02	0.7	7	25				
	6+00W	0.02	0.4	3	18				
	6+50W	0.02	0.8	4	16				
	7+50W	0.04	0.5	26	33				
	8+00W	0.02	1.7	34	62				
L #4	0+50W	0.02	1.2	21	54				
	1+00W	0.02	0.7	14	29				
	1+50W	0.02	1.0	27	50				
	2+00W	0.02	0.5	9	17				
	2+50W (X)	0.02	1.3	29	63		1 V 1 A 2 C		
	2+50W (Y)	0.02	1.2	87	100				
	3+00W	0.02	1.0	22	45				
	3+50W	0.02	0.8	57	101				
	4+00W	0.04	0.8	28	63				
	4+50W	0.04	1.0	29	47				
	5+00W	0.04	1.5	5 4	136				
	5+50W	0.04	0.8	82	61				
		1			54				
	6+00W	0.04	0.5	24	J4	,	000+	on 5005	2
						/	continue	on page	b

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 10, 1987

File:

8707–2452

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING LTD.

Ste. 304 - 1720 Barclay Street

Vancouver, B.C.

V6G 2Y1

(page 3)

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Nickel	Copper	XXXXXXXX	xxxxxxxxx	XXXXXXXXX	xxxx
	MARKED	Au (ppm	Ag(ppm)	Ni (ppm)	Cu (ppm)				
				т. (рр /	од урии)		1		
#4	6+50W	0.06	0.4	6	18				
π	7+00W	0.02	0.5	20	42				
				79	72				
	8+00W	0.02	1.2	79	12				
				00	<i>).</i> E				
#5	0+50W	0.02	0.8	22	45			A NA CARL	
	1+00W	0.03	0.4	2	13				
	1+50W	0.03	0.8	24	41				
	2+00W	0.02	0.4	8	29				
	2+50W	0.02	0.8	44	57				
	3+00W	0.02	0.8	50	129				
	5+00W	0.02	1.0	42	188				
			0.8	61	41				
	5+50W	0.04			181				
	6+00W	0.03	2.0	59					
	6+50W	0.03	0.7	14	14				
	7+00W	0.02	0.4	6	22		No. 1		
	7+50W	1.04	1.2	30	46				
	8+35W	0.03	1.0	76	121				
			1.						
#6	0+50W	0.07	1.5	33	72				
# 0	1+00W	0.06	1.3	24	48				
	1+50W	0.06	0.7	13	18				
				20	49				
	2+00W	0.02	0.7		35				
	2+50W	0.02	0.5	26		etja et su			
	3+00W	0 .02	0.8	110	106			14.5	
	3+50W	0.02	0.8	49	109		100		
	4+00W	0.02	1.5	81	97				
	4+50W	0.02	2.2	67	158				
	5+00W	0.06	1.0	37	86				
	5+50W	0.08	1.0	43	60				
	6+00W	0.06	0.7	16	18				
	6+50W	0.11	0.5	16	18				
	7+00W	0.06	0.5	23	33				
		0.00	1.5	68	76				
	7+50W			33	63				
	8+00W	0.06	1.3	رر					
						/ 00====	ued on pa	40.4	
						/ Contin	peu on pa	BC 4	
	·		L	 			·		

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

PROVINCIAL ASSAYER

Wong

Date: A

August 10, 1987

File:

8707-2452

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

(page 4)

N.V.C. ENGINEERING LTD.

Telex: 04-507514

We hereby certify that the following are the results of assays on:

soil samples

TO:

100		GOLD	SILVER	Nickel	Copper	xxxxxxxx	KXXXXXXXX	XXXXXXXX	xx
	MARKED	Au (ppm)	Ag(ppm)	Ni (ppm)	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
L #7	0+50W 1+00W	0.03 0.02	0.8 1.5	25 45	59 74				
	1+50W	0.02	1.2	33	61				
	2+00W	0.02	0.9	20	33				
	2+50W	0.02	1.2	33	99				
	3+00W	0.02	0.8	37	82				
	3+50W	0.02	1.0	53	72				
	4+00W	0.03	1.2	50	92				
	4+50W	0.02	0.3	11	23				
	5+00W	0.03	0.8	88	139				
	5+50W	0.02	1.8	36	100				
	6+00W	0.02	1.5	48	130				
	6+50W	0.02	0.8	39	50				
	7+00W	0.02	0.4	20	18				
	7+50W 7+50W	0.05	0.9	42	63				
	8+00W	0.03	0.4	8	12				
)	8+50W	0.03	0.5	64	38				
	0+JUW	0.02	0.5	04	30				
L #8	0+50W	0.02	0.6	20	42				
L #0	1+00W	0.02	2.0	14	32				
	1+50W	0.02	1.0	9	11				
	2+00W	0.03	1.0	14	33				
	2+50W	0.02	1.5	27	27				
	3+00W	0.02	0.8	20	27				
	3+50W	0.03	1.3	14	54				
	4+00W	0.04	0.8	20	15				
	4+50W	0.77	0.7	42	36				
	5+00W	0.77	0.8	56	74			garage and the	
	5+50W	0.02	0.7	34	22				
	5+50W 6+50W	0.04	1.2	28	113				
	8+00W	0.06	1.2	44	79				
	8+50W	0.03	1.0	45	69				
	9+00W	0.03	0.8	20	10				
	9+00W 9+50W	0.02	0.8	27 27	14				
		0.02	1.2	49	58				
	10+00W			33	63				
	10+50W	0.02	1.3	၁၁	0.5				
						/ conti	nued on p	age 5	

TE: REJECTS RETAINED ONE MONTH, PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

. Wong

Date:

August 10, 1987

File:

8707-2452

@SGS

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING LTD.

(page 5)

We hereby certify that the following are the results of assays on:

soil samples

	MARKED		GOLD	SILVER	Nickel	Copper	xxxxxxxx	xxxxxxxx	xxxxxxxx	xxxxxxxx
			Au (ppm)	Ag (ppm)	Ni (ppm)	Cu (ppm)				
L #9	- 0+50W	(V)	0.03	0.4	8	15				
U 117	0+50W		0.03	1.2	18	49				
	1+00W	(1)	0.04	0.8	16	46				
		(X)	0.04	1.0	18	43				
		(Y)	0.02	0.8	13	28				
	2+00W	(1)	0.02	0.8	17	25				
	2+50W		0.02	0.8	8	41				
	2+50W		0.08	1.2	22	41				
	4+00W		0.02	0.3	9	16				
	4+50W	. 4	0.02	0.5	13	8				
	5+00W		0.02	0.5	15	28				
	5+50W					20				
	6+00W	45	0.08 0.02	0.8	16	24				
	6+50W			0.4	20 13	15				
	7+00W	<i>.</i>	0.02 0.02	0.5 0.5	23	8				
)				1.2		13				
	7+50W		0.02		10	75				15 15
	8+50W		0.05	0.4	38	75 15				
	9+00W		0.04	0.8	12					
	9+50W		0.03	0.4	26	49 9				
	10+00W		0.03	0.7	4	9				
) . OOM	O . EOD		0.07	0,	26	49				
O+00N	0+50E		0.04	0.4	26	92				
	1+00E		0.02	0.7	60	57				
	1+50E		0.02	0.3	17	64				
	2+00E		0.02	0.7	22					
	2+50E		0.02	1.3	52	184				
	0 0011	. [071				
3L	0+00N	· · ·	0.02	0.7	64	271				
	0+50N		0.02	1.5	26	96				
	1+00N		0.02	1.0	26	45				
	1+50N		0.13	0.7	42	82				as a transfer of the second of
	2+00N		0.03	0.7	41	144				
	2+50N		0.02	0.7	31	55				
	3+00N		0.03	0.7	37	45				
	3+50N		0.03	0.3	31	61				
	4+00N		0.03	0.3	12	21				
	4+50N		0.03	0.3	24	114				the second second
							/ conti	nued on p	age 6 . <u></u>	<u>•</u> ••
	# ¹									

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Lr. Wong

PROVINCIAL ASSAYER

Date:

August 10, 1987

File:

8707-2452

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

9

: N.V.C. ENGINEERING LTD.

(page 6)

We hereby certify that the following are the results of assays on:

Telex: 04-507514

soil samples

		GOLD	SILVER	No also I		
	MARKED	Au (ppm)	Ag(ppm)	Nickel Ni (ppm)	Copper Cu (ppm	************
BL	5+00N 5+50N 6+00N 6+50N 7+00N 7+50N 8+00N 8+50N 9+00N	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.02	0.7 0.5 0.3 0.7 0.7 0.5 0.5 0.7	29 38 22 34 19 44 34 32 48	81 116 52 82 50 96 76 113 109	
L #1	0+50E 1+00E 1+50E 2+00E 2+50E 3+00E	0.02 0.02 0.02 0.02 0.02 0.02 0.20	0.5 0.7 0.4 0.4 2.0 0.7	29 29 21 49 50	39 59 17 73 187 206	
L #2	0+50E 1+00E 1+50E 2+00E 2+50E 3+00E 3+45E	0.52 0.89 0.30 0.03 0.03 0.03 0.03	0.7 0.3 0.8 1.2 0.5 0.3	44 24 53 25 24 12 37	45 23 64 57 30 16 145	
L #3	0+50E 1+00E 1+50E 2+00E 2+50E 3+00E 4+00E 4+50E	0.02 0.08 0.02 0.02 0.02 0.02 0.02 0.02	1.5 0.4 0.4 0.4 0.8 0.8 0.8 0.7	76 23 25 20 28 27 27 27	25 19 24 30 89 62 130 100	
L #4	1+00E 1+50E 2+00E (X) 2+00E (Y)	0.02 0.02 0.02 0.02	0.4 0.7 0.5 0.4	12 26 39 20	28 54 59 48	/ continued on page 7

E: REJECTS RETAINED ONE MONTH, PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS, PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Wong کرا

Date:

August 10, 1987

File:

8707-2452

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

1001 East Pender Street,

Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING LTD.

(page 7)

We hereby certify that the following are the results of assays on:

soil samples

	GOLD	SILVER	Nickel	Copper	**********
MARKED	Au (ppm)	Ag(ppm)	Ni (ppm)	Cu (ppm)	
L #4 2+50E 3+00E 3+50E 4+00E 4+50E	0.04 0.03 0.03 0.03 0.02	0.4 0.5 0.3 0.3	31 20 31 16 39	46 46 107 82 91	
L #5 0+50E 1+00E 2+00E 2+50E 3+00E 4+50E 5+00E 6+00E 6+50E	0.02 0.02 0.02 0.02 0.02 3.36 0.05 0.03	0.5 0.5 0.3 0.7 0.5 0.8 0.7 0.5 0.7	26 8 7 49 16 29 14 10	15 14 13 42 19 59 15 24 166	
#6 L #6	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.0 0.7 0.9 1.2 1.2 0.8 1.0 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.8 0.8 0.7 0.5	18 20 34 37 51 22 28 17 18 18 25 32 20 111 37 18 11 18 20 21 29	74 36 54 59 69 41 24 24 64 30 38 54 71 77 81 27 10 30 41 80 100	
J-UUL	0.07	0.5	29		/ continued on page 8

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 10, 1987

File:

8707-2452

SGS SUPERVISION SERVICES INC. **General Testing Laboratories Division**

1001 East Pender Street,

Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

Telex: 04-507514

N.V.C. ENGINEERING LTD. TO:

(page 8)

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Nickel	Copper	XXXXXXXX	xxxxxxxx	xxxxxxx	xxxx
	MARKED	Au (ppm)	Ад (рр	n) _{Ni} (ppm)	Cu (ppm	 			
				MI (bbm)	ов (рр.	<u> </u>			
ZONE	"B" :								
L #0	0+00W	0.02	0.5	10	13				
	0+50W	0.04	1.7	21	31				
	1+00W	0.02	1.2	26	78				
	1+50W	0.04	0.8	26	35				
	2+00W	0.03	0.7	14	13				
	2+50W	0.04	0.5	11	13				
100	3+00W	0.05	0.7	25	87				
	3+50W	0.02	0.7	10	19				
	4+00W	0.02	1.3	30	416				
	4+50W	0.02	1.3	26	138				
	5+00W	0.03	1.0	25	96				
L #1	0+00W	0.02	0.8	17	20				
<i></i>	0+50W	0.02	0.7	42	80				
	1+00W	0.03	0.6	23	21				
	1+50W	0.02	0.5	23	29				
	2+00W	0.02	0.4	13	9				
	2+50W	0.02	0.4	7	5				
	3+00W	0.02	0.7	13	52 50				
	4+50W	0.02	0.9	22	59				
					1-7				
3L #2	0+00W	0.02	0.7	16	17	Part of Alley			
	1+00W	0.03	0.8	15	22				
	1+50W	0.04	0.8	6	8				
	2+00W	0.02	0.8	10	19				
	2+50W	0.02	0.6	16	27				
	3+00W	0.02	0.5	9	15 24				
	3+50W	0.02	0.5	13	24				
	4+00W	0.02	0.8	12	34				
	5+00W	0.03	0.8	17	49				
	5+50W	0.08	1.5	21	97	to the second			
3L #3	0+00W	0.07	0.5	12	15				
	0+50W	0.09	0.7	20	38				
	1+00W	0.02	0.7	16	24				
			-			/ contin	ued on pag	ge 9	• • • •

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Wong

Date:

August 10, 1987

8707-2452 File:

SGS SUPERVISION SERVICES INC. **General Testing Laboratories Division**

1001 East Pender Street,

Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING LTD.

(page 9)

We hereby certify that the following are the results of assays on:

soil samples

Dī	MARKE)			Nickel	Copper	X X X X X X X X X X X X X X X X X X X	XXXXXXXXX	LAAAAAAAA	XXXXXXXX
Di			Au (ppm)	Ag (ppm		Cu (ppm				
DŤ						4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 				
BL	#3 2+	-OOW	0.02	1.0	22	68				
		-50W	0.02	0.7	6	5				
		-OOW	0.02	0.7	9	10				
		OOW	0.02	0.5	9	27 12				
		-50W	0.02	0.7	6	56				
		-OOW	0.03	0.9	26	78				
	7+	-50W	0.04	0.9	29	,,0				
BL	# <i>I</i> . O.	-OOW	0.04	0.3	16	10				
L		-50W	0.03	0.8	26	29				
Į.,		-00W	0.03	0.7	28	61				
		-00W	0.05	0.4	20	19				
		-50W	0.06	0.4	11	10				
•		-00W	0.04	0.4	16	26				
		-50W	0.03	0.6	14	22				
		+OOW	0.03	0.3	13	27				
	4-1	+50W	0.02	1.5	17	54				
	54	+00W	0.02	0.8	14	34				
		+50W	0.02	0.5	16	21				
		-OOW	0.02	0.9	27	70				
		FOOM	0.03	0.8	31	61 57				
		+50W	0.05	0.8	31	37 84				
		+00W	0.04	1.3	28 46	118				
		⊦50W ⊦00W	0.02	1.3 1.0	40	42				
	9-	FOOM	0.02	1.0						
T.	# 5 0-	+OOW	0.02	1.0	26	25				
		+50W	0.02	0.8	22	25				
		+OOW	0.02	1.0	29	33				
		+50W	0.02	0.8	18	21				
		+00W	0.02	0.8	22	32				
		+50W	0.02	0.5	17	17				
		+00W	0.02	0.4	10	8				
		+50W	0.02	0.4	14	22 12				
	4	+00W	0.02	0.7	16	14				
						1	continue	on page	10	
								J P.80	_ =	

OTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Date:

August 10, 1987

File: 8707–2452

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 TO: N.V.C. ENGINEERING LTD.

Telephone: (604) 254-1647

(page 10)

Telex: 04-507514

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Nickel	Copper	xxxxxxxx	·	*******	XXXXXX
	MARKED	Au(ppr	p)Ag(ppm)		Cu (ppm)				
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ O(II /		ou (Pp)		7		
#5	5+00W	0.02	0.5	16	49				
" -	5+50W	0.04	0.9	20	34				
	6+00W	0.07	0.9	14	23				
	6+50W	0.02	1.0	14	38				
				7.70					
									1 1 1 A 200
		and a							
						e de la companya de l	i santa		
							and the second		
			1						
TE PE IC	CTS RETAINED ONE MONT	H PHI PS DETAIN	ED THREE MON	THS ON RECHEST	PULPS				
	CTS RETAINED ONE MONT REJECTS WILL BE STORE I								
REPORT	IS ARE THE CONFIDENTIAL ON OR EXTRACTS FROM OF EN APPROVAL. ANY LIABILI	PROPERTY OF	CLIENTS, PUBLIC	ATION OF STATE	MENTS.				7
もっているけん	IN OR EXTHAUTS FHOM OF	THE GARDING OU	IN REPURIS IN N	IOI PERMITTED W	HITOUT	l +	Wong	· .	<i>x</i>

Date:

August 24, 1987

File:

8708-1151

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647 Telex: 04-507514 V. N : O'

N.V.C. ENGINEERING LTD. Ste. 304 - 1720 Barclay Street

Vancouver, B.C.

V6G 2Y1

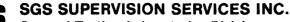
We hereby certify that the following are the results of assays on:

soil samples

	GOLD	SILVER	Copper	Nickel	VVVVVV	xxxxxxxx	VVVVVVVVV	VVVVV
MARKED	Au (ppm) Ag(ppm	\		*********			
			Cu (ppm) Ni (ppm)				
Logan A BL R.S.								
L #1	0.10	2.1	67	36				
0+50E	0.10	2.0	151	42				
1+00E	0.07	2.1	129	42				
1+50E	0.07	2.3	57	20				
2+00E	0.03	2.0	42	18				
1+00W 1+50W	0.02	3.0 2.0	158 184	48 47				
2+00W	0.02	1.0	94	35		\$ 1.00 pt		
L #2	0.02	1.3	121	29				
0+50E	0.02	2.4	100	32				
1+00E 1+50E	0.02	2.7	185	63 32				
2+00E	0.02	1.9 2.3	82 74	28				
0+50W	0.02	1.7	54	31				
1+00W	0.03	2.3	113	28				
1+50W	0.03	1.4	67	21				
2+00W	0.05	2.7	78	30				
L #3	0.02	1.9	130	36				
0+50E	0.10	2.7	139	34				
1+00E	0.03	2.6	152	36				
1+50E	0.03	2.4	159	53				
2+00E	0.03	2.1	188	58				
0+50W	0.03	2.4	188	54				
1+00W 1+50W	0.02 0.03	1.4 2.0	59 144	24 35				
2+00W	0.03	2.1	87	33				
210000	0.02	2.1	0.					
L #4	0.04	2.4	135	32				
0+50E	0.02	2.6	97	30				
1+00E	0.02	1.4	66	20				
1+50E	0.03	1.9	126	34 24				
2+00E 0+50W	0.02 0.02	2.1 1.7	78 41	16				
WUCTU	0.02	T • /	+ 1	10	1	continue	d on page	2
						e. i		

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS, ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.


. Wong

Date:

August 24, 1987

File:

8708-1151

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

TO: NV.C. ENGINEERING LTD.

(page 2)

We hereby certify that the following are the results of assays on:

soil samples

	GOLD	SILVER			 	Γ		
MARKED)Ag(ppm)	Copper	Nickel	xxxxxx	XXXXXXXXX	xxxxxxxx	xxxxx
	nu (ppi)118 (PP.III)	Cu (ppm)	Ni (ppm)				
Logan A BL R.S.		in the second of						
L #4 1+00W	0.03	2.4	125	36				
1+50W	0.03	2.1	99	38				
2+00W	0.02	1.9	110	36				
L #5	0.03	2.4	148	44				
0+50E	0.02	2.1	105	25				
1+00E	0.02	1.4	62	15				
1+50E	0.02	2.4	71 83	21 27				
2+00E	0.03 0.04	2.8 2.1	61	22				
0+50W 1+00W	0.03	2.6	99	34				
1+50W	0.02	2.4	80	27				
2+00W	0.02	1.9	42	18				
2100	0.02		,		3			
L #6	0.02	2.3	126	28				
0+50E	0.03	2.1	128	38				
1+00E	0.03	2.7	160	41				
1+50E	0.02	2.0	71	20				
2+00E	0.02	2.1	97	31				
0+50W	0.02	2.0	53	16				
1+00W	0.02	2.4	64	21 31				
1+50W	0.02	2.4 1.9	98 88	26				
2+00W	0.02	1.7	00	20				
L #7	0.02	3.1	77	31				
0+50E	0.02	3.0	77	18				
1+00E	0.02	3.6	72	24				
1+50E	0.02	2.4	67	22				
2+00E	0.02	2.6	74	24				
0+50W	0.02	2.4	88	21				
1+00W	0.02	2.1	70	22				
1+50W	0.02		131	33 14				
2+00W	0.02	2.0	61	14				
					/ contir	ued on pa	ge 3	
					14 14			
<u></u>					L	L	<u> </u>	L

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Date: Augus

August 25, 1987

File: 8708-1151

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

TO: N.V.C. ENGINEERING

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

(page 3)

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Copper	Nickel	xxxxxx	xxxxxxxx	xxxxxxxx	xxxxx
	MARKED	Au(ppm)	Ag(ppm)	Cu (ppm)	Ni (ppm)				
LOGAN	B B.L. R.S.								
1 #0		0.03	2.7	186	62				
L #0 L #1		0.03	3.4	165	45				
L #1	0+50E	0.03	2.0	111	30				
	1+00E	0.02	2.4	75	28				
	0+50W	0.05	2.6	111	36				
	1+00W	0.02	2.4	102	26				
	1+50W	0.02	2.6	131	28				
	2+00W	0.02	2.4	53	15				
1	2+50W	0.05	2.5	60	12				
	3+00W	0.02	2.7	71	15				
						4 4 4 4			
L #2		0.02	3.1	142	`39				
	0+50E	0.02	2.6	150	32				
	0+50W	0.02	2.0	155	45				
	1+00W	0.02	2.1	65	26				
	1+50W	0.03	1.4	47	15 15				
	2+00W	0.02	2.4	57	15				
1 42		0.03	2.7	160	44				
L #3	0+50E	0.03	2.0	170	43				
West		0.03	1.4	141	40				
WESL	1+00W	0.03	1.4	58	24				
West		0.02	2.0	110	28				
""	3100								
		0.04	2.0	230	59				
L #4		0.04	2.0	89	26				
	0+50E	0.05	1.9	179	52				
	0+50W	0.05	2.0	227	50				
	1+00W 1+50W	0.04	1.4	161	41				
	2+00W	0.02	1.6	111	27				
	2+50W	0.16	1.4	142	24				
	47JUW	0.10	••						
L #5		0.04	2.1	185	45				
ר זי ני	, E0+50	0.04	2.6	111	36				
	LOTOO	0.04							
	E1+00	0.02	2.0	126	41	/ 50	ntinued or	nage 4	
		1	L			/ (0)	TUTILITY OF	PODO	1

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 25. 1987

File:

8708-1151

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING LTD.

(page 4)

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Copper	Nickel	******	xxx
MA	RKED	Au(ppm)	Ag(ppm)	Cu (ppm)	Ni (ppm)		
LOGAN B B.	L. R.S.						
	*						
L #5	3+00	0.07	1.4	111	20		
	0+50W	0.02	1.9	168	45		
	1+00W	0.33	1.4	174	46		
	1+50W	0.03	1.1	100	33		
	2+00W	0.03	0.9	89	22		
	2+50W	0.02	1.1	116	27		
1 46		0.06	2.6	100	- 2		
L #6	E0+50	0.06	2.6	180	53 63		
	0+50W	0.04	1.9 2.4	186 227	63 82		
	0+30W 1+00W	0.04	2.4	111	46		
	1+50W	0.02	1.9	178	29		
	2+00W	0.02	1.4	63	20		
	2+50W	0.03	1.9	124	38		
	3+00W	0.02	2.1	222	72		
	3,33	0.02	_,_		• -		
L #7		0.04	2.4	302	79		
	0+50E	0.03	2.0	175	50		
	1+00E	0.02	2.6	160	48		
	0+50W	0.04	2.4	214	43		
	1+00W	0.04	2.7	156	52		
	1+50W	0.02	2.4	183	45		
	2+00W	0.03	2.1	141	34		
	2+50W	0.03	1.6	108	34		
	3+00W	0.06	2.0	93	44		
	870830	0.04	2.7	169	50		
	870831	0.02	2.0	164	53		
	870832	0.02	2.1	254	77		
	870833	0.02	2.8	141	46		
	870834	0.02	2.3	156	41		
	870835	0.04	2.3	126	36		ar diga Albi Albi
11111	870836	0.02	2.8	144	51		
MONTE	870805	0.03	2.1	105	34		
MONTE	870806	0.03	2.6	105	33		
						/ Continued on page 5	. • . • . •
							A CARLO SA CONTRACTOR AND CONTRACTOR

OTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Wong PROVIN

Date:

August 25, 1987

File:

8708-1151

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING

(page 5)

We hereby certify that the following are the results of assays on:

soil samples

	GOLD	SILVER	Copper	Nickel	xxxxxx	xxxxxxx	xxxxxxx	xxxxx
MARKED	Au (ppm)	Ag(ppm)	Cu (ppm)	Ni (ppm				
MONTE 870807	0.02	2.3	53	28				
870808	0.02	2.6	72	19				
870810	0.07	5.1	281	62				
870811	0.32	2.8	121	32				
LOGAN R.S. 870727	0.02	2.6	136	41				
870728	0.03	2.7	146	75				
870729	0.03	3.3	127	32				
L #0 6+50W	0.02	2.7	62	21				
7+00W	0.03	1.9	37	15				
7+50W	0.02	2.6	55	20				Barbara de 194
W00+8	0.03	2.0	60	15				
8+50W	0.02	2.1	140	43				
9+00W	0.03	2.1	131	40				
9+50W	0.02	2.3	111	32				
10+00W	0.02	1.9	50	22				
	0.02		30					
L #13 0+50W	0.02	2.1	35	9				
1+00W	0.02	2.7	99	18				
1+50W	0.02	2.6	50	21				
2+00W	0.02	2.3	34	$\overline{14}$				
2+50W	0.03	2.1	42	14				
3+00W	0.03	2.7	99	30				
3+50W	0.03	2.4	128	38				
4+00W	0.05	2.1	82	30				
4+50W	0.02	2.1	38	17				
5+00W	0.02	1.6	52	21				
5+50W	0.02	2.4	113	39				and Broader to
6+00W	0.03	2.6	209	46				
6+50W	0.03	2.6	330	56				
7+00W	0.02	2.4	165	37				
7+50W	0.02	2.5	150	36				
8+00W	0.02	2.1	136	40				
8+50W	0.05	2.4	139	40				
9+00W	0.02	2.6	177	46				
9+50W	0.02	2.7	175	62	/c	ontinued	on page 6	• • • • •
	<u> </u>				<u> </u>	<u> </u>	1	<u> </u>

E: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Wong

Date:

August 25, 1987

File:

8708–1151

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING

(page 6)

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	Copper	Nickel	xxxxxxx	xxxxxxxx	XXXXXXXX	XXXXX
	MARKED	Au (ppm)	Ag(ppm)	Cu (ppm					
L #15	0+50W 1+50W 2+00W 2+50W 3+00W 3+50W 4+00W 4+50W 5+50W 6+00W 6+50W 7+00W 7+50W 8+00W	0.02 0.02 0.02 0.02 0.61 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	1.7 1.4 1.6 2.0 1.7 2.0 1.7 1.6 2.6 2.0 1.5 1.4 1.4	48 67 40 41 32 56 56 82 98 137 91 105 72 72	16 15 12 11 11 15 10 23 32 66 32 43 28 37 28				
TONY R.	S.								
LOGAN 1	870810 870811 870812 870813 870814 870815 870816 870817 870818 870819 870820 870821 870822	0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02	2.0 2.1 3.6 2.3 1.7 1.9 1.7 2.0 1.7 1.9 2.1	80 145 459 111 94 129 85 151 208 184 87 137	40 47 59 34 31 35 26 24 42 41 26 40 36				
	8707–3 8707–4 8707–5	0.02 0.02 0.02	2.7 2.0 1.4	108 96 44	36 44 20	/ cont	inued on	page 7	

OTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 25, 1987

File:

8708-1151

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

Telex: 04-507514

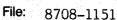
TO: N.V.C. ENGINEERING

(page 7)

We hereby certify that the following are the results of assays on:

soil samples

		GOLD	SILVER	C	NT. 1 1				
	MARKED	Au(nom)	Ag (ppm)	Copper	Nickel		XXXXXXXXX	XXXXXXXX	XXXXX
•		(PP)	e (bb)	Cu (ppm) Ni (ppm)			
	LOGAN 1 R.S.								
	8707–6	0.02	1.7	90	34				
	8707-7	0.02	2.1	130	49				
	8707–8	0.07	2.1	100	38				
	8707-9	0.02	1.4	42	66				
	8707-10	0.02	1.4	99	19				
	8707-11	0.04	$\begin{bmatrix} 2.1 \\ 0.2 \end{bmatrix}$	219	71				
1	8707–12	0.02	2.3	121	53				
	8707-13 8707-14	0.02	$\begin{vmatrix} 2.1 \\ 2.7 \end{vmatrix}$	121	41				
	8707–14 8707–15	0.02 0.02	2.7	87 78	40 15				
	8107-13	0.02	1.6	10	13				
	LOG - 1 R.S.								
	I R.D.								
	8707–1	0.02	1.9	82	16				
Ì	8707-2	0.02	1,6	85	18				
	8707-18	0.06	1.6	105	24				
	8707–19	0.11	1.4	77	16				
	8707–20	0.02	1.6	48	19				
-	8707–21	0.02	1.1	108	16				
	8707–22	0.02	1.4	138	30				
	8707–23	0.02	1.1	70	17				
-	8707–24	0.02	1.0	26	9				
	8707–25	0.02	1.0	19	6				e natro di Milliano. Natro le como di
l									
	LOG - 1 B.L.								
		. "							
	0+50N	0.02	0.8	89	19				
	1+50N	0.06	0.6	27	4				
1	2+50N	0.02	0.6	22	8				
	3+50N	0.02	0.6	44	9				
	4+50N	0.02	1.0	105	22				
	5+50N	0.02	0.8	22	3				
	6+50N	0.02	0.6	78	8				
	9+50N	0.06	8.0	46	7				
	10+50N	0.02	0.6	17	3				
	11+50N	0.02	0.5	29	3	/ cont	inued on	nage 8	• • •
ļ	7		L			,	r	F-9- 0	


TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 25, 1987

SGS SUPERVISION SERVICES INC. **General Testing Laboratories Division**

1001 East Pender Street,

Vancouver, B.C., Canada. V6A 1W2

Telephone: (604) 254-1647

Telex: 04-507514

TO: N.V.C. ENGINEERING

(page 8)

We hereby certify that the following are the results of assays on:

soil samples

MARKED	GOLD	SILVER	Copper	Nickel	******
	Au (ppm)	Ag (ppm)	Cu (ppm)	Ni (ppm)	
LOG - 1 B.L.					
1+00N - 0+00W	0.02	1.1	63	9	
2+00N	0.02	0.6	19	5	
3+00N	0.02	0.8	54	9	
10+00N	0.02	0.6	39	6	[이 경험 이 발생 경험 기반 경험 경험 기반 경험
12+00N	0.02	1.1	31	4	
LOGAN #1 B L #0 O+OOW	0.02	1.3	66	21	
LOGAN #1 BL 7+50N O+00W	0.02	1.7	74	8	
LOG-1 BL L6	0.02	1.4	99	10	
LOG-1 BL L7	0.02	1.4	56	9	
8 BL 8+00N 0+00W	0.16	1.6	46	9	
LOG-1 L#6 6+25W	0.02	1.6	50	17	
LOGAN 1 4+00N 0+00W	0.02	1.6	52	14	
LOGAN 1 L#9 9+00N 0+00W LOGAN 1 L #0	0.02	1.5	74	15	
0+50W	0.02	1.6	62	21	
1+00W	0.02	2.1	60	25	
2+00W	0.02	1.6	90	30	(공용) 이 조기를 잃게 하루 아이를 모른다고 다
3+00W	0.03	1.6	42	16	
3+50W	0.02	1.5	71	22	[12:4] 전 기계하는 수업 문화 논설되었으라는 본 점기
4+00W	0.02	1.7	74	17	
5+00W	0.02	1.3	78	31	
<u>L #1</u>					용당, 고기를 하는 것도 하는 경기를 받는 것을 하는 것이 그는 것도 없다.
0+50W	0.02	1.0	41	14	[화기본] - [시간 전] [[환경 : 1] [1] [1] [1]
1+00W	0.02	0.8	22	9	
1+50W	0.02	1.3	49	12	
2+00W	0.02	1.5	62	17	/ dontinued on page 9
	1				

E: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Wong

Date:

August 25, 1987

File:

8708-1151

SGS SUPERVISION SERVICES INC. General Testing Laboratories Division

TO: N.V.C. ENGINEERING

1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2

(page 9)

Telephone: (604) 254-1647 Telex: 04-507514

We hereby certify that the following are the results of assays on:

soil samples

	GOLD	SILVER	Copper	Nickel	xxxxxx	xxxxxxxx	xxxxxxxx	xxxxxxxxx
MARKED	Au(ppm)	Ag(ppm)	Cu (ppm)	Ni (ppm)				
<u>L #1</u>								
2+50W	0.02	1.4	105	35				
3+00W	0.02	1.6	36	10				
3+50W	0.02	1.6	32	11				
4+00W	0.02	1.4	98	27				
4+50W	0.02	1.3	74	19				
5+00W	0.02	1.3	56	13				
5+50W	0.02	1.0	81	22				
6+00W	0.02	1.3	73	23				
6+50W	0.02	1.3	68	24				
L #2								
0+50W	0.02	1.4	43	11				
1+00W	0.04	0.8	31	12				
1+50W	0.02	0.6	14	4				
2+00W	0.02	1.3	45	17				
2+50W	0.02	1.1	49	14				
3+00W	0.02	1.4	96	35				
3+50W	0.02	1.4	50	13				
4+00W	0.02	2.3	75	25				
4+50W	0.02	2.3	80	27				
5+00W	0.02	2.1	70	25				
5+50W	0.02	2.0	76	25				
6+00W	0.02	2.9	68	18				
7+00W	0.02	2.3	90	26				
L #3		Tar office						
0+50W	0.02	2.3	57	19				
1+00W	0.02	2.8	60	40				
2+00W	0.02	1.4	25	7				
2+50W	0.02	1.6	41	15				
3+00W	0.02	2.0	65	26				
3+50W	0.02	1.6	65	23				
4+00W	0.02	1.9	70	25				
		A Company				continued	on page	0
							L	

TE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong

Date:

August 25, 1987

File:

8708–1151

SGS SUPERVISION SERVICES INC.

General Testing Laboratories Division

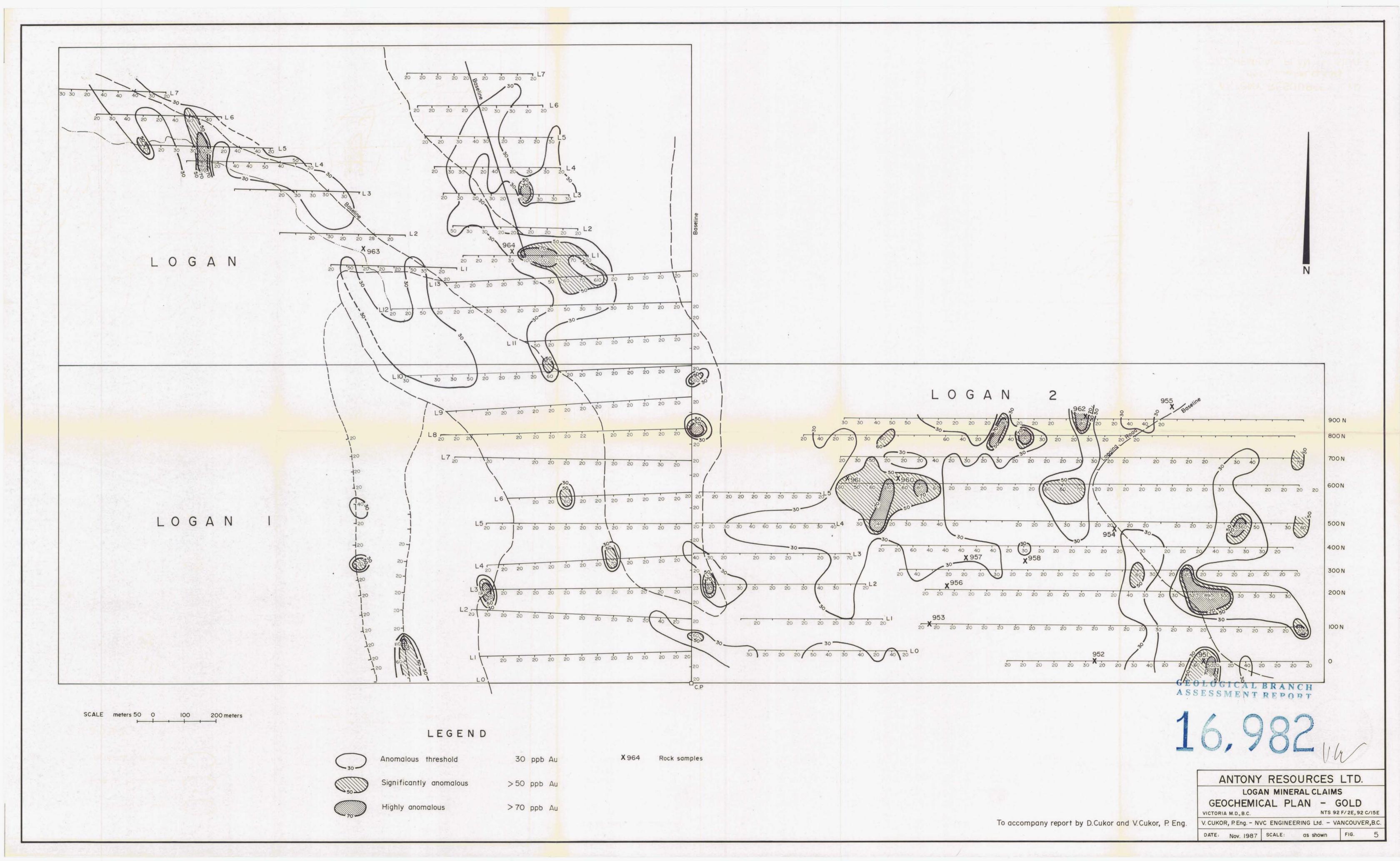
1001 East Pender Street, Vancouver, B.C., Canada. V6A 1W2 Telephone: (604) 254-1647

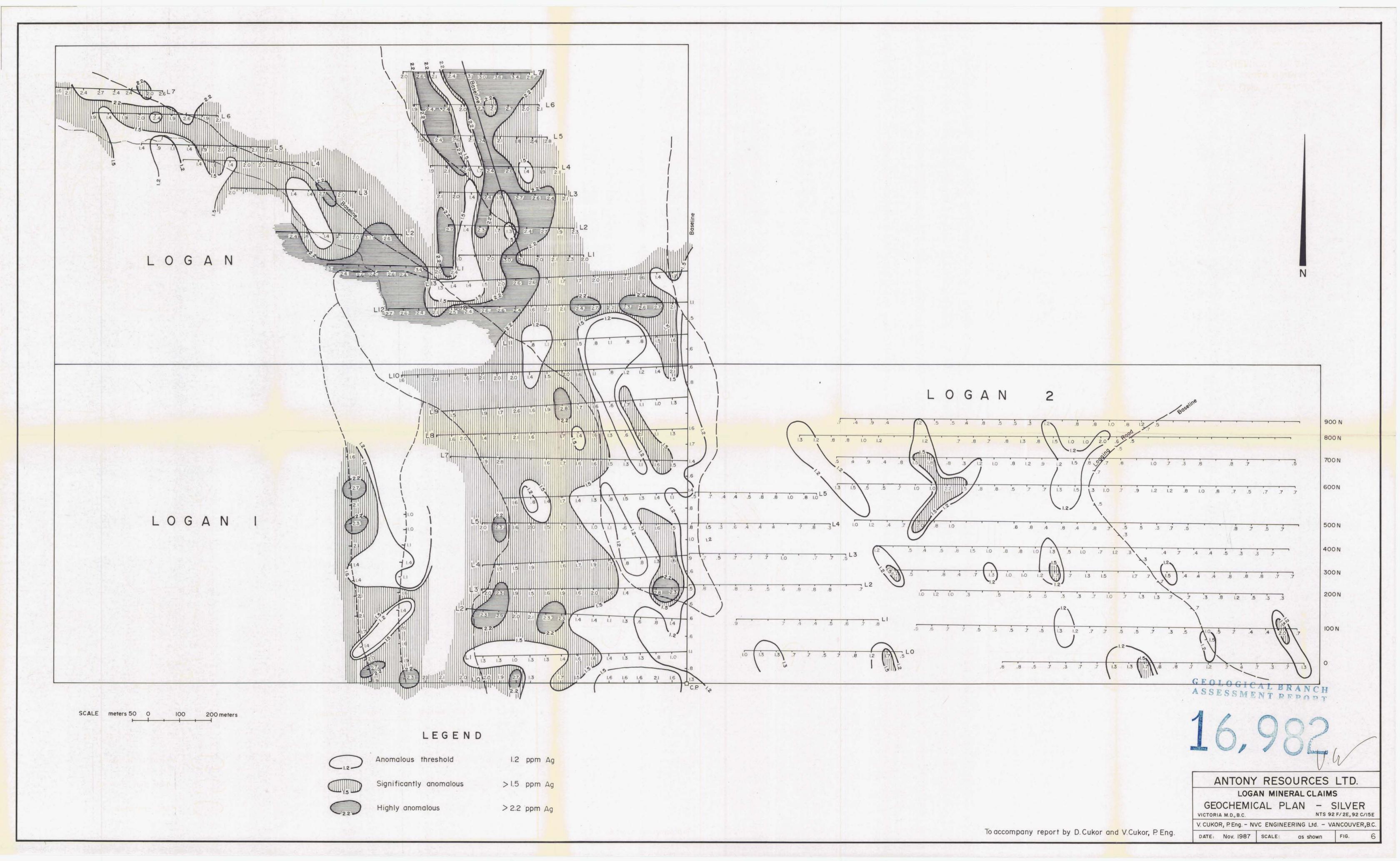
Telex: 04-507514

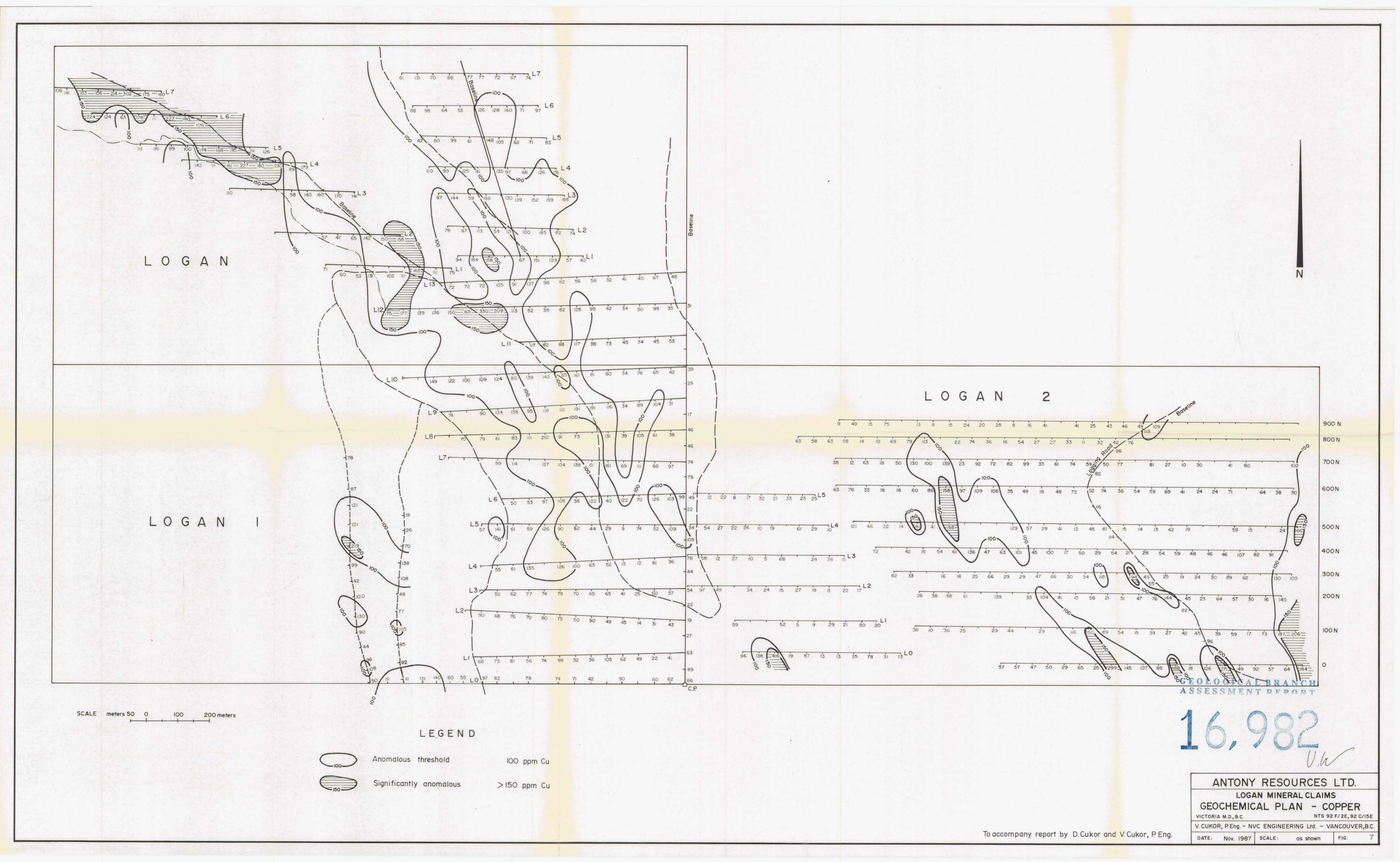
TO: N.V.C. ENGINEERING

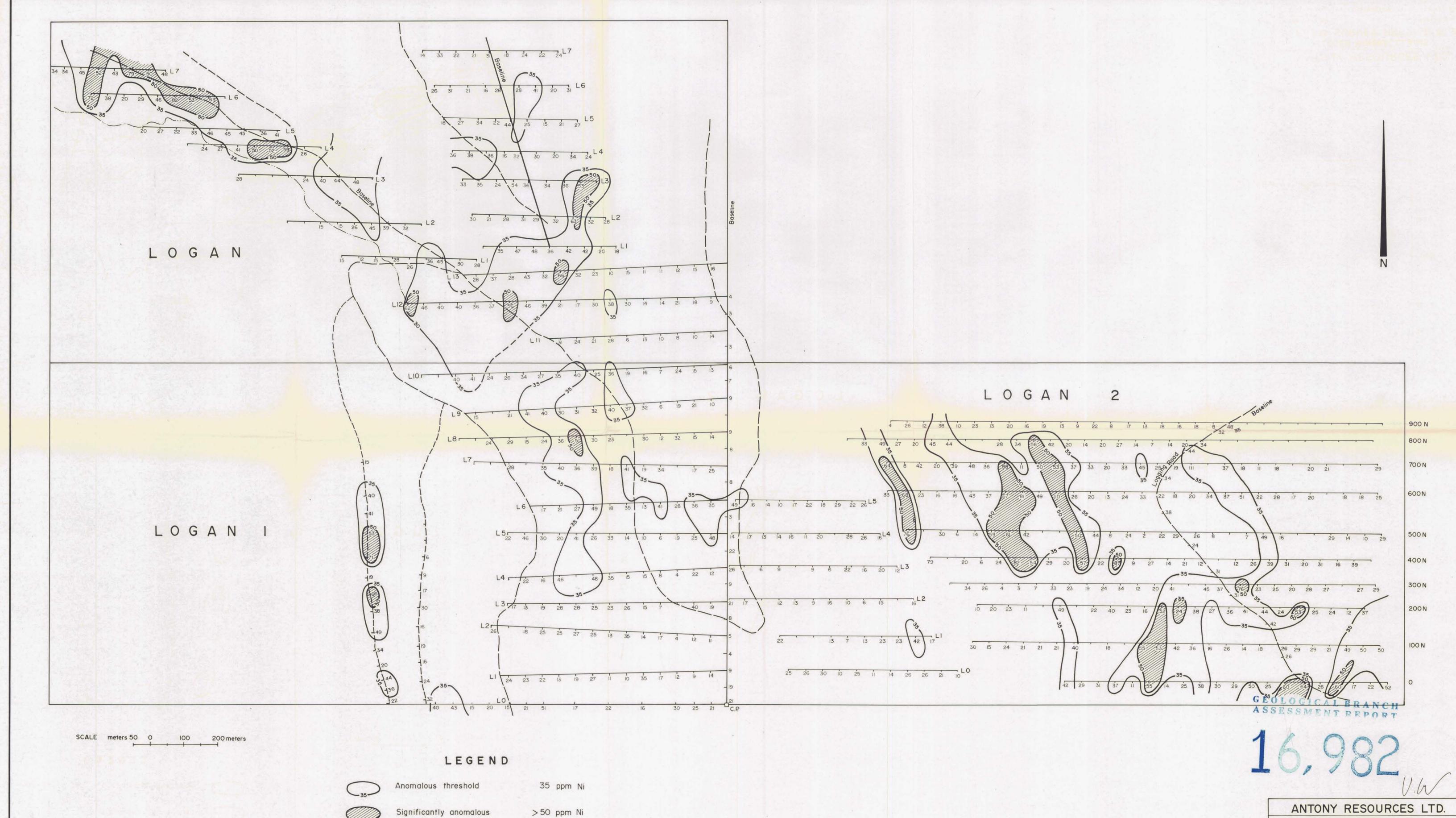
(page 10)

We hereby certify that the following are the results of assays on:


soil samples

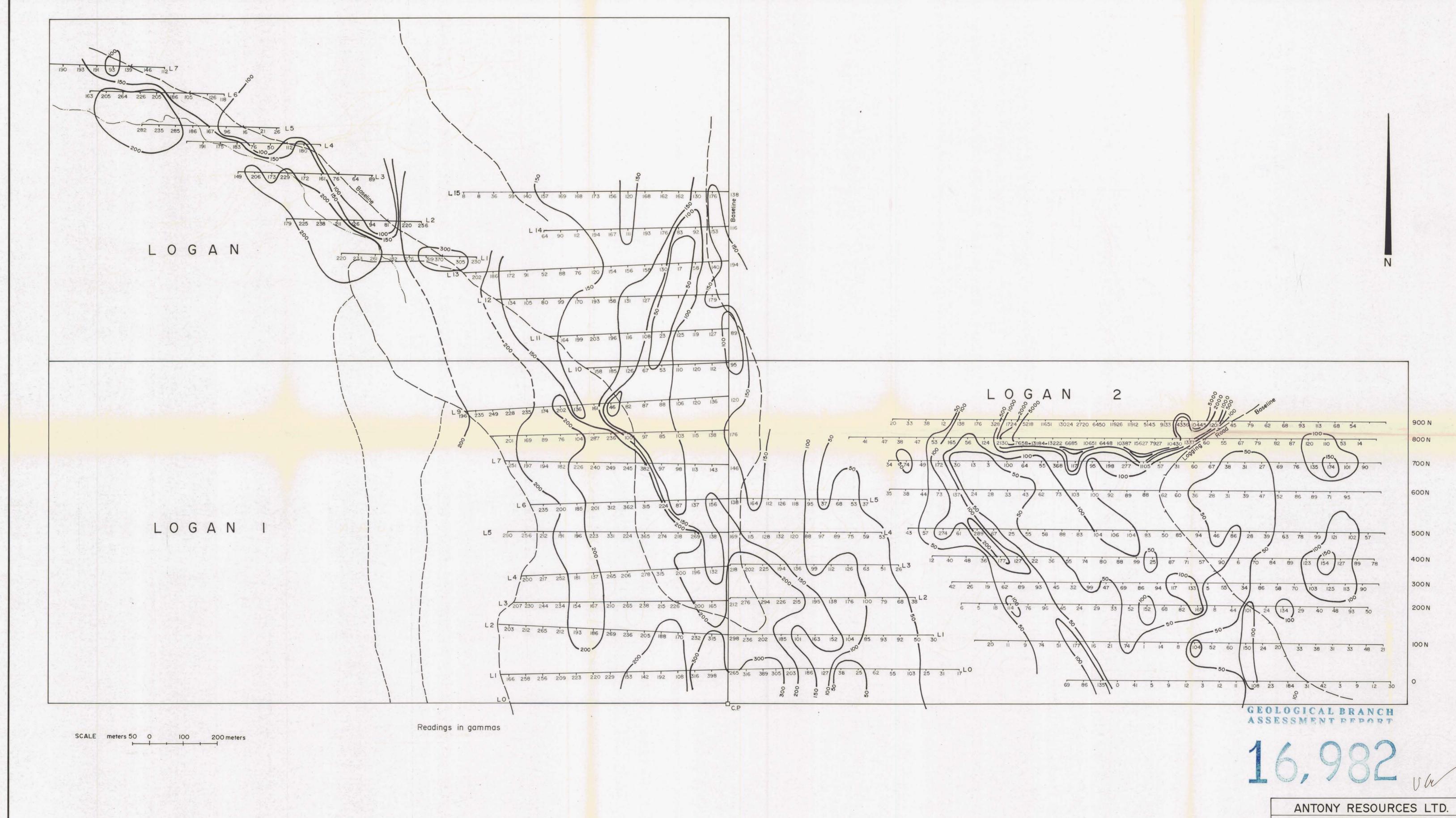

	GOLD	SILVER	Copper					
MARKED	Au (ppm)	Ag (ppm)	Cu (ppm)				naaaaaaa.	LAAAAAA
L #3								
4+50W	0.02	1.6	78	28				
5+00W	0.02	1.5	76 74	28 28				
5+50W	0.02	1.9	77	19				
6+00W	0.02	2.3	62	13				
6+50W	0.19	2.0	52 52	17				
L #4								
0+50W	0.02	1.6	36	12				
1+00W	0.02	1.3	61	22				
1+50W	0.02	0.8	12	4				
2+00W	0.02	0.8	13	8 15				
2+50W	0.07	1.7	52					
) 3+00W	0.02	1.9	63	15				
3+50W	0.02	1.7	100	35				
4+00W	0.02	1.6	126	48				
5+50W	0.02	1.9	135	46				
6+00W	0.02	1.5	61	16				
6+50W	0.02	1.9	55	22				
<u>L #5</u>								
0+50W	0.00	, ,	100	,,				
1+00W	0.02	1.5 1.6	109	48				
1+50W	0.02	1.5	52 74	25				
2+00W	0.02	0.6	9	19 6				
2+50W	0.02	1.1	29	10				
2+30W 3+00W	0.02	1.0	44	14				
3+50W	0.02	1.7	82	33				
4+00W	0.02	1.7	90	26				
4+50W	0.02	1.5	126	41				
5+00W	0.02	2.0	59	20				
5+50W	0.02	1.6	61	30				
6+00W	0.02	2.3	141	46				
6+50W	0.02	2.0	57	22				
					/ con	tinued on	nage 11	
					/ COI	crimed Ou	hage II	


DTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.


ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS, PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wong


To accompany report by D. Cukor and V. Cukor, P. Eng.


ANTONY RESOURCES LTD.

LOGAN MINERAL CLAIMS

GEOCHEMICAL PLAN - NICKEL

NTS 92 F/2E, 92 C/15E V. CUKOR, P. Eng. - NVC ENGINEERING Ltd. - VANCOUVER, B.C. DATE: Nov. 1987 SCALE: as shown FIG.

ANTONY RESOURCES LTD.

LOGAN MINERAL CLAIMS

MAGNETIC SURVEY PLAN.

VICTORIA M.D., B.C.

NTS 92 F/2E, 92 C

To accompany report by D. Cukor and V. Cukor, P. Eng.

VICTORIA M.D., B.C.

V. CUKOR, P.Eng. - NVC ENGINEERING Ltd. - VANCOUVER, B.C.

DATE: Nov. 1987 SCALE: as shown FIG. 10