District Geol	logist, Victoria	Off Confidential: 89.02.10
ASSESSMENT RE	EPORT 17039 MINING DIVISION	: Victoria
PROPERTY: LOCATION:	Blue Grouse LAT 48 50 50 LONG 124 13 UTM 10 5410985 409615 NTS 092C16E 092C16W	55
CLAIM(S):	Blue Grouse, Blue Grouse No.1-2, S Le Hurel, Skye, Split	S No.1-6,SS No.8,Dads Birthday
AUTHOR(S):	Nic Nik Res. Hulme, N.;Di Spirito, F. 1987, 78 Pages	
- COMMODITIÉS	: Copper,Silver,Gold	
SUMMARY: vol	The claims are underlain by Upp lcanics and limestones, Lower Jura diments and Upper Cretaceous Nanai	ssic Bonanza Group volcanics and mo Group sediments. Copper
	neralization in skarns is associat rphyry dykes and sills.	ed with Upper Jurassic feldspar
	ological,Geophysical,Geochemical AB 235.0 km;VLF Map(s) - 1; Scale(s) - 1:10 000	
	OL 2325.0 ha Map(s) - 3; Scale(s) - 1:5000,1:	1818
	NE 40.6 km GA 235.0 km Map(s) -1 ; Scale(s) -1 :10 000	
	GG 37.0 km Map(s) - 1; Scale(s) - 1:5000	
	CK 24 sample(s) ;ME IL 755 sample(s) ;ME Map(s) - 4; Scale(s) - 1:5000	
MINFILE:	092C 017,092C 108	

LOG NO: Og	215	RD.
 ACHERO	213	
FILE NO:	*	

PROGRAM REPORT ON THE BLUE GROUSE PROPERTY FOR NIC NIK RESOURCES LTD.

GFOLOGICAL BRANCH ASCESSMENT PRPORT

e and the second second

GEOLOGICAL, GEOPHYSICAL AND GEOCHEMICAL REPORT ON THE BLUE GROUSE PROPERTY

FOR

NIC NIK RESOURCES LTD.

VICTORIA MINING DIVISION BRITISH COLUMBIA

NTS 92C-16E NORTH LATITUDE: 48 deg. 50' WEST LONGITUDE: 124 deg. 14'

ΒY

FRANK DI SPIRITO, B.A.Sc., P. ENG. NIGEL HULME, B.Sc. PETER JAHANS, B.Sc. HERBERT MERTENS, B.Sc.

SHANGRI-LA MINERALS LIMITED VANCOUVER, B.C. AUGUST 28, 1987

Sbangri-La Minerals Limited-----

TABLE OF CONTENTS

		PA	GE
SUMM	ARY	•	1
PART	Α		
	Introduction		3
	Property Status		
	Location and Access And Topography		
	History		
PART	B SURVEY SPECIFICATIONS		
	Grid	.1	0
	Geochemical and Soil Survey Method	.1	0
	Magnetometer Survey Method	.1	1
	Airborne VLF-EM & Magnetometer Survey Specifications	.1	1
PART	C GEOLOGY		
	Regional Geology	.1	2
	Property Geology	.1	3
	Structure	.1	5
	Mineralization and Alteration	.1	6
PART	D DISCUSSION OF GEOPHYSICAL RESULTS		
	Airborne VLF-EM (Seattle) Survey	.1	7
	Airborne Magnetometer Survey Results	.1	8
	Ground Magnetometer Survey Results	. 2	0
PART	E DISCUSSION OF GEOCHEMICAL RESULTS		
	Copper (Figure 8a)	. 2	2
	Gold (Figure 8b)	. 2	3
	Silver	. 2	3
	Zinc (Figure 8b)	. 2	3
	Calcium and Iron (Figure 8c)	. 2	4

Å

PART F

Conclusions and Recommendations......24

PART G

Estimated Cost of Recommended Exploration Program.....26

REFERENCES

APPENDICES

APPENDIX A	Cost Breakdown
APPENDIX B	Certificates
APPENDIX C	Sample Descriptions and Analytical Results
APPENDIX D	Airborne System Specifications

ILLUSTRATIONS

Figure	1	Location Mapfollowing page 4
Figure	2	1987 Grid Layout Mapfollowing page 10
Figure	3	Compilation of S.P. & VPEMfollowing page 8
Figure	4a	GeologyIn pocket
Figure	4b	Cross-Section 1340 Level Portalfollowing page 16
Figure	4c	Geology Sunnyside Workingsfollowing page 16
Figure	4d	Geology 1340 LevelIn pocket
Figure	4e	Geology 1000 LevelIn pocket
Figure	5a	Airborne Survey Contour-VLF-EMIn pocket
Figure	5b	Anomaly Location Map for Airborne Survey
		-VLF-EM Field Strength-Seattlefollowing page 17
Figure	6a	Airborne Survey Contour-MagneticsIn pocket
Figure	6b	Anomaly Location Map for Airborne Survey
		-Total Magnetic Field Strengthfollowing page 18
Figure	7a	Ground Survey Contour-MagneticsIn pocket
Figure	7b	Anomaly Location Map for Ground Survey
		-Total Magnetic Field Strengthfollowing page 20
Figure	8a	Soil Geochemistry CuIn pocket
Figure	8b	Soil Geochemistry Zn & AuIn pocket
Figure	8c	Soil Geochemistry Ca & FeIn pocket
Figure	9	Compilation MapIn pocket

Shangri-La Minerals Limited——

Summary

During the period June 2 to June 18, 1987, Shangri-La Minerals Limited conducted an exploration program consisting of geologic, geochemical, airborne magnetics and electromagnetics and ground magnetics over the Blue Grouse group of mineral claims, held by Nic Nik Resources Ltd.

The Blue Grouse Mine is a former copper-silver producer located on southern Vancouver Island. The Blue Grouse Mine operated from 1917 to 1919, and from 1956 to 1960, producing 275,000 tons yielding 15,000,00 lbs of copper and 78,800 oz of silver. The Sunnyside deposit, also located within the claims, produced 114 tons yielding 9100 lbs of copper and 7 oz of silver. Public records indicate that the Blue Grouse reserves were not completely exhausted.

The claims are underlain by volcanics and limestones of the Upper Triassic Vancouver Group, which have been intruded by Upper Jurassic feldspar porphyry dykes and sills. Stratigraphically overlying these rocks are Bonanza Group volcanics and sediments and Nanaimo Group sediments. Copper mineralization in skarns and volcanics is associated with the feldspar porphyry intrusions. A reconnaissance traverse located small copper showings south of the main area of the present survey. Geophysical surveys have outlined several anomalous zones in areas favorable for mineralization. The geochemical survey shows the Blue Grouse and Sunnyside areas to be anomalous in copper, and have outlined a zone reflecting a possible extension to the Sunnyside deposit. A 100m X 100m zone anomalous in gold geochemistry was located some 2.3 km northwest of the Blue Grouse deposit.

A second phase of exploration consisting of underground rehabilitation trenching and further geological, geochemical and ground geophysical surveys are recommended to further define existing targets. A sum of \$90,000 is required to complete this program.

Respectfully submitted at Vancouver, B.C. ESS F. DISPIRITO ജ Frank Di Spiríto, Β. 28 August, 1987

Shangri-La Minerals Limited-

PART A

Introduction

During the period from June 2 to June 18 an exploration program was carried out on the Blue Grouse claims. This program consisted of grid establishment, ground and airborne magnetometer and geochemical surveys, and geologic mapping and sampling. The work was carried out by a Shangri-La Minerals Limited crew at the request of Nic Nik Resources Ltd.

The purpose of this exploration program was to examine an area of known copper and silver mineralization to determine their reserve potential. The results of this program are presented within this report.

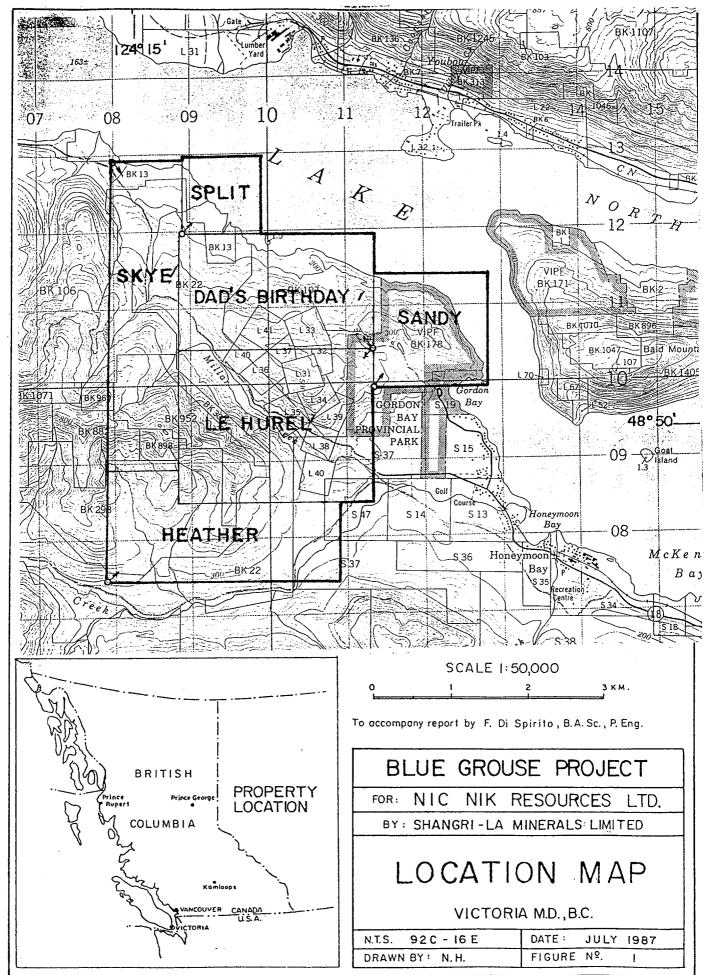
Property Status

The Blue Grouse Project was undertaken on eleven Reverted Crown Granted mineral claims and six modified grid system mineral claims, which includes the Blue Grouse and Sunnyside properties. Nic Nik Resources Ltd. has entered into an option agreement with the owner of the claims, Mike Renning of Burnaby, B.C. Particulars are as follows:

NAME	RECORD#	LOT#	ANNIVERSARY	AREA
Blue Grouse	1854	31G	Feb. 24/88	19.59 hec.
Blue Grouse No. 1	1855	32G	Feb. 24/88	10.58 hec.
Blue Grouse No. 2	1856	33G	Feb. 24/88	20.87 hec.
SS No. 1	1857	34G	Feb. 24/88	17.13 hec.
SS No. 2	1858	35G	Feb. 24/88	20.69 hec.
SS No. 3	1861	38G	Feb. 24/88	18.89 hec.
SS No. 4	1862	39G	Feb. 24/88	11.51 hec.

3

Shangri-La Minerals Limited-


SS No. 5	1859	36G	Feb. 24/88	3 18.59 hec.
SS No. 6	1860	37G	Feb. 24/88	8.95 hec.
SS No. 7	1863	40G	Feb. 24/88	15.18 hec.
SS No. 8	1864	41G	Feb. 24/88	20.71 hec.
Dad's Birthday	1842		Mar. 4/88	3 15 units
Le Hurel	1843		Mar. 4/88	20 units
Skye	1911		Apr. 27/88	16 units
Heather	1910		Apr. 27/88	18 units
Split	1909		Apr. 27/88	4 units
Sandy	1908		Apr. 27/88	9 units

The Reverted Crown Granted claims are located entirely within the area of the modified grid system claims. All claims are contiguous and are shown on the British Columbia Ministry of Energy, Mines and Petroleum Resources Mineral Claims Map 92C/16E.

Location, Access and Topography

The claims are located on the south side of Cowichan Lake in southern Vancouver Island, adjacent to and just west of Gordon Bay Provincial Park, approximately three kilometres west of Honeymoon Bay. Access to the area is via Highway 18 from Duncan to Honeymoon Bay, then along the gravel road towards Caycuse on the south side of Cowichan Lake. Several logging roads provide four wheel drive access to various sections of the property. The old mine site may also be reached by a logging road which originates in Gordon Bay Provincial Park.

Topography varies from gentle in the north to very steep in parts of the south and west; elevations range from approximately 163 m at the lakeshore to over 800 m in the southwest. The relatively low elevations in this area and the mild climate of southern Vancouver Island allow access and exploration virtually year round.

CHONG

Most of the property is forested by moderate to dense second growth Douglas firs and occasional deciduous patches. Old juvenile spacing covers much of the southern parts of the property, while in the north, a new program of juvenile spacing is currently underway, hence, in these areas ease of mobility is greatly reduced. Numerous outcrops occur along the north, east and southern slopes of the hill where the old mine site is located.

History

The Blue Grouse project area encompasses two former producers originally known as the Blue Grouse and Sunnyside The Sunnyside consisted of two claims (Sunnyside, properties. Here-it-is) on which developmental work was first reported in the 1906 Annual Report of the Minister of Mines. Work consisted of scattered open cuts and stripping as well as 35 ft (10.7 m) of tunneling. The first 10 ft (3 m) of the tunnel is reported as passing through ill-defined body of copper pyrites, an along black. pyrrhotite, and arsenopyrite deposited а slickensided fissure. A sample of sorted ore assayed 9% Cu, 0.3 oz/ton Ag, trace Au; a sample taken of the pyrrhotite and arsenopyrite assayed 5.6% Cu, 0.2 oz/ton Ag, and trace Au (MMAR, 1906).

By 1917, mineralization was exposed at three sets of workings. These included numerous open cuts and one adit. The 1917 Annual Report of the Minister of Mines reports:

"The actual contact between metamorphosed limestone and metamorphosed volcanic rocks is very well defined on the Here-it-is claim, which lies westerly from the Blue Grouse group, and the copper ore on the former occurs as a contact-metamorphic deposit at the

immediate contact and developed in much altered limestone, hornblende and garnetite. The contact metamorphic zone is apparently of very considerable width, possibly about 300 ft (91 m), and the ore occurs as lenses. However, the boundaries, except on the north-easterly side, are not well defined as the mineralization gradually fades away or grades into the garnetite gangue.

"A sample representing ore that has been roughly hand-sorted, taken from a width of six feet (1.8 m) in the floor of the No. 1 open cut assayed: trace Au; trace Ag; 3% Cu."

In 1917, 114 tons (104 tonnes) of ore were shipped from which 9169 lbs (4159 kg) Cu and 7 oz. (218 g) Ag were produced (Ministry of Energy, Mines, and Petroleum Resources, Resource Data Section, Minfile 92C 108).

The Blue Grouse group was located in about 1915, and developmental work at that time consisted of one adit and numerous open cuts and pits. Mineralization is described as chalcopyrite, pyrite, and magnetite in a garnetite gangue.

In 1917, the Blue Grouse was acquired by the Consolidated Mining and Smelting Company. From 1917 to 1919, the deposit produced 2113 tons (1917 tonnes) yielding 7 oz. (218 g) Ag and 254,587 lbs (115,479 kg) Cu (Ministry of Energy, Mines, and Petroleum Resources, Resource Data Section, Minfile 92C 017).

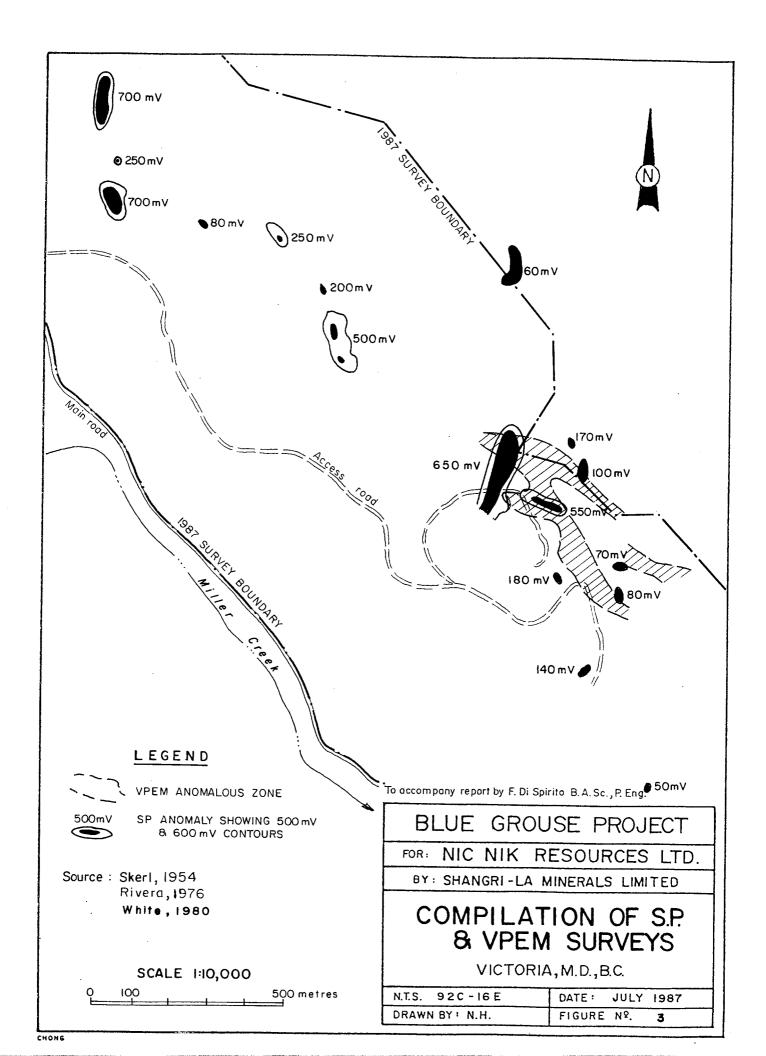
In 1928, the Blue Grouse claims were acquired by the Pacific Tidewater Company. An 85 ft (25.9 m) long crosscut was driven intersect a diamond drill hole but the option and bond were dropped in 1929.

By 1953, rights to both the Sunnyside and Blue Grouse deposits were held by the Cowichan Copper Co. Ltd. By 1960, the Blue Grouse had been developed by two adits: the main haulage or 1100 level (formerly referred to as the 950 level); and the original adit, known as the 1340 level, as well as two sublevels, the 1280 and 1430. Ore was mined by shrinkage stoping from several orebodies: the E orebody from the 1100 level to above the 1340 level; from the J and M orebodies below the 1340 level (1280 sublevel?); from the G and H orebodies above the 1340 level (1430 sublevel?); and from the No. 5 pit extending from above the 1340 level to the surface. Additional ore was obtained by slashing in the G north zone and Sunnyside open pits. Diamond drilling investigated another zone, the K orebody, below the 1100. The Sunnyside deposit was explored further by diamond drilling and by driving a 200 ft (61 m) adit.

The Annual Report of the Minister of Mines for 1956 indicates that the G and H orebodies were probably parts of the same orebody and consist of garnet-epidote-actinolite skarn mineralized with chalcopyrite, pyrite, and pyrrhotite. The 1957 Annual Report of the Minister of Mines states, "The E zone is a mineralized tuffaceous horizon 10-15 ft (3-4.6 m) wide ... the principal mineralization is pyrrhotite, which in places has almost completely replaced the bedded rock. The pyrrhotite is irregularly veined with small stringers and irregular masses of chalcopyrite and pyrite. Small grains of hematite occur sparsely."

Between 1954 and 1960, a total of 272,690 tons (247,381 tonnes) were mined, producing 14,769,067 lbs (6,699,144 kg) of copper and 78,834 oz. (2,452,068 g) of silver. A flotation mill was in operation from December 1957 to November 1960.

In 1954 a self potential survey and limited geologic mapping were performed by Mr. A.C.Skerl, with additional self-potential work completed prior to the end of 1959 by Mr. G.A.MacDonald.


In 1964 geologic mapping and geochemical soil sampling was conducted by the Cowichan Copper Co. Ltd. Copper in soil was tested by rhubeanic acid strips, a qualitative method.

The property was optioned to Canex Placer Limited in 1976 who conducted limited work, including an SP survey, but the option was later dropped.

In 1979 Corrie Copper Ltd. optioned the property from Mr. G.A.MacDonald and Mr. G.Schell. Mr. E.O.Chrisholm, P.Eng., examined the property and reported that copper mineralization of mineable grade was present at the 1100 level and that that ore had not been mined below the 1220 level (Chrisholm, 1979). He also reported that a surface showing with strike length of 700 ft (213 m) was present 2000 ft (610 m) northwest of the main orebody which showed 7 ft (2.1 m) of 8% Cu in a limy tuff. An earlier report by Mr. D.C.Malcolm (Malcolm, 1976) places this zone 2000 ft. (610 m) northwest of the sunnyside workings.

In 1980 a vector pulse electromagnetic survey was conducted by Mr. G.White, P. Eng., on behalf of Corrie Copper Ltd. Approximately 6 km of survey was done, and strong responses indicated conductors which could be traced by diamond drilling. Figure 3 presents a compilation of this vector pulse EM survey as well as the previous SP surveys.

Subsequent diamond drilling intersected 2 ft. (60 cm) of massive chalcopyrite within a 30 ft (9.1 m) band of limestone. A sample of this intersection assayed 8.85% Cu, 0.35 oz/ton Ag., and 0.004 oz/ton Au. (Phendler, 1981). Phendler concludes that this intersection represented the principal mineral zone

immediately above the 1100 level where no mining had taken place. Underground and additional surface diamond drilling was recommended.

In 1981 2132 ft (650 m) of underground diamond drilling was conducted from within the 1100 level. The following holes were drilled:

Hole	Length(ft)	Bearing	Dip]	Location
81-1	175	N36E	flat	SE Drift	ft - 250 ft SE of XC
81-2	100	S42W		11 11	ti II II
81-3	176	N30E	11	11 H	372 ft " "
81-4	90	S46W	11	11 11	363 ft " "
81-5	201	N26E	11		485 ft " "
81-6	200	N43E	11	H H	540 ft " "
81-7	82	S44W	"	H H	175 ft " "
81-7A	201	N49E	++	H H	730 ft " "
81-8	173	S70W	!!	NE "	#1 S XC
81-9	191	S45W		11 11	230 ft NW of XC
81-10	175	S38W	11	11 11	370 ft " "
81-11	175	S63W	**	11 11	430 ft " "
81-12	193	N35E	**	Main XC	C - 270 ft of Drs.

Significant mineral intersections were as follows:

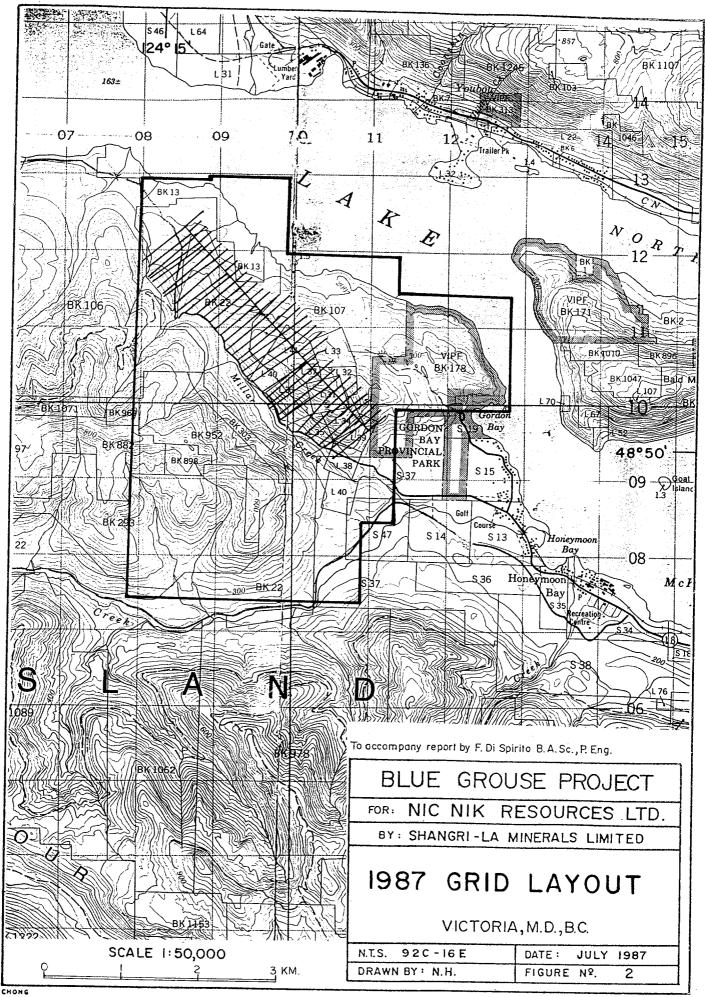
Hole	Footage(ft)	Width(ft)	8 Cu	oz/ton Ag	oz/ton Au
81-1	60.0- 60.5	0.5	1.30	0.11	.001
81-8	42.5- 43.0	0.5	2.16		.005
81-10	13.0- 14.0	1.0	1.16	0.14	.001
	117.5-119.0	1.5	0.86	_	.001
81-12	28.0- 41.0	13.0	4.94	0.37	.001
**	28.0- 75.0	47.0	2.85	0.20	.001

9

Shangri-La Minerals Limited—

It was concluded that the skarn occurred on a minor fold, accounting for the large thickness that was intersected by DDH 81-12. A further 1000 ft (305 m) of diamond drilling was recommended by Phendler. No record of this proposed work is available.

PART B SURVEY SPECIFICATIONS


Grid

An existing cut grid on the property consisted of a baseline trending 140 deg. with crosslines spaced at 100 m intervals. The baseline was reflagged and extended for a total distance of 3600 m. Lines were turned off the baseline at right angles with 100 m spacing and stations flagged with tyvex tags at 25 m intervals. The total distance in crossline equalled 37.070 km.

Geochemical and Soil Survey Method

A total of 736 soil samples and 23 rock samples were collected and analysed. Soils were collected from each crossline at 50 m stations.

Soil samples were taken from the "B" horizon using a cast iron mattock. Samples of no less than 200 g were placed in Kraft paper gusset bags and sun-dried before shipment Acme Analytical Laboratories. All samples were analyzed for thirty elements using an Induction Coupled Plasma Spectrophotometer, and for gold by atomic absorption.

Magnetometer Survey Method

The survey was conducted using an EDA Omni IV Proton Precession Magnetometer. This instrument measures the earth's total magnetic field to within one gamma. Filtering to remove any 60 Hz sourced signal noise (as found near power transmission lines) was automatically performed. Corrections for diurnal variation were made using an EDA PPM 375 Proton Precession Magnetometer in base station mode. There were no strong variations observed in the earth's magnetic field during the survey. Readings were taken every 12.5 m; in areas of high gradient, readings were taken every 5 m. A total of 37.070 km of grid was surveyed.

Airborne VLF-EM and Magnetometer Survey Specifications

The survey system equipment simultaneously monitors and records the output signals from a proton precession magnetometer and two VLF-EM receivers installed in a bird which is towed over the survey area at an altitude of approximately 75 m by helicopter. The average flying speed while surveying is about 110 km/h. Landmarks along the flight lines are plotted on an aerial photograph as the lines are flown. This allows subsequent production of a flight line map on which to plot the survey results.

The two VLF-FM receivers respond to signals from different transmitters - one in Seattle, Washington and one in Annapolis, Maryland. Conductors will respond most strongly when their strike points towards a transmitter. The use of two transmission locations therefore enhances the potential of recording strongly defined anomalies.

11

Shangri-La Minerals Limited-

The magnetometer is subject to interference from sources such as power transmission lines. In addition, the magnetometer is unable to measure the magnetic field in areas of steep gradient, resulting in data being recorded at the zero (or base) field strength level regardless of the actual field strength encountered.

The three channels of geophysical data and one navigational marker channel are each digitized at a sample rate of approximately once every 1.6 sec (resulting in a station spacing of approximately 50 m) using an 8 channel analog to digital converter. The data is then recorded digitally on one channel of a stereo cassette tape recorder, while the other channel records the operators' voice descriptions landmarks, line of identification, and other details. As well, the data is displayed on the screen of a TRS-80 Model 100 laptop computer as it is recorded. Instrument specifications are detailed in Appendix D.

The flight lines run northwest-southeast, while the line spacing is roughly 100 m.

PART C GEOLOGY

Regional Geology

The southern part of Vancouver Island in the Cowichan Lake area is underlain mainly by Paleozoic and Mesozoic volcanic, sedimentary, and granitic rocks. The oldest exposed rocks of the region belong to the Sicker Group which are predominantly sediments with a partly volcanic origin, ranging in age from the Upper Silurian to the Lower Permian. Overlying, conformably or disconformably, are the volcanics and sedimentary rocks of the Upper Triassic Vancouver Group, which, along with the rocks of

the underlying Sicker Group, are highly deformed and folded in a northwesterly trending series of folds. This sequence is overlain by volcanic tuffs, flows, and sedimentary rocks of the Lower Jurassic Bonanza Group.

The Lower to Middle Jurassic Island Intrusions made up of intermediate to felsic plutons cut the Sicker and Vancouver Groups. Conglomerates of the upper Cretaceous Nanaimo Group unconformably overlay the Island Intrusions and pre-granitic rocks and have been gently folded and displaced by steeply dipping faults.

The most prominent physiographic features of the region are fault controlled valleys and fault line scarps. The U-shaped character of the valleys, the rounded appearance of most peaks, the presence of striae along ridges, outwash and moraine sediments, and erratics indicate that the continental ice sheet covered the entire region and apparently moved south.

Property Geology

The area north of the main highway (which runs roughly eastwest through the property) contains the old Blue Grouse and Sunnyside mine sites. Grid was laid out on this part of the property, in accordance with the results of the aeromagnetic survey, and geological mapping was done. A reconnaissance of the geology to the south of the highway was also made.

The dominant rocks of the gridded area are the mafic to intermediate volcanics of the Upper Triassic Karmutsen Formation, the oldest rocks exposed on the property, consisting of mainly pillowed basalts and massive porphyritic andesite flows. The basaltic rocks are amygdaloidal in places (usually feldspar and epidote filled vesicles), appear slightly altered with a dark

greenish grey colour weathering to a brownish grey, contain chlorite, amphibole, and possibly pyroxene, and often exhibits disseminated sulfides (generally pyrite) and magnetite.

The more intermediate volcanics appear to be massive andesitic flows with 30% - 50% mainly plagioclase phenocrysts ranging in size up to several millimetres. Consisting of 40% to 50% plagioclase, 10% to 15% amphibole, 3% to 10% epidote, 10% to 15% chlorite, and 10% to 20% fine groundmass, these greyish green rocks weather to a brownish grey and also appear to have been slightly altered.

Overlying the Karmutsen volcanics and exposed along the main highway and the north part of the grid is the massive, dark grey, micritic limestone of the Upper Triassic Quatsino Formation. These outcrops show little or no bedding features or fossils, but contain an abundance of calcite filled fractures. The Karmutsen and Quatsino Formations are members of the Vancouver Group.

Feldspar porphyry intrusives related to the Saanich granodiorite of Upper Jurassic/Lower Cretaceous age cut the Vancouver series rocks in the Blue Grouse mine area.

The north parts of the gridded area are underlain by Lower Jurassic tuffs and flows with interbedded argillites and sandstones known as the Bonanza Group, which unconformably overlies the Quatsino limestones. Outcrops in this area are scarce as this part of the property is relatively low in elevation and relief.

At the extreme southwest end of the grid, sandstone and volcaniclastics of the Upper Cretaceous Nanaimo Group outcrop along a logging road near the vicinity of the Sunnyside workings. Round pebble to cobble sized clasts of chert and of volcanic origin are contained within a porphyritic volcanic matrix. The

sandstone, probably of the Comox Formation, appear massively bedded, is fine to medium grained, poorly sorted, medium grey in colour weathering to reddish brown, and contains rounded chert pebbles. It is comprised predominantly of 75% chert grains, 10% mafic minerals, 5% quartz and feldspar grains, and 5% to 10% chert pebbles.

The volcaniclastics feature pebble sized chert and cobble sized volcanic clasts supported by a matrix comprised of mafic to intermediate porphyritic volcanic flows. Both pebble and cobble sized clasts are well rounded; volcanic clasts appear to be porphyritic in texture like the surrounding matrix, but slightly more felsic in composition.

Structure

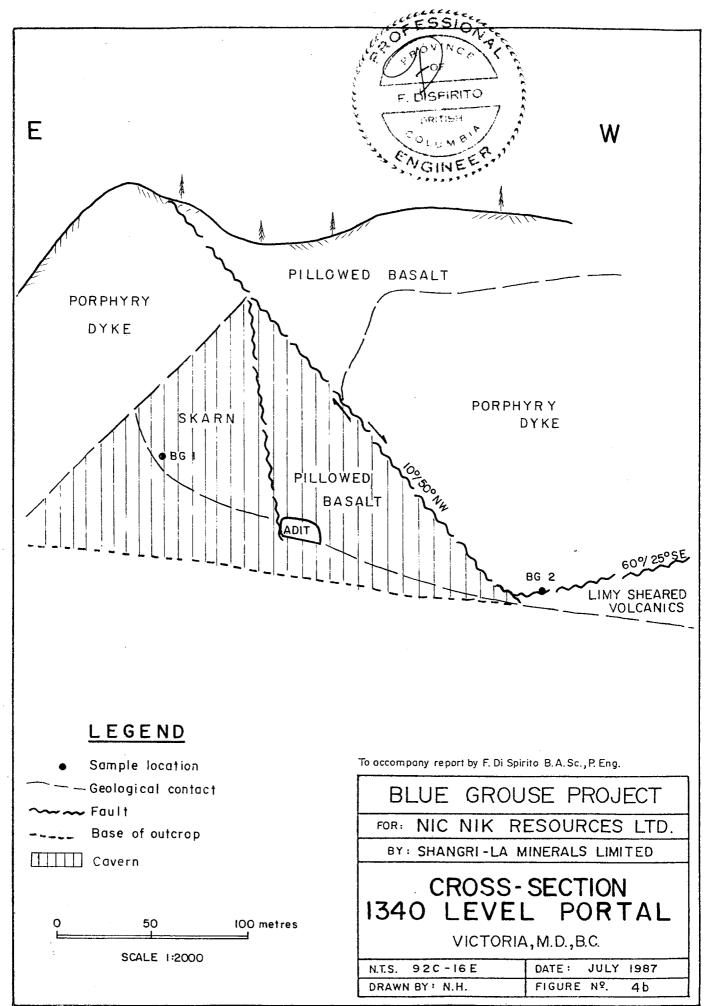
Generally the lithologies strike northwesterly and dip moderately to the southwest, as indicated from mapped bedding planes and geological contacts.

Malcolm, 1965, reports:

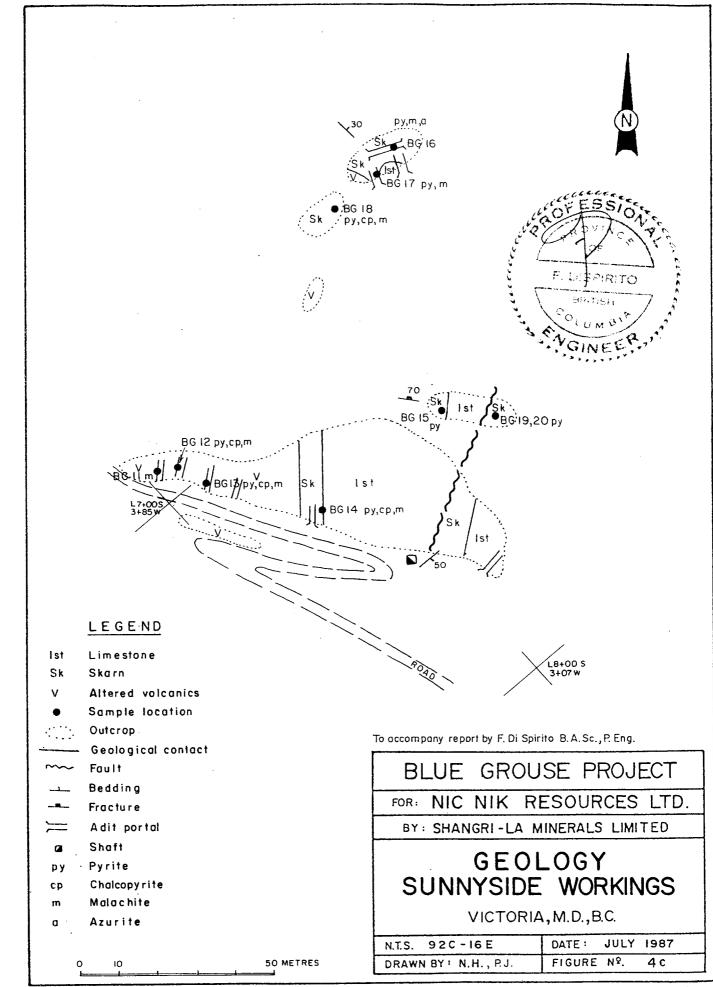
"The ore bodies (Blue Grouse) occur in limestone and tuffaceous members and these are folded in a series of overturned folds whose axes strike northwest, dip from 10 to 40 degrees to the southwest and plunge 20 to 40 degrees to the southwest.

A series of thrust faults with a general east strike and dips of 10 to 20 degrees to the south displace the beds. The 3 cross-cut fault, which displaces the main orebody, has a northeast movement (top block is displaced 1000 feet (305 m) to the north and 150 to 200 feet (46 to 61 m) to the

east in relation to the lower segment). The thrusts are irregular and follow the tuff beds along their stakes and dips in many places.


A second series of reverse faults strike northeast and dip 30 to 45 degrees to the south. The main fault in the mine has a N60E movement of 130 ft (40 m)."

Mineralization and Alteration


Alteration consists of metamorphism and metasomatism of limestone and limy tuffs near feldspar porphyry intrusions, resulting in the formation of skarns consisting of garnet, actinolite, and epidote. Chlorite and epidote alteration is common throughout the volcanics.

Mineralization within the skarns consists of pyrite, pyrrhotite and chalcopyrite. A sample BG1 collected from the skarn at the 1340 level portal (Fig. 4b) returned values of 36,023 ppm (3.6%) Cu, 40.9 ppm (1.19 oz/ton) Ag. Analytical results of samples collected from skarn at a large open pit 25 m to the south of the 1340 level portal are: 50,181 ppm (5.0%) Cu and 17.6 ppm (0.51 oz/ton) Ag (sample BG5, chip sample over 1 m); 12766 ppm (1.3%) Cu and 9.1 ppm (0.27 oz/ton) Ag (sample BG7, chip sample over 7 m). Other sample from this skarn analyzed between 609 ppb (0.06%) to 5,322 ppm (0.53%) Cu with low silver values. Gold analyzed virtually nil in this area. This skarn is probably the remnant of one of the ore bodies which was mined at the Blue Grouse mine.

Two samples collected from a 35 to 40 cm wide mineralized tuff located some 600 m to the south of the 1340 level portal analysed 41,720 ppm (4.2%) Cu and 14.0 ppm (0.41 oz/ton) Au (BGN1) and 39,789 ppm (4.0%) Cu and 4.7 ppm (0.14 oz/ton) Au

CHONG

CHONG

(BGN2). Visible sulfides in this tuff consist of pyrite, chalcopyrite, and pyrrhotite. The samples were collected on strike, approximately 40 m apart.

Skarns are also present at the Sunnyside showings, where limestone is in contact with volcanics (Fig. 4c). Samples collected from this area (BG11 to 21) analysed up to 25,863 ppm (2.6%) Cu. The skarns are composed of actinolite, garnet, and epidote and are mineralized with pyrite, pyrrhotite and chalcopyrite.

Fracture controlled mineralization (pyrite, malachite) was noted in volcanics during a reconnaissance traverse of an access road south of the main highway. Two samples, BGN3 and BGN4 returned results of 33,139 ppm (3.3%) and 12,663 ppm (1.3%) Cu respectively.

PART D DISCUSSION OF GEOPHYSICAL RESULTS

Airborne VLF-EM (Seattle) Survey

The airborne VLF-EM survey data is characterized by lows to the extreme south and north flight lines with highs trending W/NW to E/SE. The contoured VLF-EM data and its relationship to the claim and survey boundaries and landmarks is seen in Figure 5a. The VLF data is dominated by topographic effects, with ridges and hilltops resulting is VLF highs.

However, anomalous zones which can be related to either other geophysical results or which appear to be against the general topographic trend were seen in this survey. The anomalies are labeled AE87-1 to AE87-3, shown in Figure 5b and described as follows.

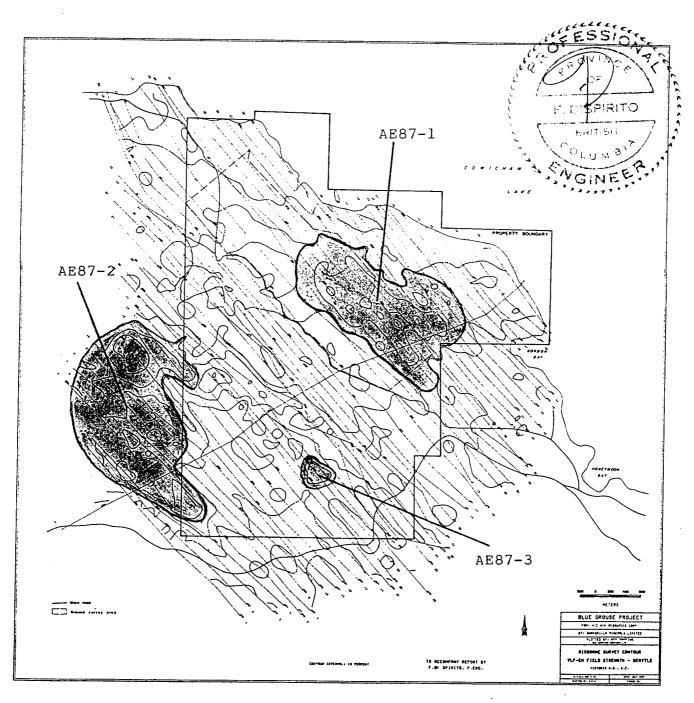


Figure No. 5b: Anomaly Location Map for Airborne Survey : VLF-EM Field Strength - Seattle. (Reference Figure No. 5a)

AE87-1 : A high located in the vicinity of the old Blue Grouse mine workings at the top of a local hill. Some peak value tending 80% to 90% full scale deflection are coincident with airborne magnetic highs, and seem larger than the adjacent elevation VLF-EM values.

AE87-2 : A field strength high in a region of strong airborne magnetometer field strength highs, as are the smaller anomalies to the southwest.

AE87-3 : A VLF-EM mid-value field strength in a region where based on topography would predict a low field strength reading.

Airborne Magnetometer Survey Results

The airborne magnetometer survey was done to locate concentrations of magnetic minerals such as magnetite and pyrrhotite, which are found in association with chalcopyrite, the principal ore mineral previously mined from the property. The contoured magnetic data is shown in Figure 6a.

The survey shows a large number of isolated highs and lows, relative to arbitrary average value of approximately an 700 gammas. These are due primarily to variations in magnetic mineral concentration in the volcanic rocks that are widespread in the area (the Bonanza Group and Karmutsen Formation). Larger scale regional trends are present, however, and appear to conform to the rock type placements described in Open File 1987/2 (Massey, 1987) and those determined by the current program's geologic mapping. Five anomalous zones are evident, and are indicated schematically in Figure 6b. They are described below.

18

Shangri-La Minerals Limited-

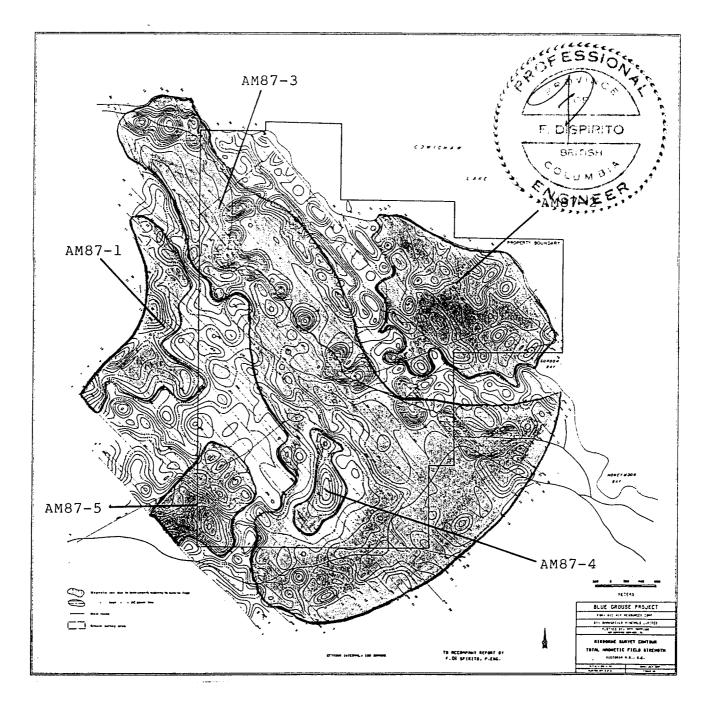


Figure NO. 6b: Anomaly Location Map for Airborne Survey : Total Magnetic Field Strength. (Reference Figure No. 6a)

.

AM87-1 : A 1300-1600 gamma high surrounding a 500 gamma low occurs at the edge of the airborne survey grid. It is situated in faulted and intruded Bonanza Group volcanics (Massey, 1987). Other local magnetic highs are in the range of 900 gamma and 1400 gamma peaks. These are also in the Bonanza Group volcanics.

AM87-2 : A series of approximately 1000 gamma highs are present next to the shoreline of Cowichan Lake/Gordon Bay. Geology is primarily of the Karmutsen Formation consisting of porphyritic tuffs and pillowed volcanics with the Quatsino and Comox Formations bracketing it to the SW and NE respectively (Massey, 1987). Some of these 1000 gamma peaks are in the vicinity of the old Blue Grouse mine adits.

AM87-3 : This anomaly is a regional magnetic low trending NW/SE between AM87-1 and AM87-2, probably due to sedimentary rocks of the Comox and Quatsino Formations. It is partly obscured by the power line anomaly that is across the claim area.

AM87-4 : Within zone AM87-3 is a 1600+ gamma peak, which is coincident with a small VLF-EM anomalous high (anomaly AE87-3). Open File 1987/2 reports this area as consisting of pillow volcanics, tuffs and intrusions of the Bonanza Group. The amplitude and gradient of this anomaly would seem to represent a small scale strong concentration of magnetic minerals.

AM87-5 : The final anomaly to be considered in this survey is at the SW edge of the aerial survey boundary. It consists of four small scale peak anomalies ranging from 800 to 1300+ gammas which are coincident with airborne VLF-EM anomalies just to the west of AE87-4. Open File 1987/2 notes some feldspar intrusions within these Bonanza Group volcanics, but overall geologic information is sparse.

Ground Magnetometer Survey Results

The ground magnetometer survey encountered total magnetic field strengths from a high of 58,559 gammas on the southeast part of the grid to a low of 54,956 gammas to the northwest, a range of approximately 3600 gammas. The results are presented in Figure 7a. The ground magnetometer survey grid area is within the coverage of the aerial surveys. The airborne magnetic survey anomalies are broadened and attenuated relative to the ground magnetic survey anomalies because of the magnetic sensor is further from the ground in the airborne survey.

The larger scale regional features of the ground magnetometer survey confirm the geologic mapping done in the area. There is a general decrease in magnetic field strength as one moves from the southeast to the northwest across the grid, as the more magnetic volcanics of the Karmutsen Formation give way to the limestones of the Quatsino Formation which in turn are rapidly replaced by volcanics of the Bonanza Group. In the southernmost portion of the grid, there is a magnetic low in an area underlain by sedimentary rocks of the Comox Formation. Α variety of steep gradients and steep gradients with field strength highs are found this regional trend amongst (schematically presented in Figure 5b), and described below.

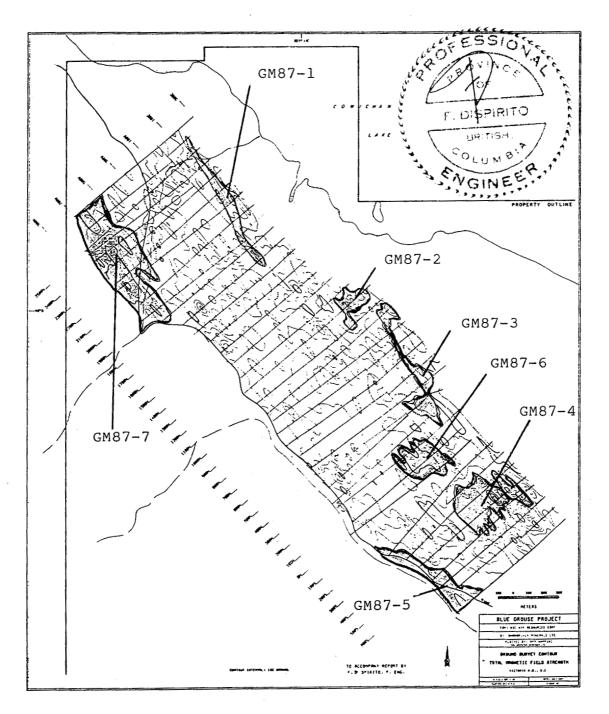


Figure No. 7b: Anomaly Location Map for Ground Survey: Total Magnetic Field Strength. (Reference Figure No. 7a)

GM87-1 : This is a small scale linear anomaly trending parallel to, and east of, the survey baseline. There is a showing of Bonanza Group pillowed flows nearby, but very little else is known of geologic factors which might contribute to this lineation. There was a self potential anomaly noted in this area during an earlier survey, the exact location of which is not known.

GM87-2 : This magnetic anomaly is situated in Karmutsen Formation porphyritic volcanics. It is approximately 300 gammas higher than the surrounding formation.

GM87-3 : This is another 300 gamma anomaly of long linear shape. To the south there is an association with the vector-pulsed-EM and self potential anomalies of previous surveys. GM87-3 lies within the Karmutsen Formation geology and includes the old mine site. Again, the placement of the self potential anomalies is not precisely known.

GM87-4 : This is the strongest anomaly encountered in the ground magnetometer survey, representing an approximately 2500 gamma steep gradient change relative to the nearby regional values. Located on the east half of the survey line 5+00 S, the geology of the area is indicated as being Karmutsen Formation volcanics with porphyritic volcanics flanked by pillow flows. Feldspar intrusions and faulting have been noted in area adjacent to the old Blue Grouse mine this workings. From available underground plans it appears that no adits or tunnels ever extended this far to the southeast.

GM87-5 : This is a magnetic low (200 gammas below nearby regional values), and is probably due to sedimentary rocks of the Comox Formation.

GM87-6 : This anomaly is a series of small amplitude (300 gammas) peaks located just to the SW of the vector-pulsed-EM anomalies found in the 1979 survey. This area is underlain by Karmutsen Formation volcanics.

GM87-7 : This anomaly consists of interspersed steep gradient highs and lows. They lie in Bonanza Group volcanics and sediments. The sediments (argillite and/or sandstone) cause magnetic lows (300 gammas below nearby regional values). The magnetic highs (600 gammas above regional) are probably due to varying concentrations of magnetic minerals within the pillowed or porphyritic flows.

PART E DISCUSSION OF GEOCHEMICAL RESULTS

Copper (Figure 8a)

Five anomalous zones of copper in soil are present on the gridded area. These are:

a) A zone 450 m long and up to 150 m wide trending northwest which follows a limestone-volcanic contact. The Sunnyside showings are located within this zone. Values of up to 3825 ppm are present.

- b) A zone trending north-south associated with mineralized tuff (BGN1, BGN2) which is approximately 400 m long and 100 m wide.
- c) A zone centered at L6+00 S/1+00 W which is coincident with a magnetic high.
- d) A narrow zone in association with the Blue Grouse workings. This zone is open to the north.
- e) The extreme northeast corner of the grid.
- Note : Zones a, b and c are situated adjacent to each other and are represented as one zone on the compilation map.

Gold (Figure 8b)

Other than spot highs, there is one anomalous zone centered at L23+00 N/3+50 W. This zone has dimensions of 100 m X 100 m and covers both sides of a creek valley.

Silver

Silver geochemistry is generally low throughout the gridded area.

Zinc (Figure 8b)

Zinc geochemistry is shown to be slightly elevated in areas of skarn.

23

Shangri-La Minerals Limited-

Calcium and Iron (Figure 8c)

Areas containing both calcium greater than 1% and iron greater than 7% are deemed anomalous. Such areas are located at the Blue Grouse and Sunnyside workings.

PART F

Conclusions and Recommendations

The Blue Grouse working are reportedly still open to depth. Surface mapping in the vicinity of the workings has shown that mineralization consists of copper and silver. The lowest adit level, the 1100 level, is reportedly caved but this has not yet been ascertained. This level should be rehabilitated if need be (it was last rehabilitated in 1979) and Corrie Copper's 1981 drill holes located. Sampling should be conducted at the same time. If sampling and mapping indicate that the ore material may still be present, underground drilling would be necessary to test for geometry and grade characteristics.

Trenching is required to further evaluated the area of mineralized tuffs coincident with anomalous copper in soils located at L4+00 S/1+75 W. Trenching is required to evaluate the area of anomalous gold geochemistry located at L23+00 N/350 W. The possible westward extension of the Sunnyside mineralization should also be trenched.

Further exploration consisting of grid emplacement, VLF-EM and magnetometer surveys, geochemical soil surveys and geological mapping should be conducted south of the main highway, centered in the area of rock samples BGN3 AND BGN4. This grid should cover the coincident airborne anomalies AE87-3 and AM87-4. Juvenile spacing of the forest has been done by logging companies in much of the area, making grid line emplacement and surveying time consuming.

A sum of \$90,000 should be allocated to complete this work.

Signed at Vancouver, B.C.

G C ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ ⁷ F. DISPIRI VFrank Di Spirito, B.A.Sc., P. Eng. BRITISH ο_{μμ} « 28 August, 1987

Sbangri-La Minerals Limited-

PART G

Estimated Cost of Recommended Exploration Program

Grid Establishment 50 km, allow \$ 10,000 VLF-EM Survey 45 km, @ 150/km 6,750 Magnetometer Survey 45 km, @ 150/km 6,750 Geochemical Soil Sampling and Assays 1000 samples @ \$ 16/sample 16,000 Trenching, allow 10,000 Underground Rehabilitation, allow 10,000 Geological Support 7,000 Rock Sample Assays 75 samples @ \$ 25/sample 1,875 Engineering and Interpretation 5,000 Report 5,000 Contingencies, allow 11,625

TOTAL

\$90,000

Shangri-ta Minerals Limited –

Contingent upon favorable results of the recommended program, a third phase consisting of trenching the proposed new gridded area, as well as surface and underground diamond drilling of the proposed targets would be necessary to test geometry and grade of the mineralization.

F. DISPIRITO Frank Di Spirito, B.A.Sc., P.Eng. BRITISH 28 August, 1987

REFERENCES

- B.C. Minister of Mines, <u>Annual Report for 1906</u>. (Victoria, B.C.:, 1907) p H212.
- B.C. Minister of Mines, <u>Annual Report for 1915</u>. (Victoria, B.C.:, 1916) p K290.
- B.C. Minister of Mines, <u>Annual Report for 1916</u>. (Victoria, B.C.:, 1917) p K312-K313, K366-K367.
- B.C. Minister of Mines, <u>Annual Report for 1917</u>. (Victoria, B.C.:, 1918) p F267-F268.
- B.C. Minister of Mines, <u>Annual Report for 1918</u>. (Victoria, B.C.:, 1919) p K299, K307.
- B.C. Minister of Mines, <u>Annual Report for 1926</u>. (Victoria, B.C.:, 1927) p C339.
- B.C. Minister of Mines, <u>Annual Report for 1927</u>. (Victoria, B.C.:, 1928) p C364.
- B.C. Minister of Mines, <u>Annual Report for 1928</u>. (Victoria, B.C.:, 1929) p C370.
- B.C. Minister of Mines, <u>Annual Report for 1929</u>. (Victoria, B.C.:, 1930) p A289.
- B.C. Minister of Mines, <u>Annual Report for 1930</u>. (Victoria, B.C.:, 1931) p A163.
- B.C. Minister of Mines, <u>Annual Report for 1951</u>. (Victoria, B.C.:, 1952) p A213.

Shangri-La Minerals Limited—

- B.C. Minister of Mines, <u>Annual Report for 1952</u>. (Victoria, B.C.:, 1953) p A170.
- B.C. Minister of Mines, <u>Annual Report for 1953</u>. (Victoria, B.C.:, 1954) p A166.
- B.C. Minister of Mines, <u>Annual Report for</u> <u>1954</u>.(Victoria, B.C.:, 1955) p 79.
- B.C. Minister of Mines, <u>Annual Report for 1955</u>. (Victoria, B.C.:, 1956) p 120-122.
- B.C. Minister of Mines, <u>Annual Report for 1956</u>. (Victoria, B.C.:, 1957) p 69-71.
- B.C. Minister of Mines, <u>Annual Report for 1957</u>. (Victoria, B.C.:, 1958) p 60.
- B.C. Minister of Mines, <u>Annual Report for 1958</u>. (Victoria, B.C.:, 1959) p 138-140.
- B.C. Minister of Mines, <u>Annual Report for 1959</u>. (Victoria, B.C.:, 1960) p 115.
- Chisholm, E. O., <u>Geological Report on Blue Grouse Property of</u> <u>Corrie Copper Ltd. Cowichan Lake, Victoira M.D., B.C.</u> August 10, 1979.
- Fyles, J. T., <u>Geology of the Cowichan Lake Area</u>, Vancouver, <u>Island</u>, British Columbia. Bulletin No. 37 (British Columbia Department of Mines, 1955) p 54-57.
- Malcolm, D. C., <u>Blue Grouse Group Geological Report</u>. Assessment Report No. 616, March 8, 1965.

29

Sbangrí-La Mínerals Límíteð ———

- Malcolm, D. C., <u>Report on Blue Grouse</u>, Victoria M.D., B.C. May 25, 1976.
- Massey, N. W. D., <u>Geology of the Cowichan Lake Area : N.T.S.</u> <u>92C/16</u>. Open File 1987/2 (Province of B.C. : Ministry of Energy, Mines and Petroleum Resources and Energy Mines and Resources Canada, 1987).
- Muller, J. E., <u>Geology of Nitinat Lake Map Area</u>, British Columbia. Open File 821 (Geologic Survey of Canada, 1982).
- Muller, J. T., <u>Geology of Vancouver Island</u>. Open File 463 (Geologic Survey of Canada, 1977).
- Phendler, R. W., <u>Report on the Blue Grouse Property</u>, <u>Cowichan</u> <u>Lake</u>, <u>Vancouver Island</u>, B.C., <u>Victoria M.D.</u>, <u>92C/16E</u>, <u>48-</u> <u>deg</u>. <u>50-min N</u>, <u>124-deg</u>. <u>14-min</u>. <u>W of Corrie Copper Ltd</u>. <u>Assessment Report No</u>. 8896, October 23, 1980.
- Phendler, R. W., <u>Progress Report Blue Grouse Property</u>, Disclosed Personal Correspondence with Milo Filgas of Corrie Copper, March 2, 1982.
- Rivera, R.A., <u>Geophysical Investigations in the Vicinity of the</u> <u>Blue Grouse Mine, Cowichan Lake, B.C.</u>. Assessment Report No. 6297, November 29, 1976.
- Skerl, A.C. Report on a Self-Potential Survey on the Property of the Cowichan Copper Company, Cowichan Lake, B.C.. Assessment Report No. 97, May 24, 1954.
- White, G.E., <u>Geophysical Report : Corrie Copper Ltd.</u>, <u>Vector</u> <u>Pulse Electromagnetometer Survey</u>., Assessment Report No. 8895, September 30, 1980.

30

APPENDIX A COST BREAKDOWN OF PROGRAM

COST BREAKDOWN FOR PHASE ONE OF THE BLUE GROUSE PROJECT

Geological mapping and sampling	\$ 9,350.00
Airborne VLF-EM and magnetometer survey 235 kilometers \$90.00/km.	21,150.00
Grid Emplacement: 3.6 kilometers baseline 37 kilometers crossline @ \$150.00/km.	640.00 5,555.00
Ground Magnetometer Survey 37 kilometers @ 150.00/km.	5,555.00
Geochemistry 30 element ICP, plus A.A. for gold 755 soils @ \$15.00 24 rocks @ \$20.00	11,325.00 480.00
Camp costs and consumables	9,780.07
Drafting, CADD plotting, blackline prints	2,218.41
Engineering, report writing and office costs	9,250.00
TOTAL COSTS FOR PHASE ONE	\$75,303.48

APPENDIX B CERTIFICATES

CERTIFICATE

I, Frank Di Spirito, of the City of Vancouver in the Province of British Columbia, do hereby certify:

- I) I am a Consulting Engineer residing at 1319 Shorepine Walk, for Shangri-La Minerals Limited based at 706-675 West Hastings Street, Vancouver, British Columbia.
- II) I am a graduate of the University of British Columbia (1974) and hold a Bachelor of Applied Science in Geological Engineering.
- III) I am a registered member, in good standing, of the Association of Professional Engineers of British Columbia.
- IV) Since graduation, I have been involved in numerous mineral exploration programs throughout Canada and the United States of America.
- V) This report is based upon the results of exploration programs conducted in June, 1987 by a Shangri-La Minerals Limited crew for Nic Nik Resources Ltd.
- VI) I hold no direct or indirect interest in the property, nor in any securities of Nic Nik Resources Ltd., or in any associated companies, nor do I expect to receive any.
- VII) This report may be utilized by Nic Nik Resources Ltd. for inclusion in a Prospectus or Statement of Material Facts.

Signed at Vancouver, B.C.

F. DISPIPITO Frank Di Spirita, B.A.Sc 28 August, 1987

Shangrí-La Mínerals Límíteð-

CERTIFICATE

I, Nigel J. Hulme, do hereby certify that;

- I) I am a Consulting Geologist to the firm of Shangri-La Minerals Limited at 706-675 West Hastings Street, Vancouver, British Columbia, V6B 1N2.
- II) I graduated in 1982 from Carleton University, Ottawa, Ontario with an Honours B.Sc., in Geology.
- III) I have been involved in mineral exploration since 1979.
- IV) This report is based on results of an exploration program conducted by the author in June, 1987 and by a Shangri-La Minerals Limited crew for Nic Nik Resources Ltd.
- V) I have no direct or indirect interest in the property nor in Nic Nik Resources Ltd., nor do I expect to receive any.
- VI) This report may be utilized by Nic Nik Resources Ltd. for inclusion in a Prospectus or Statement of Material Facts.

Respectfully submitted at Vancouver, B.C.

Nigel J,/Hulme, B.Sc. August 28, 1987

CERTIFICATION

I, Peter C. Jahans, do hereby certify that;

- I) I am a Consulting Geologist to the firm of Shangri-La Minerals Limited at 706-675 West Hastings Street, Vancouver, British Columbia, V6B 1N2.
- II) I graduated in 1986 from the University of Alberta, Edmonton, Alberta with an Honours B.Sc., in Geology.
- III) I am a Member-in-Training of the Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA). I have been involved in oil and gas and mining exploration since 1985.
- IV) This report is based upon field work carried out by myself and a Shangri-La Minerals Limited crew for Nic Nik Resources Ltd. from June 2 to 18, 1987.
- V) I have no direct or indirect interest in the property nor in Nic Nik Resources Ltd., nor do I expect to receive any.
- V) This report may be utilized by Nic Nik Resources Ltd. for inclusion in a Prospectus or Statement of Material Facts.

Respectfully submitted at Vancouver, B.C.

Peter C. Jahans, B.Sc. August 28, 1987

CERTIFICATE

I, Herbert Mertens, of the City of Vancouver in the Province of British Columbia, do hereby certify:

- I) I am a consulting geophysicist for the firm of Shangri-La Minerals Limited, based at 706-675 West Hastings Street, Vancouver, B.C., V6B 1N2.
- II) I am a graduate of the University of British Columbia (1984) and hold a Bachelor of Science degree in Geophysics.
- III) I am a member, in good standing, of both the Canadian Society of Exploration Geophysicists (CSEG) and the Society of Exploration Geophysicists (SEG).
- IV) Since graduation, I have worked at seismic processing in Calgary, Alberta and at exploration on various properties in British Columbia.
- V) This report is based on field work done on the property by this author from June 3rd to 18th, 1987 and interpretation of airborne data by a Shangri-La Minerals Limited crew.
- VI) I have no direct or indirect interest in the property, or in any securities of Nic Nik Resources Ltd., nor do I expect to receive any.
- VII) This report may be utilized by Nic Nik Resources Ltd. for inclusion in a Prospectus or Statement of Material Facts.

Respectfully submitted at Vancouver, B.C.

August 28, 1987

Shangri-La Minerals Limited-

APPENDIX C

SAMPLE DESCRIPTIONS AND

ANALYTICAL RESULTS

BLUE GROUSE SAMPLE DESCRIPTIONS

BG1 Adit 1,340 level at L1N 2+75E Grab Sample

Garnet-actinolite skarn containing massive sulphides - 30% pyrite, 20% pyrrhotite, 1% chalcopyrite. Actinolite shows radiating and fibrous habit; when fibrous sulphides parallel the c-axis. Presence of chlorite.

- BG2 Adit 1,340 level at L1N 2+75E Chip sample over 1 m Sheared, limy volcanics at base of feldspar porphyry dyke.
- BG3 Large pit at L0; 250E Chip sample over 1 m Green to turquoise Cu mineral containing calcite-filled fractures, located between skarn and pillowed basalts.
- BG4 Large pit at L0, 250E Chip sample over 1 m

Garnet skarn, reddish brown with malachite staining. Disseminated pyrite, chalcopyrite up to 10%.

- BG5 Large pit at L0, 250E Chip sample over 1 m Garnet skarn, reddish brown with malachite. Up to 25% pyrite, chalcopyrite.
- BG6 Large pit at L0, 250E Vertical chip sample over 1.5 m

Garnet (green and brown-red) skarn. No visible sulphides.

BG7 Large pit at L0, 225E Chip sample over 7 m

Garnet skarn, small amount of fibrous actinolite. Disseminated pyrite and chalcopyrite up to 15%. Chalcopyrite is more abundant near hanging wall boundary (westside of skarn). Malachite stains are common, mainly where water has flowed through fractures.

Sheared volcanics, with feldspar and sulphide (mainly pyrite) filled fractures. Malachite, azurite stains. BG11 Sunnyside area, 690S, 380W Chip sample over 1/2m Garnet skarn, light greenish-yellow, azurite stain. Chip sample over 1m BG12 Sunnyside area 695S, 375W Garnet skarn, epidote, veinlet quartz. Up to 10% disseminated sulphides (chalcopyrite, pyrite) Azurite, malachite staining. BG13 Sunnyside area L75, 370W Chip sample over 1 sq. m Altered volcanics, with epidote, actinolite, quartz, and some garnet.

Disseminated pyrite, chalcopyrite, up to 10%. Malachite stains.

BG14 Sunnyside area, 725S 355W Grab & chip sample over 1/2 m

BG10 Outcrop at L25, 225W

Next to small adit in skarn, adjacent to massive limestone. Actinolite (40%), garnet (25%) with epidote, quartz and carbonate. Up to 10% sulphides, pyrite, chalcopyrite, pyrrhotite.

BG15 Sunnyside Area, 725S 315W Chip sample over 30 cm

Actinolite skarn. Seam of powdery, granular pyrite in midsample, 10 cm wide.

Vertical chip sample over 2m BG16 Trench at 665S, 280W.

Garnet-actinolite skarn. Pyrite varies from 1 to 15%, malachite, azurite stains.

BG17 Adit at 670S, 290W

Grab sample

Chip sample over 1/2m

Fault breccia, actinolite skarn. Pyrite 5-10%, less malachite.

BG18 Sunnyside area, 670S, 305W Grab sample

Actinolite skarn. Pyrite 5-10%, chalcopyrite 1%, malachite.

BG19 750S 270W outcrop Grab sample Garnet, actinolite skarn with disseminated trace sulphides.

BG20 750S, 270W outcrop Grab sample

Garnet, actinolite skarn with disseminated trace sulphides.

BG21 Outcrop at L7S, 425W

Garnet skarn, with disseminated pyrite, chalcopyrite. Azurite stains.

BGN1 350S,150W

Chip sample over 35 cm

Chip sample over 1 m

Tuffaceous horizon, containing plagioclase and glass fragments. Green-grey to dark grey, fresh surface, rusty brown weathered surface. Pyrite, chalcopyrite, pyrrhotite up to 40%, may parallel layering in rock.

BGN2 L4S, 175W

Chip sample over 40 cm

Grab sample

Similar to BGN1, chalcopyrite not visible. Presence of magnetite?.

BGN3 Access road, south of highway

Epidotized volcanics, possible tuff. Two fracture directions, 065/80W, 157/70E. Malachite stains associated with the latter.

BGN4 Access road, south of highway Grab sample

Intermediate volcanics, possible tuff. Fracture controlled -pyrite, malachite. Fracture trends 050/70E.

1

1

1

i.

ł

¢

(

{

6

(

1

{

GEOCHEMICAL ICP ANALYSIS

i

i

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2D AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR MA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P21 SOIL -80 MESH, P22 ROCK AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: JUNE 27 1987 DATE REPORT MAILED: July 3/87 ASSAYER. N. 9940 DEAN TOYE, CERTIFIED B.C. ASSAYER SHANGRI-LA MINERALS PROJECT - BLUE GROUSE File # 87-2039 Page 1

SAMPLE#	NO PPM	CU PPM	PB PPN	ZH PPH	AG PPK	NI PPH	CO PPH	NN PPH	FE ۲	as Ppn	U PPH	AU Pph	TH PPM	SR PPM	CD PPK	SB PPN	B1 PPM	V PPH	CA X	P I	LA PPH	CR PPM	M5 Z	BA PPH	11 X	B PPN	AL Z	na Z	K I	W PPK	au‡ PPB
B5 27+00N 7+00W	1	45	9	79	.1	9	15	1330	6.05	12	5	ND	2	13	1	2	2	128	.19	.149	7	17	1.00	99	.06	3	3.26	.01	.05	1	1
86 27+00N 6+50W	1	44	8	63	.1	10	13	472	6.69	12	5	ND	4	16	1	2	4	147	. 21	.078	19	23	. 88	101	.12		3.94	.02	.03	1	4
B5 27+00N 6+00W	i	34	10	72	.4	q	14	945	4.32	9	8	KD	2	30	1	2	2	92	.80	.060	13	20	1.00	107	.05		2.86	.01	.04	1	5
B5 27+00N 5+50W	1	55	9	76	.1	14	18		5.42	8	7	ND	3	42	1	2	2	116	.17	.071	13	22	.98	99	.18		2.51	.01	.05	1	ī
B6 27+00N 5+00W	2	24	ż	55	.1	8	9		6.32	8	5	ND	2	16	÷	2	2	155	.13	.049	5	17	.55	68	.08		2.70	.01	.02	· i	i
50 27 TOON 3 TOON	2	24	'	22	• •	ų	'	100	0.52	U	7	кy	1	10	•	1	2	133	.15	.047	J	17		69	• • • •	2	2.70	. • 1	.01	1	1
BG 27+00N 4+50W	1	42	8	113	.1	13	20	975	6.47	12	5	ND	2	23	1	2	2	148	. 29	.074	6	19	1.11	102	.15	2	4.10	.02	.04	1	1
BE 27+00N 4+00N	1	50	12	77	.1	21	16	459	5.85	5	5	ND	4	16	1	3	2	136	.16	.056	7	40	.90	66	.15	4	4.47	.02	.05	1	i
B5 27+00N 3+50W	1	22	7	50	.1	7	6	213	4.69	1	6	ND	2	16	1	2	2	126	.14	.032	5	20	. 28	33	. 10	2	2.29	. 01	.02	2	3
B6 27+00N 3+00W	1	14	8	34	.1	6	6	239	4.11	6	5	ND	1	13	1	2	2	100	.12	.020	5	14	. 30	44	.05		2.06	.01	.02	1	2
B5 27+00N 2+50W	1	16	9	59	.2	9	9	386	5.05	7	5	ND	2	10	1	2	3	72	.12	.057	4	19	.47	51	.01		2.86	.01	.04	1	2
B5 27+00N 2+00W	1	10	7	50	.1	5	7	581	6.99	2	5	ND	1	7	1	2	2	84	.06	.025	4	31	.21	55	.02	2	2.28	.01	.04	2	١
B5 27+00N 1+00W	1	25	6	59	.1	13	10	499	4.92	12	5	ND	2	17	1	3	3	94	. 15	.049	4	27	.59	63	. 02		2.65	.01	.03	1	•
B5 27+00N 0+50N	1	21	11	78	.1	7	15	2868	6.34	8	5	ND	2	37	1	2	ž	164	.48	.115	5	14	.84	66	.20		2.30	.01	.04	1	1
B5 27+00K 0+00W	1	29	7	63	.1	6	10	449	5.62	5	5	ND	2	29	1	2	2	135	. 26	.168	4	14	.59	29	.14		2.93	.01	.02	1	1
BG 27+00N 0+50E	1	46	12	62	.1	7	11	400	5.99	11	5	ND	3	37	1	2	2	156	.26		4			39	.22				-	1	•
88 27+00A V+30C	1	40	12	02	• 1	,	11	400	3.11	11	J	NU	3	37	1	1	2	130	.20	. 127	٩	15	.68	31	•11	1	4.34	.02	.02	1	1
B5 27+00N 1+00E	1	23	6	44	.1	6	8	331	6.20	7	5	ND	2	28	1	2	2	188	. 24	.050	5	9	.62	27	. 22	2	2.47	.02	.02	1	1
B6 27+00N 1+50E	1	12	4	29	.1	2	4	246	3.18	5	5	ND	1	16	1	4	2	58	.12	.024	5	5	.35	27	.07	3	1.33	.01	.05	1	1
86 27+00N 2+00E	1	25	5	54	.1	8	17	1500	4.97	7	5	NB	2	49	1	2	2	129	.31	.034	7	14	.76	94	.20	2	2.66	.02	.02	1	2
BG 27+00N 2+50E	1	6	5	27	.2	2	3	394	3.09	2	5	ND	2	5	1	2	2	44	.03	.022	8	3	.24	35	.01	2	1.64	.01	.03	1	1
B5 27+00N 3+00E	i	19	3	79	. 1	4	7	872	3.37	8	5	ND	2	7	1	2	3	60	.05	.034	5	7	. 32	72	.01	2	3.43	.01	.04	1	1
BG 26+00N 6+50W	2	44	10	73	.1	11	16	1051	5.24	5	5	ND	2	51	i	2	2	141	. 91	.079	10	15	1.17	101	.22	4	3.00	.01	.07	1	14
85 26+00N 5+50W	ī	38	13	77	.1	10	11	698	6.44	8	5	ND	2	13	1	2	2	134	.15	.115	5	21	. 58	62	.05		3.67	.02	.04	1	
BG 26+00N 5+00WA	i	30	8	72	.1	10	17	996	6.62	8	5	ND	ī	42	i	2	2	173	.58	.079	6		1.05	120	.19	-	3.01	.01	.05	i	1
B5 26+00N 5+00WB	i	26	7	61	.1	11	9	394	5.86	2	5	ND	i	18	i	2	3	136	.19	.041	5	26	.55	77	.06	-	3.05	.01	.02	i	2
BG 26+00N 4+50W	1	46	11	77	.1	18	14	485	5.40	7	5	ND	3	14	1	3	2	120	.14	.073	7	34	.90	66	.10		4.42	.02	.04	1	10
DO 201008 41JON	1	70	11		• 1	10	17	703	J. 40	'	-	ΝU	3	14	•	3	2	120	.14	.015	'	37	,10	00	. 10	3	7,92	.02	• • •	1	10
BG 26+00N 4+00W	1	32	10	59	.1	12	9	264	4.98	2	5	ND	2	15	1	2	2	114	.13	.035	5	25	.55	49	. 08	3	3.10	.01	.03	i	t
B5 26+00N 3+50W	1	33	7	67	.1	13	10	464	4.45	6	5	DM	2	14	1	2	2	100	.14	.050	5	21	.57	65	.05	4	3.18	.02	.03	1	9
BE 26+00N 3+00W	1	9	8	32	.2	6	6	690	2.96	7	5	ND	1	10	1	2	2	47	.10	.049	3	15	. 20	47	. 01	3	1.76	.01	. 03	1	2
BE 26+00N 2+50W	1	32	5	75	.2	13	12	539	5.09	3	5	ND	3	18	1	3	2	110	.20	.072	8	23	.63	51	.06	3	3.22	.01	.04	1	2
BE 26+00N 2+00W	2	55	9	70	•1	7	20	1072	5.96	7	5	ND	1	52	i	2	2	144	.32	.152	4	10	. 87	77	. 20		3.93	.02	.03	1	ม
B5 26+00N 1+50W	1	15	9	43	.1	8	8	626	5.30	6	5	ND	1	22	t	2	2	117	.26	.053	5	21	. 39	64	.06	3	2.02	.01	.03	1	1
B5 26+00N 1+00W	1	33	16	73	.2	8	12	1209	5.04	7	5	ND	1	32	1	2	2	119	.40	. 233	4	14	. 64	81	.13		3.08	.01	.03	i	1
86 26+00N 0+50W	1	73	9	70	.1	10	17	790	5.96	10	5	ND	3	31	1	2	2	153	.19	.207	Å	18	1.18	48	.24		4.69	.02	.03	1	
BE 26+00N 0+00W	i	25	8	50	.1	5	7	228	6.02	6	5	ND	2	32	i	3	2	163	.22	.051	5	13	.42	49	.14		2.21	.01	.03	1	1
B6 26+00N 1+00E	i	17	9	41	. 1	5	8	235	4.96	6	5	ND	ī	42	1	3	2	149	.32	.039	3	7	.58	36	.22	-	2.15	.02	.02	i	ī
BG 26+00N 1+50E	1	36	14	48	.3	8	13	352	4.11	5	5	NÐ	1	48	1	4	2	105	. 29	.085	3	11	. 63	70	. 18	4	2.24	.01	. 03	2	1
STD C/AU-S	21	60	37	137	7.2	68		1023		38	22	7	36	50	17	15	19	60	. 48	.086	37	59	.85	189	.09		1.76	.07	.13	13	52

.

																							•								Г¢	age á
SAMPLES	NO PPN	CU PPM	PB PPN	ZN PPN	AG PPM	NI PPH	CO PPM	MN PPM	FE X	AS PPM	U PPN	AU PPH	TH PPM	Sr PPN	CD PPM	SB PPM	BI PPN	V PPN	CA X	P I	LA Ppm	CŔ PPM	MG Z	BA PPM	TI I	B PPM	AL Z	NA Z	K Z	N Pph	AU 1 PPB	
B5 25+00N 8+00W	1	37	4	97	.1	10	16	582	7.33	4	5	מא	2	13	1	2	2	188	.13	077	0		••									
85 25+00N 7+50W	1	21	6	100	.1	6	12		7.79	Å	5	ND	2	6		2	2			.072	8	17	.91	85	.17		5.21	.02	.04	1	2	
85 25+00N 7+00M	1	24	6	93	.1	13	14		6.50	4	5	ND		-	1	-		216	.05	.069	6	16	. 98	53	.10		5.23	.02	.02	1	1	
B6 25+00N 6+50W	1	25	6								-		1	12	1	2	2	115	.10	.044	10	23	.66	78	.02	4	3.68	.02	.04	1	1	
				41	-1	5	7		5.15	2	5	ND	2	15	1	2	2	106	.11	.025	14	12	.31	147	.02	2	2.66	.01	.03	1	1	
BG 25+00N 6+00W	2	24	4	64	.2	8	12	1000	5.51	2	5	ND	3	20	1	2	2	114	.41	.035	18	15	.43	105	.02		3.06	.01	.03	1	1	
BG 25+00N 5+50W	1	25	8	64	.1	8	10	506	6.14	4	5	ND	2	14	1	2	2	131	.15	.050	ß	19	. 63	50	07	2	2 20					
86 25+00N 5+00W	1	36	10	89	.1	12	13	406	7.04	8	5	ND	3	17	1	2	2	132	.16	.085	6	31		52	.03		2.98	. 02	.04	1	1	
BG 25+00N 4+50W	1	52	12	90	.1	18	15		5.97	8	5	ND	2	19	;	2	2				-		.56	81	.0?		5.19	.01	.03	1	1	
BG 25+00N 4+00N	1	26	8	63	.1	10	9		5.05	6	5	ND	2		1	-		126		.073	6	34	.84	78	.13		4.65	.02	.04	i	1	
86 25+00N 3+50W	i	19	6	48			•						4	18	1	2	2	117		.059	6	21	.46	- 44	.06	2	3.89	.01	.03	1	1	
50 23400R 3430M	1	17	0	48	.1	7	10	508	6.00	2	5	ND	1	11	1	2	2	83	.09	.062	4	26	.30	53	.01	2	2.94	.02	.04	1	1	
BG 25+00N 3+00W	1	56	8	85	.1	16	15	872	6.06	6	5	ND	3	23	1	2	2	133	.24	.093	6	27	.93	60	14	,	4 70		~ *			
BG 25+00N 2+50W	1	37	8	78	.1	17	14	698	5.87	2	5	ND	2	20	ŝ	2	2	124	.22	.084					.14		4.32	.01	.04	1	2	
B5 25+00N 2+00W	i	51	10	69	.2	17	15		6.45	2	5	ND	5	22		2					6	26	.87	62	.12		4.22	.02	.03	1	1	
B6 25+00N 1+50W	1	18	8	56	.1	10	13						-		1	2	2	141	.20	.035	10	35	.92	98	.16	2	4.55	.02	.03	1	1	
BG 25+00N 1+00W	1	40	-						6.33	4	5	ND	2	27	1	2	2	168	.30	.032	18	26	.52	59	.19	2	2.71	.01	.02	1	1	
DO ZJTUUR ITUUM	1	40	10	62	.2	9	13	562	5.87	4	5	ND	2	37	1	2	2	151	.31	.113	6	21	.73	74	.19	2	3.62	.02	.02	1	1	
BG 25+00N 0+50W	2	79	10	86	.1	14	23	1278	6.58	6	5	ND	2	76	1	2	2	163	. 90	.063	6	10	~	7.	7.4			• ·				
BG 25+00K 0+00W	1	20	10	43	.3	6	10		6.25	2	5	ND	2	53	:	2	2				-		2.14	71	.30		3.83	.01	.05	1	1	
B5 25+00K 0+50E	1	19	2	31	.1	4	7		5.39	2	-		<i>.</i>		1	-	-	184	.50	.051	4	11	.59	53	.28	2	2.70	.02	.02	1	2	
BG 25+00N 1+00E	î	25	8	65	.1	4					5	ND	1	46	1	2	2	159	.38	.038	6	8	.34	87	.22	2	2.31	.01	.01	1	128	
	-		-					1232		2	5	ND	1	37	1	2	2	101	. 29	.043	4	7	.41	80	.08	2	2.24	.01	.02	1	1	
BG 25+00K 1+50E	2	71	10	77	.3	12	29	1104	6.54	8	5	ND	2	77	1	2	2	159	.55	.193	4	12	1.42	91	.29	2	6.12	.01	.04	1	10	
86 25+00N 2+00E	2	33	6	89	.1	8	21	5454	5, 58	8	5	ND	2	58		2	2	175		220						_	_					
BG 24+00N 7+50WA	1	26	10	53	.2	5	8		5.85	2	5	ND	2		1	4	2	125		.232	6	12	.91	125	.13		3.53	.01	.04	1	1	
85 24+00N 7+00WA	1	19	10	67	.2	6						-	-	16	1	2	2	167	.13	.059	6	9	.54	99	.08	2	2.90	.01	.03	1	7	
B6 24+00N 6+50WA						-	10		5.94	2	5	ND	2	18	1	2	2	164	.31	.093	6	13	.57	67	.19	2	2.79	.02	.04	1	1	
	1	32	12	69	.1	10	12	486		2	5	ND	2	13	1	2	2	140	.10	.045	8	19	.72	67	.07	4	4.19	.02	.03	1	I	
85 24+00N 6+00WA	1	18	10	75	.1	6	8	278	5.78	4	5	ND	2	12	1	2	2	101	.10	.046	10	12	.31	67	.01		3.15	.02	.04	1	2	
B6 24+00N 5+50WA	1	21	10	67	.1	5	10	602	5.25	L	5	ND	1	25	1	2	2	114	. 21	A / A	,		10			-						
B5 24+00N 4+50WA	1	21	6	66	.1	9	8	316		Å	5	ND	1		1	2				.064	6	10	.49	101	.01		2.75	.01	.04	1	1	
B6 24+00N 4+00WA	1	13	8	44		7							-	16	1	2	2	121		.085	4	23	.53	40	.06	2	3.80	.01	.03	1	1	
B6 24+00N 3+50WA	-				.1		6		5.46	4	5	NÐ	1	21	1	2	2	138		.029	4	23	.40	34	.08	2	2.31	.01	.02	1	25	
	1	22	16	56	.1	10	12		4.23	- 4	5	ND	2	26	1	2	2	91	.34	.080	28	18	.50	84	.07	2	2.97	.01	.04	1	1	
B5 24+00N 3+00NA	1	30	22	72	•2	12	13	904	5.10	4	5	ND	2	23	i	2	2	111	.27	.118	6	20	.72	68	.11		3.33	.01	.03	1	21	
B5 24+00N 2+00NA	1	23	8	53	.1	6	7	370	5.31	4	5	ND	2	28	,	2	2	142	70	~ ~ ~	,					-						
B5 24+00N 1+50WA	1	51	6	72	.2	12	17		6.54	4	5	ND	2	20 39				142		.062	6	21	.35	82	.12		2.08	.01	.03	1	1	
65 24+00N 1+00WA	1	52	1220	65	.1	7	15		5.78		5				4	2	2	158		.091	6	18	• 88	61	.24	4	4.80	.02	.02	1	2	
B6 24+00N 0+50WA	i	56		86						6		ND	1	64	1	4	2	154		.115	4	12	.86	88	.25	2	3.09	.01	.03	1	1	
			16		.1	9	18		5.75	2	5	ND	2	47	1	2	2	145	.32	.102	6	11	.95	47	.21	4	4.45	. 02	.02	1	ĩ	
BG 24+00N 7+50W	i	23	14	84	.1	9	13	680	6.88	2	5	ИD	2	11	1	2	2	168	.11	.053	8	14	.66	77	.16		4.62	.02	.05	1	i	
B5 24+00N 7+00W	1	24	16	70	.1	8	10	802	6.54	2	5	ND	2	15	1	2	2	1/0			,											
STD C/AU-S	21	60	36	137	7.0	69		1010		42	20	7	35		•	2	2	160		.082	6	16	.56		.11		3.45	.01	.03	1	1	
		~~	55	107	7 a V	47	20	1010	J.70	٩2	20	1	22	49	18	16	20	58	.48	.087	36	57	.88	183	,09	34	1.83	.06	.12	13	47	

Page 2

ł

ł

ť

1

1

1

Ċ

Ċ

Ċ

(

{

(

€

(

Ć

(

Ć

(

(

(

Page 3

C

SHANGRI-LA MINERALS PROJECT - BLUE GROUSE FILE # 87-2039

SAMPLE®	NO Pph	CU PPM	PB PPN	ZN PPN	AG PPM	NI PPM	CO PPN	KN PPK	FE X	AS PPM	U PPM	AU PPN	TH PPK	SR PPM	CD PPM	SB PPN	BI Pph	V PPH	CA Z	P ጀ	LA PPN	CR PPN	N6 X	BA PP n	11 2	B PPM	AL X	KA Z	K I	N PPM	au : PPB
BG 24+00N 6+50N BG 24+00N 6+00N BG 24+00N 5+50N BG 24+00N 4+50N BG 24+00N 4+00N	2 2 1 1 1	123 38 17 22 17	13 16 9 9 15	81 113 65 49 50	.1 .2 .1 .1	9 11 7 8 7	13 20 10 7 7		5.71 6.49 5.99 5.80 4.63	3 15 6 7	5 5 5 5 5	ND ND ND ND ND	2 3 2 2 2	14 68 15 19 22	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	143 181 114 139 111	.12 1.21 .16 .18 .21	.063 .185 .065 .101 .059	7 11 7 5 4	19 15 13 22 17	.75 1.50 .51 .42 .36	62 135 76 43 58	.09 .17 .02 .08 .05	2 2 2	4.09 6.52 3.38 2.92 2.56	.02 .01 .01 .01 .01	.03 .05 .04 .04 .03	1 2 1 1 1	3 1 1 6 1
BG 24+00N 3+50N BG 24+00N 3+00W BG 24+00N 2+00K BG 24+00N 1+50W BG 24+00N 1+50W	1 1 1 1 5	48 46 42 26 29	24 14 8 10 11	80 66 73 63 72	.1 .1 .1 .1	17 13 25 12 9	16 14 13 11 9	801 452 387	5.13 5.59 5.26 4.88 4.55	6 8 5 2	5 5 5 5 5 5	ND Kd ND ND	2 2 2 2 2	43 36 24 19 16	1 1 1 1	2 2 2 2 2	2 2 2 2 2	109 142 127 115 87	.79 .57 .34 .20 .22	.072 .046 .031 .042 .109	11 9 6 6 4	23 19 30 21 19	.97 .83 .88 .48 .51	77 128 89 59 55	.16 .19 .17 .10 .07	3 3 3	2.60 2.56 2.94 2.97 3.44	.02 .01 .01 .01 .01	.07 .04 .04 .04 .05	1 1 1 1 1	5 1 1 2 1
BG 24+00N 0+50N BG 24+00N 0+50E B5 24+00N 1+50E B5 24+00N 2+00E B6 23+00N 8+00W	1 2 2 1 1	21 74 21 12 22	11 12 11 8 8	61 94 89 51 92	.1 .1 .1 .1	9 14 9 4 9	7 20 14 9 15	400 892 6460 1006 796	4.46 6.30 4.34 4.10 6.96	5 4 3 5	5 5 5 5 5 5	ND ND ND ND ND	2 2 1 2	19 44 32 10 31	1 1 1 1	2 2 2 3 2	2 2 2 2 2	99 147 86 65 190	.22 .29 .89 .11 .32	.093 .174 .065 .040 .043	5 6 13 4 7	20 20 13 4 15	.37 1.23 1.10 .71 .87	51 57 134 96 97	.05 .20 .05 .02 .17	3 3 2	2.73 4.74 2.65 2.17 3.21	.01 .02 .01 .02 .02	.04 .03 .07 .07 .04	1 1 1 1	1 1 2 1 2
BG 23+00N 7+50H BG 23+00N 7+00N BG 23+00N 6+50W BG 23+00N 6+00W STD C/AU-S	1 1 1 1 21	37 28 39 18 59	10 9 9 12 38	96 87 80 57 140	.1 .1 .2 6.9	10 6 9 5 69	19 13 12 10 28	1247 890 793 643 1014	6.83 5.83 4.81	8 3 2 4 42	5 5 5 17	ND ND ND ND 7	3 3 3 1 36	29 15 21 38 49	1 1 1 1 17	2 2 2 2 18	2 2 2 2 21	153 180 139 102 59	.61 .18 .28 1.11 .48	.124 .081 .107 .108 .086	10 6 8 6 37	14 12 14 11 57	1.32 .61 .66 .43 .87	116 74 104 115 179	.21 .17 .09 .10 .08	2 4 2	3.64 3.87 3.89 2.54 1.74	.02 .02 .02 .01 .06	.08 .03 .06 .04 .12	1 1 1 1 13	i i 1 52
BG 23+00N 5+50N BG 23+00N 5+00N BG 23+00N 4+50N BG 23+00N 4+00N BG 23+00N 3+50N	1 1 3 1	27 122 55 81 49	16 15 11 10 10	62 76 81 66 81	.1 .2 .1 .1	8 11 19 8 10	12 19 15 32 15	893 449 471	5.81 7.02 6.35 10.41 7.41	6 2 12 8 5	5 5 5 5 5	ND ND ND ND	3 6 3 4 3	24 41 22 94 46	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	139 151 135 176 187	.24 .23 .24 .39 .31	.076 .110 .128 .120 .054	9 9 7 7 6	13 15 34 9 17	.64 1.16 .93 1.51 .84	108 84 68 56 51	.13 .18 .15 .37 .26	3 3 4	4.02 6.16 4.74 5.35 3.75	.02 .02 .02 .01 .02	.04 .04 .05 .02 .03	1 1 3 1 1	13 3 1 67 124
BG 23+00N 3+00W BG 23+00N 2+50W BG 23+00N 2+00W BG 23+00N 1+50W BG 23+00N 1+00W	1 1 1 1	37 27 13 46 21	7 9 7 10 8	70 59 47 107 68	.1 .2 .1 .1	13 8 6 20 10	13 8 6 15 9		6.06	3 3 5 11 4	5 5 5 5 5	ND ND ND ND	2 2 3 2	29 19 14 18 18	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	133 125 111 131 114	.22 .17 .14 .18 .19	.085 .039 .098 .099 .039	5 5 4 5	27 18 22 33 21	.68 .42 .36 .68 .50	68 53 34 59 43	.10 .06 .03 .12 .06	2 2 3	3.68 3.00 2.58 5.25 3.08	.02 .01 .01 .02 .01	.04 .03 .04 .04 .03	1 2 2 1 1	1 1 1 1 1
BG 23+00N 0+50N BG 23+00N 0+00N BG 23+00N 0+50E BG 23+00N 1+00E BG 23+00N 1+50E	1 1 1 1	21 6 6 11 23	14 6 3 4 4	88 25 24 77 77	.2 .1 .1 .1 .2	9 3 5 5	11 3 4 10 9	690 171 374 1445 636	3.22 2.39 5.09	7 2 3 8	5 7 5 5 5	ND Hd ND Hđ ND	2 1 1 2 2	15 9 7 5 8	1 1 1 1	2 2 2 3 2	2 2 3 3 2	99 57 37 64 73	.18 .07 .06 .05 .08	.099 .018 .028 .070 .117	4 3 8 5	19 7 9 7 10	.55 .21 .18 1.08 .73	48 35 37 43 59	.05 .02 .03 .02 .01	2 3 3	3.42 1.51 1.19 2.87 3.14	.02 .01 .01 .02 .02	.04 .03 .04 .07 .06	2 1 3 1 1	1 1 1 1
BG 23+00N 2+00E BG 22+00N 8+00N	1 1		6 10	71 81	.1 .1	7 8	9 12	407 624	5.15 6.62	5 3	7 5	ND ND	2 3	11 24	i 1	2 2	2 2	117 162	.08 .23		5 7	24 16	.72 .69	43 62	.02 .17		3.55 3.64	.02 .02	.04 .03	1	1 5

Fage 4

i l

(

(

ť

(

C

(

C

6

(

C

€

(

C

(

(

(

SHANGRI-LA MINERALS PROJECT - BLUE GROUSE FILE # 87-2039

	-	6 11	00	7.0									•																			2
SAMPLE	NO PPN	CU PPH	PB PPN	ZN PPM	A5 PPM	NI PPM	CO PPN	MN PPN	FE X	AS PPM	4 1991	AU PPM	TH PPM	SR PPN	CD PPM	SB PPM	BI PPN	V PPM	CA X	P X	LA PPM	CR PPN	КG Х	BA PPM	11 2	B PPM	AL X	NA Z	K X	W PPN	AU‡ PPB	
																							-		•		-	-	^			
BG 22+00N 7+50W	1	13	8	55	.1	6	10		6.60	7	5	ND	2	17	1	2	2	187	.17	.068	6	17	.71	76	.13		2.95	.02	.03	1	7	
B5 22+00N 7+00W	1	31	6	81	.2	6	12		6.33	10	5	ND	2	13	1	2	2	161	.15	.093	8	12	.64	75	.10		4.72	.02	.04	1	12	
86 22+00N 6+50W	1	23	8	96	.2	9	17		7.16	13	5	ND	3	17	1	2	2	195	.25	.094	8			94	.18		5.40	.02	.05	i	1	
B5 22+00N 6+00W	i	21	12 8	70	.3	7	12	619	6.55	10	5	ND	2	27	1	2	2	170	. 37	.116	8	12	.77	59	.19		3.69	.02	.04	1	1	
86 22+00N 5+00W	1	72	8	74	.2	11	17	526	6.27	12	5	нD	3	50	1	2	2	176	.35	.171	5	16	1.14	73	.24	2	4.81	.02	.03	1	3	
B6 22+00N 4+50W	1	22	8	37	.2	5	9	271	5.81	8	5	ND	2	42	1	2	2	202	.42	.036	3	8	.65	59	.27	2	2.25	.02	.02	1	1	
B6 22+00N 4+00W	1	39	10	68	.4	8	18	614	6.34	13	5	ND	2	17	1	2	2	109	.15	.063	7	21	.37	51	.04		3.22	.01	.03	i	10	
B6 22+00N 3+50W	i	16	10	56	.1	8	9	275	6.63	10	5	ND	1	11	i	2	2	94	.11	.039	5	27	.35	54	.02	2	2.93	.01	.04	i	1	
B5 22+00N 3+00W	1	41	6	88	.1	18	14	454	5.62	14	5	ND	2	17	1	2	2	132	.16	.071	5	32	.81	62	.08	2	4.90	.02	.03	1	1	
B6 22+00N 2+50W	1	ò	8	25	•1	4	3	150	4.34	8	5	ND	1	16	1	2	2	124	.14	.020	4	16	.17	20	.10	2	1.12	.01	.01	1	4	
B5 22+00N 2+00W	1	14	7	73	.3	10	9	644	5.29	13	5	ND	1	12	1	2	2	112	.14	.086	4	23	.45	38	.07	,	2.55	.01	.03	1	+	
B5 22+00N 1+50W	i	14	5	55	.2	6	5	280	3.82	6	5	ND	i	11	i	2	2	89	.10	.032	4	14	.25	27	.03	2	2.28	.01	.02	1	1	
STD C/AU-S	20	57	37	132	6.9	66	27	979	3.90	42	25	7	34	46	17	18	19	61	.45	.086	35	56	.86	167	.08		1.69	.06	,12	15	47	
BS 22+00N 1+00W	2	20	12	93	.2	9	10	817	5.36	15	5	ND	1	9	1	2	2	87	.11	.065	3	17	.41	49	.02		3.33	.01	.05	1	1	
BG 22+00N 0+50W	1	16	12	55	.4	9	7		4.12	10	5	ND	1	16	1	2	2	84	,15	.049	4	16	.46	48	.04		2.40	.01	.04	2	1	
			_				_				_																					
B5 22+00N 0+00W	1	13	8	42	.2	5	5		4.26	4	5	ND	1	16	1	2	2	82	.11	.055	5	13	.21	89	- 04		1.91	.01	.02	2	1	
BG 22+00N 0+50E	1	42	9	90	.2	14	12	852		9	5	ND	2	7	1	2	2	71	.07	.077	4	14	.99	61	.03	2	3.95	.02	.05	1	1	
B6 22+00N 1+00E	1	15	5	43	.1	6	6	368	3.87	7	5	ND	1	9	1	2	2	74	.08	.087	- 4	11	.45	61	.02	2	2.08	.01	.03	2	2	
B6 22+00N 1+50E	1	28	2	126	.1	9		1517		7	5	ND	2	- 15	1	2	2	74	.19	.073	6	15	.66	63	.02	2	3.24	.01	.04	1	1	
B6 22+00N 2+00E	i	26	3	73	.1	7	9	272	5.08	4	5	ND	2	7	1	2	2	9 9	.06	.047	7	14	.61	50	.01	2	4.25	.02	.04	i	2	
86 21+00N 7+50W	1	51	6	73	.3	9	16	943	6.76	15	5	ND	4	29	i	2	2	176	.23	.052	15	15	.93	117	.17	2	5.11	.02	.05	1	2	
B5 21+00N 7+00W	1	41	13	95	.2	9	16	933	6.34	11	5	ND	3	29	1	2	2	169	.45	.091	17	14	1.09	116	.18		4.04	.01	.04	i	14	
BG 21+00N 6+50W	1	24	22	77	.2	6	11	652	7.03	10	5	ND	3	22	1	2	2	190	.30	.087	9	16	.62	83	.19		3.78	.02	.04	1	15	
BG 21+00N 6+00W	1	39	15	79	.1	10	15	825	5.65	2	5	ND	2	42	ī	2	2	131	.76	.060	9	15		71	.23		2.49	. 02	.04	1	i	
BG 21+00N 5+50W	2	47	12	77	.1	10	17	1275	5.09	9	5	ND	2	50	1	2	2	104	.96	.063	13	11	.99	115	.13		2.77	.01	.05	1	2	
DC 01-660 5-660				~ .							_		-				_				_											
B6 21+00N 5+00W	1	83	10	71	.2	11	19	928		11	7	ND	2	68	1	2	2	167	.77	.062	9	- 14		83	.24		3.32	.01	.04	1	2	
BG 21+00N 4+50W	1	48	9	78	.2	11	11	308	5.64	10	5	ND	1	18	1	2	2	136	.20	.058	8	22	.53	52	.09		3.88	.01	.03	2	2	
B5 21+00N 4+00N	1	29	4	76	.1	15	11	321	5.33	10	5	ND	2	16	1	2	2	120	.18	.03B	6	28	.57	61	.05		3.70	.01	.03	1	1	
B6 21+00N 3+50N	1	14	12	34	.4	7	5		5.08	14	5	NÐ	1	11	1	2	2	103	.10	.029	3	18	.23	22	.02		2.19	.01	.03	2	1	
B5 21+00N 3+00W	1	10	9	46	.3	6	6	280	4.12	8	8	ND	1	11	1	2	2	89	.11	.055	4	17	.22	35	.03	2	2.14	.01	.02	3	i	
BG 21+00N 2+50W	1	12	9	56	.5	Ģ	8	668	5.14	10	5	ND	1	11	1	2	2	90	.13	.068	3	17	.36	49	.02	2	2.44	.01	.05	1	2	
B6 21+00N 2+00W	2	30	9	125	.6	16	15	582	5.39	15	5	NÐ	2	11	1	2	2	95	.12	.091	5	25	.49	75	.03		4.42	.02	.04	3	ī	
BG 21+00N 1+50W	2	23	12	72	.2	12	10	373	4.96	10	5	ND	2	13	1	2	2	101	.15	.048	5	18	.42	51	.06		3.06	.01	.03	1	1	
B6 21+00N 0+50W	1	9	3	56	.1	3	4	567	2.36	4	5	ND	i	6	1	2	2	34	.06		4	7	.28	43	.01		2.27	.01	.03	1	1	
BG 21+00N 0+50E	1	18	6	82	.2	Ģ	9	660	4.40	13	5	ND	2	8	1	2	2	71	.09	.108	4	12	.37	54	.03		3.31	.02	.04	ĩ	1	
B5 21+00N 1+00E	1	30	16	79	.1	14	12	1233	5.26	22	5	ND	2	7	1	2	2	67	.08	.143	3	17	.55	68	.04	2	3.44	.02	.04	i	i	

Page	5
------	---

N AUX

Z PPM PPB

1 1

1 2

1 1

1 1

1 1

1 3

14 52

1 2

1 4

1 1

1 1

1 20

1 1

1 3

1 1

1 1

1 2

1 1

1 4

2

2 1

1 1

1

1 1

2

1 3

2

1 1

1 1

1 1

2 2

1 1

1 1

2 1

1 3

1 1

1

1

1

1

5 1

1

¢

Ċ

(

C

1

ć

(

(

C

(

(

C

Ć

C

C

(

(

Ċ

(

1

(

÷.

.02

.02

.02 .03

.03 .05

.02 .03

.06 .12

.01

.02 .04

.02

.02

.02 .03

.02

.02 .03

.02 .04

.02 .02

.02 .03

.01 .02

.02 .05

.01 .03

.01 .02

.01 .03

.02 .02

.02 .03

.03

.02 .02

.02 .03

.02 .03

.02 .04

.02 .03

.02 .04

.02 .06

.02 .04

.02 .03

2 2.45 .02 .03

.01 .05

.02 .04

.02 .03

ĸ

.03

.03

.06

.04

.03

.04

В AL NA

X ï

2 3.06

2 3.68

2 3.82

2 2.95

2 3.87

2 5.68

37 1.82

2 3.74

2 4.22

2 3.94

2 3.94

2 3.75

2 2.44

2 4.06

2 3.17

2 3.19

2 2.62

2 3.74

2 3.51

2 1.87

2 3.86

2 1.60

2 2.05

2 2.62

2 4.81

2 4.68

2 3.66

2 4.08

2 3.84

2 2.33

2 4.26

2 3.28

2 2.90

2 3.78

2 3.25

2 3.22 .01

PPM

							SHA	NGR	I-LA	MIN	ERAL	S FI	KOJI	ЕСТ	- BL	-UE	GRO	USE	FI	LE #	87-	-201	20		
SAMPLE*	NO PPK	CU PPN	PB PPN	ZN PPM	AG PPM	NI PPM	CC PPN	н (N FE	AS PPM	U PPM	AU Ppn	TH PFN	SR PPM	CD Pph	SB PPM	BI PPN	V PP n	Cf	I P	LA	CR	K M6	8A	TI
86 21+00N 1+50E	1	20	10	83	.1	9												111	4	ž	PPN	PPN	1 2	PPN	2
B6 21+00N 2+00E	1	17	2	59	.1	4	10			8	5	ND	1	13	1	2	2	136	.11	.144	4	27			
86 20+00N 8+00W	1	57	6	71	.1	-	6			4	5	ND	2	8	1	2	3	80			15	27		50	.07
BG 20+00N 7+50W	1	50	20	81		10	14			2	5	ЫD	2	41	1	2	2	182	.24		-	13		44	.02
86 20+00N 7+00W	1	40	11	55	.1 .1	10	17			7	5	ND	2	58	1	2	2	124	.74		6	18		63	.28
	•		••	22	• 1	7	14	434	8.10	3	5	ND	2	40	1	2	2	238	.33		10	13		77	.22
BG 20+00N 6+50W	2	111	4	75	.1	. 7										-	-	200		.009	5	15	.79	71	.31
STD C/AU-S	20	58	37	135	6.9	13	19			6	5	ND	3	٥٥	1	2	2	189	. 32	.068	~				
BG 20+00N 6+00W	1	66	17	176		69	28			42	17	7	35	48	18	16	19	58	. 46	.085	8	17	1.51	88	.32
86 20+00N 5+50W	2	127	7	76	.1	15	36	-		2	5	ND	2	33	1	2	2	71	.81	.148	35	58	.88	176	.08
B6 20+00N 5+00W	1	25	9	92	.1	16	15	459		11	5	ND	2	13	1	2	2	102	.12	.030	10	13	. 48	132	.02
	•			72	• 1	18	15	481	5.33	4	5	ND	2	15	1	2	2	101	.22	.029	6 8	23	.80	73	.06
BG 20+00N 4+50W	1	37	7	66		. 7											-			.027	8	27	.79	74	.08
B6 20+00N 4+00N	1	20	2	88	.1 .1	13 11	11	319		5	5	ND	2	15	1	2	2	131	.13	.042	7	70			
86 20+00N 3+50W	1	12	9	47	.1		10	489	4.95	8	5	ND	2	15	1	2	3	97	.13	.042	5	30	.62	54	.09
B5 20+00N 3+00W	1	30	10	88	.1	6	7	474		17	5	ND	1	15	1	2	2	84	.09	.114	4	27	.45	52	.07
B6 20+00N 2+50W	1	34	9	82	.1	18	13	622		15	5	ND	3	15	1	3	2	106	.16	.104	6	24	.27	37	.05
	•		1	02	• 1	12	13	912	5.53	2	5	ND	2	19	1	2	2	122	.24	.047	6 5	32	.87	50	.13
B5 20+00N 2+00W	1	20	9	79	.1	8	-			_							-		• •	• • • • /	J	25	.54	69	.11
BG 20+00N 1+50W	1	15	9	77	.2	10	7		4.79	7	5	ND	1	16	1	2	2	100	. 14	.076	5	23	~ 7		
B6 20+00N 1+00W	2	50	17	100	.2		13	1189	3.68	9	5	ND	1	10	1	2	2	61	.10	.055	5	23 23	.27	59	.05
B6 20+00N 0+50W	1	37	8	82		22 16		1136	5.88	16	5	NÐ	4	16	1	2	2	69	.15	.061	13	23	.27	50	.01
B5 20+00N 0+00W	1	8	9	24	.1 .1		13	523	5.26	9	5	ND	2	17	1	2	2	111	.18	.056	6	21	.68	70	.05
	•	v	'	27	• 1	5	3	176	2.72	8	5	ND	1	7	1	2	2	58	.06	.026	3		.73	46	.10
86 20+00N 0+50E	1	29	4	73		~	•										-		100	.010	3	13	.18	26	.03
BG 20+00N 1+00E	1	8	2	32	.1	9	8	637	4.51	4	5	ND	2	7	í	2	2	72	.08	.059	5				
86 20+00N 1+50E	1	7	2	31	-1	4	4	252	3.31	5	5	ND	1	12	1	2	2	59	.11	.030	5	18	.57	54	.02
B6 20+00N 2+00E	i	9	7	51	.1	3	2		3.35	3	5	ND	2	6	1	2	2	55	.03	.039		10	.25	32	.03
B6 19+00N 8+00W	ī	48	10	50	.1 .1	5	4	218	4.17	4	5	ND	2	9	1	2	2	66	.06	.079	6 6	9	.24	34	.03
	•		10	30	• 1	8	12	468	7.85	10	5	ND	2	34	1	2	3	182		.082	5	11	.41	35	.02
B6 19+00N 7+50W	1	80	9	63	4												-				J	19	.76	53	.23
B5 19+00N 7+00W	1	65	12	65	.1 .1	10	16		6.51	2	5	ND	2	43	1	2	2	162	.30	.092	5	.,			
B6 19+00N 6+50W	1	38	5	82	.1	11 9	17		5.39	7	5	ND	2	50	1	2	2	133		.227	4		1.26	58	.25
B5 19+00N 6+00W	1	35	10	74	.2	•	12	696	6.39	4	5	ND	2	22	1	2	2	119		.088	6		1.05	81	.19
B6 19+00N 5+00W	1	10	10	41	•1	10 1	12	573	5.51	3	5	ND	2	13	1	2	3	112		.047	6	21 19	.49	62	.03
	-		14	71	•1	1	6	448	4.70	7	5	ND	1	4	1	2	3	70		.065	3		.52	53	.07
B6 19+00N 4+50W	1	19	7	53	1	•	•										•		•••	. 003	3	5	. 40	26	.01
B6 19+00N 4+00W	1	45	,	33 87	.1 .3	8	9		4.81	2	5	ND	2	12	1	2	2	91	.10	.031	c		••		
B5 19+00N 3+50H	1	15	8	83	.s .2	29			4.94	6	5	ND	3	15	1	2	2	94		.048	5 7	22	.34		.03
B6 19+00N 3+00W	i	14	12	63 78	.1	8 10	11		4.81	8	5	ND	2	11	1	2	2	82		.048	6	24	.59	51	.08
85 19+00N 2+50N	2	30	11	70 64	.1	10 15			4.85	17	5	ND	2	11	1	2	3	70		093		23 24	.29	-	.06
	-		••	7	• •	19	14	757	5.54	10	5	ND	2	15	1	2		111		044	-	24 28	.26		. 02
B6 19+00N 2+00W	1	25	10	65	.2	12	10		E (0		_						-			- 17	'	20	. 64	52	.09
B6 19+00N 1+50W	1	22	11	70	.1	9	10		5.12	9		ND	2	15	1	2	2	110	.16 .	054	8	23	.50	F7	
					••	1	0	826	4.30	7	5	NÐ	1	18	1	2				075		23 17	.30		. 08
																			••••		5	• ′	. 34	69 .	.12

ſ

																															r au	8 0
SAMPLE#	NO PPN	CU PP N	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	NN PPN	FE X	AS PPM	U PPM	AU Ppm	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P I	LA PPM	CR PPM	MG X	BA PPM	11 Z	B Pph	AL X	NA Z	K L	N PPN	au‡ PPB	
BE 19+00N 1+00W	2	38	16	68	.1	14	12	873	4.96	12	7	ND	2	.,			-	• • • •														
B6 19+00N 0+50W	2	20	9	61	.2	10	8	209	5.10		5		4	16	1	4	2	106	.23	.066	8	20	.71	55	.13		3.62	.02	.04	1	1	
85 19+00N 0+50E	ĩ	22	11	76	.2	10	11			10	-	ND	1	14	1	2	2	126	. 14	.044	5	19	. 39	41	•0•	2	3.20	.01	.02	1	1	
B6 19+00N 1+00E	1	17	7					660	5.02	8	5	NÐ	2	15	1	2	2	134	.12	.062	5	19	.66	67	.08	2	3.36	.02	.03	1	1	
BG 19+00N 1+50E	1			45	.1	4	6	484	3.35	3	8	ND	1	10	1	2	2	70	.15	.042	. 4	6	.41	66	.01	2	2.18	.01	.03	1	1	
DO 19400M 1430E	1	48	13	83	.2	13	13	679	5.14	10	5	мD	2	11	1	2	2	90	.16	.040	6	17	.94	76	.05	2	3.89	.02	.04	1	2	
B6 19+00N 2+00E	1	25	8	67	.1	8	9	361	4.56	10	5	мD	1	8	1	٦	2	91	.07	007		••				•		••				
86 18+00N 7+50W	3	31	10	70	.1	9		5441		7	5	КD	3	25	1	2	2	120		.087	4	10	.64	61	.02		3.16	.02	.03	1	1	
B5 18+00N 7+00W	2	25	12	45	.2	8	9		5,48	10	5	ND	2			÷.			. 37	.057	33	14	.53	9 9	.09		3.44	.02	.04	1	1	
B5 18+00N 6+50W	2	31	10	78	.2	12	10		4.92	7	5			26	1	3	2	170	.23	.042	5	12	.54	74	.15		2.55	.02	.02	1	1	
B6 18+00N 6+00W	- 1	22	11	42	.2	5	6		6.94	6	5	ND	2	9	1	3	2	102	.08	.062	6	24	.41	74	.03		3.97	.02	.02	1	1	
	•	**	11	74	• 2	5	o	20J	0.74	0	3	ND	2	8	1	2	2	143	.06	.107	6	15	.32	49	.04	2	2.67	.02	.03	1	1	
BG 18+00N 5+50W	1	12	7	37	.1	6	6	282	6.85	7	5	ND	1	8	1	2	2	153	.07	.055	۱.	17	.37	36	.05	2	2.07					
B5 18+00N 5+00W	1	17	9	70	.1	В	7	428	6.63	11	5	ND	i.	11	1	2	2	134	.10	.119	5	23	.37	38				.01	.03	1	I	
BG 18+00N 4+50W	1	9	7	31	.1	4	4		3.67	3	5	ND	÷	9	1	2	2	93	.08	.027					.04		3.75	.01	.02	1	1	
STD C/AU-S	20	56	37	129	7.0	68	27	965	3.73	40	22	7	32	46	17	17	19				5	13	.16	30	.04		1.86	.01	.01	1	1	
B5 18+00N 4+00W	1	9	15	35	.2	5	5		5.57	9	5	, HD	32					61	.44	.084	34	51	.83	169	.08		1.70	.06	.10	13	52	
	•	•	••		••	5	5	201	3.3/	1	J	πu	1	12	1	2	2	123	.11	.057	5	15	.26	30	.05	2	2.05	.01	.02	1	1	
BG 18+00N 3+50W	1	53	15	112	.3	20	16	771	5.79	15	5	ND	3	8	1	5	2	76	.09	.138	9	19	.77	62	.07	2	4.50	.02	.05			
BG 18+00N 3+00W	i	24	10	66	.4	9	8	428	5.38	14	5	ND	2	10	1	3	2	99	.07	.076	í	18	.33	44	.04					1	1	
BG 18+00N 2+50W	1	18	9	61	.2	8	8	569	4.76	10	5	ND	2	13	Ť	2	2	115	.12	.052	4	17					3.05	.02	.03	1	1	
BE 18+00N 2+00W	3	26	14	123	.3	16			4.16	7	5	ND	2	10	1	2	2				-		.35	44	.05		2.88	.01	.03	1	1	
BG 18+00N 1+50W	2	33	12	97	.1	16	13		5.63	12	5	ND	3	15	1	2		75		.113	6	19	.49	67	.03		3.77	.01	.04	1	1	
		•••			••		••		5.05	12	5	nu	3	12	1	2	2	119	.16	.095	6	25	.62	55	.07	2	4,41	.02	.03	1	1	
BG 18+00N 1+00N	1	20	10	83	.2	11	11	537	6.24	12	5	ND	2	12	1	2	2	130	.11	.075		.7	~									
B6 18+00N 0+50W	1	21	10	79	.2	9	10		5.05	ò	5	ND	1	16	;	4	2				2	17	.86	61	.03		4.38	.01	.04	1	1	
BG 18+00N 0+00W	1	16	13	46	.3	9	7	292	4.51	10	Š	ND	-	17		2		112	.23	.087	5	19	.54	58	.04		3.43	.01	.03	1	2	
BG 18+00N 0+50E	1	12	7	64	.1	,	7		4.80	7	5	ND	1 5	9	1		2	119	.21	.036	7	17	. 34	38	.06		2.55	.01	.02	1	1	
86 18+00N 1+00E	1	26	9	48	.1	6	, 8		4.43	6	5		2	•	1	2	2	110	.07	.035	4	13	.48	61	.02		3.36	.02	.04	1	1	
	•	20	,	70	• 1	u	0	033	4.43	۵	3	ND	1	10	1	2	2	85	.07	.040	5	12	.61	76	.04	2	2.77	.02	.05	1	1	
BG 18+00N 1+50E	6	56	11	107	.2	15	13	594	5.69	29	5	ND	2	10	1	2	2	88	.08	.100	8	26	.75	83	.01	,	4.08	.02	~			
BG 18+00N 2+00E	28	40	20	91	.4	14	11	2169	5.18	39	5	ND	2	22	1	2	2	60	.66	.047	30	34	. 48	160	.01				.06	1	1	
BG 17+00N 6+50W	1	46	12	76	.2	16	13	635	5.42	10	5	ND	3	20	1	2	2	116	.23	.058	8	26	.78				2.20	.01	.06	1	1	
95 17+00N 5+00W	1	27	11	57	.3	10	10		6.11	9	5	ND	2	11	1	2	2	134	.12		-			72	.09		3.80	.02	.04	1	1	
B6 17+00N 5+50W	1	17	13	53	.2	9	7		6.86	10	5	ND	i	14	1	3	3			.062	6	21	. 59	42	.06		3.72	.02	.03	Í	6	
						•	•				0	112	1	14	ł	5	\$	139	.11	.036	5	19	.45	53	.02	2	2.46	.01	.03	1	2	
B6 17+00N 5+00N	2	31	15	93	.1	11	10	463	7.96	12	5	ND	2	10	1	2	2	153	.10	.101	4	24	.51	71	.02	2	3.62	.02	.04	,		
BG 17+00N 4+50W	3	31	20	153	.5	13	14	5642	4.91	10	5	ND	2	35	1	2	2	85	.75	.113	18	22	.41	174	.02		3.02 3.45	.02		I	1	
B6 17+00N 4+00W	2	18	15	60	.3	10	10	506	6.89	16	5	ND	1	8	1	2	2	110	.07	.053	4	30	.35	61					.03	1	1	
BG 17+00N 3+50W	3	25	13	80	.5	15	14		5.17	9	5	ND	2	21	1	2	2	98	.41	.033	21	26			.02		2.91	.02	.03	1	1	
86 17+00N 3+00W	1	27	11	66	.3	17	14		5.38	13	7	ND	2	18	÷	2	2	97	.26	.027	7		.55	97	.06		3.39	.01	.03	1	1	
								-					-	٠Ÿ	•	-	4	11	. 10	.027	1	21	.58	104	.03	2	3.19	.02	.04	1	1	
BG 17+00N 2+50W	1	14	13	54	.2	7	6	378	4.53	9	5	ND	1	12	1	2	2	85	.16	.065	4	12	.29	55	.05	2	2.25	.01	.03			
B6 17+00N 2+00N	1	12	11	42	.2	13	6	533	4.13	6	5	ND	2	13	1	2	2	98		.059	Å	22	.30	40	.05		1.86		.03	1	1	
													-	-	-	-	-				T.	~*	•••	V۲	0	4	1.00	• • •	.03	1	1	

Page 6

i i

Ć

(

(

(

Ċ

(

C

(

(

(

C

(

(

(

C

(

(

(

Page 7

ا ر

(

ć

Ľ

C

(

(

(

€

(

C

C

(

C

SHANGRI-LA MINERALS PROJECT-BLUE GROUSE FILE # 87-2039

.

SAMPLE®	HO PPH	CU PPN	P8 PPN	ZN PPN	AG PPN	NI PPM	CO PPN	MN PPK	FE ۲	AS PPM	U PPK	AU PPK	TH PPM	SR PPM	CD PPH	SB PPM	BI PPM	V PPH	CA ۲	P X	LA PPM	CR PPM	HG X	BA PPM	TI Z	8 PPM	AL ۲	NA Z	K X	N Pph	AU t PPB	1
BG 17+00N 1+50W BG 17+00N 1+00W BG 17+00N 0+50W BG 17+00N 0+00W BG 17+00N 0+50E	1 1 1 1	22 18 18 29 31	5 11 3 10 9	94 72 63 68 70	.1 .1 .2 .1 .1	7 8 6 10 10	9 9 13 13	621 364 966	4.26 4.84 5.54 5.16 4.92	2 2 5 3	5 5 5 5 5	ND ND ND ND	2 2 2 2 2	15 16 8 15 19	1 1 1 1	2 2 3 4 2	2 2 2 2 2 2	95 111 109 118 113	.14 .17 .08 .17 .25	.065 .144 .064 .053 .051	7 6 4 7 7	14 15 10 16 18	.45 .65 .53 .98 .95	71 57 54 81 97	.03 .05 .03 .05 .05	2 2 2	3.79 3.32 3.39 3.10 3.31	.01 .01 .02 .01 .01	.04 .05 .04 .08 .08	1 1 1 1	105 1 1 2 1	
B6 17+00N 1+00E B6 17+00N 1+50E B6 17+00N 2+00E B6 16+00N 6+50W B6 16+00N 6+00W	1 243 8 5 3	15 37 37 25 50	8 35 41 14 12	54 159 97 118 73	.1 .4 .5 .4 .5	6 16 14 13 17	9 15	3338	5.13 4.60	7 57 28 5 7	5 5 5 5 5 5	ND ND ND ND	2 2 2 3 4	19 9 13 28 23	1 1 1 1 1	4 3 5 3 2	2 2 2 2 2	105 92 83 106 104	.40 .13 .12 .43 .24	.074 .062	7 4 6 16 13	12 75 35 19 30	.94 .40 .58 .81 .66	90 81 73 142 117	.03 .01 .02 .07 .11	2 2 2	2.75 5.34 2.96 3.31 4.53	.01 .01 .01 .01 .02	.05 .06 .05 .06 .05	1 1 2 1 1	2 4 3 4 1	, ,
BG 16+00N 5+50N BG 16+00N 5+00M BG 16+00N 4+50M BG 16+00N 4+00M BG 16+00N 3+50M	t 1 1 1	24 30 11 19 45	9 12 10 11 8	73 133 34 69 83	.2 .2 .1 .1 .2	7 16 3 9 14	7 15 3 10 11	1638 139 556	5.98 5.27 2.44 7.27 5.84	2 2 3 13 3	5 5 5 5 5 5	ND ND ND ND	3 2 1 2 2	18 30 14 17 20	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	137 119 70 176 140	.21 .45 .12 .14 .19	.050 .044	7 11 4 5 7	20 26 9 31 27	.46 .86 .17 .61 .63	46 130 62 63 63	.06 .08 .03 .11 .10	2 2 2	3.80 3.95 1.29 3.48 3.82	.02 .01 .01 .02 .02	.04 .06 .04 .04 .04	1 1 1 1	12 1 1 1 1	
STD C/AU-S B6 16+00N 3+00W B6 16+00N 2+50W B6 16+00N 2+00W B6 16+00N 1+50W	21 1 2 1 1	59 30 30 23 30	38 7 11 7 8	139 81 66 70 72	7.1 .1 .2 .2	71 9 14 13 12	28 8 11 10 12	1034 360 465 503 550	6.40 5.49 5.03	39 4 7 4 5	24 5 5 5 5	7 ND ND ND	37 2 2 2 3	49 15 23 23 20	1B 1 1 1	16 2 2 3 2	19 2 2 2 2	68 147 136 123 128	.50 .13 .28 .26 .20	.072 .041 .048	37 5 5 8 9	60 29 26 23 26	.90 .42 .76 .59 .64	181 44 75 62 57	.09 .07 .10 .07 .12	2 2 2	1.76 4.01 3.03 3.55 3.60	.06 .01 .02 .02 .01	.14 .04 .04 .05 .03	13 1 2 1 1	48 1 32 2 1	
85 15+00N 1+00N 86 15+00N 0+50N 85 15+00N 0+00N 85 15+00N 0+50E 85 15+00N 1+00E	1 1 7 2 25	24 10 50 17 27	6 5 9 8	81 36 115 50 159	.1 .1 .2 .3	12 4 14 6 18	13 5 12 7 11	782 211 350 300 705	4.48 4.80 5.11	6 3 14 15 43	5 6 5 5	ND ND ND ND	2 1 3 1 2	18 14 10 17 11	1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	223 114 62 125 98	.26 .10 .08 .19 .12	.036 .084 .091	6 4 7 5 5	39 10 17 17 53	.72 .56 .74 .55 .66	48 40 63 45 81	.26 .04 .01 .04 .01	2 2 2	3.48 2.07 3.04 2.58 4.36	.02 .01 .02 .01 .01	.02 .05 .17 .04 .08	1 1 1 1	1 1 1 2 1	
BG 1&+00N 1+50E BG 1&+00N 2+00E BG 15+00N 5+50N BG 15+00N 5+00N BG 15+00N 4+50N	1 5 1 5 2	36 73 38 38 44	10 12 11 11	75 124 65 160 256	.1 .3 .1 .2 .7	9 18 13 22 13	10	6912 382 8154		8 11 3 5 6	5 6 5 5 5	ND ND ND ND	2 3 1 4 2	18 30 19 24 30	1 1 1 1 4	2 2 2 2 2 2	2 2 2 2 2 2	112 100 119 106 105	.15 .59 .19 .50 .67	.086 .065	5 22 6 18 38	23 35 26 31 32	.56 .88 .56 .72 .54	65 234 80 156 174	.01 .03 .07 .11 .11	2 2 2	3.14 4.25 3.67 4.70 4.12	.02 .01 .02 .01 .02	.06 .07 .05 .06 .10	1 1 1 1 2	1 1 1 92 3	
BG 15+00N 4+00N BG 15+00N 3+50N BG 15+00N 3+00N BG 15+00N 2+50N BG 15+00N 2+00N	1 1 1 2	10 36 27	11 13 9 11 11	57 31 77 104 73	.2 .1 .1 .2 .2	9 6 8 13 10	7 5 9 11 9	348 216 858 308 451	4.46	19 5 5 10 8	8 6 5 5 5	ND ND ND ND	3 1 3 3 2	22 20 21 18 21	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	128 135 96 150 139	.17 .19 .27 .16 .22	.054 .155 .071	5 5 9 8 5	28 19 18 32 25	.48 .29 .53 .51 .59	50 38 51 70 50	.08 .10 .05 .08 .08	2 2 2	3.13 1.51 4.35 4.89 3.14	.02 .01 .01 .02 .01	.05 .02 .05 .04 .05	1 2 1 1 1	1 1 2 2 1	
BG 15+00N 1+50W BG 15+00N 1+00W	1 2	21 22	6 7	83 76	.3 .1	8 11	8 11	290 639	5.46 5.98	9 13	5 5	ND ND	2 2	20 20	1 1	2 2	2 2	135 142	.1B .20		ծ 5	23 27	.37 .74	50 51	.06 .10		3.13 3.56	.01 .02	.04 .04	1 1	5 1	

Ç

												140	r ROG		BLI	JE G	RUUS	5E	FIL	E #	87-2	2035	•								C	~
SAMPLEN	no Pph	CU PPH	PB PPM		46 PPH	NI PPH	CO PPM	NN Ppk	FE ۲	AS Ppm	U PPM	AU Ppn	TH PPM	SR PPM	CD PPN	SB PPM	BI PPM	V PPM	CA X	•	LA PPM	CR PPM	MG X	BA PPM	TI	9	AL	NA	ĸ	W	Fage AU i	В
86 15+00N 0+50W	5	44	8	116	.1	16	. 7													~				rr n	ĩ	PPH	X	ĩ	2	PPN	PPB	
B6 15+00N 0+00N	6	29	16	105	.1		13			40	5	ND	2	13	1	2	2	110	.11	.102	6	46	.87	01	67							
STD C/AU-S	21	60	36	139		13	13		7.43	24	5	ND	2	10	1	2	2	85	.11		6	49	.63	81	.03		4.29	.02	.05	1	2	
BG 15+00N 0+50E	3	90			7.0	68	29		4.07	40	20	?	35	50	17	18	18	60	.49		36			75	.01		3.59	.02	.05	1	1	
B6 15+00N 1+00E			8	90	.1	11	12	900		14	5	ND	3	23	1	2	2	88	.23			62	.92	177	.09		1.79	.07	.13	15	52	
DO 13TOON ITVOE	1	14	8	50	.i	6	6	342	4.87	8	5	ND	1	15	1	2	2	103			10	30	.93	101	.03	2	5.17	.02	.05	1	1	
DC 15.000 1.500													•		•	2	4	142	.13	.046	4	18	. 42	51	.04	2	2.59	.02	.04	1	1	
B6 15+00N 1+50E	1	15	6	47	•1	5	10	970	5.23	6	5	ND	1	11	1	2	2	1 45													-	
BG 15+00N 2+00E	2	127	- 4	93	.1	28	15	570	6.12	14	5	ND	2	12		2		105	.04	.023	4	10		51	. 03	2	3.35	.02	.04	1	1	
B6 14+00N 6+00W	2	37	10	88	.1	12	11	388		14	5	ND	3	11	1	-	2	120	.12		4	41	1.04	71	.02	2	4.37	.02	.06	1	1	
BG 14+00N 5+50W	1	17	- 14	56	.1	4	5	222	4.64	8	5	ND			1	2	2	117	.09	.066	6	30	. 47	54	.04		4.96	.02	.04	1	1	
B6 14+00N 5+00W	1	10	6	35	.1	6	6		5.93	10	5	ND	1	11	1	2	2	64	.12	.104	4	11	.26	47	.04		2.29	.01	.04	1	1	
							-	*	0.75	10	J	NU	2	11	1	2	2	95	.06	.040	4	30	. 37	36	.11		3.05	.02	.06	2	-	
B5 14+00N 4+50N	2	32	10	91	.1	8	11	510	6.87		-														•••	•	0.00	. 02	.08	2	1	
B6 14+00N 4+00W	1	15	6	46	.1	6	7			10	5	ND	2	14	1	2	2	148	.19	.103	6	26	.52	47	.10	2	7 74					
BG 14+00N 3+50W	1	14	6	52	.1	8	, B		5.58	14	5	ND	1	15	1	2	2	113	.13	.052	4	21	. 42	47	.06		3.71	.02	.04	1	3	
BG 14+00N 3+00W	2	21	10	71	.1	10	-	276	6.69	8	5	ND	2	15	1	2	2	126	.13	.057	4	27	. 48	34	.08		2.53	.01	.03	1	1	
BG 14+00N 2+50W	3	26	8	90			10		5.15	6	5	ND	2	17	1	2	2	107	.18	.043	6	20	.52	56			2.85	.02	.02	1	1	
	•			70	•1	11	8	250	5.15	24	5	ND	1	11	1	2	2	59	.06	.080	2	19	.29		.07		2.67	.01	.03	1	1	
B5 14+00N 2+00W	3	23	,	70																•••••	2	11	. 29	59	.01	2	3.76	.02	.05	1	1	
BE 14+00N 1+50W	2	42	6	72	•2	12		1096		- 4	5	ND	2	20	1	2	2	105	.26	.029	8	OF										
B5 14+00N 1+00N	5		8	118	.1	12	20	1272		22	10	ND	3	182	ť	2	2					25	. 65	62	.09		3.06	.02	.04	1	1	
BG 14+00N 0+50W	-	42	14	68	.2	11	10	424		16	5	ND	1	12	í	2	2	70		.226	6	24	1.71	104	.31	2	7.41	.01	.05	1	2	
	2	40	10	77	.1	13	12	1032	5.54	12	5	ND	2	16	. 1	2	2		.10	.070	4	19	.40	74	.01	2	3.12	.02	.05	1	i	
B6 14+00N 0+00W	2	26	14	86	.2	9	10	3696	3.17	8	5	ND	ĩ	41		2		110	.18	.090	6	27	.68	60	.06	2	3.94	.02	.04	1	1	
										-	•		•	41	1	2	2	62	1.06	.055	16	18	. 46	141	.04	2	2.00	.01	.04	ī	3	
BG 14+00N 0+50E	2	29	4	60	.3	6	7	344	4.58	6	5	ND	2	12		~														-	•	
B5 14+00N 1+00E	1	30	2	78	.2	27	12	494		14	5	ND	4		1	2	2	87		.067	4	12	.44	46	.01	2	3.22	.02	.04	1	ſ	
B6 14+00N 1+50E	1	31	2	76	.1	57		1022		6	5	ND	-	13	1	2	2	109	.10	.066	4	32	.91	61	.03		4.28	.02	.04	i	1	
BG 14+00N 2+00E	1	33	4	81	.1	71			6.16	8	-		1	10	1	2	2	142	.07	.038	2	105	1.36	43	.02		4.07	.02	.02	1	1	
85 13+00N 6+00N	2	51	12	92	.1	15	13	414		-	5	ND	1	19	1	2	2	150	.23	.102	2	107	2.99	77	.03		4.45	.02		-	1	
					••	13	15	414	0.8/	14	10	ND	4	13	1	2	2	111	.13	.106	6	35	.76	50	.12		5.02		.03	2	2	
B6 13+00N 5+50W	2	29	6	70	.3	8	7	000		_	_												•••		•12	· ·	3.02	.02	.03	1	11	
BG 13+00N 5+00W	1	15	10	39	.2	6	5	292		8	5	ND	2	13	1	2	2	100	.11	.054	4	22	.38	46	.04							
BG 13+00N 4+00W	2	19	10	54	.2		-		4.96	8	5	ND	2	11	1	2	2	101		.031	6	18	.24	39			3.33	.02	.02	1	2	
BG 13+00N 3+50W	1	19				9		294		10	5	ND	2	11	1	2	2	86		.063	4	22			.04	2		.01	•03	3	1	
BE 13+00N 3+00N	3	36	6	79	.2	13	10	300		16	5	ND	2	15	1	2	2	89		.060	6		.43	47	.04		5.08	.02	.04	1	1	
00 10.00M 0.00W	3	30	12	117	.2	18	12	444	6.58	24	5	ND	3	13	1	2	2			.067	-	29	.43	53	.03	2		.02	.04	1	1	
B6 13+00N 2+50W	7														-	-	-	10	. 10	.00/	6	31	.67	55	.11	24	.20	.02	.05	1	i	1
B5 13+00N 2+00W	3	23	10	89	.3	9	7	260	5.69	26	5	ND	2	15	t	2	2	01	AD	450												
	2	36	8	122	.3	15	12	438	5.32	14	5	ND	3	11	1	2	-	91		.058	4	17	.31	60	.04	2 3	.20	.02	.04	2	1	
86 13+00N 1+50W	3	32	8	82	.1	13	10	548	5.84	14	5	ND	2	13	1	2	2	89		.109	6	26	.63	75	.05	2 :			.05	ĩ	•	(
B6 13+00N 1+00W	16	16	10	41	.1	7	5		4.89	16	5	ND	ĩ	6	1	4	2	103		.063	6	33	.64	61	.07	4 3			.04	i	1	
BG 13+00N 0+50W	12	880	22	63	.2	11	9	670		28	5	ND	2	5	1	2	2	73		.027	2	17	.26	31	.01	2 2			.03	2	•	
DC (7.00)											-		4	J	1	2	2	49	.08	.048	4	34	.32	54	.01	2 2			.05	1	1	ć,
B5 13+00N 0+00W	2	57	8	69	.2	32	11	796	I.B1	8	5	ND	2	17			•									_				•	•	
86 13+00N 0+50E	1	35	6	68	.2	23	10		5.07	10	Š	ND	2		1	2	2			.042	6	50	.87	60	.03	2 3	. 17	.02	.04	1	f	
										••		NU	4	13	1	2	2	104	.13 .	. 083	4	42	.69		.04	2 3			.03	1	1	(
																										- •			• • •	T.	1	

C

(

(

!

(

(

(

(

(

(

(

C

C

C

(

(

Ç

i -

(

SAMPLE®	ND PPN	CU PPN	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPM	HN PPK	۶E ۲	AS PPM	U PPM	AU PPH	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA Z	P Z	LA PPN	CR PPN	M6 X	BA PPM	11 X	B PPN	AL X	NA Z	ĸ	¥ PPN	AU‡ PPB	
B5 13+00N 1+00E B5 13+00N 1+50E B5 13+00N 2+00E B5 13+00N 2+50E B5 12+00N 4+00W	1 1 1 1	68 40	5 8 9 7 11	59 76 74 101 74	.2 .1 .1 .1	32 38 69 53 15	13 19 23 20 13	740 1709 1470	5.58 7.20 8.64 6.52 5.98	2 5 2 5 8	5 5 5 8	ND D ND ND ND	1 1 1 2	11 15 16 12 12	1 1 1 1	2 2 2 2 3	2 2 2 2 2	130 157 157 158 108	.09 .18 .16 .14 .16	.059 .044 .071 .108 .083	3 6 4 3 9	56 63 103 88 26	.88 1.41 1.73 1.12 .80	56 60 65 65	.03 .06 .03 .04 .11	3 2 2	2.81 4.14 4.31 4.28 3.81	.02 .01 .02 .01 .02	.03 .05 .03 .03	1 2 1 1 1	3 1 1 1 13	
BG 12+00N 5+50N BG 12+00N 5+00M BG 12+00N 4+50M BG 12+00N 4+00M BG 12+00N 3+50M	1 1 1 1	25 23 29 23 26	12 10 8 10 9	68 71 64 56 79	.1 .2 .1 .4 .1	9 11 11 10 13	10 13 10 8 9	2062 489	5.47 4.48 5.46 5.14 6.58	6 9 7 13 14	6 8 5 5 5	NÐ NÐ ND ND	i 1 2 1 2	16 14 11 8 10	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	117 82 124 86 96	.27 .20 .16 .07 .08	.081 .054 .059 .051 .057	6 8 5 5 4	21 22 22 19 24	.44 .54 .59 .44 .53	78 83 38 41 43	.05 .04 .08 .03 .05	2 3 2	2.66 2.89 3.15 2.68 3.84	.01 .02 .01 .01 .02	.05 .06 .04 .03 .03	1 1 2 1 1	3 1 1 2 1	
BG 12+00N 3+00W BG 12+00N 2+50W BG 12+00N 2+00W BG 12+00N 1+50W BG 12+00N 1+00W	1 2 1 1 1	25 51 25 11 31	9 13 8 6 7	97 149 72 72 60	.1 .2 .2 .3 .2	10 38 7 6 9	9 25 8 7 9	920 594 368	5.69 5.78 4.46 4.28 4.97	10 24 5 2 4	6 5 5 8 5	ND ND ND ND ND	2 2 1 2	11 37 13 14 19	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	104 111 78 86 107	.12 .44 .16 .07 .14	.073 .076 .058 .060 .100	5 10 4 5	19 32 11 10 17	.47 1.00 .47 .51 .70	52 187 50 73 65	.07 .12 .03 .06 .12	4 2 2	3.67 5.73 3.70 4.25 3.87	.01 .02 .01 .02 .02	.04 .05 .04 .04 .04	1 1 1 1	1 1 2 1 1	
B5 12+00N 0+50W B5 12+00N 0+00W STD C/AU-5 B5 12+00N 0+50E B5 12+00N 1+00E	1 1 20 1 1	21 26 57 37 65	9 7 38 8 9	65 64 129 60 72	.1 .1 6.8 .1 .2	14 11 65 76 35	12 9 26 18 14	1479 429 960 944 585	4.72 3.86	4 3 41 2 6	5 5 24 5 5	ND ND B ND ND	1 1 33 1 2	10 9 44 10 13	1 1 - 17 1 i	2 2 16 2 3	2 2 18 2 2	119 87 60 153 130	.11 .07 .46 .12 .13	.076 .080 .055	4 3 34 3 5	25 21 52 129 59	.79 .54 .82 1.51 .93	64 54 162 67 68	.04 .01 .07 .02 .04	2 37 4	2.85 3.00 1.69 3.65 4.71	.02 .02 .04 .01 .02	.04 .03 .12 .04 .03	1 15 1	2 2 50 6 17	
BG 12+00N 1+50E BG 12+00N 2+00E BG 12+00N 2+50E BG 12+00N 3+00E BG 11+00N 6+50W	3 1 2 1 2		8 6 11 7 11	63 129 85 96 87	.2 .1 .2 .1 .2	56 117 35 88 12	18 42 15 25 17	2906 502	6.95 7.56	6 3 5 2 4	ሪ 5 5 5 5	ND ND ND ND	3 1 2 1 2	12 10 12 17 32	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	153 251 140 154 119	.17 .19 .14 .20 .65	.066 .043 .059	7 2 4 3 16	88 171 58 106 24	1.32 5.99 .99 1.96 .85	70 57 60 63 147	.05 .01 .02 .01 .07	2 2 2	5.08 5.53 4.10 4.72 3.72	.02 .01 .01 .02 .01	.03 .03 .03 .04 .04	1 1 1 1	2 1 13 1 10	
BG 11+00N 6+00N BG 11+00N 5+50N BG 11+00N 5+00N BG 11+00N 4+50N BG 11+00N 4+00N	3 4 8 1	39 32 23	11 11 7 14 11	86 109 79 98 62	.2 .2 .1 .2 .3	20 24 18 15 6		4109	5.60 4.85 6.05 5.14 5.83	12 17 14 8 7	5 5 5 5 5	ND ND ND ND	2 2 2 2 2	15 20 10 18 8	1 1 2 1	2 2 3 2	2 2 2 2 2 2	95 84 108 88 95	.30 .62 .12 .51 .07	.051 .054 .057	17 15 6 13 4	29 29 28 22 19	.80 .68 .51 .71 .35	106 113 61 75 39	.05 .03 .04 .06 .02	2 2 4	3.87 3.25 4.17 3.34 3.29	.01 .01 .01 .01	.05 .05 .04 .04 .03	1 1 1 2 2	3 3 1 2 2	
BG 11+00N 3+50N BG 11+00N 3+00N BG 11+00N 2+50N BG 11+00N 2+00N BG 11+00N 1+50N	1 1 1 1	31 12 25	11 10 10 9 9	81 87 49 77 71	.2 .2 .1 .4 .3	10 18 4 12 12	8 10 5 9 9	219 384 303 463 341	4.59 3.43 4.79	8 13 6 7 4	5 5 7 5	ND ND ND ND ND	2 3 1 2 3	8 9 15 11 11	1 1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	95 81 61 86 86	.08 .09 .05 .08 .07	.044 .034 .041 .043 .039	4 6 4 5 5	20 17 4 22 16	.41 .40 .29 .57 .70	49 88 47 61 68	.05 .02 .09 .06 .06	2 3 3	3.49 3.91 2.58 4.20 4.26	.02 .02 .01 .02 .02	.03 .04 .02 .04 .04	3 1 3 2 1	7 1 2 1 2	,
BG 11+00N 1+00N BG 11+00N 0+50N	1 1	31 44	10 9	82 65	.2 .2	10 22	10 12	452 560		2 2	5 5	ND ND	2 3	18 12	1 1	2 2	3 2	94 110	.13 .10		5 10	17 36	.66 .94	56 84	.10 .04		4.91 4.33	.02 .02	.04 .04	1 1	2 1	

Page 9

ţ

(

(

(

(

(

(

€

C

C

(

C

€

(

0

€.

(

C

(

í

.

SAMPLE	NO PPM	CU PPM	PB PPM	ZN PPM	AG PPM	NI PPN	CO PPN	NN PPH	۶E ۲	AS PPM	U PPM	AU PPM	TH PPN	SR PPM	CD Pph	SB PPM	BI PPM	V PPM	CA X	P X	LA PPM	CR PPN	M6 X	BA PPN	T1 X	B PPM	AL X	NA Z	K Z	W PPN	AUX PPB	í	í
B5 11+00N 0+00N B5 11+00N 0+50E B5 11+00N 1+00E	1 2 5	26 40 19	7 12 7	56 89 68	.2 .1 .2	20 4B 11	12 17 7	1297 449 398	5.26 5.94 4,60	9 11 13	5 5 5	ND ND ND	2 3 2	26 29 11	1	2 2 2	2 2 2	134 106 84	.24 .63 .15	.065 .065 .057	5 5 7	40 69 24	.84 1.40 .58	84 148 59	.09 .09 .02	2	3.13 4.93 3.14	.02 .01 .01	.03 .04 .04	1 1 1	1 1	((
BG 11+00N 1+50E BG 11+00N 2+00E	2 1	98 80	12 4	111 79	.2	67 72	20 21	853 756	6.67 6.29	15 13	5 5	ND ND	3	14 17	1	3	2	143 152	.12 .16	.087	5 6	97	1.64	91 80	.02 .06 .09	2	5.63 5.43	.01 .02 .02	.05 .04	1 1 1	1 2 1	(Ċ
BG 11+00N 2+50E BG 11+00N 3+00E BG 11+00N 3+50E	1 1 1	92 32 61	3 B 10	95 66 95	.1 .1 .1	79 40 53	22 14 22	1154 719 1884	5.84 5.66 6.26	10 4 4	5 5 5	ND ND ND	1 1 1	28 13 28	1 1 1	2 2 2	2 2 2	112 156 154	.34 .16 .37	.141 .033 .071	3 4 4	70 82 90	1.77 .95 1.36	58 28 52	.11 .19 .25	2	5.06 2.57 3.19	.02 .02 .02	.04 .02 .03	1 1 1	1 1 1	((
BG 11+00K 4+00E STD C/AU-S	1 20	37 58	11 38	111 133	.1 6.8	33 67	14 27	483 984	5.68 3.85	65 43	5 19	ND 7	1 34	16 47	1 17	2 17	2 19	137 57	.18 .46	.047 .084	3 36	66 57	.75 .85	48 173	.04 .08	2	2.63	.01	.03	1 15	1 49	ė	í
BG 10+00N 6+50W BG 10+00N 6+00W BG 10+00N 5+50W	1 2 3	59 39 41	12 9 8	82 99 181	.1 .3 .3	14 14 25	18 10 12	1590 642 1645	6.24	9 14 19	7 5 5	ND ND ND	3 2 3	53 14 22	1 1 3	2 2 2	2 2 2	134 107 87	.61 .15 .57	.076 .090 .058	15 7 16	23 30 32	1.22 .52	108 78 99	.20 .07 .06	2	4.24 3.57 3.99	.01 .02 .01	.05 .05 .06	1	1 2 2	((
B5 10+00N 5+00W B5 10+00N 4+50W	2 1	48	10 7	114 52	.1 .1	26 7	14 6	675	5.24 5.12	18 12	5 5	ND ND	2 2	16 13	1	2	2 2	95 107	.23	.052	6	31 18	, 99 , 33	95 24	.10	2	4.08 2.53	.02	.06	1 1	1	(Ć
BG 10+00N 4+00N BG 10+00N 3+50N BG 10+00N 3+00N	1 2 1	39 32 18	13 16 8	107 152 58	.1 .3 .2	21 16 9	15 13 6	483 417 288	5.54 6.27 4.57	14 29 12	5 5 5	ND ND ND	2 2 2	13 13 11	1 1 1	2 2 2	2 2 2	96 86 87	.18 .10 .10	.035 .090 .053	6 5 4	30 32 17	1.05 .57 .43	68 65 40	.12 .09 .09	2	4.00 4.69 3.01	.02 .01 .02	.06 .05 .04	1 1 1	1 1 1		(
BG 10+00N 2+50W BG 10+00N 2+00W	1 1	23	6 7	74 59	.2 .3	9 10	8 6	473 229	4.53 4.37	9 10	5 5	ND ND	2 2	9 10	1 1	2 2	2 2	70 77	.10 .07	.041 .036	7 5	17 19	.45 .45	43 44	.17	2	3.66 3.61	.02	.04	1 1	1	•	(
BG 10+00N 1+50W BG 10+00N 1+00W BG 10+00N 0+50W	1 1 1	32	4 3 12	45 73 68	.2 .3 .1	7 9 9	5 8 10	436	5.14	7 5 10	5 5 5	DN DN ND	2 3 2	10 12 13	1 1 1	2 2 2	2 2 2	74 75 114	.09 .10 .12	.022 .081 .068	5 6 5	20 14 27	.38 .78 .72	44 67 58	.08 .06 .07	2	2.22 4.39 3.45	.02 .02 .02	.03 .06 .04	1 1 1	1 2 1	l	0
B5 10+00N 0+00W B6 10+00N 0+50E	1 2	34 28	6 6	72 114	.1 .2	9 18			3.98 5.38	7 10	5 5	ND ND	2 2	48 13	1 1	2 2	2 2	74 85	.16 .13		- 7 6	15 33	.75 .71	151 85	.03 .04		4.23 3.98	.02 .02	.07 .06	1 1	1 1		(
BG 10+00N 1+00E BG 10+00N 1+50E BG 10+00N 2+00E	2 7 2	27	9 10 14	73 77 77	.2 .1 .1	54 16 48		760 1498 1194	3.64	13 19 13	5 9 5	ND ND ND	2 1 2	32 38 16	1 1 1	2 2 2	2 2 2	124 52 130	.74 2.32 .54		6 9 5	33	1.66 .44 1.36	162 74 50	.04 .02 .05	2	3.67 2.11 4.14	.01 .01 .02	.04 .07 .05	i 1 1	1 1 1		(
BG 10+00N 2+50E BG 10+00N 3+00E	2 2		4 9	85 84	.2 .2	55 52	16 20		5.92 6.51	11 15	5 5	ND ND	1 2	17 14	1 1	3 2	2 2	127 148	.14 .18		4 3	79 86	1.11 1.50	455 43	.04 .05		4.79 3.93	.02 .02	.04 .05	1 1	1 1		C
BG 10+00N 3+50E BG 10+00N 4+00E BG 9+00N 6+50W	1 1 1	90	5 6 6	66 74 74	.1 .2 .2	76 76 9	21 20 16	1100	5.92 5.34 6.33	6 8 13	5 5 5	DN ND ND	2 2 2	20 26 64	1 1 1	2 2 2	2 2 2	143 130 165	.55 .77 .51	.039 .035 .142	4 6 5	86	1.55 1.32 1.36	39 34 54	.15 .19 .32	2	4.61 4.01 3.46	.02 .01 .02	.04 .04 .04	1 1 1	2 1 1	8	(
B5 9+00N 6+00N B5 9+00N 5+50N	2 2	45	11 18	106 551	.2 .7	22 30	17	1209	5.49 5.64	16 30	5 5	ND ND	2 3	22 17	1 2	2 2	2 2	90 72	.35 .31	.129	12 11	34 40		79 136	.13 .12		3.91 4.31	.02 .02	.08 .08	1 1	2 1		Ċ
BG 9+00N 5+00W BG 9+00N 4+50W	3 4		9 9	111 117	.2 .1	20 16	12 11		5.10 5.49	17 21	5 5	ND ND	2 2	14 12	1 1	2 3	2 2	89 86	.15 .14	.039 .053	9 6	29 26		69 62	.09 .08	-	3.96 4.76	.02 .02	.05 .06	1 1	2 1		Ę

Page 10

1

í

SAMPLE	NO PPN	CU PPM	PB PPM	ZN PPN	A6 PPM	NI PPN	CO PPM	MN PPN	FE L	AS PPN	U PPK	AU PPN	TH PPK	SR PPM	CD PPM	SB PPM	BT PPM	V PPM	CA Z	P ኒ	LA PPM	CR PPM	H6 2	ba PPM	11 X	B PPM	AL X	NA X	K Z	N PPN	AU‡ PPB	
85 9+00N 4+00W	1	14	8	53	.1	8	7	430	4.75	8	5	ND	1	12	1	2	2	129	.17	.047	4	21	.46	35	.09	2	2.09	.01	. 03	1	2	
B6 9+00N 3+50W	1	21	10	106	.1	16	13	2764	4.65	10	5	ND	3	15	i	2	2	88	.19	.037	ь	24	.72	78	.09		3.64	.01	.05	1	2	
BE 9+00N 3+00W	1	26	6	?9	.1	11	7	256	5.32	14	5	ND	2	13	1	2	2	90	.10	.055	4	26	.54	47	.11	2	5,40	.02	.04	1	1	
STD C/AU-S	20	57	38	131	6.8	68	28	994	3.94	40	25	7	33	46	17	16	20	62	.45	.085	34	59	.86	173	.08	36	1.71	.06	.12	15	52	
86 9+00N 2+50W	1	6	6	15	.1	3	1	96	2.68	4	5	нD	1	5	1	2	2	57	.05	.027	4	10	.10	19	.09	2	1.01	.01	.02	1	2	
BG 9+00N 2+00W	1	13	8	49	.1	8	5	192	4.35	4	5	ND	2	9	1	2	2	82	.07	.044	4	14	. 38	41	.06	2	2.82	.02	. 03	2	1	
86 9+00N 1+50N	1	30	8	86	, 3	12	10	430	4.98	8	5	ND	2	11	1	2	2	77	.08	.049	6	17	.81	68	.08	2	4.32	.02	.05	1	1	
BG 9+00N 1+00W	1	44	10	91	.2	9	11		4.86	6	5	ND	2	31	í	2	2	86	.25	.065	6	13	.72	64	.05	2	4.75	.01	.05	1	i	
BS 9+00N 0+50W	1	13	8	38	,1	4	5		3.98	2	5	ND	2	13	1	2	2	97	.10	.031	6	14	. 44	61	.10	2	2.43	.ú2	.03	2	1	
BG 9+00N 0+00W	1	15	12	51	.1	11	7	1026	4.92	6	5	ND	2	12	1	2	2	101	.12	.101	6	19	.65	56	.05	2	2.36	.01	.03	1	1	
BE 9+00N 0+50E	1	40	8	86	.1	13	11	1756	4.42	6	5	ND	2	9	1	2	2	78	.10	.057	8	25	1.66	122	,02	2	4.26	.02	.05	1	1	
B5 9+00N 1+00E	1	35	10	103	.1	10	12	1018	5.78	16	5	ND	3	75	1	2	2	147	.95	.282	6	15	.96	50	.21	2	5.80	.01	.04	í	2	
BG 9+00N 1+50E	2	79	8	103	.1	50	18	984	6.32	22	5	ND	3	18	1	2	2	142	.22	.093	6	75	1.54	107	.07	2	4.59	.02	.06	1	8	
B6 9+00N 2+00E	9	33	10	107	.1	19	9		4.78	10	5	ND	2	35	1	2	2	79	1.08	.051	14	37	.73	112	.01	2	2.86	.01	.07	1	i	
BG 9+00N 2+50E	1	87	10	81	.1	86	21	712	6.64	10	5	ND	1	17	1	2	2	163	.17	.068	2	106	2.28	47	.08	2	5.18	.02	.02	1	1	
B6 9+00N 3+00E	1	79	6	74	.1	88	24	1000	5.93	6	5	ND	1	25	í	2	2	161	.34	.029	4	101	1.70	69	.03	2	4.77	.02	. 04	1	1	
BE 9+00N 3+50E	1	118	4	89	.3	95	28	920	7.58	4	5	ND	2	25	1	2	2	217	.61	.061	6	149	1.55	30	. 39	2	5.83	.02	.02	1	1	
BE 9+00N 4+00E	1	68	8	85	.1	42	13	404	5.77	6	5	ND	1	15	i	2	2	166	.18	.073	4	83	1.01	29	.23		3.74	.02	.03	1	1	
B6 8+00N 6+50W	3	86	10	79	.2	13	19	1088	6.11	14	5	ND	2	68	1	2	2	154	.64	.072	10	20	1.42	112	.18		3.93	.01	.06	1	1	
B6 B+00N 6+00W	1	19	18	90	.1	17	17	1284	7.01	26	5	ND	1	15	1	2	2	109	.25	.104	6	54	. 43	79	.16	2	3.30	.01	.05	1	1	
BG 8+00N 5+50W	2	11	8	126	.1	15	12	640	7.20	8	5	ND	i	10	1	2	2	140	.11	.043	4	81	.76	34	.11	2	2.68	.01	.04	2	1	
BG 8+00N 5+00W	2	50	14	126	.1	20		2378		12	5	ND	2	17	1	2	2	102	.18	.086	6	27	.89	64	.11	2	3.57	.01	.04	1	1	
B6 8+00N 4+50W	2	22	18	103	.3	11	8		5.25	36	5	ND	2	9	1	2	2	63	.08	.101	4	21	.28	68	.04		3.69	.02	.05	1	1	
B5 8+00N 4+00W	1	26	30	102	.3	15		2434		46	5	ND	2	16	1	2	2	84	.18	.109	4	22	.52	84	.07		3.22	.01	.08	1	1	
BE 8+00N 3+50W	1	33	16	102	.3	21	10	560	5.26	16	5	ND	2	14	1	2	2	97	.13	.066	6	31	.61	60	.10	2	3.64	.01	.06	1	1	
B5 8+00N 3+00W	1	31	10	79	.3	17	11	630	4.85	12	5	NØ	2	15	1	2	2	83	.11	.084	4	26	.75	56	.09	2	4.19	.01	.05	1	1	
B5 8+00N 1+00W	1	8	6	24	.1	2	3	122		2	10	ND	1	12	1	2	4	61	.05	.016	6	8	.23	52	.05	2	1.64	.02	.03	1	1	
B6 8+00N 0+50W	1	16	12	54	.2	7	7	418	4.87	2	5	ND	1	9	1	2	2	106	.07	.070	6	17	.54	55	.07	2	3.09	.02	.04	1	1	
B6 8+00N 0+50E	8	33	10	101	.4	20	11		5.80	28	5	ND	1	11	1	2	2	91	.08	.060	6	45	.69	80	.01		2.91	.02	.06	1	3	
B6 8+00N 1+00E	4	45	6	73	.2	23	10	680	5.39	16	5	ND	1	15	1	2	2	113	.14	.123	4	48	.74	61	.02	2	3.45	.01	.05	1	1	
86 8+00N 1+50E	2	70	8	86	.1	63	19	650		14	5	ND	2	17	1	2	2	151	.15	.063	4	80	2.23	79	.11	2	4.38	.02	.04	1	1	
B6 8+00N 2+00E	2	42	6	74	.1	54	19	2010		8	5	ND	1	16	1	2	2	147	.17	.066	4	90	1.61	57	.08		3.39	.02	.03	1	2	
86 8+00N 2+50E	1	53	6	69	.1	62	23			8	5	ND	1	59	1	2	2	199	.16		4	100		67	.05		4.16	.02	.02	1	2	
B6 8+00N 3+00E	1	94 05	8	78	.1	76	22			6	5	ND	2	18	1	2	2	162	.22		4		1.85	62	.11		5.01	.02	.04	1	1	
BG 8+00N 3+50E	1	95	10	84	.1	107	28	2282	6.84	2	5	ND	1	19	1	2	2	117	.88	.074	2	34	2.13	38	.22	4	4.56	.01	.02	1	1	
B6 8+00N 4+00E	1	52	6	60	.1	71	20	1322	4.30	4	5	ND	1	23	1	2	2	98	.74	.039	2	43	1.49	44	.15	4	2.82	.01	.02	1	1	
B6 7+00N 7+00W	1	35	8	57	.3	7	10	576	8.20	14	10	ND	2	32	1	2	2	215	.26	. 227	6	12	.75	48	.20		4.84	.02	.03	1	1	

Page 11

L

(

(

(

1

(

(

(

(

(

C

C

(

(

(

 C^{+}

- (

															A		1.00		FIL	と Ħ	87-1	2039	9								Ę.	age 12	(
SAMPLE	NO Pph	CU PPM	PB PPM			NI PPK				AS PPN	U PPM	AU PPM	TH PPM	SR Ppn	CD PPM	SB PPM	BI PPM	V	-		LA	-		BA	TI	I	AL	NA	κ	W		aye ı∠	
DC 7.000 /.CAU															111	FER	rrn	PPH	7	1	PPM	PP	4 2	PPH	Z	PPF	Z	ĩ	ĩ	PPN	PPB		(
B6 7+00N 6+50W	1	30	13		.1	14	13	164	l 5.64	10	5	ND	7	24	+	-	-																
86 7+00N 6+00W	2	41	10	87	.1	15	12	2 567	5.28	6	5	ND	2	15	:	2	2	106			9	27		100	.14	2	3.55	.03	.12	1	2		
B6 7+00N 5+50W	1	36	11	127	.3	13	13			17	5	ND	2		1		2	102			7	27	.73	66	.11		3.59		.05		1		(
B6 7+00N 5+00W	2	42	16	159	.1	21	11		5.29	23	5	ND	-	25	1	2	2	80			7	42	2.51	73	. 14		3.03		.06	1	14		
86 7+00N 4+50W	1	31	13	90	.2	13	15		5.36	23 5	5		3	10	1	2	2	81	.09	.052	9	29	.64	64	.12		4.62		.05				
					•••			732		7	J	ND	2	16	1	2	2	124	.20	.127	6	30		56	.12		3.84	.02		1	1		<
BG 7+00N 4+00W	1	36	11	122	.2	13	12	1707			_														•••	-	3.04	.02	.04	1	1		
BG 7+00N 3+50W	1	88	12	95	.4	11		1789		16	5	ND	2	14	1	2	2	79	.12	.099	6	20	.45	62	.19		4 17						
BG 7+00N 3+00W	1	6	8	23	.1	3		1741		12	5	ND	2	59	1	2	2	68	.66	.152	Ā	18		47	.10		4.17	.02	.07	1	1		(
BG 7+00N 2+50W	i	6	17				2			6	5	ND	1	13	1	2	2	50	.12		i	7					4.60	.01	.07	1	2		`
B5 7+00N 2+00W	1	24		38	.1	4	3		2.89	3	5	ND	1	15	1	2	2	50	.08	.053		6		22	.04		1.75	.01	.03	1	2		
	1	44	13	66	.2	11	10	419	4.67	7	5	ND	2	17	1	2	2	109	.08	.032	5			45	.06		1.54	.01	.04	1	1		(
BG 7+00N 1+00W		~~														-	-	•••			J	23	.70	61	.13	2	3.34	.02	.04	1	1		(
	1	22	8	69	•1	5	6	591	4.17	2	5	ND	2	11	1	2	2	66	A 4	AE /													
BG 7+00N 0+50W	77	6	5	16	. 1	1	1	76		15	5	ND	1	6	÷	2	2	47	.04	.056	6	11		116	.02	2	2.99	.01	.05	1	1		
BG 7+00N 0+00W	9	24	9	86	.1	10	11	1176	5.80	16	5	ND	2	10	i	2	2		.02	.028	4	8	.10	37	.03	2	1.25	.01	.07	1	1		Ċ
B6 7+00N 0+50E	3	34	8	85	.3	15	10		4.90	8	5	ND	ī	10	1			81			5	28	. 48	68	.01	2	2.62	.01	.06	t	i		
BG 7+00N 1+50E	1	32	12	59	.2	48	18		7.39	7	5	ND	2	12		2	2	87	.07	.099	4	31	.66	82	.02		3.52	.02	.04	ī	2		
										•	Ŭ	nμ	2	12	1	2	2	162	.11	.049	3	97	.72	69	.02		2.75	.02	.04	ŕ	1		Ć
86 7+00N 2+00E	2	83	5	80	.1	72	23	825	7.10	11	5	ND				_													•••	•	•		
B6 7+00N 2+50E	1	65	16	81	.1	77	26		6.34	4	5		1	23	1	2	2	163	.14	.051	3	110	1.77	60	.15	2	5.65	.02	.03	1			
B5 7+00N 3+00E	1	67	12	72	.1	97	27		7.49	•	-	ND	1	25	1	2	2	155	.30	.078	3	100	2.74	127	.20		4.00	.02		-	1		(
BG 7+00N 4+00E	1	65	10	57	.1	37	12		5.48	8	5	ND	1	16	1	2	2	198	.23	.028	3		3.04	30	.28		4.76		.03	1	1		
BE 6+00N 7+00W	9	29	26	134	.1	13				2	5	NÐ	1	15	- 1	2	2	160	.25	.024	3	63	.86	20	.41		2.22	.03	.03	1	1		
				101	• 1	10	11	1249	D.84	33	5	₩D	2	18	2	2	2	87		.090	7	33	.53	73	.03			.02	.02	1	8		(
B6 6+00N 6+50W	5	39	22	502	.2	22	17	1700														•••				4	2.47	.01	.06	1	1		•
B6 6+00N 6+00W	2	46	11	277	.1	17	13		5.45	40	5	ND	2	20	10	2	2	59	.36	.085	19	30	.64	74	.05	7	2 22						
BG 6+00N 5+50W	3	33	17	254			- 14		5.83	10	5	ND	2	36	3	2	2	131		.07B	11	23	.85	82			2.20	.02	.15	1	2		C
B6 6+00N 5+00W	ĩ	30	13		.1	14		1505		21	5	ND	1	21	2	2	2	109		.061	9	23	.72		. 19		2.26	.02	.05	1	2		۷.
B6 6+00N 4+50W	2	84		113	.9	17	12		5.54	40	5	ND	2	37	1	2	2	60		.104	6			73	.09		2.16	.02	.05	1	2		
DO DIVIN HIJON	2	04	10	231	1.2	15	12	1056	5.01	31	5	ND	2	64	1	2	2	72		.129	6	22	.48	83	.07		4.71	.02	.06	2	1		1
B6 6+00N 4+00W		10														-	•			• 127	C	29	.50	50	.21	2	4.97	.01	.05	1	2		(
B6 6+00N 3+50W		18	6	53	.1	5	3		3.23	11	5	ND	1	19	1	2	2	68	.19	.024	r												
	1	30	8	77	.3	12	7	408	4.78	15	5	ND	2	17	1	ź	2	83			5	16	.21	17	.09		1.33	.01	.02	1	1		1
86 6+00N 3+00W	2	7 8	5	77	.2	100	26	619	7.35	13	5	ND	2	15	-	2				.061	4	20	.63	49	.08	2	3.12	.02	.04	1	2		(
86 6+00N 1+50WA	1	86	5	84	.1	102	27	1129		6	5	NÐ	1	42	1		2	182		.029	3	134	2.42	39	.17	3	5.90	.02	.03	1	1		
B5 6+00N 1+50WB	11	12	6	45	.3	6	3	198		23	6	ND	ŕ	2	4	2		163		.070	2	134	3.13	62	.20	2	5.41	.02	.04	1	1		
											-	114	1	2	1	2	4	29	.01	.030	4	13	.18	39	.01	2	1.85	.01	.09	ł	i		(
BE 6+00N 1+00W	2	23	13	93	.5	11	10	828	4.51	15	5	ND	2			~														•	1		
B6 6+00N 0+50W	3	32	12	103	.2	15	11	727		10	5	ND	2	8	1	2	4	69		.089	5	21	.78	81	.04	3	3.22	.02	.06	1	1		
B6 6+00N 0+50E	2	41	14	69	.1	9		2283	4.36	6	5	ND		12	1	2	2	81		.099	6	25	.85	91	.04		4.19	.02	.05	1	2		C
B6 6+00N 1+00E	1	28	6	68	.1	35	15		6.19	9	5 5		2	63	1	2	2	92	.50	.097	5	15	.77	88	.14		3.97	.01	.06	1	-		
BG 5+00N 7+50W	3	65	13	93	.2	21		1013		•		ND	1	16	1	2		134	.07	.037	3	68	.78	60	.08		3.09	.02		1	1		
					•••			1013	J. 07	15	5	ND	3	25	1	2	2	92	.36	.069	13	33	.95	117	.11		4.29		.04	1	2		(
STD C/AU-S	20	58	38	136	6.8	67	29	1000	7 O.L		21	-										-			• • •	4	1.47	• • 2	.07	1	1		-
							20	1000	5.00	42	26	7	34	48	18	16	21	57	.46	.084	36	55	. 86	181	.09	38	1.69	.06	.13	13	49		
																															71		(

i i C

(

		_																													Pag	e 13
SAMPLE#	NO PPN	CU PPM	PB PPM	ZN PPN	46 PPM	NI PPH	CO PPN		۶E ۲	AS PPM	U PPM	AU PPM	TH PPN	SR PPM	CD PPN	SB PPM	BI PPM	V FPH	CA ۲		LA PPH	CR PPM	Н6 Х	BA PPM	דו ג	B PPM	AL X	NA Z	ĸ	N PPN	AU t PPB	
B6 5+00N 7+00W	6	89	6	88	.4	16	19	2994	5.61	14	5	N.B.		75		_	_														•••	
BG 5+00N 6+50W	4	53	8	137	.2	21	14		5.62	18	נ 5	ND ND	2	35	1	2	2	95	. 43		- 44	28	.75	78	.06	2	4.54	.01	. 08	1	1	
86 5+00N 6+00WA	15	26	20	115	.1	12		1608	4.81	34	-		2	20	1	2	2	99	.24		14	34	.83	108	.08		3.83	.02	.08	1	1	
B5 5+00N 6+00WB	5	54	12	143	.1	23	15		5.36		5	ND	1	13	1	2	2	92	.20		- 4	25	, 38	77	.02		1.76	.02	.10	1	14	
BG 5+00N 5+50W	5	41	12	93	.1	16	10	620	5.23	12 14	5 5	ND ND	3 1	23 19	1	2 2	2 2	90 95	.26 .17		14 6	29 24	.91 .64	121 60	.10	2	3.58	.02	.09	1	1	
B6 5+00N 5+00W	9	64	12	160	.2	24	13	044	5.99	24	-		•													-				•	10	
B6 5+00N 4+50W	3	57	10	263	.3	19	15	850	5.29	24 12	5 5	ND	2	15	1	2	2	88	.15		6	31	.71	75	.08	2	3.84	.02	.08	1	1	
B6 5+00N 4+00W	2	38	8	149	.3	10	6	256	4.73		-	ND	2	15	1	2	2	87	.13	.078	10	22	.89	84	.14		3.76	.02	. 06	ī	2	
B6 5+00N 3+50W	2	15	12	52	.1	8	6	332	4.44	10	5	NÐ	2	12	1	2	2	93	.09	.035	4	19	.51	38	.09	2	2.53	. 02	.04	2	1	
BG 5+00N 3+00W	2	24	38	88	.2	12	8			14	5	ND	1	13	1	2	2	82	.11	.041	4	18	.43	42	.07		2.02	.02	.05	ĩ	1	
	•		00	00	• 4	12	0	374	5.00	20	5	ND	1	16	1	2	2	90	.14	.073	6	23	.59	42	.12		2.80	.02	.05	1	1	
B5 5+00N 2+50N	i	23	16	79	.4	14	10	758	4.23	12	5	ND	2	19	1	2	2	82	.10	070	,											
B6 5+00N 1+50W	4	47	10	97	.5	16	13	616	5.31	18	5	ND	2	9	1	2	2	62 77			6	21	.62	73	.09		3.33	.02	.06	1	1	
BE 5+00N 0+55W	1	44	10	48	.1	29	12	518	7.74	6	5	ND	1	11	1	2	2	166	.05		6	22	.66	75	.02		3.57	.02	.06	1	i	
B6 5+00N 0+00W	1	52	8	49	.2	52	18	1032	5.57	6	5	ND	1	12	1	2	2		.06		4	99	. 52	52	.07	2	2.48	.02	.04	2	2	
BG 5+00N 0+50E	1	45	8	57	.2	34	12		6.47	8	5	ND	2	20	•	2	2	178	.08		4	103	.77	79	.02	2	2.56	.02	.06	2	1	
										•	Ŭ		-	10	1	2	2	161	.09	.050	4	90	.53	75	.06	2	4.18	.03	.05	1	1	
B5 5+00N 1+00E	2	43	12	81	.2	7	15	1696	5.10	10	5	ND	,	15		•	~															
BG 5+00N 1+50E	2	71	8	74	.5	60	20	1794		14	5	ND	2		1	2	2	90	.11		B	11	.82	68	.05	2	3.87	.02	.05	1	1	
BG 5+00N 2+00E	2	72	12	88	.1	70	22	1018		10	5	ND	-	55	1	2	2	125	.99	.055	16		1.33	121	.11	2	4.84	.01	.05	2	2	
B6 5+00N 2+50E	4	98	10	70	.3	107	26		5.82	8	5	-	1	18	1	2	2	142	.23	.070	4	96	1.85	60	.20	2	3.77	.02	.04	i	1	
STD C/AU-S	21	62	42	139	7.3	69		1032			-	ND	1	30	- 1	2	2	143	.41	.034	4	147	2.42	33	.20	2	4.44	.02	.03	2	2	
				•••		0,	21	1032	3.00	42	20	8	36	49	18	18	20	60	•45	.090	40	60	.85	178	.09	36		.07	.13	15	47	
B6 5+00N 3+00E	2	37	12	71	.1	42	15	1058	5 85	6	5	ND				-	_															
B6 5+00N 3+50E	1	76	14	93	.1	153	32		7.19	4	5	ND	1	19	1	2	2	161	.16	.069	4	70	1.16	75	.10	2 3	3.30	.02	.05	1	7	
BE 5+00N 4+00E	3	94	10	96	.1	109		1026		8	5		1	23	1	2	2	162	.30	.050	2	120	3.51	31	.35	2 :	5.27	.02	.03	1	1	
86 4+00N 7+50W	1	29	8	75	.1	14	9	750		-	-	ND	1	25	1	2	2	159	.24	.096	4	104	2.98	30	.33	4 4		.02	.03	2	1	
B6 4+00N 7+00N	5	65	22	126	.3	26		2320		10 28	5	ND	2	17	1	2	2	96	.12	.046	6	24	.50	79	.08	2 2		.02	.06	1	1	
					••	20	17	2320	7.70	28	5	DN	1	33	2	2	2	89	.50	.068	20	53	.73	145	.08	2 3		.01	.10	1	5	
B6 4+00N 6+50W	2	44	10	91	.3	19	14	614	1 22	10	-																			•	v	
BG 4+00% 5+75W	3	48	12	90	.1	22	14			10	5	ND	1	44	1	2	2		1.10	.041	10	35	.85	77	.13	2 2	.45	.01	.06	1	2	
BG 4+00N 5+50W	2	57	12	93	.3	16	12		5.87	16	5	ND	2	17	1	2	2	114	.14	.049	8	36	.75	99	.10	2 3		.02	.06	1	1	
85 4+00N 5+00N	- Ā	51	10	112	.3	40			4.90	16	5	ND	1	20	í	2	2	99	.28	.083	10	30	.54	88	.07	2 2		.01	.07	1	1	
B5 4+00N 4+00W	2	14	12	33	.1	34	16		5.57	12	5	D	2	23	1	2	2	122	.27	.034	6	61	.87	118	.08	2 4		.02	.08	1	-	
	~	••	12	55	• 1	34	7	340	6.56	6	5	ND	1	22	i	2	2	180	.12	.035	4	127	.46	44	.09	2 1		.02	.04	2	1 6	
86 4+00N 3+50W	3	49	8	118	.2	28	14	772	4.91	12	5	ND	2	17		~															-	
BG 4+00N 3+00W	2	13	8	39	.1	9	6		3.94	4	5	ND	2	17	1	2	2	<u>9</u> 9		.088	6	41	.89	80	.07	23	. 89	.02	.07	1	1	
86 4+00N 2+75N	6	61	8	? 5	.1	32	17	670		18	5	ND	3	14	1	2	2	90	.11	.040	4	24	.32	37	.06	21			.06	1	1	
BG 4+00N 2+25W	3	67	26	96	.4	25			4.20	28	5	ND		16	1	2	2	98	.08	.062	8		1.33	104	.07	2 4		-	.10	i	1	
BG 4+00N 1+75W	2	39	10	86	.3	20		430		26	5		1	22	1	2	2	242	.22	.094	6	38	.53	100	.02	2 3			.11	i	1	
							••	100		20	J	ND	2	15	l	2	2	141	.12	.048	6	29	.88	56	.08	24			.05	2	•	
BG 4+00N 0+25W	2	75	12	106	.1	22	15	1284	5.44	10	5	ND	,	.,		•														-	•	
BG 4+00N 0+25E	1	10	4	31	.1	4	3		3.52	6	5	ND ND	3	16	1	2		103		.129	6	37	1.08	53	.15	25	.06	.02	.05	1	1	
BG 4+00N 7+50WA	3	37	26	120	.2	17		2666		10	5	ND	1	8	1	2	2	62		.031	6	14	.26	47	.03	2 1			.05	i	1	
							- •			1.	J	πv	T	43	1	2	2	137	.62	.134	B	29	.85	113	.11	2 3			.07	i	2	
																													•••	•	-	

Page 13

۱

(

1

(

(

0

(

C

(

ŧ,

 C_{-}

£

SAMPLE	NO PPN	CU PPN	PB PPN	ZN PPN	A6 PPM	NI PPM	CO PPN	NN PPN	FE X	AS PPH	U PPM	AU PPN	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA X	P 2	LA PPN	CR PPM	M6 7	BA PPM	TI X	B PPN	AL 1	NA Z	K Z	N PP N	AU ‡ PPB	
B5 4+00N 7+00MA B5 4+00N 5+50MA B5 4+00N 6+00MA B5 4+00N 5+50MA B5 4+00N 5+00MA	2 3 4 6 4	46 66 73 120 34	10 12 7 10 9	113 126 109 153 105	.2 .2 .1 .2 .1	19 25 22 31 17	15 14	823 1392	6.33 5.55	19 19 18 28 18	5 5 5 8	ND ND ND ND ND	3 4 3 3 2	18 14 22 19 17	1 1 1 1	2 2 2 2 2	2 2 2 2 2	103 113 107 125 103	.19 .14 .23 .20 .17	.182 .097 .036 .135 .093	6 10 10 6 5	32 37 33 40 34	.76 1.00 .95 .97 .63	83 112 91 109 62	.11 .11 .12 .12 .05	3 2 4	3.99 4.85 3.44 4.61 3.13	.01 .02 .02 .02 .01	.05 .10 .07 .07 .06	1 1 1 1	9 1 3 2 1	
BG 4+00N 4+50NA BG 4+00N 4+00WA BG 4+00N 3+50NA BG 4+00N 3+00WA BG 4+00N 2+50NA	3 2 1 1 1	72 35 12 13 27	14 10 11 7 5	118 82 50 50 91	.1 .4 .1 .1	27 16 8 7 16	16 10 5 5 10	384 304 202	5.71 4.89 3.63 3.35 4.80	17 7 8 5 16	5 5 5 6	ND ND ND ND ND	4 2 1 1 2	20 16 14 18 11	1 1 1 1	2 2 2 2 2	2 2 2 3 2	104 113 80 71 96	.15 .11 .10 .18 .08	.054 .043 .034 .030 .078	16 7 5 5 5	37 30 20 14 27	1.11 .63 .34 .40 .76	101 75 49 35 56	.12 .08 .06 .06 .08	2 2 2	4.24 3.81 1.97 2.00 3.92	.02 .01 .02 .01 .02	.10 .04 .04 .04 .05	1 2 1 1	1 1 1 1	
B5 4+00N 2+00NA B5 4+00N 1+50NA B5 4+00N 0+50EA B5 4+00N 1+00EA B5 4+00N 1+50EA	4 1 5 2 1	52 32 129 59 78	17 8 10 12 13	88 71 878 97 343	.1 .1 .5 .1	39 15 87 49 80	13 11 20 18 23	554 4890 413		30 10 13 9 10	5 5 6 5 5	ND ND ND ND ND	1 2 2 3 2	12 12 46 19 33	1 12 1 2	2 2 2 2 2 2	2 2 2 2 2 2	113 80 127 137 173	.09 .06 1.13 .15 .23	.149 .042 .041 .052 .040	5 5 18 5 7	23 86 66	1.35 .95 1.43 1.37 1.64	58 66 86 68 72	.10 .07 .10 .11 .14	2 2 2	4.17 3.84 3.89 4.68 5.73	.02 .02 .01 .02 .02	.05 .06 .05 .04 .03	1 1 1 1	1 1 1 1	
BG 4+00N 2+00EA BG 4+00N 3+00EA STD C/AU-S BG 4+00N 3+50EA BG 4+00N 4+00EA	2 3 20 2 2	67 64 58 58 91	10 16 39 20 10	69 73 131 72 102	.1 .1 6.7 .1 .1	70 65 66 43 86	16 27 15	2667 463 1004 2092 1073	6.90 3.77 6.39	6 10 42 9 6	5 5 17 5 5	ND ND 7 ND ND	1 2 33 2 2 2	50 18 47 33 30	1 1 17 1 1	2 5 15 2 2	2 2 19 2 2	144 195 63 175 202	.61 .20 .45 .30 .26	.114 .043 .085 .080 .114	3 4 35 4 3	116 54 80	1.49 1.35 .84 1.02 2.11	52 33 173 36 25	.22 .36 .09 .34 .44	2 37 2	3.21 3.07 1.64 3.05 4.59	.01 .02 .06 .02 .02	.03 .01 .12 .02 .02	1 14 2 1	12 1 52 35 1	
BG 3+00N 7+00N BG 3+00N 6+50N BG 3+00N 6+00N BG 3+00N 5+50N BG 3+00N 5+00M	3 2 3 3 4	68 96 126 50 46	6 9 15 12 17	171 89 96 84 97	.2 .1 .1 .2 .2	27 27 32 44 29	14 16	590 1705	6.02 6.11	13 14 14 14 19	5 5 5 5 5 5	ND ND ND ND	3 3 2 2 2	20 22 22 23 22	1 1 1 1	2 2 2 3 2	2 2 2 2 2 2	110 112 123 144 110	.28 .21 .29 .16 .21	.140 .065 .062 .073 .057	10 16 6 4 5	53 47 52 88 46	.86 .85 .99 1.11 .74	65 68 90 59 76	.14 .12 .11 .11 .07	3 3 2	3.69 4.43 4.07 3.64 3.44	.02 .02 .02 .02 .02	.06 .06 .07 .04 .07	1 1 2 1 1	1 1 1 1	
BG 3+00N 4+50W BG 3+00N 4+00W BG 3+00N 3+50W BG 3+00N 3+00W BG 3+00N 2+50W	3 3 3 2	62 96 88 68 61	12 12 9 11 7	113 88 99 90 111	.2 .4 .1 .1 .4	59 125 72 85 24	18 31 21 26 19	945 1901 510 1393 800	6.60 6.17 6.37	13 15 23 21 16	5 5 5 5 5 5	ND ND ND ND ND	1 2 1 2 2	15 34 12 30 30	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	119 146 127 116 91	.10 .13 .08 .42 .09	.091 .054 .043 .055 .060	5 3 5 9 5	142	1.40 3.09 1.30 1.65 .56	97 128 79 84 92	.11 .15 .08 .09 .02	2 2 2	4.38 4.84 4.55 3.50 4.20	.02 .02 .02 .01 .02	.07 .04 .07 .08 .07	1 1 1 1	i 1 3 1 1	
BG 3+00N 2+00M BG 3+00N 1+50W BG 3+00N 1+00M BG 3+00N 0+50W BG 3+00N 0+00W	2 1 1 2 1	38 105 40 32 37	12 5 8 14 14	77 59 61 70 74	.4 .6 .3 .3 .2	8 39 9 10 18	10 17 8 7 9	708 442 433	4.76 4.90 3.79 4.83 5.71	17 8 9 12 10	5 5 5 5 5	ND ND ND ND ND	1 2 2 2 2	14 8 17 14 13	1 1 1 1	2 2 2 2 2 2	2 2 2 4 2	117 211 88 67 126	.12 .04 .10 .08 .10	.044 .061 .136	8 7 9 5 4	14 72 18 17 40	.87 .62 .53 .46 .73	47 51 45 57 38	.05 .06 .07 .04 .08	2 2 2	4.15 3.33 3.68 3.99 3.16	.02 .02 .02 .02 .02	.04 .04 .03 .05	1 1 1 1	1 1 1 1	
B5 3+00N 0+50E B5 3+00N 1+00E B5 3+00N 1+50E	1 1 5	19 28 77	7 7 8	41 59 69	.2 .1 .7	15 28 66	7 15 20	248 947 3914	4.43	9 3 12	5 6 6	NÐ Nd Nd	2 2 1	11 32 52	1 1 2	2 2 2	3 2 2	127 98 102	.09 .37 1.21	.044 .056 .064	4 5 24	34 44 91	.52 .92 1.59	39 88 93	.07 .05 .07	2	2.48 2.83 3.23	.02 .02 .01	.03 .04 .05	1 1 1	2 1 2	

Page 14

£

(

(

(

(

(

(

(

(

€

C

C

C

(

(

Ť.

Page 15

ן נ

(

SHANGRI-LA MINERALS PROJECT-BLUE GROUSE FILE # 87-2039

SAMPLEN	NO PPN	CU PPH	РВ РРМ	ZN PPK	AG PPN	NI PPK	CD PPN	NN PPM	FE 2	AS PPM	U PPM	au PPN	TH PPM	SR PPN	CD Ppn	SB PPM	BI PPM	V PPN	CA X	P X	LA PPM	CR PPM	MG X	BA PPM	11 Z	B PPM	AL X	NA I	K Z	N PPN	AU I PPB	2	(
BG 3+00N 2+00E BG 3+00N 2+50E BG 3+00N 3+00E	5 1 1	92 111 27	10 8 12	73 81 70	.2 .1 .1	77 73 56	20 20 17	382 478 566	7.16	4 4 2	5 5 5	ND ND ND	3 2 1	27 22 18	1 1 1	2 2 2	2 2 2	169 207 179	.26	.032 .034 .042	4 4 4	135 121 101		24 30 25	.29 .36 .40	2	5.18 4.15 2.42	.02 .02 .02	.02 .03 .01	1 1 1	7 5 1		(
B5 2+00N 7+50N B6 2+00N 6+91N	1 2	84 63	14 8	72 78	.1 .1	11 29	18 14	1080 750	5.00 5.52	16 10	5 5	ND ND	2 3	85 27	1 1	2 2	2 2	133 113		.086 .078	10 10		1.27 1.01	111 60	.22 .17		4.07 4.06	.01 .02	.07 .06	2 1	1 1		Ċ
BS 2+00N 6+50N BG 2+00N 6+00N BS 2+00N 5+50N	1 2 1	137 62 183	10 10 10	102 87 91	.2 .3 .2	38 49 54	14 19 18		5.56 5.98 6.08	18 8 8	5 5 5	ND ND ND	3 2 3	40 28 33	1 1 1	2 2 2	2 2 2	117 153 142	.33	.062 .094 .050	8 4 6	92	1.10 1.22 1.44	77 42 53	.19 .23 .21	2	4.48 4.04 4.81	.01 .02 .02	.06 .03 .05	 1 1	2 2 7		(
85 2+00N 5+00N 86 2+00N 4+50N	2 1	93 26	10 12	98 117	.3 .1	26 20	14 16	658 722	5.47 6.37	8 18	10 5	ND ND	2 2	18 13	1 1	4 2	2 2	123 144		.108 .105	ბ ბ	50 21	.74 1.88	55 69	.12		3.65 5.28	.02 .01	.06 .06	1 1	2 1		(
BG 2+00N 4+00W BG 2+00N 3+50W BG 2+00N 2+50W	1 1 1	67 22 12	18 10 8	109 130 36	.2 .3 .3	72 20 8	19 10 5		4.60 3.98 3.42	18 6 6	5 5 5	ND ND ND	2 3 2	19 20 13	1 1 1	2 2 2	2 2 2	264 146 88	.26	.074 .118 .036	4 6 6	71 34 20	1.25 .86 .29	61 58 23	.06 .06 .04	2	3.75 3.77 1.88	.02 .01 .01	.04 .04 .03	1 1 1	4 3 12		(
BG 2+00N 2+00MA BG 2+00N 2+00MB	1 1	12 14	8 16	39 58	.1 .1	13 14	5 10	410 1720	4.12	22 14	5 5	ND ND	1 1	14 30	1 1	2 2	2 2	62 99		.031	2 4	12 32	.23 .57	35 37	.01 .07		1.92 2.07	.02 .01	.03 .05	1 2	3 10		C
B6 2+00N 1+75N B6 2+00N 1+50N B6 2+00N 1+00N	1 1 2	18 53 103	10 10 8	54 88 74	.2 .5 .3	11 10 59	7 14 34		5.14 4.76	8 10 24	5 5 5	ND Dא DN	2 2 3	13 59 23	1 1 1	2 2 2	2 2 2	91 97 88	.21 .13	.038 .104 .030	6 6 6	28 21 64	.50 1.11 .90	46 99 151	.06 .01 .01	2	2.53 4.99 4.60	.01 .02 .02	.04 .07 .09	1 1 1	92 3 2		C
B6 2+00N 0+50W B6 2+00N 0+00W	3	39 12	12 12	67 27	.1	20 6	10 4		3.76	6 6	5 5	DN DN	2 1	13 15	1 1	2 2	2 2	105 98	.10	.061 .026	4 6	40 19	.84 .31	59 39	.05 .08		3.29 1.60	.02 .02	.06 .02	1 1	1		C
B6 2+00N 0+50E B6 1+00N 7+00N B6 1+00N 6+40W	1 1 2	46 68 212	12 16 10	54 85 125	.2 .2 .3	11 10 54	16 20	1340 1250	5.89	4 14 12	5 5 5	ND ND ND	2 1 3	212 89 38	1 1 1	2 2 2	2 2 2	119 129 129	1.41	.107 .092 .068	8 8 12	78	.63 1.07 1.51	195 105 76	.04 .17 .20	4 2	3.88 3.36 4.29	.03 .01 .02	.04 .06 .07	1 1 1	5 1 2		C
B6 1+00N 6+00W B6 1+00N 5+50W	3 2	113 59	22 10	189 92	.2	45 34	15		5.96	6 16	5 5	ND ND	2	48 18	1	2	2 2	125 131	.16	.060	12 8	64	1.28	71 61	.21	2	3.74 4.43	.01 .02	.05 .05	1 1	2 16		C
B5 1+00N 5+00W B5 1+00N 4+50W B5 1+00H 4+00W B5 1+00N 3+50W	2 1 14	164 80 60 16	10 10 8 66	75 106 98 149	.3 .2 .4 .3	81 51 36 26	19	1214 938 2374 2662	5.99 5.48	12 14 6 26	5 5 5 5	ND ND ND ND	3 3 2 2	42 20 55 59	1 1 1 1	2 2 2 2 2	2 2 2 2	184 189 155 66	.16 .20	.054 .050 .099 .082	8 8 4 6	91	3.19 1.46 1.39 .55	47 57 109 68	.36 .11 .07 .07	2 2	5.32 4.68 4.22 1.59	.02 .02 .02 .01	.03 .05 .06 .02	1 1 1 2	1 9 1 120		(
STD C/AU-S 86 1+00N 3+00W	20 2	57 77	40 14	132 83	6.6 .3	67 56	27 16	686	3.66 4.93	40 18	20 5	8 ND	34 2	47 47	17	16 2	18 2	62 105		.083	36 6	60 55	.81 1.12	175 62	.09 .03		1.75 4.08	.06. .01	.12 .08	15 2	52 9		C
BG 1+00N 2+50W BG 1+00N 2+00W BG 1+00N 1+50W BG 1+00N 1+00W	2 2 3 2	85 60 42 44	14 8 10 10	75 95 58 56	.3 .1 .2 .1	48 47 12 41	16 20 8 14	1584 322	4.72 5.25 5.21 5.36	12 8 6 2	5 5 5 5	ND ND ND ND	2 2 2	27 28 18 60	1 1 1	2 2 2 2	2 2 2 2	127 125 126 176	.17 .13	.043 .060 .055 .040	6 4 6 4	61 30	1.15 1.27 .50	64 85 35 37	.08 .11 .09	4 2	4.25 4.39 4.12	.02 .02 .02	.05 .08 .04	i 1 1	5 1 1		(
B6 1+00N 0+50W B6 1+00N 0+00W	2 1	66 34	10 14	80 93	.2 .3	22 9	14		5.19	10 8	5 5	ND DM	3 2	25 21	1 1	2 2 2	2 2 2	92 73	.16	.054	9 8 6		1.07 1.08 .44	57 65 64	.29 .09 .04	2	3.73 5.32 2.85	.01 .02 .02	.03 .06 .05	2 1 1	18 3 2		Ç

															2		UNU	USE	1 ⁻	ILE 3	FF 87	-20	939								1	^{>} age 16
SAMPLE#	NO PPN	CU PPN	PB PPN	ZN PPN	AG PPM	NI PPM	CO PPM		FE X	AS PPN	U PPM	AU Pph	TH PPM	SR Ppn	CD PPM	SB Ppm	BI PPM	V PPN	C4 X		LA PPM	CF PPI		BA PPN	11 X	B PPM	AL Z	NA X	K I	W PPN	AU 1 PPB	ede 10
86 1+00N 0+50E	2	49	11	70	7	10																			~		•	•	*	rrn	***	
BG 1+00N 1+00E	ĩ	74	10		.3	18	16		5.26	41	6	ND	2	42	1	4	2	44	.11	.047	14	55	1.05	80	.02	2						
BG 1+00N 1+50E				137	.4	48	19			10	5	ND	2	15	1	2	2	110			5	69		84			4.51	.02	.05	1	1	
	1	66	9	96	.4	28	13		4.71	5	8	ND	2	54	1	2	2	104	.31		3				.06		5.79	.02	.05	1	1	
B6 1+00N 2+00E	1	54	7	70	.3	41	13	384	5.28	. 6	5	ND	1	16	i	2	2	131	.14		-	55		48	.10		5.27	.01	.04	2	1	
BG 0+00N 7+50W	1	152	11	80	.5	50	19	632	5.19	12	5	ND	4	24	1	2	2	126	.23		4 13	62 88		45 97	.05 .16		4.31 5.30	.01 .02	.04 .04	1 1	1	
BG 0+00N 7+00W	1	109	10	82	7	50																				•	4.50	• • • 2	• • •	1	2	
BG 0+00N 6+50W	1	45	9		.3	58	22			15	5	ND	2	62	1	2	2	175	. 89	.042	9	80	2.34	103	.18	2			••		_	
				104	.3	41	15	487	5.92	9	5	ND	1	18	1	2	2	139	.19		5	69					4.02	.01	.06	1	5	
86 0+00N 6+00W	1		9	75	.3	44	18	1213		13	6	ND	2	56	1	2	2	124	.75					46	.10		4.20	.02	.03	1	1	
BG 0+00N 5+50W	1	90	11	73	.6	64	21	1050	6.55	4	6	ND	2	47	1	2	2				9		1.56	73	.18	2	3.24	.01	.06	1	4	
BG 0+00N 5+00W	2	212	11	78	.3	120	23	920	7.74	5	5	ND	2	64	1	2	2	204 200	.31		7 3		1.70 4.21	43 59	.18 .14		5.02 7.26	.02 .01	.03 .02	1	2	
B5 0+00N 4+50W	1	112	7	107	E	47	•																	•••	•••	4	/.20	.01	.02	1	2	
B5 0+00N 4+00W			7	103	.5	83		1231		6	6	ND	2	20	1	2	2	155	.11	.077	5	177	2.39	56	21	2						
	1	114	10	96	.4	95		1406		9	5	ND	1	54	1	2	2	155	.15		3		2.78		.21		4.72	.02	.04	1	1	
BE 0+00N 3+50W	1	85	10	91	.3	55	21	1146	5.92	13	5	ND	1	29	1	2	2	156	.12		-			56	.26		4.80	.02	.03	1	1	
BE 0+00N 3+00W	1	97	7	105	.4	113	32	2445	7.51	7	5	ND	2	47	1	2					3		1.71	54	.16	2	4.65	.02	.03	2	3	
B5 0+00N 2+50W	1	37	6	73	.3	44		1462		8	5	ND	2	18			2	201	. 39	.056	3		4.90	53	. 52	2	5.48	.02	.03	1	1	
										Ū		NU	1	10	1	2	2	126	.18	.073	3	73	1.14	48	.18	2	2.92	.02	.05	1	1	
STD C/AU-S	19	58	38	131	7.0	67	27	975	3.68	41	19		**																	•	•	
85 0+00N 2+00W	1	105	11	83	.3	91	26		6.24			8	33	47	16	18	20	62	. 43	.084	35	58	.85	172	.08	38	1.71	.06	.12	13	48	
B6 0+00N 1+75W	1	139	9	73	.4	110				2	5	ND	2	66	1	2	2	160	.19	.053	- 4	130	2.25	71	.36	2		.02	.03	15		
B5 0+00N 1+50N	1	253	10				27		6.65	9	5	ND	2	34	1	2	2	167	.15	.038	3		2.96	50	.21	2				-	15	
				79	.4	112	29		6.80	3	5	ND	1	66	1	2	2	161	.14	.036	4		3.04					.02	.04	1	i	
BG 0+00N 1+00W	1	77	9	73	.3	55	16	497	5.87	10	5	ND	2	16	1	2	2	148	. 09	.044	3		1.69	81 43	.14 .22	2 :		.02 .03	.05 .03	1 1	53 1	
B6 0+00N 0+50W	1	55	13	77	.2	41		171	F 77		-															-		•••		•	1	
BE 0+00N 0+00W	1	119	5	135	.3	49	14	671		6	5	ND	1	26	1	2	2	135	.14	.061	4	83	1.18	55	.07	2	40	.02	.04		•	
B6 0+00N 0+50E	1	49	-					1062		15	5	ND	3	25	1	2	2	101	.11	.078	5		1.41	98	.05					1	9	
			16	64	•1	41		1074		9	5	ND	2	27	1	2	2	165	.20	.078	3		1.48			26		.02	.07	I	1	
BG 0+00N 1+00E	3	75	9	73	.4	36	14	697	5.52	5	5	ND	2	17	1	2	2	135	.12	.049	•			41	.20	23		.02	.04	1	1	
B6 0+00N 1+50E	1	77	7	103	.4	38	16	913	4.67	6	5	ND	2	31	i	2	2				4		1.07	53	.08	24	. 66	.02	.04	1	1	
B5 0+00N 2+00E	i	157									-		•	51	1	2	4	102	.42	.041	5	60	1.30	70	.07	24	.12	.02	.05	1	2	
	-	157	15	55	.1	27	9	716		6	5	ND	1	17	1	2	2	122	.30	.065		75										
BG 1+00S 8+25W	1	78	15	80	.1	12	18	1098	5.09	12	5	ND	2	76	1	2	2	138			-	75	.63		.07	23		.01	.02	2	1	
B5 1+00S 8+00W	1	85	6	85	.2	12	18	939		16	5	ND	ĩ	78	1	2			.85	.072	8		1.49	89	.20	33	.52	.01	.05	1	1	
B5 1+00S 7+70W	1	80	10	108	.3	44		2429		13	5	ND	2		-		2	135	.84	.071	8	19	1.58	89	.22	4 3	. 43	.01	.05	1	2	
BG 1+00S 7+50W	1	31	10	71	.3	8	10		6.48	11				36	1	2	2	123		.111	6	51	1.50	153	.12	24			.06	1	3	
			••	••	••	U	10	070	0.48	11	5	ND	2	27	1	2	2	197	.17	.146	5	22	.50		.18	2 3			.01	1	1	
B6 1+00S 7+00W	1	30	9	50	.2	18	7	7.4			-		_													- •				1	1	
B5 1+005 6+50W	2	102	6				7		6.52	10	5	ND	2	13	1	2	2	175	.16	.139	3	61	.51	31	.06	2 7	22		^2		-	
B6 1+005 6+00W	2			80	.3	51	17		5.86	13	5	ND	3	20	1	2	2	127		.099	6		1.61			2 3			.02	1	2	
BG 1+00S 5+50W		46	9	82	.2	32	15		5.87	9	5	ND	1	15	1	2	2	133		.113	4				.13	2 4			.04	1	3	
	1	71	12	90		112	37	3078	7.37	8	5	ND	1	53	1	2	2	184		.105			1.02		.05	2 3			.05	1	1	
BG 1+00S 5+00W	1	51	6	83	.3	43	16	1066	5.53	11	5	ND	1	20	;	2	-				2		4.03		.04	24		.01	. 05	1	1	
											-		•	4.4	•	4	4	134	.22	.057	5	73	1.17	52	.10	23.	. 49	.01	.04	1	1	
BG 1+005 4+50W	3	61	7	91	.1	56	18	503	5.79	12	5	ND	1	10																	-	
B5 1+005 4+00W	1	40	7	69	.3	48	16	848		7	5	ND	1	19	1	2		151		.064	3	94	i.35	43	. 11	2 4.	33 .	. 02	.04	1	1	
										'	ų	ΠŲ	1	37	1	2	2	147	.55	.039	7	91	1.12	44	.13	22,			.03	;	1	
																														•	1	

Page 16

ا در

(

(

(

(

(

(

(

(

C

(

C

(

(

(

¢

í

.

																															•	nge s,
SAMPLE#	NO	CU	PB	ZN	A6	NI	CO	HN	FE	AS	U	AU	TH	SR	CD	S8	81	۷	CA	Р	LA	CR	M5	BA	TI	B	AL	NV	v	¥		
	PPN	PPN	PPM	PPN	PPH	PPN	PPN	PPM	z	PPN	PPM	PPN	Z	1	PPM	PPN	ĩ	PPM	ž	PPM	HL X	NA Z	K		AUI							
																			-	-		1111	*	110		rrn		7	1	PPN	PPB	
B6 1+00S 3+50W	- 4	86	8	96	.1	46	23	726	4.94	12	5	ND	1	26	1	2	2				-					_						
B6 1+005 3+00W	4	75	11	i08	.3	66	19	654		14	5	ND	:	33		2	2	116	.22	.036	5	65	1.28	65	.12	3	3.38	.02	.05	1	2	
B6 1+005 2+50W	2	64	9	81	.2	50	17				-		1		1	2	2	132	.13	.066	- 4	76	1.55	81	.11	2	4.80	.02	.05	1	10	
B5 1+005 2+00W	2		5	67				1334		9	5	ND	1	30	1	2	2	125	.26	.043	5	71	1.43	82	. 18	2	3.69	.02	.06	1	5	
					.3	37	12		4.49	5	5	ND	1	19	1	2	2	112	.13	.030	- 4	64	1.04	38	.25		3.13	. 02	. 03	ī	6	
BG 1+00S 1+50W	ა	1307	8	86	.8	77	29	1669	7.73	17	5	ND	2	31	1	2	2	128	2.83	.060	2	106	2.20	35	.23		5.05	.01	.02	1	3	
																										•	0.00	•••	•••	4	5	
B6 1+005 1+00W	2	80	8	77	.1	65	19	787	6.56	9	5	ND	2	19	1	2	2	164	.21	.057	3	87	1.90	46	74	~					_	
BG 1+00S 0+50W	2	44 .	. 10	72	.2	38	12	498	5.72	9	5	ND	1	22	1	3	3	147	.30		4				. 34		4.15	.02	.05	1	2	
B5 1+005 0+00W	3	147	15	78	.3	46	15		5.90	13	5	ND	2	15	;	2				.054			1.35	40	.25	2	3.39	.02	.04	1	2	
BG 1+00S 0+50E	2	106	9	79	.3	35	11								-		2	132	. 14	.095	3		1.53	47	.16	2	5.54	.02	.05	1	1	
B5 1+005 1+00E	2	39	9	59						6	5	ND	3	9	1	2	3	154	.09	.097	- 4	102	.97	35	.21	2	6.91	.02	.04	1	1	
50 1.003 1.00L	4	37	T	74	.1	22	13	132	4.95	6	5	ND	1	18	1	2	3	127	.17	.060	- 4	45	.71	43	.13	2	2.92	.02	.03	1	3	
	-				-																									•	v	
B6 1+00S 1+50E	3	78	13	73	.2	44		1567	5.25	9	5	ND	2	28	1	2	2	126	.47	.034	14	63	1.34	59	.14	٦	3.80	.01	.04	•	2	
BG 1+005 2+00E	3	97	6	113	.3	55	18	638	5.39	9	5	ND	1	26	1	2	2	126	. 27	.032	3	77	1.62	60	.11		4.30					
BG 1+00S 2+50E	4	1576	12	84	.6	68	31	2003	8.28	15	5	ND	t	20	t	2	2	-	4.28	.057	2							.01	.04	1	1	
B5 1+00S 2+85E	3	770	5	91	.5	90	25	986	6.29	8	5	ND	1	45	÷	2	2				-		1.79	21	.15		4.32	.01	.01	5	4	
B6 2+005 7+00W	3	91	6	73	.1	40	15		5.92	6	5	ND	2				-	133	1.87	.035	2		2.93	29	.26	2	4.22	.01	.02	1	2	
	•		•		••	10	10	301	J. 12	0	J	RV	2	31	1	2	2	136	.25	.045	5	66	1.36	46	.25	3	4.21	.02	.03	1	2	
B6 2+005 6+50W	4	73	7	100		17					-		_																			
B5 2+005 6+00W	3		5		.1	47	15		6.69	18	5	ND	2	15	1	2	2	138	.10	.084	5	76	1.10	56	.07	2	4.76	.02	.04	1	1	
	•	93	-	109	.2	59	17	993	5.80	8	5	ND	1	20	1	2	2	129	.15	.179	5	94	1.14	79	.11		4.64	.02	.05	1	i	
B5 2+005 5+50W	- 4	81	- 4	94	.2	49	17	818	5.60	17	5	ND	2	22	1	2	2	123	.17	.105	5		1.48	79	.16		3.82	.02			-	
B6 2+005 5+00W	2	130	- 4	62	.2	472	44	913	5.18	5	5	ND	1	98	1	2	2	67		.043	2	329		116					.04	1	4	
B6 2+005 4+50W	3	395	8	189	.2	94	28	1815	6.00	8	5	ND	1	37	-	2	2	137							.08		5.73	.01	.06	1	1	
										-	•		•		•	4	4	191	. 30	.088	7	115	1.50	90	.14	2	4.77	.02	.05	1	1	
B5 2+005 4+00W	2	27	6	53	.1	25	9	372	1 12	4	5	ND	2	10		-	•															
BG 2+005 3+50W	2	89	5	98	.1	103	•			•	-			19	1	3	2	110		.024	- 4	50	.65	41	.09	2	2.15	.01	.03	1	1	
B6 2+005 3+00W		322					24		5.26	4	5	ND	2	39	i	2	2	149	.76	.059	5	130	3.34	28	.27	2	3.29	.02	.03	1	1	
			6	210	.1	86	24		5.33	6	5	ND	1	39	1	2	2	141	.62	.073	4	97	2.50	40	.22	3	3.70	.03	.03	1	1	
B6 2+005 2+50W	2	149	18	139	.1	122		4047	5.02	4	5	ND	1	49	1	2	2	119	. 68	.055	3		2.09	84	. 20		3.37	.02	.05	i	2	
B6 2+005 2+00W	2	72	7	113	-1	352	37	1372	6.14	8	5	ND	1	15	1	2	2	96		.031	2	190		46	.13		4.06	.01	.03	1		
																					-	• • •		10		-	4.00	•••	.03	1	1	
BG 2+005 1+50W	2	63	20	109	.2	76	18	1172	5.29	3	5	ND	1	29	1	2	2	129	. 61	.051	3	121	2 14	45	. 28	•	0.76					
B5 2+005 1+00W	3	105	6	193	.1	134	26	982	6.24	8	5	ND	1	26	1	2	2	156		.029							2.75	.03	.04	1	1	
B5 2+005 0+50W	2	71	6	84	.1	63	16		4.78	5	5	ND	2	44	1	2	2					172		34	.34		4.09	.03	.03	2	1	
85 2+005 0+00W	1	131	2	81	.2	78	17		4.30	2	5	ND	-		-			116		.059	3		2.10	19	.27		3.63	.02	.02	1	2	
B6 2+005 0+50E	2	194	Ā	90	.2	63	21						1	16	1	2	2	105		.023	2	115	1.89	32	.17	2	3.51	.02	.03	1	1	
	-	1/1	7	10	• 1	65	21	819	0.14	11	5	ND	1	19	1	2	2	146	.26	.064	3	96	1.80	34	.23	2	4.77	.02	.03	1	2	
B6 2+005 1+00E	2	112	4	106			-	707		-	_																			-	-	
			-		.1	147	23	797		5	5	ND	1	17	1	2	2	152	.32	.044	2	215	3.31	28	.29	2	4.15	.03	.02	t	1	
B6 2+005 1+50E	2	91	9	88	.2	137	22	624		4	5	ND	1	18	1	2	3	120	.30	.032	3	158	2.15	33	.23		3.66	.02	.02	-	i	
B6 2+005 2+00E	4	78	6	106	.3	46	14	391	5.84	3	5	ND	2	23	1	2	2	128		.033	4		1.05	32	.16		3.17			1		
B6 2+00S 2+50E	6	418	6	125	.2	68	18	1151	7.05	3	5	ND	1	28	1	2	2			.022	3	77		31				.01	.02	1	2	
B6 2+005 3+00E	3	747	6	77	.4	86	24	836	6.38	7	5	ND	2	75	1	2	2			.037					.19		3.02	.01	.01	3	1	
											-		-		•	4	4	101	1,23	.431	4	116	2.38	69	.35	2	5.36	.01	.03	1	1	
B6 3+005 6+50W	4	85	8	99	.2	43	17	959	6.05	8	5	ND	2	25		7	2	100	25		-											
STD C/AU-S	21	61	35	135	7.1	67		994		39	18	7			1	3		128		.148	5		1.05		.11		4.36	.02	.05	1	3	
			••			.,	21	117	J. //	31	10	'	36	49	17	14	21	64	.49	.083	36	57	.89	184	.08	35	1.74	.06	.13	13	51	

Page 17

1

٩,

(

(

(

C

C

(

C

€

¢

C

C

(

(

ζ

(

(

C

(

SAMPLE	MO PPN	CU PPN	PB PPN	ZN PPK	A5 PPM	NI PPM	CO PPN	MN PPN	FE X	AS PPM	U PPN	AU PPM	TH PPM	SR Ppn	CD PPK	SB PPM	B1 PPN	V PP N	CA I	ף ג	LA PPH	CR PPN	M6 X	BA PPH	TI X	B PPM	AL X	NA Z	K Z	W PPK	AU‡ PPB	(
86 3+005 6+00N 86 3+005 5+50N	2	75 103	10 12	93 115	.3 .3	48 73	21	1020	6.11	8 4	5 5	ND ND	1 2	22 35	1	2 2	2 2	119 133	.20 .33	.090	6 4	75 108	1.16	79 69	.14	2	3.94 4.56	.02	.05	1 1	1 1	(
BG 3+00S 5+00N BG 3+00S 4+50W BG 3+00S 4+00N	2 3 2	196 457 1186	8 10 2	113 88 133	.3 .4 .5	117 136 60	23 27 26	786	6.19 5.72 5.62	10 8 12	5 5 5	ND ND ND	1 2 2	35 41 70	1 1 1	2 2 2	2 2 2	129 158 123	.50 .59 .63	.170 .032 .289	4 6 4		2.50 2.51 1.81	54 65 29	.20 .15 .22	2	4.52 4.77 6.01	.01 .01 .01	.05 .05 .03	1 1 1	2 1 1	(
BG 3+005 3+50W BG 3+005 3+00W	2	778 1822	B 8	169 139	1.3	46 47	29 19	642	6.11 5.81	4	5 5	ND ND	2	67 37	1	2 2	2 2	110 140	.76	.124	4 8	101	1.42	42 43	. 25	2	3.09	.01	.03	1	3 2	(
B5 3+005 2+50N BG 3+005 2+00N B5 3+005 1+50N	2 1 1	228 74 212	6 8 12	122 102 93	.3 .3 .2	92 66 72	24 23 18	1220 548 606	6.11	2 2 8	5 5 5	ND D ND	2 2 1	46 43 29	1 1 1	2 2 2	2 2 2	162 141 137	.95 .58 .52	.140 .049 .064	6 6 4	94	2.55 1.41 2.25	66 37 33	.25 .23 .30	2	5.02 3.82 4.17	.02 .01 .04	.05 .03 .04	1 1 1	1 2 1	Ċ
8G 3+00S 1+00W 8G 3+00S 0+50W 8G 3+00S 0+00W	1 1 1	705 195 181	10 12 12	191 158 99	.3 .3 .2	49 73 51	11 17 13		4.56 6.59 6.57	8 2 6	5 5 5	ND ND ND	2 1 2	30 47 18	1 1	2 4 2	2 2 2	113 165 153	.32 .93 .20	.090	6 4	155	1.44	33 25 28	.25	2	5.49	.02	.03	1	1 1	C
BG 3+005 0+50E BG 3+005 1+00E	2 3	206 215	12 10	95 129	.2 .5 .3	33 71	10 16	430	8.40 7.77	6 8	5 5	ND ND	2 2 1	14 17	1 1	2 2 2	2 2 2	133 178 169	.15 .19	.189	4 4 4	111 111 161	1.41 .83 1.41	29 33 34	.27 .23 .20	2	5.10 5.26 5.85	.02 .02 .02	.04 .04 .03	1	2 3	C
B6 3+005 1+50E B6 3+005 2+00E B6 3+005 2+50E	2 2 1	184 315 143	8 10 6	81 108 102	.3 .7 .3	37 58 30	10 17 14	484	6.14 7.75 6.06	4 2 2	5 5 5	ND ND ND	2 2 1	27 31 32	1 1 1	2 2 2	2 2 2	151 186 145	.26 .38 .47	.068	4	105	1.10 1.36 .69	23 30 28	.29 .60 .20	2	5.17 4.22 3.42	.02 .03 .01	.03 .03 .02	1	1 1 1	(
B6 3+005 2+75E B6 3+005 3+00E	1	68 78	14 18	63 63	.3	49 22	15 6	640 464	5.72	4	5 5	ND ND	1 1	30 40	.1	2	2 2	154 132	.79	.052	4		1.61	15 15	.54	2	2.79	.01 .01	.02 .02	1 1	1 28	C
BG 4+00S 2+00W BG 4+00S 1+50W BG 4+00S 1+00W	1 1 1	326 600 385	10 8 8	80 132 181	.2 .4 .2	61 84 60	16 23 20	852	7.10 5.86 5.44	4 4 6	5 5 5	ND ND ND	1 1 1	29 39 29	1 1 1	2 2 2	2 2 2	148 139 138	.44 .80 .74	.065	4 4 4	122	1.94 2.64 2.03	34 31 26	.23 .45 .44	2	3.94 4.15 3.44	.03 .03 .04	.06 .05 .04	1 1 1	1 1 1	C
B6 4+005 0+50W B6 4+005 0+00W	1 2	180 269	8 8	130 117	.3	89 77	23 18		6.49	2 12	5 5	ND ND	2 2	31 22	1 1	2	2	150 140	.60	.077	4	130	3.15 2.01	27 41	.42	2	4.86 5.36	.04 .02	.05	1	2 1	C
B6 4+005 0+50E B6 4+005 1+00E B6 4+005 1+50E	1 1 1	117 210 304	8 12 12	80 134 155	.4 .2 .3	39 63 46	11 17 63	622	5.94 5.87 5.19	6 8	5 5 5	ND ND ND	1 2 2	18 36 37	1 1 1	2 2 2	4 2 2	132 131 126	.22 .33 .48	.089	4	90 100 77	1.68	27 34 53	.19 .29 .31	2	3.97 5.13 5.17	.02 .02 .02	.03 .04 .03	1 1 1	2 1 1	C
B6 4+005 2+00E B6 4+005 2+50E	3 17	402 380	14 10	235 313	.2 .3	105 80	36 59	820		8	5 5	ND D	4 2	24 55	1 2	2	2	159 161	.27 .95	.112	. 6 22	96		44 47	.28 .48	2	7.18 3.68	.02 .01	.04	1 1	2 4	C
BG 4+00S 3+00E BG 5+00S 6+50W BG 5+00S 6+00W	1 2 1	229 1019 132	8 8 12	68 127 90	.4 .4 .2	64 134 89	19 25 24	1134	6.24 6.01 6.28	6 10 6	5 5 5	ND ND ND	1 1 2	33 39 35	1 1 1	2 2 2	2 2 2	135 112 134	1.44 .48 .26	.195	2 4 6	176	1.92 2.34 2.38	17 35 70	.51 .23 .23	2	3.54 4.78 4.08	.01 .01 .02	.02 .03 .05	1 1 1	1 1 6	C
BG 5+00S 5+50W BG 5+00S 5+00W	1 2	246 191	8 6	103 112	.4 .2	108 93	28 24		6.29 5.55	6 8	5 5	DN מא	2 1	89 29	i 1	2 2	2 2	154 126	.88 .37		4	124	3.37 1.82	56 62	.49 .17	2	5.52 4.08	.01 .01	.05 .04	1	1	(
86 5+00S 4+50W STD C/AU-S	2 20	1343 58	38 38	205 138	.3 7.1	141 67	27 28		5.98 3.94	14 40	5 25	מא 8	1 35	46 49	1 17	2 16	2 20	139 58	.80 .46		36 26		3.05 .85	73 185	.24 .09		4.4 7 1.71	.01 .07	.04 .13	1 12	3 52	(

.

Page 18

1

(

(

ł.

SHANGRI-LA MINERALS	PROJECT-BLUE	GROUSE	FILE #	87-2039
---------------------	--------------	--------	--------	---------

Sample#	NO Pph	CU PP n	PB PPN	ZN PPN	AG PPN	NI PPN	CO PPM	MN PPN	FE X	AS PPM	U PPN	AU PPM	TH PPM	SR PPN	CD PPM	SB PPM	BI PPM	V PPM	CA X	P X	LA PPM	CR PPN	MG X	BA PPN	ז ז ג	B PPM	AL Z	NA Z	K Z	N Ppn	AU 1 PPB	
BG 5+00S 4+00W BG 5+00S 3+50W BG 5+00S 3+00W BG 5+00S 2+50W BG 5+00S 2+00W	1 3 2 2 2	200 551 173 887 244	2 6 8 6	113 65 81 89 108	.1 .3 .4 .1	65 38 47 59 80	24 53 15 17 20	1902 546	8.29 6.90	4 4 4 6	5 5 5 5 5	ND ND ND ND	1 1 1 2 1	48 121 45 52 37	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	150 115 235 194 132	.92 1.59 .32 .38 .43	.086 .110 .052	6 8 4 4 4	73 83 93	1.88 .97 1.06 1.26 1.46	32 38 23 39 51	.32 .19 .43 .46 .28	2 2 2	4.22 5.51 3.12 4.12 3.92	.01 .01 .02 .02 .02	.02 .04 .03 .04 .03	t 1 1 1	1 1 2 3 1	
86 5+005 1+50M 86 5+005 1+00M 86 5+005 0+50M 86 5+005 0+00M 86 5+005 0+50E	1 2 3 2 1	74 654 566 222 255	4 8 6 10 8	45 203 105 93 97	.1 .1 .1 .1	23 60 51 33 52	8 17 35 42 19	388 546 698 2334 420	4.98 6.30 4.45 5.62 5.94	2 2 6 2 2	5 5 5 5 5	ND ND ND ND	1 1 2 1 2	40 30 18 43 33	1 1 1 1	2 2 2 2 2	2 2 2 2 2	135 170 110 157 156	.45 .34 .20 .42 .29	.080 .129	4 4 12 4 4	37 92 81 61 96	.43 1.39 .92 .83 1.17	27 34 34 40 50	.24 .47 .22 .38 .35	2 2 2	2.24 5.60 7.32 3.65 5.30	.02 .02 .02 .02 .02	.02 .03 .02 .03 .03	3 3 1 1	1 2 1 2 2	
B6 5+00S 1+00E B6 5+00S 1+50E B6 5+60S 2+00E B6 5+00S 2+50E B6 5+00S 3+00E	2 2 1 1	101 291 296 26 248	8 14 16 10 14	64 81 124 38 80	.1 .2 .2 .2	36 53 49 9 57	10 15 57 5 15	390 604 4460 404 616	5.73 6.56 8.01 4.65 6.00	2 6 2 4 4	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	48 25 94 59 29	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	156 166 211 159 145	.37 .32 .70 .54 1.37	.053 .119 .033	4 4 6 4 2	67 85 63 26 92	.80 1.13 1.16 .45 1.55	26 39 74 26 24	.30 .29 .63 .27 .38	2 2 2	2.75 3.66 3.48 1.42 3.31	.02 .02 .03 .01 .01	.02 .03 .04 .02 .01	1 1 1 2 1	1 2 1 1	
BE 6+005 6+35W BE 6+005 6+00W BE 6+005 5+50W STD C/AU-S BE 6+005 5+00W	4 3 21 2	223 243 124 59 125	18 14 14 38 10	159 149 76 134 98	.3 .4 .2 6.8 .3	91 104 116 67 78	21 25 28	2912 1548 1470 974 1734	6.34 5.79 3.85	40 28 18 42 12	5 5 5 25 5	ND ND ND 7 ND	2 1 1 34 2	37 51 26 47 25	2 1 1 16 1	2 2 16 2	2 2 2 18 2	208 184 139 63 137	.46 .53 .38 .47 .31	.232 .081 .084	14 6 4 36 4	105	1.73 1.54 2.00 .86 1.80	81 91 67 168 65	.15 .13 .13 .09 .21	2 2 34	3.74 4.84 3.35 1.67 4.60	.02 .01 .01 .06 .02	.12 .06 .05 .13 .05	1 2 1 14 1	17 4 13 52 70	
BG 6+005 4+50W BG 6+005 4+00W BG 6+005 3+50W BG 6+005 3+00W BG 6+005 2+50W	2 2 2 2 1	143 178 503 236 86	4 2 6 10 14	89 85 99 84 48	.1 .2 .3 .2 .3	115 145 83 56 20		834 1066 998 1250 1482	6.44 7.80	6 4 4 6	5 5 5 5 5 5	ND ND ND ND	1 1 1 1	37 58 89 73 70	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	142 155 144 126 131	.62 1.14 4.43	.080	4 4 2 2	153	2.22 3.04 2.71 1.69 .60	94 40 29 34 53	.21 .42 .38 .30 .53	2 2 2 2	3.64 5.02 5.98 4.79 1.63	.01 .02 .01 .01 .03	.04 .03 .03 .03 .03	1 2 4 2 1	2 2 1 1 1	
BG 6+00S 2+00W BG 6+00S 1+50W BG 6+00S 1+00W BG 6+00S 0+50W BG 6+00S 0+00W	1 1 2	150 330 348 415 393	8 8 16 14	81 228 78 142 86	.3 .1 .2 .2 .1	41 72 28 51 50	17 37 13 25 17	864 1256	4.74	2 4 2 4 4	5 5 5 5 5 5	NO ND ND ND	1 1 1 1	39 63 41 52 35	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	117 118 161 157 188	.49 .74 .69 .83 .40	.052 .133 .072	4 6 2 4 4	58 54 39 67 81	.67 1.43 .76 1.41 1.34	64 73 29 44 36	.32 .30 .44 .38 .48	2 2 2	2.53 2.92 3.40 4.01 5.02	.02 .02 .05 .02 .03	.03 .04 .03 .05 .03	2 1 2 1 2	1 2 28 1 7	
B6 &+005 0+50E B6 &+005 1+00E B6 &+005 1+50E B6 &+005 2+00E B6 &+005 2+50E	1 2 1 1 2	122 78 133	56 8 14 16 6	80 61 66 53 62	.1 .2 .1 .2 .3	29 50 29 36 27	18 15 13 19 9	818 844	5.75 5.35	6 2 2 4 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	41 57 26 45 42	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	153 168 166 128 186	.62 .63 .60 .54 .64	.068 .061 .080	4 2 4 6 4	50 76 50 58 73	.64 1.41 .76 .89 .62	65 25 28 27 24	.29 .42 .47 .28 .45	2 2 2	2.04 2.97 2.75 2.42 2.23	.02 .03 .04 .02 .01	.03 .03 .03 .03 .01	1 1 1 1	1 1 3 1	
BG 6+00S 3+00E BG 7+00S 5+50W		146 107	12 8	105 79	.3 .1	94 72	32 19	1542 860	8.07 6.19	2 8	5 5	ND ND	1 2	28 24	1 1	2 2	2 2	207 137	1.15	.036 .144	2 6	144 102	2.29 1.77	42 62	.52 .18	-	3.61 4.40	.01 .02	.02 .03	2 1	1 2	

.

Page 19

Ŀ

(

C

(

Ċ

1

(

(

(

0

Ċ

0

0

ï

í,

ć

SHANGRI-LA MINERALS PROJECT-BLUE GROUSE FILE # 87-2039

															-60	uc i	SKUC	ISE	ΡŢ	LE #	87-	-200	39									-
SAMPLE#	NO PPM		PB			NI	CC			AS	U	ΔŲ	ĨH	SR	CD	58	BI														1	Page 20
	666	I PPN	PPN	PP	I PPK	PPN	PP	i PPI	1 2	PPN	PPN	PPM	PPH	PPN	PPN						° L4	-	R NG	BA	11	1	3 AL	NA	ĸ	¥	AU	
												••••			rrn	PPN	PPN	PPI	ñ '	2 2	C PPH	I PP	n z	PPN	Z	PP				PPN		
86 7+005 5+00W	1	137	12	96	5 .1	108	22	> 70/	6.49	10	5		-												-			*	*	rrn.	ppb	
B6 7+00S 4+50W	1	1134	8	105		59	20					ND	3	25	1	2	2	143	3.2	1.113	5 4	12	9 2.60	61	75							
86 7+005 4+00w	4	3825	10			57				10	5	ND	3	22	1	2	2	128	3 4.0						.25		5.36		.05	1	3	
86 7+00S 3+50W		952	4				28		9.06	6	5	ND	2	87	1	2	2	88				-				2	3.82	.01	.03	3	6	
86 7+005 3+00W					. –				6.48	2	5	ND	2	57	1	2	2	119			•		0 1.55		.17		3.28		.04	4	8	
00 11003 31004	1	718	2	97	.1	90	22	928	6.30	8	5	ND	2	48	1	2						- 11	1 2.93	37	.26	2	5.51	.01	.03	1	1	
DC 7:000 D.C.													-		1	4	2	133	.7(.065	6	12:	2 1.96	57	.26		5.28	.01	.03	i	8	
86 7+00S 2+50W	1	50	8		.1	7	8	438	4.70	2	5	ND	2	40		•												•••		1	0	
B6 7+005 2+00W	2	455	8	97	.4	15	17			4	5	ND	-	60	1	2	4	98		2 .047	6	21	.53	15	.22	2	1.87	.01	03	~	-	
B5 7+00S 1+00W	1	637	8	64	.3	27	25				-		2	69	1	2	2	122	.67	.236	4	29		26	. 19		6.66		.02	2	2	
8G 7+00S 0+50W	2	399	4			45				2	5	ND	1	91	1	2	2	202	1.20	.069	4	29		39				.01	.05	1	2	
B6 7+00S 0+00W		235	2		•••				5.47	2	5	ND	2	68	1	2	2	157							.56		3.75	.05	.04	1	17	
	•	200	2	/1	.1	39	14	484	5.42	2	5	ND	2	49	1	2	2	151				50		39	.42	- 4	4.71	.02	.04	1	2	
8G 7+00S 0+50E																•	•	151		.087	4	53	1.05	27	• 42	2	6.94	.03	.04	1	ß	
		145	4	75		37	15	656	5.06	2	5	ND	2	30	,	2	~													•	•	
B6 7+005 1+00E	1	573	2	78	.1	62	19	462	5.85	4	5	ND	2	37	1	2	2	133			4	48	.97	38	.46	2	4.44	.03	.04	1		
BG 7+00S 1+50E	1	49	- 4	57	.1	27	11		3.66	2	5				1	2	2	144		.100	2	83	1.43	26	. 44		6.48	.03	.03	-	4	
B6 7+00S 2+00E	1	296	2	69	.1	68	19			-		NÐ	2	55	1	2	2	95	.70	.034	4	42		31	.35		2.26			1	2	
BG 7+00S 2+50E	1	177	6	54	.1	27				4	5	ND	2	43	1	2	2	165	.66	.072	2	97		29	.55			.03	.03	1	2	
			•	0,	• 1	27	10	1174	4.91	2	5	ND	1	57	1	2	2	152			4	26					5.75	.03	.03	1	5	
BG 7+00S 3+00E	2	269	8	54		••															۲	10	.76	50	.35	4	3.99	.03	.03	1	10	
B6 8+005 5+00W	2			90	.1	90	24			2	5	ND	2	71	ſ	2	2	151	1 22	477												
B6 8+005 4+50K			16	158	.1	70	21	1330	6.22	8	5	ND	2	45	i	2	2				4		2.35	60	.42	- 4	4.60	.02	.02	5	3	
	1		4	79	.1	45	13	808	5.06	4	5	ND	1	30	1			139	.92		- 4	93	1.64	43	.21	4	3.43	.01	.05	1	2	
86 8+005 4+00W	3	229	4	142	.2	107	23	826	6.05	10	5	ND	2		1	2	2	122	.46		- 4	88	.97	50	.16		2.55	.01	.04	2	3	
B6 8+005 3+50W	2	2125	14	386	.7	84	27	3480		10	5	ND	4	36	1	2	2	128	.51	.143	6	101	1.89	80	.20		5.59	.01	.05			
										10	3	NU	1	83	2	2	2	90	5.78	.043	4	73	1.85	36	.16		3.02			1	3	
BG 8+005 3+00¥	1	279	8	201	.1	35	17	2244	E 40		-													00	• • • •	2	3.02	.07	.03	2	8	
B6 8+00S 2+50W	1	133	12	100	.1			2204		12	5	ND	1	27	1	2	2	81	1.43	.114	6	49	01	۰.		-						
B6 8+005 2+00W	1		6			47		3128		36	5	ND	1	34	i	2	2	91	.63	.098	-		.81	71	.20		3.78	.01	.02	1	1	
B6 8+005 1+50W				104	.1	47		1530		6	5	ND	3	29	1	2	4	96			4	70		56	.21	2	4.36	.01	.05	1	2	
	1	127	10	136	.2	50	16	3174	4.79	10	5	ND	2	27	1	2	•		.37	.117	6		1.54	90	. 18	2	6.22	.01	.07	1	2	
86 8+00S 1+00W	1	22	14	89	.1	8	10	994	4.75	28	5	ND	2	19			2	99	.29	.141	- 4	- 74	1.24	90	.15		4.99	.02	.08	1	1	
•• • • • •											•		4	17	1	2	2	53	.24	.076	8	16	.71	73	.08		3.21	.01	.07	1	-	
86 8+00S 0+50W	1	57	6	69	.1	26	10	620	4.26	4	5	10														-		•••	.07	1	2	
BG 8+005 0+40W	1	191	6	94	.1	26	20		5.67	7	-	ND	1	66	1	2	2	103	.64	.103	4	48	. 68	37	. 33	,	2 27	<u>^</u>				
B5 8+005 0+00W	1	394	2	77	.1	48				2	5	ND	1	71	1	2	2	163	.77	.054	6	31	.97	40	.46		2.23	.02	.04	1	16	
B6 8+00S 0+50E	1	140	12	80	.1	31		1070		6	5	NÐ	2	37	1	2	2	171	.75	.134	4		1.46				4.43	.02	.03	i	4	
B6 8+005 1+00E		149	4	92				1438		2	5	ND	2	56	1	2	2	151	.93	.061	4			31	.54		5.44	.04	.03	1	5	
	•	147	7	72	.1	40	16	624	5.39	2	5	ND	1	40	1	2	2	146				40	. 88	46	.54	4	3.09	.04	.03	1	4	
B6 8+005 1+50E		242													-	-	4	110	•/1	.054	4	54	.94	42	.51	2	3.58	.04	.05	1	1	
B6 8+005 2+00E	1	202	14	106	-1	55	20	706	6.11	6	5	ND	1	60	1	2	5													-	•	
	2	121	8	94	.1	37	15	514		2	5	ND	2	50	-		2	158		.077	4	73	1.27	35	.52	4	4.67	.03	.04	1	4	
86 8+00S 2+50E	1	352	8	111	.1	72	19		6.36	4	5	ND	2		1	2		120		.057	4	55	.91	38	. 45		3.50		.04	-	4	
B6 8+005 3+00E	1	334	12	107	.1	99	26		7.26	2	5			42	1	2	2	152	.99	.085	4	109	1.85	31	.45		5.12			1	1	
BG 9+00S 5+50W	1	100	6	83	.1	21		1008		12	ວ 5	ND	2	66	1	4	2	194	1.14	.046	4	152			.58		5.01		.03	1	1	
					-				0.07	12	a	ND	2	96	1	2	2	135	1.12	.064	10		1.63		.26				.03	2	2	
B6 9+005 5+00W	í	105	10	77	.2	42	12	54/	1 67		-													1.3	.20	0	3.80	.01	.06	1	1	
STD C/AU-S	20	59	38	134	6.8	67		506	7.33	4		ND	1	70	1	2	2	102	1.16	.083	8	63	74	<i>i</i> n								
						07	28	994	4.01	40	20	7	34	48	17	16	22		.48		36	63 57	.74		.18		2.92		.04	1	1	
																					50	27	.91	181	.08	38	1.84	.06	.14	12	51	

€

C

(

(

(

1

1

:

(

Ć

Ċ

(

€

(

€

€

€

€

(

SHANGRI-LA MINERALS PROJECT-BLUE GROUSE FILE # 87-2039

SAMPLE	NO PPK	CU PPK	PB PPM	ZN PPM	AG PPM	NI PPM	CO PPN	nn Ppk	FE X	as Ppr	U PPN	AU Ppm	TH PPN	SR Ppm	CD PPN	SB PPN	BI PPM	. V PPN	CA ۲	P Z	LA PPN	CR PPH	K6 X	BA PPM	TI X	B PPN	AL Z	NA X	K Z	N PPN	AU t PPB
85 9+005 4+50N	3	152	13	141	.3	107	18	914	5.20	6	5	ND	1	40	1	2	2	112	.60	.058	5	82	1,29	87	.16	2	3.04	.01	.02	,	2
85 9+005 4+00W	1	60	41	92	.2	46	15		4.93	2	5	ND	1	19	i	2	2	108	.30	.095	3	80	.71	72	.13		2.47	.01	.02	t	1
BG 9+005 3+50W	2	600	14	202	.3	98	29	1831	6.15	11	5	ND	1	46	1	2	2	111		.062	7		1.92	77	.17		3.28	.01	.03	1	1
B6 9+005 3+00W	1	129	8	119	.2	75	20	1325	4.66	2	5	ND	1	15	1	2	2	98	.50	.105	3		1.41	89	.14		3.26	.01	.02	1	1
86 9+00S 2+50W	1	38	13	89	.2	31	22	4710	3.58	3	8	ND	1	20	1	2	2	105	.43	.098	5	47	.64	236	.30		1.96	.01	.03	1	24
B6 9+005 2+00W	1	177	11	102	.1	70	25	944	6.40	2	5	ND	1	20	1	2	2	186	. 31	.061	5	99	1.33	94	. 43	2	4.08	.02	. 02	1	,
85 9+005 1+50W	i	128	10	66	.1	42	15		4.75	2	5	ND	1	19	1	2	2	116	.22	.065	7	58	.97	74	.14		3.61	.02	.02	1	2
B5 9+005 1+00W	1	212	15	90	.1	33	19		5.67	2	5	ND	i	57	1	2	3	140	. 22	.098	4	53	1.74	125	.27		4.50	.02	.01	1	1
86 9+005 0+50W	1	125	8	86	.1	26	13	484	4.51	3	5	ND	1	22	1	2	2	94	.23	.069	3	36	.89	60	.20		2.90	,02	.02	i	1
B5 9+005 0+00W	6	249	13	137	.3	29	15	930	5.14	9	5	ND	1	21	1	2	2	111	.24	.067	3	45	. 68	56	. C B		2.53	.02	.03	i	1
B6 9+00S 0+50E	3	213	14	97	.1	49	29	1212	5.10	2	5	ND	3	105	1	2	2	176	.52	.041	8	62	1.23	248	.42	2	3.27	.02	.04	1	,
85 9+005 1+00E	1	46	12	99	.2	34	12	750	3.98	6	5	ND	1	21	i	2	2	82	.32	.061	5	41	.71	140	.04		3.14	.01	.05	í	1
B6 9+005 1+50E	1	122	16	114	.1	44	20	3843		3	5	ND	2	30	1	2	2	97	.37	.145	Ā	50	.90	122	.24		2.90	.02	.05	i	i
B6 9+005 2+00E	2	157	9	91	.1	43	14	733	5.10	2	5	ND	1	32	1	4	2	135	. 49	.122	2	65	.99	26	.42		3.12	.02	.02	2	1
B6 9+00S 2+50E	3	459	4	119	.3	119	26	788	6.65	2	5	ЯD	2	31	1	2	2	173	.67	.081	2	158	2,57	23	.44		4.89	.02	.02	1	1
B6 9+00S 3+00E	1	849	6	123	.4	157	25	743	5.97	2	11	ND	2	30	ſ	2	2	157	. 67	.037	2	256	2.19	35	.41	2	3,95	.01	.03	1	
STD C/AU-S	20		43	142	7.0	70	29		3.87	43	24	7	36	50	18	15	19	67	,47	.088	37	56	.89	190	.09		1.73	.07	.14	13	48

Page 21

¢

(

(

(

(

(

(

(

C

•

€

€

C

(

C

(

Ć

C

Ċ

ć

 $\mathbf{a}^{(1)}$

SHANGRI-LA MINERALS PROJECT-BLUE GROUSE FILE # 87-2039

į

SAMPLE	NO CU PPN PPN	PB PPN	ZN PPM	AG PPN	NI PPN	CO PPM	NN PPN	FE	AS PPR	U PPM	AU PPN	TH PPM	SR PPN	CD PPM	SB PPM	B1 PPM	V PPN	CA	P	LA PPM	CR PPN	KG	BA PPM	11	B	AL	NA	ĸ	¥	AUT
	• • • • • • • • • •				110			^	L1D	1710	rr n	τ e μ	1 r n	FLU	rra	rrn	rrn	4	*	rrn	ren	4	rrn	4	PPN	4	7	1	PPK	PPB
86-1	2 36023	10	773	40.9	17	53	956	9.34	14	5	ND	t	5	4	2	2	43	3.61	.006	2	3	.22	5	.02	4	.30	.01	.01	1	,
86- 2	2 633	24	209	.5	317	71		7.05	32	5	ND	1.	106	1	2	2		1.39	.024	2	361	2.93	12	.21		3.84	.01	.03	· ·	, τ
B6-3	1 609	2	22	.4	105	33	468	2.59	10	5	ND	1	58	1	2	2		2.59	.055	2	108	.35	74	.02		1.52	.01	.16	;	ĩ
B5-4	5 5322	12	54	3.3	14	13	2004		8	5	ND	1	10	i	2	2		18.04	.010	2	3	.14	28	.01	2	.27	.24	.01	4	1
86-5	4 50181	12	259	17.6	61		1338		70	5	ND	1	28	3	4	2		8.86		2	18	.31	37	.06	2	.83	.19	.03	ì	3
										-						-				-			•,		-		•••		1	5
B6-6	4 239	8	16	.2	1	3	2148	13.08	12	5	ND	1	4	1	2	2	22	16.85	.001	2	1	.05	10	.01	2	.18	.23	.01	8	1
BG-7	5 12766	8	233	9.1	15	24	2106	13.93	34	5	ND	1	5	1	2	2				2	4	.10	7	.01	2	.22	. 22	.01	16	8
B6-10	3 9613	6	373	2.4	25	38	1154	6.72	14	5	ND	1	17	1	4	2	129		.052	4	115	2.45	1	.12	-	2.36	.02	.01	1	1
B6-11	6 1700	10	20	.5	18	8	2464	12.14	8	5	ND	1	2	1	2	2	12	15.28	.027	2	1	.09	4	.01	2	.36	.23	.01	1	2
B5-12	6 5895	10	44	1.0	25	ò	2636	13.02	6	5	ND	1	7	1	2	2		13.63		2	7	.40	5	.02	2	.64	.22	.01	3	7
																				_					-			•••		•
86-13	3 6955	12	74	2.3	9	18	1348	4,79	4	5	ND	2	102	t	2	2	53	3.29	.084	8	2	1.27	9	.23	4	2.28	.01	.04	1	6
B5-14	10 12894	4	93	1.7	5	19	1750	5.82	16	5	ND	1	6	1	2	2				2	1	.21	1	.01	2	.09	.01	.01	i	1
B6-15	4 11013	34	11766	8.9	3	43	978	15.19	74	5	DN	2	5	64	4	2		1.45		2	1	.22	2	.02	ī	.11	.01	.01	1	26
BG-16	9 8677	6	130	.1	52	12	1350		6	5	ND	1	67	1	2	2		5.86		2	31	.74	2	.07	2	1.00	.04	.01	i	2
B6-17	12 25863	8		.8	87		2584		8	5	ND	2	34	i	4	2		3.10	.020	2	56	1.74	7	.10		1.82	.01	.01	î	4
					-				-	-		-	•	•	·	-		••••		-		••••	•	•••	•			•••	. *	
B6-18	3 22510	6	141	.4	4	13	3514	9.52	4	5	ND	2	7	1	2	2	28	3.40	.016	2	3	.31	3	.01	2	.23	.01	.01	2	2
B6-19	2 1377	8	69	.3	2		2448		6	5	ND	1	5	1	2	2		12.43		2	1	,10	1	.01	2	.15	.20	.01	8	ī
B6-20	4 274	8	35	.1	ī		2280		8	5	ND	· ·	3	1	2	2		16.22		2	1	.09	i	.01	5	.11	.23	.01	6	1
86-21	4 2972	8	45	.1	2		2676		6	5	ND	÷	7	1	2	2		18.13		2	1	.05	1	.01	2	.13	.23	.01	5	1
STD C/AU-R	20 57	38	132	6.9	67	27		3.83	42	20	7	33	47	17	14	20	62	.45	.082	34	56	.85	175	.08	32		. 06	.12	12	510
	U/		•••		ω,	-/		0.00	. 2	~~	'			.,	14	20	02	4 T J		94	00	.03	717	100	52	1.00	. 00	• 1 2	12	210

ASSAY REQUIRED FOR for Cu > 10,000 Ppm

Page 22

Ĺ

(

(

(

1

(

(

(

C

0

€

C

Ć

(

C

6.

(

C

(

(

ACME ANALYTICAL LABORATORIES

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

C.

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips Aut ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE REPORT MAILED: July 6/87 ASSAYER. N. M. DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED: JUN 30 1987 SHANGRI-LA MINERALS PROJECT - BG File # 87-2089 P LA SAMPLE MΩ CU PB ZN AG NI CO MN FE AS U AU TH SR CO SB BI V CA CR Ħ6 BA 11 R AL NA AUL Х РРМ РРМ РРМ РРМ РРМ PPN PPH PPH PPN PPN PPM PPM PPM PPN PPN PPN PPM Z z PPM PPN ĩ PPN z PPH PPN PP8 7 2 2 161 13.84 112 45 24 86N-1 8 41720 10 371 14.0 31 38 -5 NÐ 1 1 2 7 .54 .056 5 .18 25 .22 3 .57 .01 .01 35 - 2 62 27 .54 .067 B6N-2 1 39789 9 124 4.7 79 129 150 7.30 120 5 ND 1 1 2 6 2 12 .18 23 .29 2 .38 .01 .01 8 t 1 140 86N-3 1 33139 12 76 3.1 B 11 507 7.55 6 7 NÐ 1 2 2 93 1.16 .066 6 11 1.07 9 .21 4 1.76 .01 .07 1 10 3 11 437 9.45 68 ND 1 129 1 2 2 97 1.07 .055 5 2 1.47 10 .24 2 2.44 .01 .02 B6N-4 1 12663 16 57 6.3 5 1 70

ASSAY REQUIRED FOR for Cu 710,000 ppm

APPENDIX D

AIRBORNE SYSTEM SPECIFICATIONS

SPECIFICATIONS: SABRE AIRBORNE MAGNETOMETER

Type: Proton Precession

Range: 20,000 to 75,000 gammas

Repetition Rate: Approximately 1.6 seconds

- **Output:** Analog meter on instrument console, 0-100 mV analog output on rear of console. Full scale deflection can be either 1000, 2500, or 5000 gammas, this being measured from a zero value selected by instrument operator depending on background field in survey area. Zero value for this survey was 57,000 gammas, with 1000 gammas full scale deflection. The analog output on the rear of the console was digitized with the CCC-Maron Remote Monitoring and Logging System and stored on one channel of a conventional stereo cassette tape deck along with the VLF-EM data and the navigational marker channel.
- **Resolution:** Resolution of instrument itself is better than 1 gamma, but recorded resolution is limited to about 4 gammas (1000 gamma full scale deflection is resolved to one part in 255 with the 8 bit CCC-Maron analog to digital converter).
- **Detector:** Kerosene-filled coil, 9 cm long x 8 cm diameter. Inductance 60 millihenries, resistance 7.5 ohms, weight 2.2 kilograms.

Operating Temperature:

Instrument: -10 C to + 60 CDetector: -40 C to + 60 C

Dimensions:

Instrument console: 30 x 10 x 25 cm, weight 3.5 kg. Towed bird: 1.7 m x 21 cm diameter, weight 30 kg. (VLF-EM antenna system is housed in bird along with mag detector).

Power Source:

2 12V 20 AH lead-acid batteries.

Manufacturer:

Sabre Electronics Ltd., Burnaby, B.C.

SPECIFICATIONS: SABRE AIRBORNE VLF-EM SYSTEM

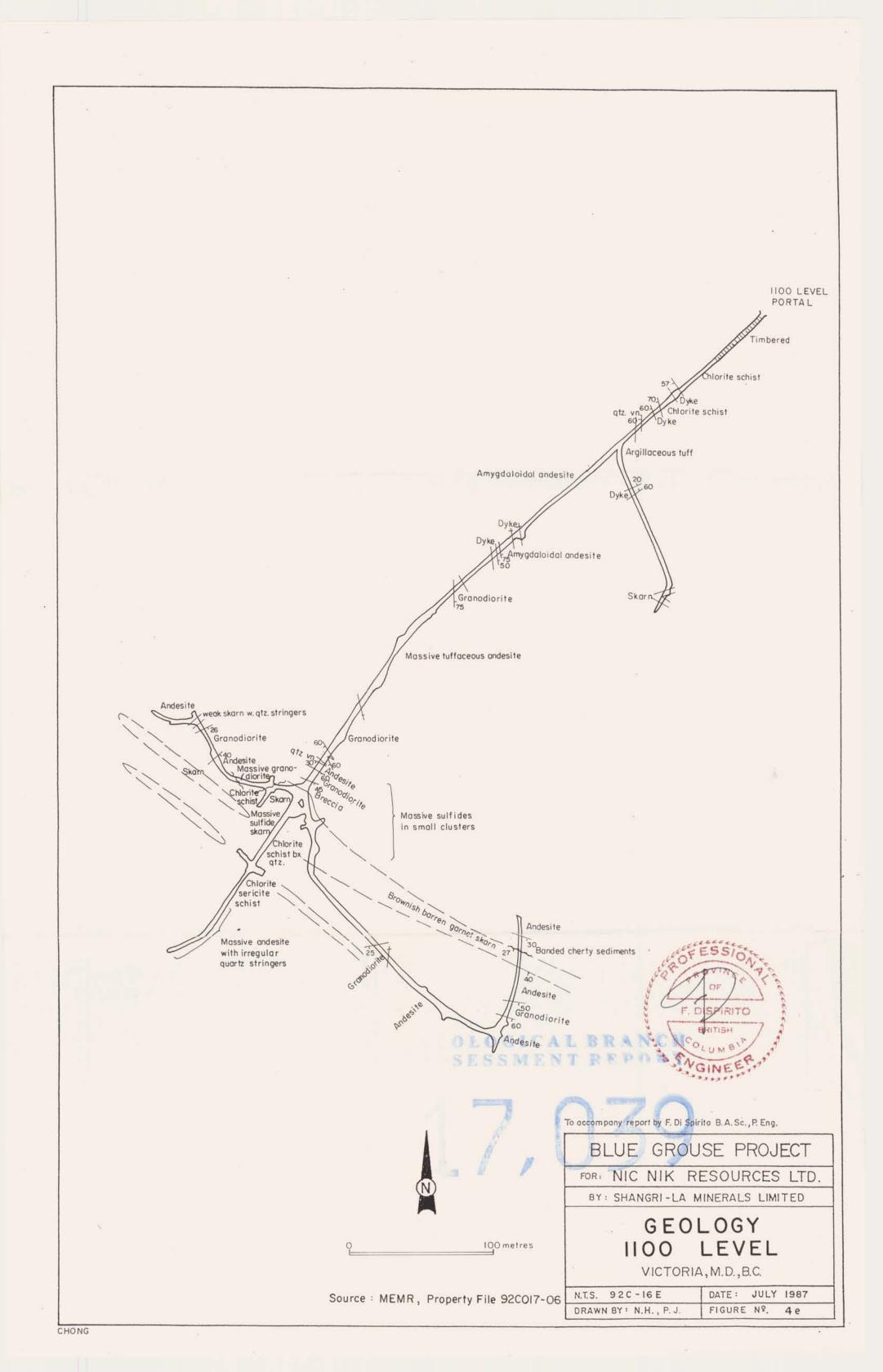
Antenna System: 2 separate omnidirectional arrays, housed in same bird as proton magnetometer detector.

- Parameters Measured: Horizontal field strength on 2 stations simultaneously (Seattle and Annapolis). Designed for use in steep terrain where dip angle information is confusing and often useless.
- Type of Readout: 2 analog meters, one for each station, and 2 analog outputs at rear of console. These analog outputs, along with those of the proton magnetometer and a marker channel, were digitized by a CCC-Maron Remote Monitoring and logging system (an 8 channel, 8 bit analog to digital converter custom manufactured by Maron Engineering Ltd., Burnaby, B.C.) and stored in multiplex format on one channel of a conventional stereo cassette tape deck.

Receiver Console: 2 separate receiver channels, both housed in 30 x 10 x 25 cm case.

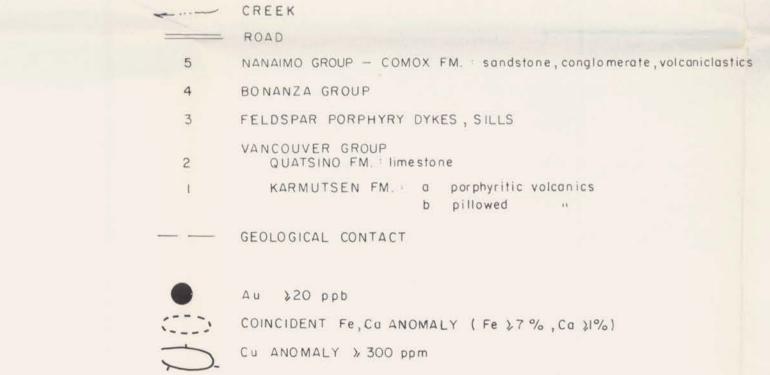
Operating Temperature Range:

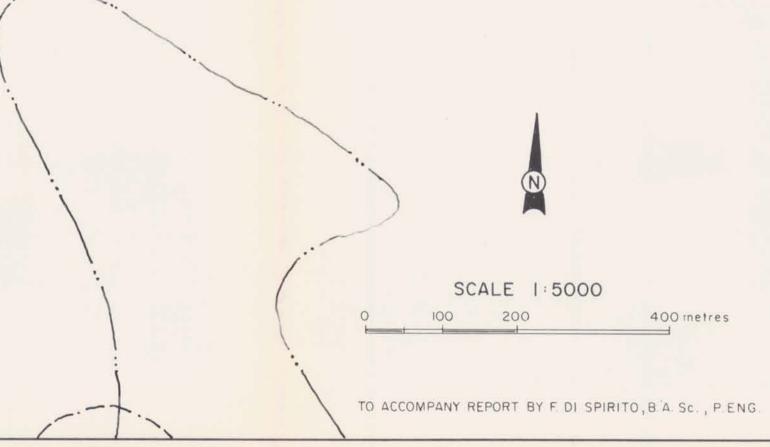

Instrument console:	-10 C to +50 C
Antenna System:	-10 c to +50 C


Power Source:

Receiver Console:	8 alkaline penlite cells with life of 100 hours.
Instrument console:	2 9V transistor batteries

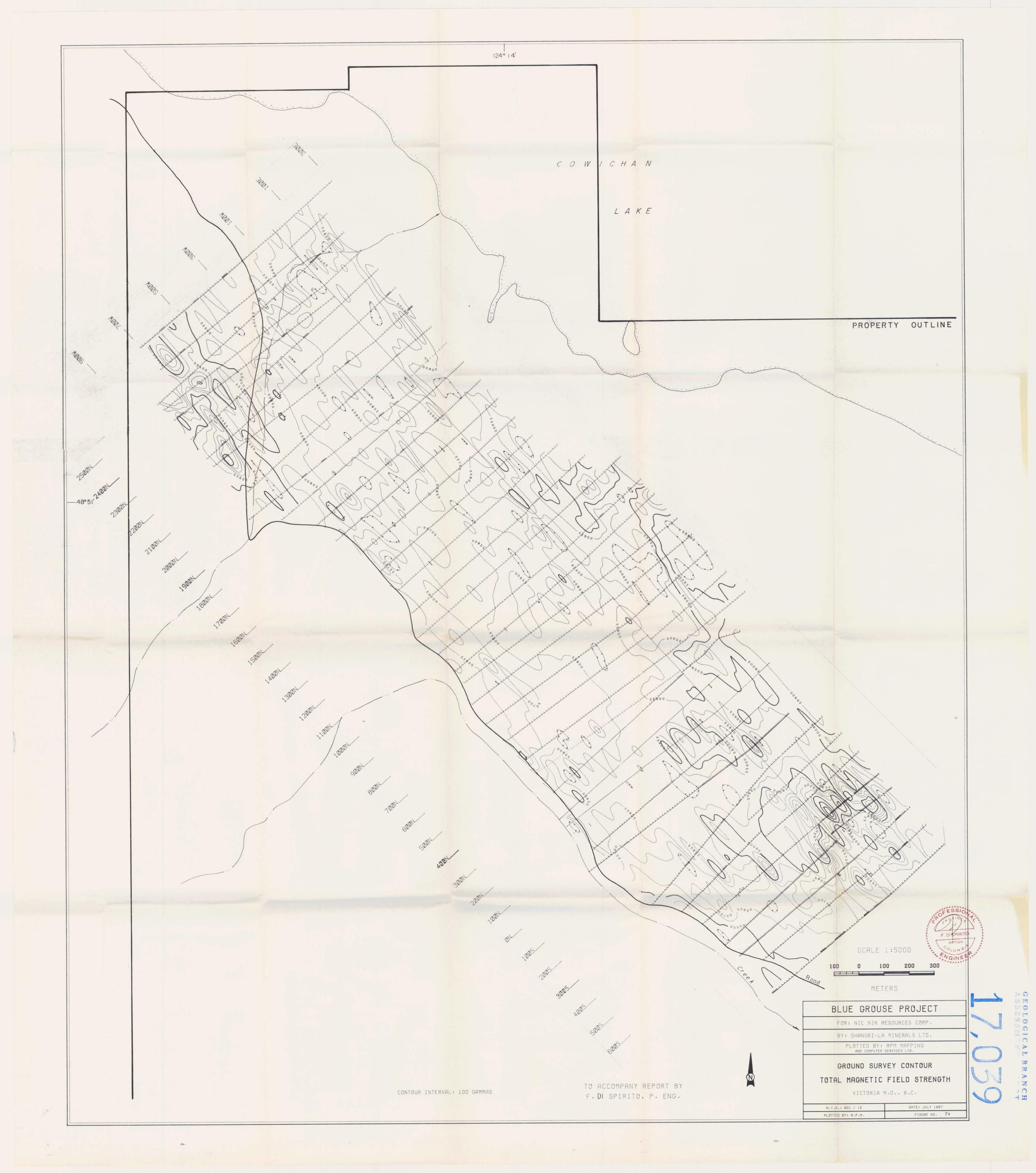
Manufacturer: Sabre Electronic Instruments Ltd., Burnaby, B.C.




 $\langle \rangle$

GROUND TOTAL MAGNETIC FIELD STRENGTH ANOMALY

VLF - E M FIELD STRENGTH ANOMALY


AIRBORNE " " "

LEGEND

2

	3×00 €
N. Id.	
y	
LOF ESSION TO	
F. DISPIRITO	
GEOLOGICAL BRANCH ASSESSMENT REPORT	
GINEEK	
a 1 59	
% LAU27	
BLUE GROUSE PROJECT	
NIC NIK RESOURCES LTD.	
SHANGRI - LA MINERALS LIMITED	
COMPILATION MAP	
VICTORIA M.D., B.C.	
N.T.S. 92C - 16 E DATE JULY 1987 DRAWN BY . N.H., H.M. FIGURE №. 9	

BLUE GROUSE PROJECT		
FE 5, 6, 7, 8, 9 %	CREEK ROAD .27, 5.47 Co, Fe IN %	a construction of the second o
BLUE GROUSE PROJECT		O IN STATESSION O IN
FOR: NIC NIK RESOURCES LT		6x00 11039
		BY SHANGRI - LA MINERALS LIMITED
SCALE I: 5000 100 200 400 metres VICTORIA M.D., B.C. N.T.S. 92C-16E DATE: JULY I		VICTORIA M.D., B.C.

~ ··· ~	CREEK
	ROAD
50, 5	Zn IN PPM, AU IN PPB
	Zn CONTOURS AT 90,135,200 PPM
	Au " 10,30,60 PPB