LOG NO: 0225	RD.
ACTION:	
FILE NO:	

GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL

AND DIAMOND DRILLING REPORT

TAKLA-RAINBOW PROPERTY

TAKLA	5964	(11)	TWIN 1 3256 (7)
RAINBOW	5965	(11)	TWIN 2 3957 (7)
T.R.A.	6293	(6)	TWIN 3 3958 (7)
T.R.B.	7284	(9)	TWIN 4 3959 (7)
		(7)	TWIN 5 3960 (7)
T.R.D.	7396	(10)	TWIN 6 3961 (7)
	7377	(11)	• •
T.R.F.	7378	(11)	GEOLOGICAL BRANCH
T.R.G.	7524	(3)	TO STATE OF THE ST
		. ,	ASSESSMENT PRESSET

OMINECA MINING ILVISION

N.T.S. 93N/11 55 20'N 125°17 W

Part 1072

MINISTRY OF ENERGY, MINES
AND PETROLEUM RESOURCES
Rec'd
FEB 2 2 1988
SUBJECT
FILE
VANCOUVER, B.C.

IMPERIAL METALS CORPORATION R. PESALJ, FEBRUARY 1988

TABLE OF CONTENTS

		Page
	SUMMARY	
1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS, TOPOGRAPHY	1
3.0	PROPERTY	2
4.0	REGIONAL GEOLOGY	4
5.0	HISTORY OF PREVIOUS EXPLORATION	7
6.0	1987 PROGRAM	9
7.0	PROPERTY GEOLOGY	9
	7.1 Lithology and Stratigraphy 7.2 Structural Setting 7.3 Alteration 7.4 Gold Mineralization	14 15
8.0	GEOCHEMICAL SURVEY	17
	8.1 TR South Grid	18 18
9.0	GEOPHYSICAL SURVEYS	19
	9.1 VLF Survey	19 19
10.0	DIAMOND DRILLING	20
	10.1 TR South Grid	
11.0	ECONOMIC GEOLOGY	26
	11.1 Reserves	26
12.0	CONCLUSIONS AND RECOMMENDATIONS	27
	BIBLIOGRAPHY	
	STATEMENT OF EXPENDITURES	
	AUTHOR'S QUALIFICATIONS	

FIGURES

<u>Page</u>

						_
FIGURE 1	Location Map	1:2	50,000			
FIGURE 2	Claim Map	1:	50,000			
FIGURE 3	Regional Geology	1:2	50,000			
FIGURE 4	Takla-Rainbow Geology	1:	5,000	In	Back	pocket
FIGURE 5	TR South Grid Detail Geology	1:	2,500			pocket
FIGURE 6	Soil Geochemisy, Au, TR South Grid	1:	2,500			pocket
FIGURE 7	Soil Geochemistry, Cu, Ag, TR South Grid	1:	2,500			pocket
FIGURE 8	VLF Survey, TR South Grid	1:	2.500			pocket
FIGURE 9	Section 10+86N, TR South Grid	1:	1,000			pocket
FIGURE 10	Section 10+09N, TR South Grid	1:	1,000			pocket
FIGURE 11	Section 2+46E, TR West Grid	1:	1,000			pocket
FIGURE 12	Section 2+91E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 13	Section 3+40E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 14	Section 3+87E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 15	Section 4+40E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 16	Section 5+35E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 17	Section 7+37E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 18	Section 8+16E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 19	Section 9+20E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 20	Section 9+20E TR West Grid	1:	1,000	In	Back	pocket
FIGURE 21	Section 11+20E TR West Grid	1:	1,000	Ιn	Back	pocket
FIGURE 22	Borehole Geology Plan, TR West Grid	2:	2,500	Ιn	Back	pocket

APPENDICES

APPENDIX I	Borehole logs (T	TRS-87 1-4;	DDH 19-37)
APPENDIX II	Analytical Data		

 ${\tt APPENDIX\ III} \quad {\tt Rock\ Sample\ Descriptions}$

APPENDIX IV IP Survey Data

SUMMARY

The Takla-Rainbow gold property of Cathedral Gold Corporation is located in North Central British Columbia, with a road access from Manson Creek, approximately 62 kilometers to the east.

The general area is underlain by Lower to Middle Mesozoic volcanic and intrusive rocks that lie within the Quesnel Trough and represented by Takla volcanics and intrusive phases of the Hogen Batholith. Pinchi Fault and Permian Cashe Creek rocks lie approximately nine kilometers to the west of the property. Major mineral occurences in the area are Lustdust massive sulphide deposit located 12 kilometers to the southwest, numerous mercury and gold showings along the Pinchi Fault and a number of porphyry copper occurences, one of them located on the property. The area is an active placer mining camp known from the start of the century.

The property has been actively explored by Imperial Metals Corporation since 1983, when the first ground was staked as a result of a regional geochemical program along the Pinchi Fault. Ground work during the four field seasons followed and included geochemical, geological and geophysical surveys and diamond drilling. These programs were successful in locating and delineating an anomalous northwest-southeast trend with a strike length of over three kilometers.

To date, a total of 41 holes (8,102 m) were completed on the property, concentrating on the northwestern section of the anomalous trend. Geological reserves on the property are 220,000 tons grading 0.40 oz/ton, with an average width of 1.5 meters. Gold mineralization is spatially and probably genetically related to intrusive granitic porpyhry stocks and dykes near the contact between Hogem Batholith and Takla volcanics. Mineralization is in the form of veinlets and disseminations of quartz, native gold, pyrite, chalcopyrite, carbonates, sericite, chlorite and minor magnetite, galena, sphalerite and specular hematite. The mineralization is confined to subvertical zones marked by micro-shearing, intense fracturing, pyritization, carbonitization and silicification.

A program consisting of 4,500 meters of diamond drilling, VLF and induced polarization survey is recommended for the 1988 field season to further delineate mineralized zones and to continue testing anomalous geochemical and geophysical trend.

1.0 INTRODUCTION

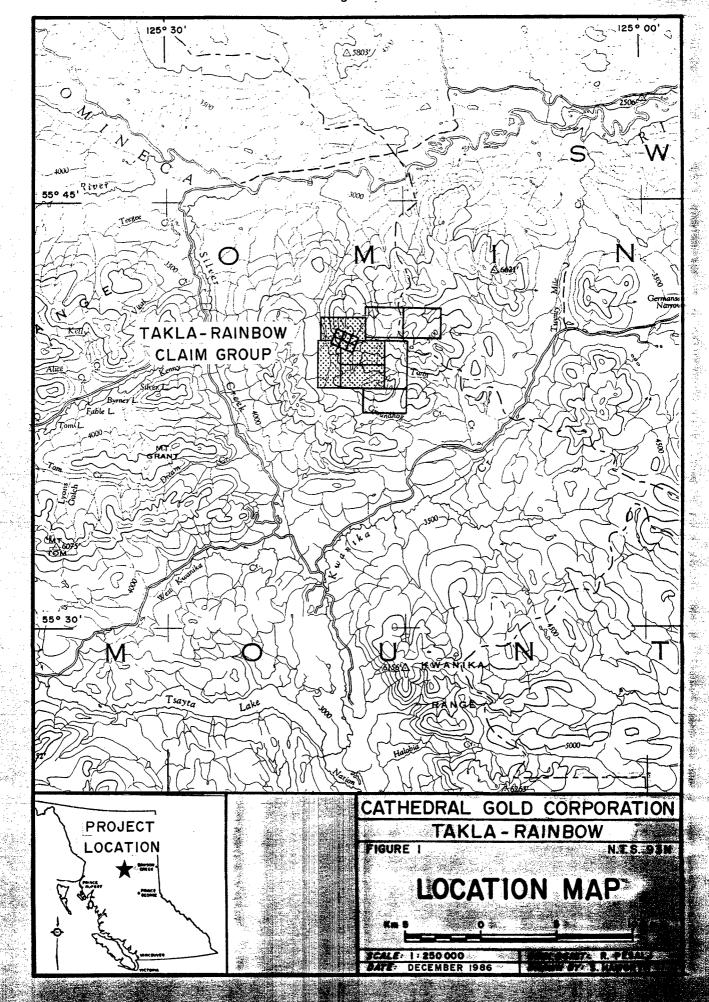
This report pertains to the field exploration program conducted on the Takla-Rainbow gold property by Imperial Metals Corporation for Cathedral Gold Corporation between June 25 and October 30, 1987.

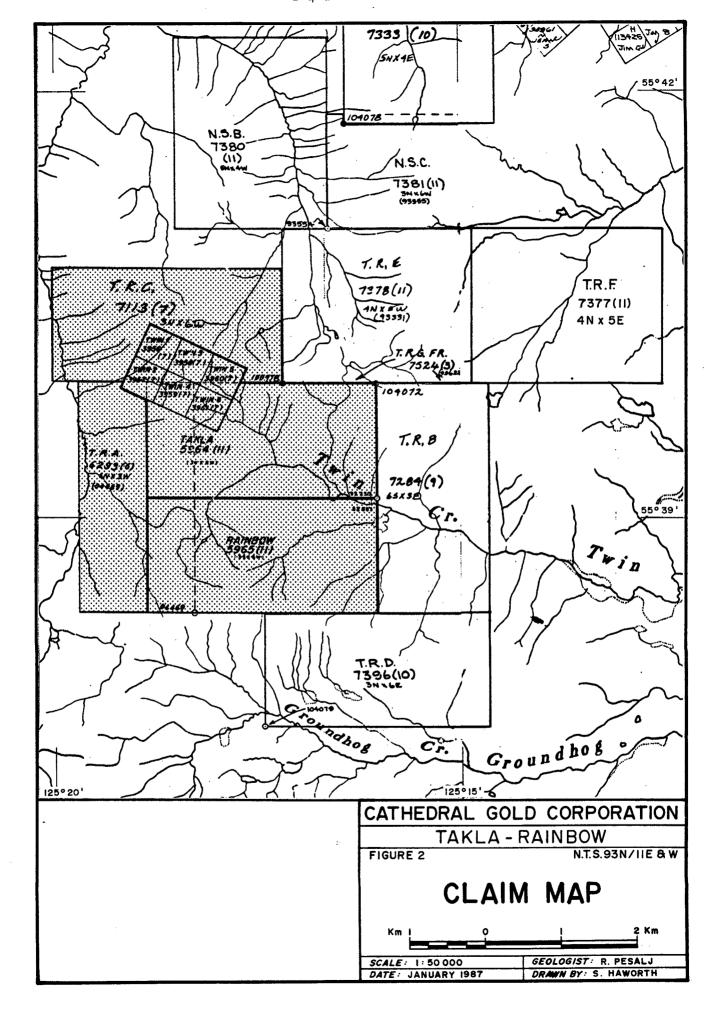
The exploration program was carried out from two camps on the property with support by Okanagan Helicopters out of their field base at Tsayta Lake for the first camp. For the second camp an access road was built by Lakeview Holdings Ltd. from Fort St. James. Expediting and logistic support for both camps was provided by Mr. Clarence Hogan from Tsayta Lake Lodge. Diamond drilling from the fly camp was carried out by Drillcor Industries Ltd. from Delta and from the main camp by J.T. Thomas Drilling from Smithers. Geophysical induced polarization survey was conducted by Scott Geophysics Ltd. of Vancouver.

2.0 LOCATION, ACCESS, TOPOGRAPHY

The Takla-Rainbow gold property is located in the North Central British Columbia, near the headwaters of Twin Creek, approximately 48 km west of Manson Creek and 156 km northeast of Smithers (Figure 1). The centre of the property is at 55° 39'N latitude, 125° 17'W longitude on NTS map sheet 93N/11, Omineca Mining Division.

The all-weather gravel Manson Creek to Takla Landing road passes to within 14.2 kilometers of the main camp. A new four wheel drive road connects the main camp on the property to the all-weather road.

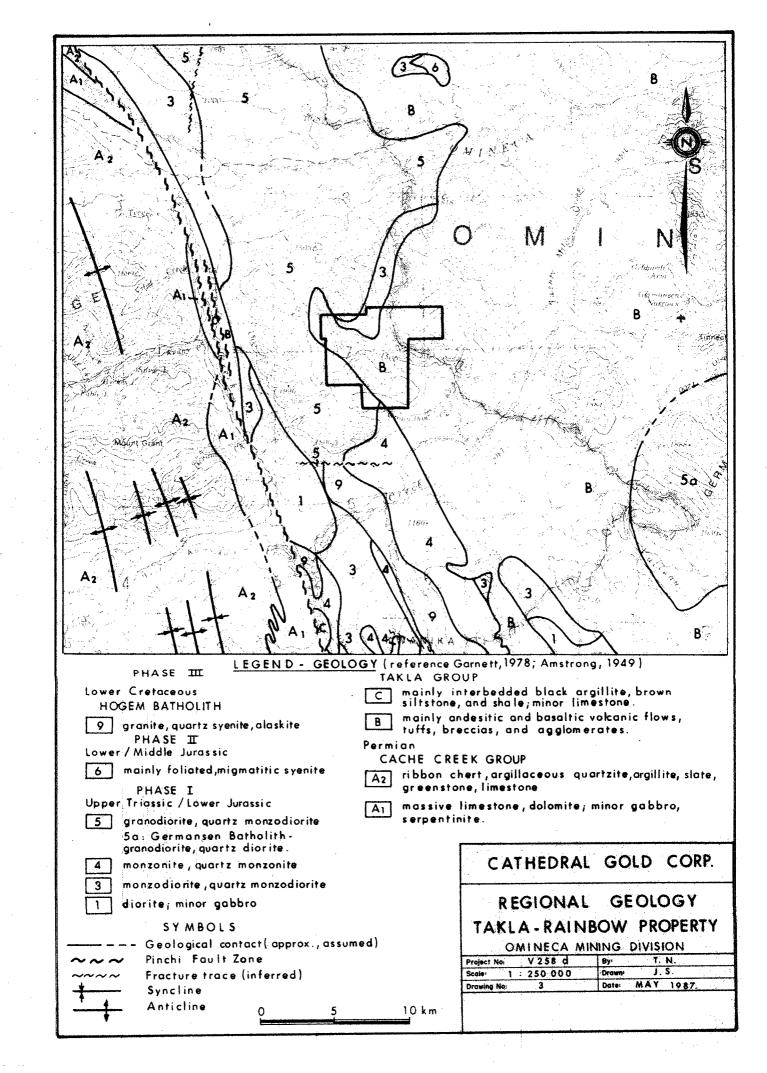

The central part of the property is dominated by a broad Twin Creek valley that rises into mountains to the north and south. Elevations on the property range from 1,450 m at the south to 1,800 m at the north end. Semi-open coniferous forest at the lower reaches and alpine conditions at higher elevations prevail throughout the area.


3.0 THE PROPERTY

The Takla-Rainbow property consists of the following contiguous claims: (Figure 2).

		# of	•	
<u>Claim</u>	Record No.	<u>Units</u>	Owner of Record	Recorded
Takla	5946 (11)	18	Cathedral Gold Corporation	Nov 14, 1983
Rainbow	5965 (11)	18	Cathedral Gold Corporation	Nov 14, 1983
T.R.A.	6293 (06)	18	Cathedral Gold Corporation	Jun 22, 1984
T.R.C.	7113 (07)	18	Cathedral Gold Corporation	Jul 04, 1985
Twin 1	3956 (07)	1	Neil Scafe	Jul 22, 1981
Twin 2	3957 (07)	1	Lorne B. Warren	Jul 22, 1981
Twin 3	3958 (07)	1	Lorne B. Warren	Jul 22, 1981
Twin 4	3959 (07)	1	Neil Scafe	Jul 22, 1981
Twin 5	3960 (07)	1	Neil Scafe	Jul 22, 1981
Twin 6	3961 (07)	1	Lorne B. Warren	Jul 22, 1981
T.R.B.	7284 (09)	18	Cathedral Gold Corporation	Sept 9, 1985
T.R.D.	7396 (10)	18	Cathedral Gold Corporation	Oct 31, 1985
T.R.E.	7377 (11)	20	Cathedral Gold Corporation	Nov 01, 1985
T.R.F.	7378 (11)	20	Cathedral Gold Corporation	Nov 01, 1985
T.R.G.	7524 (03)	5	Cathedral Gold Corporation	Mar 07, 1985

The Twin 1-6 claims are presently held by Cathedral Gold Corporation under an agreement with Kengold Mines and Neil Scafe signed on March 1, 1985, whereby the vendors are entitled to a total of \$100,000 in option payments to 1990 and will retain 7.5% net profit interest in the Twin claims and all ground held by the vendee within 1.5 km of the Twin claims property boundaries. All other claims are owned by Cathedral Gold Corporation.


4.0 REGIONAL GEOLOGY

The general area of the Takla-Rainbow property is underlain by Lower to Middle Mesozoic volcanic and intrusive rocks of the Quesnel Trough, a graben lying between the Pinchi fault zone to the west and the Manson Fault zone to the east (Figure 3).

The area west of Pinchi Fault zone is underlain by Permian Cache Creek Group rocks, consisting of siliceous and argillaceous sediments with lesser amounts of massive limestone.

East of the Pinchi Fault are rocks of the Takla Group (units B, C) and Hogem Batholith (Units 1-9). The Takla Group is about 7500 m thick and consists of a conformable succession of Upper Triassic sediments and tuffs in the lower part and (Lower Jurrasic?) flows in the upper part. Unit B includes andesitic and basaltic flows, tuffs, breccias and agglomerates which are commonly cut by pyroxene and feldspar porphyry dykes. Lesser amounts of conglomerate, shale, greywacke and limestone also occur sporadically. Coal is reported (Armstrong 1949) to occur within the Takla Group at Discovery Creek about 23 km north-northeast of the Takla-Rainbow property. Unit C includes the Upper Triassic sediments - interbedded argillite, siltstone, shale, greywacke and tuff with local thick beds of conglomerate and limestone.

The Hogem Batholith has been divided into three phases of intrusive activity by Garnet (1978). Phase I is dated as Upper Triassic to Lower Jurassic and represents intrusive equivalents of the Takla volcanics. Phase II occured during the Lower to Middle Jurassic, while Phase III took place in the Upper Cretaceous. In the map area, Phase I is represented by units 1, 3, 4 and Units 1, 3 and 4 are a mafic suite of rocks consisting of dark grey, medium to coarse grained diorite (Unit 1); plagioclase porphyritic pyroxene - biotite hornblende - biotite monzonite (Unit 4). Unit 1 commonly contains up to 5% magnetite and is thus strongly magnetic. Units 3 and 4 generally occur as gradational zones between the more mafic margins of the batholith and its granodioritic core. Unit 5 is the most widespread unit of the Hogem It is actually a group of chemically similar, leucocratic, quartz-bearing felsic rocks. Granodiorite and quartz monzodiorite predominate but the composition ranges from tonalite to granite. The rocks are medium to coarse grained, locally porphyritic, and contain grey fine-grained xenoliths.

The Germansen Batholith (Unit 5a) is composed of granodiorite, quartz diorite and minor granite. It is of Jurassic to Cretaceous age.

Phase II rocks in the map area consist of a small outlier of Unit 6 foliated syenite. The main area of Phase II rocks lies to the north of the map in the Duckling Creek - Haha Creek area.

Phase III consists of Unit 9 granite and alaskite bodies intruding earlier intrusives as well as abundant alaskite and aplite dykes.

The Pinchi Fault zone is the most important structural feature in the region. The zone is locally up to 300 m wide and has at least two periods of movement.

Regional folding of the Cache Creek Group rocks is tight and trends in a northwesterly direction. Folding of the Takla Group is more open and trends west to northwest. The Takla rocks are less foliated than the older Cache Creek rocks.

Numerous mercury deposits and showings occur along the Pinchi fault zone. The largest, the Pinchi Lake Mine, located 130 km southeast of the Takla Rainbow property, produced over 1,800,000 kg of Hg from 1940 – 1944. Most of other mineral occurences in the area are porphyry copper \pm molybdenum style showings in or near the Hogem Batholith. The twin showing located on the west side of the Twin claims is of the same type. Garnet (1978) states that porphyry Cu \pm Mo mineralization in or near Hogem Batholith is associated mainly with Phase II and Phase III intrusions. Units 1 and 3 of Phase I have minor pyrite-chalcopyrite-magnetite mineralization, whereas metallic mineralization is essentially absent from Unit 5. The Lustdust massive sulphide deposit, located 12 km southwest of Takla-Rainbow property contains 327,226 tonnes grading 2.6 g/t An, 55 g/t Ag and 2.7% Zn.

5.0 HISTORY OF PREVIOUS EXPLORATION

The region was first worked for placer gold. The first placer gold was discovered on Vital Creek, 10 km northwest of the Takla-Rainbow property in 1869. From 1874 to 1945 total gold production from the Omineca Mining Division was 1,492,362 g Au, the bulk of which came from Germansen and Manson Rivers. Presently, placer gold is produced from Twin Creek, Silver Creek, Kenny Creek, 20 Mile Creek and Vital Creek.

The Takla-Rainbow property area was extensively explored for porphyry copper between 1969 and 1973 when the Lorraine deposit, located 25 km to the north was investigated. First reference to Twin claims is in the B.C.D.M. Assessment Report #2501 by W.R. Bacon for the N.B.C. Syndicate in 1970. Exploration during this period was conducted mainly along the south facing slope north of the present drilling on the TR West grid and included geochemical soil sampling and detail mapping. These surveys outlined a strong copper anomaly in soil trending south-easterly, parallel to the contact between the Hogem Batholith to the north and the Takla volcanics to the south. South of this anomaly, an apparently parallel zone of predominantly pyrite mineralization was recognized, but the copper values found in the soil did not justify further follow-up.

In 1971 Falconbridge Mines carried out more geochemical surveys, geophysics and drilling of anomalies and showings. The property was worked by Westrob Mines and Hudson Bay Mining in 1972 and 1973.

In July of 1981, the property was staked by Lorne Warren and Neal Scafe. Two samples from the trench on the property located approximately at 1+80E/1+15S on the TR West grid collected by the prospectors that returned 0.57 and 0.68 oz/ton Au, were first samples that indicated the presence of gold in the pyritic zone described earlier by W.R. Bacon. Examination of the property by Mattagami Lake Exploration, S..E.R.E.M. and Newmont followed, but apparently did not confirm the results obtained from the trench and the property remained idle until 1983. Amir Mines optioned the six Twin claims in 1983 and carried out two days of helicopter reconnaissance, prospecting and sampling in order to assess the gold potential of the various gossans in the area. A sample collected from the trench returned 0.015 oz/ton Au in a very pyritic, altered volcanic.

In 1983 Imperial Metals started a reconnaissance program along the Pinchi fault zone in an effort to evaluate the potential of the general area for lode gold mineralization. A reconnaissance stream traverse along the Twin Creek indicated anomalous samples not only in silts but also in soil samples collected along the banks. Takla and Rainbow claims were staked and in 1984 ground surveys, including detail soil coverage and mapping commenced. Ground surveys revealed anomalous gold and copper and located one mineralized outcrop with significant base and precious metal mineralization. Sampling of the trench on Twin claims returned 0.92 oz/ton Au in highly pyritic andesitic volcanic and the Twin claims were optioned in the spring of 1985. During the

1985 field season, ground suveys were extended over the western part of the property covering the eastern part of Twin claims. The surveys included detail mapping, soil sampling and induced polarization. Diamond drilling of the coinciding geochemical and geophysical anomaly led to a discovery of gold-silver-copper mineralization in four holes that tested the zone 550 meters along strike and 30 meters at depth. The best intersection was in DDH #4 yielding 0.53 oz/ton Au over 1.64 meters.

In 1986 the exploration program included drilling of fourteen holes on the main zone as well as detail coverage of the northern and southern sections of the property. The mineralized zone was tested over 700 meters strike with shallow holes spaced 100 meters, and found to be open at depth and on the east along the strike. The best intersection was in hole DDH #13 that returned 0.69 oz/ton Au over 1.5 meters. The results of detail surveys on the northern section were not encouraging, with sporadic gold and copper anomalies found in a predominantly Takla volcanic terrane.

6.0 <u>1987 PROGRAM</u>

The exploration program on the property by Imperial Metals in 1987 consisted of geochemical soil sampling, geophysical IP and VLF surveys, geological mapping and prospecting and diamond drilling. The main objectives of the program were: a) to continue testing mineralized zone on the TR West grid by diamond drilling; b) to test a strong geochemical anomaly on the TR South grid; c) to continue evaluation of the property by additional geophysical and geological surveys and prospecting in an effort to generate new drill targets.

The program focussed on two major target areas on the property along the anomalous trend delineated by work in 1984-1986 with a strike length of over three kilometers.

7.0 PROPERTY GEOLOGY

Mapping and general prospecting were conducted over the Takla-Rainbow property between August 5th and October 8, 1987, concentrating in two main areas of interest: TR West grid area, where gold mineralization was previously

delineated and traced over 700 meters along strike and TR South grid, where a strong geochemical soil anomaly and gold mineralization were discovered by detail work in 1986. Mapping was carried out in 1:5,000 scale over the central and northern section of the property and in 1:1,000 scale in the area of geochemical anomaly on the TRS grid. A total of 64 rock samples were collected by these surveys and analysed for 30 elements by the ICP method and gold by atomic absorption. Analytical work was performed by the Acme Analytical Lab in Vancouver. Figures 4, 5 and 22 represent geological maps and plans compiled as a result of drilling and surface mapping coverage during the last four field seasons. Results of analytical work on rock samples are presented in Appendix I of this report.

7.1 Lithology and Stratigraphy:

The outcrops on the Takla-Rainbow property are scarce and limited to tops of the hills or creek valleys. The area of recent drilling on the TR West grid lacks any rock exposures. On the TR south grid, outcrops are confined to the ridge that borders the grid on the west side.

7.1.1 Takla Volcanics:

Takla volcanics are the most common unit found in surface exposures and drill core on the property. Dominant volcanic rock is massive, fine grained or porphyritic andesite. Surface mapping of the property indicates that coarse porphyritic andesite dominates in the southern part of the property, whereas massive and fine grained porphyritic andesite underlies the central section. A distinctive sub-type of porphyritic andesite was mapped in the area north of Twin Creek. Other volcanic units encountered in the outcrops and drill core are basaltic flows and tuffs and coarse pyroclastics.

a) Andesite (Tacp, Tafp, Tasp)

The primary texture of massive andesite from drill core is often obscured by strong alteration, but it appears that it is made up of granular aggregate of subhedral to euhedral plagioclase of a grain size 0.1-0.4 mm. The blocky altered grains of plagioclase are cemented by a network matrix of intergranular fine grained chlorite. The plagioclase is strongly altered to fine grained sericite and lesser chlorite and carbonate and the original character of the grains is unclear. The rock is cut by veinlets of carbonate, which also occurs pervasively as

splashes and pockets throughout, though more abundant close to the veinlets. Epidote also occurs as disseminated constituent, but is mainly concentrated as localized, though rather diffuse vein-like zones of microbrecciation and alteration, particularly in the specimen from the TR Some epidote-rich zones contain abundant pyrite as clumps of euhedral-subhedral grains 0.05 - 0.5 mm in size. These often contain intergrown fine grained magnetite and traces of chalcopyrite. the pyrite clusters have associated granular quartz and carbonate. Carbonate veining seems to overlap the period of epidotization and sulphide introduction and some later carbonate veins clearly cross-cut the earlier alteration. Minor pockets of K-spar appear spatially related to some of the altered fracture zones and are presumably of introduced origin. The carbonate is mainly of dolomitic or ankeritic composition, but veinlets of calcite are also present.

Porphyritic andesite with abundant plagioclase and less commonly hornblende and augite phenocrysts is found throughout the property, coarse grained variety dominating in the southern part and finer grained in the central and northern sections. The coarse grained variety is characterized by phenocrysts or clasts to 2 cm across. The finer grained variety displays phenocrysts and volcanic clasts up to 0.2 cm across. An area north of Twin Creek is underlain by a distinctive porphyritic andesite which is characterized by prominent white plagioclase phenocrysts. Such phenocrysts give the rock a speckled appearance.

b) Basalt (Tb)

Rocks of basaltic composition are found throughout the property. Basalts seen in drill core are dark green, fine grained, massive or amygdaloidal flows, but in the outcrops they often represent bedded tuffaceous units. These flows and tuffs are generally thin, ranging from 1 to 5 meters, but drilling on the TR West grid indicates much thicker units. In the drill core these rocks are highly chloritic, and moderately to highly magnetic.

c) Rhyolite (Tr)

A small pyritic rhyolite unit mapped on the west side of the property is the only occurrence of felsic volcanics.

d) Pyroclastics (Tacp)

In addition to fine grained mafic tuffs that commonly occur within the Takla volcanics, coarse pyroclastics have been mapped and drilled on the TR South grid and southern section of the property. These units are green or maroon coloured and represented by lapilli tuff, agglomerate and volcanic breccia with clasts up to 0.5 m across. The clasts are usually angular and cemented by the same porphyritic andesite matrix as the massive volcanic units found in the southern section of the property.

The stratigraphic tops of Takla volcanics were determined from the amygdaloidal basaltic units drilled on the TR South grid. From drill core data the stratigraphic top of the volcanics in this locality is to the southwest. Dip and strike measurement during the course of surface mapping indicates the dips at 50° to 65° to the southwest, and 75° to 85° from the two areas of current drilling. The thin mafic tuffs are the only unit from which bedding of the volcanic pile can be determined, since most of units represent either thick volcanic flows or coarse pyroclastics.

7.1.2 Intrusives

The intrusive rocks mapped and drilled on the property belong to the eastern margin of the Hogen Batholith, which consists of a variety of intrusive types including: granite, granodiorite, monzonite, monzodiorite, quartz diorite, diorite and syenite. Within the property boundaries, most of the intrusive rock units can be interpreted as belonging to Phase I of the intrusive event (Garnett, 1984).

Dykes and small stocks of granitic and dioritic porphyries are probably related to the late phases of the intrusive event (Phase III).

a) <u>Diorite</u> (Di)

This unit belongs to more mafic Phase I of the Hogen Batholith. In hand specimen the rock is dark green, medium grained, equigranular and consists of equal parts of interlocking subhedral-euhedral plagioclase crystals 0.1-2.0 mm, with accessory K-spar in an interstitial mode. Quartz is either not present or represents very minor mineral constituent. The main mafic mineral is amphibole that forms abundant

subhedral grains 0.1-1.0 mm. It is often altered to various proportions of chlorite, secondary green biotite, carbonate and epidote. Mafic content of the rock is variable and locally the unit can contain up to 85% of amphibole and chlorite. The rock is cut by sparse hairline veinlets of epidote, chlorite and carbonate. The diorite phase of the batholith is host to porphyry copper type of mineralization found in the northwest section of the property. This unit corresponds to Unit 3 on the regional map.

b) Granite, Granodiorite (Gr, Gp, Gn, Gnp)

These leucocratic units occur in the northwest and southwest corners of the property and represent more felsic Phase I and Phase III rock units of the Hogem Batholith.

Granite (Gr) is found in the southwest corner of the map area. This rock is coarse grained, pink in colour and contains abundant large (2 cm) K-spar and quartz phenocrysts in addition to biotite and hornblende. The contact between this unit and Takla volcanics is not exposed, but can be traced between large outcrop areas along the ridge in the southern section of the property.

Porphyritic granite (Gp) is pinkish in colour, massive and contains abundant K-spar (1-2 cm) and lesser quartz phenocrysts to 1 cm across. The unit often contains small amounts (1-3%) of finely disseminated pyrite in a matrix of quartz-feldspar and biotite. Occasionally the unit is affected by carbonate-sericite alteration of various degrees. On the surface it occurs as dykes, sills and small stocks on the TR South Grid and along the Twin Creek. It was encountered by diamond drilling on both TR West and TR South grids. This unit can be interpreted as Phase III intrusive.

Granodiorite (Gn, Gnp) was mapped mostly in the northwestern corner of the map where it occurs in contact with the dioritic phase of the batholith. The unit is whitish or grey in colour and can be equigranular (Gn) or porphyritic (Gnp). Although compositionally similar, the porphyritic variety contains abundant large K-spar and often quartz phenocrysts to 1 cm across in a matrix of plagioclase, hornblende, biotite and lesser K-spar and quartz. In the drill core at TR West grid granodioritic and dioritic porphyries represent the main intrusive rock units.

c) Monzonitic Dykes

Dykes of fresh, monzonitic, equigranular, fine grained rock have been intersected by diamond drilling on the TR West grid. These dykes contain abundant mafics, together with plagioclase and K-spar in roughly equal proportions and represent the youngest intrusives found on the property.

On the basis of their mineralogy, granitic intrusives on the Takla-Rainbow property fall into granodiorite, tonalite, quartz monzodiorite and quartz diorite fields of an APQ diagram (Streikeisen, 1976).

7.2 Structural Setting

Structural history of the Takla-Rainbow property reflects the regional setting of the Quesnel Trough, a narrow tectonic depression extending much of the length of British Columbia. The trough was the site of Mesozoic volcanic and sedimentary deposition, where Takla volcanic rocks found on the property were formed. A major structural deformational event that affected all supracrustal rocks in the area is a Pinchi Fault, located approximately nine kilometers to the west of the center of the property.

Several northwesterly faults that run parallel to the Pinchi Fault zone are located on the property. The most significant faulting of this trend, that reflects the regional setting are faults encountered by drilling on the TR West grid. The contact between Takla volcanics and batholith in the southwestern corner of the grid appears to be of the same attitude, as well as granitic dykes that strike parallel to this contact. A distinct topographic feature in a form of northwest-southeast valley was recognized in the area of present drilling on the TR West grid by earlier explorers, who suggested a fault zone. Drilling confirmed th existence of at least three parallel northwest-southeast striking fault structures. The intensity and magnitude of structural deformation is the strongest at the west end of the grid, where the zone of brecciation in volcanics and intrusives reaches 23.16 m in DDH11.

The dips of the faults encountered in drill holes appear to be sub-vertical. Petrographic thin section work on the samples from the TR West grid indicates also the presence of close-spaced, sub-parallel systems of sheeted microfractures in porphyrites that seem to be the locus of carbonate and epidote alteration.

At the south end of the property, dykes and sills of porphyritic granite intrude Takla volcanics along the northwesterly striking breaks that run parallel to the Pinchi Fault zone.

Northeasterly striking faults represent the second major fault system encountered in course of surface mapping.

The relative movements and timing of these two systems is not known, but could be contemporaneous. The information from surface mapping of the property and drill core data indicate the dips of Takla volcanics to be steep to the south, but proper determination is often difficult due to massive texture of volcanics. Thin basaltic bedded tuff units provide the best information on the attitude of the volcanic strata. Takla volcanics have west to northwest strike and a characteristic open folds. Foliation of the volcanic units is weak or completely absent.

7.3 <u>Alteration</u>

Hydrothermal alteration of various lithological members mapped and drilled on the property is often so strong that it obscures the original rock composition. Alteration types most commonly found include carbonization, sericitization, hematitization, chloritization, epidotization, silicification and kaolinization. Alteration products vary from one rock type to another and the amount of each alteration product depends on the degree of all alteration. From surface mapping and drill core logging observations, it is obvious that the intensity of alteration in various parts of the property increases with the proximity to faults, shear zones and younger granitic porphyritic dykes.

Carbonate -sericite alteration in volcanics and intrusives consists principally of pervasive sericitization and carbonitization of feldspar phenocrysts and groundmass plagioclase.

The second type of alteration is represented mainly by fracture controlled carbonitization and silicification and alteration of mafic minerals into chlorite, carbonate and epidote. The strongest alteration of this type is present in granite porphyry intrusives, but it can be observed in volcanics adjacent to dykes, particularly on the TR West grid drill core. The strongest alteration is found in DDH 11 and DDH 12, where also the widest zones of brecciation was intersected. The carbonate is mainly dolomitic, but

ocasionally it is ankeritic or calcitic in composition. This type of alteration can be seen in many prominent gossans found on the property. The rock is generally completely altered and characteristically very soft and highly weathered. Buff or grey quartz in most cases is the form of silica present in the affected rock unit, but jasper has also been observed in the TR South grid rocks and drill core.

7.4 Gold Mineralization

Gold mineralization on the property was first drilled in 1985 and drilling continues with encouraging results to the present.

The area of main drilling comprises a body of porphyritic granitic intrusive striking in NW-SE direction and confined to a contact between the Takla volcanics to the south and dioritic border phase of the Hogem Batholith to the north (Figure 22). The intrusive is leucocratic, quartz poor, porphyritic and contains two main lithologies recognized in drill core.

a) <u>Granite Porphyry</u>

Granite porphyry is pink, characterized by large (to 1 cm across) phenocrysts of plagioclase or K-spar with less than 5% quartz and pink, fine grained matrix consisting of equal amounts of K-spar, plagioclase and quartz. Compositionally the unit ranges from trachyte to granodiorite and could represent more than one phase. Some cross-cutting relationships seen in the core indicate that trachyte could be the youngest phase of the intrusive suite.

b) Diorite Porphyry

Diorite porphyry is grey or whitish, consists of plagioclase phenocrysts $0.2-0.5\,$ mm in size in an evenly, white felsitic groundmass of grain size $0.01-0.05\,$ mm with very little quartz and K-spar present. The rock seldom contains quartz phenocrysts.

Mineralized zone on the TR West grid is spatially and probably genetically related to the porphyritic intrusive event and late hydrothermal activity and

tectonic setting that resulted following the intrusion. The gold mineralization occurs within a strong pyritic halo measuring over 1,000 meters in length and 150 meters in width, as outlined by an induced polarization survey carried in 1985.

The most common type of mineralization encountered in drill holes is in the form of narrow quartz fillings along the fractures from few centimeters to several decimeters in width, or dissemination of sulphides and native gold in both porphyries and volcanics. Mineral association in the zone is represented by pyrite, chalcopyrite, quartz, native gold, carbonates, sericite, chlorite and minor pyrrhotite, magnetite, galena, sphalerite and specular hematite. The mineralization is confined to the zones marked by microshearing, intense fracturing, pyritization, carbonitization and silicification.

Gold is in the form of native gold, and gold-pyrite and gold-chalcopyrite associations are very common. At the present, it is not known if this is the only mode of gold occurence and more petrographic work is required to complete this investigation. In one specimen two grains of native gold were seen as grains of 25 and 50 microns associated with chalcopyrite inclusions in pyrite. Pyrite occurs in vein quartz, ankerite and sericite gangue as well as disseminations in altered wall rock.

The majority of intersections occur as subvertical, parallel structures within or adjacent to granite porphyry, suggesting that this phase of the intrusive is in direct relationship with gold mineralization. Some intersections on the TR West grid occur at considerable distance from the granite porphyry dykes and represent silicified zones within the Takla volcanics with silica and gold originating from the granite porphyry dykes.

8.0 GEOCHEMICAL SURVEY

Geochemical soil survey was carried out on the west side of the TR South grid by extending lines 5N, 4N, 3N, 2N, 1N, 0N and 1S to 8+00W, since the geochemical anomaly discovered in 1986 was still open to the south end. Several soil traverses were also made in conjunction with surface mapping and prospecting in the central and northern parts of the property. These traverses were made in the proximity of gossanized outcrops and talus. Soil samples were collected from the B2 soil horizon from a depth of 15-20 cm. In the absence of

good soil, samples of talus fines or C horizon were taken. All samples collected were analysed for 30 elements by ICP method and gold by atomic absorption. All analytical work was performed by Acme Analytical Lab in Vancouver. The results of analytical work are presented in the Appendix II of this report.

8.1 TR South Grid

Soil sampling on the TRS grid indicates the continuation of anomaly to the west and south, with the exception of the southwestern corner of the grid, where anomalous values are slightly above the background level (5-10 ppb). The highest gold value in soil was 2,360 ppb on line 2N, 250 m west of the baseline. This value occurs near a 25 m wide shear or fault zone observed in the outcrops. This shear zone extends from 325 W to 350 W and lies uphill from the anomalous sample. Copper in soil does not suggest concentration of anomalous values in any particular part of the surveyed area, having elevated values over the entire coverage. The highest value of 1.371 ppb occurs at 2N/25W near the shear zone. This location also has the highest silver value of 4.3 ppm. Other elements in soil do not show anomalous concentration in any part of the TR South grid extension.

A total of 173 soil samples were collected along 4.15 line kilometers. Sampling was done at 25 m intervals along the flagged lines, using a compass and hip chain for control. Results of the soil survey are presented on Figure 6 for gold and Figure 7 for copper content.

8.2 Soil Traverses

A number of soil traverses were made in the course of surface mapping in order to substantiate the information on gold distribution in the areas of no outcrops, and in the proximity to gossans and favourable geology. The results of this survey indicates anomalous gold content in soil in several areas and a follow-up program is planned for the next field season. A total of 98 soil samples were collected over approximately 4 km of traversing. Sample locations are shown on Figure 4 and survey results are presented in Appendix III of this report.

9.0 GEOPHYSICAL SURVEYS

Geophysical surveys on the property during the 1987 field season were conducted between July 7 and 18, 1987 and consisted of VLF and induced polarization coverage of the TRS and western part of TRS 2 grid in an attempt to evaluate geochemical anomaly and better delineate drill targets. A total of 14.6 km of VLF and 9.5 km of induced polarization survey were completed during the period. The VLF survey was carried out by the Imperial metals staff and an IP survey was contracted out to Scott Geophysics Ltd. of Vancouver. Results of the geophysical surveys are presented in Figure 8 and Appendix IV of this report.

9.1 VLF Electromagnetic Survey

The VLF electromagnetic survey was carried out along the lines with an azimuth of 235°, using the Seattle, Washington signal, at 24.8 KHz frequency. Readings of in-phase and quadrature components were taken facing west during the entire coverage. The instrument used for the survey was Geonix Ltd. EM 16 electromagnetic unit. The results of the VLF survey indicate the presence of two conductors on the TRS and TRS2 grids. On the TRS grid, a medium strong conductor was located on the west side and traced on four lines over a distance of 300 meters. The conductor strikes northwest-southeast, parallel to the regional trend. On the east side of the grid, two weak, north-south striking conductors were picked up and traced 450 meters. With the exception of two single line cross-overs on the north end, the remainder of the grid showed lack of conductivity detectable by the VLF survey.

9.2 <u>Induced Polarization Survey</u>

Induced polarization and resistivity surveys used the pole dipole electrode array, with an "a" spacing of 25 meters and "n" separations of 1 to 5. The current electrode was to the east of receiving electrodes on all survey lines. A Scintrex IPR II time domain microprocessor based induced polarization receiver and a Scintrex 2.5 KW IPC 7 transmitter were used for the survey. Readings were taken using a 2 second alternating square wave. The chargeability for the seventh slice (690 to 1050 milli seconds after current shutoff; midpoint at 870 milli seconds) is the value that has been plotted on the pseudosections. The survey data was processed and plotted using a Sharp PC 7000 microcomputer running Scintrex Soft II and proprietory software. All chargeability values were analyzed for their spectral characteristics using a curve matching procedure (Soft II)

10.0 DIAMOND DRILLING

Two diamond drilling programs were carried out on the property between July 13 and October 31.

A short program consisting of four holes (634.59 m recovering BQ size core) was carried out on the TR South grid. The program was executed by Drillcor Industries Ltd. from Delta, B.C., supported by a helicopter.

On the TR West Grid, a total of 19 holes (5,407.16 m) recovering BQ size core were completed by J.T. Thomas Drilling from Smithers, B.C. A 14.2 km access road was completed to allow transportation of the drill and equipment to the main camp on the property. Road contstruction, by Lakeview Holdings Ltd. of Fort St. James, B.C. was completed between June 26 and July 23, 1987.

All holes on the TR West grid were surveyed by a magnetic directional survey instrument rented from Sperry-Sun of Edmonton, Alberta.

A total of 1830 core samples were taken from the two drill programs and analysed for 30 element ICP method and gold by atomic absorption. Samples with greater than 500 ppb Au were also analysed for gold by fire assay method. All analytical work on core samples was performed by Acme Analytical Lab in Vancouver.

Results of diamond drilling are presented on borehole sections and plan (Figures 9-22). Appendices I and II contain borehole logs and analytical data.

10.1 TR South Grid (TRS 87-1, 2, 3, 4)

The first three holes (Figure 9) were drilled over a geochemical anomaly on the west side of the grid in order to locate the bedrock source of anomalous gold values found in soil and float along the talus slope (Figures 5, 6, 7). The holes encountered a sequence of volcanics of dominantly andesitic composition with minor volume of basaltic volcanics. Andesitic volcanics found in the core are represented by green and maroon porphyritic flows and coarse fragmentals (agglomerates, breccias). Basaltic volcanics are fine grained amygdaloidal and massive flows and represent minor members of the sequence. These volcanics can be interpreted as the Takla volcanics that belong to unit B

(Figure 3). Volcanic sequence as indicated by drilling has steep southwesterly dip and as suggested by a basaltic amygdaloidal flow tops to the southwest. Intrusive rocks in the drilling area are pink porphyritic granitic dykes that in the drill core reach the thickness of 25 meters. Shearing and faulting in the core are common as shown on the borehole section. A strong northeasterly dipping fault zone was encountered in holes TS 87-1 and TRS 87-3. with abundant gouge is associated with strong bleaching kaolinization and hydrothermal alteration in both, volcanics and intrusives. Silicification in the form of veinlets of grey and reddish jasperoid is common, but drilling did not reveal the presence of significant gold and base metal mineralization. The highest gold value of 1,090 ppb was in hole TRS 87-3 from 96.32 to 97.84 m (1.52 m). This value occurs in a wide sheared section of highly bleached and kaolinized granitic intrusive, cut by a fault zone. Hole TRS 87-1 intersected 1.52 m between 2.74 and 4.26 m carrying 1.060 ppb Au in beige and rusty. oxidized andesitic volcanic. The volcanic is cut by thin white quartz and minor calcite veinlets that intersect the unit at various angles to the core axis. The volcanic also has several anomalous copper values, with the highest concentration (4,903 ppb Cu over 0.62 m) found in the same zone where the highest gold value was encountered. Although thin quartz veins were encountered by drilling of this anomaly and the source of gold found in float and soil remains unexplained.

A single hole (TRS 87-4) was drilled to test coinciding soil and charge-ability anomaly on line 10+00N. The hole encountered fine grained, massive andesitic volcanics containing from 5% to 10% disseminated pyrite over wide sections of core. Shearing and faulting in volcanics are common, with occasional sections of silicification in the form of quartz cemented brecciated volcanics. There was no significantly anomalous gold present in the drill core but base metal and silver values were found in one meter interval, from 65.55 to 66.55 m with 1.62% Pb, 2.99% Zn and 7.42 oz/ton Ag. The chargeability anomaly was explained by disseminated pyrite in sheared and faulted volcanics, the same also being responsible for two weak conductors picked up by VLF survey south of the drill site.

10.2 TR West Grid (DDH 19-37

A total of nineteen holes (5,407.16 m) were completed on the TR West grid, concentrating in three zones: West Zone, East Zone and South Zone.

Eleven holes were completed on the West Zone outlined during the exploration in 1985 and 1986 on the property. The objective of this drilling was to test the zone at 50 meter intervals along the strike. This fill-in drilling was required to better define mineralization since the spacing of 100 meters was too wide to properly assess the potential of the zone. In addition to fill-in drilling, six holes were drilled to test down-dip extension of mineralization encountered by previous and current drilling. The deepest intersection of mineralization on the Takla West Zone is presently 300 meters below the surface.

The East Zone, indicated by drilling in 1985 and 1986 was tested by four holes spaced 100 to 200 meters. One of the four holes was in undercut of hole DDH 10, drilled in 1986. This drilling was supported by encouraging results from 1986 and a chargeability anomaly detected by geophysical survey done in 1985.

Four holes were completed in order to test geochemical soil anomaly over the South Zone, where no drilling was done previously.

The following is a summary of drilling completed in three zones on the Takla-Rainbow West grid during the 1987 field season:

WEST 2	ZONE	EAST	<u>ZONE</u>	<u>SOUTH</u>	ZONE			
<u>Hole</u>	Depth (m)	<u> Hole</u>	Depth (m)	<u> Ho1e</u>	Depth (m)			
DDU 00	101 07	DDU 10	000 10	DDU 02	040.60			
DDH 20	181.97	DDH 19	262.13	DDH 23	242.62			
DDH 21	224.64	DDH 31	268.83	DDH 28	221.59			
DDH 22	252.07	DDH 33	462.99	DDH 32	228.60			
DDH 24	181.97	DDH 35	462.99	DDH 32	228.60			
DDH 25	254.81		1,449.93		1,173.48			
DDH 26	50.90							
DDH 26A	331.01							
DDH 27	258.17							
DDH 29	154.53							
DDH 30	269.14							
DDH 34	456.29							
DDH 37	<u>168.25</u>							
	2,783.75							

Table 1 illustrates drilling results on the TR West grid in the period 1985 - 1987.

TABLE 1

TAKLA RAINBOW DRILLING SUMMARY 1985 - 1987

				CTION (m)	INTE	INATES	COORD								
om) Cu (ppm)) Ag (ppm)	Au (oz/ton)	LENGTH	T0	FRO	NORTHING	EASTING	AZIMUTH	DIP	DEPTH (m)	DDH	YEAR			
				·											
-	34.8	0.080	0.30	42.30	42.0	12+50	3+00	360	-45	76.81	1	1985			
9 15,307	10.9	0.201	1.94	55.30	53.3	12+00	3+00	360	-45	78.33	2				
4 29	2.4	0.048	0.46	61.11	60.6	10+00	5+00	360	-45	79.86	3				
5 301	34.5	0.526	1.64	22.30	20.6	8+50	7+00	360	-45	76.81	4				
3 124	0.3	0.130	0.67	59.17	58.5	0+77 S	2+91	045	-55	118.26	5	1986			
6 329	0.6	0.039	7.62	112.16	104.5										
1 544	1.1	0.272	0.40	116.40	116.0										
				SECTION	NO IN	0+88 S	3+87	045	-55	96.93	6				
				SECTION	NO IN	0+76 S	5+76	045	-55	81.69	7				
1 15	1.1	0.055	0.77	39.01	38.2	0+62 S	6+69	045	-55	117.35	8				
9 92	3.9	0.110	1.19	22.29	21.1	0+59 S	7+37	045	-55	115.21	9				
3 93	2.3	1.117	1.28	101.25	99.9										
4 8	6.4	0.202	0.17	51.34	51.1										
8 257	1.8	0.069	0.80	13.80	13.0	0+45 S	8+16	045	-55	99.91	10				
4 150	1.4	0.094	1.00	27.00	26.0										
				RSECTION	NO I	0+76 S	1+47	045	-55	117.65	11				
8 4373	2.8	0.046	0.40	56.70	56.3	0+98 S	1+96	045	-55	191.41	12				
9 - 183.18m	See 145.39 -	00 ppb Au. Se	WITH 200-4	S SECTIONS	NUME										
1 320	1.1	0.149	3.25	24.05	20.8	0+27 S	2+92	045	-55	121.31	13				
0 3161	3.0	0.116	3.18	29.55	26.3										
8 591	1.8	0.690	1.50	64.40	62.9										
6 606	0.6	0.048	0.90	67.90	67.0										
	0. 0. 1. 3. 2. 6. 1. 2. See 145.3	0.130 0.039 0.272 0.055 0.110 1.117 0.202 0.069 0.094 0.046 0.094 0.149 0.116 0.690	0.67 7.62 0.40 0.77 1.19 1.28 0.17 0.80 1.00 0.40 WITH 200-4 3.25 3.18 1.50	59.17 112.16 116.40 SECTION 39.01 22.29 101.25 51.34 13.80 27.00 RSECTION 56.70 S SECTIONS 24.05 29.55 64.40	58.5 104.5 116.0 NO IN NO IN 38.2 21.1 99.9 51.1 13.0 26.0 NO II 56.3 NUME 20.8 26.3 62.9	0+77 S 0+88 S 0+76 S 0+62 S 0+59 S 0+45 S 0+76 S 0+98 S	2+91 3+87 5+76 6+69 7+37 8+16 1+47 1+96	045 045 045 045 045	-55 -55 -55 -55 -55 -55	96.93 81.69 117.35 115.21 99.91 117.65 191.41	5 6 7 8 9 10 11 12	1986			

Table 1 (continued)

					COORE	DINATES	INTERSE	CTION (m)				
YEAR	DDH ·	DEPTH (m)	DIP	AZIMUTH	EASTING	NORTHING	FROM	то	LENGTH	Au (oz/ton)	Ag (ppm)	Cu (ppm)
1986	14	167.03	-55	225	7+25	0+15	127.80	128.40	0.60	0.071	0.2	20
	15	124.97	-55	045	3+86	0+38 S	51.14	52.55	1.41	0.053	0.3	111
	16	154.84	-48	225	4+84	0+40	26.00	26.70	0.70	0.103	4.5	4573
							64.05	65.29	1.24	0.029	0.4	196
							78.59	81.08	2.49	0.038	0.7	364
	17	133.81	-55	225	5+74	0+51	56.15	58.95	2.80	0.019	1.7	1850
	18	107.89	-50	225	6+75	0+79	NO INTE	RSECTION				
1987	19	262.13	-55	045	9+20	0+90 S	47.26	47.46	0.20	0.216	1.9	113
	20	181.97	-55	045	2+46	0+58 S	39.30	41.60	2.30	0.034	2.2	2327
							51.10	52.66	1.55	0.107	7.1	8283
							79.80	82.75	2.95	0.072	0.7	463
							116.43	119.47	3.04	0.039	2.0	88
	21	224.64	-55	045	2+46	1+08 S	129.05	131.20	2.15	0.018	0.4	300
							206.70	207.80	1.17	0.021	0.6	366
	22	252.07	-55	045	2+91	1+27 S	78.20	79.00	0.80	0.022	0.9	375
							234.70	235.60	0.90	0.063	2.7	525
	23	242.62	-50	225	9+20	0+91 S	131.37	132.46	1.09	0.091	2.1	58
							175.37	175.82	0.45	0.210	2.9	646
							211.13	214.12	2.99	0.168	0.6	58
							229.21	229.77	0.56	0.219	7.2	43
	24	181.97	-55	045	3+40	0+68 S	24.52	25.82	1.30	0.312	1.4	277
							41.76	42.66	0.90	1.095	2.2	246
							47.75	49.83	2.08	0.122	7.6	2189
							120.50	121.30	0.80	0.291	4.8	2696
							127.10	128.50	1.49	0.028	3.8	3762
							139.70	142.20	2.50	1.15	12.0	3000
	25	254.81	-55	045	3+40	1+18 S	150.77	151.60	0.83	0.024	0.6	403
							190.90	191.50	0.60	0.049	1.9	1949
							248.95	249.80	0.85	0.017	0.5	1725

Table 1 - (continued)

					COORDINATES		INTERSECTION (m)					
YEAR	DDH	DEPTH (m)	DIP	AZIMUTH	EASTING	NORTHING	FROM	то	LENGTH	Au (oz/ton)	Ag (ppm)	Cu (ppm)
	004	221 01	rr	045	2.07	1.25.0	10.04	11 04	0.40	0.100	0.0	07
	26A	331.01	-55	045	3+87	1+35 S	10.84	11.24	0.40	0.106	2.9	27
	07	050 17	FF	0.45	4.40	1.05.0	215.10	215.55	0.45	0.022	0.4	89
	27	258.17	-55	045	4+40	1+05 S	58.34	58.90	0.56	0.022	0.5	10
							59.45	60.30	0.85	0.017	2.8	6
							99.32	99.85	0.53	0.018	0.8	8
							145.18	145.72	0.54	0.017	2.0	952
							218.20	219.06	0.86	0.027	0.6	295
	28	221.59	-50	225	7+37	1+20 S	28.80	29.32	0.52	0.090	3.4	1577
							73.61	74.57	0.96	0.018	1.9	365
	29	154.53	-55	045	4+40	0+55 S	21.23	23.20	1.87	0.034	0.3	159
							23.20	24.60	1.40	0.040	0.1	253
							24.60	25.35	0.75	0.177	0.7	435
	30	269.14	-55	045	5+35	1+10 S	200.00	200.65	0.65	0.422	5.8	7394
	31	268.83	-55	045	8+16	1+45 S	82.70	84.00	1.30	0.229	2.0	137
							128.60	129.60	1.00	0.065	0.4	34
							221.60	222.20	0.60	0.272	14.2	75
							240.30	241.40	1.10	0.039	2.4	62
	32	228.60	-50	225	8+16	1+46 S	173.90	174.30	0.40	0.023	1.7	78
	33	462.99	-55	045	9+20	0+00	61.10	62.00	0.90	0.151	5.8	1857
							425.80	427.08	1.28	0.044	0.1	109
	34	456.29	-70	045	3+40	1+18 S	22.20	22.60	0.40	0.028	4.2	1556
							181.10	182.15	1.05	0.036	3.8	7586
							348.72	349.60	0.88	0.047	0.1	109
	35	455.98	-55	045	11+20	0+05	283.00	284.00	1.00	0.015	7.6	466
	36	480.67	-50	225	11+20	0+05	NO INTER		1.00	0.013	7.0	400
	37	168.25	-45	045	3+42	0+59 S			0.00	0.026	0.4	243
	3/	100.25	-43	045	3742	0+59 3	80.50	81.32	0.82	0.036	0.4	
							90.25	91.05	0.80	0.073	2.5	494
							92.55	93.90	1.35	0.082	3.4	1573
							97.82	99.00	1.18	0.061	2.3	605

11.0 ECONOMIC GEOLOGY

Exploration programs on the Takla-Rainbow property carried out between 1984 and 1987 outlined significant concentration of gold mineralization on the TR West grid, located in the northern section of the anomalous trend that extends over three kilometers. Distribution of economic concentration of gold on the grid on the basis of drilling results to date falls in three zones separated by either weak mineralization or barren ground. (Figure 22).

- a) <u>West Zone</u> extends presently over 289 meters (from 2+46E to 5+35E) along the strike and 100 meters across. The deepest mineable ore intersection encountered to date and still open at depth is approximately 140 meters below the surface. The zone contains up to five parallel subvertical gold bearing structures. To the east this zone is bounded by weakly mineralized ground and on the west side mineralization seem to be absent.
- b) <u>East Zone</u> extends presently over 183 meters (from 7+37E to 9+20E) along strike and 130 meters across. The deepest mineable ore intersection in this zone occurs at 140 meters below the surface. The zone contains two or more parallel subvertical gold bearing structures. To the west the zone is bounded by weakly mineralized ground. More drilling is required to further delineate the strike extent of mineralization in this zone to the east.
- c) <u>South Zone</u> was first drilled during the 1987 field season. The highlight of the program was an intersection that yielded 0.17 oz/ton over 2.99 meters at the depth of 180 meters below the surface. The zone is bounded by weak mineralization on the west side and seem to be cut-off to the east. The strike length of untested ground in this zone that requires further drilling is approximately 275 meters.

11.1 Ore Reserves:

An estimate of geological reserves in the West and East Zone was done using the following parameters:

- cut-off grade: 0.10 oz/ton
- minimum mining width: 4 feet
- strike and dip length: 100 feet or half distance to the next intersection, whichever is less
- tonnage factor: 12

Total undiluted, uncut, drill indicated and inferred reserves are presently 220,000 tons grading 0.40 oz/ton over an average width of 5 feet.

The potential for increasing this tonnage by additional drilling in two zones is considered excellent, since mineralization is still open at depth. Further drilling between the West and East Zone has a very good chance of eliminating the gap that presently exists between the zones. In the South Zone, where the potential for discovery of additional reserves looks the best, drilling planned for 1988 field season could more than double present reserves.

12.0 CONCLUSIONS AND RECOMMENDATIONS

Exploration on the Takla-Rainbow gold property carried out by Imperial Metals Corporation in the period 1985 - 1987 was successful in delineating an anomalous geochemical and geophysical trend extending over three kilometers.

Detail geophysics and shallow drilling on the trend to date delineated economic gold concentration on its northwesterly section in three separate zones. Currently, geological reserves in two zones are 220,000 tons at 0.40 oz/ton.

The lateral and down-dip extension of mineraliztion cannot be determined with accuracy due to limited information from drilling, but with an additional drill program current reserves on the property could be significantly increased.

A \$600,000 exploration program on the property during the 1988 field season is recommended. The main objectives of the program are: 1) to further delineate geometry of mineralized zones and 2) to continue testing anomalous trend. The program will consist of 4,500 m of diamond drilling as well as induced polarization and VLF surveys along the trend, in an effort to delineate new drill targets. With the geochemical coverage to date, a combination of these two geophysical surveys and diamond drilling is considered the most effective method in exploring the property.

BIBLIOGRAPHY

- Bacon, W.R.; Geological and Geochemical Report on the Twin Claim Group, Department of Mines and Petroleum Resources B.C. Assessment Report No. 2501; 1970.
- Garnett, J.A.; Geology and Copper-Molybdenum Mineralization in the Southern Hogem Batholith, North Central British Columbia, C.I.M. Bull., Vol. 67, No. 749 pp 101-106; 1984.
- Meade, H.D.; Geology of Germansen lake Area, Geological Field Notes to accompany Map No. 19, Department of Mines and Petroleum Resources, B.C., 1975.
- Helsen, J.; Mattagami Lake Exploration Ltd., Property Evaluation Report, 1981.
- Turner, J.; Newmont Exploration of Canada Report, 1981.
- Edmunds, C.; Geological Report on the Twin Creek Property for Amir Mines Ltd., 1983.
- Morton, J.W.; Durfeld, R.; Imperial Metals Corporation, Assessment Report, 1984.
- Pesalj, R.; Imperial Metals Corporation, Assessment Report, 1985.
- Pesalj, R.; Gorc, D.; Imperial Metals Corporation, Assessment Report, 1986.
- Pesalj, R.; Imperial Metals Corporation, Assessment Report, 1987.
- Streckeisen, A.; To Each Plutonic Rock its Proper Name. Earth Science Reviews, 12 (1976), 1-33.

STATEMENT OF EXPENDITURES

PERSONNEL	DATES	<u>DAYS</u>	COST
R. Pesalj D. Gorc J. Walker L. Stevenson S. Royea P. Knelsen C. Bowman B. Gardiner B. Ashley R. Ashley	Jul 12-Aug 1; Aug 9-Sept17; Oct 7-31 Jul 19-27; Aug 5-Sept 7; Sept 17-Oct 8 Jul 12-28 Jul 14-26 Jul 12-Oct 2 Oct 1-30 Sept 6-Oct 30 Aug 11-Oct 23 Jul 6-25; Jul 29, 31; Aug 6-8 Jul 6-29; Aug 6-8	87 65 17 13 60 30 55 74 25 27	\$ 21,750 13,000 1,530 1,690 5,100 3,000 5,500 9,620 2,500 2,700 \$ 66,390
FOOD AND ACCOMMODA	TION		
Camp cost:	453 man days @ \$45/day		20,385
GEOPHYSICAL SURVEY	<u>s</u>		13,070
DIAMOND DRILLING	23 holes (BQ); 6042 m @ \$91.07/m	•	550,221
ANALYTICAL COSTS			
1830 core sa 271 soil sa 64 rock sa	mples		27,450 4,065 960
TRANSPORTATION			
	ays @ \$65/day 20 hrs @ \$525/hr tal		7,280 10,500 15,000 13,750
DRAFTING AND REPOR	T PREPARATION		2,790
	SUB TOTAL		731,861
ACCESS ROAD (subm	itted for assessment on September 8, 1987)		48,595
	TOTAL EXPENDITURES		780,456

AUTHOR'S QUALIFICATIONS

- I, RADOMIR PESALJ, do hereby certify that:
- (1) I am a graduate in Geological Engineering from the University of Belgrade, Yugoslavia (B.Sc. 1963).
- (2) I have practised in the geological profession for the past 23 years, including study and exploration of base metal, uranium and gold deposits in North America and Europe. Presently, I am a permanent senior staff geologist with Imperial Metals Corporation of Vancouver, British Columbia.
- (3) I am a member of the Society of Economic Geologists Inc.
- (4) I supervised all exploration programs conducted on the Takla-Rainbow property in the period 1985-1987.

FEBRUARY 1988

Rad. Vesae Radomir Pesalj

D. Gorc - Geologist

13.5c. Eng. 1976 Queen's University

APPENDIX I

BOREHOLE LOGS (TRS-87 1-1; DDH 19-37)

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY : Takla-Rainbow

LOCATION : TRS Grid

HOLE NO. : TRS 87-1

: 10 + 86 N/6 + 50W LOC.

COMMENCED: July 13, 1987

ELEV.

:

COMPLETED: July 17, 1987 OR IECTIVE.

CORE SIZE: BO Azimuth . 055° CORRECT DIP: - 55°

TRUE BRG : 055°

SURVEY AT :

% RECOVERY :

LOGGED BY DATE

PAGE

: R. Pesalj : July 17, 1987

: 1 of 4

CORE STORED : at the camp

OBJECT			Azimuth : 055° LENG	TH	: 144.7		UNUSUAL FEAT.:							
From	То	C.J.	Decemintion	Smp.	From	То	1 4 h		Analysis					
мет	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu	Zn ppm	Pb ppm	
0.00	2.74		Overburden. Angular fragments of andesitic volcanic, beige to rusty in	4001		4.26	1.52		1060	15.5	2926	119	8	
			colour. BW casing.	4002	4.26	5.48	1.22		7	1.1	271	157	11	
				4003	5.48	6.10	0.62		57	25.8	4903	102	5	
2.74	6.10		Beige and rusty, oxidized andesitic volcanic, broken, blocky core. Thin	4004		7.62	1.52		1	. 4	72	176	11	
			white quartz veinlets cutting the unit at various angles to core axis.	4005	7.62	9.14	1.52	<u> </u>	12	5.3	1500	96	11	
			Locally the unit is fragmental, fragments of the same composition 1-5cm,	4006	9.14	10.67	1.53		4	.5	90	78	10	
			angular. Minor calcite with quartz veinlets 1-10mm thick.	4007	10.67	12.19	1.52		2	.1	32	84	12	
				4008	12.19	13.71	1.52		4	.1	17	103	12	
6.10	26.30		Greenish maroon agglomeratic porphyritic andesite, fresh. Consists	4009	13.71	15.24	1.53		4	.1	14	98	13	
			of plagioclase phenocrysts 1-3mm in length in greenish-grey plagioclase an	d 4010	15.24	16.76	1.52		2	.1	10	82	11	
			chlorite groundmass. Thin 1-10mm, quartz-carbonate veinlets cutting the	4011	16.76	18.89	2.13	<u> </u>	4	.1	29	78	7	
			units of various angles to core axis. Plagioclase phenocrysts locally	4012	18.89	19.81	0.92		1	.1	13	56	11	
			kaolinized, beige in colour. Fragments of the same composition, angular,	4013	19.81	21.33	1.52		1	.2	8	74	6	
			1-10cm across throughout the unit.	4014	21.33	22.86	1.53		2	.1	7	71	9	
				4015	22.86	24.38	1.52		1	.4	9	122	9	
26.30	28.05		Rusty, oxidized andesitic volcanic highly sheared section, badly broken	4016	24.38	26.30	1.92		4	.1	103	94	10	
			core, occasional clay mixed with andesitic fragments.	4017	26.30	27.12	0.82		1	.2	61	109	15	
				4018	27.12	28.05	0.93		11	.8	264	54	8	
28.05	39.00		Greenish-grey and locally maroon andesitic volcanic, agglomeratic, angular	4019	28.05	29.60	1.55		1	.2	39	72	13	
			fragments of porphyritic andesite maroon coloured set in greenish-grey	4020	29.60	30.55	0.95		1	.1	19	83	6	
			coarse grained groundmass. Minor quartz veinlets and limonite stained	4021	30.55	32.00	1.45		51	.2	12	73	10	

TAKLA-RAINBOW PROPERTY TRS87/1 Page 2 of 4

From	То			Smp.	From	То				Ar	alysis	5	
Met	ters	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
			fractures. Feldspar mostly fresh, occasional sections with beige kaoline	4022	32.00	33.53	1.53		19	.3	8	68	15
			fractures. Feldspar mostly fresh, occasional sections with beige kaoline	4023	33.53	35.05	1.52		1	.1	9	67	7
			altered grains.	4024	35.05	36.58			1	.3	8	71	14
39.00	61.41		Green and grey, porphyritic to massive, f.g. amdesitic volcanic, badly	4025		38.10		:	22	1	10_	42	9
			broken, sheared core. Occasional thin 1-5mm quartz-calcite veinlets.	4026	38.10				2	2		89	
			Narrow sections of fault gouge throughout this section. Average core	4027	39.62	40.12			3	.6	13	107	16
		<u> </u>	recovery 80%.	4028	40.12	41.15			4	.4	184	105	5
		\sqcup		4029	41.15				2	7_	206	81	10
61.41	63.24		Grey and light grey, porphyritic locally bleached andesitic volcanic,	4030	42.67				1	.4	165	73	7
			sheared and faulted.	4031					1	.6	201	85	9
				4032	45.72				<u> </u>		15	94	
63.24	67.40			4033					5		17	110	11
									6 9	<u>.2</u> .7	218 167	130 123	8 12
	<u> </u>		mass. The unit is cut by thin quartz veinlets 2-5cm thick that occasionally						77	1.4	499	96	5
		\vdash	contains chalcopyrite grains. A distinct alteration hallos in contact	4036 4037					19	$\frac{1.4}{3.3}$	1069	46	7
			with veinlets is common in the unit. From 67.45 - 67.95m lightly sheared	4037					410	3.9	874	65	8
		-	section.	4039					19	.3	34	44	10
67.40	68.20		Greyish-green porphyritic andesitic volcanic. White plagisclase grains set	4040					2	.4	32	50	17
07.40	08.20		in very fine grained chlorite rich groundmass.	4041	•	-			4	.4	9	63	10
	 	\vdash	IN YELF TIME GLETNER CHIOLITE FICH GLOUNGHUSS.	4042					2	.9	290	59	10
68.20	70.41		Green, fine grained porphyritic andesite. Consists of white plagisclase		127.50				1	.4	19	79	9
_00.20	70.41	\vdash	phenocrysts set in fine grained, chlorite rich groundmass.		128.80				5	.3	22	85	11
	 	\vdash	producti Jose des in Tine granica, entre tes granicas.		132.59				2	.2	29	70	14

TAKLA-RAINBOW PROPERTY TRS87/1 Page 3 of 4

From	То			Smp.	From	То				Ar	nalysis	3	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
70.41	76.80		Coarse grained porphyritic andesitic volcanic, greenish-grey to maroon in	2871	137.16	137.66	0.50		12	.3	38	418	22
				2872	137.66	138.68	1.02		23	.1	17	171	15
			maroon coloured, angular. Very minor quartz veinlets cutting the unit in	2873	138.68	140.21	1.53		8	.2	82	111	14
			random fashion.	2874	140.21	140.51	0.30		6	.1	8	136	12
	*****			2875	140.51	141.73	1.22		4	.2	6	433	19
76.80	77.05		Quartz veinlets cutting the unit above at 30° to core axis. Vugs to 2cm	2876	141.73	143.26	1.53		12	.1	7	141	13
			across along the veinlets 5-10cm in width.	2877	143.26	144.78	1.52		11	.1	11	114	8
77.05	84.64		Coarse grained porphyritic andesitic volcanic. The contact with fine										
			grained green volcanic below is at 20°. From 83.82 - 84.64m brecciated and										
			calcite rich section at the contact with unit below. At 81.70m foliation										
			at 35° to core axis.										
84.64	94.32		Green, fine grained, massive basaltic volcanic. The upper section of the										
			unit has prominent calcite filled amygdules, the lower section is massive										
			flow.										
			Minor quartz-calcite veinlets at various angles to core axis.										
94.32	127.50		Coarse grained porphyritic andesite with white plagioclase phenocrysts from						<u> </u>				
			1-10mm in length set in green, fine grained, chlorite rich matrix. The unit						<u> </u>				<u> </u>
			locally contains angular clasts of the same composition and minor quartz								<u> </u>		
			veinlets. The upper contact is at 60° to core axis. At 112.92m fault, 5cm										<u> </u>
			wide gouge section. Very minor quartz veinlets cutting the unit.										
127.50	132.59		Coarse grained porphyritic andesite as above to 127.50m weakly bleached and										
			kaolinized.										

TAKLA-RAINBOW PROPERTY TRS87/1 Page 4 of 4

From	То			Smp.	From	То				Aı	nalysi	<u> </u>	
	ers	Syb	Description	No.	Mete	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
132.59	137.16		Sheared porphyritic andesite as above, highly bleached, broken core, minor										
			limonite along the fractures.	 									
137.16	137.66		Fault gouge, light grey and beige, quartz vein fragments.										
137.66	138.68		Highly sheared, badly broken angular quartz and jasperoid fragments.										
138.68	140.21		Fault gouge, minor quartz and jasperoid fragments.										
140.21			Highly bleached and sheared porphyritic andesite, shear fracture filled with										
			graphite running along the core axis.								-		
140.51	141.73		White and purplish jasperoid breccia. Angular fragments of purplish										
			jasperoid cemented by late beige quartz. Vugs filled with quartz		<u> </u>					<u> </u>	ļ		ļ!
			crystals throughout. Honey coloured quartz veinlets cutting the unit.		ļ		<u> </u>		<u> </u>		1		ļ
ļ			Limonite coated fractures in the lower part of the unit.				-				-		
141.73	143.26		White and purplish jasperoid breccia fragments in a shear cone. Badly broken core.										
			provon core.										
143.26	144.78		Fault gouge with quarts and jasperoid fragments in gouge clay. Foot of				ļ				<u> </u>		
			hole.	<u> </u>					ļ	<u> </u>	 		
			Acid Tests:				 		ļ	-		 	\vdash
			Red Corrected				<u> </u>						
			60.96m - 65° 00' - 58° 00'	Ī									
			121.92m - 60° 00' - 52° 00'	ļ									
				<u> </u>			ļ	ļ		-	 		
	<u> </u>	<u> </u>		<u></u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY : Takla-Rainbow

LOCATION : TRS Grid

HOLE NO. : TRS 87-2

: 10 + 75N/4 + 75W LOC.

TRUE BRG : 055°

CORRECT DIP: - 45°

PAGE LOGGED BY

: 1 of 3 : R. Pesalj

COMMENCED: July 18, 1987

ELEV. :

SURVEY AT :

DATE

: July 23, 1987

COMPLETED: July 21, 1987 OBJECTIVE:

CORE SIZE: BO

% RECOVERY : 100%

CORE STORED : at the camp

Azimuth : 055° UNUSUAL FEAT.: LENGTH : 174.65m

From	To			Smp.	From	To				Ana	alysis		
Met	ers	Syb	Description	No.	M∈	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Pb
									ppb	ppm	ppm	ppm	ppm
0.00	3.05		Overburden. Angular fragments of andesitic volcanic, BW casing.	4053	34.50	35.10	0.60		220	3.7	181	186	19
				4054	39.60	40.50	0.90		153	1.0	175	168	16
3.05	9.14		Maroon and grey, coarse grained porphyritic andesitic volcanic. The unit	4055		41.60	0.35		1	.7	169	155	12
			contains angular fragments of the same composition as the matrix. Fragments	4056	52.70	53.94	1.24		1	.5	105	221	32
			range in size from 1-5cm and are evenly distributed throughout the unit.	4057	53.94	54.64	0.70		1	.2	36	189	26
		\sqcup	Agglomeratic andesite or agglomerate. Minor quartz-calcite veinlets cross-	4058					1	.3	46	251	23
		$\sqcup \sqcup$	cutting the unit.	4059		57.30			1	.6	234	53	26
		Ш		4060	78.60	78.80	0.20		11	.3	9	121	34
9.14	15.24	\sqcup	Green, fine grained, massive andesitic volcanic. Very minor quartz-calcite							ļ			
			veinlets at various angles to core axis. Occasional calcite filled amyg-							<u> </u>			·
			dules. At 26.10m foliation at 10° to core axis.										
15.24	34.50		Maroon and grey, agglomeratic andesite, as above to 9.14m. Fragments more										
			frequent than in the unit above.										
34.50	35.10		Agglomeratic porphyritic andesite as above, minor limonite coated fractures.										
35.10	39.60		Coarse grained porphyritic andesite, agglomeratic, numerous angular clasts										
			of the same composition as the matrix throughout the unit. Agglomerate or										
			agglomeratic andesite.										
39.60	40.50		Same as above, but the section contains 1cm quartz-feldspar veinlets at 20°										
			to core axis.										
		<u> </u>								<u> </u>			

TAKLA-RAINBOW PROPERTY TRS87/2 Page 2 of 3

From	То			Smp.	From To				Aı	nalysi	 ;	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
40.50	41.25		Same as above to 39.60m.									
41.25	41.60		Same as above, but the section contains 1 cm quartz-feldspar veinlets at 0-30° to core axis.									
41.60	44.00		Same as above to 39.60m.									
44.00	47.80		Light green and grey, fine grained porphyritic andesitic volcanic. Consists of fine grained matrix with minor plagioclase phenocrysts throughout. Locally calcite filled amygdules.									
			The contact with upper coarse grained unit is at 20°, very sharp.									Ť
47.80	52.70		Coarse grained, maroon and grey agglomeratic andesitic volcanic.									
52.70	57.30		Coarse grained, maroon, highly hematitic agglomeratic andesitic volcanic as above, but broken up and with higher hematite content.									
			From 52.70 to 54.64m white quartz veinlets at 40°-50° to core axis.									
57.30	69.90		Green, coarse grained agglomeratic porphyritic andesitic volcanic, locally cut by white quartz veinlets at 45°-60° to core axis.									
69.90	70.60		Light green, massive felsic dyke. Contacts with volcanics at 25°. The unit is homogeneous, massive, cut by white quartz veinlets at 45°-50° to core axis.									

TAKLA-RAINBOW PROPERTY TRS87/2 Page 3 of 3

From	To			Smp.	From To				Aı	nalysi	s	
		Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
70.60	98.45		Light grey and beige, leucocratic granitic porphyry. Consists of medium									
			grained quartz - feldsparthic groundmass and large 1-20mm plagioclase and									
			rare K-spar phenocrysts. At the contact with volcanics from 78.60m to									
			78.80m white quartz vein.			1						
						1				1		
98.45	139.90		Green and maroon, coarse grained agglomeratic andesitic volcanic, badly									
			broken, blocky core - shear zone. Local sections 0.5-1.0m maroon coloured,									
			highly hematitic.									
139.90	143.45		Same as above but green, chloritic.									
143.45	156.00		Green, five grained, massive andesitic volcanic. Upper contact with									
			agglomeratic unit is at 30° to core axis. The middle section is bleached,									·
			kaolinized. Minor white quartz veinlets at 20°-30° to core axis.									
156.00	167.49		Maroon and grey, agglomeratic andesitic volcanic. Consists of coarse									
			grained porphyritic matrix with fragments of the same composition. From									
			158.50-158.70m fault gouge.							<u> </u>		<u> </u>
												<u> </u>
167.49	174.65		Maroon and light green, coarse grained, massive porphyritic andesite. At									<u> </u>
			171.70m foliation at 45°-60° to core axis. Foot of hole.							<u> </u>		<u> </u>
										<u> </u>		<u> </u>
			Acid Tests									
			Red Corrected									
			60.96m - 63° 00' - 55° 30'									
			121.92m - 61° 00' - 53° 30'									
			174.65m - 59° 00' - 52° 30'								l	

DRILL RECORD IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION : TRS Grid

HOLE NO. : TRS 87-3

: 10 + 75N/4 + 79WLOC.

COMMENCED: July 21, 1987

ELEV. :

COMPLETED: July 26, 1987 OD TECTIVE.

CORE SIZE: BO Azimuth . 2250 CORRECT DIP: - 45°

TRUE BRG : 235°

SURVEY AT :

% RECOVERY : 100%

LENGTH . 102 62m PAGE

: 1 of 3 : R. Pesalj

LOGGED BY : July 27, 1987 DATE

CORE STORED : at the camp

IMBOBAL CEAT .

rom	То			Smp.	From	То				Ana	alysis		
Met	ters	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Pb
									ppb	ppm	ppm	ppm	ppm
0.00	6.10		Overburden, fragments of granitic intrusive, bleached, kaolinized, BW	4061	21.65	24.70	3.05		1	.1	8	40	15
			casing.	4062	24.70	26.20	1.05		1	.1	5	66	11
	۸.			4063	26.20	26.80	0.60		5	.1	13	84	12
6.10	28.74		Beige, light green and grey granitic porphyritic intrusive. Consists of	4064	41.86	43.28	1.42		10	.3	90	52	14
			large 1-10mm phenocrysts of greenish plagioclase, grey quartz and pink	4065	43.28	44.30	1.02		50	.2	58	102	18
				4066					270	.6	41	92	24
				4067					1	.3	3	170	10
			with sections of broken core indicating shear zone from 21.65 - 26.60m.	4068		60.75			12	.5	239	54	14
			Limonite coated fractures very common throughout the sheared section.	4069					3	.1	8	21	12
,				4070		45.70			1	.2	23	90	4
28.74	41.85			4071					15	.1	18	55	35
			quartz veinlets to 1 cm thick cutting the unit at 45°-50° to core axis.	4072		85.95			1	.1	13	60	63
				4073		87.48			205	1.1	22	52	103
				4074		89.00			15	.1	14	64	35
41.86	44.83		Same as above to 41.85m but bleached, locally hematite rich zone.	4075		90.52			196	.1	19	47	18
				4076					2	.1	13	46	14
44.83	49.18		Grey-green, coarse grained prophyritic andesite as above to 41.85m.		91.74				12	.1	11	51	15
				4078					<i>7</i> 50	1.1	11	51	41
49.18	49.63	[Light pinkish vein of amorphous quartz containing fragments of highly		93.57				23	.2	12	52	8
			altered, bleached and kaolinized and silicified andesite. The upper contact	4080					72	.3	16	58	20
			of the vein is at 40° to core axis. The lower contact at 20°.	4081					1090	2.1	13	106	82
				4082	97.84	99.80	1.96		63	.1	11	72	26

TAKLA-RAINBOW PROPERTY TRS87-3 Page 2 of 3

From	То			Smp.	From	То			·	Aı	nalysi	<u> </u>	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag	Cu	Zn	Pb
r									ppp	ppm	bbw	ppm	ppm
49.63	59.22		Grey and green, variably bleached porphyritic andesite with minor quartz-	4083	99.80	101.13	1.33		360	1.1	10	45	15
			epidote veinlets.	4084	101.13	104.07	2.94		280	.7	112	73	10
59.22	60.75		Light grey and green bleached section of the unit above.	4085	104.07	105.46	1.39		9	. 4	140	95	11
				4086	106.46	107.00	0.54		14	.6	281	107	11
60.75	83.03		Grey, coarse grained, massive porphyritic andesite, locally agglomeratic.		107.00				11	.2	169	45	8
			From 59.22 to 60.75m; 71.11 - 72.24m broken, bleached, kaolinized sections.		121.30				9	. 4	260	100	14
					122.70				15	.2	331	100	13
83.03	102.21		Wide section of highly bleached and kaolinized granitic intrusive. The		124.35				12	.3	219	98	18
			section is sheared and contains several fault zones with fault gouge.		125.58				7	.3	167	96	13
					130.90				11	.5	92	82	8
		\Box	From 88.00 - 89.00m fault gouge, fragments of andesite mixed with clay.		132.45				7	.6	330	80	9
					142.00				4	.1	18	61	4
102.21	121.30		Light green, chloritic porphyritic andesite, fragments of angular andesitic		142.80				23	.1	9	55	5
			material throughout.	4096	146.54	147.70	1.16		75	2.3	251	101	31
		\longrightarrow											
121.30	126.85		Same as above to 121.30m but bleached, kaolinized section.						<u></u>			ļ	
											ļ		
126.85	129.00		Green, chloritic porphyritic andesite.								ļ	ļ	<u> </u>
				ļ								 	<u> </u>
129.00	129.85		Maroon porphyritic andesite, agglomeratic, c.g. massive.									 	
								~	ļ	 		<u> </u>	
129.85	130.60		Felsic dyke, pink porphyritic, plagioclase slightly greenish, groundmass							<u> </u>		<u> </u>	ļ
		\vdash	pink.							 			
120.60	122 FO		Daiga and grove bealinged numbered to and acidia valuable and acidia	 							 	 	
130.60	133.50	\vdash	Beige and grey, kaolinized porphyritic andesitic volcanic, agglomeratic.	ļ			ļ				<u> </u>	<u> </u>	

TAKLA-RAINBOW PROPERTY TRS87-3 Page 3 of 3

From	То			Smp.	From	To				1A	nalysi	S	
Met	ers	Syb	Description	No.	Met	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
133.50	142.00		Maroon porphyritic andesite, agglomeratic, eg. massive, locally cut by thin										
			quartz veinlets at 70° to core axis. Moderately broken core.										<u> </u>
142.00	144.00		Maroon porphyritic andesite, agglomeratic, c.g. sheared, cut by thin quartz-										
-			calcite-chlorite veins at low angles to core axis.							<u> </u>	<u> </u>	 	ļ
144.00	146.54		Maroon and green, porphyritic andesite, agglomeratic, c.g. cut locally by										
146.54	147.70		white quartz veinlets. Beige, bleached and kaolinized porphyritic andesite, agglomeratic, minor										
			light beige quartz veins.										-
147.70	171.00		Green, chloritic, porphyritic andesite, agglomeratic, minor thin quartz										
			veinlets, locally cp, py grains.										<u> </u>
171.00	172.62		Green, fine grained basaltic volcanic, massive, cut by minor quartz veinlets, no sulphides visible.										
176 62	192.63		Green, coarse grained, chloritic porphyritic andesite, agglomeratic, very										
170.02	132.03		minor thin quartz veinlets and locally bleached sections. Foot of hole.										
			Acid Tests					· · · · · · · · · · · · · · · · · · ·		<u> </u>	-		
			Red Corrected										
			60.96m - 57° 00' - 49° 00' 121.92m - 60° 00' - 52° 00'						<u> </u>	 	<u> </u>	<u> </u>	
			182.88m - 60° 00' - 52° 00'										

DRILL RECORD IMPERIAL METALS CORPORATION

PROPERTY : Takla-Rainbow

LOCATION : TRS Grid

LOC.

: 10+09N/3+38W

CORRECT DIP: -45°

PAGE

: 1 of 5

HOLE NO. : TRS87-4

TRUE BRG : 055°

LOGGED BY

: R. Pesalj

COMMENCED: July 27, 1987

ELEV. : SURVEY AT : % RECOVERY :

DATE

: July 2, 1987 CORE STORED : At the camp

COMPLETED: August 2, 1987 OBJECTIVE:

CORE SIZE: BQ Azimuth : 055°

LENGTH

: 122.53m

UNUSUAL FEAT.:

OBOLCI		· · · · · · · · · · · · · · · · · · ·	AZIMUM . 000						1030AL				
rom	То			Smp.	From	То					alysis		
Met	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Pb
									ppb	ppm	ppm	ppm	pp
0.00	6.70		Overburden. Boulders of mafic volcanics, BW casing	4097	23.57	25.09	1.52		12	36.4	8.6	1839	3
				4098	25.09	25.37	0.28	·	20	314.9	154.0	6741	22
6.70	10.05		Rusty, heavily oxidized, brown volcanic, dark brown manganese and iron	4099	25.37	25.97	0.60		14	70.0	134.0	2431	9
			oxides throughout the section, soft, weathered section of the bedrock.	4100	25.97	27.52	1.55		32	18.2	123.0	510	5
				4101	27.52	29.04	1.52		52	7.2	109.0	287	1
10.05	15.24		Light grey, fine grained, massive andesitic volcanic, slightly bleached	4102	29.04	30.26	1.22		31	4.4	99.0	208	
			section. Locally sheared and faulted, minor green, altered plagioclase	4103	32.61	34.14	1.53		20	3.1	77.0	201	
			crystals. Fine grained pyrite along the fractures, pyrite <1%. At 11.68m	4104	41.45	43.12	1.67		6	3.8	41.0	332	<u> </u>
			fault gouge 5cm.	4105	43.12	44.20	1.08		5	7.4	62.0	183	<u> </u>
				4106	44.20	44.96	0.76		3	5.0	91.0	275	Ĺ
15.24	23.57		Grey, fine grained, massive andesitic volcanic. Local rusty weathered,	4107	44.96	46.02	1.06		7	4.1	51.0	1085	4
			sheared sections with iron and manganese oxides along the fractures. Pyri	e 4108	46.02	47.39	1.37		3	1.9	85.0	770	1
			concentrated along the joints, overall content less than 1%. Minor quartz-	4109	47.39	48.80	1.41		10	6.4	75.0	796	5
			calcite veinlets 1-5mm wide at 45° to core axis.	4110	48.80	50.50	1.70		3	2.8	168.0	286	
				4111	50.50	51.35	0.85		4	2.3	75.0	243	
23.57	25.09		Andesitic volcanic as above, moderately fractured, disseminated and veinle	4112	51.35	53.30	1.95		2	1.7	125.0	138	
			pyrite 3%.	4113	53.30	53.95	0.65		1	3.4	136.0	152	
				4114	53.95	55.40	1.45		1	2.8	112.0	111	
25.09	25.37		Green andesitic volcanic cut by white quartz veinlets at 50° to core axis.	4115	59.60	60.50	0.90		26	3.0	217.0	1082	
			Disseminated and veinlet pyrite 5-8%.	4116		61.56			250	4.0	127.0	1044	
				4117		64.00			15		96.0		,

TAKLA-RAINBOW PROPERTY TRS87-4 Page 2 of 5

From	To			Smp.	From	То				Ar	nalysi	S	
Met	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
							2 25						
25.37	25.97		Green andesitic volcanic as above, fractured, disseminated and veinlet	4118			•			128.6			9938
			pyrite 3%.	4119					33	12.3	84.0	372	73
	20.00		Once andesitie valence many fractioned than the coulting of the section of the se	4120						254.3			16217
25.97	30.26		Green andesitic volcanic, more fractured than the section above, dis-	4121			-		4	52.1	136 92	7038 407	2577 199
	.,		seminated and veinlet pyrite 10%. Minor quartz-calcite veinlets at 50° to core axis.	4122			+		1	14.2 5.0	128	407 452	211
			Core dx15.	4123					1				94
20.00	20 61		Light grey-green andesitic volcanic, no sulphides visible, minor fracturing	4124 4125					1	4.2 6.6	147 115	410 468	226
30.20	32.61		throughout the section.	4125					3	4.9	115	938	395
			till oughout the Section.	4127					22	8.1	23	372	423
32.61	34.14		Green andesitic volcanic, disseminated fine grained pyrite throughout, over-		103.90				36	4.1	158		216
32.01	34.14		all pyrite content 8-10%.		105.42				85	2.7	90	582	160
			THE PARTIES CONTONE 0-10%.		106.35				90	5.2	117	1644	689
34.14	41.45		Green andesitic volcanic as above, disseminated pyrite less than 1%. The		107.29				47	3.0	127	1234	222
37.17	41.40		unit is massive, fine grained, with minor quartz veinlets.		108.81		*		18	2.0	91	613	198
			anno to macorro, i mo grannoa, mon mono, quanta formoso.		110.34		+		25	2.8		466	
41.45	48.80		Beige, bleached, highly kaolinized, brecciated andesitic volcanic. Frag-		111.86				38	5.4	152	955	403
72.14			ments 1-5cm angular, cemented with grey quartz with disseminated pyrite.	1.20.									
			Pyrite content 1-3% overall, locally 5-8%.	ļ						l			
										ļ —————			
48.80	56.00	56.	Beige and green, locally highly fractured andesitic volcanic with occasional										
			zones of silicification.										
			·										
			From 50.50-51.35 intensely fractured and brecciated, cemented with quartz										
			and py cement.										
										1			

TAKLA-RAINBOW PROPERTY TRS87-4 Page 3 of 5

From	To			Smp.	From To		į		Aı	nalysi	s	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
			From 51-35-53.95m green, chloritic section.									
			From 53-95-5540m beige, bleached section, locally sheared.									
56.00	59.60		Green, massive, fine grained andesitic volcanic, local fragments of the									
			same composition, minor white quartz veinlets.									-
59.60	60.50		Brecciated andesitic volcanic. Beige angular fragments set in grey, chloritic matrix. Disseminated pyrite abundant in the matrix, absent in									
			fragments. Disseminated pyrite 3%.									
60.50	61.56		Same as above, but more sheared section. Badly broken core. Disseminated pyrite 8%.									
61.56	64.00		Green, chloritic andesitic volcanic, soft, brecciated, occasional quartz veinlets, pyrite less than 1%.									
64.00	64.25		Same as above but sheared, quartz vein 1cm wide, sphalerite, pyrite and									
			minor galena along the vein contacts. Sulphides 3-5%.								<u> </u>	
64.25	65.55		Beige, bleached, brecciated andesitic volcanic, fragments cemented by quartz pyrite matrix.									

TAKLA-RAINBOW PROPERTY TRS87-4 Page 4 of 5

From	То			Smp.	From	То				A	nalysi	5	
Me	ters.	Syb	Description	No.	Mete	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
65.55	66.55		Green and dark green, sheared andesitic volcanic, bands and disseminations										
			of sphalerite, pyrite and minor galena and chalcopyrite with white and mauve			·····							
			jasperoid veins. Foliation strong at 40° to core axis.										
66.55	70.71		Green and beige andesitic volcanic, brecciated, fragments cemented by quartz										
			and pyrite cement.										
70.71	75.28		Shear zone in bleached, massive andesitic volcanic. Badly broken core.										
			Core recovery 80%. No visible sulphides in this section.										
75.28	76.81		Fault zone in bleached, kaolinized, soft andesitic volcanic. Core recovery						ļ	<u> </u>			
			40%.										
											<u> </u>		
76.81	103.90		Light grey, massive, bleached andesitic volcanic with locally sheared and										
			faulted sections. The unit is brecciated and contains minor disseminated										<u> </u>
			pyrite.			· · · · · · · · · · · · · · · · · · ·							<u> </u>
			From 77.70-78.00m fault gouge. At 81.00 thin quartz-carbonate veinlet					<u> </u>				<u> </u>	
			along the core. From 98.14 to 102.72m sheared section, bleached,										
			kaolinized.										
103.90	106.35		Beige, brecciated, andesitic volcanic, soft, disseminated fine grained			······································			<u> </u>			 	
			pyrite and grey quartz along the fractures.										
	<u> </u>		pyrice and grey quartz arong the fractures.										_

TAKLA-RAINBOW PROPERTY TRS87-4 Page 5 of 5

From	To			Smp.	From To		:		Aı	nalysi	s	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.		Ag	Cu	Zn	Pb
								ppb	ppm	ppm	ppm	ppm
106.35	113.48		Green, brecciated andesitic volcanic, disseminated and veinlet pyrite									
			throughout the section. Sulphide content 5-8%. Minor thin quartz veinlets									
			without sulphide. Dark grey quartz veinlets with disseminated pyrite									
			throughout.									
		\Box								ļ		<u> </u>
113.48	122.53		Light green, massive, fine grained andesitic volcanic locally cut by thin							ļ		ļ
			quartz-calcite veinlets. Dominant trend of veinlets is at 45°-50° to core									
			axis. Foot of hole.							ļ		
											<u> </u>	
			Acid Tests									
			Red Corrected									
			60.96m ~ 57°00' ~ 49°00'									
			121.92m - 55°00' - 46°30'									
									İ			

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION: West Drill Grid

: 1 of 6 PAGE LOGGED BY

HOLE NO. : DDH 19

DRILL RECORD

: 9 + 20E/0 + 90SLOC.

CORRECT DIP: -55° TRUE BRG : 045°

: R. Pesalj

COMMENCED: August 17, 1987 COMPLETED: August 20, 1987 ELEV. :

SURVEY AT : % RECOVERY : 100% DATE : CORE STORED : At the camp

OBJECTIVE:

CORE SIZE: BQ

LENGTH : 262.13m UNUSUAL FEAT.:

OBJECT	141.			· · · · · · ·									
From	То			Smp.	From	To				Ana	alysis		
Met	ers	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
0.00	3.66		Overburden, angular fragments of mafic volcanics, BW casing.	4135	11.90	13.42	1.52		47	1.0	209	128	
	(4136	29.30	29.77	0.47		29	.5	720	99	
3.66	11.90		Dark green, medium grained, massive andesitic volcanic, badly broken core,	4137	29.77	31.28	1.51		8	.4	171	185	
			iron oxides along the fractures.	4138	31.28	32.17	0.89		17	. 4	165	124	
					33.63		0.45		12	.3	148	129	
11.90	13.42		Andesitic volcanic, light grey-green, cut by white quartz veinlets, slightly				0.56		205	.5	165	92	
			bleached, trace pyrite, abundant epidote along the fractures.	4141					8	.2	24	195	
				4142					6980	1.9	113		0.216
13.42	25.62		Dark green, massive andesitic volcanic, rare quartz veinlets and epidote	4143		53.40			11	.3	256	155	,
			filled fractures, locally limonite coated fractures.	4144	54.00		1.78		31	.2	87	184	
				4145		66.00			12	.4	53	194	
25.62	26.50		Dark green and pink granite porphyry, numerous inclusions of highly	4146					8	.4	44	105	!
			chloritized volcanic material.	4147		69.80			26	.6	352	158	
				4148				ļ	10	.2	63	131	
26.50	27.88		Green and dark green andesitic volcanic minor bleaching and quartz veinlets.		70.50				1	1 1	20	149	
		L			71.00				17	.9	566	135	
27.88	29.30		Pink and light grey granite porphyry, few quartz phenocrysts, rare quartz	4151		75.85		ļ	4	1	29	115	
			veinlets. Contact with volcanics sharp at 40°-60°.		75.85				5	.4	47	64	
					114.71		0.50		10	.3	105	122	
29.30	29.77		The contact zone between porphyry and andesite, some quartz veinlets, no		119.90			 	11	.2	36	170	├
			visible sulphides.		121.45			 	11	.5	95	158	
<u> </u>					123.15				1	-1	26	208	
29.77	31.28		Dark green, fine to medium grained andesitic volcanic cut by fine quartz		124.50			ļ	8	.9	645	216	├
			veinlets at various angles to core axis.	4159	129.05	129.95	0.90	L	3	$1 \cdot 1$	26	132	<u> </u>

TAKLA-RAINBOW PROPERTY DDH 19 Page 2 of 6

From	То			Smp.	From	То				Aı	nalysis	<u> </u>	
Met	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
31.28	32.17		Light green andesitic volcanic slightly bleached, cut by white quartz vein	4160	129.95	130.85	0.90		2	.6	203	117	
			swarm, trace pyrite.	4161	132.80	134.80	2.00		19	.3	59	178	
				4162	134.80	135.90	1.10		7	.1	10	113	
32.17	33.63		Dark green andesitic volcanic, medium grained, minor hairline quartz	4163	135.90	136.85	0.95		3	2.1	7	138	
			veinlets.	4164	151.30	152.65	1.35		25	.1	15	143	
					152.65				11	. 1	11	186	
33.63	34.08		Light grey, bleached andesitic volcanic at the contact with porphyry, the		183.07				25	.1	7	108	<u></u>
			rock is cut by thin quartz veinlets throughout. No visible sulphide in the		202.20			:	11	.2	4	137	ļ
			zone.	4432	223.70	224.00	0.30		4	.1	2	113	
				ļ									<u> </u>
34.08	38.05		Light grey diorite porphyry. White, coarse phenocrysts of plagiociase set										
		\sqcup	in grey quartz-feldsparthic matrix. From 35.25-35.96m inclusion of dark	<u> </u>									ļ
		 	green andesitic volcanic.	<u> </u>									ļ
				Ь—									ļ
38.05	38.61		Light grey-green, slightly bleached andesitic volcanic in contact with	ļ									<u> </u>
		\sqcup	diorite porphyry. Minor quartz veinlets, no visible sulphides.									ļ	
		<u> </u>					ļ						<u> </u>
38.61	42.66		Dark green, fine grained mafic volcanic of basaltic composition. The unit								 -		<u> </u>
		\vdash	is massive with minor quartz veinlets and epidote.	├								<u> </u>	ļ
		 		 			 				ļ	 	
42.66	42.86		White and light green quartz vein in mafic volcanic. Weak foliation at	 			 					ļ	
		-	70° to core axis.	├─-								 	
40.00	47.00		Nosia valenia ee abaar ta 10 CCm	├	 		 				 		
42.86	47.26	\vdash	Mafic volcanic as above to 42.66m.	 							-	 	ļ
47 26	47.46	 	Thin, 0.5-1.0cm quartz-pyrite veinlets in mafic volcanic rock similar to the	 								 	
77.20	77.40	\vdash	unit above. Disseminated pyrite 3-5%.										
			antio abovo. Dissominated biline s-on.	 								 	
47.46	52.43		Mafic volcanic of basaltic to andesitic composition, minor quartz veinlets										
	22.73		and disseminated pyrite locally.				l						

TAKLA-RAINBOW PROPERTY DDH 19 Page 3 of 6

From	To			Smp.	From	То				Aı	nalysi	S	
Met	ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
52.43	53.40		Light grey and beige porphyritic intrusive, soft, bleached, green plagio-										
			clase phenocrysts throughout. Stockwork of quartz veinlets 15-20% quartz.										
53.40	54.00		Porphyritic intrusive as above to 53.40m but no quartz veinlets visible.										
54.00	55.78		Mafic volcanic cut by white quartz-calcite veinlets at low angles to core										
			axis. Quartz 5-8%.	-			ļ						ļ
55. <i>7</i> 8	65.43		Mafic volcanic of basaltic to andesitic composition, f.g., massive. Minor white quartz veinlets at low density.										
or 40													
65.43	66.00		Light grey intrusive, bleached, soft, minor white quartz veinlets.	-			ļ						ļ. —
66.00	66.45		White quartz, minor calcite vein cutting the intrusive above. No visible sulphides. Inclusions of green, chloritic intrusive 10%.										
66.45	68.40		Dark green, massive, fine grained volcanic with minor quartz veinlets.										ļ —
68.40	69.80		Light green and red, hematitic volcanic as above, minor quartz veinlets throughout.										
69.80	70.50		Same as above to 69.80m but less altered.										
70.50	71.00		White quartz veins cutting mafic volcanic at the contact with the unit above. Quartz content 35%.										
71.00	72.83		Green to dark green mafic volcanic cut by white quartz veinlets.										
72.83	75.05		Andesitic volcanic, dark green, massive, medium grained, cut by thin quartz veinlets <5mm wide.	-									

TAKLA-RAINBOW PROPERTY DDH 19 Page 4 of 6

From	To			Smp.	From To				A	nalysi	S	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
75.05	75.85		Same as above, slightly bleached, quartz veinlets more abundant.									
75.85	76.15		White and mauve quartz vein with green chloritic banding at 40° to core axis. Quartz content 85%.									
76.15	76.72		Pink and green, coarse grained granitic intrusive.									
76.72	114.71		Dark green, coarse grained, massive andesitic volcanic, locally porphyritic, occasional white quartz veinlets. The veins locally contain specularite but no visible sulphides. From 89.00m to 114.71m veins very rare, occasional pink granitic intrusive bands.									
114.71	115.21		White and pink quartz-feldspar veins, inclusions of dark green volcanic 30-40%. Large pyrite crystals up to 3cm across in the centre of the vein.									
			Contacts with volcanic sharp.									
115.21	119.90		Dark green, coarse to medium grained, andesitic volcanic, local pink intru- sive bands at 45° to core axis. Epidote along the fractures very common.									
119.90	126.70		Green and pink, medium grained, equigranular granitic intrusive cut by thin quartz veinlets at various angles to core axis. Local narrow zones of highly brecciated intrusive cemented by quartz.									
126.70	129.05		Dark green, medium to coarse grained mafic volcanic of andesitic composition.									
129.05	130.85		Light green, bleached andesitic volcanic cut by quartz and jasperoid vein- lets. At 129.30m vague with anhidrite crystals at low angle to core axis. Overall quartz content 25%.									

TAKLA-RAINBOW PROPERTY DDH 19 Page 5 of 6

From	То			Smp.	From To				A	nalysi	s	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
130.85	132.80		Dark green, chloritic andesitic volcanic, medium grained, massive, chloritic	:			:					
			blebs throughout.									
132.80	136.85		Light grey, bleached andesitic volcanic cut by quartz-anhidrite veins at						<u> </u>			
			low angles to core axis. No visible sulphides.									
136.85	151 30		Dark green, massive basaltic volcanic, medium to coarse grained. The unit	-		-					<u> </u>	
130.03	101.00		is slightly magnetic.			†						
			To see a			1						
151.30	152.65		Light grey, bleached, basaltic volcanic cut by white quartz vein stockwork.			†						
			No visible sulphides in this section.			<u> </u>				<u> </u>		
						1						
152.65	153.62		Dark green, massive basaltic volcanic, minor quartz veinlets along the core.									`
											<u> </u>	
153.62	157.88		Dark green, massive basaltic volcanic, minor quartz veinlets. The unit is									<u> </u>
		<u> </u>	slightly magnetic.	<u> </u>						ļ		<u> </u>
157.88	161 16		Light green, soft, broken up basaltic volcanic. The unit is highly altered	 		-				 		
137.00	101.10		with iron oxides along the fractures.			 		 	-	<u> </u>		
			With the strang the fraction.	1		1				<u> </u>	 	
161.16	183.07		Dark green medium to coarse grained mafic volcanic of basaltic composition.									
			The unit is slightly magnetic. At 155.70m quartz-feldspar vein pink, 5cm									
			wide, thin quartz veinlets 1-5mm throughout, but at low density.									
				ļ					<u> </u>	ļ		
183.07	183.97		Light grey, highly silicified andesitic volcanic, brecciated, fragments	-				ļ	ļ	ļ	ļ	
		-	bleached and cemented by quartz cement. Contacts with mafic volcanic above	-	<u> </u>	-		ļ		ļ	ļ	├
 			sharp at 40° and 60°.	 		 				<u> </u>	 	
183 97	202.20		Mafic andesitic volcanic, dark green, porphyritic, plagioclase phenocrysts	-		+					 	
100.0/			highly chloritized, rare quartz veinlets. The unit is slightly magnetic.			-				-	†	1

TAKLA-RAINBOW PROPERTY DDH 19 Page 6 of 6

From	То			Smp.	From To				A	nalysi	S	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
202.20	202.43		Breccia, fragments of white quartz cemented by crushed volcanic material.									
			A quartz vein 2cm wide above the breccia at 40° to core axis.									
				ļi								
202.43	223.70		Andesite, porphyritic, green, phenocrysts of augite 2-5mm set in green,									
			chloritic matrix. Occasional epidote veinlets and irregular patches									<u> </u>
			throughout the section. The unit is slightly magnetic. Rare quartz vein-									
			lets at 30°-60° to core axis.									
223.70	224.00		White and pink quartz vein, banded, quartz and hematitic red bands alter-									
			nating. Banding at 50° to core axis.									
						<u> </u>						
224.00	234.65		Andesite, porphyritic, dark green groundmass with white plagioclase pheno-									
			crysts 2-5mm along throughout the unit. Not magnetic. The contact between									<u> </u>
			porphyry is sharp at 30° to core axis. The unit gradually gets more felsic									
			toward the contact.			<u> </u>				<u> </u>		
		 				<u> </u>				<u> </u>		
234.65	261.21	 	Granite porphyry, pink groundmass with K-spar and white plagioclase pheno-	-		├ ──				 		
		 	crysts, with minor quartz phenocrysts. Rare quartz veinlets at various	ļ		<u> </u>				<u> </u>		
		\vdash	angles to core axis. From 255.73m to 256.13m the unit is sheared, badly	1		_				<u> </u>	ļ	
			broken core.			 				ļ		<u> </u>
261 21	262.13		Lost core in shear zone. Water circulation stopped. Rods got stuck. Hole	-		 				 -		<u> </u>
201.21	202.13	-		 						 		
			abandoned. 3.66m of BW casing left in hole.			-						-
			Sperry-Sun Tests*	 						_	<u></u>	
			Depth: Dip: Azimuth: *Readings not reliable due to			1						
		\Box	66.14 -58°00' 328° presence of magnetic volcanic			1						
			127.10 -58°00' 043° units in the hole.			 						
*			188.06 -60°00' 031°	1								
	 	 	249.94 -59°00¹ 035°	 		 				 	 	

DRILL RECORD IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow LOCATION: West Drill Grid CORRECT DIP: -55° PAGE

HOLE NO. : DDH 20 LOC. : 2 + 46E/0 + 58S TRUE BRG : 045° LOGGED BY : R. Pesalj

COMMENCED: August 20, 1987 ELEV. : SURVEY AT : DATE : August 22, 1987 COMPLETED: August 22, 1987 CORE SIZE: BQ % RECOVERY : 100% CORE STORED : At the camp

: 1 of 5

OBJECTIVE: LENGTH : 181.97m UNUSUAL FEAT.:

				,									
From	То			Smp.	From	To				Ana	alysis		
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
0.00	15.24		Overburden, fragments of mafic volcanics, BW casing.	4167	15.24	17.37	2.13		19	.1	15	93	
				4168	17.37	18.74	1.37		54	.1	13	148	
15.24	18.07		Dark green and pink, highly chloritized granitic intrusive, coarse grained,	4169	18.74	20.12	1.38		31	. 4	279	127	
			massive, epidote blebs and irregular patches throughout, disseminated pyrite	4170	20.12	21.64	1.52		76	.2	59	79	
			3-5%. The unit consists of K-spar, chlorite and epidote.		21.64				73	.2	15	96	
				4172	23.07	24.38	1.31		47	.1	10	96	
18.07	19.24		Dark green, massive basaltic volcanic, fine grained, epidote patches	4173	24.38	25.90	1.52		171	.2	13	90	
			throughout, at 18.95m quartz vein, banded, 3cm wide, cutting volcanic at	4174	25.90	27.90	2.00		28	.1	7	80	
			60° to core axis.	4175	27.90	29.57	1.67	30%	86	.1	19	99	
				4176	29.57	31.90	2.33		46	.1	8	98	
19.24	27.90		Dark green and pink granitic intrusive as above to 18.07m, numerous	4177	31.90	32.30	0.40		62	.3	15	119	
			inclusions of highly chloritized volcanic. The rock consists of K-spar	4178	32.30	34.14	1.84		98	.3	287	108	
			epidote and chlorite, but no quartz.	4179	34.14	35.96	1.82		37	.2	51	101	
				4180	35.96	36.40	0.44		138	. 4	292	114	
27.90	29.57		Sheared intrusive, blocky core, fragments 1-5cm, some with 1cm wide quartz	4181	36.40	37.79	1.39		43	.1	27	121	
		Щ	veins 1cm wide with disseminated pyrite. Core recovery in this section is	4182	37.79	39.30	1.51		54	.3	99	170	
<u></u>			30%.	4183	39.30	40.54	1.24		680	2.3	2379	102	0.019
				4184	40.54	41.60	1.06		1530	2.2	2266	88	0.052
29.57	31.90	Ĺ	Dark green and pink granitic intrusive as above to 27.90m, disseminated	4185	41.60	43.28	1.68		94	.4	346	76	
			pyrite 1-2%, abundant epidote.	4186	43.28	44.81	1.53		37	.3	135	76	
				4187	44.81	45.01	0.20		118	.4	134	53	
31.90	32.30		Dark green, chloritic mafic volcanic inclusion in granitic intrusive, dis-	4188	45.01	46.18	1.17		39	.2	34	70	
			seminated pyrite 5-8%.	4189	46.18	47.45	1.27		89	.5	227	58	
				4190	47.45	48.50	1.05		320	.8	491	132	

TAKLA-RAINBOW PROPERTY DDH 20 Page 2 of 5

From	То			Smp.	From	То				Aı	nalysis	;	
Met	ters	Syb	Description	No.	Me	eters	Lgth.	Rec.		Ag	Cu	Zn	Au
				<u> </u>					ppb	ppm	bbw	ppm	oz/tn
32.30	40.54		Pink and green granitic intrusive, coarse grained, equigranular, highly	4191	48.50	50.20	1.70		670	.6	353	148	
			chloritized, disseminated and veinlet pyrite 3%, epidote throughout.	4192	50.20	51.10	0.90		290	.3	134	159	
				4193	51.10	51.66	0.56		2640	7.1	6408	265	0.065
40.54	41.60		Same as above to 40.54m but with 5% pyrite.	4194	51.66	52.13	0.47		3720	8.0	8693	716	0.123
				4195	52.13	52.66	0.52		4840	6.4	9931	295	0.137
41.60	44.81		Same as above, fine grained disseminate pyrite 3-5%, locally 5-8%.	4196	52.66	54.30	1.64		92	.3	378	117	
				4197	54.30	55.47	1.17		112	.4	186	141	<u> </u>
44.81	48.16		Pink and green, coarse grained, chloritic granitic intrusive, minor dis-	4198					370	.6	368	123	
			seminated pyrite.	4199					78	.2	38	67	
				4200	66.75				162	.1	17	57	
48.16	56.54		Dark green, highly chloritic mafic volcanic of andesitic composition. The	4201	68.28				93	.1	43	49	
			unit is very fine grained, massive and locally cut by pink granitic intru-	4202	69.55				980	1.9	13	44	0.028
			sive. High concentration of disseminated pyrite locally, average 3%, minor	4203	70.45				74	.2	22	60	
			magnetite.	4204	72.24				69	.1	19	57	
				4205	73.76				59	.1	20	66	
			From 51.10 to 52.66m pyrite content 5-8%.	4206	75.29		_		250	.1	27	65	L
				4207	76.81		_		495	.4	66	182	L
56.54	58.83		Pink and dark green chloritic granitic intrusive, fine grained disseminated	4208	77.52		_		250	.2	26	164	L
			pyrite 3%.	4209					295	.1	57	178	L
				4210					8320	.7	199		0.229
58.83	69.55		Pink and green granitic intrusive, coarse grained, equigranular, minor	4211	80.45				485	.2	83		0.013
			disseminated pyrite, no quartz veining, abundant epidote.	4212		81.55			2020	3.1	2860	230	0.055
				4213	81.55				1090	.3	144		0.029
69.55	72.24		Granitic intrusive as above to 69.55m cut by thin quartz veinlets running	4214	82.75				165		2 97	152	
			mainly along the core. Disseminated pyrite 5%, quartz veinlets 1-2%.	4215			Ĭ		225	.1	174	123	
<u> </u>	<u> </u>			4216	85.63	87.08	1.43		225	.2	168	102	L

TAKLA-RAINBOW PROPERTY DDH 20 Page 3 of 5

From	То			Smp.	From	То				Ar	alysis		
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
72.24	76.81		Pink and green granitic intrusive as above to 69.55m, disseminated pyrite	4217	87.08	88.53	1.45		124	.3	234	112	
			5%, no quartz veining.	4218	88.53	89.90	1.37		122	.2	264	113	
				4219	89.90	91.35	1.45		108	.1	75	138	
76.81	77.52		A contact zone between pink granitic intrusive as above and dark green mafic	4220	91.35	92.67	1.32		245	.1	184	127	
			volcanic of andesitic composition. Disseminated fine grained pyrite in	4221	92.67	94.10	1.43		240	.1	189	133	
			both, intrusive and volcanic. Light grey magnesite (?) veinlets cutting	4222	94.10	95.25	1.15		395	.4	482	119	
			the volcanic. Pyrite content 10-15%.	4223	95.25	96.62	1.37		415	.5	490	121	
				4224	96.62	98.15	1.53		365	.5	374	124	
77.52	79.80		Dark green, fine grained, massive andesitic volcanic cut by light grey	4225	98.15	99.67	1.52		330	. 4	365	139	
			magnesite (?) veinlets, disseminated pyrite 10-15%. The rock is not	4226	99.67	101.19	1.52		215	.2	269	117	
			magnetic.	4227	101.19	101.89	0.70		275	.2	46	111	
				4228	101.89	103.44	1.55		122	.1	51	103	
79.80	80.45		Dark green andesitic volcanic cut by grey quartz veinlets in form of stock-	4229	103.44	105.00	1.56		104	.1	32	135	<u> </u>
			work system throughout the section. Disseminated pyrite 15-20%, quartz	4230	108.81	110.33	1.52		72	.1	77	120	
			40-50%.	4231	110.33	111.86	1.53		112	.1	28	142	
				4232	111.86	113.38	1.52		134	.2	81	132	
80.45	81.55		Dark green andesitic volcanic as above, but lesser quartz veining and	4233	113.38	114.76	1.38		114	.1	22	137	
			pyrite mineralization. Pyrite content 5-8%, quartz 10-20%.	4234	114.76	116.43	1.67		78	.1	22	137	
				4235	116.43	117.96	1.53		1310	2.4	39	90	0.044
81.55	82.75		Pink granitic intrusive with inclusions of basaltic volcanic. Disseminated	4236	117.96	119.47	1.51		1215	1.6	137	94	0.033
			pyrite and minor veinlet pyrite 8%.	4237	119.47	121.01	1.54		129	.3	165	120	
				4238	121.01	122.41	1.40		42	.2	34	137	
82.75	85.63		Andesitic volcanic with occasional dykes of granitic intrusive. Dis-	4239	122.41	123.90	1.49	-	57	.2	106	105	
			seminated pyrite 5%.		123.90				93	.2	120	103	
					125.27				132	.3	190	126	

TAKLA-RAINBOW PROPERTY DDH 20 Page 4 of 5

From	To			Smp.	From	To				Ar	nalysis	<u>. </u>	
Met	ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
85.63	87.48		Pink granitic intrusive with abundant inclusions of mafic volcanic. Minor	4242	126.60	128.00	1.40		113	.2	95	110	
			quartz and moderate epidote veinlets. Disseminated pyrite 5%.	4243	128.00	129.40	1.40		105	.3	127	130	
				4244	129.40	131.00	1.60		74	.1	45	126	
87.48	101.19		Dark green, chloritic andesitic volcanic, massive, medium grained with	4245	131.00	132.40	1.40		124	.2	60	119	
			numerous dyklets of pink granitic intrusive. Disseminated pyrite and	4246	132.40	133.70	1.30		129	.1	42	100	
			epidote veinlets throughout, some anhidrite or gypsum veinlets also	4247	133.70	135.35	1.65		210	.3	62	99	<u> </u>
			present. Pyrite content 3-5% average.	4248	135.35	136.25	0.90		122	.2	33	117	
				4249	136.25	137.77	1.52		94	.3	135	137	
101.19	101.89		Dark green, highly sheared andesitic volcanic cut by few quartz veinlets	4250	137.77	138.59	0.82		144	.3	292	121	
			along the contact with granitic porphyry below. Disseminated pyrite 3%.	4251	138.59	139.60	1.01		265	.6	329	101	
				4252	139.60	140.66	1.06		350	.3	64	116	
101.89	105.00		Pink granite porphyry with numerous inclusions of mafic volcanics.	4253	140.66	141.84	1.18		285	. 4	40	102	
			Disseminated pyrite 1-3%, rare quartz veinlets.	4254	141.84	142.44	0.60		205	.3	21	116	<u> </u>
				4255	142.44	143.54	1.10		89	.1	35	105	
105.00	108.81		Pink granitic porphyry, trace disseminated pyrite, minor quartz veinlets.	4256	143.54	145.30	1.76		165	.1	86	117	
				4257	145.30	146.70	1.40		103	.3	42	161	
108.81	142.44		Pink and dark green granitic porphyry with abundant mafic volcanic inclu-	4258	146.70	148.00	1.30		64	.2	112	102	
			sions, numerous epidote veinlets and discreet thin quartz veinlets 1-3mm	4259	148.00	149.40	1.40		210	.6	231	101	
			wide. Disseminated pyrite 2-3% average, locally to 10% over narrow widths.		149.40				154	. 4	51	114	
				4261	150.89	152.00	1.11		111	. 4	62	115	
		Ш	From 135.35 to 142.44m increase of epidote and pyrite content. Pyrite	4262	152.00	153.20	1.20		112	.3	98	92	
			average 5-8%.	4263	153.20	154.53	1.33		87	. 4	159	174	
		\square			<u> </u>								
142.44	152.00	$oxed{oxed}$	Dark green, highly chloritized granitic porphyry, similar to the unit above,										
			but more quartz veinlets 1-3mm wide. Disseminated and veinlet pyrite										
			throughout, rare epidote. Pyrite content 8-10%.										
	:								L				

TAKLA-RAINBOW PROPERTY DDH 20 Page 5 of 5

From	То			Smp.	From To				Aı	nalysi	<u> </u>	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
152.00	152.20		Fault gouge, fragments of porphyry with clay.									
152.20	154.00		Shear zone, fragments of porphyry 1-3cm across, badly broken core.									
154.00	154.53		Granitic porphyry, disseminated pyrite 1-3%, massive. Contact with diorite porphyry below gradual.									
154.53	159.00		Granite porphyry, grey and pinkish, plagioclase phenocrysts 1-10mm set in plagioclase and K-spar matrix. No visible sulphides in this unit. The unit is free of chlorite-epidote alteration.									
159.00	164.50		Diorite porphyry, light grey, consists of large, 1-10mm plagioclase laths set in grey plagioclase rich matrix. The rock is slightly bleached, no chlorite except in some plagioclase grains, no pyrite.									
164.50	171.45		Granite porphyry, pink and grey, similar to unit above to 159.00m. The rock is broken with clay along the fractures.									
171.45	179.60		Dark green, fine grained massive andesitic volcanic, medium grained, no visible sulphides, rare hairline quartz veinlets.									
179.60	181.97		Diorite, grey and light grey, locally bleached, minor quartz veinlets, trace pyrite. Foot of hole.									
			Sperry-Sun Tests: Depth: Dip: Azimuth:									
			57.00m 55°00' 043° 117.96m 56°00' 042° 178.92m 55°30' 043°									

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION: West Drill Grid

HOLE NO. : DDH 21

LOC.

: 2 + 46E/1 + 08S

TRUE BRG : 045°

CORRECT DIP: -55°

PAGE

: 1 of 5 : R. Pesalj

COMMENCED: August 22, 1987

ELEV. :

SURVEY AT :

LOGGED BY DATE

: August 23, 1987

COMPLETED: August 24, 1987

CORE SIZE: BQ

% RECOVERY : 100% LENGTH

CORE STORED : At the camp

OBJEC1		.3	·	NGTH	: 224.64	1m			NUSUAL			ie cam	p
From	То			Smp.	From	-					alysis		1
Met	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	9.14		Overburden, fragments of mafic volcanic, soil, BW casing.		18.20				21	.4	211	124	
					19.50				63	.7	610	119	
9.14	13.81		Dark green, massive, fine grained mafic volcanic of andesitic composition		19.95				20	.2	107	129	<u> </u>
			Local zones rich in epidote, minor disseminated pyrite.	4267		31.63			105	.3	31	102	ļ
					31.63				42	.1	26	148	
13.81	18.20		Grey diorite porphyry with large plagioclase laths to 5mm set in grey, f			33.46			185	.5	299	126	<u> </u>
			grained plagioclase rich matrix.	4270		77.32			43	.4	72	107	
				4271		80.50			150	.3	108	106	↓
18.20	19.50	-	Andesitic volcanic as above to 13.81m, disseminated pyrite 1-2%.		80.50				76	.2	10	92	
10.50	10.05				82.05				165	.2	11	120	↓
19.50	19.95		Andesitic volcanic cut by thin quartz veinlets, disseminated pyrite 5-8%		83.40				71	1	9	119	
			abundant epidote alteration.		84.85				63	.1	6	113	
10.05	22.46		Massic andecitie valencie, none grants and enidate vainlets, discominated		85.45				485	1 .1	6	111	┼──
19.95	33.46		Mafic andesitic volcanic, rare quartz and epidote veinlets, disseminated	4277	86.35	87.60			365	.2	8	126	┼
			pyrite 2-3%.	4279		88.50			225 720	.2	9 149	103 115	10.016
33.46	36.27		Pink and grey granite porphyry, sheared, broken core, occasional fracture			89.08			190	.3		123	0.018
33.40	30.27		coated with iron oxide.	4281		90.10			265	1 : 3	118 87	122	+-
			Coated with from oxide.	4282					295	.2	40	111	
36.27	38.40		Dark green mafic volcanic of andesitic composition, badly broken	4283		92.53			67	.3	73	92	+
30.27	30.40		core, shear zone.		92.53				46	.2	10	57	\vdash
			on of anoth zono.	4285		96.62			124	.2	16	75	

TAKLA-RAINBOW PROPERTY DDH 21 Page 2 of 5

From	То			Smp.	From	То				Ar	nalysis	S	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
38.40	43.90		Dark green andesitic volcanic as above to 33.46m trace sulphides, minor	4286	96.62	98.15	1.53		114	.2	15	65	
			epidote.	4287	98.15	99.67	1.52		90	1_	112	112	
43.90	49.20		Fault, fine fragments of andesite.	4288	99.67	101.19	1.52		108	.2	153	153	
				4289	101.19		•		42	.1	76	76	
49.20	78.94		Andesite, dark green, fine to medium grained, massive, rare quartz and	4290	102.72	104.24	1.52		91	.3	76	76	
			epidote veinlets. The unit is not magnetic. Local narrow zones with dis-	4291	104.24	105.77	1.53		79	.1	43	43	
			seminated pyrite and epidote.	4292	105.77	107.29	1.52		64	.1	10	10	
				4293	107.29	108.81	1.52		88	.2	48	48	
			From 76.52 to 77.32m highly epidotized section, thin 1-5mm quartz veinlet,	4294	108.81	110.34	1.53		83	.1	29	29	
			pyrite content 5-8%.		110.34				78	.1	38	38	<u> </u>
				4296	111.86	113.38	1.52		72	.1	6	6	
78.94	85.45		Grey and green granite porphyry, occasional quartz veinlets, disseminated	4297	113.38	114.91	1.53		32	.1	89	89	<u> </u>
			pyrite 5-8%.	4298	114.91	116.42	1.51		96	.1	12	12	
				4299	116.42	117.96	1.54		71	.1	10	10	
85.45	91.00		Dark green and pink granite porphyry, highly chloritic inclusions of mafic	4300	117.96	119.48	1.52		83	.1	8	8	
			volcanic, disseminated and stringer pyrite 8-10%.	4301	119.48	121.01	1.53		84	.1	8	8	
				4302	121.01	122.53	1.52		76	.1	22	22	
91.00	113.38		Pink and green granite porphyry disseminated pyrite 5%, rare quartz vein-	4303	122.53	124.50	1.97		131	.2	12	12	
			lets. From 113.00 - 113.38m fault, fragments of porphyry 0.5-2.0cm across,	4304	124.50	125.87	1.37		405	.1	48	48	
			angular, no fault gouge.	4305	125.87	127.80	1.97		265	.3	179	179	
				4306	127.80	129.05	1.25		165	.3	143	143	
113.38	124.50		Granite porphyry, green and pink, disseminated pyrite 2-3%, rare quartz	4307	129.05	129.85	0.80		860	.4	447	447	0.026
			veinlets, epidote.		129.85				750	.3	214	214	0.014
				4309	131.20	132.00	0.80		520	.5	535	535	

TAKLA-RAINBOW PROPERTY DDH 21 Page 3 of 5

From	То			Smp.	From To				Aı	nalysi	s	
Me	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
124.50	129.05		Green, highly chloritic andesitic volcanic with discreet bands of K-spar	4310	132.00 132.80	0.80		520	.3	120	120	
			rich material found locally. Disseminated pyrite 1-2%, minor quartz	4311	132.80 134.40	1.60		215	.1	80	80	
			veining.	4312	134.40 135.90	1.50		260	.4	370	370	
				4313	135.90 136.85	0.95		365	.2	30	121	
129.05	132.20		Dark green, highly chloritic andesitic volcanic, disseminated pyrite	4314	136.85 137.92	1.07		360	.1	174	138	L
			average 3-5%, locally to 10% over narrow widths.		137.92 139.29			350	.2	280	139	
					139.29 140.36			305	.2	334	115	
132.20	132.80		Andesitic volcanic as above to 132.20m but cut by grey quartz veinlets.		140.36 141.27			285	1.0	1525	126	
			Disseminated pyrite concentrated around veinlets in two separate sections.		141.27 142.20			685	.3	78	162	L
					142.20 143.56			250	.1	176	163	
132.80	138.68	\Box	Granite porphyry, grey and pink, minor quartz veinlets and disseminated		143.56 144.30			305	.2	71	130	
			pyrite.		144.30 145.48			165	.1	28	162	ļ
					145.48 145.88			505	.7	173	283	
138.68	139.29	_	Fault zone, crushed andesitic volcanic, no fault gouge.		145.88 146.58			175	.1	24	200	
		-			146.58 147.28	-		240	.1	23	159	
	4.5 00				147.28 148.30			185	.1	33	148	 _
139.29	147.38	<u> </u>	Andesitic volcanic, dark green, highly chloritized, minor quartz veinlets,		148.30 149.10			445	.1	61	168	
	 		disseminated pyrite 23%.		149.10 150.30		<u> </u>	395	.2	62	127	
	147.50	\vdash			150.30 151.75	-	<u> </u>	360	.1	46	141	
147.38	147.58		Fault zone, crushed andesitic volcanic, no fault gouge.		151.75 153.31			205	.1	49	116	
147 50	140 10	\vdash	Androitic valoris or the 147 00		153.31 153.91		-	185	.8	656	128	
14/.58	149.10	<u> </u>	Andesitic volcanic as above to 147.38m.		153.91 154.30		<u> </u>	480	.1	37	124	
140 10	152 21	\vdash			154.30 154.80		ļ	280	.2	80	87	
149.10	153.31		Andesitic volcanic, chloritic, dark green, epidote veinlets throughout.		154.80 155.30		ļ	84	.2	15	123	
	 		Disseminated pyrite 2-3%.		174.65 175.30		<u> </u>	60	.2	18	91	
	L	L		4335	178.00 178.50	0.50		112	.1	16	124	L

TAKLA-RAINBOW PROPERTY DDH 21 Page 4 of 5

From	То			Smp.	From	То				Aı	nalysis	s	
Met	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
153.31	153.91		Andesite, light quartz veinlets throughout, disseminated pyrite 1-2%.		181.42				36	. 4	488	112	
					182.05				54	. 4	21	21	
153.91	154.30		Same as above, local high concentration of pyrite.	4338	182.75	184.27	1.52		142	.4	89	89	
					184.80				430	.2	62	62	
154.30	154.80		White quartz veinlets cutting the andesitic volcanic, minor pyrite band		195.68				173	.3	34	34	
			0.5cm wide.		196.80				18	.2	5	5	ļ
					203.15				97	.3	278	278	
154.80	155.30		Andesitic volcanic, sheared, cut by thin quartz-calcite veinlets.		204.00				81	.3	155	155	ļ
					204.30				825	.6	135	135	ļ
155.30	182.05		Andesitic volcanic, dark green, highly chloritic, slightly magnetic, trace		204.75				64	.2	154	154	
			disseminated pyrite and quartz veining.		206.05				485	.3	120	120	
					206.70				750	.6	366	366	0.021
			From 174.65 to 175.30m white quartz veins throughout.		207.87				69	.2	101	101	ļ
					208.67				205	.3	194	194	
182.05	182.75		White quartz veinlet stockwork cutting andesitic volcanic, disseminated	4350	216.00	217.40	1.40		71	.5	460	460	
			pyrite.	<u> </u>					ļ	ļ			<u> </u>
182.75	186.20		Pink and green granitic intrusive, chloritic, white quartz veinlets, local	 					ļ				
			pyrite concentration to 15%.	 						<u> </u>			ļ
				<u> </u>			ļ	ļ	ļ	<u> </u>	ļ		ļ
186.20	188.50		Granite porphyry, pink and grey, massive, thin quartz veinlets.	ļ			ļ	<u> </u>	 	!	<u> </u>		ļ
				—	ļ			ļ		ļ	ļ	ļ	
188.50	195.68		Dark green andesitic volcanic, local quartz veinlets, slight bleaching,	 	ļ			ļ		ļ			
			trace pyrite.	 	 				 				
	100.55			 							<u> </u>	-	
195.68	196.80		Light green, bleached andesite at the contact with quartz vein below. Dis-	ļ				 	ļ.——	 	}		
			seminated pyrite 5%.				 	<u> </u>	 	<u> </u>	<u> </u>		├

TAKLA-RAINBOW PROPERTY DDH 21 Page 5 of 5

From	To			Smp.	From	То				Aı	nalysi	<u>s</u>	
Me	ters	Syb	Description	No.	Mete	rs L	.gth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
196.80	197.41		White and green brecciated quartz vein, some hematite filled fractures,										
			trace pyrite, inclusions of green, chloritic volcanic.										
197.41	217.50		Light grey, highly bleached and brecciated andesite with local pink bands										
			of granitic intrusive. Minor quartz veining, local higher concentration of pyrite.										
		\vdash	From 204.30 to 204.75m same as above.										
			From 206.05 to 209.40m brecciated, cut by quartz pyrite veinlets.										
			From 216.00 to 217.40m brecciated, silicified matrix, fragments of diorite.										<u> </u>
217.50	218.40		Fault, red, highly hematitic gouge 30cm, fragments of diorite.										
218.40	224.64		Dark green, massive, medium grained diorite cut by thin quartz veinlets, no										
			visible pyrite. Foot of hole.	_									
			Sperry-Sun Tests:										
			Depth: Dip: Azimuth: 69.19m -55°00' 042°										
			145.39m -56°00' 042° 221.59m -57°30' 046°										

DRILL RECORD I M P E R I A L M E T A L S C O R P O R A T I O N

PROPERTY: Takla-Rainbow LOCATION: West Drill Grid CORRECT DIP: -55° PAGE: 1 of 6
HOLE NO.: DDH 22 LOC.: 2 + 91E/1 + 27S TRUE BRG: 045° LOGGED BY: R. Pesalj

COMMENCED: August 22, 1987 ELEV. : DATE : August 26, 1987

COMPLETED: August 26, 1987 CORE SIZE: BQ % RECOVERY: 100% CORE STORED : At the camp

From	То			Smp.	From	То				Ana	alysis		
	ers	Syb	Description	No.	Мє	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
0.00	7.32		Overburden, fragments of mafic volcanics, BW casing.	4351	17.10	17.90	0.80		33	.4	137	167	
				4352	17.90	18.70	0.80		28	.1	12	152	
7.23	11.58					19.07			36	.3	79	132	<u> </u>
			not magnetic. Limonite coated fractures.		19.07				32	.2	51	161	
					21.64				95	1.1	697	136	
11.58	15.80		Grey and pink diorite porphyry with narrow bands of K-spar rich porphyry,		26.70				3	.2	71	149	
			occasional quartz phenocrysts. From 13.30 to 14.30m bleached.	4357		29.05			26	.2	111	148	<u> </u>
				4358		37.18			22	.2	48	111	ــــ
15.80	32.90		Dark green andesitic volcanic, fine to medium grained, massive, occasional	 	37.18				15	.7	77	138	↓
			quartz veinlets and higher pyrite concentrations. From 21.64 to 23.04m	4360		56.17			13	.2	61	74	
			quartz vein 1cm along the core, pyrite 3-5%. From 26.70 to 29.05m pyrite	4361		78.20			33	.2	59	103	L
			5-8%.		78.20				1020	.9	375		0.022
					89.00				225	.5	391	35	
			Average pyrite content 1-3%.		104.80				195	.1	26	82	_
					112.76				97	.2	72	104	
32.90	35.30		Grey and pink diorite porphyry as above to 15.80m.		117.96				235	.3	156	72	ऻ—
					119.48				150	.2	207	86	
35.30	38.71		Andesitic volcanic as above to 32.90m.		121.01				129	.2	17	101	
					122.53				55	.1	6	89	—
38.71	75.10		Light grey diorite porphyry, cut by hairline quartz veinlets, trace dis-		124.05		7		59	.2	15	89	
			seminated pyrite. Locally core broken, sheared. At 70.41m quartz vein 5cm		125.57				48	.2	- 7	85	
		<u> </u>	along the core.		127.10				19	.1	5	73	
		 			127.90				35	.1	6	88	┼
				4374	130.90	133.20	2.30		60	.1	16	92	1

TAKLA-RAINBOW PROPERTY DDH 22 Page 2 of 6

From	То			Smp.	From To				Ar	nalysis	·	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
75.10	78.20		Andesitic volcanic, massive, fine grained trace pyrite, rare quartz	4375	133.20 135.03	1.83		81	.1	13	141	
			veinlets.	4376	137.10 138.47	1.37		109	1	35	161	
				4377	138.47 139.80	1.33		295	.1	91	131	
78.20	79.00		Andesitic volcanic as above to 78.20m disseminated pyrite 5-8%.	4378	142.15 143.91	1.52		103	.1	70	158	
				4379	143.91 145.39	1.48		79	.1	34	110	
79.00	104.80		Pink and grey granite porphyry, minor concentration of pyrite in mafic	4380	145.39 147.22	1.83		295	. 4	191	109	
		L	inclusions, thin quartz veinlets.		147.22 147.87			29	.3	36	71	
				4382	147.87 148.85	0.98		150	.3	74	90	
			From 89.00 to 90.10m disseminated pyrite 5%, minor quartz veinlets.		148.85 149.96			560	1.1	322	119	
				4384	149.96 150.88	0.92		37	.4	179	125	
104.80	127.96		Granite porphyry green and pink, massive, mixed with dark green, highly		150.88 152.09			36	.2	234	133	
			chloritic inclusions of mafic volcanic, minor epidote veinlets, rare dis-		152.09 152.39			505	1.4	828	121	
			seminated pyrite.		152.39 152.95		:	395	1.1	927	160	<u> </u>
					152.95 154.00			345	1.0	1150	132	
			From 104.80 to 106.68m disseminated pyrite 8%.	4389	154.00 154.45	0.45		150	.8	707	162	
					154.45 156.69			67	.7	573	126	
			From 112.76 to 113.98m disseminated pyrite 10%.		156.69 158.52			150	.3	495	117	
					158.52 158.82			82	. 4	232	72	
127.96	133.20		Porphyry breccia, angular fragments of porphyry and felsic intrusive ranging	4393	158.82 159.95	1.13		75	.3	111	126	
			in size from 1-10mm cemented by porphyritic, chloritized matrix. Dis-	4394	159.95 160.90	0.95		95	.3	141	97	
			seminated pyrite 3-5% throughout the unit.		166.00 167.18	 		165	.1	145	168	
				4396	167.18 168.55	1.37		150	.1	301	183	L
			From 127.10 to 128.90m higher pyrite content than average.		168.55 169.30			665	.8	578	150	<u> </u>
					169.30 169.82	0.52		195	.6	637	184	ļ
133.20	135.03		Porphyry breccia as above, sheared, badly broken core, quartz-epidote vein-	4399	169.82 170.22	0.40		148	.8	765	154	<u> </u>
			lets throughout, disseminated pyrite 3%.	4400	170.22 171.14	0.92		116	.5	504	189	<u> </u>
				4401	171.14 172.42	1.28		137	.4	295	128	<u></u>

TAKLA-RAINBOW PROPERTY DDH 22 Page 3 of 6

From	То			Smp.	From To				Ar	alysis	·	
	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
				İ				ppb	ppm	ppm	ppm	oz/tn
135.03	137.10		Mafic volcanic of basaltic composition, fine grained, massive, slightly	4402	182.70 183.88	1.18		150	.2	118	135	
			magnetic.	4403	183.88 185.01	1.13		175	.1	41	85	L
				4404	185.01 186.01	1.00		88	.2	117	102	
137.10	139.80		Andesitic volcanic, dark and light green, massive, cut by quartz veinlets,	4405	190.30 191.70	1.40		108	.5	619	135	
			abundant epidote. Disseminated pyrite 5-8%.	4406	191.70 193.09	1.39		67	.3	262	107	
				4407	193.09 194.50	1.41		68	.3	151	102	
139.80	142.15		Dark green andesitic volcanic, disseminated pyrite throughout, minor white	4408	194.50 195.83	1.33		98	.1	124	104	
			quartz veinlets, highly chloritic section.	4409	195.83 197.17	7 1.34		235	.3	404	90	
				4410	197.17 198.73	1.52		205	.4	404	103	
142.15	147.87		Light grey, fine grained andesitic volcanic, massive, cut by a stockwork of	4411	198.73 200.25	1.52		76	.1	121	109	
			white quartz veinlets ranging in width from 1-15mm. The veinlets show		200.25 201.38			70	.1	239	126	
			brecciation, cementing the fragments of the country rock.		201.38 202.30			83	.6	582	130	
					208.55 209.40			103	.4	550	107	<u> </u>
147.87	148.85		Dark green andesitic volcanic cut by grey quartz-chlorite vein 1.5cm wide		209.40 210.10	· • · · · · · · · · · · · · · · · · · ·		315	.5	527	93	
			running along the core. Disseminated pyrite 3-5%.	+	210.10 212.04			165	.2	287	76	
					212.04 213.44			67	.1	160	85	
148.85	149.96		Same as above to 148.85m.	· · · · · · · · · · · · · · · · · · ·	213.44 214.70			54	.1	112	90	
				+	214.70 216.20			49	.4	140	94	
149.96	152.09		Dark green andesite, trace pyrite.	+	216.20 217.6			46	.2	232	100	ļ
				+	217.65 219.04		<u></u>	71	.3	195	118	ļ
152.09	152.39		Grey quartz vein cutting andesite at 40° to core axis. Disseminated	+	226.88 227.68			111	.1	79	81	<u> </u>
			pyrite 5-10%.	+	227.68 229.20			205	.2	233	102	ļ
				+	229.20 230.7			445	.4	320	81	
152.39	152.95		Andesite, sheared, trace pyrite.		230.73 232.56			245	.1	108	128	ļ!
				4426	234.70 235.60	0.90	<u> </u>	2420	2.7	525	64	0.063

TAKLA-RAINBOW PROPERTY DDH 22 Page 4 of 6

From	То			Smp.	From	To				Aı	nalysi	<u> </u>	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
152.95	154.00		Grey quartz veins cutting andesite at low angle to core axis. Disseminated	4427	235.60	236.20	0.60		385	.8	143	59	
			pyrite in vein and andesite 3-5%. Minor quartz veinlets throughout the	4428	244.54	245.94	1.40		141	.3	180	64	
			section.	4429	245.94	246.69	0.75		225	.4	262	52	
				4430	246.69	247.40	0.71		124	. 4	117	59	L
154.00	154.45		Same as above.										
													İ
154.45	155.00		Fault zone, crushed and ground fragments of andesite. Core recovery 66%.										
					<u> </u>								
155.00	158.52	ļ	Andesite as above to 148.55m. Minor quartz veinlets and disseminated	ļ									
			pyrite.										
		\vdash											
158.52	158.82	 	Grey quartz vein cutting andesite at low angle to core axis. Minor dis-										
	100.00		seminated pyrite.										
158.82	160.90		Andesite, dark green, chloritic, minor disseminated pyrite and quartz					<u> </u>					i
160.00	168.55	\vdash	veining. Andesite as above, disseminated pyrite and minor grey quartz veining from										
160.90	108.55	\vdash	159.95 to 168.55m. Pyrite content in this interval 8%.										
			139.93 to 100.33m. Fyrite content in this interval ox.										
168 55	169.30		Strong grey quartz veining in this section with 10% disseminated pyrite in			***************************************							
100.55	109.30		veinlets and andesite.										
			70 IIII Obb und undoctio.			···						-	
169.30	169.82		Andesite, dark green, chloritic, disseminated pyrite 5%, no veining.										
			The state of the s										
169.82	170.22		Same as above to 169.30m.										
170.22	171.14		Same as above to 169.82m.										
 													

TAKLA-RAINBOW PROPERTY DDH 22 Page 5 of 6

From	То			Smp.	From	То				A	nalysis		
Met	ters	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
171.14	172.42		Light grey, slightly bleached andesite, cut by white quartz veinlets										
			throughout. Disseminated pyrite in veinlets and andesite 5%.										
172.42	182.70		Andesite, dark green, chloritized, local epidote rich intervals and minor quartz veining.										
182.70	106 01		Andesite as above, cut by white quartz veinlets, epidote rich section from										
182.70	180.01		185.01 to 186.01m. Disseminated pyrite 1%. The unit is slightly magnetic.										
186.01	190.30		Andesite, dark green, chloritic, no veining or sulphides present.										
190.30	202.30		Andesite, dark and light green, cut by a stockwork of white quartz veinlets										<u> </u>
			throughout the interval. The unit is not magnetic. Epidote and minor quartz veins present between 195.83 and 197.17m.										
202.30	208.55		Granite porphyry, pink, cut by minor white quartz veinlets, trace dis-										
			seminated pyrite.								·		
208.55	210.10		Granite porphyry as above to 208.55m, disseminated pyrite 12%, minor quartz veinlets.										
210.10	219.04		Dark and light green andesitic volcanic cut by numerous quartz-epidote										
			veinlets along a stockwork of fractures. The unit is not magnetic.										
219.04	226.88		Pink and grey granite porphyry, large 1-10mm pink plagioclase phenocrysts set in grey. Plagioclase-quartz fine grained matrix.										

TAKLA-RAINBOW PROPERTY DDH 22 Page 6 of 6

From	То	l		Smp.	From To				Ai	nalysi	S	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
226.88	231.65		Dark and light green andesitic volcanic cut by numerous epidote-pyrite									
			fractures. Disseminated sulphides (pyrite) 2-5% average, at the contact									
			zone between 226.88 and 227.68m. The pyrite content is 10-12%.	-								
231.65	236.20		Light green diorite, foliated locally, occasional concentration of pyrite		:	 						
			and quartz veining.									
			From 234.70 to 235.60m pyrite content 15%.			<u> </u>					<u> </u>	
	*****		. Total 2011/10 to 200.com pji fto contone 200.	†		1						
			The upper contact with andesite also mineralized by pyrite.									
236.20	246.69		Dark green, highly chloritic dioritic intrusive, brecciated, numerous			<u> </u>			<u> </u>	-		
			epidote rich zones, disseminated pyrite average 3-5%.									· ·
			From 244.54 to 246.69m quartz veining, disseminated pyrite 8%.			ļ						
246.69	250.54		Dark green, chloritic diorite, minor white quartz veinlets and disseminated						l			
			pyrite. The rock is massive, but locally porphyritic.	ļ								ļ
250.54	252.07		Diorite, pink and reddish coloured, hematized, remnants of dark green	\vdash		 		<u> </u>				<u> </u>
			chloritic diorite throughout. Disseminated pyrite 2-3%. Foot of hole.									
		\dashv	Sperry-Sun Tests:			 		\vdash		ļ		\vdash
			Depth: Dip: Azimuth:									
			66.14m -54°00' 044°									
			127.10m -54°30' 046°	<u> </u>								
			188.06m -56°00' 047°	<u> </u>								<u> </u>
		l	249.02m -57°00' 050°			1	1	l			l	1

IMPERIAL METALS CORPORATION DRILL RECORD

From 32.21 to 33.23m silicified, white quartz veinlets throughout, minor

PROPERTY: Takla-Rainbow

LOCATION: West Drill Grid

HOLE NO. : DDH 23

OBJECTIVE:

: 9 + 20E/0 + 91SLOC.

COMMENCED: August 29, 1987

COMPLETED: August 31, 1987

disseminated pyrite.

ELEV. :

CORE SIZE: BQ

CORRECT DIP: -50°

TRUE BRG : 225°

SURVEY AT :

% RECOVERY : 100%

LENGTH : 242.62m

4449 40.48 41.26

4451 49.68 49.98

4450 41.26 41.76 0.50

0.78

0.30

PAGE : 1 of 5

LOGGED BY : R. Pesalj

.2

.1

1.0

24

35

240

118

67

147

23

117

DATE : August 30, 1987

CORE STORED : At the camp UNUSUAL FEAT.:

Smp. Analysis From To From To Zn Αu Description No. Meters Rec. Aμ PΑ Cu Meters Syb Lath. ppm oz/tn ppb ppm DDM 4433 24.57 25.22 0.65 230 176 Overburden, fragments of mafic andesite volcanic, BW casing. 56 . 6 0.00 4.88 237 305 |4434| 25.22| 25.77| 0.55| 37 .6 4.5 2192 4435 25.77 26.23 0.46 174 Dark green mafic volcanic of andesitic composition, locally bleached and 126 4.88 11.68 190 cut by thin quartz veinlets. Fractures coated by iron oxides. The unit is 4436 26.23 27.05 0.82 59 1.5 733 locally slightly magnetic in the sections with more mafic minerals. 4437 27.05 27.96 234 188 0.91 62 .7 4438 27.96 28.75 0.79 92 .8 86 141 Porphyritic andesite, dark green to light grey, locally bleached in contact 4439 28.75 29.15 0.40 92 118 .1 11 11.68 34.86 zones with narrow quartz veins, changing to pinkish colour. 4440 29.15 29.45 0.30 12 .2 107 4441 32.21 33.23 1.02 137 .5 30 56 From 11.34 to 11.84m bleached. 4442 33.23 33.59 0.36 5 .1 32 84 .4 36 107 4443 34.86 35.56 0.70 79 4444 35.56 36.41 19 .1 5 112 0.85 4445 36.41 .1 7 100 44 37.64 1.23 55 .3 15 55 From 24.57 to 28.75m bleached, disseminated pyrite 3-5%. 4446 37.64 38.71 1.07 4447 38.71 39.51 0.80 45 .5 48 69 .1 5 101 From 28.75 to 29.15m white quartz vein. pyrite 2%. 4448 39.51 40.48 0.97 14

TAKLA-RAINBOW PROPERTY DDH 23 Page 2 of 5

From	То			Smp.	From To				Aı	nalysis		
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
			·					ppb	ppm	ppm	ppm	oz/tn
34.86	41.76		Light grey, strongly bleached andesite, cut by white quartz veins through-	4453	60.08 60.43	0.35		360	3.1	1273	160	
			out. Vugs with idiomorphic quartz crystals common, sulphides absent or very	4454	97.85 99.37	1.52		6	. 4	145	125	
			minor pyrite present.	4455	99.37 100.90	1.53		18	.2	140	89	
				4456	100.90 101.40	0.50		4	.1	47	180	
41.76	66.64		Andesite, dark green and pink, hematitic, numerous hematite filled frac-	4457	101.40 10.217	0.77		6	.1	32	115	
			tures, minor white quartz veinlets.	4458	120.66 120.96	0.30		3	.2	38	130	
				4459	126.63 128.08	1.45		14	.3	161	133	
			From 49.68 to 49.98m quartz veinlets.	4460	128.08 129.60	1.52		315	.6	116	126	
				4461	129.60 130.43	0.83		245	.3	176	114	
			From 50.90 to 51.20m quartz-epidote-chalcopyrite veinlets.	4462	130.43 131.37	0.94		10	.1	82	67	
				4463	131.37 132.46	1.09		2950	2.1	58	80	0.091
			From 60.08 to 60.43m quartz-epidote veinlets.	4464	137.75 138.25	0.50		65	.1	9	120	
				4465	139.50 140.65	1.15		2	.1	28	66	
66.64	78.05		Grey and pink granite porphyry. White and pink feldspar phenocrysts set in	4466	140.65 141.56	0.91		18	.1	16	180	
			grey quartz-feldspar matrix. Contact with andesite above sharp at 40° to	4467	155.52 156.25	0.73		169	.4	208	1232	
			core axis.		157.16 157.88			225	.7	231	262	
				4469	175.37 175.82	0.45		6110	2.9	646	590	0.210
78.05	97.85		Andesite, dark green with numerous hematite coated fractures, abundant epi-	4470	212.65 214.12	1.47		5560	.7	105	158	0.157
			dote and very minor quartz veinlets.	4471	214.12 214.76	0.64		3880	2.6	1225	152	0.113
				4472	215.52 216.52	1.00		1225	.5	234	99	0.034
97.85	100.90		Light grey, bleached, silicified andesite cut by a system of thin quartz	4473	216.52 218.37	1.85		152	.2	81	99	<u> </u>
			veinlets, no visible sulphides but reddish hairline hematitic veinlets	4474	218.37 218.54	0.17		15490	8.6	1688	102	0.462
			throughout. Some veinlets along the core.	4475	228.50 229.21	0.71		275	.5	149	71	
				4476	229.21 229.77	0.56		8980	7.2	43	37	0.219
100.90	101.40		Quartz vein, brecciated, fragments of jasperoid and bleached volcanic	4477	229.77 231.30	1.53		640	.6	71	63	
			cemented by quartz.	4478	231.30 231.88	0.58		195	.2	31	119	
				7679	173.97 175.37	1.40		112	.5	103	511	

TAKLA-RAINBOW PROPERTY DDH 23 Page 3 of 5

From	To			Smp.	From	То				A	nalysi	<u> </u>	
Met	ters	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	ppm Cu	Zn ppm	Au oz/tn
101.40	102.17		Several 1-2cm quartz veins at 40-60% to core axis cutting bleached volcanic.	7680	211.13	212.65	1.52		6400	.6	13	85	0.178
				7681	214.76	215.52	0.76		370	.3	35	151	
102.17	120.66		Dark green, fine grained andesitic volcanic with minor white quartz vein-	7682	218.54	220.05	1.51		82	.4	496	97	
			lets cutting the unit at 75°-80° to core axis. Veinlets occasionally										
			contain coarse pyrite grains. Epidote concentrations along the veinlets or								<u> </u>		<u> </u>
			irregular patches. The unit is locally magnetic.							<u> </u>			
120.66	120.96		Bleached andesite cut by two veinlets 1-2cm wide at 60° to core axis.						<u> </u>				
120.96	129.63		Andesite, dark green, massive, medium to coarse grained, local quartz-										
		\sqcup	epidote veinlets, locally magnetic.										<u> </u>
		$\sqcup \sqcup$											
129.63	132.46		Light grey highly bleached andesite, cut by numerous white quartz veinlets										<u> </u>
			1-20mm wide at various angles to core axis.						ļ		<u> </u>		ļ
													├
			From 131.37 to 132.46m veinlets abundant up to 2cm wide with pyrite grains							ļ			
			along the contacts. Angles vary from 10° to 60°.										
120 46	107.75		Andreit Joseph and Communication 1 - 11 to bloom and at the contact to						ļ		ļ		├──
132.46	137.75		Andesite, dark green, fine grained massive, locally bleached at the contacts						 		<u> </u>		├──
			with white quartz veinlets.						 				┼
127 75	138.25		White guards wein cutting and city at 900 to come avia. The wein is 10cm						 	-			┼──
13/./5	130.23	\vdash	White quartz vein cutting andesite at 80° to core axis. The vein is 10cm wide, banded, with system of veinlets at both contacts.							 		 	
			wide, ballier, with System of Verniers at both contacts.						 -				+-
138.25	139.50	\Box	Andesite, dark to light green, locally bleached.						 				+
													T

TAKLA-RAINBOW PROPERTY DDH 23 Page 4 of 5

To			Smp.	From To				Αı	nalysis	5	
ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
141.56		Light grey and beige bleached andesite cut by a stockwork of thin quartz									
		veinlets.		<u> </u>							<u></u>
154.93		Dark green, locally bleached andesite, fine grained, massive.									
157.88		Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining.									
		From 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains.									
		From 157.16 to 157.88m quartz in veinlets 5-8%, no sulphides visible.									
198.10		Dark green, massive basaltic volcanic, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible.									
		above the contact. Pyrite average 5%.									
212.65		Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly mag-									
		netic locally.									
218.54		Dark green andesite cut by grey quartz-pyrite veinlets with epidote patches throughout and irregular veinlets near quartz vein system.									
		From 212.65 to 214.12m quartz content 5-8% pyrite trace.									
	141.56 154.93 157.88 198.10	141.56 154.93 157.88 198.10	Light grey and beige bleached andesite cut by a stockwork of thin quartz veinlets. Dark green, locally bleached andesite, fine grained, massive. Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining. From 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains. From 157.16 to 157.88m quartz in veinlets 5-8%, no sulphides visible. Dark green, massive basaltic volcanic, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible. From 175.37 to 175.82m quartz-pyrite vein 10cm wide with disseminated pyrite above the contact. Pyrite average 5%. Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly magnetic locally. Dark green andesite cut by grey quartz-pyrite veinlets with epidote patches throughout and irregular veinlets near quartz vein system.	141.56 Light grey and beige bleached andesite cut by a stockwork of thin quartz veinlets. 154.93 Dark green, locally bleached andesite, fine grained, massive. 157.88 Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining. From 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains. From 157.16 to 157.88m quartz in veinlets 5-8%, no sulphides visible. 198.10 Dark green, massive basaltic volcanic, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible. From 175.37 to 175.82m quartz-pyrite vein 10cm wide with disseminated pyrite above the contact. Pyrite average 5%. 212.65 Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly magnetic locally. 218.54 Dark green andesite cut by grey quartz-pyrite veinlets with epidote patches throughout and irregular veinlets near quartz vein system.	141.56 Light grey and beige bleached andesite cut by a stockwork of thin quartz veinlets. 154.93 Dark green, locally bleached andesite, fine grained, massive. 157.88 Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining. From 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains. From 157.16 to 157.88m quartz in veinlets 5-8%, no sulphides visible. 198.10 Dark green, massive basaltic volcanic, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible. From 175.37 to 175.82m quartz-pyrite vein 10cm wide with disseminated pyrite above the contact. Pyrite average 5%. 212.65 Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly magnetic locally. 218.54 Dark green andesite cut by grey quartz-pyrite veinlets with epidote patches throughout and irregular veinlets near quartz vein system.	141.56 Light grey and beige bleached andesite cut by a stockwork of thin quartz veinlets. 154.93 Dark green, locally bleached andesite, fine grained, massive. 157.88 Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining. From 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains. From 157.16 to 157.88m quartz in veinlets 5-8%, no sulphides visible. 198.10 Dark green, massive basaltic volcanic, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible. From 175.37 to 175.82m quartz-pyrite vein 10cm wide with disseminated pyrite above the contact. Pyrite average 5%. 212.65 Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly magnetic locally. 218.54 Dark green andesite cut by grey quartz-pyrite veinlets with epidote patches throughout and irregular veinlets near quartz vein system.	141.56 Light grey and beige bleached andesite cut by a stockwork of thin quartz veinlets. 154.93 Dark green, locally bleached andesite, fine grained, massive. 157.88 Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining. From 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains. From 157.16 to 157.88m quartz in veinlets 5-6%, no sulphides visible. 198.10 Dark green, massive basaltic volcanic, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible. From 175.37 to 175.82m quartz-pyrite vein 10cm wide with disseminated pyrite above the contact. Pyrite average 5%. 212.65 Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly magnetic locally. 218.54 Dark green andesite cut by grey quartz-pyrite veinlets with epidote patches throughout and irregular veinlets near quartz vein system.	ppb 141.56 Light grey and beige bleached andesite cut by a stockwork of thin quartz veinlets. 154.93 Dark green, locally bleached andesite, fine grained, massive. 157.88 Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining. From 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains. From 157.16 to 157.88m quartz in veinlets 5-8%, no sulphides visible. 198.10 Dark green, massive basaltic volcanic, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible. From 175.37 to 175.82m quartz-pyrite vein 10cm wide with disseminated pyrite above the contact. Pyrite average 5%. 212.65 Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly magnetic on the contact of	141.56 Light grey and beige bleached andesite cut by a stockwork of thin quartz veinlets. 154.93 Dark green, locally bleached andesite, fine grained, massive. 157.88 Light grey-green, bleached andesitic volcanic with two intervals of heavy quartz veining. 157.88 Quartz veining. 157.88 Prom 155.52 to 156.25m quartz in veinlets 20%, minor pyrite grains. 157.16 to 157.88m quartz in veinlets 5-8%, no sulphides visible. 157.16 to 157.88m quartz veinlets, very fine grained, slightly magnetic, cut by epidote and minor quartz veinlets, no sulphides visible. 157.37 to 175.82m quartz-pyrite vein 10cm wide with disseminated pyrite 212.65 Dark green, very fine grained basaltic volcanic, massive, non-magnetic, minor quartz veinlets, trace sulphides and epidote. The unit is weakly magnetic 157.52 1	141.56 Light grey and beige bleached andesite cut by a stockwork of thin quartz	Ppb Ppm
TAKLA-RAINBOW PROPERTY DDH 23 Page 5 of 5

From	To			Smp.	From To				Aı	nalysis	;	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
			From 214.12 to 214.76m quartz content 10%, pyrite 5%.									
			From 215.52 to 216.52m quartz content 8%, pyrite 3%.									
218.54	228.50		Dark green, very fine grained mafic volcanic of basaltic composition. The unit is massive, weakly or not magnetic, cut by epidote and rare quartz veinlets, trace pyrite.									
228.50	229.21		Bleached basaltic volcanic, quartz veinlets, trace pyrite, sheared.									
229.21	229.77		Quartz vein cutting bleached, sericific volcanic, disseminated pyrite in vein and country rock 10%.									,
229.77	231.30		Bleached mafic volcanic, trace pyrite, no quartz veinlets.									
231.30	231.88		Bleached, prophyritic volcanic, silicified, brecciated, fragments cemented b amorphous silica (opal?), trace pyrite.									
231.88	239.45		Bleached, prophyritic mafic volcanic of andesitic composition, fine grained, massive, slightly magnetic. Foot of hole.									
			Sperry-Sun Tests: Depth: Dip: Azimuth:									
			56.69m -51°30' 223° 117.65m -53°00' 224° 178.61m -54°30' 224°									
			239.57m -55°00' *002° *Reading not reliable.									

DRILL RECORD I M P E R I A L M E T A L S C O R P O R A T I O N

PROPERTY : Takla-Rainbow

LOCATION : West Drill Grid

HOLE NO. : DDH 24

LOC. :

: 3 + 40E/0 + 68S

CORRECT DIP: -55°
TRUE BRG : 045°

PAGE : 1 LOGGED BY : R

: 1 of 7 : R. Pesalj

COMMENCED: August 31, 1987

ELEV. :

SURVEY AT :

DATE

: September 1/87

COMPLETED: September 2, 1987

CORE SIZE: BQ

% RECOVERY : 100%

CORE STORED : At the camp

OBJECTIVE:

LENGTH : 181.97m

UNUSUAL FEAT.:

rom	To			Smp.	From	To				Ana	alysis		
Met	ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	6.10		Overburden, fragments of mafic volcanic, BW casing.	4479	17.93	19.45	1.52		24	.5	107	105	
				4480	19.45	20.22	0.77		123	.3	73	85	
6.10	17.00		Mafic volcanic of andesitic composition, massive, medium grained, moderately	4481	20.22	21.00	0.78		315	.4	31	86	
			magnetic, minor quartz veinlets, patches of epidote.	4482	21.00	21.50	0.50		195	.2	11	66	
				4483	21.50				335	.7	296	83	
17.00	19.45		Granite porphyry, pink, specks of epidote throughout, disseminated pyrite	4484	22.07				650	.5	107	63	<u> </u>
			1-2%, no quartz veining.	4485	23.00				340	.4	59	78	<u> </u>
				4486	24.52	25.82	1.30		10920	1.4	277	129	0.312
19.45	23.00		Granite porphyry as above, occasional quartz veinlets with disseminated	4487		26.82	1.00		150		270	95	ļ
			pyrite at 40° to core axis. Pyrite content higher than above, average 3-5%.	4488	26.82	27.47	0.65		2110	1.5	499	115	0.058
				4489		27.92	0.45		415	.7	310	94	ļ
23.00	28.87		Dark green andesitic volcanic cut by thin quartz veinlets, some with chalco-	4490	27.92	28.87	0.95		450	1.0	493	99	<u> </u>
			pyrite grains.	4491	30.78	31.81	1.03		720	1.3	827	88	
				4492	31.81	32.81	1.00		320	.9	55	103	<u> </u>
			From 26.82 to 27.92m higher pyrite content, average 5-8%.	4493	32.81	33.83	1.02		97	.3	15	109	
				4494	33.83	34.92	1.09		52	.3	10	94	<u> </u>
28.87	30.78		Andesite, dark green, minor quartz veinlets, trace pyrite, slightly	4495	34.92	35.36	0.44		29	.3	126	83	
			magnetic.	4496	35.36	36.56	1.20		68	.4	19	109	<u> </u>
				4497	36.56	37.56	1.00		93	.5	148	101	

TAKLA-RAINBOW PROPERTY DDH 24 Page 2 of 7

From	To			Smp.	From	То				Ar	nalysis	<u> </u>	
Met	ters	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
	· · · · · · · · · · · · · · · · · · ·								ppb	ppm	ppm	ppm	oz/tn
30.78	32.81		Andesite with abundant quartz veinlets running along the core, pyrite	4498	40.69	41.76	1.07		92	.6	90	114	
			content average 3%, slightly magnetic.	4499	41.76	42.66	0.90		32600	2.2	246	75	1.095
				4500	42.66	43.16	0.50		550	.7	202	216	
32.81	38.64		Andesite, bleached, light grey, non-magnetic, minor white quartz veinlets	4501	43.16	43.96	0.80		840	.8	724	90	
		Ш	mainly along the core, minor sulphides-pyrite.	4502	43.96	45.20	1.24		195	.7	463	140	<u> </u>
38.64	40.69		Dark green, fine grained mafic volcanic of andesitic to basaltic composi-	4503		45.72	0.52		104	.8	371	151	L!
			tion, moderately magnetic.	4504	45.72	46.52	0.80		295	1.1	646	89	<u> </u>
				4505	46.52	47.75	0.93		210	.7	494	130	
40.69	41.76		Same as above, minor quartz-epidote veinlets.	4506		49.83			4200		2189		0.122
				4507		51.35			285		1003	134	
41.76	42.66		Dark and light green andesitic to basaltic volcanic cut by grey quartz veins			*****			108	.3	77	116	<u> </u>
			at irregular fashion. Disseminated pyrite in veins and andesite 10%,	4509					123	.4	62	140	<u> </u>
			quartz 20%.	4510		55.31	0.70		74	. 4	23	186	ļ
				4511			0.84		45	.2	34	181	
42.66	43.16		Dark green mafic volcanic, minor quartz veining and disseminated pyrite.	4512	ĺ				89	.5	167	229	ļ
		<u> </u>		4513					67	.4	35	162	<u> </u>
43.16	43.96	<u> </u>	Same as above to 42.66m, quartz 15%.	4514	57.85		-		350	.6	270		<u> </u>
				4515					225	.3	96	175	 '
43.96	45.72		Dark green andesitic volcanic, minor quartz-epidote veinlets, disseminated	4516	_				75	.1	24	115	 '
	ļ. ———		pyrite 3%.	4517			_		51	.2	64	69	
	<u> </u>	ļ.,		4518					245	.4	416	94	—
45.72	47.75	ļ	As above to 45.72m but with slightly higher pyrite and quartz vein content.	4519		67.97	•		107	.1	38	105	
				4520		69.49			450	.1	131	100	 '
47.75	49.83	 	Andesite as above with granite vein 2cm wide at 20° to core, disseminated	4521					215	.8	653	119	
			pyrite and vein pyrite 8%.	4522		71.56			750		781	157	
l	l			4523	71.56	72.24	0.68		150	.8	280	142	

TAKLA-RAINBOW PROPERTY DDH 24 Page 3 of 7

rom	То	ı		Smp.	From	To				Ai	nalysi:	S	
Met	ers	Syb	Description	No.	M∈	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
49.83	53.45		Andesite, dark green with epidote patches throughout, minor quartz veinlets,	4524	72.24	72.84	0.60		985	.6	232	118	0.026
		\sqcup	trace pyrite.										ļ
53.45	58.50	\vdash	Andesite as above, with higher quartz veinlet content and disseminated	4525	72.84	73.46	0.62		350	.3	124	100	
	7.5		pyrite concentrated in areas with quartz-epidote veining. Average pyrite	4526		74.06			295	.3	160	127	
			content 8-10%.	4527	74.06	75.29	1.23		295	.9	603	127	
				4528	75.29	76.81	1.52		49	. 1	52	128	
58.50	71.02		Andesite, dark green, massive, slightly magnetic locally, no quartz vein-	4529		78.33	1.52		68	.2	50	107	
			lets, local concentration of epidote.	4530		79.81	1.48		185	.1	28	104	<u> </u>
				4531					225	.1	24	113	<u> </u>
71.02	71.56		Andesite cut by grey quartz veinlets 1-3cm across, disseminated pyrite	4532	81.38				77	.1	19	111	
		\vdash	15%.	4533					165	.2	43	100	
				4534	84.20				47	.2	28	113	↓
71.56	72.24	\vdash	Andesite, minor quartz veinlets, 5% pyrite.	4535					245	.4	88	98	
70.04	70.04	\vdash	Come on about to 71 FCm	4536					139	.2	49	71	
72.24	72.84	\vdash	Same as above to 71.56m.	4537					153	.2	29 65		
72 04	73.46	\vdash	Same as above to 72.24m.	4538 4539		91.74			150		95		┼
72.04	/3.40	┝	Same as above to 72.24m.	4540			0.60		160 98		41	161 123	
73 46	74.06	\vdash	Same as above to 72.24m.	4541		93.88			375		197	84	\vdash
13.70	74.00		Cumo do aporo do 7212 mi	4542		94.28			195	.4	257	84	t
74.06	91.74		Andesite, dark grey-green, chloritic, numerous epidote veinlets and irregu-	4543					106	.2	159	88	
			lar patches throughout the unit, disseminated pyrite and minor blebs and	4544		95.90			129	.3	167		†
			veinlets 5-8%, rare quartz veinlets. The unit is not magnetic.	4545					96		124	121	
				_	96.60				94		251	125	

TAKLA-RAINBOW PROPERTY DDH 24 Page 4 of 7

From	То			Smp.	From	To				Ar	alysis		
Met	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
91.74	92.34		Andesite, dark green, chlorite-epidote throughout, grey quartz and pyrite	4547	98.14	99.00	0.86		1040	1.3	409	88	0.027
			stringers at 70° to core axis. Pyrite content 5-8%.	4548		99.85			63	.3	60	114	
				4549		100.64			205	.4	119	100	
92.34	92.92		Andesite, minor pyrite and quartz veining.		100.64				103	.4	237	112	
					101.70				540	.1	129	67	
92.92	93.88		Andesite as above, cut by pink granitic vein, pink plagioclase laths 1-5m,		103.45				121	.1	95	81	ļ
			long, minor pyrite and quartz.		104.25				94	.1	148	97	
					105.80				52		203	101	
93.88	94.28		Andesite as above to 92.92m.		107.32				81	.3	144	88	ļ
					107.95				119		255	107	ļ
94.28	98.14		Andesite, dark green, light green epidote patches throughout.		108.80				87	.1	144	99	├ ──
					110.32				240		371	94	
98.14	99.00		Andesite as above cut by quartz-pyrite veinlets at 60° to core axis. Pink	-	111.95		-		82		55	85	
			granitic material abundant. Pyrite content 8-10%.		112.20				280		109	91	
					113.20				132		23	72	
					114.40				113	•	20	78	├
99.00	99.85		Andesite, minor disseminated pyrite.		115.10				97		23	80 64	
					116.28				101 870	.2	28 352	42	
99.85	100.64		Andesite as above, cut by pink granitic veins and grey quartz veinlets.		116.98						45	71	
			Disseminated pyrite 3-5% quartz veinlet at 25° to core axis.		117.80 119.64			 	122 230		310	82	
100 64	101 70		Andreita days green discominated purity 0% minor guarty voinlets		120.50		•	1	9690		2696	82	0.291
100.04	101.70		Andesite, dark green, disseminated pyrite 8%, minor quartz veinlets.		121.30			 	460		368	93	10.231
101 70	104.25		Pink granite porphyry cut by a network of green epidote-chloritic veinlets		122.43				290		85	74	
101.70	104.25		disseminated pyrite 5%, rare bands of massive pyrite.		123.70				173		432	112	
			dissentifiated plitte de, tale paries of massive plitter.		124.70		*	l	280		829	94	

TAKLA-RAINBOW PROPERTY DDH 24 Page 5 of 7

From	То			Smp.	From To				Ar	nalysis	;	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
104.25	107.95		Andesite, dark green with occasional light green epidote-chlorite veinlets,		125.88 127.10			880	1.5	1151	78	0.021
			minor quartz veinlets and pyrite.		127.10 128.50		<u> </u>	1010		3762		0.028
					128.59 130.10			119	.5	475	81	
107.95	116.98		Granite porphyry, pink, highly chloritic disseminated pyrite 5-8%	_	130.10 131.3			122	.5	402	80	
			throughout.		131.37 132.30			131	.3	273	116	
					132.30 133.8			142	.6	512	108	
116.98	117.80		Granite porphyry as above, cut by pink-grey quartz-feldspar veins 1-3m		133.81 134.7		<u> </u>	520	.5	420	107	
			across with low angles to core axis. Disseminated and vein pyrite 10%.		134.71 136.20			186	.3	189	83	
					136.20 137.7			505	1.7	1183	181	-
117.80	120.50		Granite porphyry as above to 117.80m cut by grey quartz veinlets, dis-		137.72 139.10			1150		159		0.034
			seminated pyrite 4%.		139.10 139.70			870		1065		0.027
					139.70 140.3			92300		2714	57	2.940
120.50	121.30		Granite porphyry as above, highly silicified by grey quartz, disseminated		140.36 141.1			1780		728	_	0.053
			and bleb pyrite 15%.		141.11 141.6		+	15270	9.8	10892		0.522
				+	141.61 142.20			39500		2551	92	1.076
121.30	122.43		Granite porphyry as above, inclusions of dark green mafic volcanic, grey	-	142.20 143.8			265	.3	101	100	
			quartz veinlets and irregular quartz patches abundant, pyrite 8-10%.		167.05 168.2			175	.4	273	101	
		Ш			168.24 169.7			35	.2	93	119	
122.43	123.70		Granite porphyry cut by 1cm wide quartz vein along the core.		169.74 171.2	+ -		57	.5	273	94	
				-	171.26 172.8		1	34	.2	167	79	ļ
	124.70	t	Dark green mafic volcanic, disseminated pyrite 3-5%.		172.82 174.3		 	60		1093	112	
124.70	125.88		Grey, foliated and sheared granite porphyry, pyrite bands and blebs 2-3%.	4594	174.34 175.7	7 1.43		90	.6	606	96	
125.88	131.37		Granite porphyry, pink and dark green, disseminated pyrite throughout,	L								
			average pyrite content 5%, locally 10-15%.			ļ						<u> </u>
				1	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u></u>

TAKLA-RAINBOW PROPERTY DDH 24 Page 6 of 7

From	То			Smp.	From To		İ		A	nalysi	s	
Me [.]	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			From 127.10 to 128.59m pyrite content 12%.									
131.37	134.71		Grey andesitic volcanic, bleached, silicified, cut by grey and white quartz									<u> </u>
			veinlets.							 	<u> </u>	
			From 131.37 to 132.30m silicification and pyrite content higher than average.									
134.71	139.10		Andesitic volcanic, grey and dark grey, chloritic, disseminated pyrite 5% minor quartz veinlets.									
			minor quartz vermets.						ļ			+
139.10	141.11		Andesitic volcanic, cut but a system of irregular grey quartz-pyrite vein-									ļ
			lets with abundant pyrite averaging 5-8%. A system of grey quartz veinlets in a form of stockwork throughout.									
			From 139.10 to 140.36m pyrite 10%.									
			From 140.36 to 141.11m pyrite 5%.									
141.11	143.82		Same as above but with lesser pyrite content. Average pyrite in this									
			section 3%.								-	
143.82	156.08		Andesitic volcanic, grey, fine grained, bleached, sericitic groundmass and phenocrysts of altered plagioclase throughout.									

TAKLA-RAINBOW PROPERTY DDH 24 Page 7 of 7

From	To			Smp.	From To				Aı	nalysi:	<u>s</u>	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu	Zn ppm	Au oz/tn
			From 145.10 to 145.60m sheared, blocky core.									
			From 146.60 to 147.00m sheared, blocky core.									
			From 153.00 to 155.00m green, chloritic section.									ļ
156.08	167.05		Grey diorite porphyry with local sections of pink granitic porphyry.									
			Granitic porphyry has numerous dark green chlorite filled fractures.									
167.05	175.77		Dark green highly chloritic granitic porphyry with numerous pink, K-spar									
			rich sections. Disseminated pyrite 2-3% epidote abundant along the fractures.									
175.77	181.97		Grey and pink granite porphyry, bleached, rare quartz veinlets, no visible									ļ
			sulphides. Consists of quartz-plagioclase groundmass and large plagioclase phenocrysts and minor quartz grains. Foot of hole.									
			Sperry-Sun Tests:									
			Depth: Dip: Azimuth: 57.00m -54°30' 041°*									
			117.96m -56°00' 045° 178.92m -56°00' 052°									
			*Readings not reliable due to presence of magnetic rocks in the hole.									

IMPERIAL METALS CORPORATION

PROPERTY : Takla-Rainbow LOCATION: West Drill Grid

HOLE NO. : DDH 25 : 3 + 40E/1 + 18S LOC.

COMMENCED: September 2, 1987 ELEV. :

DRILL RECORD

COMPLETED: September 5, 1987 OBJECTIVE: Azimuth :

CORE SIZE: BQ

CORRECT DIP: -55°

TRUE BRG : 045°

SURVEY AT : % RECOVERY : 100%

LENGTH : 254.81m

PAGE : 1 of 8

LOGGED BY : R. Pesalj

: September 2/87 DATE CORE STORED : At the camp

UNUSUAL FEAT.:

From	То			Smp.	From	То				Ana	alysis		
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
0.00	12.19		Overburden, fragments of mafic volcanic, BW casing.	4595	80.56	81.23	0.67		12	.2	48	139	
				4596	81.23	81.99	0.76		24	1.9	362	111	<u> </u>
12.19	28.70		Green and pink andesitic volcanic, highly sheared, epidote rich, numerous	4597	100.88	102.00	1.12		28	.3	31	51	
			dykelets of pink granitic intrusive, badly broken core, shear zone.	4598	102.58	103.02	0.44		90	1.4	235	28	
					107.29				81	.3	13	26	<u> </u>
28.70	32.00		Grey and pink diorite, porphyry, occasional pink granitic dykes.		114.16				5	.3	8	31	
					122.63				23	.2	73	114	ļ
32.00	34.14		Same as above, sheared, broken core.		124.05				30	.2	221	97	<u> </u>
					125.67			·	375	.8	400	88	ļ
34.14	37.80		Fault zone, fragments of highly bleached granitic porphyry mixed with grey		126.40				82	.8	664	106	<u> </u>
			fault gouge.		127.80				325	.7	849		0.008
					128.62				350	.8	879	105	0.011
37.80	59.80		Green andesitic volcanic, fine grained, massive, non-magnetic, occasional		128.90				105	.5	708	100	0.008
			white quartz veinlets, fractured, broken core. Local narrow, 1-2 ft,		129.45				49	.4	411	86	0.002
			bleached sections and white quartz veinlets, rare disseminated pyrite.		130.15				285	.3	266		0.006
					131.30				305	.4	512	108	<u> </u>
59.80	68.00		Light grey, bleached, kaolinized diorite porphyry, blocky core, no		132.90				33	.2	188	101	<u> </u>
	L		sulphides.		134.40				315	.6	295	92	<u> </u>
				4613	136.00	137.76	1.76		80	.2	459	100	L
68.00	72.10		Highly sheared diorite porphyry, minor fault gouge in this section, no		137.76				195	.1	119	58	<u> </u>
			sulphides.	4615	139.29	140.81	1.52		48	.3	300	90	<u> </u>
				4616	140.81	142.34	1.53		27	.4	185	99	<u> </u>

TAKLA-RAINBOW PROPERTY DDH 25 Page 2 of 8

From	To			Smp.	From	То				Ar	nalysis	S	
Me	ters	Syb	Description	No.	Met	ers	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
72.10	80.56		Bleached mafic volcanic of andesitie composition, rare white quartz	4617	142.34 1	43.64	1.30		55	.5	123	105	
			veinlets.	4618	143.64 1	44.94	1.30		360	2.3	154	81	
80.56	81.99		Green, chloritic, slightly bleached andesitic volcanic, minor quartz vein-	4619	144.94 1	45.39	0.45		78	1.6	74	117	
			lets, no sulphides.	4620	145.39 14	46.38	0.99		35	.3	36	122	
				4621	146.38 1	47.70	1.32		36	.2	47	102	
81.99	93.62		Same as above to 81.99m, no quartz veinlets, no sulphides. At the contact		147.70 14		0.94		85	.2	59	136	
			with porphyry 1.5m wide chloritic zone, sheared, foliated at 35°.	4623	148.64 1	49.14	0.50		350	.4	293	89	
					149.14 1		1.30		1650	1.4	1055		0.009
93.62	100.88		Grey diorite porphyry with minor pink K-spar rich zones, inclusions of mafic						285	.4	502		0.007
			volcanic. Lower contact at 30° to core axis.		150.77 1				950	.6	403		0.024
					160.80 1				29	.3	555	152	<u> </u>
100.88	103.02		Volcanic inclusions in porphyry, bleached, sheared, minor quartz veining		161.20 1				41	.2	159	92	
			from 100.88 to 102.00m and 102.58 to 103.02m.		162.15 1				61	.5	313	114	<u> </u>
					163.68 1				325	.1	271	109	<u> </u>
103.02	110.49		Grey, bleached, kaolinized, sericitized diorite porphyry with occasional		165.20 1				295	.5	215	137	↓
			quartz veinlets and little sulphides.		166.40 1				320	1.0	631	109	ļ
					167.33 1				250	.9	6449	114	<u> </u>
110.49	112.10		Dark green andesitic volcanic, massive, fine grained, very weakly magnetic.		167.90 1				5490	.7	69	85	0.148
				_	168.65 1				240	.7	678	105	<u> </u>
112.10	114.76		Grey diorite porphyry as above at 110.49m.		169.30 1				420	1.4	1134	121	ļ
					170.05 1				230	.5	584	72	ļ
114.76	118.35		Mafic volcanic of andesitic composition as above to 112.10m.	_	171.60 1				180	.4	541	37	<u> </u>
					172.05 1				160	.8	381	99	ļ
118.35	122.63		Grey diorite porphyry, large plasioclase laths to 10mm in length, trace		172.70 1				65	.4	271	94	
			disseminated pyrite.	_	173.34 1				111	.9	478	116	
ı				4642	174.90 1	75.87	0.97		52	.3	228	98	<u> </u>

TAKLA-RAINBOW PROPERTY DDH 25 Page 3 of 8

From	То			Smp.	From	То				Ar	nalysi	3	
Ме	ters	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
122.63	127.80		Dark green, chloritic andesitic volcanic, bands of porphyry throughout,	4643	175.87	176.57	0.70		77	.7	229	72	
			disseminated pyrite 5 - 8%, local quartz veining. From 125.67 to 126.40m	4644	176.57	177.07	0.50		116	.9	104	73	
			quartz veinlets 1-5mm, disseminated pyrite 8-10%.	4645	177.07	177.77	0.70		72	.2	179	73	
	ļ			•	177.77		0.61		54	.5	91	75	
127.80	128.62		Andesite, cut by bluish quartz veinlets in irregular fashion, disseminations	•	178.38		0.84		119	. 4	212	844	
			and blebs of pyrite 10%.	4648	179.22	180.07	0.85		360	1.7	688	121	
					180.07				175	.7	313	117	
128.62	128.90		Andesite as above to 128.62m, less quartz veinlets, pyrite 5%.		180.80				114	.4	263	87	
	<u> </u>				181.80		0.50	:	65	.5	136	95	
128.90	129.45		Andesite, dark green, chloritic, bluish quartz throughout, pyrite 12%.		182.30		1.52		52	.1	108	71	
	ļ				183.82				81	.3	276	118	
129.45	130.15		Andesite as above to 129.45, minor bluish quartz veinlets, pyrite 5%.		185.34				48	.2	134	129	ļ
	<u> </u>				186.60				66	.5	250	103	
130.15	146.38	_,	Andesite, dark green, chloritic cut by hairline quartz veinlets, dis-		188.06		0.41		75	.6	528	90	0.002
			seminated pyrite throughout, minor veinlet pyrite. Average pyrite content		188.47				78	.4	379		0.001
			3–5%.		189.25		1.10		225	.8	441	64	0.007
				_	190.35		0.55		179	.4	486		0.006
146.38	147.70		Andesite as above to 146.38m cut by white quartz veinlets and stringers of		190.90		0.60		2150	1.9	1949		0.049
	ļ		epidote.		198.42				50	.4	162	79	
					199.94				165	1.1	228	91	
147.70	148.64		Same as above to 147.70m.		201.46				101	.6	148	82	
					202.46		1.44		98	.4	188	78	
148.64	149.14		Andesite, light green, epidote rich section, disseminated pyrite 5-8%, a		205.80		1.52		695	.6	64	105	
<u> </u>			narrow 0.5cm quartz veins cutting the volcanic at 45° and 85°.		207.32		1.50		99	.2	19	99	<u> </u>
				4667	208.82	210.34	1.52		106	.1	82	97	

TAKLA-RAINBOW PROPERTY DDH 25 Page 4 of 8

From	То			Smp.	From	То				Ar	nalysis	<u> </u>	
Ме	ters	Syb	Description	No.	M∈	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tr
149.14	150.44		Dark green, highly chloritic and esitic volcanic, fractured and cemented by	4668	214.38	215.90	1.52		97	.1	180	98	
			bluish-grey quartz. Disseminated pyrite and pyrite specks 15-20%.	4669	215.90	216.70	0.80		495	.3	152	92	
				4670	216.70	218.20	1.50		41	.1	23	127	
150.44	150.77		Dark green andesite as above, minor bluish-grey quartz veinlets, dis-	4671	218.20	220.06	1.86		38	.1	15	139	
			seminated pyrite 3-5%.	4672	220.06	221.59	1.53		26	.1	12	147	
				4673	221.59	223.00	1.41		56	.1	12	125	
150.77	151.60	L	Same as above to 150.44m.	4674	223.00	224.64	1.64		31	.1	29	135	<u> </u>
				4675	224.64	225.48	0.84		57	.1	80	124	
151. 60	160.80		Grey diorite porphyry with numerous pink sections of granitic composition		225.48				51	.1	52	121	
			throughout the unit. Occasional inclusions of andesitic volcanic and thin		226.16				42	.1	74	111	<u> </u>
			quartz veinlets. Rare sections of disseminated pyrite.		227.69				61	.1	150	146	<u> </u>
					229.30				56	.1	192		0.00
					229.80				42	.1	84		0.001
160.80	161.20		Andesite, disseminated pyrite 3%.	Ī	230.13				260	.1	184	82	0.00
	ļ				230.46				695	.3	241	89	
161.20	162.15		Andesite, dykelets of porphyry, white quartz veins, minor disseminated		231.10				99	.1	87	83	
	ļ		pyrite.		231.95		0.50		41	. 1	53	74	
					232.45				71	.1	190	88	
162.15	163.68		Same as above.		239.10		0.77		88	.3	595	62	
	ļ			_	240.40		0.90		121	.1	663	79	
163.68	167.90				241.70		•		71	.3	241	76	
	ļ		veinlets. Pyrite content 5%.		243.30				131	.2	289	81	ļ
	<u> </u>	L			244.60				105	.2	507	51	<u> </u>
167.90	168.65		Andesite, high epidote content, some grey quartz veinlets, disseminated		246.20				25	.1	65	27	
	<u> </u>		pyrite 5-8%.		246.65				235	.4	1059	76	
	İ	L		4693	247.25	248.34	1.09		235	. 4	938	110	1

TAKLA-RAINBOW PROPERTY DDH 25 Page 5 of 8

From	То			Smp.	From	То				A	nalysi	5	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
168.65	176.57		Andesite, light grey, bleached, minor disseminated pyrite and white quartz	4694	248.34	248.95	0.61		335	.7	1792	99	
			veinlets. From 172.82 to 173.64m green, chloritic section with 8% dis-	4695	248.95	249.80	0.85		645	.5	1725	73	0.017
			seminated pyrite and minor quartz veinlets.	4696	249.80	250.43	0.63		39	.1_	151	47	
176.57	177.07		White quartz vein in bleached andesitic volcanic, sheared.										
177.07	178.38		Light grey, bleached andesitic volcanic with minor quartz veining, disseminated pyrite 1%.										
178.38	180.07		Dark green, chloritic andesite cut by white quartz veins, disseminated pyrite 8%.										
180.07	188.06		Dark green and light grey, locally bleached andesite cut by white quartz veinlets 1-5mm across. Disseminated pyrite 3-5%.										
188.06	188.47		Dark green andesite, fine grained, massive, cut by greyish quartz-pyrite veinlets at irregular stockwork. Disseminated pyrite 8%.										
188.47	189.25		As above to 188.47m, disseminated pyrite 3-5%.										
189.25	190.35		As above to 188.47m, disseminated pyrite 10%.	<u> </u>									
190.35	190.90		As above to 188.47m, bleached, less quartz veinlets.	-									
190.90	191.50		As above to 188.47m, bleached, pyrite content 10%.										

TAKLA-RAINBOW PROPERTY DDH 25 Page 6 of 8

From	То	l		Smp.	From	To				<u>A</u>	nalysi	S	
Met	ters	Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
191.50	198.35		Pink granite porphyry, bleached in the section between 191.50 and 196.90m.										
			Consists of greyish matrix and large phenocrysts of plagioclase.										
198.35	203.90		Andesite, dark green, massive, fine grained, not magnetic, epidote specks										
			throughout, minor disseminated and veinlet pyrite.										<u> </u>
203.90	205.10		Diorite porphyry, grey, hematite veinlets abundant.										
205.10	208.82		Andesite, dark green and reddish, hematite veinlets throughout, minor dis-										
			seminated pyrite.										
208.82	213.50		Andesite, dark green, locally bleached, epidote patches throughout, minor			-							
-			thin quartz veinlets, not magnetic.							\vdash			
213.50	216.70		Andesite, light grey, bleached, kaolinized, foliated at 45° to core axis										
			locally, occasional bands of massive pyrite and thin quartz veins.										
216.70	227.69		Andesite, dark green, fine to medium grained, massive, numerous veinlets and										
·			irregular patches of epidote throughout the unit. Not magnetic. Dis- seminated pyrite.		-					$\mid - \mid \mid$			
227.69	229.21		Andesite as above, not magnetic, cut by minor grey quartz veinlets. Epidote abundant in contact areas with veins. Disseminate pyrite 8%.										
229.21	229.80		Andesite as above, but with higher quartz veinlet content, disseminated										
			pyrite and veinlet pyrite 10%.										

TAKLA-RAINBOW PROPERTY DDH 25 Page 7 of 8

rom	То			Smp.	From	To				Aı	nalyst	s	
Met	ers	Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
229.80	230.13		Andesite as above to 229.80m but with few quartz veinlets, pyrite less than										
			2%.										
230.13	230.46		Andesite as above to 229.80m.										
230.46	231.10		Andesite as above to 230.13m.										
231.10	234.20		Andesite, dark green, chloritic, massive, medium grained, disseminated and										
			veinlet pyrite 5-8%, rare thin quartz veinlets.										
234.20	239.10		Grey, bleached, kaolinized dioritic intrusive cut by white quartz veinlets. Disseminated pyrite less than 1%.										
000 10	246 20		Dark green chloritic dioritic intrusive with narrow bleached sections. Dis-										
239.10	246.20		seminated pyrite 1-3%. From 244.60m to 246.20m abundant epidote.										
246.20	246.65		Diorite porphyry grey, trace pyrite.										
246.65	247.25		Diorite, dark green, chloritic, disseminated pyrite 8%, magnetic.										
247.25	248.95		Diorite as above to 247.25m, trace pyrite, magnetic.										
248.95	249.80		Diorite, dark green, chloritic, grey quartz veinlets and disseminated										
			pyrite in the second half of the interval. Pyrite content 8%. The unit is magnetic.										

TAKLA-RAINBOW PROPERTY DDH 25 Page 8 of 8

From	То			Smp.	From To				Aı	nalysis	5	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
249.80	252.46		Pink granitic dyke, medium grained, massive, sericite filled fractures									
			throughout, rare quartz veinlets.									
252.46	254.81		Diorite, dark green, chloritic, medium to fine grained, magnetic, pyrite									
			content less than 1%. Foot of hole.									
			Sperry-Sun Tests:									
			Depth: Dip: Azimuth:									
			68.88m -55°00' 041°									
			129.84m -56°30' 042°									
			190.80m -58°00' 047°									
			251.76m -60°00' 049°									

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow HOLE NO. : DDH 26

LOCATION: West Drill Grid

: 3 + 87E/1 + 38SLOC.

COMMENCED: September 5, 1987 COMPLETED: September 7, 1987

CORE SIZE: BQ

ELEV. :

CORRECT DIP: -55°

TRUE BRG : 045° SURVEY AT :

% RECOVERY : 100%

PAGE : 1 of 1

LOGGED BY : R. Pesalj DATE : September 14/87

CORE STORED : At the camp

OBJECT		F	LENG	TH	: 50.90m		UI	NUSUAL	FEAT.	:		
From	То			Smp.	From To					alysis		
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
0.00	7.32		Overburden, fragments of mafic volcanic of andesitic composition, BW casin	g								-
7.32	15.75		Andesite, dark green, medium grained, massive, cut by numerous epidote									
			filled fractures. Disseminated pyrite 1-2%, not magnetic.			-						
15.75	33.66		Diorite porphyry, grey, numerous inclusions of mafic volcanic, trace pyrit	е.								
			From 27.36 to 27.45m pyrite content 8%, grey quartz vein.									
33.66	38.71		Fault zone, crushed diorite porphyry, no fault gouge. Core recovery 50%.									
38.71	40.76		Andesite, dark green, chloritic, massive, trace pyrite.									
40.76	47.85		Diorite porphyry, grey, fractured, trace pyrite.									
47.85	50.90		Fault zone, crushed bleached diorite porphyry, no fault gouge.									
			Hole abandoned.									
		لــــا		L	<u> </u>	1	<u> </u>	L	L	L	l	L

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION: West Drill Grid

HOLE NO. : DDH26A

DRILL RECORD

LOC.

: 3 + 87E/1 + 35S

CORRECT DIP: - 55° TRUE BRG : 045°

PAGE LOGGED BY

: R.Pesalj/D.Gorc

: 1 of 10

COMMENCED: September 14, 1987

ELEV. :

SURVEY AT :

DATE

: September 18/87

COMPLETED: September 18, 1987

CORE SIZE: BQ

% RECOVERY : 100%

CORE STORED : At the camp

OBJECTIVE:

LENGTH : 331.01m UNUSUAL FEAT.:

				·	Γ				r				
From	То			Smp.	From	To	:			An	alysis		
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/t
0.00	9.75		Overburden. Fragments of bleached porphyry. BW casing.	4901	10.84	11.24	0.40		3790	2.9	27	56	0.10
				4902	55.10	56.10	1.00		132	.6	272	113	
9.75	29.26		Diorite porphyry, grey, occasional bands of pink porphyry, trace pyrite, no	4903		64.92			64	.2	21	104	<u> </u>
			quartz veining. Blocky core, shear zone. From10.84 to 11.24m minor white	4904		66.14			65	.2	37	99	
			quartz vein cutting diorite.	4905		67.51			55	.4	69	87	<u> </u>
29.26	30.78		Dark green, fine grained mafic volcanic of andesitic to basaltic composi-	4906					85	.3	153	97	
			tion, non-magnetic, trace disseminated pyrite.	4907		76.66			66	.1	19	76	-
				4908		78.00			68	.2	14	97	
30.78	42.97		Diorite porphyry, grey with pink sections throughout, blocky core, shear	4909		78.88			67	.3	16	98	ļ
			zone.	4910		80.40			48	·	20	105	
40.07	40.40		Foult tighty changed from the of digitary when the digitary	4911		81.38			76 44	.1	91	113	ļ
42.97	43.43		Fault, highly sheared fragments of diorite porphyry mixed with fault gouge.	4912		82.75			68	.2	39	89 74	
43.43	52.27		Diorite porphyry, minor quartz veinlets, trace disseminated pyrite.	4913 4914					35	.1	63	63	
43.43	32.27		profite perpingly, miller quarter vermose, trace areasimmated pyrite.	4915					144	.3	81	76	T
52.27	63.40		Andesite, dark green, fine grained, massive, non-magnetic, trace dis-	4916		85.95			126	.7	696	85	
	001.10		seminated pyrite, minor dykeletts of granitic porphyry.	4917		87.48			63	.4	409	74	
				4918					29	.1	146	60	
			From 59.55 to 60.05m shear zone, badly broken core.	4919					33	.1	14	49	
				4920	95.70				27	.2	23	50	
			From 55.10 to 56.10m epidote rich zone, minor disseminated pyrite.		100.38				44	.5	264	66	
					101.95				122	1.0	856	100	

TAKLA-RAINBOW PROPERTY DDH26A Page 2 of 10

From	То			Smp.	From	To				Ar	nalysi	<u> </u>	
Met	ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
63.40	67.51		Andesite, dark green, cut by numerous pink granite porphyry dykelettes,	4923	104.22	105.82	1.60		345	.6	456	82	
			abundant epidote alteration, trace pyrite, no quartz veining.	4924	115.21	116.01	0.80		57	.5	490	55	
					116.01				103	.5	483	54	
67.51	68.84		Andesite as above to 67.51m cut by think 0.5cm quartz veinlet running along		116.89				56	.3	80	51	<u> </u>
			the core.		118.50		_		240	.4	67	51	
					119.48				30	3	45	103	l
					121.01				124	.9	22	116	!
68.84	75.35		Andesite, dark green, chioritic, minor epidote and quartz veinging, trace		121.75		0.78		39	.4	165	116	<u> </u>
			pyrite.		122.53				23	.3	120	110	<u> </u>
					123.90				37	.3	48	105	<u> </u>
75.35	82.75		Granitic porphyry, pink and green, chloritic, sections of grey diorite		124.45		1.12		19	.3	33	97	
			porphyry, disseminated pyrite 2-3%, rare quartz veinlets.		125.57				94 59	.5	269 105	106 134	
			Overthe water to perspect the second state of		127.10		0.80		23	.1	18	50	├
82.75	83.19		Quartz vein in porphyry disseminated pyrite 3%, contacts at 60° to core axis.		128.52				35	.8	79	117	╁
			dX15.		130.25				87	.1	13	44	\vdash
83.19	92.40		Granite porphyry, dark and light green and pink, epidote rich section,		131.98				9	.3	7	47	
83.19	92.40		disseminated pyrite 5%, rare quartz veinlets.		133.50		1.22		8	.2	7	27	1
			Transmittaced pyrice on, rate quality fermious.	4	134.72		1.53		45	.4	114	66	<u> </u>
92.40	95.70		Dark green, fine grained mafic volcanic of andesitic composition, trace	•	136.25				83	.6	215	50	T
32.40	33.75		pyrite and quartz veinlets.		145.00				32	.6	104	102	
			EW. 172		146.00		1.22		29	.5	130	91	
95.70	97.06		Pink granitic porphyry with white quartz veinlets 1-5mm across throughout,		147.22		1.22		50	.4	118	110	
			trace pyrite.	4946	156.68	158.20	1.52		19	.1	13	23	
				4947	158.20	159.72	1.52		120	.3	8	36	

TAKLA-RAINBOW PROPERTY DDH26A Page 3 of 10

From	То			Smp.	From T	0			Ar	nalysi:	s	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
97.06	98.66		Dark green andesite with pink bands of granitic porphyry, minor white quartz	1018	150 72 160	76 1 04		22	.1	10	36	
37.00	30.00		veinlets, trace pyrite.		185.01 185.		 	12	.2	4	46	
98.66	100.38		Granite porphyry, grey and pink, cut by minor quartz veinlets.		189.03 189.		 	4	.1	6	60	
30.00	200,00				189.43 191.		 	11	.6	253	129	
100.38	101.95		Granite porphyry as above to 100.38m but quartz veining more abundant.		191.11 192.			9	.1	6	60	
					192.63 194.			13	.2	4	47	
101.95	104.22		Andesite, light and dark green, massive, cut by numerous quartz veinlets		202.08 203.			1	.1	6	87	
			throughout, some jasperoid mauve coloured, trace pyrite.	4955	203.55 204.	52 0.97		11	.2	13	97	
				4956	206.35 208.	18 1.83		42	.6	253	129	
104.22	105.82		Andesite as above to 104.22m but with numerous quartz veinlets.	4957	213.87 215.	10 1.23		9	.1	3	60	
				4958	215.10 215.	55 0.45	<u></u>	560	.4	89	33	0.022
105.82	107.52		Andesite, dark green, chloritic, minor white quartz veinlets, trace pyrite.		215.55 217.		<u> </u>	76	.6	434	80	
					217.01 218.			42	.3	_282	52	
107.52	115.21		Andesite, light grey, bleached, trace pyrite and fine quartz veinlets.		218.54 219.		<u> </u>	40	.2	63	60	<u> </u>
					219.50 221.		<u> </u>	96	.4	350	86	L
115.21	116.89		Andesite as above, quartz veinlets at 30° to core axis, pyrite 2%.		221.01 222.			39	.2	59	73	<u> </u>
					222.69 223.			152	.1	15	119	
116.89	123.90		Andesite as above to 104.22m.		223.24 223.			132	.4	67	153	
100 00	104 45				223.89 224.			66	.1	70	112	
123.90	124.45		Andesite, dark green, chloritic, cut by numerous quartz veinlets, pyrite		224.64 226.			112	.5	302	107	<u> </u>
		-	content 8%, brecciated locally.		226.16 227.			107	.6	432	93	
124 45	127 00		Andesite as above to 124.45m, minor quartz and pyrite.		227.69 228.			122	.7	497	62	
124.45	127.90		Andesite as above to 124.45m, infinor quality and pyrite.		228.96 230.		ļ	82	.4	205 160	84 103	
127 00	130.15		Diorite porphyry, light grey, bleached, minor white quartz veinlets.		230.73 232. 232.25 233.			11	.3	84	99	
171.90	130.13		biolite polphiji, light grey, bleathed, minor white quality verifiets.		232.25 233.			108	.4	218	69	

TAKLA-RAINBOW PROPERTY DDH26A Page 4 of 10

To			Smp.	From	То				Ar	nalysi:	S	
ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
130.25		Fault gouge, grey, unconsolidated.	4974	236.60	237.70	1.10		16	.3	46	35	
			4975	237.70	238.60	0.90		6	.1	29	30	
131.98		Diorite porphyry as above to 130.15m.						43	.5	376	28	<u> </u>
								64	.6			<u> </u>
137.69		Diorite porphyry, grey bleached, cut by a stockwork of white quartz veinlets		+								
145.00												
		dote, trace pyrite.										<u> </u>
												<u> </u>
146.00		Granite porphyry as above with higher epidote disseminated pyrite 5%.										<u> </u>
						_						
148.44												<u> </u>
		pyrite 8%.										<u> </u>
158.20												
		pyrite.										
												ļ
		From 156.68 to 158.20m pyrite content 5%.										 -
						_						
160./6												
		out. Pyrite content 8-10%.										
105 01		Disults namebumy anny alightly blooghed many quanta valuable in-										
182.01												
		pyrite.						4	.5	36	95	
	130.25 131.98 137.69 145.00 146.00 148.44	ers Syb 130.25 131.98 137.69 145.00 148.44 158.20	Description Fault gouge, grey, unconsolidated. Diorite porphyry as above to 130.15m. Diorite porphyry, grey bleached, cut by a stockwork of white quartz veinlets Granite porphyry, pink and dark green, chloritic, few quartz veinlets, epidote, trace pyrite. Granite porphyry as above with higher epidote disseminated pyrite 5%. Andesite, light grey-green, cut by white quartz veinlets, disseminated pyrite 8%. Light grey diorite porphyry, kaolinized, soft, rare concentrations of pyrite. From 156.68 to 158.20m pyrite content 5%. Andesite, light grey, bleached, kaolinized, quartz-pyrite veinlets throughout. Pyrite content 8-10%.	Description 130.25 Fault gouge, grey, unconsolidated. 4974 131.98 Diorite porphyry as above to 130.15m. 4976 137.69 Diorite porphyry, grey bleached, cut by a stockwork of white quartz veinlets 4978 145.00 Granite porphyry, pink and dark green, chloritic, few quartz veinlets, epidote, trace pyrite. 4981 4982 146.00 Granite porphyry as above with higher epidote disseminated pyrite 5%. 4983 148.44 Andesite, light grey-green, cut by white quartz veinlets, disseminated pyrite 8%. 4986 158.20 Light grey diorite porphyry, kaolinized, soft, rare concentrations of 4988 pyrite. 4987 From 156.68 to 158.20m pyrite content 5%. 4990 From 156.68 to 158.20m pyrite content 5%. 4991 185.01 Diorite porphyry, grey, slightly bleached, rare quartz veinlets, trace 4995 pyrite.	Description No. Meson No. Meson No. Meson No. No. Meson No.	Pault gouge, grey, unconsolidated. 4974 236.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.70 238.60 237.69 260.11 261.91 262.91 26	Syb Description No. Meters Lgth.	Syb Description No. Meters Lgth. Rec.	Park Syb Description No. Meters Lgth. Rec. Aupph	Park Syb Description No. Meters Lgth. Rec. Au ppb ppm Pp	Park Syb Description No. Meters Lgth. Rec. Au pph Ppm Pppm Ppm Pppm P	By

TAKLA-RAINBOW PROPERTY DDH26A Page 5 of 10

From	То			Smp.	From	То				Aı	nalysi	s	
Met	ers	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
185.01	185.41		Diorite porphyry as above, cut by white quartz vein 2cm wide running along	4999	298.59	300.09	1.50		1	.5	378	112	
			the core.	5000	310.55	311.35	0.80		1	.4	333	128	
185.41	189.03		Diorite porphyry as above to 185.01m.		321.00				72	.5	140	148	
189.03	10/ 30		Diorite porphyry, grey with occasional pink sections, abundant epidote	7002	328.60	330.60	2.00		13	.4	23	108	<u> </u>
			alteration throughout the unit.										
194.30	202.08		Granite porphyry, grey and pink, grey groundmass f.g. pink feldspar phenocrysts to 10mm in length, trace disseminated pyrite.										
202.08	204.52		Granite porphyry, pink, epidote rich section.										
204.52	206.35		Granite porphyry, minor epidote alteration.										
206.35	208.18		Mafic volcanic of andesitic composition, cut by pyrite-epidote veinlets. Disseminated and vein pyrite 5%.										
208.18	213.87		Granite porphyry as above to 206.35m.										
213.87	215.10		Granite porphyry with higher epidote content, trace pyrite.										
215.10	215.55		Granite porphyry chloritic, cut by 5cm wide quartz vein, trace pyrite.										
215.55	222.69		Granite porphyry, dark green, chloritic, epidote throughout, occasional thin gypsum veinlets 3-5mm cutting porphyry at 30-60° to core axis.										

TAKLA-RAINBOW PROPERTY DDH26A Page 6 of 10

From	То			Smp.	From To				A	nalysi	s	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
222.69	223.24		A contact zone between porphyry above and mafic volcanic below. The section									
			is foliated at 45°-60° to core axis, minor pyrite, abundant epidote									
			alteration.	 		ļ						
223.24	224.64		Same as above to 223.89m.									
224.64	232.25		Andesite, dark green, highly chloritic, epidote throughout, occasional									
			higher concentration of pyrite, average pyrite 5-8%.			-		<u></u>			<u> </u>	
			From 227.69 to 228.96m pyrite veinlets and disseminations 10%.									
232.25	235.08		Granite porphyry, pink, disseminated pyrite 3-5% epidote abundant.									
235.08	236.60		Granite porphyry, trace pyrite.									
236.60	237.70		Highly silicified granite porphyry, grey, massive, trace pyrite.									
237.70	238.60		Breccia, fragments of porphyry ranging in size from 1 to 3cm cemented by									
			grey silica. Trace pyrite.									
238.60	246.99		Granite porphyry, grey and light grey, bleached.					<u> </u>				
246.99	249.55		Diorite porphyry, grey and light grey, bleached.									
<u> 249.55</u>	254.20		Granite porphyry, grey matrix, locally hematite rich, trace pyrite.					<u> </u>				

TAKLA-RAINBOW PROPERTY DDH26A Page 7 of 10

From	To			Smp.	From To				A	nalysi	s	
	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			From 251.44 to 254.20m hematitic zone, numerous red hematitic fractures.									
054.00	071 70		Chanita nambumy nink and gray likita placiallage phonographs throughout									-
254.20	271.70		Granite porphyry, pink and grey. White plagioclase phenocrysts throughout, minor quartz veining, trace pyrite.									
			260.1m - predominantly dark grey matrix; 5 to 10% contain pinkish colour-									
			ation; pinkish areas are irregular in shape; randon concentrations; trace						<u>'</u>			
			feldspar phenocrysts; trace pyrite; minor quartz and pyrite veining 1m to					ļ	ļ			
			5m quartz veinlets at 0° to 45° core angle; approximately 1 per metre.									
						<u> </u>						ļ
			262.51 - 262.71m - slightly brecciated 2% disseminated pyrite with hema-				ļ	 	ļ		ļ	<u> </u>
			tite, slightly magnetic.						 			<u> </u>
			265.2 - 271.6m - slightly fractured; characterized by abundant thin calcite									
	<u> </u>		veinlets at 0° to 30° core angle; more pinkish colouration (K-spar), more				ļ					
	<u> </u>		disseminated pyrite (1%).			1			 			
			266.0m - 2m - (0.25cm thick) quartz veins at 15° core angle; veins are cut									
			by fractures at 0° core angle which have faulted the vein 10cm.									
							 	 	<u> </u>		 	
			270.0 - 271.6m - several epidote fractures with associated 3-5cm wide zones of K-spar alteration along side.				 	 	 			
	1		or K-spar arteractor along stud.			1	 	1	†			

TAKLA-RAINBOW PROPERTY DDH26A Page 8 of 10

From	То			Smp.	From	То				Ar	nalysi	<u> </u>	
Me ¹	ters	Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
271.70	276.0		Diorite Porphyry			·							
				<u> </u>	ļ <u></u>								—
			Matrix is light grey to medium grey; white feldspar phenocrysts to 3mm;	 			ļ						<u> </u>
			finer texture than granite porphyry. Occasional quartz eyes to 0.5cm;	<u> </u>				<u></u>	<u> </u>				
			moderately fractured; cut by calcite and chlorite veinlets at all core					<u> </u>	ļ				
			angles; about 1 quartz vein every 2m; trace pyrite.					<u> </u>					
276.0	288.25		Granite Porphyry										
			Prodominantly growish matrix with 5 10% of core natches of mink V spars										
			Predominantly greyish matrix with 5-10% of core patches of pink K-spar; large white feldspar phenos to 1cm; trace pyrite.					ļ					
						_							
			276.0 - 279.0m - slightly fractured; occasional chlorite-quartz veinlets;										
			40% pink K-spar matrix; abundant thin epidote veinlets; rare pataches of 3%										
		•	disseminated pyrite; occasional 10cm partially silicified zones.					L					
			286.6 - 288.25m - K-spar alteration; pinkish tinge.										
288.25	296.44		Diorite Porphyry										
			Light grey matrix; white feldspar phenocrysts to 0.25cm; occasional dark										
			greenish patches.					ļ					<u> </u>
			200 2 200 0m dank appara 0.5% discominated punits									,	
			288.2 - 290.0m - dark green; 0.5% disseminated pyrite.	 				 		 -			
			293.0 - 293.64m - dark green.										

TAKLA-RAINBOW PROPERTY DDH26A Page 9 of 10

From	То			Smp.	From To				Aı	nalysi	S	
	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
			294.0 - 296.0 - bleached white.									
296.44	331.01		Diorite									
			Fine textured; dark greenish matrix; abundant small white feldspar phenos									
			to 3mm; moderately fractured; cut by abundant calcite veinlets and occasional quartz veinlets, rare epidote veinlets; patchy hematite.									
			305.0 - 310.0m - high hematite alteration; bright brick red colouration.									<u> </u>
			310.7 - 1cm quartz vein with minor pyrite at 65° core angle.									_
			311.0m - 1cm quartz-chlorite vein at 20° core angle.									
			318.0 - 319.5m - minor epidote.						:			
			321.2 - 3cm thick quartz vein at 35° core angle.									
			321.6m - 1cm quartz vein.	-								
			327.0 - 328.0m - moderate hematite alteration.	 								
			326.8 - 5cm quartz vein at 35° core angle.	 								
		-	END OF HOLE	 		 						

TAKLA-RAINBOW PROPERTY DDH26A Page 10 of 10

From To			Smp.	From To				Aı	nalysi	3	
Meters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		Sperry Sun Tests									
		Depth: Azimuth: Inclination: 60.96m 041° 54°00'									
		121.92m 045° 55°00'									
		243.84m 049° 56°30'									
		327.96m 051°30' 57°00'									

i

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION:

CORRECT DIP: -55°

PAGE : 1 of 7

HOLE NO. : DDH 27

LOC.

TRUE BRG : 045°

LOGGED BY : R. Pesalj

COMMENCED: September 7, 1987

LOC. : 4 + 40E/1 + 05S ELEV. :

SURVEY AT :

DATE : September 8/87

COMPLETED: September 10, 1987

CORE SIZE: BQ

% RECOVERY : 100%

CORE STORED : At the camp

OBJECTIVE:

LENGTH

: 258.17m

UNUSUAL FEAT.:

OBJECT	IVE:		LENGTH	1	258.17	m	,	UN	IO20AL	FEAT.:		,	
From	То			Smp.	From	То				Ana	lysis		
Met	ers.	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tr
0.00	14.02		Overburden, fragments of diorite porphyry, BW casing.	4697	39.00	39.60	0.60		45	.5	25	148	
				4698	54.93	55.23	0.30		102	1.8	9	84	
14.02	34.00		Diorite porphyry, grey groundmass, fine grained, white and pink plagioclase	4699	58.34	58.90	0.56	:	785	.5	10	40	0.022
			laths 1-5mm in length. Occasional white quartz veinlets. From 21.60m to	4700					420	1.3	13	47	
			23.10m sheared, blocky core.	4701	59.45				720	2.8	6		0.017
!				4702	 +				480	.3	29	33	ļ
34.00	34.44		Fault, finely crushed fragments of dioritic porphyry.	4703					112	.1	10	46	ļ
				4704					88	.5	5	23	ļ
34.44	36.10		Diorite porphyry as above to 34.00m, blocky core, shear zone.		99.32				720	.8	8		0.018
					104.47				605	.8	10		0.015
36.10	42.00		Dark green andesitic volcanic, medium grained, non-magnetic. From 36.28 to		105.64				86	.1	11	36	ļ
			37.80m, sheared, broken core. From 39.00 to 39.60m disseminated pyrite 3%.		106.12				25	.2	10	33	
					107.64				18	.1	10	37	
42.00	45.10		Pink and green, chloritic, granite porphyry.		109.16				10	.2	10	35	<u> </u>
		 			110.52				345	.3	138	111	
45.10	58.34	ļ	Diorite porphyry, grey, occasional bands of pink granitic porphyry, inclu-		111.20				49	.1	32	100	
		ļ	sions of fine grained volcanic.		119.15				275	.4	281	88	<u> </u>
					120.99				87	.4	274	86	<u> </u>
			From 54.93 to 55.23m narrow quartz vein 0.5cm wide. Specks of epidote		121.28				59	.2	127	46	
			throughout the unit, rare thin quartz veinlets, no sulphides visible.		122.37				113	.4	214	89	
					123.22				195	.3	227	88	
58.34	60.30		Diorite porphyry cut by white quartz veins 1-5cm wide running mainly along		125.57				127	.3	212	94	
		1	the core. No visible sulphides or only trace amount of pyrite present.		127.15				100	.4	64	79	
	<u> </u>	<u> </u>		4720	127.80	128.50	0.70		82	.1	42	83	L

TAKLA-RAINBOW PROPERTY DDH 27 Page 2 of 7

						· · · · · · ·						
From	То			Smp.	From To				Ar	alysis	i	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
60.30	63.20		Diorite porphyry, grey, fresh.	4721	128.50 129.40	0.90		90	.1	60	105	
				4722	129.40 130.34	0.94		133	.4	66	132	
63.20	63.40		Diorite porphyry cut by pink quartz-feldspar vein, disseminated and band	4723	130.34 131.12	0.86		97	.2	80	122	
			pyrite 6-8%.	4724	131.12 131.52	0.40		121	.5	292	109	
				4725	131.52 132.30	0.78		114	.6	218	166	
63.40	84.10		Grey diorite porphyry, fractured, slightly chloritized, no quartz veinlets,	4726	132.30 132.92	0.62		29	.1	30	140	
			trace pyrite.	4727	132.92 134.44	1.52		85	.3	109	100_	
				4728	134.44 135.14	0.70		94	.1	241	113	
84.10	84.67		White quartz vein, massive, no sulphides visible. The upper contact at 25°		135.14 135.67			86	.1	87	97	
			to core axis.		135.67 137.12			92	.2	207	102	
					187.12 138.55			87	.1	164	105	
84.67	104.47		Grey diorite porphyry, slightly chloritic, plagioclase laths up to 10mm in		138.55 139.70			52	.4	279	118	
			length set in greyish fine grained matrix.		139.70 140.05			195	1.0	586	129	
					140.05 140.90			81	.4	285	125	
104.47	104.77		Light grey, bleached, diorite porphyry cut by pink quartz feldspar veinlets.					280	.9	472	137	
					142.34 142.54			179	.9	514	95	
104.77	105.64		Diorite porphyry, light grey, bleached, trace pyrite.		142.54 143.86	+		134	.6	120	83	
					143.86 144.83	+		9	.5	178	87	
105.64	106.12		Diorite porphyry as above to 105.64m cut by white quartz veins.		144.83 145.18			202	1.1	65	65	
					145.18 145.72			610	2.0	952	92	0.017
106.12	110.52		Diorite porphyry as above to 105.64m.		145.72 146.77			240	.8	678	92	
					146.77 148.10			560	1.0	89		0.015
110.52	111.90		Diorite porphyry, dark green, chloritic, inclusions of mafic volcanics 40%,		148.10 148.80			187	.1	321	57	
			disseminated pyrite 5-8%.		148.80 149.45			79	.3	95	71	
		l		4745	149.45 150.00	0.55		104	. 4	112	79	

TAKLA-RAINBOW PROPERTY DDH 27 Page 3 of 7

From	То			Smp.	From To				Ar	nalysis	5	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
111.90	119.15		Diorite porphyry, grey-green, epidote concentrations locally, disseminated	4746	150.00 151.48	0.48		97	.6	244	61	
			pyrite 1-2%.	4747	151.48 152.15	0.67		86	.2	122	94	
				4748	152.15 153.15	1.00		67	.1	95	44	
119.15	121.27		Diorite porphyry, grey and green, epidote rich section, disseminated pyrite	4749	158.95 160.35	1.40		163	. 4	1344	93	
			3–5%.		160.35 161.38			230	. 3	141	60	
					161.38 162.18			134	.4	277	644	
121.27	122.37		Diorite porphyry, as above to 119.15m.		162.18 163.37			138	.5	184	68	
					163.37 163.90			47	.8	267	68	
122.37	123.22		Diorite porphyry as above to 121.27m.		163.90 165.42			162	.1	23	37	
					170.64 170.94			280	.4	20	43	
123.22	125.57		Diorite porphyry as above to 119.15m.		170.94 171.91	·····		25	.1	9	56	ļ
					171.91 172.21			22	.1	7	444	ļ
125.57	127.15		Fault zone, crushed and pulverized fragments of diorite porphyry.		172.21 173.02			35	.1	299	48	
	100.00				173.02 173.62			111	.2	27	67	
127.15	134.44	-	Diorite porphyry, green, chloritic, numerous inclusions of mafic chloritic		173.62 174.80			86	.1	130 76	20	
			volcanic, occasional quartz veinlets, disseminated pyrite 5%.		190.64 190.84 195.80 196.55	1		320 35	.6	76	38 81	
124 44	144.83		Anderite dark green marries fine grained not marretic discounted		196.55 197.65			39	.9	331	84	
134.44	144.03		Andesite, dark green, massive, fine grained, not magnetic, dissemnated pyrite 2%.		197.65 199.05	+		24	.4	156	9?	
			pyrite 2%.		199.05 199.55			114	.8	274	94	
1// 83	145.18		Light and dark green, epidote rich mafic volcanic of andesitic composition		199.55 199.88			23	.1	123	94	
144.03	140.10		cut by quartz-pyrite-epidote veinlets. Pyrite content 15-18%.	-	199.88 200.82			90	.5	265	95	
	 		and all qualities printed options to intense in Julius contense 10-10%.		200.82 202.15			110		416	<u> </u>	
145.18	146.77		Andesite, dark green, chloritic, disseminated pyrite 10-15%, cut by veinlets			•		33	.7	162	72	
143.10	1-10.77		of grey quartz throughout.		204.43 206.15			22	.6	345	70	
			M. M. A. C. C. C. C. C. C. C. C. C. C. C. C. C.		206.15 207.65			125	.7	240	99	

TAKLA-RAINBOW PROPERTY DDH 27 Page 4 of 7

rom	To			Smp.	From	To				Ar	nalysis	S	
Met	ers	Syb	Description	No.	Mete	rs	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
146.77	148.10		Andesite, dark green, chloritic, minor quartz veinlets, disseminated	4772	207.65 208	8.95	1.30		113	.4	149	99	
			pyrite 5%.	4773	208.95 20	9.70	0.75		55	.5	104	93	
				4774	209.70 21	0.60	0.90		83	. 4	100	103	
148.10	148.80		Andesite as above to 148.10m, but more grey quartz veinlets. Disseminated	4775	210.60 21	1.80	1.20		35	.3	59	112	
			pyrite.		211.80 21				58	.1	137	98	
				4777	212.90 21	3.90	1.00		26	.4	189	68	
148.80	150.00		Andesite, dark green, chloritic, cut by grey quartz veinlets throughout,		213.90 21		1.60		51	.3	209	107	
			disseminated pyrite 8%.		215.50 21		1.52		53	.2	162	98	ļ
					217.02 218		1.18		23	.3	143	79	
150.00	151.48		Diorite porphyry, disseminated pyrite 2%.		218.20 21		0.86		1150	.6	295	91	0.027
					219.06 219		0.60		250	.7	422	80	ļ
151.48	152.15		Andesite, dark green, chloritic, disseminated pyrite 8%, grey quartz vein-		219.66 220		0.50		48	.3	186	93	
					220.16 220		0.47		92	.4	338	95	ļ
152.15	158.95		Grey diorite porphyry, occasional epidote rich stringers, trace pyrite.		220.63 22				61	.5	303	944	
	100.07				221.13 222				128	.5	352	10	
158.95	163.37		Dark green, chloritic andesitic volcanic, fine grained, not magnetic, cut		222.19 22		1.52		85	.3	232	87	
			by light green, epidote-quartz-pyrite veinlets. Pyrite content 8%.		223.71 22		1.60		64	.2	73	98	<u> </u>
162 27	163.90		Camp as above to 162 27m diagoninated and uninlat numity 100		225.31 225		0.60		160	.2	116	97	
163.37	163.90		Same as above to 163.37m, disseminated and veinlet pyrite 12%.		225.91 226		0.86		143	.5	109 134	110	ļ
162 00	170.64		Diorite porphyry, grey, occasional light green epidote veinlets, rare white		226.71 227		0.98		117	.5		78	
103.90	170.04		quartz veinlets.		227.69 228 228.64 229		0.95		230 7	.5	706 32	160 61	
			qualitz verifiets.				0.72			1	58	70	
170 64	170.94	-	Light green, epidote rich diorite porphyry, pyrite stringers 10%, grey		229.36 230 230.16 231				6 44	.1	217	70 52	
1/0.04	1/0.94		quartz veinlets throughout.		231.06 232		1.50		35	.1	92	65	
			qualitz vointees un oughout.		241.35 241		0.56		17	.1	20	47	

TAKLA-RAINBOW PROPERTY DDH 27 Page 5 of 7

From	To			Smp.	From	To				Α	nalysi	3	
	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
170.94	173.02		Diorite porphyry, local epidote rich sections, inclusions of dark chloritic	4798	242.93	243.83	0.90		106	5.6	6038	35	
			volcanic, disseminated pyrite 3%.	4799	243.83	24.53	0.70		102	3.7	4186	40	
				4800	256.32	257.22	0.90		32	.2	750	64	
173.02	179.20		Diorite porphyry, grey, minor disseminated pyrite and epidote concentra-								<u> </u>		
			tions locally.							ļ	<u> </u>		
											 		
179.20	187.66		Grey and pink granite porphyry, fresh large plagioclase phenocrysts set in							ļ			
			grey fine grained matrix.	ļ				:			 		
	100.04		District and appear appoints intrusive plagicaless phonographs preserved							 	 		
187.66	190.64		Pink, grey and green granitic intrusive, plagioclase phenocrysts preserved locally, epidote veinlets throughout, disseminated pyrite 1-3%.								 	ļ	
			Tocarry, epidote verifiets till oughout, dissemiliated pyrite 1-3%.	<u> </u>									
190.64	190.84		Same as above with higher epidote and quartz veinlets at 30° to core axis.										
190.84	195.80		Same as above to 190.64m, disseminated pyrite 1-3%.										
195.80	196.55		Andesite, dark green, cut by numerous light green epidote veinlets, dis-										
			seminated pyrite 5-8%.							ļ			
196.55	199.55		Same as above, with pyrite content 3-5%.										
199.55	202.15		Andesite, dark green, epidote rich, disseminated pyrite 1-3%, non-magnetic.										
202.15	207.70		Dark green and pink andesitic volcanic cut by granitic dykelets throughout,										
		_	disseminated pyrite 1-2%.					ļ	 	 	 		

TAKLA-RAINBOW PROPERTY DDH 27 Page 6 of 7

From	To			Smp.	From To				1A	nalysis	3	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
207.70	208.95	*	Andesite as above to 202.15m cut by grey quartz veinlets. Disseminated									
			pyrite 2%.									
208.95	228.64		Andesite, dark green, epidote rich, disseminated pyrite 1-5%.									
			From 209.70 to 210.60m epidote content higher, pyrite 6%.									
			From 219.06 to 219.66m pyrite content 8%.									
			From 225.91 to 228.64m grey quartz veinlets cutting andesite, disseminated									
			pyrite 8-10%.									· · · · · · · · · · · · · · · · · · ·
228.64	230.16		Dyke of dioritic composition, medium grained, massive, non-magnetic. Contacts with porphyry sharp at 30° and 65°. Upper contact bleached over									
			0.72m.									
230.16	232.56		Diorite porphyry, sheared, chloritized, occasional quartz-hematite veinlets, disseminated and veinlet pyrite 3-5%, epidote abundant.									
232.56	242.93		Diorite porphyry, grey, rare quartz veinlets, epidote specks throughout.									
			From 241.35 to 241.91m grey quartz vein, epidote abundant.									
242.93	258.17		Diorite porphyry cut by grey quartz-pyrite chalcopyrite veinlet 0.5-2cm wide									
			running along the core, chloritic blebs in vein to 3cm across. Pyrite content 8%.									
		l 1		ł					l	<u> </u>		

TAKLA-RAINBOW PROPERTY DDH 27 Page 7 of 7

From To			Smp.	From To				Aı	nalysi	s	
Meters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		From 256.32 to 257.22m minor quartz veinlet 5mm across. Foot of hole.									
		Sperry-Sun Tests:									
		Depth: Dip: Azimuth: 60.04m -55°00' 042°									
		121.00m -56°00' 046° 181.96m -56°30' 046°									
		242.92m -58°00' 049°									

DRILL RECORD IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow LOCATION: West Drill Grid

HOLE NO. : DDH 28 LOC. : 7 + 37E/1 + 20S

COMMENCED: September 10, 1987 ELEV.

COMPLETED: September 12, 1987 CORE SIZE: BQ

OBJECTIVE:

CORRECT DIP: -50°

TRUE BRG : 225°
SURVEY AT :

% RECOVERY : 100%

LENGTH : 221.59m

PAGE : 1 of 5

LOGGED BY : R. Pesalj
DATE : September 10/87

CORE STORED : At the camp

UNUSUAL FEAT.:

rom	То			Smp.	From	To				Ana	alysis		
Met	ers	Syb	Description	No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/t
0.00	3.65		Overburden, fragments of mafic volcanic, BW casing.	4801	9.62	9.95	0.33		1040	2.8	730	95	0.03
				4802	28.80	29.32	0.52		3200	3.4	1577	101	0.0
3.65	9.62		Mafic volcanic of basaltic composition, fine grained, massive, occasional	4803	49.75	50.70	0.95		47	.5	355	143	<u> </u>
			white quartz veinlets, no visible sulphides, slightly magnetic. At 5.90m	4804	62.76	63.09	0.33		49	.1	51	78	<u> </u>
			narrow fault, crushed and pulverized basalt, stained by iron oxides.	4805	63.09	63.35	0.26		62	. 4	82	78	
				4806					53	1.1	117	76	<u> </u>
9.62	9.95		Basalt, light green, bleached, cut by thin 1-5mm quartz veinlets.	4807		65.72			29	.5	46	170	<u> </u>
				4808			0.48		23	.9	121	185	
9.95	28.80		Basalt as above to 9.62m.	4809	66.10				46	1.4	481	167	<u> </u>
				4810					57	.9	202	160	ļ
28.80	29.32		White quartz veinlets cutting basalt, disseminated pyrite 8%.	4811		67.30			72	1.2	211	177	
				4812					92	2.2	1236	180	<u> </u>
29.32	49.75		Basalt, dark green, chloritic, fine grained, occasional quartz-epidote		67.76				23	.8	254	156	
			veinlets and irregular patches. The unit is slightly magnetic.	4814		70.40			19	.7	192	163	<u> </u>
				4815		74.57			695	1.9	365		0.0
49.75	50.70		Basalt, light and dark green, epidote rich section, trace disseminated	4816		76.50			245	1.0	176	245	
			pyrite.	4817	76.50				21	.3	43	122	ــــــ
				4818	79.58	80.38	0.80		18	.6	293	140-	<u> </u>
50.70	62.76		Basalt, dark green, medium to fine grained, massive, non-magnetic, rare	4819	-	83.20			92	.4	142	116	<u> </u>
			quartz veinlets, trace pyrite, abundant epidote.	4820	85.25				86	1.5	766	133	<u> </u>
				4821	85.75	87.27	1.52		27	.6	155	165	1

TAKLA-RAINBOW PROPERTY DDH 28 Page 2 of 5

rom	То			Smp.	From To	,			Ar	nalysis	<u>; </u>	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tr
62.76	64.20		Quartz vein, white and grey cutting basalt in irregular fashion, vugs with	4822	87.27 88.3	0 0.83		11	.4	28	153	
			calcite crystals in white quartz veins common, disseminated pyrite mainly	4823				3	.2	14	120	
			in grey quartz 2-3%.	4824	89.20 90.7			55	1.6	753	176	
64.20	65.72		Dark green andesite with minor quartz veinlets, epidote stringers	4825	90.72 91.0	7 0.95		82	.9	257	133	
			throughout.	4826			<u> </u>	3170	3.1	1459		0.055
				4827		9 1.22		28	.4	129	157	<u> </u>
65.72	66.83		Basalt cut by numerous green quartz-epidote veinlets.	4828) 		ļ	91	1.0	433	132	
				4829			ļ	52	.9	295	102	<u> </u>
66.83	67.76		Basalt cut by grey quartz veinlets throughout, disseminated pyrite 5-8%.	4830				12	.7	210	216	<u> </u>
	,, ,				100.37 101.3		1	16	.5	86	112	
67.76	70.40		Basalt, epidote stringers and specks throughout, minor quartz veinlets and	+	129.45 130.8		 	7	.4	92	175	
			pyrite.	-	133.10 134.			98	.4	8	175	ļ
					148.44 149.			2	.2	13	62	
70.40	73.61		Basalt, dark green, fine grained, massive, rare quartz veinlets.		149.96 150.			1 1	.1	38	57	
					159.20 159.			17	.2	11	84	<u> </u>
73.61	74.57		Basalt as above to 73.61m cut by grey quartz veinlets. Disseminated		169.97 170.			97		2045	58	ļ
			pyrite 5%.		181.20 182.0	····		4	.2	23	81	
					182.06 183.0			59	.3	18	83	
74.57	90.72		Basalt, dark green, fine grained, slightly magnetic, cut by epidote rich		186.08 186.			12	.5	404	102	
		L	veinlets, rare quartz veining.	7675				109	.2	23	149	
				7676				62	.1	29	200	
90.72	91.67		White quartz vein cutting mafic volcanic, contacts bleached, cut by thin	7677		0 1.52	 	206	.5	214	176	<u> </u>
			veinlets, trace pyrite.	7678	 			7	.2	142	131	
				7683	91.67 99.	0 7.63		17	.2	49	156	
91.67	93.30		Dark green, fine grained basaltic volcanic of basaltic composition, trace	 				 	 	 	 	-
			pyrite.		ļ		ļ	 	 	<u> </u>	├ ──	

TAKLA-RAINBOW PROPERTY DDH 28 Page 3 of 5

From	То			Smp.	From To				Ar	nalysis	S	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
93.30	93.77		Basalt cut by grey quartz vein 15cm wide and thin veinlets at the lower									
			contact. Disseminated pyrite 5-8%.									
93.77	94.99		Basalt, epidote and thin quartz veinlets throughout.									
94.99	98.54		Basalt, dark green, fine grained, massive, rare epidote-quartz veinlets.									
98.54	98.94		Fault, crushed basaltic rock over 20cm, no fault gouge.									
98.94	99.67		Basalt, epidote and iron oxide rich section.									
99.67	100.37		Fault, crushed and highly sheared basalt, minor fault gouge.									
100.37	101.29		Epidote rich basalt, quartz vein 4cm wide cutting the unit at 60° to core axis.									
101.29	121 50		Basalt, dark green, massive, fine grained, not magnetic to locally slightly									
101.23	121.50		magnetic. Epidote veinlets throughout the unit, trace pyrite, rare white quartz veinlets.									
			qual L2 Yellilets.									
121.50	129.45		Andesite, dark green, medium grained, massive, occasional white quartz veinlets 1-5mm across at 75°-90° to core axis.									
129.45	130.85		Andesite, dark green and reddish, hematite stained, numerous white and reddish jasperoid veinlets throughout the unit. The veinlets are cutting									
			volcanic at 45°-60° to core axis.									
I	I	1 1		I '	1	1				l	I	1

TAKLA-RAINBOW PROPERTY DDH 28 Page 4 of 5

From	То			Smp.	From	To				Aı	nalysi:	s	
Met	ers	Syb	Description	No.	Mete	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
130.85	133.10		Andesite, dark green, massive, rare thin quartz veinlets.										
133.10	134.30		Andesite, light grey, bleached, cut by white quartz veinlets.										
134.30	148.44		Andesite, dark green, chloritic, cut by occasional white quartz veinlets, locally bleached, slightly magnetic.										
148.44	149.96		Andesite, red hematite stained, few quartz veins.										
149.96	150.46		Light green, highly foliated and sheared andesite with white quartz vein- lets parallel to foliation at 45° to core axis.										
150.46	159.20		Andesite, green to dark green, fine grained, massive, non-magnetic, rare quartz veinlets, no visible sulphides.										
159.20	159.50		Light grey, bleached andesite cut by white quartz veinlets at 85°-90° to core axis. Hairline quartz veinlets throughout the section.										
159.50	169.97		Andesite, as above to 159.50m.										
169.97	170.32		Grey quartz vein cutting andesite, epidote veinlets abundant.										
170.32	181.20		Andesite, grey-green, massive, medium grained, occasional epidote veinlets.										
181.20	183.00		Grey, bleached andesite cut by white quartz veins ranging from 1mm to 10cm in width. No visible sulphides.										

TAKLA-RAINBOW PROPERTY DDH 28 Page 5 of 5

From	То			Smp.	From	To				Α	nalysis	5	
Met	ers	Syb	Description	No.	Met	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
183.00	186.08		Andesite, as above to 181.20m.										
186.08	186.43		Andesite, reddish hematite stained, cut by white quartz veinlets.										
186.43	218.04		Andesite, dark grey-green, massive, fine grained, non-magnetic, cut by numerous epidote veinlets, contact with porphyry sharp with no chilled margin at 45° to core axis.										
218.04	221.59		Granite porphyry, grey fine grained matrix with plagioclase phenocrysts to 10mm in length, few white quartz veinlets. Foot of hole. Hole making water (63 1/min or 14 gal/min). 3.65m of BW casing left in hole.										
			Sperry-Sun Tests:*										
			Depth: Dip: Azimuth: 63.09m -51°00' 229°										
			124.05m										
			*Readings not reliable due to presence of magnetic rocks in the hole.			- 				<u> </u>			

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION:

CORRECT DIP: -55°

PAGE : 1 of 3

HOLE NO. : DDH 29

LOC.

TRUE BRG : 045°

LOGGED BY : R. Pesalj

COMMENCED: September 12, 1987

SURVEY AT :

DATE : September 13/87

COMPLETED: September 14, 1987

ELEV. :

CORE STORED : At the camp

CORE SIZE: BQ

: 4 + 40E/0 + 55S

% RECOVERY : 100%

OBJECTIVE:

LENGTH : 154.53m UNUSUAL FEAT.:

From	То	1		Smp.	From	To				Ana	alysis		
Met	ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
0.00	11.58		Overburden, fragments of porphyry, BW casing.	4841	21.33	23.20	1.87		1180	.3	159	85	0.034
				4842	23.20	24.60	1.40		1380	.1	253		0.040
11.58	21.33		Diorite porphyry, light grey, bleached, fairly soft, consists of fine	4843		25.35		,	6080	.7	435		0.177
			grained matrix and plagioclase and minor quartz phenocrysts.	4844					270	.5	266	114	
				4845					350	.1	100	68_	
21.33	24.60		Light green and grey andesitic volcanic, fine grained, massive, locally	4846					146	.1	91	107	
			bleached. At 23.57m quartz veinlet at 30° to core axis. Thin white quartz	4847		33.51			310	.4	62	61	
			veinlets from 21.33 to 24.60m, trace pyrite.	4848					490	.9	120	83	<u></u>
				4849					65	.1	20	38	
24.60	25.35		Andesite cut by white quartz veins, fragments of bleached andesite cemented	4850					230	.1	28	27	
			by quartz. Pyrite content less than 1%.	4851					51	.1	156	82	
				4852					78	.1	139	69	
25.35	29.46		Andesite, dark green, massive, trace pyrite, rare quartz veinlets.	4853		57.70			47	.1	88	72	
				4854	57.70				40	.1	278	78	
29.46	37.68		Granite porphyry, pink and dark green, chloritic, minor disseminated pyrite	4855					59	.1	146	94	
			and quartz veining.	4856		61.56			81	.1	206	73	
				4857		63.09			56	.1	185	78	
			From 32.81 to 33.51m white quartz vein 1.5cm wide along the core. Dis-	4858	63.09	64.61	1.52		38	.1	151	45	
			seminated pyrite in vein 3-5%.	4859					73	.2	238	58	
				4860	66.14	67.21	1.07		340	.9	558	103	
			From 36.88 to 3768m white quartz vein 1cm wide along the core. Minor dis-	4861					156	.2	320	81	
			seminated pyrite.	4862		70.10			118	.2	237	101	
				4863		71.00	_		370	.8	74	107	
				4864	71.00	72.29	1.29		390	.5	113	57	1

TAKLA-RAINBOW PROPERTY DDH 29 Page 2 of 3

	T-]	Fran To	<u> </u>			A		······································	
From	То	C	Description	Smp.	From To		Dag	A		alysis		
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.		Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
37.68	56.47		Diorite porphyry, grey, plagioclase phenocrysts to 1cm in length in grey,	4865	72.29 72.99	0.70		550	.6	22	29	
			fine grained matrix.	4866	88.39 89.09	0.70		28	.1	119	57	
				4867	91.02 91.52	0.50		96	.3	80	52	
			From 38.08 to 38.40m white quartz vein 2cm wide along the core.	4868	91.52 93.05	1.53		64	.1	185	85	
				4869	93.05 93.80	0.75		98	.3	100	72	
			Occasional inclusions of mafic volcanic, minor disseminated pyrite.	4870	97.30 98.82	1.52		40	.1	251	72	
				4871	98.82 100.34	1.52		42	.1	283	54	
56.47	67.21		Granite porphyry, pink and dark green, highly chloritic, disseminated	4872	100.34 101.24	0.90		53	.1	132	62	
			pyrite 3%.	4873	101.24 102.35	1.11		33	.1	69	91	
				4874	102.35 103.80	1.45		31	.1	45	94	
67.21	70.10		Andesite, grey-green, chloritic, disseminated pyrite 3%.		103.80 105.86			28	.2	118	83	
					105.86 106.23			96	.7	583	61	
70.10	72.29		Andesite cut by white and grey quartz vein with pyrite cubes throughout.		106.23 106.98			36	.2	90	112	
			The vein is 1-3cm wide, running along the core.		106.98 108.53			57	.3	92	151	
					108.53 110.03			43	.2	45	113	
72.29	72.99		Granite porphyry, pink, cut by white quartz veinlets, disseminated	4880	110.03 111.67	1.64		48	.4	110	132	<u> </u>
			pyrite 2%.		111.67 113.20			60	. 4	143	138	
					113.20 114.68			56	.3	164	110	<u> </u>
72.99	81.00		Diorite porphyry, inclusions of green mafic volcanics throughout the	4883	114.68 116.20	1.52		47	.2	30	131	
			section.		116.20 117.96			46	.4	68	90	
					117.96 119.48			79	.2	93	76	<u> </u>
81.00	97.30		Granite porphyry, pink and green, chloritic, disseminated pyrite 1-3%.	4886	119.48 121.00	1.52		39	.2	23	121	
					121.00 122.52			69	.1	26	114	
97.30	101.24		Granite porphyry, light grey, bleached, kaolinized, soft, fragmented core.	4888	122.52 124.05	1.53		51	.1	84	116	
				4889	124.05 125.58	1.53		39	.1	59	137	
			From 98.30 to 98.50m fault, crushed porphyry, no gouge.	4890	125.58 127.10	1.52		49	.2	38	139	
				4891	127.10 128.62	1.52		48	.2	29	88	

TAKLA-RAINBOW PROPERTY DDH 29 Page 3 of 3

From	To			Smp.	From	To				Ar	nalysis	·	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
101.24	132.46		Granite porphyry, pink and green, chloritized, disseminated pyrite 1-2%.	4892	128.62	130.15	1.53		55	.1	18	78	
				4893	130.15	132.46	2.31		38	.2	26	84	
			From 105.86 to 106.23m chlorite-epidote rich section, foliated at 45° to	4894	132.46	133.60	1.14		96	.3	70	119	
			core axis. Disseminated pyrite 2-3%.	4895	133.60	134.20	0.60		49	.1	18	62	
			Local hematite zones, epidote throughout.	4896	134.20	135.25	1.05		51	.6	311	138	
				4897	135.25	136.24	0.99		72	.6	221	134	
132.46	133.60		Dark green andesitic volcanic medium grained, massive, minor quartz-chlorite	4898	136.24	137.76	1.52		41	.2	29	127	
			veinlets. Disseminated pyrite 5-8%.	4899	137.76	139.15	1.39		71	.2	52	148	
				4900	139.15	140.35	1.20		220	.6	40	45	
133.60	134.20		Grey quartz vein in andesitic volcanic at 30° to core axis. Disseminated										
			pyrite in vein and wall rock 8%.										
134.20	139.15		Andesite, dark green, chloritic, disseminated pyrite 5%, rare chlorite-										
			quartz veinlets, epidote as specks and veinlts, pyrite increasing in epidote										,
			rich sections.										
139.15	140.35		White quartz vein 2-3cm wide running along the core, cutting dioritic										
			intrusive. Minor disseminated pyrite and pyrite cubes in the vein.										
													<u> </u>
140.35	150.95		Diorite porphyry, grey, plagioclase phenocrysts to 10mm in length set in										<u> </u>
			grey matrix. Trace pyrite, no quartz veining.										
150.95	154.53		Diorite, dark green, chloritic, medium grained, massive. Rare white quartz										
			veinlets, no sulphides. Foot of hole.										<u> </u>
			Sperry-Sun Tests:										
			Depth: Dip: Azimuth:										
			63.09m -57°00' 042°										
			124.05m -56°00' 043°						,				

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow LOC

LOCATION: West Drill Grid LOC.: 5 + 35E/1 + 10S CORRECT DIP: - 55° TRUE BRG : 045° PAGE : 1 of 11 LOGGED BY : D. Gorc

COMMENCED: September 18, 1987

ELEV. :

SURVEY AT :

DATE : September 21/87

COMPLETED: September 21, 1987

CORE SIZE: BQ

% RECOVERY : 100%

CORE STORED : Campsite

OBJECTIVE:

DRILL RECORD

HOLF NO. : DDH-30

LENGTH

GTH : 269.14m UNUSUAL FEAT.:

From From To Smp. To Analysis | |Lgth.| Meters Syb Description Meters Rec. Cu Zn Au ppb loz/tn ppm mag mag 9.75 Casing. 7003 12.50 14.02 1.52 3 .1 6 31 0.001 7004 17.50 19.00 1.50 3 .1 8 51 7005 19.00 20.20 1.20 . 1 9.75 21.80 Diorite Porphyry 59 Light grey matrix; abundant white feldspar phenocrysts to 0.25cm; 5-10% 7006 20.20 21.80 1.60 7 .1 5 54 mafics chloritized; occasional quartz veins at 30°-45° core angle (less 7007 21.80 23.20 1.40 .3 15 304 44 than 1 per metre); 0.5 to 1% disseminated pyrite in 10-20cm patches but .3 7008 23.20 24.70 1.50 58 16 157 overall only trace pyrite; local hematitic seams; some sections are dark 7009 24.70 26.00 1.30 42 . 4 12 148 .<u>4</u> green chloritic: occasional feldspar phenocrysts are sericitized. 199 7010 26.00 27.70 1.70 80 22 .2 135 7011 27.70 28.25 0.55 52 38 15.0 - 16.45m - slightly bleached. 7012 28.25 28.90 0.65 94 .4 81 150 7013 28.90 29.57 0.67 106 .8 242 241 375 Andesite 7014 29.57 29.87 0.30 79 . 4 27 21.80 27.70 .4 Fine porphyritic texture: medium grey to greenish grey matrix: 1-3% dis-7015 29.87 31.37 1.50 80 21 231 seminated pyrite: occasional 1cm silicified patches but rare: occasional . 5 20 181 7016 31.37 32.61 1.24 340 .1 spotty epidote but rare. 7017 32.61 33.61 1.00 57 18 99 7018 33.61 34.61 1.00 82 103 . 4 93 7019 34.61 36.50 1.89 .1 50 26.6m - 1cm quartz - pyrite vein at 25° core angle. 50 96 7020 36.50 37.50 1.00 98 57 .4 104 27.70 29.25 7021 37.50 38.71 1.21 .3 73 Granite Porphyry 25 74 Pinkish brown matrix; large white feldspar phenocrysts to 1cm. 7022 38.71 40.30 1.59 17 . 4 32 106 .2 25 73 7023 40.30 41.76 1.46 30 128 7024 41.76 43.26 1.50 48

TAKLA-RAINBOW PROPERTY DDH-30 Page 2 of 11

From	То			Smp.	From	То				An	alysis	;	
Met		Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
29.25	33.61		Andesite	7025	43.26	44.76	1.50		52	.7	106	156	
			Same as above, slightly more epidote.	7026	44.76	45.50	0.74		39	.1	28	104	
				7027	45.50	47.35	1.85		78	.3	105	118	
			29.65 - 29.75m - greyish silica with moderate epidote.	7028	47.35	48.80	1.45		47	.4	78	117	
				7029	48.80	50.80	2.00		66	.8	17	107	
			32.50 to 32.75m - pinkish alteration, K-spar, hematite.	7030	50.80	51.70	0.90		230	.3	21	53	
				7031	51.70	52.70	1.00		140	.5	146	72	
33.61	36.50		Granite Porphyry	7032		53.95			260	.5	194	98	
			Highly sheared, much of original textured obliterated; grey matrix with	7033	53.95	55.70	1.75		34	.1	60	100	<u> </u>
			occasional pinkish K-spar patches, large feldspar phenos to 1cm cut by	7034					295	.4	102	102	ļ
			abundant thin calcite veinlets (1mm to 2mm) at 40° core angle.	7035					240	.8	427	128	ļ
				7036					170	.3	30	43	
36.5	57.50		Andesite		58.60				290	.9	636	106	ļ
					59.90				28	.3	26	36	<u> </u>
				7039					16	.3	14	44	ļ
			10-30cm wide patches with light green epidote alteration; 1 to 2 patches	7040					27	.1	6	40	<u> </u>
			per metre; generally only slight epidote but more epidote than previous	7041		65.53			43	.1	6	40	↓
			andesite; quartz veinlets at 30°-35° core angle.	7042		66.20			21	.2	26	37	
				7043		68.58			141	.4	23	44	
			45.10 - 45.40m - high epidote alteration, 8% disseminated pyrite, thin quart						2	.4	5	58	ļ
			veinlets at 40° core angle.	7045					1	.1	15	32	
				7046					7	.3	26	38	_
			50.90 - fault gouge - small amount.						5	.1	9	50	
				7048	· · · · · · · · · · · · · · · · · · ·				49	.2	17	31	<u> </u>
			50.90 - 51.70m - medium grey slightly bleached, slightly silicified,	7049					11_	.2	21	28	
			moderately fractured.	7050					36	.3	7	38	
				7051					4	.3	7	35	1
				7052	79.30	81.38	2.08	L	19	.1	10	55	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-30 Page 3 of 11

From	То			Smp.	From To				Ar	nalysis		
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
			51.70 - 52.70 - highly fractured and brecciated; grey to whitish in colour;	7053	81.38 83.6	7 2.29		6	.4	12	41	
			5% disseminated pyrite quartz and calcite veins at 30° to 35° core angle.	7054	83.67 84.1	0 0.43		10	.2	9	49	
				7055	84.10 85.3	0 1.20		34	.3	8	81	
			52.70 - 53.95 - slightly fractured, some calcite veinlets.	7056	85.30 86.8	0 1.50		29	.3	10	101	
				7057	86.80 88.3	0 1.50		204	.9	68	75	
			55.70 - 57.50 - 10% disseminated pyrite cut by abundant bluish quartz vein-	7058	88.30 89.8	0 1.50		113	.4	38	40	
			lets 2-3m thick, quartz veinlets are fractured; one thin quartz-pyrite	7059	89.80 91.8	6 2.06		36	.3	6	34	
			veinlets along core; dark greenish grey rock is siliceous at least	7060		6 1.10		32	.3	69	6	
			partially silicified but not intense silicification.	7061		0 1.24		44	.5	144	8	
				•		5 1.95		168	1.5	1666	3	
			55.70 - 55.80m - high epidote.	7063				170	.2	119	28	
				7064				61	.1	16	38	
			56.90 - 57.15m - dark green high chlorite minor silica.		99.00 100.5			83	.2	92	48	
					100.58 101.6			63	.1	56	37	
57.50	58.60		Granite Porphyry		101.60 103.0			29	.2	5	38	
					103.00 104.1			38	.3	6	34	
			some thin pink K-spar envelopes (0.25cm) to some fractures; 2% disseminated		104.10 105.7			18	.1	4	35	<u> </u>
			pyrite.		105.77 106.9			8	.2	4	34	
					106.90 108.4	***		9	.1	9	34	
			58.20 - 58.60 - highly fractured and brecciated.	•	108.40 109.3			225	.1	16	34_	
		1			109.30 111.0			18	.2	8	33	
			Lower contact sharp at 30° core angle; perhaps fault contact.		111.00 112.2			45	.1	14	27	
				+	119.40 120.8			19	.2	8	26	
58.60	59.90	4	Andesite		120.80 122.2			55	.1	9	38	
		1			122.20 123.7			69	.3	46	38	
			disseminated pyrite a few bluish quartz veins but minor; small amounts of		127.40 129.0			40	.1	9	31	
		 	chlorite and epidote but only minor amounts.		129.00 130.0			42	.3	141	92	
1		I		7083	130.00 131.6	5 1.65	L	78	.2	12	32	l

TAKLA-RAINBOW PROPERTY DDH-30 Page 4 of 11

From	То			Smp.	From To				Ar	nalysis	;	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
			·					ppb	ppm	ppm	ppm	oz/tn
			59.90m - small fault at 35° core angle.	7084	131.65 133.20	1.55		355	.3	17	36	
				7085	133.20 134.75	1.55		178	.3	9	45	
59.90	73.46		Granite Porphyry	7086	134.75 136.35	1.60	·	21	.1	19	27	
			Moderately altered and bleached, much of original texture obliterated, 1-2%	7087	126.35 137.75	1.40		73	.6	366	96	
			disseminated pyrite; moderately fractured, core is broken up, only a few	7088	137.75 138.60	0.85		79	.7	268	128	
			quartz veins.	7089	138.60 139.80	1.20		36	.2	17	52	
				7090	139.80 141.30	1.50		55	.2	33	29	
			61.40m - small fault.	7091	141.30 141.85	0.55		45	.1	31	34	
				7092	141.85 143.30	1.45		95	.1	24	78_	
			68.00 - 73.46 - fault zone; fault gouge at 68.00, 69.00, 11.50 - 91.00.	7093	143.30 144.80	1.50		75	.2	20	61	<u> </u>
			30% core recovery	7094	144.80 145.90	1.10		35	.3	20	63	l
					151.00 151.49			165	.1	8	45	<u> </u>
73.46	75.60		Andesite		151.49 152.89			129	.3	8	45	
			Dark green to brownish green, 2-3% disseminated pyrite, minor epidote,		152.89 154.53			42	.3	18	46	
			slightly fractured.		154.53 155.73			140	.3	16	57	
					155.73 156.73			250	.3	13	34	
			74.70m - fault - (gouge).	•	156.73 158.30			71	.4	14	48	
					165.90 166.70			27	.3	172	41	<u> </u>
75.60	84.10		Diorite Porphyry	•	171.60 172.82			29	.3	32	64	
			Highly altered and bleached, most of original texture obliterated; only		172.82 173.82			20	.1	8	35	
			trace disseminated pyrite; a few bluish quartz veins at 5° to 30° core		173.82 174.40			48	.4	10	23	
			angle; on 77.90 - 78.50m - 1cm quartz beins along core; 83.38 - 83.67 -		174.40 175.60			47	.3	143	51	
			fault zone gouge.		175.60 176.30			41	.4	227	79	
					176.30 177.10			19	.4	111	95	<u> </u>
84.10	91.86		Andesite		177.10 178.50			33	.2	53	94	
			Fine porphyry intermixed medium grey brownish grey and dark green;		178.50 180.40			58	.3	68	87	<u> </u>
			moderately fractured, approximately 3 quartz veinlets (0.2cm) per metre;		180.40 181.05			360	.4	80	26	<u> </u>
			at 30°-40° core angle.	7111	181.05 181.27	0.22		107	.2	65	18	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-30 Page 5 of 11

							,						
From	To			Smp.	From	То	ŀ			1A	nalysis	<u>. </u>	
Met	ters	Syb	Description	No.	Ме	ters	Lgth.	Rec.		Ag	Cu	Zn	Au
	<u> </u>					· · · · · · · · · · · · · · · · · · ·			ppb	ppm	bbm	ppm	oz/tn
91.86	96.20		Basalt	7112	181.27	182.40	1.13		45	.1	27	50	
			Dark greenish grey; cut by very thin epidote veinlets; only minor pyrite.	7113	182.40	184.20	1.80		31	.1	18	33	
				7114	184.20	185.00	0.80		81	.2	91	63	
				7115	185.00	186.10	1.10		67	.4	84	54	
	<u> </u> '		94.20 - 96.20 - moderately fractured; quartz filled fractures at 15° core		186.10				63	.3	100	86	
	<u> </u>		angle.		189.90				95	.3	101	90	
	<u> </u>		<u> </u>		191.40				2160	.5	111	67	0.003
96.20	99.00		Andesite		192.70				103	.3	34	77	
	<u> </u>		Highly silicified; fine grained brownish grey, highly siliceous matrix;		194.16				153	.4	20	70	
	<u> </u> '		locally brecciated low disseminated pyrite <1%.		195.30				138	.3	43	121	
	 '				196.40				57	.2	22	120	
99.00	101.50		Andesite		198.00				164	.2	40	113	
	<u> </u>		Fine porphyry; mottled dark grey, dark green, pink and epidote green		198.90				52	.1	31	143	
	<u> </u>		irregular epidote alteration random - 5cm areas; occasional 5cm patches		199.30		0.70		730	.9	466	107	
	<u> </u>	Ш	of K-spar alteration - 3-5% disseminated pyrite.		200.00		0.20		49800	14.7	19439	172	1.269
	 '				200.20				1570		2041	132	0.045
101.50	112.35	\square	Diorite Porphyry		200.65				450	.5	489	92	
	 '	\square	Highly siliceous medium grey matrix; much of original texture obliterated;	_	201.35		0.65		290	.5	660	103	
	ļ'		occasional zones with 0.5cm feldspar phenocrysts; trace epidote; 1-2% dis-		202.00		1.00		220	.5	989	132	
	<u> </u>	\square	seminated pyrite.		203.00				280	.5	511	98	
	 '	\square			204.10				320	.5	579	98	
	 '	\square	108.40 - 109.30m - high epidote, a bluish quartz vein with pyrite from		204.70				97	.2	105	49	
	 '	Ш	109.20 - 109.30m sharp contacts at 30° core angle.		205.60				94	.7	215		1
	<u> </u>	لا		7135	206.35	206.85	0.50		81	.5	247	87	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-30 Page 6 of 11

From	То			Smp.	From To				Ar	alysis		
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
112.35	119.40		Diorite Porphyry		206.85 208.40			98	.5	310	93	
			Dark grey matrix; abundant large white feldspar phenocrysts to 1cm;		208.40 209.40	_		184	.2	111	79	
			occasional slight silicification along some fractures but rare; no quartz		209.40 210.00			230	.3	77	53	
			eyes. No pyrite; fresh appearance.		210.00 211.30			205	.1	105	37	
			Sharp upper contact at 70° core angle.		226.20 226.80			84	.1	11	20	
					226.80 227.9			29	.2	19	24	
			Sharp lower contact at 70° core angle.		227.95 229.10			18	.1	20	22	
					229.10 230.50	_		23	.3	187	92	
119.40	127.40		Diorite Porphyry		236.60 237.20			118	.3	10	28	
			Silicified; medium grey highly siliceous matrix; much of original texture		238.00 238.60			64	.2	42	28	
			obliterated, remnants of feldspar phenocrysts to 1cm; occasional 5cm		249.00 249.20			2	.2	48	38	
			sections of epidote alteration; 1-2% disseminated pyrite.		259.20 259.90			19	.3	60	67	
					259.90 261.20			115	.6	205	88	
			Sharp lower contact at 15° core angle.		261.20 262.00			1	.1	17	70	
					262.00 263.10			38	.3	171	95	
127.40	130.00		Andesite		263.10 264.70			50	.3	26	99	
			Very fine grained porphyry; dark green matrix; 5-10% epidote along fractures	7152	264.70 265.40	0.70		1	.5	21	78	
			and irregular patches; only 0.5% disseminated pyrite.			ļ						
							<u> </u>					
130.00	131.65		Diorite Porphyry									
			Medium grey silaceous matrix; texture partially obliterated; minor amounts									
			of epidote and pink K-spar alteration; 2-4% disseminated pyrite.			↓						
								ļ				<u> </u>
131.65	134.75		Andesite				ļ					<u> </u>
		L	Possibly altered intrusive, fine grained, brownish-red, highly silaceous				<u> </u>	<u> </u>				
			matrix; 2-6% disseminated pyrite; minor amounts of epidote.	L	ļļ			ļ				
				1		1						L

TAKLA-RAINBOW PROPERTY DDH-30 Page 7 of 11

From	To	İ		Smp.	From	To				A	nalysi	s	
	ters	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
134.75	136.35		Diorite Porphyry										
134170	200.00		Medium grey matrix; large 1cm feldspar phenos partially obliterated,										
			partially silicified 2-4%.										
136.35	138.60		Andesite, same as above.			•	 		ļ				
	141.85		Diorite Porphyry										
100.00			Identical to above.										lacksquare
141.85	145.90		Andesite										
			Fine porphyry; dark green, to greenish grey matrix; minor amounts of epidote										
			2-4% disseminated pyrite.										<u> </u>
145,90	174.40		Diorite Porphyry										
			Light grey silaceous matrix; texture partially obliterated, trace epidote;										
			feldspar phenos to 0.5cm; trace to 0.5% disseminated pyrite.								 	ļ	┼
			151.00 - short 1cm to 2cm partially silicified, start at 2 to 5% dis-										
			seminated pyrite, occasional patches of epidote and K-spar but few in				<u> </u>		ļ	<u> </u>		<u> </u>	<u> </u>
			number.	<u> </u>									-
			158.30m - end of 2-5% disseminated pyrite, return to trace to 0.5% pyrite.										
			165.90 - 166.70m - 15 thin bluish quartz veins, some with pyrite; up to 1cm										
			thick, 60° core angle.										ļ

TAKLA-RAINBOW PROPERTY DDH-30 Page 8 of 11

From	To			Smp.	From To				A	nalysi	S	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/ti
			169.70m - start of occasional patches (1-5cm) of K-spar, occasional slight									
			bleaching.	Ī								
			171.60 - 174.40m - rock is partially bleached and sericitized.									
174.40	185.00		Basalt									
			Very fine grained, dark green to near black matrix; not pyritic; but by	-		<u> </u>						
			stockwork of white quartz veinlets, 10-20 quartz veinlets per metre, very	-		ļ	ļ					<u> </u>
			thin <0.5cm thick; no pyrite in veinlets; 2-4% disseminated pyrite, no epidote alteration, occasional greyish bleaching along some fractures.	-		-						
						1						
			174.40 - 175.60m - bleached to light grey.	1					-			
			178.00 - 178.30m - granite porphyry dyke at 25° core angle.									
			179.10m - 3cm white quartz-pyrite vein at 45° core angle.									
			180.40 ~ 181.05m - 5-10% disseminated pyrite with greyish silicification,									
			framboidal pyrite.	ļ		 						├
			180.05 - 181.27m - 2-5% disseminated pyrite.									
		igsquare										ļ
			181.27 - 182.40m - bleached to light grey.	 		 	<u> </u>					
			182.40- 186.00m - fault zone highly shattered, altered rock; greenish grey									
	<u> </u>	-	to light grey.	 				ļ	<u> </u>			

TAKLA-RAINBOW PROPERTY DDH-30 Page 9 of 11

rom	То			Smp.	From	то	İ			Ar	nalysis	s	
Met	ters	Syb	Description	No.	Meter	s Lg	gth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
185.00	191.40		Diorite Porphyry										
			Light grey matrix; finer texture than usual; phenocrysts are less than										
			0.25cm; occasional small amounts of chlorite, occasional chlonte veins; cut										
			by stockwork of white quartz veins to 1cm thick; occasional pyrite in veins,										
			occasional patches of K-spar but not abundant.										
191.40	200.20		Basalt										
			Dark green matrix; occasional patches of greenish K-spar and epidote										
			(5cm of 30cm thick) approximately 1-2 patches per metre, occasional										
			slighly bleached zones; cut by quartz stockwork; most veins at 0° to 50°										
			core angle; minor pyrite in veins; white quartz 2-4% disseminated pyrite.				_						
			198.90 - 199.30m - Dikelet of diorite porphyry.										
			199.30 - 200.00m - fault zone										
			- highly brecciated										
			 predominantly white quartz with minor grey quartz 2-5% 									<u></u>	<u> </u>
			disseminated pyrite.									<u> </u>	
			200.00 - 200.200m - 10% disseminated pyrite.										
200 20	203.00		Diorite Porphyry			_							
200.20	203.00		Fine grained, medium grey textured, moderately altered; 3-8% disseminated									 	
	 		pyrite; occasional white quartz and grey quartz veinlets. 0.1% disseminated			-+		-					
	 	$\vdash \vdash$	pyrite to 0.5% disseminated pyrite.	\vdash		$\neg +$	-					 	
	 	\vdash	PJI ILE LO 0.00 GISSEIIIIIGLEG PJI ILE.	$\vdash \dashv$		\dashv	-						

TAKLA-RAINBOW PROPERTY DDH-30 Page 10 of 11

From	То			Smp.	From	То				A	nalysi	s	
Me	ters	Syb	Description	No.	Meter	^s	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
203.00	210.00		Andesite										
			Bleached to grey, altered; highly fractured, cut by stockwork of white										
			quartz veinlets to 0.5cm thick, random orientation and 3-8% disseminated										
			pyrite, minor chlorites epidote.										
210.00	229.10		Altered Granite Porphyry										
			Remnant feldspar phenos to 1cm; phenos all altered to green sericite; matrix										
			is light green, soft, overall only trace pyrite to 05% except 210.0- 211.3										
	1		where there is 1% disseminated pyrite.										
			215.50 - 217.00m - highly fractured, brecciated.										
			221.60 - 227.90m - highly fractured, brecciated.										
			226.80 - 279.90m - small amounts of greyish quartz.										
229.10	230.50		Andesite										┼─
			Bleached, grey, fine grained cut by stockwork of white quartz veinlets 2-4%										
			disseminated pyrite.										ļ
230.50	249.20		Diorite Porphyry						-	 			
200100	1		Medium grey to brownish-grey matrix; large white feldspar phenocrysts for										
	1		1cm, minimal alteration; occasional 10cm patches of pink K-spar altera-										
			tion but not common; occasional quartz vein along core; slight bleaching										
			along quartz veins.										
								1		1			

TAKLA-RAINBOW PROPERTY DDH-30 Page 11 of 11

From	To			Smp.	From 7				A	nalysi	s	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
	_		236.60 - 237.20m - quartz vein along core (2cm).			_						
			238.00 - 238.40m - quartz vein along core (2cm).									
			247.60m - fault.									
249.20	259.20		Granite Porphyry									
			Large feldspar phenocrysts to 1cm, predominantly pinkish matrix; with minor sections of greyish matrix, trace pyrite.									
259.20	265.40		Basalt Black, very fine grained, cut by abundant white quartz veinlets, 2-4% disseminated pyrite, first metre is bleached light grey.									
			259.60m - 2cm quartz vein at 15° core angle.									\vdash
265.40	269.14		Granite Porphyry Same as previous granite porphyry.									
			End of hole									
			Sperry Sun Tests: Depth Azimuth Inclination									
			60.96m 040° 56°00' 121.92m 042° 57°15'									
		\vdash	182.88m 044° 58°30' 266.09m 049° 59°15'						-			-

DRILL RECORD IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow LOCATION: West Drill Grid

HOLE NO. : DDH-31 : 8 + 16E/1 + 45SLOC. COMMENCED: September 21, 1987 ELEV.

COMPLETED: September 24, 1987

OBJECTIVE:

CORE SIZE: BQ

CORRECT DIP: - 55°

TRUE BRG : 045° SURVEY AT :

% RECOVERY : 100%

: 268.83m LENGTH

PAGE : 1 of 9

LOGGED BY : D. Gorc DATE : September 24/87

CORE STORED : At the camp

UNUSUAL FEAT.:

		T											
rom	То		Department	Smp.	From	То		D	4		alysis	7	T
Met	ers	Syb	Description	No.	ме	ters	Lgth.	кес.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
0.00	9. <i>7</i> 5		Casing.	7153	13.20	13.8	0.60		14	1.5	1079	159	
				7154	21.70	22.97	1.27		25	.2	149	153	
9.75	12.60		Andesite	7155	32.50	33.50	1.00		95	.1	98	119	<u> </u>
			Highly weathered, soft, strong reddish-brown iron staining.	7156	33.50	34.40	0.90		63	.7	504	150	
				7157	39.40	40.05	0.65		25	.3	92	131	<u> </u>
12.60	22.90		Andesite	7158					1	.2	122	114	
			Fine porphyry; dark green matrix; clasts less than 2mm; occasional slight	7159	41.70				280	1.0	557	138	<u> </u>
			×	7160					146	.3	59	159	
			small patches along 5-15cm lengths of core but only minor amounts; approxi-	7161					90	.4	14	183	<u> </u>
			mately 1-2 epidote patches per 10m, only trace pyrite at best; mostly no	7162					98	.3	247	184	<u> </u>
			pyrite; unit is magnetic; occasional quartz and calcite veinlets but only	7163					40	.2	83	159	<u> </u>
			1-3 per 3 metres.		54.60				41	.8	614	187	<u> </u>
					58.10				98	.6	450	178	
			13.00m - 1cm greyish quartz chalcopyrite vein at 15° core angle cut by		59.30				112	.6	68	162	<u> </u>
			white, barren quartz.	7167	60.35				137	.1	31	154	<u> </u>
				7168					32	.8	481	152	<u> </u>
			13.20- 13.80m - moderate epidote alteration; 1% pyrite; trace chalcopyrite.	7169					37	.6	285	74	<u> </u>
				7170	70.20				71	.3	71	127	
			18.80m - calcite vein at 10° core angle, slight bleaching for 10cm	7171					96	.4	40	161	
			on either side.	7172					7650	2.0	137		0.229
				7173	88.20				28	.2	197	168	ļ
				7174	89.00	90.40	1.40		34	.3	47	142	

TAKLA-RAINBOW PROPERTY DDH-31 Page 2 of 9

rom	То			Smp.	From	To				Ar	nalysi	3	
Met	ers	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Pb
									ppb	ppm	ppm	ppm	ppm
			21.70 - 22.90m - moderate epidote alteration. Sharp lower contact at 45°	7175	90.40	91.40	1.00		1	.4	8	47	
			core angle.	7176	91.40	93.20	1.80		1	.2	7	42	
				7177	99.57	100.77	1.20		23	.2	30	149	
22.90	26.40		Basalt	7178	102.90	104.10	1.20		140	.9	227	154	
			Very fine grained textured, very dark green, near black matrix; very		104.10				24	.2	51	138	
			magnetic, trace pyrite.		111.20				14	.5	167	125	
					112.30				5	.3	13	151	
26.40	90.40		Andesite		113.00				3	.2	2	105	ļ
			Fine porphyry; 26.40m - 35.00m somewhat coarser porphyry with porphytic		114.50				5	.3	4	132	
			clasts to 3mm; dark greenish grey matrix; occasional epidote veinlets and		118.50				191	.4	35	203	<u> </u>
			10-15 zones of disseminated epidote but such horizons are not common;		121.80				59	1.1	782	108	ļ
			occasional horizons of fine grained tuff.		123.40				61	.6	136	177	
					124.40				11	.4	166	119	<u> </u>
			27.00 - 27.30m - quartz vein along core.		125.20				61	.2	71	128	
					126.50				49	.4	53	132	┢
			28.20 - 28.60m - quartz vein along core; only trace disseminated pyrite; un						18	.1	208	123	1000
			is sporadically magnetic.		128.60				2050	.4	34		0.06
			OO PO OF OO		129.60				285	.1	118	124	├──
			32.50 - 35.20m - moderate epidote alteration.		131.35				149	.6	563 59	151 80	
			22 EO 24 40m includes 2 quanta voine at 20° to 90° come angles white		132.60 133.80				23	.2	133	136	
			33.50 - 34.40m - includes 3 quartz veins at 30° to 80° core angles, white		140.12				12	.5	503	115	
		\vdash	quartz.		140.12		-		9	.2	48	148	\vdash
		\vdash	35.00m - predominantly fine porphyry, clasts are less than 2mm.		151.20				10	.7	355	96	\vdash
			33.00m - precommantly rine porphyry, crasts are ress than Zimit.		153.40				31	.3	157	160	

TAKLA-RAINBOW PROPERTY DDH-31 Page 3 of 9

From	То			Smp.	From To	, [Αı	nalysis	5	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Pb
								ppb	ppm	ppm	ppm	ppm
			39.60 - 40.50m - low epidote alteration in patches 0.5 to 1% disseminated	7200	158.10 159.	0 1.60		10	.1	12	127	
			pyrite.	7201	161.10 162.4	0 1.30		1	.1	2	146	
				7202	162.40 163.	0 1.30		2	.1	4	162	
			39.95m - 2cm vuggy quartz-epidote vein at 45° core angle.	7203	166.80 167.	0.90		1	. 4	38	133	
				7204	170.20 171.	0 1.00		6	.1	70	111	
			41.70 - 42.20m - 1cm quartz-chiorite vein at 5° core angle; minor pyrite;		176.50 177.			1	.4	154	89	
		\sqcup	2-4% disseminated pyrite alongside.		177.60 170.			1	.2	27	91	
<u> </u>					185.00 185.9			1	.1	24	64	ļ
			42.50 - 42.80m - vuggy quartz vein along core; 2-4% disseminated pyrite		187.20 188.			1	.2	6	86	
			alongside.		188.60 189.			1	.4	5	60	ļ
					189.20 190.			1	.3	9	53	
		ļ			190.00 191.			1	.3	19	54	
			2-4% disseminated pyrite alongside vein.		191.10 192.			28	.3	31	60	
		1			192.50 194.0			3	.2	15	67	
		 	48.00 - 48.40m- 0.25cm vuggy quartz chlorte vein at 5° core angle.		194.00 195.			27	.3	33	98	
[195.40 196.			52	1.0	510	133	ļ
		-	51.20m - 1cm of greyish quartz with pyrite; a few more additional 1cm zones		201.55 202.9				.4	20 37	77 138	
I——		\vdash	of greyish quartz to 51.70m.		207.45 209.			8	.2		_	
		\vdash	51.20 - 51.70m - 3-5% disseminated pyrite; trace chalcopyrite.		209.20 209.8 209.80 210.8			16 34	.5	71 41	122 87	
			51.20 - 51.70m - 3-5% disseminated pyrite; trace charcopyrite.		210.80 212.			69	.4	250	67	<u> </u>
 		$\vdash \vdash \mid$	53.10 - 53.70m - high chlorte; 2% disseminated pyrite.		212.10 214.0			7	.1	90	90	
		\vdash	33.10 - 33.70m - High Cition te, 28 disseminated pyrite.		214.00 215.			66	.2	105	56	
			54.60 - 55.10m - low epidote; 2% disseminated pyrite.		215.50 216.			7	.2	121	71	
1			OTTOO - OUTTON - TON CHILOUS, EN GIOCOMINATOR PJITEO.		221.00 221.0		*****	33	.3	150	84	

TAKLA-RAINBOW PROPERTY DDH-31 Page 4 of 9

From	То			Smp.	From	То				Ar	nalysis	3	
Met		Syb	Description	No.	M∈	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Pb
						j			ppb	ppm	ppm	ppm	ppm
			58.10 - 61.90m - 1-3% disseminated pyrite; cut by numerous thin white quartz	7225	221.60	222.20	0.60		8190	14.2	75		0.272
			veins at 45° and 55° core angle.	7226	222.90	223.40	0.50		22	.1	89	69	
				7227	223.40	224.00	0.60		145	.8	453	62	
			63.50m - start of greyish green bleaching with occasional slightly purplish	7228	239.60	240.30	0.70		260	.6	74	65	
			sections slightly brecciated appearance, only trace pyrite.	7229	240.30	240.80	0.50		770	1.6	86		0.026
					240.80				1570	3.1	43		0.049
			67.50m - end of zone; 0.5cm pyrite vein at 45° core angle at 67.50m.		241.40				8	.1	12	17	
					251.01				10	.3	98	65	
			70.40 - 71.80m - completely bleached zone, light grey to greenish grey;		257.60				1	.1	127	116	
			possible fault zone.		261.60				5	.1	57	61	
					81.38				42	.1	18	203	
			75.150 - 75.30m - 1cm quartz-chlorite vein at 5° core angle; 5cm zone of 3%		84.13				19	.4	52	189	<u> </u>
			disseminated pyrite alongside vein.	7781	222.20	222.95	0.75		22	.1	141	61	
			82.70 - 84.00m - 1-2% disseminated pyrite includes 1cm quartz-calcite vein		ļ					ļ			
			at 30° core angle at 83.2m.						ļ	ļ		ļ	
						<u> </u>			ļ	 		<u> </u>	ļ
			88.20 - 90.40m - 2% disseminated pyrite; minor epidote.						!	-	 		
									ļ	 		ļ	
90.40	99.57		Granite Porphyry	ļ						 	ļ	 	
			Matrix is dark grey; abundant large feldspar to 1cm; most of feldspar phenos	ļ	 				 	 			
			are at least partially altered to pink K-spar; occasional3cm wide K-spar		ļ	ļ	 			ļ	 	<u> </u>	
		1_	alteration haloes around fractures at 20° core angle, only trace pyrite;						 	 	 		
		<u> </u>	could perhaps be labelled as diorite porphyry.	<u> </u>	 				 	 			-
				ļ				ļ	ļ	 	ļ	 	
1			Sharp lower contact at 60° core angle.		<u> </u>	<u> </u>			ļ	<u> </u>		<u> </u>	

TAKLA-RAINBOW PROPERTY DDH-31 Page 5 of 9

From	То			Smp.	From To				Aı	nalysi	\$	
Me	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
99.57	136.00		Andesite									
			Fine porphyry - small clasts less than 2mm; dark grey to dark green matrix;									
			occasional minor epidote veinlets or patches; occasional patches of pink					<u> </u>				<u> </u>
			K-spar alteration; only trace pyrite; occasional 1m horizons of black,	<u> </u>								<u> </u>
			fine grained tuff.									<u> </u>
												<u> </u>
			99.57 - 100.77m - 1-2% disseminated pyrite.									<u> </u>
			102.90 - 104.70m - 1cm quartz veins, vuggy, along core.	ļ				<u> </u>				<u> </u>
								ļ				<u> </u>
			111.20 - 119.00m - abundant patches of moderate epidote alteration; approxi-							ļ		
	<u> </u>		mately 50% of core affected by epidote alteration; at 111.60m there is a 1cm	ļ			ļ				ļ	
			quartz veinlet with chalcopyrite at 30° core angle; at 113.50m there is a	-				ļ		ļ		
			3cm quartz vein at 35° core angle.	<u> </u>				 		ļ		
				-			 					
			144.75m - 1cm quartz vein at 5° core angle.	├		∔	 			<u> </u>		
		\square		-			ļ		<u> </u>	ļ		
	 		115.00m - unit is cut by abundant thin calcite veinlets at all angles.	 		-			<u> </u>		<u> </u>	┼
	ļ	-		╁			-	 		}	 	
	<u> </u>		121.80 - 122.30 - moderate epidote alteration, trace chalcopyrite.	 				-	 			-
	ļ		107 00 107 10 Sould are sometably usethand soft years broken u	<u> </u>		-	 	 -		ļ	-	+
			125.20 - 127.10 - fault zone; core completely weathered, soft, very broken u	 		+	 				ļ	
	 		107 10 120 00- wall freetuned rederate enidate, causeal thin quarty and			-	 	ļ			 	┼
	 		127.10 - 130.00m - well fractured moderate epidote; several thin quartz and	╁			 		\vdash	 	 	\vdash
		-	calcite veinlets, trace pyrite.	 	 		 		 			
	-	\vdash	132.60 - 133.80m - completely bleached to light grey;	 	 	+	 	 			 	\vdash
	 	\vdash	132.00 - 133.00m - completely pleached to light grey,	 	 		 	 	 	 	 	\vdash

TAKLA-RAINBOW PROPERTY DDH-31 Page 6 of 9

From	To			Smp.	From	То				Ar	nalysis	S	
	cers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
			132.90m - 10cm quartz vein at 45° core angle.										-
			133.20 - 133.60m - quartz-calcite vein at 45° core angle; minor pyrite.										
136.00	153.00		Andesite Coarse porphyry; slightly coarser texture; abundant clasts 1mm to 2mm; dark										
			green to near black matrix; occasional patches of epidote; only minor										
			epidote. Occasional 5-15cm horizons of modederate epidote but few in number. Only trace pyrite; some pyrite along epidote veinlets; core is very										
			magnetic.										
			151.20 - 152.60m - moderate epidote lower contact at 45° core angle.	ļ									
153.00	176.50		Andesite										
			Interbedded fine grained black basalt tuff and coarse andesite porphyry with clasts to 3mm; alternating horizons of 1-3mm; similar pattern to										
			epidote as above; only trace pyrite.										
			163.07m - small fault.										
			167.10m - small fault.	ļ									
176.5	207.45		Diorite										
			Medium grey to dark grey matrix; equigranular mixture of white feldspar; 15-20% mafics, phenocrysts to white feldspar to 2mm trace pyrite; rare			·						 	<u> </u>
			chalcopyrite along some quartz veinlets; minor number of veinlets; core										
			is not magnetic.	-			 	 				 	

TAKLA-RAINBOW PROPERTY DDH-31 Page 7 of 9

From	То			Smp.	From	То				Ar	nalysis	5	
Met	ers	Syb	Description	No.	Meter	rs	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
			185.80m - 1cm quartz vein with trace chalcopyrite at 60° core angle.						-				
			185.90m - start of moderate greyish bleaching, note flecks of hematite.										
			187.20 - 187.60m - 0.25cm quartz vein along core.										
			188.60 - 189.20m - fault zone; minor silica; highly weathered, soft, altered										
			190.00 - 190.90m - 1cm quartz vein along core.										
			192.20 - 192.50m - several irregular thin quartz veinlets along core and										
			cross cutting.										
			193.25 - 193.85m - fault zone.										
			194.00 - 195.40m - quartz breccia zone along core.										
			195.40m - end of greyish bleaching.										
207.45	209.80		Andesite ?										
			Fine porphyry; dark green matrix; moderate epidote; trace pyrite at best,										
			occasional, slightly pink horizons.										
209.80	229.70		Diorite						-				
			Dark grey, greenish grey and brownish grey matrix; crowded small feldspar										
			phenocrysts to 2mm; 10-15% mafics; trace pyrite.										

TAKLA-RAINBOW PROPERTY DDH-31 Page 8 of 9

From	То			Smp.	From	To				Aı	nalysi	S	
Met	ters	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
			209.80 - 215.50m - highly bleached zone containing fault zone and fault goug										
			212.10 - 214.00m - fault; completely weathered gouge.										
			221.70 - 222.00m - 5cm quartz-pyrite vein along core.			-							
			230.10m - 1cm quartz vein at 30° core angle; 10cm of bleaching alongside.										
229.70	241.40		Andesite										
			Coarse porphyry with a few thin (less than 1m) horizons of black fine grained andesite tuff; clasts to 3mm; no pyrite; no epidote; unit is										
			magnetic.										
			223.30 - 223.90m - white quartz vein at 25° core angle.										<u> </u>
			240.30 - 240.80m - 1cm quartz-chlorite vein along core.										
			240.80 - 241.10m - quartz-pyrite vein at 20° core angle.										
241.10	243.30		Diorite Same as above.										
042.20	260.02		Andesite										
243.30	268.83		Same as previous Andesite except minor amounts of epidote.										

TAKLA-RAINBOW PROPERTY DDH-31 Page 9 of 9

From To			Smp.	From To				Aı	nalysi	3	
Meters	Syb	Description	No.		Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Pb ppm
		251.00 - 251.50m - 5 thin quartz veins at 60° core angle, slight bleaching.									
		257.75m - 1cm quartz vein at 60° core angle; 10cm of slight bleaching alongside.									
		261.60 - 262.20m - moderate(+) epidote alteration. End of hole.									
		Sperry Sun Tests:									
		Depth Azimuth Dip 60.96m 046°30' 56°00'									
		121.92m 051° 56°30' 182.88m 051° 57°30'									
		266.09m 065° 59°30'									

IMPERIAL METALS CORPORATION DRILL RECORD

PROPERTY : Takla-Rainbow

LOCATION: West Drill Grid

HOLE NO. : DDH-32

LOC.

: 8 + 16E/1 + 46S

CORRECT DIP: - 50°

PAGE

: 1 of 9

/87

TRUE BRG : 225°

LOGGED BY : D. Gorc

COMMENCED: September 26, 1987

ELEV. :

SURVEY AT :

DATE : September CORE STORED : Campsite

COMPLETED: September 28, 1987 OBJECTIVE:

CORE SIZE: BQ

% RECOVERY : 100% LENGTH : 228.6m

UNUSUAL FEAT.:

From	To			Smp.	From	To				Ana	alysis		
Met		Syb	Description	No.			Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
0.00	4.68		Casing.	7235	4.68	51.18	0.50		37	.5	68	81	
				7236	5.18	60.80	0.90		120	.8	39	71	ļ
4.68	7.50		Andesite	7237	60.80	7.50	1.42		166	.5	21	83	<u> </u>
			Fine porphyry; slightly bleached to brownish grey; 1-2% disseminated	7238	7.50	8.50	1.00		35	.3	28	107	
			pyrite.	7239			0.40		33	.3	39	89	
					11.80				38	.4	136	201	
			5.00m - 2cm quartz vein at 60° core angle.		13.00				37	.4	50	236	
				_,	14.33				99	1.2	151	371	ļ
			7.20m - 2-1cm quartz veins at 75° core angle.		23.75				91	.9	83	745	<u> </u>
					24.50				216	.8	116	287	<u> </u>
7.50	23.75		Andesite		25.00				145	1.1	127	492	ļ
			Fine porphyry; dark greenish grey matrix, clasts less than 2mm, only very		26.32				25	.5	115	241	<u> </u>
			minor patchy epidote; minor chlorite filled fractures; unit is cut by		32.61				81	.6	79	191	<u> </u>
			numerous thin calcite veinlets, unit is magnetic; trace pyrite.		33.01				48	.5	192	165	ļ
					34.40		0.90		46	.5	96	153	
			8.60m - 0.5cm quartz veins at 5° and 80° core angle, minor pyrite.	7250					40	.5	236	214	<u> </u>
				7251	38.50	39.10	0.60		195	1.8	883	181	<u> </u>
			11.80 - 130.00m - pinkish brown bleaching; 5cm quartz vein at 12.40m.	7252			1.00		95	.8	141	160	<u> </u>
				7253			0.80		89	. 4	24	235	
			13.00 - 14.33m - 0.5 to 1% disseminated pyrite.	7254	42.25	42.65	0.40		240	3.4	2672	349	<u> </u>
				7255	42.65	43.50	0.85		32	.5	178	245	

TAKLA-RAINBOW PROPERTY DDH-32 Page 2 of 9

rom	То			Smp.	From	To				An	alysis	<u> </u>	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
			14.33 - 15.23m - 1% disseminated pyrite plus minor epidote along some	7256	43.50	44.00	0.50		330	1.4	197	155	
			fractures.	7257	44.00	44.50	0.50		124	1.1	87	254	
				7258	44.50	45.20	0.70		445	1.3	170	256	
			20.50 - 20.750m - slight greyish bleaching.	7259	45.20	46.40	1.20		56	.7	54	263	
				7260	46.40	47.55	1.15		180	2.0	291	168	
			22.50m - 1cm quartz vein at 60° core angle.	7261	47.55				37	.4	52	110	<u> </u>
				7262	48.10				1	.4	12	113	
23.75	25.50		Andesite	7263					9	.4	8	139	
			Similar to above except with 5-8% disseminated pyrite.	7264	56.60		0.70		1	.3	5	106	
				7265					3	.3	24	61	
25.50	57.00		Andesite	7266					1	.7	100	97	
			Similar to andesite from 7.50 to 23.75m; fine porphyry; still only trace	7267	61.64		-		33	.1	5	77	ļ
			pyrite; local 1cm to 0.5m sections with 1% disseminated pyrite but not	7268			•		215	.4	7	112	
			numerous.	7269					205	.9	126	165	ļ
				7270	· · · · · · · · · · · · · · · · · · ·				43	.4	325	113	
			26.32 - 26.82m - 1% disseminated pyrite.		100.15				70	.3	14	132	<u> </u>
					107.00				14	.2	8	84	├
			Epidote filled fractures are common, often associated with thin pinkish		107.40				1	.3	8	84	2 000
	ļ		alteration alongside fracture.		107.80				560	.4	6		0.020
					111.80				1	.2	5	121	
			32.61 - 33.01m - 2-4% disseminated pyrite.		112.20				2	.1	8	77	
					113.50				56	.2	28	51	
	ļ	ļ	33.01 - 33.9m - 0.5 to 1% disseminated pyrite.		114.90				43	.5	457	51	
	<u> </u>				116.40				9	.3	20	86	
	<u> </u>		34.80m - 1cm quartz vein; minor pyrite at 80° core angle.		123.14				10	.1	37	59	-
	1	I _		/281	124.20	125.50	1.30	<u> </u>	1	.2	45	71	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-32 Page 3 of 9

From	То			Smp.	From	To				Aı	nalysi	<u> </u>	
Me	ters	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tı
			34.40 - 35.30m - 0.5 to 1% disseminated pyrite; ore 1cm area of greyish	7282	125.50	125.80	0.30		56	3.7	2885	76	
			silica.	7283	125.80	126.90	1.10		5	.1	81	58	
			37.60 - 38.50m - cut by abundant epidote and lesser chlorite filled frac-	7284	131.25	132.30	1.05		11	.3	286	109	
			tures - patching 0.5 to 2% disseminated pyrite.	7285	133.70	134.70	1.00		1	.4	22	83	
				7286	139.30	140.40	1.10		51	.2	29	70	
			38.50 - 38.55m - quartz calcite filled structure at 40° core angle.	7287	145.27	145.47	0.20		24	.3	5	49	
				7288	159.15	159.90	0.75		16	.1	20	64	
_			38.55 - 40.10m - brecciated and bleached zone; bleached to dark greenish		159.90				14	.6	378	63	
			grey; small amounts of epidote; characterized by patchy greyish quartz and		169.10				8	.1	61	131	
			patchy 1% to 6% disseminated pyrite; small amounts of chalcopyrite including	7291	169.80	171.00	1.20		14	.1	67	97	
			a 1cm wide concentration.	7292	172.70	173.00	0.30		215	.1	22	49	
					173.90				785	1.7	78		0.023
			40.10 - 40.90m - 0.5% disseminated pyrite.		187.70				26	.1	65	64	
					189.00				220	.7	422	47	<u> </u>
			42.25 - 42.65m - 1% to 8% disseminated pyrite with minor chalcopyrite		207.90				23	.1	106	99	<u> </u>
		-	includes 5cm section of 8% disseminated pyrite at 50° core angle.	7297	208.50	209.10	0.60		2	.1	36	58	₩
			42.65 - 43.50m - 1-2% disseminated pyrite, minor quartz veining.										
	 	+-+	43.50 - 44.00m - bleached grey; abundant, greyish silica; brecciated; 10%										
			disseminated pyrite.										
		-	44.05 - 45.00m - cut by quartz stockwork; most common orientation at 75°			<u> </u>							+
	 		core angle, small amounts of pyrite in veins, unit contains 2-3% dis-						·			—	t
	 	+-	seminated and fracture pyrite.									 	<u> </u>
		1	Taniman and Franchis Million	<u> </u>					1		\vdash		1

TAKLA-RAINBOW PROPERTY DDH-32 Page 4 of 9

From To			Smp.	From To				Ar	nalysi	5	
Meters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		Note: quartz pyrite fractures at 75° core angle and along core; set									
		along core is less prominent.									
		45.00 - 46.40m - same as above except 1-2% disseminated pyrite; some chlorite along fractures.									
		46.40 - 48.80m - highly fractured, bleached to light grey; occasional									
		greyish quartz veins with pyrite but few in number; 0.5 to 1% disseminated pyrite.									
		47.65 - 47.95m - quartz-filled structure at 35° core angle, vuggy quartz.			1						
		55.90 - 56.60m - brownish bleaching, trace pyrite.									
		56.60 - 57.00m - breccia zone, including quartz filled structures at 35° cor									
		angle.									
57.00 62.9	4	Diorite Porphyry Fine grained textured feldspar, phenocrysts to 1mm; highly fractured; cut									
		cut by abundant thin quartz and calcite veinlets; variably altered; occasional completely altered; variable colouration from intermixed dark									-
		green, reddish brown and light brown; only trace pyrite but locally some 1cm									1
		patches of 1% disseminated pyrite; patches are not abundant; minor pinkish jasper patches.									
	_	62.64 - 62.94m - fault zone at 30° core angle, highly weathered, soft.			 		-				\vdash

TAKLA-RAINBOW PROPERTY DDH-32 Page 5 of 9

From	To			Smp.	From To				Aı	nalysi	<u>s</u>	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
62.94	87.00		Basalt									
			Black; very fine grained matrix; unit is cut by abundant fine epidote filled									
			fractures, some 1cm to 2cm patches of epidote. Only trace pyrite; unit is									Ţ
			magnetic.									ļ
			62.94 - 63.74m - abundant pinkish brown bleaching.									
			75.00m - start to get occasional 10cm to 1m horizon of fine to medium									
			porphyry.			<u> </u>					ļ	
			87.00m - 0.3cm quartz-chalco vein at 85° core angle.									<u> </u>
87.00	131.25		Andesite									
0,.00			Fine porphyry, dark green matrix; clasts less than 1mm; abundant thin					1			<u> </u>	1
			calcite veinlets at allangles but predominantly at 75-85° core angle; trace									
			pyrite; unit is magnetic; no epidote veinlets; small amounts of finely dis-									
			seminated epidote.			-				<u> </u>	ļ	ļ
			92.00m - 3cm quartz vein at 30° core angle.									
	ļ		01 00 02 00m and houself a liberation along fractions and in impossion				<u> </u>	 		├	┼	┼
			91.00 - 93.00m - red hematite alteration along fractures and in irregular patches.								 	+-
			100.20 - 100.50m - moderate epidote 0.5% disseminated pyrite.			<u> </u>					ļ	

TAKLA-RAINBOW PROPERTY DDH-32 Page 6 of 9

From	То			Smp.	From	To				Aı	nalysi	s	
Met	ers	Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			105.60m - quartz veinlets at 80-90° core angle. Start to get 10-20cm										
			patches of light brown bleaching. Start of zone of stockwork of quartz										
	,		veins; approximately 20 per metre, white quartz.										
			107.60m - 5cm quartz-pyrite vein at 30° core angle.										
			107.00 - 108.60m - associated patching, light grey bleaching.										
			111.87 - 117.90m - zone of pinkish alteration and greyish bleaching, very										
			irregular and patchy; mottled appearance; trace pyrite; hematite along	ļ			ļ			!			<u> </u>
			fractures and in small flecks; unclear whether pink is K-spar or hematite?						<u> </u>	<u> </u>			
			117.90 - 126.70m - zone of white bleaching; very intense. Some slightly										
			pinkish patches; common hematite fractures and small hematite flecks; no										<u> </u>
			pyrite; very minor quartz veining.	-									
			125.70m - 3cm quartz chalcopyrite vein at 50° core angle.										
131.25	159.90		Diorite Porphyry										
			Sharp contact at 50° core angle.										
			Variable colouration from dark green to light grey to brownish grey to										
			cream matrix; small white feldspar phenos to 2mm; occasional 5cm to 15cm										
			pinkish zones alongside fractures; a few zones of moderate quartz veining								<u> </u>		
			with trace pyrite; overall no pyrite in unit except in quartz veins.										

TAKLA-RAINBOW PROPERTY DDH-32 Page 7 of 9

From	То			Smp.	From To				1A	nalysis	S	
Mete	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			131.25 - 132.30m - moderate quartz veining at 70-85° core angle.									
			133.70 - 134.70m - moderate quartz veining at 15-50° core angle; greyish bleaching alongside.									
			139.30 - 140.40m - moderate quartz veining at 50° to 85° core angle; predominantly at 85°; trace pyrite in quartz; whitish and greyish quartz.									
			143.90m - Fault Zone									
			Upper contact at 40° core angle; rock is completely weathered, altered, soft, bleached to light grey; most of rock is highly brecciated.									
			145.27 - 145.47m - silaceous zone.									
			145.41m - diorite porphyry now has light grey matrix; slightly bleached and altered; trace pyrite.									
159.90	168.90		Andesite Completely bleached to light grey, moderately fractured; relatively soft, no pyrite.									
			165.35m - small fault.									
			167.25m - 10cm intrusive dikelet; bright pink fine grained matrix; dark green phenocrysts to 1cm sharp contact at 45° core angle.								·	

TAKLA-RAINBOW PROPERTY DDH-32 Page 8 of 9

Meters 68.90 171.0		Description 166.50m - bleaching diminishes, becomes much more patchy, 10cm to 1m; horizons of andesite are unbleached andesite, fine grained tuff. Pink Intrusive Porphyry Fine grained bright pink matrix with occasional dark grey sections, large	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
	.00	horizons of andesite are unbleached andesite, fine grained tuff. Pink Intrusive Porphyry				<u> </u>					l
	.00	Pink Intrusive Porphyry									
	.00		-			 					
.71.00 208.5		Fine grained bright pink matrix with occasional dark grey sections, large									
71.00 208.5		Time granted at igne print made for at on econotic at a gray econotic grant									
71.00 208.		dark green phenos to 1cm; has appearance of granite porphyry, perhaps feld-									
71.00 208.		spar phenos have been altered to dark green mineral, no pyrite.	ļ								
71.00 208.		Sharp contacts at 45° core angle.	<u> </u>			<u> </u>	ļ				
71.00 208.		Sharp contacts at 45 core angre.									
	3.50	Andesite									
		Same as previous andesite, patchy irregular greyish bleaching approximately	ļ			ļ					
		75% of rock is bleached, no pyrite.	 			<u> </u>					<u> </u>
		Occasional 5cm to 10cm sections of greyish silica, some with 2-3% dis-	 			 					
		seminated pyrite.	1								
		172.80 - 172.90m - greyish silica in rock.									
		174.00 - 174.10m - irregular patches of grey silica with 5% disseminated				 					\vdash
		pyrite.									
		100 00m blooking almost non aviatant after 100 0m, dayl, grans fina	 			 					
		180.00m - bleaching almost non-existent after 180.0m; dark green fine porphyry; no pyrite; red hematite common along fracture surfaces.	 			 	 	-			
		polyhiji ji no pji ito, i od ilohidelite common diong i i doda o sai i deco.									
		187.60 - 189.90m - core very broken up, abundant red hematite.				T				I	

TAKLA-RAINBOW PROPERTY DDH-32 Page 9 of 9

From	To			Smp.	From To				Aı	nalysi:	s	
Me	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			189.90m - fault.									
			207.90 - 208.50m - high epidote, no pyrite.									
208.50	218.80		Diorite Porphyry									
			Dark grey matrix; large white feldspar phenocrysts to 1cm; occasional			<u> </u>	<u> </u>	<u> </u>		<u> </u>		
			pinkish tinge or rim to phenocrysts; small black amphibole phenocrysts to					 	ļ	<u> </u>		—
			2mm; not abundant; trace pyrite.			-		<u> </u>	ļ			
			Rare epidote veinlets with 1cm zone of pink K-spar alongside.									
218.80	228.60		Basalt									
			Fine grained, dark green to black matrix; characterized by thin epidote									
			veinlet; no pyrite. End of hole.									ļ
				+		_		<u> </u>				ļ
			Sperry Sun Tests:					i				
			Depth Azimuth Dip									
	1		60.96m 233° 51°30'									
			121.92m 232°30' 52°00'									
			182.88m 239° 52°45'									
			228.60m 243° 53°30'									

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION: West Drill Grid : 9 + 20E/0 + 00

PAGE : 1 of 15

HOLE NO. : DDH-33

LOC.

CORRECT DIP: - 55° TRUE BRG : 045°

LOGGED BY : D. Gorc

COMMENCED: September 29, 1987

ELEV. :

SURVEY AT :

DATE : October 4, 1987

COMPLETED: October 3, 1987

CORE SIZE: BQ

% RECOVERY : 100%

CORE STORED : Campsite

OBJECTIVE:

LENGTH

: 462.99m UNUSUAL FEAT.:

					1								
From	То			Smp.	From	То				An	alysis		
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/ti
0.00	5.50		Casing.	7298	6.50	7.40	0.90		87	.5	233	212	
				7299	7.40	7.90	0.50		1	.1	11	38	
5.50	7.40		Andesite	7300	11.80	13.20	1.40	50%	147	4.4	3894	227	
			Very fine porphyry; dark green to black matrix; clasts less than 1mm; a	7301	13.20	14.60	1.40		76	7.9	6086	157	
			few thin quartz veinlets at 45° to 80° core angle; trace pyrite.	7302	16.50	16.90	0.40		980	2.1	94	66	0.02
				7303	16.90	17.80	0.90		230	.3	51	122	
7.40	11.80		Diorite Porphyry	7304			0.50		8	.1	101	35	
			Light grey to medium grey matrix; occasional brownish tinge; large white	7305		47.90	0.25		110	.3	30	39	
			feldspar phenocrysts to 1cm; trace pyrite.	7306	47.90	48.40	0.50		12	.1	92	56	
				7307	53.55	53.95	0.40		1	. 1	105	93	<u> </u>
11.80	14.60	L	Fault Zone (bleached andesite)	7308			0.50		22	.2	31	77	
			Abundant orange limonite; core very broken up; iregular silica fracture	7309			0.60		16	.4	459	125	<u> </u>
			infilling; silica contains pyrite and some chalcopyrite; only 50% core	7310					1	.1	116	108	<u> </u>
			recovery.	7311					34	.7	123	105	<u> </u>
				7312					216		4740	148	
14.60	21.10	LI	Andesite	7313					5260	5.8	1857		0.151
			Coarse porphyry; dark green matrix; abundant clasts 1cm to 3mm; trace	7314					140	.3	167	125	ļ
		LI	pyrite; units is not magnetic.	7315					36	.2	59	319	ļ
					70.40				90	.5	118	207	<u></u>
			16.50 - 17.80m - 3 thin 1cm quartz-pyrite (1cm thick) veins running along		102.80				22	.7	113	165	
			core; vuggy; white quartz; crosscutting quartz veins at 60° to core angle;		103.70				1	.1	68	100	
			some chalcopyrite.		123.80				93	.5	40	88	
		$oxed{L}$		7320	124.20	124.60	0.40		360	.5	14	32	

TAKLA-RAINBOW PROPERTY DDH-33 Page 2 of 15

From	To			Smp.	From To				Aı	nalysi	3	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Αu	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
21.10	58.20		Diorite Porphyry	7321	124.60 125.0	0 0.40		470	.2	40	76	
			Perhaps diorite matrix is variable from medium brown; medium grey;	7322	127.60 129.0	0 1.40		25	.3	18	174	
			occasional sections are slightly bleached; occasional 1cm zones of brownish	7323	141.60 142.1	0.50		31	.1	13	152	
			bleaching along fractures; no pyrite; very minor quartz veining; veining	7324	145.70 146.1	0.40		6	.1	5	152	
			at 80° core angle.	7325	148.60 149.3	5 0.75		260	1.0	750	161	
					149.35 149.8			15	.1	55	168	
			A crowded porphyry; abundant small white feldspar phenos less than 2mm;	7327	149.85 150.5	0 0.65	<u> </u>	162	1.5	1362	179	
			lesser even smaller mafic phenocrysts.	+	150.50 137.5			43	.2	186	95	
					151.50 153.1			23	. 4	158	132	
			21.10 - 29.80m - slight brownish bleaching.		153.10 153.6		<u> </u>	134	2.0	1461	222	
					153.60 154.5			29	.4	153	196	
			29.30m - small fault.	 	163.70 164.9			9	.1	15	71	
					164.90 165.4			12	.1	15	109	
			34.00m - unit begins to have fresher, less altered appearance; approximately					25	.2	30	210	
			15-20% dark mafic minerals.		166.70 168.4			29	.7	502	164	
					168.40 169.8			5	.3	76	182	
			35.70m - small fault.		169.80 170.4			2	.4	82	200	
					170.40 171.4			2	.3	220	158	
			35.50 - 36.50m - brownish bleaching, slight alteration; K-spar alteration??		174.60 175.6			22	. 4	180	125	
					187.90 189.4			7	.1	39	149	
			45.20 - 45.70m - slight brownish bleaching 1-2 quartz veinlets with pyrite.		189.40 190.7			6	.3	72	148	
					192.55 193.0			10	.1	44	82	
			47.80 - 47.850m - greyish quartz with pyrite at 40% core angle.		194.70 196.1			18	.2	79	100	ļ
					196.10 197.4			65	1.2	408	97	<u> </u>
			48.25m - 0.25 quartz vein at 40° core angle; minor pyrite; wcm of pink		197.40 198.9			22	.5	439	99	ļ
			K-spar alteration alongside.		198.90 200.1			4	.1	20	147	
				7347	200.50 201.4	5 1.30		7	.1	87	121	l

TAKLA-RAINBOW PROPERTY DDH-33 Page 3 of 15

From	То			Smp.	From	То				Aı	nalysi	5	
Met	ters	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
			53.55 - 53.65m - several thin quartz veinlets at 45-50° core angle.	7348	210.25	210.80	0.55		40	1.4	1133	81	
			·	7349	214.80	215.20	0.40		38	1.9	1381	142	
			56.00 - 58.20m - slight greyish bleaching.	7350	218.90	219.90	1.00		41	.7	237	170	
				7351	227.90	229.20	1.30		4	. 1	18	124	
58.20	122.30		Andesite	7352	235.91	236.83	0.92		14	.6	77	80	
			Very fine porphyry; dusts to 1mm but generally less; fine sugary		236.83				295	4.2	1339	113	
			appearance; dark green to black matrix; only trace pyrite; unit is mag-	7354	237.60	238.90	1.30		34	.9	226	49	
		l	netic; minor quartz veining; rare epidote.		238.90				95	1.3	488	132	<u> </u>
				7356	240.40	241.90	1.50		21	.8	447	62	
			2cm quartz vein with minor pyrite at contact with above diorite porphyrys.	7357	241.90	242.40	0.50		22	.5	184	109	Ĺ
				7358	242.40	244.30	2.40		65	.9	349	149	<u> </u>
			59.60 - 62.40m - *shear-breccia zone; shearing at 15° core angle; intermixed	7359	244.00	245.00	0.20		30	.3	23	88	L
			strong shearing and brecciated zone; breccia cemented, by white and grey		244.90		0.40		68	.5	226	149	
			quartz with small amounts of pyrite and chalcopyrite.	7361	249.30	250.70	1.40		32	. 4	116	117	
*******					250.70				6	.2	203	96	
			59.60 - 60.150m - 2% disseminated pyrite; 1cm quartz vein with pyrite at 15°	7363	252.10	253.60	1.50		13	.9	403	125	
			core angle; no greyish quartz silicification.		253.60				22	.5	184	125	
				7365	256.40	257.00	0.60		32	.8	364	141	
			60.15 - 61.10m - 2-8% disseminated pyrite with minor chalcopyrite. Several	7366	257.00	257.80	0.80		46	. 4	105	153	
			1-2cm patches of silica with pyrite and chalcopyrite; 10-15% of core is	7367	265.30	265.80	0.50		28	. 4	183	113	<u> </u>
			greyish silica.		268.00		1.00		131	.3	105	113	İ
					281.50		0.40		14	.2	147	72	
			61.10 - 62.00m - 1-2% disseminated pyrite with 3-4 1cm quartz veins with	7370	286.40	287.20	0.80		63	.1	60	133	
			pyrite and chalcopyrite; 5% of core is greyish silica.	7371	287.20	288.50	1.30		4	.1	89	82	
				7372	289.90	290.50	0.60		3	. 1	15	107	

TAKLA-RAINBOW PROPERTY DDH-33 Page 4 of 15

From	То			Smp.	From To				Ar	nalysis	s	
1	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au oz/tn
				ļ				ppb	ppm	ppm	ppm	02/ 111
			62.00 - 62.40m - 1% disseminated pyrite; a few very thin quartz veins with	7373	290.50 290.90	0.40		22	.7	435	81	
			pyrite.	7374	293.00 294.30	1.30		25	.3	202	118	
				7375	297.00 297.80	0.80		22	. 4	522	110	
			70.00m - 2cm quart vein at 40° core angle; minor pyrite.	7376	298.80 300.00	1.20		20	. 4	479	91	
					300.00 300.80	+		29	.2	37	106	
			70.70m - 0.25cm quartz vein with chalcopyrite at 20° core angle.	-	300.80 301.40	+		24	.1	97	123	
					301.40 302.20	•	,	31	.1	318	75	<u> </u>
			81.40m - vuggy quartz vein at 5° core angle.		302.20 303.40			46	.1	127	111	ļ
					303.40 304.10			17	.1	18	47	
			84.40m - start to get 10-30cm zones of moderate disseminated and fracture		304.10 305.60			43	.1	37	94	ļ
			epidote; approximately 1 zone every 3 metres.	_	305.60 307.30			10	.1	142	115	
					307.30 308.80			19	.1	69	116	ļ
			84.40m - start to get .50m to 1m horizon of black fine grained andesite		308.80 309.10	·		45	.1	75	115	<u> </u>
			tuff; minor amounts.		309.10 311.60			225	.3	101	125	
					311.60 313.00			275	.3	151	65	<u> </u>
	<u> </u>		84.30m - small fault; at 40° core angle.		313.00 314.50			225	.2	53	111	<u> </u>
	ļ				314.50 316.00			225	.1	32	135	
			83.80 - 84.80m - slightly fractured; minor bleaching.		316.00 317.30			84	.1	119	79	<u> </u>
					317.30 318.70			45	.1	77	49_	
			101.30m - small fault; gouge 10-20cm of brown alteration alongside.		318.70 320.00			33	.1	9	56	ļ
	<u></u>				320.00 321.50			49	.2	92	58	
			102.82 - 103.30m - thin 0.25m quartz vein along core; minor chalcopyrite.		321.50 322.90			48	.1	18	69	<u> </u>
					322.90 324.40			29	.1_	13	63	<u> </u>
			103.70 - 104.30m - fault zone cemented by greyish quartz; no pyrite.		324.40 325.20			57	.1	16	67	ļ
				7397	325.20 326.80	1.60	<u> </u>	56	.1	32	61	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-33 Page 5 of 15

From	То			Smp.	From	То				Ar	nalysis	5	
I	ers	Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
122.30	136.00		Andesite	7398	326.80 3	328.30	1.50		31	.1	12	50	
122.00	200.00		Coarse porphyry; abundant clasts to 3mm; dark greenish grey matrix; unit is		328.30 3				47	.1	8	61	
			magnetic; trace pyrite; occasional 1m horizons of fine porphyry with clasts	7400	330.20 3	331.30	1.10		39	.1	13	58	
			less than 1mm.	7401	331.30 3	333.00	1.70		22	. 1	15	62	
				7402	333.00 3	34.40	1.40		65	.1	47	87	
			124.30 - 124.60m - quartz vein at 30° core angle.		334.40 3				34	.1	67	55	
					335.70 3				12	.1	18	58	
			127.60 - 129.00m - 0.5% disseminated pyrite.		337.10 3				3	.1	19	51	
					338.60 3				31	.6	120	130	
136.00	156.70		Andesite		340.40 3				21	. 4	114	113	
ļ			Fine porphyry; clasts less than 1mm; very dark green matrix; minor spotty		341.90 3				32	. 4	86	107	
<u> </u>			epidote; disseminated and fractured epidote; trace pyrite; unit is magnetic.		343.30 3				60	.1	104	79	
					344.70 3				34	.2	43	92	
			141.60 - 142.10m - 0.5 disseminated pyrite; 8 thin quartz veinlets at 50° to	7411	346.30 3	346.80	0.50		156	1.0	591	84	ļ
			80° core angle.		346.80 3				126		1028	98	ļ
					347.40 3				38	.3	105	78	
			145.80 - 145.90m - abundant thin quartz veinlets at 75° core angle.		348.40 3				48	.1	38	70	
				·	349.60 3 350.00 3		-		98		1061	49 86	
ļ			148.60 - 149.35m - 2.5% disseminated pyrite; slightly brecciated; minor						44 56	.4	110 446	74	<u> </u>
			greyish quartz and quartz veinlets.		351.00 3 352.00 3				118	.6 1.1	861	60	
			140 07 440 07 1000 1000		352.70 3			·	106	.6	531	51	
			149.35 - 149.85m - trace pyrite.		352.70 3				320	.9	806	41	ļ <u>.</u>
			149.85 - 150.5m - 2-5% disseminated pyrite; trace chalcopyrite; moderate		354.00 3				160	.9	783	43	
			epidote and chlorite, (pale true green).		354.90 3				24	.1	80	50	l
	 		epidote and chiorite, (pare true green).		355.70 3				17	.1	19	47	

TAKLA-RAINBOW PROPERTY DDH-33 Page 6 of 15

From	To	1		Smp.	From	То				Ai	nalysis	;	
Met	ers	Syb	Description	No.	Ме	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
	-		150.50 - 153.10m - 0.25% to 0.5% disseminated pyrite; trace chalcopyrite;	7424	357.85	358.75	0.90		47	.1	16	46	
			moderate epidote and chlorite; core has occasional slight pinkish tinge.		358.75				16	.1	19	58	
					359.10				56	.1	39	43	
			153.60 - 154.50m - 0.5% to 10% pyrite.		360.80				340	1.0	1132	32	
				7428	361.10	361.50	0.40		67	. 4	39	35_	
156.70	165.40		Diorite Porphyry	7429	361.50	361.80	0.30		103	. 4	82	39	
			Very dark grey matrix; abundant large feldspar phenos to 1cm; rare epidote		361.80				58	.1	40	49	
			and chlorite veinlets; no pyrite; rare pinkish K-spar alongside some		363.50				38	.1	72	60	
			fractures.		364.50				210	.6	172	41	
					365.50		0.90		169	.4	122	47	
			165.40m - small fault?		366.40				41	.1	42	54	
					367.60				36	.1	24	50	
		 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		368.20		1.10		45	.3	91	54	
			4 thin quartz veinlets.		369.30 369.60				510 400	1.4	382 306	45 40	0.015
			164.90 - 165.40m - bleached to light grey.		370.20				54	.9	96	50	
			104.90 - 105.40m - breached to fight grey.		370.20				61	.1	79	52	
165 40	229.20		Andesite		372.30				54	.1	80	48	
103.40	229.20		Fine porphyry; similar to previous fine porphyry.		372.80				8	.1	119	87	
			The perphyty, Shiitar to provious the perphyty.		373.90				14	.2	208	81	
			165.40 - 166.70m - 2-3% disseminated pyrite.		375.10				41	.4	340	63	
					376.10				12	.1	76	29	
			166.70 - 168.40m - 0.25-0.5% disseminated pyrite, some chalcopyrite at		376.50		0.70		18	.1	78	59	
			167.6m.		378.20		0.90		22	.1	35	38	
			168.40 - 169.80m - 0.5-1% disseminated pyrite; predominantly along thin		379.30		0.70		21	.1	18	25	
			fractures.		380.00				25	.1	31	34	
				7450	381.50	382.80	1.30		25	.1	90	33	

TAKLA-RAINBOW PROPERTY DDH-33 Page 7 of 15

From	To			Smp.	From	То				Ar	nalysis	5	
Met	ters	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
	<u> </u>	-		 									
		1	169.80m - start of moderate epidote alteration; variable concentrations		382.80				35	.1	58	46	
		-	of epidote; most of core has some epidote; mottled light green and dark		383.40				13	.1	15	48	
			green appearance; epidote is disseminated and occurs as irregular patches;		383.90				125	.1	19	39	
		1	only trace pyrite; occasional 4cm zones of 1% pyrite along some fractures		384.80				34	.1	24	35	
			but not abundant; minor patches of pinkish alteration; occasional rare		386.20				21	.1	11	53	
		 	speck of chalcopyrite.	7456	387.60	389.20	1.60	,	31	.1	15	46	
		+-1	174.60 - 199.60m - 1% disseminated pyrite.	7457	389.20	390.20	1.00		57	.1	11	45	
	· · · · · · · · · · · · · · · · · · ·				390.20				26	.1	67	37	
			187.90 - 190.70m - 0.5-1% disseminated pyrite.		391.30				92	. 4	360	70	
					392.30				65	.1	340	61	
			192.60m - 1cm quartz vein; trace pyrite at 25° core angle.	7461	393.20	394.60	1.40		69	.3	465	71	
					394.60				31	.3	92	71	
			192.70m - 1cm quartz vein; trace pyrite at 25° core angle.	7632	395.33	396.78	1.45		50	.1	84	79	
				7633	396.78	398.20	1.42		88	.5	451	82	
			194.70 - 201.45m - 1% disseminated pyrite.	7634	398.20	399.40	1.20		69	.3	87	70	
				7635	399.40	399.60	0.20		115	.8	280	69	
			201.45m - start of trace(+) disseminated pyrite; occasional 0.25%; rarely	7636	399.60	401.10	1.50		57	.2	274	68	
			0.5% pyrite.	7637	401.10	402.50	1.40		49	.2	117	59	
				7638	402.50	404.00	1.50		45	.2	124	65	
			205.30 - 207.00m - black very fine grained andesite tuff.	7639	404.00	405.40	1.40		41	.2	58	69	
				7640	405.40	406.85	1.45		44	.1	88	73	<u> </u>
			210.30 - 210.70m - greyish quartz along core; irregular twisting vein; minor	7641	406.85	408.25	1.40		22	.3	158	69	
			pyrite.	7642	408.25	409.05	0.80		100	.3	160	74	
				7643	409.05	410.05	1.00		11	.1	199	80	
			214.90 - 215.10m - irregular greyish quartz with minor pyrite.	7644	410.05	411.10	1.05		44	.4	229	96	
				7645	411.10	411.80	0.70		63	.5	313	81	1

TAKLA-RAINBOW PROPERTY DDH-33 Page 8 of 15

From	То			Smp.	From To				Aı	nalysi		
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
,								ppb	ppm	ppm	ppm	oz/tn
			218.90 - 219.90m - 0.5-1% disseminated pyrite and fracture.	7646	411.80 412.85	1.05		39	.1	97	79	
				7647	412.85 413.61	0.76		18	.2	31	58	
			228.70 - 227.00m - dikelet of granite porphyry.	7648	413.61 415.01	1.40		132	. 4	357	102	
				7649	415.01 415.56	0.55		76	1.0	384	43	
229.20	231.70		Granite Porphyry	7650	415.56 416.66	1.10		176	.8	438	91	
			Irregular patchy pinkish to dark greenish matrix; predominantly pink;	7651	416.66 418.11	1.45		81	.3	302	53	
			large white feldspar phenocrysts to 1cm; highly fractured, cut by minor		418.11 419.50			59	. 4	179	76	
			quartz veining; trace pyrite.		419.50 420.45			93	.2	140	73	
					420.45 421.69			146	.5	194	70_	
231.70	245.00		Basalt		421.69 422.76			131	.3	206	75	
		[Black very fine grained; no clasts; unit is magnetic.	7656	422.76 423.85	1.09		98	.4	257	70	
					425.80 427.08	1		1250	1_	109	73	0.044
			234.00 - 235.90m - 1cm to 20cm zone of pale brown bleaching along fractures	_	427.08 427.82			149	.3	146	111	
					427.82 429.15			106	.3	292	89	
			235.91 - 238.9m - Fault zone at 20° core angle, highly altered;		429.15 430.35	+		59	.2	105	97	
					430.35 431.90			70	.2	30	80	
			at 20° core angle and irregular concentrations.	7662	431.90 432.80	0.90		128	.7	249	77	
					438.20 438.65			99	.6	703	42	
			238.90 - 239.80m - greyish bleaching; includes 5cm of irregular pyrite quart					42	.2	41	93	
			with trace chalcopyrite; 2% disseminated pyrite.		441.04 441.49			66	.6	152	85	
				7666	441.49 443.16	1.67		74	.3	146	115	
			240.40 - 245.00m - 1% disseminated pyrite.		443.16 444.67			67	.3	81	90	
				7668	444.67 446.23	1.56		105	.2	118	88	
245.00	248.90			7669	446.23 447.45	1.22		124	1	195	80	
			Pale reddish matrix; large white feldspar phenocrysts to 1cm; feldspar	7670	447.45 448.96	1.51		88	.6	613	77	
			phenos are occasionally slightly sericitized; trace pyrite; minor quartz	7671	448.96 449.90	0.94		67	.3	240	77	
			veining.	7672	449.90 450.33	0.43		720	2.8	2687	108	

TAKLA-RAINBOW PROPERTY DDH-33 Page 9 of 15

From	То	İ		Smp.	From	То				A	nalysi	S	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tr
				7673	450.33	451.93	1.60		67	.4	217	112	
			Upper contact at 25° core angle, lower contact at 60° core angle.		451.93				123	.5	337	97	
248.90	270.00		Andesite										
			Very fine porphyry; clasts 4mm; very dark green matrix; mottled with light										
			green disseminated epidote and patches of epidote, most of core has some										L
			epidote; concentration varies; overall low epidote alteration; 1-2% dis-						<u></u>		<u> </u>		<u> </u>
			seminated pyrite; unit is not magnetic.										
			254.00m - less epidote; low epidote.										
			254.40m - end of 1-2% disseminated pyrite.										
			256.40 - 257.80m - 1-2% disseminated and fractured pyrite; slightly										
			brecciated.	-									
			257.80 - 262.20m - 0.25% disseminated pyrite.										
			265.30 - 265.80m - 1% disseminated and fractured pyrite.										
270.00	303.40		Andesite										
			Medium to coarse porphyry; clasts 1m to 3m; low epidote.										<u> </u>
			265.80m - only trace pyrite after 265.80m except where note; occasional										
			slight, fractured zones with 0.5% fractured pyrite.										
			268.00 - 269.00m - 1% fractured pyrite.	-									†

TAKLA-RAINBOW PROPERTY DDH-33 Page 10 of 15

From	То			Smp.	From	То				. Ar	nalysi	s	
Me	ters	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
			281.60 - 281.70m - quartz vein at 45° core angle; trace pyrite; bleached										
			grey for wcm on either side of vein.										
	<u> </u>	╁╾╂	282.00m - start of very patchy pyrite, numerous sections of 1-2% dis-	ļ									
			seminated and fractured pyrite separated by zones of trace pyrite; overall			*****							
	<u> </u>	+	pyrite content is low 0.25%.				<u> </u>						
			287.20 - 287.45m - quartz filled fault.										
			287.10 - 288.50m - highly fractured and bleached grey, cut by numerous white								- : "		
		\vdash	quartz veins.										<u> </u>
			290.80m - 1cm quartz vein at 45° core angle with chalcopyrite.										
			289.90 - 290.90m - 1% disseminated and fractured pyrite.										ļ
			293.00 - 294.30m - 1% disseminated and fractured pyrite.										
			298.80m - start of 2-4% disseminated and fractured pyrite.										
303.40	304.10		Diorite										
			Fractured, bleached; 10cm zones of pinkish K-spar alteration; several quartz veinlets with pyrite.										
304.10	354.70	-	Andesite									 	├
			Same as above; note occasional pinkish K-spar alteration along some fractures, but not abundant; high chlorite, epidote with pink K-spar alteration.										

TAKLA-RAINBOW PROPERTY DDH-33 Page 11 of 15

From	То			Smp.	From To				Ar	nalysi	s	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
			309.00m - start of 3-6% disseminated and fractured pyrite.									
			328.30m - start of 2-4% pyrite; disseminated and fractured pyrite.									
			346.50m - start to get 10-30cm sections with 10% or more pyrite; occasional 5cm of massive pyrite.									
			346.50 - 347.00m - 10% pyrite.									
			349.60 - 350.00m - 10% pyrite.									
			350.00m - start of 4-8% pyrite.									
			352.00m - start to get rare 3-5cm patches of white quartz with pyrite; some pyrite seams have pinkish K-spar alongside.									
354.70	359.10		Diorite Abundant small white foldsnam mhanessysts, encuded, dank snew matrix, out									
			Abundant small white feldspar phenocrysts; crowded; dark grey matrix; cut by thin epidote veinlets, K-spar alongside epidote veinlets; 2-4% disseminated and fractured pyrite.									
359.10	372.80		Andesite									
			Fine to medium porphyry; clasts 1m to 4m; dark grey matrix; only small amounts of epidote, generally along thin veinlets; associated with K-spar; alteration and pyrite; pyrite 2-4%; disseminated and fractured but pre-									
			dominantly along fractures; local 10-20cm sections of 15-20% pyrite contains thin dikelets of diorite.									

TAKLA-RAINBOW PROPERTY DDH-33 Page 12 of 15

From	To			Smp.	From	To				Aı	nalysis	5	
	ers	Syb	Description	No.	Met	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			360.80 - 361.10m - 20% pyrite.										
			361.50 - 361.80m - 20% pyrite.										
			369.50 - 369.60m - massive pyrite.										
			369.60 - 370.10m - 10% disseminated and fractured pyrite.										
			Sharp lower contact at 15° core angle.										
372.40	378.20		Brecciated Diorite										
			Mottled, medium grey to light grey matrix; highly fractured with abundant white quartz fracture infilling in all directions; less than 1% pyrite;										
			perhaps diorite porphyry.										
			376.40m - fault - 20cm of gouge.										
378.20	390.20		Altered Diorite Perhaps diorite porphyry or bright pinkish matrix; intense K-spar altera-										
			tion, 1-3% disseminated pyrite; minor quartz veining.										
390.20	391.30		Granite Porphyry Pink to pinkish brown matrix; large white feldspar phenos to 1cm; slight										
			alteration to feldspar phenos; 0.25% disseminated pyrite.	1									

TAKLA-RAINBOW PROPERTY DDH-33 Page 13 of 15

From	То			Smp.	From	To				A	nalysi	s	
	ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
391.30	395.33		Andesite Tuff										
			Very fine grained black matrix; 3-6% disseminated pyrite.										
				ļ			<u> </u>					ļ	
395.33	408.25		Dark green, fine grained mafic volcanic of andesitic composition with intro-				ļ						<u> </u>
			duced pink K-spar rich component. The unit is highly chloritic with epidote	<u> </u>							<u> </u>		ļ
			blebs throughout. Minor white quartz veinlets. Disseminated pyrite 8-10%.										
			From 408.00 to 408.25m bleached.				ļ			ļ	ļ	<u> </u>	ļ
				ļ						 			
408.25	409.05		Light grey, bleached andesite cut by pyrite stringers at 50° to core axis	ļ			 			 	<u> </u>		
			over 10cm length. White quartz veinlets at the same angle.	ļ						<u> </u>	<u> </u>		
409.05	411.80		Light grey, bleached, andesite, minor quartz veinlets and disseminated										
			pyrite, grading into green chloritic andesite with epidote concentration										
			along the quartz veinlets, trace disseminated pyrite.			·							
411.80	412.85		Light grey, bleached, massive, fine grained andesite cut by white quartz										
			veinlets. Disseminated pyrite 2-3%.										
412 OF	413.61		Andesite breccia, angular fragments of bleached andesite cemented by white				<u> </u>						
412.65	413.01		quartz cement. Pyrite stringers throughout.							ļ	<u> </u>	 	
413.61	415.01		Andesite, as above to 412.85m.			· · · · · · · · · · · · · · · · · · ·				ļ			<u> </u>
415.01	415.56		Andesite breccia, as above to 413.61m.							<u> </u>			
710.01	.10.00												
415.56	441.04		Andesite, dark green, massive, chloritized, epidote specks throughout. Dis-										
			seminated and stringer pyrite 5-8%, foliation locally at 60° to core axis.						ļ. <u></u>	<u> </u>		ļ	<u> </u>
			Grey quartz veinlets 1-3mm throughout.								<u> </u>	<u> </u>	
i							<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-33 Page 14 of 15

From	То			Smp.	From	Го				Ar	nalysi:	s	
Met	ers	Syb	Description	No.	Meter	s	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
			From 427.08 to 427.82m grey quartz veinlets in bleached andesite.			_							
			From 430.35 to 431.90m grey quartz veinlets to 1cm across, disseminated pyrite 8-10%.										
			Higher concentration of epidote from 438.20 to 438.65m. The unit is not magnetic.										
441.04	441.49		Andesite as above, cut by white quartz-chalcopyrite veinlet 1cm across at 45° to core axis.										
441.49	443.16	,	Andesite, minor grey quartz veinlets, disseminated pyrite 3-5%.										
443.16	449.90		Andesite, dark and light green, abundant epidote alteration along the system of fractures at 45°-60° to core axis. Disseminated pyrite 2-3%.										
449.90	450.33		Andesite cut by grey quartz veinlets. Disseminated pyrite and minor stringer pyrite 8-10%.										
450.33	453.50		Andesite cut by quartz veinlets, disseminated pyrite 2-3%.										
453.50	462.38		Andesite, dark green, minor quartz veinlets and specks of epidote, minor disseminated pyrite. Quartz veinlets 1-2mm often along the core. The unit is not magnetic.										

TAKLA-RAINBOW PROPERTY DDH-33 Page 15 of 15

From	То			Smp.	From To				Aı	nalysi	S	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tr
462.38	462.99		Diorite, dark green, porphyritic, with inclusions of dark green, highly chloritic mafic volcanic.									
			Foot of Hole.									
			Sperry-Sun Test: Depth: Dip: Azimuth:									
			60.96m -55°30' 039° 121.92m -56°30' 040°									
			182.88m -57°00¹ 043° 243.84m -57°30¹ 048°									
			304.80m -58°30' 049° 392.27 -59°00' 050°									
			459.94m -57°00' 044°									

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION: West Drill Grid

HOLE NO. : DDH-34

LOC.

: 3 + 40E/1 + 18S

CORRECT DIP: - 70°

PAGE

: 1 of 11

TRUE BRG : 045°

LOGGED BY

: D.Gorc/R.Pesalj

COMMENCED: October 4, 1987

ELEV. :

SURVEY AT :

DATE

: October 11/87 CORE STORED : At the camp

COMPLETED: October 11, 1987

CORE SIZE: BQ

% RECOVERY :

OBJECTIVE:	LENGTH : 4	456.29m	UNUSUAL FEAT.:
			

From	To			Smp.	From	To				Ana	alysis		
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
0.00	4.88		Overburden. Fragments of andesite, soil. BW casing.	7463	4.88	6.25	1.37	5%	11	.2	27	128	
				7464	6.25	7.62	1.37		40	.6	348	61	
4.88	58.00		Andesite. The core is very broken up to a depth of 60m; some sections have	7465	7.62	8.53	0.91	50%	39	.8	740	141	
			very poor core recovery.	7466	8.53	9.40	0.87		21	.5	178	151	
				7467					22	.3	27	161	
			Very fine grained matrix. Core is so broken up that the texture is dif-	7468					11	. 4	22	145	
			ficult to decipher; dark green matrix mottled with light green epidote; low	7469	11.28				8	.2	58	132	
			to moderate disseminated epidote; very fractural and brecciated; 4-8% dis-	7470					23	.1	25	53	ļ
			seminated pyrite; only very minor quartz veining. Unit is magnetic.	7471		18.29		25%	51	.5	32	101	
				7472					82	.7	244	116	
			6.25m - fault gouge.	7473	19.81	21.49	1.68		69	.4	160	105	
				7474	21.49	22.20	0.71		79	.6	453	112	
			13.11 - 18.29m - fault zone (30% core recovery).	7475	22.20	22.60	0.40		1185		1556		0.028
				7476	22.60	23.00	0.40		385	1.8	2015	43	
			21.65 - 21.75m - whitish quartz with 10% pyrite, minor K-spar.	7477	23.00	23.70	0.70		101	.5	299	130	
				7478	23.70	24.84	1.14		71	.7	160	100	
			22.20 - 23.00m - silicifized zone at 5° core angle; whitish to greyish	7479	24.84	25.90	1.06		103	.3	289	103	
			silica with 15% pyrite; minor quartz veins with chalcopyrite.	7480	25.90	27.43	1.53		32	.3	27	102	
				7481	27.43	29.57	2.14	25%	45	.1	31	108	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-34 Page 2 of 11

From	To			Smp.	From	То				Ar	alysis	S	
Mete	ers	Syb	Description	No.	M∈	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
			23.00m - start of zone with very minor epidote; rare patches of pinkish	7482	29.57	30.40	0.83		64	.2	124	80	
			alteration (K-spar).	7483	30.40				67	.3	110	83	
				7484					52	.2	36	87	
			25.00m - 0.5cm quartz vein with pyrite at 15° core angle.	7485			1.70		62	.5	98	86	
				7486			1.05	75%	91	.3	223	107	
			27.43 - 29.57m - core very broken up.	7487					88	.5	304	108	
				7488	36.27	36.80	0.53		143	.5	497	101	
			29.57 - 30.40m - Fault zone - sheared appearance; much silica infilling;	7489		38.10			42	.1	88	49	
			trace pyrite.	7490		39.78			51	.4	54	109	
				7491		40.53			36	.2	31	90	
			31.00 - 35.00m - core is very broken up.	7492					38	.1	22	70	
				7493		42.67			59	.2	8	32	
			37.00 - 48.70m - core is very broken up.	7494		43.59			30	.1	9	28	
				7495		44.80			1	.1	17	75	
			37.00 - 48.70m - core is very broken up.	7496					59	.2	33	100	
				7497					14	.1	6	47	<u> </u>
			42.00 - 44.00m - local 10cm zones are silicified.	7498					46	.2	28	44	ļ <u>.</u>
				7499					2	.2	49	47	
			45.72 - 46.33m - Fault Zone	7500					43	.1	19	42	ļ
				7501					37	.1	4	43	ļ
			46.33m - start of lower pyrite contact; 1-3% pyrite.	7502					86	.5	146	41	<u> </u>
					74.90				25	.2	82	38	<u> </u>
			51.50 - 60.50m - core is highly broken up; short sections are silicified.	7504					3_	.2	8	43	
				7505					38	.1	55	40	ļ
58.00 1	106.20		Diorite Porphyry – grey, porphyritic; grey matrix; large white feldspar	7506					88	.2	20	50	ļ
			phenos to 1cm; rock is altered to light grey; alteration is not intense,	7507					33	.4	70	47	
			but rock is completely altered; 0.5% disseminated pyrite to 1% disseminated	7508					35	.3	24	43	ļ
	-		pyrite; very minor quartz veining; some pyrite with quartz veining.	7509	89.90	90.20	0.30	70%	39	.1	27	38	<u> </u>

TAKLA-RAINBOW PROPERTY DDH-34 Page 3 of 11

From	То			Smp.	From To				<u>A</u> r	nalysis	5	
	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tr
			65.70m - 2cm quartz vein at 20° core angle; minor pyrite.	7510	91.30 93.30	2.00		38	.2	12	39	
				7511			70%	225	.3	11	42	
			67.00m - start of only trace pyrite.	7512	100.70 102.10	1.40	70%	17	.1	10	30	
				7513	102.10 102.60	0.50	70%	31	.1	9	31	
			75.00m - 2 2cm quartz veins at 30° core angle; trace pyrite.		102.60 103.30			101	.1	8	33	
				7515	103.30 104.70	1.40	70%	46	.1	10	27	
			77.20 - 77.30m - several quartz veins at 30° to 50° core angle.		104.70 105.80			28	.1	7	30	
				7517	105.80 106.20	0.40	70%	160	.4	18	38	
			78.00 - 78.80m - 10 thin (0.25cm) quartz veins at 30° core angle; 1% dis-		106.20 107.30		70%	54	.4	31	92	
			seminated pyrite.		108.80 109.90			46	.1	11	38	L
					109.90 110.90			53	.2	13	78	
			83.70 - 84.30m - vuggy 0.25cm quartz veins along core; minor pyrite.		110.90 111.90			47	.6	15	65	
					111.90 113.30			162	.3	23	68	
		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	85.90 - 90.90m - 1-2 quartz veins per metre at 45° core angle; 1cm to 2cm		113.30 114.40			29	.1	11	70	
			thick; minor pyrite.		114.40 115.40			76	.3	22	82	
					115.40 116.60			82	.2	12	85	
			90.00 - 90.20m - 0.25cm quartz chlorite vein along core.		116.60 117.50			114	.5	183	77	
					117.50 118.60			97	.3	14	69	ļ
		1	91.30 - 92.30m - core very broken.		118.60 120.10			320	.2	23	59	
					120.10 120.60			240	.2	73	67	<u> </u>
					123.60 124.30			37	.1	22	115	
			ciated white to greyish quartz veins at all angles; 2% disseminated pyrite.		124.30 125.70			52	.6	21	106	-
		1			125.70 127.10			790	.2	29		0.02
		ļ	104.70 - 106.20m - slightly brecciated and altered, local pinkish alteration					49	.1	69	91	<u> </u>
		1	2% disseminated pyrite.		128.60 130.00	1		65	.5	123	96	
		\perp			130.00 131.50			75	.2	100	110	
		1			131.50 132.80			56	.5	137	90	
	ĺ	[[7537	132.80 134.20	1.40		28	.1	33	83	l

TAKLA-RAINBOW PROPERTY DDH-34 Page 4 of 11

From	То			Smp.	From	То				Aı	nalysis		
	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
106.2	107.30		Andesite - Black; fine grained matrix; 3-5% pyrite; no epidote.	7538	134.20	135.85	1.65		61	.2	62	85	
				7539	135.85	137.15	0.30		1	.1	10	36	
107.30	109.90		Diorite Porphyry - Light grey matrix; large white feldspar phenos to 1cm;		181.10				1335		7586		0.036
			slightly altered; edges of phenocrysts are fuzzy; 1-2% disseminated pyrite.		182.15				550		6915		0.012
					211.50				132	.2	73	41	
			108.80- 109.90m - patchy pink K-spar alteration.		212.95				221	.5	211	48	
				7544	214.45	215.75	1.30		265	.5	749	57	
109.90	113.30		Andesite - Fine to medium porphyry clasts 1mm to 2mm; very minor; local	7545	215.75	216.85	1.10		70	.2	53	47	
			patches of epidote; occasional pinkish alteration along some fractures;		216.85				205	.6	232	58	
			3-6% disseminated pyrite.	7547	217.45	218.40	0.95		350	.7	556	91	
				7548	218.40	219.30	0.90		105	.5	511	84	
113.30	115.40		Diorite Porphyry - Dark grey matrix; large feldspar phenocrysts to 0.5cm;	7549	219.30	220.50	1.20		58	.3	58	79	
			trace epidote; 2% disseminated pyrite; occasional 1cm K-spar alteration	7550	225.80	226.52	0.72		245	.6	417	95	
			zones along fractures.	7551	226.52	227.12	0.60		540	.8	957	93	0.011
				7552	227.12	227.69	0.57		205	.6	477	87	
115.40	135.85		Andesite - (with dikelets of Diorite Porphyry) Fine to medium porphyry;	7553	227.69	228.69	1.00		250	.2	300	100	
			clasts to 1mm; occasionally 2mm; low epidote; zone sections of moderate	7554	149.96	151.49	1.53		49	.3	84	43_	
			epidote; 3-6% disseminated pyrite; occasional pinkish K-spar alteration	7555	151.49	153.01	1.52		70	.1	38	50	
			along some fractures; may include dikelets of diorite porphyry?? YES from	7556	153.01	154.53	1.52		41	.1	161	69	
			5cm to 30cm thick.	7557	154.53	156.06	1.53		58	.1	69	55	
				7558	156.06	157.58	1.52		74	.3	87	47	
			115.60 - 115.75m - 10-15% pyrite with moderate epidote.	7559	157.58	158.42	0.84		48	.1	263	65	
				7560	158.42	159.94	1.52		44	.1	24	71	
			117.00 - 117.30m - 10-15% pyrite with moderate epidote.	7561	159.94	160.94	1.00		97	.3	229	81	
				7562	160.94	162.99	2.05		114	. 1	114	63	

TAKLA-RAINBOW PROPERTY DDH-34 Page 5 of 11

From	То			Smp.	From	To				Ar	nalysis	5	
-	ers	Syb	Description	No.	Me	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
,,,,,									ppb	ppm	ppm	ppm	oz/tn
			121.00 - 123.50m - predominantly grey diorite porphyry can be difficult to	7563	162.99	164.51	1.52		101	. 1	16	52	
			decipher andesite from intrusive.	7564	164.51	166.12	1.61		139	.1	19	50	
				7565	166.12	167.64	1.52		189	.1	19	48	
135.85	149.96		Granite Porphyry - Pale pinkish brown to light grey matrix; most of rock is	7566	167.64	169.25	1.61		102	.1	32	54	
			slightly sericitized; locally greenish sericite appearance to rock large	7567	169.25	170.69	1.44		320	. 4	2336	75	
			feldspar phenos to 1cm; most of feldspar phenos altered to sericite;	7568	175.00	176.00	1.00		48	.2	18	24	
			prominent quartz eyes to 0.5cm. No pyrite.	7569	176.00	176.53	0.53		106	.1	261	34	
				7570	176.53	177.43	0.90		33	.2	57	32	
149.96	158.42		Granitic intrusive, light grey, medium grained, equigranular, cut by	7571	182.45	183.97	1.52		210	1.0	902	44	
			numerous quartz veinlets, specks of pyrite throughout, disseminated pyrite	7572	183.97	185.40	1.43		142	.1	99	106	
			3-5%. Toward the bottom the unit gets coarser grained, locally porphyritic.	7573	185.40	186.92	1.52		125	.2	79	119	
				7574	186.92	187.91	0.99		93	.2	97	134	
158.42	170.69		Diorite porphyry, light grey, cut by numerous quartz veinlets, blebs and	7575	187.91	189.43	1.52		62	.3	18	123	
			disseminations of pyrite 3-5%, local sections of highly chloritic intrusive.	7576	189.43	191.03	1.60		42	.1	47	120	
			White plagioclase phenocrysts throughout.	7577	191.03	193.06	2.03		54	.4	76	101	
				7578	193.06	194.58	1.52		68	.5	219	106	
170.69	176.00		Light grey diorite porphyry, very minor pyrite, no quartz veining present.		194.58				71	.2	25	117	
			Light brecciation with chlorite filled fractures common.		195.58				134	.3	102	101	
			·		197.10				1	. 1	12	143	
176.00	176.53		Diorite porphyry, green, chloritic, brecciated, disseminated pyrite and		197.80				41	.9	376	142	
			minor chalcopyrite 8-10%.		203.30				74	.5	26	112	
					204.00				55	.3	216	124	
176.53	177.43		Diorite porphyry as above to 176.53, pyrite less than 3%.		204.40				129	.2	13	42	
					222.20				290	.3	421	70	
177.43	180.10		Diorite porphyry, light grey and white, bleached section.	7587	223.11	224.30	1.19		440	.5	379	79	l

TAKLA-RAINBOW PROPERTY DDH-34 Page 6 of 11

From	То			Smp.	From To				Ar	nalysis	;	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
180 10	182.15		Diorite porphyry, green, chloritic, cut by quartz-pyrite-chalcopyrite vein-	7588	224.30 225.10	0.80		240	.2	81	67	
100.10	102.10		lets. Pyrite content 8-10%, chalcopyrite trace.		225.10 225.80			187	.5	148	56	
				, 	228.69 229.79			220	.1	161	93	
182.15	183.97		Diorite porphyry as above, rare pyrite, chloritic.	7591	229.79 230.35	0.56		300	.1	267	75	
				7592	230.35 231.50	1.15		380	.3	204	68	
187.91	191.66		Diorite porphyry, less chloritic than above, disseminated pyrite 5-8%.	+	259.15 260.38			38	.5	173	61	
				+	260.38 261.76			35	.44		73	
191.66	195.58		Andesitic volcanic, green, chloritic, disseminated pyrite 8%.		268.22 269.46			345		2047	76	
					269.46 270.50			86	.1	175	56	
195.58	197.10		Andesitic volcanic, light grey, bleached, disseminated pyrite 8%.	+	270.50 271.92			224	.1	668	83	
				+	271.92 272.40			36	.5	_368	96	
197.10	197.80		Andesitic, volcanic, light green, bleached, soft, cut by white quartz		316.30 317.90			153	.1	356	78	
			veinlets.		317.90 318.97			176	.1	321	65	
					318.97 320.42			128	.1	271	75	
<u>197.80</u>	198.73		Andesitic, volcanic as above, cut by white quartz veinlets, well foliated	1	337.94 339.30				18.0	244	73	
			at 25-30° to core axis.		339.30 340.20			114	1.6	197	61 74	<u> </u>
	204 40		And alle on land the many bloomed wines months that are alle	+	340.20 340.76			51 52	.3	114 70	62	
198./3	204.40		Andesitic, volcanic, light green, bleached, minor quartz-chalcopyrite veinlets from 204.00 to 204.40m.		340.76 342.28 342.28 343.80			25	.4	9	37	
	<u> </u>		Verniteus from 204.00 to 204.40m.		347.20 348.72			260	.1	162	43	
204 40	216.85		Diorite porphyry, light grey, bleached, no veining, trace pyrite. Local		348.72 349.60		_	1630	.1 *	102	42	0.047
204.40	210.65		shear zone, broken core.		349.60 350.25			235	.1	47	63	0.047
			Shoul Zollo, broken core.		350.25 350.85			86	.1	64	31	
216.85	218.40		Diorite porphyry, light grey, bleached, cut by pyrite stringers with		350.85 351.29	+		385	.2	379	45	
210.00	210.40		minor quartz. Disseminated and stringer pyrite 15%.		351.29 351.95			185	.2	136	49	
	 		100 200 2.000mmaaa ana oog pj 2000		381.49 382.43	-	-	51	.4	209	85	

TAKLA-RAINBOW PROPERTY DDH-34 Page 7 of 11

From	То			Smp.	From To				A	nalysi	s	
Me ⁻	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
218.40	220.50		Diorite porphyry as above, disseminated and stringer pyrite 1-3%.	7617	426.68 428.03	1.35		99	. 4	711	77	
				7618	428.03 429.44	1.41		96	.3	599	82	
220.50	222.20		Andesitic, volcanic, grey and green, occasional white quartz veinlets,	7619	429.44 430.95	1.51		73	.5	565	77	
			trace pyrite.	7620	430.95 431.90	0.95		70	.5	780	89	<u> </u>
<u> </u>				7621	431.90 432.60	0.70		255.	1.5	865	68	L
222.20	225.10		Granitic intrusive, pink and green, numerous inclusions of andesitic,	7622	432.60 433.07	0.47		47	.6	455	72	<u></u>
			volcanic, disseminated and veinlet pyrite 5-8%, some white quartz veinlets.	7623	433.07 434.90	1.83		125	.7	454	67	
225.10	225.80		Pink granitic intrusive as above, trace pyrite.	•	434.90 435.80			72	.4	605	84	
				+	435.80 437.55	$\overline{}$		39	.4	353	69	
225.80	228.69		Granitic intrusive as above to 225.10m, disseminated pyrite 5-8%.	•	437.55 439.07			41	.1	457	82	
					439.07 440.74	-		51	.3	190	63	
228.69	231.50		Granitic intrusive as above to 225.10m, disseminated pyrite 1-2%.	·	446.11 447.19			65	.9	720	72	
				• · · · · · · · · · · · · · · · · · · ·	447.19 447.83			88	.9	694	84	
231.50	239.88		Granitic porphyry, pink matrix, white plagioclase phenocrysts, minor pyrite		447.83 448.66			16	.4	117	47	
	ļ		and quartz veinlets. The unit is bleached locally.	7631	448.66 449.66	1.00		13	.3	124	74	<u> </u>
239.88	241.40		Andesite, bleached, disseminated pyrite 5%.									
241.40	245.30		Andesite, trace pyrite, white quartz veinlets throughout.									
245.30	248.90		Diorite porphyry, light grey, white quartz veinlets throughout. From 248.10									
			to 248.90m disseminated pyrite 2%, white quartz veinlets abundant.									
248.90	249.90		Fault, broken and finely crushed fragments of porphyry, grey, no fault									
			gouge.									-

TAKLA-RAINBOW PROPERTY DDH-34 Page 8 of 11

From	To			Smp.	From To				Aı	nalysi	s	
	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
249.90	259.15		Granite porphyry, pink, occasional pyrite-chloritic veinlets. From 254.50									
			to 259.15m the unit is highly sheared, badly broken core.			<u> </u>		<u> </u>				<u> </u>
259.15	261.76		Granite porphyry, highly hematitic, numerous bands of brick red iron oxide									
			rich material at 45-60° to core axis. The section is well foliated.	-			,				ļ	
261.76	270.50		Granite porphyry, pink, trace pyrite, occasional pyrite-chlorite veinlets.									
			From 268.22 to 269.46m disseminated pyrite and stringer pyrite 15%.									
270.50	271.92		Granite porphyry, intensely brecciated, silicified, disseminated and									<u> </u>
			stringer pyrite 12%. The rock is hard with contact with massive porphyry below at 45° to core axis.									
271.92	282.55		Andesite, medium grained, massive, occasional quartz veinlets along core, trace disseminated pyrite, foliations locally at 45° to core axis.									
282.55	316.30		Andesite, dark green, homogeneous, probably thick flow. The unit is massive, dark green, with high hematite content as veinlets and fracture									
			filling. Occasional white quartz veinlets at irregular fashion, no visible sulphides. At 313.64m foliation at 40° to core axis, heavy hematite									
			banding. Local sections of reddish hematitic diorite. At 325.47m pyrite beb 3cm across.									<u> </u>

TAKLA-RAINBOW PROPERTY DDH-34 Page 9 of 11

From	То			Smp.	From	To				Aı	nalysi	S	
Met	ers	Syb	Description	No.	Ме	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
316.30	337.94		Mafic volcanic of andesitic composition cut by thin quartz veinlets with										
720.00			epidote blebs throughout. The unit is slightly magnetic, highly chlori-										
			tized. From 317.90 to 318.97m pyrite content 8%.										
337.94	340.76		Granite porphyry, pink, cut by quartz veinlets throughout. From 340.20 to	-									
			340.75m pyrite content 3-5%, highly chloritic.										
340.76	342.28		Breccia, grey, bleached granite porphyry fragments, angular, 1-5cm across,	 									
			cemented by grey silica and pyrite content. Pyrite in cement is very fine										
			grained, disseminated in silica and crushed porphyry. The lower contact of										
			the unit is sharp at 20° to core axis.										
342.28	348.72		Granite porphyry, pink fine grained matrix with white plagioclase pheno-										
			crysts 1-5mm. Rare quartz veinlets, no pyrite.	ļ									
348.72	349.60		Granite porphyry as above, cut by grey quartz-pyrite veins up to 20cm wide										
			and minor 1-5cm wide veinlets throughout. Disseminated and stringer										
			pyrite 8-10%.	-									
349.60	350.25		Same as above to 349.60m. From 349.60 to 349.80m broken core, shear zone.										
											<u> </u>		<u> </u>
350.35	350.85		Granite porphyry as above to 348.72m.	-									
350.85	351.29		Granite porphyry cut by grey quartz-pyrite veinlets. Disseminated and										
			stringer pyrite 10%.										

TAKLA-RAINBOW PROPERTY DDH-34 Page 10 of 11

From	То	ı		Smp.	From	То				Ar	nalysi:	S	
Ме	ters	Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
351.29	368.65		Granite porphyry, pink, locally cut by quartz-sericite veinlets to 1cm										
			across. Vuggs with idiomorphic quartz crystals with veins common. Core										
			angles of the veins between 0° and 25°, local chlorite rich sections.										
368.65	381.49		Dark green, massive, medium grained dioritic intrusive, locally cut by	-									
			white quartz veinlets. Epidote stringers common, trace pyrite.										
381.49	382.43	-	Andesite, dark green, fine grained, chloritic, cut by white and pink quartz	1	-							l	
			veinlets. A speck of chalcopyrite in the middle of the unit in a 1cm wide										
			veinlet.	ļ									ļ
382.43	386.46		Andesite, dark grey, bleached, but by white quartz veinlets, no pyrite.						,				
			Contact with porphyry below sharp at 40° to core axis.										
386.46	394.87		Granite porphyry, pink, minor white quartz veinlets, no pyrite visible.										
394 87	412.39		Dark green, highly chloritic, mafic diorite porphyry. The unit consists of	ļ									
334.07	112100		mafic, fine grained groundmass and white phenocrysts of plagioclase.										
412.39	426.53		Pink granite porphyry with occasional sections of the unit above. Minor					_					
			white quartz veinlets, no visible pyrite, rare epidote concentration over										
			5-15cm lengths.										

TAKLA-RAINBOW PROPERTY DDH-34 Page 11 of 11

From	То			Smp.	From	To				A	nalysi	s	
Met	ters	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
426.53	456.29		Diorite, dark green, highly chloritic, massive to porphyritic in texture,										
			numerous white quartz veinlets at random orientation to core axis, local										1
			blebs of pyrite, disseminated pyrite 3-5%. The unit is coarse grained with										
			local sections to 10cm long having porphyritic texture. Occasionally the										1
			unit is bleached, pink in colour in the areas cut by white quartz veinlets.										
			Foot of hole.										
			Sperry-Sun Tests:										
			Depth: Dip: Azimuth:										<u> </u>
			60.04m 70°00' 045°										
			121.00m 70°30' 047°										
			181.96m 71°00' 050°										
			242.92m 72°00' 052°							<u> </u>			
			303.88m 73°00' 053°							<u> </u>			
			364.84m 74°00' 056°										
			425.80m 74°30' 056°										
												i	

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY : Takla-Rainbow

LOCATION : West Drill Grid

CORRECT DIP: - 55° PAGE

HOLE NO. : DDH-35

LOC. : 11 + 20E/0 + 05N

TRUE BRG : 045°

PAGE : 1 of 7 LOGGED BY : R.Pesalj

COMMENCED: October 13, 1987

ELEV. :

SURVEY AT :

DATE : October 19/87

COMPLETED: October 19, 1987

CORE SIZE: BQ

% RECOVERY : 100%

CORE STORED : At the camp

OBJECTIVE:

LENGTH : 455.98m

UNUSUAL FEAT.:

From	То	Í		Smp.	From To				Ana	alysis		
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tr
0.00	9.91		Overburden. Angular fragments of andesitic volcanics, talus, soil. BW	7684	131.00 132.70	1.70		26	.3	278	194	
			casing.	7685	134.40 135.33	0.93		15	.5	127	173	
				7686	135.33 136.85	1.52		51	2.0	895	229	
9.91	18.44		Andesitic volcanic fragments, rusty coloured, oxidized, badly broken core,	7687	136.85 137.80	0.95	_	220	1.9	623	1603	
			shear zone. Core recovery only 20%. Trace disseminated pyrite, no quartz	7688	137.80 138.47	0.67		66	1.0	445	512	
			veining.	7689	138.47 139.40	0.93		57	.9	428	312	
					139.40 140.35		-	67	2.1	1123	374	
18.44	42.80		Andesitic volcanic, green, fine grained, massive, badly broken core, shear		140.35 141.58			29	.6	507	126	
			zone. Epidote occasionally along the fractures, trace pyrite, no quartz		141.58 142.68			24	1.2	666	140	ļ
			veining, minor epiodte along fractures.		197.30 198.47			10	.1	274	137	<u> </u>
					198.47 199.95			3	.1	98_	138	<u> </u>
42.80	47.00		Diorite porphyry, grey groundmass, white plagioclase phenocrysts	1 ———	239.65 241.42			11	.3	98	137	
			throughout. Few large K-spar phenocrysts to 15mm across. Slight altera-		270.26 270.60			3	.3	277	64	
			tion in form of bleaching at the lower contact. No pyrite visible.		283.00 284.00			490	7.6	466	116	0.015
				7698	291.93 292.83	0.90		10	.5	198	148	<u> </u>
47.00	50.60		Andesite, dark green, chloritic, massive to porphyryritic, epidote along		292.83 293.11			26	.6	37	71_	<u> </u>
			fractures, no sulphides visible. The core is moderately broken.		293.11 293.46			13	.3	86	77	<u> </u>
				7701	305.50 306.60	1.10		5	.2	51	114	<u> </u>
				7702	<u>36</u> 3.45 364.97	1.52		142	.7	122	91	
50.60	84.65		Andesite, dark green, chloritic, badly broken core, shear zone. Occasional	7703	374.08 374.48	0.40		9	.2	159	80	
			epidote coated fragments. The core is moderately magnetic.	7704	387.30 387.89	0.59		3	.2	225	54	<u> </u>
				7705	390.50 392.10	1.60		48	.5	327	71	

TAKLA-RAINBOW PROPERTY DDH-35 Page 2 of 7

rs 38.70	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
38.70								ppb	ppm	ppm		oz/tn
		Dark green, highly chloritic diorite porphyry or porphyritic diorite.	7706	394.55	396.15	1.60		16	.1	56	87	7
		Occasional epidote coated fractures, no sulphide visible.		398.14				26	.7	209	35	6
				403.75		0.30		2	.1	10	16	3
31.00		Dark green, porphyritic andesitic volcanic with light green pseudomorphs	7709	404.05	404.50	0.45		22	.6	43	20	7
		of plagioclase grains. The rock is slightly magnetic. Occasional epidote	7710	404.50	405.10	0.60		12	.3	46		8
		coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar	7711	415.40	416.25	0.85		56	.4	112	73	8
		veinlets to 1cm across. No visible sulphides.						1	.4	14	76	8
			7713	446.84	448.24	1.40		2	.2	43	76	5
32.70		Andesite, dark green to light grey, bleached, cut by thin quartz veinlets	7714	451.93	452.93	1.00		6	.5	153	79	6
		at 70° to 90° to core axis. No sulphides visible in this section.				1						
34.40		Andesite, slightly bleached, brecciated, no sulphides visible.			-							
40.35		Andesite, light grey, bleached, cut by white quartz veinlets at various					:					
		angles to core axis.										<u> </u>
42.68		Andesite, green, coarse grained, massive, cut by epidote and quartz vein-										
		lets, no pyrite visible.										
51.18		Andesite as above, very minor quartz veining.										
01110												
75.26		Andesite, dark green, highly broken core, shear zone. Epidote coated frac-										ļ
												<u> </u>
		is slightly magnetic. Highly fragmented core.		<u></u>								ļ
77.00		Dioritic intrusive, dark green, coarse grained, massive.										
3 4 5	32.70 34.40 40.35 42.68 51.18	32.70 34.40 40.35 42.68 51.18	of plagicclase grains. The rock is slightly magnetic. Occasional epidote coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar veinlets to 1cm across. No visible sulphides. 22.70 Andesite, dark green to light grey, bleached, cut by thin quartz veinlets at 70° to 90° to core axis. No sulphides visible in this section. 34.40 Andesite, slightly bleached, brecciated, no sulphides visible. 40.35 Andesite, light grey, bleached, cut by white quartz veinlets at various angles to core axis. 42.68 Andesite, green, coarse grained, massive, cut by epidote and quartz veinlets, no pyrite visible. 51.18 Andesite as above, very minor quartz veining. 55.26 Andesite, dark green, highly broken core, shear zone. Epidote coated fractures throughout, some iron oxide filled fractures, trace pyrite. The unit is slightly magnetic. Highly fragmented core.	Dark green, porphyritic andesitic volcanic with light green pseudomorphs of plagioclase grains. The rock is slightly magnetic. Occasional epidote 7710 coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar 7711 veinlets to 1cm across. No visible sulphides. 7712 7713 7713 Andesite, dark green to light grey, bleached, cut by thin quartz veinlets 7714 at 70° to 90° to core axis. No sulphides visible in this section. 7714 7713 7713 7713 7713 7713 7713 7713	Dark green, porphyritic andesitic volcanic with light green pseudomorphs of plagioclase grains. The rock is slightly magnetic. Occasional epidote coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar veinlets to 1cm across. No visible sulphides. 7712 437.90 7713 446.84 7714 451.93 Andesite, dark green to light grey, bleached, cut by thin quartz veinlets at 70° to 90° to core axis. No sulphides visible in this section. Andesite, slightly bleached, brecciated, no sulphides visible. Andesite, light grey, bleached, cut by white quartz veinlets at various angles to core axis. Andesite, green, coarse grained, massive, cut by epidote and quartz veinlets, no pyrite visible. Andesite as above, very minor quartz veining. Andesite, dark green, highly broken core, shear zone. Epidote coated fractures throughout, some iron oxide filled fractures, trace pyrite. The unit is slightly magnetic. Highly fragmented core.	Dark green, porphyritic andesitic volcanic with light green pseudomorphs of plagioclase grains. The rock is slightly magnetic. Occasional epidote coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar veinlets to 1cm across. No visible sulphides. 7712 437.90 438.25 Andesite, dark green to light grey, bleached, cut by thin quartz veinlets at 70° to 90° to core axis. No sulphides visible in this section. Andesite, slightly bleached, brecciated, no sulphides visible. Andesite, light grey, bleached, cut by white quartz veinlets at various angles to core axis. Andesite, green, coarse grained, massive, cut by epidote and quartz veinlets, no pyrite visible. Andesite as above, very minor quartz veining. Andesite, dark green, highly broken core, shear zone. Epidote coated fractures throughout, some fron oxide filled fractures, trace pyrite. The unit is slightly magnetic. Highly fragmented core.	Dark green, porphyritic andesitic volcanic with light green pseudomorphs of plagioclase grains. The rock is slightly magnetic. Occasional epidote ocated fractures, trace disseminated pyrite. Minor pink quartz-K-spar or 7711 415.40 416.25 0.85 veinlets to 1cm across. No visible sulphides. 7712 437.90 438.25 0.35 7712 437.90 438.25 0.35 7713 446.84 448.24 1.40 7713	Dark green, porphyritic andesitic volcanic with light green pseudomorphs of plagioclase grains. The rock is slightly magnetic. Occasional epidote coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar veinlets to 1cm across. No visible sulphides. 7712 437.90 7713 446.84 7714 7714 7715 7715 7715 7716 7716 7717 7717 7717	Dark green, porphyritic andesitic volcanic with light green pseudomorphs of plagioclase grains. The rock is slightly magnetic. Occasional epidote coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar rotal 415.40 416.25 0.85 56 reinlets to low across. No visible sulphides. rotal 437.90 438.25 0.35 1 rotal 446.84 448.24 1.40 2 Andesite, dark green to light grey, bleached, cut by thin quartz veinlets at 70° to 90° to core axis. No sulphides visible in this section. rotal 431.40 Andesite, slightly bleached, brecciated, no sulphides visible. Andesite, light grey, bleached, cut by white quartz veinlets at various angles to core axis. Andesite, green, coarse grained, massive, cut by epidote and quartz veinlets, no pyrite visible. Andesite as above, very minor quartz veining. Andesite, dark green, highly broken core, shear zone. Epidote coated fractures throughout, some iron oxide filled fractures, trace pyrite. The unit is slightly magnetic. Highly fragmented core.	Dark green, porphyritic andesitic volcanic with light green pseudomorphs of plagioclase grains. The rock is slightly magnetic. Occasional epidote of plagioclase grains. The rock is slightly magnetic. Occasional epidote rocated fractures, trace disseminated pyrite. Minor pink quartz-K-spar veinlets to 1cm across. No visible sulphides. rotated site, dark green to light grey, bleached, cut by thin quartz veinlets at 70° to 90° to core axis. No sulphides visible in this section. Andesite, slightly bleached, brecciated, no sulphides visible. Andesite, light grey, bleached, cut by white quartz veinlets at various angles to core axis. Andesite, green, coarse grained, massive, cut by epidote and quartz veinlets at various angles to core axis. Andesite as above, very minor quartz veining. Andesite, dark green, highly broken core, shear zone. Epidote coated fractures throughout, some iron oxide filled fractures, trace pyrite. The unit is slightly magnetic. Highly fragmented core.	Dark green, porphyritic andesitic volcanic with light green pseudomorphs 7709 404.05 404.50 0.45 22 .6 43 of plaqioclase grains. The rock is slightly magnetic. Occasional epidote 7710 404.50 405.10 0.60 12 .3 46 coated fractures, trace disseminated pyrite. Minor pink quartz-K-spar 7711 415.40 416.25 0.85 56 .4 112 veinlets to 1cm across. No visible sulphides. 7712 437.90 438.25 0.35 1 .4 14 14 14 14 14 14 14 14 14 14 14 14 14	Dark green, porphyritic andesitic volcanic with light green pseudomorphs 7709 404.05 404.50 0.45 22 .6 43 20

TAKLA-RAINBOW PROPERTY DDH-35 Page 3 of 7

From	То			Smp.	From To				Aı	nalysi	s	
Met	ers	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
177.00	181.70		Andesitic volcanic, dark green, fine grained, cut by numerous epidote									
			veinlets.									
181.70	186.60		Dioritic intrusive, dark green, coarse grained, massive. Contact with	ļi							<u> </u>	<u> </u>
			volcanics sharp at 60°. No chilled margin.									
186.60	200.65		Basalt, dark green, fine grained, massive, cut by hairline quartz veinlets.			ļ						
			Local epidote concentrations in form of irregular patches or along			<u> </u>						ļ
			fractures. The unit is magnetic.			<u> </u>					ļ	
									 		<u> </u>	
200.65	203.40		Dioritic intrusive, dark green, medium grained, massive, slightly hematitic.									ļ <u> </u>
_,			From 202.70 to 203.00m fault, broken diorite and fault gouge. At 203.00m	ļ					 			
			foliation at 20° to core axis.									
									 			<u> </u>
203.40	239.65		Andesite, dark green, medium grained, massive, occasional epidote concen-						 		 	
			tration along fractures, minor quartz veinlets, no pyrite.									
	041 40		And all and and area blooded out by numerous quarty voinlets cilici								 	
239.65	241.42		Andesite, grey and green, bleached, cut by numerous quartz veinlets, silici-	<u> </u>				-	<u> </u>			
			fied, no pyrite visible.	<u> </u>								l
241 42	270.26		Andesite, dark green, mottled, chloritic, epidote specks throughout. Not									
241.42	270.20	$\vdash \vdash$	magnetic; rare pyrite veinlets, trace disseminated pyrite.									
 		┝┈┤	magnetic, rate pyrite verifices, state arecommissed by res.									
270.26	270.60	\vdash	Andesite, light grey, silicified, bleached, cut by thin 1-3mm veinlets, no									
2,0.20	1 -, 0.00		pyrite.							 		
<u> </u>	l											

TAKLA-RAINBOW PROPERTY DDH-35 Page 4 of 7

From	То			Smp.	From To				Aı	nalysi	S	
• •		Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
270.60	283.00		Andesite, dark green, chloritic, medium grained, massive, rare quartz vein-									
			lets, abundant epidote, no pyrite. From 277.15 to 278.00m bleached, few			<u> </u>						
			quartz veinlets, sheared.			ļ						
						ļ				<u> </u>	<u> </u>	├──
283.00	284.00		Andesite, light grey, bleached, cut by white quartz veinlets at 25-30°.			 				 -		
284.00	290.70		Andesite, light grey, bleached, soft, kaolinized.									
290.70	291.93		Diorite porphyry, grey, bleached, kaolinized, soft.									
291.93	292.83		Same as above to 291.93m.			 					ļ	
292.83	293.11		Same as above to 291.93m.									
293.11	294.40		Diorite porphyry, light grey, bleached, foliated at 35° to core axis.									
294.40	305.50		Andesite, light and dark green, massive, abundant epidote in irregular									
			patches or along the core. Minor thin 1-3mm quartz veinlets.			 						<u> </u>
305.50	306.60		Andesite, as above, cut by white quartz veinlets, mainly along the core.									
306.60	314.24		Andesite, dark and light green, numerous narrow sections of pink K-spar rich									
			intrusive, abundant epidote throughout.			 			ļ			
314.24	318.00		Andesite, grey and reddish, bleached, hematitic, massive, medium grained.									1
			Minor quartz veinlets throughout.		ļ	ļ	ļ	 		<u> </u>	 	

TAKLA-RAINBOW PROPERTY DDH-35 Page 5 of 7

From	То			Smp.	From To				Aı	nalysi	s	
	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
318.00	325.58		Pink granitic intrusive, massive, medium grained, numerous dark green inclu-									
			sions of mafic volcanic throughout.									ļ
325.58	333.00		Andesite as above to 314.24m.									
333.00	387.30		Andesite, mottled dark green with light green epidote spots throughout.									
·····			Occasional white quartz veinlets, no sulphides visible.									
			From 354.40 to 356.50m - disseminated pyrite 2%.									
			Rare quartz veinlets at 30-40° to core axis, hematite filled fractures.									
			From 363.45 to 364.97m - thin quartz veinlets throughout.									
387.30	387.89		Light grey, bleached, andesite cut by white quartz vein, no pyrite.									
387.89	389.90		Andesite, dark green, coarse grained, massive, occasional white quartz									
			veinlets, not magnetic.									
389.90	399.64		Andesite, light grey, bleached, massive, cut by white quartz veinlets. From									
			390.50 to 392.10m higher concentration of veinlets. From 394.55 to 396.15m quartz veinlets throughout. From 398.14 to 399.64m heavy white quartz and									
			pyrite veining. Pyrite content 3%.									
399.64	403.75		Diorite porphyry, light grey, bleached, no quartz veining, minor pyrite									<u> </u>
			stringers.									

TAKLA-RAINBOW PROPERTY DDH-35 Page 6 of 7

From	То			Smp.	From To				Aı	nalysis	5	
	, -	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
403.75	405.10		Diorite porphyry as above cut by white quartz veinlets to 5cm across, trace									
			pyrite.			ļ						<u> </u>
405.10	405.50		Diorite porphyry as above, no quartz veining.								-	
405.50	415.40		Andesite, dark green, highly chloritic, massive, medium grained, epidote									
			abundant, trace pyrite, not magnetic.									
415.40	416.25		White quartz vein cutting andesite at 0° to 60° to core axis. Minor disseminated pyrite in andesite.									
416.25	437.90		Andesite, dark green, chloritic, massive, medium grained, disseminated									
			pyrite 3-5%, no quartz veining except 1-3mm veinlets at large intervals. Epidote specks abundant.									
437.90	438.25		White quartz veinlets cutting andesite at 30° to core axis. No pyrite present.									
438.25	446.84		Andesite, light green, epidote rich, disseminated pyrite 5-8%, no quartz veining, occasional pink K-spar rich sections, abundant epidote alteration.									
446.84	448.24		Light grey, bleached andesite, cut by white quartz veinlets at low angles to core axis.									
	448.64		Andesite as above, no veining, no pyrite.									

TAKLA-RAINBOW PROPERTY DDH-35 Page 7 of 7

From	To			Smp.	From To				Analysis				
		Syb	Description	No.	Meters		Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn	Au oz/tn
448.64	451.93		Andesite, dark green, massive, disseminated pyrite 3-5%, rare white quartz										
			veinlets.										
451.93	452.93		Andesite, as above to 448.24m.										
452.93	455.98		Andesite, grey, bleached, massive, no pyrite, rare white quartz veinlets.										<u></u>
			Foot of Hole.										
			Sperry-Sun Tests:										ļ
			Depth: Dip: Azimuth: 87.17m 55°00' 035°										
			178.61m 56°00' 035°										
			270.05m 58°00' 036° 361.49m 59°00' 039°					<i>.</i>					
			452.93m 59°00' 040°										

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY : Takla-Rainbow

LOCATION: West Drill Grid LOC.: 11 + 20E/0 + 05N CORRECT DIP: - 50°

: 1 of 8

HOLE NO. : DDH-36

בוכני :

TRUE BRG : 225°

LOGGED BY : R.Pesalj

COMMENCED: October 19, 1987

ELEV. :

SURVEY AT :

DATE : October 25/87

COMPLETED: October 25, 1987

CORE SIZE: BQ

% RECOVERY : 100%

CORE STORED : At the camp

OBJECTIVE:

LENGTH : 480.67m

UNUSUAL FEAT.:

PAGE

From	To			Smp.	From To				Ana	alysis		
Me	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
				<u> </u>				ppb	ppm	ppm	ppm	oz/tn
0.00	18.90		Overburden. Fragments of mafic volcanics, soil, talus. BW casing.	7715	54.30 55.30	1.00		34	.1	24	151	
					55.30 56.39			7	.1	58	124	
18.90	32.41		Mafic volcanic of basaltic composition. The rock is fine grained, massive,	7717	56.39 57.69	1.30		8	.1	33	139	<u> </u>
			chloritic, cut by few white quartz veinlets. Epidote in form of specks	+	65.50 66.35			5	.3	239	66	<u> </u>
			and fracture filling throughout. Disseminated pyrite less than 1%. The		75.20 76.20			76	.4	107	90	<u> </u>
			unit is magnetic.		139.70 140.65			3	.1	60	109	
					140.65 141.53			4	.1	12	158	<u> </u>
32.41	42.33		Granite porphyry, pink and dark green, plagioclase phenocrysts throughout.		143.38 144.78			175	.3	106	162	<u> </u>
			The upper contact sharp at 30°. Minor white quartz veinlets, no sulphides		144.78 145.78			57	2	96	91	<u> </u>
			visible. From 42.00 to 42.33m soft, bleached, fault contact.		158.98 159.48			58	.5	73	494	ļ
					167.66 169.01			6	.2	61	239	<u> </u>
42.33	65.50		Andesite, dark green, medium grained, massive, chloritic, minor epidote		181.82 183.49			11	.2	56	275	
			filled fractures, not magnetic.		183.49 184.49			1	.1	17	204	
					184.49 185.69			112	.3	73	153	
65.50	66.35		Andesite, grey, cut by thin quartz veinlets, minor epidote, no pyrite.		185.69 187.25			26	.5	135	93	↓
				+	194.70 195.98			4	-1	6	116	
66.35	75.20		Andesite, grey-green, fine grained, massive, epidote fractures and specks		196.90 198.30			2	.1	10	86	
			throughout, no pyrite.		265.89 266.29			104	1.2	1065	123	
					274.47 276.55			2	.2	149	90	
75.20	76.20		Andesite, grey, bleached, cut by thin quartz veinlets, no pyrite.		276.55 277.45			3	.2	95	120	
					292.85 294.25				 	ļ ———		
76.20	85.95		Andesite, as above to 75.20m.		301.50 302.76				ļ			
	1			7737	302.76 303.88	1.12				1		L

TAKLA-RAINBOW PROPERTY DDH-36 Page 2 of 8

From	То			Smp.	From	То				Ar	nalysis	 ;	
Met	ers	Syb	Description	No.	Ме	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
85.95	139.70		Sheared andesite, dark green with light green epidote coated fractures	7738	303.88	305.40	1.52		3	.1	100	111	
			throughout, badly broken, blocky core.	7739	305.40	306.88	1.48		6	.1	170	74	
				7740	306.88	307.93	1.05		2	.1	78	65	
139.70	141.53		Andesite, light grey, bleached, cut by white quartz veins 5-10cm wide,	7741	326.23	327.75	1.52		3	.2	85	90	L
			veinlets throughout.	7742	327.75	329.27	1.52		1	.3	67	101	
				7743	329.27	330.79	1.52		5	.1	33	122	
141.53	143.38		Andesite, grey, fine grained, massive, rare quartz veinlets.	7744	350.46	350.66	0.20		42	1.5	21	84_	
				7745	350.66	351.26	0.60		3	.1	38	75	
143.38	145.78		Andesite, grey, bleached, white quartz veinlets throughout, no pyrite	7746	360.80	361.80	1.00		6	.1	90	82	
			visible.	7747	361.80	362.70	0.90		11	.1	231	93	
				7748	362.70	363.42	0.72		12	.2	23	151	
145.78	150.18		Andesite, grey, slightly bleached, rare quartz veinlets.		363.42				17	.1	46	116	
					364.85				79	.4	55	39	<u> </u>
150.18	167.66		Andesite, dark green, fine grained, massive, chloritic, rare quartz and		366.06				2	.2	45	31	
			epidote veinlets. From 154.53m shear zone, badly broken, blocky core. From						35	.2	67	37	
			158.98 to 159.48m disseminated pyrite in quartz veinlets cutting andesite.	·	370.00				18	.3	36	40	<u> </u>
<u></u>			Pyrite content 8-10%.		371.00				375	.8	105	58	
					371.90				11	.2	14	43	ļ
167.66	169.01		Andesite, grey-green, cut by white quartz veinlets, vuggy, from 167.66 to		389.62				16	.2	76	41	
			167.80m quartz in vug, minor disseminated pyrite.		390.74				2	.1	45	44	ļ
					392.27				82	.2	62	48	ļ
169.01	181.82		Andesite, grey-green, massive, fine grained, cut by minor quartz veinlets,		396.77				216	.5	144	47	ļ
			badly broken core from 169.01 to 176.00m.		397.77				186	.4	266	54	
				_	419.10				179	.2	31	42	<u> </u>
181.82	187.25		Andesite as above, cut by white quartz veinlets 1-3mm wide, broken core.	7762	422.35	424.00	1.65		16	.1	31	39	

TAKLA-RAINBOW PROPERTY DDH-36 Page 3 of 8

From	То			Smp.	From	То				Αt	nalysi	S	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
187.25	194.70		Andesite, dark green, massive, fine grained, epidote veinlets throughout,	7763	433.42	435.15	1.73		13	.3	23	74	
			minor quartz veinlets.	7764	435.15	435.55	0.40		13	.7	50	49	
				7765	435.55	436.47	0.92		2	.2	18	66	
194.70	195.98		Andesite, green-grey, cut by thin quartz veinlets, no pyrite visible.	7766	436.47	438.20	1.73		1	.2	20	59	
				7767	438.20	439.42	1.22		1	.1	17	31	<u> </u>
195.98	196.90		Andesite, rare quartz veinlets, no visible pyrite.	7768	439.42	440.32	0.90		2	.1	8	43	
				7769	446.60	447.45	0.85		14	.5	53	68	
196.90	198.30		Andesite, grey, bleached, cut by white quartz veinlets, no pyrite visible.		459.65				87	.3	113	84	
				7771	464.20	465.00	0.80		228	.2	163	134	
198.30	221.40		Andesite, green, epidote and rare white quartz veinlets, no visible pyrite.	7772	465.00	466.40	1.40		77	.5	583	78	
			At 210.40m white quartz vein 4cm wide, no sulphides visible.	7773	466.40	467.92	1.52		34	. 4	231	89	
				7774	470.50	471.10	0.60		126	.7	569	72	
221.40	225.40		Diorite porphyry, dark green, chloritic, white plagioclase phenocrysts set		473.30		1.50		206	.3	182	96	<u></u>
			in fine grained, chloritic matrix.	7776	476.10	477.10	1.00		245	.2	152	116	<u> </u>
				7777	477.10	478.20	1.10		450	.9	436	134	
225.40	234.50		Granite porphyry, pink, white plagioclase phenocrysts set in K-spar rich	7778	479.30	479.70	0.40		420	.3	18	204	<u></u>
			matrix. Minor white quartz veinlets, no visible pyrite.	ļ									<u> </u>
													<u> </u>
234.50	265.89		Andesite, grey-green, chloritic, fine grained, massive, cut by occasional	<u> </u>									ļ
			quartz veinlets, no pyrite visible. The unit is not magnetic. Epidote in	ļ									
			form of veinlets and narrow bands throughout.										
265.89	266.29		Andesite, cut by white quartz veinlets, no pyrite visible.										
266.29	274.47		Andesite, dark green, chloritic, cut by white quartz veinlets.										

TAKLA-RAINBOW PROPERTY DDH-36 Page 4 of 8

From	То			Smp.	From To				Aı	nalysi	S	
Met	ters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
274.47	292.85		Andesite, dark green, chloritic, cut by few quartz veinlets, no visible									
			pyrite in core. The unit is slightly magnetic.									<u> </u>
292.85	294.25		Andesite as above, cut by quartz veinlets running mostly along the core. The unit is slightly magnetic.									
294.25	301.50		Andesite, dark green, chloritic, rare quartz veinlets, trace pyrite,									
			slightly magnetic.			 	· · · · · · · · · · · · · · · · · · ·		<u> </u>			
301.50	306.93		Andesite, light grey, bleached, cut by a network of thin quartz veinlets, no visible pyrite.									
306.93	326.23		Andesite, green-grey, slightly bleached, fine grained, massive, not magnetic. Numerous epidote and rare quartz veinlets throughout.									
326.23	330.79		Andesite as above to 326.23m but with higher epidote content.									<u> </u>
330.79	350.46		Andesite, dark green, chloritic, cut by hairline epidote veinlets, no pyrite visible.									
350.46	350.66		Andesite, dark green, chloritic, cut by 1cm wide quartz-pyrite veinlet at 25° to core axis.									
350.66	351.26		Andesite, light green, epidote veinlets throughout.									

TAKLA-RAINBOW PROPERTY DDH-36 Page 5 of 8

From	То			Smp.	From	To				A	nalysi	S	
Met	ters	Syb	Description	No.	Met	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tr
351.26	360.80		Andesite, dark green, chloritice, fine grained, occasional epidote veinlets,										
			rare quartz veinlets, trace pyrite, slightly magnetic.										-
360.80	373.05		Andesite, light grey, bleached, silicified, cut by a stockwwork of white										
			quartz veinlets throughout. From 360.80 to 366.06m and 370.00 to 373.05m quartz veinlets more common. Pyrite not frequent.										
373.05	389.62		Basalt, dark green, very fine grained, massive, highly chloritic,										
			occasional white quartz veinlets, slightly or non-magnetic unit.										
389.62	393.50		Basalt, light grey, bleached, silicified, cut by a stockwork of thin quartz veinlets, trace pyrite.										
393.50	396.77		Basalt, green, chloritic, massive, fine grained, rare quartz veinlets.							,			-
396.77	398.87		Basalt, light grey, bleached, fine grained cut by white quartz and minor pyrite veinlets. Pyrite content 1-2%.										
398.87	419.10		Basalt, dark green, chloritic, rare pyrite veinlets, trace pyrite, occasional sections of K-spar rich pink material.										
419.10	420.35		Basalt, light grey, bleached, cut by white quartz veinlets, no visible pyrite.										
420.35	422.35		Basalt, dark green, chloritic, fine grained.										

TAKLA-RAINBOW PROPERTY DDH-36 Page 6 of 8

From	То			Smp.	From	То				A	nalysi	s	
Mei	ters	Syb	Description	No.	Mete	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
422.35	424.00		Basalt, light grey, bleached, cut by white quartz veinlets, trace pyrite.										
			Foliation locally at 55° to core axis.										
424.00	427.00		Basalt, dark green, fine grained, massive, chloritic, slightly magnetic,										
			epidote specks throughout.	 									
427.00	428.30		Andesite, light grey and maroon, hematatic, trace pyrite.										
428.30	435.15		Basalt, dark green, chloritic, light green epidote veinlets and specks										
			throughout, rare quartz veinlets, pyrite trace. From 433.42 to 435.15m pink K-spar bands.										
435.15	435.55		Pink and white quartz vein cutting basalt at 50° to core axis. Minor pyrite at lower contact.										
435.55	440.32		Basalt, dark green, fractured, minor quartz veining, fractures mostly chlorite filled. Trace pyrite, minor epidote.										
440.32	446.60		Basalt, dark green, epidote rich, trace pyrite and quartz.										
446.60	447.45		Basalt as above to 446.60m. Minor quartz veining and pyrite, abundant epidote.										
			epidote.										
447.45	451.40		Basalt as above to 446.60m.										

TAKLA-RAINBOW PROPERTY DDH-36 Page 7 of 8

From	То			Smp.	From	То				A	nalysi	s	
Met	ers	Syb	Description	No.	Met	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
451.40	457.90		Light grey and green granite porphyry, very fine grained, K-spar rich										
			groundmass with light green epidote after plagioclase phenocrysts.										-
457.90	459.65		Basalt, dark green, chloritic, epidote veinlets, no quartz.										
459.65	461.35		Andesite, light green-grey, cut by light green epidote veinlets. Minor										
			pyrite stringers, no quartz.										-
461.35	480.67		Andesite, dark green, chloritic epidote throughout, pyrite concentration locally.										
			From 464.20 to 465.00m - disseminated pyrite 8%.										
			From 470.50 to 471.10m - disseminated pyrite 10%.										
			From 473.30 to 474.80m - disseminated pyrite 15%.										<u> </u>
			The unit is weakly magnetic.										
			From 474.80 to 476.10m - hematite vein along core.										
			From 476.10 to 478.20m - pyrite 5%, epidote abundant.										

TAKLA-RAINBOW PROPERTY DDH-36 Page 8 of 8

From To			Smp.	From To				Αı	nalysi	s	
Meters	Syb	Description	No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		From 179.30 to 479.70m - pyrite and quartz veinlets throughout. Pyrite content 8-10%. Foot of hole.									
		Sperry-Sun Tests:									
		Depth: Dip: Azimuth: 90.53m 50°30' 226°									
		181.96m 52°00¹ 223° 273.40m 54°00¹ 237°									
		364.84m 55°00' 237° 456.29m 49°00'* 247°*									
		*Readings not reliable due to presence of magnetic rocks in the hole.									

DRILL RECORD

IMPERIAL METALS CORPORATION

PROPERTY: Takla-Rainbow

LOCATION: West Drill Grid

CORRECT DIP: - 45° PAGE

HOLE NO. : DDH-37

: 3 +42E/0 + 59S LOC.

: 1 of 4 TRUE BRG : 045° LOGGED BY : R.Pesalj

COMMENCED: October 26, 1987 COMPLETED: October 28, 1987 ELEV. : CORE SIZE: BQ SURVEY AT : : October 26/87 DATE % RECOVERY : 100% CORE STORED : At the camp

OBJECTIVE:

LENGTH : 168.25m UNUSUAL FEAT.:

		1		I									
From	То			Smp.	From						alysis		
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.		Ag	Cu	Zn	Au
									ppb	ppm	ppm	ppm	oz/tn
0.00	10.67		Overburden, angular fragments of mafic volcanics and porphyry. BW casing.	7782	21.70	23.20	1.50		644	.2	49	80	
				7783					26	.5	72	65	
10.67	23.20		Granite porphyry, pink and green, chloritic, disseminated pyrite less than	7784	24.30	25.82	1.52		54	.3	31	92	
			1%, rare white quartz veinlets, minor specks of epidote.	7785	29.00	30.52	1.52		186	.4	63	66	Ī
				7786	30.52	31.42	0.90	Ï	146	.2	26	55	
23.20	24.30		Granite porphyry as above to 22.30m cut by white-grey quartz veinlet running	7787	31.42	32.65	1.23		72	.3	94	114	
			along core. Disseminated pyrite 2-3%.	7788	36.73	38.35	1.62		122	.2	17	100	
				7789	38.35	38.60	0.25		23	.3	31	34	
24.30	29.00		Granite porphyry, dark green and pink, rare quartz veinlets, trace pyrite.	7790	38.60	40.60	2.00		76	.2	77	116	
			·	7791	44.10	45.60	1.50		68	.3	19	109	
29.00	30.52		Granite porphyry cut by grey quartz vein, sheared, badly broken core, trace	7792	45.60	46.60	1.00		82	. 1	62	159	
			pyrite.	7793	46.60	47.55	0.95		121	1.0	819	112	
				7794	47.55	49.00	1.45		84	.3	72	137	
30.52	38.35		Granite porphyry, pink and light green, abundant epidote specks throughout,	7795	49.00	49.70	0.70		97	.2	46	109	
			trace pyrite.	7796	53.95	54.86	0.91		650	.6	25	101	0.019
				7797	59.75	60.96	1.21		66	.2	10	66_	
38.35	38.60		White quartz vein, brecciated, trace pyrite.	7798	60.96	62.48	1.52		176	. 4	41	93	
				7799	62.48	64.16	1.68		99	.3	61	66	
				7800	64.16	64.96	0.80		95	.2	69	66	
38.60	44.80		Andesitic volcanic, dark green, massive. From 44.10 to 44.80m pyrite	7801	64.96	65.83	0.87		43	.2	16	60	
			content 5-8%.	7802	79.00	80.50	1.50		220	.2	201	65	
				7803	80.50				1360	.4	243	99	0.036

TAKLA-RAINBOW PROPERTY DDH-37 Page 2 of 4

From	То			Smp.	From	То			. A	nalysi	S	
Met	ers	Syb	Description	No.	Meter	s Lgti	. Rec.	Au	Ag	Cu	Zn	Au
								ppb	ppm	ppm	ppm	oz/tn
44.80	49.70		Andesite, dark green, chloritic, fine grained, massive. Disseminated	7804	81.32 81	.82 0.5	0	280	.4	250	87	
			pyrite 5-8%. From 46.60 to 47.55m quartz veinlets abundant, speck of	7805	81.82 82	.82 1.0	0	650	.8	804	54	0.020
			chalcopyrite 1cm across at 44.80m.	7806	82.82 84	.12 1.4	0	730	.6	416	82	0.019
				7807	86.50 87	.95 1.4	5	116	. 4	86	64	
49.70	53.95		Andesitic volcanic, grey and green, chloritic, trace pyrite and quartz.	7808	87.95 88	.80 0.8	5	560	.7	33	103	0.018
				7809		.20 0.4	0	45	.2	16	66	
53.95	54.86		Andesitic volcanic as above, disseminated pyrite 5-8%.	7810	89.20 89	.85 0.6	5	99	.3	76	87	
				7811	89.85 90	.25 0.4	0	121	.2	106	86	<u> </u>
54.86	60.96		Andesitic volcanic, grey and pink, chloritic, rare white quartz veinlets,	7812		.05 0.8	0	2440	2.5	494	61	0.073
			trace pyrite.	7813	91.05 92	.55 1.5	0	380	.8	243	49	<u> </u>
				7814		.90 1.3		2950	3.4	1573		0.082
60.96	62.48		Andesitic volcanic, grey and pink, chloritic, cut by grey quartz-pyrite	7815		.40 0.7	0	550	.8	603	119	0.014
			veinlets at 0° to 30° to core axis. Disseminated pyrite in veinlets and	7816		.00 1.6	0	360	.4	221	45	
			volcanic 8%.	7817		.82 1.8	2	102	.1	128	43	
				7818		.00 1.1	8	1650	2.3	605		0.061
62.48	75.00		Andesitic volcanic, grey and pink, trace disseminated pyrite, no quartz	7819		.46 0.4	6	440	.4	54	71	
			veining. From 73.45m badly broken core, shear zone.	7820				360	.6	85	76	
				_	100.26 100		0	200	.6	85	76	
75.00	80.50		Granitic porphyry, pink and green, chloritic, disseminated pyrite 1-3%, no		100.76 101			610	.8	312	57	0.017
			quartz veining.		103.90 104			560	.8	909	68	
					102.50 103		5	330	.5	653	74	
80.50	81.32		Granitic porphyry as above, cut by grey quartz veinlets, disseminated		110.70 112		0	210	.5	511	51	
		 	pyrite 3-5%.		112.10 103		0	510	.7	496	74	
					103.30 114			410	.5	288	97	
81.32	81.82		Granitic porphyry as above to 80.50m.		138.00 138		0	83	.5	253	89	
ll				7829	140.00 140	.55 0.5	5	21	.2	54	70	

TAKLA-RAINBOW PROPERTY DDH-37 Page 3 of 4

From	То			Smp.	From	То				Aı	nalysi	s	
Met	ers	Syb	Description	No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
81.82	82.82		Granitic porphyry, quartz veinlets, epidote, disseminated pyrite 5%.	7830	150.62	152.02	1.40		120	.2	124	58	
82.82	87.95		Granitic porphyry as above to 80.50m.										
87.95	89.20		Andesitic volcanic, green, chloritic, cut by grey quartz veinlets, disseminated pyrite 5-8%.										
89.20	91.05		Andesite, grey and green, cut by grey quartz veinlets with disseminated pyrite throughout. Pyrite content 10%.										
91.05	92.55		Andesite, light grey, bleached, disseminated pyrite 3-5%, no quartz veining.										
92.55	93.90		Andesite as above to 92.55m with abundant grey quartz-pyrite veinlets. Pyrite 10-12%.										
93.90	94.40		Andesite, green, chloritic, minor quartz veining, disseminated pyrite less than 5-6%.										
94.40	99.46		Granite porphyry, light grey and pink, bleached, cut by white quartz vein-lets, pyrite 5-6%.										
99.46	101.51		Granite porphyry, pink and green, cut by white and grey quartz veinlets. Disseminated and veinlet pyrite 8-10%.										

TAKLA-RAINBOW PROPERTY DDH-37 Page 4 of 4

Meters	7.40	Granite porphyry, pink, disseminated pyrite 1-3%, minor quartz veining. Epidote abundant. From 102.50 to 103.75m grey quartz veinlets throughout. Diorite, dark green, chloritic, massive, trace disseminated pyrite and quartz veining. Local bleached, soft sections. Silicified, bleached	No.	Mete	ers	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		Epidote abundant. From 102.50 to 103.75m grey quartz veinlets throughout. Diorite, dark green, chloritic, massive, trace disseminated pyrite and										
17.40 168	68.25	Diorite, dark green, chloritic, massive, trace disseminated pyrite and										
17.40 168	58.25											
		quartz veining. Local bleached, soft sections. Silicified, bleached										
	1	sections with quartz veining but no pyrite:										
		Sections with quality verning but no pyrite.										
		From 130.00 to 130.50m.										
		From 140.00 to 140.55m.										
		From 150.62 to 152.02m.										
		In the upper part of the unit numerous volcanic inclusions or sections of										<u> </u>
		fine grained dioritic intrusive. Downward, the unit becomes coarser										
		grained, massive diorite.										
		Foot of hole										
		Sperry-Sun Tests:							*			
		Depth: Dip: Azimuth:										
		76.81m 44°30¹ 045°										
		153.01m 46°00' 052°										