LOG NO: 0210	RD.
ACTION:	
FILE NO:	

1987 DRILLING REPORT ON THE WEST CLAIMS

PROJECT # 094/107

SUB-RECORDER RECEIVED

FEB 8 1988

By
John M. Pattison B.Sc., Field Geologist
and
David P. Money B.A.Sc., Associate Geologist

FILMED

Situated 1 km west of Crofton, British Columbia in the Victoria Mfning Division CALBRANCH

ASSESSMENT REPORT

18 51' N, 123 40' W NTS 092B/13E

Falconbridge Limited
701 - 1281 West Georgia Street
Vancouver, British Columbia
V6E 3J7

SUMMARY:

A total of 3,170.1 m of drilling in 10 holes tested IP anomalies in the vicinity of Breen Lake on the West 1 claim. The chargeability anomalies are the result of strong, disseminated pyrite mineralization in andesitic, dacitic and rhyolitic volcanics. Bands/beds of massive pyrite less than 40 cm thick are not uncommon. The assay results are low; the best are 1.14 % Zn over 1.2 m, 1.29 % Zn over 0.5 m, 1.04 % Cu over 0.4 m, 2.08 % Cu over 0.1 m, 0.82 % Cu over 1.0 m and 0.94 % Cu over 0.5 m. The anomalously low resistivities are caused by lake bottom sediments.

Two bodies of siliceous quartz feldspar porphyry which are likely felsic domes or subvolcanic intrusions were discovered. Semi-massive to massive sulphides over widths less than 1.0 m were encountered near the margins of both bodies.

TABLE OF CONTENTS

SUMMARY	i
INTRODUCTION	1
LOCATION AND ACCESS	1
TERRAIN	4
CLIMATE	4
PROPERTY HISTORY	4
CLAIM STATUS	5
REGIONAL GEOLOGY	5
PROPERTY GEOLOGY	7
DRILLING RESULTS	7
General	7
Mineralization	٤
Lithologies and alteration	٤
	12

LIST OF TABLES

		Page
TABLE 1 TABLE 2	Claim Status Drill Hole Summary Table	5 9
	LIST OF FIGURES	
FIGURE 1	Location Map	2
FIGURE 2	Drill Hole Location Map	3
FIGURE 3	Summary Geology Map	6
FIGURE 4	Drill Section 16+50 East	pocket
FIGURE 5	Drill Section 16+00 East	pocket
FIGURE 6	Drill Section 15+00 East	pocket
FIGURE 7	Drill Section 14+00 East	pocket
FIGURE 8	Drill Section 13+00 East	pocket
FIGURE 9	Drill Section 12+00 East	pocket
FIGURE 10	Drill Section 5+00 East	pocket
		•

LIST OF APPENDICES

APPENDIX	Α	Diamond Drill Logs	
APPENDIX	В	Geochemical Analytical I	Data
APPENDIX	С	Whole Rock Data	

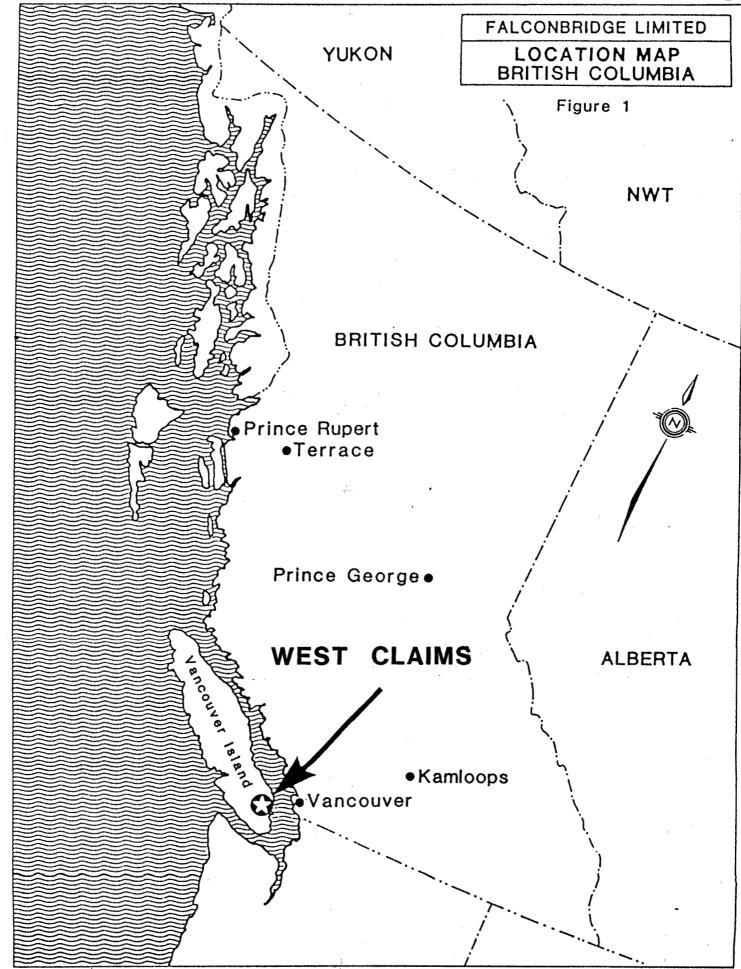
INTRODUCTION

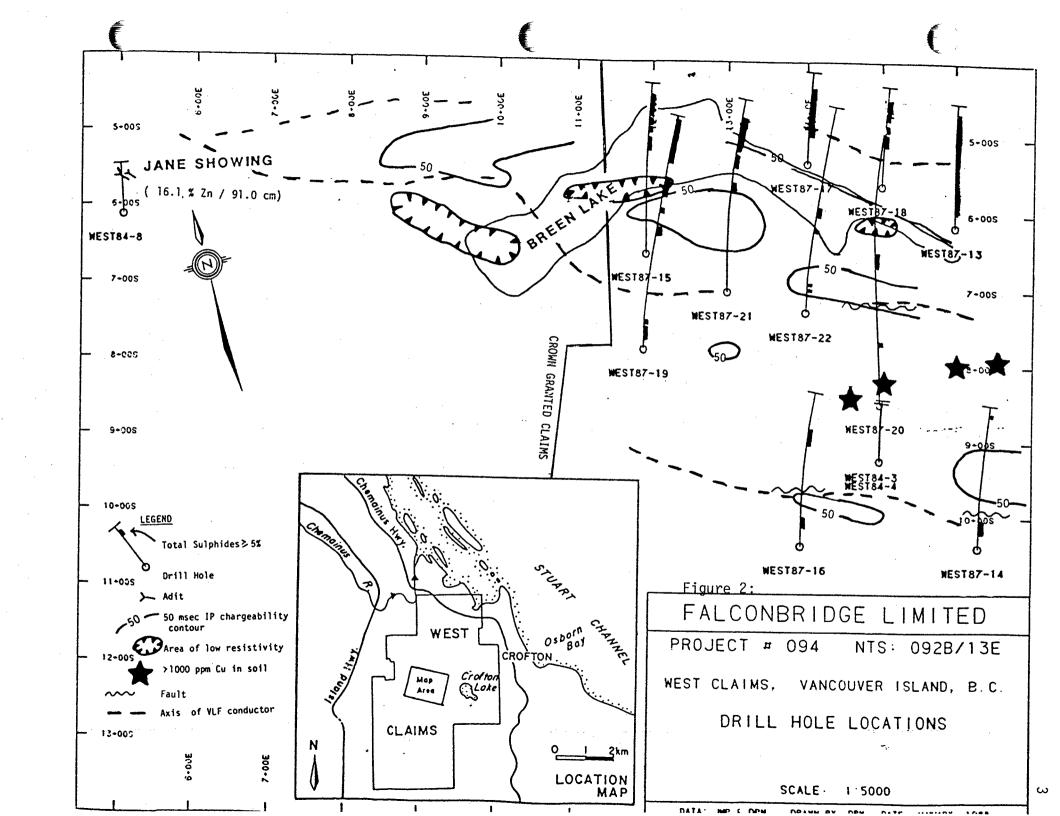
As part of Falconbridge's search for polymetallic massive sulphide deposits in the Sicker Group, 3,170.1 m of NQ core in 10 inclined holes was drilled on the West1 claim between the 4th and 28th of November, 1987. The holes tested geophysical anomalies in the vicinity of Breen Lake. The drilling was restricted to the eastern half of Breen Lake because Falconbridge does not yet have the mineral titles to the crown granted claims located immediately to the west (Figure 2). The all inclusive drilling costs for the program were \$303,896 or \$95.86 per metre.

The contractor for the job was Burwash Enterprises Ltd. of Cobble Hill, B.C. who used two Longyear Super 38 drills. A D-6H Caterpillar tractor was used to move the drills.

Special effort was made to minimize the impact of drilling on the surrounding land and lakes as the area drilled lies within the watershed of the Crofton water reservoir. A track mounted excavator prepared the sites. A sump, capable of holding at least 5,000 gallons, was dug at each site to contain run off from the drill hole.

The core was logged in metric and the geology plotted on sections at 1:1,000 scale. The drill core was also photographed and RQD data recorded for future use. Dip and azimuth tests were taken with a single shot Sperry Sun compass. Mineralized intervals were split or sawn in half for analysis. Results and descriptions of analytical techniques are listed in Appendix B. Lithogeochemical samples were taken of most rock units to aid in correlation. Results and analytical techniques are reported in Appendix C. A skeletal core record of each hole was prepared. A computerized logging system known as LOGII was used to prepare logs and sections. Drill logs are included as Appendix A and sections appear in Figures 4 through 10.


The holes were lined with plastic pipe to facilitate future bore hole surveys.


All drill core (including previous year's drilling) is stored in racks at a farm just outside Chemainus, B.C. at 3037 River Road.

LOCATION AND ACCESS

The West claims (123 40' W, 48 51' N; NTS 092B/13E) are located on southeastern Vancouver Island (Figure 1), approximately 1 km west of the village of Crofton (Figure 2). The ten drill sites are situated in the vicinity of Breen Lake on the West 1 and West 2 mineral claims.

Access to the drill sites is by four wheel drive dirt logging roads. The logging roads may be accessed from either

Chemainus Road or Osborne Bay Road. From Chemainus Road, access is via Cecil Street, located north of Crofton, then along Shasta Street to the gate maintained by Mr. Whittaker. Access via Osborne Bay Road is through a locked gate, situated opposite Maple Mountain Park, belonging to the Municipality of North Cowichan. The drill sites are situated on land owned by the Municipality of North Cowichan and on land belonging to Mr. Whittaker. Both owners granted permission to drill on their lands in return for monetary compensation for timber removed and for access road improvement.

TERRAIN

Elevation in the area of the drilling program varies from in the order of 300 m above sea level to roughly 150 m a.s.l.. The topography is characterised by terraces separated by steep slopes. The forest cover is mixed with fir and alder being the dominant species present. There is thick underbrush which primarily consists of salal and debris from forest thinning. The area adjacent to Breen Lake is swampy. Breen Lake is a intermittent body of water with a thick cover of water lillies, bullrushes, and skunk cabbage. The lake was used as the water source for drilling and did run dry for a short period before it was recharged by heavy rainfall. The heavy rainfall also collected on the roads producing up to 50 cm thick mud layers.

CLIMATE

The prevailing climate is mild with long hot and dry summers and autumns, short wet winters and cool wet springs. Dry forest conditions usually occur from July to October resulting in forest closures.

PROPERTY HISTORY

There are numerous old shafts, adits and open cuts on property. Most of these workings date from the turn of In 1917, Clapp (1917, p.384) reported that there were "a great many prospect drifts and pits, and not a few adits in Mounts Sicker, Richards and Brenton". These workings include the Jane showing which is located along strike from the 1987 program (Figure 2). The showing is comprised of two adits which sulphides, massive pyrrhotite, sphalerite chalcopyrite, which assayed up to 16.1 % Zn over 91 cm (Money, 1987). The recent history of the property is composed of 3 episodes. In 1969, Can Pac Minerals operated a geologic mapping and magnetometer survey program. From 1978 to 1979 S.E.R.E.M. conducted a detailed mapping and lithogeochemical program. The present claims West 1 to 4 were staked and recorded in 1982 and 1983 by R. Bilquest and L. Allen, who conducted a prospecting program on the claims. In 1984 Falconbridge optioned West 1 to 4 and staked West 5 to 11, these claims form current West claim group. Work by Falconbridge in 1984 consisted cutting a 40.8 km grid, on which detailed of

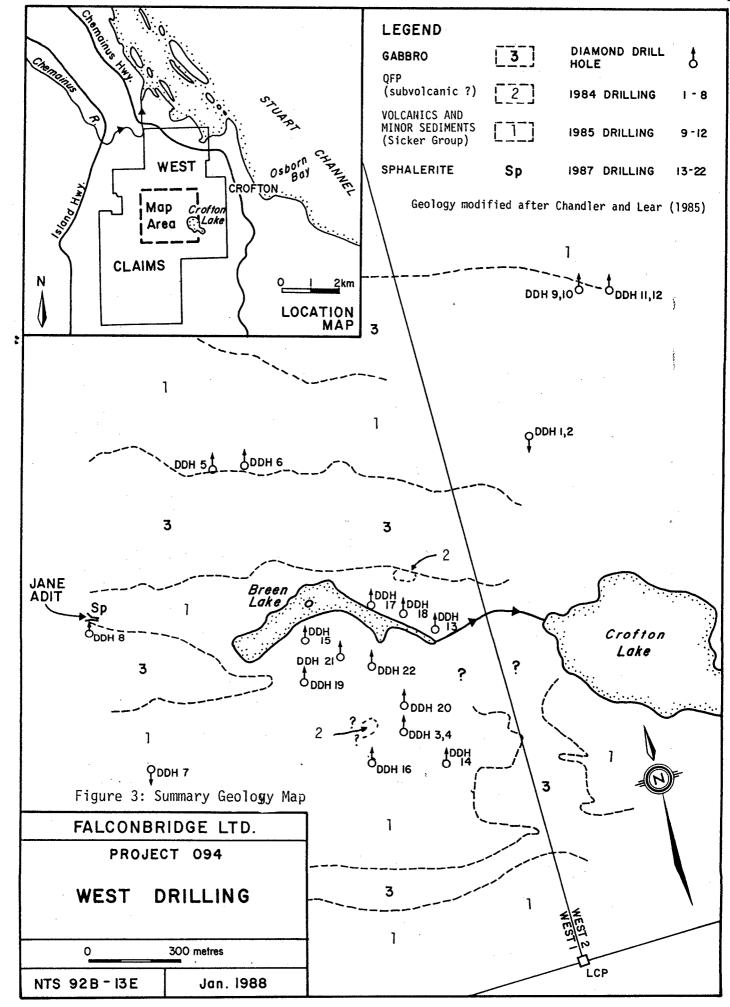
lithogeochemical sampling and a ground EM survey were conducted. Other work in 1984 included flying a airborne EM survey and the drilling of eight diamond drill holes, West84-1 to 8. In 1985 four more holes (WEST85-9 to12) were drilled by Falconbridge. The 1986 program consisted of a lithogeochemical survey, an IP survey and a B.A.Sc. thesis. Fieldwork on the claim group for 1987 was limited to the ten diamond drill holes discussed herein and the relogging of holes WEST84-3, 4 and 8.

CLAIM STATUS

The current West claim group and claim status is as follows:

TABLE 1: WEST CLAIM GROUP CLAIM STATUS

						_	*
CLA	M	RECORD#	NUMBER OF	UNITS	EXPIR	Y D	ATE
West	1	1163	15		February	13,	1998
West	2	802	15		March	14,	1998
West	3	803	1	* *	March	14,	1998
West	4	804	1	* *	March	14,	1998
West	5	1232	12		May	22,	1998
West	6	1233	8		May	22,	1998
West	7	1234	6		_		1998
West	8	1235	4		-	-	1998
West	9	1330	2		July	17.	1998
West	10	1346	6		August	-	1998
West	11	1347	4		August	8,	


^{*} Pending approval of assessment report

REGIONAL GEOLOGY

Two geologic domains comprise Vancouver Island; they are the Pacific and Insular Belts. The claims are underlain by the Insular Belt, which forms the vast majority of Vancouver Island, and is comprised of volcanic, plutonic and sedimentary rocks of Early Paleozoic to Early Tertiary in age.

The oldest rocks in the Insular belt are those of the Sicker Group, which underlie most of the property. The Sicker Group (Muller, 1980) is the remnant of a Devonian volcanic arc terrain, Wrangellia. This exotic terrain was emplaced in the Jurassic or Early Cretaceous. The claims are mainly underlain by the Myra Formation of the Sicker Group. Muller (1981) described the Myra Formation as a bimodal pyroclastic sequence with well bedded andesitic to rhyolitic tuff and breccia with minor interbeds of argillite. The Myra formation incorporates a rhyolite porphyry (Tyee Quartz Porphyry) which Muller (1980) described as occurring

^{**} Two post claim

as discordant sills (sic) and flows.

The regional metamorphic grade is greenschist facies. Potassium argon dating indicates regional metamorphism occured at 180 + / - 8 My (Muller, 1980). The temperature and pressure conditions of regional metamorphism in the area of the drilling program were in the order of 400 degrees Celcius and 7 kilobars respectively (Money, 1987).

The Myra Formation is known to host substantial volcanogenic massive sulphide deposits of the Kuroko-type. Examples include Westmin Resources' Buttle Lake Deposits, in excess of 20 million tonnes averaging 2 % Cu, 6 % Zn, 86 g/t Ag and 2.1 g/t Au, Abermin's Coronation Zone, 837,332 tonnes averaging 0.61 % Cu, 3.59 % Zn, 0.81 % Pb, 3.26 g/t Au and 89.49 g/t Ag (Bailes et al. 1987), and the Twin J deposits, 288,000 tons (Money, 1987) of a grade similar to the Buttle Lake deposits were mined between 1898 and 1948.

PROPERTY GEOLOGY

The West claims were mapped by Falconbridge Limited in 1984 at a scale of 1:2,500. The results are reported by S. Lear (1985) and summarized here (see Figure 3).

The property is underlain by east north east striking, steeply dipping andesitic and rhyolitic volcanics and volcaniclastics of the Paleozoic Sicker Group. Large, irregular gabbro bodies which generally strike subparallel to stratigraphy intrude the volcanics. Foliation is well developed in the volcanic units and is subparallel to strike.

The best sulphide mineralization yet discovered occurs in two small adits (less than 29 m of workings) known collectively as the Jane Showing. The geology of the adits is described by J.T. Fyles (1950).

The area immediately surrounding the adits was mapped in detail by D.P. Money (1987). The adits are reported to intersect several massive sulphide lenses (pyrrhotite-sphalerite-chalcopyrite) up to 0.46 m wide and 1.52 m long (Fyles, 1950). A 91 cm sample from one of these lenses assayed 16.1 % Zn.

DRILLING RESULTS

General

I.P. chargeability and resistivity anomalies in the vicinity of Breen Lake east of 11+00 E and south of 4+00 E were tested. Locations of the holes, geophysical and geochemical targets are shown in Figure 2. Several of the anomalies are roughly along strike of the Jane Showing. The area west of 11+00 E, including the Jane Showing, was not drilled because it is covered by crown granted claims and it is not clear who owns the base metal rights to them. Details of each of the holes are summarized in Table 2.

Mineralization

The northern-most chargeability anomaly (see Figure # 2) is due to strong pyrite mineralization (5-20 % pyrite over 10 m). The best intersection is 0.64 % Cu and 0.56 % Zn over 1.0 m from West87-20 at 6+00 S and 240 m below surface.

Sulphide mineralization is weaker (2-3 % pyrite) beneath the chargeability anomalies along the southern edge of Breen Lake (Figure 2), however, weak Cu and Zn mineralization does occur. A 0.5 m long sample of semi-massive pyrite-chalcopyrite in silicified mafic ash tuff from West87-20 at 6+95 S assayed 0.97 % Cu.

Overall sulphide content is less than 5 % below the southern most chargeability anomaly but Cu and Zn-rich sections do occur. A 1.2 m section of semi-massive sulphide in chlorite-carbonate altered felsic lapilli tuff in West87-14 at 9+85 S contains 1.14 Zn and 1,031 ppm Cu. Several other weak Zn and Cu anomalies were detected in the vicinity of this sample. A 0.15 m sample of massive pyrite-chalcopyrite from West87-14 at 9+45 S assayed 2.08 A 0.12 m sample of massive pyrite-chalcopyrite from West87-16 near a fault zone at the contact of a felsic dyke with a quartz eye felsic tuff assayed 0.37 % Cu. Holes West84-3 and located between West87-14 and 16, encountered significant chlorite-carbonate mineralization in chalcopyrite andesitic tuff near a contact with a rhyolitic tuff or flow. mineralized zone is 1.5 to 2.0 m wide in drill core, grades 0.31 to 0.34 % Cu dips 60 S, and projects to surface near the collar of West87-20.

Significant mineralization also occurs in two bodies of massive quartz feldspar porphyry which may represent rhyolitic dome complexes. A strongly chloritized 0.3 m long section of quartz feldspar porphyry in West87-16 at 9+00 S and 90 m depth contains 10 to 15 % pyrite and 2 to 3 % chalcopyrite. A 0.7 m sample centred on this mineralization assayed 0.48 % Cu. A 0.7 m band of semi-massive sulphides (pyrrhotite-pyrite) occurs in chlorite-carbonate altered quartz feldspar porphyry in West87-20 at 4+90 S and 390 m depth.

Significant sulphide mineralization does not exist beneath the low resistivity anomalies and it is assumed that the anomalies are due to lake bottom sediments.

The VLF conductors correspond to fault gouges and shears. A major fault occurs in West87 \pm 20 over 21.0 m of core centred at 7+55 S.

Lithologies and Alteration

The geology of this area is more complex than the sparse outcrops would suggest. While mapping indicated most of the area to be underlain by felsic tuffs and flows; drilling shows that

Table 2: DRILL HOLE SUMMARY TABLE

		i			
DRILL HOLE	LOCATION	DIRECTION	<u>LENGTH</u>	<u>TARGETS</u>	RESULTS
	Grid: 16+00 E 6+16 S Elevation: 180 m	Azimuth: 015 Dip: -45	230.7 m	- UTEM conductor at 5+50 S - YLF conductor at 5+40 S	- conductors explained by a fault
,	Grid: 16+32 E 10+39 S Elevation: 260 m	Azimuth: 015 Dip: -45	270.9 m	- IP chargeability anomaly from 9+20 to 9+90 S	- IP anomaly due to local pyritic felsic tuffs and pyritic chlorite - carbonate alteration - best intersections: 1.14 % Cu over 0.2 m (38.9 - 39.1m), 1.04 % Cu over 0.4 m (45.2 - 45.6m), 1.14 % Zn over 1.2 m (76.6 - 77.8m)
NESTO, 15	Grid: 11+92 E 6+54 S Elevation: 195 m	Azimuth: 015 Dip: -45	308.2 m	- weak UTEM conductor at 6+20 S - IP chargeability anomaly from 5+80 to 6+10 S with coincident low resistivity	 anomalies were not explained, but may be due to Breen Lake strong sulphides from 190 to 240 m including 2900 ppm Zn over 1.0 m (190.0 - 191.0m)
WEST87-16	Grid: 13+96 E 10+37 S Elevation: 281 m	Azimuth: 015 Dip: -45	288.0 m	- VLF conductor at 9+80 S - IP chargeability anomaly from 9+70 to 9+90 S - low resistivity at 8+80 S	 VLF conductor is due to a fault no cause located for the IP chargeability anomaly low resistivity likely due to strong pyrite and chalcopyrite in subvolcanic felsic intrusion and underlying altered felsic lapilli tuff, with 0.33 % Cu over 3.0 m (203.0 - 206.0m)
WEST87-17	Grid: 14+00 E 5+34 S Elevation: 177 m	Azimuth: 015 Dip: -45	171.6 m	- IP chargeability anomaly from 4+80 to 5+50 S	 very strong pyrite in dominantly andesitic tuffs with no significant metal values encountered
WEST87-18	Grid: 15+00 E 5+63 S Elevation: 180 m	Azimuth: 015 Dip: -45	177.7 m	- VLF conductor at 5+30 S - IP chargeability anomaly from 4+70 to 6+00 S	 VLF conductor is due to a fault high background sulphide level in the hole is the cause of the high chargeability values
WEST87-19	Grid: 11+90 E 7+80 S Elevation: 212 m	Azimuth: 015 Dip: -45	410.6 m	- VLF conductor at 7+10 S - UTEM conductor at 6+20 S - IP chargeability and resistivity anomalies from 5+80 to 6+10 S	 anomalies are not explained and may have been caused by Breen Lake weaker sulphides than overlying hole WEST87-15
WEST87-20	Grid: 15+00 E 8+50 S Elevation: 212 m	Azimuth: 015 Dip: -45	587.3 m	- VLF conductor at 7+10 S - UTEM conductor at 6+20 S - IP chargeability anomalies from 7+90 to 8+10 S and from 6+90 to 7+30 S	 EM conductors are caused by strong faults which dominate the upper 200 m of the drill hole IP anomalies are due to elevated pyrite contents strong sulphides from 370 to 420 m including 0.64 % Cu and 0.56 % Zn over 1.0 m (373.0 - 374.0m) hole ended in possible subvolcanic felsic intrusion with local semi-massive sulphides
WEST87-21	Grid: 13+00 E 7+03 S Elevation: 202 m	Azimuth: 015 Dip: -45	348.6 m	- UTEM conductor at 6+20 S - IP chargeability anomaly from 5+70 to 6+50 S	- anomalies are not explained - strong sulphides from 220 to 320 m - weak Cu (1000s ppm) at top in silicified andesite
WEST87-22	Grid: 14+00 E 7+30 S Elevation: 186 m	Azimuth: 015 Dip: -45	376.5 m	- VLF conductors at 7+10 S and 5+30 S - UTEM conductor at 6+10 S - IP chargeability anomalies from 6+80 to 7+10 S and from 4+80 to 5+50 S	- UTEM conductor is caused by a fault and the VLF conductors are unexplained - IP chargeability is caused by high sulphide contents throughout, particularly in the andesitic tuffs with 8279 ppm Cu over 1.0 m (18.0 - 19.0m)

andesitic volcanics with lesser amounts of felsic volcanics and possibly subvolcanic intrusions underlie the area. Where geology can be correlated on section, dips are less steep than expected; most are at 50-60 S. The following rock units were recognized:

Hornblende-bearing mafic flows/tuffs (unit 1)
Andesitic flows and tuffs (unit 2)
Dacitic flows and tuffs (unit 3)
Felsic flows and tuffs (unit 4)
Cherty sediments (unit 5)
Quartz feldspar porphyry (unit 6)
Felsic dykes (unit 7)
Gabbro (unit 8)

A distinctive hornblende-bearing mafic flow/tuff occurs the margin of the gabbro body which occurs just north Breen Lake (Figure 3). The rock is green-grey, fine-grained, massive (bedding is rarely observed) and contains 1 hornblende crystals less than 4 mm long. The hornblende is unevenly distributed and tends to occur in patches less than 10 cm in diameter. In many cases it is not possible to determine if the rock is a tuff or flow. Spotty epidote-calcite alteration is common as is pervasive silicification. The rock has been subjected to weak to very strong pervasive carbonatization.

Non hornblende-bearing Andesitic tuffs (ash, lapilli or feldspar crystal) and flows were encountered in all the holes. These rocks are characterized by spotty epidote +/- calcite alteration. The epidote +/- calcite spots are less than 1.0 cm to more than 10 cm in diameter. In some cases the spots are altered lapilli in others they are altered clumps of feldspar and in still others they have hazy and irregular outlines and may be purely alteration related. Weak to moderate pervasive silicification is also common in these rocks.

Many of the dacitic flows and tuffs, although dacitic in SiO2 composition, may be silicified andesites. Weak, spotty epidote alteration is common and in many cases the dacites are similiar in appearance to the andesites.

Three varieties of felsic tuffs/flows were recognized. The first is a distinctive quartz eye tuff. The quartz eyes are \langle 1 to 7 mm in diameter and comprise up to 15 % of the rock. The second is a grey, fine-grained sericitic and often pyritic ash tuff. The third is a sericitic lapilli tuff. A massive, feldspar porphyritic felsic tuff or flow occurs in many of the holes.

Cherty tuffite and argillite occurs in the southern part of the drill area and was intersected by West84-3, 4, West87-14 and 16. The sediments usually contain trace to 2 % bedded and fracture-controlled pyrite.

Massive, siliceous quartz feldspar porphyry (QFP), likely a felsic flow, dome, or subvolcanic intrusion occurs in holes

West87-14, 16 and 20. Two relatively large bodies of QFP were found. West87-16, on section 14 E, intersected 73 m of QFP between 8+96 S and 9+75 S which contains a 0.3 m section with 10 to 15 % pyrite and 2 to 3 % chalcopyrite (0.48 % Cu/0.7 m). A 50.8 m long section of felsic lapilli tuff occurs immediately below the QFP. Together the two units form the largest section of felsic volcanic rock drilled so far. A second body was intersected in the last 40 m of West87-20 at a true depth of 380 m and includes a 0.7 m section of semi-massive sulphides (pyrrhotite-pyrite-chalcopyrite) in a chlorite-carbonate altered zone. In both cases the rock is similiar in appearance to the rhyolite "domes" which occur in the footwall of Abermin's Lara deposits (Bailes et al, 1987).

A large south dipping gabbro body occurs along the northern edge of the drill area (Figure 3). Holes West87-13, 15, 17, 18, 21 and 22 ended in the margin of this body. Hole West84-8 was entirely within the gabbro. The gabbro is massive, medium to dark greeen, fine-grained, feldspar porphyritic and often ilmenite-bearing (1-5%).

REFERENCES

- BAILES, R.J., BLACKADAR, D.W., and KAPUSTA, J.D. 1987: The Lara Polymetallic Massive Sulphide Deposit, Vancouver Island, British Columbia. Northwest Mining Association, 93rd Annual Convention, 1987, Spokane, Washington. 14 p.
- CLAPP, C.H. and COOKE, H.C. 1917: Sooke and Duncan Map-Areas, Vancouver Island. Geological Survey of Canada. Memoir 96.
- FYLES, J.T. 1950: Jane, Sally and Sally No. 2. Minister of Mines Annual Report, 1949. British Columbia Department of Mines, Victoria. p. A224-A225.
- LEAR, S. 1985: Summary Report West Claims PN 094. Unpublished Falconbridge Limited report.
- MONEY, D.P. 1987: Geology of the Jane Volcanogenic Massive Sulphide Showing and its Host Rocks, West Claims, Crofton Area, British Columbia. B.A.Sc. Thesis. University of Toronto. 73 p.
- MULLER, J.E. 1980: The Paleozoic Sicker Group of Vancouver Island. Geological Survey of Canada. Paper 79-30. 22 p.
 - 1981: Insular and Pacific Belts; in Field Guides to Geology and Mineral Deposits, Geological Association of Canada Mineralogical Association of Canada Geophysical Union, Joint Annual Meeting, 1981, Calgary. Edited by R.I. Thompson and D.G. Cook. p. 316-334.

STATEMENT OF EXPENDITURES

CLAIMS:

WEST CLAIM GROUP: work performed on the WEST 1 and

WEST 2 claims

MINING DIVISION: Victoria

NTS:

092B/13E

PERIOD OF WORK: September 15, 1987 to December 15, 1987

COSTS:

1. Personnel

D.Money, geologist 40 days @ \$115.00/day

\$4,600.00

J.Pattison, geologist

30 days @ \$136.00/day

\$4,080.00

T.Cowans, technician

50 days @ \$96.50/day

\$4,825.00

D.Cochrane, technician

50 days @ \$70.00/day

\$3,500.00

\$17,005.00

\$17,005.00

2. Vehicle Costs

2 GMC 4x4 pickups

2677 MK: 50 days @ \$30.00/day 2678 MK: 50 days @ \$30.00/day

\$1,500.00

\$1,500.00

Redhawk Rentals

1 Toyota Landcruiser

50 days @ \$35.00/day

\$1,750.00

\$4,550.00

\$4,550.00

3. Room and Board

120 man-days @ \$30.00/day

\$3,600.00

4. Diamond Drilling Costs

Burwash Enterprises Ltd., Cobble Hill, B.C.

DDH WEST87-13

\$12,724.55

(230.7 m)

DDH WEST87-14 (271.0 m)	\$15,914.55	·	
DDH WEST87-15 (308.1 m)	\$15,995.72		
DDH WEST87-16 (288.0 m)	\$17,756.76		
DDH WEST87-17 (171.6 m)	\$8,560.25		·
DDH WEST87-18 (178.0 m)	\$8,798.00		
DDH WEST87-19 (410.6 m)	\$22,516.78		
DDH WEST87-20 (587.3 m)	\$34,245.61		
DDH WEST87-21 (348.7 m)	\$18,202.77		
DDH WEST87-22 (376.7 m)	\$20,676.28		
	\$175,391.23	\$175,391.23	
Caterpillar Tracto			
62 hours @ \$75.00/	'hr	\$4,650.00	
Core Boxes		\$1,673.75	
Sperry Sun Single		A. .	
3 months @ \$1575/m	nonth	\$4,725.00	
· ·		\$186,439.98	\$186,439.98

5. Analytical Costs

a. Base and Precious Metals

Bondar-Clegg and Company Ltd., Vancouver, B.C. Cu, Pb, Zn, Ag, Cd, Co, Mn, Fe, Ni, As, Mo, Au, Ba

1426 samples @ \$22.75/sample

\$32,441.50

b. Major Oxide Analyses

X-Ray Assay Laboratories, Don Mills, Ont.

279 samples @ \$22.65/sample

\$6,319.35

\$38,760.85

\$36,760.85

6. Report Preparation

Drafting, typing, computer use, etc.

\$1,000.00

TOTAL:

\$251,355.83

\$240,000.00 to be applied as follows:

10 years to West 1

10 years to West 2

10 years to West 3

10 years to West 4

10 years to West 5

10 years to West 6

10 years to West 7

10 years to West 8

10 years to West 9

10 years to West 10

10 years to West 11

Balance (\$11,355.83) to be applied to Falconbridge Limited PAC account.

STATEMENT OF QUALIFICATION

- I, John Pattison, of Burnaby, B.C. declare that:
- I am a geologist permanently employed with Falconbridge Limited, at 701-1281 West Georgia Street, Vancouver, B.C. V6E 3J7
- 2. I am a graduate of the University of Toronto with a B.Sc. degree in geology (1983).
- 3. Since graduating, I have practiced my profession in Ontario, the Northwest Territories and British Columbia.

Dated at Vancouver, B.C. this 4th day of February , 1988.

JOHN M. PATTISON

STATEMENT OF QUALIFICATIONS

I, David P. Money, an employee of Falconbridge Limited, with offices at 701 - 1281 West Georgia Street, Vancouver, British Columbia, do hereby declare that:

- 1. I am a graduate of the University of Toronto, Toronto, Ontario (1987) with a B.A.Sc. degree in Geological Engineering, Mineral Exploration Option.
- 2. For the past six years I have been actively involved in mineral exploration.
- 3. I am an Associate Member of the Geological Association of Canada.

Dated at Vancouver, B.C., this 5th day of February, 1987.

David P. Money

Appendix A

Diamond Drill Logs

PROPERTY: West Claims

FALCONBRIDGE LIMITED
WEST84-3

DIAMOND DRILL LOG

Hole Location: 15+00 E 9+25 S

NTS: 092B/13E UTM: 5411362 N, 450480 E

Azimuth: 15 Elevation: 240 m Dip: -45 Length: 114.6 m

Started: Completed:

Completed:
Purpose:

DIP TESTS

Core Size:NO and BO

Logged By: relogged by D. Money

Assayed By: X-Ray Assay and Bondar-Clegg

Section No.: Line 15+00 East

Claim No. West 1

Drilling Co.:

Page Number

1

Azi- Azi-Length muth Dip Length muth Dip

91.44 20.0 -44.0

From	To		Sample	From	To	Width	% Total	Cu	Pb	Zn	Ασ	Au	Ва
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

- .0 5.5 OVERBURDEN AND CASING
- 5.5 8.8 FELSIC TUFF
 Felsic tuff with minor ash tuff beddings at 42 degrees to core axis. Is feldspar and quartz eye bearing. Is oxidized with goethite stained fractures. There is trace pyrite.
- 8.8 9.2 SILICIFIED MAFIC EPIDOTE SPOTTED LAPILLI-BLOCK TUFF
 Silicified mafic lapilli tuff with epidote lapilli and AF05901 8.8 11.3 2.5 n/a 17 n/a 48 n/a n/a 321 quartz spots. Is dark grey to green.
- 9.2 10.2 CHERTY TUFFITE Goethite stained fractures occur. Is siliceous, light grey and has bedding at 24 degrees to core axis.
- 10.2 11.3 SILICIFIED MAFIC EPIDOTE SPOTTED LAPILLI-BLOCK TUFF
- 11.3 16.7 STRONGLY SILICIFIED CHERTY TUFF WITH EPIDOTE SPOTS
 Dark grey with goethite stained fractures. Dacitic (?).
 Hosts minor quartz eyes and % % feldspar grains.
- 16.7 51.6 LOCALLY BLOCKY FELSIC TUFF OR FLOW Moderately to strongly sericitic with on average 10 %, 7 16.7 20.0 AF05902 15 n/a n/a 1900 to 15 %, 2 to 9 mm, quartz eyes. Light grey to medium AF05963 19.4 19.9 .5 3 10 ₹5 95 30 <1 grey with goethite stained rusty fracture. Locally vuggy. 31.0 2.0 AF05903 29.0 n/a 12 n/a n/a n/a 1520 There is trace disseminated and fracture controlled pyrite. 32.0 AF05964 31.5 . 5 134 ₹5 92 <1 10 350

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST84-3 2

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba b) (ppm)
		Foliations:. 35.9: 75 degrees to core axis. 42.5: 65 degrees to core axis. 37.7 37.8 Chloritic zone with 20 % pyrite. 46.7 46.9 Mafic dyke. 47.8.5 Cm pyrite - pink calcite veinlet. 46.9 51.6 Felsic as before.	AF05904 AF05905	39.0 49.0	41.0 51.0	2.0	n/a n/a	<10 11	n/a n/a	33 48	n/a n/a		2340 1670
51.6	53.0	SILICIFIED MAFIC LAPILLI TUFF Zoisite splotches after lapilli and chloritization on fracture with strong pervasive silicification. Foliation: 80 to 90 degrees to core axis.					* 2						
53.0	60.7	FELSIC FLOW? Massive with rounded quartz eyes. There are minor goethite fracture and disseminated pyrite. Minor calcite and epidote veinlets parallel to foliation. Oxidized to 57.0 m. Reduced to BQ at 55.2 m. The foliation is from 80 to 90 degrees to core axis.	AF05906	59.0	60.7	1.7	n/a	10	n/a	55	n/a	n/a	1710
60.7	64.4	SPLIT CORE - RUBBLE: CHLORITE-CARBONATE-(PYRITE)	AF05907	60.7	64.4	3.7	n/a	94	n/a	201	n/a	n/a	1630
64.4	72.9	FELSIC FLOW Medium to light grey - green with minor chlorite on fracture. Hosts 7 to 10 %, <= 1 mm, feldspar grains and minor quartz eyes.											
72.9	84.3	RUBBLE Chloritization and sericite felsic and (?). Local chlorite - calcite, silicified (?), (mnr crty siltstone).	AF05908	75.0	77.0	2.0	n/a	3560	n/a	215	n/a	n/a	708
84.3	92.9	MAFIC EPIDOTE LAPILLI TUFF Zoned lapilli with dark green core and yellow rim. There is minor calcite and pyrite, trace to 1 % pyrite. There are local felsic ash tuff beds at 45 degrees to core axis.	AF05909	85.0	87.0	2.0	n/a	135	n/a	125	n/a	n/a	135

92.9 94.0 MAFIC FLOW

Chlorite schist with 3 to 5 % dark specks, not magnetite, metamorphosed hornblende (?).

Foliation: 63 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: WEST84-3 Page Number 3

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Chloritic felsic tuff with pink calcite veins and rare epidote splotches. There are minor calcite - pyrite veinlets, up to 2 cm. 108.3 109.8 Strong epidote - calcite veins with 1 % pyrite. Foliation: 45 to 60 degrees to core axis throughout.	AF05910 AF05965		101.0 109.8		n/a 1	48 32	n/a <5	76 169	n/a <1	n/a 12 5 9	60 80

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST84-4 1

Hole Location: 15+00 E 9+25 S

NTS: 092B/13E

UTM: 5411362 N, 450480 E

Azimuth: 15

Elevation: 240 m

Dip:

-60 Length: 148.9 m

Logged By: relogged by D. Money

Section No.: Line 15+00 East

Drilling Co.:

Claim No. West 1

Assayed By: X-Ray Assay and Bondar-Clegg

Core Size: NQ and BQ

Started: Completed:

Purpose:

DIP TESTS

Azi-Azi-Length muth Dip Length muth Dip

79.30 16.0 -59.0 148.80 21.0 -56.0

From	To		Sample	From	To	Width	% Total	Cu	Рb	Zn	Ag	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

AF05911

AF05966

AF05912

AF05913

AF05914

AF05915

10.0

10.5

24.0

39.0

54.0

69.0

12.0

26.0

41.0

56.0

71.0

12.3 1.8

2.0

2.0

2.0

2.0

2.0

3.8 OVERBURDEN AND CASING

3.8 7.1 SILICEOUS CHERTY TUFFITE/SILTSTONE Grey, siliceous with bedding at 42 degrees to core axis and mainly blocky, highly fractured core.

7.1 15.8 EPIDOTE SPOTTED MAFIC FLOW/TUFF Strong pervasive silicification. Epidote, some as alteration splotches and some lapilli. On average < 1 % calcite - chlorite - pyrite veinlets.

10.5 12.3 1.5 % pyrite in fracture controlled chloritization and carbonatization.

15.8 76.4 FELSIC OUARTZ-FELDSPAR PHYRIC TUFF/FLOW

Felsic flow / tuff (?) with 7 to 12 %, 2 to 12 mm, average 5 mm, quartz eyes. Moderately sericitic with medium grey colour with light blue tinge. Siliceous. Trace disseminated and fracture controlled pyrite. Local goethite and sericite lined fractures. Oxidized to 60.4. Reduced to BQ at 58.0. 64.1 76.4 Dyke (?) massive light grey rock with 10 to 15

%, up to 2 mm, feldspar laths and trace to 2 %, averages 1 %, pyrite.

77.5 CHLORITE - CARBONATE ALTERATION ZONE

AF05916 76.4 77.5 1.1

n/a

n/a

n/a

n/a

100

131

233

109

59

n/a

n/a

n/a

n/a

n/a

56

34

39

16

28

n/a

n/a

n/a

n/a

n/a

₹5

n/a 2090

n/a 3180

n/a 3940

n/a

760

623

< 20

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b). (ppm)
		Chloritic felsic tuff with minor volcanics. Core split and in very poor shape - see old logs.	AF05917	89.0	91.0	2.0	n/a	228	n/a	134	n/a	n/a	2230
100.9	107.2	CHLORITIC MAFIC TUFF With minor felsic ash tuff beds and epidote - calcite splotches. Bedding is at 39 degrees to core axis. There is local pyrite in calcite - chlorite.	AF05918	104.0	106.0	2.0	n/a	79	n/a	301	n/a	n/a	1420
107.2	127.9	FELSIC TUFF Light grey sericitic tuff with 10 %, 2 to 7 mm, quartz eyes and 7 %, 2 mm, feldspar grains. The foliation is at 63 degrees to core axis. There is up to 2 cm zones of chlorite - calcite - pyrite.	AF05919	119.0	121.0	2.0	n/a	40	n/a	69	n/a	n/a	1810
127.9	148.9	EPIDOTE SPOTTED CHLORITIC FELSIC TUFF Blocky, highly fractured core and split with local chloritization calcite pyrite. SEE OLD LOG.	AF 05920	134.0	136.0	2.0	n/a	85	n/a	153	n/a	n/a	199

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number West84-8 3

158

114

122

n/a

n/a

n/a

n/a

n/a

139

111

95

n/a

n/a

n/a

146

132

n/a

n/a

97

Hole Location:

5+05 E 6+13 S

NTS: 092B/13E

UTM: 5411918 N, 449591 E

Azimuth: 15 Dip: -45 Elevation: 90 m Length:

91.4 m

Section No.: Line 5+00 East

Logged By: relogged by D. Money

Drilling Co.:

Claim No. West 1

Assayed By: X-Ray Assay

Core Size: NQ and BQ

Started: Completed:

Purpose: To locate Zn-Cu mineralization underlying

DIP TESTS

the Jane showing.

Azi-Azi-Length muth Dip Length muth Dip 48.80 10.0 -42.091.40 14.0 -42.0

From	To		Sample	From	To	Width	% Total	Cu	Pb	Zn	Ag	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

AF05921

AF05922

AF05923

11.0

29.0

58.0

14.0

32.0

61.0

3.0

3.0

3.0

3.7 OVERBURDEN AND CASING

64.4 GABBRO 3.7

3.7 11.6 Blocky, highly fractured core. Coarse grained gabbro with on average 50 % chlorite, 30 % hematitzation and 20 % feldspar - epidote, all 1 to 3 mm. The feldspars are variably epidotized grains. Local strong epidote alteration, up to 15 cm. occurs and locally hosts trace chalcopyrite blebs. There are quartz - carbonate veinlets throughout at 30 to 90 degrees to core axis.

11.6 14.3 Coarse grained gabbro.

14.3 18.5 Fine-grained plagiophyric gabbro with fine-grained green matrix hosting 7 to 10 % , 1 to 3 mm, plagioclase grains. Minor fracture controlled calcite veinlets, (< 1 mm, occur at 30 to 60 degrees to core axis.

18.5 22.9 Coarse grained gabbro as from 3.7 to 14.3.

22.9 28.3 Fine-grained gabbro with 20 %, 1 to 5 mm, feldspar grains.

28.3 46.6 Medium grained gabbro with 2 to 4 mm grains of chlorite, 60 %, 30 % feldspar and 10 % hematitzation.

46.6 64.4 Fine-grained as from 22.9 to 28.3.

61.3 64.4 Strong epidotization and carbonatization with local trace chalcopyrite blebs.

64.4 91.4 SHEARED ALTERED FINE GRAINED GABBRO Very fine-grained sheared gabbro with fine-grained chloritic matrix hosting 5 to 15 % stretched feldspar

AF05924 89.0 107 n/a 123

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number

West84-8

Sulphides (ppm)

Width % Total Cu Pb Ag Au

(ppm) (ppm)

2n

(ppm)

(mpd) (dqq)

From (m) (m)

> grains. There are local epidote alteration bands up to 5 cm. Local calcite veinlets on fractures parallel to foliation. Minor calcite grains and calcite and / or epidote augens to 1 cm. Foliation: 60 to 70 degrees to core axis.

From

(m)

To

(m)

Sample

No.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-13

114

144

105

245

144

275

224

282

2

3

n/a

An

70

40

60

144

<20

<20

150

< 20

⟨5

<5

15

n/a

⟨5

⟨5

(5

Aσ

77

88

77

57

62

60

71

95

6

n/a

<1

<1

⟨1

<1

(1

(1

n/a

Hole Location: 16+00 E 6+16 S

NTS - 92B13

UTM: 450650 E 5411645 N

Azimuth: 15

From

Elevation: 180 m

Dip: -45 Length: 230.7 m

Started: 4-NOV-87 Completed: 7-NOV-87

Section No.: 16+00 E

Claim No. WEST 1

Logged By: J. Pattison

Width % Total

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & Xrav Assay

Core Size: NO

Purpose: To test UTEM conductor at 5+50S

and VLF conductor at 5+40 S

DIP TESTS

Length	Azi- muth	Dip	Length	Azi- muth	Dip
63.10 156.00	14.0 16.0	-45.0 -45.0	230.70	19.0	-45.0

(m)	(m)DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)
.0	1.5 CASING											
												•
1.5	21.6 SILICIFIED EPIDOTE SPOTTED LAPILLI TUFF											
	Rock is medium green-grey and relatively massive. Fracture	AG07751	3.5	4.5	1.0	6	30	13	92	<1	∢5	440
	surfaces are rusty to a depth of 9 m. Moderate patchy	AG07752	4.5	6.0	1.5	5	107	10	. 65	<1	<5	730
	silicification gives rock a mottled appearance. Pale	AF00201	6.0	9.0	3.0	n/a	174	n/a	68	n/a	n/a	107
	olive-green epidote alteration patches comprise about	AG07753	6.0	7.5	1.5	3	225	7	69	<1	₹5	80
	5-10 % of the rock. Ash to lapilli-sized epidotized	AG07754	7.5	9.0	1.5	2	161	6	56	<1	₹5	<20
	feldspar crystals comprise 5-15% of the core and bleached	AG07755	9.0	10.5	1.5	4	129	7	75	<1	<5	50
	lapilli-sized clasts are common in the first 6 m of the	AG07756	10.5	12.0	1.5	4	108	. 7	74	<1	<5	200

AG07757

AG07758

AG07759

AF00202

AG07760

AG07761

AG07762

AG07763

12.0

13.5

15.0

16.0

16.5

18.0

19.5

20.5

13.5

15.0

16.5

19.0

18.0

19.5

20.5

21.6

1.5

1.5

1.5

3.0

1.5

1.5

1.0

1.1

Sample From

- 2.6 2.9 Blocky, highly fractured core.
- 3.8 0.5 cm band of fine-grained pyrite at 65 degrees to core axis.

unit. Rock is intermediate in composition over the first

pyrite. Lower contact is at 66 degrees to core axis.

6.0 m. 3-5 % disseminated fine-grained subhedral-euhedral

- 3.9 1.0 cm wide rusty, pitted band of massive pyrite at 70 degrees to core axis.
- 6.0 6.1 FAULT GOUGE; rock is crushed and has a high clay component. Not possible to measure the orientation
- 6.1 3.0 cm wide irregular bull quartz vein.
- 13.1 1.0 cm wide fault gouge at 45 degrees to core axis.
- 13.8 0.5 cm wide band of pyrite at 70 degrees to

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

		•	DIAMOND DRIBE EOG .											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
			core axis.											
		15.3	Minor 0.3 cm wide fault gouge at 60 degrees to core axis.											
		15.7 15.8 16.4 17.4	Blocky, highly fractured core. Blocky, highly fractured core. 0.3 m of lost core											
		20.7	Minor fault gouge, not possible to measure orientation.											
		20.9	Slip at 33 degrees to core axis.											
21.6	26.6	Similiar silicified & dissemin	POTTED ANDESITIC FELDSPAR CRYSTAL TUFF to 2.4 to 21.6 m but no bleached clasts and not d. Up to 15 % epidotized feldspar crystals. 3-5 nated pyrite overall. Lower contact is all over 3.0 cm.	AG07764 AF00203 AG07765 AG07766	21.6 22.0 23.1 24.5	23.1 25.0 24.5 26.6	1.5 3.0 1.4 2.1	2 n/a 2 2	155 139 192 293	7 n/a 9 5	45 90 97 122	1 n/a <1 <1	<5 n/a <5 <5	<20 53 <20 <20
		22.4	1.0 cm wide band of semi massive pyrite-chlorite at 73 degrees to core axis. Rock is altered for 20 cm on either side of the band.					•						
		23.7	1.0 cm wide fault gouge at 40 degrees to core axis.				··							
		24.4 25.0	Blocky, highly fractured core.									•		
		25.3 25.6	Blocky, highly fractured core.											
26.6	28.2	Medium grato lapilitis lapilitransition	D EPIDOTE SPOTTED FELDSPAR CRYSTAL TUFF ey very fine-grained and siliceous with 5-7 % ash i-sized epidotized feldspar crystals and up to li-sized felsic clasts. This unit is nal between the epidote spotted mafic tuff above ericitic non epidote-bearing mottled siliceous w.	AF00204 AG07767	26.6 26.6	28.2 28.2	1.6 1.6	n/a 2	23 140	n/a 10	51 71	n/a 1		108 <20
,		3-5 % disable to the second se	seminated fine to medium-grained pyrite overall. tact is arbitrarily placed where epidotized dissappear.			,								
28.2	34.1	Mottled properties of the moderately	OTTLED SILICEOUS ROCK inkish-grey to green, very fine-grained, hard and Less than 5% ash-sized feldspar crystals. Pink ue to very finely disseminated thermal biotite y microfractured very weakly sericitic at top of sericite content increases down hole and it is	AG07768 AG07769 AG07770 AG07771 AF00205	28.2 29.2 29.7 30.6 31.0	29.2 29.7 30.6 31.6 34.0	1.0 .5 .9 1.0 3.0	4 5 5 5 n/a	40 22 14 168 46	10 15 11 8 n/a	68 63 51 60	<1 <1 1 1 n/a	10 10 <5	130 230 170 350 651

34.2

37.3

core axis.

degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Minor 3 mm wide fault gouge at 33 degrees to

3.5 cm thick band of semi massive pyrite at 65

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)
		mariposit medium-gr associate chlorite.	y sericitic at the bottom of the unit. Trace e and 5-10% disseminated and banded ained pyrite. In many places pyrite is d with patchy and fracture controlled (?) 30 cm wide crushed fault zone at 70-90 degrees xis at lower contact.	AG07772 AG07773 AG07774	31.6 32.6 33.4	32.6 33.4 34.1	1.0 .8 .7	7 7 4	24 37 24	15 11 12	73 96 62	<1 <1 <1	<5 <5 <5	450 1500 1200
		Foliation Foliation	: s at 75 degrees to core axis at 29.6 m. is at 70 degrees to core axis at 31.6 m. is at 60 degrees to core axis at 32.5 m. de fault gouge at 70 degrees to core axis at 33.1			·	·		-			. :		
		29.6	3.0 cm thick bed of massive pyrite which fines down hole. Down hole contact is sharp at 74 degrees to core axis.											
		31.6	2.5 cm thick band of massive pyrite at 65 degrees to core axis.	•										
		31.6 33.4	15, 1 to 10 mm thick bands of massive pyrite at 70-90 degrees to core axis.											
		33.1	3.5 cm fault gouge.											
		33.8 34.1	Crushed brecciated fault zone at 70-90 degrees to core axis. Abundant broken quartz vein material.					٠						
34.1	39.4	Medium gr large (2- cm wide a STRUCTURE Foliation Minor sli Minor sli Minor sli 1.0 Cm wi m.	is at 70 degrees to core axis at 35.3 m. p at 70 degrees to core axis at 35.4 m. p at 80 degrees to core axis at 35.9 m. p at 60 degrees to core axis at 36.5 m. de fault gouge at 70 degrees to core axis at 36.9	AG07775 AF00206 AG07776 AG07777 AG07778 AG07779	34.1 35.0 35.1 36.1 37.1 38.1	35.1 38.0 36.1 37.1 38.1 39.4	1.0 3.0 1.0 1.0 1.0	4 n/a 2 1 5 6	42 16 25 9 11 11	7 n/a 11 12 25 16	56 41 85 63 19 18	<1 n/a 1 1 1 <1	n/a <5 <5 <5	1200 1510 1400 1300 1400 1300
		Minor 2 m	m slip at 70 degrees to core axis at 38.2 m.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Minor 2 mm slip at 60 degrees to core axis.				•							
		38.6 39.2 Crushed sheared fault zone at 60-70 c/a.											
		38.2 39.4 Bull quartz vein at 80 degrees to core axis.			•								
39.4	41.3	SERICITIC-CHLORITIC FELSIC TUFF Similiar to 34.1 to 39.4 m except no quartz eyes and somewhat more chloritic. 7-10 % pyrite overall. Rock is crushed and there are many fault gouges over the first 0.8 m of the interval. Lower contact is gradational over 10 cm.	AG07780	39.4	41.3	1.9	5	145	6	86	<1	<5	870
		STRUCTURE: 2.0 cm wide fault gouge at 39.4 m. Not possible to measure orientation. 2.0 cm wide fault gouge at 45 degrees to core axis at 39.6 m. Minor fault gouge at 65 degrees to core axis at 39.8 m. 1.5 cm wide fault gouge at 68 degrees to core axis at 40.1 m.											a.
		Slip at 80 degrees to core axis at 40.6 m. Slip at 55 degrees to core axis at 41.0 m.		·	-								
		40.7 2 mm band of massive pyrite at 80 degrees to core axis.				•							
41.3	47.0	EPIDOTE SPOTTED ANDESITIC TUFF Pale green-grey with 15 % 1-3 mm epidotized feldspar crystals and (5% 1-3 mm chlorite spots (after hornblende ?) which are often centred on pyrite. Rock has a banded appearance. Banding is at 60-70 degrees to core axis. Lower contact is gradational over 0.5 m. 44.8 2 mm fault gouge at 55 degrees to core axis.	AG07781 AF00207 AG07782 AG07783 AG07784 AG07785	41.3 42.0 42.8 43.8 45.0 46.0	42.8 45.0 43.8 45.0 46.0 47.0	1.5 3.0 1.0 1.2 1.0	3 n/a 3 3 5	54 42 95 167 150 242	5 n/a <5 10 6 5	54 60 46 39 45 56	<1 n/a <1 <1 <1 <1	<5 n/a <5 <5 <5 <5	<20 59 <20 <20 60 120
		43.3 43.7 3.0 cm wide quartz-carbonate vein runs parallel to core axis. Trace chalcopyrite.											
47.0	49.2	SILICIFIED EPIDOTE SPOTTED TUFF Medium grey, 1-4 mm epidote spots common. Both upper and lower contacts are gradational. 5 % disseminated pyrite overall. 47.7 47.9 Two bands of massive pyrite. First is 3.5 cm wide and is located along the downhole edge of a 4.0 cm wide quartz-carbonate vein oriented at	AF00208 AG07786 AG07787 AG07788 AG07789	47.0 47.0 47.7 47.9 48.7	48.0 47.7 47.9 48.7 49.2	1.0 .7 .2 .8 .5	n/a 5 45 5 5	<10 39 126 150	n/a 7 43 <5 8	63 82 43 259 520	n/a <1 <1 <1 <1	<5 <5	266 240 180 <20 <20
		60 degrees to core axis. The second band occurs			<i>;</i>			•					

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

From	То			Comm10	Puam	m -	17:344	0. makal	g.,	D1	a	3		
(m)	(m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
			3.0 cm below the first, is 12 cm thick and is oriented at 75 degrees to core axis.											
		48.9	3 mm wide band of pyrite-chalcopyrite at 80 degrees to core axis.											
		47.7	1.0 cm wide fault gouge at 60 degrees to core axis.											
49.2	53.0	Green-greepidote s	POTTED ANDESITIC TUFF Ty, relatively massive with up to 10% 1-4 mm pots (altered feldspars). 3-6 % disseminated Lower contact is at 70 degrees to core axis. Slip at 40 degrees to core axis.	AF00209 AG07790 AG07791 AG07792	49.2 49.2 50.0 51.5	50.3 50.0 51.5 53.0	1.1 .8 1.5 1.5	n/a 5 6 4	289 158 141 98	n/a <5 6 6	125 116 63 76	n/a <1 <1 <1	n/a <5 <5 <5	47 <20 <20 <20
53.0	57.1	Similiar grey and sericitic	D EPIDOTE SPOTTED TUFF to 49.2 to 53.0 m but more siliceous, lighter in places much richer in sulphide. Moderately Two 10-15 cm wide zones of semi-massive to syrite. Lower contact is at 60 degrees to core axis	AF00210 AG07793 AG07794 AG07795 AG07796	53.0 53.0 54.5 55.9 56.5	57.1 54.5 55.9 56.5 57.1	4.1 1.5 1.4 .6	n/a 3 6 20 7	70 96 78 337 36	n/a <5 <5 23	65 47 64 66 86	n/a <1 <1 <1 <1	n/a <5 <5 40 15	241 280 50 60
		53.3 53.5	Strong pervasive silicification.											
		53.7	2 cm wide band of semi massive pyrite at 90 degrees to core axis.											
		55.8	5.0 cm wide fault gouge at 65 degrees to core axis.					*						
		55.9 56.0	Semi massive pyrite in soft crushed clay-rich rock. Minor slips and fault gouges at 65-70 degrees to core axis. Pyrite occurs in quartz-carbonate matrix.											
		56.2	Pyrite rich (40%) fault gouge 3 cm wide at 65 degrees to core axis.											
		56.3	15 cm thick band of massive pyrite in a quartz-carbonate matrix.											
57.1	62.9	Green-gre spots (al hornblend and is at pyrite ov	DE-BEARING EPIDOTE SPOTTED MAFIC TUFF/FLOW by fine-grained with up to 5 % 1-5 mm epidote tered feldspars) and up to 3 %, 1-2 mm be crystals. Bedding is apparent in a few places 60-70 degrees to core axis. 5 % disseminated terall and 25 % pyrite immediately above lower Lower contact is a minor slip at 72 degrees to	AG07797 AF00211 AG07798 AG07799 AG07800	57.1 58.0 58.1 60.1 61.6	58.1 61.0 60.1 61.6 62.9	1.0 3.0 2.0 1.5		113 164 200 194 135	6 n/a 6 5 5	70 74 58 56 70	<1 · · · · · · · · · · · · · · · · · · ·	10 n/a <5 55 35	<20 148 80 60 80

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag	Au (ppb	Ba) (ppm)
		core axis.												
		Bedding is Bedding is Bedding is	at 63 degrees to core axis at 58.0 m. at 63 degrees to core axis at 59.0 m. at 65 degrees to core axis at 59.1 m. at 60 degrees to core axis at 60.6 m. at 68 degrees to core axis at 61.0 m.											
62.9	68.4	Similiar to sericitic degrees to 6-8 % diss medium-gra	HORNBLENDE-BEARING EPIDOTE SPOTTED MAFIC TUFF to 57.1 to 62.9 m except more siliceous, and slightly less green. Foliation is at 70 core axis. eminated and banded pyrite. Pyrite is fine to ined. Lower contact is arbitrary. Several < 1.0 cm wide bands of pyrite at 70 degrees to core axis.	AG07801 AF00212 AG07802 AG07803 AG07804 AG07805 AG07806	62.9 63.0 64.0 64.2 65.2 66.7	64.0 65.0 64.2 65.2 66.7 67.4 68.4	1.1 2.0 .2 1.0 1.5 .7	8 n/a 35 6 6 5	39 50 62 62 92 96	7 n/a 81 7 5 5	61 72 <1 60 45 52 66	<1 n/a <1 <1 <1 <1 <1	<pre></pre>	550 587 340 190 40 <20 150
		63.4	3 mm fault gouge at 70 degrees to core axis.											
		64.0	16 cm wide silicified zone with 35 % pyrite at 70 degrees to core axis.	. •									•	
		68.2	8 cm wide altered (quartz-carbonate) zone with 25 % pyrite at 70 degrees to core axis.									4		
68.4	75.0	As 57.1 to or faults) contact. gradationa 73.0 73.1	BEARING EPIDOTE SPOTTED MAFIC TUFF/FLOW 62.9 m. Massive throughout interval (no slips Becomes quite siliceous towards the lower % disseminated pyrite. Lower contact is lover 0.5 m. Fine-grained green mafic dyke with 3 % pyrite as cubes up to 3 mm in length at 60 degrees to core axis.	AG07807 AF00213 AG07808 AG07809 AG07810 AG07811	68.4 69.0 69.9 71.4 72.4 73.9	69.9 74.0 71.4 72.4 73.9 75.0	1.5 5.0 1.5 1.0 1.5	4 n/a 4 4 5 4	93 156 93 98 77 322	5 n/a 5 <5 <5 <5	57 72 38 41 59 50	<1 n/a <1 <1 <1 <1	20 n/a <5 <5 50 30	220 214 310 260 110 40
75.0	82.6	apple gree 8 % pyrite occurs in diameter. occur at 7 oriented	F/FLOW , siliceous and moderately sericitic. Trace n mariposite and weak spotty chlorite. Trace to ; disseminated and in bands. Pyrite often clumps surrounded by chlorite < 2mm in Bands of massive pyrite 0.5 to 6.0 cm wide 7.7 m, 77.8 m, 79.9 m, 80.6 m and 81.3 m and are at 60-70 degrees to core axis. Lower contact is degrees to core axis.	AG07812 AF00214 AG07813 AG07814 AF00215 AG07816 AG07817 AG07818 AG07819	75.0 75.8 75.8 77.4 78.8 78.0 79.0 80.0 81.3 81.4	75.8 77.4 77.4 78.0 82.6 79.0 80.0 81.3 81.4 82.0	.8 1.6 1.6 .6 3.8 1.0 1.0	4 n/a 2 7 n/a 7 6 5 40	157 <10 13 50 77 80 58 81 201 62	<5 n/a <5 7 n/a 9 8 8 33 6	42 16 10 38 60 41 38 59 630 83	<1 n/a <1 <1 n/a <1 <1 <1 <1 <1	<pre></pre>	690 1150 940 700 792 870 680 470 260

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		Foliation is at 70 degrees to core axis at 77.7. MAJOR FAULT ZONE 0.5 m wide at 70 degrees to core axis at 78.2 m the zone is clay rich with 5 % pyrite. May be a VLF conductor.	AG07820	82.0	82.6	.6	6	75	7	54	<1	<5	540
		1.0 Cm wide fault gouge at 60 degrees to core axis at 80.1 m.											
		75.8 77.4 Very hard siliceous strongly microfractured section. Less than 1 % pyrite over most of the interval.											
		76.0 77.4 Blocky, highly fractured core.											
		77.7 77.8 3 bands of semí massive to massive pyrite 0.5, 0.4 and 3.0 cm wide at 68 degrees to core axis.								,			
		79.9 2.5 cm wide band of semi massive pyrite at 60 degrees to core axis.		•									
		81.3 6.0 cm wide band of massive pyríte at 60 degrees to core axis.											
*.									,				
82.6	85.1	HORNBLENDE-BEARING EPIDOTE SPOTTED MAFIC TUFF/FLOW As 57.1 to 62.9. 20 cm dark green fine-grained, mafic dyke at upper contact. Up to 5 % < 3 mm hornblende crystals in a fine-grained green-grey massive matrix. Weak spotty epidote. Quite siliceous between 85.2 and 86.0 m and may be felsic in composition. 3 % disseminated pyrite. Lower contact gradational over 20 cm.	AG07821 AF00217 AG07822	82.6 82.8 84.1	84.1 85.1 85.1	1.5 2.3 1.0	3 n/a 3	102 118 117	<5 n/a 7	48 47 36	<1 n/a <1	<5 n/a -<5	<20 102 <20
		83.5 83.7 Dark green fine-grained chloritic mafic dyke at 65 degrees to core axis.											
05.1	400 5	WARNING TWO TO THE TOTAL T											
85.1	100.5	HORNBLENDE-BEARING MAFIC TUFF Grey-green, fine-grained with weak to moderate patchy epidote alteration. Locally felsic in composition. 3-8 % disseminated and fracture controlled pyrite overall. Lower contact is at 75 degrees to core axis.	AF00216 AG07823 AG07824 AG07825 AG07826	85.1 85.1 86.1 87.6 89.1	88.1 86.1 87.6 89.1 90.6	3.0 1.0 1.5 1.5	n/a 8 4 5	86 120 65 59 86	n/a 8 9 6 5	114 46 88 84 85	n/a <1 <1 <1	n/a <5 <5 <5 <5	377 310 100 130
		STRUCTURE: Foliation is at 70 degrees to core axis at 85.8 m. Bedding is at 75 degrees to core axis at 86.1 m. 30 Cm fault zone at 60 degrees to core axis at 89.0 m. Possible hedding plane at 70 degrees to core axis at 89.4 m.	AG07827 AG07828 AF00218 AG07829	90.6 91.4 90.0 92.1	91.4 92.1 96.0 92.4	.8 .7 6.0	4 7 n/a 5 2	110 83 51 2077	5 8 n/a 12	66 56 72 47	<1 <1 n/a 1	<5 <5 n/a <5	<20 80 248 190
		Possible bedding plane at 70 degrees to core axis at 91.4 m 85.1 2.5 cm wide chlorite-pyrite rich band at 70 degrees to core axis.	AG07830 AG07831 AG07832 AG07833	93.9 95.4 96.9	93.9 95.4 96.9 98.5	1.5 1.5 1.5 1.6	5 5 4 6	224 167 263 109	7 7 8 6	50 44 48 32	<1 <1 <1	10 <5 <5	30 140 <20
		85.1 86.1 Siliceous section; felsic in composition.	AG07834 AG07835	98.5	99.5 100.5	1.0	_	148 91	6	46 42	<1 <1 <1	<5 <5 <5	40 (20 240
							•						

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-13 8

From (m)	To (m)		DESCRIPTION	Sample ,No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		85.2	0.5 cm wide band of massive pyrite at 70 degrees to core axis.											
		86.8	2.0 cm wide band of massive pyrite at 70 degrees to core axis.											
		87.1	0.5 cm wide bed of massive pyrite at 70 degrees to core axis.			•							•	
		98.5 98.8	Blocky, highly fractured core.											
		99.6	3.0 cm wide band of massive pyrite at 70 degrees to core axis.						-					
		100.0 100.	5 Silicifed zone; rock is felsic in composition.					•			•			
		91.4 92.1	Grey silicified zone; felsic composition.											
		92.4	2.0 cm wide band of massive pyrite at 70 degrees to core axis.									•		
		94.2 94.4	Dark green, fine-grained chloritic mafic dyke at 70 degrees to core axis.	٠.							•			
		85.0	2.0 cm wide band of semi massive pyrite at 80 degrees to core axis.					. ,						
		96.2	4.0 cm wide epidote quartz-carbonate altered patch at 70 degrees to core axis with 20 $\$$ pyrite.					·						
100.5	156.6	Medium greweakly mid places over 70 degrees felsic tubeds of vatuffs 5-10 Dominantly below 102 between 12 siliceous Below 136 Weak perve	SILICIFIED HORNBLENDE-BEARING MAFIC TUFFS by to green-grey moderately sericitic and nil to profractured. Bedding is recognizable in many ser the first 4.5 m of the unit and it averages to core axis. Beds of more siliceous grey ff 10-30 cm wide alternate with slightly greener ariably silicified hornblende bearing andesitic 0 cm thick over the first 2.0 m of the unit. A a silicified hornblende bearing mafic tuff/flow 1.5 m except between 111.9 and 117.6 m and 121.6 and 132.0 m where rock is massive and very 1.5 possibly a felsic tuff. 1.0 the tuff becomes greener and less sericitic. The asive epidotization.	AG07836 AG07837 AG07838 AF00219 AG07840 AG07841 AG07842 AG07843 AG07844 AG07845 AG07847 AG07847 AG07848 AG07849 AG07850 AG07850	101.5 102.5 103.5 103.5 104.5 105.5 106.5 107.2 108.0 109.0 111.5 113.0 114.0	102.5 103.5 106.5 104.5 105.5 107.2 108.0 109.0 111.5 113.0 114.0 114.3 115.8	1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5	66	120 45 51 84 85 113 102 115 87 107 179 207 46 30 37 27 53	8 8 5 n/a 7 8 7 9 7 8 9 7 6 5 8 5 7	45 39 46 52 42 34 31 39 52 41 52 132 29 64 227 35	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<pre> <5 1 <5 / a <5 <</pre>	400 000 860 246 370 310 190 120 290 40 110 810 710 760 810

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-13 9

			DIAMOND DRILL LOG											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Minor fault	at 73 degrees to core axis at 100.7 m.	AG07852	117 3	112 2	1.5	4	140	Š	79	<1	· <5	<20
		Redding is	at 75 degrees to core axis at 101.8 m.	AG07853			1.2	5.	70	7	80	(1	(5	30
		Redding is	at 70 degrees to core axis at 101.9 m.	AG07854			.1	30	180	38	56	<1	(5	<20
		Bedding is	at 70 degrees to core axis at 101.9 m.	AG07855			1.5	. 50	106	36 8	44	<1	₹5 ₹5	<20 <20
			at 70 degrees to core axis at 102.2 m.	AG07856			1.0	5	112	7	36	(1	5	400
			at 67 degrees to core axis at 102.5 m.	AG07857			.9	5	121	10	38	1	√5	680
			from 103.0 104.1 m, 0.3 m lost core.	AG07858			.4	35	80	35	56	₹1	(5	90
			at 60 degrees to core axis from 104.5 105.7 m,	AG07859			1.5	. 7	53	. 10	33			- ·.
		0.2 m of lo		AG07860			1.5	. ,	24	6	33 47 -	<1 <1	<5 <5	790 490
			at 70 degrees to core axis at 105.7 m.	AG07861				4		6				
		Minor fault	gouge at 70 degrees to core axis at 111.5 m.				1.5		12		24	<1	<5	420
		6 0 cm wide	fault gouge at 63 degrees to core axis at 111.5 m.	AF00220			3.0	n/a	⟨10	n/a	30	n/a	n/a	438
		111.6 m.	rault gouge at 65 degrees to core axis at	AG07862			1.5	3	11	<5	27	<1		370
			s at 70 degrees to core axis at 111.9 m.	AG07863			1.5	3	28	5	41	<1		190
		O E am wide	fault gouge at 78 degrees to core axis at 111.9 m.	AG07864			1.5	4	126	8	49	<1		180
		112.1 m.	rault godge at 70 degrees to core axis at	AG07865			1.5	5	235	8	26	<1	₹5	260
			foult manner at 45 dames a to account	AG07866			1.5	6	124	8	25	<1	₹5	430
			fault gouge at 45 degrees to core axis at	AG07867			1.5	, ⁶	101	,8	37	<1	-	170
		112.3 m.	at 70 dames a transfer later and 120 F	AF00221			2.5	n/a	40	n/a	43	n/a	n/a	307
			at 70 degrees to core axis between 112.5 and	AG07868			1.5	5	125	7	36	<1		150
		113.3 m.		AG07869			1.5	5	134	8	33	<1		140
		rollation i	s at 75 degrees to core axis at 113.6.	AG07870			1.5	6	112	8	33	<1		140
		Bedding is	at 66 degrees to core axis at 119.1 m.	AG07871			1.5	6	94	9	29	<1		140
			at 70 degrees to core axis at 119.6 m.	AG07872			1.5	7	107	8	43	<1		.270
			at 90 degrees to core axis at 122.4 m.	AG07873		146.6	1.7	6	76	7	25	<1		210
			fault gouge at 70 degrees to core axis at	AG07874			1.2	5	146	8	31	<1	₹5	20
		123.3 m.		AG07875		149.3	1.5	5	125	7	43	<1		160
			fault gouge at 125.9 m (not possible to	AG07876			1.6	5	76	, ₹5	37	<1	<5	220
		measure ori		AG07877	150.9	152.4	1.5	7	78	8	28	<1	5	340
		Foliation i	s at 70 degrees to core axis at 126.4 m.	AG07878	152.4	153.1	.7	5	149	5	34	<1	<5	80
			gouge at 50 degrees to core axis at 129.8 m.	AG07879	153.1	153.5	. 4	25	133	12	23	<1	15	320
			t gouge at 70 degrees to core axis at 132.1.	AG07880	153.5	155.0	1.5	3	104	<5	28	<1	₹ 5	200
		133.1 m.	fault gouge at 85 degrees to core axis at	AG07881	155.0	156.6	1.6	4	176	<5	53	<1	₹5	160
		Minor slip	at 60 degrees to core axis at 134.8 m.											
			at 66 degrees to core axis at 136.0 m.											
		Bedding is	at 65-70 degrees to core axis at 137.9 m.											
		Foliation i	s at 60 degrees to core axis at 140.2 m.	*										
		Bedding is	at 67 degrees to core axis at 140.8 m.											
			s at 75 degrees to core axis at 144.0 m.											
		101.5	Band of massive pyrite 0.8 cm wide at 70											
		•	degrees to core axis.					•						
		105.3	Several pyrite clasts up to 0.8 cm in length.	, •		•			,					
		•	•											

107.1 107.3 Blocky, highly fractured core.

hornblende.

106.0 110.7 Rock is more chloritic, less sericitic and less siliceous, than the rest of the section.

This interval contains up to 3 % 1-3 mm

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample No.

(m)

(m)

HOLE No: Page Number WEST87-13 10

(ppm) (ppm) (ppm) (ppb) (ppm)

Sulphides (ppm)

Width % Total

(m)

			DIAMOND DRILL LOG
From (m)	To (m)		DESCRIPTION
		109.0 110.0	3, 0.2 to 2.0 cm wide bands of semi massive to massive pyrite at 80-85 degrees to core axis.
			Two quartz-carbonate rich zones 6.0 and 9.0 cm wide with 25 % pyrite.
		114.8	2 mm wide band of massive pyrite with speck of chalcopyrite at 80 degrees to core axis.
		116.5 116.9	Crushed zone.
		119.2	1.0 cm wide band of massive pyrite at 85 degrees to core axis.
		120.0	0.6 cm wide band of semi massive pyrite.
		122.4	1.5 cm wide band of massive pyrite at 80 degrees to core axis.
		123.5 123.9	4 semi massive (30-40%) pyrite zones at 80 degrees to core axis.
		125.6	1.0 cm band of massive pyrite at 70 degrees to core axis.
		126.0	Several sulphide clasts (?) up to 1.0 cm in diameter.
		132.2 132.8	4 % 1-3 mm hornblende.
		133.4 134.4	Several 10 cm wide patches with 5 % hornblende.
		144.1 156.6	3.5 cm wide band (probably bed) of massive pyrite at 75 to degrees to core axis.
		146.6 147.8	ALTERED ZONE: rock is darker, medium-grained and contains 10 % hornblende < 3 mm in diameter and 30 % albite as crystals less than 3 mm in length. Intermediate in composition. 4 % disseminated pyrite.
		150.9	1.0 cm wide band of semi massive pyrite at 75 degrees to core axis.
		152.0	2.0 cm band of semi massive pyrite at 65 degrees to core axis.
		153.1 153.5	Bleached altered zone with 20 % pyrite.
		156.1	10 cm wide irregular quartz-carbonate vein

168.1 168.5 Blocky, highly fractured core.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-13 11

with 10 % pyrite and trace chalcopyrite at 45 degrees to core axis. 156.6 158.5 MAFIC DYKE Fine-grained light green and massive with up to 5% 1-3 mm AG07882 156.6 157.7 1.1 1 113 <5 44 feldspar phenocrysts. Nil sulphide. Broken core at lower AG07883 157.7 158.1 .4 4 220 <5 33	<1 <5 <20 <1 <5 90 <1 <5 <20
Fine-grained light green and massive with up to 5% 1-3 mm	<1 <5 90
feldspar phenocrysts. Nil sulphide. Broken core at lower AG07883 157.7 158.1 .4 4 220 (5 33	<1 <5 90
contact. AG07884 158.1 158.5 .4 2 188 (5 54	(1 , (3) (20
157.7 158.1 Inclusion of hornblende-bearing felsic tuff with 4% disseminated pyrite.	
158.2 158.3 As 157.7 to 158.1 m.	
158.5 163.6 MASSIVE SILICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF	
Similiar to 105.5 to 156.6 m but somewhat more massive. AF00222 158.5 160.0 1.5 n/a 56 n/a 42 Moderately sericitic. 5-8% Disseminated pyrite. Bleb of chalcopyrite 5 cm from lower contact. Lower contact is at AG07886 160.0 161.5 1.5 7 132 <5 30 80 degrees to core axis. AG07887 161.5 161.7 .2 10 38 <5 18	n/a n/a 194 <1 <5 190 <1 <5 230 <1 <5 340
AG07888 161.7 162.7 1.0 7 87 <5 20 161.5 161.7 Bleached altered zone with 10 % pyrite overall. AG07889 162.7 163.6 .9 8 140 <5 28	<1 <5 450 <1 <5 120
163.6 167.0 FELDSPAR PHYRIC GABBRO	
Medium green massive with 10% 1-3 mm feldspar phenocrysts. AF00223 164.3 164.4 .1 n/a 98 n/a 68 Trace disseminated ilmenite (most altered to leucoxene). AG07890 165.4 165.6 .2 9 20 <5 16 10 Cm wide zone of assimilation and a 5 cm chill margin at upper contact. Lower contact is sharp at 74 degrees to core axis.	n/a n/a 17 <1 <5 1000
165.4 165.6 Inclusion of felsic tuff with 7% pyrite at 78 degrees to core axis.	
167.0 179.8 MASSIVE SILICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF Similiar to 100.5 to 156.6 m. Intermediate in AG07891 167.0 168.5 1.5 4 12 <5 9 composition. Hornblende crystals are 1 to 3 mm in AF00224 168.0 169.0 1.0 n/a <10 n/a <10 diameter, comprise up to 5 % of rock and tend to occur in AG07892 168.5 170.0 1.5 4 84 <5 13 patches up to 10 cm in diameter (altered clasts?). AG07893 170.0 171.5 1.5 3 148 <5 25 Averages 5 % disseminated pyrite. AG07894 171.5 173.0 1.5 5 144 <5 20 STRUCTURE: AG07895 173.0 174.5 1.5 4 124 <5 17	<pre> <1 <5 1000 n/a n/a 762 <1 10 400 <1 <5 60 <1 <5 380 <1 <5 160 </pre>
Bedding is at 72 degrees to core axis at 167.6 m. AF00225 174.2 174.3 .1 n/a 42 n/a 29 3 Mm fault gouge at 80 degrees to core axis. AG07896 174.5 176.0 1.5 4 123 <5 19 AG07897 176.0 177.5 1.5 7 152 <5 19	n/a n/a 287 <1 <5 30 <1 5 170
167.5 3.0 cm wide band of semi massive pyrite at 80 AG07898 177.5 178.5 1.0 7 102 <5 14 degrees to core axis. AG07899 178.5 179.8 1.3 6 168 <5 22	<1 <5 · 150 <1 <5 90

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-13 12

189.5 189.9		DIAMOND DRILL LOG											
189.5 189.9		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
189.5	180.4	FELDSPAR PHYRIC GABBRO As 163.6 to 167.0 m. Upper contact is a minor slip at 70 degrees to core axis. Lower contact is at 70 degrees to core axis. Approximately 5.0 cm chill margins at upper and lower contacts.											
189.9	189.5	MASSIVE SILICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF As 167.0 to 179 m. Fine-grained and sericitic above 182.6 m. Becomes less siliceous (andesitic) below 187.7 m. STRUCTURE: Foliation is at 78 degrees to core axis at 181.2 m. Minor slip at 70 degrees to core axis at 182.3 m. Possible bedding plane at 76 degrees to core axis at 182.6 m. Minor slip at 70 degrees to core axis at 183.9 m. 0.5 Cm wide crushed (fault) zone at 70 degrees to core axis at 185.5 m. Bedding is at 80 degrees to core axis at 187.5 m.	AG07900 AG07901 AF00226 AG07902 AG07903 AG07904 AF00227 AG07905	181.9 183.0 183.4 184.9 186.4 187.7	183.4 186.0 184.9 186.4 187.7	1.5 1.5 3.0 1.5 1.5 1.3 1.8 2.2	6 5 n/a 7 6 6 n/a 5	58 46 84 147 84 104 150 125	<5 <5 n/a <5 <5 <5 <5	16 12 46 21 33 24 38 29	<1 <1 n/a <1 <1 <1 <1 n/a <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	n/a	790 430 423 340 350 170 199 160
189.9		180.5 1.0 cm wide band of pyrite at 80 degrees to core axis. 181.6 0.5 cm wide band of massive pyrite at 66											
	189.9	MAFIC DYKE Dark green fine-grained and massive. Nil sulphide. Broken core at lower contact.											
192.1	192.1	HORNBLENDE-BEARING MAFIC TUFF/FLOW Medium green relatively massive with 5-10%, 1-3 mm feldspars in a fine-grained sericite+chlorite +quartz matrix. 5 % pyrite overall. Occasional calcite veinlet. Semi massive pyrite in a carbonatized zone 10 cm above lower contact. Lower contact is a 0.5 cm wide fault at 70 degrees to core axis.	AF00228 AG07906 AG07907 AG07908	189.9 190.9	190.9 191.9	3.0 1.0 1.0 .2	n/a 4 5 20	102 164 152 240	n/a <5 <5 <5	45 36 40 24	n/a <1 <1 <1	n/a <5 <5 <5	367 170 210 <20
	194.8	ANDESITIC TUFF/FLOW Grey to green feldspar porphyritic (about 7 % feldspar phenocrysts) and moderately chloritic and sericitic. About 5 % disseminated pyrite overall. Lower contact is a fault gouge at 66 degrees to core axis.	AF00229 AG07909 AG07910	192.1	193.6	2.7 1.5 1.2	n/a 7 5	58 96 81	n/a <5 <5	40 33 30	n/a <1 <1	n/a <5 <5	225 200 190
		5.0 cm wide carbonate-chlorite alteration zone at 73 degrees to core axis with 10 % pyrite.											• •

FALCONBRIDGE LIMITED WEST87-13 13 DIAMOND DRILL LOG Τo From Sample From % Total Pb Ag Au Вa (m) (m) -----DESCRIPTION------.No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 194.8 196.3 ANDESITIC TUFF Medium green fine-grained relatively massive weak AG07911 194.8 196.3 1.5 110 250 pervasive carbonatization with 3 % disseminated pyrite. Vague banded appearance suggests that it is a tuff. Banding is at 65-70 degrees to core axis. 1.0 cm wide quartz-carbonate vein at 68 degrees to core axis at lower contact. 196.3 200.6 HORNBLENDE-BEARING MAFIC TUFF/FLOW Medium green, massive with 5 % black hornblende crystals AF00230 196.3 198.6 n/a 59 n/a 41 n/a 121 n/a 1-3 mm in diameter and 10 % epidotized <2 mm feldspars. AG07912 196.3 197.3 1.0 103 ₹5 29 <1 < 5 20 Narrow intervals of grey intermediate to felsic ash tuff AG07913 197.3 198.6 1.3 84 ⟨5 70 28 <1 <5 or silicified zones. 2-5 % disseminated pyrite. Lower AG07914 198.6 199.6 1.0 5 160 (5 20 <1 ⟨5 340 contact is gradational over 5.0 cm. AG07915 199.6 200.6 1.0 188 <5 26 <5 180 Bedding is at 85 degrees to core axis. 198.6 200.6 202.0 FELSIC ASH TUFF Grey-green, fine-grained, weakly sericitic with 3-4 % AG07916 200.6 202.0 1.4 245 ⟨5 18 (1) ₹5 670 disseminated pyrite. Lower contact is gradational.

HOLE No:

Page Number

		201.7	Possible bedding plane at 74 degrees to core axis.												
202.0	203.4	As 196.3 t	-BEARING MAFIC TUFF/FLOW o 200.6 m. 2 % disseminated pyrite. Lower at 70 degrees to core axis.	AG07917	202.0	203.4	1.4	4	128	₹5	20	<1	<5	190	
203.4	207.0	Grey-green and chlori % pyrrhoti	ANDESITIC TUFF/FLOW, fine-grained weakly to moderately sericitic tic. 7% disseminated pyrite. 10 % pyrite and 3 te occur over 10 cm at lower contact. Alteration ower contact.	AG07918 AG07919 AG07920	203.4 204.9 206.4	204.9 206.4 207.0	1.5 1.5 .6	6 7 8	78 48 200	<5 <5 <5	19 18 24	<1 <1 <1	<5 <5 <5	270 370 660	
		204.1	5.0 cm thick band of massive pyrite at 70 degrees to core axis. Minor slip at 76 degrees to core axis.												
207.0	212.0	Medium gre hornblende pyrite, 2	-BEARING MAFIC TUFF/FLOW en massive fine-grained with 5% 1-3 mm crystals and 10 % 1-2 mm feldspars. 10 % % pyrrhotite and trace chalcopyrite for 10 cm contact. Lower contact is at 70 degrees to core	AG07921 AG07922 AG07933 AG07924	207.0 208.5 209.0 210.5	208.5 209.0 210.5 212.0	1.5 .5 1.5 1.5	6 8 2 3	127 430 5 280	<5 <5 <5 <5	27 48 34 28	<1 <1 <1 <1	<5 <5 <5 <5	510 240 280 130	
-				·						,				,	

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-13 14

Width % Total Ва Sample Pb Au To From Αq From No. (m) -----DESCRIPTION-----(m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) (m)

208.9 10 cm wide strongly carbonate+chlorite alteration zone with 10 % pyrite and 5 % pyrrhotite.

212.0 230.7 FELDSPAR PHYRIC GABBRO

Dark green massive with up to 5 % 1-3 mm white feldspar
phenocrysts. 3 % finely disseminated ilmenite. No quartz
or carbonate veins >1.0 cm wide. Nil sulphide.

AF00231 213.0 214.0 1.0 n/a 89 n/a 70 n/a n/a 41

1

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-14

n/a

n/a

Hole Location: 16+32 E 10+39 S

NTS: 092B/13E

UTM: 5411230 N. 450582 E

Azimuth: 15

Elevation: 260 m

Dip: -45 Length: 270.9 m

Logged By: D.P.Money

Claim No. West 1

Drilling Co.: Burwash Enterprises

Section No.: Line 16+50 East

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

Started: Nov. 5/87 midday Completed: Nov. 10/87 morning

Purpose: To test an IP chargeability anomaly from

DIP TESTS

9+20 to 9+90 S.

	Azi-			Azi-	
Length	muth	Dip	Length	muth	Dip
69.00	18.0	-45.5	232.70	22.0	-46.0
101.00	19.0	-45.0	270.90	22.0	-45.0
165.00	21.0	-45.0			

From	To		Sample	From	To	Width	% Total	Cu	Pb	Zn	Ag	Au	Вa
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

AF00501

AF00502

4.9

5.5

- 4.3 OVERBURDEN AND CASING
 - No chit marked the start of coring.
- 4.3 4.9 ANDESITIC ASH TUFF

Very fine grained grey tuff with minor rusty carbonate pyrite fracture controlled veinlets. Foliation trends at about 0 degrees to core axis. Ash sized crystals appear to be dominantly feldspars with minor quartz grains, but are too small to be clearly identifiable.

5.5 ALTERED ANDESITIC ASH TUFF

Silicified andesitic ash tuff with goethite stained fractures in zones of strong silicification. Pyrite occurs in trace amounts in strongly silicified tuff. Epidote grains occur and the tuff is slightly coarser.

6.5 ANDESITIC CRYSTAL TUFF 5.5

Highly fractured and oxidized andesitic tuff with 10 - 15 % epidote crystals.

6.5 7.0 SILICEOUS CHERTY TUFFITE/SILTSTONE

Light grey cherty beds with weak folding and rust stained cross cutting fractures. There is trace fine-grained pyrite parallel to bedding. Bedding: at 6.6 is at 10 degrees to core axis. At 7.0 is at 13 degrees to core axis.

28.2 29.7 QUARTZ EYE BEARING FELSIC TUFF

28.2 28.6 Siliceous tuff with 2 - 3 %, 2 - 4 mm, quartz eyes and 1 - 2 % disseminated pyrite.

28.6 29.7 Rusty blocky, highly fractured core. Silicified

tuff or cherty tuffaceous sediment with bedding

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-14 2

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
7.0	8.5	ANDESITIC LAPILLI TUFF Andesitic tuff with 1% sometimes zoned epidote - (calcite) - (pyrite) replaced lapilli, up to 15 mm. There is 1 - 2% disseminated pyrite. Lapilli are grainy and as such unlike epidote replaced lapilli on PF Option.	AG08001	7.0	8.5	1.5	2	107	9.	208	<1	. < 5	820
8.5	9.3	SILICEOUS CHERTY TUFFITE/SILTSTONE As from 6.5 to 7.0 with <1 mm to 7 mm beds, minor folds and bedding from 10 to 15 degrees to core axis.											
9.3	19.2	SILICIFIED ANDESITIC TUFF Locally silicified andesitic lapilli tuff with local zones of iron stained silica flooding. Up to 20% epidotization lapilli occur. There is minor trace fracture controlled pyrite and there is pyrite in the altered and epidotization lapilli. In areas of intense SiO2 flooding	AF 00503	9.3	19.2	9.9	n/a	42	n/a	90	n/a	n/a	489
,		get a matrix with a dacitic to felsic composition with smaller sausuritized feldspars. The epidotization lapilli vary from < 1 to 3 cm and are green / yellow to pinkish (zoisite?). Some lapilli appear to be stretched parallel to the core axis. The unit is oxidized with rust along fractures. 13.0 13.2 0.2 m of lost core. 14.0 14.5 Minor cherty beds at 10 degrees to core axis.		-	441	•							
19.2	24.5	SILICEOUS CHERTY TUFFITE/SILTSTONE Cherty tuffite with epidotization lapilli and load structures on the cherty beds. Bedding is at 13 degrees to core axis (20.8 m) and therefore tops can not be determined. Oxidation persists past this depth and the unit is vuggy with goethite stained fractures.	·										
24.5	28.2	SILICIFIED LAPILLI TUFF Silicified lapilli tuff with approximately 30 %, 5 mm to 2 cm epidotization lapilli. Lapilli are elongated and in this interval appear to be possibly alteration. Tuff was probably originally andesitic, now is dacitic. There are rust stained fracture zones in more silicified zones with trace disseminated and fracture controlled pyrite.	AF00504	24.5	36.0	11.5	n/a	40	n/a	66	n/a	n/a	301
					į								

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-14 3

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba o) (ppm))
		at 10 degrees to core axis.												
29.7	35.6	MIXED LAPILLI TUFF Mixed lapilli tuff (dacitic) and cherty beds (35.0 m : 46 degrees to core axis) with weak to strong silicification.												
35.6	36.0	FAULT ZONE 0.4 M of lost core with clay fault gouge and rubble. Oxidation (rust) in fractures to immediately above fault, but none immediately below.												
36.0	54.3	PYRITIC FELSIC ASH TUFF Very fine-grained grey felsic tuff with 5 to 10 % < 1 mm quartz eyes. There is strong silicification from the fault to 36.5 and from 51.6 to 54.3. There are rare local calcite veinlets parallel to bedding. There is minor fault gouge and clay at 41.7. 51.0 51.6 Barren dacitic to rhyo-dacitic lapilli tuff with epidote - calcite - (pyrite) clots after lapilli. 51.8 56.9 Oxidation (rusty fractures) recurs. Bedding: 37.6 m: 62 degrees to core axis. Foliation: 45.4 m: 33 degrees to core axis. Sulphides: 36.0 36.6 Approximately 1 % disseminated pyrite in silicified tuff. 36.6 38.9 2 % disseminated pyrite and 1 to 2 % pyrite with calcite in fracture controlled (?) veinlets or bands parallel to or sub- parallel to bedding. 38.9 39.1 30 % pyrite and trace to 1 % chalcopyrite in black chlorite with minor calcite. Pyrite as cubes and grains in aggregates parallel to the foliation. Chalcopyrite is intergrown with the	AF00505 AG08002 AG08003 AG08004 AG08005 AG08006 AG08007 AG08009 AG08010 AG08011 AG08011 AG08012 AG08013 AG08014 AG08015 AG08016	36.0 36.6 38.0 38.9 39.1 40.0 44.0 45.2 45.6 46.0 50.0 51.6 53.0	46.0 36.6 38.0 38.9 39.1 40.0 44.0 45.2 45.6 46.0 48.0 50.0 50.9 53.0 54.3	10.0 .6 1.4 .9 .2 .9 2.0 2.0 1.2 .4 .4 2.0 2.0 .9 1.4	5 2 2 3 31 7 3 3 6 4	62 387 250 931 1.14 % 242 304 78 475 1.04 % 0.41 % 425 385 0.32 % 249 1139	n/a <5 11 10 17 12 8 6 12 10 10 10 11	138 74 112 178 372 128 137 95 154 257 241 111 123 181 155 536	n/a <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	n/a <5 <5 15 75 10 5 5 10 <5 <5 <5 <5 <5 <5	674 1200 990 840 <20.00 780 410 650 60 900 230 40 370 730 700	· ·
		pyrite. 39.1 40.0 5 % pyrite and trace chalcopyrite with calcite in veinlets. 40.0 45.2 1 to 2 % pyrite disseminated and in fracture controlled calcite veinlets. At 44.4 there is 5 cm of massive, 70 %, pyrite.												
		45.2 45.6 30 % pyrite and 1 % chalcopyrite as from 38.9 to 39.1. 45.6 46.0 5 to 7 % pyrite and trace to 1 % chalcopyrite in a chloritic matrix. 46.0 48.2 3 % disseminated and fracture controlled veinlet hosted pyrite. 48.2 48.3 35 % pyrite in chlorite - calcite.			4	ر کیکی								

48.3 50.0 3 % disseminated and fracture controlled veinlet

hosted pyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

82.4 84.5 Green cherty argillic as from 77.8 to 79.4. 84.5 88.0 Mafic ash tuff with sediment beds up to 3 cm, HOLE No: Page Number WEST87-14 4

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		50.0 50.9 5 % pyrite and trace to 1 % chalcopyrite, disseminated and in fracture controlled calcite veinlets, in blocky, highly fractured core. 51.6 54.3 3 to 5 % disseminated and fracture controlled calcite veinlet hosted pyrite in silicified tuff with 2 to 3 % chalcopyrite over 5 cm at 53.95 m and trace chalcopyrite elsewhere.											
54.3	76.6	FELSIC LAPILLI TUFF											
		Felsic lapilli tuff with zoned replaced lapilli, i.e. At 66.9: 4 cm lapilli with 2 cm core of epidote, quartz and pyrite and outer rim of epidote and up to 7 mm quartz eyes, inner epidote green and outer is yellow. Goethite bearing fractures to 56.8 and silicification (white silica flooding) to 57.4. Minor quartz veinlets occur. 64.8 64.9 15 % pyrite with up to 4 mm intergrown pyrite	AF00506 AF00507 AG08017	54.3 57.4 75.6	57.4 70.4 76.6	3.1 13.0 1.0	n/a n/a 3	66 59 305	n/a n/a 8		n/a n/a <1	n/a n/a <5	88 205 110
		cubes. 69.2 69.5 Epidotization and silicified with minor pyrite,		-				•					
		<pre></pre>				,							
		70.0 71.8 Lapilli decrease in size and quantity downhole indicating tops is downhole.						,					
		71.8 75.6 Increase in lapilli. 75.6 76.5 Rare lapilli. Bedding in sediments: 69.6 m: 52 degrees to core axis. Foliation: 65.6 m: 40 degrees to core axis.											
76.6	77.8	B SEMI-MASSIVE SULPHIDES IN CHLORITE-CARBONATE ALTERATION											
		20 to 25 % pyrite, trace to 2 % chalcopyrite, trace to 2 % magnetite, and (?) trace galena in calcite veins and black chlorite. Pyrite occurs as cubes of up to 6 mm and is concentrated in chlorite. Chalcopyrite occurs in the pyrite. Magnetite occurs with (?) galena in the calcite.	AG08018	76.6	77.8	1.2	26 1	1031	60	1.14 %	<1	₹5	210
		The matrix is 60 % chlorite and 40 % calcite. The foliation is at 40 degrees to core axis. There is 0.5 m of lost core between 77.0 and 77.7.								٠.			
77.8	94.6	5 CHERTY SEDIMENTS WITH MINOR MAFIC ASH TUFFS 77.8 79.4 Cherty green argillite with 2 to 3 % fracture controlled pyrite. 79.4 82.4 Mafic ash tuffs with local epidotization lapilli	AG08019	77.8	79.0	1.2	. 3	166	8	1779	(1	₹5	170>
		and cherty sediment beds and trace minor up to 1 mm pyrite beds in the sediment beds.											

0.5 % pyrite, parallel to the foliation.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

From To Sample Width % Total PЪ Zn Âσ A 11 Ва -----DESCRIPTION-----No. Sulphides (ppm) (m) (m) (m) (m) (m) (mqq) (mqq) (mqq) (mgg) (dgg) averaging 5 mm. 88.0 94.6 Cherty tuffaceous and argillaceous sediments with local epidote knots and disseminated epidote with minor fracture controlled pyrite (1 to 2%). Bedding :. 32 Degrees to core axis at 81.0. 25 Degrees to core axis at 82.0. 16 Degrees to core axis at 86.4. 94.6 102.4 SILICIFIED FELSIC LAPILLI TUFF Locally hosts 10 to 50 % epidote, mainly as altered AF00508 94.6 102.4 7.8 179 lapilli, which have minor pyrite and calcite in the cores. The tuff is strongly silicified from 101.8 to 102.4. Contains trace to 1 % disseminated pyrite. 102.4 105.2 FELSIC DYKE Dark green to black massive very siliceous felsic dyke. AF00509 102.4 105.2 2.8 110 n/a Trace disseminated and fracture controlled pyrite occurs. Nil to trace phenocrysts in the upper 1.4 m and 0.7 m and there are 5 % 1 to 2 mm feldspar grains and 10 % 1 to 3 mm epidote grains in the mid 0.7 m. At 104.7 there is 70 % pyrite over 1.5 cm in a epidote vein. 105.2 111.6 SILICIFIED FELSIC LAPILLI TUFF Same as 94.6 to 102.4. AF00510 105.2 111.6 6.4 121 171 n/a n/a 148 111.6 113.0 ANDESITIC ASH TUFF Ash tuff with 5 to 10 %, up to 2 mm, quartz eyes and 2 % AG08020 112.0 113.0 1.0 1544 11 630 243 10 pyrite disseminated and elongated parallel to foliation. There is a fault at 112.1 with 1.5 cm of clay and below the fault is 2 cm of 60% pyrite and 2 % chalcopyrite. Foliation: 111.8: 62 degrees to core axis. 113.0 113.3 FAULT ZONE 0.3 M of lost core with andesitic tuff above and felsic tuff below. 113.3 121.0 FELSIC HETEROGENEOUS LAPILLI TUFF Felsic lapilli tuff with heterogeneous lapilli, rounded to AF00511 113.3 121.0 7.7 27 70 n/a n/a n/a 509 sub-angular, 0.5 to 3 cm , some are lithic and most are AG08021 120.8 120.9 0.58 % 15 315 15 1200 quartz grains. The tuff is very siliceous and is light grey to medium green - grey in colour. There are minor carbonate - pyrite fracture controlled veinlets, trace to

HOLE No:

WEST87-14

Page Number

5

145.0 152.7 ANDESITIC TO MAFIC LAPILLI TUFF

Andesitic to mafic lapilli tuff with epidote replaced lapilli. Most lapilli are composed of unzoned grainy epidote. There is trace pyrite in carbonate - epidote veinlets and lapilli. Lapilli decrease in quantity downhole from 30% to < 5%. There are minor contorted

calcite veinlets over the last 30 cm.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-14 6

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		114.9 114.9 5 cm of 20 % pyrite, 1 % chalcopyrite in black chlorite with 10 % calcite. 120.8 120.9 15 cm of 30 % pyrite cubes, <1 to 7 mm, average 2 mm, as beds (?) / bands in chloritized tuff with quartz eyes. Foliations :. 114.8 : 56 degrees to core axis. 119.4 : 62 degrees to core axis.									·		
121.0	122.1	SERICITIC QUARTZ EYE BEARING FELSIC TUFF White to light grey very sericitic felsic tuff with on average 10 % up to 1 mm quartz eyes. Foliation: 121.5: 57 degrees to core axis.	AF00512	121.0	122.1	1.1	n/a	<10	n/a	38	n/a	n/a	4470
122.1	123.9	FELSIC DYKE Felsic dyke as from 102.4 to 105.2 with 0.7 m of lost core prior to 123.9.									•		
123.9	144.2	MAFIC TO ANDESITIC ASH CRYSTAL LAPILLI TUFF Mafic to andesitic tuff with zoned replacement of lapilli, epidote - calcite - pyrite core and epidote rim. There are epidote crystals. Trace to 1 % locallized calcite - pyrite fracture controlled veinlets occur. Bedding has been totally overprinted by schistosity. From 141.0 to 142.8 there is strong chloritization and carbonatization. The tuff is sheared from 141.0 to 144.2. 132.4 132.5 15 cm of massive pyrite (80%) and 3 to 5 % chalcopyrite. Foliations: 129.0:51 degrees to core axis. 137.0:52 degrees to core axis. 139.8:44 degrees to core axis.	AF00513 AG08022			20.3	n/a 84	115 2.08 %	n/a 17	205 212	n/a 6	n/a 65	388 60
144.2	145.0	FELSIC LAPILLI TUFF Felsic tuff with epidote and quartz lapilli. 144.8 144.9 Quartz vein with 10 to 15 %, 1 to 2 mm, pyrite cubes and 0.5 % chalcopyrite.											

187.8 193.5 SILICEOUS CHERTY TUFFITE/SILTSTONE

As before, but with less pyrite (<= 1%).
Bedding: 190.0: 57 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-14 7

From	To	DEGENERAL	Sample	From	То		% Total	Cu	Pb	Zn	Ag	Au	. Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppp)	(ppm)
152.7	158.5	FELSIC DYKE Felsic dyke as before with a minor quartz - chlorite vein from 153.3 to 153.5. There are minor quartz phenocrysts which are often elongated. There is feldspar - epidote in the core of the dyke. The dyke is siliceous and massive with localized fracturing. 155.7 155.7 3 cm pyritic fault gouge and clay. 155.6 155.7 Quartz - carbonate vein with 5 % pyrite and trace to 1 % chalcopyrite.	AF00514	152.7	158.5	5.8	n/a	20	n/a	57	n/a	n/a 1	270
158.5	168.7	ANDESITIC TO MAFIC LAPILLI TUFF As from 145.0 to 152.7.	AF00515	158.5	168.7	10.2	n/a	100	n/a	242	n/a	n/a	266
168.7	170.0	FELSIC CRYSTAL TUFF Weakly sericitic white to light grey felsic crystal tuff with 15 % pyrite from 168.95 to 169.1 and on average 3 % pyrite. Foliation: 169.2: 52 degrees to core axis.	AG08023	168.7	170.0	1.3	. 3 1	1120	13	222	<1	< 5 2	:500
170.0	182.2	INTERMEDIATE LAPILLI TUFF Andesitic to dacitic medium grey lapilli tuff. The lapilli are epidote and there are also epidote grains. Trace minor local carbonate - pyrite veinlets occur. There is a minor fault at 174.2 with clay breccia and pyrite.	AF00516	170.0	182.2	12.2	n/a	196	n/a	524	n/a	n/a	374
182.2	184.7	SILICEOUS CHERTY TUFFITE/SILTSTONE Very siliceous grey cherty argillite with 1 to 2 % very fine-grained pyrite, bedded and fracture controlled. Bedding:. 182.2: 43 degrees to core axis. 183.8: 41 degrees to core axis. 184.0: 41 degrees to core axis.										·	
184.7	187.8	QUARTZ EYE BEARING FELSIC TUFF Siliceous (184.7 to 186.0, 187.2 to 187.8) and sericitic (186.0 to 187.2) felsic tuff with 10 to 15%, 1 to 2 mm, quartz eyes. Bedding is not discernable. There is a clay fault slip at 186.8 with 0.2 m of lost core. The foliation varies from 32 to 34 degrees to core axis.	AF00517	184.7	187.8	3.1	n/a	106	n/a :	2330	n/a	n/a	738

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-14 8

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba b) (ppm)
193.5	212.0	FELSIC TUFF Siliceous grey felsic tuff with 2 to 5 %, 2 to 3 mm, quartz eyes and local epidote lapilli, up to 4 cm, and beds. There is trace disseminated pyrite. The foliation varies from 60 to 80 degrees to core axis. 197.0 197.6 Fault with 0.6 m of lost core. 202.6 202.6 Chloritic shear with 10 % pyrite. 197.5 199.0 Silicified with crosscutting quartz - (calcite) veinlets. 204.5 207.0 As from 197.5 to 199.0. Fault slips: 198.8: approximately 70 degrees to core axis. 199.4: approximately 70 degrees to core axis.	AF00518 AF00519			6.5	n/a n/a	39 96	n/a n/a	58 104	n/a n/a	n/a n/a	1600 541
212.0	220.0	CHLORITIC SHEAR ZONE Sheared and carbonatized mafic tuff (?) with calcite veinlets throughout. The rock is weakly magnetic with up to 1 % disseminated magnetite. The shearing is at 55 to 60 degrees to core axis.	AF00520	212.0	220.0	8.0	n/a	85	n/a	75	n/a	n/a	. 85
220.0	242.3	FELSIC DYKE Very siliceous QFP dyke with outer 3 to 4 m grey and inner core dark green to black. Hosts 5 to 7%, up to 10 mm, quartz eyes and 3 to 5%, 1 to 2 mm, epidote grains. There is blocky, highly fractured core from 230.5 to 242.3 with lost core: 1.4 m from 230.7 to 233.1, 0.4 m from 233.1 to 234.0, 2.3 m from 234.0 to 236.8 and 0.5 m from 236.8 to 238.3. 239.9 240.0 Chloritic shear with 10 % pyrite and minor calcite.	AF00521 AF00522			3.0 5.0	n/a n/a	<10 25	n/a n/a	36 25	n/a n/a	n/a n/a	372 483
242.3	243.3	CHLORITIC SHEAR ZONE Carbonatized chloritic shear with 3 to 4 %, 1 to 2 mm, epidote grains elongated parallel to shearing (80 degrees to core axis).											
243.3	245.0	WEATHERED ROCK Pulverised rock, looks like tropical weathering, felsic tuff (?).	AF00523	243.3	245.0	1.7	n/a	24	n/a	23	n/a	n/a	244
245.0	247.3	FAULT GOUGE Mafic green clay fault gouge. 246.3 246.5 Quartz - (chlorite) vein. 246.5 247.3 50 % coarse (up to 5mm cubes) pyrite in green chlorite - clay matrix.	AG08024	246.5	247.3	.8	50 1	1016	22	126	<1	10	₹20

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-14 9

From (m)	TO (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Fault motion at 46 degrees to core axis.											
247.3	249.3	ANDESITIC LAPILLI TUFF Andesitic lapilli tuff with 5 % unzoned green epidote replaced lapilli and 5 to 10 %, 1 to 2 mm, epidote grains. There is minor quartz veining and fault imparted foliation.									· ·		
249.3	250.2	FAULT GOUGE Green to dark grey clay with 30 % fine-grained pyrite in mud.	AG08025	249.3	250.3	1.0	30	447	12	137	<1	10	190
250.2	270.9	ANDESITIC LAPILLI TUFF As in interval 247.3 to 249.3. There are fault slips at 260.5 with 5 % pyrite, chlorite and calcite over 3 cm at 60 degrees to core axis and from 267.0 to 267.3 there is fractured tuff with clay and rubble. There is blocky, highly fractured core from 266.0 to 266.5 and from 269.5 to 270.9. At 269.9 over 5 cm there is 10 % pyrite in sheared chlorite at 70 degrees to core axis.	AG08026 AF00524	250.3 255.0	251.3 265.0	1.0	10 n/a	135 108	8 n/a	85 68	<1 n/a	<5 n/a	<20 445

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15

260

180

295

116

285

150

3

1

1

3

n/a

₹5

<5

∢5

n/a

⟨5

₹5

⟨5

360

270

970

165

194

225

182

<1

<1

₹1

n/a

<1

<1

<1

<5

5

₹5

n/a

₹5

⟨5

⟨5

<20

<20

<20

95

<20

<20

<20

Hole Location: 11+92 E 6+54 S

NTS: 92B13E

UTM: 450250 E 5411720 N

Azimuth: 15 Dip:

Length:

Elevation: 185 m 308.2 m

Logged By: J. Pattison

Section No.: 12+00 E

Claim No. WEST 1

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & Xray Assay

Core Size: NQ

Started: 7-NOV-87 Completed: 11-NOV-87

Purpose: Chargeability anomaly from

5+80 to 6+10S with coincident

resistivity low.

DIP TESTS

Azi-Azi-Length muth Dip Length muth Dip 68.90 15.0 -44.5239.90 19.0 -42.0147.20 15.0 -42.5307.20 20.0 -42.0

from (m)	-TO (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides (Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
.0	4.6 CASING												•

AG07925

AG07926

AG07927

AF00232

AG07928

AG07929

AG07930

8.4

9.4

10.0

12.5

16.0

17.0

17.5

9.4

10.0

11.0

15.5

17.0

17.5

18.5

1.0

1.0

3.0

1.0

1.0

. 5

.6

26.1 EPIDOTE SPOTTED MAFIC LAPILLI TUFF

Dark green, fine-grained with 5 % 1-2 mm epidotized feldspar crystals and up to 10 % epidote-calcite patches 0.5 - 4.0 cm in diameter which are likely altered clasts. Oxidized fractures persist to 17.5 m. Trace-1% disseminated pyrite and trace-1 % finely disseminated ilmenite. Lower contact is at 87 degrees to core axis. STRUCTURE:

Slip at 75 degrees to core axis at 9.5 m. Foliation is at 70 degrees to core axis at 9.6 m. Epidote-calcite altered clast has been rotated at 13.1 m. Bedding (?) is at 63 degrees to core axis at 14.2 m. 3.0 cm fault gouge at 75 degrees to core axis at 14.8 m. MAJOR FAULT ZONE between 16.3 and 17.0 m. Blocky, highly fractured core. 0.3 m of lost core. Not possible to measure the orientation.

- 3 mm fault gouge at 90 degrees to core axis at 20.2 m.
- 6.0 7.0 Blocky, highly fractured core. Fault zone (?).
- 9.0 11.4 Moderate pervasive carbonate alteration, no epidote patches.
- 9.4 10.0 Numerous chlorite-pyrite filled fractures at 80-90 degrees to core axis. 3 % pyrite and trace chalcopyrite overall.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From Width From To To % Total Pb Αq Au Вa (m) (m) -DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppb) (ppm) (ppm) (ppm) (ppm) Similiar to the Massive Mottled Siliceous Rock encountered AG07931 26.1 27.5 1.4 2 15 ₹5 50 ₹5 410 <1 in other holes but thermal biotite alteration is weaker. AF00233 27.4 33.0 5.6 n/a 11 n/a 35 n/a n/a 257 Protolith is uncertain. AG07932 27.5 29.0 1.5 2 10 <5 43 <1 ₹5 340 Locally rock has a volcaniclastic appearance (ie. Felsic AG07933 29.0 30.5 1.5 5 <5 <1 <5 280 34 lapilli in a chloritic variably silicieous matrix). But AG07934 30.5 32.0 1.5 11 ₹5 34 <1 <5 500 the felsic lapilli (?) have hazy, indistinct outlines AG07935 32.0 33.5 1.5 4 <5 44 <1 <5 420 suggesting that they are in fact a product of patchy AG07936 33.5 34.5 1.0 30 <5 42 <1 <5 290 silicification. In other places rock appears to be a AG07937 34.5 35.3 ⟨5 <5 260 .8 1 15 43 <1 fracture controlled chlorite altered massive felsic AG07938 35.3 35.5 . 2 10 40 <5 <1 < 5 60 65 tuff/flow. AG07939 35.5 37.0 1.5 1 12 <5 ₹5 630 35 <1 Spotty epidote alteration between 163.3 and 168.0 m AG07940 37.0 38.5 1.5 70 <5 <1 <5 530 30 suggests that the rock may be a silicified equivalent of AG07941 38.5 40.0 1.5 28 ⟨5 ₹5 520 34 <1 the epidote spotted mafic tuffs/flows. AG07942 40.0 41.1 1.1 2 8 <5 33 <1 <5 660 Above 46.0 m the rock is intermediate-felsic in AG07943 41.1 41.4 .3 12 ₹5 41 <1 <5 860 composition but it becomes more chloritic below 46.0 m. AG07944 41.4 42.2 .8 460 <5 <5 290 54 <1 1.5 - 2.0 % disseminated pyrite. Lower contact is AG07945 42.2 43.7 1.5 16 <5 48 <1 <5 930 gradational. AG07946 43.7 44.5 .8 20 < 5 53 <1 <5 1100 STRUCTURE: AG07947 44.5 45.2 . 7 25 ⟨5 75 <1 5 1400 Foliation is at 78 degrees to core axis at 28.8 m. AG07948 45.2 46.0 . 8 24 <5 53 <1 ₹5 1000 5.0 cm fault gouge at 67 degrees to core axis at 28.6 m. ⟨5 AG07949 46.0 47.5 1.5 1 10 50 <1 ₹5 960 Minor slip at 80 degrees to core axis at 31.8 m. AF00234 46.0 49.0 3.0 n/a <10 n/a 35 n/a n/a 609 Minor slip at 75 degrees to core axis at 34.2 m. AG07950 47.5 48.3 2 98 ₹5 <1 <5 610 .8 48 Minor slip at 80 degrees to core axis at 35.5 m. AG07951 48.3 48.5 . 2 10 28 <5 58 <1 ₹5 1100 30.0 cm fault zone. Blocky, highly fractured core. Not AG07952 48.5 50.0 1.5 1 50 ₹5 39 <1 <5 510 possible to measure orientation. AG07953 50.0 51.5 1.5 52 <5 37 <1 ₹5 640 ⟨5 ₹5 530 Minor slip at 60 degrees to core axis at 44.9 m. AG07954 51.5 53.0 1.5 20 52 <1 Foliation is at 70 degrees to core axis at 45.7 m. AG07955 53.0 54.9 1.9 2 20 <5 42 <1 ⟨5 700 Minor slip at 90 degrees to core axis at 48.1 m. AG07956 10 60 33 <1 10 460 54.9 55.1 . 2 20.0 cm fault zone at 70 degrees to core axis at 48.3. AG07957 55.1 56.4 1 8 ⟨5 50 <1 <5 1100 1.3 About 15 % pyrite. Pyrite is sheared and very fine-grained AG07958 56.4 57.4 1.0 2 10 <5 50 <1 5 1200 and occurs over 2.0 cm at the upper contact of the zone. AF00235 57.0 60.9 3.9 n/a 16 n/a 41 n/a n/a 2620 25 2200 Some may be sphalerite. AG07959 57.4 58.0 .6 30 ₹5 48 <1 30.0 cm fault zone. Blocky, highly fractured core. Not AG07960 58.0 59:0 5 28 (5 56 <1 10 2000 1.0 18 <5 56 <1 5 1900 possible to measure orientation. AG07961 59.0 60.0 1.0 Bedding (?) is at 75 degrees to core axis at 57.3 m. AG07962 60.0 61.0 1.0 8 ⟨5 40 ⟨1 10 1100 AG07963 3 20 ⟨5 <1 <5 690 Foliation is at 67 degrees to core axis at 57.8 m. 61.0 62.0 1.0 66 0.5 cm fault gouge at 80 degrees to core axis at 58.6 m. AG07964 62.0 62.5 .5 4 88 ₹5 102 <1 15 540 ⟨5 1200 Bedding is at 75 degrees to core axis at 59.1 m. AG07965 62.5 64.0 1.5 50 ₹5 90 <1 60.0 cm fault gouge at 30 degrees to core axis at 63.1 m. AG07966 66.8 67.8 1.0 ₹5 <1 ⟨5 430 26 54 <5 100 Slip at 50 degrees to core axis at 63.1 m. AG07967 67.8 68.1 .3 3 <5 22 <1 2 mm fault gouge at 70 degrees to core axis at 68.4 m. AG07968 68.1 69.8 1.7 ⟨5 60 <1 <5 620 Minor fault at 71.8 m. Not possible to measure orientation. AG07969 69.8 71.3 1.5 1 18 <5 58 <1 ⟨5 410 0.5 cm fault gouge at 68 degrees to core axis with 10 % AG07970 71.3 72.5 1.2 ₹5 50 <1 ⟨5 520 AG07971 72.5 74.0 (5 390 pyrite at 73.2 m. 1.5 39 (5 86 <1 MAJOR FAULT ZONE appears to be at 70 degrees to core axis AG07972 74.0 75.5 1.5 96 ₹5 78 <1 ₹5 670 at 76.3 m. Rock is broken and blocky over this interval AG07973 75.5 77.4 <5 65 <1 <5 810 1.9 2 30 and is strongly crushed for 10.0 cm a the lower end of AF00236 75.5 77.0 1.5 n/a 28 n/a 56 n/a n/a 896 77.4 77.5 10 390 the interval. AG07974 .1 25 112 <5 118 <1 10.0 cm fault zone at 60 degrees to core axis at 77.4 m. AG07975 77.5 78.0 .5 12 ⟨5 80 <1 <5 440 78.0 79.5 450 AG07977 1.5 <5 150 <1 ₹5 Rock is crushed and contains broken quartz vein material 29 and 20 % pyrite. AG07978 79.5 81.0 1.5 220 <5 176 <1 (5 710

HOLE No:

WEST87-15

Page Number

73.8

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 3

		•
From (m)	To (m)	DESCRIPTION
		1.0 cm fault gouge at 65 degrees to core axis at 78.2 m. 2 Mm fault gouge at 70 degrees to core axis at 79.0 m. 1.0 cm fault gouge at 60 degrees to core axis at 80.4 m. 4.0 cm fault gouge at 70 degrees to core axis at 80.7 m. 2 mm fault gouge at 70 degrees to core axis at 82.1 m.
		34.8 35.0 1.0 cm wide quartz-carbonate vein runs parallel to to the core axis. 2 % pyrite.
		35.3 35.5 Quartz-carbonate veins and pods <1.0 cm in width at 50-80 degrees to core axis with 10 % pyrite.
		41.1 46.0 CHLORITIC FELDSPAR PORPHYRITIC TUFF/FLOW: green-grey, very fine-grained, almost aphanitic, hard and siliceous. Up to 5 %, 2 mm feldspar crystals. 3 % disseminated and banded pyrite.
		41.4 42.2 7 % fracture/stringer controlled pyrite. Pyrite occurs in chlorite-filled fractures or stringers.
		$44.5\ 45.2\ 6\ \%$ pyrite associated with carbonate alteration.
		54.9 55.1 Quartz-carbonate alteration zone. Several quartz-carbonate veins < 1.0 cm wide at 70-75 degrees to core axis. 15 % pyrite.
		57.4 30 cm wide band of semi-massive pyrite in chlorite at 70 degrees to core axis.
		58.3 0.5 cm wide band of semi-massive pyrite at 70 degrees to core axis.
		57.4 59.0 5 % pyrite, mostly in bands < 1.0 cm wide at 70-90 degrees to core axis.
		62.2 2.0 cm wide band of massive pyrite at 70 degrees to core axis.
		62.4 3.0 cm wide band of semi-massive pyrite at 66 degrees to core axis.
		63.2 10.0 cm wide quartz-carbonate vein at 30 degrees to core axis with 5 % pyrite.
		63.7 65.0 Matrix is very chloritic, mafic in composition.
		67.8 68.1 Quartz-carbonate pod with 3 % pyrite.

3.0 cm band of massive chlorite with 15 % pyrite at 66 degrees to core axis.

Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
AG07979	81.0	82.5	1.5	. 2	12	∢5	112	∢1	∢5	720
AG07980	82.5	83.0	.5	3	12	₹5	80	<1	₹5	280
AG07981	83.0	83.4	.4	10	22	7	90	<1	∢5	1600
AG07982	83.4	84.5	1.1	5	13	<5	84	<1	<5	780
		-								

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 4

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba) (ppm
			Quartz vein at 60 degrees to core axis. No sulphide in vein but wall rock contains 20 % pyrite over 10.0 cm on downhole side of vein where a fault occurs.							, , , , , , , , , , , , , , , , , , ,				
		78.0 79.5	Several < 1.0 - 4.0 cm wide bands of semi-massive pyrite at 60-70 degrees to core axis											
		79.0 79.2	20 % pyrite associated with weak carbonate and weak to moderate chlorite alteration.											
		80.7	7.0 cm wide zone of moderate carbonate-chlorite alteration and semi-massive pyrite at 70 degrees to core axis.											
84.5	86.1	siliceous	ASH TUFF massive with aproximately 20 % ash-sized clasts. 6 % disseminated pyrite. Lower contact ional over 20 cm.	AG07983 AF00237 AG07984 AG07985	84.5 84.5 85.0 85.8	85.0 86.1 85.8 86.1	.5 1.6 .8	2 n/a 10 2	18 12 58 9	<5 n/a 8 <5	146 133 215 132	<1 n/a <1 <1	<5 n/a 5 <5	380 402 <20 500
		-85.1 85.8	10 % pyrite associated with weak chlorite and carbonate alteration.					•						
		85.4	5.0 cm wide band of semi-massive pyrite at 70 degrees to core axis on downhole side of a minor fault at 66 degrees to core axis.			•					•			
86.1	130.0	Up to 10 clasts in Massive, stretched pervasive	POTTED ANDESITIC LAPILLI TUFF % olive green 0.2-4.0 cm epidote-calcite altered a fine-grained, green-grey chloritic matrix. bedding not recognizable. Locally clasts are 2:1 at 60-65 degrees to core axis. Patchy weak carbonatization. Moderate pervasive tion near the upper contact. 1-2 % disseminated	AG07986 AG07987 AG07988 AG07989 AG07990	86.1 87.7 89.3 90.8 92.3 93.3	87.7 89.3 90.8 92.3 93.3 94.3	1.6 1.6 1.5 1.5 1.0	4 3 1 2 3 3	92 34 88 52 165 580	<5 <5 <5 <5 <5	169 136 132 162 156 190	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<5 <5 <5 <5 <5 <5	440 370 560 680 620 370
		pyrite ov STRUCTURE 10.0 cm f 40.0 cm f Bedding i 0.5 cm wi	erall. Lower contact is at 67 degrees to core axis	AG07992 AG07993 AG07994 AG07995 AF00238 AG07996			.8 1.5 1.1 1.5 5.0	2 2 2 3 n/a 1	179 385 220 280 36 84	<5 <5 <5 <5 n/a <5	188 136 118 192 194 360	<1 <1 <1 <1 n/a <1	<5 <5 <5 <5 n/a <5	170 130 120 460 665 990
		core. Not 4 Mm faul 4.0 cm fa Foliation Minor fau Blocky, h	ault zone at 103.2 m. Blocky, highly fractured possible to measure orientation. t gouge at 70 degrees to core axis at 106.6 m. ult gouge at 63 degrees to core axis at 106.9 m. is at 63 degrees to core axis at 108.1 m. lt at 53 degrees to core axis at 111.4 m. ighly fractured core between 111.8 and 113.4 m. ult gouge at 68 degrees to core axis at 113.4 m.	AG07997 AG07998 AG07999 AG08000 AG08301 AF00239 AG08302 AG08303 AG08304	107.1 114.7 115.7 116.1 123.0 126.0 126.7	108.0 115.7 116.1 117.1 125.0 126.7 126.8	.1 .9 1.0 .4 1.0 2.0 .7 .1	10 (1 0 5 1 n/a 3 15 2	162 140 210 350 94 32 200 180	5 <5 <5 5 n/a <5 7	70 310 163 183 164 206 310 285 255	2 <1 <1 <1 n/a <1 1	₹5	180 2400 70 1400 500 74 470 280 480

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Au -(ppb) (ppm) 580 ⟨5 1100

From (m)		DESCRIPTION
		Crushed zone to numerous slips at 65-80 degrees to core axis between 115.7 and 116.1 m. Foliation is at 70 degrees to core axis at 116.4 m. Possible fault between 117.0 and 117.7 m. Blocky, highly fractured core.
		Possible fault between 118.2 and 118.4 m. Blocky, highly fractured core. 0.5 cm wide fault gouge at 70 degrees to core axis at 129.1 m. 10.0 cm fault gouge at 60 degrees to core axis.
	•	91.1 91.3 Barren quartz-carbonate-chlorite pod.
		91.7 92.0 Irregular barren quartz-carbonate veins.
		93.0 99.0 No epidote altered clasts.
		93.3 Trace chalcopyrite associated with chlorite-carbonate alteration.
		94.3 94.4 Moderate pervasive carbonatization.
		95.1 97.7 Strongly silicified zone or chloritic felsic feldspar crystal tuff. 20 % 1-2 mm feldspar crystals in a siliceous, almost aphanitic matrix.
		96.4 4.0 cm thick band of massive chlorite-pyrite (30 % pyrite) at 50 degrees to core axis.
		98.9 3.0 cm thick band of massive chlorite-pyrite (20 % pyrite) at 50 degrees to core axis.
		107.0 107.1 Strong chlorite-carbonate alteration zone with 10 % pyrite and 1 % chalcopyrite bounded by slips at 60 degrees to core axis.
		107.1 108.1 Moderate pervasive carbonatization.
		115.7 116.1 Crushed zone at 63 degrees to core axis. Rock is soft, clay-rich and contains broken veins of quartz-carbonate <1.0 cm wide. 5 % pyrite in this zone.
A		1.5 cm irregular quartz-carbonate vein with semi-massive pyrite.

Up to 10 % intermediate-felsic clasts up to 3.0 cm wide, some with disseminated pyrite.

		HOLE No: Page Number WEST87-15 5												
Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	(Y						
AG08307 AG08308	127.8 129.0	129.0 130.0	1.2 1.0	2 2	300 152	<5 <5	215 400	<1 <1						
•				,										
					5.									
	·	- -												
			.*											

127.0

FALCONBRIDGE LIMITED

HOLE No: Page Number WEST87-15 6

			DIAMOND DRILL LOG									•		
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba b) (ppm)
		interval. R to 10.0 cm	ately sericitic and crushed over most of the are spotty of mariposite. Many fault gouges up wide at 60-75 degrees to core axis. 4 % d pyrite. Lower contact is a fault at 60 core axis.	AG08309	130.0	130.6	.6		740	<5	150	. 1	<5	1900
130.6	148.5	As 86.1 to 65 degrees STRUCTURE: 3 mm fault	TTED ANDESITIC LAPILLI TUFF 130.0 m. 1-2 % pyrite. 1.5 cm fault breccia at to core axis at lower contact (30 % pyrite). gouge at 75 degrees to core axis at 131.8 m. fault gouge at 67 degrees to core axis at 132.0	AG08310 AG08311 AG08305 AG08306 AG08312	131.6 132.0 132.2	132.0 132.1 133.2	.4 .1	4 1 2 2 2	770 156 135 172 162	<5 <5 43 <5 <5	295 220 144 162 170	<1 <1 1 <1 <1	<5 <5 10 <5 <5	720 1100 270 290 490
		20 cm fault Slip at 45 Possible fa fractured c Possible fa fractured c MAJOR FAULT fractured c 60-90 degre	ult between 136.2 and 136.6 m. Blocky, highly											
		132.1 132.2	Strong quartz-carbonate dumping on downhole side of a 10.0 cm thick fault gouge. 5 % disseminated pyrite.	•										
		132.2 134.6	Very massive, no clasts. May be a flow.											
		132.3	$4\ \mathrm{cm}$ wide quartz-carbonate vein at 30 degrees to core axis with 1 % pyrite.											
		141.6 142.0	Several clasts of chlorite spotted mafic tuff/flow. Spots may be chlorite replacing hornblende.											
		147.7	1.5 cm wide rounded clast of grey fine-grained felsic material.		٠									

148.5 152.1 QUARTZ EYE BEARING FELSIC TUFF
Green-grey to light grey with up to 10 % 1-3 mm quartz
eyes and occasional spotty of mariposite. Moderately to
strongly sericitic. Weakly chloritic for 0.5 cm from upper
contact. Quartz eyes are largest and most conspicuous
between 149.4 and 151.4 m. Average 2 % disseminated
pyrite. Lower contact is gradational.
STRUCTURE:

AG08313 148.5 150.0 70 ⟨5 76 <1 (5 2000 AF00240 149.4 151.4 25 2.0 n/a <10 n/a n/a n/a 2410 AG08314 150.0 151.0 1.0 9 ⟨5 28 <5 2200 <1 AG08315 151.0 152.1 1.1 41 ⟨5 <5 1700 <1

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 7

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphide	Cu s (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		3.0 cm faul 3 mm wide f	s at 65 degrees to core axis at 149.2 m t gouge at 68 degrees to core axis at 1 ault gouge at 70 degrees to core axis a ps at 60-70 degrees to core axis betwee:	49.9 m. t 151.0 m								•		
	٠	151.0	0.5 cm band of massive pyrite at 70 de core axis.	grees to										
152.1	159.4	Grey to gre Above 152.7 the tuff of aggregates becomes more epidotized 4-5 % disse fine-grains sphalerite contact. STRUCTURE:	EPIDOTE SPOTTED LAPILLI TUFF en-grey. Clasts vary in size and compose m it is an ash tuff. Between 152.7 and entains about 5 % 1-3 mm epidotized class of feldspar. From 156.0 to 159.4 m mat e chloritic and rock contains trace-5 % 1-3 mm clasts as well as bleached lapid minated pyrite. 7.0 cm band of very ed, crushed semi-massive pyrite and poss at lower contact. Broken core (fault?	153.5 AG08317 ts or AG08318 rix AG08319	153.1 154.1 155.1 156.1 157.1	154.1 155.1 156.1 157.1 158.1	1.0 1.0 1.0 1.0 1.0	4 7 4 5 5 4 4	143 168 158 250 270 240 300	13 18 <5 <5 <5 <5 <5	72 104 104 112 103 245 310	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<5	1200 2000 2400 770 480 510 800
	•	154.1 m. Foliation in Minor fault	s fault gouge at 70 degrees to core axis s at 62 degrees to core axis at 154.8 m at 65 degrees to core axis at 155.6 m. s at 63 degrees to core axis at 157.3 m	•			·	,						
		152.1	3 mm massive pyrite band at 72 degrees axis.	to core										
		153.6	3.0 cm wide band of semi-massive pyrit degrees to core axis.	e at 63										
		154.1	Two 3 mm massive pyrite bands at 80 de core axis.	grees to										
	•	156.7	Speck of chalcopyrite on margin of a p bleb.	yrite										
159.4	160.5	Medium gree altered cla Foliation	OTTED ANDESITIC LAPILLI TUFF on with up to 10 % 0.2 - 1.0 cm epidotests. Weak to nil pervasive carbonatizas at 60 degrees to core axis. 3 % dissever contact is gradational over 20 cm.	tion.	159.4	160.5	1.1	3	75	<5	118	(1	(5	210
160.5	161.3	Grey, mass:	EPIDOTE SPOTTED TUFF ve, moderately sericitic with 5 % finel d pyrite. Foliation is at 72 degrees to	=	160.5	161.3	.8	4	52	.<5	122	a´	<5	700

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 8

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
		axis. Lower contact is gradational over 10.0 cm.											-
		3.0 cm crushed zone at 70 degrees to core axis with 10 % very finely disseminated pyrite and perhaps some sphalerite.											
161.3	166.0	EPIDOTE SPOTTED ANDESITIC LAPILLI TUFF As 159.4 to 160.5 m. 2 % disseminated pyrite. Lower contact is gradational over 10 cm. STRUCTURE: Bedding (?) is at 78 degrees to core axis at 161.8 m. Possible fault zone between 162.4 and 162.5 m. Blocky, highly fractured core. Possible fault zone between 163.3 and 163.5 m. Blocky, highly fractured core.	AG08325 AF00241 AG08326	162.0	164.5	1.5 2.5 1.5	2 n/a 3	136 63 250	<5 n/a <5	98 94 113	<1 n/a <1	<5 n/a <5	<20 261 570
		164.8 165.2 Silicfied zone or felsic tuff at 70 degrees to core axis.											
166.0	169.8	SILICIFIED EPIDOTE SPOTTED TUFF Light green-grey, mottled and similiar in appearance to Massive Mottled Siliceous Rock except it has up to 5 % (1.0 cm epidote spots. Lower contact is gradational. STRUCTURE: Bedding (?) is at 70 degrees to core axis at 166.7 m.	AG08327 AG08328 AG08329	167.5	169.0	1.5 1.5 1.5	3 3 3	77 24 4	<5 <5 <5	54 50 42	<1 <1 <1	<5 <5 <5	430 520 520
169.8	178.1	INTERMEDIATE TUFF/FLOW Mottled in appearance, similiar to Massive Mottled Intermediate Rock but more siliceous and less chloritic. Occasional spotty of mariposite. Lower contact is placed where quartz eyes become conspicuous. STRUCTURE: Bedding (?) is at 70 degrees to core axis at 166.7 m. Minor fault at 58 degrees to core axis at 170.9 m. Foliation is at 78 degrees to core axis at 173.4 m. Several minor slips at 70-75 degrees to core axis. MAJOR FAULT ZONE: at 65-70 degrees to core axis between 176.2 and 176.6 m. Several < 1.0 cm wide fault gouges. MAJOR FAULT ZONE: three 1.0-3.0 cm fault gouges at 60-80 degrees to core axis between 176.2 and 176.6 m. Possible bedding at 80 degrees to core axis at 176.9 m.	AG08330 AF00242 AG08331 AG08332 AG08334 AG08335 AG08336 AG08337	171.0 172.0 173.0 174.0 175.0 176.6 176.6	173.0 173.0 174.0 175.0 176.0 176.6 177.7	1.5 2.0 1.0 1.0 1.0 1.0 1.1	3 n/a 4 2 3 4 2 10	4 <10 4 11 8 16 38 36 22	5 n/a 11 <5 6 18 8 18 75	66 45 59 48 40 58 42 198 860	<1 n/a <1 <1 <1 <1 <1 <1 <1	5 <5 <5 <5	760 1250 900 1100 1300 1000 820 880 1000

172.8 173.0 8 % fracture controlled pyrite.

173.7 3.0 cm quartz-carbonate vein at 80 degrees to core axis with 1.0 cm band of massive pyrite along downhole margin.

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 9

Au

Width % Total

(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppl	b) (ppm)
		177.7 178.1 10 % pyrite in semi-massive to massive bands at 75-90 degrees to core axis.				·							
178.1	178.9	QUARTZ EYE BEARING FELSIC TUFF 5 % 2-4 mm quartz eyes in a siliceous, sericitic matrix. Foliation is contorted throughout the section. 3 % disseminated and banded pyrite. Broken core at lower contact. STRUCTURE: 10.0 cm fault gouge at 60 degrees to core axis at 178.3 m.	AG08338	178.1	178.9	.8	5	11	32	65	<1	< 5	1800
		178.6 2.0 cm wide band of massive pyrite at 70 degrees to core axis.											
178.9	240 3	DACITIC-ANDESITIC TUFF	,										
1/0.9	240.3	Dominantly an ash tuff but locally up to 5 % felsic lapilli. Up to 5 % sericitic <1 mm feldspar crystals. Dacitic with nil-3 %, 1-3 mm quartz eyes above 200.0 m. No quartz eyes and andesitic in composition below 200 m. Nil-weak pervasive chloritization. Strongest, most consistent SULPHIDE MINERALIZATION in the hole occurs between 192.0 and 202.0 m. Rock is strongly sericite altered but still quite massive and it contains 5-20 % pyrite per metre, much of it in bands <0.5 - 5.0 cm wide at 70 degrees to core axis. STRUCTURE: 3 mm fault gouge at 70 degrees to core axis at 181.1 m. 2 mm fault gouge at 80 degrees to core axis at 182.7 m. 10 cm fault gouge at 85 degrees to core axis at 184.1 m. Fault zone between 184.5 and 184.7 m. Blocky, highly fractured core. Bedding (?) is at 75 degrees to core axis at 186.5 m.	AG08339 AG08340 AG08341 AG08342 AG08343 AG08344 AG08345 AF00243 AG08347 AG08349 AG08350 AG08351 AG08353	179.9 180.9 181.9 182.9 183.9 184.9 185.0 185.9 186.9 187.9 189.0 190.0 191.0 192.0 193.0	180.9 181.9 182.9 183.9 184.9 185.9 186.0 186.9 187.9 189.0 190.0 191.0 192.0 193.0 194.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2 2 3 3 4 3 n/a 5 3 2 5 5 4 7 8 10	39 42 10 41 84 28 42 24 66 72 152 62 180 64 84	14 68	53 19 132 52 81 330 64 49 455 285 22 205 2900 245 2250 1450 135	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<pre></pre>	1600 1100 1300 1600 860 410 1100 600 610 580 820 810 820 1200 1100 1400 700
		Foliation is at 75 degrees to core axis at 188.0 m. Possible fault between 188.5 and 188.6 m. Blocky, highly fractured core. 1.0 cm fault gouge at 60 degrees to core axis at 192.1 m. Bedding is at 74 degrees to core axis at 192.5 m. Foliation is at 75 degrees to core axis at 193.0 m. 5.0 cm fault gouge at 70 degrees to core axis at 193.8 m.	AG08355 AG08356 AG08357 AG08358 AG08369 AG08361	195.8 196.5 197.5 198.2 199.2 200.3	196.5 197.5 198.2 199.2 200.2 201.2	.8 .7 1.0 .7 1.0	20 8 5 25 8 7 5	72 10 6 42 28 100 60	57 <5 <5 <5 <5 <5	370 33 12 36 36 39 46	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	5 <5 <5 <5 <5 <5	1300 1400 1200 860 1100 480 520
		Foliation is at 77 degrees to core axis at 198.9 m. Fine banding (bedding? or wispy sericite alteration). The banding is at 70 degrees to core axis. Foliation is at 70 degrees to core axis at 204.7 m. 2.0 cm fault gouge at 60 degrees to core axis at 208.1 m. Bedding (?) is at 75 degrees to core axis at 209.9 m. Lithified fault breccia, 5.0 cm wide at 60 degrees to core axis at 212.9 m. Bedding (?) is at 74 degrees to core axis at 213.1 m. Bedding (?) is at 76 degrees to core axis at 213.6 m.	AG08364 AG08365 AG08366 AG08367	202.2 203.2 203.6 204.6 205.6 206.0 206.6 207.6	203.2 203.6 204.6 205.6 206.6 209.0 207.6 208.6	1.0 1.0 .4 1.0 1.0 3.0 1.0	4 3 5 4 5 4 n/a 6 6	92 690 330 180 136 56 70 360 300 160	<5 <5 24 5 <5 6 n/a 7 <5 6	59 38 30 39 38 33 57 50 58 34	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	(5 (5 (5 (5 (5 n/a (5 (5 (5	430 <20 50 60 220 370 353 140 60 190

Sample From To

204.3

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 10

Zn

(ppm)

36

55

65

35

34

34

32

29

28

31

23

21

21

26

31

23

32

20

32

26

26

29

27

26

17

18

24

21

28

35

530

59

14

12

16

19

Ag

<1

<1

<1

<1

<1

<1

<1

n/a

<1

⟨1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

n/a

<1

⟨1

<1

<1

<1

<1

<1

₹1

<1

<1

<1

⟨1

<1

<1

(ppm)

Au

⟨5

10

⟨5

⟨5

<5

5

₹5

n/a

∢5

₹5

<5

15

₹5

₹5

⟨5

⟨5

10

10

₹5

⟨5

₹5

n/a

₹5

∢5

₹5

<5

⟨5

⟨5

<5

₹5

<5

₹5

5

₹5

₹5

₹5

Вa

80

⟨20

<20

320

400

280

240 370

200

430

390

390

880

920

960

1400

590

70

180

380

370

615

530

380

390

290

170

510

130 20

490

430

1300

950

380

470

(ppb) (ppm)

			DIAMOND DRIEF FOG							
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)
			s at 77 degrees to core axis at 214.3 m.	AG08371		210.5	.9	5	480	<5
		Minor slip	at 73 degrees to core axis at 216.5 m.	AG08372			. 2	20	310	<5
			gouge at 76 degrees to core axis at 217.5 m.	AG08373			.3	10	280	₹5 .
			is at 77 degrees to core axis at 217.7 m.	AG08374			1.0	4	120	5
			is at 75 degrees to core axis at 218.3 m.	AG08375		213.0	1.0	5	164	<5
			is at 73 degrees to core axis at 219.5 m. 3 mm	AG08376			1.0	, 3	149	<5
			g bedding plane.	AG08377			1.0	3	68	<5
			at 75 degrees to core axis at 221.2 m.	AF00245		218.0	3.0	n/a	- 88	n/a
			s at 66 degrees to core axis at 224.2 m.	AG08378			1.0	5	131	<5
			s at 70 degrees to core axis at 234.7 m.	AG08379			1.0	5	120	<5
		Minor seric:	itic slip at 66 degrees to core axis at 246.4.	AG08380			1.0	4	125	<5
				AG08381			1.0	3	116	₹5
		181.0	4.0 cm band of semi-massive pyrite at 70	AG08382	219.0	220.0	1.0	5	76	<5
			degrees to core axis.	AG08383	220.0	221.0	1.0	3 ·	190	5
				AG08384	221.0	221.6	.6	2	68	9
		191.2 191.4	Quartz vein at 75 degrees to core axis with 5	AG08385	221.6	222.0	. 4	10	114	·· 5
_			% pyrite along vein margin.	AG08386	222.0	223.0	1.0	10	70	<5
				AG08387	223.0	223.1	1	70	112	. 6
		191.6 192.0	8 % pyrite. Rock is crushed and pyrite is very	AG08388	223.1	224.0	. 9	5	178	<5
		V	fine-grained. Possibly some sphalerite.	AG08389	224.0	225.0	1.0	5	94	<5
				AG08390	225.0	226.0	1.0	5	115	5
		192.2	5.0 cm wide zone of carbonate dumping	AF00246	226.0	229.0	3.0	n/a	27	n/a
			immediately uphole from a fault gouge.	AG08391	226.0	227.0	1.0	6	68	<5
				AG08392	227.0	228.0	1.0	5	130	<5
		193.8 193.9	Massive pyrite.	AG08393			1.0	5	98	<5
				AG08394	229.0	230.0	1.0	5	77	<5
		194.4	5.0 cm band of semi-massive pyrite at 75	AG08395	230.0	231.0	1.0	4	88	<5
			degrees to core axis.	AG08396			1.0	4 .	88	<5
				AG08397	232.0	233.0	1.0	3	150	<5
		194.6	1.0 cm wide band of massive pyrite at 85	AG08398			1.0	3	140	<5
			degrees to core axis.	AG08399			1.0	5	280	<5
				AG08400			1.0	5	117	₹5
		194.7	5.0 cm zone of semi-massive pyrite.	AG08401			1.0	3	38	5
			· · · · · · · · · · · · · · · · · · ·	AG08402			1.0	6	118	∢5
		194.9	4.0 cm zone of semi-massive pyrite.	AG08403			1.0	4	108	5
			The our sould of sould massive planter.	AG08404			1.3	5	60	7
		195.0 195.8	20 % pyrite disseminated and in bands up to					•		•
			4.0 cm. Strong sericite alteration and an							
			occasional spotty of mariposite (?).							
			occupronar proced or marripopres (.).						*	
		197.5 198.2	20 % pyrite, mostly in siliceous bands up to 5.0 cm wide at 50-80 degrees to core axis.							
		100 3	·							
		199.3	4.0 cm band of semi-massive pyrite at 75 degrees to core axis.							
		203.2 203.6	Bleached altered zone. 8 % disseminated pyrite.							
		004.3	A.F land of manning consider at TF damages to		•					

0.5 cm band of massive pyrite at 75 degrees to core axis offset 1.0 cm by a slip at 25

degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 11

Ag

(ppm) (ppb) (ppm)

(ppm) (ppm)

Width % Total

Sulphides (ppm)

(m)

From

(m)

(m)

From (m)	To (m)			DESCRIPTION	Sampl No.
		206.9		3.0 cm band of semi-massive pyrite at 73 degrees to core axis associated with strong chlorite and moderate carbonate alteration.	
		208.0		10.0 cm wide band of semi-massive pyrite and strong chlorite-carbonate alteration at 60 degrees to core axis.	
		210.6		10.0 cm zone of intense chlorite alteration at 67 degrees to core axis. 30 % pyrite and 2 % chalcopyrite.	
		210.9		8.0 cm strong chlorite alteration with 30 % pyrite at 60 degrees to core axis.	
		216.5		1.0 cm band of massive pyrite at 75 degrees to core axis.	
		220.0	221.5	Up to 8 % 1-3 mm quartz eyes.	
		221.6	223.1	Average 10 % pyrite in bands up to 5.0 cm wide parallel to foliation at $70-80$ degrees to core axis and disseminated.	
		223.0		5.0 cm wide band of massive pyrite at 80 degrees to core axis. Moderate carbonate alteration.	
		223.1	228.9	Rock is massive, fine-grained and contains 5 % finely disseminated pyrite.	
		232.0		2.0 cm wide chlorite-carbonate alteration band at 40 degrees to core axis with 20 % pyrite.	
		234.6		Few specks of chalcopyrite.	
		246.1		4.0 cm band (bed ?) with 30 % pyrite.	
		246.4		4.0 cm of 30 % pyrite on downhole side of minor sericitic slip at 66 degrees to core axis	
		238.5	238.9	4 % 1-3 mm hornblende.	•

240.3 240.8 FELDSPAR PHYRIC GABBRO

Medium green fine-grained with 5 % 1-3 mm feldspar phenocrysts. 5.0 Cm chill margins at upper and lower contacts. Lower contact is at 78 degrees to core axis. 2 % finely disseminated ilmenite. Nil sulphides.

From

To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: WEST87-15 Page Number 12

Pb

Ag

Au

Ва

Width % Total

rom	ТО		ř	Sample	From	To	Width	% Total	Cu	Рb	Zn	Ag	Au		
(m)	(m)	•	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(mqq)	(ppl	b) (ppm	.)
240.8	257.9	FELSIC TUFF	/FLOW												
			a mottled appearance. Locally up to 10 % < 2	AG08405	240.8	242.0	1.2	6	78	5	20	⟨1	5	350	
			dspars in a very siliceous aphanitic matrix.	AG08406	242.0	243.0	1.0	4	64	₹ 5	14	₹1	₹5	230	
		STRUCTURE:	tabpais in a very siliceous aphanicic matrix.	AG08407		244.0	1.0	4	51	6	12	1	(5	620	
								-		-			-		
			s at 68 degrees to core axis at 242.4 m.	AG08408		245.0	1.0	3	18	5	9	<1	< 5	490	
			s at 65 degrees to core axis at 244.2 m.	AG08409		246.0	1.0	. 2	10	10	4.	<1	₹5	280	
			s at 65 degrees to core axis at 247.0 m.	AG08410	246.0	247.0	1.0	3	7	13	3	<1	₹5	810	
		Fault (?) b	etween 247.3 and 247.4 m. Rock is crushed,	AF00247	244.7	244.8	.1	n/a	13	n/a	13	n/a	n/a	275	
		foliation i		AG08411	247 0	248.0	1.0	1	4	₹5	6	<1	₹5	1600	
			gouge at 80 degrees to core axis at 256.2 m.	AG08412		249.0	1.0	ī	4	6	6	₹1	-	1200	
		J mm radro	younge at to degrees to core axis at 250.2 m.	AG08412			1.0	3	5	9	8	<1		1200	
		044 4 046 2	Probability and a second secon					-	-	_	-	_	-		-
		244.4 246.3	Extremely pervasively silicified zone (sample	AG08414			1.0	3	2	5	11	<1		1400	
			AF00247). Very fine-grained almost aphanitic	AG08415			1.0	4	4	7	7	<1		1500	
			with up to 5 % < 2 mm feldspar crystals.	AG08416	252.0	253.0	1.0	4	6	₹5	7	<1 ⋅	<5	1100	
			Strongly microfractured. About 2 %	AG08417	253.0	254.0	1.0	4	10	5	6	<1	<5	1200	
			disseminated pyrite.	AG08418	254.0	255.0	1.0	4	6	5	8	<1	⟨5	1000	
			• • • • • • • • • • • • • • • • • • • •	AG08419			1.0	3	6	⟨5	8	<1	₹5	960	
		249.3	4.0 cm wide band of semi-massive pyrite	AG08420			1.1	6	73	⟨5 -	21	. (1	√5	860	
		249.3	4.0 cm wide band of Semi-massive pyrice							-					
			associated with carbonate-epidote alteration.	AG08421			.2	35	245	. 6	16	<1	25	160	
				AG08422	257.3	257.9	.6	6	57	₹5	20	<1	< 5	650	
		256.4	1.0 cm wide band of semi-massive pyrite in												
			carbonate-quartz gangue at 70 degrees to core												
			axis.												
										* .					
		257 1 257 3	5 % pyrite concentrated in two 5.0 cm wide												
		201.1	bands at 65 degrees to core axis. Moderate					•							
			carbonatization and nil-weak epidote within												
			pyrite bands.												
257.9	289.3	MASSIVE SIL	ICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF												
		Grev-green,	fine-grained with up to 5 % 1-3 mm dark green	AG08423	257.9	259.0	1.1	5	124	5	22	<1	<5	200	
			emblende crystals (thin section sample	AG08424			1.0	6	170	⟨5 .	22	₹1	₹5	140	
		AF00248)	Very siliceous and hornblende is rare for 3.0 m	AG08425			1.0	5	91	₹5	22	(1	(5	130	
		from loren	contact. Lower contact is at 75 degrees to	AF00248		264.0		-	61		29	-	n/a	431	
			contact. Hower contact is at 75 degrees to				3.0	n/a		n/a		n/a			
		core axis.		AG08426		262.0	1.0	4	140	₹5	25	<1	5	240	
				AG08427		263.0	1.0	. 6	112	5	22	<1⁻	5	230	
		265.9 266.1	Grey siliceous section with 10 % pyrite in	AG08428	263.0	264.0	1.0	8	108	5	19	· <1	<5	390	
			bands < 1.0 cm wide at 70-80 degrees to core	AG08429	264.0	265.0	1.0	5	115	₹5	15	<1	<5	170	
			axis.	AG08430	265.0	266.0	1.0	6	104	⟨5	19	<1	₹5	460	
				AG08431		267.0	1.0	4	116	₹5	17	⟨1	₹5	280	
		266.4	1.0 cm wide carbonate vein with semi-massive	AG08431		268.0	1.0	5	134	· <5	30	1	₹5	330	
		400.4						•		-					
			pyrite and epidote along vein margins.	AG08433		269.0	1.0	4	108	5	37	<1	₹5	290	
			e war	AG08434		270.0	1.0	4	120	₹5	26	₹1 .	· <5	210	
		267.6	Epidote-pyrite-calcite vein 4 mm wide at 70	AG08435			1.0	6	94	<5	22	<1 .	∢5	310	
			degrees to core axis.	AG08436	271.0	272.0	1.0	7	129	<5	21	<1	∢5	280	
			-	AG08437	272.0	272.5	.5	7	310	₹5	21	<1	₹5	(20	
		267.7	Quartz-carbonate vein 2.5 cm wide with 20 %	AG08438		273.2	.7		1200	5	41	(1	10	40	
		~ · · ·	pyrite and epidote and chlorite along vein	AG08439		273.5	.3	5	550	5	26	₹1	₹5	₹20	
			•			273.4				-	56	_			
			margin.	AF00249	413.3	413.4	.1	n/a	225	n/a	20	n/a	n/a	117	
			·			1									

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-15 13

125

n/a 118

			DIAROND DRILLI LOG			•								
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (mqq)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
				AG08440	273.5	274.5	1.0	7	119	⟨5	26	· <1	₹5	480
		273.2 273.5	Intensely chloritized zone, patchy epidote	AF00250	274.5	276.5	2.0	n/a	79	n/a	35	n/a	n/a	477
			alteration and 10 % stringer pyrrhotite with	AG08441	274.5	275.5	1.0	5	160	5	19	<1	₹5	230
			chalcopyrite centred on 273.3 m. AF00249 is a	AG08442	275.5	276.5	1.0	4	132	5	23	<1	<5	210
			sample of the black chlorite.	AG08443	276.5	277.5	1.0	4	81	<5	23	<1	<5	300
				AG08444	277.5	278.5	1.0	. 4	74	<5	23	<1	₹5	270
		275.3	5.0 cm of 20 % pyrite associated with patchy	AG08445	278.5	280.0	1.5	3	100	<5	29	<1	10	450
			epidote alteration.	AG08446	280.0	281.0	1.0	5	72	<5	30	·<1	<5	610
				AG08447	281.0	282.0	1.0	2	62	<5	37	<1	₹5	100
		275.4	As 275.3 m.	AG08448	282.0	283.0	1.0	5	100	₹5	30	<1	5	240
		_		AG08449	283.0	284.0	1.0	6	88	₹5	32	<1	₹5	140
		280.6	Two, 1.5 cm bands of massive pyrite at 70-80	AF00251	283.5	283.6	.1	n/a	30	n/a	35	n/a	n/a	382
			degrees to core axis.	AG08450	284.0	285.0	1.0	4	85	₹5	26	<1	5	210
				AG08451	285.0	286.0	1.0	4	79	<5	35	<1	20	410
		281.4 281.6	3.0 cm wide quartz-carbonate veins with 5 %	AG08452	286.0	287.1	1.1	5	56	₹5	24	<1	15	820
-		•	disseminated pyrite runs parallel to degrees	AG08453	287.1	288.1	1.0	10	117	<5	24	<1	-	1200
			to core axis.	AG08454	288.1	288.6	.5	1	130	<5	21	<1	₹5	980
				AG08455	288.6	289.3	.7	1	108	<5	12	<1	√ ₹5	1000
		282.1 282.2	Two, 0.5 cm wide epidote-pyrite-carbonate veins. First is at 63 degrees to core axis and the other is ptygmatically folded and trends parallel to to the core axis.											
		283.2	2.5 cm wide carbonate vein at 75 to degrees to core axis filled with massive pyrite.							•				
		287.1 287.5	8 % pyrite, 3 % pyrrhotite and trace chalcopyrite. Sulphides are disseminated and fracture controlled.							•				

AF00252 291.0 293.0

287.5 288.2 8 % pyrite and trace pyrrhotite. Speck of mariposite at 287.9 m.

288.2 288.6 15 % pyrite, 4 % pyrrhotite and 1 % chalcopyrite.

288.6 289.3 4 % disseminated pyrrhotite.

289.3 308.2 FELDSPAR PHYRIC GABBRO

Medium green, massive, fine-grained with up to 8 % 1-3 mm white feldspar phenorrysts and 2 % finely disseminated ilmenite. Much of the ilmenite grains have white alteration rims (leucoxene?). 2.0 Cm zone of assimilation and a 5.0 cm chill margin at the upper contact

306.9 307.2 Fault zone. Blocky, highly fractured core. 0.3 m of lost core. Not possible to measure orientation.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-16

77

n/a

n/a

Hole Location: 13+96 E 10+37 S

NTS: 092B/13E UTM: 5411290 N, 450355 E

Azimuth: 15 Elevation: 281 m Dip: -45 Length: 288.0 m

Started: Nov. 10/87 midday Completed: Nov. 15/87 midday

Purpose: To test stratigraphy north of West84-3,4. DIP TESTS

Claim No. West 1 Section No.: Line 14+00 East

Logged By: D.P.Money

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NQ

14.0 36.8 22.8

Length	Azi- muth	Dip	Length	Azi- muth	Dip
62.70	17.0	-46.0	143.60	20.0	-44.5
108.50	18.0	-45.0	280.40	26.0	-44.5

Sample From Width % Total From To To Pb Au Ва -----DESCRIPTION-----No. (m) Sulphides (ppm) (ppm) (ppb) (ppm) (m) (mqq) (mqq)

AF00525

.0 14.0 OVERBURDEN AND CASING

14.0 36.8 EPIDOTE SPOTTED ANDESITE

Andesitic flow (?), massive, fine-grained green matrix with 30 to 35 %, up to 8 mm, epidote grains and some epidote after feldspar laths. There are minor ash tuff interbeds, 14.3 with bedding at 18 degrees to core axis. Unit oxidized throughout (rust on fractures). Hosts 0.5 to 1 % disseminated pyrite, < 1 mm grains to 3 mm cubes. There is silicification centred on fractures and epidote blotches.

15.0 16.7 1.0 m lost core.

14.0 18.6 Silicified with white fracture controlled quartz veinlets.

26.9 36.8 Silicified with white fracture controlled quartz veinlets.

27.2 36.8 Epidote alteration as blotches with similar appearance to lapilli tuff.

32.3 33.5 0.7 m lost core.

31.0 32.2 0.4 m lost core.

27.5 28.9 Blocky, highly fractured core.

29.8 30.7 Blocky, highly fractured core.

31.4 33.5 Blocky, highly fractured core.

36.3 36.8 Blocky, highly fractured core.

33.5 34.2 Minor felsic ash tuff beds.

30.8 31.1 Minor felsic ash tuff beds.

36.8 56.2 FELSIC ASH TUFF

Fine-grained grey tuff with 1 to 3% pyrite. AG08027 38.2 40.2 2.0 2 22 7 110 <1 <5 970 36.8 41.8 Very fine-grained ash tuff with minor epidote AF00526 38.6 41.0 2.4 n/a 32 n/a 100 n/a n/a 808

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-16 2

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppi	Ba b) (ppm)
			grain beds. Bedding is at 12 degrees to core axis, 41.0 m. There is a minor mafic bed from 38.3 to 38.6 with fault slips from 38.3 to 39.0 at 25 degrees to core axis.	AG08028 AG08029 AG08030 AG08031	40.2 44.0 47.0 48.0	41.4 46.0 48.0 49.0	1.2 2.0 1.0 1.0	2 1 5 1	28 11 65 8	9 <5 7 5	111 44 84 29	<1 <1 <1 <1	<5	830 950 1600 980
		41.8 40.2	Blocky, highly fractured core silicified tuff with minor white cross-cutting quartz veinlets. Hosts approximately 5% <= 1 mm epidote grains and quartz eyes.	AF00527 AG08032 AG08033 AG08034	48.0 49.0 50.0 51.0	52.0 50.0 51.0 52.0	4.0 1.0 1.0	n/a 2 3 2	98 18 21 21	n/a 7 8 11	39 59 57 65	n/a <1 <1 <1	n/a <5 <5 <5	1820 1600 790 380
			Grey medium to fine-grained tuff with 1 to 2 % disseminated pyrite and 5 to 10%, 1 to 2 mm, quartz eyes.	AG08035 AG08036 AG08037	52.0 53.0 54.0	53.0 54.0 55.0	1.0 1.0 1.0	3 3 1	339 94 162	9 9 8	101 104 113	<1 <1 <1	<5 <5	1400 1100 650
			Chlorite - carbonate alteration with 5 to 7 % pyrite as grains and cubes (< 3 mm), and trace chalcopyrite. Silicified grey tuff.	AG08038 AG08039	55.0 56.0	56.0 57.5	1.0	2 30	25 192	9 16	80 100	<1 <1	<5 10	260 1600
		54.0 54.5	Chlorite - carbonate alteration with 2 to 3 % pyrite. Very fine-grained siliceous cherty sediment (?)									÷		
			with 2 to 3 % bedded fine-grained pyrite. s:. degrees to core axis. degrees to core axis.											
		53.5 : 43 Bedding :	degrees to core axis.											
		55.0 : 21	degrees to core axis.											
56.2	57.5	FAULT GOU 30 to 35 (56.2 to	% pyrite in clay fault gouge with 0.6 m lost core								·			
57.5	57.7	Chlorite	IVE SULPHIDES IN CHLORITE-CARBONATE ALTERATION - calcite alteration with 10 to 15 % pyrite. The is 32 degrees to core axis.	AG08040	57.5	58.3	.8	3	311	11	85	<1	(5	890
57.7	58.3	Cherty se siliceous fracture	CHERTY TUFFITE/SILTSTONE diment to felsic ash tuff, grey and very . Hosts 1 % pyrite and trace chalcopyrite in controlled chlorite - carbonate veinlets parallel .ion, approximately 30 degrees to core axis.									. •		
58.3	63.7	As from 1 pyrite. M epidote g as does 5	POTTED ANDESITE 4.0 to 36.8 with trace to 1 % disseminated lassive flow with no foliation. 15 to 20 % rains and saussuritized feldspar crystals occurs to 10 % epidote clots with silica and calcite - fractures.	AG08041 AF00528 AG08042	59.0 60.0 62.8	59.5 62.0 63.8	.5 2.0 1.0	4 n/a 2	2943 121 630	8 n/a 12	108 74 89	1 n/a <1	<5 n/a <5	570 265 310

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-16 3

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		59.1 59.2 Chlorite - carbonate alteration with 10 to 15 % pyrite and 2 to 3 % chalcopyrite.								٠			
63.7	63.9	FAULT GOUGE Pyrite rich mud and fault at 20 degrees to core axis.											
63.9	71.2	CHERTY DARK GREY TO BLACK ARGILLITE Cherty dark grey to black argillite with 2 to 3 % fracture controlled pyrite and 1 to 2 % epidote (?), light yellow splotches (not carbonate). There is a minor fault at 65.6 at an orientation of 14 degrees to core axis. There fault has a displacement of 17 mm and some pyrite bands are offset (pre-fault py) and some are not (post-fault py). Blocky, highly fractured core: 63.8.0 64.4, 66.3 - 66.6, 67.7 - 68.0, 68.6 - 68.9, 69.3 - 69.6.	AG08043	64.7	67.4	2.7	3	89	9	71	<1	< 5	90
71.2	71.5	FELSIC DYKE Massive siliceous grey rock, felsic dyke (?), with 5 % feldspar grains and 2 % epidote grains. There is trace fracture controlled pyrite. Foliation: 71.3: 61 degrees to core axis.											
71.5	72.5	QUARTZ VEIN +/- CHORITE WITH SULPHIDES White milky quartz with 5 % dark green chlorite and 0.5 to 1 % pyrite cubes. The pyrite has striated faces and is up to 4 mm.	AG08044	71.5	72.5	1.0	1	42	10	11	1	<5	⟨20
72.5	78.0	O SILICEOUS CHERTY TUFFITE/SILTSTONE Cherty tuffite/siltstone with trace fracture controlled calcite - pyrite veinlets and minor fracture controlled silicification. The bedding is not determinable and foliation varies from 55 to 60 degrees to core axis.											
78.0	80.1	ANDESITE Andesitic flow with strong silicification from 78.0 to 79.0. There are trace minor pyrite blebs. Blocky, highly fractured core: 78.0 to 79.3.											

80.1 82.0 CHERTY DARK GREY TO BLACK ARGILLITE
Black cherty argillite with indistinguishable bedding (due to strong ringing of core during drilling) and foliations from 10 to 15 degrees to core axis. There is blocky,

Foliation: approximately 50 degrees to core axis.

FALCONBRIDGE LIMITED WEST87-16 4
DIAMOND DRILL LOG

		סטם ממואע מאסאאוע												
From (m)	To (m)	DESCRIPTION	Şample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba) (ppm)	
		highly fractured core from 80.7 to 81.3. Hosts minor, 1 to 2 %, 2 to 5 mm, epidote grains.												
82.0	86.7	FELSIC LAPILLI TUFF Dark grey to black fine-grained felsic matrix with 10 to 15 % epidote lapilli. From 84.1 to 86.7 there is a strong foliation as opposed to massive tuff from 82.0 to 84.1. Foliation varies from 45 to 60 degrees to core axis throughout. From 84.1 to 86.7 there are 1 to 5 %, up to 7 mm, quartz eyes.	AF00529	82.0	84.0	2.0	n/a	41	n/a	53	n/a	n/a	556	
86.7	87.4	FAULT GOUGE Sericitic rubble with fault gouge clay at orientation of 60 degrees to core axis.												
87.4	100.9	QUARTZ - FELDSPAR PORPHYRY DYKE OR SILL Quartz - feldspar porphyry dyke, siliceous, light to medium grey with strong to medium foliation at 50 to 70 degrees to core axis. Hosts 10 to 15 %, 1 to 8 mm, average 5 mm, quartz eyes and 3 to 7 % epidote grains. Trace to nil disseminated pyrite occurs. Trace pyrite at 91.8 and 93.5 in 3 to 7 mm bands of 30 % pyrite. 95.4 96.6 Inclusion of silicified mafic flow.	AF00530	89.0	91.0	2.0	n/a	<10	n/a	16	n/a	n/a 1	L670	
100.9	101.6	SERICITIC QUARTZ EYE BEARING FELSIC TUFF Sericitized felsic rock, ?tuff, with approximately 10 %, 2 to 7 mm (average 5 mm), quartz eyes in a white to medium grey sericite matrix. There is 1 to 2 % bedding parallel pyrite. The foliation is at 80 degrees to core axis and there are fault slips at 80 degrees to core axis at 101.2, 101.3 and 101.5.	AG08045	100.9	101.6	.7	2	11	< 5	38	<1	(5)	3500	
101.6	101.7	MASSIVE SULPHIDES 12 Cm of 65 % pyrite and trace to 1 % chalcopyrite in chlorite - quartz gangue, bedded (?) at 65 degrees to core axis.	AG08046	101.6	101.7	.1	66 ().37 %	31	66	⟨1	15	570	
101.7	104.5	FAULT ZONE Mixed rubble with andesitic tuff and felsic dyke rubble with approximately 1 % pyrite.	AG08047	101.7	103.2	1.5		11.	, (5)	78	(1	∢5	. 430	

104.5 105.0 FELSIC DYKE

Felsic dyke with 10 %, 4 to 7 mm, quartz eyes and minor fracture controlled quartz veinlets. Rock is massive

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

150.8 150.9 Minor calcite fault slips at 70 degrees to core axis with fracture controlled

HOLE No: Page Number WEST87-16 5

Width % Total (m) Sulphides		tal Cu nides (ppm	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au Ba (ppb) (ppm)
.2 n/a	.2 n	/a 15	n/a	67	n/a	n/a 110
.1 n/a .1 n/a 1.7 3 .9 2 .5 6 .2 n/a .2 n/a .1 n/a 1.5 1 1.5 3 1.5 1 .2 n/a	.1 n 1.7 .9 .5 .2 n .2 n .2 n .1 n 1.5	/a <10 3 10 2 2 6 12 /a <10 /a <10 /a <10 /a <10 /a 12 1 2 3 6 1 7	n/a n/a <5 <5 <7 <5 n/a n/a n/a n/a <75 <75 <75 <75 <75 <75 <75	17 21 36 24 33 18 15 16 29 63 60 34 25	n/a n/a <1 <1 <1 n/a n/a n/a n/a <1 <1 <1 n/a	n/a 1560 n/a 1230
		.2 n, .2 n, .1 n, 1.5 1.5	.2 n/a <10 .2 n/a <10 .1 n/a 12 1.5 1 2 1.5 3 6 1.5 1 7	.2 n/a <10 n/a .2 n/a <10 n/a .1 n/a 12 n/a 1.5 1 2 <5 1.5 3 6 <5 1.5 1 7 <5	.2	.2 n/a <10

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

To

(m)

From

(m)

Width % Total

(m)

HOLE No: Page Number WEST87-16 6

Sulphides (ppm)

Pb

(ppm) (ppm)

Au

Вa

(ppb) (ppm)

Ag

(ppm)

77 a.m	m.			
From	To (m)		_	DESCRIPTION
(m)	(m)			DESCRIPTION
				silicification.
		152 5	153 5	Fracture with brecciation and fracture
		132.3	133.3	controlled silicification.
		153 Q	154 0	3 cm quartz vein with pyrite on margin.
				<pre></pre>
		133.1	133.3	every 8 to 9 cm.
		154.4	154.8	Blocky, highly fractured core.
				Fault slips, 1 cm to 1 mm, at 70 to 90 cm and
				minor fracture controlled silicification.
		164.4	164.7	1 % pyrite as stringers or is fracture
				controlled, minor clay fault gouge.
		166.1	166.2	3 mm calcite - pyrite veinlet at 166.05 and
				clay - carbonate fault slips at 80 degrees to
				core axis.
		166.7	5.0 Mr	m pyrite - carbonate fracture controlled veinlet
				Fracture controlled silicification with minor
				carbonatization and 3 % pyrite.
		168.7	168.9	Trace to 1 % pyrite fracture controlled
		•		veinlets, up to 1 mm.
		169.2	169.4	Whitish silicified with fracture controlled
				carbonatization and 2 to 3 % pyrite with the
				carbonatization.
				Quartz veining.
				Fault gouge at 90 degrees to core axis.
				3 to 4 % fine-grained bleby pyrite.
		172.6	173.2	, 173.3 and 173.4 0.5 to 2 cm calcite veins
				with pyrite.
		174.6	174.8	Strongly carbonatized and sheared mafic
				inclusion with shearing at 70 degrees to core
				axis.
		175.3	175.4	5 cm chlorite - carbonate fault gouge at 90
				degrees to core axis (top) and 53 degrees to
				core axis (bottom).
				Blocky, highly fractured core.
		176.8	176.9	Strong carbonatization with 10 % calcite and 3
		176 1		to 4 % pyrite.
		1/6.4	191.5	Less phenocrysts and intrusion is now light
		177 0	170 1	grey.
				1 to 2 % fracture controlled pyrite. Mafic shear of chlorite - carbonate at 42
		1/5.1	110.4	degrees to core axis.
		180 4	190 5	Carbonate - sericite fault gouge.
		100.4	100.3	carponace - periotic raute godge.

181.5 185.2 FELSIC QUARTZ FELDSPAR CRYSTAL TUFF OR QUARTZ FELDSPAR PORPHYRITIC INTRUSIVE

Sericitic felsic tuff or strongly sheared QFP intrusion.

The foliation varies locally from 55 to 65 degrees to core axis. Hosts 5 to 7 %, 3 to 7 mm, grey quartz eyes and trace to 1 % pyrite on fractures.

AF00539 181.6 181.7 .1 n/a 14 n/a 15 n/a n/a 4420

FALCONBRIDGE LIMITED

202.3 203.0 Weakly sericitized lapilli tuff with lapilli up to 2.5 cm, minor black chlorite specs, 3 % approximately 2 mm quartz eyes, 10 to 12 %

HOLE No: Page Number WEST87-16 7

		DIAMOND DRILL LOG					WE5187-	-19	,					
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp)	Ba b) (ppm))
185.2	198.0	MASSIVE FELSIC QUARTZ PORPHYRITIC INTRUSION - SALTSPRING INTRUSION ?	·											
		Felsic intrusion as from 108.7 to 181.5.	AF00540			.1	n/a	<10	n/a	57	n/a .	n/a	4490	
		185.2 191.4 Siliceous grey with minor feldspar laths and 10 to 15 %, 2 to 7 mm, average 5 mm, quartz eyes. Minor fault slips at 185.9, 187.1 and	AG08054 AG08055 AG08056	194.7	196.0	1.5 1.3 .7		285 1400 0.48 %	√5 5 √5	147 220 215	<1 : 1 1	10	1900 1000 2300	
		189.9.	AG08057	196.7	198.0	1.3	1	900	<5	200	<1	₹5	940	
		191.4 193.2 Sericitic sheared intrusive, less sericitic than lapilli tuff (181.5 to 185.2). Foliation varies from 30 to 35 degrees to core axis.												
		Hosts 7 to 12 %, 3 to 8 mm, quartz eyes and 1 % feldspar crystals.												
		193.2 196.0 Siliceous medium grain silicified with 10 to												
		15 %, 5 to 8 mm, quartz eyes. Minor sericite fault slips occur. 1 to 2 % pyrite parallel to foliation occurs.					•							
		194.7 196.0 10 % stringer (?) pyrite with trace to 1 % chalcopyrite.			•									
		196.0 196.2 Sericitic as from 191.4 to 193.2.												
		196.2 198.0 Medium grey silicified QFP with minor fracture controlled quartz veinlets, minor disseminated pyrite and pyrite in fault gouge (196.9,									•			
		197.0). 196.2 196.5 10 to 15 % pyrite and 2 to 3 % chalcopyrite including 8 cm of 40 % pyrite and 15 % chalcopyrite. Chalcopyrite is greater than 50 % over 2 cm. There are minor black chlorite specs. The host is strongly chloritic.											•	
		196.5 198.0 1% pyrite in silicified intrusive contact.												
198.0	198.1	CHLORITIC SHEAR ZONE												
		Chlorite shear with fracture controlled calcite and minor fault gouge.	٠											
192 1	248 9	FELSIC LAPILLI TUFF WITH MINOR FELSIC ASH TUFF BEDS						,						
150.1	240.7	198.1 198.4 Silicified with fracture controlled quartz veinlets.	AG08058 AG08059			1.0	2 2	188 205		1450 1050	<1 <1		1500 1800	
		198.4 200.5 Chloritic felsic tuff with 1 to 2 % pyrite parallel to foliation (very fine grained discontinous beds). Minor silicic ash tuff beds (0.5 to 2 cm thick at 80 degrees to	AG08060 AG08061 AG08062 AG08063	203.0 204.5 210.4	204.5 206.0 211.4	.7 1.5 1.5 1.0	11 2 3 2	0.30 % 176 380 115	<5 <5	490 2900 0.36 %	<1	<5 5 <5	3400 1700 3800 830	
		core axis). Minor quartz veins occur. 200.5 202.3 Blocky, highly fractured core with minor epidotization and approximately 2 % disseminated and parallel to foliation pyrite.	AG08064 AG08065 AG08066 AG08067	214.0 218.7	215.5 220.3	1.5 1.5 1.6 1.0	4 2 2 3	56 50 10 8	<5 <5 <5 <5	880 450 157 140	<1 <1 <1		580 430 1500 1400	
		202 3 203 0 Weakly sericitized lamilli tuff with lamilli	AF00541			1	n/a	(10	n/a	41	n/a		2720	

AF00541 225.5 225.6

AF00542 240.6 240.7

.1

.1

41

⟨10

27

n/a

n/a

n/a

n/a

n/a

n/a

n/a 2720

n/a 1220

PROPERTY: West Claims

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

No.

HOLE No: Page Number WEST87-16 8

Рb

Zn

(ppm) (ppm)

Ag

Au -

(ppm) (ppb) (ppm)

Width % Total

(m)

Sulphides (ppm)

From (m)	To (m)		_	DESCRIPTION
(m)	(1111)			
				pyrite and 0.5 to 1 % chalcopyrite. At 202.5
				the foliation is at 50 degrees to core axis
				and the bedding at 202.7 is at 53 degrees to
				core axis (ash tuff bed).
		203.0	206.0	Felsic tuff with chloritization and
				epidotization and (?) pink mineral, not a
				carbonate and is hard, rhodonite ? or
				hematized feldspars. 2 % pyrite and trace
				chalcopyrite occur in epidote - calcite zones.
				Epidotization parallel to foliation. Bedding
				(ash tuff) at 54 degrees to core axis at 205.7
		206.0	208.0	Weak chloritization and medium silicification
				with minor epidote - calcite - (pyrite) clots.
				Blocky, highly fractured core.
		208.0	210.0	Silicified light grey tuff with fracture
				controlled quartz veins.
		210.0	215.3	Epidote clots and pink (?) clots with trace
				pyrite in clots. Felsic ash tuff beds from
				210.8 to 211.0 at 80 to 90 degrees to core axis
		213.3	213.5	20 cm of 30 to 35 % pyrite in chloritized and
				brecciated rock (fault gouge?).
		215.3	215.4	Fault gouge and sheared and carbonatized tuff
		045 4	005 0	at orientation of 58 degrees to core axis.
		215.4	225.0	Silicified tuff with trace local quartz veins.
				Crystals and lapilli are epidote grains and
				quartz eyes, average 5 %. Bands of 50 %
				pyrite over up to 5 mm occur in fault slips at
				218.3, 218.7 219.3, 220.3, 220.6, and 221.1
		225 0	241 2	at 60 degrees to core axis. Medium to weakly sericitic quartz eye felsic
		223.0	441.4	tuff with nil pyrite. There are minor
				fracture controlled quartz - calcite veinlets
				from 229.0 to 229.4, 232.0 to 232.1 and 233.5
				to 235.7. There are (?) sediment beds of
				calcite parallel to foliation at 50 degrees to
				core axis, calcite is (?) remobilized. There
				are 5 to 7 %, 2 to 5 mm, quartz eyes. From
				235.6 to 235.7 and from 236.0 to 236.2 there
				is fault gouge at 40 degrees to core axis.
		241.2	248.9	Felsic tuff with moderate chloritization and
				carbonatization with strong chlorite -
				carbonate alteration zones from 241.2 to
				241.3 and from 242.3 to 242.6, which host 5
				to 10 % pyrite. The foliation is at 85 to 90
				degrees to core axis. There are minor quartz
				veins parallel to foliation. There is minor
				fault gouge and clay from 243.2 to 243.4 and
				at 243.6 and at 246.3.

PROPERTY: West Claims

3 % pyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-16 9

From (m)	(m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Chlorite - calcite with 5 % pyrite and an orientation of 80 degrees to core axis.									-		
250.2	259.5	MAFIC FLOW ? Mafic flow (?) with trace disseminated pyrite. Is moderately magnetic with 1 % fine-grained disseminated magnetite. Has phenocrysts of chloritized amphiboles, hornblende (?), 5 %, 2 to 4 mm, and epidote after feldspar, 10 to 20 %, 1 to 5 mm. Minor fracture controlled calcite veinlets at 0 to 90 degrees to core axis, parallel to foliation.	AG08069 AF00543	257.8 259.0	258.3 259.2	.5	3 n/a	161 200	<5 n/a	67 93	(1 n/a	<5 n/a	40 60
259.5	260.4	CHLORITIC SHEAR ZONE Strongly sheared mafic with minor epidotized zone and foliation of 61 degrees to core axis.											
260.4	288.0	EPIDOTE SPOTTED MAFIC FLOW Mafic flow, similar to 250.2 to 259.5 with less magnetite and no hornblende. Foliation locally variable from 40 to 70 degrees to core axis. Local shears, chlorite - calcite occur from 268.0 to 268.1. There is trace pyrite parallel to foliation. 284.2 288.0 Blocky, highly fractured core. 267.0 267.2 0.2 m lost core. 271.1 271.4 Strong chlorite - calcite shear with pyrite as solid fine-grained bands. 271.1 271.2 80 % pyrite. 271.2 271.4 10 % pyrite.	AG08068 AF00544	270.7 278.0		1.0	11 n/a	91 100	<5 n/a	84 75	<1 n/a	-	<20 210
		282.0 282.2 Strong epidotization and carbonatization with								÷			

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: WEST87-17

Page Number

Hole Location: 14+00 E 5+34 S

NTS: 92B13E

UTM: 450480 E 5411775 N

Azimuth: 15 Dip:

Elevation: 177 m Length: 171.6 m

-45

Logged By: J. Pattison

Section No.: 14+00 E

Claim No. WEST 1

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & Xray Assay

Core Size: NQ

Started: 11-NOV-87 Completed: 13-NOV-87

Purpose: To test chargeability anomaly

between 4+80 and 5+50 S.

DIP TESTS

Dip

Azi-

Azi-

muth

Dip

muth

Length

•	102.70 20.0 -45.0											
From (m)	To (m)DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
.0	3.0 CASING			,		•						
3.0	5.5 SILICIFIED EPIDOTE SPOTTED ANDESITIC TUFF Grey-green with weak to moderate spotty epidote alteration centred on feldspar phenocrysts up to 3 mm in length. Rock is blocky and rusty over the entire section. 3 % disseminated pyrite, some of which has weathered out. Lower contact is a 5.0 cm crushed fault zone at 53 degrees to core axis.	AG08456	3.0	5.5	2.5	4	134	5	102	(1	₹5	40
	3.7 5.0 MAJOR FAULT ZONE: core is broken, blocky and											

AG08457

AF00253

AG08458

5.5

6.0

6.5

6.5

7.7

7.7

1.0

1.7

1.2

Length

crushed over the entire section. 0.5 m of lost core. Not possible to measure orientation.

5.5 7.7 INTERMEDIATE ASH TUFF

> Grey-green, fine-grained, weakly to moderately sericitic with 3 % disseminated pyrite. Rusty, blocky and moderately sericitic over the first 0.6 m. Lower contact is a rusty 0.5 cm fault gouge at 70 degrees to core axis.

6.0 - 6.1 m fault gouge at 80 degrees to core axis. At 7.1 m, 3.0 cm fault gouge at 70 degrees to core axis. At 7.3 m, 3.0 cm fault gouge at 70 degrees to core axis.

7.7 23.5 EPIDOTE SPOTTED ANDESITIC LAPILLI TUFF Medium green with \langle 5 %, 0.5 - 3.0 cm epidote +/- calcite spots, most of which appear to be altered clasts and up to 20 % < 3 mm epidotized feldspars. Rock is massive RQD's >= 95. 2 % disseminated pyrite. Pyrite generally occurs as cubes < 2 mm across. Lower contact is

AF00254 10.0 12.0 2.0 n/a 30 n/a 125 n/a n/a AG08459 222 ⟨5 22.0 23.5 1.5 2 160 ⟨5 <1 ₹20

3

n/a

172

500

19

⟨5

n/a

<5

64

52

<1

n/a

⟨5

n/a

<5

1000

407

630

FALCONBRIDGE LIMITED WEST87-17 DIAMOND DRILL LOG From To Sample Width % Total Cu Pb Źn Αq Au (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) gradational over 0.6 m. . Trace chalcopyrite along margins of pyrite cubes 39.4 SILICIFIED EPIDOTE SPOTTED LAPILLI TUFF 23.5 Massive and siliceous with 15 % 1-3 mm feldspars in a AG08460 23.5 25.0 204 405 <1 <5 910 1.5 ₹5 fine-grained sericite+chlorite+quartz matrix. See thin AG08461 25.0 26.5 1.5 86 102 <1 620 section AF00255. Feldspars are often epidotized. 4 % 26.5 27.4 101 <5 AG08462 .9 30 <1 640 disseminated and fracture controlled pyrite. 1.0 cm band 27.4 27.5 96 10 AG08463 21 80 <1 60 .1 50 (bed?) of massive pyrite at 80 degrees to core axis at AG08464 27.5 28.0 .5 21 <5 91 ₹1 <5 460 lower contact. AG08465 28.0 29.5 1.5 380 106 <1 10 450 STRUCTURE: AG08466 480 350 29.5 31.0 1.5 ⟨5 104 (1 ₹5 At 26.3 m 0.5 cm fault gouge at 70 degrees to core axis. AG08467 31.0 32.5 1.5 36 ⟨5 100 <1 650 At 26.8 m 12.0 cm fault gouge at 75 degrees to core axis. 32.5 33.5 220 ₹5 75 <5 100 AG08468 1.0 <1 At 27.4 m 3 mm fault gouge at 65 degrees to core axis. 213 AG08469 33.5 34.0 . 5 420 ₹5 <1 460 At 31.6 m 3 mm fault gouge at 72 degrees to core axis. AG08470 35.5 1.5 280 ⟨5 238 <1 <5 280 34.0 4 At 37.2 m 8.0 cm fault gouge at 66 degrees to core axis. AF00255 34.4 34.5 .1 n/a 75 n/a 71 n/a n/a 662 At 39.2 m 3 mm fault gouge at 75 degrees to core axis. 212 260 650 AG08471 35.5 37.0 1.5 ₹5 37.0 184 107 730 AG08472 38.0 8 <1 ₹5 1.0 27.1 27.4 Grey fine-grained siliceous aphyric section. AG08473 38.0 39.4 142 37 <1 (5 810 1.4 27.4 6.0 cm band of massive pyrite bordered on both sides by 3 mm fault gouges at 65 degrees to core axis. Pyrite is hosted by a quartz-carbonate rich gangue. 28.0 33.0 White, bleached (?) alteration patches up to 8.0 cm wide. 38.4 0.5 cm wide spotty of pink carbonate.

AG08474

AF00256

AG08475

AG08476

AG08477

39.4

40.0

40.3

40.4

41.9

40.3

40.1

40.4

41.9

42.8

.9

.1

.1

.9

1.5

39.4 42.8 QUARTZ EYE BEARING FELSIC TUFF

Up to 5 % feldspar crystals and <2 % 1-3 mm quartz eyes in a very fine-grained grey, moderately sericitic, siliceous well foliated matrix. Minor slip at 75 degrees to core axis at lower contact. STRUCTURE:

At 40.2 m foliation is at 75 degrees to core axis.

At 40.6 m 3.0 cm fault gouge at 80 degrees to core axis. •

At 41.0 m 3 mm fault gouge at 70 degrees to core axis.

At 41.6 m bedding is at 78 degrees to core axis.

40.3 Two bands of massive pyrite at 75 degrees to core axis. One is 2.0 cm and the other is 4.0 cm wide.

42.8 48.5 SILICIFIED EPIDOTE SPOTTED LAPILLI TUFF

276

<10

210

13

30

3

n/a

50

(5)

5

⟨5

< 5

n/a

<1

n/a

<1

<1

<1

62

29

11

30

⟨5

< 5

<5

1000

1000

1400

n/a 1090

<5 1700

HOLE No:

Page Number

50.9

core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

0.5 cm band of massive pyrite at 72 degrees to

HOLE No: Page Number WEST87-17 3

			DIAMOND DRILL LOG											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
e Literatur		or altera	lteration stronger. Milky white bleached clasts tion patches up to 5.0 cm wide make up 20 % of w 44.0 m. Fault at lower contact, not possible e orientation.	AF00257 AG08480 AG08481	45.8 45.8 47.0	48.5 47.0 48.5	2.7 1.2 1.5	n/a 4 3	183 176 470	n/a 5 <5	67 71 62	n/a <1 <1	n/a 5 <5	112 <20 70
		Between 4 core axis Between 4 fractured	5.9 and 46.8 m; MAJOR FAULT ZONE at 68 degrees to Blocky, highly fractured core. 7.0 and 47.9 m; fault zone. Blocky, highly core. Not possible to measure orientation. 8.2 and 48.5 m; fault zone. Blocky, highly											
		40.9 46.8	Intensity of epidote alteration increases.					*						
48.5	50.5	SILICIFIE	D EPIDOTE SPOTTED FELDSPAR CRYSTAL TUFF											
		sericitiona hard si epidotiza dissemina	e-grained weakly to moderately sericitic. In less places up to to 10 % < 2 mm feldspar crystals in liceous, almost aphanitic matrix. Locally weak tion centred on feldspars. 15 % finely ted pyrite over 3.5 cm at lower contact. Lower s at 70 degrees to core axis.	AG08482 AG08483	48.5 49.5		1.0	6	74 250	6 12	57 47	<1 <1	<5 <5	420 1600
		At 48.7 m	0.5 cm pyrite rich fault gouge at 70 degrees to								÷			
			foliation is at 73 degrees to core axis.					*						
		49.1	2.5 cm wide band of massive pyrite at 80 degrees to core axis associated with weak carbonate alteration.											
		49.5	1.0 cm wide fault gouge at 65 degrees to core axis.							·		•		
		50.0	1.0 cm fault gouge at 80 m degrees to core axis	•										
50.5	51.7	Up to 10 very fine	ZE BEARING FELSIC TUFF % 1-4 mm conspicuous quartz eyes in a light grey, e-grained sericitic matrix. 3 % disseminated • verall. 10.0 cm fault gouge at 70 degrees to core ower contact.	AG08484	50.5	51.7	1.2	5	20	12	14	<1	₹5	1900
			3: a; bedding (?) is at 72 degrees to core axis. a; 10.0 cm fault gouge at 70 degrees to core axis.											

FALCONBRIDGE LIMITED

intensely microfractured almost a crackle breccia texture.

WEST87-17 DIAMOND DRILL LOG To From Width % Total Pb Sample From To Zn Ag Au Вa (m) (m) -----DESCRIPTION-----Sulphides (ppm) No. (m) (m) (m) (ppm) (ppm) (ppm) (ppb) (ppm) AG08485 51.7 5 Medium to light green, fine-grained, weakly to moderately 53.2 1.5 3 180 65 <1 ⟨5 350 sericitic and guite massive, especially below 56.3 m. Its AG08486 53.2 54.0 5 10 27 . 8 <1 ⟨5 2000 12 massive character suggests that it may be a flow. In less AG08487 54.0 55.3 1.3 3 (5 16 <1 ⟨5 1500 6 sericitic intervals up to 20 % ash-sized feldspar crystals AF00258 54.6 54.7 .1 n/a 19 n/a 18 n/a 1100 n/a occur in a siliceous matrix. Locally feldspars are weakly AG08488 55.3 55.5 . 2 5 580 ₹5 90 <1 10 1200 epidotized. Occasional spotty of mariposite below 58.0 m. AG08489 55.5 57.0 1.5 5 42 5 42 ⟨1 ⟨5 1500 3-7 % disseminated pyrite. Much of the pyrite occurs as AG08490 57.0 58.0 1.0 200 6 605 ۲1 <5 790 cubes < 1 mm across. Broken core (fault ?) at lower contact AG08491 58.0 59.0 1.0 7 32 12 78 <1 <5 890 STRUCTURE: AG08492 59.0 1.0 6 38 6 77 <1 710 60.0 At 53.3 m; two fault gouges < 3.0 cm wide at 80 degrees to AG08493 60.0 61.0 1.0 7 50 ₹5 48 <1 660 core axis. 62.0 7 <5 47 <1 AG08494 61.0 1.0 28 <5 360 At 53.8 m; 0.5 cm fault gouge at 74 degrees to core axis. AG08495 62.0 63.0 1.0 7 144 ۲5 35 <1 <5 500 At 54.9 m; 10.0 cm fault gouge at 78 degrees to core axis. 15 45 468 AF00259 63.0 63.1 .1 n/a n/a n/a n/a At 55.2 m: 2.5 cm fault gouge at 78 degrees to core axis. AG08496 63.0 64.0 275 ₹5 38 ⟨1 <5 450 1.0 6 ⟨5 At 55.7 m: 10.0 cm fault gouge at 70 degrees to core axis. AG08497 64.0 65.0 1.0 6 34 34 <1 ⟨5 410 At 56.1 m: 15.0 cm fault gouge at 78 degrees to core axis. AG08498 65.0 66.2 1.2 Я 34 10 31 **<1** (5 750 0.1 m of lost core. 53.7 55.0 Felsic quartz eye bearing section: trace to 5 % 2-3 mm quartz eves. 53.9 Band of semi-massive pyrite at 90 degrees to core axis. 55.3 55.5 Beige alteration zone/dyke. Contacts are sharp at 75 degrees to core axis. 5 % pyrite. 66.2 71.9 QUARTZ EYE BEARING FELSIC TUFF <5 28 <1 <5 1100 Up to 5 % 1-4 mm quartz eyes in a grey fine-grained AG08499 66.2 68.5 2.3 13 21 sericitic matrix. Below 68.1 m rock has a distinct banded AG08500 68.5 70.0 1.5 3 8 ₹5 <1 ⟨5 1300 88 **(5** 1500 appearance. The bands are oriented at 65 degrees to core AF00351 70.0 71.0 1.0 30 <1 18 ۲1 ⟨5 1500 axis. Occasional wisps of pale green sericite (Cr-rich?). AF00352 71.0 1.0 10 72.0 STRUCTURE: Between 68.8 and 69.0 m: fault zone. Blocky, highly fractured core. At 69.7 m foliation is at 70 degrees to core axis. 72.6 SERICITIC FELSIC TUFF 71.9 AF00353 72.6 24 <5 1450 <5 1900</p> Light grey, fine-grained, strongly sericitic and no quartz 72.0 <1 eyes. Foliation is at 80 degrees to core axis. 5 % disseminated pyrite. Lower contact is a slip at 65 degrees to core axis. 72.6 109.7 SILICIFIED ANDESITIC FELDSPAR CRYSTAL TUFF/FLOW Up to 7 % <1 mm feldspar crystals in a very fine-grained AF00354 72.6 72.9 35 215 77 10 250 . 3 33 10 32 < 5 880 siliceous matrix. Weak to moderate sericite. Locally, AF00355 72.9 74.0 1.1 10 <1

AF00356

74.0

75.0

1.0

HOLE No:

Page Number

26

<1

140

<5

550

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-17 5

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		fragments , 4.0 cm wide (most < 1.0 cm) occur occasionaly	AF00358	76.0	77.0	1.0	5	120	∢5	19	<1	∢5	380
		below 74.2 m. Felsic fragments are fine-grained and	AF00260	76.2	76.3	.1	n/a	43	n/a	35	n/a	n/a	638
		sometimes feldspar and/or quartz porphyritic and often	AF00359	77.0	78.0	1.0	5	67	8	23	<1	<5	500
		slightly pink due to fine thermal biotite.	AF00360	78.0	79.0	1.0	5	15	28	17	<1	₹5	720
		The two BEST SULPHIDE INTERSECTIONS occur in this	AF00361	79.0	80.2	1.2	-5	10	7	13	(1	<5	870
		interval. The first is 0.3 m long and contains 35 %	AF00362	80.2	81.4	1.2	25	23	53	8	<1	<5	510
		pyrite. The other is 1.2 m long and averages 25 % pyrite.	AF00363	81.4	82.4	1.0	5	32	5	15	<1	<5	620
		Lower contact is gradational over 5.0 cm.	AF00364	82.4	83.4	1.0	5	32	5	17	<1	<5	540
		STRUCTURE:	AF00365	83.4	84.9	1.5	4	98 .	<5	19	<1	<5	530
		At 73.1 m: foliation is at 73.1 m.	AF00366	84.9	86.4	1.5	5	196	<5	51	<1	<5	360
		At 91.3 m: 4.0 cm fault gouge at 85 degrees to core axis.	AF00367	86.4	87.9	1.5	3	166	<5	22	<1	5	530
		At 101.2 m: foliation is at 70 degrees to core axis.	AF00368	87.9	89.4	1.5	3	148	₹5	21	<1	<5	410
		At 103.3 m: foliation is at 78 degrees to core axis.	AF00369	89.4	90.8	1.4	5	215	<5	16	<1	<5	910
		76.3 4.0 cm bull quartz vein at 68 degrees to core	AF00370	90.8	92.3	1.5	6	36	₹5	20	<1	₹5	700
		axis.	AF00371	92.3	93.4	1.1	4	140	5	16	<1	₹5	320
			AF00372	93.4	94.9	1.5	5	450	<5 1	23	<1	<5	480
		72.6 72.9 Silicified zone with 35 % pyrite. Zone is	AF00373	94.9	96.4	1.5	4	200	<5	26	<1	₹5	280
		bordered above and below by minor faults at 70	AF00374	96.4	97.9	1.5	5	78	. <5	15	<1	₹5	710
		degrees to core axis. Two minor slips at 70	AF00375	97.9	99.4	1.5	3	n/a	n/a	n/a	n/a	<5	820
		degrees to core axis occur within the zone.	AF00376	99.4	101.0	1.6	5	355	<5	13	<1	<5	930
			AF00261	100.7	100.8	.1	n/a	447	n/a	24	n/a	n/a	619
		76.3 4.0 cm bull quartz vein at 85 degrees to core	AF00377	101.0	101.2	. 2	15	280	₹5	14	<1	<5	800
100		axis.	AF00378	101.2	102.7	1.5	3	265	<5	20	<1	<5	670
			AF00379	102.7	104.2	1.5	4	66	<5	27	<1	<5	760
		80.2 81.4 25 % pyrite. Pyrite occurs as spots and patches	AF00380	104.2	105.7	1.5	5	300	<5	32	<1	10	890
		up to 2.0 cm in diameter between 80.2 and 80.7	AF00381	105.7	107.2	1.5	5	100	. ₹5	34	<1	<5	490
		m and as stringers/fracture fillings up to 1 cm	AF00382	107.2	108.7	1.5	5	178	10	24	<1	₹5	680
		in diameter some of which definitely cross cut	AF00383	108.7	109.7	1.0	4	32	44	26	<1	<5	490
		stratigraphy.	AF00262	109.4	109.5	.1	n/a	55	n/a	40	n/a	n/a	369
		20. 2. 20. 4. 44. 22. 44. 44. 44. 44. 44. 44. 44.											

disseminated pyrite.

96.6 100.3 Up to 3 % 1-3 mm quartz eyes.

98.2 10.0 cm wide bull quartz vein at 50 degrees to core axis.

92.3 93.4 MASSIVE MOTTLED SILICEOUS ROCK: massive grey

with a pinkish tint, very siliceous very fine-grained with 3 % disseminated pyrrhotite and trace chalcopyrite along pyrrhotite grain boundaries. 1-2 % fracture controlled and

101.0 101.2 15 % pyrite. Pyrite is disseminated and fracture controlled and associated with moderate carbonate alteration.

FALCONBRIDGE LIMITED

				DIAMOND DRILL LOG						- •	Ţ				•
From (m)	To (m)		DESCRIPTI	ои	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		Between 113 up to 10 % below 118.0 core at low STRUCTURE: At 116.5 m: At 116.6 m:	bleached and some are qua .1 and 115.8 m and betwe hornblende. The rock is o m. Average 4-5 % dissem er contact. 2.5 cm fault gouge at 67 1.0 cm fault gouge at 69 bedding (?) is at 68 deg	en 118.0 and 120.0 m mly weakly silicified inated pyrite. Broken degrees to core axis. degrees to core axis.	AF00387 AF00388 AF00389 AF00263 AF00390 AF00264	115.7 117.2 118.7 118.7	117.2 118.7 118.8 120.0	1.5 1.5 1.5 .1 1.3	5 4 3 n/a 2 n/a	330 100 156 34 112 98	<5 <5 <5 n/a <5 n/a	30 28 26 19 26 42	<1 <1 <1 n/a <1 n/a	<5 <5 <5 n/a <5 n/a	280 610 120 89 <20 58
		116.5	Two 1.0 cm bands of semi degrees to core axis ass and carbonate.	-massive pyrite at 66								·			
120.0	120.5	matrix. 7 %	LLI TUFF i-sized felsic fragments disseminated and fractur ct is sharp at 48 degrees	e controlled pyrite.	AF00391	120.0	120.5	.5	6	22	<5	20	<1	·<5	760
120.5		Pale green,	ESITIC TUFF/FLOW fine-grained, massive an at lower contact.	d weakly silicified.	AF00392	120.5	121.0	.5	3	156	<5	36	<1	⟨5	480
121.0	128.2	As 109.7 to distinct pi Lower conta STRUCTURE:	ANDESITIC LAPILLI-BLOCK To 120.0 m. More siliceous nkish caste due to therm ct is a slip at 77 degree 3 mm fault gouge at 70 degree 5.0 cm wide band of epidalteration with semi-mas	sections have a all biotite alteration. s to core axis. egrees to core axis. ote-carbonate	AF00393 AF00394 AF00395 AF00396 AF00265 AF00397	122.0 123.5 125.0 125.5	123.5 125.0 126.5 125.6	.5 1.5 1.5 1.5 1.7	5 3 4 3 n/a 4	160 184 83 245 32 140	<5 <5 <5 <5 n/a <5	64 35 28 24 36 24	<1 <1 <1 <1 n/a <1	<5 <5 <5 <5 n/a <5	360 370 400 380 358 360
128.2	130.8	occasional Bands are < chlorite an degrees to occur below Fine-graine contact. Br STRUCTURE:	ESITIC TUFF ricitized, fine-grained, clots of very dark green 1.0 cm wide and reflect d sericite and are paral core axis. Chlorite+calci 129.0 m and pyrite is a d siliceous and pink for oken core at lower contact 1.0 cm fault gouge at 60	chlorite + calcite. • differing amounts of lel to foliation at 80 te alteration spots ssociated with them. 20.0 cm from lower t.	AF00398 AF00399 AF00400	129.6	129.8	1.4 .2 1.0	5 25 6	32 124 53	<5 <5 <5	18 16 20	<1 <1 <1	<5	1300 550 1100

Page Number

HOLE No: WEST87-17

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No:

WEST87-17

Page Number

Au

(ppb) (ppm)

270

430

180

245

270

280

350

440

170

266

170

220

470

210

190

< 5

₹5

(5

n/a

₹5

₹5

₹5

₹5

⟨5

<5

⟨5

(5

n/a

Αq

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

n/a

n/a

(ppm)

From To Sample To Width % Total Cu Pb From (m) (m) -----DESCRIPTION-----No. (m) (m) Sulphides (ppm) (m) (ppm) (ppm) 130.8 131.2 FELDSPAR PHYRIC GABBRO Medium green, massive, fine-grained with 10 % 1-3 mm white feldspar phenocrysts. 1 % finely disseminated ilmenite. Nil sulphides. 5.0 cm chill margins at upper and lower contacts. Lower contact is at 80 degrees to core axis. 131.2 149.7 HORNBLENDE-BEARING MAFIC TUFF Similiar to 109.2 to 120.0 m. Unit varies from a pinkish AF05401 131.2 132.7 95 ⟨5 30 thermal biotite altered fine ash tuff to a grey-green <5 24 AF05402 132.7 134.2 1.5 90 tuff with lapilli-sized hornblende bearing and/or feldspar AF05403 134.2 135.7 1.5 74 ₹5 22 phyric clasts. Hornblende also occurs in indistinct 33 AF00266 134.7 134.8 . 1 49 n/a n/a patches within the matrix of the tuffs. See thin section AF05404 135.7 137.2 134 ₹5 24 1.5 AF00266 of the grey-green hornblende bearing tuff. 3 to 6 88 ⟨5 26 AF05405 137.2 138.7 1.5 % disseminated and trace fracture controlled pyrite. AF05406 138.7 140.2 1.5 84 19 Broken core at lower contact. 16 AF05407 140.2 141.7 1.5 82 STRUCTURE: AF05408 141.7 143.2 120 ₹5 27 1.5 At 138.0 m to slip at 75 degrees to core axis. 43 AF00267 142.7 142.8 .1 114 n/a n/a AF05409 143.2 144.7 132 ⟨5 22 1.5 132.0 8.0 cm wide zone of chlorite-carbonate AF05410 144.7 145.5 .8 238 <5 24 alteration with 15 % pyrite. 80 ₹5 22 AF05411 145.6 147.1 1.5 132 ⟨5 20 AF05412 147.1 148.6 1.5 132.6 5.0 cm chlorite+epidote+calcite altered zone AF05413 148.6 149.7 ₹5 with 15 % pyrite. 133.3 1.0 cm band of massive pyrite at 70 degrees to core axis. 136.0 2.0 cm band of carbonate-quartz at 72 degrees to core axis with 20 % pyrite. 137.0 137.9 Pinkish siliceous tuff is intensely microfractured. Microfractures are filled with sericite+chlorite. In places an insitu breccia has developed. 137.9 5.0 cm patch of massive pyrite centred on an epidote-calcite patch. 139.9 Epidote-calcite alteration partch 8.0 cm wide with 10 % pyrite. 144.7 3.0 cm band of epidote-chlorite alteration with semi-massive pyrite at 80 degrees to core axis.

145.5 145.6 Epidote-carbonate alteration patch with

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-17 8

Sample From To Width % Total Cu Pb Zn Ag Au Ba No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

149.5 5.0 cm epidote+chlorite+calcite alteration patch at 68 degrees to core axis. 10 % pyrite.

highly fractured core. 0.2 m of lost core. Not possible to

149.7 171.6 FELDSPAR PHYRIC GABBRO
As 130.8 to 131.2 m. Occasional calcite +/- veinlet.
STRUCTURE:
Between 162.3 and 162.4 m to blocky, highly fractured core. Possible fault zone.
Between 168.0 and 169.5 m to MAJOR FAULT ZONE. Blocky,

measure orientation.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-18

200

300

122

2

n/a

₹5

n/a

5

310

110

328

66

50

₹5

n/a

<1

<1

n/a

Claim No. WEST 1

Section No.: 15+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg & Xray Assay

Hole Location: 15+00 E 5+63 S

NTS: 92B13E

UTM: 450570 E 5411720 N

Similiar to 6.1 to 14.0 m but moderate to strong pervasive

silicfication and clasts are less intensely epidotized.

Lower contact is gradational over 0.3 m. Strongly

silicified for 1.2 m from lower contact.

Azimuth: 15

Elevation: 180 m

Dip:

-45

Length: 177.7 m

Started: 13-NOV-87

Completed: 14-NOV-87

Pu	rpose:		chargeability anomal 4+70 and 6+00 S.	Ly .		DIP TEST	rs		001	e Size:							
				Length	Azi- muth	Dip	Length	Azi- muth	Dip								
				14.30	18.0	-45.0	133.20	20.0	-40.0								
From (m)	To (m)		DI	ESCRIPTION		· · · · · · · · · · · · · · · · · · ·	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
.0	6.1	CASING															
6.1		Up to 20 weakly to green fix mm epido degrees contain disseminm, incre	SPOTTED ANDESITIC TURNS of Strongly altered to strongly altered to strongly altered tized feldspars. Most to core axis. Local up to 5 %, 1-2 mm horated pyrite. Weak possing to strong towards gradational over	de olive g to epidote matrix wi t clasts a ly both cl rnblende c ervasive s rds the lo	+calcite th about re align asts and rystals ilicfica	e in a medium t 10 % < 3 ned at 60-70 d matrix . 2-3 % ation at 13.2	AF05414 AF00268 AF05415 AF05416 AF05417	8.6 8.8 9.2	9.2 10.7	1.5 .1 .4 1.5 1.0	n/a n/a n/a n/a 3	228 240 36 620 930	<5 n/a 10 <5 <5	83 94 164 68 76	<1 n/a <1 <1 <1	<5 n/a 5 <5 <5	<20 80 100 <20 180
			Light grey strongly s in bands <1.0 - 3.0 c core axis. Bands are	cm thick	at 60-70	degrees to											
14.0		Light gr sericiti develope	C FELSIC TUFF ey-green, fine-graine c and weakly chlorit; d at 75 degrees to co < 2.0 cm wide at 75	ic. Folia ore axis.	tion is 10 % pyr	well rite mainly	AF05418	3 14.0	14.8	.8	5	70	, 7	38	<1	< 5	r000
		14.7	2.5 cm fault gouge	e at 76 de	grees to	core axis.			f								
14.8	21.2	SILICIFI	ED EPIDOTE SPOTTED A	NDESITIC L	APILLI '	TUFF											

AF05419

AF05420 16.0

AF00269 17.4

14.8

16.0

17.5

17.5

1.5

.1

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-18 2

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	
		STRUCTURE: At 17.2 m, 0.5 cm fault gouge at 45 degrees to core axis.											
21.2	22.2	SILICIFIED ANDESITIC LAPILLI TUFF Massive, very fine-grained, siliceous pink tinted lapilli-sized clasts. Similiar to the Massive Mottled Siliceous Rock. May be a more intensely silicifed equivalent of 14.8 to 21.2 m. See thin section AF00270. Pink tint is due to weak thermal biotite alteration. Averages 4 % disseminated pyrite. Lower contact is a 7.0 cm wide fault gouge at 69 degrees to core axis.	AF05421 AF00270	21.2 21.4	22.2 21.5	1.0	. 3 n/a	130	5 n/a	108 64	<1 n/a	<5 n/a	380 476
22.2	27.5	QUARTZ EYE BEARING FELSIC TUFF Quartz eyes are up to 0.5 cm in diameter, very conspicuous and comprise up to 15 % of the rock. They occur in a siliceous, moderately to strongly sericitic grey matrix. 2 % disseminated pyrite. Lower contact is gradational. STRUCTURE: At 25.2 m: 1.0 cm fault gouge at 80 degrees to core axis. At 27.0 m: foliation is at 65 degrees to core axis.	AF05422 AF05423 AF05424 AF05425 AF05426 AF05427 AF05428	22.2 23.6 23.8 25.2 26.0 27.0 27.2	23.6 23.8 25.2 26.0 27.0 27.2 28.7	1.4 .2 1.4 .8 1.0 .2	2 15 3 3 4 25	64 50 13 8 7 244 36	<5 <5 <5 5 39 <5	67 265 16 12 49 0.62% 300	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<5 <5 <5 <5	1700 1200 2100 1700 1500 1500 1200
27.5	35.0	SILICIFIED ANDESITIC TUFF Grey-green, weakly to moderately sericitic with an occasional poorly defined lapilli-sized siliceous fragment. Well foliated at 60-75 degrees to core axis. Takes on a pinkish caste (thermal biotite) below 34.0 m. Occasional spot of epidote < 4 mm in diameter. Lower contact is arbitrarily placed where spotty epidote alteration becomes significant. 4-5 % disseminated pyrite. STRUCTURE: At 25.2 m: 1.0 cm wide fault gouge at 80 degrees to core	AF05429 AF05430 AF05431 AF05432 AF05433 AF00271	28.7 29.7 31.0 32.0 33.5 33.7	29.7 31.0 32.0 33.5 35.0 33.8	1.0 1.3 1.0 1.5 1.5	5 4 3 5 5 n/a	16 20 25 100 100 49	<5 25 <5 <5 <5 n/a	60 64 78 100 100 151	1 1 1 1 1 n/a	<5 <5 <5 25 <5 n/a	1900 1800 2000 1500 810 1140

At 27.0 m: foliation is at 65 degrees to core axis. At 27.2 m: 2 mm fault gouge at 80 degrees to core axis. At 29.7 m: 8.0 cm fault gouge at 74 degrees to core axis. At 30.2 m: foliation is at 75 degrees to core axis. Between 30.6 and 31.0 m: MAJOR FAULT ZONE at 60 degrees to core axis. Rock is crushed and broken over entire section. Between 31.4 and 32.0 m MAJOR FAULT ZONE at 60 degrees to core axis. Rock is broken and blocky over the entire

section.

^{23.6 23.8} m 15 % coarse grained disseminated pyrite.

^{24.0 24.7} Intensely microfractured zone.

^{27.0 27.2 25 %} coarse-grained disseminated and stringer (?) pyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-18 3

			DIAMOND DRILL LOG											
From (m)	To · (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		29.3	1.0 cm band of semi-massive pyrite parallel to foliation at 64 degrees to core axis.											
		30.0	1.0 cm band of massive pyrite at 75 degrees to core axis.	•										
35.0	36.9	10 % 0.2 - clasts) i	EPIDOTE SPOTTED ANDESITIC TUFF 1.0 cm epidote spots (altered feldspars and n a fine-grained moderately silicified matrix. eminated pyrite. Broken core at lower contact.	AF05434 AF05435	35.0 36.0	36.0 36.9	1.0	2 3	165 134	<5 <5	76 60	1 1	25 5	<20 <20
36.9	39.0	As 27.5 to Quartz eye massive py	ANDESITIC TUFF 35.0 m. Occasional spot of epidote+calcite. bearing below 38.8 m. Several 1.0 cm wide rite bands at 70-90 degrees to core axis. Lower gradational over 5 cm.	AF05436 AF00272 AF05437	36.9 37.6 38.0	38.0 37.7 39.0	1.1 .1 1.0	6 n/a 5	62 129 46	19 n/a <5	44 69 50	1 n/a 1	10 n/a <5	610 84 390
		At 37.4 m: Fault goug	14.4 cm fault gouge at 68 degrees to core axis. se contains about 15 % pyrite. foliation is at 70 degrees to core axis.	٠										
39.0	39.3		TUFF 1, siliceous, very fine-grained and strongly ured. 2 % disseminated pyrite.	AF05438	39.0	39.3	.3	2	14	<5	16	1	5	590
		39.2	0.5 cm fault gouge at 75 degrees to core axis.											
39.3	45.3		EPIDOTE SPOTTED ANDESITIC TUFF	+ AF05439	39.3	40.8	1.5	c	122	₹5	60	1	(5	200
		Some of th	ese spots may be clasts but most appear to be	AF05440	40.8	41.6	.8	6 3	90	(5	62 122	1 1	25	⟨20
		degrees to STRUCTURE: Between 43	ceration. Lower contact is a minor fault at 60 core axis. 3.0 and 43.2 m: fault zone. Blocky, highly core. Not possible to measure orientation.	AF00273 AF05441	42.2 43.8	42.3 45.3	.1 1.5	n/a 4	86 80	n/a <5	135 40	n/a 1	n/a 10	99 220
45.3	45.6	Light grey	FELSIC ASH TUFF The fine-grained, strongly sericitized and well to the strongly sericitized and well to the strong to the stron	AF05442	45.3	45.6	.3	4	14	< 5	8	<1 .	(5	1000
45.6	72.4	Mottled, 1	OTTLED INTERMEDIATE ROCK ight pink-grey to green, massive and siliceous than 5 % epidote spots. Epidote spots are < 1.0	AF05443 AF05444	45.6 46.3	46.3 46.4	.7	5 40	40 67	<5 8	27 6	<1 <1	95 30	870 430

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Varies between a light green-grey weakly chloritic tuff and a slightly pinkish-grey siliceous tuff. Rock has a

HOLE No: Page Number WEST87-18 4

		•										*		
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp)	Ba (ppm)
		cm in dia	meter and in most cases appear to be alteration	AF05445	46.4	47.0	.6	8	27		41	.1	45	1000
			not clasts. Occasional spot of a light pink	AF05446	47.0	48.5	1.5	5	27 73	<5 <5	41 46	<1 <1	<5 <5	1200 400
			on mineral which does not fizz in HCl.	AF05447	48.5	50.0	1.5	3	124	₹ 5	58	(1	(5	110
			elsic in composition but may may be a silicified		50.0	51.5	1.5	ž	164	\ 5	106	\1 \1	₹5	₹20
		andesitic	· · · · · · · · · · · · · · · · · · ·	AF00274	50.4	50.5	.1	n/a	27	n/a	72	n/a	n/a	95
		Lower con	stact is a 0.5 cm fault gouge at 60 degrees to	AF05449	51.5	53.0	1.5	4	130	<5	66	₹1	₹5	170
		core axis	s.	AF05450	53.0	54.5	1.5	4	43	<5	- 28	<1	₹5	380
		STRUCTURE	A:	AF05451	54.5	56.0	1.5	4	12	<5	23	<1	5	350
			1.0 cm fault gouge at 60 degrees to core axis.	AF05452	56.0	57.5	1.5	4	24	₹5	20	<1	₹5	400
			0.5 cm fault gouge at 70 degrees to core axis.	AF00275	56.0	56.1	.1	n/a	14	n/a	33	n/a	n/a	510
			m: fault gouge at 70 degrees to core axis.	AF05453	57.5	59.0	1.5	3	93	<5	16	<1	<5	570
			3.0 cm fault gouge at 70 degrees to core axis.	AF05454	59.0	60.0	1.0	4	24	₹5	30	<1	20	390
			l m: fault zone. 0.2 m lost core. Not possible to		60.0	61.0	1.0	4	52	- <5	20	<1	<5	310
			prientation.	AF05456	61.0	62.0	1.0	3	158	<5	20	<1	₹5	300
		60.1-60.9	m: blocky, highly fractured core. Fault (?).	AF05457	62.0	63.0	1.0	4	54	<5	20	<1	<5	240
			m: blocky, highly fractured core. Fault (?).	AF05458	63.0	64.0	1.0	4	88	<5	19	<1 ⋅	₹5	280
			m: blocky, highly fractured core. Fault (?).	AF05459	64.0	65.4	1.4	2	69	₹5	20	<1	<5	450
		64.4 m: U	0.5 cm fault gouge at 85 degrees to core axis.	AF05460	65.4	65.8	.4	25	110	<5	35	<1 .	10	330
		47 2 47 4	1 10 0 70	AF05461	65.8	67.0	1.2	.5	30	₹5	30	<1	10	320
		41.3 41.4	1 10.0 cm wide band of massive pyrite at 70	AF00276	67.6	67.7	.1	n/a	31	n/a	37	n/a	n/a	204
			degrees to core axis.	AF05462	67.0	68.0	1.0	3	101	₹5	31	⟨1	5	110
		E2 1 EQ 1	Intensely silicfied zone; very hard, mottled	AF05463 AF05464	68.0	69.0	1.0	3	103	₹ 5	46	<1	⟨5	170
	.*	55.1 56.1	appearance due to patchy chlorite alteration	AF05465	69.0 70.0	70.0 70.9		· 4 6	140 88	< 5	38	<1	(5	220
			which, locally at least, appears to be	AF05466	70.9	70.9	.9 .3	10	40	₹5 ₹5	32	(1	< 5	640
			associated with pyrite mineralization. 4 %	AF05467	71.2	72.4	1.2	5	120	(5	26 37	<1 ·	5 10	350 460
			disseminated medium-grained pyrite.	NI O3407	. 11.2	14.4	1.2	J ,	120		31	(1)	10	400
		65.4 65.6	4 % medium-grained disseminated pyrite.											
		65.7	Massive pyrite band 7.0 cm wide at 72 degrees to core axis.					•						
		70.9 71.2	Strong patchy epidote+calcite alteration.				•							
72.4	78.7	STI.ICEOUS	EPIDOTE SPOTTED LAPILLI TO BLOCK TUFF			•								
			.lli to block-sized white (bleached ?) clasts in	a AF05468	72.4	73.9	1.5	5	120	∢5	32	<1	10	50
			ey-green siliceous weakly epidote spotted	AF05469	73.9	75.4	1.5	4	230	₹5	24	₹1	10	140
		matrix.	Most epidote spots are <0.3 cm in diameter and	AF05470	75.4	76.9	1.5	4	164	⟨5	28	⟨1	15	270
		are proba	bly altered feldspar crystals. About 5 % are >	AF05471	76.9	77.8	.9	4	172	<5	23	<1	₹5	290
			d these are irregular in shape and do not appear	AF00277	77.4	77.6	. 2	n/a	127	n/a	54	n/a	n/a	570
			ered clasts. 4 % disseminated, fine-grained	AF05472	77.8	78.7	.9	5	66	<5	20	<1	₹5 .	420
			to subhedral pyrite. Clast size generally downhole. Lower contact is gradational over 20				. ,				* •=	, .		
70 7	01 2	ati Tarten	ANDECTET C THEF / PLOU											
78.7	71.3		ANDESITIC TUFF/FLOW	* BOT 473	70 7	00.0	4 5	_						

AF05473

AF05474

78.7

80.2

80.2 1.5 81.3 1.1

130

98

₹5

₹5

<1

<1

24

₹5

210

740

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-18 5

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	
			appearance. Banding is at 55-70 degrees to core	AF05475	81.3	82.3	1.0	2	138	< 5	40	<1	10	240
			Becomes very siliceous and thermal biotite altered	AF00278	81.6	81.7	.1	n/a	66	n/a	37	n/a	n/a	522
).3 m. 5 % disseminated fine to medium-grained	AF05476	82.3	83.0	.7	5	200	<5	38	<1	10	170
			Locally weak spotty epidote alteration. Slip at	AF05477	83.0	84.0	1.0	5	114	<5	36	<1	<5	550
			ontact at 80 degrees to core axis.	AF05478	84.0	85.0	1.0	8	110	<5	102	<1	<5	510
		STRUCTUR		AF05479	85.0	86.0	1.0	. 5	142	<5	54	<1	10	180
		81.3 m:	4 mm fault gouge at 25 degrees to core axis.	AF05480	86.0	87.0	1.0	. 4	166	<5	47	<1	10	290
				AF05481	87.0	88.0	1.0	5	123	<5	59	<1	₹5	130
		87.2	3 mm epidote-calcite-pyrite veinlet at 57	AF05482	88.0	89.0	1.0	5	140	<5	51	<1	<5	210
			degrees to core axis.	AF05482	89.0	90.0	1.0	6	140	<5	51	<1	₹5	210
				AF05484	90.0	91.3	1.3	5	80	<5	28	<1	5	470
		87.6	4 mm epidote-calcite-pyrite vein at 40 degrees to core axis.	AF00279	90.3	90.4	.1	n/a	215	n/a	45	n/a	n/a	554
		80.3 83.	O Crushed intensely microfractured zone. Fractures are filled with crushed.											
91.3	101 (י הבוכור ב	PELDSPAR PORPHYRITIC FLOW\TUFF	•										
91.3	101.0		% white sericitized < 2 mm feldspars in a very	AF05485	01 1	00.0	1 -	4	•	,	^	. 1		050
		fine-ara	ained siliceous matrix. Relatively massive. Weak	AF05486	91.3 92.8	92.8 94.2	$\frac{1.5}{1.4}$	4 2	9 13	₹5° ₹5	9 9	<1 <1	₹5 ₹5	950 800
			on is at 66-76 degrees to core axis. 1-2 %	AF05487	94.2	95.2	1.4	3	13 12	₹5 ₹5	12	<1	5	850 850
			nated pyrite. Occasional spot of mariposite.	AF00280	94.3	94.4	.1	n/a	12	n/a	24	n/a	n/a	522
		Recomes	strongly sericitic below 97.5 m.	AF05488	95.2	95.7	.5	11/a 3	162	11/ a (5	32	11/a <1	11/a. (5	1100
		STRUCTUR		AF05489	95.7	97.2	1.5	3 1	8	(5	11	(1)	(5	720
			0.5 cm fault gouge at 80 degrees to core axis.	AF05490	97.2	98.0	.8	3	27	₹5	39	<1	₹5	880
			3 mm fault gouge at 60 degrees to core axis.	AF05491	98.0	99.0	1.0	3	14	\ 5	110	<1	₹5	960
			3 mm fault gouge at 73 degrees to core axis.	AF05492	99.0	100.0	1.0	4	124	⟨5	24	₹1	5	1300
	5		minor fault gouge at 77 degrees to core axis.	AF05493			1.0	4	400	₹5	31	₹1	5	1200
	•		two 1.0 cm fault gouge at 70-80 degrees to core	111 03 43 3	100.0	101.0	1.0	-	400	13	71	. `*	•	1200
		axis.	The little and godge do 70 or doglocal to cold											
			4.0 cm crushed zone (fault ?) at 66 degrees to											
		core axi												
			0.5 cm fault gouge at 74 degrees to core axis.											
		95.5 95.	.7 SILICIFIED EPIDOTE SPOTTED TUFFS: < 5 % dark grey lapilli-sized felsic fragments in a grey		:									

95.7 101.0 FELSIC ASH TUFF: as 95.5 to 95.7 m. Below 97.5 m moderately to strongly sericitic and chloritic. Occasional spot of apple green mica (mariposite).

is sharp at 80 degrees to core axis.

green sericitic weakly spotty epidotized matrix.

3 % disseminated pyrite. Lower contact is a slip at 75 degrees to core axis. Upper contact

- 97.8 2.5 cm wide band of epidote-carbonate alteration with semi-massive pyrite.
- 99.5 101.0 8 % disseminated pyrite. Pyrite tends to occur

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-18

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (mqq)	Au (ppb	Ba (ppm)
			in spots up to 2 mm in diameter.											
101.0	106.8	Grey-green alteration. chlorite al silicificat lapilli-siz	MLORITE-SERICITE) ANDESITIC TUFFS with a pinkish tint due to thermal biotite. Weak to moderate pervasive sericite and iteration. Locally strong pervasive ion. Occasional spot of mariposite. <5 % and felsic clasts. Lower contact is a slip at to core axis.	AF05494 AF05495 AF05496 AF05497 AF00281 AF05498 AF05499	102.0 102.6 103.0 103.8 104.0	102.6 103.0 104.0 103.9 105.0	1.0 .6 .4 1.0 .1 1.0	5 10 5 3 n/a 6 5	168 62 116 168 58 74	<5 18 <5 <5 n/a <5 <5	560 310 55 60 83 76 42	<1 <1 <1 <1 n/a <1 <1 <1 <1	5 {5 {5 5 n/a {5	550 600 660 610 308 370 710
		101.5	1.0 cm wide band of semi-massive pyrite hosted by a carbonate-rich gangue at 80 degrees to core axis.	AF05500			.8	5	148	₹5	56	₹1	<5	710
		102.1	4 cm wide band of crushed massive pyrite bounded by slips at 65 degrees to core axis. Moderate mariposite occurs immediately downhole from the pyrite.							•				
		102.5	1.0 cm wide band of semi-massive pyrite at 75 degrees to core axis.							·				
		102.5 102.8	3 Strongly chloritized zone centred on a 1.0 cm wide fault gouge at 70 degrees to core axis.											
106.8	114.1	Up to 5 % siliceous mpinkish cas biotite. In poorly defigive the mpatches may only an altochloritic plower contastructure:	TTLED INTERMEDIATE ROCK sericitized <1 mm feldspars in a hard very mottled pinkish grey-green matrix. Rock has a set due to very finely disseminated thermal Massive, bedding not observered. Up to 10 %, ined, weakly chloritic patches 0.5-1.5 cm long cock a mottled appearance. These chloritic y be clasts but it is more likely that they are teration product. Pyrite is concentrated in the coatches. 2 % disseminated pyrite overall. act is a fault at 65 degrees to core axis. inor fault. Not possible to measure orientation. 4.0 m: MAJOR FAULT ZONE. Blocky, highly	AF05501 AF05502 AF05503 AF00282 AF05504 AF05505	108.3 109.8 110.3 111.3	109.8 111.3 110.4 112.8	1.5 1.5 1.5 .1 1.5 1.3	4 5 3 n/a 4 3	76 14 47 30 32 58	<5 <5 <5 n/a <5 <5	278 22 47 32 18 20	<1 <1 <1 n/a <1 <1	5 <5 <5 n/a <5 5	180 210 300 266 330 290
		fractured on measure ori	core. 0.2 m of lost core. Not possible to lentation of fault. O cm fault gouge at 65 degrees to core axis.											
		108.7	0.5 cm wide band of semi-massive pyrite in a carbonate-rich gangue.											

FALCONBRIDGE LIMITED

HOLE No: Page Number WEST87-18 7

			DIAMOND DRILL LOG											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba) (ppm)
		appearance	suggesting that it is a tuffaceous rock.	AF05507	115.1	116.1	1.0	5	184	<5	46	<1	₹5	470
		Banding is	at 80-85 degrees to core axis. Weak to	AF05508	116.1	117.1	1.0	5	164	₹5	38	<1	₹5	290
	-		ervasive silicification. In areas of strong	AF00283	116.2	116.3	.1	n/a	169	n/a	54	n/a	n/a	229
		silicificat	tion rock is felsic in composition and often	AF05509	117.1	118.2	1.1	6	43	⟨5	26	<1	<5	910
		takes on a	pinkish caste due to thermal biotite	AF05510	118.2	119.2	1.0	6	96	<5	23	₹1	√5	670
		alteration.	Locally moderate pervasive carbonate	AF05511	119.2	120.2	1.0	. 6	540	₹5	82	<1	₹5	440
		alteration.	•	AF05512	120.2	121.2	1.0	6	234	⟨5	960	<1.	₹5	250
		Tuff become	es HORNBLENDE BEARING below 118.7 m. Up to 5 %	AF05513	121.2	122.2	1.0	5	228	₹5	66	<1	<5	150
		$\langle 1 - 3 \text{ mm } 1$	nornblende crystals which tend to occur in	AF00284	121.4	121.5	.1	n/a	216	n/a	1400	n/a	n/a	127
		patches up	to 20 cm wide. 4 % pyrite. Pyrite is	AF05514	122.2	123.2	1.0	4	158	<5	1500	<1	<5	250
		concentrate	ed in hairline fractures with or without	AF05515	123.2	124.2	1.0	5	123	⟨5	75	<1	<5	430
		calcite. I	lower contact is at 80 degrees to core axis.	AF00285	124.3	124.4	.1	n/a	56	n/a	84	n/a	n/a	275
		STRUCTURE:		AF05516	124.2	125.2	1.0	4	86	<5	55	<1 ⋅	₹5	250
		117.0-117.1	l m: fault zone at 82 degrees to core axis.	AF05517	125.2	126.2	1.0	3	70	29	36	1	80	210
		Blocky, hig	phly fractured core.	AF05518	126.2	127.2	1.0	4	260	<5	36	<1	<5	230
				AF05519	127.2	128.2	1.0	3	170	₹5	20	<1	<5	530
		117.1 118.2	2 Strong pervasive carbonatization. Rock has a crushed texture. 8 % disseminated pyrite.											
		120.2	1.0 cm band of epidote+carbonate+pyrite at 80 degrees to core axis.											
		122.1	1.0 cm band of massive pyrite at 88 degrees to core axis.											

123.3 123.7 Moderate pervasive carbonatization.

128.2 128.6 FELDSPAR PHYRIC GABBRO

Massive, medium green with 7 % 1-3 mm white feldspar phenocrysts. 5.0 cm chill margins at upper and lower contacts. Nil sulphides. < 1 % very finely disseminated ilmenite. Lower contact is at 85 degrees to core axis.

128.6 137.2 VARIABLY SILICIFIED MASSIVE MAFIC HORNBLENDE-BEARING FLOW/TUFF

Similiar to 114.1 128.2 m but more massive, no banding and up to 10 % 1-3 mm hornblende. Weak patchy epidote alteration and variable silicification. Silicified zones are pinkish in colour and intermediate to felsic in composition. 3-4 % disseminated pyrite overall. Lower contact is sharp at 68 degrees to core axis.

- 128.7 0.5 cm wide band of massive pyrite with epidote+calcite.
- 129.0 4.0 cm wide quartz-carbonate vein with 20 % pyrite at 80 degrees to core axis. .
- 130.5 2.0 cm wide quartz-carbonate vein at 85 to degrees to core axis.

AF05520	128.6	129.2	.6	5	640	₹5	33	<1	<5	350
AF05521	129.2	130.2	1.0	4	183	₹5	12	<1	<5	290
AF05522	130.2	131.7	1.5	5	460	∢5	31	<1	<5	240
AF00286	130.9	131.0	.1	n/a	77	n/a	46	n/a	n/a	142
AF05523	131.7	133.2	1.5	4	36	. <5	24	<1	<5	210
AF00287	132.3	132.4	.1	n/a	<10	n/a	36	n/a	n/a	372
AF05524	133.2	134.7	1.5	5	126	<5	28	<1	<5	310
AF05525	134.7	136.2	1.5	4	110	<5	26	<1	5	170
AF05526	136.2	137.2	1.0	4	142	₹5	30	<1	<5	360

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-18 8

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
137.2	137.6	FELDSPAR PHYRIC GABBRO As 128.2 to 128.6 m. Lower contact is a slip at 68 degrees to core axis.											·
137.6	140.6	VARIABLY SILICIFIED MASSIVE ANDESITIC HORNBLENDE BEARING FLOW/TUFF As 128.6 to 137.2 m. Lower contact is at 72 degrees to core axis. STRUCTURE: 137.6-138.0 M: several < 0.5 cm fault gouges at 60-80. 140.5 m: 15.0 cm fault gouge at 80 degrees to core axis. Rock is strongly chloritic on either side of a fault. 140.0 140.3 Moderate fracture controlled epidote-carbonate alteration with 7 % associated pyrite.	AF05527 AF05528			1.5	3 5	92 110	<5 <5	34 28	<1 <1	<5 <5	350 70
140.6	140.8	EARLY MAFIC DYKE			•								
140.8	143.0	VARIABLY SILICIFIED MASSIVE ANDESITIC HORNBLENDE BEARING FLOW/TUFF Pale green, fine-grained strongly sheared. Identical to the chill margin phase of the feldspar phyric gabbro. Nil sulphides. Lower contact is at 70 degrees to core axis. As 128.0 to 137.2 m. 3-4 % pyrite overall. Lower contact is at 85 degrees to core axis. 141.8 142.6 Weak fracture controlled black (Fe-rich) chlorite alteration. Sample AF00288 is from this zone. 5 % pyrite.	AF05529 AF05530 AF00288			1.2	5 4 n/a	84 120 64	(5 (5 n/a	37 31 43	<1 <1 n/a	<5 <5 n/a	330 230 171
143.0	147.0	MASSIVE MOTTLED INTERMEDIATE ROCK Mottled pinkish-grey-green, fine-grained, hard, siliceous and moderately microfractured with up to 3 % sericitized < 2 mm feldspar crystals. Weak to moderate pervasive sericitization. Very rare epidote spots. Weak thermal biotite alteration. Foliation is at 75-90 degrees to core axis. Intensely silicfied below 146.6 m. 2 % pyrite overall. Several < 5 mm bands of massive pyrite. Lower contact is at 88 degrees to core axis.	AF05531 AF00289 AF05532 AF05533 AF05534 AF05535	143.2 144.0 144.8 145.0		1.0 .1 .8 .2 1.0	3 n/a 3 8 3 4	16 <10 12 820 32 26	<5 n/a <5 <5 <5 <5	18 19 8 30 10	<1 n/a <1 <1 <1 <1	<5 n/a <5 <5 <5 <5	560 428 1000 <20 420 870

144.8 145.0 Weak spotty epidote alteration. 5 % fracture controlled pyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-18 9

rrom (m)	(m)	DESCRIPTION	No.	rrom (m)	10 (m)	(m)	% rotar Sulphides	(ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	ва) (ppm)
		Massive light grey with a pinkish tinge due to thermal	AF05536	147.0	148.4	1.4	3	110	<5	22	<1	n/a	n/a
		biotite. 3 % disseminated pyrite. Broken core at lower contact.	AF00290	148.2	148.3	.1	n/a	33	n/a	38	n/a	n/a	409
•													
							,				•		
148.4	149.3	FELDSPAR PHYRIC GABBRO As 128.2 to 128.6 m. Lower contact is sharp at 72 to degrees to core axis.	•										
149.3	151.4	SILICFIED ANDESITIC TUFF/FLOW					•						
		Grey-green, fine-grained, massive and moderately to	AF05537	149.3	150.0	.7	. 4	184	<5	22	<1	<5	300
		strongly silicfied. 5 % pyrite concentrated along epidote	AF05538	150.0	151.4	1.4	3	340	<5	20	<1	₹5	110
		altered fractures and finely disseminated. Broken core at lower contact.	AF00291	150.1	150.2	.1	n/a	99	n/a	28	n/a	n/a	308
						•							
151.4	177 7	FELDSPAR PHYRIC GABBRO											
131.4	111-1	As 128.2 128.6 m.	AF00292	156.0	156.9	.9	n/a	101	n/a	88	n/a	n/a	180
		450 0 450 0 01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1											

153.0 159.0 Blocky, highly fractured core. Rock is weakly foliated almost parallel to to core axis. 0.2 m of lost core between 159.0 and 156.5 m.

166.6.166.7 Fault zone. Blocky, highly fractured core.
Not possible to measure orientation.

1

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-19 1

Hole Location: 11+90 E 7+80 S

NTS: 92B13

UTM: 450215 E 5411590 N

Azimuth: 15 Dip:

-45

Elevation: 212 m

Length: 410.6 m

Section No.: 12+00 E Logged By: J. Pattison

Claim No. WEST 1

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg & Xray Assay

Core Size: NQ

Started: 14-NOV-87 Completed: 20-NOV-87

Purpose: Chargeability anomaly between

5+80 and 6+10 S.

DIP TESTS

	Azi-			Azi-	
Length	muth	Dip	Length	muth	Dip
32.60	16.0	~44.5	294.70	24.0	-39.0
108.30	23.0	-41.5	366.60	26.0	-38.0
239.90	24.0	-40.0	401.10	27.0	-37.0

From	To		Sample	From	To	Width	% Total	Cu	Pb	Zn	Ag	Au	Вa
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

3.6 CASING

12.6 EPIDOTE SPOTTED MAFIC TUFF

Dark green, fine-grained with up to 20 % up to 3.0 cm epidote +/- calcite spots (most <1.0 cm) in a chloritic matrix with 1-3 % finely disseminated magnetite. Rock is weakly to moderately magnetic. Most spots are probably altered feldspars >2 mm in length. Some of the larger spots may be altered clasts but most have an irregular outline and appear to be alteration related. Many are centred on < 3 mm hornblende crystals which constitute less than 3 % of the rock. Minor quartz-carbonate veinlets subparallel to foliation. Less than 2 % disseminated pyrite. Oxidized fracture surfaces extend to a depth of 10.0 m. Lower contact is a 2.5 cm fault gouge at 60 degrees to core axis.

STRUCTURE:

2.5 cm fault gouge at 33 degrees to core axis at 7.8 m. Foliation is at 50 degrees to core axis at 9.0 m. Foliation is at 55 degrees to core axis at 10.5 m. 2.5 cm fault gouge at 60 degrees to core axis at 12.5 m.

12.6 16.4 OUARTZ EYE BEARING FELSIC TUFF

3-5 %, 1-4 mm quartz eyes in a siliceous weakly to moderately chloritized and sericitized fine-grained matrix. Most quartz eyes have a crushed granular texture and many are weakly chloritic. Foliation is well developed at 60-70 degrees to core axis. Nil-trace disseminated pyrite. Lower contact is a 3.5 cm fault gouge AF00293 5.0 5.1 149 58 n/a

AF00294 14.8 14.9 n/a 1430

PROPERTY: WEST CLAIMS HOLE No: Page Number FALCONBRIDGE LIMITED WEST87-19 2 DIAMOND DRILL LOG From To Sample From To Width % Total Cu Pb Au Aα (m) (m) -----DESCRIPTION-----No. Sulphides (ppm) (m) (m) (m) (ppm) (ppm) (maga) (ppb) (ppm) at 70 degrees to core axis. 16.4 26.6 CHLORITIC ANDESITIC TUFF Dark green, moderately to strongly chloritized, AF05539 20.2 21.1 56 <1 <5 110 fine-grained and well foliated at 55 degrees to core axis. AF05540 21.1 22.2 1.1 1 110 (5 60 1.0 <1 80 1-3 % finely disseminated black non-magnetic mineral AF05541 22.2 23.4 1.2 3 120 ⟨5 74 <1 280 (ilmenite ?). Moderately epidote spotted between 18.9 and AF00295 23.0 23.1 .1 40 77 n/a n/a n/a n/a 385 20.2 m. <1-3 % disseminated pyrite. In general pyrite AF05542 23.4 24.7 1.3 8 72 ₹5 79 <1 <5 170 content increases downhole below 16.4 m. Occasional AF05543 24.7 25.3 42 ⟨5 .6 122 <1 25 <20 intense fracture controlled black chlorite alteration AF05544 25.3 26.3 1.0 5 29 ₹5 88 <1 10 200 usually associated with pyrite. These zones are listed AF05545 26.3 26.6 18 <5 210 . 3 106 ⟨1 below. Lower contact is at 50 degrees to core axis. STRUCTURE: 2.5 cm wide fault gouge at 66 degrees to core axis at 21.1 18.3 18.5 Intensely chloritized zone at 62 degrees to core axis with 6 % pyrite. 20.2 21.1 3 % disseminated pyrite. 22.6 3.0 cm wide intensely chloritic band at 68 degrees to core axis with 7 % pyrite. 23.7 5.0 cm chloritic zone with 5 % pyrite at 65 degrees to core axis. 24.7 25.3 Intensely chloritized pyrite breccia zone at 65 degrees to core axis. 25 % pyrite as angular fragments (1.0 cm in diameter in a dark green to black chlorite matrix. 25.3 26.5 Several strongly chloritic bands (4.0 cm wide at 60-70 degrees to core axis. 30.1 CHLORITIC INTERMEDIATE ASH TUFF 26.6 Grey-green, fine-grained and well foliated at 50-60 AF05546 26.6 28.1 1.5 11 ₹5 37 <1 ₹5 450 degrees to core axis. Up to 5 % <2 mm feldspar crystals. AF00296 27.2 27.3 .1 10 n/a 39 n/a n/a 552 n/a Moderately to strongly chloritic. 4-5 % disseminated AF05547 28.1 29.1 1.0 4 5 ₹5 36 ⟨1 ₹5 440 pyrite. AF05548 29.1 1.0 ⟨5 28 30.1 <1 ₹5 350 30.1 33.8 EPIDOTE SPOTTED ANDESITIC FLOW/TUFF Green-grey, massive with 10 % <0.5 cm epidote spots (most AF05549 30.1 31.6 1.5 60 ₹5 76 <1 10 350 < 0.2 cm). Most appear to be altered feldspars. 5 % AF00297 31.3 31.4 .1 n/a 19 n/a 68 n/a n/a 255 disseminated pyrite. Lower contact is at 53 degrees to AF05550 32.6 31.6 1.0 11 ₹5 40 (1 ₹5 320 4

AF05551

32.6

33.8

1.2

5

56

۲5

40

₹5

370

core axis.

32.0 32.1 Blocky, highly fractured core. Fault (?).

to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-19 3

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pph	Ba o) (ppm)
33.8	69.1	SILICIFIED ANDESITIC TUFF											
		Grey-green, fine-grained, siliceous, weakly to moderately	AF05552	33.8	35.3	1.5	4	4	<5	24	<1	₹5	200
		chloritic. Chlorite occurs in patches and bands (appears	AF05553	35.3	36.8	1.5	5	2	₹5	22	₹1	₹5	250
		to be fracture controlled in places) < 1.0 cm wide giving	AF00298	36.5	36.6	.1	n/a	.<10	n/a	29	n/a	n/a	328
		rock a mottled appearance. Pyrite appears to be	AF05554	36.8	38.3	1.5	5	4	√√5	23	<1	5	310
		associated with chlorite. Probably a silicified	AF05555	38.3	39.8	1.5	5	4	₹5	19	<1	₹5	730
		equivalent of the Epidote Spotted Mafic Flow/Tuff unit	AF05556	39.8	41.3	1.5	5	5	<5	22	<1	<5	490
		above. Occasional quartz eye. Becomes strongly chloritic	AF05557	41.3	42.8	1.5	5	5	<5	27	<1	∢5	360
		(poker chip core) below 60.5 m. 3-5 % disseminated	AF05558	42.8	44.3	1.5	5	11	<5	44	<1	₹5	210
		pyrite. Lower contact is a 0.5 cm fault gouge at 60	AF00299	43.0	43.1	.1	n/a	<10	n/a	69	n/a	n/a	207
		degrees to core axis.	AF05559	44.3	45.8	1.5	5	6	<5	30	<1	₹5	40.
		STRUCTURE:	AF05560	45.8	47.3	1.5	. 4	4	₹5	15	<1 ⋅	<5	440
		Foliation is at 65 degrees to core axis at 39.3 m.	AF00300	46.6	46.7	.1	n/a	<10	n/a	16	n/a	n/a	581
		Foliation is at 60 degrees to core axis at 44.1 m.	AF05561	47.3	48.3	1.0	3	2	⟨5 -	13	<1	<5	380
		1.0 cm fault gouge at 55 degrees to core axis.	AF05562	48.3	49.8	1.5	3	3	<5	22	<1	5	540
		30.0 cm fault zone at 48.2 m. Not possible to measure	AF05593	49.8	51.3	1.5	3	9	<5	42	<1	5	550
		orientation.	AF05564	51.3	52.8	1.5	4	4	₹5	26	<1	<5	220
		10.0 cm fault gouge at 30 degrees to core axis at 49.6 m.	AF05565	52.8	54.3	1.5	4	4	₹ 5	26	<1	₹5	230
		Foliation is at 60 degrees to core axis at 51.3 m.	AF05566	54.3	55.8	1.5	4	3	< 5	23	<1	< 5	260
		20.0 cm fault zone at 45 degrees to core axis at 55.7 m.	AF05567	55.8	57.3	1.5	5	3	₹5	26	<1	<5	310
		20.0 cm fault gouge at 45 degrees to core axis at 56.7 m. Foliation is at 60 degrees to core axis at 60.1 m.	AF00301 AF05568	56.1 57.3	56.2 58.8	.1	n/a	11	n/a	37	n/a	n/a	374
		Foliation is at 60 degrees to core axis at 60.1 m.	AF05569	58.8	60.3	1.5 1.5	5 4	3 6	(5	22 58	<1 <1	₹5 ₹5	410 700
		40.0 cm fault zone at 66.1 m. Blocky, highly fractured	AF05570	60.3	61.8	1.5	4	12	<5 <5	59	<1 <1	(5	530
		core. Not possible to measure orientation.	AF05570 AF05571	61.8	63.3	1.5	3	3	(5	39	<1	√5	600
		90.0 cm fault zone at 50 degrees to core axis at 67.5 m.	AF05572	63.8	64.8	1.0	3	4	(5	40	<1	(5	270
		Blocky, highly fractured core. Poker chip core.	AF05572	64.8	66.3	1.5	4	- 3	< 5	40	1	10	380
		broom, mighty fractured color fonce chip color	AF00302	65.4	65.5	.1	n/a	<10	n/a	32	n/a	n/a	254
		39.0 40.0 Moderately sericitic.	AF05574	66.3	67.8	1.5	2	3	, a. <5	34	, u	10	330
			AF05575	67.8	69.1	1.3	2	7	₹5	48	₹1	₹5	440
		42.2 5.0 cm intensely chloritized band at 70 degrees to core axis with 20 % pyrite.			****			,					•••
		43.1 5.0 cm intensely chloritized zone with 20 % pyrite. Not possible to measure orientation of the zone. Sample AF00299 is from this zone.											
		44.0 45.0 Several <1.0 cm chlorite rich bands with 10 % pyrite parallel to foliation at 60 degrees to core axis.											
69.1	70.7	CARBONATIZED MAFIC TUFF OR FLOW Medium green, fine-grained, moderately to strongly pervasively carbonatized. Foliation is well developed at 50 degrees to core axis. Core is locally poker chip. 1 % disseminated pyrite. Lower contact is sharp at 50 degrees	AF05576 AF05577	69.1 70.0	70.0 70.7	.9 .7	2 2	110 130	<5 <5	110 74	<1 <1	5 5	370 640

FALCONBRIDGE LIMITED

DIAMOND DRILL LOG From To Sample From Width % Total Aσ Au Ba (m) (m) ----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppb) (ppm) (ppm) (ppm) (ppm) 75.3 MASSIVE FELSIC FELDSPAR PORPHYRITIC TUFF\FLOW 70.7 Grey-green to green-grey, moderately to strongly AF05578 70.7 72.2 1.5 < 5 30 ⟨5 460 <1 chloritic. Poker chip core over much of the section. AF05579 72.2 73.7 1.5 ₹5 16 <1 ⟨5 340 Rock is crushed over most of the section. Rock consists AF05580 73.7 75.2 1.5 3 ⟨5 14 **<1** ⟨5 500 of 10 % up to 3 mm feldspar crystals in a siliceous AF05581 75.2 76.7 1.5 (5 25 (1 ⟨5 730 aphanitic matrix. Felsic to intermediate in overall composition. Lower contact is at 60 degrees to core axis. STRUCTURE: 70.0 cm fault zone at 60 degrees to core axis at 70.1 m. Blocky, highly fractured core. 0.2 m of lost core. 30.0 cm fault zone at 72.7 m. Rock is crushed. Fault appears to be at a low angle to the core axis. 10.0 cm fault zone at 74.2 m. Blocky, highly fractured core. Not possible to measure orientation. 1.0 cm fault gouge at 70 degrees to core axis at 75.3 m. Foliation is at 65 degrees to core axis at 75.2 m. Fault (?) at 76.9 to 77.2 m. Blocky, highly fractured core. Foliation is at 60 degrees to core axis at 77.3 m. 71.9 2.5 cm wide chlorite-pyrite band at 72 degrees to core axis. 74.8 75.3 QUARTZ EYE BEARING FELSIC TUFF only weak chlorite and moderate sericite alteration. Occasional quartz eye <3 mm in diameter. 2 % disseminated pyrite. 77.9 CHLORITIC FELSIC ASH TUFF 75.3 Green-grey, moderately chloritic felsic tuff. AF00303 75.5 75.6 n/a n/a n/a 576 AF05582 76.7 77.9 1.2 ₹5 <1 ₹5 820 77.9 79.8 EPIDOTE SPOTTED ANDESITIC FLOW/TUFF Medium green fine-grained with up to 20 % <1.0 cm epidote AF05583 77.9 79.8 2 110 ₹5 70 <1 ₹5 160 +/- calcite spots (most < 3mm). Weak to moderate AF00304 78.4 n/a 46 n/a n/a n/a pervasive carbonate. Up to 2 % disseminated pyrite. Lower contact is gradational. 79.8 80.7 SILICIFIED ANDESITIC TUFF/FLOW Green-grey, fine-grained and massive. Moderately AF05584 79.8 80.7 630 chloritic. May be intermediate in composition. 5 % disseminated pyrite. 80.7 81.3 CHLORITIC FELSIC ASH TUFF / SILICIFIED MAFIC TUFF Grey-green fine-grained, moderately chloritic and AF05585 80.7 81.3 (1 ⟨5 1100 sericitic. Foliation is well developed at 40-50 degrees to core axis. 3 % disseminated pyrite. Lower contact is

HOLE No:

WEST87-19

Page Number

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-19 5

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	
		a 10 cm wide fault zone at 50 degrees to core axis.											
81.3	84.0	CHLORITE SCHIST	•										
		Dark green and extremely chlorite-rich. Foliation is well developed at 20 degrees to core axis. Probably an altered mafic tuff/flow. Weak fracture controlled carbonate alteration. Lower contact is at 40 degrees to core axis.	AF05586 AF00305 AF05587	81.3 82.4 82.8	82.8 82.5 84.0	1.5 .1 1.2	2 n/a 4	40 23 72	<5 n/a <5	85 93 86	<1 n/a <1	<5 n/a <5	1200 1180 1500
		83.6 83.8 Fault zone at 20 degrees to core axis.											
84.0	93.0	INTERMEDIATE TUFF/FLOW							•				
64. ∪	93 . 0	Grey-green to dark green with a mottled pink tint due to thermal biotite alteration. Fine-grained, and felsic-mafic in composition. More siliceous sections are moderately microfractured. Up to 2 % pyrite overall. Strongly to intensely chloritized. Much of the core is poker chip core. STRUCTURE: 10.0 cm fault zone at 60 degrees to core axis at 88.8 m. Blocky, highly fractured core.	AF05588 AF05589 AF00306 AF05590 AF05591 AF00307 AF05592 AF05593 AF05594	84.0 85.5 86.2 87.0 88.2 88.2 89.2 90.2 91.5	85.5 87.0 86.3 88.2 89.2 91.5 90.2 91.5 93.0	1.5 1.5 .1 1.2 1.0 3.3 1.0 1.3	4 3 n/a 2 4 n/a 3 3	6 6 <10 52 45 400 12 9	<5 <5 n/a <5 <5 n/a <5 <5 <5 <5 <5 <5	39 46 39 44 52 179 44 42	<1 <1 n/a <1 <1 n/a <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<5 <5 n/a <5 <5 n/a <5 <5	350 760 560 1100 800 456 440 550
		88.2 91.5 Several chlorite rich +/- calcite bands with up											

93.0 94.4 FAULT ZONE

Blocky, highly fractured core. Highly chloritic. Poker chip core. Fault appears to be at 70 degrees to core axis. < 1 % pyrite.

over the section is only 3 %.

to 20 % pyrite at 60-65 degrees to core axis (ie parallel to foliation). Overall pyrite

94.4 97.7 MAFIC TUFF

Similiar to 84.0 to 93.0 m. Dark green, strongly chloritic, nil to moderate patchy pervasive silicfication. Rock has a banded appearance suggesting that it is tuffaceous. Banding is parallel to foliation at 60-65 degrees to core axis. Less than 2 % disseminated pyrite.

96.8 5.0 cm fault gouge at 60 degrees to core axis.

97.7 101.6 INTERMEDIATE TUFF

Dark green, weakly to moderately silicified and moderately to strongly chloritic. Occasional white to pinkish cherty bed < 1.0 cm thick. Bedding is parallel to foliation at 65-75 degrees to core axis. Less than 2 % disseminated pyrite. Lower contact is sharp at 60 degrees to core axis.

				3 2						
				n/a						
AF05597	100.7	101.0	.3	2	29	₹5	58	<1	<5	1100

DIAMOND DRILL LOG

HOLE No: Page Number FALCONBRIDGE LIMITED WEST87-19

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba) (ppm
		1.0 cm wide fault gouge at 80 degrees to core axis at											
		101.0 m.			•								
		5.0 cm fault gouge at 40 degrees to core axis at 101.1 m. Bedding is contorted on downhole side of fault.											
		bodding to convolved on dominate blue of full.											
							,						
101.6	197.8	EPIDOTE SPOTTED ANDESITIC FLOW/TUFF				_			_			_	
		Dark green, massive with moderate spotty, patchy epidote	AF05598		106.0	.7	4	152	< 5	104	(1	₹5	<20
		+/- calcite alteration. Most epidote spottys are less than 0.25 cm in diameter and appear to be altered	AF05599		109.0	1.0	3	1300	< 5	100	1		190
		feldspars but some may be altered lapilli. Less than 2 %	AF05600 AF00309		109.5	.5 .1	n/a	700 27	<5 n/a	100 59	<1 ·	<5 n/a	120 73
		disseminated pyrite overall. Nil-1 % very finely	AF05601			.5	11/a	605	n/a <5	440	n/a <1	11/a 5	400
		disseminated magnetite. Broken core at lower contact.	AF00310			.1	n/a	49	n/a	202	n/a	n/a	59
		STRUCTURE:	AF05602			.5	117 a.	420	/ a. <5	296	117 a <1		130
		1.0 cm fault gouge at 75 degrees to core axis at 105.0 m.	AF05603			1.2	4	180	₹5	128	1		130
		40.0 cm fault at 20 degrees to core axis at 108.6 m.	AF05604		134.4	.5	2	112	< 5	140	₹1	5	<20
	•	Possible fault between 109.9 and 110.2 m. Blocky, highly	AF05605			.5	5	630	₹ 5 "	136	⟨1	5	30
		fractured core.	AF05606			1.0	1	178	⟨5	128	1	₹5	₹20
		3.0 cm fault zone at 74 degrees to core axis at 118.1 m.	AF05607			1.0	8	470	₹5	90	<1		160
		1.0 cm fault gouge at 63 degrees to core axis at 120.6 m.	AF05608			.9	4	47	₹5	72	<1	₹5	710
•		10.0 cm fault gouge at 60 degrees to core axis at 128.6 m.	AF00311	139.3	139.4	.1	n/a	20	n/a	75	n/a	n/a	369
		Highly chloritic. 20 % pyrite.	AF05609	139.5	140.5	1.0	2	168	<5	102	<1	₹5	<20
		4.0 cm fault gouge at 60 degrees to core axis at 139.0.	AF00312	149.1	149.2	.1	n/a	174	n/a	106	n/a	n/a	61
		Minor fault at 60 degrees to core axis at 155.8 m.	AF05610	165.2	166.1	.9	3	14	<5	80	<1	5	440
		10.0 cm fault gouge at 54 degrees to core axis centred on	AF05611	166.1	167.1	1.0	. 1	95	₹5 .	90	<1	<5	₹20
		a 5.0 cm wide quartz-carbonate vein with 15 % pyrite at	AF00313	169.3	169.4	.1	n/a	15	n/a.	106	n/a	n/a	79
*		160.9 m.	AF05612	171.2	171.7	.5	2	350	. <5	98	<1	5	₹20
		1.0 cm fault gouge at 60 degrees to core axis.	AF05613	183.6	183.9	.3	3	154	₹5	162	<1	15	<20
		Blocky, highly fractured core between 168.0 and 168.2 m.	AF05614	183.9	184.9	1.0	2	152	<5	110	<1	<5	<20
•		Fault (?).	AF05615	188.6	189.0	. 4	10	49	<5	100	<1	10 1	1500
		Blocky, highly fractured core between 179.0 and 181.0 m.	AF05616	189.0	190.5	1.5	2	228	<5	260	<1	5	330
		Minor fault gouge at 50 degrees to core axis at 179.4 m.	AF05617	190.5	192.0	1.5	3	212	₹5	330	<1	5	40
		Blocky, highly fractured core between 185.5 and 186.3 m.	AF00314	191.2	191.3	.1	n/a	299	n/a	246	n/a	n/a	64
		Blocky, highly fractured core between 187.9 and 188.7 m.	AF05618	192.0	192.5	.5	3	360	<5	174	<1	5	⟨20
			AF05619	197.5	197.8	. 3	. 3	42	<5	178	. <1	10	<20
		105.8 4.0 cm wide chlorite band at 50 degrees to											
		core axis with 10 % pyrite.											
		100 0 100 E 2 % fragtuma controllad munito											
		109.0 109.5 3 % fracture controlled pyrite.											
		·											

120.6 120.8 Strong pervasive silicfication. 3 % disseminated and fracture controlled pyrite. Sharp lower contact at 60 degrees to core axis. Upper contact is a 1.0 cm fault at 63 degrees to core axis.

132.7 133.9 Weakly silicfied zone with 3 % disseminated and fracture controlled pyrite.

134.4 134.9 Weakly silicified zone with 5 % pyrite and

FALCONBRIDGE LIMITED

No.

HOLE No: Page Number WEST87-19 7

Sulphides (ppm)

Pb

(ppm) (ppm)

(ppb) (ppm)

(ppm)

Width % Total

(m)

(m)

			DIAMOND DRILL LOG
From (m)	To (m)	-	DESCRIPTION
			trace chalcopyrite. At 134.4 m, 2.5 cm black chloritic band at 70 degrees to core axis with 22 % pyrite and 3 % chalcopyrite.
		136.8 137.6	Moderate pervasive carbonatization.
		137.6 139.5	Moderate pervasive silicification. Rock is green-grey, fine-grained and has no epidote spottys. 3 % disseminated pyrite. At 137.9 m there is a 2.0 cm band of massive pyrite at 70 degrees to core axis.
		153.9 154.0	Fine-grained green MAFIC DYKE at 67 degrees to core axis.
		155.9	1.0 cm wide quartz-carbonate vein at 60 degrees to core axis.
		158.7	3.0 cm wide round clast. Grey-green, fine-grained with 10 % < 3 mm hornblende crystals.
		165.2 166.1	Moderately silicified zone. Grey-green, fine-grained and no epidote spottys. 3 % disseminated pyrite.
		171.2	1.5 cm wide quartz-carbonate vein with 25 % pyrite and trace chalcopyrite on pyrite grain boundaries.
		183.6 183.9	Weakly silicified zone with 3 % disseminated pyrite centred on a 1.0 cm chloritic fault gouge with 10 % pyrite at 75 degrees to core axis.
		184.5	Trace chalcopyrite along margins of pyrite in 1.0 cm wide chlorite rich band at 65 degrees to core axis.
		188.6 189.0	Strong pervasive carbonatization. No epidote spottys. 10% pyrite disseminated and banded. At 188.8 m is a 2.0 cm wide chlorite band with 30 % pyrite at 60 degrees to core axis. Upper contact of zone is gradational. Lower contact is a minor fault at 60 degrees to core axis.

189.0 193.0 Weak patchy silicification. 2-3 % disseminated and fracture controlled pyrite.
197.5 197.8 Moderate pervasive silicification increasing downhole. 2 % disseminated pyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

210.6 m: 0.5 cm wide fault gouge at 54 degrees to core axis

HOLE No: Page Number WEST87-19 8

		DIAMOND DRIBE BOO											
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba (ppm)
197.8	199.5	SILICIFIED ANDESITIC TUFF Medium grey, fine-grained, moderately sericitic and felsic-intermediate in composition. Rock has a vague banded appearance suggesting that it is a tuff. Banding is subparallel to foliation. Foliation is at 60-70 degrees to core axis. 8-10 % disseminated and fracture controlled pyrite. Pyrite often occurs in sericite-chlorite filled hairline fractures subparallel to foliation. Lower contact is gradational over 50 cm. STRUCTURE:	AF05620 AF00315 AF05621		198.3	1.0	8 n/a 10	74 98 56	<5 n/a ⋅ <5	44 46 66	<1 n/a <1	n/a	1500 1120 1100
		1.5 cm fault gouge at 60 degrees to core axis at 198.9 m. 0.5 cm fault gouge at 50 degrees to core axis at 199.0 m.							•				
		199.0 199.5 10 % pyrite concentrated in bands <0.5 cm wide parallel to foliation at 50 degrees to core axis. Moderate fracture controlled chlorite+sericite associated with pyrite.											
199.5	210.3	EPIDOTE SPOTTED ANDESITIC TUFF Dark green, fine-grained and massive with up to 15 % < 1.0 cm epidote +/- calcite spots. Nil-weak pervasive carbonatization. Less than 2 % disseminated pyrite. Moderately silicified for 0.7 m from upper contact. Lower contact is gradational over 30 cm. STRUCTURE: 208.5 m: bedding (?) is at 55 degrees to core axis. 208.5 m: foliation is at 55 degrees to core axis.	AF05622 AF05623	199.5 209.3	200.5 210.3	1.0	. 4	166 46	₹ 5 ₹ 5	118 270	<1 <1	5 5	80 130
		206.2 206.6 Strong pervasive silicification. 6 % disseminated pyrite.											
		208.5 5.0 cm strongly silicfied zone or felsic tuff at 60 degrees to core axis.											
		208.5 211.3 Weak pervasive silicification.											
210.3	219.4	MOTTLED SILICIFIED ANDESITIC TUFF Mottled grey-green to pinkish grey, fine-grained strongly silicified andesitic tuff with 3-10 % disseminated and fracture controlled pyrite. Intermediate to felsic in composition. More siliceous sections have a slightly pinkish tint due to fine thermal biotite. Becomes quite massive and siliceous in composition below 215.0 m (identicle to Massive Mottled Silicified Rock). Lower contact is gradational over 0.2 m. STRUCTURE:	AF05624 AF05625 AF05626 AF05627 AF05628 AF05629 AF05630 AF05631 AF05632	211.3 212.3 213.3 214.3 215.3 217.0 218.0	211.3 212.3 213.3 214.3 215.3 217.0 218.0 219.0	1.0 1.0 1.0 1.0 1.7 1.0	8 6 5 6 8 5 8 7 7	32 224 84 15 31 166 420 335 345	<pre> <5 <5 <5 <5 <5 <5 <5 <5 <7 <7 </pre>	350 158 174 178 185 168 245 200 220	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	10 10 <5 <5 10 5 15 10 40	500 500 300 140 550 810 320 290 130

HOLE No: Page Number FALCONBRIDGE LIMITED WEST87-19 DIAMOND DRILL LOG From Sample From To Width % Total Ba Αu (m) (m) -----DESCRIPTION-----No. (m) (m) Sulphides (ppm) (ppb) (ppm) (ppm) (ppm) (ppm) 212.0 m: 1.0 cm wide fault gouge at 56 degrees to core axis 215.3-216.2 m: MAJOR FAULT. Blocky, highly fractured core. 0.5 m of lower contact. Not to possible to measure orientation. 216.6 216.8 m: fault gouge at 67 degrees to core axis. 219.4 m: 0.5 cm fault gouge at 75 degrees to core axis. 219.4 231.4 SILICIFIED ANDESITIC EPIDOTE SPOTTED LAPILLI-BLOCK TUFF Up to 25 % matrix supported olive-green to white, bleached . 5 100 AF05633 219.4 220.4 138 ⟨5 130 <1 lapilli to block-sized altered clasts in a dark green 220 AF00316 224.1 224.2 141 n/a 155 n/a n/a n/a weakly moderately silicified matrix with 5-15 % < 0.5 cm AF05634 229.9 231.4 1.5 < 5 3 184 132 <1 <5 1500 epidote spots. Up to 3 % disseminated pyrite (average 2 %). Lower contact is a slip at 75 degrees to core axis. STRUCTURE: 230.9 m: 1.5 cm fault gouge at 80 degrees to core axis. 231.4 245.2 MASSIVE MOTTLED INTERMEDIATE ROCK Green-grey, fine-grained, siliceous and moderately AF05635 231.4 232.9 5 16 **<**5 <1 950 60 chloritic. Intensely siliceous patches have a pinkish AF05636 232.9 3 810 234.4 1.5 16 ₹5 68 <1 ⟨5 tint due to thermal biotite alteration. Patchy, AF00317 233.7 233.8 529 .1 n/a <10 n/a 59 n/a n/a semi-banded intense silicification gives rock a mottled 760 AF05637 234.4 235.9 1.5 3 42 ₹5 70 <1 ₹5 . 1 733 appearance (green to pinkish grey) and in places a AF00318 234.8 234.9 <10 n/a 53 n/a n/a n/a fragmental texture (ie flesic lapilli fragments in a AF05638 235.9 75 880 237.4 34 <5 <1 ∢5 chloritic matrix). AF05639 237.4 238.5 1.1 3 98 < 5 100 <1 (5 1400 2-5 % disseminated pyrite. 10.0 cm fault gouge at lower AF05640 238.5 239.0 .5 15 106 16 45 <1 **<5** 1300 contact at 80 degrees to core axis. 240.5 1.5 ₹5 850 AF05641 239.0 112 <1 ₹5 STRUCTURE: ₹5 1100 AF05642 240.5 242.0 1.5 60 (5 106 ⟨1 690 233.6-234.0 m: blocky, highly fractured core. Fault (?). 243.5 3 32 ₹5 89 ⟨1 ⟨5 AF05643 242.0 1.5 235.7-236.0 m: blocky, highly fractured core. Fault (?). AF05644 243.5 245.2 1.7 **<**5 660 236.4 m: 10.0 cm fault gouge at 70 to degrees to core axis. 15 % pyrite. 237.4 m: 1.0 cm fault gouge at 75 degrees to core axis. 238.3 m: 2.0 cm fault gouge at 60 degrees to core axis. 237.0 m: foliation is at 76 degrees to core axis. 237.0 238.9 Moderately to strongly sericitic. Light grey in colour. 238.7 6.0 cm semi-massive pyrite band at 70 degrees to core axis. 245.2 245.8 OUARTZ EYE BEARING FELSIC TUFF Strongly sericitized, white and has a crushed appearance. AF05645 245.2 245.6 <5 18 <1 **<5 2000** 20 1500 Foliation is contorted over the entire interval. Less AF05646 245.6 245.8 than 3 % 2-4 mm quartz eyes. Most have a crushed granular

appearance. 10 % pyrite overall. Broken core at lower

contact. STRUCTURE:

251.7 253.4 QUARTZ EYE BEARING FELSIC TUFF

Up to 5 % 2-4 mm quartz eyes in a siliceous sericitic

light grey matrix. Foliation well developed at 65 to 75

HOLE No: Page Number FALCONBRIDGE LIMITED WEST87-19 10 DIAMOND DRILL LOG To From Sample From Width % Total Рb Zn Ba (m) (m) -----DESCRIPTION------No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (mqq) (dqq) 245.6-245.8 m: several < 5.0 cm fault gouges at 60-65 degrees to core axis. 245.6 245.8 25 % pyrite. Rock is strongly crushed over the entire interval. Several fault gouges. 245.8 249.0 EPIDOTE SPOTTED ANDESITIC TUFF Dark green with up to 15 % < 3mm epidote spots. Weakly AF05647 245.8 247.3 220 pervasively silicified for 20 cm from the upper contact. AF05648 247.3 248.3 1.0 370 ⟨5 185 <1 140 STRUCTURE: AF05649 248.3 249.0 .7 760 200 660 247.2-247.9 m: blocky, highly fractured core. 247.9 248.9 Moderate pervasive silicification. 4 % finely disseminated pyrite. 248.4 6.0 cm band of strong silicification with 15 % fracture controlled pyrite and trace chalcopyrite at 55 degrees to core axis. 249.0 249.9 MASSIVE SILICEOUS ROCK Probably a more intensely silicified equivalent of the AF05650 249.0 249.3 170 rock above. Massive, siliceous, mottled grey-green, AF05651 249.3 249.4 1350 .1 15 5 215 1 15 700 fine-grained. Weakly foliated at 67 degrees to core axis. AF05652 249.4 249.9 .5 368 180 5 % disseminated pyrite. Lower contact is possibly a bedding plane at 70 degrees to core axis. 249.3 249.4 15 % pyrite and 2 % chalcopyrite associated with quartz-carbonate veins less than 1.0 cm thick at 70 degrees to core axis. 249.9 251.7 SILICIFIED EPIDOTE SPOTTED ANDESITIC TUFF Green-grey, massive, fine-grained with up to 10 % < 3 mm AF05653 249.9 251.0 160 ₹5 116 <1 ₹5 610 epidotized feldspars. Moderately to strongly silicified. AF05654 251.0 251.7 144 ⟨5 84 (1 ⟨5 680 Intermediate to felsic in composition. Lower contact is gradational over 0.2 m. STRUCTURE: 250.2 m: 0.4 cm fault gouge at 65. 250.3 2.0 cm wide quartz-carbonate-chlorite vein with 45 % pyrite at 50 degrees to core axis. 250.8 1.0 cm wide band of semi-massive pyrite at 70 degrees to core axis.

AF05655 251.7

AF05656 252.7

253.4

26

20

37

26

1800

1900

263.6 269.3 EPIDOTE SPOTTED ANDESITIC TUFF

Medium green to grey-green, fine-grained with up to 10 % <

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-19 11

74

<5

134

<1

5 180

ŕ			DIAMOND DRILL LOG											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)
			core axis. Occasional spotty of mariposite. 5 bands < 2.0 cm wide and disseminated. Lower a fault.	AF00319	252.9	253.0	.1	n/a	28	n/a	30	n/a	n/a	1300
	·	252.4 m: 1.	0 cm fault gouge at 80 degrees to core axis. 0 cm fault gouge at 80 degrees to core axis. M: fault gouge. Not possible to measure					·						
	,	252.5	6.0 cm quartz vein with 10 % fracture controlled pyrite at 65 degrees to core axis.											
		252.7 252.9	Several up to 0.4 cm fault gouges at 70-80 degrees to core axis.				,	÷						
253.4	263.0	Up to 10 % fragments i patches of and constit disseminate to core axi	TTED ANDESITIC LAPILLI TUFF lapilli-sized yellow-green altered subangular n a dark green chloritic matrix. Irregular epidote-carbonate alteration are also common ute up to 10 % of the rock. 3 % finely d pyrite. Lower contact is a slip at 70 degrees s.	AF05657 AF05658			1.5	5 2	78 86	<5 <5	80 100	<1 <1	10 <5	1200 580
		STRUCTURE: 254.2 m: 0.	5 cm fault gouge at 70 degrees to core axis.								•			
		253.4 255.0	Very siliceous, epidote spots are rare. Rock has a mottled appearance. 3-5 % disseminated pyrite.	•								·		
		254.1 254.2	10 % disseminated pyrite.											
		258.7	Rock has a distinct fine banded (bedded ?) appearance. Banding is at 60-70 degrees to core axis.											
		261.7 262.0	MOTTLED SILICEOUS ROCK. 4-5 % disseminated pyrite.											
263.0	263 6	SERICITIC F	ELSIC ASH TUFF			;								
203.0	203.0	Light grey, and weakly appearance. Foliation i	fine-grained siliceous moderately sericitic chloritic. Upper 0.1 m has a banded Banding is at 68 degrees to core axis. s at 60-70 degrees to core axis. 3 % d pyrite. Lower contact is a slip at 70 degrees	AF05659	263.0	263.6	.6	2	30	(5	62	<1	<5	1200

AF05660 263.6 264.6 1.0

HOLE No: Page Number FALCONBRIDGE LIMITED WEST87-19 12 DIAMOND DRILL LOG From To Sample From Width % Total Zn Aσ Αu Ва (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 5 mm epidote +/- calcite spots. Below 266.7 m rock AF05661 ₹5 266.3 267.3 1.0 278 174 <1 **<5** 1800 becomes moderately sericitic, is crushed and foliation AF05662 267.3 268.3 1.0 184 280 ₹5 (1 ⟨5 1800 runs at a low angle to the core axis, epidote spots are AF05663 268.3 269.3 1.0 15 206 < 5 180 <1 <5 2100 rare and rock contains up to 5 % disseminated pyrite. Lower contact is sharp at 60 degrees to core axis. 264.2 264.3 Grey strongly silicified zone or felsic ash tuff bed. Upper contact is sharp at 60 degrees to core axis. Lower contact is gradational over 3.0 cm. 267.4 1.0 cm fault gouge at 75 degrees to core axis. 269.3 279.3 SERICITIC QUARTZ EYE BEARING FELSIC TUFF Large (2-5 mm) quartz eyes (3-5 %) in a light grey to AF05664 269.3 269.5 600 14 1950 10 1600 white sericitic matrix. Foliation is contorted over most AF05665 269.5 271.0 1.5 133 <5 250 1900 1 <1 ₹5 of the interval. Less than 2 % disseminated pyrite over AF05666 271.0 271.8 . 8 15 12 1500 40 <1 **<**5 most of the section. Several < 1.0 cm wide bands of 271.1 271.2 AF00320 .1 n/a 12 n/a 128 n/a n/a 1820 massive pyrite parallel to foliation. Slip at 48 degrees AF05667 271.8 273.3 1.5 2 13 19 54 <1 ⟨5 1400 to core axis at lower contact. 273.3 274.8 24 AF05668 1.5 13 29 <1 ⟨5 1500 STRUCTURE: AF05669 274.8 276.3 90 1700 1.5 14 108 <1 45 277.3 270.4 m: bedding (?) is at 40 degrees to core axis. AF05670 276.3 1.0 24 8 58 <1 1700 ⟨5 270.4 m: foliation is at 45 degrees to core axis. AF05671 277.3 278.3 1.0 3 1300 1900 113 880 1 ₹5 275.3 m: 1.0 cm fault gouge at 62 degrees to core axis. AF05672 278.3 279.3 1.0 26 5 12 <1 ⟨5 2100 278.5 m: foliation is at 67 degrees to core axis. 279.0 m: 1.5 cm fault gouge at 67 degrees to core axis. 269.3 269.4 15 % disseminated pyrite. 279.3 309.3 MASSIVE MOTTLED ANDESITIC ROCK Mottled dark green-grey with pink tint due to thermal AF05673 279.3 280.3 1.0 52 <5 85 <1 ₹5 950 biotite, fine-grained, weakly to moderately sericitic and AF05674 280.3 281.3 1.0 64 <5 91 <1 ∢5 400 weakly chloritic. 5-7 % disseminated pyrite. Rare spot of AF05675 281.3 282.3 1.0 54 <5 61 <1 ⟨5 610 mariposite. Occasional spot of epidote < 3 mm in AF05676 282.3 282.5 25 108 6 30 <1 5 880 . 2 diameter. Below 299.7 m rock becomes massive. In less 81 AF00321 283.3 283.4 24 761 .1 n/a n/a n/a n/a 282.5 283.5 276 sericitic places rock consists of 5 % < 2 mm feldspar AF05677 1.0 <5 87 <1 (5 560 283.5 284.5 1.0 54 ⟨5 370 crystals in a very fine-grained siliceous, microfractured AF05678 106 <5 (1 matrix. 284.5 285.5 146 <5 59 ⟨1 ⟨5 840 AF05679 1.0 STRUCTURE: AF05680 285.5 286.5 1.0 56 <5 50 (1 ⟨5 1100 287.5 280.0 m: foliation is at 60 to degrees to core axis. AF05681 286.5 1.0 80 ₹5 42 <1 ⟨5 560 281.0-281.7 M: blocky, highly fractured core. AF05682 287.5 288.5 1.0 90 ₹5 50 <1 550 288.5 289.5 1.0 134 <5 53 ₹5 820 281.8 m: 1.0 cm fault gouge at 50 degrees to core axis. AF05683 <1 290.5 284.4 m: foliation is at 40 degrees to core axis. AF05684 289.5 1.0 54 ₹5 44 <1 ⟨5 690 290.5 291.5 1.0 190 ⟨5 38 <1 10 160 284.7 m: 0.5 cm fault gouge at 40 degrees to core axis. AF05685 287.7 m: 0.5 cm fault gouge at 60 degrees to core axis. AF05686 291.5 292.5 1.0 94 ₹5 29 ⟨5 410 <1 288.5 m: 10.0 cm fault gouge at 50 degrees to core axis. AF05687 292.5 293.5 1.0 98 ₹5 24 <1 (5 210 293.5 294.5 <5 30 300

AF05688

AF05689

294.5

AF05690 295.5 296.5

295.5

1.0

1.0

166

336

198

<5

<5

<1

<1

<1

47

70

₹5

₹5

⟨5

110

170

288.5-289.6 M: fault gouge at 60 degrees to core axis.

291.0 m: bedding (?) is at 70 degrees to core axis.

293.2 m: bedding (?) is at 60 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-19 13

From (m)	To (m)		DESCRIPTION
		295.6 m: sl 298.2 m: fo 298.6 m: 10 axis.	5 cm fault gouge at 65 degrees to core axis. ip at 65 degrees to core axis. cliation is at 70 degrees to core axis. 0.0 cm crushed fault zone at 56 degrees to core cliation is at 66 degrees to core axis.
		302.3 m: fo 302.9 m: mi 303.7 m: 2. 304.8 m: be 306.6 m: mi 308.1 m: fo 308.3 m: be	pliation is at 60 degrees to core axis. In a core axis.
		279.5	1.5 cm quartz-carbonate vein with 30 % pyrite at 50 to degrees to core axis.
		282.3 282.4	Carbonate flooded zone at 55 degrees to core axis with 40 % pyrite. Lower contact is a minor slip at 66 degrees to core axis.
		287.0	2.0 cm band of semi-massive pyrite at 60 degrees to core axis.
		288.5 288.6	25 % pyrite in a crushed fault zone.
		291.3	1.5 cm band of semi-massive pyrite at 70 degrees to core axis.
		294.6	Trace chalcopyrite.
		296.9	7.0 cm quartz-carbonate flooded zone at 75 to degrees to core axis.
		297.4 297.5	Several fine bands (beds ?) of pyrite parallel to foliation at 70 degrees to core axis.
		298.0	2.0 cm wide band of semi-massive pyrite at 65 degrees to core axis.
		307.6	7.0 cm wide fine-grained pale green MAFIC DYKE at 60 degrees to core axis.
		308.0 309.0	STRONGEST SULPHIDE INTERSECTION IN THE HOLE. 25 % pyrite overall. Most pyrite is in semi-massive to massive poorly defined bands roughly parallel to to foliation. Bands occur between 308.5 and 308.8 m.
			washiday again and a file

			•							
Sample	From	To	Width	% Total	Cu	Pb	Zn	Ag	Au	Ba
No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb) (ppm)
AF05691	296.5	297.5	1.0	5	110	<5	98	<1	10	290
AF05692	297.5	298.5	1.0	5	124	5	55	<1	10	470
AF05693	298.5	300.5	2.0	4	42	₹5	60	<1	₹5	460
AF00322	299.9	300.0	.1	n/a	37	n/a	57	n/a	n/a	246
AF05694	300.5	301.5	1.0	3	60	∢5	29	<1	₹5	330
AF05695	301.5	302.5	1.0	4	78	<5	44	<1	<5	230
AF05696	302.5	303.5	1.0	5	120	7	66	⟨1	<5	240
AF05697	303.5	304.5	1.0	4	122	6	68	<1	5	200
AF05698	304.5	305.5	1.0	4	96	₹5	50	<1	₹5	230
AF05699	305.5	306.5	1.0	4	102	<5	44	<1	5	290
AF05700	306.5	307.2	.7	5	122	₹5	44	<1	₹5	290
AF05701	307.2	308.0	.8	6	98	₹5	60	(1	10	460
AF05702	308.0	308.3	.3	25	126	(5	40	₹1	10	330
AF05703	308.3	308.5	.2	25	90	7	34	<1	20	410
AF05704	308.5	308.7	.2	40	372	8	16	<1	25	150
AF05704	308.7	309.0	.3	8	46	6	. 50	1	∠5 <5	590
				8					5	750
AF05706	309.0	309.3	.3	٥	38	6	28	<1	5	150
						,				

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-19 14

From (m)	To (m)	DESCRI	PTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
309.3	310.5	QUARTZ EYE BEARING FELSIC TUFF Light grey, sericitic, fine-grain quartz eyes. 3 % disseminated pyr developed at 60 degrees to core a 1.0 cm fault gouge at 73 degrees STRUCTURE: 309.9 m: 0.5 cm fault gouge at 70 310.0 310.5 m: crushed zone. Foli 310.8 m: 1.0 cm wide fault gouge	ite. Foliation is well xis. Lower contact is a to core axis. degrees to core axis. ation is contorted.	AF05707	309.3	310.5	1.2	. 5	14	7	8	<1	5	890
310.5	322.5		to thermal biotite tic and foliation is not izable in only one place. ontact is sharp at 70 rees to core axis. es to core axis. rees to core axis. to core axis. to core axis. tz-carbonate flooding	AF05711 AF05712 AF00323 AF05713	311.5 312.5 313.5 314.5 315.4 315.5 316.5 317.5 318.5 319.5 320.5	317.5 318.5 319.5 320.5 321.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6 3 2 2 3 n/a 4 3 5 5 5 3 3	74 22 8 14 40 26 12 36 22 44 46 180	<5 <5 <5 15 <5 n/a <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	40 14 9 11 39 84 46 59 44 40 34 30 31	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<5 <55 <55 5 n/a 10 <55 5 <5 <5	490 850 800 890 560 610 150 350 390 500 440 320 420
322.5	335.1	MASSIVE FELSIC FELDSPAR PORPHYRIT Massive, bedding is not recognizated feldspar crystals in a light grey aphanitic siliceous microfractur moderate sericite alteration. Low degrees to core axis. STRUCTURE: 324.3-324.5 m: blocky, highly frates and serious processes and serious at 60 degrees to core axis. 331.3-331.4 m: blocky, highly frates at 65 degrees at 65 de	ble. 3 to 10 % < 2mm , very fine-grained to ed matrix. Nil to er contact is at 65 ctured core. ctured core. es to core axis. fault gouge at 55 ctured core.	AF05720 AF05721 AF05722 AF00324 AF05723 AF05724 AF05725 AF05726 AF05727 AF05728	333.1		1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.0	2 2 3 n/a 3 2 3 3 4 3	10 8 22 <10 74 7 6 16 38 7	<pre> <5 <5 </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pr< td=""><td>8 7 8 8 <10 25 8 6 10 26 6</td><td><1 <1 <1 <1 n/a <1 <1</td><td>5 <5 n/a 5 <5 5 <5 5</td><td>660 720 580 381 450 510 800 520 430 720</td></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	8 7 8 8 <10 25 8 6 10 26 6	<1 <1 <1 <1 n/a <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	5 <5 n/a 5 <5 5 <5 5	660 720 580 381 450 510 800 520 430 720

326.8 0.5 cm band of massive pyrite at 70 to degrees to core axis.

FALCONBRIDGE LIMITED

HOLE No: Page Number WEST87-19 15

		DIAMOND DRILL LOG											
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba) (ppm)
335.1	351.0	SILICIFIED ANDESITIC TUFF					•			•			
		Similiar to 310.5 to 322.5 m. Weakly to moderately	AF05729	335.1		1.0	4	10	<5	10	<1	5	720
		sericitized weakly chloritized and occasional spot of	AF05730	336.1	337.1	1.0	4	24	₹5.	12	<1	₹5	750
		mariposite. Weak thermal biotite alteration. 3-5 %	AF05731	337.1		1.0	5	46	<5	20	₹1	₹5	290
		disseminated and banded pyrite. Lower contact is	AF05732	338.1		1.0	5	18	6	10	<1	< 5	550
		gradational over 10.0 cm.	AF05733	339.1	340.1	1.0	. 7	66	₹5	15	<1	< 5	220
		STRUCTURE:	AF05734	340.1	341.1	1.0	, ⁶	60	₹5	19	<1	₹5	240
		335.5 m: foliation is at 75 degrees to core axis.	AF00325	340.2	340.3	.1	n/a	131	n/a	35	n/a	n/a	187
		335.7 m: 6.0 cm fault gouge at 63 degrees to core axis.	AF05735	341.1	342.1	1.0	6	108	< 5	16	<1	< 5	290
		336.2-336.3 m: fault zone. Foliation is contorted. Appears to be oriented at 50 degrees to core axis.	AF05736	342.1	343.1	1.0	5	53	< 5	18	<1	< 5	520
		337.7 m: bedding is at 72 degrees to core axis.	AF05737 AF05738	343.1 344.6	344.6 345.6	1.5	3	75 62	<5 <5	10 14	(1)	25 ∢5	650 360
		339.1 m: 1.0 cm fault gouge at 66 degrees to core axis.	AF05739	345.6	346.6	1.0 1.0	3 4	80	(5	16	<1 <1	(5	250
		342.4 m: bedding (?) is at 65 degrees to core axis.	AF05740	345.6	347.2	.6	4	110	₹5 ₹5	18	<1	(5	610
		343.1 m: 25 cm fault gouge at 65 degrees to core axis.	AF05740	347.2	347.4	. 2	10	112	\ 5	15	1	15	560
		344.6 -345.0 M: blocky, highly fractured core.	AF05741 AF05742	347.4		1.0	4	68	(5	16	<1	√5	750
		348.0 m: bedding is at 65 degrees to core axis.	AF05742	348.4		1.0	7	40	5	21	<1	(5	680
		349.0 m: foliation is at 66 degrees to core axis.	AF05743	349.4		.8	3	24	<5	16	1	√ 5	560
		349.4 m: 6.0 cm fault gouge at 60 degrees to core axis.	AF05745			.8	5	105	(5	20	1	(5	320
		350.1 m: 4 mm fault gouge at 50 degrees to core axis.	AI 03743		331.0	.0	J	103	13	20	٧.	(3	320
		336.0 338.0 Occasional 4 1 mm quartz eye.											
		339.0 340.0 8 thin (< 0.25 cm) bands (beds) of pyrite at											
		70 degrees to core axis.					*						
		343.9 5.0 cm of 20% coarsely disseminated pyrite.											
		347.2 347.4 5 % disseminated pyrite and fracture controlled py.		÷									
351.0	368.3	MASSIVE SILICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF											
· *		Massive grey-green with up to 5 % 1-3 mm dark green	AF05746	351.0	351.6	.6	4	73	<5	22	<1	<5	110
		anhedral to subhedral hornblende crystals. 4-7 %	AF05747	351.8	352.8	1.0	5	150	₹5	27	⟨1	₹5	320
		disseminated and banded (parallel to subparallel to	AF05748	352.8	353.8	1.0	4	158	⟨5	18	<1	₹5	340
		foliation) pyrite. No hornblende below 366.0 m. Lower	AF05749	353.8	354.8	1.0	5	56	(5	15	<1	₹5	330

AF05750 354.8

AF00326 355.1

AF05751 355.8

AF05752 357.9

AF05753 358.9

AF05755 360.9

AF05756 361.9

359.9

AF05754

355.8

355.2

357.2

358.9

359.9

360.9

361.9

362.9

363.4

364.7

365.7

366.7

1.0

1.4

1.0

1.0

1.0

1.0

.3

1.0

1.0

.1

98

70

150

124

114

100

108

70

32

96

86

60

118

n/a

10

₹5

₹5

₹5

<5

⟨5

₹5

₹5

⟨5

<5

⟨5

<5

n/a

17

38

24

29

18

18

22

16

10

12

12

15

13

<1

<1

<1

<1

<1

<1

<1

<1

⟨1

<1

(1

<1

n/a

⟨5

<5

₹5

₹5

<5

<5

₹5

₹5

⟨5

⟨5

<5

n/a

210

488

300

210

500

310

320

260

320

70

410

330

450

core axis near upper contact. Lower contact AF05757 362.9 AF05758 363.4 363.7 is at 68 degrees to core axis. AF05759 363.7 354.6 355.0 Several thin < 0.5 cm bands of pyrite at 75-85 AF05760 364.7 degrees to core axis. AF05761 365.7

axis. 4.0 cm bull quartz vein at 70 degrees to

contact is sharp at 60 degrees to core axis.

353.6 m: 1.0 cm fault gouge at 70 degrees to core axis.

366.0 m: 1.0 cm fault gouge at 75 degrees to core axis.

351.6 351.8 FELDSPAR PHYRIC GABBRO at 70 degrees to core

365.3 m: foliation is at 70 degrees to core axis.

STRUCTURE:

FALCONBRIDGE LIMITED

HOLE No: Page Number WEST87-19 16

14

38

102

108

50

78

₹5

<5

⟨5

₹5

₹5

12

12

670

470

480

720

400

670

⟨5

₹5

⟨5

⟨5

<5

₹5

<1

<1

<1

<1

		. DIAN	OND DRILL LOG												
From (m)	To (m)	DESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)	
		355.5 355.7 Several 1-3 mm pyrite stringers subparallel to foliation but so cutting and some are ptygmatic have thin silicified alteration	. Most are Al me are cross ally folded and		366.7 367.7	367.7 368.3	1.0	6 8	56 92	₹5 ₹5	16 16	<1 <1	<5 <5	340 260	
		357.2 357.9 MASSIVE FINE-GRAINED MAFIC DYKE no sulphides, no feldspar pher contact is at 68 degrees to con contact is at 70 degrees to con	ocrysts. Upper e axis. Lower					·							
		359.0 362.4 Many < 0.5 cm bands (stringers Many are subparallel to foliation are crosscutting.	?) of pyrite. on and a few								•				
		363.4 363.7 10 % coarsely disseminated pyri	te.												
368.3	387.9	MASSIVE FELSIC FELDSPAR PORPHYRITIC TUFF\FI Medium grey, very fine-grained to aphanitic with up to 10 % sericitized <2 mm feldspar Average 4 % disseminated and banded pyrite moderate pervasive sericitization. Lower of at 78 degrees to core axis. STRUCTURE: 373.6 m: minor slip at 70 degrees to core	and siliceous Afcrystals. Af Weak to Afontact is sharp Af Af	F05765 F05766 F05767 F05768 F05769	368.3 369.5 369.9 371.5 373.0 373.6	369.5 369.9 371.5 373.0 373.6 375.0	1.2 .4 1.6 1.5 .6	4 10 4 3 8 4	8 18 8 8 74 10	<5 <5 <5 <5 <5	4 12 4 4 18	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<5 <5 <5	900 270 1100 670 790 990	
		377.1 m: 7.0 cm chloritic fault gouge at 70 core axis. 377.5 m: 3.0 cm fault gouge at 65 degrees to 377.9 m: foliation is at 70 degrees to core 385.8 m: 0.5 cm fault gouge at 80 degrees to	degrees to Al o core axis. Al axis. Al o core axis. Al Al	F00327 F05771 F05772 F05773 F05774	375.0 375.0 376.5 377.0 378.0 379.5 380.5	376.5 375.1 377.0 378.0 379.5 380.5 381.5	1.5 .1 .5 1.0 1.5 1.0	5 n/a 8 4 2 4 5	4 <10 17 13 7 14 40	<5 n/a <5 <5 <5 <5 <5	13 1 5 10 3 3 14	<1 n/a <1 <1 <1 <1 <1	n/a <5 <5 <5	1000 590 980 970 860 1100 930	
		369.5 369.9 10 % very coarsely disseminated	pyrite. Al	F05776	381.5	382.0	.5	10	73	<5	14	<1	₹5	470	

AF05777 382.0 383.0

AF05778 383.0 384.0

AF05781 386.0 387.0

AF05782 387.0 387.9

AF05779 384.0

AF05780 385.0

1.0

1.0

1.0

.9

385.0

386.0

375.8 3.0 Cm band of semi-massive pyrite at 60 degrees to core axis.

chloritization. 8 % disseminated and banded

pyrite. Bands are < 0.5 cm wide at 70 degrees

379.8 379.9 20 % pyrite in bands. 1.0 cm wide at 70 degrees to core axis.

373.0 373.6 Strong pervasive sericitization and weak

to core axis.

381.0 382.0 As 373.0 to 373.6 m. Upper contact is sharp at 68 degrees to core axis. 8 % pyrite overall. From 381.9 to 382.0 m. 10 % pyrite concentrated in two 5.0 cm wide zones of quartz-carbonate flooding.

394.4

FALCONBRIDGE LIMITED

WEST87-19 -17 DIAMOND DRILL LOG From To Sample From Width % Total Pb Ва Aα Au (m) (m) -----DESCRIPTION-----No. (m) (m) Sulphides (ppm) (m) (ppm) (ppm) (mgg) (dgg) (mqq) 383.4 1.5 cm band of massive pyrite at 70 degrees to core axis. 386.6 386.8 5 % 1-4 mm anhedral to subhedral HORNBLENDE crystals. 387.9 389.3 MASSIVE FELSIC ASH TUFF / SILICIFIED MAFIC TUFF As 310.5 to 322.5 m. 3-8 % disseminated and banded pyrite. AF05783 387.9 388.5 . 6 54 ⟨5 **<**5 680 11 ₹1 Lower contact is placed where hornblende first appears. AF05784 388.5 389.0 . 5 170 ₹5 13 <1 ⟨5 660 STRUCTURE: AF05785 389.0 389.3 80 ₹5 17 <1 < 5 330 380.3 m: bedding is at 75 degrees to core axis. 389.1 m: bedding is at 81 degrees to core axis. 390.0 m: bedding is at 80 degrees to core axis. 387.9 389.0 Distinct fine banding (bedding?) at 75 degrees to core axis. Many < 0.5 cm pyrite bands. 388.6 1.0 cm wide band (bed?) of massive pyrite at 80 degrees to core axis. 389.3 406.1 MASSIVE SILICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF Similiar to 351.0 to 368.3 m. Grey-green, fine-grained AF05786 389.3 390.3 1.0 83 <1 ⟨5 340 with trace to 5 % 1-3 mm subhedral hornblende crystals. AF05787 390.5 391.5 1.0 30 ₹5 23 ۲1 ⟨5 370 Hornblende tends to occur in patches up to 20 cm wide. AF05788 391.5 392.5 140 <5 <1 300 (5 Hornblende crystals are rare over the upper 0.5 m. Patchy AF05789 392.5 393.5 20 <5 16 140 1.0 <1 ⟨5 epidote alteration below 395.5 m. Epidote occurs where AF05790 393.5 394.5 1.0 38 ₹5 20 ₹1 **<5** 310 hornblende is most concentrated. 3-5 % disseminated and AF05791 394.5 395.5 1.0 39 <5 10 <1 <5 300 fracture controlled pyrite. Lower contact is irregular but AF05792 395.5 396.5 1.0 46 <5 12 <1 <5 220 is roughly at 80 degrees to core axis. AF05793 396.5 397.5 74 ₹5 170 1.0 16 <1 ⟨5 STRUCTURE: AF00328 397.4 397.6 . 2 45 21 146 n/a n/a n/a 390.0 m: bedding is at 80 degrees to core axis. AF05794 397.5 398.5 1.0 n/a n/a n/a n/a n/a n/a 401.3 m: minor slip at 90 degrees to core axis. AF05795 398.5 399.5 1.0 81 <5 280 12 <1 10 402.9 m: bedding (?) is at 80 degrees to core axis. AF05796 399.5 400.5 1.0 66 ₹5 11 <1 ۷5 70 404.9 m: bedding (?) is at 85 degrees to core axis. AF05797 400.5 401.5 1.0 48 14 <1 **<**5 500 AF05798 401.5 402.5 1.0 59 ⟨5 15 ⟨5 120 <1 393.4 5.0 cm irregular epidote-carbonate altered AF05799 402.5 403.5 1.0 75 ₹5 19 <1 **<**5 560

AF05800 403.5 404.5

AF05801 404.5

AF05802 405.6

1.0

1.1

405.6

406.1

HOLE No:

50

48

2000

₹5

₹5

⟨5

19

19

20

<1

<1

<1

480

600

<20

₹5

₹5

15

Page Number

396.0 396.4 Several 1-3 mm pyrite stringers cross-cut foliation.

semi-massive pyrite.

patch with semi-massive pyrite.

398.3 398.5 Many thin (< 2 mm) bands (beds?) of pyrite at 75-80 degrees to core axis.

2.0 cm epidote-carbonate patch with

400.8 401.2 Very siliceous, light grey, no hornblende.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number

WEST87-19 18

From To (m) -----DESCRIPTION-----(m)

Sample Width % Total (m) (m) Sulphides (ppm) (ppm) (ppb) (ppm) No. (m) (ppm) (ppm)

405.6 405.9 Rock is strongly silicified and takes on a dark grey colour. 6 % fracture controlled pyrite and 0.5 % chalcopyrite.

406.1 410.6 FELDSPAR PHYRIC GABBRO

Medium green, fine-grained and massive with up to 5 % white 1-3 mm feldspar phenocrysts. Nil sulphides. 2 % very finely disseminated ilmenite, most of which has been altered to leucoxene. 5.0 cm chill margin at lower contact

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 1

Hole Location: 15+00 E 8+50 S

NTS: 092B/13E

UTM: 5411450 N. 450500 E

Azimuth: 15 Dip:

-45

Length:

Elevation: 212 m 587.3 m

Started: Nov. 15/87 midday Completed: Nov. 27/87 morning Claim No. West 1

Section No.: Line 15+00 East

Logged By: D.P. Money

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

Purpose: To test IP chargeability anomalies from

7+90 to 8+10 S and from 6+90 to 7+30 S.

DIP TESTS

Azi-Azi-Length muth Dip Length muth Dip 69.00 12.0 -46.0 361,20 15.0 -51.0 163.10 12.0 422.50 -49.020.0 -51.0

254.00 12.0 -50.0 474.00 22.0 -52.0 294.70 13.0 -50.0566.00 -50.0 24.0

From	То		Sample	From	To	Width	% Total	Cu	Pb	Zn	Aσ	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)		(ppm)

AF00545

AG08070

AG08071

AG08072

AG08073

AG08074

AF00546

AG08075

AG08076

AG08077

AG08078

11.2

27.5

33.5

45.2

46.2

50.6

56.5

57.6

58.6

59.2

60.2

11.3

28.0

35.0

46.2

47.2

52.0

56.7

58.6

59.2

60.2

61.2

.1

.5

1.5

1.0

1.0

1.0

1.0

1.0

. 6

n/a

2

n/a

108

132

120

44

69

110

113

114

84

30

294

n/a

6

₹5

<5

n/a

₹5

⟨5

⟨5

⟨5

144

100

100

76

64

74

160

160

112

124

240

n/a

<1

<1

<1

<1

<1

n/a

<1

⟨1

<1

(1

n/a

10

₹5

<5

5

5

10

<5

n/a

39

<20

1300

100

130

370

221

100

190

420

550

7.9 OVERBURDEN AND CASING

No chit to mark start of coring, first chit at 8.2 m.

64.8 MAFIC FLOW ? (CHLORITIC SHEARED MAFIC ROCK)

Dark green chlorite with calcite interlayers and local calcite augens. Epidote occurs as grains, and as clots in fault gouge, up to 15 % epidote (average 7 to 10 %). There are very rare quartz veins. The rock is oxidized to a depth of 12.2 m.

SULPHIDES :.

27.7 27.8 50 % pyrite in clay fault gouge.

33.5 35.0 Approximately 5 % pyrite in grey clay fault gouge 40.5 41.1 Approximately 5 % pyrite in grey clay fault gouge

45.2 47.2 2 % pyrite associated with calcite in sheared mafic.

50.6 52.0 1 to 2 % pyrite associated with calcite in sheared mafic.

57.6 58.0 3 % pyrite in strong chlorite and weak calcite.

58.5 58.5 2 cm calcite vein with 7 to 10 % disseminated

59.4 59.5 15 to 20 % moderately coarse pyrite, up to 4 mm. in black to dark green chlorite with calcite clots.

59.5 60.2 2 % pyrite.

60.2 64.8 1 % pyrite.

FOLIATIONS :.

11.3: 36 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 2

From (m)	To (m)	DESCRIPTION	Sample . No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		22.9: 19 degrees to core axis. 45.8: 60 degrees to core axis. 56.6: 69 degrees to core axis. 59.3: 76 degrees to core axis.				,							
		64.2 : 56 degrees to core axis.									•		
	٠	CLAY FAULT GOUGE:. 18.5 to 20.0 at 15 degrees to core axis. 24.3 to 24.6 at 30 degrees to core axis. 27.0 to 28.0 at 20 degrees to core axis. 31.0 to 37.4 at 20 degrees to core axis.											
		40.5 to 41.1 at (?). 41.8 to 42.0 at (?). 51.3 to 52.0 at 0 degrees to core axis.											-
		Lost core :. 8.2 10.6 : 0.8 m. 10.0 10.6 : 0.3 m.											
		13.0 14.3 : 0.8 m. 14.3 15.8 : 1.2 m. 15.8 17.3 : 1.2 m.					8						
		39.3 40.5 : 0.6 m. 40.5 41.8 : 0.5 m. 41.8 43.0 : 0.7 m.						,	,			•	
		Blocky, highly fractured core:. 7.9 10.6 0.											
		14.3 18.5 0. 29.4 30.2 0. 37.4 44.8 0.											
64.8	70.4	SILCIFIED EPIDOTE SPOTTED ANDESITE Silicified andesite with minor epidote - calcite clots,	AG08079	64.8	66.0	1.2	2	33	∢5	72	⟨1	∢5	280
		trace to 2 %, (= 1 mm quartz eyes and on average 10 % (range: 3 to 15 %), up to 5 mm, epidote grains. There is on average 2 % disseminated pyrite. There are minor fracture controlled calcite veinlets. From 64.9 to 65.0 there is a quartz - chlorite veinlet. The rock is massive and is probably a flow.	AG08080 AG08081 AG08082 AF00547 AG08083	66.0 67.0 68.0 68.6 69.0	67.0 68.0 69.0 68.7 70.4	1.0 1.0 1.0 1.1	2 2 2 n/a 2	43 62	<5 <5 <5 n/a <5	68 68 70 84 78	<1 <1 <1 n/a <1	<5 <5 <5 n/a <5	260 170 120 219 120
		Foliations:. 66.1 30.0 Degrees to core axis.											
		68.8 55.0 Degrees to core axis.			;								
70.4	70.8	FAULT GOUGE Clay and quartz vein material.											
70.8	75.3	QUARTZ - FELDSPAR PORPHYRY DYKE OR SILL QFP dyke with 15 %, up to 2 mm, feldspar laths and 5 %, up	AF00549	71.5	71.6	.1	n/a	<10	n/a	26	n/a	n/a	221

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 3

From (m)	To (m)	DESCRIPTION	Sample . No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
	,	to 7 mm (average 2 mm), quartz eyes. There is approximately 1 % disseminated pyrite and minor quartz -calcite veins occur. The foliation varies from 80 to 90 degrees to core axis.											·
75.3	94.3	MAFIC LAPILLI TUFF	•										
		Mafic lapilli tuff with epidotization and quartz lapilli.	AG08084	77.0	78.0	1.0	.3	13	<5	82	<1	₹5	230
		The matrix also hosts 10 to 15 % epidote grains. The	AF00548	78.5	78.7	.2	n/a	154	n/a	70	n/a	n/a	183
		foliation is from 70 to 90 degrees to core axis. There is trace to 1 % disseminated pyrite.	AF00550 AG08085	89.6 92.0	89.7 92.5	.1	n/a 2	24 · 2000	n/a <5	45 48	n/a <1	n/a ∢5	56 <20
		77.3 77.5 10 % pyrite in strongly sheared tuff with	AGOSOS	32.0	. 34.3	. 5	2	2000	. (5	40	11	13	\20
		calcite at 80 degrees to core axis.											
		78.8 78.8 5 cm of 10 % pyrite in sheared chlorite.											
		92.2 92.2 3 mm bleb of chalcopyrite in epidote - calcite											
		clot or altered lapilli. 93.1 93.5 Silicified.									-		
		79.6 79.7 Fault gouge.		,									
•		82.1 82.1 Fault gouge.											
04.3	100 6	OUARTZ - FELDSPAR PORPHYRY DYKE OR SILL											
94.3	100.6	OFP with trace quartz eyes and 10 to 20 % feldspar laths	AF00551	99.0	99.2	.2	n/a	<10	n/a	17	n/a	n/a	202
		and crystals. The dyke is sheared and silicified with	MI 00331	33.0	77.2	• 4	11/ 4	110	117 а	1,	n/ a	117 0	202
		fracture controlled calcite veinlets at 0 to 90 degrees to											
		core axis. There is approximately 1 % pyrite with trace											
		to 0.5 % disseminated pyrite and 0.5 to 1 % fracture controlled pyrite. Most core is blocky, highly fractured									•		
		core with 1.1 m of lost core from 94.3 to 96.1.											
100.6	122.0	MAFIC LAPILLI TUFF					_		_			. =	
		100.6 102.8 Sheared chlorite - carbonate with 3 to 4 % pyrite.	AG08086 AG08087			.1	4	40 64	5 <5	86 84	<1 <1	<5 5	130 390
		102.8 106.0 Blocky, highly fractured core with 1.0 m lost	AG08087			1.1 1.0	4 4	176	(5	79	<1	√5	380
		core between 103.0 and 104.5.	AG08089			.5	3	326	₹5	94	₹1	₹5	140
		106.0 122.0 As from 75.3 to 94.3.	AF00552	116.1	116.2	.1	n/a	79	n/a	62	n/a	n/a	248
		112.9 113.0 7 cm of 30 % pyrite in dark green chlorite.	AG08090			1.0	. 7	198	₹5	92	<1	<5	230
		113.1 113.7 2 % pyrite concentrated in calcite veins in	AG08091	119.7	120.7	1.0	6	630	5	104	<1	<5	280
		chloritized tuff. 114.9 115.3 Averages 3 % pyrite with 10 % pyrite in 2 to 5											
		cm calcite veins.											
		118.0 118.6 7 to 10 % pyrite in chlorite - calcite											
		alteration.			•								
		119.7 120.7 5 to 7 % pyrite with trace chalcopyrite,											
		chalcopyrite observed with pyrite in calcite at 119.98.					- and and a state of the state of	·					
		ac 117.70.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 4

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		and a trend varying from 0 to 90 degrees to core axis locally. 122.3 122.3 5 mm pyrite seam at 22 degrees to core axis. 122.7 122.8 80 % pyrite with calcite and minor chlorite. 123.9 123.9 5 cm of 70 % fine-grained pyrite. 140.0 140.5 White barren quartz vein.	AG08093	123.0	124.0	1.0	4	580	6	56	(1	<5	350
143.0	152.7	MAFIC LAPILLI TUFF Brecciated lapilli tuff, similar in appearance to the fault gouge, but is a solid tuff as from 75.3 to 94.3. 147.5 147.7 5 cm (true thickness) of 70 % pyrite in fault slip at 77 degrees to core axis.	AG08094	147.0	148.0	1.0	3	440	5	68	(1	₹5	770
152.7	154.8	FAULT GOUGE Fault gouge, clay and carbonate rubble.											
154.8	157.8	MASSIVE CARBONATIZED MAFIC FLOW/INTRUSION Massive green rock with moderate pervasive carbonatization and hematite - fracture controlled veinlets and epidote - calcite blotches.			* 1								
157.8	201.8	MAFIC HORNBLENDE-BEARING FELDSPAR CRYSTAL TUFF OR FLOW Unit is probably a flow, but may be a tuff breccia. Rock is massive with blocks. The rock is medium to dark green with moderate pervasive silicification. Was feldspar and hornblende phyric, with epidote and chlorite replacing feldspar and hornblende respectively. The original composition could have been andesitic as there are up to 3%, up to 1 mm, quartz grains. It is moderately to strongly magnetic with magnetite in or on the margin of the chloritized hornblendes. Matrix has on average 20%, (range: 10% to 1 m of 40 to 50%), epidotized feldspar laths and grains. There is trace disseminated pyrite. The foliation is weakly developed. 172.5 3.0 Cm massive pyrite in brecciated and broken core. 193.5 15.0 Cm diameter block, zoned epidote with hornblende and trace pyrite in the core. 197.6 5.0 Cm quartz - calcite - chlorite vein. Foliations:	AF00553 AF00554 AF00555 AF00556	178.5 189.5	178.7 189.7	.1 .2 .2 .2 .2	n/a n/a n/a n/a	37 14	n/a n/a n/a n/a	93 58	n/a n/a n/a n/a	n/a	97 186 64 108
v m. ·		164.5 : 64 degrees to core axis. 171.0 : 56 degrees to core axis. 178.5 : 62 degrees to core axis. 192.0 : 60 degrees to core axis.		e e s wee	ter s								

₹5

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

• HOLE No: Page Number WEST87-20 5

From (m)	To (m)	DESCRIPTION	Sample . No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		%, $<$ 2 mm quartz eyes. There is 7 to 10 % pyrite hosted by calcite veinlets including 60 % pyrite over 10 cm from 201.9 to 202.0 and 90 % pyrite over 2 cm from 202.05 to 202.07.											
203.4	206.0	EPIDOTE SPOTTED MAFIC FLOW Epidote spotted mafic flow with 30 % epidote - calcite splotches with trace chalcopyrite and 3 to 5 % pyrite. There is strong carbonatization. Chalcopyrite occurs from 203.45 to 203.65 as 1 % blebs in calcite. The pyrite is disseminated and occurs as up to 2 mm cubes. The flow is massive with a weak foliation at 80 degrees to core axis.	AG08096 AG08097		203.7 206.0	2.3	6 4	0.44 % 220	<5 <5	200 176	2 (1	10 <5	440 40
206.0	217.8	CARBONATIZED MAFIC TUFF OR FLOW Strongly carbonatized mafic flow with weak to moderate pervasive carbonatization and numerous fracture controlled calcite veins and veinlets. The mafic flow is feldspar phyric with approximately 15 % laths and epidotized feldspar grains. The rock is massive, medium to dark green, with white calcite streaks. There is trace to 0.5 % disseminated pyrite, except as noted. 210.0 210.5 Minor fault gouge and clay. 206.4 206.6 5 % pyrite in chlorite - calcite shear. 212.9 212.9 5 mm pyrite seam. 216.8 217.0 3 % pyrite associated with carbonate.	AG08098 AF00557		207.0 206.1	1.0	2 n/a	750 76	<5 n/a	260 249	<1 n/a	10 n/a	30 59
		Foliations :. 206.0 : 63 degrees to core axis. 211.5 : 58 degrees to core axis. 216.7 : 51 degrees to core axis.											
217.8	222.0	PYRITIC FELSIC TUFF 217.8 219.0 White to light grey sericite schist with strong pyrite, average 15 %, includes 30 % from 218.2 to 218.7. No crystals were observed and the foliation is at 80 degrees to core axis 219.0 222.0 Chloritized felsic tuff with minor, 1 to 2 %, up to 1 mm, quartz eyes and 2 to 3 % disseminated pyrite. The foliation is at 70 degrees to core axis. 221.4 221.6 10 % pyrite in strongly kinked tuff.	AG08099 AG08100 AG08101 AF00558	218.8 220.3	218.8 220.3 222.0 220.9	1.0 1.5 1.7 .1	15 2 3 n/a	44 146 182 45	6 <5 <5 n/a	84 144 160 142	<1 <1 <1 n/a	10 10 10 n/a	800 470 340 514
222.0	225.0	MAFIC FLOW Massive medium green mafic flow with approximately 20 % epidote grains and laths after feldspar. There is weak epidotization and carbonatization with epidote clots and minor calcite veinlets.	AF 00559	222.4	222.6	.2	n/a	166	n/a	119	n/a	n/a	58

FALCONBRIDGE LIMITED WEST87-20 6
DIAMOND DRILL LOG

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp)	Ba b) (ppm)
		224.6 225.0 2 to 3 % disseminated pyrite.											
·		Foliations:. 222.4: 70 degrees to core axis. 224.1: 80 degrees to core axis. 224.6: 60 degrees to core axis.											
					÷								
225.0	227.5	PYRITIC FELSIC ASH TUFF Medium grey sericitic tuff with approximately 10 to 15 %, <= 1 mm, quartz eyes. There is medium to weak pervasive carbonatization. On average 5 % disseminated pyrite occurs with local banded pyrite. At 225.5, 225.8, and 227.4 there are minor local fault slips at 80 to 90 degrees to core axis.	AG08102 AG08103	225.0 226.0		1.0 1.5	10 10	54 66	<5 <5	94 136.	<1 <1	10 15	1400 800
		225.4 225.7 10 % banded and 5 % disseminated pyrite. 227.2 227.4 5 % banded and 5 % disseminated pyrite. 227.4 227.5 40 % pyrite in sericite.										•	
		Foliations :. 225.3 : 76 degrees to core axis. 226.8 : 70 degrees to core axis.											
227.5	232.4	MAFIC FLOW OR TUFF Massive light green mafic flow (?) with strong pervasive silicification and carbonatization. Trace to 1 % disseminated pyrite occurs. There are epidotized feldspar grains and minor calcite - epidote veins parallel to foliation. Foliations:	AF00560	228.3	228.5	.2	n/a	350	n/a	76	n/a	n/a	73
		228.2 : 64 degrees to core axis. 231.6 : 70 degrees to core axis.											
232.4	233.0	MASSIVE PYRITE, FAULT GOUGE AND QUARTZ VEIN 232.4 232.4 Sericite with minor fault slip and 3 % disseminated fine-grained pyrite. 232.4 232.5 60 % coarse pyrite in sericite - (calcite). 232.5 232.7 Quartz vein with minor chlorite and 1 % pyrite.	AG08104	232.4	233.0	.6	30	106	8	42	<1	5	550
		232.7 232.8 50 % coarse pyrite in sericite. 232.8 232.9 Quartz vein rubble. 232.9 233.0 Clay fault gouge and sericite with 5 % disseminated fine-grained pyrite.			,								
233.0	241.	1 QUARTZ EYE BEARING FELSIC FLOW The flow is white from 233.0 to 233.8 and from 234.9 to 240.9. It is green to medium grey from 233.8 to 234.9 and from 240.9 to 241.1. There is medium to strong fracture controlled carbonatization from 233.0 to 233.5 and weak to	AF00561 AG08105 AG08106	237.5		.1 1.5 1.0	n/a 2 2	<10 8 92	n/a <5 5	13 10 100	n/a <1 <1	•	1040 1600 4 90

255.0 263.0 MAFIC FLOW OR LAPILLI TUFF

Mafic flow (?) or lapilli tuff (?) with epidote clots or

silicification and carbonatization in the massive medium green rock. There is 1 to 2 % disseminated pyrite

associated with epidote - calcite clots. The foliation is

epidotized lapilli. There is moderate pervasive

from 60 to 70 degrees to core axis.

WEST87-20 FALCONBRIDGE LIMITED DIAMOND DRILL LOG From To Sample From Tο Width % Total Cu Pb Aα Au Вa (m) -----DESCRIPTION-----No. (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) medium fracture controlled carbonatization from 233.5 to 241.1. There is minor kinking. Flow contains on average 10 to 12 % white clear quartz eyes, 5 to 10 mm in diameter. Pyrite :. 233.0 237.8 Trace disseminated pyrite. 237.8 238.0 20 % pyrite as 3. 1 to 2 cm. massive coarse pyrite bands. 238.0 239.0 Approximately 2 % pyrite in minor bands. 239.0 241.1 Trace disseminated pyrite. Structure :. 236.7 Minor fault slip. Foliations :. 234.3: 63 degrees to core axis. 235.4: 62 degrees to core axis. 240.0: 77 degrees to core axis. 241.1 246.2 CHLORITIZED FELSIC TUFF Chloritized felsic tuff with fracture controlled AG08107 242.0 243.5 1.5 ₹5 104 <1 430 carbonatization as calcite veinlets, both crosscutting AG08108 243.5 245.0 2 73 ₹5 ⟨5 290 1.5 88 <1 and parallel to foliation. There are up to 7 % quartz AF00562 244.3 244.4 38 147 125 .1 n/a n/a n/a n/a eves, <= 2 mm, and 1 to 2 % disseminated pyrite. AG08109 245.0 246.5 2 80 97 ₹5 <1 ⟨5 280 241.5 5.0 Cm 30 % pyrite in sericite - calcite. 241.8 5.0 Cm 20 % pyrite in calcite - sericite. 246.2 255.0 FELDSPAR PORPHYRITIC FELSIC FLOW Massive feldspar phyric felsic flow with up to 30 % AG08110 246.5 248.0 ⟨5 800 1.5 ⟨5 32 <1 feldspars, average 10 to 15%. There are numerous AG08111 248.0 249.5 2 <1 1400 1.5 12 ₹5 24 **(5** fractures with calcite veinlets. There is a 2 cm white AF00563 251.4 251.5 11 n/a 20 n/a n/a 906 .1 n/a quartz vein at 246.9. There are fault slips at 246.7 at AG08112 252.3 253.3 20 48 45 34 (1 (5 1400 1.0 80 degrees to core axis and at 252.1 at 60 degrees to core axis. There is minor pyrite in a calcite veinlet at 247.9. 248.2 248.3 20 % pyrite in sericite. 252.4 252.5 90 % pyrite. 252.5 253.3 10 to 12 % disseminated and banded pyrite. Foliations :. 248.5: 80 degrees to core axis. 250.2: 75 degrees to core axis. 253.6: 80 degrees to core axis.

AF00564 259.3 259.5

AG08113 259.5 261.5

. 2

77

620

n/a

78

n/a

<1

n/a

₹5

30

₹20

HOLE No:

Page Number

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 8

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)
263.0		CHLORITIZED FELSIC TUFF Grey weakly chloritized sericitic felsic tuff with weak pervasive carbonatization and 2 % disseminated pyrite. Foliation is from 70 to 85 degrees to core axis.	AG08114 AG08115 AG08116	264.0	265.2	1.0 1.2 .5	2 2 10	270 170 135	<5 <5 <5	440 175 144	<1 <1 <1		910 1200 1300
265.3	265.4	MASSIVE SULPHIDES 11 Cm of 65 % pyrite in sericite and calcite.				4.							
265.4	265.4	FAULT GOUGE 1 Cm of fault gouge at 90 degrees to core axis.											
265.4	269.7	CHLORITIZED FELSIC TUFF Rock as from 263.0 to 265.3 with 1 % disseminated pyrite and minor calcite veinlet hosted pyrite at 267.7 268.0 , 268.1 and 269.3.	AG08117 AF00565			1.0	2 n/a	192 45	<5 n/a	143 155	<1 n/a	_	1100 1230
269.7	272.3	ALTERED FELSIC TUFF Felsic tuff with very strong fracture controlled carbonatization and silicification. Grey glassy appearance with no textures remaining from 269.7 to 270.5 and from 271.8 to 272.3. Still tuffaceous in appearance from 270.5 to 271.8, but with strong carbonatization and calcite veinlets. There is trace to 0.5 % fracture controlled pyrite, except for 8 cm from 271.75 to 271.83 with 20 % pyrite. The foliation is from 80 to 90 degrees to core axis	AG08118	271.0	272.5	1.5	1 ·	110	< 5	1250	<1	⟨5	770
272.3	274.1	CHLORITIZED FELSIC TUFF Medium green to grey strongly foliated chloritized tuff with interbedded mafic tuff beds. There are calcite and epidote - calcite veins with pyrite, average pyrite is 1 to 1.5 %. The foliation is at 80 to 90 degrees to core axis.											
274.1	285.2	CHLORITIZED FELSIC TUFF Chloritic felsic tuff with minor mafic tuff (278.4 - 279.1). There is weak to medium pervasive carbonatization and carbonate veinlets, most fracture controlled, minor quantity parallel to foliation. Tuff is also moderate silicified. The foliation is at 80 degrees to core axis. 274.3 274.3 Minor pyrite in carbonate. 275.1 275.8 Minor brecciation and strong carbonatization with 1 to 2 % disseminated pyrite. 277.6 277.6 2 cm clay fault slip at 80 degrees to core axis 279.4 279.5 5 cm 60 % pyrite in sericite.	AG08119 AG08120 AG08121 AG08122 AG08123 AG08124	280.3 281.0 281.7 283.0	281.0 281.7 283.0 284.0	1.0 .7 .7 1.3 1.0	3 3 5 3 3 3	70 78 43 93 82 58	5 (5 (5 (5 (5	56 54 30 34 36 40	<1 <1 <1 <1 <1 <1	5 <5 <5 <5 <5 <5	290 260 570 240 230 360
		277.6 277.6 2 cm clay fault slip at 80 degrees to core axis	·						·				

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 9

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm))
		280.5 280.6 6 cm 50 % pyrite in calcite. 280.8 280.9 7 cm quartz - (calcite) vein. 281.0 281.7 5 % disseminated and stringer pyrite. 281.7 285.2 Very strong carbonatization with 2 to 3 % disseminated pyrite.											٠.	
285.2	286.0	FELSIC FLOW ? Massive white to grey felsic rock with numerous fractures with (?) silicification. Trace to 0.5 % disseminated pyrite.					÷							
286.0	290.0	CHLORITIZED FELSIC TUFF Chloritic felsic tuff with 7 to 8 %, 1 to 2 mm, quartz eyes and 2 to 3% epidote grains. Sericite - chlorite imparted foliation at 70 degrees to core axis. There is moderate fracture controlled carbonatization. There is on average 2 % disseminated pyrite with strong pyrite in calcite from 288.1 to 288.3, including 30 % over 1 to 3 cm	AG08125 AF00566 AG08126 AG08130	287.8	286.8 289.3	1.6 .1 1.5 .7	2 n/a 2 3	70 34 58 53	<5 n/a <5 <5	21 26 25 26	<1 n/a <1 <1	5 n/a <5 <5	260 339 310 400	
290.0	298.3	PYRITIC SERICITIC FELSIC TUFF 290.0 290.3 Fault gouge and quartz veins with 10 % pyrite in the veins. Foliation at 70 degrees to core axis with minor mariposite above vein. 290.3 290.9 Possibly sheared and brecciated felsic flow, siliceous and not very schistose with 2 to 3 % fracture controlled pyrite. 290.9 291.0 Sericite rich fault slips at 57 degrees to core axis. 291.0 293.1 White sericitic tuff with 3 to 5 % disseminated pyrite and minor calcite veinlets. Foliation is at 59 degrees to core axis. 293.1 293.2 Sericite fault gouge and slip at 60 degrees to core axis. 293.2 298.3 Medium grained felsic tuff with foliation at 70 degrees to core axis. Hosts 5 to 7 % epidote grains, 1 to 2 mm, and 3 to 5 % quartz eyes, 1 to 2 mm. There are minor quartz lapilli, up to 2 cm. There is weak pervasive carbonatization and minor calcite veinlets parallel to foliation. Pyrite occurs as bands parallel to foliation and disseminated, there is on average 5 to 7 % pyrite.	AG08127 AG08128 AG08129 AG08131 AG08132 AF00567 AG08133 AG08134 AG08135	291.0 292.0 293.2 294.2 295.2 295.3 296.3	292.0 293.2 294.2 295.2 295.3 296.3 297.3	1.0 1.0 1.2 1.0 1.0 .1	5 3 3 5 7 n/a 6 6	12 6 3 30 41 29 38 50 70	<5 <5 <5 <5 n/a <55 5	16 8 4 15 16 34 18 21 30	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<5 <5 <5 <5 n/a <5 <5	480 860 770 720 490 533 510 440 430	

298.3 306.4 FELSIC FLOW

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 10

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)		didth	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm
		mm, feldspar grains occur. There are fractures throughout. 302.5 303.0 Sericitized with 1 cm pyrite band at 302.5 and 0.5 to 1 % disseminated throughout. Foliation											
	,	at 70 degrees to core axis. 303.9 304.2 Weak sericite, white, 1 % pyrite blebs, minor quartz grains.											
		Fault slips at 80 to 90 degrees to core axis at 300.1 and 304.4.											
306.4	308.1	SILICIFIED ANDESITIC TUFF Pale green silicified andesitic crystal tuff with weak											
		pervasive carbonatization and minor calcite veinlets. There are 5 to 10 %, 1 to 2 mm, epidote grains and 1 % disseminated pyrite. The foliation is at 80 degrees to core axis.						•					
		COLE GAIS.											
308.1	313.0	FELSIC FLOW Felsic flow as from 298.3 to 306.4. 309.0 390.8 Fault slips.	AF00569 AF00570	308.7 312.8	308.9 313.0	.2	n/a n/a	33 43	n/a n/a	46 105	n/a n/a	n/a n/a	292 18
		309.0 310.6 Weak sericitization. 311.2 311.4 Mafic dyke, fine-grained, strong carbonatization, pastel lime green, 1 % disseminated pyrite.											
		312.6 313.9 Mafic dyke as from 311.2 to 311.4, both have sharp contacts.						,					
313.0	315.7	FELSIC TUFF		•									
		Very contorted felsic tuff with strong kinking. There is strong silicification post kinking. There is weak local carbonatization. 1 % disseminated pyrite occurs.											
		313.0 314.0 Quartz veining and trace pyrite.	*									,	
315.7	316.4	FELSIC TUFF Moderately contorted felsic tuff with approximately 10 %,	AG08136	315.7	316.4	.7	3	62	5	47	<1	< 5	650
		(1 mm, quartz eyes. It is very sericitic with the foliation at 80 degrees to core axis and minor local faults at 60 degrees to core axis with 2 mm displacements. There is 3 to 4 % pyrite.	·										
216.4	201 2	nni ata ni ou			;								
310.4	321.3	FELSIC FLOW Felsic flow as before, purple tinged grey with 10 to 15 % small feldspar grains. 318.0 318.4 Weakly sericitic.	AF00571	317.8	318.0	.2	n/a	<10	n/a	19	n/a	n/a	755
		319.8 319.8 Trace mariposite.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

axis and at 352.3 is at 63 degrees to core

352.5 355.1 Weak to moderate pervasive carbonatization

axis.

HOLE No: Page Number WEST87-20 11

		DIMIOND DRIBE HOG										*	
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
321.3	332.3	FELSIC CRYSTAL TUFF Felsic crystal tuff with trace to 5 %, 1 to 3 mm, quartz eyes and 5 to 10 %, 1 to 2 mm, epidote grains. There is a strong foliation at 73 degrees to core axis. There is weak pervasive carbonatization and minor calcite veinlets. On average there is 1 to 2 % disseminated pyrite, with 3 to 5 % disseminated and banded, parallel to foliation, pyrite from 324.6 to 325.7.	AF00572 AG08137			.1 1.1	n/a 4	48 42	n/a <5	39 24	n/a <1	n/a <5	791 490
332.3	339.0	FELSIC FLOW Medium to dark grey felsic flow. 332.3 334.1 Massive siliceous flow with fracture controlled sericite - (calcite) veinlets and trace to 3 % (?) feldspar grains, < 1 mm. 334.1 339.0 Weakly sericitic with numerous fractures and trace pyrite parallel to foliation and fracture controlled. Hosts 3 % feldspar grains. Foliation range from 56 to 81 degrees to core axis, average is 60 degrees to core axis.											
339.0	359.0	FELSIC CRYSTAL TUFF 339.0 341.3 Greenish strongly carbonatized massive tuff with 3 to 4 % pyrite in 1 to 2 mm bands parallel to foliation at 60 to 70 degrees to core axis. There are minor calcite veinlets. 341.3 350.4 Massive, medium grey with weak green tinge. Hosts 1 to 3 %, 1 to 2 mm, quartz eyes, 5 to 7 %, 1 to 3 mm, epidote grains and trace quartz lapilli. Tuff is siliceous and has foliation at 56 degrees to core axis. On average there is 1 to 2 % pyrite in bands parallel to foliation and as blebs with	AG08138 AG08139 AG08140 AF00573 AG08141 AF00574 AG08142 AG08143 AG08144	340.0 341.3 342.5 342.8 350.6 355.1 356.1	341.3 342.8 342.6 344.3 350.7 356.1 357.5	1.0 1.3 1.5 .1 1.5 .1 1.0 1.4	4 2 n/a 2 n/a 4 2 5	75 58 48 11 61 <10 70 405 505	<5 <5 <5 n/a <5 n/a <5 7	24 26 46 57 600 106 86 140 640	<1 <1 <1 n/a <1 n/a <1 <1 <1	<pre> <5 5 <5 n/a <5 n/a <5 c c c c</pre>	460 150 380 320 330 458 360 370 760
		calcite veinlets. 348.0 348.5 Silicified, fault slips and quartz veins (1 to 2 cm thick) at 0 to 30 degrees to core axis. 349.8 349.9 10 % pyrite with fault slips. 350.4 355.1 Epidotized felsic to dacitic tuff with trace to 2 %, 1 mm, quartz eyes and 10 to 15 % epidote grains, now augens. There are also 5 % lapilli, epidote and pink epidote group mineral. There are minor felsic ash tuff beds with bedding parallel to foliation. Bedding at 350.8 is at 64 degrees to core axis and the foliation at 350.9 is at 65 degrees to core											

FALCONBRIDGE LIMITED

at 374.7, 2 cm at 377.4 and 3 cm at 377.6.

: 4 cm thick at 364.9, 8 cm at 369.5, 5 cm at 374.5, 8 cm

HOLE No: Page Number WEST87-20 12

260

80

₹5

			FALCONBRIDGE LIMITED DIAMOND DRILL LOG		-			WEST8/-	20	12				
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
			with moderate carbonatization at epidote replaced lapilli. Epidote lapilli concentrated in bands parallel to foliation which is parallel to to most beds. There are 1 cm calcite veinlets with pyrite every 20 to				٠.							
		255 1 357 5	40 cm at 60 to 70 degrees to core axis. Average pyrite trace to 0.5 %, with 1 % from 350.4 to 355.1. Strongly contorted felsic tuff with 3 to 4 %											
			pyrite and minor quartz - calcite veins. There is strong sericitization. Hosts approximately 5 %, 1 to 2 mm, quartz eyes and											
		357.5 357.7	5 % epidote grains. Sericite and quartz veins, broken and brecciated, fault at 45 degrees to core axis.	•							٠			
		357.7 358.8	Contorted and brecciated sericite schist with 3 to 5 % pyrite and a conductive chalcopyrite stringer at 358.2. Possible sulphide mud as matrix to breccia. Minor quartz veinlets.											
		358.8 359.0	White milky quartz vein with trace chlorite and 3 to 5 % coarse pyrite.	,										
359.0	364.2	FELSIC FLOW 359.0 360.4	Sericitized felsic flow with approximately 5 % feldspar laths and trace to 1 %, 1 mm, quartz eyes. There are minor contorted zones. There is weak pervasive carbonatization and minor carbonate veinlets. The flow is light grey,											
		360.4 363.2	siliceous and hosts trace pyrite. Pelsic flow with minor sericite on fractures and approximately 5 % feldspar laths. There is trace to 0.5 % fracture controlled pyrite. Weak foliation is at approximately 70 degrees		,									
			to core axis. 2 Quartz flooding with 0.5 % pyrite clots. 2 As from 359.0 to 360.4.											
364.2	378.7	splotches w	medium green tuff with strong epidote - calcite with on average 5 % pyrite in epidotization. Sive carbonatization. Local 1 to 5 cm quartz	AG08145 AG08146 AF00575	366.0 366.4	366.6	1.8 1.5	4 3 n/a	93 115 41	6 <5 n/a	110 42 54	<1 <1 n/a	5 <5 n/a	320 230 355
ings of property		matrix. The axis and at there is a on each si axis. There	c. 5 to 15 %, 2 mm, epidote grains occur in the foliation at 366.5 is at 65 degrees to core 370.2 is at 49 degrees to core axis. At 366.2 fault with a calcite vein core and 5 cm of clay de with an orientation of 48 degrees to core are local calcite veins with 1 to 2 % pyrite at 364.9 % cm at 369.5 5 cm at 364.9 % cm	AG08147 AG08148 AG08149 AG08150 AG08151 AG08152	369.0 370.5 372.0 373.0 374.0	373.0 374.0 375.5	1.5 1.5 1.0 1.0 1.5	4 5 6 4 7 3	70 92 90 172 0.64 % 282	<5 <5 <5 <5 <5	42 48 52 94 0.56 % 500	<1 <1	<5 <5 <5 10 <5	240 (20 (20 (20 230 120

AG08153 375.5 377.0

AG08154 377.0 378.7

1.5

1.7

212

60

3

⟨5

⟨5

192

300

⟨1

<1

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 13

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm))
378.7	378.9	MAFIC ASH TUFF Very fine-grained mafic ash tuff with graded bedding of feldspar crystals at 378.7 indicating fining downhole, therefore tops is uphole, bedding is at 85 degrees to core axis.												
378.9	381.2	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Massive strongly silicified and weakly carbonatized mafic flow with 10 % hornblende crystals and 20 % feldspar crystals. There are epidote - calcite - pyrite veinlets sub - parallel to and parallel to the foliation, foliation is moderate to strong at 65 degrees to core axis.												
381.2	384.3	FELSIC TUFF ? (?) felsic tuff, medium to dark grey with 15 to 20 % epidote splotches and 3 to 5 % pyrite in the epidote. Tuff is silicified, massive and hosts minor calcite veinlets.	AG08155 AG08156			1.5 1.6	3 5	72 a . 158	<5 <5	86 64	<1 <1 ·	(5 (5	390 190	á
384.3	384.6	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Altered hornblende bearing flow as from 378.9 to 381.2.								* . . *				
384.6	389.4	FELSIC TUFF ? Similar to 381.2 to 384.3, felsic tuff with epidote splotches. Epidote veinlets and clots with white and pink calcite occur. 10 % epidote occurs and there are 3 to 5 %, 2 mm, quartz eyes. Not as strongly silicified as from 381.2 to 384.3. On average 1 to 2 % pyrite occurs. 386.0 386.5 20 to 25 % banded pyrite in sheared sericite - chlorite matrix with calcite veins.	AG08157 AF00576	386.0 387.2		.5	20 2 n/a	2400 74	5 n/a	2100 75	1 n/a	15 n/a	120 531	
389.4	390.0	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW As from 378.9 to 381.2.												

390.5 390.6 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW

As from 384.6 to 389.4.

As from 378.9 to 381.2.

390.0 390.5 FELSIC TUFF ?

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 14

From (m)	To (m)	DESCRIPTION	Şample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba) (ppm)
		Very similiar to 384.6 to 389.4 with less sulphides and epidote splotches. Foliation is at 30 degrees to core axis. Less massive rock. Trace to 1 % pyrite occurs.	AG08158	392.6	393.6	1.0	. 1	316	. <5	100	(1	₹5	220
393.2	395.6	SHEARED FELSIC FLOW? Dark grey to black, very siliceous with 2 % quartz eyes and 10 % feldspar laths in weakly sheared zones. 393.7 393.8 6 cm of 10 % chalcopyrite and 40 % pyrite in sericite. 393.8 393.9 16 cm of 5 % chalcopyrite and 30 % pyrite in sericite. Minor calcite veinlet at 393.83 with 5 mm true thickness. Strong foliation at 55 degrees to core axis. Faulted?. 394.1 394.2 10 cm blocky, highly fractured core. 394.5 394.5 1 cm calcite veinlet with pyrite. 395.2 395.4 Chlorite - calcite shear at 69 degrees to core axis. 395.4 395.6 Sericite - calcite - chlorite with 30 % fine-grained pyrite from 395.54 to 395.60.	AG08159 AG08160 AG08161	394.1	395.1	.5 1.0 1.0	1	2700 320 1500	<5 <5 <5	1.29 % 84 300	1 <1 <1	10 (5 10	350 320 240
395.6	398.4	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Mafic flow with moderate to strong pervasive silicification and strong pervasive carbonatization. Hosts 10 %, up to 4 mm (average 2 to 3 mm), hornblende crystals and 10 to 15 %, 2 mm, feldspar grains and crystals. There is pyrite in calcite at 395.9 and a pink calcite veinlet with quartz at 397.05. 397.3 398.4 Minor brecciation with siliceous tuffaceous matter? with 2 % pyrite in matrix, 1 % over the interval.	AF00577	396.6	396.7	.1	n/a	22	n/a	50	n/a	n/a	373
398.4	399.1	FELSIC DYKE OR FLOW Felsic dyke or flow, medium grey, massive, siliceous, with minor fracture controlled sericite and 7 to 10 % feldspar grains and laths, up to 2 mm.			·								
399.1	400.5	FELSIC CRYSTAL TUFF Weakly chloritic felsic crystal tuff with trace to 3 %, 1 mm, quartz eyes and approximately 10 %, 1 mm, feldspar epidote grains. There are minor felsic ash tuff beds. Siliceous - silicified (?). Bedding sub- parallel to foliation. At 399.4 bedding is at 73 degrees to core axis and the foliation is at 76 degrees to core axis. There is	AG08162	400.3	401.3	1.0	3	1150	<5	56	(1	5	240

1 to 2 % pyrite disseminated and in epidote rich beds.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

approximately 90 degrees to core axis, (range : 70 to 90

415.1 415.2 Strong calcite - black chlorite with 3 %

degrees to core axis).

HOLE No: Page Number WEST87-20 15

		Street Street											
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
	•	Quartz - calcite vein with 2 % chalcopyrite and 5 % pyrite.											
400.5	400.9	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Mafic flow with 15 % hornblende, up to 4 mm, as from 395.6 to 398.4.											
400.9	404.3	FELSIC CRYSTAL TUFF											
		Felsic tuff as from 399.1 to 400.45 with 6 cm of 60 % pyrite from 400.99 to 401.0.0 , 10 cm of 30 % pyrite from 401.95 to 402.05 and 30 cm of 30 % pyrite from 403.6 to	AG08163	403.5	404.0	.5	20	0.40 %	₹5	112	1	10	350
		403.9 with pink calcite blebs and a chlorite - carbonate shear at 80 degrees to core axis from 403.7 to 403.9. Bedding and foliation are subparallel at an average of 60											
		degrees to core axis.										1	
404.3	413.9	ALTERED MAFIC FLOW WITH TUFFACEOUS INCLUSIONS		ala ti									
		Mafic flow has on average 15 % (10 to 25 % range), 1 to	AF00578			.1	n/a	46	n/a	47	n/a	n/a	634
		5 mm (average size 2 to 3 mm), hornblende crystals and	AG08164 AG08165			1.5	3	270	(5	32	(1	<5°	380
		10 to 15 % epidote grains. The flow is bleached white, silicified, strongly carbonatized, massive and has a very weak foliation.	AG08166			1.5 1.5	3	122 148	<5 <5	34 15	<1 - <1	₹5 - ₹5	520 620
		404.3 404.5 Altered mafic flow.											
		404.5 404.6 5 cm white quartz - calcite vein. 404.6 404.9 Mafic clasts in felsic tuff with pink calcite											
		clots, similiar to 400.9 to 404.3. 404.9 405.2 Altered mafic flow.		•									
		405.2 405.4 Felsic tuff as from 400.9 to 404.3. 405.8 406.0 Epidote clots in black chlorite and calcite					÷						
		veinlet. 406.0 406.3 Altered mafic flow.											
		406.3 406.5 Epidote and quartz veining.						•					
		406.5 408.1 Altered mafic flow. 408.1 408.5 Mafic with epidote - calcite splotches and 3 %											
		pyrite in calcite.											
		408.5 409.4 Altered mafic flow. 409.4 413.9 Mafic with 3 % pyrite in strong epidote -					**						
		calcite alteration.											
413.9	418.5	ALTERED FELSIC TUFF											
3-		Strong silicification, epidotization, and carbonatization.	AG08167			1.5	,5	295	₹5	34	(1	<5	370
ř	e Ser	There are epidote and pink to white calcite splotches throughout. Tuff is quartz eye rich with 10 to 15 %, 1 to 2 mm eyes. There are 5 to 7 % epidote grains. Massive with foliation - bedding (?), subparallel (?), at	AF00579 AG08168			1.0	3 % n/a	460	/n/a <5	39 34	n/a <1	n/a <5	290 640

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 16

From To
(m) (m) ------DESCRIPTION------

Sample From To Width % Total Cu Pb Zn Ag Au Ba No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

chalcopyrite and 35 % pyrite.

415.5 416.2 10 % pyrite in calcite.

417.5 417.6 20 % pyrite and 2 % chalcopyrite in calcite - chlorite.

418.2 418.3 25 % pyrite in calcite about epidote. There is trace to 2 % fracture controlled and disseminated pyrite elsewhere.

- 418.5 418.9 WHITE BULL QUARTZ VEIN +/- CHLORITE WITH NO SULPHIDES
 White barren quartz vein with minor chlorite and 5 cm
 inclusion of altered mafic flow at 418.8.
- 418.9 421.1 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW
 Light to medium green strongly carbonatized and silicified
 mafic flow with 15 % hornblende as before.
 419.9 421.1 Epidote veinlets (?) zoned with light yellow
 rim, green and then pyrite core.
- 421.1 421.8 ALTERED FELSIC TUFF
 Felsic tuff as from 413.9 to 418.5, but with minor
 epidote, strong pink calcite and only 1 to 1.5 % pyrite.
- 421.8 422.1 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Altered mafic hornblende bearing flow as from 418.9 to 421.1.
- 422.1 426.8 SILICIFIED FELSIC CRYSTAL TUFF
 Silicified (?) siliceous felsic tuff with 10 to 20 cm
 epidote rich layers and a 10 cm quartz rich layer. There
 are minor green sericite bands. Hosts 5 to 7 %, 1 to 3 mm,
 quartz eyes, 3 % epidote grains and 1 % fracture
 controlled pyrite.
- 426.8 427.7 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Altered mafic flow as from 418.9 to 421.1.
- 427.7 432.0 FELSIC CRYSTAL TUFF
 Siliceous light grey tuff with greenish tinge. Hosts trace to 5 % epidote grains, up to 1 mm, and 1 to 2 %, 1 mm, quartz eyes. Strong sericite imparted foliation at 56 degrees to core axis at 429.8 and at 58 degrees to core axis at 430.5.
 428.1 428.2 3 cm quartz vein with 2 % pyrite.

Foliations :.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 17

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
432.0		SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Bleached and medium pervasive carbonatized mafic hornblende bearing flow with calcite - chlorite veins throughout. Hosts 15 to 20 %, 2 to 5 mm, hornblende crystals.	AF0 0580	433.5	433.6	.1	n/a	54	n/a	29	n/a	n/a	512
433.8	435.6	ALTERED FELSIC TUFF Medium epidotization and carbonatization. Light grey siliceous tuff with 5 % total crystals, quartz eyes and epidote grains. The foliation is at 65 degrees to core axis. Trace to 2 %, average 1 %, pyrite occurs. 434.8 434.9 30 % pyrite in calcite vein, 4 cm, in core of chlorite fault slip at 70 degrees to core axis.				. •							
435.6	438.5	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Bleached and carbonatized light grey mafic flow with 10 %, average 2 mm, hornblende crystals. Massive with no foliation and minor fracture controlled epidote veinlets with up to 1 % pyrite.						11 - 12 - 6 - 1					
438.5	440.5	FELSIC CRYSTAL TUFF Felsic tuff with 20 %, 1 to 2 mm, quartz eyes and 3 to 5 %, 1 to 3 mm, epidote grains. Folded with S folds. 1 to 3 %, average 1.5 %, pyrite, centred on calcite - epidote veins and replaced clasts, mainly from 439.4 to 439.8.	AG08169 AG08170			1.0	2 3	88 109	<5 <5	28 24	<1 <1	<5 <5	360 560
440.5	444.6	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Hornblende bearing, 15 %, 1 to 5 mm (average 2 mm), bleached and silicified massive mafic flow with fracture controlled calcite veinlets with pyrite cores, average pyrite is 4 %.	AG08171 AG08172 AG08173 AG08174	441.5 442.5	441.5 442.5 443.5 444.6	1.0 1.0 1.0	4 4 4	50 38 60 48	<5 <5 <5 <5	25 10 6 10	<1 <1 <1 <1	<5 <5 <5 <5	400 580 560 490
444.6	459.4	ALTERED FELSIC TUFF Bleached felsic tuff with approximately 7 %, 2 mm, quartz eyes and 8 % feldspar - epidote crystals. There are pink calcite veinlets and blebs throughout. 444.6 451.5 Weakly bleached with minor chloritization and 1 to 2 % pyrite. Similiar to 421.1 to 421.8. Gradual transition to lower. 451.5 459.4 Strongly bleached, fractured and faulted with	AG08175 AG08176 AG08177 AG08178 AG08179 AG08180 AG08181	451.5 453.0 454.0 455.0 456.4	453.0 454.0 455.0 456.4 457.9	1.1 1.5 1.0 1.0 1.4 1.5	3 3 4 5 4 3 3	55 40 16 70 20 30 40	(5) (5) (5) (5) (5) (5) (5) (5)	30 24 16 15 28 20 20	(1 (1 (1 (1 (1 (1	5 <5 <5 <5 <5 <5	630 330 420 190 550 340 480
		3 to 5 % fracture controlled pyrite, fracture parallel to bedding parallel to foliation at 70 to 90 degrees to core axis. Minor faults with 1 mm to 1 cm offsets.			;								

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 18

			•										
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		445.9: 72 degrees to core axis. 448.3: 70 degrees to core axis. 453.0 to 459.4: 0 degrees to core axis.									•		
459.4	460.0	FAULT GOUGE Sericitic fault gouge with 0.2 m lost core. Upper contact at 20 degrees to core axis and lower contact at 55 degrees to core axis.								·			
460.0	471.8	SILICIFIED FELSIC CRYSTAL TUFF Silicified felsic crystal tuff with weak thermal biotite.	AF00581	461.0	462.0	1.0	0	14	n/a	19	n/a	n/a 1	140

O.O 471.8 SILICIFIED FELSIC CRYSTAL TUFF
Silicified felsic crystal tuff with weak thermal biotite,
siliceous grey with purplish tinge. Foliation at 80 to 90
degrees to core axis. Crystals variable, 0 to 10 %, 1 to 2
mm, quartz eyes and 0 to 20 % feldspar crystals, 2 to 3
mm. Some feldspar crystal beds occur. At 461.8 tops is
downhole, crystals settling on uphole contact and fining
downhole. Other 2 to 4 cm beds occur at 462.6, 462.8,
464.2, 464.3, and 467.7. Trace to nil minor fracture
controlled calcite - pyrite veinlets occur.
470.0 470.3 3 % fracture controlled pyrite.
470.4 470.5 Minor epidotization.

AF00582 469.0 <10 n/a 17 695 n/a n/a AG08182 470.0 470.5 3 18 <5 18 710 <1 ₹5

471.8 472.2 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Altered mafic flow as from 435.6 to 438.5.

472.2 477.6 FELSIC CRYSTAL TUFF

Felsic tuff with 3 to 5 %, up to 2 mm (average 1 mm),
quartz eyes. There are epidote - calcite bands, probably
beds, from 474.0 to 474.5, 475.0 to 475.2, and 475.4 to
476.2. There is epidote - calcite alteration with 1 to 2 %
pyrite. The sericite imparted foliation is at 53 degrees
to core axis and bedding is at 80 degrees to core axis.

477.6 486.1 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Altered mafic hornblende bearing flow with strong silicification and weak to nil carbonatization. Hosts 15 to 20 %, 1 to 5 mm, average 2 mm, hornblende crystals and 10 to 15 %, 1 to 2 mm, feldspar crystals and laths. There is 2 to 3 % disseminated pyrite. In zones of epidotization and chloritization get up to 5 % pyrite and trace to 0.5 % chalcopyrite (481.2 to 481.3, 482.4 to 482.7, and 484.1 to 484.4). Minor pink calcite clots and veinlets occur. Massive flow, no foliation occurs. 483.8 483.9 White quartz vein.

AGO8183 482.0 483.0 1.0 4 380 (5 18 (1 (5 360 AF00583 483.2 483.3 .1 n/a 73 n/a 35 n/a n/a 1170

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 19

 Sample From To Width % Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

486.1 486.7 MAFIC? TUFF

Green, siliceous with fracture controlled epidote - pyrite veinlets. Very fine-grained with micro- faults. < 1 % pyrite on average.
486.6 486.7 5 cm of 15 % pyrite in bands in black chlorite.

- 486.7 487.5 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Altered mafic hornblende bearing flow as from 477.6 to 486.1 with 7 mm pyrite band at 70 degrees to core axis at 487.1.
- 487.5 488.5 FELSIC ASH TUFF

 Felsic ash tuff with minor feldspar bearing beds.

 Siliceous grey and green beds with trace fracture controlled pyrite and bedding at 90 degrees to core axis.
- 488.5 488.8 FAULT ZONE
 488.5 488.6 10 cm white quartz vein.
 488.6 488.8 20 cm blocky, highly fractured core of underlying unit.
- 488.8 493.6 ALTERED MAFIC FLOW WITH TUFFACEOUS INCLUSIONS

 Breccia (?), intermixed felsic tuff and altered mafic hornblende bearing flow. Very siliceous, grey with up to 1 % pyrite in fracture controlled veinlets and 5 % in black chlorite over 5 cm at 492.9.
- 493.6 495.1 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Medium to dark green with calcite veinlets and medium pervasive carbonatization. Trace no nil pyrite concentrated in fracture controlled epidote calcite veinlets. Hosts 15 %, 1 to 2 mm, hornblende crystals and 25 % feldspar grains.
- 495.1 495.7 MAFIC ASH TUFF
 Fine-grained mafic ash tuff, soft and chloritic with minor
 fracture controlled calcite veinlets. Foliation at 47
 degrees to core axis and bedding at approximately 90
 degrees to core axis.
- 495.7 497.5 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Alteration mafic hornblende flow with silicification and weak pervasive carbonatization. Massive, light grey to green with 5 to 10 %, 1 to 2 mm, hornblende.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 20

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		497.1 497.5 Strongly epidotized with 5 % pyrite.											,
497.5	498.2	FELSIC TUFF Medium grey siliceous tuff with bedding subparallel to foliation at 55 degrees to core axis. Minor fracture controlled carbonate veinlets and trace to 0.5 % fracture controlled pyrite. 497.6 497.7 Blocky, highly fractured core.											
498.2	499.0	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW As from 495.7 to 497.5 with 2 % pyrite in epidote - calcite - chlorite alteration from 498.5 to 499.0.	AG08184	498.2	499.0	.8	2	80	₹5	24	<1	<5	460
499.0	501.4	FELSIC ASH TUFF Siliceous felsic ash tuff with epidote - calcite beds / bands and epidote lapilli or alteration centres. The foliation is subparallel to bedding at 58 degrees to core axis. Bands coarsen downhole. Pyrite is fine-grained to 3 mm blebs in 2 cm bands. There is 2 % pyrite except for 499.4 to 499.5 which has 20% banded pyrite.	AG08185	499.0	499.9	.9	4	205	<5	19:	<1	₹5	430
501.4	502.3	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Green, looks like a leopard frog, with 15 %, 2 to 4 mm, hornblende and approximately 15 % epidote grains. There is a medium strong foliation at 62 degrees to core axis.											
502.3	503.0	FELSIC TUFF Felsic tuff with thermal biotite. There are siliceous beds with feldspar streaks and minor ash beds with quartz eyes and feldspar grains (10%, 30%, <= 1 mm). Beds are 7 to 10 cm thick. There is trace to 1 % fracture controlled pyrite. Bedding is at 55 degrees to core axis (502.8) and the foliation is subparallel.											
503.0	506.7	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Silicified bleached massive medium to light green with 2 % fracture controlled pyrite, 15 to 20 %, 1 to 4 mm (

506.7 508.7 FINE GRAINED PLAGIOPHYRIC GABBRO
Fine-grained green plagiophyric gabbro dyke or sill with 5 AG08186 508.5 509.0 .5 10 1920 <5 68 <1 20 <20

average 2 mm), hornblende and 10 % epidotized feldspar crystals. There is no foliation and there are epidote

zones at 90 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 21

From (m)	To (m)	DESCRIPTION	Şample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		shearing over the last 15 cm at 57 degrees to core axis.											
508.7	508.9	SEMI-MASSIVE SULPHIDES IN CHLORITE-CARBONATE ALTERATION 20 Cm of black chlorite with 20 to 25 % banded pyrite and 0.5 to 1 % chalcopyrite.											
508.9	510.9	EPIDOTE - CALCITE SPOTTED FELSIC TUFF Epidote - calcite splotches in siliceous felsic tuff with bedding at 85 degrees to core axis. Beds are 5 to 10 cm thick, siliceous and altered to epidote - calcite. There is trace to 1 % disseminated pyrite, except for 10 % pyrite clots from 509.2 to 509.3.											
510.9	526.2	SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Strongly silicified and weakly pervasive carbonatized with 15 %, 1 to 2 mm, hornblende crystals and 10 % feldspar grains. There is 1 to 2 % fracture controlled pyrite. There is minor quartz veins and epidote veins. Massive with no foliation. Strong pyrite, 2 cm, at 30 degrees to core axis at 521.1. Minor pink calcite veinlets occur in trace to nil quantitys.	ÅF00584 AG08187 AG08188 AG08189 AG08190 AG08191 AG08192 AG08193	515.1 516.5 518.0 519.5 521.0 522.5	516.5 518.0 519.5 521.0 522.5 524.0	.1 1.4 1.5 1.5 1.5 1.5 2.2	n/a 2 2 1 2 3 1	88 315 215 178 155 190 200 135	n/a <5 <5 <5 <5 <5 <5	39 28 24 25 26 20 24 28	n/a <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	n/a <5 <5 <5 <5 <5 <5	686 450 170 680 330 560 400 680
526.2	547.0	MASSIVE MOTTLED SILICEOUS ROCK Mottled felsic rock/? QFP intrusive. Medium grey rock with local fractures lined with sericite and minor quartz veinlets. There is trace quartz grains and 15 to 20 % feldspar grains, 2 to 3 mm. There is trace fracture controlled pyrite. 541.7 541.9 Chlorite - carbonate shear.	AF00594 AG08194			.1	n/a 5	101 480	n/a <5	26 34	n/a <1	n/a <5	676 150
547.0	547.3	SEMI-MASSIVE SULPHIDES IN CHLORITE-CARBONATE ALTERATION 25 Cm chlorite - carbonate shear. 547.1 547.1 3 cm of 50 % pyrite, 15 % pyrrhotite and 5 % chalcopyrite. 547.2 547.2 1 cm of 60 % pyrite.					·						
547.3	558.3	MASSIVE FELSIC QUARTZ PORPHYRITIC INTRUSION - SALTSPRING INTRUSION ? Massive felsic, intrusive or flow (?). Massive green rock with local brown biotite on fracture. Trace fracture controlled pyrite, sericite and chlorite occur. There are 10 to 20 %, 1 to 3 mm, feldspar laths. Fracture orientations are at 30 to 90 degrees to core axis. 549.4 549.5 12 cm of 7 %, up to 4 mm, pyrite cubes, 5 %	AG08198 AF00595 AG08195	551.2	551.4	.5 .2 1.0	2 n/a 1	0.34 % 46 225	<5 n/a <5	58 21 22	1 n/a <1	5 n/a <5	150 495 210

End of hole: 1927 feet (587.3 m).

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-20 22

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba) (ppm)
·		wispy pyrrhotite and trace to 1 % chalcopyrite		÷				/			•		
558.3	559.0	SEMI-MASSIVE SULPHIDES IN CHLORITE-CARBONATE ALTERATION Black wispy chlorite with minor calcite and epidote hosting very conductive sulphides: 10 to 15 % pyrrhotite, 7 to 10 % pyrite and trace chalcopyrite.	AG08196	558.3	559.0	.7	20	355	(5	18	(1	č 5	100
559.0	587.3	MASSIVE FELSIC QUARTZ PORPHYRITIC INTRUSION - SALTSPRING INTRUSION? Coarse siliceous light grey to green QFP intrusive with 10 to 20 %, 1 to 4 mm, feldspar laths and trace quartz eyes. There is medium to strong biotite, 2 % at the start and 10 % by 575.0. There is trace to nil fracture controlled pyrite. 578.3 578.3 2 cm pyrite stringer at 90 degrees to core axis 583.0 583.3 Quartz - calcite - chlorite veins. 565.6 571.3 Box 102 was spilled at drill site before logging. 559.6 561.0 0.3 m of lost core. core barrel problems.	AG08197 AF00596 AG08199 AG08200 AF00597	559.0 575.2 578.2 583.0 586.6	560.0 575.3 578.7 583.5 586.8	1.0 .1 .5 .5	1 n/a 1 1 n/a	240 118 120 232 54	5 n/a <5 5 n/a	12 52	<1 n/a <1 <1 n/a	₹5	750 938 1000 150 1620

i

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21

Zn

83

82

99

83

95

80

57

79

42

113

n/a

(1

<1

⟨1

<1

<1

⟨1

2

⟨1

<1

(mgg) (mgg)

n/a

11

<5

<5

30

24

6

6

Aσ

(maga)

Αu

Вa

85

<20

490

180

560

380

630

560

1000 800

n/a

₹5

⟨5

₹5

< 5

<5

10

₹5

₹5

(ppb) (ppm)

Hole Location: 13+00 E 7+03 S

NTS: 92B13

UTM: 450340 E 5411635 N

Azimuth: 15 Dip: -45

From

(m)

Elevation: 202 m Length:

348.6 m

Started: 20-NOV-87 Completed: 24-NOV-87

Purpose: To test chargeability anomaly

Length

87.50

-----DESCRIPTION-----

between 5+70 S and 6+50 S.

DIP TESTS

Dip

-45.0

Length

282,50

Sample

No.

AF00329

AF05803

AF05804

AF05805

AF05806

AF05807

AF05808

AF05809

AF05810

AF05811

Azi-

muth

From

10.6

12.6

13.6

15.0

16.0

17.5

17.9

19.1

19.2

23.2

10.7

13.6

15.0

16.0

17.5

17.9

19.1

19.2

20.2

24.2

1.0

1.4

1.0

1.5

1.2

1.0

1.0

.1

(m)

Dip

Claim No. WEST 1

Core Size: NQ

Section No.: 13+00 E

Logged By: J. Pattison

Width % Total

(m)

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg & Xray Assay

Sulphides (ppm)

n/a

3

3

214

338

229

150

155

0.35%

147

61

66

50

25.0 -41.0

To

(m)

15.0 196.00 21.0 -42.0

Azi-

muth

4.5 CASING Boulder of feldspar phyric gabbro.

6.0 CHLORITIC FELSIC ASH TUFF 4.5

> Grey-green, fine-grained, massive and weakly microfractured with 3 % disseminated pyrite. STRUCTURE:

Bedding is at 69 degrees to core axis at 5.6 m. 1.0 cm fault gouge at 70 degrees to core axis 5.6 m.

6.0 23.4 EPIDOTE SPOTTED ANDESITIC TUFF

> Medium green, fine-grained with 20 % 0.1-5.0 cm epidote +/- calcite spots. Most spots <3 mm are likely altered feldspars. Many of the larger spots may be altered lapilli but some are very irregular and have hazy outlines suggesting that they may be purely alteration related. Less than 2 % disseminated pyrite overall. Lower contact is gradational over 10.0 cm.

STRUCTURE:

Bedding is at 65 degrees to core axis at 13.6 m. Slip at 63 degrees to core axis at 14.4 m. Bedding is at 70 degrees to core axis at 15.8 m. Foliation is at 60 degrees to core axis at 18.8 m. Several chloritic slips at 55-60 degrees to core axis. Bedding is at 70 degrees to core axis at 19.2 m. 2.0 cm fault gouge at 55 degrees to core axis at 21.8 m.

13.5 13.6 FELSIC ASH TUFF: grey, massive and fine-grained. Upper and lower contacts appear to be bedding

28.5

28.6

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

24.8 24.9 Quartz-carbonate flooded zone with 8 % pyrite.

pyrite at 60 degrees to core axis.

to core axis.

1.0 cm wide chlorite band with semi-massive

3.0 cm wide chlorite-pyrite band at 70 degrees

HOLE No: Page Number WEST87-21 2

		DIAMOND DRILL LOG											
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		contacts and are at 65 degrees to core axis.						•					
		13.6 15.0 Numerous < 2.0 cm dark green chloritic bands at 65-70 degrees to core axis. Often centred on quartz-carbonate veins with semi-massive pyrite.	•				÷						
		15.0 16.1 20 % bleached lapilli clasts stretched parallel to foliation at 70 degrees to core axis.											
		17.3 Chlorite-rich quartz-carbonate flooded zone 4.0 cm wide at 70 degrees to core axis. Semi-massive pyrite with 3 % chalcopyrite.									·		
		17.5 17.9 Chloritic quartz-carbonate flooded zone with 15 % pyrite and trace chalcopyrite.											
		18.0 18.6 4.0 cm wide quartz vein with 3 % pyrite runs along core axis. Wall rock is strongly silicified.											
		19.1 19.2 Intensely chloritic zone with 25 % pyrite and 0.5 % chalcopyrite centred on carbonate clots and veins <1.0 cm wide. Slip at 68 degrees to core axis at upper contact and slip at 90 degrees to core axis at lower contact.											
23.4	36.0	O SILICIFIED ANDESITIC TUFF Green-grey mottled, fine-grained felsic to intermediate in composition. Moderately to strongly chloritized. In many places chlorite appears to be fracture controlled. Occasional lapilli-sized sericitized fragment. Minor fault at 80 degrees to core axis at lower contact.	AF05812 AF05813 AF00330 AF05814 AF05815	24.2 24.6 27.3 28.5 29.0	24.6 25.6 27.4 29.0 29.5	.4 1.0 .1 .5	3 n/a 7 6	2922 40 <10 44 30	12 <5 n/a <5 <5 <5	67 36 37 67 70	2 <1 n/a <1 <1	10 <5 n/a 5 5	570 710 808 620 710 950
,		STRUCTURE: 4.0 cm fault gouge at 70 degrees to core axis at 26.8 m. Slip at 60 degrees to core axis at 32.8 m. 0.5 cm wide fault gouge at 70 degrees to core axis at 35.8 m. 3 mm fault gouge at 80 degrees to core axis at 36.0 m.	AF05816	29.5	30.5	1.0	2		(5	42	(1	(3	950
		24.2 24.6 Chlorite-carbonate flooded zone with 6 % pyrite and 1 % chalcopyrite.			:								

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

54.0 999.9 Large 10.0 cm wide epidote-calcite patch with 10 % fracture controlled pyrite.

57.2 57.3 Strongly chloritic zone with 40 % pyrite at 70 degrees to core axis.

HOLE No: Page Number WEST87-21 3

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm
		29.0	10 cm wide chloritic band with 30 % pyrite at 80 degrees to core axis.								•			
	•	31.0 32.2	Weak spotty epidote.											
		33.9 35.0	SILICIFIED EPIDOTE SPOTTED MAFIC LAPILLI TUFF.											
36.0	39.0	carbonate	W/TUFF dark green and fine-grained. Weak-nil pervasive alteration and weak-nil spotty epidote n. 2 % disseminated and fracture controlled											
		36.8 37.7	Several 1.0 cm fault gouges at 80 degrees to core axis. Rock is crushed over the entire section.											
39.0	66.9	Similiar spots do dissemina Locally warbitrari STRUCTURE 2.0 cm ch with 30 % 0.5 cm fa	POTTED ANDESITIC TUFF to 6.0 to 23.4 m but most epidote +/- calcite not appear to be clasts. Less than 1 % ted pyrite. Trace-nil disseminated magnetite. eak pervasive silicification. Lower contact is ly placed where lapilli clasts become discernable. : loritic fault gouge at 70 degrees to core axis pyrite 49.4 m. ult gouge at 80 degrees to core axis at 58.1 m. 25 % pyrite and 1 % chalcopyrite in CHLORITE-PYRITE-CHALCOPYRITE STRINGERS. Stringers are <0.5 cm wide and most are subparallel to foliation but some are definitely crosscutting. Moderately silicified zone with 5 % fracture	AF05817 AF05818 AF05819 AF05820 AF05821 AF05822 AF05823 AF05824 AF05825 AF05827	41.1 42.1 42.3 43.3 43.7 56.0 57.5 64.0 65.0	42.1 42.3 43.3 43.7 44.7 57.0 57.5 58.5 65.0 65.5 66.5	1.0 .2 1.0 .4 1.0 1.0 .5 1.0	3 5 2 1 15 1	278 2975 218 1722 158 146 1944 195 184 1725 163	5 22 5 15 n/a <5 6 <5 1 6	684 783 429 419 139 114 139 90 118 160 95	<1 2 <1 1 n/a <1 1 <1 <1 <1 <1	10	210 20 100 150 146 <20 <20 <20 <20 <20 <20
		43.3 43.7	Moderately silicified zone with 5 % fracture controlled pyrite. Pyrite occurs in hairline fractures with chlorite alteration envelopes.			!								
		49.4 50.2	Moderate pervasive silicification. Medium grey and no epidote spots.				· · · · · · ·							

89.3 136.0 MASSIVE MOTTLED SILICEOUS ROCK

Relatively massive, foliation not well developed mottled

intermediate in composition. Weakly microfractured. In

places rock appears to be composed of pink very

green-grey to light pink (fine thermal biotite). Felsic to

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21 4

49

71

50

11

<10

2

1

n/a

11

₹5

n/a

· <1

<1

⟨1

n/2

210

170

180

ኃፍያ

15

₹5

n/2

From (m)	To (m)	•	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		57.5	5-10 % bleached lapilli-sized fragments.											
	,	65.3	Two 2 mm bands of massive chalcopyrite and pyrite along margin of a chlorite slip at 67 degrees to core axis.											
66.9	75.6	Dark gree (bleached at 60 deg pyrite ov	POTTED ANDESITIC LAPILLI TUFF n, fine-grained with up to 30 % pale green lapilli-sized clasts stretched in a direction rees to core axis. Less than 1 % disseminated erall. Lower contact is planned where lapilli can r be identified with confidence.											
		69.6	1.5 cm wide chlorite-carbonate rich band with semi-massive pyrite at 70 degrees to core axis.											
75.6	89.3	EPIDOTE S	POTTED ANDESITIC TUFF											-
,,,,,		As 39.0 t		AF05828	76.4	77.4	1.0	1	184	6	101	(1	< 5	₹20
		STRUCTURE	:	AF05829 AF05830	77.4 77.6	77.6 78.6	.2 1.0	5 1	235 171	5 6	150 103	<1 <1	<5 <5	<20 <20
			is at 50 degrees to core axis at 88.0 m. s at 50 degrees to core axis at 89.2 m.	AF05831 AF05832 AF05833	78.6 79.5 80.0	79.5 80.0 81.0	.9 .5 1.0	2 1 1	128 160 62	7 6 9	223 170 145	<1 <1 <1	<5 <5 10	<20 140 90
		77.4 77.6	Strongly chloritization zone centred on quartz-carbonate pods. 5 %.	AF00331 AF05834 AF05835	83.3 85.0 86.0	83.6 86.0 86.2	.3 1.0	n/a 1 8	103 173 387	n/a 7 17	90 89 85	n/a <1 <1	n/a <5 <5	58 400 390
		80.2	3.0 cm wide quartz flooded zone. Upper and lower contacts are sharp at 30 degrees to core axis.	AF05836 AF05837 AF05838 AF05839	86.2 87.2 88.0 88.8	87.2 88.0 88.8 89.3	1.0	2 2 3 2	36 47 35 28	17 19 20 12 <5	83 78 71 69	1 <1 <1 <1	<5 <5 <5 10	110 470 <20 220
		79.9 80.0	Irregular quartz flooded zone with 2 % pyrite and trace chalcopyrite.	AP 00000			••	2		(3	O.J	ν.	10	220
		86.0 86.2	Cherty green banded (bedded?) tuff. Bands are at 45-60 degrees to core axis. 8 % pyrite and trace chalcopyrite in 4 mm bands.											
		87.2 88.8	2-4 % pyrite disseminated and in chlorite-carbonate rich zones < 3.0 cm wide parallel to foliation.											
		88.0 89.0	Several lapilli-sized felsic clasts.					A				٠		

AF05840

AF05841

AF05842

AF00332

92.5

93.5

94.0

95.4

93.5

94.0

95.0

95.5

1.0

1.0

.5

FALCONBRIDGE LIMITED

HOLE No: Page Number WEST87-21 5

Ва

90

170

310

220 70

<20

920

990

720 823

550

640

530

490

380

640

320

310

460

760

870

430

360

30

360

680

160

30

(ppb). (ppm)

Au

5

⟨5

⟨5

₹5

⟨5

25

⟨5

₹5

5

⟨5

10

₹5

5

⟨5

10

⟨5

10

⟨5

<5

⟨5

⟨5

<5

⟨5

₹5

⟨5

n/a <5

Ag

(ppm)

<1

<1

<1

<1

1

1

1

1

<1

<1

<1

<1

<1

<1 <1

<1

<1

<1

1

1

n/a

			DIAMOND DRILL LOG								
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)
			d lapilli-sized fragments in a chloritic	AF05843	99.0	100.0	1.0	1	22	<5	39
			ally weak to moderate spotted epidote +/-	AF05844			.5	4	2	<5	64
			eration. Spots are up to 1.0 cm in diameter and	AF05845			1.0	1	3	<5	42
			e altered clasts. In more siliceous sections 5	AF05846			1.0	1	3	<5	51
			te feldspars occur. Lower contact is	AF05847			.5	5	20	24	70
			placed where siliceous lapilli clasts become	AF05848			1.0	. 1	4	17	55
		conspicuous	•	AF05849			1.0	2	45	28	100
		~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		AF05850			1.0	2	14	19	91
		STRUCTURE:		AF05851			1.0	3	35	17	97
			t gouge at 90 degrees to core axis at 109.2 m.	AF00333			.1	n/a	<10	n/a	66
			It zone at 45 degrees to core axis at 110.1 m.	AF05852			1.0	2	33	17	81
			s at 45 degrees to core axis at 111.7 m.	AF05853			1.0	2	16	11	86
			s at 45 degrees to core axis at 113.4 m.	AF05854			1.5	1	24	7	72
			t gouge at 65 degrees to core axis at 113.4 m.	AF05855			.5	5	60.	17	100
			thly fractured core between 116.4 and 116.7 m.	AF05856			1.4	1	12	7	68
		Fault (?).		AF05857			.3	20	62	11	116
			It breccia with up to 30 % crushed fine-grained	AF05858			1.3	1	2	<5	70
			1t appears to be at 40-50 to degrees to core	AF05859			1.2	. 2	9	<5	122
		axis.		AF05860			1.0	4	31	8	166
			gouge at 65 degrees to core axis at 132.7 m.	AF05861			1.0	8	157	7	214
			t gouge at 73 degrees to core axis at 132.9 m.	AF05862			1.0	3	11	₹5	126
			t gouge at 75 degrees to core axis at 133.0 m.	AF05863			1.0	1	37	<5	106
		20.0 cm fau	lt zone at 137.3 m.	AF05864			1.0	2	19	<5	106
				AF05865			1.0	2	26	₹5	112
			0 % coarsely disseminated pyrite in	AF05866			1.0	4	113	<5	148
		C	hlorite-carbonate alteration zone.	AF05867			1.0	3	58	15	123
				AF05868			1.0	5	107	22	170
		100.0 100.5	4 % pyrite concentrated in a 2.0 cm chlorite rich band at 35 degrees to core axis.	AF05869	135.2	136.0	.8	2	624	11	193
*		101.2	2.0 cm carbonate-chlorite band at 40 degrees to core axis with semi-massive pyrite.								
		105.9	4.0 cm wide band of semi-massive pyrite at 45								
			degrees to core axis with strong chlorite and carbonate alteration.								
		108.9 135.4	Intensely silicified zone. Very fine thermal								
			biotite alteration of most siliceous patches								
			gives rock a mottled pinkish-grey to green			,					
			appearance. Epidote spots are rare. Felsic in								
			composition over the entire section.								
		109.2	0.5 cm of coarsely disseminated pyrite in a					****			

111.7 40 % pyrite over 3.0 cm associated with strong

controlled carbonate.

109.7 109.8 10 % pyrite disseminated and fracture

crushed chloritic zone with fracture

controlled in a chlorite-carbonate rich zone.

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21 6

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
			chlorite.											
		112.2	Two 1.0 cm bands of massive pyrite at 70 degrees to core axis.											
		117.5 117.6	Semi-massive pyrite associated with an irregular quartz-carbonate clot.											
		121.5 122.0	5 % pyrite concentrated in a chlorite-carbonate rich < 1.5 cm massive pyrite band at 55 degrees to core axis.											
٠		121.6 121.7	Fine-grained chloritic weakly carbonatized MAFIC DYKE at 55 degrees to core axis. Nil sulphides.											
		123.5 123.6	30 % crushed very fine-grained pyrite (some may be sphalerite) which forms matrix of a fault breccia.											
		125.0 127.0	2-3 % fracture controlled pyrite.											
		127.2 128.2	8-10 % fracture controlled pyrite associated with black chlorite alteration and quartz-carbonate pods.											
		131.0 131.2	Fine-grained medium green massive MAFIC DYKE. Upper and lower contacts are sharp at 80 degrees to core axis. No sulphides and strongly chloritic.											÷
	· .	130.2 136.0	2-5 % disseminated and fracture controlled pyrite. Pyrite is often associated with dark green chlorite and/or minor quartz-carbonate veins and pods.											
136.0	179.4	Rock is ver Up to 20 % spots and u fine-graine porphyritic 0.4-6.0 cm silicified epidote spo Strongly pe contact. L axis. STRUCTURE:	TTED LAPILLI TUFF y massive (RQD's > 95 over most of the unit). 0.2-4.0 cm yellow-green epidote +/- calcite p to 5 % subangular to rounded siliceous d to almost aphanitic occasionally feldspar bleached epidote-calcite altered clasts in diameter in a grey-green nil to weakly mafic matrix. Siliceous clasts often contain ts. 1-2 % disseminated pyrite overall. rvasively silicified for 1.5 m from the lower ower contact is a fault at 65 degrees to core  t gouge at 57 degrees to core axis at 141.4 m.	AF05870 AF05871 AF05872 AF05873 AF05874 AF00334 AF05876 AF05877 AF05878	145.8 146.8 147.8 148.0 150.4 159.0 160.0 161.0	137.0 146.8 147.8 148.0 149.0 150.5 160.0 161.0 162.0 179.4	1.0 1.0 1.0 .2 1.0 .1 1.0 1.0	2	83 302 761 1356 192 70 258 159 149 137	11 11 7 13 <5 n/a <5 8 8	132 201 256 306 202 244 133 190 132 64	1 1 1 1 (1 n/a (1 (1	<5 <5 <5 <5 n/a <5 <5 2	160 230 140 110 40 116 970 000 630

182.5 187.5 QUARTZ EYE BEARING FELSIC TUFF/FLOW

5-10 %, 2-5 mm quartz eyes in a grey very fine-grained siliceous matrix. Weakly to moderately microfractured.

Less than 1 % disseminated pyrite overall. 1.0 Cm quartz-carbonate vein at 70 degrees to core axis at lower

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21 7

12

13

<1

n/a

21

n/a

<10

n/a

20 1400

n/a 1020

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba ) (ppm
		144.4 m.  3 Mm fault 10.0 cm faul at 160.2 m.  0.5 cm faul 4.0 cm faul 4 Mm fault 10.0 cm fau	fault gouge at 76 degrees to core axis at gouge at 58 degrees to core axis at 151.9 m. It gouge 4.0 cm wide at 80 degrees to core axis t gouge at 70 degrees to core axis at 160.6 m. t gouge at 60 degrees to core axis at 164.7 m. gouge at 23 degrees to core axis at 168.1 m. It gouge at 65 degrees to core axis at 179.1 m. It gouge at 65 degrees to core axis at 179.3 m.											
		136.9	Several specks of chalcopyrite.											
		144.3	1.0 cm wide chlorite band with semi-massive pyrite at 80 degrees to core axis occurs immediately downhole of a 10.0 cm fault gouge.											
		147.8 148.0	Two quartz-carbonate veins up to 4.0 cm wide at 40-50 degrees to core axis. Rock is strongly chloritized and contains 8 % pyrite and 1 % chalcopyrite.				·							
		155.5 156.2	Epidote spots have bleached reaction rims.											
		159.8 161.2	Moderate pervasive silicification. Rock is light grey and there are no epidote spots.											
179.4	182.5	Grey to gre sericitic a overall. L STRUCTURE: 10.0 cm fau	ELSIC ASH TUFF en-grey, fine-grained, weakly to moderately nd weakly chloritic. 3-5 % disseminated pyrite ower contact is at 70 degrees to core axis.  It gouge at 65 degrees to core axis a 179.6 m. at 70 degrees to core axis at 181.4 m.	AF05879 AF05880 AF05881 AF05882 AF05883 AF00336	179.8 180.0 180.3 180.9	180.0 180.3 180.9 182.5	.4 .2 .3 .6 1.6	25 9 15 10 2 n/a	203 19 54 517 300 140	32 14 43 25 11 n/a	24 6 52 121 123 202	1 <1 <1 1 1 n/a	₹5	3300 3000 1000 190 800 676
		179.4 179.8	25 % pyrite overall in 2 semi-massive bands 5.0 and 9.0 cm thick at 70 degrees to core axis separated by a 10.0 cm fault gouge at 65 degrees to core axis.	•										
		180.0 180.3	15 % coarsely disseminated pyrite.				·							
		180.3 180.9	10 % coarsely disseminated pyrite.	•										
														•

AF05884 182.5 184.0

AF00335 184.8 184.9

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

intermediate-felsic tuff. Bedding is occasionally

recognizable. Lower contact is gradational.

HOLE No: Page Number WEST87-21 8

15

39

56

47

⟨1

218

152

30

730

160

₹5

10

				DIAMON	D DETUT FOR					•						
From (m)	To (m)			DESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		1.0 cm fai 5.0 cm fai	alt gouge at 60 alt gouge at 80 alt gouge at 80 ault zone which	degrees to core axis degrees to core axis degrees to core axis appears to be at 65-	at 186.2 m. at 186.7 m.											
187.5	188.6	Green-grey composition bedding. finely dis 80 degrees core axis. STRUCTURE:	on. Rock has a Banding is at 6 seminated pyrit to core axis.	intermediate to fel: banded appearance wh: 5-70 degrees to core e. Several minor far Lower contact is at	ich suggests axis. 2 % ult gouges at 80 degrees to	•										
188.6	189.3	QUARTZ EYI As 182.5	E BEARING FELSIC	TUFF/FLOW		AF05885	188.6	189.3	.7	4	12	13	19	<b>&lt;1</b>	190 1	1000
		189.0		ault gouge at 70 deg e pyrite hosted by c rock.												
189.3	190.7	moderately places.	, light grey-gre y microfractured 10 % disseminate	en very fine-grained. Rock appears to bid and fracture contrat 70 degrees to cor	e bedded in olled pyrite.	AF05886 AF05887			.9 1.0	7 2	19 71	17 11	42 58	<1 <1		1200 520
		Bedding is 60.0 cm M	s at 60 to degre s at 60 to degre AJOR FAULT ZONE	es to core axis at 1 les to core axis at 1 at 68 degrees to core m of lost core.	90.5 m.					:						
		189.4 189	.5 25 % pyrite a	s quartz-carbonate p	ods.											
		190.2	Trace fractur	e controlled galena	(?).									s		
190.7	207.7	Rock grade mafic-inte	es back and fort ermediate epidot	TE SPOTTED ANDESITIC th from a dark green te spotted tuff to a	grey green	AF05888 AF05889	191.8	192.7	.6 .9	4 3	91 100	13 13	46 51	<1 <1	5 5 5	930 460 730

AF05890 192.7 193.7

AF05891 193.7 193.8

1.0

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21 9

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
			AF05892	193.8	194.8	1.0	4	165	15	82	⟨1	⟨5	770
		STRUCTURE:	AF05893	194.8	195.8	1.0	4	82	18	57	<1	10	860
		Bedding is at 65 degrees to core axis at 191.2 m.	AF05894	195.8	197.3	1.5	4	127	17	55	<1	5	640
		Bedding is at 65 degrees to core axis at 192.3 m.	AF05895	197.3	199.0	1.7	4	124	17	63	<1	<5	430
		Bedding is at 70 degrees to core axis at 193.9 m.	AF05896	199.0	200.0	1.0	7	101	16	90	<1	<5	100
		2.0 cm fault gouge at 60 degrees to core axis at 195.2 m.	AF05897	200.0	200.5	.5	2	463	19	105	1	5	<20
		Bedding is at 70 degrees to core axis at 197.3 m.	AF05898	200.5	201.5	1.0	2	82	17	94	<1	<5	<20
		Bedding (?) is at 68 degrees to core axis at 201.2 m.	AF05899	202.8	203.8	1.0	2	268	19	68	1	₹5	<20
•		Bedding (?) is at 65 degrees to core axis at 205.6 m.	AF05900	203.8	204.8	1.0	1	37	15	23	<b>∢1</b>	₹5	240
			AE08301	204.8	205.6	.8	1	139	6	60	<b>&lt;1</b>	₹5	<20
		193.7 193.8 30 % coarsely disseminated pyrite centred on a	AF00337	204.8	205.0	. 2	n/a	79	n/a	54	n/a	n/a	64
		quartz-carbonate vein at 72 degrees to core	AE08302	205.6	207.0	1.4	2	174	5	162	<1	₹5	⟨20
		axis.	AE08303	207.0	208.0	1.0	2	158	8	198	<b>&lt;1</b>	₹5	830
		194.6 195.1 Crushed zone with 10 % crushed fine-grained black fracture controlled pyrite.											

196.8 197.9 Rock has a mottled green-pinkish grey appearance (ie similiar to the Massive Mottled Siliceous Rock).

200.0 200.5 Several <1.0 cm wide chloritic bands with semi-massive pyrite +/- chalcopyrite at 60-70 degrees to core axis.

201.5 203.0 MAFIC FLOW (?). Rock is massive, no bedding observed.

#### 207.7 211.8 QUARTZ EYE BEARING FELSIC TUFF

Light grey to white with 10 % 2-5 mm quartz eyes in a siliceous sericitic matrix. Less than 2 % disseminated pyrite. No quartz eyes between 207.8 and 208.1 m. Lower contact is a 10.0 cm fault gouge at 60 degrees to core axis

AE08304	208.0	208.1	.1	50	149	56	2156	<1	10	510
AE08305	208.1	209.1	1.0	1	15	13	125	<1	<5	1500
AF00338	210.2	210.3	.1	n/a	<10	n/a	26	n/a	n/a	1450
AE08306	210.4	211.0	.6	1	88	52	499	<1	₹5	1200

#### STRUCTURE:

1.0 cm fault gouge at 70 degrees to core axis at 208.0 m.
14.0 cm fault zone at 60 degrees to core axis at 208.8 m.
Rock is crushed and foliation is contorted.
20.0 cm fault zone at 50 degrees to core axis at 209.0 m.
Rock is crushed and foliation contorted.
3 Mm fault gouge at 60 degrees to core axis at 209.4 m.
5.0 cm fault gouge at 60 degrees to core axis at 209.8 m.
3.5 cm fault gouge at 66 degrees to core axis at 210.1 m.
10.0 cm fault gouge at 211.6 m. Fault appears to be 60 c/a.

208.0 208.1 Massive pyrite in a band/bed oriented at 70 degrees to core axis.

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21 10

From (m)	T0 (m)	DESCRIPTION		imple No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm).
		Similiar to 190.7 to 207.7 m. Strongly silicifiem from the upper contact and for 3.0 cm from the contact. Less than 5 % bleached lapilli-sized cl Some of the epidote +/- calcite spots may also be Lower contact is at 75 degrees to core axis.	lower AEC asts. AEC	)8307 )8308 )8309	216.3 217.3 218.3	217.3 218.3 218.5	1.0 1.0 .2	2 2 30	163 122 172	14 19 47	105 106 86	1 1 1	5 5 15	490 700 640
		214.9 Bedding is at 63 degrees to core axis offset 8 mm by a minor slip at 30 decore axis.			·			•						
		218.3 218.5 Semi-massive pyrite in 2 bands (beds? and 5.0 cm thick at 70-85 degrees to (30,000 ohms/0.2 m).	) 13.0 core axis											
218.5	222.3	QUARTZ EYE BEARING FELSIC TUFF As 207.7 to 211.8 m. Generally less than 2 % diss pyrite but massive pyrite occurs over 10.0 cm at lower contact. Lower contact is at 70 degrees to	the AEC	08311 08312	218.5 220.0 221.0 222.2	221.0 222.2	1.5 1.0 1.2	1 1 2 50	11 12 9 80	17 17 18 116	59 20 55 326	1 <1 1		1300 1400 1600 840
		STRUCTURE: Bedding is at 70 degrees to core axis at 219.6 m. Bedding is at 72 degrees to core axis at 220.4 m. Crushed zone between 221.0 and 221.6 m. Very fine crushed black pyrite. 1.0 cm fault gouge at 70 degrees to core axis at	-grained											· .
		222.2 10.0 cm band of massive pyrite at 70 to core axis (50,000 ohm/0.10 m).												
							÷							
222.3	225.2	FELSIC ASH TUFF	-											
		Light grey, fine-grained and moderately sericitic has a banded appearance suggesting that it may be 3-5 % disseminated pyrite. Quartz eyes are rare. contact is a fault gouge at 50 degrees to core ax STRUCTURE: Foliation is at 76 degrees to core axis at 223.5 Bedding is at 75 degrees to core axis at 224.0 m. Bedding is at 80 degrees to core axis at 226.9 m.	e a tuff. AEC Lower AEC is.		222.3 223.3 224.3		1.0 1.0 .9	4 5 7	15 7 19	27 25 27	37 7 17	1 1 1	<5 ∶	1800 1300 940
225.2	232.5	MASSIVE FELSIC FELDSPAR PORPHYRITIC TUFF\FLOW About 15 % euhedral milky white <1-2 mm feldspars light grey very siliceous very fine-grained almo aphanitic matrix. Below 230.7 m feldspars are les mm. Nil to moderate sericite alteration. Moderat microfractured. Where it is moderately sericitiz similiar to the Felsic Ash Tuff unit above. 2-5 disseminated and banded pyrite. Lower contact is	st AFC s than 1 AEC ely AEC ed it is AEC % AEC	0339 8318 8319 8320 8321	225.2 226.4 226.7 228.0 229.0 230.0 231.6	226.5 228.0 229.0 230.0 231.6	1.5 .1 1.3 1.0 1.6	1 n/a 2 3 5 1	6 14 8 8 13 9	25 n/a 25 27 29 27 30	5 12 5 5 91 7 27	1 n/a 1 1 1 1	10 n/a <5 <5 5 <5	500 412 830 810 1100 770 660

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number
WEST87-21 11

% Total Cu Pb Zn Ag
Sulphides (ppm) (ppm) (ppm) (ppm)

34

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		degrees to core axis.			231.8	232.5	.7	3	11	29	3	2	₹5	660
		0.5 cm faul MAJOR FAULT	gouge at 66 degrees to core axis at 227.4 m. gouge at 70 degrees to core axis at 228.5 m. ZONE at 60-65 degrees to core axis between 10.4 m. 0.1 m of lost core.		•									
		229.5	2.5 cm band of massive pyrite at 70 degrees to core axis.		•									
		231.6 231.8	Sericitic and weakly chloritic zone with 7 % disseminated pyrite. Upper and lower contacts are sharp at 65 degrees to core axis.											
020 5	007.0													
232.5	237.0	crystals. Medisseminates where hornbooks STRUCTURE: 20.0 cm faul degrees to Bedding (?)	fine-grained with up to 10 % <2 mm feldspar derately sericitic and chloritic. 4-7 % l pyrite. Lower contact is arbitrarily placed lende first appears.  It gouge at 232.5 m. Fault appears to be at 45	AE08324 AE08325 AE08326 AE08327 AE08328	233.5 234.5 235.5	233.5 234.5 235.5 236.2 237.0	1.0 1.0 1.0 .7	8 7 5 5 6	105 73 101 128 76	33 17 16 20 15	60 61 62 70 102	1 <1 <1 <1 1	<5	440 330 140 200 160
		233.0 4.5 C	n zone of semi-massive pyrite associated with eartz-carbonate flooding.											
237.0	242.4	Similiar to with up to hornblende evenly thro	CCIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF 232.5 to 237.0 m. Green-grey, fine-grained 5 % 1-3 mm dark green, subhedral to anhedral crystals. The hornblende is not distributed aghout the rock but tends to occur in patches in diameter. 5-7 % disseminated and fracture pyrite.	AE08329 AF00340 AE08330 AE08331 AE08332 AE08333	238.0 239.0 240.0	238.0 237.5 239.0 240.0 241.0 241.8	1.0 .2 1.0 1.0	6 n/a 5 5 4	114 39 92 111 106 127	20 n/a 19 16 15	51 67 55 33 39 25	2 n/a 1 1 <1	5 n/a <5 <5 10 <5	<20 83 50 <20 80 150

AE08334 241.8 242.4

247.0

237.8 238.1 Pale green ash tuff or dyke. Massive (no

core axis.

internal bedding) and fine-grained with 5 % hornblende and 3 % disseminated pyrite. Upper and lower contacts are sharp at 80 degrees to core axis. Lower contact is offset less than 0.5 cm in many places along microfractures.

3 mm band of massive pyrite at 70 degrees to

261.7

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21 12

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
		Rock is crushed fractured and brecciated over the entire section. Moderately to strongly sericitic. 4 % disseminated pyrite. Not possible to measure orientation of the fault.	AE08335 AE08336 AE08337	243.4		.6 .7 .9	5 5 5	70 33 303	19 20 7	30 50 49	1 1 <1	<5 <5 <5	520 290 250
245.0	248.4	MASSIVE SILICIFIED ROCK Very similiar to 237.0 to 242.4 m but no hornblende. 5-10 % <2 mm feldspar in a siliceous weakly chloritic matrix. 6-7 % disseminated and fracture controlled pyrite. Lower contact is a 10.0 cm fault breccia zone at 52 degrees to core axis.	AE08338 AE08339 AE08340	245.0 246.0 247.2	247.2	1.0 1.2 1.2	5 6 5	97 162 75	7 13 15	44 43 39	<1 <1 <1	<5 <5 <5	90 170 180
		246.6 247.2 Fault breccia at 70 degrees to core axis. As 242.4 to 245.0 m.											
248.4	250.3	FELSIC ASH TUFF Grey-green, fine-grained, sericitic and chloritic. Rock has a banded appearance (bedding?). Banding is at 85-90 degrees to core axis. 4-5 % disseminated and locally thinly banded pyrite. Lower contact is sharp at 70 degrees to core axis.	AE08341 AE08342			1.0	4 5	25 40	13 11	13 20	<1 <1	<5 <5	970 750
250.3	265.4	MASSIVE SILICEOUS FELSIC TUFF/FLOW Varies from a very siliceous almost aphanitic grey rock with up to 5 % <2 mm feldspar crystals to a massive grey-green, fine-grained sericitic and chloritic rock. Very siliceous feldspar porphyritic rock occurs between 250.3 and 255.7 m, 259.6 and 260.4 m, 261.9 and 262.9 m and between 264.5 and 264.9 m. Sericite-chlorite altered rock has a slightly pinkish tint due to fine thermal biotite. Contacts between the two rock types are often sharp at 65-80 degrees to core axis. Roughly equal ammounts of the two rock types occur over the interval. Lower contact is at 80 degrees to core axis.  STRUCTURE: Rock is strongly microfractured and locally brecciated between 255.1 and 255.7 m. Slip at 72 degrees to core axis at 264.9 m.	AE08343 AE08344 AE08345 AE08341 AE08347 AE08349 AE08350 AE08351 AE08353 AE08353 AE08353 AE08355 AE08356 AE08356 AE08357 AE08358	253.3 253.7 254.3 255.7 256.7 257.7 258.7 259.7 260.7 261.7 261.8 262.8 263.8	252.3 253.3 254.3 253.8 255.7 256.7 257.7 258.7 260.7 261.8 262.8 263.8 264.8	1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.0 1.0 1.0 1.0	4 1 3 1 n/a 3 4 5 5 5 3 4 35 4 4 5 9	15 6 9 9 <10 20 24 109 116 189 79 124 0.97% 346 182 21 63	10 5 5 7 7 7 10 11 10 46 15 15	10 8 7 8 *10 18 24 25 24 19 9 25 159 16 6 13 27	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<pre> &lt;5 &lt;5 &lt;75 n/a &lt;55 &lt;55 10 5 15 35 10 5 5 5</pre>	550 640 870 930 725 350 600 110 420 500 430 <20 830 1000 700 950

262.0 262.1 15 % pyrite and trace chalcopyrite. Sulphide are fracture controlled.

16.0 cm zone of coarsely disseminated pyrite-pyrrhotite (35% total sulphides).

262.5 264.0 Several <1.0cm bands or fractures filled with

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

277.2 277.3 Breccia: Angular more chloritic breccia fragments sit in a very siliceous matrix

(quartz dumping).

HOLE No: Page Number WEST87-21 13

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
			pyrite at 60-70 degrees to core axis.											
		264.9	35 % pyrite over 6.0 cm.											
265.4	265.6	Medium gree phenocryst: weakly mag	HYRIC GABBRO en, fine-grained with 10 % white 1-3 mm feldspar is and 1 % finely disseminated ilmenite. Rock is metic. 1.5 cm chill margins at upper and lower Lower contact is at 85 degrees to core axis.									,		
265.6	272.0	Fine-grain thermal bid banded approved to core ax 5-7 % frac are usually axis and 4.0 cm of 1	ANDESITIC TUFF/FLOW ed, grey-green with a pinkish tint due to parance in places. Banding is at 65-70 degrees is. Weakly sericitic and very weakly chloritic. ture controlled pyrite. Pyrite-filled fractures y <3 mm wide and are at 70-80 degrees to core sometimes have a siliceous alteration envelope. massive pyrite at lower contact. Lower contact m fault gouge at 70 degrees to core axis.	AE08359 AE08360 AE08361 AE08362 AF00342 AE08363 AE08365	267.6 268.6 269.0 269.6 270.4	271.0	1.0 1.0 1.0 1.0 .1 .8 .6	4 4 5 5 n/a 4 5 5	98 110 140 108 107 67 99 223	18 24 24 27 n/a 28 14	27 21 27 20 32 16 17	<1 <1 1 1 n/a 1 1	5 5 5 <5 n/a <5 <5	210 490 450 210 132 310 310 440
272.0	273.3	Transition hornblende siliceous, Fractures other. The pyrite and envelope. dark green patches <	from the massive silicified unit above to the bearing siliceous unit below. Rock is pale yellow-green and highly fractured. The are randomly oriented and criss-cross each ey are usually < 3 mm wide and are filled with surrounded by a thin siliceous alteration 8-10 % pyrite overall. Less than 5 % 1-3 mm hornblende crystals which tend to occur in 10.0 cm wide. Lower contact placed where crystals become prolific and rock becomes en.	AE08366 AE08367	272.0 273.0	273.0 274.0	1.0	5 6	350 90	15 17	9 11	1 1	<5 10	290 130
273.3	281.0	Mottled li 95) with 5 Strongly m web-like p silicified 5-10 % pyr Several bl	LICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF ght to dark green siliceous and massive (RQD's > -20 % 1-4 mm black hornblende crystals. icrofractured. Hairline fractures form a attern and the rock is strongly bleached and for 1-2 mm on either side of the fractures. ite most of which is fracture controlled. eached patches up to 10.0 cm wide. Lower sharp at 73 degrees to core axis.	AE08368 AE08369 AE08370 AE08371 AE08372 AE08373 AE08374	276.0 277.0	277.0 278.0 279.0 280.0	1.0 1.0 1.0 1.0 1.0	6 5 5 5 5 5 5	93 95 64 38 74 51	14 15 16 15 16 16 16	16 18 17 9 13 15	1 1 1 1 1 1	<5 5 5 <5 <5 10 5	300 100 290 440 290 250 120

PROPERTY: WEST CLAIMS

HOLE No: Page Number FALCONBRIDGE LIMITED WEST87-21 14 DIAMOND DRILL LOG From To Sample From Width % Total Pb Zn Aσ Αu Ba (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 277.9 278.2 Strongly fractured zone. Weak pervasive epidotization. 25 % <2 mm white feldspars in a very siliceous strongly fractured matrix. 280.5 280.6 Fine-grained MAFIC DYKE. Contacts are sharp at 90 degrees to core axis. 281.0 281.8 EARLY MAFIC DYKE Dark green, massive and fine-grained. Nil-trace fracture controlled pyrite. 2.5 cm wide bleached margin at upper contact. Lower contact is at 60 degrees to core axis. 281.8 291.4 MASSIVE SILICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF As 273.3 to 281.0 m except less hornblende and pyrite. AE08375 281.8 282.8 127 16 33 5 110 Hornblende is less pervasive, comprises < 2 % of the rock AE08376 282.8 283.8 1.0 86 25 16 10 400 and tends to occur in patches < 30.0 cm wide. Up to 6 % AE08377 283.8 284.8 1.0 22 16 11 <5 490 fracture controlled pyrite. Lower contact is at 90 AE08378 284.8 285.8 1.0 26 17 13 600 degrees to core axis. AE08379 285.8 286.8 1.0 141 17 14 ₹5 280 AE08380 286.8 287.8 125 1.0 19 <1 130 282.4 282.8 Moderately chloritization zone. AE08381 287.8 288.8 1.0 111 < 5 18 <1 ₹5 390 AE08382 288.8 289.8 56 ₹5 20 <1 300 ₹5 290.2 290.4 Rock has a banded appearance. Banding is at AE08383 289.8 290.6 . 8 81 ₹5 17 <1 ∢5 400 85-90 degrees to core axis. AE08384 290.6 291.4 .8 158 ₹5 230 291.4 294.8 FELSIC FELDSPAR CRYSTAL TUFF Up to 5 % <2 mm white feldspar crystals in a very AE08385 291.4 292.4 ₹5 880 1.0 16 <1 fine-grained siliceous grey matrix. In many places rock AE08386 292.4 293.2 . 8 33 11 6 <1 ⟨5 920 has a banded appearance suggesting that it is bedded. 127 <1 5 AE08387 293.2 294.0 .8 14 12 620 Weakly to moderately sericitic. Occasional spot of apple AE08388 294.0 294.8 105 11 1.3 <1 860 green mariposite. 2-5 % disseminated and banded pyrite. Lower contact is placed where rock loses its banded character. 291.7 Bedding is at 88 degrees to core axis. 294.8 297.9 MASSIVE SILICEOUS FLOW/INTRUSION Massive green-grey and somewhat mottled. Appears to be AE08389 294.8 296.0 27 <1 10 600 composed of 10 % < 2 mm feldspars in a very fine-grained AE08390 296.0 297.0 1.0 148 12 14 <1 ₹5 170 massive, hard siliceous weakly chloritic and sericitic AE08391 297.0 297.9 218 12 15 <1 290 matrix. 4-6 % disseminated and fracture controlled

is at 80 degrees to core axis.

pyrite. Nil-weak thermal biotite alteration. Less than 1 %, 3 1 mm hornblende crystal below 296.9 m. Lower contact PROPERTY: WEST CLAIMS

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-21 15

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
		fine-graine matrix. Rare appearance above 298.5 feldspars in flow or int Lower contact	0 % < 1 mm feldspar crystals in a very districted siliceous weakly to moderately sericitized expot of mariposite. Rock has a banded which appears to be bedding in several places m. Below 298.5 m rock becomes massive and acrease in size (still < 2 mm) and may be a cusive. 2-4 % disseminated and banded pyrite. Set is at 80 degrees to core axis and is offset minor slip at 23 degrees to core axis.	AE08392	297.9	299.1	1.2	3	28	11	3	<b>(1</b>	<b>&lt;</b> 5	700
		298.0	Bedding (?) is at 80 degrees to core axis at 298.0.			. •								
		298.5	1.0 cm wide band of massive pyrite at 80 degrees to core axis.											
299.1	318.0	As 273.3 to Lower contact STRUCTURE:	ICIFIED HORNBLENDE-BEARING MAFIC FLOW/TUFF 281.0 m. Hornblende is rare below 308.4 m. ct is at 90 degrees to core axis.  gouge at 85 degrees to core axis at 307.3 m.  2.5 cm band of massive pyrite. Band has irregular margins but is at 65 c/a.  2.0 cm irregular band of semi-massive pyrite at 70 degrees to core axis.	AE08393 AE08394 AE08395 AE08396 AE08397 AF00343 AE08398 AE08399 AE08400 AE08251	300.1 301.1 302.1 303.1 303.8 304.1 305.1 306.0	302.1 303.1 304.1 303.9 305.0 306.0 307.0	1.0 1.0 1.0 1.0 1.0 .1 .9	8 6 5 4 n/a 5 5 4 5	146 85 46 40 158 18 37 73 50	12 12 7 7 9 n/a 7 7	15 18 22 19 17 29 18 24 19	<1 <1 <1 <1 <1 n/a <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<pre>&lt;5 &lt;5 &lt;5 &lt;5 &lt;75 &lt;75 n/a 5 &lt;55 &lt;75 &lt;75 &lt;75 &lt;75 &lt;75 &lt;75 &lt;75 &lt;75 &lt;</pre>	280 400 280 360 290 267 150 260 40
		301.2 301.3	Bleached epidote-calcite alteration patch with 8 % fracture controlled pyrite-pyrrhotite.	AE08252 AE08253 AE08254 AE08255	308.0 309.0 310.0 311.0	309.0 310.0 311.0	1.0 1.0 1.0	4 4 6 5	47 55 84 82	6 11 11 11	24 18 23 20	<1 <1 <1 <1	<5 30 <5 <5	330 700 260 310
•			Strongly siliceous zone.  10 % fracture controlled and disseminated	AE08256 AE08257 AE08258	312.0	313.0	1.0 1.0 .5	6 5 10	166 112 75	14 11 16	17 24 18	<1 <1 <1	<5 15 <5	330 340 400
		314.5 318.0	pyrite.  As 308.7 to 309.2 m. Rock is very siliceous, mottled green-grey-brown. Weak chlorite and thermal biotite alteration.	AE08259 AE08260 AE08261	314.5 315.5 317.0	317.0	1.0 1.5 1.0	3 3 4	28 497 122	13 16 14	9 19 25	<1 <1 <1	<5 <5 <5	1300 640 790
		316.2	4.0 cm wide FELDSPAR PHYRIC GABBRO DYKE at 80 degrees to core axis.			:								

#### 318.0 348.6 FELDSPAR PHYRIC GABBRO

Dark green, fine-grained, massive with 5-10 % 1-4 mm white feldspar phenocrysts. Minor quartz-carbonate filled fractures. 3 % very finely disseminated ilmenite.

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: WEST87-22

Page Number

Hole Location: 14+00 E 7+30 S

NTS: 092B/13E

UTM: 5411584 N, 450431 E

Azimuth: 15 Dip: -45 Elevation: 186 m Length: 376.5 m

Started: Nov. 23/87 morning Completed: Nov. 28/87 morning

Claim No. West 1

Section No.: Line 14+00 East

Logged By: D.P. Money

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

Purpose: To test IP chargeability anomalies from 6+80 DIP TESTS

to 7+10 S and from 4+80 to 5+50 S and

VLF conductors at 7+10 and 5+30 S. Azi-

Azi-Azi-Length muth Dip Length muth Dip 111.90 23.0 -44.0271.60 24.0 -42.0195.10 24.0 -43.0340.50 26.0 -42.0

To From Sample From To Width % Total Zn Ва Αg Au -----DESCRIPTION-----(m) No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

.0 4.3 OVERBURDEN AND CASING
Minor boulder pieces including coarse grained gabbro. No chit to mark start of coring.

4.3 10.6 EPIDOTE SPOTTED MAFIC FLOW

Dark to medium green matrix with 10 to 20 %, 1 to 3 mm,
epidote grains to laths. Oxidized to a depth of 6.5 m.

Massive with a weak foliation at 67 degrees to core axis.
There are minor fracture controlled calcite veinlets.
There is strong pervasive silicification from 6.0 to 6.4.
From 7.0 to 10.6 there are carbonate white streaks

From 7.0 to 10.6 there are carbonate white streaks parallel to foliation. The epidote spots host trace pyrite and often have calcite rims.

10.6 11.2 FELSIC DYKE

Fine-grained light grey, very siliceous rock with no phenocrysts. Hosts fracture controlled carbonate veinlets.

22.6 CARBONATIZED MAFIC FLOW/TUFF?

Strongly carbonatized mafic flow or tuff with 50 % white streaks of carbonate, due to strong pervasive carbonatization. Dark green elsewhere with 20 % epidote grains and laths after feldspar. There are also 2 to 3 % chlorite grains after hornblende. Rare epidote splotches, as from 4.3 to 10.6 occur. There is trace to 0.5 % disseminated pyrite and magnetite.

18.0 18.17 Sheared and carbonatized mafic flow.
18.17 18.24 35 % pyrite, trace to 1 % chalcopyrite in calcite - chlorite.

AF00585 8.0 8.1 .1 n/a 142 n/a 63 n/a n/a 122

AG08201 17.0 18.0 1.0 154 15 1100 19.0 AG08202 18.0 1.0 30 0.82 % 36 147 2 10 1000 AG08203 19.0 20.0 1.0 165 101 5 820

# FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 2

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pph	Ba b) (ppm)
		18.24 18.31 Chlorite rubble with pyrite. 18.31 18.47 75 % pyrite and 3 % chalcopyrite in chlorite - calcite.											
		18.47 18.60 Silicified and carbonatized flow at 51 degrees to core axis.									•		
		18.60 18.72 60 % pyrite and 3 to 5 % chalcopyrite in calcite - chlorite, calcite contorted on lower chlorite margin.											
		18.72 18.90 Black - green chlorite with calcite veinlets and 3 % pyrite.											•
		18.90 18.93 35 % pyrite in calcite. 18.93 19.00 Chlorite as from 18.72 to 18.90.											
22.6	25.3	SILICIFIED LAPILLI TUFF											
		Strongly silicified lapilli tuff as from 11.2 to 22.6 with silica dumping, veinlets and splotches. There are minor calcite veinlets and chlorite at 70 degrees to core axis.	AG08207	25.0	26.0	1.0	3	181	19	115	1	<5	1100
25.3	25.4	SEMI-MASSIVE SULPHIDES IN CHLORITE-CARBONATE ALTERATION 9 Cm of 20 to 25 % pyrite and trace chalcopyrite in black chlorite - calcite at 80 degrees to core axis.				·		e e					
25.4	32.2	SILICIFIED LAPILLI TUFF				٠.							
		As from 22.6 to 25.3 with epidote splotches. 27.6 27.6 5 % pyrite in chlorite - calcite. 30.2 30.3 10 % pyrite in chlorite - calcite. 31.3 32.2 3 % disseminated pyrite.	AG08208 AF00586 AG08209	27.0 30.3 31.3	28.0 30.4 32.2	1.0 .1 .9	2 n/a 3	202 266 786	15 n/a 16	160 233 134	1 n/a 2	n/a	2100 466 1300
32.2	32.3	FAULT GOUGE					•						
32.3	34.3	CHLORITIZED FELSIC TUFF						·					
		Chloritized felsic ash tuff. 32.3 32.85 Dark grey siliceous tuff with 5 to 10 %, <= 1	AG08204 AG08205	32.3 33.1	33.1 33.7	.8 .6	-	1457 0.66 %	22 40	146 124	2 3	10 35	1300 250
		mm, quartz eyes and 3 to 5 % pyrite parallel to foliation, foliation at 66 degrees to core axis.	AG08206	33.7	34.3	.6	5	410	22	85	. 1	15	910
		32.85 33.10 5 % pyrite with trace chalcopyrite in strongly chloritized felsic. 33.10 33.70 30 % pyrite and 2 % chalcopyrite as massive											
		bands with calcite matrix in black to dark green chlorite. Fine-grained chalcopyrite intergrown with							,				
		pyrite. 90 % pyrite and 3 % chalcopyrite from 33.30 to 33.35.				-				:		•	
		33.70 33.72 Fault gouge. 33.72 34.0 Siliceous grey tuff.											
		34.0 34.1 20 % pyrite in chlorite. 34.1 34.2 Tuff with chloritization.											

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22

		DIMMOND DKILL EOG						,					
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		34.2 34.3 20 % pyrite in chlorite.											
34.3	47.0	MAFIC LAPILLI TUFF Mafic lapilli tuff with 10 to 15 % epidote lapilli, up to 5 cm, and 10 % epidote grains and crystals. Dark green to black chloritic matrix. Epidote lapilli have calcite rims. Bedding is at 90 degrees to core axis. There is medium to strong pervasive carbonatization with minor weak silicification.  39.4 39.5 5 % pyrite in calcite - chlorite shear at 70 degrees to core axis.											
47.0	57.4	SILICIFIED MAFIC ASH TUFF Silicified mafic ash tuff with minor felsic ash tuff beds. Bedding is at 32 degrees to core axis at 56.0. There is thermal biotite (?), brown tinge throughout, strong from 49.7 to 50.3. Very silicified, chlorite on fracture and minor quartz - calcite veins. 48.3 48.3 Clay fault slip at 60 degrees to core axis. 47.0 50.2 1 % disseminated pyrite. 50.2 50.2 1 cm 30 % pyrite and quartz vein. 50.2 51.6 3 % disseminated pyrite. 51.6 51.7 10 % pyrite. 51.7 52.1 Trace disseminated pyrite. 52.1 52.2 20 % pyrite in calcite - chlorite. 52.2 53.3 Trace disseminated pyrite.	AG08210 AG08211 AG08212 AG08213 AG08214 AG08215 AG08216 AG08217	49.1 50.6 51.6 52.6 53.6 54.6 55.6 56.6	50.6 51.6 52.6 53.6 54.6 55.6 56.6 57.1	1.5 1.0 1.0 1.0 1.0 1.0 1.0	6 4 1	52 42 154 24 37 18 23 0.97 %	17 17 20 16 20 14 9 25	79 99 119 117 91 73 64 180	1 1 1 1 1 1 1 2	5 10 10 10 (5 (5	520 310 140 40 200 340 210 <20
		53.2 53.4 7 race disseminated pyrite. 53.4 53.6 Trace disseminated pyrite. 53.6 53.7 10.5 cm of 70 % pyrite in calcite - chlorite,											

70 to 90 degrees to core axis.

57.1 57.4 Trace disseminated pyrite.
Foliation: contorted with locally variable orientation at

# FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 4

From (m)	To (m)	DESCRIPTION	Sample • No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Epidotized and carbonatized lapilli as before, up to 4 cm. Very fine-grained, dark green to medium grey chloritic matrix with up to 5 % epidote grains. There are fracture	AF00587 AF00588	63.8 90.1	63.9 90.2	.1	n/a n/a	76 57	n/a n/a	185 100	n/a n/a	n/a n/a	204 93
		controlled calcite veinlets and weak pervasive carbonatization. There are minor black chlorite specks, (< 1 mm, in the matrix, after hornblende (?). Massive, almost flow like, but large quantity of clasts and intermixed tuffaceous beds indicate volcaniclastic						٠.					
		origin. There is trace to nil sulphides except as noted. 60.9 61.0 Calcite - chlorite shear with nil sulphides. 69.2 69.3 Felsic ash tuff bedding at orientation of 54											
		degrees to core axis with trace to 1 % pyrite parallel to foliation. 69.8 69.8 5 cm quartz vein with pyrite. 80.0 80.5 Quartz - chlorite - pyrite vein with 5 % pyrite					•						
	,	as cubes to 8 mm, mostly blocky, highly fractured core.  87.4 92.0 Local epidote - calcite veins at 30 to 90 degrees to core axis.							To describe		•		
		92.6 93.1 Sheared with chlorite - carbonate and local lapilli. Foliation:. 65.3:48 degrees to core axis.											
		72.3 : 53 degrees to core axis. 78.6 : 46 degrees to core axis. 88.2 : 52 degrees to core axis.											
	•	Lost core :. 79.0 80.4 0.3 m lost core.	·										
93.1	102.4	CHLORITIZED FELSIC TUFF  Dark grey to black chloritic felsic tuff, very siliceous with black chlorite on fractures. Very fine-grained matrix with 5 to 10 % epidote crystals, 10 to 15 %, < 1 mm, quartz eyes, 10 % feldspar grains and trace disseminated pyrite.	AG08218 AF00589	94.6 98.5	95.1 98.6	.5	4 : n/a	1200 65	20 n/a	193 217	1 n/a	20 n/a	<20 118
		93.6 93.7 5 cm 10 % pyrite in black chlorite in shear at 44 degrees to core axis. 94.9 95.0 28 cm true thickness of 70 % pyrite, 2 % chalcopyrite in calcite band at 51 degrees to		÷									
		core axis. Most chalcopyrite in contact with calcite.  96.9 97.0 10 % pyrite in calcite in chloritization at 60 degrees to core axis.					•	·					
•		Foliation: 95.1: 44 degrees to core axis. 98.5: 55 degrees to core axis. 100.3: 48 degrees to core axis.		. :									
		COLOR - AC MERITARY VE COME HIMBER											

### FALCONBRIDGE LIMITED

HOLE No: Page Number WEST87-22 5

Au Ba (ppb) (ppm)

5

40

15

⟨5

5

n/a

15

5

⟨5

⟨5

₹5

n/a

190

380

850

570

850

432

500

370

350

550

340

293

(mqq)

1

1

1

1

1

1

1

n/a

n/a

		DIAMOND DRILL LOG								
From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides		Pb (ppm)	Zn (ppm)
		Sericite with quartz - (chlorite) and 1 % pyrite.								
	•									
102.8	132.2	MASSIVE MOTTLED SILICEOUS ROCK			*					
		Siliceous light to dark grey rock. Siliceous lapilli in	AG08219			1.1	2	149	14	151
		chloritic matrix (?) or silicified felsic ash tuff with	AG08220			1.0	5	101	29	245
		silica dumping (?) or brecciated felsic flow (?).	AG08221				5	41	16	174
		Probably is lapilli tuff. Fracture controlled chlorite	AG08222				3	212	12	100
		occurs. Minor white calcite and quartz veinlets occur at	AG08223			.5	. 8	27	22	49
		orientation of 0 to 90 degrees to core axis. Weak thermal	AF00590			.1	n/a	19	n/a	36
		biotite occurs, resulting in localized brown tinge.	AG08224				3	71	16	127
		102.8 103.9 1 to 2 % disseminated pyrite.	AG08225				1	37	14	101
		103.6.2 M lost core.	AG08226				1	17	14	101
		103.9 105.9 5 % pyrite in calcite and blebs mainly	AG08227				1	34	11	102
		parallel to foliation.	AG08228				1	19	11	115
		105.9 106.3 10 cm fault gouge clay and 0.3 m lost core.	AF00591	131.1	131.2	.1	n/a	12	n/a	180
		106.3 107.5 Fracture controlled calcite veinlets parallel								
		to foliation. 108.0 3.0 Cm 10 % pyrite in calcite.	•							
		108.6 109.0 3 % pyrite in calcite - chlorite parallel to							•	
		foliation.								
		110.2 110.4 20 % pyrite in calcite.								
		110.0 110.4 Local fault gouge and clay at 80 to 90 degrees								
		to core axis.							~	
		114.3 116.0 Blocky, highly fractured core.								
		116.0 118.0 Trace to 1 % disseminated pyrite.								
		118.3 118.7 Blocky, highly fractured core.								
		119.2 2.0 Cm of 60 % pyrite at 66 degrees to core axis.								
		119.3 1.0 Cm calcite veinlet at 67 degrees to core axis.					•			
		121.4 121.7 10 % pyrite in chloritized rock with calcite								
		veinlets and minor fault slips all at 49								
		degrees to core axis.								
		122.4 122.7 Strong pervasive carbonatization.								
		126.4 4.0 Cm of 60 % pyrite in calcite - green chlorite								
		with black calcite specks.								
		127.3 2.0 Cm of 70 % pyrite in calcite.								
		127.7 3.0 Cm of 60 % pyrite in calcite.								
		127.8 2.0 Cm of 50 % pyrite in chlorite - calcite.								
		129.9 3.0 Cm calcite veinlet at 45 degrees to core axis								
		with 10 % pyrite.								
		Foliations:								
		102.9: 63 degrees to core axis.								
		112.3 : 57 degrees to core axis.								

117.7: 55 degrees to core axis. 125.6: 55 degrees to core axis. 129.7: 39 degrees to core axis. 130.1: 49 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 6

Width % Total From To Sample From To Cu Pb Zn Αq Au Вa (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) (m) matrix with 30 % epidote grains and trace disseminated pyrite. Foliation is variable throughout. Calcite occurs on some fractures. 133.8 139.0 MASSIVE MOTTLED SILICEOUS ROCK Green to brown lapilli in chlorite - sericite matrix. Bedding at average of 70 degrees to core axis, range of 60 to 90 degrees to core axis. Locally brecciated with fracture filling chlorite, looks like a lapilli tuff. Trace to 1 % disseminated pyrite occurs. Sharp lower contact at 61 degrees to core axis. 139.0 140.7 EPIDOTE SPOTTED MAFIC LAPILLI TUFF Epidote spotted mafic lapilli tuff with 10 to 15 % epidote grains to 3 cm lapilli. There are minor zoned veinlets, ( <5mm ), with calcite rim then epidote and pyrite core.</pre> Rock is massive medium green. 140.7 144.3 MASSIVE MOTTLED SILICEOUS ROCK Mottled felsic with transition to epidote spotted mafic lapilli tuff, (transition from 143.4 to 144.3 with strong silicification ). Felsic is as from 133.8 to 139.0. 141.0 5.0 Cm chlorite - calcite with 15 % pyrite. 143.9 3.0 Cm 30 % pyrite in chlorite. 144.3 145.9 EPIDOTE SPOTTED MAFIC LAPILLI TUFF Mafic lapilli tuff with 5 to 10 % epidote lapilli and AF00592 145.1 145.3 n/a 114 n/a 159 n/a n/a splotches. Epidote lapilli have epidote core and calcite rim and are rounded. There is a fine-grained mafic matrix. Rock is massive with no foliation. 145.9 146.6 OUARTZ - FELDSPAR PORPHYRY DYKE OR SILL Massive QFP felsic dyke with 70 %, 3 to 6 mm, crystals: approximately 50 % feldspars, approximately 20 % quartz and 3 % epidote. Trace disseminated pyrite in matrix.

146.6 148.3 SILICIFIED MAFIC ASH TUFF

matrix.

Silicified mafic ash tuff with mottled fracture controlled silicification. There are 5 to 7 %, 1 mm, quartz eyes, 1 to 2 % fracture controlled pyrite, 1 to 2 % epidote grains, and trace to 1 % hornblende grains in a chloritic

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 7

As from 132.2 to 133.8. Sharp upper contact and transitional lower contact to mottled felsic lapilli tuff. There is so a verage 7 to 10 % disseminated and banded pyrite. Hosts 7 to 10 %, 2 to 7 mm (a verage 4 mm consist of 50 % 1 to 5 cm thick bands of coarse, up to mm, pyrite parallel to foliation average is at 70 degrees to core axis.  As from 132.2 to 133.8. Sharp upper contact and transitional lower contact is at a feature of the first of the felsic lapilli tuff. There is on average 7 to 10 % disseminated and banded pyrite. Hosts 7 to 10 %, 2 to 7 mm (a verage 4 mm AGO8230 157.0 158.0 1.0 10 20 20 39 1 55 2600 axis. There is on average 7 to 10 % disseminated and consist of 50 % 1 to 5 cm thick bands of coarse, up to 5 mm, pyrite parallel to foliation. No chalcopyrite was observed. Foliation average is at 70 degrees to core axis and varies from 66 to 79 degrees to core axis. 156.0 157.0 Contorted with fault slips.	From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
Purple tinged felsic lapilli (?) in chlorite - sericite matrix with trace disseminated pyrite and bedding (?) or foliation (?) at 70 degrees to core axis.  156.0 160.1 FELSIC TUFF  Upper contact is at at fault slip at 80 degrees to core AGO8229 156.0 157.0 1.0 10 61 17 755 1 5 3900 axis. There is on average 7 to 10 % disseminated and AGO8230 157.0 158.0 1.0 10 20 20 39 1 (5 2600) banded pyrite. Hosts 7 to 10 %, 2 to 7 mm ( average 4 mm AGO8231 158.0 159.0 1.0 7 16 16 37 1 (5 1900) ), quartz eyes. The pyrite bands are conductive and AGO8232 159.0 160.1 1.1 5 15 17 73 2 (5 1300) consist of 50 % 1 to 5 cm thick bands of coarse, up to 5 mm, pyrite parallel to foliation. No chalcopyrite was observed. Foliation average is at 70 degrees to core axis and varies from 66 to 79 degrees to core axis. 156.0 157.0 Contorted with fault slips.	·		transitional lower contact to mottled felsic lapilli tuff. There is strong fracture controlled silicification			, ·								
Upper contact is at at fault slip at 80 degrees to core AG08229 156.0 157.0 1.0 10 61 17 755 1 5 3900 axis. There is on average 7 to 10 % disseminated and AG08230 157.0 158.0 1.0 10 20 20 39 1 <5 2600 banded pyrite. Hosts 7 to 10 %, 2 to 7 mm (average 4 mm AG08231 158.0 159.0 1.0 7 16 16 37 1 <5 1900 ), quartz eyes. The pyrite bands are conductive and AG08232 159.0 160.1 1.1 5 15 17 73 2 <5 1300 consist of 50 % 1 to 5 cm thick bands of coarse, up to 5 mm, pyrite parallel to foliation. No chalcopyrite was observed. Foliation average is at 70 degrees to core axis and varies from 66 to 79 degrees to core axis. 156.0 157.0 Contorted with fault slips.	154.2	156.0	Purple tinged felsic lapilli (?) in chlorite - sericite matrix with trace disseminated pyrite and bedding (?) or											
	156.0	160.1	Upper contact is at at fault slip at 80 degrees to core axis. There is on average 7 to 10 % disseminated and banded pyrite. Hosts 7 to 10 %, 2 to 7 mm ( average 4 mm ), quartz eyes. The pyrite bands are conductive and consist of 50 % 1 to 5 cm thick bands of coarse, up to 5 mm, pyrite parallel to foliation. No chalcopyrite was observed. Foliation average is at 70 degrees to core axis and varies from 66 to 79 degrees to core axis. 156.0 157.0 Contorted with fault slips.	AG08230 AG08231	157.0 158.0	158.0 159.0	1.0 1.0		20 16	20 16	39 37	1 1 1 2	<5 <5	2600 1900

- 160.1 160.3 CHLORITE SERICITE SCHIST

  Chlorite sericite schist with foliation at 64 degrees to core axis, medium to strong pervasive carbonatization and trace disseminated pyrite.
- 160.3 163.8 EPIDOTE SPOTTED MAFIC LAPILLI TUFF
  Hosts 10 % 1 to 5 mm epidote grains and 7 % epidote
  splotches after lapilli. There are fracture controlled
  calcite veinlets, some of which cross-cut lapilli. The
  foliation is at 63 degrees to core axis.
- 163.8 164.9 QUARTZ FELDSPAR PORPHYRY DYKE OR SILL

  Very coarse white to light grey QFP dyke with
  approximately 30 %, 5 to 10 mm, quartz eyes and 10 %, 2
  to 5 mm, feldspar grains. Very sharp upper contact and
  lower contact. Pyrite occurs on margin of intruded rock.
  There is trace to 0.5 % fracture controlled pyrite.
- 164.9 177.6 EPIDOTE SPOTTED MAFIC LAPILLI TUFF
  Fine-grained grey to green chloritic matrix with 5 to 7 %,
  1 to 2 mm, epidote grains and 10 %, 1 to 7 cm, epidote calcite lapilli with chloritized hornblendes. Massive
  strongly magnetic rock with strong local carbonatization

AF00593 171.2 171.3 .1 n/a 85 n/a 101 n/a n/a 91

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 8

From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp)	Ba b) (ppm)
		and trace pyrite in lapilli. 177.4 177.6 Blocky, highly fractured core.									•		
177.6	178.4	FELSIC TUFF Felsic tuff with blocky, highly fractured core to 177.9. At 177.9 there is 7 cm of 80 % pyrite. Tuff is sericitic and faulted with 10 % epidote and 5 5 quartz as 1 to 2 mm epidote grains. The foliation is at 61 degrees to core axis.	AG08233	177.6	178.4	.8	7	. 77	25	237	2	(5	1100
178.4	179.2	EPIDOTE SPOTTED MAFIC LAPILLI TUFF As before.		•									
		AS Delote.		•					•				
179.2	179.3	FAULT GOUGE											
179.3	185.4	EPIDOTE SPOTTED MAFIC LAPILLI TUFF Hosts 5 % epidote splotches with calcite rims. There is minor fracture controlled calcite veinlets. The foliation is at 60 degrees to core axis. 180.4 181.0 2 % pyrite in calcite veinlet parallel to foliation. 183.7 184.5 Medium silicification and strong epidotization and carbonatization with 2 to 3 % pyrite.	AG08234 AG08235			.7	2 3 1	330 1962	17 17	193 86	2 2	<5 10	2600 (20
185.4	185.8	CHLORITE - SERICITE SCHIST  Chlorite - sericite schist with 2 to 3 % quartz eyes and strong foliation at 61 degrees to core axis. There is minor fault gouge and 7 % disseminated pyrite.	AG08236	185.4	185.8	.4	7	119	24	710	2	30	2300
185.8	193.7	PYRITIC QUARTZ EYE BEARING FELSIC TUFF Very sericitic tuff with 7 to 10 %, 2 to 13 mm ( average 5 mm ), quartz eyes and 1 % disseminated pyrite except as noted.  187.2 187.7 0.3 m lost core and fault gouge with orientation at 70 degrees to core axis.  188.2 188.3 9 cm 80 % coarse pyrite in sericite with nil chalcopyrite.  191.3 191.8 Minor chloritization with 3 % coarse pyrite parallel to foliation.  Foliations:  186.5 : 72 degrees to core axis.  190.2 : 61 degrees to core axis.	AG08237 AG08238 AG08239 AG08240	191.3 191.8	191.8 192.2	.5 .5 .4 1.5	16 3 80 3	77 12 48 21	85 20 77 16	39 41 78 47	2 2 <1 <1	10	990 2500 320 1740
	4	191.1: 76 degrees to core axis. 191.8 192.2 MASSIVE SULPHIDES 36 cm of 75 to 90 % pyrite in sericite - quartz - calcite gangue. The					•						

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 9

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		pyrite is very conductive (110 ohm over 16 cm).  192.2 192.3 SEMI-MASSIVE SULPHIDES 30 % pyrite in sericite 192.3 193.5 Strongly contorted with quartz veins. 192.3 193.7 2 % pyrite. 192.3 193.2 Weakly kinked with foliation at 75 degrees to core axis.											
193.7	196.6	CHLORITIZED FELSIC TUFF Chloritic felsic tuff with 3 to 5 %, 1 mm, quartz eyes, 5 to 7 %, 1 to 2 mm, epidote grains and 3 % disseminated pyrite. The matrix is sericite - chloritization and it imparts a foliation at 70 degrees to core axis.  193.9 194.2 7 % pyrite in pyrite - calcite bands. 1 to 3 cm bands parallel to foliation, also occur at 194.7, 195.3 and 196.1.  196.0 196.4 0.3 m lost core.	AG08241 AF00598 AG08242	194.5	194.6	1.5 .1 1.4	3 n/a 3	74 81 37	16 n/a 16	81 125 33	<1 n/a <1	n/a	660 275 850
196.6	197.0	MASSIVE MOTTLED SILICEOUS ROCK Siliceous brecciated felsic flow (?) with sericite - chlorite matrix and 0.1 m lost core.											
197.0	207.9	CHLORITIZED FELSIC TUFF Chloritic felsic, changes from same as 193.7 to 196.6 to less chloritic. Less crystals observed, only 3 % epidote and 2 % quartz, 1 mm crystals. Pyrite averages 3 % and is disseminated and occurs in calcite bands parallel to foliation. The foliation averages 60 degrees to core axis to 205.1, then is at 0 degrees to core axis from 205.1 to 205.3, then is at 60 degrees to core axis from 205.3 to 205.6, is contorted at 0 to 30 degrees to core axis from 206.1 to 206.8 and at 207.2 is at 80 degrees to core axis. 203.4 203.5 10 cm of 20 % pyrite. 207.7 207.9 12 to 15 % pyrite over 20 cm.	AG08243 AG08244 AG08245 AG08247 AG08247 AG08248 AG08249	198.5 200.0 201.5 203.0	200.0 201.5 203.0 204.5 206.0	1.5 1.5 1.5 1.5 1.5	4 2 4 2 3 3 3 3	54 84 86 79 128 48 69	12 12 12 11 16 16	17 22 17 18 20 18 17	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<5 5 <5 10 10	540 190 510 410 590 590 420
207.9	208.2	MASSIVE MOTTLED SILICEOUS ROCK Siliceous brecciated felsic flow with 2 cm 30 % pyrite band at 60 degrees to core axis at 208.0.					•	. •					
208.2	212.1	CHLORITIZED FELSIC TUFF Chloritic felsic tuff with 5 %, 1 mm, feldspar grains and 10 to 15 %, 1 mm, quartz eyes. There are fracture controlled calcite veinlets. The foliation is at 80 degrees to core axis. There are local minor fault slips at 72 degrees to core axis, which are 0.5 to 1.0 cm thick. There is 1 % disseminated pyrite.	AF00599 AG08255	208.8	208.9	.1	n/a 2	41 124	n/a 12	39 37	n/a <1		467 210

As from 218.9 to 220.8.

242.0 242.4 3 % pyrite in a quartz vein.

HOLE No: Page Number FALCONBRIDGE LIMITED WEST87-22 10 DIAMOND DRILL LOG From To Sample From Width % Total Pb Au Вa Aσ (m) -----DESCRIPTION------(m) No. (m) (m) Sulphides (ppm) (ppm) (ppm) (mgg) (ppb) (ppm) 210.2 210.9 2 % banded pyrite. 212.1 218.9 EPIDOTE - CALCITE SPOTTED FELSIC TUFF Lapilli tuff with up to 2 to 3 % banded pyrite with AG08250 212.1 213.5 62 12 <1 10 90 calcite. Tuff is light green with minor pink calcite AG08251 213.5 215.0 1.5 120 11 48 <1 5 <20 veins. There are up to 7 %, 1 to 3 mm, epidote grains and AG08252 215.0 216.5 1.5 3 56 14 34 (1 (20 up to 5 %, 1 to 2 mm, quartz eyes. There is minor AG08253 216.5 218.0 1.5 105 27 <1 10 80 pervasive carbonatization and the rock is silicified (?). AG08254 218.0 218.9 .9 118 12 36 <1 10 240 The foliation varies from 80 to 90 degrees to core axis. 218.0 218.9 4 to 5 % pyrite in up to 5 cm calcite bands parallel to foliation. 218.9 220.8 FELSIC FLOW Light grey felsic flow with minor brecciation with a sericite matrix. There is on average 1 % disseminated pyrite. There are fine-grained feldspars. The foliation is at 73 degrees to core axis. 220.8 235.8 FELSIC ASH TUFF Felsic ash tuff with 20 to 30 %, 1 to 2 mm, quartz eyes in AG08256 220.8 222.3 1.5 102 16 54 <1 200 a quartz - sericite matrix. There is 2 to 3 % AG08257 222.3 223.8 1.5 3 184 21 71 1 ₹5 230 disseminated and banded pyrite. The foliation is at 75 AG08258 223.8 225.3 3 89 <5 1.5 18 55 1 110 degrees to core axis. There is weak chloritization and AF00600 224.5 224.6 .1 n/a 65 n/a 48 n/a n/a 86 there are minor calcite veinlets, both pink and white. AG08259 225.3 226.8 1.5 37 35 23 1 ₹5 540 224.9 225.1 Mafic dyke. AG08260 226.8 228.3 1.5 3 32 22 ₹5 740 19 1 AG08261 228.3 229.8 1.5 3 63 19 46 1 5 160 AG08262 229.8 231.3 91 1.5 18 32 1 150 AG08263 231.3 232.8 3 93 190 1.5 18 32 1 ₹5 AG08264 232.8 234.3 1.5 84 19 30 1 ₹5 120 AG08265 234.3 235.8 98 ₹5 1.5 31 110 235.8 237.0 MASSIVE MOTTLED SILICEOUS ROCK As from 218.9 to 220.8. 237.0 240.6 SERICITE - CHLORITE SCHIST Sericite - chlorite schist with minor feldspar - epidote AG08266 237.0 238.8 1.8 75 18 <5 410 grains, approximately 5 %, up to 1 mm. There are 3 % pink AG08267 238.8 239.8 1.0 155 23 ₹5 400 46 1 calcite veins. Minor fault at 238.3. There is 3 to 5 % AG08268 239.8 240.6 110 19 ⟨5 140 pyrite in, up to 2 cm. bands, which are parallel to the foliation at 72 degrees to core axis. 240.6 242.4 MASSIVE MOTTLED SILICEOUS ROCK

AF00601 241.7 241.8

.1

n/a

<10

n/a

13

n/a

n/a

200

chlorite vein.

267.1 267.2 Contorted sericite. 271.3 271.5 Sericite at 70 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 11

		DIAMOND DRILL LOG											
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
242.4	258.0	CHLORITIC FELSIC TUFF WITH EPIDOTE SPOTS There are 1 to 2 %, up to 2 cm long, 5 mm wide, epidote splotches and there are 5 to 10% 1 to 3 mm, quartz eyes. Minor calcite veinlets occur. There is weak to medium pervasive carbonatization. There is 1 to 3 %, average 1.5 %, disseminated and banded pyrite. The foliation is from 60 to 80 degrees to core axis and averages 75 degrees to core axis.	AG08269 AF00602 AG08270 AG08271 AG08272		245.0 252.8 255.5 256.5 258.0	1.0 .1 1.0 1.0	3 n/a 3 3 2	190 40 76 92 91	23 n/a 21 17 21	42 54 58 48 49	1 n/a 1 1	<5 n/a <5 <5 <5	210 136 100 30 70
258.0	258.4	MASSIVE MOTTLED SILICEOUS ROCK Brecciated flow (?) with sericite on fractures. There is 2 cm of fault gouge with 2 cm of 30 % pyrite below the fault at 258.2. The foliation and fault are at 66 degrees to core axis.											
258.4		QUARTZ-SERICITE SCHIST Sheared flow with minor quartz eyes and calcite veinlets. There is 2 to 3 % banded pyrite and minor disseminated pyrite.	AG08273	258.4	259.5	1.1	3	221	19	63	1	<5	670
259.5	260.1	MASSIVE MOTTLED SILICEOUS ROCK As from 258.0 to 258.4.											
260.1	265.4	CHLORITIC FELSIC TUFF WITH EPIDOTE SPOTS Chloritic felsic with 10 %, <= 1 mm, feldspar grains and 5 to 7 %, 1 mm, quartz eyes. There are local epidote veins and spots. There are minor calcite veinlets. Local weak pervasive carbonatization. Average 1 % disseminated and banded pyrite. 262.7 263.1 3 % disseminated pyrite with bands up to 2 cm thick.											
265.4	273.8	Massive light to medium grey siliceous rock with 7 to 10 %, 1 to 3 mm, feldspar laths. Foliation at 70 to 90 degrees to core axis.  265.4 265.9 Approximately 1 % chalcopyrite and 3 % pyrite in fracture controlled veinlets.  265.9 268.0 Trace to 1 % fracture controlled pyrite with grey in some veinlets, galena (?).  269.4 269.6 Sericite rubble.  269.6 269.7 3 cm of 10 to 15 % pyrite above 7 cm quartz -	AG08274 AF00603	265.4 267.5	266.4 267.6	1.0	3 n/a	616 <10	18 n/a	18 14	1 n/a	5 n/a	380 446

FALCONBRIDGE LIMITED WEST87-22 12 DIAMOND DRILL LOG From Ta Sample From Width % Total Cu Zn Aσ Au Ва (m) -----DESCRIPTION-----(m) No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 273.0 273.1 2 cm of 50 % pyrite in sericite. 273.8 276.5 CHLORITIZED FELSIC TUFF Chloritic felsic tuff with 10 to 15 %, 1 to 2 mm, quartz AG08275 273.8 275.2 ⟨5 430 1.4 and feldspar crystals. Rock is massive with weak AG08276 275.2 276.5 ₹5 410 pervasive carbonatization. The foliation is at 65 to 70 degrees to core axis. There is 2 to 3 % pyrite, fracture controlled and banded. 276.5 279.4 FELSIC FLOW Massive felsic flow with 5 to 7 %, 1 to 2 mm, feldspar grains. There is no foliation only fractures. There is 1 to 2 % fracture controlled pyrite with sericite from 277.3 to 277.8. 279.4 290.5 CHLORITIZED FELSIC TUFF Chloritic felsic crystal tuff with trace to 1 %, 2 to 3 AG08277 279.4 281.0 1.6 111 1 5 590 12 mm, quartz eyes and 7 to 10 %, 1 mm, feldspar grains. AF00604 280.2 280.3 .1 n/a 27 n/a 39 n/a n/a 612 Matrix is chloritization - sericite. There is weak to AG08278 281.0 282.5 51 1.5 12 22 5 1 560 strong pervasive carbonatization with local calcite AG08279 282.5 284.0 1.5 35 12 23 1 10 230 veinlets. On average 3 to 5 % fracture controlled and AG08280 284.0 285.5 1.5 70 1 14 38 5 310 banded pyrite occurs. AG08281 285.5 287.0 1.5 96 14 28 1 5 280 285.2 285.7 15 % pyrite in sericite. AG08282 287.0 288.5 2 1.5 74 12 23 1 ∢5 250 284.3 284.4 Calcite vein with 7 to 10 % pyrite. AG08283 288.5 290.5 2.0 118 9 25 **<1** 10 340 288.8 288.9 Calcite vein with 7 to 10 % pyrite. 290.5 291.0 FINE GRAINED PLAGIOPHYRIC GABBRO 10 %, 1 to 2 mm, feldspars in a fine-grained green matrix. 291.0 294.6 CHLORITIZED FELSIC TUFF Chloritic felsic tuff with minor hornblende bearing AG08284 291.0 292.5 139 <1 290 AG08285 292.5 294.0 splotches throughout. Hosts trace to 2 %, up to 1 mm, 82 7 26 5 410 1.5 ₹1 AG08286 294.0 quartz eyes and 5 to 7 % feldspar grains. There is 2 to 3 295.5 1.5 90 28 **<1** 210 15 % banded and fracture controlled pyrite. The foliation is from 70 to 80 degrees to core axis. 294.6 297.8 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW With local epidote spots. There is a fault at 296.7 with 5 295.5 297.0 73 <1 330 % pyrite at 54 degrees to core axis over 7 cm. There is 2 AG08288 297.0 297.8 80 33 260 (1)

Page Number

HOLE No:

#### 297.8 298.5 MAFIC DYKE

Very fine-grained medium green mafic dyke with no phenocrysts and very sharp lower and upper contacts.

to 3 % fracture controlled pyrite.

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number WEST87-22 13

From (m)	To (m)	DESCRIPTION	Sample • No.	From (m)	To (m)	Width (m)	% Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)	
		Foliation: 72 degrees to core axis.					· ·							
298.5	312.1										. ,			
•		Hosts on average 3 % hornblende, up to 10 %, and 10 %	AG08289	298.5	300.0	1.5	3	94	9	23	<b>&lt;1</b>	5	360	
		feldspar grains. Massive with strong pervasive silicification and weak pervasive carbonatization.	AG08290 AF00605	300.0 300.6	301.5 300.7	1.5	3 7/2	105 64	7/2	17 35	(1	5	290	
		Foliation is from 60 to 65 degrees to core axis. On	AG08291	301.5	303.0	1.5	n/a 1	63	n/a 9	14	n/a <1	n/a ∢5	219 320	
		average 1 to 2 % disseminated pyrite and up to 1 %	AG08292	303.0	305.0	2.0	2	105	11	15	<b>&lt;1</b>	190	310	
		fracture controlled pyrite. Minor epidote patches occur.	AG08293	305.0	307.0	2.0	2	99	11	20	₹1	25	200	
		298.5 298.7 10 % pyrite, trace chalcopyrite in dark green	AG08294	307.0	309.0	2.0	2	726	9	25	<1	20	240	
		zone with 15 % hornblende, altered by dyke (?)	AG08295	309.0	310.5	1.5	2	133	11	23	<1	5	70	
			AG08296	310.5	312.1	1.6	2	89	11	14	<b>&lt;1</b>	5	130	
312.1	314.6	FELSIC FLOW												
		Massive light grey siliceous felsic flow with 7 % white										•		
•		streaks, sericitized feldspars (?). There is trace to 0.5												
		% pyrite in sericite, fault slips (?). Weak foliation at					<del>y</del>							

70 degrees to core axis.

314.6 320.4 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Strong pervasive silicification and carbonatization. Hornblende content variable and patchy with up to 20 %, up to 5 mm, over 50 cm. There is up to 3 % fracture controlled pyrite, average 1 to 2 %. The foliation varies from 70 to 90 degrees to core axis. 320.2 320.3 Fault slips at 75 degrees to core axis.

and 5 to 7 % throughout. There are feldspars

320.4	321.3 FELSIC FLOW											
	320.4 320.7 Massive grey siliceous with fracture controlled calcite - sericite veinlets. 5 mm pyrite band at 320.5.	AF00606	320.6	320.7	.1	n/a	<10	n/a	12	n/a	n/a	637
	320.7 321.0 Sericitized with 1 % pyrite at foliation of 70 degrees to core axis.											
	321.0 321.3 Siliceous grey with 3 to 5 % feldspar grains.											
321.3	344.9 MIXED ALTERED HORNBLENDE BEARING FLOW AND CHLORITIC FELSIC					٠						
	TUFFS											
	321.3 324.0 Green massive rock with local epidote clots.	AG08297	321.3	322.7	1.4	3	57	9	15	∢1	10	210
	Hosts on average 20 %, up to 40 %, hornblende	AG08298	322.7	324.0	1.3	5	124	11	13	<1	5	50
	and feldspar crystals, 1 to 2 mm. 3 to 5 %	AG08299	324.0		1.5	3	116	11	2.2	<1	5	140
	pyrite with alteration envelopes.	AG08300	328.3	330.0	1.7	6	33	12	19	<1	5	540
	324.0 328.3 Feldspar bearing, similiar feldspar to above,	AF05951	332.5	333.5	1.0	5	30	17	17	<1	(5	760
	chloritic with up to 3 %, average 1 to 2 %,	AF05952	333.5	335.0	1.5	4	32	17	14	<1	₹5	830
	banded pyrite parallel to strong foliation.	AF05953	335.0		1.0	2	194	18	12	<b>&lt;1</b>	₹5	230
	328.3 330.0 Sericitic with 30 % pyrite from 328.3 to 328.5	AF05954	338.0	339.0	1.0	3	75	19	7	<1	<5	650

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

To From To Sample Width % Total Cu Ph From 7.n Aα An Вa (m) -----DESCRIPTION-----No. (m) (m) Sulphides (ppm) (m) (m) (mgg) (mgg) (maga) (mag) (dag) and minor calcite veinlets. 330.0 332.5 Chloritic with feldspar grains and 1 % pyrite parallel to foliation in calcite veinlets and fractures. There are 3 %, <= 1 mm, quartz eyes 332.5 335.0 Sericitic felsic tuff with 1 to 2 % guartz eyes and 10 % feldspar grains. There is 3 to 5 % pyrite in sheared and locally brecciated schistose rock. 335.0 337.7 Massive green silicified rock with 10 to 15 %. 1 to 2 mm, hornblende and 1 % fracture controlled pyrite. 10 cm calcite - quartz chlorite - pyrite vein at 335.5. 337.7 338.8 Sericite - chloritization schist with epidote splotches including 11 cm of epidote - calcite - pyrite, 20 % pyrite over the 11 cm. Average 2 % pyrite over the interval. 338.8 344.9 Hornblende bearing silicified mafic with silicified green feldspar bearing tuff / flow with fracture controlled silicification and on average 1 % fracture controlled pyrite. 339.1 340.3 local strong sericitization. Foliations :. 325.2: 33 degrees to core axis. 327.6: 45 degrees to core axis. 334.5 : 72 degrees to core axis. 338.8 : 51 degrees to core axis. 340.3: 56 degrees to core axis. 344.9 346.7 FINE GRAINED PLAGIOPHYRIC GABBRO Fine-grained green plagiophyric gabbro dyke with foliation at approximately 60 degrees to core axis. 346.7 364.5 SILICIFIED AND CARBONATIZED HORNBLENDE BEARING MAFIC FLOW Massive green strongly silicified flow with weak to medium AF00607 349.8 349.9 n/a 36 n/a 32 n/a n/a 106 pervasive carbonatization. Hosts up to 20 %, average 15 %, AF05955 353.0 354.5 1.5 3 88 19 15 ₹1 30 130 1 to 5 mm, hornblende crystals and 5 to 15 %, 1 to 3 mm. AF05956 354.5 356.0 1.5 65 20 18 ₹5 **<1** 80 feldspar grains. There are local quartz - epidote spots. AF05957 356.0 357.5 1.5 3 57 19 15 <1 ⟨5 190 On average there is 2 to 3 % fracture controlled pyrite, AF05958 357.5 359.0 77 1.5 18 10 ⟨5 (1 250 with concentrated in epidote. Foliation is at 70 to 80 AF05959 359.0 360.5 1.5 3 87 18 16 <1 ⟨5 160 degrees to core axis. 360.5 362.0 1.5 136 17 21 ⟨5 AF05960 3 **(1** 290 351.3 351.5 White quartz - chlorite veins with trace pyrite AF05961 362.0 363.5 1.5 3 324 24 28 1 ⟨5 270 AF05962 363.5 364.5 1.0 377 16 32 140 364.5 376.5 FINE GRAINED PLAGIOPHYRIC GABBRO Chilled margin type gabbro with approximately 10 %, 1 to 3 AF00608 366.6 366.8 n/a n/a 166 67 n/a 25 n/a mm, feldspars. There are trace calcite and epidote veins and veinlets. 375.2 375.4 Blocky, highly fractured core.

HOLE No:

WEST87-22

Page Number

14

### APPENDIX B

### GEOCHEMICAL RESULTS

Analyses were done by Bondar-Clegg & Co. of North Vancouver, B.C. An HNO3-HCl hot extraction and analysis by DC Plasma were used for all elements except Au and Ba. A fire assay preparation with AA finish was used for Au and X-Ray Fluoresence was used to give a total analysis for Ba.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HQ (ppm)	ин	CUZN	
,		•														
AE05963	19.40	19.90	30.0	10.0	95.0	<0.5	5.0	6.0	7.0	<5.0	<5.0	<1.0	12.0	759.	10.	
AF05964	31.50	32.00	350.0	134.0	92.0	<0.5	10.0	10.0	6.0	<5.0	<5.0	<1.0	6.0	663.	59.	
AE05965	108.30	109.80	980.0	32.0	169.0	<0.5	5.0	4.0	1.0	<5.0	10.0	<1.0	4.0	1497.	16.	

													~	
SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	MN CUZN
AF05966	10.50	12.30	<20.0	20.0	40.0	<0.5	<5.0	7.0	5.0	<5.0	<5.0	<1.0	2.0	421. 33.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)		MN -	CUZN
,	****								<b></b>							
AG07751	3.50	4.50	440.0	30.0	92.0	<0.5	<5.0	25.0	30.0	13.0	7.0	<1.0	2.0		772.	25.
AG07752	4.50	6.00	730.0	107.0	65.0	<0.5	<5.0	28.0	24.0	10.0	<5.0	<1.0	1.0		628.	62.
AG07753	6.00	7.50	80.0	225.0	69.0	<0.5	<5.0	19.0	32.0	7.0	5.0	<1.0	2.0	•	784.	77.
AG07754	7.50	9.00	<20.0	161.0	56.0	<0.5	<5.0	13.0	19.0	6.0	8.0	<1.0	1.0		717.	74.
AG07755	9.00	10.50	50.0	129.0	75.0	₹0.5	<5.0	19.0	24.0	7.0	<5.0	<1.0	1.0	•	725.	63.
AG07756	10.50	12.00	200.0	108.0	74.0	<0.5	<5.0	18.0	24.0	7.0	<5.0	<1.0	1.0		<1.	59.
AG07757	12.00	13.50	70.0	114.0	77.0	<0.5	<5.0	17.0	24.0	5.0	10.0	<1.0	1.0		962.	60.
AG07758	13.50	15.00	40.0	144.0	88.0	<0.5	<5.0	23.0	24.0	6.0	6.0	<1.0	1.0		981.	62.
AG07759	15.00	16.50	60.0	105.0	77.0	<0.5	15.0	23.0	24.0	5.0	5.0	<1.0	1.0		1030.	58.
AG07760	16.50	18.00	<20.0	144.0	62.0	<0.5	<5.0	19.0	19.0	6.0	<5.0	<1.0	1.0		872.	70.
AG07761	18.00	19.50	<20.0	275.0	60.0	<0.5	<5.0	16.0	20.0	8.0	<5.0	<1.0	1.0	• • •	764.	82.
AG07762	19.50	20.50	150.0	224.0	71.0	<0.5	<5.0	14.0	19.0	7.0	<5.0	<1.0	1.0		. 816.	76.
AG07763	20.50	21.60	<20.0	282.0	95.0	<0.5	<5.0	23.0	35.0	5.0	6.0	<1.0	2.0		1326.	75.
AG07764	21.60	23.10	<20.0	155.0	45.0	0.6	<5.0	8.0	14.0	7.0	8.0	<1.0	1.0		721.	78.
A607765	23.10	24.50	<20.0	192.0	97.0	<0.5	<5.0	30.0	31.0	9.0	<5.0	<1.0	2.0		1250.	66.
AG07766	24.50	26.60	<20.0	293.0	122.0	<0.5	<5.0	21.0	33.0	5.0	<5.0	<1.0	2.0		1335.	71.
AG07767	26.60	28.20	<20.0	140.0	71.0	0.6	<5.0	8.0	16.0	10.0	<5.0	<1.0	1.0		688.	66.
AG07768	28.20	29.20	130.0	40.0	68.0	<0.5	<5.0	5.0	19.0	10.0	<5.0	<1.0	1.0		621.	37.
AG07769	29.20	29.70	230.0	22.0	63.0	<0.5	10.0	15.0	23.0	15.0	11.0	<1.0	1.0		530.	26.
AG07770	29.70	30.60	170.0	14.0	51.0	0.5	10.0	24.0	16.0	11.0	5.0	<1.0	2.0		399.	22.
AG07771	30.60	31.60	350.0	168.0	60.0	0.5	<5.0	16.0	18.0	8.0	5.0	<1.0	1.0		428.	74.
AG07772	31.60	32.60	450.0	24.0	73.0	<0.5	<5.0	18.0	31.0	15.0	<5.0	<1.0	3.0		495.	25.
AG07773	32.60	33.40	1500.0	37.0	96.0	<0.5	<5.0	20.0	19.0	11.0	9.0	<1.0	4.0		383.	28.
AG07774	33.40	34.10	1200.0	24.0	62.0	<0.5	<5.0	19.0	17.0	12.0	<5.0	<1.0	2.0		416.	28.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE									********						
NUMBER	FROM	TO	BÁ (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	ми	CUZN
										<u></u>					
AG07775	34.10	35.10	1200.0	42.0	56.0	<0.5	<5.0	5.0	6.0	7.0	<5.0	<1.0	2.0	406.	43.
AG07776	35.10	36.10	1400.0	25.0	85.0	0.5	<5.0	4.0	8.0	11.0	<5.0	1.0	2.0	171.	23.
AG07777	36.10	37.10	1300.0	9.0	63.0	0.6	<5.0	2.0	8.0	12.0	<5.0	<1.0	1.0	220.	13.
AG07778	37.10	38.10	1400.0	11.0	19.0	0.5	<5.0	2.0	11.0	25.0	<5.0	<1.0	2.0	164.	37.
AG07779	38.10	39.40	1300.0	11.0	18.0	<0.5	<5.0	3.0	19.0	16.0	<5.0	<1.0	1.0	766.	38.
AG07780	39.40	41.30	870.0	145.0	86.0	<0.5	<5.0	21.0	34.0	6.0	<5.0	<1.0	1.0	871.	63.
AG07781	41.30	42.80	(20.0	54.0	54.0	<0.5	<5.0	23.0	38.0	5.0	<5.0	<1.0	1.0	1079.	50.
AG07782	42.80	43.80	<20.0	95.0	46.0	<0.5	<5.0	16.0	31.0	<5.0	<5.0	<1.0	<1.0	1339.	67.
AG07783	43.80	45.00	<20.0	167.0	39.0	<0.5	<5.0	33.0	33.0	10.0	<5.0	<1.0	1.0	841.	81.
AG07784	45.00	46.00	60.0	150.0	45.0	<0.5	<5.0	29.0	38.0	6.0	<5.0	<1.0	1.0	900.	77.
AG07785	46.00	47.00	120.0	242.0	56.0	<0.5	<5.0	30.0	43.0	5.0	?' <b>₹5.0</b>	<1.0	2.0	922.	81.
AG07786	47.00	47.70	240.0	39.0	82.0	<0.5	<5.0	30.0	47.0	7.0	<5.0	<1.0	1.0	912.	32.
AG07787	47.70	47.90	180.0	126.0	43.0	<0.5	<5.0	36.0	78.0	43.0	<5.0	<1.0	1.0	1060.	75.
AG07788	47.90	48.70	<20.0	150.0	259.0	<0.5	<5.0	28.0	50.0	<5.0	<5.0	3.0	1.0	812.	37.
AG07789	48.70	49.20	<20.0	1036.0	520.0	<0.5	<5.0	35.0	57.0	8.0	<5.0	7.0	2.0	1113.	67.
AG07790	49.20	50.00	<20.0	158.0	116.0	<0.5	<5.0	29.0	47.0	<5.0	(5.0	<1.0	1.0	1287.	58.
AG07791	50,00	51.50	<20.0	141.0	63.0	<0.5	<5.0	37.0	37.0	6.0	<5.0	<1.0	1.0	1014.	69.
AG07792	51.50	53.00	<20.0	98.0	76.0	<0.5	<5.0	33.0	42.0	6.0	<5.0	<1.0	2.0	1212.	56.
AG07793	53.00	54.50	280.0	96.0	47.0	<0.5	<5.0	26.0	36.0	<5.0	<5.0	<1.0	1.0	657.	67.
AG07794	54.50	55.90	50.0	78.0	64.0	<0.5	(5.0	28.0	45.0	<5.0	<5.0	<1.0	3.0	952.	55.
AG07795	55.90	56.50	60.0	337.0	66.0	<0.5	40.0	42.0	70.0	23.0	<5.0	<1.0	1.0	1004.	84.
AG07796	56.50	57.10	90.0	36.0	86.0	<0.5	15.0	35.0	44.0	5.0	<5.0	<1.0	1.0	1147.	30.
AG07797	57.10	58.60	<20.0	113.0	70.0	<0.5	10.0	35.0	43.0	6.0	<5.0	<1.0	1.0	973.	62.
AG07798	58.60	60.10	80.0	200.0	58.0	<0.5	<5.0	32.0	41.0	6.0	5.0	<1.0	1.0	780.	78.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	МИ	CUZN
AG07799	60.10	61.60	60.0	194.0	56.0	<0.5	55.0	31.0	40.0	5.0	<5.0	<1.0	1.0	764.	78.
AG07800	61.60	62.90	80.0	135.0	70.0	<0.5	35.0	33.0	48.0	5.0	<5.0	<1.0	1.0	974.	66.
AG07801	62.90	64.00	550.0	39.0	61.0	<0.5	<5.0	28.0	50.0	7.0	<5.0	<1.0	2.0	818.	39.
A607802	64.00	64.20	340.0	62.0	0.5	<0.5	5.0	21.0	71.0	81.0	<5.0	<1.0	<1.0	236.	99.
AG07803	64.20	65.20	190.0	62.0	60.0	<0.5	30.0	28.0	44.0	7.0	<5.0	<1.0	2.0	844.	51.
AG07804	65.20	66.70	40.0	92.0	45.0	<0.5	<5.0	30.0	42.0	5.0	<5.0	<1.0	1.0	734.	67.
AG07805	66.70	67.40	<20.0	96.0	52.0	<0.5	<5.0	31.0	43.0	5.0	<5.0	<1.0	1.0	814.	65.
AG07806	67.40	68.40	150.0	65.0	66.0	<0.5	15.0	29.0	56.0	8.0	<5.0	₹1.0	1.0	693.	50.
AG07807	68.40	69.90	220.0	93.0	57.0	<0.5	20.0	32.0	48.0	5.0	<5.0	<1.0	1.0	712.	62.
AG07808	69.90	71.40	310.0	93.0	38.0	<0.5	<5.0	29.0	37.0	5.0	6.0	<1.0	1.0	514.	71.
AG <b>0</b> 7809	71.40	72.40	260.0	98.0	41.0	<0.5	<5.0	30.0	36.0	<5.0	5.0	<1.0	1.0	645.	71.
AG07810	72.40	73.90	110.0	77.0	59.0	<0.5	50.0	32.0	46.0	<5.0	6.0	<1.0	1.0	914.	57.
AG07811	73.90	75.00	40.0	322.0	50.0	<0.5	30.0	29.0	38.0	<5.0	<5.0	<1.0	1.0	812.	87.
AG07812	75.00	75.80	690.0	157.0	42.0	<0.5	<5.0	30.0	43.0	⟨5.0	5.0	<1.0	1.0	681.	79.
AG07813	75.80	77.40	940.0	13.0	10.0	<0.5	<5.0	6.0	9.0	<5.0	6.0	<1.0	2.0	146.	57.
AG07814	77.40	78.00	700.0	50.0	38.0	<0.5	<5.0	27.0	43.0	7.0	<5.0	<1.0	2.0	600.	57.
AG07815	78.00	79.00	870.0	80.0	41.0	<0.5	20.0	35.0	52.0	9.0	6.0	<1.0	1.0	728.	66.
AG07816	79.00	80.00	680.0	58.0	38.0	<0.5	<5.0	30.0	42.0	8.0	<5.0	<1.0	1.0	681.	60.
AG07817	80.00	81.30	470.0	81.0	59.0	<0.5	<5.0	33.0	48.0	8.0	5.0	<1.0	1.0	701.	58.
AG07818	81.30	81.40	260.0	201.0	630.0	<0.5	10.0	12.0	68.0	33.0	<5.0	6.0	<1.0	718.	24.
AG07819	81.40	82.00	170.0	62.0	83.0	<0.5	<5.0	35.0	45.0	6.0	7.0	<1.0	2.0	602.	43.
AG07820	82.00	82.60	540.0	75.0	54.0	<0.5	<5.0	38.0	47.0	7.0	7.0	<1.0	1.0	590.	58.
AG07821	82.60	84.10	<20.0	102.0	48.0	<0.5	<5.0	35.0	138.0	<5.0	11.0	<1.0	1.0	829.	68.
AG07822	84.10	85.10	<20.0	117.0	36.0	<0.5	<5.0	29.0	39.0	7.0	7.0	<1.0	1.0	603.	76.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

											·					
SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CQ (ppm)	NI (ppm)	PB (ppm.)	AS (ppm)	CD (ppm)	MO (ppm)	мм	CUZN	
AG07823	85.10	86.10	310.0	120.0	46.0	<0.5	<5.0	36.0	47.0	8.0	9.0	<1.0	2.0	604.	72.	
AG07824	86.10	87.60	100.0	65.0	88.0	<0.5	<5.0	33.0	43.0	9.0	11.0	<1.0	1.0	737.	42.	
AG07825	87.60	89.10	130.0	59.0	84.0	<0.5	<5.0	36.0	42.0	6.0	7.0	<1.0	1.0	721.	41.	
AG07826	89.10	90.60	110.0	86.0	85.0	<0.5	<5.0	27.0	41.0	<5.0	5.0	<1.0	1.0	834.	50.	
AG07827	90.60	91.40	<20.0	110.0	66.0	<0.5	<5.0	35.0	44.0	5.0	6.0	<1.0	1.0	774.	63.	
AG07828	91.40	92.10	80.0	83.0	56.0	<0.5	<5.0	41.0	52.0	8.0	<5.0	<1.0	2.0	793.	60.	
AG07829	92.10	92.40	190.0	2077.0	47.0	0.7	<5.0	37.0	57.0	12.0	<5.0	1.0	2.0	624.	98.	
AG07830	92.40	93.90	30.0	224.0	50.0	<0.5	10.0	31.0	42.0	7.0	6.0	<1.0	2.0	748.	82.	
AG07831	93.90	95.40	140.0	167.0	44.0	<0.5	<5.0	32.0	65.0	7.0	5.0	<1.0	1.0	795.	79.	
AG07832	95.40	96.90	<20.0	263.0	48.0	<0.5	<5.0	29.0	43.0	8.0	6.0	<1.0	1.0	900.	85.	
AG07833	96.90	98.50	40.0	109.0	32.0	<0.5	<5.0	31.0	35.0	6.0	5.0	<1.0	1.0	553.	77.	
AG07834	98.50	99.50	<20.0	148.0	46.0	<0.5	<5.0	29.0	45.0	6.0	<5.0	<1.0	2.0	734.	76.	
AG07835	99.50	100.50	240.0	91.0	42.0	<0.5	<5.0	32.0	40.0	6.0	<5.0	<1.0	1.0	654.	68.	
AG07836	100.50	101.50	400.0	120.0	45.0	<0.5	<5.0	31.0	46.0	8.0	<5.0	<1.0	2.0	522.	73.	
AG07837	101.50	102.50	1000.0	45.0	39.0	<0.5	<5.0	15.0	29.0	8.0	<5.0	<1.0	2.0	239.	54.	
AG07838	102.50	103.50	860.0	51.0	46.0	<0.5	<5.0	21.0	32.0	5.0	<5.0	<1.0	2.0	454.	53.	
AG07839	103.50	104.50	370.0	85.0	42.0	<0.5	<5.0	28.0	46.0	7.0	<5.0	<1.0	2.0	561.	67.	
AG07840	104.50	105.50	310.0	113.0	34.0	<0.5	<5.0	37.0	51.0	8.0	7.0	<1.0	2.0	537.	77.	
AG07841	105.50	106.50	190.0	102.0	34.0	<0.5	<5.0	35.0	43.0	7.0	7.0	<1.0	3.0	537.	75.	
AG07842	106.50	107.20	120.0	115.0	31.0	<0.5	<5.0	38.0	44.0	9.0	8.0	<1.0	1.0	522.	79.	
AG07843	107.20	108.00	50.0	87.0	39.0	<0.5	<5.0	36.0	44.0	7.0	6.0	<1.0	2.0	597.	. 69.	
AG07844	108.00	109.00	290.0	107.0	52.0	<0.5	<5.0	31.0	47.0	8.0	6.0	<1.0	2.0	750.		
AG07845	109.00	110.00	40.0	179.0	41.0	<0.5	<5.0	34.0	42.0	9.0	6.0	<1.0	1.0	555.		
AG07846		111.50	110.0	207.0	52.0	<0.5	<5.0	33.0	47.0	7.0	6.0	<1.0	2.0	756		

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	AU	co	NI	PB	AS	CD	МО	 MN	CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
		-													
AG07847	111.50	113.90	810.0	46.0	132.0	<0.5	<5.0	19.0	25.0	6.0	<5.0	2.0	6.0	367.	26.
AG07848	113.00	114.00	710.0	30.0	29.0	0.7	<5.0	10.0	14.0	<5.0	6.0	<1.0	2.0	222.	51.
AG07849	114.00	114.30	760.0	37.0	64.0	<0.5	<5.0	20.0	36.0	8.0	<5.0	<1.0	1.0	820.	37.
AG07850	114.30	115.80	810.0	27.0	227.0	0.6	<5.0	13.0	14.0	<5.0	<5.0	2.0	5.0	252.	11.
AG07851	115.80	117.30	470.0	53.0	35.0	<0.5	<5.0	17.0	27.0	7.0	8.0	<1.0	2.0	435.	60.
AG07852	117.30	118.30	<20.0	140.0	79.0	<0.5	<5.0	31.0	45.0	5.0	<5.0	<1.0	2.0	865.	64.
AG07853	118.80	120.00	30.0	70.0	80.0	<0.5	<5.0	32.0	48.0	7.0	<5.0	<1.0	2.0	834.	47.
AG07854	120.00	120.10	<20.0	180.0	56.0	<0.5	<5.0	13.0	82.0	38.0	<5.0	<1.0	2.0	941.	76.
AG07855	120.10	121.60	<20.0	106.0	44.0	<0.5	<5.0	30.0	45.0	8.0	5.0	<1.0	1.0	821.	71.
AS07856	121.60	122.60	400.0	112.0	36.0	<0.5	5.0	31.0	43.0	7.0	<5.0	<1.0	2.0	606.	76.
AG07857	122.60	123.50	680.0	121.0	38.0	<0.5	<5.0	33.0	45.0	10.0 m	∵<50	<1.0	2.0	485.	76.
AG07858	123.50	123.90	90.0	30.0	56.0	<0.5	<5.0	77.0	76.0	35.0	<5.0	<1.0	12.0	547.	59.
AG07859	123.90	125.40	790.0	53.0	33.0	<0.5	<5.0	20.0	37.0	10.0	<5.0	<1.0	8.0	298.	62.
AG07860	125.40	126.90	490.0	24.0	47.0	<0.5	<5.0	17.0	27.0	6.0	<5.0	<1.0	5.0	358.	34.
AG07861	126.90	128.40	420.0	12.0	24.0	<0.5	<5.0	18.0	28.0	6.0	<5.0	<1.0	5.0	275.	33.
AG07862	128.40	129.90	370.0	11.0	27.0	<0.5	<5.0	11.0	20.0	<5.0	<5.0	<1.0	10.0	313.	29.
AG07863	129.90	131.40	190.0	28.0	41.0	<0.5	<5.0	14.0	31.0	5.0	<5.0	<1.0	9.0	385.	41.
AG07864	131.40	132.90	180.0	126.0	49.0	<0.5	10.0	32.0	53.0	8.0	<5.0	<1.0	4.0	464.	72.
AG07865	132.90	134.40	260.0	235.0	26.0	<0.5	<5.0	32.0	48.0	8.0	<5.0	<1.0	2.0	304.	90.
AG07866	134.40	135.90	430.0	124.0	25.0	<0.5	<5.0	35.0	48.0	8.0	<5.0	<1.0	15.0	306.	83.
AG07867	135.90	137.40	170.0	101.0	37.0	<0.5	<5.0	29.0	53.0	8.0	<5.0	<1.0	2.0	573.	73.
AG07868	137.40	138.90	150.0	125.0	36.0	<0.5	5.0	30.0	46.0	7.0	<5.0	<1.0	1.0	457.	78.
AG07869	138.90	140.40	140.0	134.0	33.0	<0.5	<5.0	30.0	42.0	8.0	<5.0	<1.0	2.0	461.	80.
AG07870	140.40	141.90	140.0	112.0	33.0	<0.5	<5.0	30.0	46.0	8.0	<5.0	<1.0	4.0	515.	77.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	τo	BA	CU	ZN	AG	ΑU	CO	NI	PB	AS	CD	HO.	MN	CUZN	
ROHBER	EKUN		(bbs)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(bb#)	(ppm)	(bbm)	(ppm)	(ppm)	FIR	COZN	
AG07871	141.90	143.40	140.0	94.0	29.0	<0.5	<5.0	32.0	49.0	9.0	<5.0	<1.0	3.0	413	. 76.	
AG07872	143.40	144.90	270.0	107.0	43.0	<0.5	<5.0	32.0	52.0	8.0	<5.0	<1.0	2.0	510	. 71.	
AG07873	144.90	146.60	210.0	76.0	25.0	<0.5	<5.0	32.0	46.0	7.0	<5.0	<1.0	2.0	419	. 75.	
AG07874	146.60	147.80	20.0	146.0	31.0	<0.5	<5.0	23.0	45.0	8.0	<5.0	<1.0	2.0	559	. 82.	
AG07875	147.80	149.30	160.0	125.0	43.0	<0.5	<5.0	34.0	50.0	7.0	<5.0	<1.0	2.0	470	. 74.	
AG07876	149.30	150.90	220.0	76.0	37.0	<0.5	<5.0	32.0	51.0	<5.0	<5.0	<1.0	2.0	667	. 67.	
AG07877	150.90	152.40	340.0	78.0	28.0	<0.5	5.0	30.0	42.0	8.0	<5.0	<1.0	1.0	538	. 74.	
AG07878	152.40	153.10	80.0	149.0	34.0	<0.5	<5.0	23.0	45.0	5.0	16.0	<1.0	1.0	767	. 81.	
AG07879	153.10	153.50	320.0	133.0	23.0	<0.5	15.0	13.0	54.0	12.0	<5.0	<1.0	1.0	935	. 85.	
AG07880	153.50	155.00	200.0	104.0	28.0	<0.5	<5.0	18.0	15.0	<5.0	<5.0	<1.0	<1.0	600	. 79.	
AG07881	155.00	156.60	160.0	176.0	53.0	<0.5	<5.0	19.0	19.0	<5.0	<5.0	<1.0	2.0	790	. 77.	
AG07882	156.60	157.70	<20.0	113.0	44.0	<0.5	<5.0	20.0	54.0	<5.0	26.0	<1.0	2.0	850	. 72.	
AG07883	157.70	158.10	90.0	220.0	33.0	<0.5	<5.0	22.0	19.0	<5.0	11.0	<1.0	1.0	545	. 87.	
AG07884	158.10	158.50	<20.0	188.0	54.0	<0.5	<5.0	34.0	66.0	<5.0	22.0	(1.0	<1.0	740	. 78.	
AG07885	158.50	160.00	190.0	124.0	28.0	<0.5	<5.0	22.0	19.0	<5.0	6.0	<1.0	2.0	485	. 82.	
AG07886	160.00	161.50	230.0	132.0	30.0	<0.5	<5.0	22.0	19.0	<5.0	<5.0	<1.0	2.0	550	. 81.	
AG07887	161.50	161.70	340.0	38.0	18.0	<0.5	<5.0	20.0	16.0	<5.0°	<5.0	<1.0	1.0	385	. 68.	
AG07888	161.70	162.70	450.0	87.0	20.0	<0.5	<5.0	25.0	18.0	<5.0	<5.0	<1.0	2.0	410	. 81.	
AG07889	162.70	163.60	120.0	140.0	28.0	<0.5	<5.0	21.0	16.0	<5.0	<5.0	<1.0	1.0	500	. 83.	
AG07890	165.40	165.60	1000.0	20.0	16.0	<0.5	<5.0	18.0	12.0	<5.0	10.0	<1.0	4.0	250	. 56.	
AG07891	167.00	168.50	1000.0	12.0	9.0	<0.5	<5.0	6.0	4.0	<5.0	<5.0	<1.0	7.0	105	. 57.	
AG07892	168.50	170.00	400.0	84.0	13.0	<0.5	10.0	15.0	12.0	<5.0	16.0	<1.0	4.0	270	. 87.	
AG07893	170.00	171.50	60.0	148.0	25.0	<0.5	<5.0	24.0	20.0	<5.0	68.0	<1.0	3.0	570	. 86.	
AG07894	171.50	173.00	380.0	144.0	20.0	<0.5	<5.0	24.0	20.0	<5.0	<5.0	<1.0	3.0	350	. 88.	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE															
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	ММ	CUZN
AG07895	173.00	174.50	160.0	124.0	17.0	<0.5	<5.0	21.0	20.0	<5.0	<5.0	<1.0	2.0	355.	88.
AG07896	174.50	176.00	30.0	123.0	19.0	<0.5	<5.0	25.0	20.0	<5.0	6.0	<1.0	2.0	435.	87.
AG07897	176.00	177.50	170.0	152.0	19.0	<0.5	5.0	19.0	20.0	<5.0	5.0	<1.0	1.0	400.	89.
AG07898	177.50	178.50	150.0	102.0	14.0	<0.5	<5.0	21.0	20.0	<5.0	<5.0	<1.0	1.0	295.	88.
AG07899	178.50	179.80	90.0	168.0	22.0	<0.5	<5.0	23.0	20.0	<5.0	<5.0	<1.0	1.0	415.	88.
AG07900	180.40	181.90	790.0	58.0	16.0	⟨0.5	<5.0	13.0	11.0	<5.0°	10.0	<1.0	7.0	245.	78.
AG07901	181.90	183.40	430.0	46.0	12.0	<0.5	<5.0	16.0	16.0	<5.0	<5.0	<1.0	2.0	225.	. 79.
AG07902	183.40	184.90	340.0	147.0	21.0	<0.5	<5.0	23.0	19.0	<5.0	<5.0	<1.0	2.0	415.	88.
AG07903	184.90	186.40	350.0	84.0	33.0	<0.5	<5.0	19.0	18.0	<5.0	<5.0	<1.0	2.0	620.	72.
AG07904	186.40	187.70	170.0	104.0	24.0	<0.5	<5.0	18.0	16.0	<5.0	8.0	<1.0	1.0	410.	81.
AG07905	187.70	189.90	160.0	125.0	29.0	<0.5	<5.0	22.0	18.0	<5.0	<5.0	<1.0	1.0	460.	81.
AG07906	189.90	190.90	170.0	164.0	36.0	<0.5	<5.0	20.0	18.0	<5.0	<b>(5.0</b>	<1.0	1.0	590.	82.
AG07907	190.90	191.90	210.0	152.0	40.0	<0.5	<5.0	18.0	17.0	<5.0	<5.0	<1.0	1.0	735.	79.
AG07908	191.90	192.10	<20.0	240.0	24.0	<0.5	<5.0	31.0	12.0	<5.0	18.0	<1.0	4.0	890.	91.
AG07909	192.10	193.60	200.0	96.0	33.0	<0.5	<5.0	20.0	20.0	<5.0	<5.0	<1.0	<1.0	710.	74.
AG07910	193.60	194.80	190.0	81.0	30.0	<0.5	<5.0	18.0	16.0	<5.0	<5.0	<1.0	1.0	620.	73.
AG07911	194.80	196.30	250.0	110.0	44.0	<0.5	<5.0	18.0	20.0	<5.0	<5.0	<1.0	<1.0	890.	71.
AG07912	196.30	197.30	20.0	103.0	29.0	<0.5	<5.0	21.0	16.0	<5.0	<5.0	<1.0	1.0	495.	78.
AG07913	197.30	198.60	70.0	84.0	28.0	<0.5	<5.0	21.0	16.0	<5.0	<5.0	<1.0	1.0	510.	75.
AG07914	198.60	199.60	340.0	160.0	20.0	<0.5	<5.0	21.0	16.0	<5.0	<5.0	<1.0	<1.0	380.	89.
AG07915	199.60	200.60	180.0	188.0	26.0	<0.5	<5.0	21.0	19.0	<5.0	<5.0	<1.0	1.0	570.	88.
AG07916	200.60	202.00	670.0	245.0	18.0	<0.5	<5.0	18.0	14.0	<5.0	<5.0	<1.0	1.0	350.	93.
AG07917	202.00	203.40	190.0	128.0	20.0	<0.5	<5.0	24.0	19.0	<5.0	13.0	<1.0	<1.0	400.	86.
AG07918	203.40	204.90	270.0	78.0	19.0	<0.5	⟨5.0	26.0	19.0	⟨5.0	⟨5.0	<1.0	1.0	360.	80.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	MN	CUZN
AG07919	204.90	206.40	370.0	48.0	18.0	<0.5	<5.0	26.0	19.0	<5.0	12.0	<1.0	<1.0	310.	73.
AG07920	206.40	207.00	660.0	200.0	24.0	<0.5	<5.0	19.0	16.0	<5.0	<5.0	<1.0	1.0	470.	89.
AG07921	207.00	208.50	510.0	127.0	27.0	<0.5	<5.0	26.0	17.0	<5.0	<5.0	<1.0	1.0	445.	82.
AG07922	208.50	209.00	240.0	430.0	48.0	<0.5	<5.0	32.0	20.0	<5.0	<5.0	<1.0	1.0	635.	90.
AG07923	209.00	210.50	260.0	132.0	28.0	<0.5	<5.0	19.0	17.0	<5.0	<5.0	<1.0	<1.0	465.	83.
AG07924	210.50	212.00	130.0	280.0	28.0	<0.5	<5.0	38.0	24.0	<5.0	<5.0	<1.0	2.0	400.	91.

SAMPLE															
NUMBER	FROM	TO	ВА (ррм)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	MI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	(ppm)	мм	CUZN
					.4									// - // - / - / - / - / - / - / - / -	
AG08001	7.00	8.50	820.0	107.0	208.0	<0.5	.<5.0	29.0	60.0	9.0	<5.0	<1.0	1.0	2009.	34.
AG08002	36.00	36.60	1200.0	387.0	74.0	<0.5	<5.0	11.0	30.0	<5.0	<5.0	<1.0	4.0	725.	84.
AG08003	36.60	38.00	990.0	250.0	112.0	<0.5	<5.0	38.0	64.0	11.0	<5.0	<1.0	2.0	1091.	69.
AG08004	38.00	38.90	840.0	931.0	178.0	<0.5	15.0	34.0	67.0	10.0	7.0	<1.0	3.0	1223.	84.
AG08005	38.90	39.10	<20.0 1	1400.0	372.0	3.8	75.0	143.0	109.0	17.0	30.0	6.0	3.0	1536.	97.
AG08006	39.10	40.00	50.0	242.0	128.0	<0.5	10.0	30.0	51.0	12.0	9.0	<1.0	5.0	911.	65.
AG08007	40.00	42.00	780.0	304.0	137.0	<0.5	5.0	15.0	49.0	8.0	8.0	<1.0	3.0	1092.	69.
AG08008	42.00	44.00	410.0	78.0	95.0	<0.5	5.0	13.0	40.0	6.0	<5.0	<1.0	3.0	1025.	45.
AG08009	44.00	45.20	650.0	475.0	154.0	<0.5	5.0	14.0	53.0	12.0	<5.0	<1.0	4.0	1752.	76.
A608010	45.20	45.60	60.0 1	10400.0	257.0	3.9	10.0	81.0	113.0	10.0	<5.0	4.0	12.0	2719.	98.
AG08011	45,60	46.00	900.0	4100.0	241.0	<0.5	<5.0	45.0	89.0	10.0	<5.0	2.0	10.0	2712.	94.
AG08012	46.00	48.00	230.0	425.0	111.0	<0.5	<5.0	17.0	45.0	10.0	<5.0	<1.0	3.0	1332.	79.
AG08013	48.00	50.00	40.0	385.0	123.0	<0.5	<5.0	22.0	51.0	11.0	<5.0	<1.0	2.0	1237.	76.
AG08014	50.00	50.90	370.0	3200.0	181.0	1.1	<5.0	40.0	59.0	10.0	<5.0	2.0	2.0	1458.	95.
AG08015	51.60	53.00	730.0	249.0	155.0	<0.5	<5.0	10.0	26.0	5.0	<5.0	<1.0	2.0	933.	62.
AG08016	53.00	54.30	700.0	1139.0	536.0	<0.5	<5.0	7.0	29.0	6.0	<5.0	3.0	3.0	1065.	68.
AG08017	75.60	76.60	110.0	305.0	3700.0	<0.5	⟨5.0	24.0	53.0	8.0	<5.0	19.0	2.0	2052.	8.
AG08018	76.60	77.80	210.0	1031.0	11400.0	<0.5	<5.0	10.0	68.0	60.0	36.0	59.0	3.0	4233.	8.
AG08019	77.80	79.00	170.0	166.0	1779.0	<0.5	<5.0	23.0	52.0	8.0	5.0	11.0	3.0	1188.	9.
A608020	112.00	113.00	630.0	1544.0	243.0	<0.5	10.0	19.0	45.0	11.0	8.0	1.0	2.0	1166.	86.
AG08021	120.75	120.90	1200.0	5800.0	315.0	1.8	15.0	47.0	101.0	15.0	<5.0	2.0	10.0	1916.	95.
AG08022	132.35	132.50	60.0 2	20800.0	212.0	5.9	65.0	42.0	137.0	17.0	<5.0	3.0	2.0	1103.	99.
AG08023	168.70	170.00	2500.0	1120.0	222.0	<0.5	<5.0	27.0	64.0	13.0	13.0	<1.0	3.0	2128.	83.
AG08024	246.50	247.30	<20.0	1016.0	126.0	<0.5	10.0	428.0	111.0	22.0	<5.0	<1.0	15.0	1472.	89.

SAMPLE NUMBER	FROM	10	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)		ми	CUZN
•		•												•		
AG08025	249.30	250.30	190.0	447.0	137.0	<0.5	10.0	182.0	97.0	12.0	<5.0	<1.0	9.0		1617.	77.
AG08026	250.30	251.30	<20.0	135.0	85.0	<0.5	<5.0	59.0	57.0	8.0	<5.0	<1.0	5.0		1250.	61.

SAMPLE														*****	
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	(ppm)	AS (ppm)	CD (ppm)	MO (ppm)	мм	CUZN
,															
AG07925	8.40	9.40	<20.0	260.0	360.0	<0.5	<5.0	24.0	20.0	<5.0	<5.0	<1.0	<1.0	1200.	42.
AG07926	9.40	10.00	<20.0	180.0	270.0	<0.5	5.0	29.0	19.0	<5.0	<5.0	<1.0	3.0	1150.	40.
AG07927	10.00	11.00	<20.0	295.0	970.0	<0.5	<5.0	24.0	20.0	<5.0	<5.0	20.0	1.0	1450.	23.
AG07928	16.00	17.00	<20.0	285.0	194.0	<0.5	<5.0	27.0	23.0	<5.0	<5.0	<1.0	<1.0	1400.	60.
AG07929	17.00	17.50	<20.0	150.0	225.0	<0.5	<5.0	32.0	23.0	<5.0	<5.0	<1.0	<1.0	1500.	40.
AG07930	17.50	18.50	<20.0	94.0	182.0	<0.5	<5.0	22.0	20.0	<5.0	<5.0	<1.0	1.0	1400.	34.
AG07931	26.10	27.50	410.0	15.0	50.0	<0.5	<5.0	11.0	6.0	<5.0	<5.0	<1.0	2.0	795.	23.
AG07932	27.50	29.00	340.0	10.0	43.0	<0.5	<5.0	10.0	5.0	<5.0	<5.0	<1.0	2.0	850.	19.
AG07933	29.00	30.50	280.0	5.0	34.0	<0.5	<5.0	10.0	5.0	<5.0	<5.0	<1.0	2.0	790.	13.
AG07934	30.50	32.00	500.0	11.0	34.0	<0.5	<5.0	7.0	4.0	<5.0	<5.0	<1.0	2.0	800.	24.
AG07935	32.00	33.50	420.0	4.0	44.0	<0.5	<5.0	9.0	4.0	<5.0	14.0	<1.0	2.0	680.	8.
AG07936	33.50	34.50	290.0	30.0	42.0	<0.5	<5.0	13.0	4.0	<5.0	6.0	<1.0	3.0	740.	42.
AG07937	34.50	35.30	260.0	15.0	43.0	<0.5	<5.0	6.0	5.0	<5.0	<5.0	<1.0	2.0	740.	26.
AG07938	35.30	35.50	60.0	40.0	65.0	<0.5	<5.0	30.0	6.0	<5.0	<5.0	<1.0	5.0	620.	38.
AG07939	35.50	37.00	630.0	12.0	35.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	1.0	780.	26.
AG07940	37.00	38.50	530.0	70.0	30.0	<0.5	<5.0	7.0	4.0	<5.0	<5.0	<1.0	2.0	700.	70.
AG07941	38.50	40.00	520.0	28.0	34.0	<0.5	<5.0	9.0	4.0	<5.0	6.0	<1.0	3.0	730.	45.
AG07942	40.00	41.10	660.0	8.0	33.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	2.0	580.	20.
AG07943	41.10	41.40	860.0	12.0	41.0	<0.5	<5.0	9.0	22.0	<5.0	<5.0	<1.0	5.0	665.	23.
AG07944	41.40	42.20	290.0	460.0	54.0	<0.5	<5.0	31.0	6.0	<5.0	<5.0	<1.0	10.0	850.	89.
AG07945	42.20	43.20	930.0	16.0	48.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	2.0	780.	25.
AG07946	43.70	44.50	1100.0	20.0	53.0	<0.5	<5.0	9.0	4.0	<5.0	<5.0	<1.0	3.0	740.	27.
AG07947	44.50	45.20	1400.0	25.0	75.0	<0.5	5.0	14.0	6.0	<5.0	18.0	<1.0	5.0	940.	25.
AG07948	45.20	46.00	1000.0	24.0	53.0	<0.5	<5.0	13.0	4.0	<5.0	<5.0	<1.0	5.0	700.	31.

SAMPLE NUMBER	FROM	10	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	НО (ррм)	ММ	CUZN
									*****						
AG07949	46.00	47.50	960.0	10.0	50.0	<0.5	<5.0	11.0	4.0	<5.0	<5.0	<1.0	3.0	900.	17.
AG07950	47.50	48.30	610.0	98.0	48.0	<0.5	<5.0	9.0	4.0	<5.0	5.0	<1.0	8.0	790.	67.
AG07951	48.30	48.50	1100.0	28.0	58.0	<0.5	<5.0	16.0	6.0	<5.0	43.0	<1.0	11.0	1200.	33.
AG07952	48.50	50.00	510.0	50.0	39.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	2.0	900.	56.
AG07953	50.00	51.50	640.0	52.0	37.0	<0.5	<5.0	8.0	4.0	⟨5.0	<5.0	<1.0	2.0	1000.	58.
AG07954	51.50	53.00	530.0	20.0	52.0	<0.5	<5.0	18.0	6.0	<5.0	12.0	<1.0	5.0	740.	28.
AG07955	53.00	54.90	700.0	20.0	42.0	<0.5	<5.0	9.0	6.0	<5.0	<5.0	<1.0	3.0	770.	32.
AG07956	54.90	55.10	460.0	60.0	33.0	<0.5	10.0	39.0	8.0	5.0	<5.0	<1.0	13.0	910.	65.
AG07957	55.10	56.40	1100.0	8.0	50.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	1.0	900.	14.
AG07958	56.40	57.40	1200.0	10.0	50.0	<0.5	5.0	12.0	4.0	<5.0	<5.0	<1.0	3.0	870.	17.
AG07959	57.40	58.00	2200.0	30.0	48.0	<0.5	25.0	17.0	6.0	<5.0	<5.0	<1.0	8.0	570.	38.
AG07960	58.00	59.00	2000.0	28.0	56.0	<0.5	10.0	18.0	6.0	<5.0	6.0	<1.0	6.0	710.	33.
AG07961	59.00	60.00	1900.0	18.0	56.0	<0.5	5.0	14.0	5.0	<5.0	<5.0	<1.0	4.0	725.	24.
AG07962	60.00	61.00	1100.0	8.0	40.0	<0.5	10.0	9.0	4.0	<5.0	<5.0	<1.0	4.0	620.	17.
AG07963	61.00	62.00	690.0	20.0	66.0	<0.5	<5.0	15.0	5.0	<5.0	<5.0	<1.0	4.0	625.	23.
AG07964	62.00	62.50	540.0	88.0	102.0	<0.5	15.0	41.0	17.0	₹5.0	<5.0	<1.0	8.0	1000.	46.
AG07965	62.50	64.00	1200.0	50.0	90.0	<0.5	<5.0	18.0	14.0	<5.0	<5.0	<1.0	3.0	1400.	36.
AG07966	66.80	67.80	430.0	26.0	54.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	2.0	1000.	33
AG07967	67.80	68.10	100.0	3.0	22.0	<0.5	<5.0	5.0	6.0	<5.0	<5.0	<1.0	1.0	1000.	12.
AG07968	68.10	69.80	620.0	6.0	60.0	<0.5	<5.0	6.0	6.0	<5.0	₹5.0	<1.0	2.0	1000.	9.
AG07969	68.80	69.80	410.0	18.0	58.0	<0.5	<5.0	8.0	6.0	<5.0	<5.0	<1.0	<1.0	800.	24.
AG07970	69.80	71.30	520.0	6.0	50.0	<0.5	<5.0	9.0	5.0	<5.0	<5.0	<1.0	1.0	820.	11.
AG07976	71.30	72.50	520.0	32.0	90.0	<0.5	<5.0	11.0	6.0	<5.0	<5.0	<1.0	3.0	960.	26.
AG07971	72.50	74.00	390.0	39.0	86.0	<0.5	<5.0	11.0	8.0	<5.0	⟨5.0	<1.0	2.0	1000.	31.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA	CU	ZN	AG	AU	co	NI	PB	AS	CB	ко	MN	CUZN
NUNBER	EXUN	10	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(bb#)	(ppm)	(ppm)	(ppm)	(ppm)	THE	CUZR
-															
AG07972	74.00	75.50	670.0	96.0	78.0	<0.5	<5.0	9.0	8.0	<5.0	<5.0	<1.0	<1.0	1200.	55.
A607973	75.50	77.40	810.0	30.0	65.0	<0.5	<5.0	8.0	4.0	<5.0	6.0	<1.0	1.0	840.	32.
AG07974	77.40	77.50	390.0	112.0	118.0	<0.5	10.0	16.0	11.0	<5.0	19.0	<1.0	6.0	1000.	49.
AG07975	77.50	78.00	440.0	12.0	80.0	<0.5	<5.0	10.0	4.0	<5.0	15.0	<1.0	1.0	740.	13.
AG07977	78.00	79.50	450.0	29.0	150.0	<0.5	<5.0	30.0	10.0	<5.0	14.0	<1.0	5.0	1050.	16.
AG07978	79.50	81.00	710.0	220.0	176.0	<0.5	<5.0	19.0	16.0	<5.0	<5.0	<1.0	1.0	1300.	56.
AG07979	81.00	82.50	720.0	12.0	112.0	<0.5	<5.0	12.0	7.0	<5.0	<5.0	<1.0	2.0	1000.	10.
AG07980	82.50	83.00	280.0	12.0	80.0	<0.5	<5.0	10.0	8.0	<5.0	<5.0	<1.0	1.0	790.	13.
AG07981	83.00	83.40	1600.0	22.0	90.0	<0.5	<5.0	19.0	14.0	7.0	<5.0	<1.0	4.0	1300.	20.
AG07982	83.40	84.50	780.0	13.0	84.0	<0.5	<5.0	13.0	6.0	<5.0	<5.0	<1.0	3.0	920.	13.
AG07983	84.50	85.00	380.0	18.0	146.0	<0.5	<5.0.	25.0	18.0	<5.0	<5.0	<1.0	1.0	1200.	··. 11.
AG07984	85.00	85.80	<20.0	58.0	215.0	<0.5	5.0	26.0	14.0	8.0	18.0	<1.0	12.0	1200.	21.
AG07985	85.80	86.10	500.0	9.0	132.0	<0.5	<5.0	11.0	6.0	<5.0	<5.0	<1.0	2.0	1300.	6.
AG07986	86.10	87.70	440.0	92.0	169.0	<0.5	<5.0	21.0	16.0	<5.0	<5.0	<1.0	2.0	1600.	35.
AG07987	87.70	89.30	370.0	34.0	136.0	<0.5	<5.0	19.0	10.0	<5.0	<5.0	<1.0	2.0	1400.	20.
AG07988	89.30	90.80	560.0	88.0	132.0	<0.5	<5.0	16.0	9.0	<5.0	<5.0	<1.0	1.0	1500.	40.
AG07989	90.80	92.30	680.0	52.0	162.0	<0.5	<5.0	16.0	16.0	<5.0	<5.0	<1.0	2.0	1600.	24.
AG07990	92.30	93.30	620.0	165.0	156.0	<0.5	<5.0	20.0	11.0	<5.0	10.0	<1.0	2.0	1300.	51.
AG07991	93.30	94.30	370.0	580.0	190.0	<0.5	<5.0	22.0	20.0	<5.0	<5.0	<1.0	2.0	1400.	75.
AG07992	94.30	95.10	170.0	179.0	188.0	<0.5	<5.0	23.0	32.0	<5.0	7.0	<1.0	1.0	1700.	49.
AG07993	95.10	96.60	130.0	385.0	136.0	<0.5	<5.0	12.0	4.0	<5.0	6.0	<1.0	2.0	1000.	74.
AG07994	96.60	97.70	120.0	220.0	118.0	<0.5	<5.0	9.0	3.0	<5.0	<5.0	<1.0	1.0	860.	65.
AG07995	97.70	99.20	460.0	280.0	192.0	<0.5	<5.0	17.0	9.0	<5.0	<5.0	<1.0	3.0	1300.	59.
AG07996	106.00	107.00	990.0	84.0	360.0	<0.5	<5.0	19.0	8.0	<5.0	<5.0	<1.0	<1.0	1300.	19.

SAMPLE NUMBER	FROM	TO	BA	cu	ZN	AG	AU	co	NI	PB	AS	CD	но	мм	CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(bb#)	(ppm)	(ppm)	(ppm)	(ppm)	(bbm)		
AG07997	107.00		180.0	4200.0	2600.0	1.9	5.0	14.0	10.0	5.0	20.0	23.0	7.0	2000.	62.
AG07998	107.10	108.00	2400.0	162.0	310.0	<0.5	<5.0	18.0	8.0	<5.0	<5.0	<1.0	1.0	1300.	34.
AG07999	114.70	115.70	70.0	140.0	163.0	<0.5	<5.0	15.0	9.0	<5.0	<5.0	<1.0	<1.0	1300.	46.
AG08000	115.70	116.10	1400.0	210.0	183.0	<0.5	<5.0	22.0	10.0	5.0	19.0	<1.0	4.0	1800.	53.
AG08301	116.10	117.10	500.0	350.0	164.0	<0.5	<5.0	19.0	9.0	<5.0	<5.0	<1.0	<1.0	1500.	68.
A608302	126.00	126.70	470.0	32.0	310.0	<0.5	<5.0	19.0	7.0	<5.0	<5.0	<1.0	<1.0	1300.	9.
AG08303	126.70	126.80	280.0	200.0	285.0	0.6	10.0	39.0	10.0	7.0	14.0	<1.0	1.0	1800.	41.
AG08304	126.80	127.80	480.0	180.0	255.0	<0.5	<5.0	18.0	8.0	<5.0	<5.0	<1.0	<1.0	1400.	41.
AG08307	127.80	129.00	580.0	300.0	215.0	<0.5	<5.0	16.0	7.0	<5.0	6.0	<1.0	<1.0	1700.	58.
AG08308	129.00	130.00	1100.0	152.0	400.0	<0.5	<5.0	14.0	7.0	<5.0	7.0	3.0	<1.0	1500.	28.
AG08309	130.00	130.60	1900.0	740.0	150.0	0.5	<5.0	10.0	8.0	<5.0	11.0	<1.0	<1.0	750.	83.
AG08310	130.60	131.60	720.0	770.0	295.0	<0.5	<5.0	11.0	8.0	<5.0	10.0	2.0	<1.0	1300.	72.
AG08311	131.60	132.10	1100.0	156.0	220.0	<0.5	<5.0	13.0	7.0	<5.0	<5.0	<1.0	<1.0	1800.	41.
AG08305	132.00	132.10	270.0	135.0	144.0	0.8	10.0	24.0	10.0	43.0	29.0	2.0	4.0	5200.	48.
AG08306	132.20		290.0	172.0	162.0	<0.5	<5.0	11.0	5.0	<5.0	<5.0	<1.0	1.0	1200.	52.
AG08312	147.50		490.0	162.0	170.0	<0.5	<5.0	18.0	7.0	⟨5.0	<5.0	<1.0	<1.0	1400.	49.
AG08313	148.50		2000.0	70.0	76.0	<0.5	<5.0	10.0				<1.0	3.0	730.	48.
									4.0	<5.0	8.0				
AG08314	150.00		2200.0	9.0	28.0	<0.5	<5.0	2.0	1.0	₹5.0	<5.0 	<1.0	2.0	205.	24.
AG08315	151.00	,	1700.0	41.0	62.0	<0.5	<5.0	18.0	8.0	<5.0	<5.0	<1.0	1.0	430.	40.
AG08316	152.10	153.10	1200.0	143.0	72.0	<0.5	<5.0	20.0	8.0	13.0	6.0	<1.0	<1.0	500.	67.
AG08317	153.10	154.10	2000.0	168.0	104.0	<0.5	<5.0	19.0	8.0	18.0	<5.0	<1.0	1.0	610.	62.
AG08318	154.10	155.10	2400.0	158.0	104.0	<0.5	<5.0	10.0	7.0	<5.0	<5.0	<1.0	<1.0	450.	60.
AG08319	155.10	156.10	770.0	250.0	112.0	<0.5	<5.0	20.0	8.0	<5.0	<5.0	<1.0	<1.0	680.	69.
AG08320	156.10	157.10	480.0	270.0	103.0	<0.5	<5.0	12.0	8.0	<5.0	7.0	<1.0	<1.0	670.	72.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA	CU	ZN	AG	AU	co	NI	PB	AS	CD	но	4M	L CUZN
			(pp#)	(ppm)	(ppm)	(ppm)	(ppb)	(pp#)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		·
AG08321	157.10	158.10	510.0	240.0	245.0	<0.5	<5.0	20.0	8.0	<5.0	<5.0	3.0	<1.0	600	49.
AG08322	158.10	159.40	800.0	300.0	310.0	<0.5	<5.0	20.0	7.0	<5.0	<5.0	3.0	<1.0	710	. 49.
AG08323	159.40	160.50	210.0	75.0	118.0	<0.5	<5.0	16.0	12.0	<5.0	<5.0	<1.0	<1.0	1050	. 39.
AG08324	160.50	161.30	700.0	52.0	122.0	<0.5	<5.0	16.0	14.0	<5.0	<5.0	<1.0	<1.0	870	. 30.
AG08325	161.30	162.80	<20.0	136.0	98.0	<0.5	<5.0	25.0	12.0	<5.0	<5.0	<1.0	<1.0	975	58.
A <b>G0</b> 8326	164.50	166.00	570.0	250.0	113.0	<0.5	<5.0	20.0	10.0	<5.0	6.0	<1.0	<1.0	910	. 69.
AG08327	166.00	167.50	430.0	77.0	54.0	<0.5	<5.0	11.0	3.0	<5.0	16.0	<1.0	<1.0	430	. 59.
AG08328	167.50	169.00	520.0	24.0	50.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	<1.0	310	32.
AG08329	169.00	170.50	520.0	4.0	42.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	<1.0	285	i. 9.
AG08330	170.50	172.00	760.0	4.0	66.0	<0.5	<5.0	7.0	4.0	5.0	<5.0	<1.0	<1.0	245	6.
AG08331	172.00	173.00	900.0	4.0	59.0	<0.5	<5.0	8.0	4.0	11.0	<5.0	<1.0	<1.0	260	6.
AG08332	173.00	174.00	1100.0	11.0	48.0	<0.5	⟨5.0	9.0	4.0	⟨5.0	10.0	<1.0	<1.0	225	i. 19.
AG08333	174.00	175.00	1300.0	8.0	40.0	<0.5	5.0	9.0	6.0	6.0	<5.0	<1.0	1.0	18:	i. 17.
AG08334	175.00	176.00	1000.0	16.0	58.0	<0.5	<5.0	11.0	8.0	18.0	<5.0	<1.0	<1.0	28	j. 22.
AG08335	176.00	176.60	820.0	38.0	42.0	<0.5	<5.0	8.0	4.0	8.0	5.0	<1.0	<1.0	240	48.
AG08336	176.60	177.70	880.0	36.0	198.0	<0.5	<5.0	8.0	4.0	18.0	<5.0	1.0	2.0	. 246	. 15.
AG08337	177.70	178.10	1000.0	22.0	860.0	<0.5	<5.0	15.0	8.0	75.0	<5.0	4.0	4.0	230	2.
AG08338	178.10	178.90	1800.0	11.0	65.0	₹0.5	<5.0	4.0	2.0	32.0	<5.0	<1.0	2.0	120	). 14.
AG08339	178.90	179.90	1600.0	39.0	53.0	<0.5	<5.0	2.0	2.0	9.0	<5.0	<1.0	2.0	17:	5. 42.
AG08340	179.90	180.90	1100.0	42.0	19.0	<0.5	<5.0	3.0	2.0	<5.0	10.0	<1.0	1.0	. 19	69.
AG08341	180.90	181.90	1300.0	10.0	132.0	<0.5	<5.0	2.0	2.0	35.0	<5.0	<1.0	1.0	19:	j. 7.
AG08342	181.90	182.90	1600.0	41.0	52.0	<0.5	<5.0	9.0	8.0	6.0	<5.0	<1.0	4.0	38	. 44.
AG08343	182.90	183.90	860.0	84.0	81.0	<0.5	<5.0	20.0	9.0	<5.0	12.0	<1.0	1.0	56	). 51.
A608344		184.90	410.0	28.0	330.0	<0.5	<b>(5.0</b>	13.0	8.0	95.0	6.0	2.0	9.0	30	

and the second

SAMPLE NUMBER	FROM	TO	BA	. CU	ZN	AG	AU	CO	NI ·	PB	AS	CD	мо	мм	CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
•		-													
AG08345	184.90	185.90	1100.0	42.0	64.0	<0.5	<5.0	8.0	2.0	41.0	<5.0	<1.0	<1.0	285.	40.
AG08346	185.90	186.90	610.0	66.0	455.0	<05	<5.0	16.0	12.0	313.0	<5.0	2.0	3.0	560.	13.
AG08347	186.90	187.90	580.0	26.0	285.0	<0.5	<5.0	8.0	7.0	34.0	<5.0	1.0	2.0	230.	8.
AG08348	187.90	189.00	820.0	6.0	22.0	<0.5	<5.0	4.0	2.0	16.0	<5.0	<1.0	3.0	125.	21.
AG08349	189.00	190.00	810.0	72.0	205.0	<0.5	<5.0	12.0	9.0	84.0	6.0	<1.0	4.0	310.	26.
AG08350	190.00	191.00	820.0	152.0	2900.0	0.7	5.0	12.0	8.0	880.0	<5.0	13.0	4.0	460.	5.
AG08351	191.00	192.00	1200.0	62.0	245.0	<0.5	<5.0	8.0	8.0	14.0	<5.0	1.0	2.0	280.	20.
AG08352	192.00	193.00	1100.0	180.0	2250.0	<0.5	<5.0	22.0	30.0	68.0	<5.0	10.0	2.0	465.	7.
AG08353	193.00	194.00	1400.0	64.0	1450.0	<0.5	<5.0	17.0	14.0	9.0	<5.0	8.0	3.0	690.	4.
AG08354	194.00	195.00	700.0	84.0	135.0	<0.5	<5.0	17.0	10.0	11.0	12.0	<1.0	2.0	480.	38.
AG08355	195.00	195.80	1300.0	72.0	370.0	<0.5	5.0	16.0	12.0	57.0	16.0	2.0	8.0	180.	16.
AG08356	195.80	196.50	1400.0	10.0	33.0	<0.5	<5.0	19.0	14.0	<5.0	<5.0	<1.0	5.0	160.	23.
AG08357	196.50	197.50	1200.0	6.0	12.0	<0.5	<5.0	4.0	2.0	<5.0	<5.0	<1.0	5.0	60.	33.
AG08358	197.50	198.20	860.0	42.0	36.0	<0.5	<5.0	28.0	20.0	<5.0	<5.0	<1.0	9.0	210.	54.
AG08359	198.20	199.20	1100.0	28.0	36.0	<0.5	<5.0	20.0	14.0	<5.0	<5.0	<1.0	3.0	270.	44.
AG08360	199.20	200.20	480.0	100.0	39.0	<0.5	<5.0	16.0	15.0	⟨5.0	6.0	<1.0	2.0	320.	72.
AG08361	200.20	201.20	520.0	60.0	46.0	<0.5	<5.0	25.0	20.0	<5.0	<5.0	<1.0	2.0	360.	57.
AG08362	201.20	202.20	430.0	92.0	59.0	<0.5	<5.0	22.0	14.0	<5.0	<5.0	<1.0	2.0	420.	61.
AG08363	202.20	203.20	<20.0	690.0	38.0	<0.5	<5.0	22.0	16.0	<5.0	<5.0	<1.0	2.0	490.	95.
AG08364	203.20	203.60	50.0	330.0	30.0	<0.5	5.0	21.0	17.0	24.0	<5.0	<1.0	2.0	345.	92.
AG08365	203.60	204.60	60.0	180.0	39.0	<0.5	<5.0	25.0	18.0	5.0	<5.0	<1.0	2.0	390.	82.
AG08366	204.60		220.0	136.0	38.0	<0.5	5.0	23.0	17.0	⟨5.0	7.0	<1.0	2.0	420.	78.
AG08367	205.60	206.60	370.0	56.0	33.0	<0.5	<5.0	22.0	14.0	6.0	<5.0	<1.0	4.0	510.	63.
89580BA	206.60		140.0	360.0	50.0	<0.5	<5.0	22.0	17.0	7.0	7.0	<1.0	3.0	550.	88.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE				*********						~~~~~					
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CB (ppm)	HC (ppm)	MN	CUZN
			****	**********		****	***********				******				
AG08369	207.60	208.60	60.0	300.0	58.0	<0.5	<5.0	20.0	17.0	<5.0	<5.0	<1.0	1.0	670.	84.
AG08370	208.60	209.60	190.0	160.0	34.0	<0.5	<5.0	20.0	16.0	6.0	<5.0	<1.0	3.0	450.	82.
AG08371	209.60	210.70	80.0	480.0	36.0	<0.5	<5.0	18.0	12.0	<5.0	<5.0	<1.0	4.0	600.	93.
AG08372	210.00	210.70	<20.0	310.0	55.0	<0.5	10.0	24.0	18.0	<5.0	15.0	<1.0	<1.0	680.	85.
AG08373	210.70	211.00	<20.0	280.0	65.0	<0.5	<5,0	18.0	18.0	<5.0	10.0	<1.0	1.0	850.	81.
AG08374	211.00	212.00	320.0	120.0	35.0	<0.5	<5.0	25.0	18.0	5.0	14.0	<1.0	1.0	480.	77.
AG08375	212.00	213.00	400.0	164.0	34.0	<0.5	<5.0	23.0	20.0	<5.0	11.0	<1.0	3.0	420.	83.
AG08376	213.00	214.00	280.0	149.0	34.0	<0.5	5.0	27.0	22.0	<5.0	6.0	<1.0	5.0	450.	81.
AG08377	214.00	215.00	240.0	68.0	32.0	<0.5	<5.0	24.0	12.0	<5.0	<5.0	<1.0	2.0	390.	68.
AG08378	215.00	216.00	200.0	131.0	28.0	<0.5	<5.0	23.0	14.0	<5.0	<5.0	<1.0	4.0	340.	82.
AG08379	216.00	217.00	430.0	120.0	31.0	<0.5	<5.0	24.0	60.0	<5.0	<5.0	₹1.0	2.0	350.	79.
AG08380	217.00	218.00	390.0	125.0	23.0	<0.5	<5.0	25.0	15.0	<5.0	<5.0	<1.0	5.0	270.	84.
AG08381	218.00	219.00	390.0	116.0	21.0	<0.5	15.0	17.0	10.0	<5.0	<5.0	<1.0	3.0	265.	85.
AG08382	219.00	220.00	880.0	76.0	21.0	<0.5	<5.0	18.0	9.0	<5.0	<5.0	<1.0	6.0	235.	78.
AG08383	220.00	221.00	920.0	190.0	26.0	<0.5	<5.0	9.0	6.0	5.0	<5.0	<1.0	4.0	310.	88.
AG08384	221.00	221.60	960.0	68.0	31.0	<0.5	<5.0	7.0	6.0	9.0	<5.0	<1.0	5.0	170.	69.
AG08385	221.60	222.00	1400.0	114.0	23.0	<0.5	<5.0	10.0	3.0	5.0	<5.0	<1.0	8.0	9.0.	83.
AG08386	222.00	223.00	590.0	70.0	32.0	<0.5	10.0	20.0	16.0	<5.0	11.0	<1.0	4.0	305.	69.
AG08387	223.00	223.10	70.0	112.0	20.0	<0.5	10.0	54.0	21.0	6.0	5.0	<1.0	<1.0	280.	85.
AG08388	223.10	224.00	180.0	178.0	32.0	<0.5	<5.0	22.0	14.0	⟨5.0	<5.0	<1.0	3.0	380.	85.
AG08389	224.00	225.00	380.0	94.0	26.0	<0.5	<5.0	20.0	15.0	<5.0	<5.0	<1.0	<1.0	270.	78.
AG08390	225.00	226.00	370.0	115.0	26.0	<0.5	<5.0	22.0	14.0	5.0	<5.0	<1.0	2.0	270.	82.
AG08391	226.00	227.00	530.0	68.0	27.0	<0.5	<5.0	23.0	12.0	<5.0	<5.0	<1.0	6.0	230.	72.
AG08392	227.00	228.00	380.0	130.0	26.0	<0.5	<5.0	22.0	10.0	<5.0	<5.0	<1.0	2.0	235.	83.

SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	ΑU	CO	NI	PB	AS	CD	MO		MN	CUZN
	*********		(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)			
•														•		
AG08393	228.00	229.00	390.0	98.0	17.0	<0.5	<5.0	15.0	8.0	<5.0	10.0	<1.0	3.0		180.	85.
AG08394	229.00	230.00	290.0	77.0	18.0	<0.5	<5.0	17.0	9.0	<5.0	<5.0	<1.0	4.0		200.	81.
AG08395	230.00	231.00	170.0	88.0	24.0	<0.5	<5.0	22.0	31.0	<5.0	<5.0	<1.0	2.0		320.	79.
AG08396	231.00	232.00	510.0	88.0	21.0	<0.5	<5.0	20.0	10.0	<5.0	<5.0	<1.0	<1.0		280.	81.
AG08397	232.00	233.00	130.0	150.0	28.0	<0.5	<5.0	18.0	10.0	<5.0	8.0	<1.0	1.0		530.	84.
AG08398	233.00	234.00	20.0	140.0	35.0	<0.5	<5.0	21.0	11.0	<5.0	<5.0	<1.0	<1.0		625.	80.
AG08399	234.00	235.00	490.0	280.0	530.0	<0.5	<5.0	21.0	12.0	<5.0	8.0	3.0	2.0		450.	35.
AG08400	235.00	236.00	430.0	117.0	59.0	<0.5	<5.0	22.0	11.0	<5.0	5.0	<1.0	1.0		435.	66.
AG08401	236.00	237.00	1300.0	38.0	14.0	<0.5	5.0	20.0	12.0	5.0	5.0	<1.0	8.0		200.	73.
AG08402	237.00	238.00	950.0	118.0	12.0	<0.5	<5.0	11.0	7.0	<5.0	<5.0	<1.0	7.0		230.	91.
AG08403	238.00	239.00	380.0	108.0	16.0	<0.5	<5.0	20.0	20.0	5.0	<5.0	<1.0	5.0		285.	87.
AG08404	239.00	240.30	470.0	60.0	19.0	<0.5	<5.0	24.0	21.0	7.0	<5.0	<1.0	6.0		310.	76.
AG08405	240.80	242.00	350.0	78.0	20.0	<0.5	5.0	28.0	22.0	5.0	<5.0	<1.0	8.0		290.	80.
AG08406	242.00	243.00	230.0	64.0	14.0	<0.5	<5.0	18.0	15.0	<5.0	<5.0	<1.0	6.0		205.	82.
AG08407	243.00	244.00	620.0	51.0	12.0	<0.5	<5.0	20.0	16.0	6.0	<5.0	<1.0	9.0		175.	81.
AG08408	244.00	245.00	490.0	18.0	9.0	<0.5	<5.0	12.0	12.0	5.0	<5.0	<1.0	8.0		140.	67.
AG08409	245.00	246.00	280.0	10.0	4.0	<0.5	<5.0	5.0	4.0	10.0	(5.0	<1.0	9.0		80.	71.
AG08410	246.00	247.00	810.0	7.0	3.0	<0.5	<5.0	4.0	3.0	13.0	<5.0	<1.0	24.0		140.	70.
AG08411	247.00	248.00	1600.0	4.0	6.0	<0.5	<5.0	2.0	2.0	<5.0	14.0	<1.0	12.0		60.	40.
AG08412	248.00	249.00	1200.0	4.0	6.0	<0.5	<5.0	3.0	2.0	6.0	7.0	<1.0	11.0		70.	40.
AG08413	249.00	250.00	1200.0	5.0	8.0	<0.5	<5.0	4.0	3.0	9.0	<5.0	<1.0	14.0		90.	38.
AG08414	250.00	251.00	1400.0	2.0	11.0	<0.5	<5.0	3.0	1.0	5.0	<5.0	<1.0	9.0		95.	15.
AG08415	251.00	252.00	1500.0	4.0	7.0	<0.5	<5.0	3.0	2.0	7.0	<5.0	<1.0	11.0		90.	36.
AG08416	252.00	253.00	1100.0	6.0	7.0	<0.5	⟨5.0	3.0	2.0	⟨5.0	<b>(5.0</b>	<1.0	12.0		90.	46.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE																
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	(ppm)		MN	CUZN
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	************										***************************************		
AG08417	253.00	254.00	1200.0	10.0	6.0	<0.5	<5.0	3.0	3.0	5.0	8.0	<1.0	11.0		65.	63.
AG08418	254.00	255.00	1000.0	6.0	8.0	<0.5	<5.0	4.0	3.0	5.0	<5.0	<1.0	7.0		130.	43.
AG08419	255.00	256.00	960.0	6.0	8.0	<0.5	<5.0	5.0	3.0	<5.0	9.0	<1.0	6.0		115.	43.
AG08420	256.00	257.00	860.0	73.0	21.0	<0.5	<b>&lt;5.0</b>	20.0	13.0	<5.0	11.0	<1.0	5.0		300.	78.
AG08421	257.10	257.30	160.0	245.0	16.0	<0.5	25.0	68.0	35.0	6.0	23.0	<1.0	4.0		220.	94.
AG08422	257.30	257.90	650.0	57.0	20.0	<0.5	<5.0	28.0	24.0	<5.0	<5.0	<1.0	6.0		330.	74.
AG08423	257.90	259.00	200.0	124.0	22.0	<0.5	<5.0	28.0	27.0	5.0	<5.0	<1.0	<1.0		435.	85.
AG08424	259.00	260.00	140.0	170.0	22.0	<0.5	<5.0	24.0	22.0	<5.0	10.0	<1.0	1.0		450.	89.
AG08425	260.00	261.00	130.0	91.0	22.0	<0.5	<5.0	20.0	19.0	<5.0	<5.0	<1.0	<1.0		400.	81.
AG08426	261.00	262.00	240.0	140.0	25.0	<0.5	5.0	26.0	20.0	<5.0	<5.0	<1.0	1.0		370.	85.
AG08427	262.00	263.00	230.0	112.0	22.0	<0.5	5.0	21.0	16.0	5.0	7.0	<1.0	10.0		340.	84.
AG08428	263.00	264.00	390.0	108.0	19.0	<0.5	⟨5.0	18.0	18.0	5.0	7.0	<1.0	4.0		315.	85.
AG08429	264.00	265.00	170.0	115.0	15.0	<0.5	<5.0	20.0	18.0	<5.0	<5.0	<1.0	3.0		275.	88.
AG08430	265.00	266.00	460.0	104.0	19.0	<0.5	<5.0	30.0	16.0	<5.0	<5.0	<1.0	8.0		285.	85.
AG08431	266.00	267.00	280.0	116.0	17.0	<0.5	<5.0	20.0	14.0	<5.0	<5.0	<1.0	4.0		300.	87.
AG08432	267.00	268.00	330.0	134.0	30.0	<0.5	<5.0	18.0	15.0	<5.0	10.0	<1.0	<1.0		385.	82.
AG08433	268.00	269.00	290.0	108.0	37.0	<0.5	<5.0	20.0	16.0	5.0	7.0	<1.0	4.0		375.	74.
AG08434	269.00	270.00	210.0	120.0	26.0	<0.5	<5.0	20.0	18.0	<5.0	<5.0	<1.0	3.0		390.	82.
AG08435	270.00	271.00	310.0	94.0	22.0	<0.5	<5.0	24.0	18.0	<5.0	<5.0	<1.0	1.0		345.	81.
AG08436	271.00	272.00	280.0	129.0	21.0	<0.5	<5.0	23.0	14.0	<5.0	<5.0	<1.0	3.0		355.	86.
AG08437	272.00	272.50	<20.0	310.0	21.0	<0.5	<5.0	22.0	12.0	<5.0	7.0	<1.0	2.0		425.	94.
AG08438	272.50	273.50	40.0	1200.0	41.0	<0.5	10.0	34.0	17.0	5.0	<5.0	<1.0	4.0		485.	97.
AG08439	273.20	273.50	<20.0	550.0	26.0	<0.5	<5.0	26.0	22.0	5.0	8.0	<1.0	1.0		455.	95.
AG08440	273.50	274.50	480.0	119.0	26.0	<0.5	<5.0	25.0	20.0	<5.0	10.0	<1.0	1.0		370.	82.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	им	CUZN
														***************************************	
AG08441	274.50	275.50	230.0	160.0	19.0	<0.5	<5.0	22.0	20.0	5.0	<5.0	<1.0	1.0	285.	89.
AG08442	275.50	276.50	210.0	132.0	23.0	<0.5	<5.0	26.0	24.0	5.0	9.0	<1.0	2.0	350.	85.
AG08443	276.50	277.50	300.0	81.0	23.0	<0.5	<5.0	24.0	22.0	<5.0	6.0	<1.0	3.0	340.	78.
AG08444	277.50	278.50	270.0	74.0	23.0	<0.5	<5.0	22.0	20.0	<5.0	11.0	<1.0	2.0	330.	76.
AG08445	278.50	280.00	450.0	100.0	29.0	<0.5	10.0	22.0	22.0	<5.0	7.0	<1.0	3.0	355.	78.
AG08446	280.00	281.00	610.0	72.0	30.0	<0.5	<5.0	24.0	21.0	<5.0	<5.0	<1.0	3.0	385.	71.
AG08447	281.00	282.00	100.0	62.0	37.0	<0.5	<5.0	20.0	20.0	<5.0	<5.0	<1.0	5.0	620.	63.
AG08448	282.00	283.00	240.0	100.0	30.0	<0.5	5.0	21.0	19.0	<5.0	18.0	<1.0	4.0	390.	77.
AG08449	283.00	284.00	140.0	88.0	32.0	<0.5	<5.0	34.0	22.0	<5.0	11.0	<1.0	24.0	430.	73.
AG08450	284.00	285.00	210.0	85.0	26.0	<0.5	5.0	19.0	16.0	<5.0	<5.0	<1.0	2.0	410.	77.
AG08451	285.00	286.00	410.0	79.0	35.0	<0.5	20.0	26.0	15.0	<5.0	√ <b>₹5.0</b>	<1.0	2.0	450.	69.
AG08452	286.00	287.00	820.0	56.0	24.0	<0.5	15.0	20.0	10.0	<5.0	<5.0	<1.0	27.0	275.	70.
AG08453	287.00	288.10	1200.0	117.0	24.0	<0.5	<5.0	21.0	9.0	<5.0	11.0	<1.0	41.0	220.	83.
AG08454	288.20	288,60	980.0	130.0	21.0	<0.5	<5.0	30.0	7.0	<5.0	<5.0	<1.0	120.0	165.	86.
AG08455	288.60	289.30	1000.0	108.0	12.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	12.0	130.	90.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	мм	CUZN	
									····							
AG08027	38.20	40.20	970.0	22.0	110.0	<0.5	<5.0	30.0	52.0	7.0	<5.0	<1.0	5.0	1506.	17.	
AG08028	40.20	41.40	830.0	28.0	111.0	<0.5	<5.0	20.0	48.0	9.0	<5.0	<1.0	3.0	1282.	20.	
AG08029	44.00	46.00	950.0	11.0	44.0	<0.5	<5.0	5.0	15.0	<5.0	<5.0	<1.0	2.0	501.	20.	
AG08030	47.00	48.00	1600.0	65.0	84.0	<0.5	<5.0	40.0	53.0	7.0	<5.0	<1.0	4.0	1379.	44.	
AG08031	48.00	49.00	980.0	8.0	29.0	<0.5	<5.0	5.0	17.0	5.0	<5.0	<1.0	3.0	493.	22.	
AG08032	49.00	50.00	1600.0	18.0	59.0	<0.5	<5.0	13.0	34.0	7.0	<5.0	<1.0	3.0	915.	23.	
AG08033	50.00	51.00	790.0	21.0	57.0	<0.5	<5.0	23.0	43.0	8.0	<5.0	<1.0	3.0	881.	27.	
AG08034	51.00	52.00	380.0	21.0	65.0	<0.5	<5.0	13.0	33.0	11.0	<5.0	<1.0	3.0	831.	24.	
AG08035	52.00	53.00	1400.0	339.0	101.0	<0.5	<5.0	33.0	59.0	9.0	<5.0	<1.0	3.0	1312.	77.	
AG08036	53.00	54.00	1100.0	94.0	104.0	<0.5	<5.0	32.0	59.0	9.0	<5.0	<1.0	2.0	1286.	47.	
AG08037	54.00	55.00	650.0	162.0	113.0	<0.5	<5.0	29.0	77.0	8.0	<5.0	<1.0	3.0	1314.	59.	
AG08038	55.00	56.00	260.0	25.0	80.0	<0.5	<5.0	17.0	51.0	9.0	<5.0	<1.0	3.0	864.	24.	
AG08039	56.00	57.50	1600.0	192.0	100.0	<0.5	10.0	56.0	77.0	16.0	20.0	<1.0	3.0	1598.	66.	
AG08040	57.50	58.30	890.0	311.0	85.0	<0.5	<5.0	32.0	56.0	11.0	8.0	<1.0	25.0	1451.	79.	
AG08041	59.00	59.50	570.0	2943.0	108.0	1.1	<5.0	23.0	55.0	8.0	<5.0	1.0	9.0	2062.	96.	
AG08042	62.80	63.80	310.0	630.0	89.0	<0.5	<5.0	27.0	54.0	12.0	5.0	<1.0	6.0	1729.	88.	
AG08043	64.70	67.40	90.0	89.0	71.0	<0.5	<5.0	17.0	40.0	9.0	<5.0	<1.0	2.0	1295.	56.	
AG08044	71.50	72.50	<20.0	42.0	11.0	0.6	<5.0	4.0	13.0	10.0	9.0	<1.0	2.0	199.	79.	
AG08045	100.90	101.60	3500.0	11.0	38.0	<0.5	<5.0	4.0	2.0	<5.0	<5.0	<1.0	2.0	420.	22.	
AG08046	101.60	101.72	570.0	3700.0	66.0	<0.5	15.0	100.0	113.0	31.0	<5.0	<1.0	11.0	1257.	98.	
AG08047	101.72	103.20	430.0	11.0	78.0	<0.5	<5.0	10.0	19.0	<5.0	<5.0	<1.0	10.0	930.	12.	
AG08048	130.00	131.70	880.0	10.0	36.0	<0.5	<5.0	3.0	3.0	<5.0	<5.0	<1.0	2.0	350.	22.	
AG08049	131.70	132.60	720.0	2.0	24.0	<0.5	<5.0	1.0	3.0	<5.0	<5.0	<1.0	2.0	280.	8.	
AG08050	132.60	133.10	430.0	12.0	33.0	<0.5	<5.0	6.0	3.0	⟨5.0	<5.0	<1.0	2.0	365.	27.	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA	cu	ZN	AG	AU	co	NI	PB	AS	CD	HO		ми	CUZN
			( ppm )	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(bbw)	(ppm)	(ppm)	(ppm)			
•		•														
AG08051	166.00	167.50	1900.0	2.0	63.0	<0.5	<5.0	1.0	3.0	<5.0	<5.0	<1.0	2.0		470.	3.
AG08052	171.00	172.50	1200.0	6.0	60.0	<0.5	<5.0	3.0	4.0	<5.0	<5.0	<1.0	4.0		570.	9.
AG08053	173.00	174.50	1300.0	7.0	34.0	<0.5	<5.0	2.0	3.0	<5.0	<5.0	<1.0	3.0	*	335.	17.
AG08054	193.20	194.70	1900.0	285.0	147.0	<0.5	<5.0	3.0	3.0	<5.0	<5.0	<1.0	4.0		710.	66.
AG08055	194.70	196.00	1000.0	1400.0	220.0	0.8	10.0	5.0	6.0	5.0	<5.0	<1.0	5.0		835.	86.
AG08056	196.00	196.70	2300.0	4800.0	215.0	1.3	<5.0	2.0	3.0	<5.0	<5.0	1.0	5.0		600.	96.
AG08057	196.70	198.00	940.0	900.0	200.0	<0.5	<5.0	4.0	2.0	<5.0	<5.0	<1.0	6.0		500.	82.
AG08058	198.40	199.40	1500.0	188.0	1450.0	<0.5	<5.0	19.0	14.0	<5.0	5.0	8.0	<1.0		1050.	11.
AG08059	199.40	200.50	1800.0	205.0	1050.0	<0.5	<5.0	20.0	30.0	<5.0	<5.0	8.0	1.0		1000.	16.
AG08060	202.30		3400.0	3000.0	490.0	1,1	5.0	15.0	16.0	<5.0	<5.0	1.0	12.0		1200.	86.
AG08061		204.50	1700.0	176.0	2900.0	<0.5	<5.0	17.0	11.0	<5.0	<5.0	12.0	1.0	a james	1600.	6.
AG08062	204.50		3800.0	380.0	3600.0	<0.5	5.0	17.0	16.0	<5.0	6.0	16.0	3.0		1400.	10.
AG08063	210.40	211.40	830.0	115.0	1700.0	<0.5	<5.0	17.0	10.0	<5.0	<5.0	. 9.0	2.0		1250.	6.
AG08064	212.50	214.00	580.0	56.0	880.0	<0.5	<5.0	16.0	11.0	<5.0	<5.0	4.0	2.0		1600.	6.
AG08065	214.00	215.50	430.0	50.0	450.0	<0.5	<5.0	14.0	15.0	<5.0	<5.0	1.0	<1.0		1600.	10.
AG08066	218.70	220.30	1500.0	10.0	157.0	<0.5	<5.0	3.0	2.0	<5.0	9.0	<1.0	2.0		880.	6.
AG08067	220.30	221.30	1400.0	8.0	140.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	2.0		785.	5.
AG08069	257.80	258.30	40.0	161.0	67.0	<0.5	<5.0	31.0	27.0	<5.0	<5.0	<1.0	3.0		940.	71.
AG08068	270.70	271.70	<20.0	91.0	84.0	<0.5	<5.0	42.0	11.0	<5.0	<5.0	<1.0	2.0		1000.	52.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CB (ppm)	MO (ppm)	мм	CUZN
	***********									***********					
AG08456	3.00	5.50	40.0	134.0	102.0	<0.5	<5.0	12.0	6.0	5.0	<5.0	<1.0	3.0	760.	57.
AG08457	5.50	6.50	1000.0	172.0	64.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	2.0	540.	73.
AG08458	6.50	7.70	630.0	500.0	82.0	<0.5	<5.0	8.0	4.0	<5.0	10.0	<1.0	2.0	510.	86.
AG08459	22.00	23.50	<20.0	160.0	222.0	<0.5	<5.0	16.0	6.0	<5.0	<5.0	<1.0	3.0	1050.	42.
AG08460	23.50	25.00	910.0	204.0	405.0	<0.5	<5.0	16.0	7.0	5.0	5.0	2.0	2.0	630.	34.
AG08461	25.00	26.50	620.0	86.0	102.0	<0.5	<5.0	14.0	6.0	5.0	6.0	<1.0	5.0	620.	46.
AG08462	26.50	27.40	640.0	30.0	101.0	<0.5	<5.0	13.0	6.0	6.0	9.0	<1.0	4.0	540.	23.
AG08463	27.40	27.50	60.0	96.0	80.0	<0.5	10.0	13.0	11.0	21.0	13.0	<1.0	6.0	310.	55.
AG08464	27.50	28.00	460.0	21.0	91.0	<0.5	<5.0	13.0	8.0	<5.0 ⋅	<5.0	<1.0	3.0	570.	19.
AG08465	28.00	29.50	450.0	380.0	106.0	<0.5	10.0	15.0	8.0	⟨5.0	7.0	<1.0	2.0	750.	78.
AG08466	29.50	31.00	350.0	480.0	104.0	<0.5	<5.0	17.0	7.0	<5.0	<5.0	<1.0	1.0	585.	82.
AG08467	31.00	32.50	650.0	36.0	100.0	<0.5	<5.0	17.0	8.0	<5.0	<5.0	<1.0	3.0	580.	26.
AG08468	32.50	33.50	100.0	220.0	75.0	<0.5	<5.0	15.0	6.0	<5.0	<5.0	<1.0	2.0	525.	75.
AG08469	33.50	34.00	460.0	420.0	213.0	<0.5	5.0	20.0	14.0	<5.0	<5.0	1.0	1.0	665.	66.
AG08470	34.00	35.50	280.0	280.0	238.0	<0.5	<5.0	18.0	8.0	<5.0	<5.0	1.0	2.0	500.	54.
AG08471	35.50	37.00	650.0	212.0	260.0	0.5	<5.0	18.0	8.0	7.0	<5.0	2.0	(1.0	500.	45.
AG08472	37.00	38.00	730.0	184.0	107.0	<0.5	<5.0	19.0	10.0	8.0	16.0	<1.0	2.0	500.	63.
AG08473	38.00	39.40	810.0	142.0	37.0	<0.5	<5.0	9.0	4.0	7.0	8.0	<1.0	2.0	280.	79.
AG08474	39.40	40.30	1000.0	276.0	62.0	<0.5	<5.0	20.0	8.0	<5.0	<5.0	<1.0	2.0	390.	82.
AG08475	40.30	40.40	1000.0	210.0	11.0	<0.5	<5.0	2.0	9.0	5.0	10.0	<1.0	4.0	75.	95.
AG08476	40.40	41.90	1400.0	13.0	30.0	<0.5	<5.0	7.0	4.0	<5.0	<5.0	<1.0	2.0	215.	30.
AG08477	41.90	42.80	1700.0	30.0	19.0	<0.5	<5.0	5.0	4.0	<5.0	<5.0	<1.0	5.0	170.	61.
AG08478	42.80	44.30	570.0	44.0	75.0	<0.5	<5.0	19.0	8.0	5.0	6.0	<1.0	<1.0	675.	37.
AG08479	44.30	45.80	180.0	200.0	64.0	<0.5	<5.0	18.0	8.0	5.0	11.0	<1.0	<1.0	580.	76.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	€Ս (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	мм	CUZN	
								*				**********	*******			
AG08480	45.80	47.00	<20.0	176.0	71.0	<0.5	5.0	15.0	8.0	5.0	<5.0	<1.0	1.0	660.	71.	
AG08481	47.00	48.50	70.0	470.0	62.0	<0.5	<5.0	20.0	8.0	<5.0	<5.0	<1.0	<1.0	580.	88.	
AG08482	48.50	49.50	420.0	74.0	57.0	<0.5	<5.0	23.0	9.0	6.0	<5.0	<1.0	2.0	435.	56.	
AG08483	49.50	50.50	1600.0	250.0	47.0	<0.5	<5.0	24.0	8.0	12.0	8.0	<1.0	<1.0	360.	84.	
AG08484	50.50	51.70	1900.0	20.0	14.0	<0.5	<5.0	7.0	6.0	12.0	<5.0	<1.0	3.0	130.	59.	
AG08485	51.70	53.20	350.0	180.0	65.0	<0.5	<5.0	18.0	8.0	5.0	<5.0	<1.0	1.0	460.	73.	
AG08486	53.20	54.00	2000.0	12.0	27.0	<0.5	<5.0	12.0	6.0	10.0	<5.0	<1.0	3.0	165.	31.	
AG08487	54.00	55.30	1500.0	6.0	16.0	<0.5	<5.0	4.0	5.0	<5.0	<5.0	<1.0	2.0	75.	27.	
AG08488	55.30	55.50	1200.0	580.0	90.0	<0.5	10.0	27.0	50.0	<5.0	17.0	<1.0	6.0	645.	87.	
AG08489	55.50	57.00	1500.0	42.0	42.0	<0.5	<5.0	19.0	12.0	5.0	<5.0	<1.0	2.0	245.	50.	
AG08490	57.00	58.00	790.0	200.0	605.0	<0.5	<5.0	19.0	8.0	6.0	<5.0	3.0	1.0	200.	25.	. 1
AG08491	58.00	59.00	890.0	32.0	78.0	<0.5	<5.0	22.0	8.0	12.0	<5.0	<1.0	2.0	240.	29.	
AG08492	59.00	60.00	710.0	38.0	77.0	<0.5	5.0	18.0	8.0	6.0	<5.0	<1.0	1.0	315.	33.	
AG08493	60.00	61.00	660.0	50.0	48.0	<0.5	5.0	27.0	9.0	<5.0	<5.0	<1.0	1.0	250.	51.	
AG08494	61.00	62.00	360.0	28.0	47.0	<0.5	<5.0	23.0	10.0	<5.0	<5.0	<1.0	1.0	310.	37.	
AG08495	62.00	63.00	500.0	144.0	35.0	<0.5	<5.0	19.0	8.0	<5.0	<5.0	<1.0	1.0	270.	80.	
AG08496	63.00	64.00	450.0	275.0	38.0	<0.5	<5.0	16.0	8.0	<5.0	<5.0	<1.0	3.0	320.	88.	
AG08497	64.00	65.00	410.0	34.0	34.0	<0.5	<5.0	20.0	10.0	<5.0	6.0	<1.0	1.0	250.	50.	
AG08498	65.00	66.20	750.0	34.0	31.0	<0.5	<5.0	24.0	9.0	10.0	8.0	<1.0	1.0	190.	52.	
AG08499	66.20	68.50	1100.0	13.0	28.0	<0.5	<5.0	12.0	10.0	<5.0	<5.0	<1.0	1.0	170.	32.	
AG08500 .	68.50	70.00	1300.0	8.0	21.0	<0.5	<5.0	10.0	8.0	<5.0	<5.0	<1.0	2.0	95.	28.	
AF00351	70.00	71.00	1500.0	30.0	88.0	<0.5	<5.0	16.0	12.0	7.0	6.0	<1.0	3.0	75.	25.	
AF00352	71.00	72.00	1500.0	10.0	18.0	<0.5	<5.0	18.0	9.0	6.0	<5.0	<1.0	<1.0	105.	36.	
AF00353	72.00	72.60	1900.0	24.0	1450.0	<0.5	<b>(5.0</b>	10.0	6.0	<b>&lt;5.0</b>	<5.0	14.0	<1.0	55.	2.	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MG (ppm)		мм	CUZN
	*															
AF00354	72.60	72.90	250.0	215.0	33.0	0.5	10.0	8.0	10.0	77.0	29.0	<1.0	8.0		80.	87.
AF00355	72.90	74.00	880.0	10.0	32.0	<0.5	<5.0	18.0	10.0	10.0	5.0	<1.0	1.0		170.	24.
AF00356	74.00	75.00	550.0	140.0	26.0	<0.5	<5.0	16.0	10.0	7.0	<5.0	<1.0	2.0		175.	84.
AF00357	75.00	76.00	570.0	32.0	22.0	<0.5	10.0	17.0	10.0	18.0	<5.0	<1.0	4.0		150.	59.
AF00358	76.00	77.00	380.0	120.0	19.0	<0.5	<5.0	16.0	10.0	<5.0	7.0	<1.0	1.0		150.	86.
AF00359	77.00	78.00	500.0	67.0	23.0	<0.5	<5.0	14.0	10.0	8.0	<5.0	<1.0	2.0		180.	74.
AF00360	78.00	79.00	720.0	15.0	17.0	<0.5	<5.0	20.0	10.0	28.0	<5.0	<1.0	1.0		120.	47.
AF00361	79.00	80.20	870.0	10.0	13.0	<0.5	<5.0	20.0	8.0	7.0	<5.0	<1.0	4.0		95.	43.
AF00362	80.20	81.40	510.0	23.0	8.0	<0.5	<5.0	21.0	11.0	53.0	<5.0	<1.0	<1.0		55.	74.
AF00363	81.40	82.40	620.0	32.0	15.0	<0.5	<5.0	22.0	9.0	5.0	<5.0	<1.0	<1.0		110.	68.
AF00364	82.40	83.40	540.0	32.0	17.0	<0.5	<5.0	15.0	9.0	5.0	<5.0	<1.0	<1.0		135.	65.
AF00365	83.40	84.90	\$30.0	98.0	19.0	<0.5	<5.0	16.0	8.0	<5.0	<5.0	<1.0	<1.0		185.	84.
AF00366	84.90	86.40	360.0	196.0	51.0	<0.5	<5.0	16.0	8.0	<5.0	<5.0	<1.0	<1.0		200.	79.
AF00367	86.40	87.90	530.0	166.0	22.0	<0.5	5.0	17.0	9.0	<5.0	<5.0	<1.0	<1.0		235.	88.
AF00368	87.90	89.40	410.0	148.0	21.0	<0.5	<5.0	17.0	9.0	<5.0	8.0	<1.0	<1.0		230.	88.
AF00369	89.40	90.80	910.0	215.0	16.0	<0.5	<5.0	11.0	9.0	<5.0	<5.0	<1.0	<1.0		140.	93.
AF00370	90.80	92.30	700.0	36.0	20.0	<0.5	<5.0	13.0	8.0	<5.0	<5.0	<1.0	3.0		305.	64.
AF00371	92.30	93.40	320.0	140.0	16.0	<0.5	<5.0	14.0	7.0	5.0	42.0	<1.0	5.0		235.	90.
AF00372	93.40	94.90	480.0	450.0	23.0	<0.5	<5.0	22.0	11.0	<5.0	<5.0	<1.0	5.0		240.	95.
AF00373	94.90	96.40	280.0	200.0	26.0	<0.5	<5.0	20.0	13.0	<5.0	6.0	<1.0	3.0	•	315.	89.
AF00374	96.40	97.90	710.0	78.0	15.0	<0.5	<5.0	17.0	11.0	<5.0	6.0	<1.0	1.0		160.	84.
AF00375	97.90	99.40	820.0	72.0	12.0	<0.5	<5.0	10.0	10.0	<5.0	<5.0	<1.0	1.0		130.	86.
AF00376	99.40	101.00	930.0	355.0	13.0	<0.5	<5.0	10.0	6.0	<5.0	<5.0	<1.0	17.0		95.	96.
AF00377	101.00	101.20	800.0	280.0	14.0	<0.5	<5.0	30.0	10.0	<5.0	<5.0	<1.0	5.0		150.	95.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE	rpo=		BA	CU	ZN	AG	AU	co		n.n.	A.O.	CD	<b>H</b> O	мм	CUZN
NUMBER	FROM	TO	(bb#)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	NI (ppm)	PB (ppm)	AS (ppm)	(ppm)	(ppm)	nn	CUZN
		·			~~~~~		*******						<del></del>		
AF00378	101.20	102.70	670.0	265.0	20.0	<0.5	<5.0	20.0	10.0	<5.0	<5.0	<1.0	1.0	185.	93.
AF00379	102.70	104.20	760.0	66.0	27.0	<0.5	<5.0	18.0	11.0	<5.0	<5.0	<1.0	<1.0	190.	71.
AF00380	104.20	105.70	890.0	300.0	32.0	<0.5	10.0	26.0	14.0	<5.0	<5.0	<1.0	4.0	250.	90.
AF00381	105.70	107.20	490.0	100.0	34.0	<0.5	<5.0	16.0	13.0	<5.0	<5.0	<1.0	<1.0	280.	75.
AF00382	107.20	108.70	680.0	178.0	24.0	<0.5	<5.0	20.0	13.0	10.0	<5.0	<1.0	<1.0	210.	88.
AF00383	108.70	109.70	490.0	32.0	26.0	<0.5	<5.0	20.0	13.0	44.0	5.0	<1.0	1.0	220.	55.
AF00384	109.70	111.20	290.0	225.0	24.0	<0.5	20.0	23.0	13.0	<5.0	<5.0	<1.0	1.0	325.	90.
AF00385	111.20	112.70	180.0	132.0	26.0	<0.5	<5.0	20.0	12.0	<5.0	<5.0	<1.0	<1.0	365.	84.
AF00386	112.70	114.20	330.0	195.0	22.0	<0.5	<5.0	20.0	12.0	<5.0	<5.0	<1.0	1.0	340.	90.
AF00387	114.20	115.70	280.0	330.0	30.0	<0.5	<5.0	22.0	12.0	<5.0	<5.0	<1.0	<1.0	350.	92.
AF00388	115.70	117.20	610.0	100.0	28.0	<0.5	<5.0	20.0	8.0	<5.0	<5.0	<1.0	3.0	360.	78.
A£00389	117.20	118.70	120.0	156.0	26.0	<0.5	<5.0	18.0	9.0	<5.0	<5.0	<1.0	<1.0	420.	86.
AF00390	118.70	120.00	€20.0	112.0	26.0	<0.5	<5.0	21.0	11.0	<5.0	33.0	<1.0	<1.0	515.	81.
AF00391	120.00	120.50	760.0	22.0	20.0	<0.5	<5.0	14.0	8.0	<5.0	7.0	<1.0	1.0	250.	52.
AF00392	120.50	121.00	480.0	156.0	36.0	<0.5	<5.0	16.0	6.0	<5.0	<5.0	<1.0	<1.0	415.	81.
AF00393	121.50	122.00	360.0	160.0	64.0	<0.5	<5.0	18.0	7.0	<5.0	<5.0	<1.0	<1.0	420.	71.
AF00394	122.00	123.50	370.0	184.0	35.0	<0.5	<5.0	18.0	8.0	<5.0	<5.0	<1.0	<1.0	320.	84.
AE00395	123.50	125.00	400.0	83.0	28.0	<0.5	<5.0	20.0	11.0	<5.0	<5.0	<1.0	1.0	400.	75.
AF00396	125.00	126.50	380.0	245.0	24.0	<0.5	<5.0	20.0	10.0	<5.0	6.0	<1.0	<1.0	270.	91.
AF00397	126.50	128.20	360.0	140.0	24.0	<0.5	<5.0	17.0	9.0	<5.0	7.0	<1.0	<1.0	· 245.	85.
AF00398	128.20	129.60	1300.0	32.0	18.0	<0.5	<5.0	18.0	10.0	<5.0	<5.0	<1.0	1.0	230.	64.
AF00399	129.60	129.80	<b>550.</b> 0	124.0	16.0	<0.5	<5.0	18.0	11.0	<5.0	<5.0	<1.0	7.0	190.	89.
AF00400	129.80	130.80	1100.0	53.0	20.0	<0.5	<5.0	30.0	20.0	<5.0	<5.0	<1.0	8.0	235.	73.
AF05401	131.20	132.70	270.0	95.0	30.0	<0.5	<5.0	25.0	19.0	<5.0	<5.0	<1.0	3.0	425.	76.

SAMPLE NUMBER	FROM	TO	8A (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	ни	CUZN
										·FF					
AE05402	132.70	134.20	430.0	90.0	24.0	<0.5	<5.0	21.0	17.0	⟨5.0	7.0	ζ1 <b>.0</b>	5.0	410.	79.
AF05403	134.20		180.0	74.0	22.0	<0.5	<5.0	22.0	16.0	<5.0	<5.0	<1.0	4.0	450.	77.
AF05404	135.70	137.20	270.0	134.0	24.0	<0.5	<5.0	27.0	18.0	<5.0	<5.0	<1.0	2.0	400.	85.
AE05405	137.20	138.70	280.0	88.0	26.0	<0.5	<5.0	20.0	17.0	<5.0	<5.0	<1.0	2.0	400.	77.
AF05406	138.70	140.20	350.0	84.0	19.0	<0.5	<5.0	26.0	16.0	6.0	<5.0	<1.0	<1.0	572.	82.
A£05407	140.20	141.70	440.0	82.0	16.0	<0.5	<5.0	29.0	15.0	5.0	<5.0	<1.0	<1.0	496.	84.
AF05408	141.70	143.20	170.0	120.0	27.0	<0.5	<5.0	23.0	15.0	<5.0	7.0	<1.0	1.0	541.	82.
AF05409	143.20	144.70	170.0	132.0	22.0	<0.5	<5.0	25.0	16.0	<5.0	<5.0	<1.0	4.0	483.	86.
AF05410	144.70	145.50	220.0	238.0	24.0	<0.5	<5.0	23.0	14.0	<5.0	<5.0	<1.0	<1.0	515.	91.
AF05411	145.60	147.10	470.0	80.0	22.0	<0.5	<5.0	24.0	15.0	<5.0	6.0	<1.0	3.0	475.	78.
AF05412	147.10	148.60	210.0	132.0	20.0	<0.5	<5.0	22.0	15.0	<5.0	6.0	<1.0	<1.0	511.	87.
AF05413	148.60	149.70	190.0	82.0	35.0	<0.5	<5.0	18.0	4.0	<5.0	<5.0	<1.0	<1.0	476.	70.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	AU	co	IN	PB	AS	CD	, MO	MN CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
,														
AF05414	7.30	8.80	<20.0	228.0	83.0	<0.5	<5.0	16.0	7.0	<5.0	<5.0	<1.0	<1.0	665. 73.
AF05415	8.80	9.20	100.0	36.0	164.0	<0.5	5.0	14.0	8.0	10.0	10.0	<1.0	4.0	792. 18.
AF05416	9.20	10.70	<20.0	620.0	68.0	<0.5	<5.0	15.0	4.0	<5.0	<5.0	<1.0	1.0	648. 90.
AF05417	13.00	14.00	180.0	930.0	76.0	<0.5	<5.0	20.0	6.0	<5.0	<5.0	<1.0	3.0	467. 92.
AF05418	14.00	14.80	1000.0	70.0	38.0	<0.5	⟨5.0	13.0	3.0	7.0	<5.0	<1.0	3.0	210. 65.
AF05419	14.80	16.00	310.0	200.0	66.0	<0.5	<5.0	10.0	3.0	<5.0	₹5.0	<1.0	4.0	2. 75.
AE05420	16.00	17.50	110.0	300.0	50.0	<0.5	5.0	14.0	6.0	<5.0	<5.0	<1.0	<1.0	515. 86.
AF05421	21.20	22.20	380.0	130.0	108.0	<0.5	₹5.0	17.0	6.0	5.0	<5.0	<1.0	<1.0	347. 55.
AF05422	22.20	23.60	1700.0	64.0	67.0	<0.5	<5.0	9.0	5.0	<5.0	<5.0	<1.0	<1.0	229. 49.
AF05423	23.60	23.80	1200.0	50.0	265.0	<0.5	<5.0	3.0	4.0	<5.0	6.0	2.0	2.0	325. 16.
AF05424	23.80	25.20	2100.0	13.0	16.0	<0.5	<5.0	3.0	1.0	5.0	<5.0	<1.0	2.0	67. № 45.
AF05425	25.20	26.00	1700.0	8.0	12.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	2.0	93. 40.
AF05426	26.00	27.00	1500.0	7.0	49.0	<0.5	<5.0	2.0	1.0	5.0	<5.0	<1.0	1.0	130. 13.
AE05427	27.00	27.20	1500.0	244.0	6200.0	0.5	5.0	12.0	11.0	39.0	<5.0	36.0	3.0	146. 4.
AF05428	27.20	28.70	1200.0	36.0	300.0	0.5	5.0	14.0	6.0	<5.0	<5.0	2.0	2.0	197. 11.
AF05429	28.70	29.70	1900.0	16.0	60.0	0.5	⟨5.0	17.0	6.0	<5.0	<5.0	<1.0	<1.0	172. 21.
AF05430	29.70	31.00	1800.0	20.0	64.0	0.5	<5.0	4.0	3.0	25.0	<5.0	<1.0	3.0	112. 24.
AF05431	31.00	32.00	2000.0	25.0	78.0	0.5	<5.0	7.0	5.0	<5.0	<5.0	<1.0	4.0	117. 24.
AF05432	32.00	33.50	1500.0	100.0	100.0	0.5	25.0	26.0	20.0	<5.0	13.0	<1.0	1.0	375. 50.
AF05433	33.50	35.00	810.0	100.0	100.0	0.5	<5.0	23.0	20.0	<5.0	<5.0	<1.0	<1.0	494. 50.
AE05434	35.00	36.00	(20.0	165.0	76.0	0.5	25.0	25.0	17.0	<5.0	⟨5.0		4.0	470. 68.
									-			<1.0		
AF05435	36.00	36.90	<20.0	134.0	60.0	0.5	5.0	23.0	19.0	<5.0	<5.0	<1.0	<1.0	409. 69.
AF05436	36.90	38.00	610.0	62.0	44.0	0.5	10.0	27.0	18.0	19.0	<5.0	<1.0	<1.0	355. 58.
AF05437	38.00	39.00	390.0	46.0	50.0	0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0	<1.0	471. 48.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

FROM	TO	BA	CU	ZN	AG	AU	CO	NI	PB	AS	CD	но	MM	CUZN
		(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
	-	•												
39.00	39.30	590.0	14.0	16.0	0.5	5.0	7.0	4.0	<5.0	<5.0	<1.0	2.0	31.	47.
39.30	40.80	200.0	122.0	62.0	0.5	<5.0	25.0	18.0	<5.0	<5.0	<1.0	1.0	520.	66.
40.80	41.60	<20.0	90.0	122.0	0.5	25.0	26.0	17.0	<5.0	<5.0	<1.0	<1.0	705.	42.
43.80	45.30	220.0	80.0	40.0	0.5	10.0	24.0	19.0	<5.0	<5.0	<1.0	<1.0	480.	67.
45.30	45.60	1000.0	14.0	8.0	<0.5	<5.0	5.0	4.0	<5.0	<5.0	<1.0	7.0	70.	64.
45.60	46.30	870.0	40.0	27.0	<0.5	95.0	22.0	17.0	<5.0	<5.0	<1.0	<1.0	355.	60.
46.30	46.40	430.0	67.0	6.0	<0.5	30.0	4.0	9.0	8.0	10.0	<1.0	5.0	155.	92.
46.40	47.00	1200.0	27.0	41.0	<0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0	1.0	404.	40.
47.00	48.50	400.0	73.0	46.0	<0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0	<1.0	505.	61.
48.50	50.00	110.0	124.0	58.0	<0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0	<1.0	683.	68.
50.00	51.50	<20.0	164.0	106.0	<0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0·	1.0	776.	61.
51.50	53.00	170.0	130.0	66.0	<0.5	<5.0	20.0	11.0	<5.0	<5.0	<1.0	2.0	502.	66.
53.00	54.50	380.0	43.0	28.0	<0.5	<5.0	11.0	5.0	<5.0	<5.0	<1.0	1.0	238.	61.
54.50	56.00	350.0	12.0	23.0	<0.5	5.0	8.0	4.0	<5.0	<5.0	<1.0	<1.0	153.	34.
56.00	57.50	400.0	24.0	20.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	2.0	174.	55.
57.50	59.00	570.0	93.0	16.0	<0.5	<5.0	14.0	7.0	<5.0	<5.0	<1.0	2.0	149.	85.
59.00	60.00	390.0	24.0	30.0	<0.5	20.0	18.0	10.0	<5.0	<5.0	<1.0	1.0	199.	44.
60.00	61.00	310.0	52.0	20.0	<0.5	<5.0	19.0	9.0	<5.0	5.0	<1.0	<1.0	α.	72.
61.00	62.00	300.0	158.0	20.0	<0.5	<5.0	14.0	8.0	<5.0	<5.0	<1.0	2.0	161.	89.
62.00	63.00	240.0	54.0	20.0	<0.5	<5.0	17.0	10.0	<5.0	<5.0	<1.0	2.0	211.	73.
63.00	64.00	280.0	88.0	19.0	<0.5	<5.0	17.0	9.0	<5.0	<5.0	<1.0	2.0	193.	82.
64.00	65.40	450.0	69.0	20.0	<0.5	₹5.0	20.0	10.0	<5.0	<5.0	<1.0	<1.0	202.	78.
65.40	65.80	330.0	110.0	35.0	<0.5	10.0	19.0	12.0	<5.0	7.0	<1.0	3.0	393.	76.
														50.
	39.00 39.30 40.80 43.80 45.30 45.60 46.30 46.40 47.00 50.00 51.50 53.00 54.50 56.00 57.50 59.00 60.00 61.00 62.00 63.00 64.00	39.00 39.30 39.30 40.80 40.80 41.60 43.80 45.30 45.30 45.60 45.60 46.30 46.30 46.40 47.00 48.50 50.00 51.50 51.50 53.00 53.00 54.50 54.50 56.00 57.50 59.00 57.50 59.00 59.00 60.00 61.00 62.00 62.00 63.00 63.00 64.00 64.00 65.40 65.40 65.80	39.00 39.30 590.0 39.30 40.80 200.0 40.80 41.60 <20.0 43.80 45.30 220.0 45.30 45.60 1000.0 45.60 46.30 870.0 46.30 46.40 430.0 46.40 47.00 1200.0 47.00 48.50 400.0 48.50 50.00 110.0 50.00 51.50 <20.0 51.50 53.00 170.0 53.00 54.50 380.0 54.50 56.00 350.0 56.00 57.50 400.0 57.50 59.00 570.0 59.00 60.00 390.0 60.00 61.00 310.0 61.00 62.00 300.0 62.00 63.00 240.0 63.00 64.00 280.0 64.00 65.40 450.0	(ppm)         (ppm)           39.00         39.30         590.0         14.0           39.30         40.80         200.0         122.0           40.80         41.60         <20.0	(pph)         (pph)         (pph)           39.00         39.30         590.0         14.0         16.0           39.30         40.80         200.0         122.0         62.0           40.80         41.60         <20.0	(pph)         (pph)         (pph)         (pph)         (pph)           39.00         39.30         590.0         14.0         16.0         0.5           39.30         40.80         200.0         122.0         62.0         0.5           40.80         41.60         <20.0	(ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppb)           39.00         39.30         590.0         14.0         16.0         0.5         5.0           39.30         40.80         200.0         122.0         62.0         0.5         25.0           40.80         41.60         <20.0	(ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)           39.00         39.30         590.0         14.0         16.0         0.5         5.0         7.0           39.30         40.80         200.0         122.0         62.0         0.5         25.0         25.0           40.80         41.60         <20.0	(ppa)         (ppa)         (ppa)         (ppa)         (ppb)         (ppa)         (ppa)           39.00         39.30         590.0         14.0         16.0         0.5         5.0         7.0         4.0           39.30         40.80         200.0         122.0         62.0         0.5         <5.0	39.00         39.30         590.0         14.0         16.0         0.5         5.0         7.0         4.0         <5.0           39.30         40.80         200.0         122.0         62.0         0.5         <5.0	(ppa)         (ppa) <th< td=""><td>                                     </td><td>                                     </td><td>                                     </td></th<>			

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	EROM	TO	BA (PAT)	CU (POP)	ZN	AG	° AU	CO	NI	PB	AS	CD (CD	но ()	Mi	N	CUZN	
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)				
AF05462	67.00	68.00	110.0	101.0	31.0	<0.5	5.0	16.0	10.0	<5.0	<5.0	<1.0	2.0	30	6.	77.	
AF05463	68.00	69.00	170.0	103.0	46.0	<0.5	⟨5.0	22.0	12.0	<5.0	<5.0	<1.0	2.0	46	9.	69.	
AF05464	69.00	70.00	320.0	140.0	38.0	<0.5	<5.0	21.0	11.0	<5.0	<5.0	<1.0	2.0	38	5.	79.	
AF05465	70.00	70.90	640.0	88.0	32.0	<0.5	<5.0	20.0	11.0	<5.0	<5.0	<1.0	2.0	25	5.	73.	
AF05466	70.90	71.20	350.0	40.0	26.0	<0.5	5.0	12.0	9.0	<5.0	<5.0	<1.0	2.0	39	4.	61.	
AF05467	71.20	72.40	460.0	120.0	37.0	<0.5	10.0	26.0	16.0	⟨5.0	<5.0	<1.0	2.0	28	1.	76.	
AF05468	72.40	73.90	50.0	120.0	32.0	<0.5	10.0	19.0	11.0	<5.0	<5.0	<1.0	2.0	32	9.	79.	
AF05469	73.90	75.40	140.0	230.0	24.0	<0.5	10.0	21.0	10.0	<5.0	<5.0	<1.0	2.0	32	16.	91.	
AF05470	75.40	76.90	270.0	164.0	28.0	<0.5	15.0	20.0	11.0	<5.0	<5.0	<1.0	2.0	40	7.	85.	
A£05471	76.90	77.80	290.0	172.0	23.0	<0.5	<5.0	20.0	10.0	<5.0	<5.0	<1.0	2.0	. 31	2.	88.	
AF05472	77.80	78.70	420.0	66.0	20.0	<0.5	<5.0	21.0	11.0	<5.0	<5.0	<1.0	2.0	31	.5.	77.	
AF05473	78.70	80.20	210.0	130.0	30.0	<0.5	<5.0	18.0	11.0	<5.0	<5.0	<1.0	2.0	39	з.	81.	
AF05474	80.20	81.30	740.0	98.0	24.0	<0.5	5.0	22.0	10.0	<5.0	<5.0	<1.0	2.0	26	2.	.08	
AF05475	81.30	82.30	240.0	138.0	40.0	<0.5	10.0	15.0	8.0	<5.0	57.0	<1.0	1.0	24	9.	78.	
AF05476	82.30	83.00	170.0	200.0	38.0	<0.5	10.0	16.0	6.0	<5.0	1359.0	<1.0	2.0	24	10.	64.	
AE05477	83.00	84.00	550.0	114.0	36.0	<0.5	<5.0	14.0	6.0	<5.0	20.0	<1.0	3.0	22	23.	76.	
AF05478	84.00	85.00	510.0	110.0	102.0	<0.5	<5.0	17.0	10.0	<5.0	7.0	<1.0	4.0	57	7.	52.	
AF05479	85.00	86.00	180.0	142.0	54.0	<0.5	10.0	13.0	8.0	<5.0	<5.0	<1.0	2.0	44	18.	72.	
AF05480	86.00	87.00	290.0	166.0	47.0	<0.5	10.0	17.0	6.0	<5.0	<5.0	<1.0	2.0	41	6.	78.	
AF05481	87.00	88.00	130.◊	123.0	59.0	<0.5	<5.0	17.0	7.0	<5.0	<5.0	<1.0	1.0	66	54.	68.	
AF05482	88.00	89.00	210.0	140.0	51.0	<0.5	<5.0	18.0	7.0	<5.0	<5.0	<1.0	1.0	68	36.	73.	
AF05483	89.00	90.00	610.0	132.0	42.0	<0.5	5.0	16.0	6.0	<5.0	<5.0	<1.0	1.0	57	75.	76.	
AF05484	90.00	91.30	470.0	80.0	28.0	<0.5	5.0	16.0	7.0	<5.0	<5.0	<1.0	1.0	33	33.	74.	
AF05485	91.30	92.80	950.0	9.0	9.0	<0.5	<5.0	3.0	1.0	<5.0	<5.0	<1.0	3.0	·5	70.	50.	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE				<del></del>												
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	(ppm)	HO (ppm)		ММ	CUZN
				*********		~~~~~~~										
AF05486	92.80	94.20	800.0	13.0	9.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	2.0		69.	59.
AF05487	94.20	95.20	850.0	12.0	12.0	<0.5	5.0	6.0	2.0	<5.0	<5.0	<1.0	5.0		124.	50.
AF05488	95.20	95.70	1100.0	162.0	32.0	<0.5	<5.0	20.0	12.0	<5.0	<5.0	<1.0	1.0		340.	84.
AF05489	95.70	97.20	720.0	8.0	11.0	<0.5	<5.0	4.0	2.0	<5.0	<5.0	<1.0	3.0		114.	42.
AE05490	97.20	98.00	880.0	27.0	39.0	<0.5	<5.0	6.0	4.0	<5.0	<5.0	<1.0	3.0		268.	41.
AF05491	98.00	99.00	960.0	14.0	110.0	<0.5	<5.0	4.0	3.0	<5.0	<5.0	<1.0	2.0		642.	11.
AF05492	99.00	100.00	1300.0	124.0	24.0	<0.5	5.0	18.0	8.0	<5.0	<5.0	<1.0	<1.0		1.	84.
AF05493	100.00	101.00	1200.0	400.0	31.0	<0.5	5.0	20.0	9.0	<5.0	<5.0	<1.0	4.0		294.	93.
AF05494	101.00	102.00	550.0	168.0	560.0	<0.5	5.0	19.0	12.0	<5.0	<5.0	3.0	2.0		451.	23.
AF05495	102.00	102.60	600.0	62.0	310.0	<0.5	<5.0	23.0	18.0	18.0	<5.0	2.0	3.0		571.	17.
AF05496	102.60	103.00	660.0	.116.0	55.0	<0.5	<5.0	20.0	7.0	<5.0	<5.0	<1.0	2.0		279.	∿ ~68 <b>.</b>
AF05497	103.00	104.00	610.0	168.0	60.0	<0.5	5.0	19.0	12.0	<5.0	<5.0	<1.0	2.0		309.	74.
AF05498	104.00	105.00	370.0	74.0	76.0	<0.5	<5.0	21.0	60.0	<5.0	<5.0	<1.0	4.0	•	544.	49.
AF05499	105.00	106.00	710.0	146.0	42.0	<0.5	5.0	19.0	10.0	<5.0	<5.0	<1.0	2.0		291.	78.
AF05500	106.00	106.80	710.0	148.0	56.0	<0.5	<5.0	19.0	10.0	<5.0	<5.0	<1.0	3.0		300.	73.
AF05501	106.80	108.30	180.0	76.0	278.0	<0.5	5.0	9.0	4.0	<5.0	<5.0	2.0	2.0		163.	21.
AF05502	108.30	109.80	210.0	14.0	22.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	2.0		130.	39.
AF05503	109.80	111.30	300.0	47.0	47.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	2.0		123.	50.
AF05504	111.30	112.80	330.0	32.0	18.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	3.0		156.	64.
AF05505	112.80	114.10	290.0	58.0	20.0	<0.5	5.0	10.0	4.0	<5.0	<5.0	<1.0	2.0		182.	74.
AF05506	114.10	115.10	420.0	156.0	35.0	<0.5	5.0	18.0	10.0	<5.0	<5.0	<1.0	2.0		450.	82.
AF05507	115.10	116.10	470.0	184.0	46.0	<0.5	<5.0	19.0	12.0	<5.0	<5.0	<1.0	2.0		463.	80.
AF05508	116.10	117.10	290.0	164.0	38.0	<0.5	<5.0	21.0	11.0	<5.0	<5.0	<1.0	2.0		560.	81.
AF05509	117.10	118.20	910.0	43.0	26.0	<0.5	<5.0	21.0	12.0	<5.0	<5.0	<1.0	1.0		530.	62.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA	cu	ZN	AG	AU	co	NI	PB	AS	CD	NO	мм	CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		************
•		-													•
AF05510	118.20	119.20	670.0	96.0	23.0	<0.5	<5.0	22.0	16.0	<5.0	<5.0	<1.0	2.0	425.	81.
AF05511	119.20	120.20	440.0	540.0	82.0	<0.5	<5.0	22.0	18.0	<5.0	<5.0	<1.0	1.0	412.	87.
AF05512	120.20	121.20	250.0	234.0	960.0	<0.5	<5.0	26.0	20.0	<5.0	<5.0	5.0	2.0	486.	20.
AF05513	121.20	122.20	150.0	228.0	66.0	<0.5	<5.0	21.0	18.0	<5.0	<5.0	<1.0	2.0	518.	78.
AF05514	122.20	123.20	250.0	158.0	1500.0	<0.5	<5.0	24.0	18.0	<5.0	<5.0	6.0	2.0	502.	10.
AF05515	123.20	124.20	430.0	123.0	75.0	<0.5	<5.0	22.0	18.0	<5.0	<5.0	<1.0	3.0	444.	62.
AF05516	124.20	125.20	250.0	86.0	55.0	<0.5	<5.0	20.0	14.0	<5.0	<5.0	<1.0	<1.0	551.	61.
AF05517	125.20	126.20	210.0	70.0	36.0	0.5	80.0	20.0	14.0	29.0	8.0	<1.0	1.0	484.	66.
AF05518	126.20	127.20	230.0	260.0	36.0	<0.5	<5.0	20.0	14.0	<5.0	12.0	<1.0	2.0	505.	88.
AF05519	127.20	128.20	530.0	170.0	20.0	<0.5	<5.0	20.0	13.0	<5.0	<5.0	<1.0	2.0	322.	89.
AF05520	128.60	129.20	350.0	640.0	33.0	<0.5	<5.0	22.0	24.0	<5.0	<5.0	<1.0	1.0	618.	95.
AF05521	129.20	130.20	290.0	183.0	12.0	<0.5	<5.0	28.0	15.0	<5.0	<5.0	<1.0	<1.0	313.	94.
AF05522	130.20	131.70	240.0	460.0	31.0	<0.5	<5.0	24.0	16.0	<5.0	15.0	<1.0	1.0	529.	94.
AF05523	131.70	133.20	210.0	36.0	24.0	<0.5	<5.0	16.0	4.0	<5.0	5.0	<1.0	<1.0	407.	60.
AE05524	133.20	134.70	310.0	126.0	28.0	<0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0	<1.0	566.	82.
AF05525	134.70	136.20	170.0	110.0	26.0	<0.5	5.0	20.0	15.0	<5.0	7.0	<1.0	1.0	465.	81.
AF05526	136.20	137.20	360.0	142.0	30.0	<0.5	<5.0	21.0	16.0	<5.0	5.0	<1.0	<1.0	376.	83.
AF05527	137.60	139.10	350.0	92.0	34.0	<0.5	<5.0	23.0	16.0	<5.0	15.0	<1.0	3.0	450.	73.
AF05528	139.10	140.60	70.0	110.0	28.0	<0.5	<5.0	24.0	14.0	<5.0	<5.0	<1.0	2.0	562.	80.
AF05529	140.80	142.00	330.0	84.0	37.0	<0.5	<5.0	23.0	16.0	<5.0	33.0	<1.0	2.0	632.	69.
AF05530	142.00	143.00	230.0	120.0	31.0	<0.5	<5.0	22.0	18.0	<5.0	25.0	<1.0	1.0	539.	79.
AF05531	143.00	144.00	560.0	16.0	18.0	<0.5	<5.0	7.0	3.0	<5.0	<5.0	<1.0	2.0	204.	47.
AF05532	144.00	144.80	1000.0	12.0	8.0	<0.5	<5.0	6.0	3.0	<5.0	9.0	<1.0	2.0	134.	60.
AF05533	144.80	145.00	⟨20.0	820.0	30.0	<0.5	<5.0	7.0	5.0	<5.0	<5.0	<1.0	4.0	920.	96.

SAMPLE NUMBER	FROM		BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	MN	CUZN	
AF05534	145.00	146.00	820.0	32.0	10.0	<0.5	<5.0	6.0	2.0	<5.0	<5.0	<1.0	2.0	234.	76.	
AF05535	146.00	147.00	870.0	26.0	10.0	<0.5	<5.0	7.0	4.0	<5.0	8.0	<1.0	2.0	113.	72.	
AF05536	147.00	148.40	420.0	110.0	22.0	<0.5	<5.0	29.0	24.0	<5.0	<5.0	<1.0	2.0	444.	83.	
A£05537	149.30	150.00	300.0	194.0	22.0	<0.5	<5.0	27.0	18.0	<5.0	<5.0	<1.0	2.0	315.	89.	
AF05538	150.00	151.40	110.0	340.0	20.0	<0.5	<5.0	27.0	19.0	<5.0	<5.0	<1.0	2.0	330.	94.	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	AU	CO	NI	PB	AS	CD	HO		MN	CUZN	
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)				
•		*															
AE05539	20.20	21.10	110.0	56.0	50.0	<0.5	<5.0	22.0	20.0	<5.0	<5.0	<1.0	1.0		764.	53.	
AF05540	21.10	22.20	80.0	110.0	60.0	<0.5	10.0	23.0	20.0	<5.0	7.0	<1.0	<1.0		1060.	65.	
AF05541	22.20	23.40	280.0	120.0	74.0	<0.5	<5.0	32.0	19.0	<5.0	<5.0	<1.0	3.0	,	1136.	62.	
AF05542	23.40	24.70	170.0	72.0	79.0	<0.5	<5.0	24.0	18.0	<5.0	<5.0	<1.0	2.0		1150.	48.	
AE05543	24.70	25.30	<20.0	42.0	122.0	<0.5	25.0	74.0	16.0	<5.0	24.0	<1.0	12.0		1844.	26.	
AF05544	25.30	26.30	200.0	29.0	88.0	<0.5	10.0	30.0	16.0	<5.0	<5.0	<1.0	3.0		1172.	25.	
AF05545	26.30	26.60	210.0	18.0	106.0	<0.5	<5.0	28.0	11.0	<5.0	<5.0	<1.0	6.0		1583.	15.	
AF05546	26.60	28.10	450.0	11.0	37.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	2.0		431.	23.	
AF05547	28.10	29.10	440.0	5.0	36.0	<0.5	<5.0	12.0	3.0	<5.0	<5.0	<1.0	2.0		436.	12.	
AF05548	29.10	30.10	350.0	4.0	28.0	<0.5	<5.0	10.0	2.0	<5.0	<5.0	<1.0	2.0		354.	13.	
AE05549	30.10	31.60	350.0	60.0	76.0	<0.5	10.0	31.0	20.0	<5.0	<5.0	<1.0	1.0		1058.	44.	;*.
AF05550	31.60	32.60	320.0	11.0	40.0	<0.5	<5.0	20.0	6.0	<5.0	<5.0	<1.0	1.0		548.	22.	
AF05551	32.60	33.80	370.0	56.0	40.0	<0.5	<5.0	19.0	8.0	<5.0	<5.0	<1.0	1.0		527.	58.	
A£05552	33.80	35.30	200.0	4.0	24.0	<0.5	<5.0	10.0	2.0	<5.0	<5.0	<1.0	3.0		249.	14.	
AF05553	35.30	36.80	250.0	2.0	22.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	2.0		254.	8.	
AF05554	36.80	38.30	310.0	4.0	23.0	<0.5	5.0	8.0	3.0	<5.0	<5.0	<1.0	<1.0		342.	15.	
AF05555	38.30	39.80	730.0	4.0	19.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	1.0		271.	17.	
AF05556	39.80	41.30	490.0	5.0	22.0	<0.5	<5.0	9.0	3.0	<b>&lt;5.0</b>	<5.0	<1.0	2.0		349.	19.	
AE05557	41.30	42.80	360.0	5.0	27.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	1.0		389.	16.	
AF05558	42.80	44.30	210.0	11.0	44.0	<0.5	<5.0	18.0	6.0	<5.0	<5.0	<1.0	3.0		668.	20.	
AF05559	44.30	45.80	40.0	6.0	30.0	<0.5	<5.0	11.0	3.0	⟨5.0	<5.0	<1.0	3.0		446.	17.	
AF05560	45.80	47.30	440.0	4.0	15.0	<0.5	<5.0	5.0	3.0	<5.0	<5.0	<1.0	3.0		233.	21.	
AF05561	47.30	48.30	380.0	2.0	13.0	<0.5	<5.0	2.0	2.0	<5.0	<5.0	<1.0	<1.0		206.	13.	
AF05562	48.30	49.80	540.0	3.0	22.0	<0.5	5.0	4.0	2.0	< <b>5.0</b>	<5.0	<1.0	2.0		295.	12.	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MQ (ppm)	ми	CUZN
AF05563	49.80	51.30	560.0	3.0	34.0	<0.5	<5.0	10.0	3.0	<5.0	<5.0	<1.0	2.0	496.	8.
AF05564	51.30	52.80	220.0	4.0	26.0	<0.5	<5.0	9.0	3.0	<5.0	<5.0	<1.0	<1.0	426.	13.
AF05565	52.80	54.30	230.0	4.0	26.0	<0.5	<5.0	9.0	3.0	<5.0	<5.0	<1.0	2.0	366.	13.
AF05566	54.30	55.80	260.0	3.0	23.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	2.0	374.	12.
AE05567	55.80	57.30	310.0	3.0	26.0	<0.5	<5.0	9.0	3.0	<5.0	<5.0	<1.0	<1.0	442.	10.
AF05568	57.30	58.80	410.0	3.0	22.0	<0.5	<5.0	9.0	4.0	<5.0	<5.0	<1.0	<1.0	383.	12.
AE05569	58.80	60.30	700.0	6.0	58.0	<0.5	<5.0	9.0	4.0	<5.0	<5.0	(1.0 ·	2.0	455.	9.
AE05570	60.30	61.80	530.0	12.0	59.0	<0.5	<5.0	11.0	4.0	<5.0	<5.0	<1.0	2.0	533.	17.
AF05571	61.80	63.30	600.0	3.0	39.0	<0.5	<5.0	12.0	4.0	<5.0	<5.0	<1.0	1.0	594.	7.
A£05572	63.80	64.80	270.0	4.0	40.0	<0.5	₹5.0	13.0	4.0	<5.0	<5.0	<1.0	<1.0	631.	9.
AE05573	64.80	66.30	380.0	3.0	40.0	<0.5	10.0	15.0	4.0	<5.0	<5.0	<1.0	7.0	568.	7.
AF05574	66.30	67.80	330.0	3.0	34.0	<0.5	10.0	10.0	4.0	<5.0	<5.0	<1.0	1.0	515.	8.
AE05575	67.80	69.10	440.0	7.0	48.0	<0.5	<5.0	17.0	4.0	<5.0	<5.0	<1.0	3.0	496.	13.
AF05576	69.10	70.00	370.0	110.0	110.0	<0.5	5.0	25.0	16.0	<5.0	<5.0	<1.0	<1.0	1520.	50.
A£05577	70.00	70.70	640.0	130.0	74.0	<0.5	5.0	23.0	18.0	<5.0	<5.0	<1.0	<1.0	1485.	64.
AF05578	70.70	72.20	460.0	8.0	30.0	<0.5	<5.0	7.0	2.0	<5.0	<5.0	<1.0	2.0	431.	21.
AF05579	72.20	73.70	340.0	3.0	16.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	<1.0	222.	16.
AF05580	73.70	75.20	500.0	2.0	14.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	2.0	211.	13.
AE05581	75.20	76.70	730.0	3.0	25.0	<0.5	<5.0	7.0	4.0	<5.0	<5.0	<1.0	<1.0	405.	11.
AF05582	76.70	77.90	820.0	4.0	26.0	<0.5	<5.0	10.0	4.0	<5.0	6.0	<1.0	<1.0	483.	13.
AF05583	77.90	79.80	160.0	110.0	70.0	<0.5	<5.0	24.0	20.0	<5.0	<5.0	<1.0	<1.0	1449.	61.
AF05584	79.80	80.70	630.0	24.0	68.0	<0.5	<5.0	27.0	14.0	<5.0	6.0	<1.0	<1.0	1065.	26.
AF05585	80.70	81.30	1100.0	9.0	84.0	<0.5	<5.0	10.0	7.0	<5.0	<5.0	<1.0	<1.0	531.	10.
AF05586	81.30	82.80	1200.0	40.0	85.0	<0.5	<5.0	24.0	16.0	<5.0	<5.0	<1.0	<1.0	1296.	32.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

MAI	SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	AU	CO	NI	PB	AS	CD	NO	<i>м</i> и	CUZN
				(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
AFO:	AF05587	82.80	84.00	1500.0	72.0	86.0	<0.5	<5.0	37.0	22.0	<5.0	11.0	<1.0	4.0	1898.	46.
AFO:	AF05588	84.00	85.50	350.0	6.0	39.0	<0.5	<5.0	13.0	4.0	<5.0	10.0	<1.0	2.0	639.	13.
aFo:	AF05589	85.50	87.00	760.0	6.0	46.0	<0.5	<5.0	8.0	3.0	<5.0	<5.0	<1.0	3.0	870.	12.
FO:	AF05590	87.00	88.20	1100.0	52.0	44.0	<0.5	<5.0	6.0	2.0	<5.0	<5.0	<1.0	2.0	736.	54.
EQ:	AF05591	88.20	89.20	800.0	45.0	52.0	<0.5	<5.0	17.0	4.0	<5.0	11.0	<1.0	6.0	1039.	46.
FO:	AF05592	89.20	90.20	440.0	12.0	44.0	<0.5	<5.0	9.0	5.0	<5.0	7.0	<1.0	2.0	862.	21.
FO:	AF05593	90.20	91.50	550.0	9.0	42.0	<0.5	5.0	11.0	4.0	<5.0	<5.0	<1.0	3.0	819.	18.
FO:	AF05594	91.50	93.00	1100.0	80.0	40.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	4.0	729.	67.
FOt	AF05595	97.70	99.20	1500.0	16.0	40.0	<0.5	10.0	10.0	4.0	<5.0	<5.0	<1.0	7.0	797.	29.
FO:	AF05596	99.20	100.70	870.0	11.0	35.0	<0.5	<5.0	5.0	5.0	<5.0	5.0	<1.0	8.0	616.	24.
FO:	AF05597	100.70	101.60	1100.0	29.0	58.0	<0.5	<5.0	9.0	4.0	<5.0	14.0	<b>101.0</b>	5.0	701.	33.
FOS	AF05598	105.30	106.00	<20.0	152.0	104.0	<0.5	<5.0	28.0	19.0	<5.0	11.0	<1.0	1.0	1795.	59.
FO:	AF05599	108.00	109.00	190.0	1300.0	100.0	0.5	<5.0	24.0	20.0	<5.0	19.0	(1.0	2.0	1916.	93.
FO:	AF05600	109.00	109.50	120.0	700.0	100.0	<0.5	<5.0	25.0	19.0	<5.0	<5.0	<1.0	<1.0	1847.	88.
FOt	AF05601	120.50	121.00	400.0	605.0	440.0	<0.5	5.0	20.0	14.0	<5.0	<5.0	<1.0	2.0	1108.	58.
FO	AF05602	128.40	128.90	130.0	420.0	296.0	<0.5	10.0	27.0	19.0	<5.0	21.0	<1.0	6.0	2044.	59.
FOS	AF05603	132.70	133.90	130.0	180.0	128.0	<0.5	<5.0	19.0	14.0	<5.0	13.0	<1.0	1.0	1409.	58.
FOS	AF05604	133.90	134.40	<20.0	112.0	140.0	<0.5	5.0	18.0	20.0	<5.0	<5.0	<1.0	1.0	1811.	44.
EOS	AF05605	134.40	134.90	30.0	630.0	136.0	<0.5	5.0	28.0	52.0	<5.0	13.0	<1.0	1.0	1730.	82.
FOS	AF05606	136.60	137.60	<20.0	178.0	128.0	<0.5	<5.0	22.0	20.0	<5.0	<5.0	<1.0	<1.0	1867.	58.
FOS	AF05607	137.40	138.60	160.0	470.0	90.0	<0.5	<5.0	12.0	12.0	<5.0	<5.0	<1.0	1.0	1147.	84.
FOS	AF05608	138.60	139.50	710.0	47.0	72.0	<0.5	<5.0	17.0	6.0	<5.0	6.0	<1.0	3.0	869.	40.
FO:	AF05609	139.50	140.50	<20.0	168.0	102.0	<0.5	<5.0	23.0	20.0	<5.0	<5.0	<1.0	<1.0	1795.	62.
FOt	AF05610	165.20	166.10	440.0	14.0	80.0	<0.5	5.0	11.0	5.0	<5.0	<5.0	<1.0	2.0	1313.	15.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE		*******													~~~~~~	
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CB (ppm)	HO (ppm)		MN	CUZN
			******************												*********	
AF05611	166.10	167.10	<20.0	95.0	90.0	<0.5	<5.0	25.0	16.0	<5.0	<5.0	<1.0	1.0		1888.	51.
AF05612	171.20	171.70	<20.0	350.0	98.0	<0.5	5.0	62.0	20.0	<5.0	8.0	<1.0	3.0		1294.	78.
AE05613	183.60	183.90	<20.0	154.0	162.0	<0.5	15.0	34.0	12.0	<5.0	<5.0	<1.0	1.0		1987.	49.
AF05614	183.90	184.90	<20.0	152.0	110.0	<0.5	<5.0	23.0	12.0	<5.0	6.0	<1.0	1.0		1657.	58.
AF05615	188.60	189.00	1500.0	49.0	100.0	<0.5	10.0	25.0	14.0	<5.0	18.0	<1.0	3.0		1380.	33.
AF05616	189.00	190.50	330.0	208.0	260.0	<0.5	5.0	24.0	13.0	<5.0	11.0	<1.0	<1.0		1812.	47.
AE05617	190.50	192.00	40.0	212.0	330.0	<0.5	5.0	23.0	12.0	<5.0	14.0	<1.0	1.0		1820.	39.
AF05618	192.00	192.50	<20.0	360.0	174.0	<0.5	5.0	23.0	14.0	<5.0	<5.0	<1.0	1.0		1555.	67.
AF05619	197.30	197.80	<20.0	42.0	178.0	<0.5	10.0	29.0	14.0	<5.0	<5.0	<1.0	1.0		1377.	19.
AF05620	197.80	198.80	1500.0	74.0	44.0	<0.5	15.0	28.0	20.0	<5.0	⟨5.0	<1.0	1.0		297.	63.
AF05621	198.80	199.50	1100.0	56.0	66.0	<0.5	10.0	23.0	13.0	<5.0	18.0	<1.0	2.0	•	672.	46.
AF05622	199.50	200.50	80.0	166.0	118.0	<0.5	5.0	22.0	10.0	<5.0	<5.0	<1.0	<1.0		1178.	58.
AF05623	209.30	210.30	130.0	46.0	270.0	<0.5	5.0	22.0	16.0	<5.0	. <5.0	<1.0	<1.0		2160.	15.
AF05624	210.30	211.30	500.0	32.0	350.0	<0.5	10.0	44.0	14.0	<5.0	17.0	2.0	<1.0		1309.	8.
AF05625	211.30	212.30	500.0	224.0	158.0	<0.5	10.0	17.0	14.0	<5.0	<5.0	<1.0	<1.0		1528.	59.
AF05626	212.30	213.30	300.0	84.0	174.0	<0.5	<5.0	19.0	14.0	⟨5.0	<5.0	<1.0	<1.0		830.	33.
AF05627	213.30	214.30	140.0	15.0	178.0	<0.5	<5.0	20.0	10.0	5.0	7.0	<1.0	1.0		1707.	8.
AF05628	214.30	215.30	550.0	31.0	185.0	<0.5	10.0	34.0	5.0	6.0	-7.0	<1.0	2.0		916.	14.
AF05629	215.30	217.00	810.0	166.0	168.0	<0.5	5.0	12.0	5.0	5.0	<5.0	<1.0	1.0		1052.	50.
AF05630	217.00	218.00	320.0	420.0	245.0	<0.5	15.0	20.0	13.0	<5.0	<5.0	<1.0	<1.0	•	1684.	63.
AF05631	218.00	219.00	290.0	335.0	200.0	<0.5	10.0	18.0	10.0	<5.0	⟨5.0	<1.0	<1.0		1064.	63.
AF05632	219.00	219.40	130.0	345.0	220.0	0.5	40.0	13.0	6.0	9.0	7.0	<1.0	<1.0		1698.	61.
AE05633	219.40	220.40	100.0	138.0	130.0	<0.5	<5.0	16.0	4.0	<5.0	<5.0	<1.0	<1.0		1696.	51.
AE05634	229.90	231.40	1500.0	184.0	132.0	<0.5	⟨5.0	16.0	4.0	<5.0	<5.0	<1.0	<1.0		1279.	58.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	AU	CO	NI	PB	AS	CD	но	MN	CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
•									•						
AF05635	231.40	232,90	950.0	16.0	60.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	<1.0	605.	21.
AF05636	232.90	234.40	810.0	16.0	68.0	<0.5	<5.0	6.0	2.0	<5.0	<5.0 _.	<1.0	<1.0	573.	19.
AF05637	234.40	235.90	760.0	42.0	70.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	<1.0	637.	38.
AF05638	235.90	237.40	880.0	34.0	75.0	<0.5	<5.0	11.0	8.0	<5.0	7.0	<1.0	2.0	603.	31.
AF05639	237.40	238.50	1400.0	98.0	100.0	<0.5	<5.0	8.0	3.0	<5.0	<5.0	<1.0	<1.0	507.	49.
AF05640	238.50	239.00	1300.0	106.0	45.0	<0.5	<5.0	10.0	5.0	16.0	12.0	<1.0	<1.0	499.	70.
AF05641	239.00	240.50	850.0	82.0	112.0	<0.5	<5.0	6.0	4.0	<5.0	<5.0	<1.0	<1.0	866.	42.
AF05642	240.50	242.00	1100.0	60.0	106.0	<0.5	<5.0	8.0	4.0	<5.0	<5.0	<1.0	<1.0	1012.	36.
AF05643	242.00	243.50	690.0	32.0	89.0	<0.5	<5.0	14.0	2.0	<5.0	<5.0	<1.0	<1.0	930.	26.
AE05644	243.50	245.20	660.0	58.0	92.0	<0.5	<5.0	12.0	3.0	<5.0	<5.0	<1.0	<1.0	917.	39.
AF05645	245.20	245.60	2000.0	8.0	18.0	<0.5	<5.0	3.0	<1.0	<5.0	<5.0	<1:0	~<1.0	119.	31.
AF05646	245.60	245.80	1500.0	94.0	66.0	<0.5	20.0	20.0	10.0	7.0	27.0	<1.0	3.0	663.	59.
AF05647	245.80	247.30	220.0	242.0	225.0	<0.5	5.0	25.0	13.0	<5.0	<5.0	<1.0	<1.0	1615.	52.
AF05648	247.30	248.30	140.0	370.0	185.0	<0.5	5.0	34.0	12.0	<5.0	<5.0	<1.0	<1.0	1086.	67.
AF05649	248.30	249.00	660.0	760.0	200.0	<0.5	<5.0	23.0	12.0	<5.0	9.0	<1.0	1.0	1616.	79.
AF05650	249.00	249.30	170.0	118.0	205.0	<0.5	10.0	33.0	12.0	<5.0	15.0	<1.0	<1.0	1191.	37.
AF05651	249.30	249.40	700.0	1350.0	215.0	0.6	15.0	16.0	12.0	5.0	6.0	<1.0	2.0	1271.	86.
AF05652	249.40	249.90	180.0	368.0	118.0	<0.5	20.0	16.0	12.0	<5.0	10.0	<1.0	<1.0	648.	76.
AF05653	249.90	251.00	610.0	160.0	116.0	<0.5	<5.0	20.0	11.0	<5.0	<5.0	<1.0	2.0	1513.	58.
AF05654	251.00	251.70	680.0	144.0	84.0	<0.5	<5.0	21.0	11.0	<5.0	<5.0	<1.0	<1.0	1062.	63.
AF05655	251.70	252.70	1800.0	26.0	50.0	<0.5	5.0	11.0	8.0	<5.0	7.0	<1.0	<1.0	408.	34.
AF05656	252.70	253.40	1900.0	20.0	26.0	<0.5	5.0	4.0	3.0	37.0	6.0	<1.0	1.0	186.	43.
AF05657	253.40	254.90	1200.0	78.0	80.0	<0.5	10.0	21.0	14.0	<5.0	<5.0	<1.0	<1.0	899.	49.
AF05658	261.70	263.00	580.0	86.0	100.0	<0.5	<5.0	20.0	16.0	<5.0	<5.0	<1.0	<1.0	852.	46.

SAMPLE	FROM	то	BA	CU	ZN	AG	AU	co		P8	AS	CD	но	 MN	CUZN
*********			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	************	
•														,	
AF05659	263.00	263.60	1200.0	30.0	62.0	<0.5	<5.0	8.0	6.0	<5.0	<5.0	<1.0	1.0	273.	33.
AE05660	263.60	264.60	180.0	74.0	134.0	<0.5	5.0	25.0	20.0	<5.0	12.0	<1.0	<1.0	1113.	36.
AF05661	266.30	267.30	1800.0	278.0	174.0	<0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0	<1.0	. 786.	62.
AF05662	267.30	268.30	1800.0	184.0	280.0	<0.5	<5.0	33.0	19.0	<5.0	<5.0	<1.0	2.0	790.	40.
AF05663	268.30	269.30	2100.0	206.0	180.0	<0.5	<5.0	23.0	18.0	<5.0	<5.0	<1.0	<1.0	890.	53.
AF05664	269.30	269.50	1600.0	600.0	1950.0	0.5	10.0	20.0	11.0	14.0	10.0	12.0	12.0	290.	24.
AE05665	269.50	271.00	1900.0	133.0	250.0	<0.5	<5.0	2.0	1.0	<5.0	6.0	2.0	2.0	88.	35.
AF05666	271.00	271.30	1500.0	15.0	40.0	<0.5	<5.0	1.0	<1.0	12.0	<5.0	<1.0	<1.0	97.	27.
AF05667	271.80	273.30	1400.0	13.0	54.0	<0.5	<5.0	1.0	<1.0	19.0	<5.0	<1.0	1.0	77.	19.
AF05668	273.30	274.80	1500.0	13.0	29.0	<0.5	<5.0	1.0	1<1.0	34.0	<5.0	<1.0	<1.0	74.	31.
AF05669	274.80	276.30	1700.0	90.0	108.0	<0.5	45.0	2.0	<1.0	14.0	6.0	<1.0	<1.0	56.	45.
AF05670	276.30	277.30	1700.0	24.0	58.0	<0.5	<5.0	3.0	2.0	9.0	11.0	<1.0	<1.0	40.	29.
AF05671	277.30	278.30	1900.0	1300.0	880.0	0.7	<5.0	5.0	3.0	113.0	10.0	5.0	4.0	88.	60.
AF05672	278.30	279.30	2100.0	26.0	12.0	<0.5	<5.0	6.0	4.0	5.0	11.0	<1.0	1.0	169.	68.
AF05673	279.30	280.30	950.0	52.0	85.0	<0.5	<5.0	25.0	20.0	<5.0	17.0	<1.0	<1.0	557.	38.
AF05674	280.30	281.30	400.0	64.0	91.0	<0.5	<5.0	22.0	20.0	⟨5.0	<5.0	<1.0	<1.0	549.	41.
AF05675	281.30	282.30	610.0	54.0	61.0	<0.5	<5.0	22.0	18.0	<5.0	9.0	<1.0	2.0	463.	47.
AF05676	282.30	282.50	880.0	108.0	30.0	<0.5	5.0	42.0	17.0	6.0	11.0	<1.0	8.0	375.	78.
AF05677	282.50	283.50	560.0	276.0	87.0	<0.5	<5.0	23.0	19.0	<5.0	6.0	(1.0	2.0	491.	76.
AF05678	283.50	284.50	370.0	106.0	54.0	<0.5	<5.0	32.0	18.0	<5.0	11.0	<1.0	1.0	438.	66.
AE05679	284.50	285.50	840.0	146.0	59.0	<0.5	<5.0	25.0	18.0	<5.0	6.0	<1.0	2.0	367.	71.
AF05680	285.50	286.50	1100.0	56.0	50.0	<0.5	<5.0	18.0	14.0	⟨5.0	6.0	<1.0	<1.0	226.	53.
AF05681	286.50		560.0	80.0	42.0	<0.5	<5.0	21.0	13.0	<5.0	⟨5.0	<1.0	<1.0	. 268.	66.
AF05682	287.50	288.50	550.0	90.0	50.0	<0.5	5.0	33.0	14.0	⟨5.0	<5.0	<1.0	6.0	374.	64.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE												···	· <del>·····</del>			**********
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	. AU (ppb)	(ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	06 (ppm)	M	N	CUZN
													***************************************			
AF05683	288.50	289.50	820.0	134.0	53.0	<0.5	<5.0	26.0	16.0	<5.0	<5.0	<1.0	11.0	31	18.	72.
AF05684	289.50	290.50	690.0	54.0	44.0	<0.5	<5.0	18.0	14.0	<5.0	<5.0	<1.0	2.0	30	)4.	55.
AF05685	290.50	291.50	160.0	190.0	38.0	<0.5	10.0	30.0	14.0	<5.0	12.0	<1.0	<1.0	44	40.	<b>83.</b>
AF05686	291.50	292.50	410.0	94.0	29.0	<0.5	<5.0	27.0	16.0	<5.0	<5.0	<1.0	1.0	41	19.	76.
AF05687	292.50	293.50	210.0	98.0	24.0	<0.5	<5.0	21.0	10.0	<5.0	11.0	<1.0	1.0	43	36.	80.
AF05688	293.50	294.50	300.0	166.0	30.0	<0.5	<5.0	30.0	16.0	<5.0	7.0	<1.0	1.0	52	29.	85.
AF05689	294.50	295.50	110.0	336.0	47.0	<0.5	<5.0	24.0	16.0	<5.0	<5.0	<1.0	<1.0	67	76.	88.
AF05690	295.50	296.50	170.0	198.0	70.0	<0.5	<5.0	26.0	23.0	<5.0	6.0	<1.0	<1.0	73	37.	74.
AF05691	296.50	297.50	290.0	110.0	98.0	<0.5	10.0	25.0	20.0	<5.0	<5.0	<1.0	2.0	79	95.	53.
AF05692	297.50	298.50.	470.0	124.0	55.0	<0.5	10.0	30.0	16.0	5.0	<5.0	<1.0	9.0	46	56.	69.
AF05693	298.50	300.50	460.0	42.0	60.0	<0.5	<5.0	24.0	15.0	<5.0	<5.0	<1.0	2.0	50	33.	41.
AF05694	300.50	301.50	330.0	60.0	29.0	<0.5	<5.0	14.0	8.0	<5.0	<5.0	<1.0	10.0	. 28	33.	67.
AF05695	301.50	302.50	230.0	78.0	44.0	<0.5	<5.0	22.0	14.0	<5.0	7.0	<1.0	9.0	3:	37.	64.
AF05696	302.50	303.50	240.0	120.0	66.0	<0.5	<5.0	24.0	16.0	7.0	6.0	<1.0	4.0	55	95.	65.
AE05697	303.50	304.50	200.0	122.0	68.0	<0.5	5.0	24.0	16.0	6.0	<5.0	<1.0	2.0	5-	43.	64.
AF05698	304.50	305.50	230.0	96.0	50.0	<0.5	<5.0	23.0	16.0	<5.0	<5.0	<1.0	5.0	4;	54.	66.
AF05699	305.50	306.50	290.0	102.0	44.0	<0.5	5.0	20.0	13.0	<5.0	8.0	<1.0	3.0	43	23.	70.
AF05700	306.50	307.20	290.0	122.0	44.0	<0.5	<5.0	25.0	16.0	<5.0	<5.0	<1.0	4.0	3:	59.	73.
AF05701	307.20	308.00	460.0	98.0	60.0	<0.5	10.0	25.0	20.0	<5.0	<5.0	<1.0	3.0	4:	58.	62.
AF05702	308.00	308.30	330.0	126.0	40.0	<0.5	10.0	23.0	14.0	<5.0	<5.0	<1.0	23.0	3:	74.	76.
AF05703	308.30	308.50	410.0	90.0	34.0	<0.5	20.0	25.0	18.0	7.0	<5.0	<1.0	3.0	30	61.	73.
AF05704	308.50	308.70	150.0	372.0	16.0	<0.5	25.0	34.0	20.0	8.0	12.0	<1.0	1.0	2	02.	96.
AF05705	308.70	309.00	590.0	46.0	50.0	<0.5	<5.0	23.0	16.0	6.0	<5.0	<1.0	4.0	3'	95.	48.
AF05706	309.00	309.30	750.0	38.0	28.0	<0.5	5.0	22.0	14.0	6.0	<5.0	<1.0	2.0	3:	78.	58.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE				+==							.,				
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	ММ	CUZN
							<del></del>								
AF05707	309.30	310.50	890.0	14.0	8.0	<0.5	5.0	4.0	2.0	7.0	<5.0	<1.0	10.0	154.	64.
AF05708	310.50	311.50	490.0	74.0	40.0	<0.5	<5.0	26.0	22.0	<5.0	6.0	<1.0	4.0	387.	65.
AF05709	311.50	312.50	. 850.0	22.0	14.0	<0.5	<5.0	9.0	6.0	<5.0	<5.0	<1.0	6.0	270.	61.
AF05710	312.50	313.50	800.0	8.0	9.0	<0.5	<5.0	2.0	1.0	<5.0	8.0	<1.0	8.0	459.	47.
AF05711	313.50	314.50	890.0	14.0	11.0	<0.5	<5.0	7.0	2.0	15.0	8.0	<1.0	13.0	182.	56.
AF05712	314.50	315.50	560.0	44.0	39.0	<0.5	5.0	21.0	11.0	<5.0	11.0	<1.0	10.0	459.	53.
AF05713	315.50	316.50	150.0	26.0	46.0	<0.5	10.0	20.0	17.0	<5.0	<5.0	<1.0	1.0	718.	36.
AF05714	316.50	317.50	350.0	12.0	59.0	<0.5	<5.0	20.0	15.0	<5.0	<5.0	<1.0	1.0	754.	17.
AE05715	317.50	318.50	390.0	36.0	44.0	<0.5	5.0	20.0	16.0	<5.0	<5.0	<1.0	. 1.0	620.	45.
AF05716	318.50	319.50	500.0	22.0	40.0	<0.5	5.0	23.0	15.0	<5.0	8.0	<1.0	1.0	471.	35.
AF05717	319.50	320.50	-, 440.0	44.0	34.0	<0.5	<5.0	23.0	19.0	<5.0	<5.0	<1.0	2.0	408.	56.
AF05718	320.50	321.50	320.0	46.0	30.0	<0.5	<5.0	19.0	17.0	<5.0	<5.0	<1.0	4.0	314.	61.
AF05719	321.50	322.50	420.0	180.0	31.0	<0.5	<5.0	23.0	19.0	<5.0	6.0	<1.0	4.0	314.	85.
AF05720	322.50	324.00	660.0	10.0	8.0	<0.5	5.0	6.0	4.0	<5.0	6.0	<1.0	41.0	65.	56.
AF05721	324.00	325.50	720.0	8.0	7.0	<0.5	<5.0	3.0	1.0	<5.0	<5.0	<1.0	9.0	51.	53.
AF05722	325.50	327.00	580.0	22.0	8.0	<0.5	<5.0	6.0	2.0	<5.0	<5.0	<1.0	12.0	100.	73.
AE05723	327.00	328.50	450.0	74.0	25.0	<0.5	5.0	15.0	68.0	<5.0	5.0	<1.0	25.0	402.	75.
AF05724	328.50	330.00	510.0	7.0	8.0	<0.5	<5.0	3.0	2.0	<5.0	5.0	<1.0	21.0	86.	47.
AE05725	330.00	331.50	800.0	6.0	6.0	<0.5	5.0	3.0	2.0	<5.0	<5.0	<1.0	13.0	84.	50.
AF05726	331.50	333.10	520.0	16.0	10.0	<0.5	5.0	7.0	3.0	<5.0	<5.0	<1.0	15.0	133.	62.
AF05727	333.10	334.10	430.0	38.0	26.0	<0.5	<5.0	20.0	14.0	<5.0	6.0	<1.0	4.0	405.	59.
AF05728	334.10	335.10	720.0	7.0	6.0	<0.5	5.0	5.0	2.0	<5.0	<5.0	<1.0	19.0	59.	54.
AF05729	335.10	336.10	720.0	10.0	10.0	<0.5	5.0	5.0	2.0	<5.0	<5.0	<1.0	14.0	218.	50.
AF05730	336.10	337.10	750.0	24.0	12.0	<0.5	<5.0	10.0	7.0	<5.0	12.0	<1.0	15.0	126.	67.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE								,				******	,	 	
NUMBER	FROM	ro	BA (ppm)	€U (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	<b>НО</b> (ррм)	MN	CUZN
,			***********					*********						 	
AF05731	337.10	338.10	290.0	46.0	20.0	<0.5	<5.0	22.0	32.0	<5.0	<5.0	<1.0	7.0	225.	70.
AF05732	338.10	339.10	550.0	18.0	10.0	<0.5	<5.0	15.0	6.0	6.0	<5.0	<1.0	17.0	181.	64.
AF05733	339.10	340.10	220.0	66.0	15.0	<0.5	<5.0	22.0	12.0	<5.0	<5.0	<1.0	14.0	192.	81.
AF05734	340.10	341.10	240.0	60.0	19.0	<0.5	<5.0	19.0	10.0	<5.0	<5.0	<1.0	10.0	182.	76.
AF05735	341.10	342.10	290.0	108.0	16.0	<0.5	<5.0	25.0	10.0	<5.0	17.0	<1.0	16.0	166.	87.
AF05736	342.10	343.10	520.0	53.0	18.0	<0.5	<5.0	27.0	12.0	<5.0	11.0	<1.0	14.0	168.	75.
AF05737	343.10	344.60	650.0	75.0	10.0	<0.5	25.0	10.0	5.0	<5.0	10.0	<1.0	13.0	137.	88.
AF05738	344.60	345.60	360.0	62.0	14.0	<0.5	<5.0	15.0	6.0	<5.0	9.0	<1.0	14.0	177.	82.
AF05739	345.60	346.60	250.0	80.0	16.0	<0.5	<5.0	23.0	10.0	<5.0	6.0	<1.0	7.0	297.	83.
AF05740	346.60	347.20	610.0	110.0	18.0	<0.5	<5.0	23.0	10.0	<5.0	<5.0	<1.0	6.0	290.	86.
AF05741	347.20	347.40	560.0	112.0	15.0	<0.5	15.0	20.0	10.0	<5.0	⟨5.0	₹1.0	4.0	191.	. 88.
AF05742	347.40	348.40	750.0	68.0	16.0	<0.5	<5.0	16.0	6.0	<5.0	<5.0	<1.0	27.0	254.	81.
AF05743	348.40	349.40	680.0	40.0	21.0	<0.5	<5.0	20.0	10.0	5.0	6.0	<1.0	6.0	543.	66.
AF05744	349.40	350.20	560.0	24.0	16.0	<0.5	<5.0	10.0	4.0	<5.0	<5.0	<1.0	22.0	344.	60.
AF05745	350.20	351.00	320.0	105.0	20.0	<0.5	<5.0	25.0	21.0	<5.0	21.0	<1.0	6.0	285.	84.
A£05746	351.00	351.60	110.0	73.0	22.0	<0.5	<5.0	30.0	20.0	<5.0	<5.0	<1.0	5.0	355.	77.
AF05747	351.80	352.80	320.0	150.0	27.0	<0.5	<5.0	23.0	20.0	<5.0	<5.0	<1.0	5.0	497.	85.
AF05748	352.80	353.80	340.0	158.0	18.0	<0.5	<5.0	25.0	20.0	<5.0	9.0	<1.0	12.0	281.	90.
AF05749	353.80	354.80	330.0	56.0	15.0	<0.5	<5.0	21.0	20.0	<5.0	7.0	<1.0	4.0	227.	79.
AF05750	354.80	355.80	210.0	98.0	17.0	<0.5	<5.0	21.0	20.0	<5.0	<5.0	<1.0	3.0	318.	85.
AF05751	355.80	357.20	300.0	150.0	24.0	<0.5	<5.0	25.0	20.0	<5.0	<5.0	<1.0	8.0	408.	86.
AF05752	357.90	358.90	210.0	124.0	29.0	<0.5	<5.0	21.0	20.0	<5.0	6.0	<1.0	9.0	401.	81.
AF05753	358.90	359.90	500.0	114.0	18.0	<0.5	⟨5.0	24.0	20.0	<5.0	<5.0	<1.0	6.0	336.	86.
AF05754	359.90	360.90	310.0	100.0	18.0	<0.5	<5.0	23.0	20.0	<5.0	<5.0	<1.0	7.0	396.	85.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA	CU	ZN	AG	AU	co	NI	PB	AS	CD	NO		CUZN
ATTION	LRON		(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
AF05755	360.90	361.90	320.0	70.0	22.0	<0.5	<5.0	22.0	20.0	<5.0	<5.0	<1.0	7.0	366.	76.
AF05756	361.90	362.90	260.0	108.0	16.0	<0.5	<5.0	23.0	20.0	<5.0	<5.0	<1.0	3.0	301.	87.
AF05757	362.90	363.40	320.0	32.0	10.0	<0.5	<5.0	22.0	20.0	<5.0	<5.0	<1.0	4.0	278.	76.
AF05758	363.40	363.70	70.0	96.0	12.0	<0.5	<5.0	27.0	22.0	<5.0	<5.0	<1.0	4.0	292.	89.
AF05759	363.70	364.70	410.0	118.0	12.0	<0.5	<5.0	25.0	20.0	<5.0	<5.0	<1.0	8.0	314.	91.
AF05760	364.70	365.70	330.0	86.0	15.0	<0.5	<5.0	26.0	21.0	<5.0	<5.0	<1.0	4.0	315.	85.
AE05761	365.70	366.70	450.0	60.0	13.0	<0.5	<5.0	27.0	20.0	<5.0	<5.0	<1.0	10.0	225.	82.
AF05762	366.70	367.70	340.0	56.0	16.0	<0.5	<5.0	24.0	18.0	<5.0	<5.0	<1.0	19.0	281.	78.
AF05763	367.70	368.30	260.0	92.0	16.0	<0.5	<5.0	25.0	20.0	<5.0	<5.0	<1.0	4.0	343.	85.
AF05764	368.30	369.50	900.0	8.0	4.0	<0.5	<5.0	6.0	2.0	<5.0	<5.0	<1.0	32.0	74.	67.
AF05765	369.50	369.90	270.0	18.0	12.0	<0.5	<5.0	5.0	3.0	<5.0	<5.0	⟨1.0	12.0	414.	60.
AF05766	369.90	371.50	1100.0	8.0	4.0	<0.5	<5.0	8.0	2.0	<5.0	<5.0	<1.0	17.0	58.	67.
AF05767	371.50	373.00	670.0	8.0	4.0	<0.5	<5.0	9.0	2.0	<5.0	<5.0	<1.0	12.0	138.	67.
AF <b>0</b> 5768	373.00	373.60	790.0	74.0	18.0	<0.5	<5.0	31.0	22.0	<5.0	9.0	<1.0	13.0	373.	80.
AF05769	373.60	375.00	990.0	10.0	5.0	<0.5	<5.0	12.0	2.0	<5.0	<5.0	<1.0	23.0	198.	67.
AF05770	375.00	376.50	1000.0	4.0	4.0	<0.5	<5.0	5.0	2.0	<5.0	<5.0	<1.0	15.0	117.	50.
AF05771	376.50	377.00	980.0	17.0	5.0	<0.5	<5.0	10.0	2.0	<5.0	8.0	<1.0	26.0	172.	. 77.
AF05772	377.00	378.00	970.0	13.0	10.0	<0.5	<5.0	11.0	22.0	<5.0	13.0	<1.0	14.0	203.	57.
AF05773	378.00	379.50	860.0	7.0	3.0	<0.5	<5.0	5.0	1.0	<5.0	<5.0	<1.0	11.0	51.	70.
AF05774	379.50	380.50	1100.0	14.0	3.0	<0.5	<5.0	9.0	1.0	<5.0	<5.0	<1.0	13.0	62.	82.
A£05775	380.50	381.50	930.0	40.0	14.0	<0.5	<5.0	20.0	12.0	<5.0	6.0	<1.0	12.0	46	74.
AF05776	381.50	382.00	470.0	73.0	14.0	<0.5	<5.0	14.0	11.0	<5.0	<5.0	<1.0	5.0	391	84.
AF05777	382.00	383.00	670.0	14.0	6.0	<0.5	<5.0	6.0	2.0	<5.0	<5.0	<1.0	5.0	84	. 70.
AF05778	383.00	384.00	470.0	38.0	8.0	<0.5	<5.0	15.0	6.0	<5.0	<5.0	<1.0	15.0	116	. 83.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	NO (ppm)		MN	CUZN
					~~~~	*******				*******			******			
AE05779	384.00	385.00	480.0	102.0	8.0	<0.5	<5.0	17.0	2.0	<5.0	11.0	<1.0	15.0		108.	93.
AF05780	385.00	386.00	720.0	108.0	12.0	<0.5	<5.0	26.0	12.0	<5.0	8.0	<1.0	15.0		175.	90.
AE05781	386.00	387.00	400.0	50.0	12.0	<0.5	<5.0	18.0	10.0	<5.0	<5.0	<1.0	6.0		176.	81.
AF05782	387.00	387.90	670.0	78.0	4.0	<0.5	<5.0	16.0	4.0	<5.0	<5.0	<1.0	27.0		65.	95.
AE05783	387.90	388.50	680.0	54.0	11.0	<0.5	<5.0	23.0	12.0	<5.0	8.0	<1.0	7.0		180.	83.
AF05784	388.50	389.00	660.0	170.0	13.0	<0.5	<5.0	21.0	18.0	<5.0	<5.0	<1.0	12.0		187.	93.
AF05785	389.00	389.30	330.0	80.0	17.0	<0.5	<5.0	23.0	15.0	<5.0	<5.0	<1.0	25.0		361.	82.
AF05786	389.30	390.30	340.0	83.0	20.0	<0.5	<5.0	24.0	13.0	<5.0	<5.0	<1.0	5.0		345.	81.
AF05787	390.50	391.50	370.0	30.0	23.0	<0.5	<5.0	24.0	18.0	<5.0	<5.0	<1.0	6.0		475.	57.
AF05788	391.50	392.50	300.0	140.0	23.0	<0.5	<5.0	23.0	19.0	<5.0	<5.0	<1.0	7.0		416.	86.
AE05789	392.50	393.50	140.0	20.0	16.0	<0.5	<5.0	26.0	20.0	<5.0	<5.0	<1.0	3.0	•	400.	56.
AF05790	393.50	394.50	310.0	38.0	20.0	<0.5	<5.0	26.0	20.0	<5.0	8.0	<1.0	3.0		355.	66.
AF05791	394.50	395.50	300.0	39.0	10.0	<0.5	<5.0	27.0	20.0	<5.0	5.0	<1.0.	5.0		251.	80.
AF05792	395.50	396.50	220.0	46.0	12.0	<0.5	<5.0	25.0	19.0	<5.0	<5.0	<1.0	3.0		258.	79.
AF05793	396.50	397.50	170.0	74.0	16.0	<0.5	<5.0	22.0	18.0	<5.0	<5.0	<1.0	3.0		254.	82.
AF05795	398.50	399.50	280.0	81.0	12.0	<0.5	10.0	26.0	19.0	<5.0	<5.0	<1.0	6.0		235.	87.
AE05796	399.50	400.50	70.0	66.0	11.0	<0.5	<5.0	26.0	18.0	<5.0	<5.0	<1.0	2.0		248.	86.
AF05797	400.50	401.50	500.0	48.0	14.0	₹0.5	<5.0	12.0	8.0	<5.0	6.0	<1.0	7.0		221.	77.
AF05798	401.50	402.50	120.0	59.0	15.0	<0.5	<5.0	23.0	19.0	<5.0	<5.0	<1.0	2.0		322.	80.
AF05799	402.50	403.50	560.0	75.0	19.0	<0.5	<5.0	26.0	20.0	⟨5.0	<5.0	<1.0	5.0		294.	80.
AF05800	403.50	404.50	480.0	50.0	19,0	<0.5	<5.0	24.0	22.0	<5.0	<5.0	<1.0	3.0		300.	72.
AF05801	404.50	405.60	600.0	48.0	19.0	<0.5	<5.0	24.0	20.0	<5.0	<5.0	<1.0	4.0		306.	72.
AF05802	405.60	406.10	<20.0	2000.0	20.0	<0.5	15.0	26.0	10.0	<5.0	<5.0	<1.0	2.0		308.	99.

PIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	8A (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)		ни	CUZN
		***********			************								******	***************************************		
AG08070	27.50	28.00	<20.0	132.0	100.0	<0.5	10.0	40.0	13.0	6.0	<5.0	<1.0	4.0	:	1481.	57.
AG08071	33.50	35.00	1300.0	120.0	100.0	<0.5	<5.0	41.0	19.0	<5.0	67.0	<1.0	3.0	1	674.	55.
AG08072	45.20	46.20	100.0	44.0	76.0	<0.5	<5.0	39.0	18.0	<5.0	7.0	<1.0	3.0	1	256.	37.
AG08073	46.20	47.20	130.0	69.0	64.0	<0.5	<5.0	28.0	12.0	<5.0	<5.0	<1.0	8.0	,	1012.	52.
AG08074	50.60	52.00	370.0	110.0	160.0	<0.5	5.0	53.0	20.0	7.0	8.0	<1.0	9.0	:	1632.	41.
AG08075	57.60	58.60	100.0	114.0	160.0	<0.5	5.0	36.0	20.0	<5.0	<5.0	<1.0	2.0	:	879.	42.
AG08076	58.60	59.20	190.0	84.0	112.0	<0.5	5.0	25.0	16.0	<5.0	7.0	<1.0	3.0	:	1268.	43.
AG08077	59.20	60.20	420.0	30.0	124.0	<0.5	10.0	38.0	18.0	<5.0	9.0	<1.0	2.0	:	1198.	19.
AG08078	60.20	61.20	550.0	294.0	240.0	<0.5	<5.0	26.0	21.0	<5.0	<5.0	<1.0	2.0		1275.	55.
AG08079	64.80	66.00	280.0	33.0	72.0	<0.5	<5.0	60.0	13.0	<5.0	9.0	<1.0	. 3.0		957.	31.
AG08080	66.00	67.00	-260.0	43.0	68.0	<0.5	<5.0	24.0	14.0	<5.0	7.0	<1.00	1.0		899.	39.
AG08081	67.00	68.00	170.0	62.0	68.0	<0.5	<5.0	30.0	18.0	₹5.0	14.0	<1.0	2.0		1013.	48.
AG08082	68.00	69.00	120.0	27.0	79.0	<0.5	<5.0	25.0	14.0	<5.0	6.0	<1.0	1.0		947.	28.
AG08083	69.00	70.40	120.0	49.0	78.0	<0.5	<5.0	38.0	19.0	<5.0	16.0	<1.0	3.0	:	1089.	39.
AG06084	77.00	78.00	230.0	13.0	82.0	<0.5	<5.0	34.0	13.0	<5.0	<5.0	<1.0	3.0		1369.	14.
AG08085	92.00	92.50	<20.0	2000.0	48.0	<0.5	<5.0	29.0	20.0	<5.0	6.0	<1.0	<1.0		911.	98.
AG08086	100.60	101.70	130.0	40.0	86.0	<0.5	<5.0	38.0	19.0	5.0	7.0	<1.0	4.0		1577.	32.
AG08087	101.70	102.80	390.0	64.0	84.0	<0.5	5.0	35.0	11.0	<5.0	20.0	<1.0	7.0		1415.	43.
AG08088	112.90	113.90	380.0	176.0	79.0	<0.5	<5.0	29.0	18.0	<5.0	9.0	<1.0	2.0		1635.	69.
AG08089	114.80	115.30	140.0	326.0	94.0	<0.5	<5.0	35.0	20.0	<5.0	21.0	<1.0	2.0	:	2019.	78.
AG08090	117.80	118.80	230.0	198.0	92.0	<0.5	<5.0	34.0	16.0	<5.0	9.0	<1.0	7.0		1865.	68.
AG08091	119.70	120.70	280.0	630.0	104.0	<0.5	<5.0	42.0	18.0	5.0	30.0	<1.0	4.0	:	2226.	86.
AG08092	122.00	123.00	100.0	5800.0	70.0	1.8	30.0	50.0	12.0	<5.0	27.0	<1.0	5.0		1549.	99.
AG08093	123.00	124.00	350.0	580.0	56.0	<0.5	<5.0	20.0	6.0	6.0	12.0	<1.0	4.0		1021.	91.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE				·											
NUMBER	FROM	TO	. BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	(ppb)	(ppm)	(bb#) NI	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	MN	CUZN
									******				**********	+ 	
AG08094	147.00	148.00	770.0	440.0	68.0	<0.5	<5.0	33.0	11.0	5.0	39.0	<1.0	3.0	1354.	87.
AG08095	201.80	203.40	170.0	630.0	190.0	<0.5	10.0	21.0	12.0	<5.0	6.0	<1.0	3.0	2164.	77.
AG08096	203.40	203.70	440.0	4400.0	200.0	1.6	10.0	34.0	18.0	<5.0	19.0	2.0	6.0	2035.	96.
AG08097	203.70	206.00	40.0	220.0	176.0	<0.5	<5.0	25.0	18.0	<5.0	9.0	<1.0	<1.0	1873.	56.
AG08098	206.00	207.00	30.0	750.0	260.0	<0.5	10.0	25.0	18.0	<5.0	10.0	<1.0	3.0	2188.	74.
AG08099	217.80	218.80	800.0	44.0	84.0	<0.5	10.0	24.0	13.0	6.0	18.0	<1.0	4.0	757.	34.
AG08100	218.80	220.30	470.0	146.0	144.0	<0.5	10.0	26.0	13.0	<5.0	23.0	<1.0	1.0	1065.	50.
AG08101	220.30	222.00	340.0	182.0	160.0	<0.5	10.0	29.0	20.0	<5.0	11.0	<1.0	3.0	1076.	53.
AG08102	225.00	226.00	1400.0	54.9	94.0	<0.5	10.0	32.0	19.0	<5.0	9.0	<1.0	1.0	624.	36.
AG08103	226.00	227.50	800.0	66.0	136.0	<0.5	15.0	26.0	19.0	<5.0	<5.0	<1.0	1.0	837.	33.
AG08104	232.40	233.00	550.0	106.0	42.0	<0.5	5.0	43.0	8.0	8.0	19.0	<1.0	5.0	540.	72.
AG08105	237.50	239.00	1600.0	8.0	10.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	2.0	170.	44.
AG08106	241.00	242.00	490.0	93.0	100.0	<0.5	<5.0	20.0	15.0	5.0	<5.0	<1.0	2.0	1357.	48.
AG08107	242.00	243.50	430.0	98.0	104.0	<0.5	5.0	23.0	20.0	<5.0	7.0	<1.0	1.0	1624.	49.
AG08108	243.50	245.00	290.0	73.0	88.0	<0.5	<5.0	23.0	14.0	<5.0	<5.0	<1.0	<1.0	1617.	45.
AG08109	245.00	246.50	280.0	80.0	97.0	<0.5	<5.0	22.0	18.0	<5.0	<5.0	<1.0	1.0	1902.	45.
AG08110	246.50	248.00	800.0	6.0	32.0	<0.5	<5.0	2.0	4.0	<5.0	8.0	<1.0	4.0	270.	16.
AG08111	248.00	249.50	1400.0	12.0	24.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	3.0	320.	33.
AG08112	252.30	253.30	1400.0	48.0	34.0	<0.5	<5.0	3.0	2.0	<5.0	11.0	<1.0	3.0	200.	59.
AG08113	259.50	261.50	<20.0	620.0	2900.0	<0.5	<5.0	17.0	14.0	5.0	<5.0	21.0	<1.0	2160.	18.
AG08114	263.00	264.00	910.0	270.0	440.0	<0.5	<5.0	20.0	10.0	<5.0	8.0	4.0	<1.0	865.	38.
AG08115	264.00	265.20	1200.0	170.0	175.0	<0.5	<5.0	20.0	8.0	<5.0	6.0	<1.0	<1.0	617.	49.
AG06116	265.20	265.70	1300.0	135.0	144.0	<0.5	5.0	23.0	8.0	<5.0	7.0	<1.0	8.0	534.	48.
A608117	265.70	266.70	1100.0	192.0	143.0	<0.5	<5.0	18.0	6.0	<5.0	14.0	<1.0	<1.0	520.	57.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

	***					*******								
FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	HI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	НО (ррж)	MN	CUZN
														pp
271.00	272.50	770.0	110.0	1250.0	<0.5	<5.0	15.0	10.0	<5.0	<5.0	14.0	3.0	587	. 8.
279.30	280.30	. 290.0	70.0	56.0	<0.5	5.0	22.0	12.0	5.0	6.0	<1.0	13.0	763	56.
280.30	281.00	260.0	78.0	54.0	<0.5	<5.0	17.0	10.0	<5.0	8.0	<1.0	<1.0	629	59.
281.00	281.70	570.0	43.0	30.0	<0.5	<5.0	21.0	12.0	<5.0	<5.0	<1.0	<1.0	453	59.
281.70	283.00	240.0	93.0	34.0	<0.5	<5.0	22.0	15.0	<5.0	6.0	<1.0	2.0	519	. 73.
283.00	284.00	230.0	82.0	36.0	<0.5	<5.0	23.0	13.0	<5.0	14.0	<1.0	1.0	569	. 69.
284.00	285.20	360.0	58.0	40.0	<0.5	<5.0	24.0	11.0	<5.0	11.0	<1.0	1.0	444	. 59.
286.00	287.60	260.0	70.0	21.0	<0.5	5.0	19.0	11.0	<5.0	26.0	<1.0	<1.0	380	77.
287.80	289.30	310.0	58.0	25.0	<0.5	<5.0	18.0	10.0	<5.0	5.0	<1.0	<1.0	505	. 70.
289.30	290.00	400.0	53.0	26.0	<0.5	<5.0	23.0	13.0	<5.0	10.0	<1.0	4.0	525	67.
290.00	291.00	480.0	12.0	16.0	<0.5	<5.0	13.0	9.0	<5.0	20.0	<1.0	3.0	388	. 43.
291.00	292.00	860.0	6.0	8.0	<0.5	<5.0	9.0	3.0	<5.0	15.0	<1.0	26.0	208	. 43.
292.00	293.20	770.0	3.0	4.0	<0.5	<5.0	5.0	2.0	<5.0	10.0	<1.0	7.0	185	. 43.
293.20	294.20	720.0	30.0	15.0	<0.5	<5.0	17.0	8.0	<5.0	<5.0	<1.0	2.0	357	. 67.
294.20	295.20	490.0	41.0	16.0	<0.5	<5.0	17.0	8.0	<5.0	16.0	<1.0	2.0	408	. 72.
295.30	296.30	510.0	38.0	18.0	<0.5	<5.0	17.0	10.0	<5.0	11.0	<1.0	4.0	467	. 68.
296.30	297.30	440.0	50.0	21.0	<0.5	<5.0	20.0	12.0	<5.0	22.0	<1.0	7.0	557	. 70.
297.30	298.30	430.0	70.0	30.0	<0.5	<5.0	17.0	8.0	5.0	<5.0	<1.0	2.0	530	. 70.
315.70	316.40	650.0	62.0	47.0	<0.5	<5.0	22.0	12.0	5.0	5.0	<1.0	<1.0	701	. 57.
324.60	325.70	490.0	42.0	24.0	<0.5	<5.0	17.0	6.0	<5.0	17.0	<1.0	2.0	325	. 64.
339.00	340.00	460.0	75.0	24.0	<0.5	<5.0	15.0	6.0	<5.0	9.0	<1.0	6.0	545	. 76.
340.00	341.30	150.0	58.0	26.0	<0.5	5.0	18.0	10.0	<5.0	<5.0	<1.0	2.0	615	. 69.
341.30	342.80	380.0	48.0	46.0	<0.5	<5.0	15.0	10.0	<5.0	6.0	<1.0	4.0	532	. 51.
342.80	344.30	330.0	61.0	600.0	<0.5	<5.0	18.0	10.0	<5.0	18.0	4.0	5.0	552	. 9.
	271.00 279.30 280.30 281.00 281.70 283.00 284.00 286.00 287.80 290.00 291.00 292.00 293.20 294.20 295.30 296.30 297.30 315.70 324.60 339.00 340.00 341.30	271.00 272.50 279.30 280.30 280.30 281.00 281.00 281.70 281.70 283.00 283.00 284.00 284.00 285.20 286.00 287.60 287.80 289.30 289.30 290.00 291.00 292.00 291.00 292.00 293.20 294.20 294.20 295.20 295.30 296.30 296.30 297.30 297.30 298.30 315.70 316.40 324.60 325.70 339.00 340.00 341.30 342.80	271.00 272.50 770.0 279.30 280.30 290.0 280.30 281.00 260.0 281.00 281.70 570.0 281.70 283.00 240.0 283.00 284.00 230.0 284.00 285.20 360.0 287.80 289.30 310.0 289.30 290.00 400.0 290.00 291.00 480.0 291.00 292.00 860.0 292.00 293.20 770.0 293.20 294.20 720.0 294.20 295.20 490.0 295.30 296.30 510.0 296.30 297.30 440.0 297.30 298.30 430.0 315.70 316.40 650.0 324.60 325.70 490.0 339.00 340.00 460.0 341.30 342.80 380.0	(ppm) (ppm) 271.00 272.50 770.0 110.0 279.30 280.30 290.0 70.0 280.30 281.00 260.0 78.0 281.00 281.00 570.0 43.0 281.70 283.00 240.0 93.0 283.00 240.0 93.0 284.00 230.0 82.0 284.00 287.60 260.0 70.0 287.80 289.30 310.0 58.0 289.30 290.00 400.0 53.0 289.30 290.00 400.0 53.0 299.00 291.00 480.0 12.0 291.00 292.00 860.0 6.0 292.00 293.20 770.0 3.0 293.20 294.20 720.0 30.0 294.20 295.30 510.0 38.0 295.30 296.30 510.0 38.0 296.30 297.30 440.0 50.0	(ppm) (ppm) (ppm) 271.00 272.50 770.0 110.0 1250.0 279.30 280.30 290.0 70.0 56.0 280.30 281.00 260.0 78.0 54.0 281.00 281.70 570.0 43.0 30.0 281.70 283.00 240.0 93.0 34.0 283.00 284.00 230.0 82.0 36.0 284.00 285.20 360.0 58.0 40.0 287.80 289.30 310.0 58.0 25.0 287.80 289.30 310.0 58.0 25.0 287.80 289.30 310.0 58.0 25.0 289.30 290.00 400.0 53.0 26.0 299.00 291.00 480.0 12.0 16.0 291.00 292.00 860.0 6.0 8.0 292.00 293.20 770.0 3.0 15.0 294.20 295.20 490.0	(ppa) (ppa) (ppa) (ppa) (ppa) 271.00 272.50 770.0 110.0 1250.0 <0.5	(ppm) (ppb) 271.00 272.50 770.0 110.0 1250.0 <0.5	(ppm) (ppm) <th< td=""><td>Copes Copes <th< td=""><td> </td><td> </td><td> </td><td> Company Comp</td><td> </td></th<></td></th<>	Copes Copes <th< td=""><td> </td><td> </td><td> </td><td> Company Comp</td><td> </td></th<>				Company Comp	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE	FROM	TO	BA	cu	ZN	AG	AU	co	NI	PB	AS	CB	но		CUZN
NUMBER	EKUM	10	(bbw)		(ppm)	(ppm)	(ppb)	(ppm)	(bbw)	(ppm)	(ppm)	(ppm)	(ppas)		CUZN
		-													
AG08142	355.10	356.10	360.0	70.0	86.0	<0.5	<5.0	21.0	15.0	<5.0	19.0	<1.0	5.0	926.	45.
AG08143	356.10	357.50	370.0	405.0	140.0	<0.5	<5.0	23.0	12.0	6.0	18.0	<1.0	8.0	1214.	74.
AG08144	357.70	358.80	760.0	505.0	640.0	<0.5	5.0	17.0	10.0	7.0	26.0	6.0	9.0	. 1059.	44.
AG08145	364.20	366.00	320.0	93.0	110.0	<0.5	5.0	24.0	12.0	6.0	23.0	<1.0	9.0	908.	46.
AG08146	366.00	367.50	230.0	115.0	42.0	<0.5	<5.0	20.0	11.0	<5.0	26.0	<1.0	2.0	753.	73.
AG08147	367.50	369.00	240.0	70.0	42.0	<0.5	<5.0	27.0	13.0	<5.0	23.0	<1.0	3.0	711.	63.
AG08148	369.00	370.50	<20.0	92.0	48.0	<0.5	5.0	19.0	21.0	<5.0	22.0	<1.0	13.0	1131.	66.
AG08149	370.50	372.00	<20.0	90.0	52.0	<0.5	<5.0	22.0	15.0	5.0	7.0	<1.0	5.0	779.	63.
AG08150	372.00	373.00	<20.0	172.0	94.0	<0.5	<5.0	23.0	89.0	<5.0	<5.0	<1.0	5.0	1354.	65.
AG08151	373.00	374.00	230.0	152.0	5600.0	<0.5	10.0	24.0	30.0	5.0	11.0	27.0	3.0	909.	з.
AG08152	374.00	375.50	120.0	282.0	500.0	<0.5	<5.0	19.0	18.0	<5.0	9.0	3.0	10.0	1397.	36.
AG08153	375.50	377.00	80.0	60.0	192.0	<0.5	<5.0	23.0	21.0	<5.0	24.0	<1.0	4.0	704.	24.
AG08154	377.00	378.70	260.0	212.0	300.0	<0.5	5.0	25.0	14.0	<5.0	<5.0	1.0	16.0	1245.	41.
AG08155	381.20	382.70	390.0	72.0	86.0	<0.5	<5.0	20.0	13.0	<5.0	<5.0	<1.0	26.0	552.	46.
AG08156	382.70	384.30	190.0	158.0	64.0	<0.5	<5.0	31.0	19.0	<5.0	6.0	<1.0	7.0	590.	71.
AG08157	386.00	386.50	120.0	2400.0	2100.0	1.0	15.0	21.0	17.0	5.0	<5.0	8.0	42.0	1678.	53.
AG08158	392.60	393.60	220.0	316.0	100.0	<0.5	<5.0	13.0	10.0	<5.0	9.0	<1.0	13.0	749.	76.
AG08159	393.60	394.10	350.0	2700.0	12900.0	0.9	10.0	10.0	10.0	<5.0	<5.0	56.0	30.0	1242.	17.
AG08160	394.10	395.10	320.0	320.0	84.0	<0.5	<5.0	12.0	9.0	<5.0	12.0	<1.0	28.0	546.	79.
AG08161	395.10	396.10	240.0	1500.0	300.0	<0.5	10.0	23.0	50.0	<5.0	13.0	1.0	10.0	985.	83.
AG08162	400.30	401.30	240.0	1150.0	56.0	<0.5	5.0	29.0	12.0	<5.0	15.0	<1.0	25.0	636.	95.
AG08163	403.50	404.00	350.0	4000.0	112.0	0.8	10.0	18.0	12.0	<5.0	<5.0	<1.0	14.0	844.	97.
AG08164	409.40	410.90	380.0	270.0	32.0	<0.5	<5.0	25.0	13.0	<5.0	11.0	<1.0	10.0	414.	89.
AG08165	410.90	412.40	520.0	122.0	34.0	<0.5	<5.0	23.0	15.0	<5.0	13.0	<1.0	6.0	378.	78.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE									**********	***********	 	*		**************************************	
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	(ppm)	NI (ppm)	PB (ppm)	AS (ppm)	(ppm)	(ppm)	MN 1	CUZN
AG08166	412.40	413.90	620.0	148.0	15.0	<0.5	<5.0	22.0	13.0	<5.0	8.0	<1.0	11.0	305.	91.
AG08167	414.90	416.40	370.0	295.0	34.0	<0.5	<5.0	20.0	15.0	<5.0	8.0	<1.0	9.0	787.	90.
AG08168	417.50	418.50	640.0	460.0	34.0	<0.5	<5.0	23.0	11.0	<5.0	<5.0	<1.0	44.0	871.	93.
AG08169	438.50	439.50	360.0	88.0	28.0	<0.5	<5.0	18.0	12.0	<5.0	9.0	<1.0	2.0	400.	76.
AG08170	439.50	440.50	560.0	109.0	24.0	<0.5	<5.0	22.0	12.0	<5.0	8.0	<1.0	6.0	393.	82.
AG08171	440.50	441.50	400.0	50.0	25.0	<0.5	<5.0	25.0	15.0	<5.0	<5.0	<1.0	9.0	338.	67.
AG08172	441.50	442.50	580.0	38.0	10.0	<0.5	<5.0	17.0	12.0	<5.0	<5.0	<1.0	2.0	233.	79.
AG08173	442.50	443.50	560.0	60.0	6.0	<0.5	<5.0	19.0	10.0	<5.0	<5.0	<1.0	13.0	262.	91.
AG08174	443.50	444.60	490.0	48.0	10.0	<0.5	<5.0	16.0	12.0	<5.0	26.0	<1.0	11.0	262.	83.
AG08175	444.60	445.70	630.0	55.0	30.0	<0.5	5.0	21.0	12.0	<5.0	<5.0	<1.0	5.0	439.	65.
AG08176	451.50	453.00	- 330.0	40.0	24.0	<0.5	<5.0	15.0	6.0	<5.0	17.0	<1.0	7.0	478.	63.
AG08177	453.00	454.00	420.0	16.0	16.0	<0.5	<5.0	14.0	8.0	<5.0	<5.0	<1.0	3.0	253.	50.
AG08178	454.00	455.00	190.0	70.0	15.0	<0.5	<5.0	19.0	10.0	<5.0	10.0	<1.0	3.0	266.	82.
AG08179	455.00	456.40	550.0	20.0	28.0	<0.5	<5.0	23.0	12.0	<5.0	14.0	<1.0	<1.0	448.	42.
AG08180	456.40	457.90	340.0	30.0	20.0	. <0.5	<5.0	21.0	8.0	<5.0	16.0	<1.0	4.0	371.	60.
AG08181	457.90	459.40	480.0	40.0	20.0	<0.5	<5.0	15.0	3.0	<5.0	<5.0	<1.0	4.0	305.	67.
AG08182	470.00	470.50	710.0	18.0	18.0	<0.5	<5.0	20.0	2.0	<5.0	<5.0	<1.0	34.0	184.	50.
AG08183	482.00	483.00	360.0	380.0	18.0	<0.5	<5.0	30.0	17.0	<5.0	22.0	<1.0	21.0	273.	95.
AG08184	498.20	499.00	460.0	80.0	24.0	<0.5	<5.0	22.0	20.0	<5.0	12.0	<1.0	5.0	366.	77.
AG08185	499.00	499.90	430.0	205.0	19.0	<0.5	<5.0	34.0	15.0	<5.0	19.0	<1.0	15.0	293.	92.
AG08186	508.50	509.00	<20.0	1920.0	68.0	<0.5	20.0	94.0	30.0	<5.0	27.0	<1.0	1.0	858.	97.
AG08187	515.10	516.50	450.0	315.0	28.0	<0.5	<5.0	24.0	12.0	<5.0	8.0	<1.0	2.0	365.	92.
AG08188	516.50	518.00	170.0	215.0	24.0	<0.5	<5.0	28.0	15.0	<5.0	12.0	<1.0	2.0	447.	90.
AG08189	518.00	519.50	680.0	178.0	25.0	<0.5	<5.0	18.0	10.0	<5.0	9.0	<1.0	7.0	433.	88.

·:

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE										******	***********				
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	(ppm)	NΙ (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	MN	CUZN
AG08190	519.50	521.00	330.0	155.0	26.0	<0.5	<5.0	27.0	12.0	<5.0	17.0	<1.0	8.0	521.	86.
AG08191	521.00	522.50	560.0	190.0	20.0	<0.5	<5.0	20.0	11.0	<5.0	<5.0	<1.0	2.0	407.	90.
AG08192	522.50	524.00	400.0	200.0	24.0	<0.5	<5.0	25.0	13.0	<5.0	<5.0	<1.0	5.0	349.	89.
AG08193	524.00	526.20	680.0	135.0	28.0	<0.5	<5.0	24.0	15.0	<5.0	24.0	<1.0	6.0	471.	83.
AG08194	546.90	547.40	150.0	480.0	34.0	<0.5	<5.0	19.0	4.0	<5.0	25.0	<1.0	23.0	468.	93.
AG08198	549.20	549.70	150.0	3400.0	58.0	0.5	5.0	51.0	3.0	<5.0	27.0	1.0	<1.0	806.	98.
AG08195	557.30	558.30	210.0	225.0	22.0	<0.5	<5.0	10.0	9.0	<5.0	24.0	<1.0	16.0	229.	91.
AG08196	558.30	559.00	100.0	355.0	18.0	<0.5	<5.0	22.0	4.0	<5.0	12.0	<1.0	5.0	510.	95.
AG08197	559.00	560.00	750.0	240.0	16.0	<0.5	₹5.0	4.0	2.0	5.0	13.0	<1.0	13.0	203.	94.
AG08199	578.20	578.70	1000.0	120.0	12.0	<0.5	<5.0	5.0	2.0	<5.0	13.0	<1.0	6.0	163.	91.
AG08200	583.00	583.50	150.0	232.0	52.0	<0.5	<5.0	3.0	2.0	5.0	9.0	<1.0	11.0	526.	82.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	ми	CUZN
	~~~~~~				******			<del></del>						 	
AE05803	12.60	13.60	<20.0	338.0	82.0	<0.5	<5.0	37.0	44.0	11.0	<5.0	1.0	3.0	1958.	80.
AF05804	13.60	15.00	1000.0	50.0	99.0	<0.5	<5.0	24.0	52.0	9.0	14.0	1.0	4.0	2136.	34.
AE05805	15.00	16.00	800.0	229.0	83.0	<0.5	<5.0	26.0	52.0	<5.0 €	<5.0	1.0	2.0	1920.	73.
AF05806	16.00	17.50	490.0	150.0	95,0	<0.5	<5.0	23.0	50.0	<5.0	<5.0	1.0	4.0	2157.	61.
AF05807	17.50	17.90	180.0	155.0	80.0	<0.5	5.0	99.0	85.0	30.0	72.0	3.0	11.0	2032.	66.
A£05808	17.90	19.10	560.0	66.0	57.0	<0.5	<5.0	15.0	34.0	6.0	<5.0	<1.0	3.0	1307.	54.
AF05809	19.10	19.20	380.0	3500.0	113.0	1.7	10.0	94.0	91.0	24.0	67.0	3.0	9.0	2282.	97.
AF05810	19.20	20.20	630.0	147.0	79.0	<0.5	<5.0	28.0	44.0	6.0	<5.0	<1.0	3.0	1922.	65.
AF05811	23.20	24.20	560.0	61.0	42.0	<0.5	<5.0	11.0	20.0	7.0	<5.0	<1.0	2.0	992.	59.
AF05812	24.20	24.60	570.0	2922.0	67.0	1.5	10.0	27.0	35.0	12.0	17.0	2.0	6.0	2554.	98.
AF05813	24.60	25.60	710.0	40.0	36.0	<0.5	<5.0	9.0	14.0	<5.0	<5.0	<1.0	2.0	 1118.	53.
AF05814	28.50	29.00	620.0	44.0	67.0	<0.5	5.0	9.0	30.0	<5.0	7.0	1.0	6.0	1307.	40.
AF05815	29.00	29.50	710.0	30.0	70.0	<0.5	5.0	12.0	35.0	<5.0	<5.0	1.0	3.0	1387.	30.
AF05816	29.50	30.50	950.0	7.0	42.0	<0.5	<5.0	6.0	14.0	<5.0	<5.0	<1.0	1.0	952.	. 14.
AF05817	41.10	42.10	210.0	278.0	684.0	<0.5	10.0	26.0	45.0	5.0	⟨5.0	5.0	3.0	1636.	29.
AF05818	42.10	42.30	20.0	2975.0	783.0	1.6	10.0	47.0	77.0	22.0	50.0	9.0	5.0	1504.	79.
AF05819	42.30	43.30	100.0	218.0	429.0	<0.5	<5.0	29.0	53.0	5.0	<5.0	1.0	3.0	1522.	34.
AF05820	43.30	43.70	150.0	1722.0	419.0	0.8	10.0	41.0	100.0	15.0	39.0	3.0	5.0	1702.	80.
AF05821	43.70	44.70	<20.0	136.0	220.0	<0.5	<5.0	33.0	91.0	<5.0	<5.0	1.0	2.0	1421.	38.
AF05822	56.00	57.00	<20.0	146.0	114.0	<0.5	<5.0	25.0	37.0	<5.0	<5.0	<1.0	1.0	1532.	56.
AF05823	57.00	57.50	<20.0	1944.0	139.0	0.9	10.0	31.0	58.0	6.0	20.0	3.0	37.0	2040.	93.
AF05824	57.50	58.50	<20.0	195.0	90.0	<0.5	<5.0	28.0	35.0	<5.0	<5.0	<1.0	1.0	1941.	68.
AF05825	64.00	65.00	<20.0	184.0	118.0	<0.5	<5.0	25.0	39.0	<5.0	<5.0	<1.0	3.0	1559.	61.
AF05826	65.00	65.50	<20.0	1725.0	160.0	0.8	(5.0	39.0	52.0	6.0	5.0	2.0	5.0	1926.	92.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE			· · · · · · · · · · · · · · · · · · ·					·n							**************
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS. (ppm)	CB (ppm)	HO (ppm)	m	N CUZN
·								*******	********			*******			
AE05827	65.50	66.50	<20.0	163.0	95.0	<0.5	10.0	30.0	37.0	5.0	<5.0	<1.0	2.0	164	5. 63.
AF05828	76.40	77.40	<20.0	184.0	101.0	<0.5	<5.0	26.0	38.0	6.0	<5.0	<1.0	2.0	1588	65.
AF05829	77.40	77.60	<20.0	235.0	150.0	<0.5	<5.0	24.0	50.0	5.0	<5.0	<1.0	6.0	2410	3. 61.
AF05830	77.60	78.60	<20.0	171.0	103.0	<0.5	<5.0	29.0	42.0	6.0	<5.0	<1.0	3.0	1728	62.
AF05831	78.60	79.50	<20.0	128.0	223.0	<0.5	<5.0	27.0	38.0	7.0	<5.0	1.0	3.0	185	1. 36.
AF05832	79.50	80.00	140.0	160.0	170.0	<0.5	<5.0	22.0	33.0	6.0	<5.0	1.0	2.0	176	9. 48.
AF05833	80.00	81.00	90.0	62.0	145.0	<0.5	10.0	20.0	30.0	9.0	<5.0	1.0	2.0	1520	30.
AF05834	85.00	86.00	400.0	173.0	89.0	<0.5	<5.0	29.0	34.0	7.0	<5.0	<1.0	2.0	189	3. 66.
AF05835	86.00	86.20	390.0	387.0	85.0	<0.5	<5.0	31.0	46.0	17.0	28.0	2.0	5.0	171	7. 82.
AF05836	86.20	87.20	110.0	36.0	83.0	1.2	<5.0	36.0	53.0	19.0	33.0	1.0	5.0	184	30.
AF05837	87.20	88.00	470.0	47.0	78.0	<0.5	<5.0	35.0	53.0	20.0	35.0	2.0	7.0	153	3. 38.
AF05838	88.00	88.80	<20.0	35.0	71.0	<0.5	<5.0	31.0	48.0	12.0	26.0	1.0	4.0	148	1. 33.
AF05839	88.80	89.30	220.0	28.0	69.0	<0.5	10.0	24.0	33.0	<5.0	6.0	<1.0	3.0	157	5. 29.
AF05840	92.50	93.50	210.0	5.0	49.0	<0.5	5.0	11.0	15.0	6.0	<5.0	<1.0	1.0	105	7. 9.
AF05841	93.50	94.00	170.0	11.0	71.0	<0.5	15.0	16.0	33.0	11.0	9.0	1.0	3.0	127	5. 13.
AF05842	94.00	95.00	180.0	2.0	50.0	<0.5	<5.0	11.0	16.0	<5.0	<5.0	<1.0	<1.0	110	2. 4.
AF05843	99.00	100.00	90.0	22.0	39.0	<0.5	5.0	6.0	14.0	<5.0	<5.0	<1.0	<1.0	831	36.
AF05844	100.00	100.50	170.0	2.0	64.0	<0.5	<5.0	19.0	23.0	<5.0	<5.0	<1.0	1.0	150	2. 3.
AF05845	100.50	101.50	310.0	3.0	42.0	<0.5	<5.0	11.0	16.0	<5.0	<5.0	<1.0	1.0	. 100	5. 7.
AF05846	104.50	105.50	220.0	3.0	51.0	<0.5	<5.0	9.0	17.0	<5.0	<5.0	<1.0	<1.0	107	9. 6.
AF05847	105.50	106.00	70.0	20.0	70.0	1.6	5.0	19.0	39.0	24.0	24.0	2.0	3.0	110	3. 22.
AF05848	106.00	107.00	<20.0	4.0	55.0	1.8	<5.0	12.0	19.0	17.0	11.0	<1.0	2.0	92	2. 7.
AF05849	109.00	110.00	920.0	45.0	100.0	1.6	25.0	22.0	41.0	28.0	28.0	2.0	5.0	98	1. 31.
AF05850	110.00	111.00	990.0	14.0	91.0	1.6	<5.0	14.0	25.0	19.0	20.0	1.0	3.0	83	4. 13.
							,,,,		20.4		20.0	1.0	0.0	00	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	MN	I CUZN	
AE05851	111.00	112.00	720.0	35.0	97.0	1.3	<5.0	13.0	30.0	17.0	22.0	1.0	4.0	.917	. 27.	
AF05852	112.00	113.00	550.0	33.0	81.0	1.2	<5.0	12.0	24.0	17.0	17.0	1.0	1.0	795	. 29.	
AF05853	113.00	114.00	640.0	16.0	86.0	0.8	5.0	14.0	25.0	11.0	12.0	<1.0	1.0	1104	. 16.	
AF05854	120.00	121.50	530.0	24.0	72.0	0.7	<5.0	15.0	28.0	7.0	<5.0	<1.0	<1.0	1291	. 25.	
AF05855	121.50	122.00	490.0	60.0	100.0	0.5	10.0	23.0	51.0	17.0	15.0	2.0	3.0	1630	. 38.	
AF05856	122.00	123.40	380.0	12.0	68.0	0.5	<5.0	13.0	22.0	7.0	7.0	<1.0	1.0	765	. 15.	
AF05857	123.40	123.70	640.0	62.0	116.0	<0.5	5.0	28.0	53.0	11.0	22.0	2.0	4.0	1546	. 35.	
AF05858	123.70	125.00	320.0	2.0	70.0	<0.5	<5.0	8.0	16.0	<5.0	<5.0	<1.0	<1.0	<1	. 3.	
AF05859	125.00	126.20	310.0	9.0	122.0	<0.5	10.0	11.0	24.0	<5.0	<5.0	<1.0	1.0	817	7.	
AF05860	126.20	127.20	460.0	31.0	166.0	<0.5	<5.0	13.0	24.0	8.0	7.0	1.0	1.0	737	. 16.	
AF05861	127.20	128.20	760.0	157.0	214.0	<0.5	10.0	16.0	47.0	7.0	17.0	2.0	5.0	2053	42.	•.
AF05862	128.20	129.20	870.0	11.0	126.0	<0.5	<5.0	15.0	25.0	<5.0	<5.0	1.0	1.0	1026	. 8.	
AF05863	129.20	130.20	430.0	37.0	106.0	<0.5	<5.0	18.0	35.0	<5.0	<5.0	1.0	1.0	1342	26.	
AF05864	130.20	131.20	360.0	19.0	106.0	<0.5	<5.0	16.0	26.0	<5.0	<5.0	1.0	1.0	1096	. 15.	
AF05865	131.20	132.20	30.0	26.0	112.0	<0.5	<5.0	9.0	26.0	<5.0	<5.0	1.0	1.0	1049	19.	
AF05866	132.20	133.20	360.0	113.0	148.0	<0.5	<5.0	19.0	45.0	<5.0	<5.0	1.0	2.0	1619	43.	
AF05867	133.20	134.20	680.0	58.0	123.0	1.2	<5.0	22.0	37.0	15.0	14.0	1.0	3.0	1840	32.	
AF05868	134.20	135.20	160.0	107.0	170.0	0.8	<5.0	30.0	59.0	22.0	25.0	2.0	4.0	1714	39.	
AF05869	135.20	136.00	30.0	624.0	193.0	1.2	<5.0	27.0	49.0	11.0	25.0	2.0	2.0	1886	76.	
AF05870	136.00	137.00	160.0	83.0	132.0	0.6	<5.0	25.0	31.0	11.0	5.0	1.0	1.0	2019	39.	
AF05871	145.80	146.80	230.0	302.0	201.0	0.5	<5.0	28.0	34.0	11.0	5.0	1.0	1.0	1931	. 60.	
AF05872	146.80	147.80	140.0	761.0	256.0	0.6	<5.0	27.0	39.0	7.0	5.0	2.0	2.0	2316	75.	
AE05873	147.80	148.00	110.0	1356.0	306.0	0.5	<5.0	55.0	55.0	13.0	5.0	3.0	7.0	4200	82.	
AF05874	148.00	149.00	40.0	192.0	202.0	<0.5	<5.0	29.0	28.0	<5.0°	<5.0	<1.0 .	1.0	1999	. 49.	

3

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE											_				
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZΝ (ppm)	AG (ppm)	AU (ppb)	(ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	MN 	CUZN
•										•					
AE05875	159.00	160.20	970.0	258.0	133.0	<0.5	<5.0	20.0	24.0	<5.0	<5.0	1.0	<1.0	1832.	66.
AF05876	160.00	161.00	2000.0	159.0	190.0	<0.5	<5.0	26.0	38.0	8.0	6.0	1.0	2.0	1542.	46.
AE05877	161.00	162.00	630.0	149.0	132.0	<0.5	<5.0	21.0	24.0	8.0	<5.0	1.0	3.0	1497.	53.
AF05878	178.00	179.40	2000.0	137.0	64.0	<0.5	<5.0	32.0	23.0	11.0	<5.0	1.0	2.0	544.	68.
AE05879	179.40	179.80	3300.0	203.0	24.0	0.5	<5.0	19.0	58.0	32.0	41.0	2.0	10.0	396.	89.
AF05880	179.80	180.00	3000.0	19.0	6.0	<0.5	<5.0	11.0	22.0	14.0	<5.0	<1.0	5.0	323.	76.
AF05881	180.00	180.30	1000.0	54.0	52.0	<0.5	10.0	16.0	57.0	43.0	42.0	3.0	12.0	880.	51.
AF05882	180.30	180.90	190.0	517.0	121.0	1.1	20.0	27.0	73.0	25.0	44.0	3.0	11.0	1037.	81.
AF05883	180.90	182.50	800.0	300.0	123.0	0.7	30.0	20.0	42.0	11.0	<5.0	1.0	4.0	1097.	71.
AF05884	182.50	184.00	1400.0	21.0	12.0	<0.5	20.0	4.0	11.0	9.0	<5.0	<1.0	2.0	242.	64.
AF05885	188.60	189.30	1000.0	12.0	19.0	<0.5	190.0	4.0	19.0	13.0	<5.0	1.0	3.0	> 320.	39.
AF05886	189.30	190.20	1200.0	19.0	42.0	<0.5	40.0	11.0	31.0	17.0	<5.0	1.0	9.0	588.	31.
AF05887	190.20	191.20	520.0	71.0	58.0	<0.5	60.0	23.0	40.0	11.0	<5.0	1.0	4.0	902.	55.
AF05888	191.20	191.80	930.0	91.0	46.0	<0.5	5.0	30.0	38.0	13.0	<5.0	1.0	4.0	597.	66.
AF05889	191.80	192.70	460.0	100.0	51.0	<0.5	5.0	23.0	40.0	13.0	<5.0	1.0	3.0	744.	66.
AF05890	192.70	193.70	730.0	218.0	56.0	0.5	<5.0°	26.0	41.0	15.0	<5.0	1.0	4.0	707.	80.
AF05891	193.70	193.80	160.0	152.0	47.0	<0.5	10.0	26.0	84.0	39.0	79.0	4.0	10.0	1145.	76.
AF05892	193.80	194.80	770.0	165.0	82.0	<0.5	<5.0	22.0	39.0	15.0	<5.0	1.0	4.0	1071.	67.
AE05893	194.80	195.80	860.0	82.0	57.0	<0.5	10.0	26.0	36.0	18.0	<5.0	1.0	5.0	730.	59.
AF05894	195.80	197.30	640.0	127.0	55.0	<0.5	5.0	25.0	36.0	17.0	<5.0	1.0	4.0	698.	70.
AF05895	197.30	199.00	430.0	124.0	63.0	<0.5	<5.0	17.0	34.0	17.0	<5.0	1.0	4.0	803.	66.
AF05896	199.00	200.00	100.0	101.0	90.0	<0.5	<5.0	16.0	36.0	16.0	<5.0	1.0	4.0	1149.	53.
AF05897	200.00	200.50	<20.0	463.0	105.0	1.2	5.0	20.0	41.0	19.0	<5.0	2.0	5.0	1131.	82.
AF05898	200.50	201.50	<20.0	82.0	94.0	<0.5	<5.0	24.0	41.0	17.0	<5.0	1.0	5.0	1291.	47.

SAMPLE NUMBER	FROM	то	BA	cu	ZN	AG	AU	co	NI	PB	AS	CD	но		CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
•															
AF05899	202.80	203.80	<20.0	268.0	68.0	0.7	<5.0	26.0	48.0	19.0	<5.0	1.0	5.0	1153.	80.
AE05900	203.80	204.80	240.0	37.0	23.0	<0.5	<5.0	10.0	18.0	15.0	<5.0	<1.0	3.0	381.	62.
AE08301	204.80	205.60	<20.0	139.0	60.0	<0.5	<5.0	36.0	52.0	6.0	<5.0	1.0	3.0	1194.	70.
AE08302	205.60	207.00	<20.0	174.0	162.0	<0.5	<5.0	31.0	57.0	5.0	<5.0	1.0	3.0	1224.	52.
AE08303	207.00	208.00	830.0	158.0	198.0	<0.5	<5.0	26.0	56.0	8.0	<5.0	2.0	3.0	915.	44.
AE08304	208.00	208.10	510.0	149.0	2156.0	<0.5	10.0	16.0	118.0	56.0	39.0	16.0	20.0	750.	6.
AE08305	208.10	209.10	1500.0	15.0	125.0	<0.5	<5.0	6.0	15.0	13.0	<5.0	1.0	2.0	339.	11.
AE08306	210.40	211.00	1200.0	88.0	499.0	<0.5	<5.0	3.0	13.0	52.0	<5.0	3.0	2.0	239.	15.
AE08307	216.30	217.30	490.0	163.0	105.0	0.5	5.0	23.0	52.0	14.0	5.0	1.0	4.0	880.	61.
AE08308	217.30	218.30	700.0	122.0	106.0	0.8	5.0	33.0	67.0	19.0	8.0	2.0	4.0	821.	54.
AE08309	218.30	218.50	640.0	172.0	86.0	0.5	15.0	23.0	105.0	47.0	29.0	4.0	17.0	913.	67.
AE08310	218.50	220.00	1300.0	11.0	59.0	0.6	10.0	4.0	13.0	17.0	<5.0	<1.0	3.0	156.	16.
AE08311	220.00	221.00	1400.0	12.0	20.0	<0.5	<5.0	4.0	14.0	17.0	5.0	<1.0	3.0	68.	38.
AE08312	221.00	222.20	1600.0	9.0	55.0	0.8	<5.0	4.0	13.0	18.0	<5.0	<1.0	3.0	108.	14.
AE08313	222.20	222.30	840.0	80.0	326.0	1.3	20.0	17.0	84.0	116.0	40.0	5.0	12.0	535.	20.
AE08314	222.30	223.30	1800.0	15.0	37.0	1.3	<5.0	6.0	19.0	27.0	13.0	1.0	5.0	40.	29.
AE08315	223.30	224.30	1300.0	7.0	7.0	1.2	<5.0	8.0	26.0	25.0	14.0	<1.0	4.0	62.	50.
AE08316	224.30	225.20	940.0	19.0	17.0	0.9	5.0	19.0	40.0	27.0	18.0	2.0	8.0	196.	53.
AE08317	225.20	226.70	500.0	6.0	5.0	1.4	10.0	7.0	18.0	25.0	17.0	<1.0	4.0	62.	55.
AE08318	226.70	228.00	830.0	8.0	5.0	1.3	<5.0	6.0	20.0	25.0	12.0	<1.0	5.0	70.	62.
AE08319	228.00	229.00	810.0	8.0	5.0	1.3	<5.0	8.0	24.0	27.0	.8.0	1.0	5.0	79.	62.
AE08320	229.00	230.00	1100.0	13.0	91.0	1.4	5.0	9.0	31.0	29.0	18.0	3.0	5.0	96.	13.
AE08321	230.00	231.60	770.0	9.0	7.0	1.4	<5.0	9.0	25.0	27.0	13.0	1.0	4.0	93.	56.
AE08322	231.60	231.80	660.0	23.0	27.0	1.3	<5.0	27.0	53.0	30.0	16.0	2.0	6.0	280.	46.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE											· -			
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	(ppb)	(ppm)	HI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HC (ppm)	MN CUZN
	******			************							***********			+ 10
AE08323	231.80	232.50	660.0	11.0	3.0	1.6	<5.0	7.0	24.0	29.0	14.0	1.0	4.0	101. 79.
AE08324	232.50	233.50	440.0	105.0	60.0	0.5	5.0	36.0	66.0	33.0	7.0	2.0	6.0	635. 64.
AE08325	233.50	234.50	330.0	73.0	61.0	<0.5	<5.0	28.0	60.0	17.0	<5.0	1.0	4.0	647. 54.
A£08326	234.50	235.50	140.0	101.0	62.0	<0.5	<5.0	27.0	83.0	16.0	<5.0	1.0	5.0	732. 62.
AE08327	235.50	236.20	200.0	128.0	70.0	<0.5	<5.0	31.0	60.0	20.0	7.0	1.0	4.0	752. 65.
AE08328	236.20	237.00	160.0	76.0	102.0	0.7	<5.0	33.0	86.0	15.0	<5.0	2.0	4.0	1280. 43.
AE08329	237.00	238.00	<20.0	114.0	51.0	1.5	5.0	38.0	66.0	20.0	15.0	1.0	4.0	774. 69.
AE08330	238.00	239.00	50.0	92.0	55.0	1.3	<5.0	33.0	75.0	19.0	16.0	1.0	4.0	829. 63.
AE08331	239.00	240.00	<20.0	111.0	33.0	0.7	<5.0	31.0	58.0	16.0	8.0	1.0	4.0	548. 77.
AE08332	240.00	241.00	80.0	106.0	39.0	<0.5	10.0	32.0	120.0	15.0	6.0	1.0	3.0	706. 73.
AE08333	241.00	241.80	150.0	127.0	25.0	1.3	<5.0	31.0	54.0	23.0	12.0	1.0	4.0	423. 84.
AE08334	241.80	242.40	50.0	92.0	34.0	0.9	5.0	32.0	62.0	24.0	13.0	1.0	4.0	550. 73.
AE08335	242.40	243.40	520.0	70.0	30.0	1.3	<5.0	22.0	52.0	19.0	<5.0	1.0	6.0	489. 70.
AE08336	243.40	244.10	290.0	33.0	50.0	1.3	<5.0	27.0	58.0	20.0	9.0	1.0	8.0	872. 40.
AE08337	244.10	245.00	250.0	303.0	49.0	<0.5	<5.0	32.0	66.0	7.0	<5.0	1.0	12.0	1209. 86.
AE08338	245.00	246.00	90.0	97.0	44.0	<0.5	<5.0	32.0	67.0	7.0	<5.0	1.0	6.0	972. 69.
AE08339	246.00	247.20	170.0	162.0	43.0	<0.5	<5.0	37.0	68.0	13.0	<5.0	1.0	6.0	1040. 79.
AE08340	247.20	248.40	180.0	75.0	39.0	<0.5	<5.0	34.0	72.0	15.0	<5.0	1.0	7.0	931. 66.
AE08341	248.40	249.40	970.0	25.0	13.0	<0.5	<5.0	21.0	40.0	13.0	<5.0	1.0	15.0	270. 66.
AE08342	249.40	250.30	750.0	40.0	20.0	<0.5	<5.0	34.0	66.0	11.0	<5.0	1.0	12.0	446. 67.
AE08343	250.30	251.30	550.0	15.0	10.0	<0.5	<5.0	16.0	36.0	10.0	<5.0	<1.0	13.0	223. 60.
AE08344	251.30	252.30	640.0	6.0	8.0	<0.5	<5.0	7.0	18.0	5.0	⟨5.0	<1.0	22.0	222. 43.
AE08345	252.30	253.30	870.0	9.0	7.0	<0.5	₹5.0	7.0	19.0	5.0	<5.0	<1.0	14.0	181. 56.
AE08346	253.30	254.30	930.0	9.0	8.0	<0.5	<5.0	6.0	24.0	<5.0	<5.0	<1.0	18.0	255. 53.

SAMPLE										*******	*******				
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	MN	CUZN
								********		*					
AE08347	254.30	255.70	350.0	20.0	18.0	<0.5	`< <b>5.0</b>	6.0	27.0	7.0	<5.0	<1.0	13.0	573.	53.
AE08348	255.70	256.70	600.0	24.0	24.0	<0.5	<5.0	20.0	50.0	7.0	<5.0	<1.0	7.0	656.	50.
AE08349	256.70	257.70	180.0	109.0	25.0	<0.5	<5.0	33.0	75.0	7.0	<5.0	2.0	6.0	553.	81.
AE08350	257.70	258.70	110.0	116.0	24.0	<0.5	10.0	34.0	68.0	10.0	<5.0	1.0	4.0	525.	83.
AE08351	258.70	259.70	420.0	189.0	19.0	<0.5	5.0	30.0	60.0	11.0	<5.0	1.0	8.0	384.	91.
AE08352	259.70	260.70	500.0	79.0	9.0	`<0.5	5.0	15.0	31.0	10.0	<5.0	<1.0	15.0	175.	90.
AE08353	260.70	261.70	430.0	124.0	25.0	<0.5	15.0	20.0	56.0	10.0	<5.0	1.0	15.0	498.	83.
AE08354	261.70	261.80	<20.0	9700.0	159.0	<0.5	35.0	51.0	122.0	46.0	20.0	8.0	10.0	820.	98.
AE08355	261.80	262.80	830.0	346.0	16.0	<0.5	10.0	13.0	25.0	15.0	<5.0	<1.0	16.0	255.	96.
AE08356	262.80	263.80	1000.0	182.0	6.0	<0.5	5.0	9.0	22.0	15.0	<5.0	1.0	27.0	81.	97.
AE08357	263.80	264.80	700.0	21.0	13.0	<0.5	5.0	20.0	46.0	15.0	<5.0	<1.0	18.0	210.	· 62.
AE08358	264.80	265.40	950.0	63.0	27.0	<0.5	5.0	28.0	62.0	18.0	<5.0	2.0	16.0	462.	70.
AE08359	265.60	266.60	210.0	98.0	27.0	<0.5	5.0	33.0	64.0	18.0	<5.0	1.0	6.0	529.	78.
AE08360	266.60	267.60	490.0	110.0	21.0	<0.5	5.0	24.0	51.0	24.0	8.0	1.0	7.0	355.	84.
AE08361	267.60	268.60	450.0	140.0	27.0	0.7	5.0	30.0	55.0	24.0	25.0	2.0	7.0	471.	84.
AE08362	268.60	269.60	210.0	108.0	20.0	0.9	<5.0	27.0	57.0	27.0	7.0	2.0	6.0	397.	84.
AE08363	269.60	270.40	310.0	67.0	16.0	1.3	<5.0	25.0	52.0	28.0	<5.0	1.0	6.0	334.	81.
AE08364	270.40	271.00	310.0	99.0	17.0	0.5	<5.0	28.0	56.0	14.0	<5.0	1.0	2.0	355.	85.
AE08365	271.00	272.00	440.0	223.0	18.0	0.5	5.0	27.0	47.0	14.0	<5.0	2.0	2.0	358.	93.
AE08366	272.00	273.30	290.0	350.0	9.0	0.8	<5.0	29.0	31.0	15.0	<5.0	<1.0	1.0	236.	97.
AE08367	273.30	274.00	130.0	90.0	11.0	0.8	10.0	29.0	36.0	17.0	<5.0	1.0	2.0	202.	89.
AE08368	274.00	275.00	300.0	93.0	16.0	0.8	<5.0	23.0	30.0	14.0	<5.0	<1.0	1.0	301.	85.
AE08369	275.00	276.00	100.0	95.0	18.0	0.9	5.0	33.0	39.0	15.0	<5.0	1.0	1.0	347.	84.
AE08370	276.00	277.00	290.0	64.0	17.0	0.8	5.0	26.0	39.0	16.0	<5.0	1.0	1.0	317.	79.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	AU	CO	NI.	PB	AS	CD	HO	ми	CUZN
		~~~~~~	(ppm)	( ppm )	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
•		•								*					
AE08371	277.00	278.00	440.0	38.0	9.0	1.2	<5.0	25.0	29.0	15.0	<5.0	<1.0	1.0	203.	81.
AE08372	278.00	279.00	290.0	74.0	13.0	1.2	<5.0	24.0	31.0	16.0	<5.0	1.0	<1.0	229.	85.
AE08373	279.00	280.00	250.0	51.0	15.0	1.2	10.0	27.0	38.0	16.0	<5.0	1.0	1.0	372.	77.
AE08374	280.00	281.00	120.0	104.0	31.0	1.2	5.0	36.0	51.0	15.0	<5.0	1.0	2.0	547.	77.
AE08375	281.80	282.80	110.0	127.0	33.0	1.2	5.0	37.0	45.0	16.0	<5.0	1.0	3.0	530.	79.
AE08376	282.80	283.80	400.0	86.0	25.0	1.2	10.0	36.0	45.0	16.0	6.0	1.0	5.0	409.	77.
AE08377	283.80	284.80	490.0	22.0	11.0	1.3	<5.0	24.0	33.0	16.0	<5.0	1.0	2.0	243.	67.
AE08378	284.80	285.80	600.0	26.0	13.0	1.2	<5.0	27.0	28.0	17.0	<5.0	<1.0	1.0	251.	67.
AE08379	285.80	286.80	280.0	141.0	14.0	1.3	<5.0	31.0	33.0	17.0	<5.0	1.0	3.0	228.	91.
AE08380	286.80	287.80	130.0	125.0	19.0	<0.5	5.0	26.0	31.0	12.0	₹5.0	<1.0	1.0	355.	87.
AE08381	287.80	288.80	390.0	111.0	18.0	<0.5	<5.0	22.0	31.0	<5.0	<5.0	1.0	25.0	353.	86.
AE08382	288.80	289.80	300.0	56.0	20.0	<0.5	<5.0	24.0	35.0	<5.0	<5.0	1.0	17.0	424.	74.
AE08383	289.80	290.60	400.0	81.0	17.0	<0.5	<5.0	29.0	31.0	<5.0	<5.0	<1.0	2.0	463.	83.
AE08384	290.60		230.0	158.0	16.0	<0.5	15.0	25.0	35.0	<5.0	<5.0	1.0	2.0	400.	91.
AE08385		292.40												88.	80.
			880.0	16.0	4.0	<0.5	5.0	8.0	11.0	<5.0	<5.0	<1.0	8.0		
AE08386		293.20	920.0	33.0	6.0	<0.5	<5.0	14.0	19.0	11.0	<5.0	<1.0	8.0	95.	85.
AE08387		294.00	620.0	127.0	12.0	<0.5	5.0	26.0	39.0	14.0	<5.0	1.0	9.0	229.	91.
AE08388	294.00	294.80	860.0	105.0	13.0	<0.5	<5.0	23.0	25.0	11.0	<5.0	1.0	6.0	216.	89.
AE08389	294.80	296.00	600.0	101.0	27.0	<0.5	10.0	26.0	41.0	9.0	<5.0	1.0	2.0	426.	79.
AE08390	296.00	297.00	170.0	148.0	14.0	<0.5	<5.0	27.0	45.0	12.0	<5.0	1.0	5.0	321.	91.
AE08391	297.00	297.90	290.0	218.0	15.0	<0.5	5.0	26.0	39.0	12.0	<5.0	1.0	13.0	295.	94.
AE08392	297.90	299.10	700.0	28.0	3.0	<0.5	<5.0	11.0	13.0	11.0	<5.0	<1.0	12.0	57.	90.
AE08393	299.10	300.10	280.0	146.0	15.0	<0.5	<5.0	24.0	42.0	12.0	<5.0	1.0	13.0	357.	91.
AE08394	300.10	301.10	400.0	85.0	18.0	<0.5	<5.0	25.0	41.0	12.0	<5.0	1.0	3.0	432.	83.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

							**********							 	***************************************
SAMPLE NUMBER	FROM	ro	BA (ppm)	CU (ppm)	2N (ppm)	AG (ppm)	AU (ppb)	60 (ppm)	NI (ppm)	(ppm)	AS (ppm)	CD (ppm)	MO (ppm)	ми	CUZN
•		-													
AE08395	301.10	302.10	280.0	46.0	22.0	<0.5	<5.0	25.0	34.0	7.0	<5.0	1.0	1.0	514.	68.
AE08396	302.10	303.10	360.0	40.0	19.0	<0.5	<5.0	24.0	34.0	7.0	<5.0	<1.0	1.0	545.	68.
AE08397	303.10	304.10	290.0	158.0	17.0	<0.5	<5.0	27.0	34.0	9.0	<5.0	<1.0	2.0	442.	90.
AE08398	304.10	305.00	150.0	37.0	18.0	<0.5	5.0	26.0	38.0	7.0	<5.0	1.0	3.0	452.	67.
AE08399	305.00	306.00	260.0	73.0	24.0	<0.5	<5.0	28.0	41.0	7.0	<5.0	<1.0	1.0	579.	75.
AE08400	306.00	307.00	40.0	50.0	19.0	<0.5	<5.0	27.0	38.0	7.0	<5.0	<1.0	<1.0	476.	72.
AE08251	307.00	308.00	160.0	88.0	29.0	<0.5	<5.0	31.0	95.0	6.0	<5.0	1.0	3.0	628.	75.
AE08252	308.00	309.00	330.0	47.0	24.0	<0.5	<5.0	23.0	71.0	6.0	<5.0	<1.0	3.0	499.	66.
AE08253	309.00	310.00	700.0	55.0	18.0	<0.5	30.0	27.0	48.0	11.0	<5.0	1.0	5.0	445.	75.
AE08254	310.00	311.00	260.0	84.0	23.0	<0.5	<5.0	27.0	53.0	11.0	5.0	1.0	6.0	588.	79.
AE08255	311.00	312.00	310.0	82.0	20.0	<0.5	<5.0	26.0	48.0	11.0	√5 .0	1.0	3.0	467.	80.
AE08256	312.00	313.00	330.0	166.0	17.0	<0.5	<5.0	37.0	61.0	14.0	7.0	2.0	6.0	400.	91.
AE08257	313.00	314.00	340.0	112.0	24.0	<0.5	15.0	28.0	48.0	11.0	5.0	1.0	19.0	458.	82.
AE08258	314.00	314.50	400.0	75.0	18.0	<0.5	<5.0	29.0	56.0	16.0	11.0	1.0	4.0	393.	81.
AE08259	314.50	315.50	1300.0	28.0	9.0	<0.5	<5.0	12.0	25.0	13.0	7.0	<1.0	4.0	169.	76.
AE08260	315.50	317.00	640.0	497.0	19.0	<0.5	<5.0	16.0	27.0	16.0	<5.0	<1.0	9.0	281.	96.
AE08261	317.00	318.00	790.0	122.0	25.0	<0.5	<5.0	36.0	51.0	14.0	6.0	1.0	5.0	390.	83.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE		·	,						**						
NUMBER	FROM	TO	BA {ppm}	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MG (ppm)	ин	CUZN
		-													
AG08201	17.00	18.00	1100.0	154.0	100.0	<0.5	15.0	24.0	46.0	16.0	<5.0	1.0	5.0	1969.	61.
AG08202	18.00	19.00	1000.0	8200.0	147.0	2.3	10.0	38.0	88.0	36.0	86.0	4.0	6.0	2157.	98.
AG08203	19.00	20.00	820.0	165.0	101.0	1.1	5.0	25.0	47.0	14.0	<5.0	1.0	2.0	2301.	62.
AG08207	25.00	26.00	1100.0	181.0	115.0	1.3	⟨5.0	19.0	38.0	19.0	<5.0	2.0	3.0	1716.	61.
AG08208	27.00	28.00	2100.0	202.0	160.0	1.3	20.0	17.0	33.0	15.0	6.0	1.0	2.0	1590.	56.
AG08209	31.30	32.30	1300.0	786.0	134.0	1.5	5.0	27.0	59.0	16.0	<5.0	3.0	1.0	1765.	85.
AG08204	32.30	33.10	1300.0	1457.0	146.0	1.5	10.0	33.0	70.0	22.0	17.0	3.0	4.0	1611.	91.
AG08205	33.10	33.70	250.0	6600.0	124.0	2.5	35.0	45.0	103.0	40.0	27.0	6.0	8.0	1697.	98.
AG08206	33.70	34.30	910.0	410.0	85.0	1.3	15.0	33.0	59.0	22.0	15.0	2.0	6.0	1442.	83.
AG08210	49.10	50.60	520.0	52.0	79.0	1.4	<5.0	37.0	53.0	17.0	8.0	1.0	4.0	1471.	40 -
AG08211	50.60	51.60	310.0	42.0	99.0	1.4	5.0	37.0	52.0	17.0	8.0	2.0	4.0	1747.	30.
AG08212	51.60	52.60	140.0	154.0	119.0	0.7	10.0	49.0	62.0	20.0	12.0	2.0	7.0	1884.	56.
AG08213	52.60	53.60	40.0	24.0	117.0	0.5	10.0	45.0	62.0	16.0	12.0	2.0	8.0	1978.	17.
AG08214	53.60	54.60	200.0	37.0	91.0	0.6	10.0	42.0	57.0	20.0	6.0	2.0	5.0	1624.	29.
AG08215	54.60	55.60	340.0	18.0	73.0	0.7	<5.0	28.0	33.0	14.0	9.0	1.0	3.0	1191.	20.
AG08216	55.60	56.60	210.0	23.0	64.0	0.8	<5.0	12.0	25.0	9.0	<5.0	<1.0	2.0	1223.	26.
AG08217	56.60	57.10	(20.0	9700.0	180.0	2.3	15.0	49.0	90.0	25.0	38.0	5.0	7.0	2712.	98.
AG08218	94.60	95.10	<20.0	1200.0	193.0	1.2	20.0	33.0	50.0	20.0	<5.0	2.0	2.0	1719.	86.
AG08219	102.80	103.90	190.0	149.0	151.0	1.2	5.0	12.0	27.0	14.0	<5.0	1.0	2.0	992.	50.
AG08220	103.90	104.90	380.0	101.0	245.0	0.8	40.0	28.0	59.0	29.0	19.0	2.0	3.0	1736.	29.
AG08221	104.90	105.90	850.0	41.0	174.0	0.7	15.0	25.0	45.0	16.0	9.0	1.0	3.0	1371.	19.
AG08222	108.50	109.00	570.0	212.0	100.0	0.9	<5.0	18.0	33.0	12.0	<5.0	1.0	1.0	1492.	68.
AG08223	110.00	110.50	850.0	27.0	49.0	0.9	5.0	17.0	35.0	22.0	9.0	2.0	3.0	971.	36.
AG08224	121.30	121.80	500.0	71.0	127.0	0.7	15.0	22.0	52.0	16.0	<5.0	2.0	2.0	1631.	36.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	ми	CUZN
							************		*********			••	***********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
AG08225	126.00	127.00	370.0	37.0	101.0	1.3	5.0	12.0	27.0	14.0	<5.0	1.0	1.0	844.	27.
AG08226	127.00	128.00	350.0	17.0	101.0	1.2	<5.0	11.0	25.0	14.0	<5.0	1.0	1.0	809.	14.
AG08227	128.00	129.00	550.0	34.0	102.0	1.1	<5.0	11.0	23.0	11.0	<5.0	1.0	1.0	884.	25.
AG08228	129.00	130.00	340.0	19.0	115.0	1.3	<5.0	11.0	20.0	11.0	<5.0	<1.0	1.0	944.	14.
AG08229	156.00	157.00	3900.0	61.0	755.0	1.3	5.0	15.0	30.0	17.0	6.0	29.0	2.0	293.	7.
AG08230	157.00	158.00	2600.0	20.0	39.0	1.2	<5.0	13.0	30.0	20.0	<5.0	1.0	3.0	475.	34.
AG08231	158.00	159.00	1900.0	16.0	37.0	1.4	<5.0	20.0	24.0	16.0	<5.0	1.0	1.0	389.	30.
AG08232	159.00	160.10	1300.0	15.0	73.0	1.5	<5.0	22.0	35.0	17.0	8.0	1.0	2.0	829.	17.
AG08233	177.60	178.40	1100.0	77.0	237.0	1.6	<5.0	14.0	31.0	25.0	<5.0	5.0	3.0	621.	25.
AG08234	180.40	181.10	2600.0	330.0	193.0	1.5	<5.0	30.0	49.0	17.0	<5.0	2.0	3.0	1300.	63.
A608235	183.70	184.50	<20.0	1962.0	86.0	1.9	10.0	45.0	47.0	17.0	<5.0	2.0	3.0	1281.	96.
AG08236	185.40	185.80	2300.0	119.0	710.0	1.7	30.0	30.0	56.0	24.0	<5.0	7.0	3.0	416.	14.
AG08237	188.00	188.50	990.0	77.0	39.0	1.7	<5.0	18.0	35.0	85.0	<5.0	2.0	3.0	251.	66.
AG08238	191.30	191.80	2500.0	12.0	41.0	1.7	5.0	8.0	23.0	20.0	<5.0	1.0	2.0	177.	23.
AG08239	191.80	192.20	320.0	48.0	78.0	<0.5	10.0	61.0	91.0	77.0	34.0	4.0	7.0	169.	38.
AG08240	192.20	193.70	1740.0	21.0	47.0	<0.5	<5.0	10.0	23.0	16.0	<5.0	1.0	2.0	119.	31.
AG08241	193.70	195.20	660.0	74.0	81.0	<0.5	5.0	29.0	60.0	16.0	11.0	1.0	3.0	506.	48.
AG08242	195.20	196.60	850.0	37.0	33.0	<0.5	5.0	32.0	51.0	16.0	9.0	2.0	2.0	358.	53.
AG08243	197.00	198.50	540.0	54.0	17.0	<0.5	<5.0	28.0	42.0	12.0	9.0	1.0	2.0	402.	76.
AG08244	198.50	200.00	190.0	84.0	22.0	<0.5	(5.0	29.0	45.0	12.0	6.0	1.0	1.0	591.	79.
AG08245	200.00	201.50	510.0	86.0	17.0	<0.5	5.0	28.0	45.0	12.0	7.0	1.0	1.0	392.	84.
AG08246	201.50	203.00	410.0	79.0	18.0	<0.5	<5.0	25.0	41.0	11.0	<5.0	1.0	1.0	463.	81.
AG08247	203.00	204.50	590.0	128.0	20.0	<0.5	10.0	30.0	45.0	16.0	9.0	1.0	2.0	548.	86.
AG08248	204.50	206.00	590.0	48.0	18.0	<0.5	10.0	31.0	46.0	16.0	10.0	2.0	2.0	481.	73.

"DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE															,
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	MN	CUZN
AG08249	206.00	207.90	420.0	69.0	17.0	<0.5	10.0	25.0	41.0	16.0	11.0	1.0	4.0	408.	80.
AG08255	210.00	211.00	210.0	124.0	37.0	<0.5	10.0	23.0	44.0	12.0	6.0	1.0	1.0	507.	77.
AG08250	212.10	213.50	90.0	62.0	87.0	<0.5	10.0	27.0	47.0	12.0	6.0	1.0	2.0	895.	42.
AG08251	213.50	215.00	<20.0	120.0	48.0	<0.5	5.0	29.0	47.0	11.0	7.0	1.0	1.0	907.	71.
AG08252	215.00	216.50	<20.0	56.0	34.0	<0.5	5.0	27.0	45.0	14.0	10.0	1.0	2.0	758.	62.
AG08253	216.50	218.00	0.08	105.0	27.0	<0.5	10.0	25.0	44.0	12.0	9.0	1.0	1.0	565.	80.
AG08254	218.00	218.90	240.0	118.0	36.0	<0.5	10.0	29.0	46.0	12.0	6.0	2.0	1.0	619.	77.
AG08256	220.80	222.30	200.0	102.0	54.0	<0.5	5.0	30.0	47.0	16.0	7.0	2.0	2.0	801.	65.
AG08257	222.30	223.80	230.0	184.0	71.0	0.7	<5.0	30.0	49.0	21.0	9.0	2.0	2.0	810.	72.
AG08258	223.80	225.30	110.0	89.0	55.0	0.7	<5.0	32.0	54.0	18.0	8.0	1.0	2.0	788.	62.
AG08259	225.30	226.80	540.0	37.0	23.0	0.7	<5.0	18.0	29.0	35.0	6.0	<14.0 €	2.0	346.	62.
AG08260	226.80	228.30	740.0	32.0	22.0	0.7	<5.0	16.0	27.0	19.0	7.0	<1.0	5.0	554.	59.
AG08261	228.30	229.80	160.0	63.0	46.0	0.7	5.0	27.0	47.0	19.0	16.0	2.0	2.0	784.	58.
A608262	229.80	231.30	150.0	91.0	32.0	0.6	5.0	30.0	46.0	18.0	11.0	2.0	2.0	684.	74.
AG08263	231.30	232.80	190.0	93.0	32.0	0.6	<5.0	28.0	46.0	18.0	16.0	2.0	2.0	736.	74.
AG08264	232.80	234.30	120.0	84.0	30.0	0.7	<5.0	29.0	46.0	19.0	12.0	1.0	3.0	705.	74.
AG08265	234.30	235.80	110.0	98.0	31.0	0.7	<5.0	27.0	45.0	19.0	19.0	1.0	2.0	726.	76.
AG08266	237.00	238.80	410.0	75.0	59.0	0.7	<5.0	24.0	43.0	18.0	16.0	1.0	3.0	889.	56.
AG08267	238.80	239.80	400.0	155.0	46.0	0.7	<5.0	29.0	52.0	23.0	18.0	2.0	5.0	766.	77.
AG08268	239.80	240.60	140.0	110.0	43.0	0.8	<5.0	25.0	41.0	19.0	17.0	1.0	2.0	821.	72.
AG08269	244.00	245.00	210.0	190.0	42.0	0.7	<5.0	30.0	48.0	23.0	17.0	2.0	4.0	730.	82.
AG08270	254.50	255.50	100.0	76.0	58.0	0.7	<5.0	33.0	52.0	21.0	16.0	2.0	6.0	887.	57.
AG08271	255.50	256.50	30.0	92.0	48.0	1.1	<5.0	31.0	46.0	17.0	8.0	1.0	7.0	694.	66.
AG08272	256.50	258.00	70.0	91.0	49.0	0.7	<5.0	33.0	48.0	21.0	18.0	2.0	7.0	787.	65.

SAMPLE NUMBER	FROM	то	BA	cu	ZN	AG	AU	co	NI	PB	AS	CD	HO	MN CUZN
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	11R 002R
AG08273	258.40	259.50	670.0	221.0	63.0	0.8	<5.0	21.0	33.0	19.0	14.0	2.0	9.0	600. 78.
AG08274	265.40	266.40	380.0	616.0	18.0	1.1	5.0	16.0	22.0	18.0	12.0	1.0	9.0	217. 97.
AG08275	273.80	275.20	430.0	38.0	23.0	1.1	<5.0	20.0	35.0	17.0	17.0	<1.0	8.0	316. 62.
AG08276	275.20	276.50	410.0	57.0	23.0	0.7	<5.0	23.0	35.0	12.0	5.0	1.0	7.0	371. 71.
AG08277	279.40	281.00	590.0	111.0	48.0	0.6	5.0	24.0	38.0	12.0	7.0	1.0	6.0	444. 70.
AG08278	281.00	282.50	560.0	51.0	22.0	0.7	5.0	30.0	36.0	12.0	⟨5.0	1.0	6.0	317. 70.
AG08279	282.50	284.00	230.0	35.0	23.0	0.7	10.0	26.0	30.0	12.0	7.0	<1.0	7.0	338. 60.
AG08280	284.00	285.50	310.0	70.0	38.0	0.8	5.0	23.0	39.0	14.0	11.0	1.0	5.0	412. 65.
AG08281	285.50	287.00	280.0	96.0	28.0	0.6	5.0	26.0	45.0	14.0	6.0	1.0	4.0	375. 77.
AG08282	287.00	288.50	250.0	74.0	23.0	0.6	<5.0	23.0	39.0	12.0	6.0	<1.0	7.0	390. 76.
AG08283	288.50	290.50	340.0	118.0	25.0	<0.5	10.0	35.0	44.0	9.0	<5.0	<1.0	4.0	430. 83.
AG08284	291.00	292.50	290.0	139.0	26.0	<0.5	10.0	39.0	50.0	7.0	5.0	1.0	4.0	519. 84.
AG08285	292.50	294.00	410.0	82.0	26.0	<0.5	5.0	30.0	47.0	7.0	<5.0	1.0	3.0	431. 76.
AG08286	294.00	295.50	210.0	90.0	28.0	<0.5	15.0	31.0	42.0	7.0	<5.0	<1.0	3.0	412. 76.
AG08287	295.50	297.00	330.0	73.0	26.0	<0.5	5.0	31.0	42.0	9.0	<5.0	1.0	3.0	386. 74.
AG08288	297.00	297.80	260.0	80.0	33.0	<0.5	10.0	33.0	51.0	9.0	<5.0	1.0	17.0	434. 71.
AG08289	298.50	300.00	360.0	94.0	23.0	<0.5	5.0	33.0	49.0	9.0	5.0	1.0	8.0	283. 80.
AG08290	300.00	301.50	290.0	105.0	17.0	<0.5	5.0	34.0	47.0	7.0	<5.0	<1.0	4.0	247. 86.
AG08291	301.50	303.00	320.0	63.0	14.0	<0.5	<5.0	33.0	39.0	9.0	<5.0	<1.0	5.0	209. 82.
AG08292	303.00	305.00	310.0	105.0	15.0	<0.5	190.0	33.0	41.0	11.0	<5.0	1.0	3.0	275. 88.
AG08293	305.00	307.00	200.0	99.0	20.0	<0.5	25.0	34.0	45.0	11.0	<5.0	1.0	6.0	401. 83.
AG08294	307.00	309.00	240.0	726.0	25.0	<0.5	20.0	36.0	48.0	9.0	5.0	1.0	5.0	390. 97.
AG08295	309.00	310.50	70.0	133.0	23.0	<0.5	5.0	39.0	78.0	11.0	6.0	1.0	6.0	471. 85.
AG08296	310.50	312.10	130.0	89.0	14.0	<0.5	5.0	33.0	45.0	11.0	7.0	<1.0	6.0	268. 86.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MQ (ppm)		MN	CUZN
				**********								***************************************	***			
AG08297	321.30	322.70	210.0	57.0	15.0	<0.5	10.0	27.0	39.0	9.0	<5.0	<1.0	8.0		350.	79.
A508298	322.70	324.00	50.0	124.0	13.0	<0.5	5.0	29.0	41.0	11.0	<5.0	<1.0	4.0		304.	91.
AG08299	324.00	325.50	140.0	116.0	22.0	<0.5	5.0	31.0	57.0	11.0	<5.0	1.0	5.0		464.	84.
AG08300	328.30	330.00	540.0	33.0	19.0	<0.5	5.0	30.0	40.0	12.0	<5.0	1.0	6.0		492.	63.
AF05951	332.50	333.50	760.0	30.0	17.0	<0.5	<5.0	26.0	35.0	17.0	<5.0	1.0	45.0		588.	64.
AF05952	333.50	335.00	830.0	32.0	14.0	<0.5	<5.0	29.0	35.0	17.0	<5.0	1.0	5.0		423.	70.
AF05953	335.00	336.00	230.0	194.0	12.0	<0.5	<5.0	31.0	36.0	18.0	<5.0	1.0	24.0		325.	94.
AF05954	338.00	339.00	650.0	75.0	7.0	<0.5	<5.0 .	18.0	33.0	19.0	<5.0	1.0	11.0		157.	91.
AF05955	353.00	354.50	130.0	88.0	15.0	<0.5	30.0	30.0	43.0	19.0	<5.0	1.0	5.0		294.	85.
AF05956	354.50	356.00	80.0	65.0	18.0	<0.5	<5.0	25.0	41.0	20.0	<5.0	1.0	4.0		343.	78.
AF05957	356.00	357.50	190.0	57.0	15.0	<0.5	<5.0	31.0	44.0	19.0	<5.0	2.0	5.0	•	306.	79.
AF05958	357.50	359.00	250.0	77.0	10.0	<0.5	<5.0	26.0	38.0	18.0	<5.0	1.0	4.0		227.	89.
AF05959	359.00	360.50	160.0	87.0	16.0	<0.5	<5.0	30.0	38.0	18.0	<5.0	1.0	4.0		344.	84.
AF05960	360.50	362.00	290.0	136.0	21.0	<0.5	<5.0	30.0	42.0	17.0	<5.0	1.0	5.0		398.	87.
AF05961	362.00	363.50	270.0	324.0	28.0	0.7	<5.0	28.0	44.0	24.0	<5.0	2.0	4.0		579.	92.
AF05962	363.50	364.50	140.0	377.0	32.0	0.8	20.0	26.0	42.0	16.0	<5.0	1.0	5.0		626.	92.

APPENDIX C

WHOLE ROCK ANALYSES

LABORATORY: X-RAY ASSAY LABORATORIES LIMITED

1885 Leslie St. Don Mills, Ontario Canada M3B 3J4

		LOWER	DETECT	ANALYTICAL	METHOD
		LI	MIT		٠
Whole R	lock.	0.01	pct	XRF	
Major O	xides				
Whole R	tock	10	ppm	XRF	
Minor 0	xides				
Copper		10	ppm	XRF	÷
Zinc		10	p p m	XRF	

SAMPLE NUMBER	FROM	TO	18102	%AL203	ICAG	1 M G0	%NA20	%K30	ZFE203	ZT 102	%P205	ZHNO	%L01	SUM	CUZN	AI	BA
								************	***********								
A£05901	8.80	11.30	66.30	14.70	2.87	2.59	5.66	0.20	5.57	0.34	0.10	0.14	2.39	100.86	26.	25.	321.
AF05902	16.70	20.00	75.80	12.90	0.51	1.69	4.34	1.27	1.54	0.19	0.04	0.05	1.54	99.87	38.	38.	1900.
AE05903	29.00	31.00	73.60	12,50	0.64	1.99	4.80	0.90	2,95	0.25	0.06	0.06	2.23	99.98	24.	35.	1520.
AF05904	39.00	41.00	77.80	12.80	0.25	1.54	1.39	2.63	1.25	0.17	0.04	0.03	1.93	99.83	13.	72.	2340.
AF05905	49.00	51.00	70.90	11.60	3.11	3.51	1.43	1.72	3.21	0.16	0.04	0.13	2.85	98.86	19.	54.	1670.
AF05906	59.00	60.70	72.50	11.70	2.24	3.21	1.15	2.04	3.02	0.16	0.04	0.10	2.85	99.01	15.	61.	1710.
AE05907	60.70	64.40	52.90	16.30	2.12	7.28	3.33	0.54	10.50	0.77	0.11	0.20	5.31	99.66	32.	60.	1630.
AF05908	75.00	77.00	56.00	16.10	3.71	5.47	4.01	0.66	8.78	0.54	0.10	0.23	3.54	99.14	94.	44.	708.
AF05909	85.00	87.00	59.10	16.19	4.03	4.00	5.25	0.10	7.65	0.56	0.11	0.18	2.62	99.70	52.	31.	135.
AE05910	99.00	101.00	68.70	14.60	2.15	3.05	3.85	1.32	3.30	0.29	0.07	0.13	2.47	99.93	39.	42.	1260.

Hole No. WEST84-3

Page No.

SAMPLE NUMBER	FROM	TO	38102	%AL203	2CAO	#MGO	ZNA26	1K20	ZEE303	XT 102	%P205	ZMNO	zlo1	SUM	CUZN	ΑI	BA
				· · · · · ·		·											
AF05911	10.00	12.00	62.60	16.80	2.24	2.65	6.63	0.44	5.32	0.46	0.16	0.11	2.70	100.11	64.	26.	623.
AF05912	24.00	26.00	74.20	13.60	0.37	1.66	4.64	1.32	2.54	0.17	0.04	0.04	1.70	100.28	79.	37.	2090.
AF05913	39.00	41.00	75.40	13.40	0.29	1.83	2.38	2.27	1.74	0.18	0.04	0.04	2.16	99.73	86.	61.	3180.
AF05914	54.00	56.00	75.50	13.00	0.56	1.14	1.22	3.00	1.37	0.17	0.04	0.03	2.31	98.34	87.	70.	3940.
AF05915	69.00	71.00	75.80	13.00	0.65	0.85	7.09	0.30	1.26	0.17	0.04	0.03	1.00	100.19	. 88.	13.	760.
AF05916	76.40	77.50	55.10	10.40	8.28	6.06	1.13	0.38	8.41	1.03	0.13	0.34	8.39	99.65	39.	41.	685.
AF05917	89.00	91.00	59.60	16.40	1.47	4.60	5.61	0.70	7.09	0.55	0.09	0.16	3.62	99.89	63.	43.	2230.
AF05918	104.00	106.00	55.00	12.90	5.08	6.47	1.51	1.24	9.45	0.31	0.07	0.39	5.39	97.81	21.	54.	1420.
AF05919	119.00	121.00	72.20	13.30	1.10	3.01	2.73	2.05	2.46	0.22	0.05	0.12	2.54	99.78	37.	57.	1810.
AF05920	134.00	136.00	59.20	14.80	4.36	5.01	4.89	0.20	7.29	0.45	0.10	0.27	3.23	99.80	36.	36.	199.

SAMPLE NUMBER	FROM	то	7 8 102	%AL203	ZCAO	2 H G0	%NA20	%K20	%FE203	%1102	%P205	2MN0	ZLOI	SUM	CUZN	ΑI	BA
444224426644																	
AF05925	19.00	21.00	58.60	17.90	2.85	3.09	7,31	0.20	6.73	0.58	0.20	0.13	2.70	100.29	43.	24.	311.
AF05926	23.40	23.60	74.90	12.20	1.22	1.69	6.06	0.09	2.14	0.18	0.04	0.06	1.39	99.97	62.	20.	147.
AF05927	39.00	41.00	47.80	16.40	5.22	6.37	3.25	0.17	12.60	0.68	0.15	0.26	5.16	98.06	39.	44.	238.
AF05928	69.10	71.20	49.80	13.00	3.14	4.80	2.40	0.31	17.90	0.53	0.14	0.17	8.47	99.66	. 84.	48.	1530.
AE05929	80.00	82.00	62.60	15.50	2.17	3.11	5.24	0.86	6.08	0.44	0.14	0.11 -	2.93	99.18	42.	35.	1820.
AF05930	95.00	97.00	64.70	15.90	2.43	2.09	7.27	0.14	4.59	0.43	0.15	0.08	2.16	99.94	48.	19.	89.
AF05931	109.50	111.20	44.60	14.60	12.30	7.92	1.06	0.03	11.30	0.88	0.43	0.22	6.95	100.09	35.	37.	41.

SAMPLE NUMBER	FROM	ro	#\$102	IAL203	ZCAO	ZMGO	ZNA20	ZK20	%FE203	21102	%P205	ZMNO	ZLOI	SUM	CUZN	AI	BA
					****	-				*******							
AF05921	11.00	14.00	47.60	11.50	8.59	4.22	2.19	0.22	18.90	3.92	0.30	0.25	2.23	99.92	53.	39.	146.
AF05922	29.00	32.00	47.60	13.40	10.50	7.07	1.98	0.29	13.80	1.64	0.14	0.21	2.23	98.86	51.	37.	97.
AF05923	58.00	61.00	49.10	13.50	11.00	6.33	2.28	0.24	12.70	1.73	0.18	0.19	2.23	99.48	56.	33.	132.
AF05924	86.00	89.00	47.70	13.50	9.61	7.10	2.23	0.05	14.20	1.72	0.15	0.22	2.85	99.32	47.	38.	34.

Hole No. WEST84-8

age No.

SAMPLE NUMBER	EROM	ro	3 8102	%AL203	%CAO	zngo	%NA20	XK20	XFE203	XT 102	ZP205	2MN0	%L01	SUM	CUZN	AI	BA
								,									
AF00201	6.00	9.00	60.40	16.20	4.75	3.20	5.15	0.13	6.43	0.55	0.16	0.14	2.54	99.65	72.	25.	107.
AF00202	16.00	19.00	60.80	15.90	4.71	2.33	5.79	0.16	5.97	0.47	0.15	0.13	2.39	98.80	81.	19.	144.
AF00203	22.00	25.00	53.10	17.80	7.24	4.34	4.17	0.07	9.39	0.72	0.20	0.24	2.62	99.89	61.	28.	53.
AF00204	26.60	28.20	64.50	16.30	3.70	2.06	6.99	0.09	4.27	0.45	0.15	0.11	1.47	100.09	31.	17.	108.
AF00205	31.00	34.00	61.60	15.90	1.03	2.68	6.11	1.24	5.52	0.46	0.15	0.06	3.77	98.50	40.	35.	651.
AF00206	35.00	38.00	75.40	12.30	1.20	0.98	2.06	2.64	2.78	0.15	0.03	0.03	2.47	100.04	. 28.	53.	1510.
AE00207	42.00	45.00	51.00	16.70	8.07	5.75	4.17	0.09	8.82	0.65	0.13	0.21	3.85	98.44	41.	32.	59.
AF00208	47.00	48.00	50.80	16.50	3.93	5.79	5.46	0.53	9.58	0.64	0.13	0.12	6.47	99.95	7.	40.	266.
AF00209	49.20	50.30	50.60	15.60	4.56	6.17	3.79	0.07	11.40	0.65	0.13	0.23	6.23	99.42	70.	43.	47.
AF00210	53.00	57.10	54.80	15.80	4.00	4.94	4.60	0.59	8.06	0.60	0.13	0.14	4.85	98.51	52.	39.	241.
AF00211	58.00	61.00	50.90	16.20	6.19	5.51	5.15	0.18	9.71	0.65	0.14	0.21	3.93	98.77	69.	33.	148.
AF00212	63.00	65.00	49.60	15.30	2.50	5.96	3.42	1.30	11.80	0.62	0.13	0.13	7.77	98.53	41.	55.	587.
AF90213	69.00	74.00	52.40	16.00	6.19	5.10	3.91	0.59	9,41	0.64	0.13	0.17	4.39	98.93	68.	36.	214.
AF00214	75.80	77.40	71.00	13.50	1.45	1.39	3.16	2.52	3.59	0.28	0.08	0.03	2.77	99.77	24.	46.	1150.
AF00215	78.80	82.60	52.40	16.20	1.84	5.92	2.67	2.22	9.56	0.67	0.17	0.11	7.23	98.99	56.	64.	792.
AF00217	82.80	85.10	52.30	16.20	5.60	5.01	4.69	0.16	9.83	0.70	0.16	0.14	4.47	99.26	72.	33.	102.
AF00216	85.10	88.10	51.30	16.10	6.19	6.10	2.80	1.01	9.58	0.66	0.15	0.18	5.23	99.30	43.	44.	377.
AF00218	90.00	96.00	52.10	17.10	4.63	5.13	4.84	0.54	8.84	0.71	0.19	0.15	4.85	99.08	41.	37.	248.
AF00219	103.50	106.50	53.50	16.00	3.40	5.15	4.66	0.58	8.92	0.69	0.20	0.09	5.93	99.12	62.	42.	246.
AF00220	127.00	130.00	64.20	14.70	2.21	3.52	4.56	1.28	5.21	0.42	0.12	0.05	3.54	99.81	14.	41.	438.
AF00221	137.00	139.50	52.40	17.30	7.64	5.27	3.46	0.88	8.59	0.65	0.11	0.12	3.70	100.12	48.	36.	307.
AF00222	158.50	160.00	51.50	16.00	7.15	4.73	4.27	0.49	9.57	0.63	0.12	0.13	3.85	98.43	57.	31.	194.
AE00223	164.30	164.40	48.30	14.20	13.00	6.97	0.63	0.06	11.90	1.44	0.13	0.17	2.31	99.11	59.	34.	17.

Hole No. WEST87-13

Page No.

1

SAMPLE NUMBER	FROM	TO	18102	%AL203	%CA0	%ngo	%NA20	%K20	ZFE203	ZT 102	ZP205	ZHNO	7L01	SUM	CUZN	AI	BA
				15.00				0.40	• :								
AF00224	168.00	169.00	66.70	15.30	1.11	1.90	4.67	2.03	4.45	0.39	0.14	0.02	3.16	99.87	50.	40.	762.
AF00225	174.20	174.30	52.00	16.60	6.99	6.14	4.33	0.76	8.98	0.64	0.12	0.16	4.39	101.11	59.	38.	287.
AF00226	183.00	186.00	52.40	16.70	5.99	6.67	3.07	1.06	7.88	0.64	0.12	0.15	4.31	98.99	65.	46.	423.
AF00227	187.70	189.50	54.30	16.90	7.49	4.29	4.37	0.50	8.46	0.64	0.15	0.14	3.16	100.40	80.	29.	199.
AF00228	190.00	193.00	51.80	16.50	6.61	5.31	3.83	1.06	8.49	0.63	0.12	0.16	3.54	98.05	69.	38.	367.
AF00229	192.10	194.80	53.50	16.20	5.96	4.15	5.22	0.67	8.45	0.59	0.13	0.12	3.16	98.15	59.	30.	225.
AE00230	196.30	198.60	52.70	16.20	8.62	5.22	4.08	0.27	8.97	0.61	0.14	0.17	2.47	99.45	59.	30.	121.
AF00231	213.00	214.00	49.40	13.80	11.30	6.50	1.68	0.15	13.30	1.79	0.17	0.20	1.62	99.91	56.	34.	41.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	10	28102	ZAL203	%CAO	2MG0	%NA20	%K20	%FE203	ZT 102	%P205	7MN0	2L0 I	SUM	CUZN	AI	BA
											**********		********			***********	
AF00501	4.30	6.50	59.00	16.20	2.66	5.93	4.72	0.30	7.26	0.52	0.16	0.27	3.39	100.41	17.	46.	419.
AF00502	4.90	5.50	73.50	12.30	0.93	1.98	5.98	0.19	2.35	0.31	0.08	0.09	1.62	99.33	12.	24.	294.
AE00503	9.30	19.20	64.70	14.40	3.81	2.85	4.20	0.45	5.18	0.37	0.10	0.16	2.39	98.61	32.	29.	489.
AF00504	24.50	36.00	67.50	- 12.70	4.08	2.43	3.63	0.15	5.79	0.36	0.10	0.16	2.23	99.13	38.	25.	301.
AF00505	36.00	46.00	54.40	13.70	0.61	5.03	3.49	0.50	13.60	0.46	0.10	0.14	7.23	99.26	31.	57.	674.
AF00506	54.30	57.40	63.40	14.90	3.14	2.86	6.15	0.09	4.65	0.40	0.11	0.14	2.77	98.61	29.	24.	88.
AE00507	57.40	70.40	49.10	16.60	7.61	5.46	4.29	0.20	10.00	0.58	0.11	0.27	4.00	98.22	27.	32.	205.
AF00508	94.60	102.40	57.20	16.70	5.92	3.05	5.18	0.20	6.74	0.49	0.11	0.19	2.47	98.25	17.	23.	262.
AF00509	102.40	105.20	69.50	14.00	1.20	1.60	7.02	0.21	3.15	0.33	0.09		1.23	98.33	16.	18.	206.
AF00510	105.20	111.60	55.60	16.60	7.18	5.02	3.06	0.19	8.92	0.58	0.11	0.25	2.85	100.36	45.	34.	171.
AF00511	113.30	121.00	67.20	13.90	2.34	2.81	6.00	0.38	4.51	0.27	0.08	0.11	2.47	100.07	28.	28.	509.
AF00512	121.00	122.10	68.70	17.80	0.54	1.31	3.68	3.73	1.46	0.34	0.10	0.02	1.93	99.61	12.	54.	4470.
AF00513	123.90	144.20	55.60	16.90	2.37	5.43	5.28	0.31	8.40	0.60	0.11	0.21	4.08	99.29	36.	43.	388.
AF00514	152.70	158.50	71.70	13.80	1.29	1.36	6.34	0.67	2.55	0.20	0.06	0.06	1.47	99.50	26.	21.	1270.
AF00515	158.50	168.70	52.40	16.80	7.23	4.68	3.49	0.14	9.10	0.60	0.11	0.29	3.47	98.31	29.	31.	266.
AF00516	170.00	182.20	54.60	17.20	3.93	5.10	5.14	0.22	9.03	0.58	0.12	0.32	3.54	99.78	27.	37.	374.
AF00517	184.70	187.80	59.00	15.70	2.38	5.54	4.89	0.76	6.00	0.48	0.12	0.20	3.70	98.77	. 4.	46.	738.
AF00518	193.50	200.00	66.30	14.80	2.69	3.06	4.32	1.76	3.84	0.34	0.09	0.12	2.39	99.71	40.	41.	1600.
AF00519	200.00	212.00	55.40	16.50	3.90	6.33	4.23	0.55	7.80	0.57	0.12	0.19	3.77	99.36	48.	46.	541.
AF00520	212.00	220.00	46.10	13.70	11.90	6.09	2.26	0.13	11.30	1.22	0.10	0.19	7.00	99.99	53.	31.	85.
AF00521	220.00	223.00	68.80	12.90	1.91	2.59	4.46	1.02	4.30	0.23	0.06	0.07	2.16	98.50	12.	36.	372.
AF00522	230.00	235.00	71.10	14.10	2.26	1.36	5.96	0.82	2.92	0.27	0.07	0.04	1.31	100.21	50.	21.	483.
AF00523	243.30	245.00	67.70	14.20	3.17	1.99	5.94	0.30	3.99	0.32	0.09	0.07	0.70	98.47	51.	20.	244.
AF00524	255.00	265.00	50.70	18.40	6.98	4.78	4.19	0.50	9.31	0.73	0.22	0.18	3.96	99.95	61.	32.	445.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	%S 102	%AL203	%CAO	ZHGO	ZNA20	ZK20	XFE303	ZT 102	%P205	ZMNO	zroi	SUM	CUZN	AI	BA
	12.50	15.50	48.90	16.20	8.11	6.09	2.96	0.05	11.10	9.67	0.18	0.32	3.54	98.12	41.	36.	95.
AF00232		-		•													
AE00233	27.40	33.00	65.00	15.50	2.71	2.62	6.28	0.37	5.13	0.42	0.14	0.12	1.85	100.14	24.	25.	257.
AF00234	46.00	49.00	62.80	16.40	2.71	2.65	6.30	0.49	5.13	0.45	0.15	0.13	1.77	98.98	13.	26.	609.
AF00235	57.00	60.90	64.00	16.30	0.83	2.55	4.17	1.99	5.65	0.45	0.15	0.07		100.01	28.	48.	2620.
AE00236	75.50	77.00	63.30	16.30	2.33	3.13	5.53	1.01	4.90	0.44	0.14	0.16	2.31	99.54	33.	35.	896.
AF00237	84.50	86.10	52.70	16.90	2.85	5.45	6.02	0.34	9.38	0.66	0.21	0.24	5.31	100.06	8.	40.	402.
AF00238	99.00	104.00	54.60	17.10	5.44	4.47	4.09	0.71	8.49	0.67	0.21	0.30	2.85	98.93	16.	35.	665.
AF00239	123.00	125.00	51.90	18.80	6.30	3.61	5.37	0.08	10.50	0.88	0.22	0.29	2.47	100.42	31.	24.	74.
AF00240	149.40	151.40	75.40	13.40	0.49	1.12	3.53	2.25	1.70	0.17	0.04	0.03	2.00	100.13	17.	46.	2410.
AF00241	162.00	164.50	52.00	16.90	5.96	4.75	4.61	0.24	10.20	0.68	0.16	0.23	3.85	99.58	40.	32.	261.
AF00241	162.00	164.50	52.00	16.90	5.96	4.75	4.61	0.24	10.20	0.68	0.16	0.23	3.85	99.58	40.	32.	261.
AF00242	171.00	173.00	63.40	16.10	1.12	2.04	5.89	1.73	5.25	0.44	0.15	0.04	3.70	99.86	10.	35.	1250.
AF00243	185.00	186.00	62.80	16.70	1.47	2,65	5.16	1.59	4.35	0.47	0.15	0.05	3.62	99.01	33.	39.	600.
AF00244	206.00	209.00	50.40	17.60	6.22	6.14	2.71	0.93	8.90	0.70	0.18	0.13	5.39	99.30	55.	44.	353.
AF00245	215.00	218.00	53.10	17.00	4.41	4.39	4.16	0.79	8.60	0.72	0.21	0.06	5.31	98.75	75.	38.	370.
AF00246	226.00	229.00	52.20	18.20	3.58	3.76	4.27	1.65	8.77	0.74	0.20	0.05	5.85	99.27	48.	41.	615.
AF00247	244.70	244.80	71.50	13.20	1.07	0.93	6.10	0.46	4.00	0.19	0.05	0.01	2.47	99.98	50.	16.	275.
AF00248	261.00	264.00	53.90	17.80	4.54	5.06	4.93	1.14	7.54	0.71	0.18	0.09	4.16	100.05	68.	40.	431.
AE00249	273.30	273.40	45.70	15.80	9.95	8.15	0.35	0.28	13.90	0.68	0.17	0.21	4.23	99.42	80.	45.	117.
AF00250	274.50	276.50	50.70	16.40	6.53	5.64	2.87	1.40	10.20	0.68	0.14	0.11	4.62	99.29	69.	43.	477.
AF00251	283.50	283.60	53.00		2.69	5.53	4.58	0.94	10.20	0.69	0.15	0.08	5.00	99.86	46.	47.	382.
AF00252	291.00		48.90		11.30	6.37	1.69	0.48	13.10	1.73		0.18	1.62	99.44	60.	35.	118.
HE VVAJA	271.00	270100	10.70	10.70	11.50	0.0/	1.07	V • 10	40110	1.,3	, V.17	V.10	1.04	//***	. 00.	J.J.	110.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	то	% \$102	%AL203	%CA0	zngo	%NA20	ZK20		XT 102	%P205	2HNO	ZLOI	SUM	CUZN	ΑI	ва
AF00525	14.00	36.80	56.50	16.70	600	4.61	4.12	0.07	• : 7.91	0.56	0.16	0.18	3.47	100.28	39.	32.	109.
AF00526	38.60	41.00	61.30	14.50	1.02	5.01	4.31	0.49	8.33	0.49	0.14	0.18	4.43	100.20	24.	51.	808.
AF00527	48.00	52.00	66.20	12.90	2.74	3.30	3.47	1.08	6.49	0.31	0.07	0.11	2.93	99.60	72.	41.	1820.
AF00528	60.00	62.00	55.50	16.40	6.47	4.63	3.81	0.11	8.60	0.56	0.11	0.27	3.54	100.00	62.	32.	265.
AE00529	82.00	84.00	63.80	15.30	2.20	2.96	5.53	0.47	5.49	0.44	0.10	0.14	2.70	99.13	44.	31.	556.
AF00530	89.00	91.00	75.60	13.30	1.05	1.38	3.37	1.94	1.30	0.18	0.04	0.04	1.62	99.73	24.	43.	1670.
AF00531	107.85	108.00	51.10	13.80	8.47	8.63	2.03	0.10	7.94	0.80	0.49	0.18	5.54	99.08	18.	45.	110.
AF00532	113.30	113.45	73.70	13.30	0.78	1.13	6.09	0.87	1.03	0.17	0.04		1.08	98.19	11.	23.	1560.
AF00533	124.80	124.90	75.10	12.60	0.67	1.33	5.76	0.84	0.93	0.18	0.04	0.04	0.93	98.42	19.	25.	1230.
AF00534	136.60	136.80	74.60	13.10	1.34	1.29	5.10	0.97	1.13	0.17	0.04	0.05	1.16	98.95	22.	26.	978.
AF00535	142.00	142.20	74.40	13.60	1.16	1.02	5.14	1.36	1.38	0.18	9.04	0.04	1.47	99.79	25.	27.	1220.
A£00536	152.20	152.40	75.10	13.40	1.16	1.04	4.97	1.38	1.58	0.17	0.04	0.04	1.23	100.11	24.	28.	2570.
AF00537	163.00	163.10	73.60	13.40	0.61	2.50	4.51	1.31	1.75	0.18	0.04	0.06	1.93	99.89	29.	43.	3160.
AF00538	174.10	174.30	75.60	13.00	0.43	1.55	6.39	0.55	1.32	0.16	0.04	0.04	0.93	100.01	17.	24.	1380.
AF00539	181.60	181.70	76.30	13.50	0.51	0.69	0.22	4.07	1.37	0.18	0.04	0.02	2.39	99.29	48.	87.	4420.
AF00540	191.05	191.15	74.00	13.80	0.67	2.00	1.40	3.13	1.48	0.17	0.04	0.06	2.47	99.22	8.	71.	4490.
AF00541	225.50	225.60	75.00	13.10	0.35	2.42	2.31	2.70	1.45	0.17	0.04	0.07	2.16	99.77	. 11.	66.	2720.
AF00542	240.55	240.70	72.30	12.60	2.54	3.17	2.83	1.52	2.41	0.15	0.04	0.13	2.31	100.00	40.	47.	1220.
AF00543	259.00	259.25	48.80	14.40	10.00	7.63	2.45	0.09	12.50	0.65	0.13		2.77	99.42	68.	38.	60.
AF00544	278.00	278.20	54.50	17.50	5.77	4.17	5.08	0.27	8.67	0.63	0.23	0.20	2.77	99.79	57.	29.	210.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	то	25102	%AL203	%CAO	zngo	ZNA20	ZK20	%FE203	21102	%P205	ZHNO	%L01	SUM	CUZN	AI	BA
**********			******						*******						***************************************		
AF00253	6.00	7.70	65.00	15.30	2.08	2.45	6.16	1.04	4.56	0.45	0.17	0.08	2.62	99.91	27.	30.	407.
AF00254	10.00	12.00	53.50	18.40	6.19	3.53	5.80	0.09	9.14	0.73	0.21	0.23	2.54	100.36	19.	23.	98.
AF00255	34.40	34.50	48.70	19.50	4.98	2.97	5.57	1.24	10.60	0.74	0.20	0.14	5.47	100.11	51.	29.	662.
AF00256	40.00	40.10	70.90	13.70	1.53	2.16	3.52	1.85	3.57	0.29	0.08	0.04	2.70	100.34	15.	44.	1090.
AF00257	45.80	48.50	53.40	18.20	4.65	3.47	6.24	0.13	8.69	0.74	0.21	0.15	4.23	100.11	73.	25.	112.
AF00258	54.60	54.70	74.70	12.80	0.86	0.91	4.10	1.54	1.38	0.18	0.04	0.02	1.62	98.15	51.	33.	1100.
AF00259	63.00	63.10	52.40	18.90	2.87	3.39	6.95	0.81	8.34	0.72	0.20	0.06	5.39	100.03	25.	30.	468.
AF00260	76.20	76.30	50.70	19.10	1.79	3.00	5.69	1.93	9.79	0.68	0.21	0.03	6.70	99.62	55.	40.	638.
AF00261	100.70	100.80	61.00	15.50	1.32	4.05	4.19	1.46	6.29	0.52	0.13	0.03	4.77	99.26	95.	50.	619.
AF00262	109.40	109.50	54.80	15.80	1.94	4.89	4.87	0.85	8.31	0.64	0.17	0.05	6.16	98.48	58.	46.	369.
AF00263	118.70	118.80	55.30	15.90	5.07	2.77	6.84	0.11	9.55	0.63	0.18	0.10	3.93	100.38	64.	19.	89.
AF00264	119.50	119.60	52.60	16.80	7.07	4.63	3.81	0.10	9.75	0.72	0.18	0.17	3.08	98.91	70.	30.	58.
AF00265	125.50	125.60	53,40	17.60	4.54	3.58	6.29	1.01	8.22	0.69	0.19	0.07	4.54	100.13	47.	30.	358.
AF00266	134.70	134.80	53.20	17.20	7.05	4.48	5.30	0.83	8.11	0.64	0.18	0.14	3.31	100.44	60.	30.	245.
AF00267	142.70	142.80	49.40	16.60	6.71	5.35	4.12	0.67	11.00	9.67	0.20	0.16	5.08	99.96	73.	36.	266.

SAMPLE NUMBER	FROM	TO	3 \$102	%AL203	7CAO	2MGO	%NA20	ZK20	%FE203	27102	%P205	2MN0	ZL01	SUM	CUZN	ΑI	BA
				٠		-			•								
AF00268	8.60	8.70	53.00	17.60	4.07	3.69	5.95	0.11	9.30	0.68	0.21	0.16	4.70	99.47	72.	28.	80.
AF00269	17.40	17.50	58.00	16.70	4.02	3.20	6.07	0.45	7.30	0.61	0.20	0.13	3.39	100.07	68.	27.	328.
AF00270	21.40	21.50	59.50	17.30	2.20	2.99	7.45	0.68	5.72	0.51	0.17	0.07	3.85	100.44	21.	28.	476.
AF00271	33.70	33.80	50.80	17.60	1.80	7.49	3.04	1.92	9.06	0.72	0.16	0.13	7.23	99.95	25.	66.	1140.
AF00272	37.60	37.70	53.40	17.30	4.37	5.30	4.94	0.13	8.07	0.70	0.18	0.14	4.93	99.46	65.	37.	84.
AF00273	42.20	42.30	51.40	16.80	4.38	5.74	4.94	0.09	9.98	0.70	0.16	0.16	5.93	100.28	39.	38.	99.
AE00274	50.40	50.50	51.00	17.30	3.84	6.57	5.34	0.10	8.90	0.74	0.17	0.18	5.93	100.07	27.	42.	95.
AF00275	56.00	56.10	62.40	16.10	0.95	3.06	6.65	1.05	4.64	0.46	0.15	0.04	3.77	99.27	30.	35.	510.
AF00276	67.60	67.70	57.60	16.30	2.34	2.71	6.63	0.42	7.48	0.53	0.16	0.06	4.62	98.85	46.	26.	204.
AF00277	77.40	77.60	53.60	16.40	5.27	3.97	4.45	1.18	8.06	0.67	0.19	0.09	4.77	98.65	70.	35.	570.
AF00278	81.60	81.70	54.40	19.20	3.22	2.28	6.95	1.14	7.45	0.64	0.20	0.05	4.39	99.92	64.	25.	522.
AF00279	90.30	90.40	55.70	18.20	2.97	3.93	5.88	1.23	6.89	0.65	0.20	0.08	4.54	100.27	83.	37.	554.
AF00280	94.30	94.40	71.00	13.80	0.50	2.01	5.43	1.22	2.59	0.31	0.08	0.02	2.23	99.18	33.	35.	522.
AF00281	103.80	1,03.90	51.60	16.50	2.10	4.93	5.31	0.75	10.30	0.74	0.17	0.07	6.70	99.17	41.	43.	308.
AF00282	110.30	110.40	62.40	16.20	1.58	2.13	7.46	0.65	4.78	0.44	0.15	0.02	3.23	99.04	48.	24.	266.
AF00283	116.20	116.30	52.30	17.40	5.15	5.40	3.32	0.49	9.38	0.72	0.22	0.12	4.39	98.89	76.	41.	229.
AF00284	121.40	121.50	49.70	16.20	2.29	7.61	4.62	0.12	10.50	0.63	0.12	0.14	6.93	98.86	. 13.	53.	127.
AF00285	124.30	124.40	51.90	16.00	5.65	6.72	2.83	0.72	9.62	0.65	0.12	0.16	5.08	99.45	40.	47.	275.
AF00286	130.90	131.00	54.30	16.40	6.03	5.15	5.99	0.29	8.29	0.67	0.16	0.19	2.77	100.24	63.	31.	142.
AF00287	132.30	132.40	55.90	17.20	4.03	3.83	5.12	0.99	7.51	0.82	0.17	0.10	3.77	99.44	12.	35.	372.
AF00288	142.40	142.60	51.90	16.10	5.90	5.55	4.70	0.28	10.40	0.71	0.18	0.17	4.08	99.97	60.	35.	171.
AF00289	143.20	143.30	68.60	14.80	1.70	1.03	6.85	0.84	3.13	0.38	0.13	0.02	1.77	99.25	21.	18.	428.
AF00290	148.20	148.30	52.40	16.10	5.42	5.71	4.14	0.97	9.40	0.69	0.14	0.10	4.62	99.69	46.	. 41.	409.
AF00291	150.10	150.20	52.80	17.30	6.19	4.51	5.84	0.71	8.08	0.69	0.17	0.10	3.16	99.55	78.	30.	308.
AF00292	156.80	156.90	49.50	14.10	11.00	6.49	2.01	0.44	13.10	1.75	0.17	0.20	1.39	100.15	53.	35.	180.

Hole No. WEST87-18

Page No.

1

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	ro	%S102	TAL203	ZCAO	ZMGO	%NA20	%K20	%FE203	%T 102	%P205	ZMNO	%L01	SUM	CUZN	ΑI	BA
. 744000	E 00	5 1A	E) 00	16: 40	C: 04		A 06	Δ 06	10.60	^	A 17	A 21	2 22	00.01			
AF00293	5.00	5.10	51.90	16.40	6.94	5.50	4.06	0.06	10.60	0.68	0.17	0.21	2.39	98.91	75.	34.	58.
AF00294	14.80	14.90	75.90	13.10	0.36	1.25	3.92	2.18	1.12	0.18	0.04	0.02	1.39	99.46	15.	44.	1430.
AE00295	23.00	23.10	52.40	16.30	4.84	6.30	3.64	0.80	9.45	0.62	0.13	0.23	3.39	98.10	34.	46.	385.
AF00296	27.20	27.30	64.10	16.70	1.27	2.90	6.24	1.30	4.39	0.45	0.15	0.07	2.77	100.34	20.	36.	552.
AF00297	31.30	31.40	51.40	16.70	5.69	5.11	4.16	0.26	10.60	0.72	0.17	0.20	4.00	99.01	22.	35.	255.
AF00298	36.50	36.60	62.50	16.50	1.98	2.42	7.26	0.62	5.29	0.45	0.15	0.06	3.08	100.31	15.	25.	328.
AF00299	43.00	43.10	54.80	12.00	3.23	5.30	3.06	0.31	13.20	0.40	0.14	0.16	6.62	99.22	7.	47.	207.
AF00300	46.60	46.70	74.00	13.50	1.14	1.53	5.56	1.08	1.82	0.23	0.06	0.03	1.31	100.26	24.	28.	581.
AE00301	56.10	56.20	64.70	15.60	0.92	2.73	6.24	0.83	4.93	0.44	0.14	0.05	2.85	99.43	23.	33.	374.
AF00302	65.40	65.50	70.00	14.10	0.70	2.95	6.02	0.55	3.38	0.40	0.13	0.06	1.85	100.14	14.	34.	254.
AF00303	75.50	75.60	73.50	13.20	0.64	1.57	6.18	0.64	1.77	0.25	0.07	0.04	1.23	99.09	19.	24.	576.
AF00304	78.40	78.50	53.00	17.60	4.95	5.92	4.45	0.07	9.22	0.68	0.19	0.20	3.08	99.36	40.	39.	98.
AF00305	82.40	82.50	48.90	17.30	4.23	5.75	3.17	1.51	11.60	0.70	0.19	0.23	5.08	98.66	20.	50.	1180.
AF00306	86.20	86.30	62.50	16.40	1.36	3.68	6.67	0.48	5.64	0.45	0.15	0.11	2.62	100.06	11.	34.	560.
AE00307	88.20	91.50	28.60	15.30	2.03	12.30	0.13	0.49	26.90	0.41	0.14	0.38	13.00	99.68	69.	86.	456.
AF00308	99.30	99.40	68.60	16.50	1.08	1.58	5.28	1.95	2.81	0.43	0.15	0.06	1.54	99.98	48.	36.	1800.
AF00309	113.40	113.50	52.30	16.50	11.00	3.77	3.36	0.07	8.54	0.64	0.14	0.20	2.31	98.83 .	31.	21.	73.
AF00310	126.40	126.50	51.70	16.40	7.37	5.72	3.23	0.05	9.92	0.61	0.12	0.24	2.93	98.29	20.	35.	59.
AF00311	139.30		64.90	15.10	1.22	2.69	6.90	0.27	5.12	0.48	0.16	0.10	2.08	99.02	21.	27.	369.
AF00312	149.10		50.80	16.70	7.47	5.38	3.63	0.07	10.80	0.68	0.17	0.25	2.85	98.80			•
															62.	33.	61.
AF00313		169.40	52.10	17.60	6.22	5.48	3.77	0.05	10.70	0.72	0.19	0.25	3.08	100.16	12.	36.	79.
AF00314	191.20		53.60	16.20	7.42	5.14	3.93	0.06	8.71	0.66	0.18	0.32	2.85	99.07	55.	31.	64.
AF00315	198.20	198.30	55.20	17.30	1.14	1.59	6.88	1.58	8.84	0.72	0.18	0.04	5.31	98.78	68.	28.	1120.

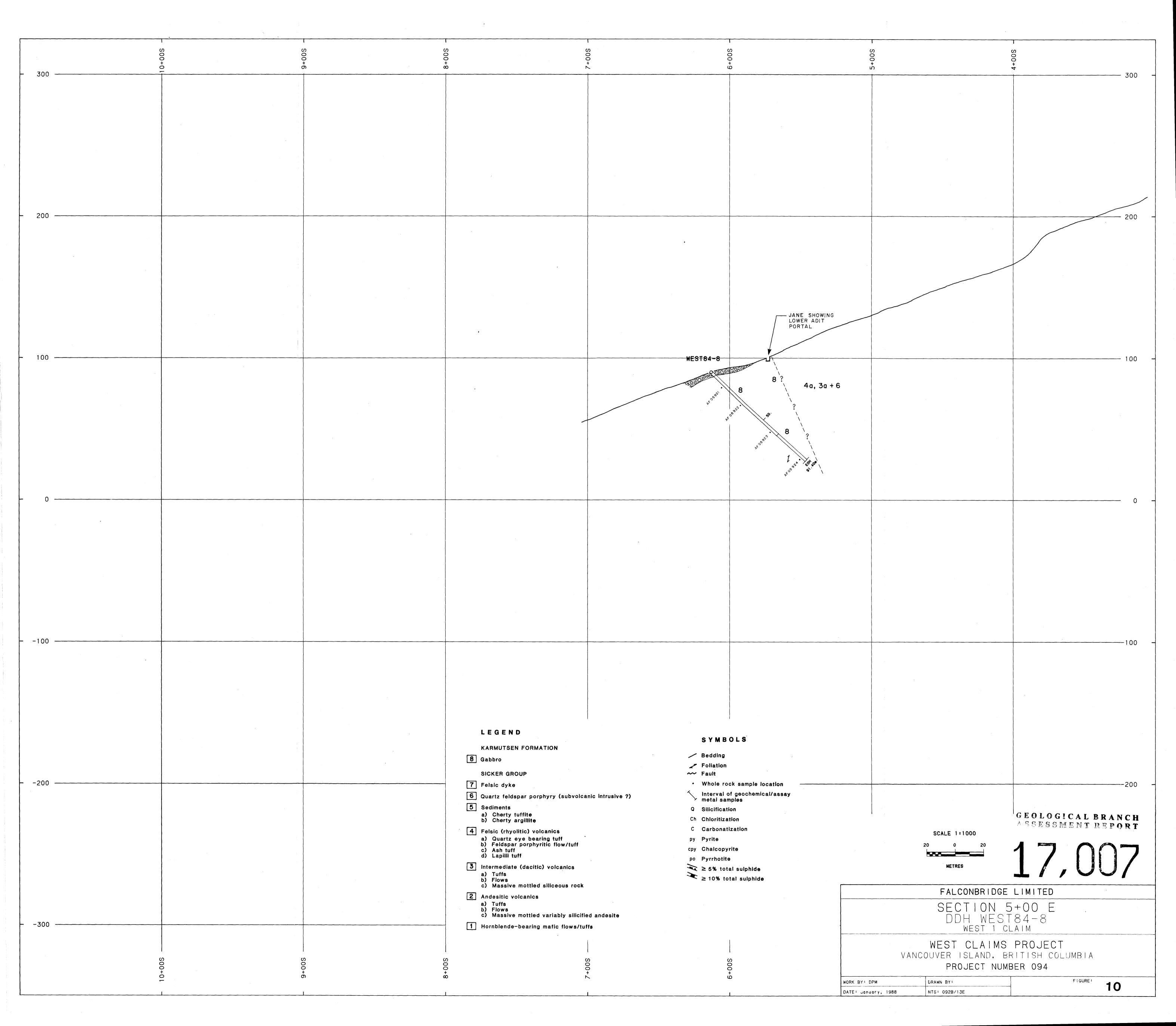
SAMPLE NUMBER	FROM	то	%S102	%AL203	%CA0	zngo	ZNA20	ZK20	%FE203	ZT 102	XP205	zmno	%L01	SUM	CUZN	ΑI	BA
				•										**			
AF00316	224.10	224.20	50.10	19.30	6.55	3.34	5.81	0.15	9.89	0.72	0.21	0.27	2.47	98.81	61.	22.	155.
AF00317	233.70	233.80	62.00	16.80	1.79	2.78	7.48	0.50	5.04	0.47	0.16	0.11	2.70	99.83	8.	26.	529.
AF00318	234.80	234.90	62.80	16.20	2.03	2.62	6.52	0.75	5.13	0.44	0.15	0.11	2.54	99.29	9.	28.	733.
AF00319	252.90	253.00	76.30	12.20	0.51	1.38	4.29	1.38	1.61	0.16	0.04	0.03	1.70	99.60	48.	37.	1300.
AF00320	271.10	271.20	78.40	10.90	1.68	0.46	0.23	3.20	1.51	0.13	0.03	0.03	1.54	98.11	9.	66.	1820.
AF00321	283.30	283.40	52.40	16.40	4.07	5.73	3.49	1.48	8.33	0.62	0.13	0.10	5.70	98.44	. 23.	49.	761.
AF00322	299.90	300.00	51.40	16.70	4.03	5.16	4.35	0.84	9.61	0.69	0.13	0.09	5.70	98.70	39.	42.	246.
AF00323	315.40	315.50	50.90	16.80	3.66	7.12	2.04	1.52	8.81	0.67	0.13	0.15	6.62	98.42	32.	60.	610.
AF00324	325.70	325.80	72.50	14.00	1.43	1.01	6.23	1.04	2.41	0.23	0.07	0.02	1.62	100.56	50.	21.	381.
AF00325	340.20	340.30	51.20	18.20	5.51	3.36	4.78	0.57	9.42	0.76	0.20	0.04	5.31	99.35	79.	28.	187.
AF00326	355.10	355.20	52.20	16.30	4.50	5.45	2.71	1.47	9.27	0.65	0.13	0.06	6.00	98.74	65.	49.	488.
AF00327	375.00	375.10	71.20	14.00	1.74	1.83	4.99	1.14	2.64	0.28	0.09	0.02	2.08	100.01	28.	31.	590.
AF00328	397.40	397.60	53.10	16.20	7.58	5.65	3.63	0.46	8.80	0.65	0.12	0.11	4.00	100.30	68.	35.	146.

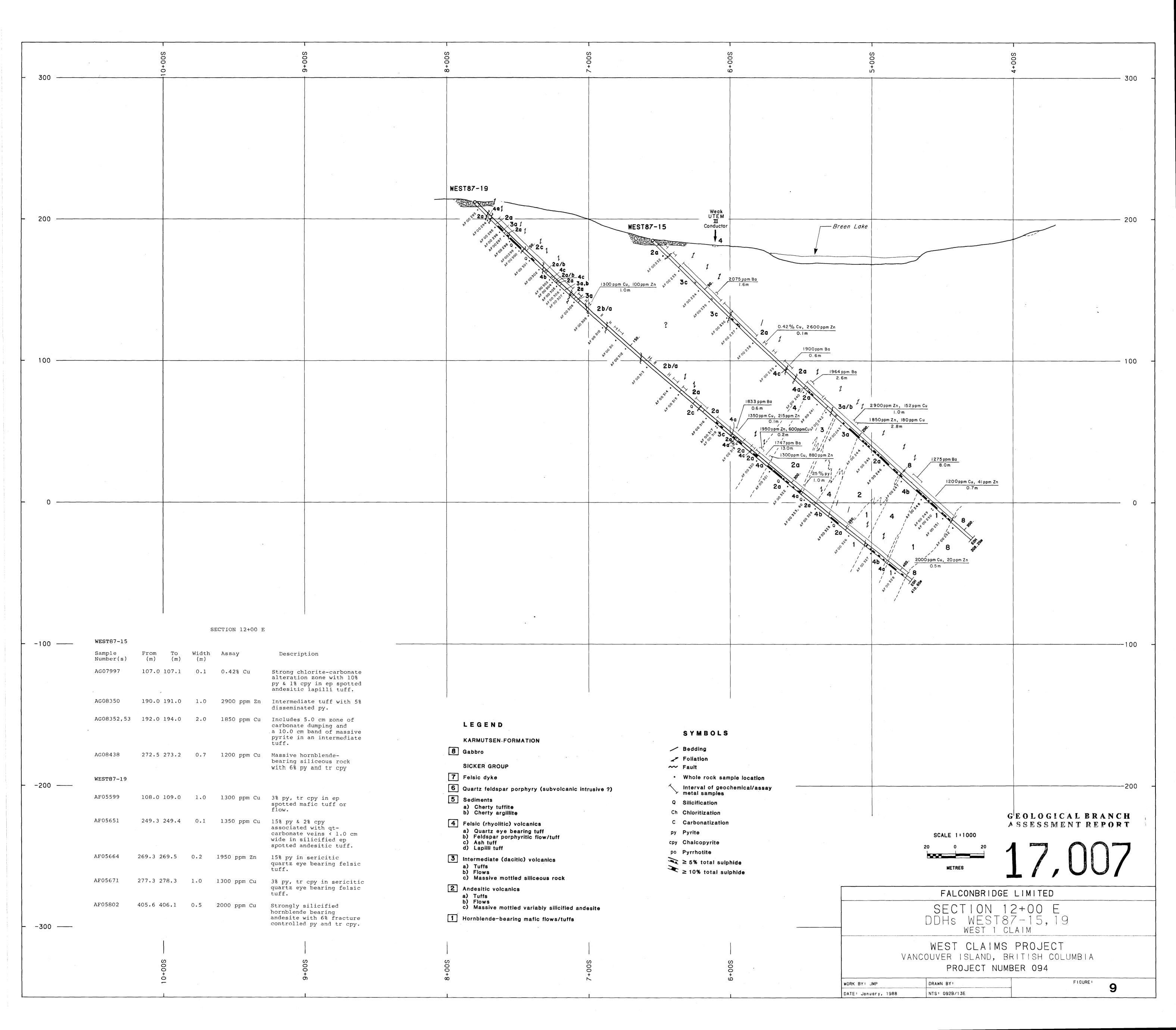
DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

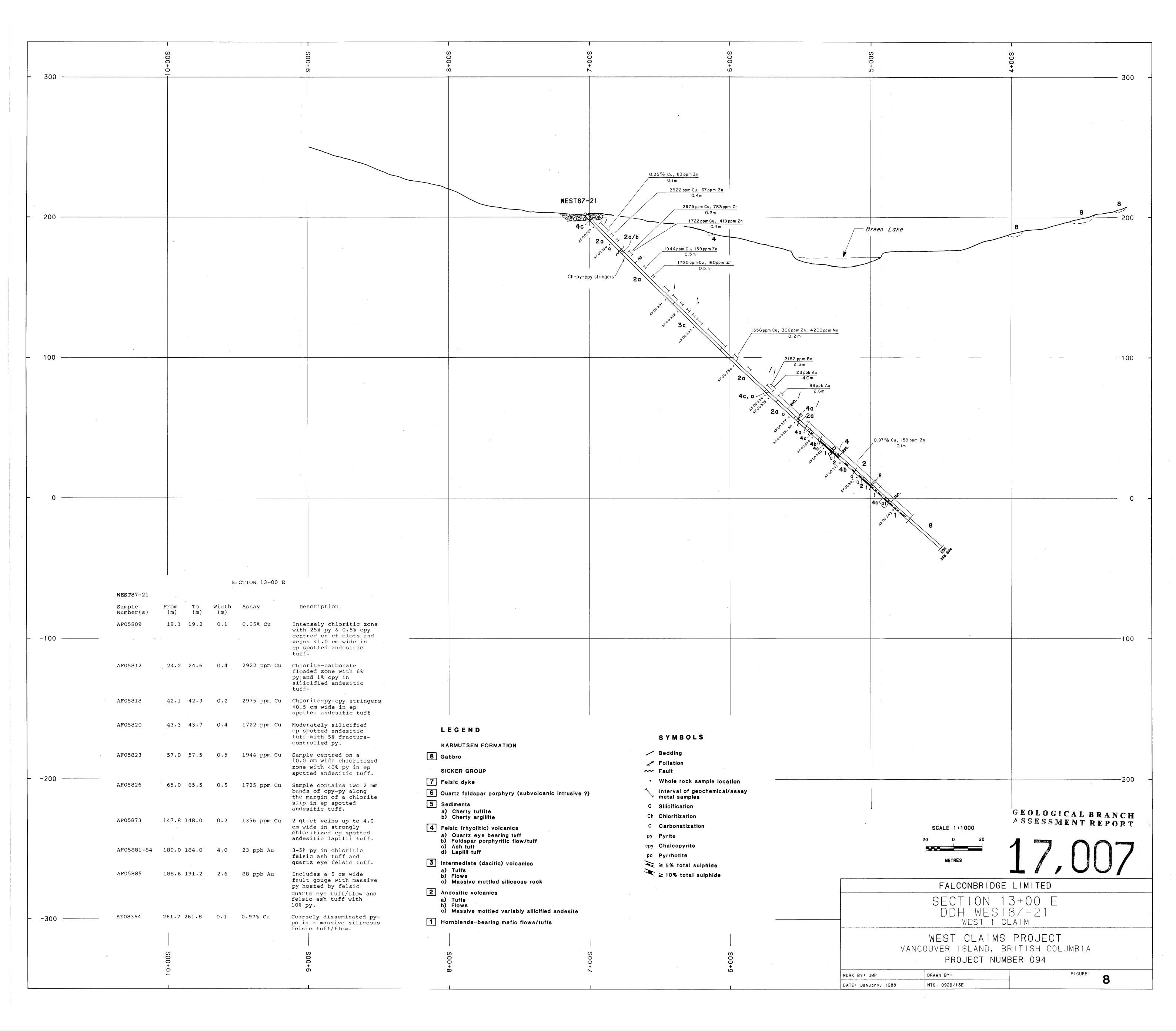
SAMPLE NUMBER	FROM	то	% \$102	%AL203	%CAO	zmgo	ZNA20	ZK20	ZFE203	XT 102	XP205	ZHNO	2101	SUM	CUZN	AI	BA
													+				
AF00545	11.20	11.30	44.00	12.90	9.51	6.23	2.42	0.05	12.80	1.70	0.15	0.26	9.77	99.79	43.	34.	39.
AF00546	56.50	56.70	48.30	15.90	7.32	5.85	4.20	0.24	9.63	0.63	0.13	0.23	7.08	99.51	60.	35.	221.
AF00547	68.60	68.75	50.70	17.10	1.81	6.42	5.73	0.43	10.30	0.70	0.16	0.13	6.54	100.02	20.	48.	219.
AF00549	71.50	71.60	71.30	13.00	0.92	2.13	5.81	0.58	3.82	0.24	0.06	0.06	2.16	100.08	16.	29.	221.
AF00548	78.50	78.70	51.50	16.10	5.69	6.86	2.79	0.17	10.30	0.61	0.13	0.24	4.39	98.78	69.	45.	183.
AF00550	89.60	89.70	54.00	15.70	8.64	4.32	3.84	0.07	7.97	0.60	0.13	0.19	4.39	99.85	35.	26.	56.
AF00551	99.00	99.20	73.40	13.80	0.95	1.17	7.08	0.54	1.43	0.30	0.09	0.03	1.08	99.87	23.	18.	202.
AF00552	116.10	116.20	51.50	17.30	4.22	5.74	4.15	0.45	9.43	0.69	0.15	0.24	4.62	98.49	56.	43.	248.
AF00553	164.50	164.60	54.90	14.50	6.86	5.63	5.23	0.11	8.52	0.61	0.12	0.18	2.08	98.74	28.	32.	97.
AF00554	178.50	178.70	56.20	16.70	3.12	5.87	5.57	0.15	7.78	0.63	0.17	0.22	3.54	99.95	28.	41.	186.
AE00555	189.50	189.70	53.70	15.80	9.48	4.83	3.58	0.14	9.43	0.59	0.12	0.19	2.39	100.25	19.	28.	64.
AF00556	199.50	199.70	52.10	16.50	7.38	5.48	3.96	0.15	9.76	0.63	0.13	0.21	2.93	99.23	19.	33.	108.
AF00557	206.00	206.10	49.00	16.80	6.70	6.60	3.78	0.09	11.60	0.68	0.12	0.34	4.77	100.48	23.	39.	59.
AF00558	220.80	220.90	52.60	16.10	0.93	6.38	4.86	0.91	10.50	0.64	0.13	0.17	6.70	99.92	24.	56.	514.
AF00559	222.40	222.60	52.20	16.20	7.65	6.30	3.62	0.09	8.31	0.64	0.13	0.28	3.77	99.19	58.	36.	58.
AF00560	228.30	228.50	52.00	16.30	8.41	4.44	5.25	0.12	6.28	0.59	0.12	0.23	4.39	98.13	82.	25.	73.
AF00561	235.40	235.50	75.30	13.20	1.64	0.66	3.99	1.92	1.57	0.17	0.04	0.03	1.39	99.91	28.	31.	1040.
AF00562	244.30	244.40	41.40	16.90	4.39	9.34	4.20	0.17	13.10	0.64	0.13	0.36	7.54	98.17	21.	53.	125.
AF00563	251.40	251.50	71.80	14.30	1.65	0.77	5.39	1.48	2.32	0.23	0.06	0.04	1.77	99.81	35.	24.	906.
AF00564	259.30	259.60	46.30	14.60	13.80	4.76	2.02	0.04	11.10	0.55	0.13	0.39	4.54	98.23	50.	23.	30.
AF00565	266.20	266.30	51.90	16.80	3.98	4.59	3.92	1.13	9.90	0.62	0.21	0.11	6.39	99.55	23.	42.	1230.
AF00566	286.70	286.80	52.60	17.60	3.86	5.25	4.28	1.00	8.53	0.72	0.19	0.08	5.70	99.81	57.	43.	339.
AF00567	295.20	295.30	51.30	17.40	3.05	5.47	2.02	1.94	9.58	0.66	0.23	0.08	6.93	98.66	46.	59.	533.
AF00568	300.10	300.20	71.90	13.80	0.59	1.21	5.76	1.14	3.06	0.21	0.06	0.01	2.23	99.97	69.	27.	420.

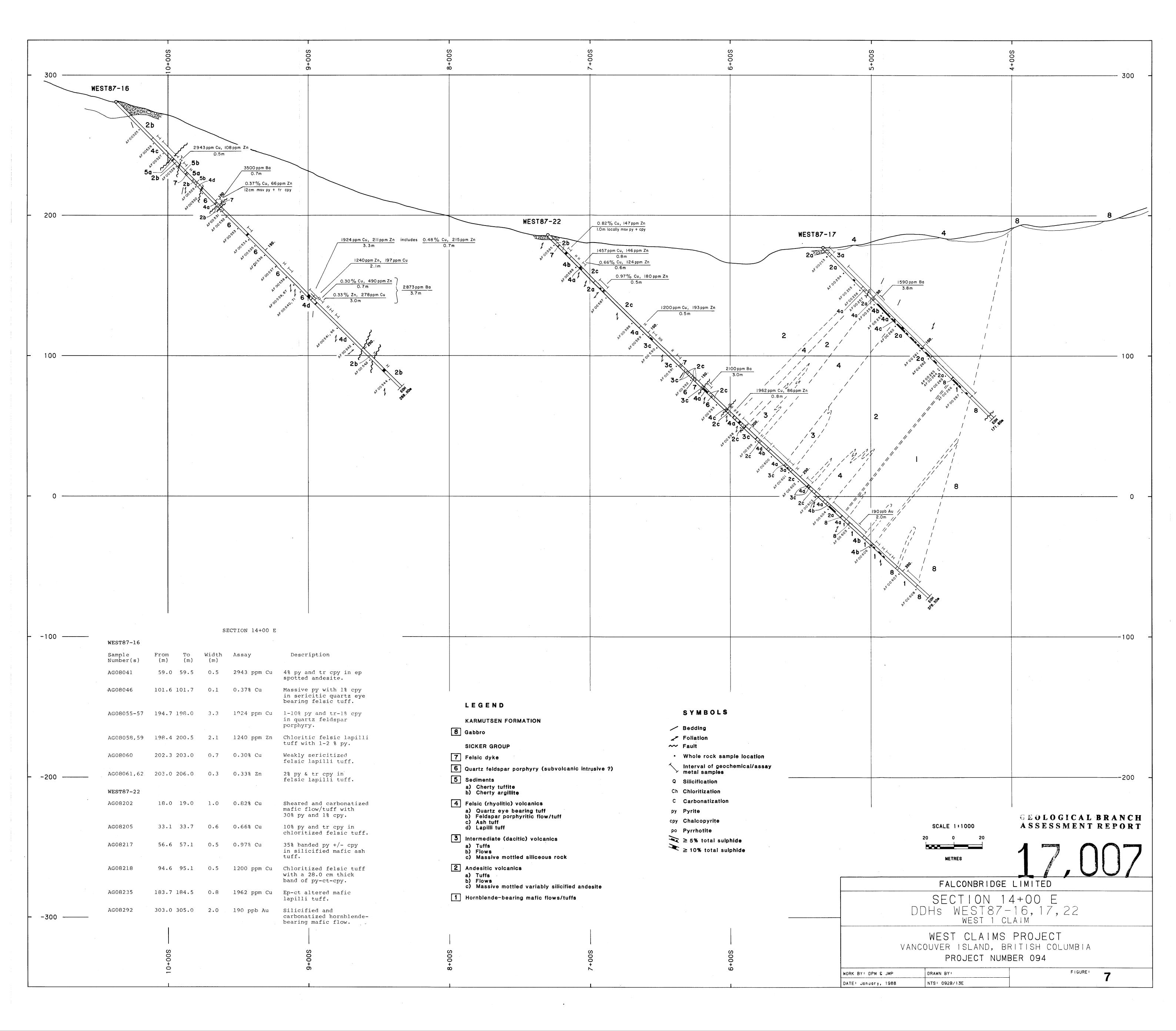
SAMPLE NUMBER	FROM	то	%S102	%AL203	ZCAG	zmgo	XNA20	ZK20	XFE203	27102	%P205	ZHNO	XL01	SUM	CUZN	ΑI	BA
AF00569	308.70	308.90	52.50	16.90	5.37	4.84	3.16	0.58	• : 9.48	0.65	0.19	0.11	5.31	99.09	42.	39.	292.
AF00570	312.80	313.00	43.50	14.80	14.10	5.67	0.96	0.10	10.90	2.29	0.42	0.25	6.47	99.46	29.	28.	18.
AF00571	317.80	318.00	72.80	13.80	1.15	1.47	3.42	2.05	2.26	0.22	0.06	0.03	2.39	99.65	21.	44.	755.
AF00572	323.80	323.90	52.00	17.10	2.98	3.79	1.73	2.57	11.30	0.64	0.23	0.06	7.08	99.48	55.	57.	791.
AE00573	342.50	342.60	56.60	17.80	6.23	4.20	3.02	0.70	6.44	0.65	0.20	0.12	3.47	99.43	16.	35.	320.
AE00574	350.60	350.70	48.60	17.90	6.85	6.01	2.37	1.70	9.40	0.71	0.17	0.20	5.31	99.22	5.	46.	458.
AF00575	366.40	366.60	46.60	18.90	7.40	4.91	2.05	1.15	10.60	0.77	0.16	0.13	5.54	98.21	43.	39.	355.
A£00576	387.20	387.30	49.50	18.20	9.22	4.18	3.00	1.21	8.44	0.67	0.18	0.15	3.47	98.22	50.	31.	531.
AE00577	396.60	396.70	51.40	18.10	9.67	4.76	3.74	0.87	7.67	0.74	0.17	0.13	2.54	99.79	31.	30.	373.
AF00578	407.40	407.50	47.80	17.60	8.46	4.45	2.38	1.36	9.80	0.72	0.17	0.12	5.31	98.17	49.	35.	634.
AF00579	416.80	417.00	49.80	17.80	6.41	4.44	4.96	0.63	9.10	0.73	0.19	0.13	4.70	98.89	<i>₹</i> 70.	31.	290.
AF00580	433.50	433.60	49.00	17.40	12.50	4.36	3.66	0.88	7.25	0.68	0.20	0.12	2.00	98.05	65.	24.	512.
AE00581	461.00	462.00	69.70	13.90	2.33	1.57	3.53	1.84	2.96	0.26	0.08	0.02	2.31	98.50	42.	37.	1140.
AF00582	469.00	470.00	67.30	14.40	2.61	2.11	4.46	1.26	3.69	0.33	0.11	0.02	2.62	98.91	23.	32.	695.
AF00583	483.20	483.30	49.90	17.50	9.65	5.51	2.29	2.25	8.25	0.70	0.19	0.13	2.70	99.07	68.	39.	1170.
AF00584	511.20	511.30	48.80	18.00	10.10	5.36	2.33	1.24	10.00	0.72	0.19	0.15	3.23	100.12	69.	35.	686.
AF00594	529.30	529.40	70.20	14.40	2.35	1.27	5.60	1.32	2.77	0.35	0.09	0.02	2.00	100.37	. 80.	25.	676.
AF00595	551.20	551.40	70.10	14.20	1.60	1.10	6.24	1.02	2.76	0.34	0.09	0.03	2.00	99.48	69.	21.	495.
AF00596	575.20	575.30	69.40	14.20	1.58	0.86	5.54	1.68	3.23	0.36	0.10	0.02	2.39	99.36	86.	26.	938.
AF00597	586.60	586.80	68.60	14.80	1.75	0.96	4.46	2.50	4.09	0.35	0.10	0.03	2.47	100.11	78.	36.	1620.

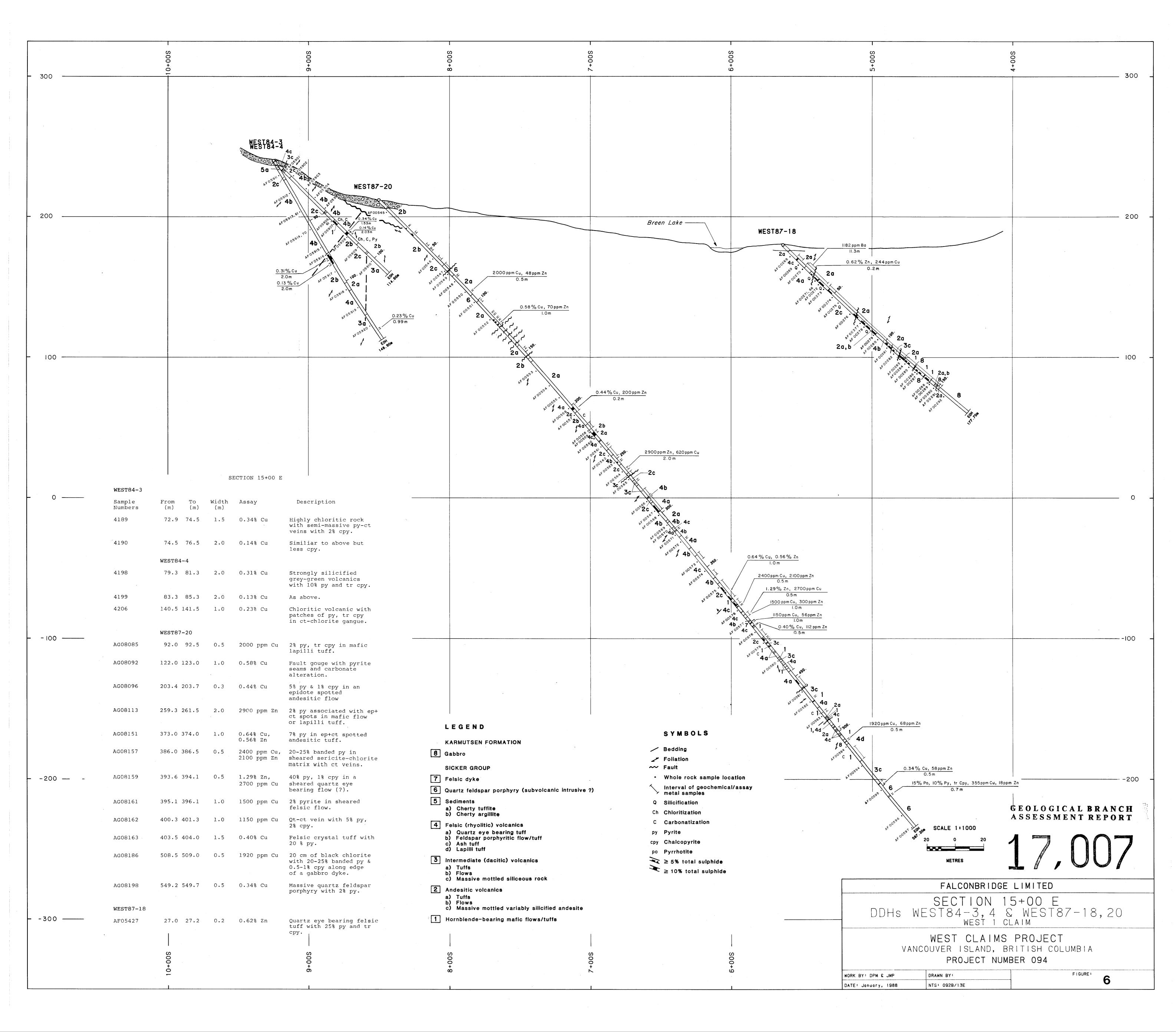
DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)


SAMPLE NUMBER	FROM	то		%AL203	%CAO	2 n 60	ZNA20	2K20		ZT 102	%P205	ZMNO	%L01	SUM	CUZN	AI	BA
				· 		··							******				
AF00329	10.60	10.70	51.80	16.70	6.45	5.33	3.88	0.06	9.62	0.67	0.18	0.23	3.70	98.62	72.	.34.	85.
AF00330	27.30	27.40	65.30	13.80	2.61	2.85	4.99	0.69	5.43	0.39	0.13	0.12	2.39	98.70	12.	32.	808.
AF00331	83.30	83.60	49.70	15.70	8.00	5.27	4.27	0.05	9.23	0.62	0.17	0.32	4.93	98.26	53.	30.	58.
AF00332	95.40	95.50	63.80	16.20	3.51	2.46	5.95	0.54	4.88	0.43	0.15	0.15	1.85	99.92	10.	24.	258.
AE00333	111.20	111.30	64.70	15.30	0.66	3.36	4.92	1.49	5.13	0.42	0.14	0.10	3.77	99.99	7.	47.	823.
AF00334	150.40	150.50	51.90	19.70	3.42	4.88	6.33	0.10	10.00	0.83	0.19	0.32	2.70	100.37	22.	34.	116.
AF00336	181.20	181.30	50.60	16.80	3.76	5.49	5.06	0.71	9.66	0.69	0.16	0.23	5.23	98.39	41.	41.	676.
AF00335	184.80	184.90	74.50	12,90	1.48	0.49	4.44	1.94	1.73	0.15	0.04	0.03	1.39	99.09	28.	29.	1020.
. AE00337	204.80	205.00	51.90	16.40	7.26	5.55	3.37	0.05	10.30	0.68	0.15	0.20	3.16	99.02	59.	35.	64.
AF00338	210.20	210.30	76.80	12.90	0.94	0.81	0.20	3.68	2.20	0.16	0.04	0.02	2.47	100.22	16.	80.	1450.
.AE00339	226.40	226.50	72.10	13.80	1.10	0.43	6.01	1.02	2.14	0.22	0.06	<0.01	1.85	98.73	54.	17.	412.
AF00340	237.30	237.50	50.50	16.20	5.84	6.76	4.24	0.17	10.00	0.67	0.13	0.17	5.47	100.15	37.	41.	83.
AF00341	253.70	253.80	70.10	13.90	1.27	1.30	4.18	2.00	3.71	0.24	0.07	0.02	2.70	99.49	50.	38.	725.
AF00342	269.00	269.10	52.00	17.00	4.47	5.52	4.64	0.24	10.00	0.68	0.13	0.09	5.62	100.39	77.	39.	132.
AF00343	303.80	303.90	51.40	15.70	8.07	5.07	3.69	1.00	9.19	0.59	0.12	0.13	4.00	98.96	38.	34.	267.


SAMPLE NUMBER	FROM	то	7 8102	ZAL203	%CAO	%MG0	%NA20	%K20	%FE203	%1 102	%P205	28NO	ZLOI	SUM	CUZN	ΑI	BA
	*			.,		-							_=======				
AF00585	8.00	8.15	51.20	16.40	6.93	5.90	3.50	0.06	10.30	0.66	0.17	0.28	3.70	99.10	69.	36.	122.
AF00586	30.30	30.40	49.20	16.50	9.32	5.76	2.66	0.37	9.87	0.71	0.20	0.38	4.31	99.28	53.	34.	466.
AF00587	63.80	63.90	51.50	16.20	8.20	5.65	2.99	0.28	8.99	0.64	0.16	0.36	3.70	98.67	29.	35.	204.
AF00588	90.10	90.20	52.80	16.40	5.65	4.51	5.12	0.04	9.72	0.66	0.19	0.20	3.85	99.13	36.	30.	93.
AF00589	98.50	98.60	53.40	17.50	3.24	7.01	5.50	0.10	7.50	0.74	0.19	0.27	3.70	99.15	23.	45.	118.
AF00590	112.40	112.50	63.60	15.80	2.28	3.05	5.65	0.99	4.94	0.44	0.15	0.14	2.23	99.27	35.	34.	432.
AE00591	131.10	131.20	59.10	16.60	2.42	4.36	7.43	0.10	5.43	0.45	0.15	0.17	3.08	99.29	6.	31.	293.
AF00592	145.10	145.30	50.10	19.50	8.74	3.52	4.75	0.07	10.20	0.83	0.25	0.29	2.70	99.95	42.	21.	64.
AF00593	171.20	171.30	49.00	17.90	9.99	4.16	3.26	0.07	10.70	0.66	0.15	0.22	2.77	98.88	46.	24.	91.
AF00598	194.50	194.60	51.60	15.80	2.49	7.40	2.94	0.79	11.30	0.64	0.12	0.11	7.08	100.27	39.	60.	275.
AE00599	208.80	208.90	50.40	16.70	~ 3 . 85	5.35	2.48	1.98	10.60	0.65	0.13	0.10	7.08	99.32	51.	54.	467.
AF00600	224.50	224.60	51.80	16.00	6.50	4.35	5.25	0.23	9,24	0.62	0.13	0.12	4.62	98.86	58.	28.	86.
AF00601	241.70	241.80	71.40	14.10	0.74	0.92	7.60	0.45	2.47	0.31	0.08	0.02	2.08	100.17	28.	14.	200.
AF00602	252.70	252.80	50.30	15.70	6.74	6.05	3.26	0.34	10.30	0.61	0.11	0.17	4.62	98.20	43.	39.	136.
AF00603 -	267.50	267.60	73.10	13.30	9.96	1.59	5.60	0.91	2.32	0.22	0.07	0.02	1.85	99.94	26.	28.	446.
AF00604	280.20	280.30	51.40	17.10	4.99	6.37	1.54	1.75	9.43	0.78	0.17	0.07	6.39	99.99	41.	55.	612.
AF00604	280.20	280.30	51.40	17.10	4.99	6.37	1.54	1.75	9.43	0.78	0.17	0.07	6.39	99.99	41.	55.	612.
AF00605	300.60	300.70	49.20	14.30	6.64	5.12	3.80	0.59	12.00	0.59	0.12	0.09	6.31	99.26	65.	35.	219.
AF00606	320.60	320.70	68.10	15.30	1.75	1.69	4.77	1.74	3.68	0.40	0.13	0.02	2.47	100.05	29.	34.	637.
AF00607	349.80	349.90	51.90	15.90	8.90	5.65	3.44	0.32	9.09	0.63	0.11	0.13	3.70	99.77	53.	33.	106.
AF00608	366.60	366.75	49.60	13.10	12.90	5.98	1.95	0.13	11.80	1.67	0.16	0.16	1.23	98.68	71.	29.	25.


Hole No. WEST87-22


Page No.


1

