| LOG NO: 02 |       | RD.                                    |
|------------|-------|----------------------------------------|
| ACTION:    |       | ······································ |
|            | 10/52 | $\rangle$                              |
|            | ي     |                                        |
| FILE NO:   |       |                                        |

| SUB-RECORDER<br>RECEIVED | _    |
|--------------------------|------|
| JAN 2 7 1983             |      |
| M.R. #                   | 1    |
| VANCOUVER, B.C.          | <br> |

PRELIMINARY REPORT

ON THE

IDEAL PROJECT

#### ALBERNI MINING DIVISION BRITISH COLUMBIA

FOR

METAXA RESOURCES LIMITED Suite 13 - 1155 Melville Street Vancouver, British Columbia

NTS Sheet : 092F 6E / 7W Latitude : 49 degrees 17 minutes Longitude : 125 degrees 02 minutes

GEOLOGICAL BRANCH ASSESSMENT REPORT

R. Tim Henneberry , FGAC

Consulting Geologist October 26, 1987

FILMED

#### SUMMARY

Metaxa Resources Limited has under option 6 two-post mineral claims and 3 modified grid mineral claims totaling 1350 hectares, collectively known as the Ideal Property, in the Alberni Mining Division of Vancouver Island. The Ideal Property hosts several quartz vein/shear zones. The most important is the Ideal Vein yielding gold values to 0.875 ounces per ton over 0.40 metres from a 125 metre exposure open at both ends.

An exploration program consisting of detailed Ideal Vein sampling, property wide mapping and sampling, property wide silt sampling and detailed geochemical sampling was undertaken from April to September, 1987. Indications of important gold mineralization were obtained, as all surveys located significant anomalies.

Three potential ore shoots were outlined on the Ideal Vein. Three additional linear soil anomalies resulted from the geochemistry. All drainages tested returned gold values in the 1000 to 2000 parts per billion range.

An exploration program consisting of diamond drilling on the Ideal Vein, prospecting and examination of all anomalies and follow up trenching and diamond drilling is recommended at an estimated cost of 191,000.00

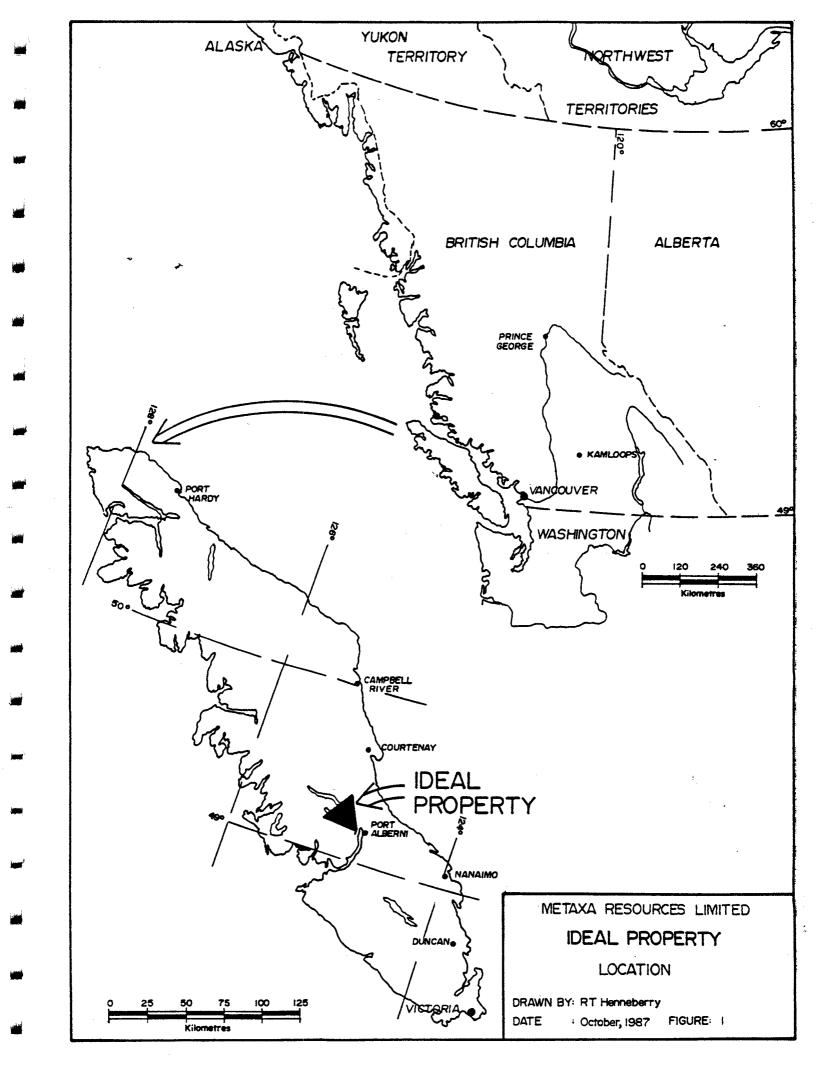
# TABLE OF CONTENTS

| INTRODUCTION 4                                              |
|-------------------------------------------------------------|
| LOCATION, ACCESS 6                                          |
| OWNERSHIP                                                   |
| HISTORY                                                     |
| REGIONAL GEOLOGY12                                          |
| 1987 PROGRAM                                                |
| Silt Sampling14                                             |
| Property Mapping and Sampling14                             |
| Ideal Vein                                                  |
| Soil Geochemistry                                           |
| Gold                                                        |
| Silver                                                      |
| Arsenic                                                     |
| Mercury                                                     |
| Lead                                                        |
| Copper                                                      |
| Copper                                                      |
| RECOMMENDATIONS                                             |
| COST ESTIMATES                                              |
| STATEMENT OF QUALIFICATION                                  |
| REFERENCES                                                  |
| APPENDIX A. Rock Sample Descriptionsrear                    |
| APPENDIX B. Soil and Silt Geochemistry Results and Mapsrear |

- ii -

LIST OF FIGURES

| Figure 1.  | Location Map5                             |
|------------|-------------------------------------------|
| Figure 2.  | Claim Map 7                               |
| Figure 3.  | Regional Geology11                        |
| Figure 4.  | Au Silt Geochemistry (ppb)13              |
| Figure 5.  | Geology15                                 |
| Figure 6.  | Assay Overlay16                           |
| Figure 7.  | Ideal Vein Geology / Assay Plan           |
| Figure 8.  | Ideal Grid Au Soil Geochemistry (ppb)21   |
| Figure 8a. | Detailed Soil Grid 122                    |
| Figure 14. | Ideal Vein Cross Section25                |
| Figure 8b. | Detailed Soil Grid 2rear                  |
| Figure 8c. | Detailed Soil Grid 3rear                  |
| Figure 8d. | Detailed Soil Grid 4rear                  |
| Figure 8e. | Detailed Soil Grid 5rear                  |
| Figure 8f. | Detailed Soil Grid 6rear                  |
| Figure 9.  | Ideal Grid Ag Soil Geochemistry (ppm)rear |
| Figure 10. | Ideal Grid As Soil Geochemistry (ppm)rear |
| Figure 11. | Ideal Grid Hg Soil Geochemistry (ppb)rear |
| Figure 12. | Ideal Grid Pb Soil Geochemistry (ppm)rear |
| Figure 13. | Ideal Grid Cu Soil Geochemistry (ppm)rear |

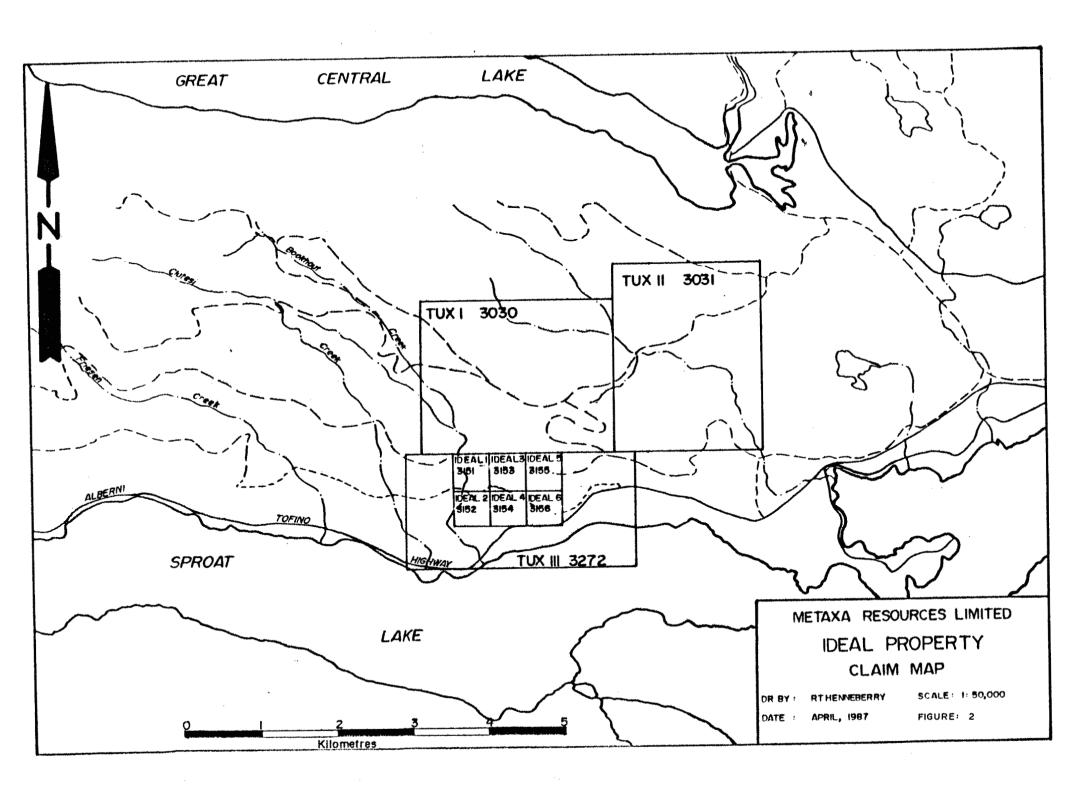

Full size copies of the following figures are located in map pockets :

Figures 4 through 8. Figures 9 through 13. -iii-

#### INTRODUCTION

The Ideal Property, consisting of 6 two-post claims and 58 contiguous units, lies within the Alberni Mining Division of Vancouver Island on the south slope of the Great Divide, the ridge between Sproat Lake and Great Central Lake. The Great Divide, hosting several mineral occurrences, has intermittently active since the been discovery of auriferous quartz sulfide veins on the Morning and Apex crown grants off the west end of Sproat Lake in the early 1900's. The resurgence of the Kennedy River Gold Belt the southwest) in (25 kilometres to the early 1980's, combined with the relatively steady price of gold has led to prospecting and re-evaluation of the quartz sulfide veins and copper showings for gold.

The purpose of this report is to document the recently completed exploration program on the Ideal Property.




#### LOCATION, ACCESS

The Ideal property is located approximately 20 kilometres west of Port Alberni, in the Alberni Mining Division of Vancouver Island (Figure 1). The claim block lies on the south slope of the Great Divide between Sproat Lake and Great Central Lake.

Access is provided by logging roads leaving the Alberni - Tofino Highway approximately 18 kilometres west of Port Alberni. Inactive logging roads criss-cross the property providing reasonable access to all points. The main showing (the Ideal Vein) lies in a road cut ditch along one of these logging roads.

Exploration is quite feasible year round, with property elevations ranging from 100 to 700 metres. Rainfall is heavy in the winter, with occasional snow at the higher elevations. A large part of the claim group has been logged with second generation timber present. Water for diamond drilling should be available from the numerous streams cutting the south slope of the Great Divide.



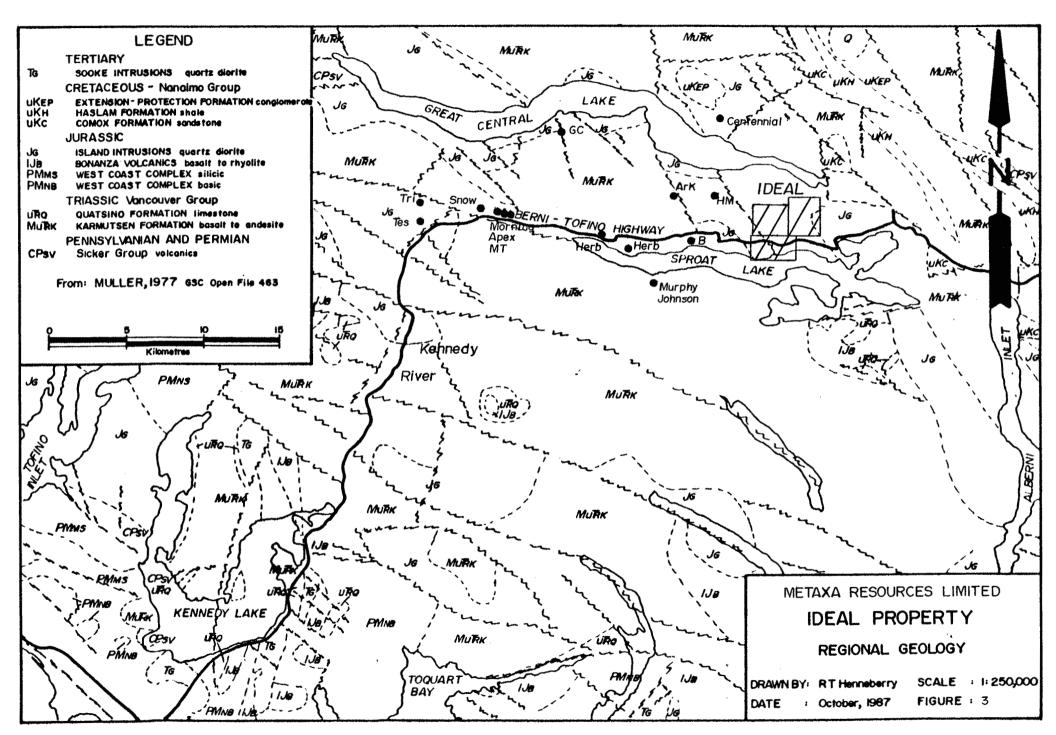
## OWNERSHIP

|               | lowing claims r<br>operty (Figure 2) |       | Metaxa Resources |
|---------------|--------------------------------------|-------|------------------|
| ₹<br><b>*</b> |                                      |       |                  |
| Name          | Record Number                        | Units | Expiry Date      |
| Tux I         | 3030                                 | 20    | November 5, 1987 |
| Tux II        | 3031                                 | 20    | November 5, 1987 |
| Tux III       | 3272                                 | 18    | July 10, 1988    |
| Ideal 1       | 3151                                 | l     | March 18, 1988   |
| Ideal 2       | 3152                                 | 1     | March 18, 1988   |
| Ideal 3       | 3153                                 | 1     | March 18, 1988   |
| Ideal 4       | 3154                                 | 1     | March 18, 1988   |
| Ideal 5       | 3155                                 | 1     | March 18, 1988   |
| Ideal 6       | 3156                                 | 1     | March 18, 1988   |

The Ideal 1 to 6 two-post mineral claims (record numbers 3151 to 3156) are held by R. Bilquist of Gabriola Island. The Tux I and Tux II mineral claims (record numbers 3030 and 3031) and the Tux III mineral claim (record number 3272) are held by Geo P.C. Services Inc. of Vancouver (Figure 2).

## HISTORY

The exploration history of the Ideal Vein has been brief. The only previous exploration program of record was carried out for Royalon Petroleum Corporation in 1985 (Caulfield and Ikona, 1985). This exploration program consisted of geological mapping and sampling concentrated primarily on the Ideal Vein. Gold values as high as 0.272 ounces per ton were obtained from selected sites along the strike of the vein. A fairly comprehensive exploration program was recommended, but a record of this program does not exist, leading to speculation as to whether it was ever carried out.


#### Regional Mineral Occurrences

| Property       | MINFI | LE     | Commodity |
|----------------|-------|--------|-----------|
| Morning        | 092F  | 119 `* | gold      |
| Apex           | 092F  | 150    | gold      |
| MT             | 092F  | 212    | gold      |
| HM (Ark)       | 092F  | 230    | gold      |
| Herb, Moon     | 092F  | 232    | copper    |
| Murphy Johnson | 092F  | 249    | gold      |
| Tri            | 092F  | 281    | copper    |
| Centennial     | 092F  | 293    | copper    |
| HM 32          | 092F  | 306    | copper    |
| HM 28          | 092F  | 307    | copper    |
| R              | 092F  | 341    | copper    |
| B, Dede        | 092F  | 356    | copper    |
| Herb           | 092F  | 362    | copper    |
| Tes            | 092F  | 391    | copper    |
| G.C.           | 092F  |        | gold      |

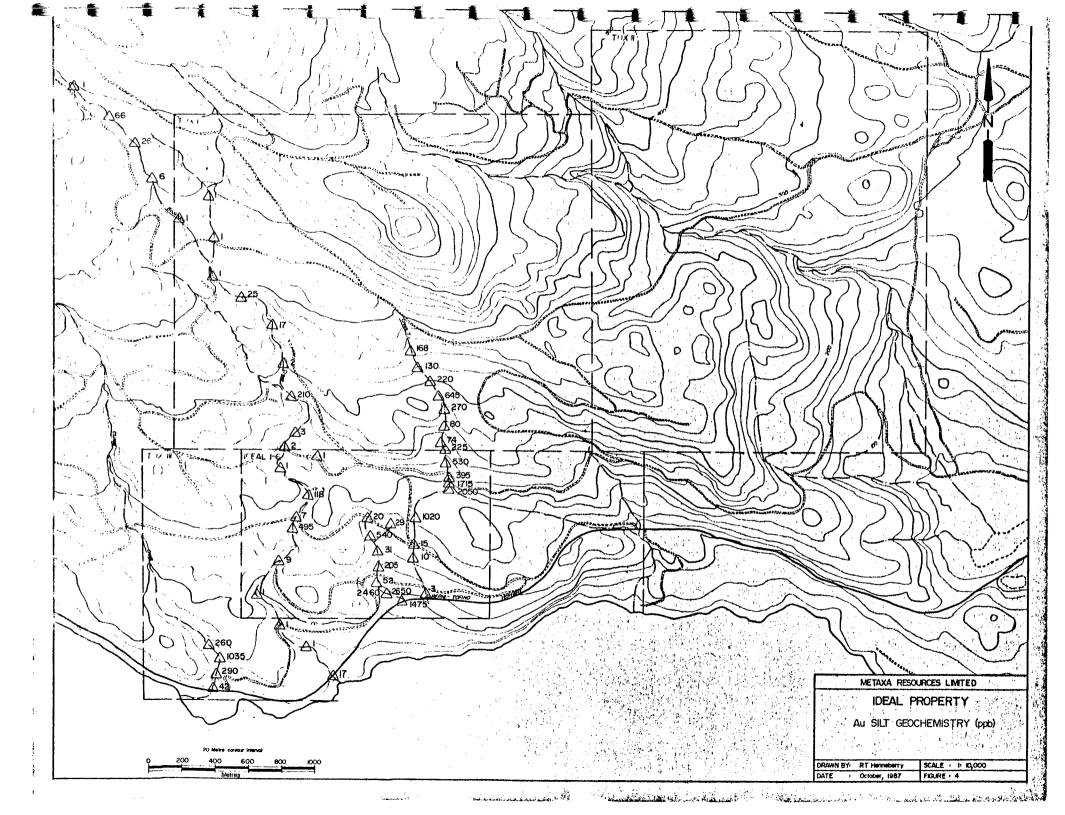
Several mineral showings have been documented on the Great Divide (Figure 3). The largest percentage of these showings were located for copper within the Karmutsen Formation basalts and andesites. Minimal attention has been paid to the gold potential of these properties.

The south slope of the Great Divide hosts at least 5 distinct shear hosted gold occurrences. Significant concentrations have been documented on 4 of the 5 properties. Values to 0.75 ounces per ton gold have been obtained from a quartz carbonate stockwork alteration zone associated with a northeast trending shear zone have been obtained from the G.C. Property (Bilquist, 1986).

Values to 2.78 ounces over 1.2 metres have been reported from a shear hosted quartz sulfide vein on Casau Explorations Snow Property (J.C.Stephen, pers com). The Morning, Apex and M.T. Properties have all recorded values in excess of 1 ounce per ton gold from shear hosted quartz sulfide veins (Harder, 1984; Cukor, 1985). Considerable antimony-mercury has been reported from the Ark Property, believed to be the upper reaches of a buried epithermal system (Henneberry, 1986; 1987).



.


#### REGIONAL GEOLOGY

The geology of the Great Divide consists primarily of rocks of the Vancouver Group intruded by plutons of the Island Intrusions. A later episode of faulting has resulted in a series of northwest trending regional shear zone / faults (Figure 3). (Muller, 1977).

rocks are the basaltic to The oldest andesitic pillowed flows and tuffs of the Triassic Karmutsen Formation of the Vancouver Group. Locally, shale/slate seams have been documented interstitially with the individual pillows and flows. Bedding attitudes are difficult to obtain from the lavas. Alteration consists primarily of greenschist facies chlorite and carbonate, with stronger alteration assemblages associated with the contacts of the intruding plutons.

A quartz diorite member of the Jurassic Island Intrusions outcrops regularly at lower elevations on both sides of the Great Divide. The intrusive varies from fresh to moderately altered proximal to the contacts and to the northeast trending shear zones. The alteration assemblage includes chlorite, carbonate, argillization and silicification. Locally, sericite has been noted with the shear zones.

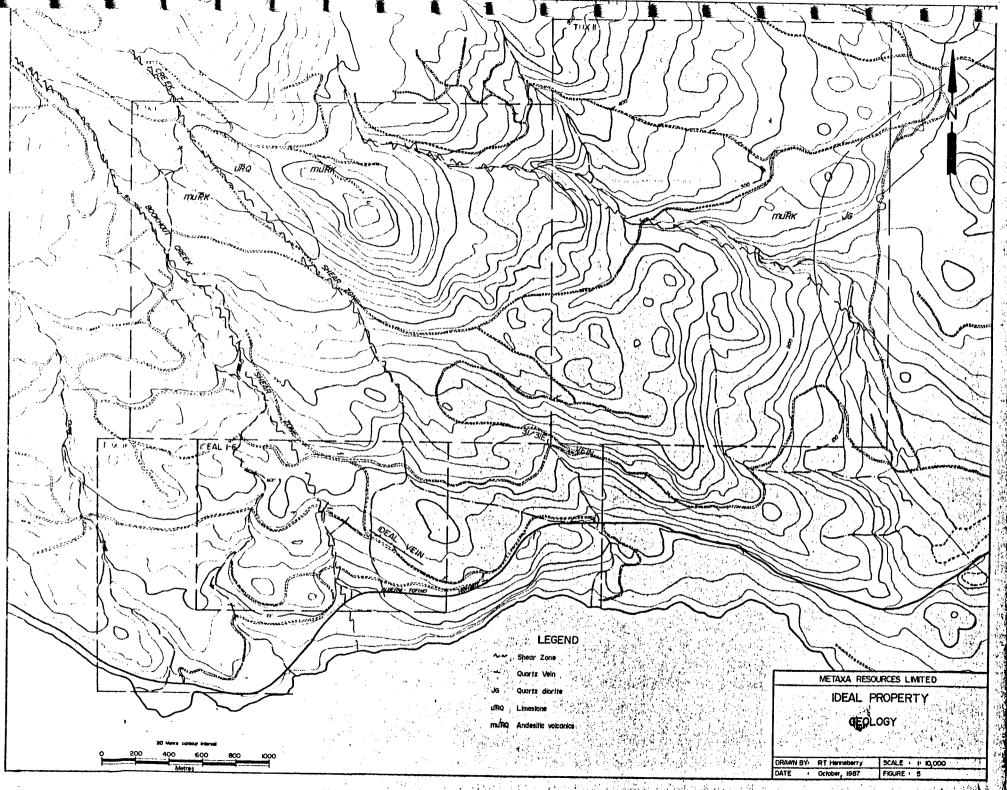
Post-Island Intrusion faulting has resulted in a series of sub-parallel shear/fault zones striking to the northwest, now occupying several of the present creek drainages. Limited exploration suggests these zones are anomalous in gold. The shear/fault zones are the target of the present exploration program.



#### 1987 PROGRAM

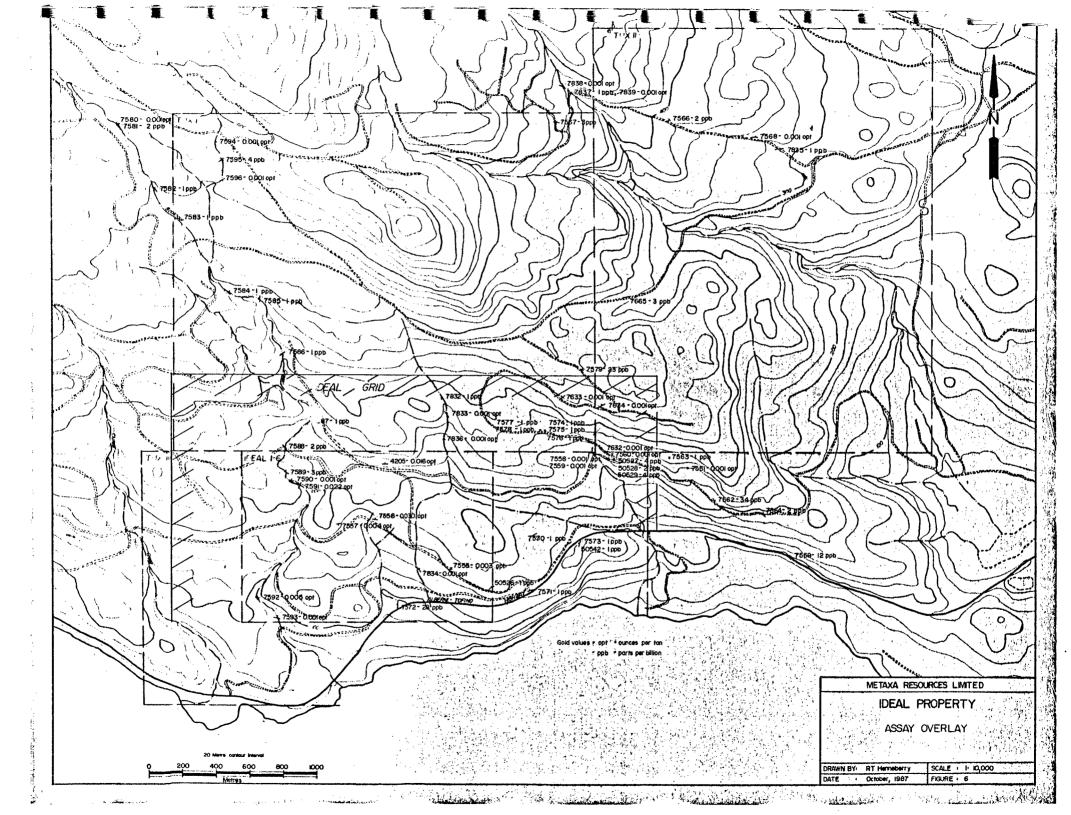
A detailed exploration program, undertaken on the Ideal Project from April to October, consisted of property wide mapping and prospecting, property wide silt sampling, detailed mapping and sampling of the Ideal Vein, and expanded soil sampling of the Ideal Vein strike projections.

Silt Sampling (Figure 4):


The silt sampling program was concentrated on the western half of the property, with one major drainage remaining to be sampled. Drainages flow southeast for the most part, following the trace of the northwest trending shear zone / faults. Where possible moss was collected from the stream and sieved at 80 mesh. The resulting fine silt was placed in a kraft soil bag and sent to the lab for analysis.

The analytical results from the streams sampled are very encouraging. All drainages tested are anomalous in gold. Gold was found downstream in all drainages cutting the strike projection of the Ideal Vein. Significant gold was also located in the upper Creek 7 drainage, indicating a source distinct from the Ideal Vein, whose strike projection is well below the anomalous zone. Upper Bookhout Creek is also sporadically anomalous in gold, again suggesting sources distinct from the Ideal Vein. A concentration of anomalous values at the mouth of Clutesi Creek are as yet unexplained.

Silt sampling should be undertaken on Clutesi Creek looking for strike continuations of the anomalous values located in Bookhout Creek and Creek 7. Additional ground to the west should be staked based on the results. The drainages on the eastern half of the claim group should also be tested. Check samples taken at several sites verify the earlier results. Detailed prospecting is required to locate the sources of these gold anomalies.


Property Mapping and Sampling (Figures 5 and 6):

Considerable outcrop exposure was noted throughout the claim group. Andesitic pillowed to massive flows and tuffs form the primary rock unit. A small lenses of limestone was mapped in the northeast corner of Tux I. Quartz diorite was noted proximal to the eastern boundary of Tux II. Traverses down Bookhout Creek and Creek 7 located significant shear zones in the creek valleys. The 61 samples taken during



and the second second to be a little of the second s

· .



prospecting consisted of 36 quartz vein samples, 7 shear zone samples, 10 stockwork zone samples, 3 float samples and 5 undocumented samples.

The Karmutsen volcanics, underlying most of the claim group, exhibit a weathered dull brown appearance. Fresh exposurés indicate an andesitic composition, though no distinct phenocrysts are noted. Locally, small highly deformed shale/slate bands are mapped between the pillows. Several of these bands are cut by a stockwork of carbonate veinlets and stringers that do not continue into the lavas. The lavas are propylitically altered, consisting of chlorite, local carbonate and pyrite. Stronger alteration consisting of silicification, argillization and local sericitization is noted haloing shear zones and larger (+10 centimetre) guartz veins.

Quatsino limestone outcrops as a small lens on the hanging wall of the Creek 7 Shear Zone. Exposures are grey in color and well brecciated. Calcareous siltstones are interbedded with the limestone. Very little alteration or mineralization was noted.

A weakly altered quartz diorite was mapped on the eastern boundary of the claim group. The actual quartz diorite / volcanic contact does not outcrop. Alteration consists of weak chloritization of feldspars, and chlorite and carbonate along fractures. Traces of pyrite were also noted on fractures.

Fifteen samples were taken from Bookhout Creek. Samples 7580 to 7585 traced the Bookhout Creek Shear Zone 1200 metres to a point where it appears to leave the creek. Discontinuous quartz veins (to 15 centimetres in width) and stockwork zones characterize the zone. Alteration silicification, of chloritization and with consists local hematite. Disseminated pyrite was noted in the quartz veins and stockwork. Gouge zones were not mapped indicating the true width of the shear zone has not been exposed. Anomalous silt samples in the range of 25 to 210 ppb gold were recorded from this section of Bookhout Creek. The 6 rock samples taken returned background gold values. The remaining 9 samples were taken from parallel and cross lower in the creek, also identified by the soil veins Sample 7591, a flat lying quartz vein geochemistry. striking 020 degrees assayed 0.022 ounces per ton. The remaining samples did not exceed background.

Ĺ

4

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | ONW -                                                                                        |                                                                                                                                                                          |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 50 NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                              |                                                                                                                                                                          | 8 50 NE                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              | 4                                                                                                                                                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              |                                                                                                                                                                          | 4                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              | *                                                                                                                                                                        |                                    |
| 0078/030<br>0058/030<br>0064/040<br>0004/030<br>0004/038<br>0004/038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.035/040<br>0.726/040<br>0.0726/040<br>0.0006/040<br>0.0000<br>0.0200<br>0.020 | 0.001 / 7020<br>0.001 / 0.40<br>0.001 / 0.30<br>0.002 / 0.30<br>0.002 / 0.30<br>0.002 / 0.30 | 004.7030<br>004.7035<br>0.01.7025<br>0.0070.030<br>0.0070.030<br>0.0070.035<br>0.0070.035<br>0.007.025<br>0.014.7025<br>0.014.7025<br>0.0270<br>0.017.7022<br>0.017.7022 |                                    |
| 7834 0.01<br>78350 0.06<br>78629 0.04<br>78629 0.04<br>78629 0.04<br>78625 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              |                                                                                                                                                                          | 1900 - 1992                        |
| 04 04 05 88 00 04 04 05 88 00 04 05 88 00 04 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 05 88 00 00 05 88 00 05 88 00 05 88 000 |                                                                                 |                                                                                              | 0000 /025<br>0009 /030<br>0008 /030<br>0008 /038<br>0008 /038<br>0008 /038<br>0008 /038                                                                                  |                                    |
| 50541 0.309<br>50540 0.074,<br>50538 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                              | 50536 0.00<br>50536 0.00<br>50535 0.06<br>50533 0.00<br>50533 0.00<br>50533 0.00                                                                                         |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | + cb t                                                                                       |                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | -                                                                                            |                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              |                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | ·                                                                                            |                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              |                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              |                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              |                                                                                                                                                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                              |                                                                                                                                                                          | 8                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | Sample number ouncesper ton Au / width metres                                                |                                                                                                                                                                          | TAXA RESOURCES LIMITED             |
| 505W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                                                                              | 50.5W                                                                                                                                                                    | IDEAL VEIN<br>GEOLOGY / ASSAY PLAN |
| MN 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | MU CS                                                                                        | - DRAWN BY- RT<br>DATE - OCT                                                                                                                                             |                                    |

·····

Four samples were taken from Creek 7. Samples 7632 and 7633 were taken from the Creek 7 Shear Zone. Limited outcrop exposure resulted in only one 4 centimetre quartz vein being sampled. The shear zone exhibits chlorite and silicification. Gouge zones were not mapped. Anomalous silt samples to 2050 ppb gold have been recorded in the drainagé. All rock samples taken did not exceed background.

Five samples were taken from a vein located at the junction of roads 31 and 31E. The 31/31E Junction Vein (285/55 N) is 10 to 40 centimetres in width and is exposed semi-continuously for a strike length of 25 metres. Intense limonite masks the vein through its entire strike length. Hematite also occurs regularly within the vein, as well as within 15 centimetres of the footwall contact. Other than limonite and hematite, no other alteration is noted in the wall rock. Gold values did not exceed background.

The remaining samples were taken from structures identified primarily in creeks and roadcuts. Sample 4205 assayed 0.016 ounces per ton gold from a malachite stained quartz vein (270/?) located as a result of following up soil geochemistry Anomaly B.

Prospecting of creeks has met with limited success. The shear zones do not appear to carry anomalous gold though they do show signs of hydrothermal alteration. The strongest vein structures appear to be east west trending, suggesting gold may be localized in the splay structures of the shear zone/faults and not the faults themselves. Soil geochemistry has yielded results verifying this observation.

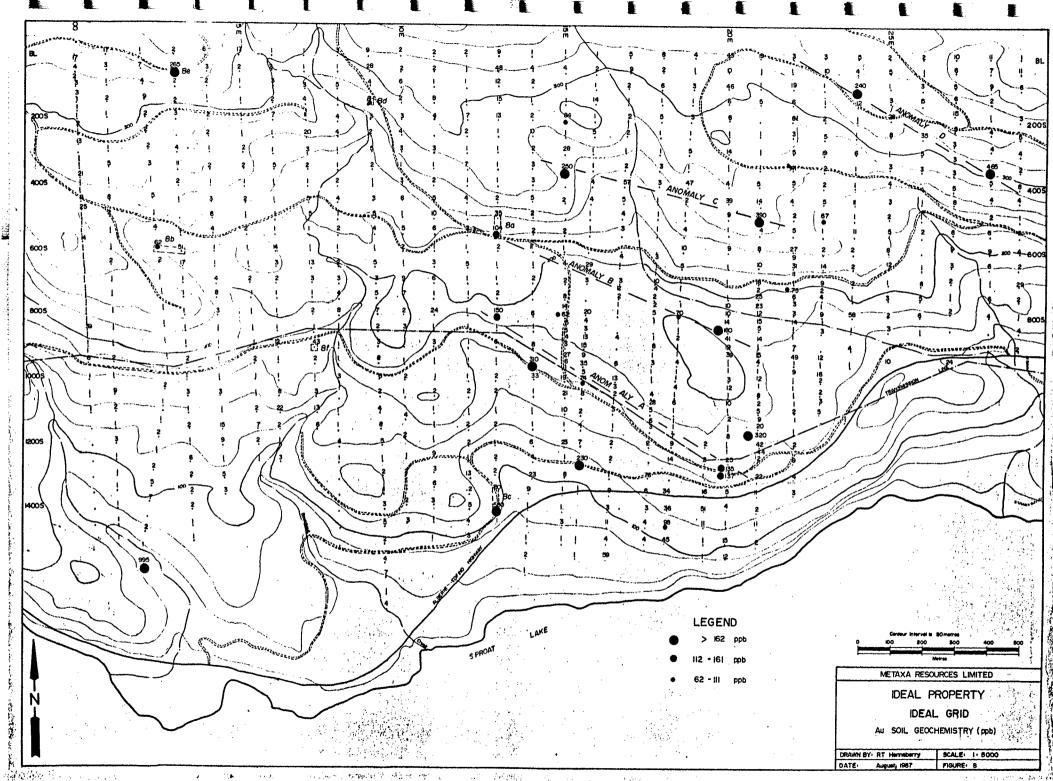
#### Ideal Vein:

The primary showing on the claim group, the Ideal Vein (125/62 NE), strikes along road C-18 for a semi-continuous length of 110 metres (Figure 7). After considerable hand trenching only 50 percent of the exposure is presently covered by talus and/or overburden. Vein widths range from 20 to 50 centimetres. The vein pinches and swells quite regularly. The strike projection goes under overburden cover in both directions.

Andesitic volcanics of the Karmutsen Formation host the Ideal Vein. They are locally well-brecciated within the vein channel. There is not a distinct alteration associated with the Ideal Vein. Perhaps the regional alteration of the Karmutsen Formation masks any

;

hydrothermal alteration associated with the emplacement of the Ideal Vein.


Mineralization is concentrated within the quartz, though not necessarily confined to either one contact or the other. Sulfide mineralization occurring as pods and dissemifiations, is predominantly pyrite, with lesser chalcopyrite and traces of arsenopyrite. (Percentages 2.5-3 % pyrite, 0-0.5 % chalcopyrite). Malachite ( and in on occurrence azurite) staining is noted with the presence of chalcopyrite.

Where exposed, sample spacing is 2 metres or less. Values as high as 0.845 ounces per ton over 0.40 metres have been recorded. Of the 43 samples taken only 13 returned distinct values that are not considered anomalous. Two shoots appear to be outlined by the sampling to ore date, at either end of the present exposure. Based on this authors experience gold veins on Vancouver and elsewhere have been a partially to completely Island leached zone at surface, with a considerable improvement concentration immediately (ie. 1 metre) below in surface. Hand-trenching and blasting to obtain a depth of 50 centimetres is strongly recommended before drilling commences.

#### Soil Geochemistry:

Initially a small grid was recommended for strike projection of the Ideal Vein. The discovery the of 31/31E Junction Vein necessitated expansion of the the recommended grid to cover both structures, and to explore for additional veins. A baseline of 2900 metres was cut at 090 degrees, 400 metres north of the 31/31E Junction exposure. Cross lines, spaced at 100 metres, were cut at 180 degrees from the baseline to just short of the Sample spacing was 50 metres except in the highway. immediate area of the Ideal Vein where the spacing was tightened up to 25 metres. Soil samples were taken from the "B" Horizon and placed in Kraft Soil Bags for shipment to Analytical Labs in Vancouver for analysis. The Acme resulting 850 samples were analyzed for Au, Ag, As, Hg, Sb, Pb and Cu. Plots have been made for all elements except Sb. Simple statistics have been performed to determine the threshold values for each element.

;

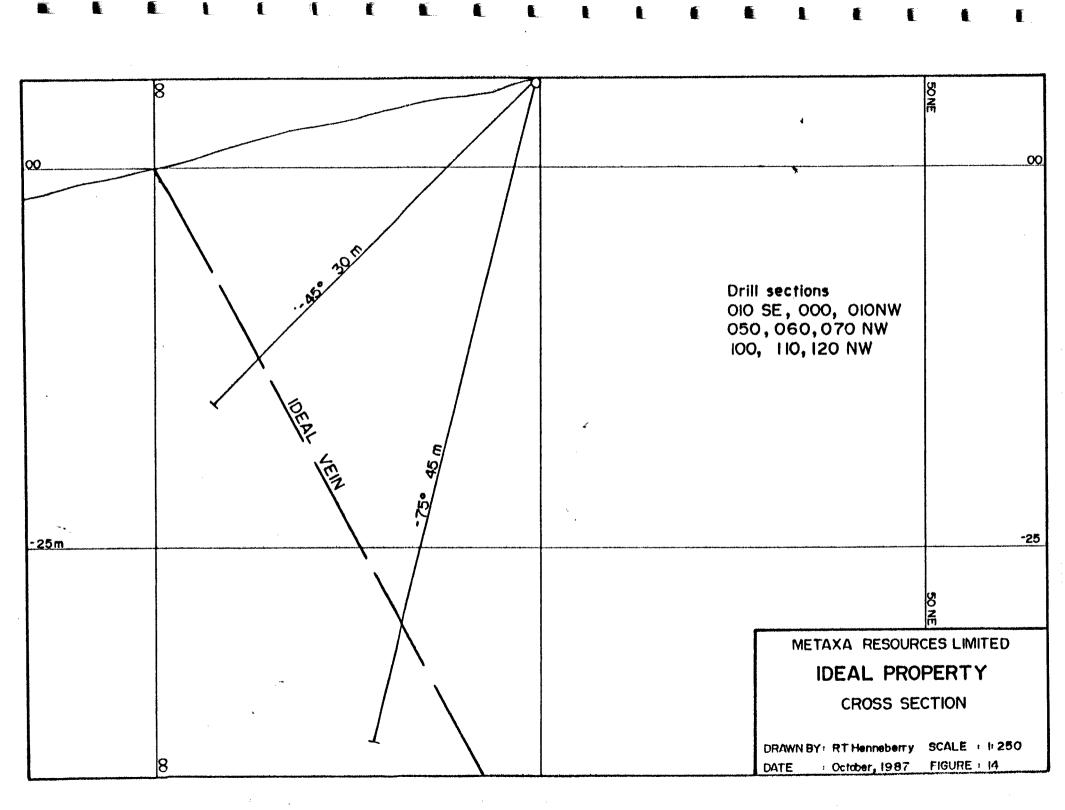


ίω.

1290 S S 00£ 1310 S 3. 2 ! ! 1 490 S 2 l | | ! 1 2 35 3 ļ ļ 500 S 5 S 3 ŀ ļ 1 Ś Ю 2 1 ļ 510 S  $\mathbf{h}$ 1310 S I290 S 1300S 18 ЗI 80 Ļ ļ 540 S 4 260 6 ļ 96 25 104 17 36 158 ! 550 S 12 250 189 192 149 108 5 72 102 128 560 S ppb Au Metres METAXA RESOURCES LIMITED IDEAL PROPERTY DETAILED SOIL GRID I SCALE : 1: 500 DRAWN BY: RT Henneberry FIGURE : 8a DATE : October, 1987

|         | Au<br>ppb | Ag<br>mqq | As<br>ppm | Hg<br>ppb | Sb<br>ppm | Pb<br>ppm | Cu<br>ppm |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Count   | 897       | 850       | 850       | 850       | 850       | 850       | 850       |
| Maximum | 995       | 1.7       | 125       | 430       | 13        | 40        | 487       |
| Minimum | l         | 0.1       | 2         | 20        | 2         | 2         | 14        |
| Meán    | 11.4      | 0.18      | 5.3       | 92        | 2.3       | 11.9      | 97.5      |
| Std Dev | 50.3      | 0.14      | 6.7       | 42.2      | l         | 6.3       | 51.5      |
| M + SD  | 62        | 0.32      | 11        | 134       | 3         | 18        | 149       |
| M + 2SD | 112       | 0.46      | 18        | 176       | 4         | 24        | 201       |
| M + 3SD | 162       | 0.58      | 26        | 218       | 6         | 30        | 252       |

Gold (Figure 8): 897 samples were analyzed for gold, with a mean of 11.4 ppb and a standard deviation of 50.3 ppb. Values in excess of 62 ppb were considered anomalous. Four linear anomalies and several spot anomalies were identified by the survey. Anomaly A is the Ideal Vein, traced a total of 850 metres. Anomaly B, running between lines 13E and 20 E, is a linear anomaly parallel to the Ideal Vein. Anomaly C, between lines 15E and 21E, is also a linear anomaly parallel to the Ideal Vein. Anomaly C could be the strike continuation of the 31/31E Junction vein. Anomaly D, a linear anomaly between lines 24E and 29E, parallels the Ideal Vein as well.


In an effort to test some of the spot anomalies 6 detailed soil grids were initiated (8a to 8f on Figure 8). Samples were taken at 5 metre centres from a 20 by 20 metre grid centred on the existing anomalous value. Only 1 of the 6 grids were successful (Figure 8a), with the original anomalous value being surrounded by strong gold responses. This location is at the western end of Anomaly B. In the other 5 locations (Figures 8b to 8f), the original values were not even duplicated.

Silver (Figure 9): 850 samples were analyzed for silver, with a mean of 0.18 ppm and a standard deviation of 0.14 ppm. Values in excess of 0.3 ppm were considered anomalous. The continuous anomalous values on lines 12E, 13E and 14E are considered to be contamination. Gold anomalies B, C and D are also anomalous in silver, while the Ideal Vein is not. The anomalous gold values are displaced 25 to 50 metres down slope with respect to silver. Linear Anomaly B lies between lines 15E and 23E. Anomaly C is represented as a spot anomaly on line 23E. Anomaly D, running between lines 18E and 29E, exhibits the strongest silver responses. Arsenic (Figure 10): 580 samples were analyzed for arsenic, with a mean of 5.3 ppm and a standard deviation of 6.7 ppm. Values above 12 ppm were considered anomalous. The Ideal Vein, Anomaly A, lies between lines 12E and 20E. Anomaly B runs between lines 12E and 22E. Anomaly C lies between lines 14E and 26E. Anomaly D lies between lines 18E and 29E. Arsenic responses correlate well with gold. All linear anomalies have been extended along strike by the arsenic responses. As with gold, several spot anomalies exist over the remainder of the soil grid.

11): 850 samples were analyzed (Figure Mercury for mercury, with a mean of 92 ppb and a standard deviation of 42.1 ppb. values in excess of 134 ppb were considered anomalous. As with silver, the Ideal Vein is not anomalous in mercury. Anomaly B lies between lines 18E and 22E, a considerably shorter strike length than the from gold, silver and arsenic anomalies. Anomaly C runs line 21E to 28E. Anomaly D runs from line 16E to 29E. Unlike the previous three elements a considerable concentration of anomalous mercury values lie on the western half of the grid.

for Lead (Figure 12): 850 samples were analyzed lead, with a mean of 11.9 ppm and a standard deviation of 6.3 ppm. Values in excess of 18 ppm were considered The Ideal Vein, Anomaly A, is anomalous in h lines 14E and 19E. Anomaly B, between anomalous. lead between lines 15E and 22E, is weakly anomalous in lead, as is Anomaly C between lines 18E and 27E and Anomaly D between lines 18E and 29E. In a situation similar to mercury, a considerable concentration of anomalous lead values lie on the western half of the grid, though a lead-mercury correlation is not readily evident. Surprisingly, lead and silver do not exhibit a positive correlation.

Copper (Figure 13): 850 samples were analyzed for copper, with a mean of 97.5 ppm and a standard deviation of 51.5 ppm. Values in excess of 149 ppm were considered anomalous. Although there is considerable scatter in the plotted copper results, the four linear anomalies are still evident. Anomaly A lies between lines 15E and 21E. Anomaly B lies between lines 13E and 22E. Anomaly C lies between lines 17E and 29E. Anomaly D lies between lines 18E and 29E. The south end of line OE is also interesting as this local is anomalous in all elements except gold and silver.



#### DISCUSSION

The recently completed exploration program has indicated the Ideal Property has potential to host economic concentrations of gold mineralization. Economic grade mineralfzation has been established on the Ideal Vein. Soil geochemistry has identified three distinct linear anomalies, displaying characteristics similar to the Ideal Vein. Silt geochemistry has located considerable and presently unexplained gold within all drainages sampled.

The Ideal Vein, a quartz sulfide vein splaying from a regional shear zone fault, has yielded values to 0.875 ounces per ton gold over a width of 40 centimetres. Sampling of semi-continuous exposure over a strike length of 120 metres has identified two potential ore shoots. The west ore shoot is open to the northwest from 105 NW. The east ore shoot is open to the southeast from 010 NW. Indications of a potential ore shoot to the northwest of 60 NW are also suggested from the sampling.

Blasting is initially recommended to remove the weathered surface and obtain fresh exposure for sampling. Follow up diamond drilling is recommended to initially test the potential ore shoots to a depth of 30 metres below surface. A total of 18 drill holes totaling 1000 metres is recommended to initially test the Ideal Vein (Figure 14).

The large percentage of anomalous silt values recorded during the survey need to be heavily prospected. Shear zones have been mapped in the creek valleys on both Bookhout and 7 Creeks. Several cross veins parallel to the strikes of the soil anomalies have also been mapped. Comparison of the gold soil geochemistry and geochemistry silt geochemistry suggests the source of gold the Creek 7 could be the strike continuous anomaly in projections of linear anomalies B, C and D. The large creek on the Tux II claim parallels the strike of the Ideal Vein and the linear anomalies. This creek needs to be silt sampled and prospected.

;

The soil sampling located 4 distinct linear anomalies as well as several lesser spot anomalies. A preliminary examination was made of the major linear anomalies. Anomaly A is the strike projection of the Ideal Vein. Traverses along strike of anomalies B, C, and D located considerable outcropping with a hummock-like appearance, ie. a series of steps, or valleys and ridges with suspected structures lying beneath cover in the valleys. Though structure with very little mineralization or quartz was located in most instances, a large area of angular quartz float was noted, with one small outcrop exposure at the west end of Anomaly B. Hand-trenching and mechanical trenching will be required to evaluate these anomalies. 500 metres of diamond drilling is budgeted for anomaly follow-up.

Finally, the 31/31E Junction Vein and a presently unmapped vein located on the eastern half of the Tux II mineral claim should be tested. The character of the 31/31E Vein is noticeably different from the Ideal Vein. The 31/31E Vein exhibits considerable limonite and hematite, as well as a quartz carbonate nature. At this time blasting to obtain fresh surfaces and sampling is recommended.

#### RECOMMENDATIONS

Based on the results of the initial exploration program, further exploration is recommended.

Phase A - Ideal Vein

- 1) Blast the present exposure to obtain fresh surfaces and sample every 2 metres.
- 2) Diamond drill to test the three potential ore shoots to a depth of 30 metres. Three sections of 2 holes each are recommended at 10 metre spacings for each of the shoots.

Estimated cost of Phase A is 93,800.00

Phase B - Anomaly Prospecting

- 1) Silt sample and prospect the Tux II creek.
- 2) Prospect all silt anomalies.
- 3) Prospect and hand-trench the soil anomalies.
- 4) Blast and sample the 31/31E Junction Vein and the east Tux Vein.

Estimated cost of Phase B is 32,210.00

Phase C - Anomaly Trenching

Excavator trench the linear anomalies where required.
 Estimated cost of Phase C is 18,990.00

Phase D - Diamond Drilling

Diamond drill, based on the results of Phases B and C.
 Estimated cost of Phase D is 45,490.00

Total estimated cost of the recommended exploration program is 191,000.00. Phases A and B can run concurrently. Phase C is for the most part based on the results of Phase B. Phase D is based on the results of Phases B and C. This offering will raise funds for Phases A through C only.

;

-

\*

# COST ESTIMATES

# Phase A - Ideal Vein

| Drill mobilization/demobilization | 5,000.00  |
|-----------------------------------|-----------|
| Footage <sup>*</sup> charges      | 60,000.00 |
| Geologist                         | 7,500.00  |
| Room and Board                    | 4,500.00  |
| Transportation                    | 1,800.00  |
| Analysis                          | 4,000.00  |
| Field Supplies                    | 3,500.00  |
| Contingency                       | 7,500.00  |
|                                   |           |
| SUB-TOTAL                         | 93,800.00 |

# Phase B - Anomaly Prospecting

| 5,250.00<br>4,200.00<br>3,150.00<br>3,150.00<br>4,200.00<br>1,260.00<br>6,000.00<br>1,000.00<br>4,000.00 |
|----------------------------------------------------------------------------------------------------------|
| 32,210.00                                                                                                |
|                                                                                                          |

1

- 30 -

Phase C - Anomaly Trenching

| Mobilization/Demobilization | 2,000.00  |
|-----------------------------|-----------|
| Excavator trenching         | 5,000.00  |
| Geelogist                   | 3,750.00  |
| Room and Board              | 1,400.00  |
| Transportation              | 840.00    |
| Analysis                    | 3,000.00  |
| Field Supplies              | 1,000.00  |
| Contingency                 | 2,000.00  |
|                             |           |
| SUB-TOTAL                   | 18,990.00 |

# Phase D - Anomaly Drilling

| Footage charges | 30,000.00 |
|-----------------|-----------|
| Geologist       | 3,750.00  |
| Room and Board  | 1,400.00  |
| Transportation  | 840.00    |
| Analysis        | 3,000.00  |
| Field Supplies  | 2,500.00  |
| Contingency     | 4,000.00  |
| SUB-TOTAL       | 45,490.00 |

| Phase A | 93,800.00  |
|---------|------------|
| Phase B | 32,210.00  |
| Phase C | 18,990.00  |
| Phase D | 45,490.00  |
|         |            |
| TOTAL   | 190,490.00 |

i

- -Hope Hore

#### STATEMENT OF QUALIFICATIONS

I, R.Tim Henneberry, am a consulting geologist residing at 4054 Dundas Street, Burnaby, B.C.

I 'earned a Bachelor of Science Degree majoring in geology from Dalhousie University, graduating in May, 1980.

I have practiced my profession continuously since graduation.

I am a Fellow of the Geological Association of Canada.

I have no interest, either direct or indirect, in Metaxa Resources Limited.

This report is based on an exploration program supervised by the author. The initial property evaluation was made April 01 to 02, 1986. Progress of the program was monitored on August 15, 1987. Initial prospecting of soil anomalies was undertaken from September 03 to 05, 1987.

I hereby grant my permission for Metaxa Resources Limited to use this report for filing with the Vancouver Stock Exchange as partial requirement of a Statement of Material Facts or for any legal purposes normal to the business of Metaxa Resources Limited.

day of Abventor in city of the Dated this Vancouver, British Columbia. SSOCIA; FELLON

#### REFERENCES

Bilquist,R.J. (1986). Prospecting report on the G.C. #1 Claim. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 15,354.

Caulfield, D.A. and Ikona, C.E. (1985). Geological Report on the Ideal Claims for Royalon Petroleum Corporation. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 13,539.

Cukor, V. (1985). Geological, Geophysical and Geochemical Report on the Tay Group. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 14,121.

Harder, D.G. (1984). Report on Diamond Drilling Program, Tay Gold Property. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 14,601.

Henneberry, R.T. (1986). Preliminary report on the Ark Project, Alberni Mining Division, British Columbia. Ascot Resources Limited private report.

Henneberry, R.T. (1987). Final Phase I and II Report on the Ark Property, Alberni Mining Division, British Columbia. Ascot Resources Limited private report.

Muller, J.E. (1977). Geology of Vancouver Island. Geological Survey of Canada Open File 463.

;

34 Statement of Cost

Reference: Geological mapping, Geochemical sampling Ideal Property - June 22 - June 30, 1987

#### PERSONNEL:

| l | Supervisor - 5 days @ \$300/day         | \$ 1,500.00 |
|---|-----------------------------------------|-------------|
| l | Geologist - 8 days @ \$225/day          | 1,800.00    |
| 1 | Prospector - 1 day @ \$225/day          | 225.00      |
| l | Technicians' Chief - 8 days @ \$200/day | 1,600.00    |
| 2 | Field Tecnincians -                     |             |
|   | 4.5 mandays @ \$150/manday              | 675.00      |
|   |                                         | \$ 5,800.00 |

# TRANSPORATION:

| 1 4x4 Bronco - 1 week @ \$250 | /week \$ 250.00 |
|-------------------------------|-----------------|
| 516 kms @ \$0.18/km           | 92.88           |
| Ferries, Gas, Oil             | 431.85          |
|                               | \$ 774.73       |

## SUPPORT:

i tuta

| Camp Cost - 25 mandays @ \$15/manday | \$<br>375.00 |
|--------------------------------------|--------------|
| Hotel Accommodations                 | 79.38        |
| Food                                 | 304.28       |
| м <sub>м</sub> .                     | \$<br>758.66 |

#### ANALYSIS:

| 17 | rock | samples | a | \$14.25 | /sample | \$ 242.25 |
|----|------|---------|---|---------|---------|-----------|
|    |      |         |   |         |         |           |

## MISCELLANEOUS:

| Equipment Rental | \$ 60.00  | )  |
|------------------|-----------|----|
| Supplies         | 179.13    | \$ |
| Communications   | 150.00    | )  |
|                  | \$ 389.13 | ļ  |

- Sub-Total: \$ 7,964.77
- 10% Administrative Overhead: 796.48

Total: \$ 8,761.25

|                            | 35                                                                                                                                                                                                                                               |                                                                    |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Reference:                 | Geological Mapping, Gecchemical S<br>line cutting and Grid Preparation<br>IDEAL Property July 01 - 31, 987                                                                                                                                       |                                                                    |
| PERSONNEL                  |                                                                                                                                                                                                                                                  |                                                                    |
| 1 Geol<br>1 Pros<br>2 Chie | ervisor - 2 mandays @ \$300/manday<br>ogist - 30 mandays @ \$225/manday<br>opector - 3 mandays @ \$225/manday<br>of Technicians -<br>18.5 mandays @ \$200/manday<br>of Technicians -<br>90 mandays @ \$150/manday<br>- 19 mandays @ \$100/manday | 675.00                                                             |
| TRANSPORTATION             | TRAVEL                                                                                                                                                                                                                                           |                                                                    |
| 1 Brone                    | Pickup - 1 week @ \$250/week<br>co - 4 weeks @ \$250/week<br>km @ \$0.18/km<br>ies                                                                                                                                                               | \$ 250.00<br>1,000.00<br>554.22<br>111.50<br>282.06<br>\$ 2,197.78 |
| SUPPORT                    |                                                                                                                                                                                                                                                  |                                                                    |
| Camp Costs<br>Food         | s - 160.5 mandays 3 \$15/manday                                                                                                                                                                                                                  | \$ 2,407.50<br>1,515.66                                            |
| ANALYSIS                   |                                                                                                                                                                                                                                                  | \$ 3,923.16                                                        |
| 54 Rock ar                 | nd Soil Samples                                                                                                                                                                                                                                  | \$ 621.50                                                          |
| MISCELLANECUS              |                                                                                                                                                                                                                                                  |                                                                    |
| Supplies a                 | ainsaws - 9 days @ \$25/day                                                                                                                                                                                                                      | \$ 450.00<br>1,204.35<br>600.00<br>2,549.26<br>\$ 4,303.61         |
|                            | Sub-Total:                                                                                                                                                                                                                                       | \$38,671.05                                                        |

Sub-Total: \$33,671.05 10% Administrative Overhead: 3,367.11

Total: \$42,538.16

4

E.

I.

E

E

I

E.

| Sample Location<br>Number                                                                                                                                                                                         | Description                                                                                                                | Width<br>Metres                                                                      | oz/t Au                                                                       | ppb <sup>'</sup> Au     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                   | IDEAL VEIN<br>Henneberry Sampling                                                                                          |                                                                                      |                                                                               | •                       |
| 50537 Stn +50.0<br>50538 Stn +88.0                                                                                                                                                                                | 10% py<br>12% py, 1% cpy<br>1% py<br>4% py<br>2% py<br>No visible min<br>8% py, 2% cpy<br>2% py<br>No visible min<br>1% py | 0.22<br>0.25<br>0.15<br>0.18<br>0.30<br>0.25<br>0.50<br>0.38<br>0.30<br>0.40<br>0.40 |                                                                               |                         |
|                                                                                                                                                                                                                   | IDEAL VEIN<br>Robb Sampling                                                                                                |                                                                                      |                                                                               |                         |
| 7801     Stn + 02       7802     Stn + 04       7803     Stn + 06       7804     Stn + 08       7805     Stn + 10       7806     Stn + 12       7807     Stn + 14       7808     Stn + 16       7809     Stn + 18 | · · ·                                                                                                                      | 0.25<br>0.22<br>0.25<br>0.25<br>0.25<br>0.20<br>0.15<br>0.18<br>0.25                 | 0.016<br>0.117<br>0.205<br>0.029<br>0.114<br>0.015<br>0.001<br>0.006<br>0.070 | 490<br>3630             |
| 7810     Stn + 20       7811     Stn + 22       7812     Stn + 24       7813     Stn + 26       7814     Stn + 28                                                                                                 |                                                                                                                            | 0.30<br>0.28<br>0.25<br>0.25<br>0.30                                                 | 0.007<br>0.003<br>0.011<br>0.014<br>0.014                                     | 220<br>89<br><b>450</b> |

·•••

E

Ĩ.

E.

I,

L

L.

Ł

E

E...

I

L

Ē.

÷.,

L

| Sample<br>Number | Location | Description | Width<br>Metres | oz/t Au | ppb Au |
|------------------|----------|-------------|-----------------|---------|--------|
| 7815             | Stn + 30 | )           | 0.25            | 0.002   | 76     |
| 7816             | Stn + 32 |             | 0.30            | 0.023   | 730    |
| 7817             | Stn + 34 |             | 0.30            | 0.007   | 207    |
| 7818             | Stn + 36 |             | 0.30            | 0.001   | 4      |
| 7819             | Stn + 50 |             | 0.40            | 0.018   | 570    |
| 7820             | Stn + 54 |             | 0.50            | 0.017   | 520    |
| 7821             | Stn + 50 |             | 0.50            | 0.001   | 21     |
| 7822             | Stn + 60 |             | 0.40            | 0.006   |        |
| 7823             | Stn + 61 |             | 0.50            | 0.726   |        |
| 7824             | Stn + 62 |             | 0.40            | 0.035   |        |
| 7825             | Stn + 99 |             | 0.38            | 0.004   | 115    |
| 7826             | Stn +102 |             | 0.35            | 0.002   | 67     |
| 7827             | Stn +104 |             | 0.30            | 0.001   | •      |
| 7828             | Stn +106 |             | 0.40            | 0.001   |        |
| 7829             | Stn +108 |             | 0.40            | 0.845   |        |
| 7830             | Stn +110 |             | 0.40            | 0.065   |        |
| 7831             | Stn +112 |             | <b>0.30</b>     | 0.078   |        |

### PROPERTY Robb Sampling

| 7613<br>7632 Br 31<br>7633 Br 31<br>7634 Br 31 | 100/71N shear gouge zone<br>065/85NW qtz vn/shear<br>072/86NW qtz vn | 0.20<br>0.20<br>0.60 | 0.001<br>0.001<br>0.001 |
|------------------------------------------------|----------------------------------------------------------------------|----------------------|-------------------------|
| 7555 Br 18                                     | Qtz vein                                                             | 0.70                 | 0.003                   |
| 7556 Br 18                                     | 108/60N qtz vein vis py                                              | grab                 | 0.030                   |
| 7557 Br 18                                     | 083/79S qtz vn with diss py                                          | grab                 | 0.004                   |
| 7558 Br 31E                                    | 098/73N qtz vn                                                       | 0.15                 | 0.001                   |
| 7559 Br 31E                                    | 100/73N qtz vn                                                       | grab                 | 0.001                   |
| 7560 Br 31                                     | Qtz vein                                                             | 0.12                 | 0.001                   |

1

| Sample<br>Number                                                                                             | Location                                                                                                                                                    | Description                                                                                                                                                                                                                                                                                                                | Width<br>Metr <b>e</b> s                                                                             | oz/t Au | ppb <sup>'</sup> Au                                         |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------|
| 7562<br>7563<br>7564<br>7565<br>7566<br>7567<br>7568<br>7569<br>7570<br>7571<br>7572<br>7573<br>7573<br>7574 | Br 31<br>Br 31<br>Br 31<br>Br 31<br>High Level<br>Br 6<br>Br 6<br>Br 6<br>Highway<br>Highway<br>Highway<br>Highway<br>Br 31<br>Br 31                        | Cb/ep stockwork with diss py<br>161/78NE shear zone with hem<br>Calcite stockwork<br>121/65NE shear zone<br>068/? qtz vein<br>cb stockwork<br>093/70N qtz vn/fault<br>084/70N qtz vn/fault with py<br>135/23NE cb stockwork<br>060/70NW qtz vein<br>070/60NW qtz/gouge vn<br>178/07W qtz vein<br>020/68NW siliceous gossan | grab<br>0.90<br>grab<br>0.40<br>0.90<br>1.00<br>1.30<br>0.60<br>grab<br>0.05<br>0.12<br>0.10<br>grab | 0.001   | 34<br>1<br>2<br>3<br>2<br>3<br>12<br>1<br>1<br>28<br>1<br>1 |
| 7576<br>7577                                                                                                 | Br 31<br>Br 31<br>Br 31<br>Br 31                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                      | 4                                                                                                    |         | 1<br>1<br>1<br>1<br>1                                       |
| 7580<br>7581<br>7582<br>7583<br>7584<br>7585<br>7585<br>7586<br>7587<br>7588<br>7589<br>7589                 | Br 31<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck | 160/83NE qtz vn with py<br>144/74SE qtz vn<br>Oxidized qtz stockwork<br>120/86NE qtz vn<br>180/68W siliceous dyke<br>062/18SE siliceous bed<br>060/32SE qtz vn<br>143/71S qtz vn<br>117/? shear zone/fault<br>119/66NE qtz infilling with p                                                                                |                                                                                                      | 0.001   | 23<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>3                  |
| 7592<br>7593                                                                                                 | Bookhout Ck<br>Bookhout Ck<br>Bookhout Ck<br>E Ck                                                                                                           | 020/18SE qtz vn with py<br>150/88NE qtz vn with py<br>105/74N qtz vein with py<br>Siliceous volc's with py                                                                                                                                                                                                                 | 0.50<br>0.06<br>0.20<br>0.40                                                                         | 0.005   |                                                             |

Ľ.

L

L L

L. L

L

E

l.

L

·- •

E.

E...

E

Ł

L.

L. L. L.

L

1

·•••

L

L

I

| Sample<br>Number | Location              | Description                                                      | Width<br>Metres      | oz/t Au        | ppb Au |
|------------------|-----------------------|------------------------------------------------------------------|----------------------|----------------|--------|
| 7595<br>7596     | E Ck<br>E Ck          | 058/42SE qtz infilling<br>070/80S qtz infill py                  | 0.40<br>0.25         | 0.001          | `4     |
| 7833             | Ck 7<br>Ck 7<br>Ck 2E | Sulfide float<br>125/68? qtz vn with py<br>290/40NE qtz vn       | grab<br>0.04<br>0.20 | 0.001<br>0.001 | 1      |
| 7835<br>7836     | Br 6<br>Ck 7<br>Br 6  | 090/90 Altered dyke<br>Qtz float<br>154/90 fault/qtz str with py | 0.31<br>grab<br>grab | 0.001          | 1      |
| 7838             | Br 6<br>Br 6          | 280/82N lim qtz flt gouge<br>HW volc from 7837                   | grab<br>grab         | 0.001          | *      |

É

I

L

.

Ŧ

L

# PROPERTY Henneberry Sampling

| 50528 31/31E Vein | 285/45N lim/qtz vn 5% vugs<br>285/55N lim/qtz vn - east<br>285/55N lim/qtz vn - centre<br>285/55N lim/qtz vn - west<br>Siliceous gossan | grab<br>0.15<br>0.20<br>0.20<br>grab |       | 1<br>4<br>2<br>4<br>1 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|-----------------------|
| 4205 1290E 560S   | 270/? qtz vn with 2% py-cpy<br>and malachite staining                                                                                   | grab                                 | 0.016 |                       |

ACME ANALYHICAL LABU TORIES 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DA DA RECEIVED: JUL 28 179/

Uua 5

DATE REPORT MAILED:

#### GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOILS -BO MESH AU\* ANALYSIS BY AA FROM 10 GRAM SAMPLE. H6 ANALYSIS BY FLAMLESS AA.

ASSAYER: . N. My. DEAN TOYE, CERTIFIED B.C. ASSAYER

STETSON RESOURCES PROJECT-IDEAL File # 87-2792 Page 1

| SAMPLE#                             | CU<br>PPM  | PB<br>PPM | AG<br>PPM | AS<br>PPM | SB<br>PPM      | AU*<br>PPB | HG<br>PPB |
|-------------------------------------|------------|-----------|-----------|-----------|----------------|------------|-----------|
| L4+00 10+00S                        | 41         | 14        | . 4       | 2         | 2              | 1          | 80        |
| L4+00 10+50S                        | 104        | 21        | . 1       | 4         | 2              | ŝ          | 130       |
| L4+00 11+00S                        | 94         | 15        | . 1       | 2         | 2              | 1          | 80        |
| L4+00 11+50S                        | 70         | 21        | .1        | 4         | 2              | 15         | 70        |
| L4+00 12+00S                        | 67         | 20        | .2        | 2         | 2              | 5          | 60        |
| L-1.00 12.000                       | <b>G</b> 7 | <i></i>   | • dia     |           | alara.         | ,          | 0.0       |
| L4+00 12+50S                        | 57         | 12        | . 1       | 2         | 2              | 1          | 80        |
| L4+00 13+00S                        | 73         | 8         | .2        | 2         | 2              | 5          | 100       |
| L4+00 13+50S                        | 119        | 13        | . 1       | 2         | 2              | 3          | 20        |
| L5+00 9+50S                         | 73         | 10        | . 1       | 2         | 2              | 2          | 60        |
| L5+00 10+00S                        | 94         | 13        | × • 1     | 2         | 2              | 1          | 130       |
|                                     |            |           |           |           |                |            |           |
| L5+00 10+50S                        | 104        | 15        | . 1       | 5         | 2              | 1          | 90        |
| L5+00 11+00S                        | 124        | 15        | . 1       | 2         | 2              | 2          | 80        |
| L5+00 11+50S                        | 109        | 18        | .3        | 5         | 2              | 7          | 110       |
| L5+00 12+00S                        | 81         | 18        | . 1       | 4         | 2              | 2          | 80        |
| L5+00 12+50S                        | 68         | 16        | . 1       | 3         | 2              | 1          | 70        |
|                                     |            |           |           |           |                |            |           |
| L6+00 9+50S                         | 45         | 21        | . 1       | 2         | 2              | 1          | 50        |
| L6+00 10+00S                        | 78         | 20        | .3        | 4         | 2              | 1          | 70        |
| L6+00 10+50S                        | 87         | 17        | .2        | 2         | 2              | 8          | 60        |
| L6+00 11+00S                        | 86         | 12        | . 1       | 4         | 2              | 22         | 50        |
| L6+00 11+50S                        | 130        | 10        | . 1       | 5         | 2              | 2          | 90        |
| به مورد المراجع و المراجع و ا       | ~~         |           |           |           |                |            |           |
| L6+00 12+00S                        | 22         | 12        | .1        | 4         | 3              | 1          | 40        |
| L6+00 12+50S                        | 125        | 14        | - 1       | 5         | 2              | 3          | 100       |
| L7+00 0+00S                         | 113        | 3         | . 1       | 5         | 2              | 1          | 100       |
| L7+00 0+50S                         | 83         | 16        | .3        | 5         | 2              | 1          | 90        |
| L7+00 1+00S                         | 16         | 13        | . 1       | 5         | 2              | 3          | 40        |
| L7+00 1+50S                         | 137        | 23        | . 1       | 3         | 2              | 4          | 130       |
| L7+00 2+005                         | 88         | 12        | .1        | 4         | 3              | 11         | 180       |
| L7+00 2+50S                         | 123        | 14        | . 1       | 2         | 2              | 20         | 80        |
| L7+00 3+005                         | 52         | 7         | .1        | 2         | 2              | 3          | 100       |
| L7+00 3+50S                         | 72         | 16        | .2        | 4         | 2              | 2          | 100<br>90 |
| L/HV0 0H000                         | 14         | 10        | سک ہ      | -1        | می <i>ک</i> د. | *          | /0        |
| L7+00 4+00S                         | 82         | 17        | . 1       | 2         | 2              | 1          | 110       |
| L7+00 4+50S                         | 196        | 21        | . 1       | 11        | 2              | 5          | 130       |
| L7+00 5+00S                         | 115        | 15        | . 1       | 4         | 2              | 5          | 140       |
| L7+00 5+50S                         | 140        | 23        | . 1       | 6         | 2              | 1          | 90        |
| L7+00 6+00S                         | 51         | 17        | . 1       | 3         | 2              | 1          | 70        |
| and a constant of the second second |            |           |           | -         |                |            |           |
| L7+00 6+50S                         | 90         | 15        | . 1       | 4         | 2              | 13         | 80        |
| STD C/AU-S                          | 58         | 40        | 6.9       | 40        | <i>i</i> 17    | 53         | 1500      |

 $\left( \begin{array}{c} \end{array} \right)$ 

 $C_{i}$ 

į

| SAMPLE#      | CU<br>PPM | PB<br>PPM | AG<br>PPM | AS ,<br>PPM ( | SB<br>PPM   | AU*<br>PPB | HG<br>PPB        |
|--------------|-----------|-----------|-----------|---------------|-------------|------------|------------------|
| L7+00 7+00S  | 55        | 13        | .2        | 6             | 2           | 3          | 150              |
| L7+00 7+50S  | 45        | 13        | .3        | 6             | 2           | 1          | 90               |
| L7+00 8+00S  | 40        | 11        | .1        | 2             | 2           | 2          | 70               |
| L7+00 8+50S  |           | 14        | .1        | 2             | 2           | 1          | 70               |
| L7+00 9+00S  | 64        | 14        | .1        | 2             | 2           | 43         |                  |
| 27400 94003  | 0**       | 11        | • 1       | ii.           | <u>~</u>    | 40         | 50               |
| L7+00 9+50S  | 45        | 4         | . 1       | 4             | 3           | 2          | 60               |
| L7+00 10+00S | 76        | 10        | .1        | 2             | 2           | 1          | 80               |
| L7+00 10+50S | 69        | 21        | .2        | .2            | 2           | 3          | 60               |
| L7+00 11+00S | 115       | 6         | . 1       | 2             | 2           | 13         | 80               |
| L7+00 11+50S | 44        | 15        | .2        | ប             | 23          | 6          | 70               |
| L8+00 0+00S  | 91        | 10        | .2        | 3             | 2           | 3          | 140              |
| L8+00 0+50S  | 67        | 5         | . 1       | 2             | 2           | 1          | 60               |
| L8+00 1+00S  | 37        | 14        | .2        | 2             | 2<br>2<br>3 | 5          | 50               |
| L8+00 1+50S  | 59        | 4         | . 1       | 2             | 5           | 1          | 70               |
| L8+00 2+005  | 115       | 2         | .2        | 2             | 2           | 4          | 220              |
|              | 110       | đin       | 10 dim    | din.          | <u>~</u>    | -          | 220              |
| L8+00 2+50S  | 142       | 9         | . 1       | 7             | 2           | 4          | 90               |
| L8+00 3+00S  | 81        | 18        | .2        | 3             | 2           | 1          | 160              |
| L8+00 3+50S  | 75        | 10        | `.1       | 5.            | 2           | 1          | 90               |
| L8+00 4+00S  | 78        | 10        | .3        | 2             | 2           | 2          | 110              |
| L8+00 4+50S  | 134       | 4         | .2        | 6             | 2           | 4          | 130              |
| L8+00 5+00S  | 115       | 14        | .3        | 2             | 2           | 1          | 80               |
| L8+00 5+50S  | 117       | 7         | . 1       | 4             | 2           | ź          | 140              |
| L8+00 6+00S  | 93        | 13        | . 1       | 4             | 3           | ī          | 90               |
| L8+00 6+50S  | 50        | 8         | . 1       | 3             | 3           | 2          | 80               |
| L8+00 7+005  | 74        | 14        | .1        | 7             | 2           | Ĵ          | 90               |
|              | 74        | T-4       | • 1       | /             | 4           | U.         | 70               |
| L8+00 7+50S  | 107       | 9         | . 1       | 6             | 2           | 4          | 110              |
| L8+00 8+00S  | 59        | 13        | .2        | 2             | 2           | 8          | 90               |
| L8+00 8+50S  | 122       | 12        | . 1       | 6             | 2           | 1          | 70               |
| L9+00 0+00S  | 97        | 11        | . 1       | 3             | 2           | 9          | 160              |
| L9+00 0+50S  | 65        | 16        | . 4       | 6             | 4           | 28         | 80               |
| L9+00 1+00S  | 132       | 5         | . 1       | 4             | 2           | 4          | 70               |
| L9+00 1+50S  | 102       | 13        | . 1       | 6             | 2           | 81         | 80               |
| L9+00 2+005  | 112       | 10        | . 1       | 6             | 2           | 3          | 90               |
| L9+00 2+50S  | 74        | 6         | . 1       | 4             | 2           | 2          | 70 '             |
| L9+00 3+00S  | 95        | 9         | .2        | 8             | 2           | 5          | 100              |
| L9+00 3+50S  | 101       | 13        | . 1       | 7             | 2           | 2          | 160              |
| STD C/AU-S   | 60        | 41        | 7.2       | 41            | 17          | 49         | 1300             |
|              | ····      | • •       |           | • *           | . /         |            | این این میرد مدر |

 $(\overline{\phantom{a}})$ 

| SAMPLE#                                                                      | CU<br>PPM                     | PB<br>PPM                  | AG<br>PPM                       | AS<br>PPM              | SB<br>PPM                               | AU*<br>PPB             | HG<br>PPB                       |
|------------------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------------|------------------------|-----------------------------------------|------------------------|---------------------------------|
| L9+00 4+00S<br>L9+00 4+50S<br>L9+00 5+00S<br>L9+00 5+50S<br>L9+00 6+00S      | 78<br>102<br>93<br>52<br>58   | 21<br>28<br>22<br>20<br>32 | . 1<br>. 1<br>. 1<br>. 1        | 2<br>2<br>2<br>4<br>2  | 2 N N N N N N N N N N N N N N N N N N N | 1<br>3<br>5<br>4<br>1  | 80<br>70<br>60<br>50<br>90      |
| L9+00 6+50S<br>L9+00 7+00S<br>L9+00 7+50S<br>L9+00 8+00S<br>L9+00 8+50S      | 102<br>119<br>117<br>68<br>56 | 20<br>24<br>18<br>25<br>28 | . 1<br>. 1<br>. 1<br>. 1<br>. 1 | 4<br>3<br>4<br>2<br>2  | N N N N N N                             | 5357 Q                 | 100<br>70<br>80<br>60<br>70     |
| L9+00 9+00S<br>L9+00 9+50S<br>L9+00 10+00S<br>L9+00 10+50S<br>L9+00 11+00S   | 71<br>122<br>74<br>90<br>88   | 28<br>8<br>24<br>27<br>24  | . 1<br>. 1<br>. 1<br>. 1        | 2<br>7<br>5<br>2<br>5  | 2 2 2 3<br>2 3                          | 3<br>8<br>6<br>2<br>4  | 100<br>110<br>70<br>200<br>130  |
| L9+00 11+50S<br>L9+00 12+00S<br>L9+00 12+50S<br>L9+00 13+00S<br>L9+00 13+50S | 51<br>68<br>89<br>67<br>58    | 15<br>11<br>19<br>22<br>13 | .1<br>.1<br>.1<br>.1            | 2<br>5<br>3<br>4       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 8<br>5<br>1<br>2<br>1  | 60<br>100<br>200<br>220<br>90   |
| L9+00 14+00S<br>L9+00 14+50S<br>L9+00 15+00S<br>STD C/AU-S<br>L9+00 15+50S   | 72<br>145<br>89<br>58<br>55   | 28<br>24<br>19<br>40<br>14 | .1<br>.1<br>7.1<br>.1           | 2<br>2<br>38<br>2      | 2<br>2<br>16<br>2                       | 3<br>5<br>2<br>54<br>4 | 70<br>80<br>60<br>1300<br>60    |
| L9+00 16+00S<br>L9+00 16+50S<br>L9+00 17+00S<br>L10+00 0+00S<br>L10+00 0+50S | 103<br>48<br>52<br>42<br>77   | 13<br>13<br>16<br>13<br>18 | .1<br>.3<br>.3<br>.1            | 5<br>5<br>2<br>3<br>10 | 2<br>4<br>2<br>4<br>2                   | 7<br>1<br>4<br>2<br>2  | 50<br>90<br>100<br>70<br>60     |
| L10+00 1+00S<br>L10+00 1+50S<br>L10+00 2+00S<br>L10+00 2+50S<br>L10+00 3+00S | 68<br>126<br>70<br>79<br>82   | 18<br>12<br>22<br>16<br>17 | .1<br>.1<br>.2<br>.1<br>.1      | ద<br>ర<br>ర<br>ర       | 2<br>2<br>2<br>2<br>2<br>2              | 6<br>2<br>3<br>4<br>3  | 80<br>110<br>120<br>110 '<br>80 |
| L10+00 3+50S<br>L10+00 4+00S<br>L10+00 4+50S                                 | 57<br>71<br>101               | 17<br>12<br>15             | .2<br>.1<br>.2                  | ර<br>ර<br>4            | 2<br>2<br>2                             | 1<br>3<br>6            | 60<br>70<br>160                 |

| SAMFLE#       | CU<br>PPM      | PB<br>PPM  | AG<br>PPM | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB  |
|---------------|----------------|------------|-----------|-----------|-----------|------------|------------|
| L10+00 5+00S  | 72             | 6          | . 1       | 2         | 2         | 1          | 190        |
| L10+00 5+50S  | 145            | 13         | . 1       | 2         | 2         | 5          | 60         |
| L10+00 6+00S  | 106            | 4          | .3        | 2         | 2         | 2          | 70         |
| L10+00 6+50S  | 82             | 9          | .2        | 2         | 2<br>2    | 1          | 40         |
| L10+00 7+00S  | 55             | 10         | .2        | 5         | 2         | 9          | 80         |
|               | <b></b>        |            | • •       | -         |           |            |            |
| L10+00 7+50S  | 62             | 10         | . 1       | 3         | 2         | 2          | 70         |
| L#0+00 8+00S  | 82             | 2          | . 1       | 3         | 2         | 2          | 90         |
| L10+00 8+505  | 63             | 16         | . 1       | 4         | 2         | 3          | 100        |
| L10+00 9+005  | 49             | 17         | .2        | 5         | 2         | 1          | 110        |
| L10+00 9+50S  | 41             | 6          | . 1       | 7         | 2         | 1          | 70         |
|               |                |            |           | -         | -         | -          | 00         |
| L10+00 10+00S | 57             | 13         | .1        | 2<br>4    | 2         | 2          | 80<br>90   |
| L10+00 10+50S | 61             | 15         | . 1       |           | 2         | 1<br>4     |            |
| L10+00 11+005 | 67             | 14         | . 1       | 6         | 2<br>3    |            | 60<br>80   |
| L10+00 11+50S | 88             | 12         | .1        | 2<br>2    | 2         | 2<br>1     | 90<br>120  |
| L10+00 12+00S | 133            | 18         | .2        | 2         | <u></u>   | T          | 120        |
| L10+00 12+50S | 93             | 5          | . 1       | 4         | 2         | 2          | 80         |
| L10+00 13+00S | 65             | 16         | . 1       | 3         | 2         | 1          | 90         |
| L10+00 13+50S | 154            | ` <b>8</b> | ۰.2       | 2         | 2         | 2          | 110        |
| L10+00 14+00S | 129            | 4          | . 1       | 2.<br>2   | 2         | 3          | 90         |
| L11+00 0+00S  | 81             | 14         | . 1       | 2         | 2         | 2          | 70         |
| STD C/AU-S    | 59             | 41         | 7.0       | 39        | 18        | 48         | 1400       |
| L11+00 0+50S  | 103            | 11         | . 1       | 3         | 2         | 2          | 80         |
| L11+00 1+00S  | 42             | 6          | .2        | 2         | 3         | 1          | 50         |
| L11+00 1+50S  | 64             | 12         | . 1       | 2         | 2         | 8          | <b>9</b> 0 |
| L11+00 2+00S  | 86             | 12         | .3        | 2         | 2         | 4          | 100        |
| L11+00 3+00S  | <del>7</del> 8 | 10         | .2        | 6         | 2         | 3          | 80         |
| L11+00 3+50S  | 57             | 10         | .2        | 6         | 3         | - 1        | 90         |
| L11+00 4+00S  | 36             | 6          | . 1       | 6         | 4         | 2          | 70         |
| L11+00 4+50S  | 95             | 15         | . 1       | 5         | 2         | 5          | 90         |
| L11+00 5+00S  | 85             | 16         | . 1       | 2         | 2         | 10         | 50         |
| L11+00 5+50S  | 95             | 7          | . 1       | 6         | 2         | 6          | 100        |
| L11+00 6+00S  | 130            | 20         | . 1       | 7         | 2         | 1          | 80         |
| L11+00 6+50S  | 66             | 7          | .2        | 3         | 2         | 3          | 50         |
| L11+00 7+00S  | 82             | 12         | . 1       | 2         | 2         | 6          | 100        |
| L11+00 7+50S  | 94             | 4          | . 1       | 7         | 2         | 1          | 90         |
| L11+00 8+00S  | 62             | 10         | . 1       | 5         | 2         | 24         | 110        |
| L11+00 8+50S  | 70             | 6          | . 1       | 2         | 2         | 1          | 120        |
| L11+00 9+00S  | 45             | 10         | .2        | 4         | 2         | 3          | 80         |
|               |                |            |           |           |           |            |            |

. .

ACME ANALYTICAL LABORATORIES DATE RECEIVED: JUL 24 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

GEOCHEMICAL ICP ANALYSIS

.500 GRAN SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEB.C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-6 SOILS P7-SILT \_\_\_\_\_ AU&\_ANALYSIS BY AA FROM 10 GRAM SAMPLE. H6 ANALYSIS BY FLAMLESS AA.

STETSON RESOURCES PROJECT-IDEAL File # 87-2685 Page 1

| SAMPLE#             | CU<br>PPM | PB<br>PPM | AG<br>PPM | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB  |
|---------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|
| L0+00 0+25S         | 44        | 2         | . 1       | 2         | 2         | 17         | 90         |
| L0+00 0+50S         | 16        | 2         | . 1       | 2         | 2         | 4          | 60         |
| L0+00 0+755         | 46        | 3         | .2        | 2         | 2         | 2          | 70         |
| L0+00 1+00S         | 117       | 4         | . 1       | 2         | 2         | 3          | 110        |
| L0+00 1+25S         | 84        | 6         | . 1       | 2         | 2         | Ĵ          | 120        |
|                     |           |           | • -       |           |           | -          |            |
| L0+00 1+50S         | 84        | 2         | .2        | 2         | 2         | 1          | 80         |
| L0+00 1+75S         | 125       | 10        | .2        | 4         | 2         | 1          | 100        |
| L0+00 2+00S         | 96        | 3         | .1        | 4         | 2         | • 1        | 60         |
| L0+00 2+25S         | 63        | 12        | . 1       | 4         | 2         | 2          | 130        |
| L0+00 2+50S         | 70        | 20        | ×.1       | 3         | 2         | 1          | 80         |
| L0+00 2+755         | 72        | 12        | . 1       | 4         | 2         | 13         | 70         |
| L0+00 3+255         | 146       | 18        | .2        | 2         | 2         | 10         | 60         |
| L0+00 3+205         | 44        | 16        | .2        | 2         | 2         | 1          | 80         |
| L0+00 3+75S         | 73        | 10        | .1        | 5         | 2         | 21         | 70         |
| L0+00 4+00S         | 81        | 19        | .1        | 2         | 2         | - 1        | 60         |
| 20100 41003         | 01        | 17        | • 1       | <i></i>   | - Aire    | 1          | 00         |
| L0+00 4+25S         | 44        | 17        | .2        | 2 '       | 2         | 1          | 110        |
| L0+00 <b>4+5</b> 0S | 65        | 18        | . 1       | 2         | 2         | 2          | 80         |
| L0+00 4+75S         | 81        | 9         | .2        | 7         | 2         | 25         | 100        |
| L0+00 5+00S         | 96        | 11        | .1        | 4         | 2         | 1          | 90         |
| L0+00 5+25S         | 19        | 8         | . 1       | 2         | 2         | 1          | 110        |
| L0+00 5+50S         | 78        | 13        | . 1       | 2         | 2         | 1          | 100        |
| L0+00 5+75S         | 55        | 21        | .2        | 7         | 2         | 14         | 70         |
| L0+00 6+005         | 118       | 25        | .2        | 5         | 2         | 1          | 70         |
| L0+00 6+25S         | 60        | 16        | . 1       | 3         | 4         | 1          | 60         |
| L0+00 6+50S         | 38        | 11        | .1        | 3         | 2         | 1          | 150        |
|                     |           |           |           |           |           | -          | 1          |
| L0+00 6+75S         | 94        | 23        | .3        | 5         | 4         | 1          | 110        |
| L0+00 7+00S         | 108       | 32        | . 1       | 3         | 2         | 1          | 90         |
| L0+00 7+25S         | 77        | 25        | .2        | 3         | 3         | 1          | 160        |
| L0+00 7+50S         | 50        | 24        | . 1       | 2         | 2         | 1          | 50         |
| L0+00 7+75S         | 61        | 18        | . 1       | 2         | 2         | 1          | 130        |
| L0+00 8+005         | 114       | 32        | . 1       | 5         | 2         | 1          | 100        |
| L0+00 8+25S         | 202       | 25        | .2        | 4         | 2         | 1          | 110        |
| L0+00 8+205         | 157       | 34        | .1        | 8         | 2         | 39         | 100        |
| L0+00 8+75S         | 128       | 29        | .2        | 2         | 3         | 1          | 130        |
| L0+00 9+00S         | 128       | 35        | .1        | 5         | 2         | 1          | 120        |
| 20400 94003         | 100       |           | • 1       | <u>ل</u>  | din.      | *          | an ann "c" |
| L0+00 9+25S         | 234       | 40        | .2        | 6         | 2         | 1          | 240        |
| STD C/AU-S          | 57        | 40        | 7.3       | 37        | i 17      | 50         | 1300       |
|                     |           |           |           |           |           |            |            |

| SAMPLE#                                                                      | CU<br>PPM                      | PB<br>PPM                | AG<br>PPM                   | AS<br>PPM              | SB<br>PPM                            | AU*<br>PPB             | HG<br>PPB                        |
|------------------------------------------------------------------------------|--------------------------------|--------------------------|-----------------------------|------------------------|--------------------------------------|------------------------|----------------------------------|
| L1+00 0+005<br>L1+00 0+505<br>L1+00 1+005<br>L1+00 1+505<br>L1+00 2+005      | 114<br>36<br>48<br>101<br>64   | 10<br>2<br>5<br>4<br>4   | .3<br>.1<br>.1<br>.2<br>.2  | 33<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2           | 17<br>3<br>1<br>2<br>1 | 120<br>70<br>140<br>80<br>150    |
| L1+00 2+50S<br>L1+00 3+00S<br>L1+00 3+50S<br>L1+00 4+00S<br>L1+00 4+50S      | 58<br>79<br>60<br>52<br>43     | 11<br>4<br>8<br>12<br>13 | .2<br>.1<br>.3<br>.3        | 3<br>2<br>4<br>2<br>2  | 2<br>2<br>2<br>2<br>2<br>2<br>2      | 1<br>5<br>1<br>8       | 70<br>90<br>70<br>110<br>100     |
| L1+00 5+00S<br>L1+00 5+50S<br>L1+00 6+00S<br>L1+00 6+50S<br>L1+00 7+00S      | 144<br>33<br>18<br>71<br>70    | 10<br>7<br>6<br>5<br>12  | .3<br>.1<br>.1<br>.1        | 7<br>2<br>3<br>5<br>5  | 2<br>2<br>2<br>2<br>2<br>2           | 2<br>1<br>1<br>2<br>1  | 70<br>80<br>90<br>130<br>180     |
| L1+00 7+50S<br>L1+00 8+00S<br>L1+00 8+50S<br>L1+00 9+00S<br>L1+00 9+50S      | 86<br>135<br>97<br>131<br>87   | 11<br>4<br>17<br>12<br>5 | ×.2<br>.2<br>.2<br>.3<br>.3 | 659<br>946             | 2<br>2<br>2<br>2<br>2<br>2<br>2      | 1<br>1<br>1<br>2       | 150<br>100<br>140<br>60<br>130   |
| L1+00 10+00S<br>L1+00 10+50S<br>L1+00 11+00S<br>L1+00 11+50S<br>L1+00 12+00S | 126<br>73<br>59<br>52<br>79    | 2<br>2<br>2<br>7<br>7    | .3<br>.2<br>.3<br>.3<br>.3  | 833<br>750<br>750      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 1<br>9<br>2<br>1<br>3  | 110<br>80<br>70<br>80<br>60      |
| L1+00 12+50S<br>L1+00 13+00S<br>L1+00 13+50S<br>L1+00 14+00S<br>L1+00 14+50S | 85<br>77<br>39<br>109<br>25    | 5<br>13<br>3<br>4<br>6   | .3<br>.3<br>.1<br>.3        | 8<br>6<br>2<br>4<br>5  | 2<br>2<br>2<br>2<br>2                | 1<br>1<br>1<br>1       | 120<br>90<br>70<br>160<br>50     |
| L1+00 15+00S<br>L2+00 0+00S<br>L2+00 0+50S<br>L2+00 1+00S<br>L2+00 1+50S     | 153<br>110<br>145<br>105<br>69 | 9<br>6<br>2<br>5<br>8    | .1<br>.2<br>.1<br>.1<br>.2  | 5<br>5<br>10<br>5<br>5 | 2<br>2<br>2<br>4                     | 1<br>7<br>4<br>9       | 110<br>120'<br>110<br>130<br>100 |
| L2+00 2+00 <b>S</b><br>STD C/AU-S                                            | 97<br>59                       | 6<br>40                  | .2<br>6.7                   | 3<br>38                | 4<br>17                              | 2<br>54                | 90<br>1400                       |

| SAMPLE#                                                                      | CU<br>PPM                     | PB<br>PPM                  | AG<br>PPM                       | AS<br>PPM             | SB<br>PPM                       | AU*<br>PPB             | HG<br>PPB                      |
|------------------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------------|-----------------------|---------------------------------|------------------------|--------------------------------|
| L2+00 2+50S<br>L2+00 3+00S<br>L2+00 3+50S<br>L2+00 4+00S<br>L2+00 4+50S      | 60<br>59<br>37<br>15<br>53    | 13<br>18<br>12<br>11<br>14 | . 1<br>. 1<br>. 1<br>. 1<br>. 1 | - 5 2 2 2 2           | 2 2 2 2<br>2 2 2 2              | 2<br>2<br>3<br>1<br>5  | 160<br>170<br>100<br>30<br>50  |
| L2+00 5+00S<br>L2+00 5+50S<br>L2+00 6+00S<br>L2+00 6+50S<br>L2+00 7+00S      | 41<br>41<br>111<br>49<br>49   | 7<br>9<br>21<br>16<br>6    | . 1<br>. 1<br>. 2<br>. 1<br>. 1 | 2<br>2<br>7<br>4<br>3 | 2<br>2<br>4<br>2<br>2           | 1<br>4<br>62<br>2<br>1 | 50<br>80<br>130<br>120<br>120  |
| L2+00 7+50S<br>L2+00 8+00S<br>L2+00 8+50S<br>L2+00 9+00S<br>L2+00 9+50S      | 45<br>74<br>85<br>120<br>60   | 13<br>14<br>15<br>19<br>16 | . 1<br>. 1<br>. 1<br>. 1<br>. 1 | 2<br>2<br>2<br>4      | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 1<br>1<br>1<br>1       | 80<br>130<br>100<br>70<br>90   |
| L2+00 10+00S<br>L2+00 10+50S<br>L2+00 11+00S<br>L2+00 11+50S<br>L2+00 12+00S | 105<br>88<br>140<br>41<br>115 | 18<br>17<br>23<br>13<br>18 | .1<br>.2<br>.1                  | 52725                 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 1<br>2<br>1<br>1<br>2  | 130<br>90<br>90<br>70<br>90    |
| L2+00 12+50S<br>L2+00 13+00S<br>L2+00 13+50S<br>L2+00 14+00S<br>L2+00 15+00S | 52<br>26<br>126<br>92<br>76   | 12<br>13<br>18<br>22<br>18 | .2<br>.1<br>.1<br>.1<br>.1      | 2<br>5<br>3<br>2<br>3 | N N N N<br>N N N N              | 1<br>2<br>5<br>2<br>2  | 60<br>60<br>100<br>70<br>80    |
| L2+00 15+50S<br>L2+00 16+00S<br>L3+00 0+00S<br>L3+00 0+50S<br>L3+00 0+50S A  | 106<br>50<br>36<br>237<br>238 | 21<br>18<br>17<br>23<br>24 | .1<br>.1<br>.1<br>.2            | ័្រភេខ។ខ              | 3<br>2<br>2<br>2<br>2<br>2      | 1<br>995<br>265<br>3   | 120<br>70<br>150<br>60<br>70   |
| L3+00 1+00S<br>L3+00 1+50S<br>L3+00 2+00S<br>L3+00 2+00S A<br>L3+00 3+00S    | 81<br>120<br>50<br>73<br>63   | 18<br>23<br>14<br>15<br>15 | .1<br>.1<br>.1<br>.2            | 2<br>4<br>3<br>4      | 2<br>2<br>3<br>2<br>2<br>2      | 2<br>2<br>3<br>4<br>4  | 60<br>110<br>130<br>420<br>120 |
| L3+00 3 <b>+50S</b><br>STD C/AU-S                                            | 25<br>62                      | 11<br>40                   | .1<br>7.2                       | 4<br>38               | 3<br>17                         | 11<br>53               | 60<br>1300                     |

| SAMPLE#      | CU<br>PPM | PB<br>PPM | AG<br>PPM | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|--------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
| L3+00 4+00S  | 104       | 14        | . 1       | З         | 2         | 2          | 120       |
| L3+00 4+50S  | 100       | 14        | . 1       | 2         | 2         | 1          | 100       |
| L3+00 5+50S  | 117       | 12        | . 1       | 4         | 2         | 1          | 110       |
| L3+00 6+00S  | 55        | 9         | . 1       | 2         | 2         | 51         | 130       |
| L3+00 6+50S  | 27        | 13        | . 1       | 2         | 2         | 17         | 110       |
| #-           |           |           |           |           |           |            |           |
| L3+00 7+00S  | 82        | 14        | . 1       | 2         | 2         | 1          | 220       |
| L3+00 7+50S  | 56        | 20        | .2        | 4         | 2         | 1          | 100       |
| L3+00 8+00S  | 77        | 13        | . 1       | 4         | 2         | 1          | 120       |
| L3+00 8+50S  | 56        | 13        | . 1       | 3         | 2         | 1          | 150       |
| L3+00 9+00S  | 43        | 16        | .2        | 4         | 2         | 1          | 90        |
| L3+00 9+50S  | 152       | 21        | . 1       | 4         | 2         | 2          | 120       |
| L3+00 10+00S | 83        | 11        | . 1       | 4         | 2         | 1          | 70        |
| L3+00 10+50S | 71        | 15        | . 1       | 5         | 2         | 3          | 80        |
| L3+00 11+00S | 80        | 7         | . 1       | 2         | 2         | 1          | 110       |
| L3+00 11+50S | 96        | 18        | . 1       | 5         | 2         | 2          | 80        |
| L3+00 12+00S | 59        | 11        | ×.2       | 2         | 2         | 1          | 90        |
| L3+00 12+50S | 70        | 8         | . 1       | 3.1       | 2         | 6          | 60        |
| L3+00 13+00S | 24        | 7         | . 1       | 2         | 3         | 2          | 40        |
| L3+00 13+50S | 140       | 14        | . 1       | 2         | 2         | 2          | 110       |
| L3+00 14+00S | 67        | 8         | . 1       | 4         | 3         | 2          | 140       |
| L3+00 14+50S | 63        | 12        | . 1       | 2         | 2         | 1          | 110       |
| L3+00 15+00S | 140       | 18        | . 1       | 4         | 2         | 1          | 130       |
| L4+00 0+00S  | 132       | 11        | . 1       | 6 '       | 2         | 6          | 100       |
| L4+00 0+50S  | 90        | 18        | .2        | 5         | 3         | 3          | 90        |
| L4+00 1+00S  | 123       | 15        | . 1       | 5         | 2         | 2          | 150       |
| L4+00 1+50S  | 37        | 9         | . 1       | 2         | 2         | 1          | 120       |
| L4+00 2+00S  | 182       | 13        | . 1       | 7         | 2<br>2    | 2          | 110       |
| L4+00 2+50S  | 39        | 10        | .1        | 2         | 2         | 2          | 50        |
| L4+00 3+00S  | 130       | 14        | .2        | 2         | 2         | 1          | 80        |
| L4+00 3+50S  | 106       | 9         | - 1       | 3         | 2         | 2          | 200       |
| L4+00 4+00S  | 35        | 14        | .3        | 2         | 2         | 1          | 80        |
| L4+00 4+50S  | 32        | 10        | .2        | 3         | 2         | 3          | 90'       |
| L4+00 5+00S  | 49        | 12        | . 1       | 2         | 5         | 6          | 60        |
| L4+00 5+50S  | 69        | 15        | . 1       | 4         | 3         | 4          | 170       |
| L4+00 6+00S  | 109       | 15        | . 1       | 5         | 2         | 1          | 100       |
| L4+00 6+50S  | 108       | 12        | .2        | 8         | 2         | 1          | 130       |
| STD C/AU-S   | 62        | 41        | 7.4       | 41        | 17        | 51         | 1400      |

| SAMPLE#                        | CU<br>PPM        | PB<br>PPM           | AG<br>PPM   | AS<br>PPM | SB<br>PPM      | AU*<br>PPB | HG<br>PPB |
|--------------------------------|------------------|---------------------|-------------|-----------|----------------|------------|-----------|
| L4+00 7+00S                    | 115              | 6                   | .2          | 6         | 2              | 4          | 160       |
| L4+00 7+50S                    | 79               | 11                  | .3          | 2         | 2              | 8          | 140       |
| L4+00 8+00S                    | 52               |                     | . 1         | 2         | 2              | 3          | 150       |
| L4+00 8+50S                    | 44               | 6                   | .2          | 2         | 3              | 1          | 160       |
| L4+00 9+005                    | 24               | 6                   | .1          | 2         | 2              | 1          | 60        |
|                                | ۳ <sup>-</sup> ۳ | 6                   | • ±         | 4         | d              | *          | 00        |
| L4+00 9+50S                    | 107              | 15                  | .2          | 2         | 2              | 1          | 120       |
| L5+00 0+00S                    | 73               | 10                  | .2          | 3         | 3              | 17         | 90        |
| L5+00 0+50S                    | 72               | 15                  | .3          | 2         | 2              | 2          | 130       |
| L5+00 1+00S                    | 29               | 8                   | .2          | 2         | 2              | 1          | 80        |
| L5+00 1+50S                    | 38               | 12                  | .3          | 2,        | 2              | 1          | 100       |
| L5+00 2+00S                    | 178              | 26                  | .2          | 9         | 2              | 1          | 70        |
| L5+00 2+50S                    | 33               | 14                  | .4          | ź         | 3              | 1          | 110       |
| L5+00 3+00S                    | 76               | 13                  | .1          | 3         | 2              | 2          | 100       |
| L5+00 3+50S                    | 115              | 21                  | .2          | 3         | 2              | 2          | 210       |
| L5+00 4+005                    | 79               | 17                  | .2          | 7         | 2              | 1          | 210<br>90 |
| LJ+00 4+005                    | /7               | 17                  | • ***       | /         | <u>~</u>       | Ţ          | 70        |
| L5+00 4+50S                    | 34               | 11                  | .2          | 3         | 2              | 2          | 70        |
| L5+00 5+00S                    | 109              | 14                  | . 1         | 2         | 2              | 1          | 120       |
| L5+00 5+50S                    | 134              | 21                  | . 1         | 6         | 2              | 2          | 100       |
| L5+00 6+00S                    | 115              | 22                  | . 4         | 4         | 2              | 1          | 230       |
| L5+00 6+50S                    | 122              | 25                  | <b>`.</b> 2 | 8         | 2              | 1          | 110       |
| L5+00 7+00S                    | 77               | 22                  | . 1         | 5         | 2              | 2          | 100       |
| L5+00 7+50S                    | 61               | 19                  | .3          | 6         | 2              | 1          | 80        |
| L5+00 8+00S                    | 39               | 10                  | . 1         | 2         | $\overline{2}$ | 1          | 60        |
| L5+00 8+50S                    | 57               | 17                  | . 1         | 2         | 2              | 1          | 120       |
| L5+00 9+005                    | 40               | 22                  | .1          | 3         | 2              | 1          | 90        |
|                                | 10               | alan alan           | • -         |           | -              | *          |           |
| L6+00 0+00S                    | 118              | 19                  | . 4         | 5         | 2              | 1          | 110       |
| L6+00 0+50S                    | 132              | 24                  | .2          | 2         | 2              | 2          | 120       |
| L6+00 1+00S                    | 124              | 25                  | .2          | 2         | 2              | 3          | 130       |
| L6+00 1+50S                    | 53               | 16                  | . 1         | 2         | 2              | 2          | 110       |
| L6+00 2+00S                    | 107              | 23                  | . 1         | 2         | 2              | 7          | 100       |
| L6+00 2+50S                    | 119              | 21                  | .2          | 4         | 2              | 1          | 120       |
| L6+00 3+00S                    | 117              | 21                  | .2          | 5         | 2              | 1          | 70        |
| L6+00 3+50S                    | 82               | 19                  | . 1         | 4         | 2              | 5          | 60        |
| L6+00 4+00S                    | 112              | 29                  | .2          | 2         | 2<br>2         | 1          | 130       |
| L6+00 4+50S                    | 20               | 12                  | .2          | 2         | 3              | 1          | 100,      |
| unn uar thattar 8 thad faithad |                  | <b>e</b> , <b>d</b> |             | -         | -              | -          | !         |
| L6+00 5+00S                    | 110              | 24                  | . 1         | 4         | 2              | 1          | 110       |
| STD C/AU-S                     | 60               | 40                  | 7.4         | 41        | 16             | 48         | 1500      |

ŗ

| SAMPLE#                                                                 | CU                          | PB                       | AG                   | AS                | SB               | AU*                    | HG                              |
|-------------------------------------------------------------------------|-----------------------------|--------------------------|----------------------|-------------------|------------------|------------------------|---------------------------------|
|                                                                         | PPM                         | PPM                      | PPM                  | PPM               | PPM              | PPB                    | PPB                             |
| L6+00 5+50S<br>L6+00 6+00S<br>L6+00 6+50S<br>L6+00 7+00S<br>▲6+00 7+50S | 66<br>49<br>146<br>85<br>92 | 2<br>10<br>5<br>11<br>12 | .4<br>.2<br>.4<br>.3 | 6<br>8<br>10<br>3 | 5<br>4<br>8<br>7 | 1<br>14<br>3<br>2<br>1 | 100<br>120<br>180<br>150<br>130 |
| L6+00 8+00S                                                             | 98                          | 14                       | .2                   | 11                | 6                | 1                      | 70                              |
| L6+00 8+50S                                                             | 60                          | 12                       | .1                   | 3                 | 4                | 1                      | 50                              |
| L6+00 9+00S                                                             | 92                          | 16                       | .3                   | 5                 | 3                | 12                     | 100                             |
| STD C/AU-S                                                              | 61                          | 40                       | 7.0                  | 38                | 17               | 48                     | 1400                            |

ŗ.

| SAMPLEN                          | NO<br>Ppn | CU<br>PPM | PB<br>PPM | ZN<br>PPM | AG<br>PPH | NI<br>PP <b>N</b> | CO<br>PPN | MN<br>PPH | FE<br>Z      | AS<br>PPN | U<br>PPN | AU<br>Ppn | TH<br>PPN | SR<br>PPN | CD<br>PPN | SB<br>PPN | BI<br>PPM | V<br>PPH   | CA<br>Z | P<br>Z | LA<br>PPN | CR<br>PPM | MG<br>X      | BA<br>PPM | 11<br>7    | B<br>PPM | AL<br>Z      | NA<br>Z    | K<br>Z     | N<br>PPM | AU#<br>PPB |      |
|----------------------------------|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|-----------|--------------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|---------|--------|-----------|-----------|--------------|-----------|------------|----------|--------------|------------|------------|----------|------------|------|
| 1A-CR-2-ET 0+00                  |           | 115       | 20        | 75        |           | 47                |           | 445       | 4 43         |           |          | ыņ        | <b>.</b>  | 17        |           | 2         | •         | 100        |         | 420    |           | 00        | · · ·        | ~~<br>17  |            |          | 2.04         | 47         | A7         | 1        | 3          |      |
| 18-CR-1-EAST 0-M'S               | 1         | 180       | 15        | 111       | .1<br>.1  | 63<br>66          | 22<br>23  |           | 6.62<br>6.81 | 5         | 5        | NÐ<br>ND  | 2         | 23<br>35  |           | 2         | 2         | 190        |         | .029   | 5         |           | 2.16         | 23        | .43<br>.38 |          | 2.94<br>3.31 | .03        | .03        | 2        | 2650       |      |
| 2A-CR-2-ET 0+250                 | 1         | 113       | 13        | 68        | .1        | 58                | 23        |           | 6.89         | 3         | 5        | ND        | 4         | 23        | 1         | 2         | 3<br>2    | 200        | 1.19    |        | 5         |           | 1.97<br>2.07 | 39<br>23  | . 46       |          | 3.00         | .03<br>.03 | .03<br>.02 | 1        | 2030       |      |
| 3A-CR-2-ET 0+500                 | 1         | 168       | 13        | 85        | .1        | 80                |           | 1398      |              | 3         | 5        | ND        |           | 23<br>32  | 1         | 2         | 2         |            |         |        | 7         |           | 2.50         | 23<br>54  | . 10       |          |              | .03        | .02        | 1        |            |      |
| 4A-CR-2-ET 1+000                 | 1         |           | 11        | 92        | .1        | 70                | 31        |           | 9.62         | 14        | 5        | ND        | 2         | 28        | 1         | 2         | 2         |            | 1.09    |        | 6         |           | 2.50         | 34<br>37  | .27        |          | 4.00<br>3.41 | .02        | .04        |          | 2050       |      |
| 4M-CK-2-E1 14000                 | 1         | 217       |           | 12        | • •       | 70                | 31        | 073       | 7.02         | 14        | 3        | 80        | 2         | 20        | 1         | 2         | 2         | 701        | 1.11    | .040   | 0         | 77        | 2.00         | 37        | . 37       | 7        | 3.41         | . VI       |            | 3        | 2030       |      |
| 5A-CR-2-ET 1+250                 | 1         | 231       | 17        | 94        | .1        | 68                | 31        | 910       | 9.29         | 13        | 5        | ND        | 1         | 26        | 1         | 2         | 2         | 257        | 1.03    | .038   | 6         | 89        | 2.69         | 37        | .35        | 8        | 3.57         | .02        | .05        | 2        | 225        |      |
| SILT 41 OH'S                     | 2         | 124       | 14        | 62        | .1        | 38                | 21        |           | 6.62         | 6         | 6        | ND        | 2         | 38        | 1         | 2         | 2         | 171        |         | .045   | 6         |           | 1.93         | 40        | .26        |          | 3.07         | .02        | .04        | 2        |            |      |
| SILT #2 0+250                    | i         | 147       | 9         | 86        | .1        | 53                | 26        | 874       | 7.71         | 6         | 5        | ND        | 1         | 35        | 1         | 2         | 2         | 224        | 1.08    | .030   | 5         | 64        | 2.22         | 27        | .47        | 8        | 3.28         | .02        | .04        | 1        | 1          |      |
| SILT #3 0+500                    | 1         | 144       | 13        | 80        | .1        | 52                | 25        | 888       | 7.37         | 7         | 5        | ND        | 2         | 36        | 1         | 2         | 2         | 218        | 1.17    | .032   | - 4       | 67        | 2.11         | 27        | .47        | 9        | 3.22         | .02        | .03        | 2        | 66         |      |
| SILT #4 0+750                    | 1         | 137       | 7         | 83        | .2        | 55                | 26        | 853       | 7.89         | 3         | 5        | ND        | 1         | 37        | 1         | 2         | 2         | 238        | 1.20    | .029   | 4         | 73        | 2.23         | 30        | .51        | 7        | 3.28         | .02        | .03        | 3        | 26         |      |
|                                  |           |           |           |           |           |                   |           |           |              |           |          |           |           |           |           |           |           |            |         |        |           |           |              |           |            |          |              |            |            |          |            |      |
| SILT #5 1+000                    | 1         | 153       | 10        | 82        | .1        | 53                | 25        |           | 7.18         | 6         | 5.       | ND        | 1         | 40        | 1         | - 4       | 2         |            |         | .034   | 5         |           | 2.16         | 31        | .45        |          | 3.44         | .02        | .05        | 1        | 6          | • •. |
| SILT #6 1+200                    | 2         | 129       | 9         | 63        | .1        | 46                | 23        | 960       | 6.66         | 9         | 5        | ND        | <u></u> 1 | 41        | 1         | 3         | 2         | 161        |         |        | 8         |           | 2.26         | 42        | .14        |          | 3.51         | .02        | .07        | 1        | 61         |      |
| SILT #7 1+250                    | 1         | 129       | 6         | 82        | .1        | 49                | 26        | 848       | 7.63         | 6         | 5        | ND        | 2         | 36        | 1         | 2         | 2         | 218        | 1.12    | .032   | 5         | 63        | 2.25         | 32        | .44        | ?        | 3.35         | .02        | .04        | 2        | 1          |      |
| SILT #8A 1+565                   | 1         | 111       | 9         | 89        | .1        | 45                | 26        | 850       | 6.98         | - 4       | 5        | ND        | 2         | 28        | 1         | 2         | 2         | 166        | 1.01    | .035   | 5         | 57        | 2.72         | 34        | .34        | 9        | 3.51         | .03        | .06        | 1        | 1          |      |
| SILT #9 1+750                    | 1         | 134       | 5         | 79        | .1        | 45                | 24        | 891       | 7.79         | 5         | 5        | ND        | 1         | 38        | 1         | 2         | 2         | 221        | 1.09    | .042   | 6         | 64        | 2.17         | 37        | .36        | 7        | 3.33         | .02        | .05        | 1        | 1          |      |
| SILT #10 2+000                   | 1         | 121       | 15        | 79        |           | = 1               | -05       | 045       | 7.00         |           | E        | AUD.      |           | 70        |           | •         |           |            |         | 470    |           |           | 0.50         | •,        | **         | -        | 7 17         | 47         |            |          | 05         |      |
| SILT #11 2+250                   | 1         | 130       | 15        | 86        | .1        | 51<br>49          | 25<br>26  |           | 7.98         | 4         | 5<br>5   | ND<br>ND  | 1         | 39<br>37  | 1         | 2         |           | 226        |         | .032   | 5         | 67        | 2.29<br>2.38 | 36        | .33<br>.39 |          | 3.47<br>3.27 | .03        | .04        |          | 25<br>17   |      |
| SILT #12 2+500                   | 1         | 125       | 5         | 78        | .1        | 47<br>55          | 25        |           | 6.98         | 7         | ວ<br>5   |           | 1         | -         | 1         | 23        | 23        |            |         |        | 3         |           |              | 33        |            |          |              | .03        |            | 1        |            |      |
| SILT #13 2+750                   | 1         | 120       | 16        | 70        | .1        | 58                | 26        |           | <b>B.0</b> 0 | 6         | 5<br>5   | ND,       |           | 38<br>36  | 1         | -         | 2         | 190<br>237 |         | .028   | 2<br>5    |           | 2.38<br>2.43 | 35        | .35<br>.39 |          | 3.38         | .03        | .04        | 2        |            |      |
| SILT #13 3+000                   | 2         |           | 8         | 76        | .1        | 69                | 25        |           | 7.95         | 7         | 5        | ND        |           | 30        |           | 2         | 2         |            |         |        |           |           |              | 31        | .37        |          | 3.21<br>3.33 | .03<br>.03 | .05        | 1        |            |      |
| 31C1 #13 37000                   | 4         | 120       |           | /0        | •1        | 67                | 23        | / 33      | 7.73         | 3         | 9        | ND        | 1         | 31        | 1         | 2         | 4         | 231        | 1.08    | .034   | 5         | 101       | 2.55         | 31        | . 37       | 17       | 3.33         | .03        | .03        | 1        | ు          |      |
| SILT #15 3+250                   | 1         | 119       | 6         | 79        | .1        | 62                | 26        | 791       | 7.80         | 3         | 5        | NÐ        | 1         | 38        | 1         | 2         | 2         | 226        | 1.10    | .040   | 5         | 92        | 2.56         | 31        | .41        | 19       | 3.34         | 04         | .04        | 1        | 1          |      |
| SILT #16 3+500                   | 1         | 126       | 14        | 78        | .1        | 63                | 25        | 841       | 8.04         | . 9       | 5        | ND        | 2         | 39        | 1         | 2         | - 4       | 236        | 1.17    | .046   | 6         | 97        | 2.50         | 33        | .41        | 16       | 3.36         | .04        | .05        | 1        | 118        |      |
| SILT #17 3+750                   | 1         | 124       | 17        | 74        | .1        | 59                | 26        | 779       | 8.44         | 7         | 5        | ND        | 1         | 46        | 1         | 2         | 2         | 266        | 1.28    | .048   | 6         | 98        | 2.55         | 32        | .44        | 16       | 3.24         | ,07        | .04        | 2        | 495        |      |
| SILT #18 4+000                   | £         | 128       | 12        | 76        | .1        | 67                | 24        | 769       | 7.54         | 5         | 5        | ND        | 2         | 45        | 1         | 2         | 2         | 223        | 1.28    | .039   | 5         | 103       | 2.69         | 33        | .42        | 16       | 3.35         | .07        | .04        | 1        | 9          |      |
| SILT #19 4+250                   | 1         | 124       | 13        | 76        | .1        | 69                | 25        | 779       | 7.86         | 8         | 5        | ND        | 2         | 47        | 1         | 2         | 2         | 232        | 1.33    | .047   | 5         | 103       | 2.77         | 36        | .42        | - 14     | 3.43         | .07        | .04        | 1        | 1          |      |
| SILT #20 4+500                   |           | 104       | .,        | 77        | •         |                   |           | 770       | 7            |           | ,        |           |           |           |           | -         | -         |            |         |        | -         |           |              |           |            |          |              |            |            |          |            |      |
| SILT #20 4+300<br>SILT #21 4+750 | 1         | 104       | 16        | 73        | .2        | 64                | 24        |           | 7.08         | 4         | 5        | ND        | 1         | 45        | 1         | 2         | 2         |            | 1.27    |        | 5         |           | 2.84         | 33        | .39        |          | 3.38         |            | .04        | 1        | . 1        |      |
|                                  | 2         | 106       | 11        | 63        | .1        | 63                | 22        |           | 6.17         | 2         | 5        | ND        | 2         | 43        | 1         | 2         | 2         |            | 1.26    |        | 5         |           | 2.43         | 32        | .37        |          | 3.05         | .06        | .04        | 1        | . 1        |      |
| SILT #22 5+000                   | 1         | 115       | 3         | 74        | .1        | 65                | 22        |           | 6.97         | 5         | 5        | ND        | 2         | 46        | 1         | 2         | 2         |            | 1.36    |        | 5         |           | 2.55         | 31        | .43        |          | 3.11         | .07        | .05        | 1        | 17         |      |
| STD C/AU-S                       | 18        | 62        | 40        | 128       | 7.4       | 68                | 28        | 944       | 4.05         | 41        | 19       | 8         | 39        | 52        | 18        | 18        | 21        | 57         | .51     | .086   | 39        | 60        | .92          | 185       | .08        | 36       | 1.75         | .07        | .14        | 12       | 53         |      |

- 4

1

1

1

٦

1

(

•

€

€

C

€

C

C

C

C

•

€

€.

€

ŧ.

3

1

1

(

•

(

(

Fage 7

(

DATE RECEIVED: ACME ANALYTICAL LABORATORIES LTD. OCT 5 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

#### GEOCHEMICAL ICP ANALYSIS

- SAMPLE TYPE: SOIL AU\* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER:

Dauges. DEAN TOYE, CERTIFIED B.C. ASSAYER

STETSON Page 1

| l | RESOURCES File # 87-                                                                                                                             | 4765                            |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|   | SAMPLE# Ideal                                                                                                                                    | AU*<br>ppb                      |
|   | CLOUTSIE CK STA 0+00<br>CLOUTSIE CK STA 0+00A<br>CLOUTSIE CK STA 0+00B<br>CLOUTSIE CK STA 1+00<br>CLOUTSIE CK STA 1+00A                          | 18<br>22<br>42<br>290<br>69     |
|   | CLOUTSIE CK STA 1+00B<br>CLOUTSIE CK STA 2+00<br>CLOUTSIE CK STA 2+00A<br>CLOUTSIE CK STA 2+00B<br>CLOUTSIE CK STA 2+00B<br>CLOUTSIE CK STA 3+00 | 11<br>55<br>49<br>1035<br>9     |
|   | CLOUTSIE CK STA 3+00A<br>CLOUTSIE CK STA 3+00B<br>CR #7 STA 0+00<br>CR #7 STA 0+00A<br>CR #7 STA 0+00B                                           | 260<br>12<br>102<br>190<br>1715 |
|   | CR #7 STA 1+00<br>CR #7 STA 1+00A<br>CR #7 STA 1+00B<br>CR #7 STA 2+00<br>CR #7 STA 3+00                                                         | 530<br>205<br>28<br>74<br>80    |
|   | CR #7 STA 4+00<br>CR #7 STA 4+00A<br>CR #7 STA 4+00B<br>CR #7 STA 5+00<br>CR #7 STA 5+00A                                                        | 270<br>29<br>180<br>39<br>49    |
|   | CR #7 STA 5+00B<br>CR #7 STA 6+00<br>CR #7 STA 6+00A<br>CR #7 STA 6+00B<br>CR #7 STA 6+00B                                                       | 645<br>220<br>79<br>35<br>117   |
| : | CR #7 STA 7+00A<br>CR #7 STA 7+00B<br>CR #7 STA 8+00<br>CR #7 STA 8+00A<br>CR #13 STA 0+00                                                       | 130<br>23<br>50<br>168<br>1475  |
|   | CR #13 STA 0+00A                                                                                                                                 | 835                             |

| SAMPLE#                                                                                                            | AU*<br>ppb                     |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------|
| CR #13 STA 0+00B<br>CR #13 STA 1+00<br>CR #13 STA 1+00A<br>CR #13 STA 1+00B<br>CR #13 STA 1+00B<br>CR #13 STA 2+00 | 18<br>890<br>2460<br>525<br>36 |
| CR #13 STA 2+00A                                                                                                   | 52                             |
| CR #13 STA 2+00B                                                                                                   | 25                             |
| CR #13 STA 3+00                                                                                                    | 205                            |
| CR #13 STA 3+00A                                                                                                   | 107                            |
| CR #13 STA 3+00B                                                                                                   | 67                             |
| CR #13 STA 4+00                                                                                                    | 31                             |
| CR #13 STA 4+00A                                                                                                   | 22                             |
| CR #13 STA 4+00B                                                                                                   | 30                             |
| CR #13 STA 5+00                                                                                                    | 540                            |
| CR #13 STA 5+00A                                                                                                   | 265                            |
| CR #13 STA 5+00B                                                                                                   | 41                             |
| L1+90E STA 5+90S                                                                                                   | 3                              |
| L1+90E STA 5+95S                                                                                                   | 1                              |
| L1+90E STA 6+00S                                                                                                   | 1                              |
| L1+90E STA 6+05S                                                                                                   | 9                              |
| L1+90E STA 6+10S                                                                                                   | 3                              |
| L1+95E STA 5+90S                                                                                                   | 5                              |
| L1+95E STA 6+00S                                                                                                   | 1                              |
| L1+95E STA 6+05S                                                                                                   | 44                             |
| L1+95E STA 6+10S                                                                                                   | 23                             |
| L2+00E STA 5+90S                                                                                                   | 1                              |
| L2+00E STA 5+95S                                                                                                   | 210                            |
| L2+00E STA 6+00S                                                                                                   | 1                              |
| L2+00E STA 6+05S                                                                                                   | 1                              |
| L2+00E STA 6+10S                                                                                                   | 1                              |
| L2+05E STA 5+90S                                                                                                   | 1                              |
| L2+05E STA 5+95S                                                                                                   | • 1                            |
| L2+05E STA 6+00S                                                                                                   | 49                             |
| L2+05E STA 6+05S                                                                                                   | 42                             |
| L2+05E STA 6+10S                                                                                                   | 1                              |
| L2+10E STA 5+90S                                                                                                   | 11                             |

SAMPLE#

| AU¥ |  |
|-----|--|
| pob |  |

| L2+10E              | STA     | 5+955     | 1          |
|---------------------|---------|-----------|------------|
| L2+10E              | STA     | 6+00S     | 1          |
| L2+10E              | STA     | 6+055     | 1          |
| L2+10E              |         |           | 1          |
| L2+90E              |         |           | 2          |
| han din ' / 'n' han | UIH     | <b>.</b>  | -          |
| L2+90E              | STO     | 54050     | 8          |
| L2+90E              |         |           | 1          |
| L2+90E              |         |           | 1          |
| L2+90E              |         |           | 1          |
|                     |         |           |            |
| L2+90E              | STA     | 455       | 1          |
| L2+90E              | STA     | SAC       | 1          |
| L2+90E              |         |           | 1          |
| L2+90E              |         |           |            |
|                     |         |           | 1          |
| L2+95E              |         |           | 22         |
| L2+95E              | STA     | 5+955     | 1          |
| L2+95E              | стл     | 44000     | 59         |
| L2+95E              |         |           | 1          |
|                     |         | <b>``</b> |            |
| L2+95E              |         |           | 1          |
| L2+95E              |         |           | 1          |
| L2+95E              | STA     | 45S       | 34         |
| L2+95E              | CTA     | 500       | 5          |
| L2+95E              |         |           | 12         |
| L2+95E              |         |           | 12         |
| L3+00E              |         |           | 10         |
| L3+00E              |         |           | 10         |
| LSTUDE              | BIH     | 3+735     | 1          |
| L3+00E              | STA     | 6+005     | 1          |
| L3+00E              |         |           | 1          |
| L3+00E              |         |           | 13         |
| L3+00E              |         |           | 1          |
| L3+00E              |         | 455       | 1          |
|                     | w r i i | 1,202     | <b>-</b> . |
| L3+00E              | STA     | 50S       | 1          |
| L3+00E              | STA     | 555       | 2          |
| L3+00E              | STA     | 60S       | 1          |
| L3+05E              | ST 5    | 5+90S     | 8          |
| L3+05E              | ST 5    | 5+955     | 1          |
|                     |         |           |            |
| L3+05E              | ST é    | 6+00S     | 5          |

| SAMPLE                                         | ŧ                                                     | AU*<br>ppb              |
|------------------------------------------------|-------------------------------------------------------|-------------------------|
| L3+05E<br>L3+05E<br>L3+05E                     | ST 6+05S<br>ST 6+10S<br>ST 40S<br>ST 45S<br>ST 50S    | 9<br>1<br>2<br>3<br>3   |
| L3+05E<br>L3+10E<br>L3+10E                     | ST 555<br>ST 605<br>ST 5+905<br>ST 5+955<br>ST 6+005  | 2<br>1<br>1<br>5        |
| L3+10E<br>L3+10E<br>L3+10E                     | ST 6+05S<br>ST 6+10S<br>STA 40S<br>STA 45S<br>STA 50S | 1<br>2<br>1<br>14       |
| L3+10E<br>L6+90E<br>L6+90E                     |                                                       | 1<br>1<br>2<br>1<br>6   |
| L6+90E<br>L6+90E<br>L6+95E<br>L6+95E<br>L6+95E | 9+10S<br>8+90S<br>8+95S                               | 1<br>1<br>6<br>10       |
| L6+95E<br>L6+95E<br>L7+00E<br>L7+00E<br>L7+00E | 9+10S<br>8+90S<br>8+90S                               | 2<br>1<br>14<br>12<br>2 |
| L7+00E<br>L7+00E<br>L7+05E<br>L7+05E<br>L7+05E |                                                       | 2<br>2<br>1<br>2<br>2   |

L7+05E 9+05S

1

;

t

SAMPLE#

AU\*

| terf ( 1.2. 3.1. term that it                                                                   | ppb                             |
|-------------------------------------------------------------------------------------------------|---------------------------------|
| L7+05E 9+10S<br>L7+10E 8+90S<br>L7+10E 8+95S<br>L7+10E 9+00S<br>L7+10E 9+05S                    | 1<br>2<br>1<br>1                |
| L7+10E 9+10S<br>L8+90E ST 1+40S<br>L8+90E ST 1+45S<br>L8+90E ST 1+50S<br>L8+90E ST 1+55S        | 2<br>2<br>2<br>2<br>2<br>2      |
| L8+90E ST 1+60S<br>L8+95E ST 1+40S<br>L8+95E ST 1+45S<br>L8+95E ST 1+50S<br>L8+95E ST 1+55S     | 2<br>5<br>64<br>2<br>1          |
| L8+95E ST 1+60S<br>L9+00E ST 1+40S<br>L9+00E ST 1+45S<br>L9+00E ST 1+50S<br>L9+00E ST 1+55S     | 3<br>2<br>3<br>3<br>2<br>3<br>2 |
| L9+00E ST 1+60S<br>L9+05E ST 1+40S<br>L9+05E ST 1+45S<br>L9+05E ST 1+50S<br>L9+05E ST 1+55S     | 5<br>2<br>18<br>4<br>1          |
| L9+05E ST 1+60S<br>L9+10E ST 1+40S<br>L9+10E ST 1+45S<br>L9+10E ST 1+50S<br>L9+10E ST 1+55S     | 5<br>40<br>2<br>2<br>1          |
| L9+10E ST 1+60S<br>L12+90E ST 4+90S<br>L12+90E ST 4+95S<br>L12+90E ST 5+00S<br>L12+90E ST 5+05S | 1<br>1<br>2<br>2<br>2           |
| L12+90E ST 5+10S                                                                                | 2                               |

ŧ

| SAMF'LE#                                                       |                                                                      | AU*<br>ppb                  |
|----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|
| L12+90E<br>L12+90E<br>L12+90E<br>L12+90E<br>L12+90E<br>L12+90E | 5+45S<br>5+50S                                                       | 80<br>4<br>17<br>12<br>5    |
| L12+90E<br>L12+90E<br>L12+90E<br>L12+90E<br>L12+90E<br>L12+90E | 12+90S<br>12+95S<br>13+00S<br>13+05S<br>13+10S                       | 1<br>3<br>1<br>8<br>2       |
| L12+90E<br>L12+90E<br>L12+90E<br>L12+90E<br>L12+90E<br>L12+90E | 13+40S<br>13+45S<br>13+50S<br>13+55S<br>13+60S                       | 1<br>4<br>1<br>2<br>15      |
| L12+95E<br>L12+95E<br>L12+95E<br>L12+95E<br>L12+95E            | ST 4+90S<br>ST 4+95S<br>ST 5+00S<br>ST 5+05S<br>ST 5+05S<br>ST 5+10S | 3<br>1<br>1<br>3<br>1       |
| L12+95E<br>L12+95E<br>L12+95E<br>L12+95E<br>L12+95E            | ST 5+40S<br>ST 5+45S<br>ST 5+50S<br>ST 5+55S<br>ST 5+60S             | 1<br>260<br>36<br>250<br>72 |
| L12+95E<br>L12+95E<br>L12+95E<br>L12+95E<br>L12+95E<br>L12+95E | 12+95S<br>13+00S<br>13+05S                                           | 2<br>18<br>8<br>12<br>1     |
| L12+95E<br>L12+95E<br>L12+95E<br>L12+95E<br>L12+95E<br>L12+95E | 13+45S<br>13+50S<br>13+55S                                           | 9<br>1<br>3<br>1            |
| L13E 124                                                       | -905                                                                 | 1                           |

SAMPLE#

2

AU¥

| SHULCH                                                                                            | ppb                        |
|---------------------------------------------------------------------------------------------------|----------------------------|
| L13E 12+95S<br>L13E 13+00S<br>L13E 13+05S<br>L13E 13+10S<br>L13E 13+10S<br>L13+00E ST 4+90S       | 1<br>1<br>4<br>1           |
| L13+00E ST 4+95S<br>L13+00E ST 5+00S<br>L13+00E ST 5+05S<br>L13+00E ST 5+10S<br>L13+00E ST 5+40S  | 1<br>1<br>1<br>18          |
| L13+00E ST 5+45S<br>L13+00E ST 5+50S<br>L13+00E ST 5+55S<br>L13+00E ST 5+60S<br>L13+00E ST 13+40S | 6<br>25<br>189<br>102<br>9 |
| L13+00E ST 13+45S<br>L13+00E ST 13+50S<br>L13+00E 13+55S<br>L13+00E 13+60S<br>L13+05E ST 4+90S    | 3<br>1<br>5<br>1<br>2      |
| L13+05E ST 4+95S<br>L13+05E ST 5+00S<br>L13+05E ST 5+05S<br>L13+05E ST 5+10S<br>L13+05E ST 5+40S  | 1<br>1<br>2<br>1           |
| L13+05E ST 5+45S<br>L13+05E ST 5+50S<br>L13+05E ST 5+55S<br>L13+05E ST 5+60S<br>L13+05E 12+90S    | 1<br>192<br>128<br>5       |
| L13+05E 12+95S<br>L13+05E 13+00S<br>L13+05E 13+05S<br>L13+05E 13+10S<br>L13+05E 13+40S            | 14<br>1<br>51<br>25<br>4   |
| L13+05E 13+45S                                                                                    | 2                          |

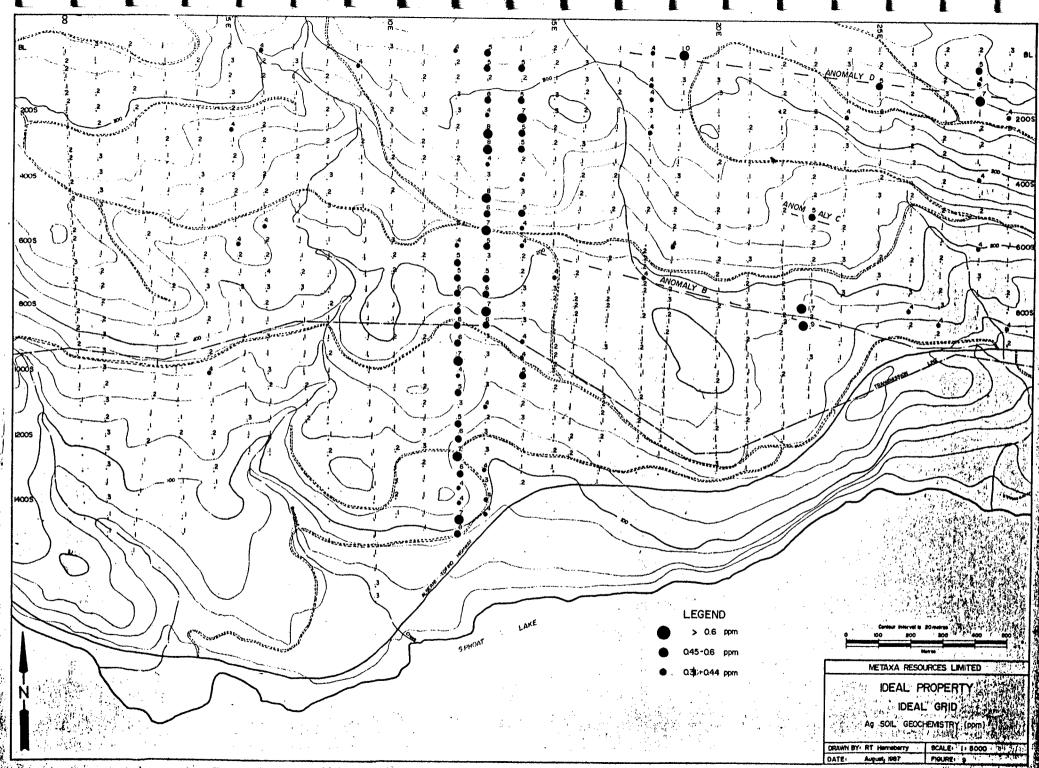
ŧ

;

SAMPLE#

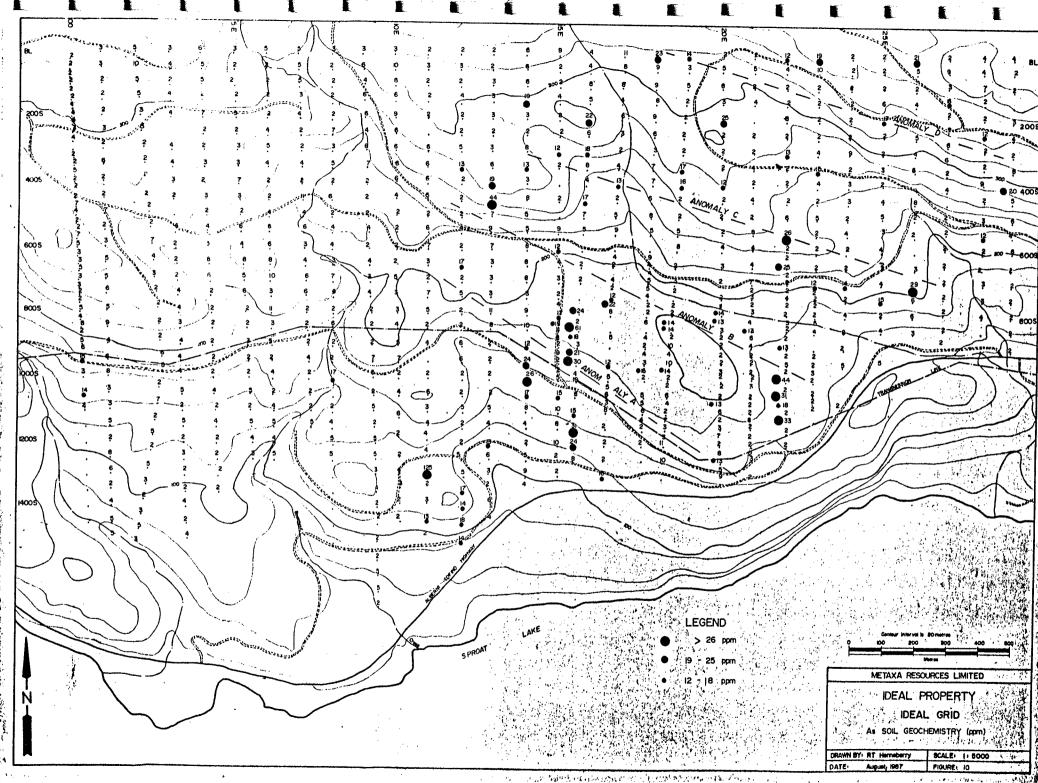
AU\* ppb

|                                                                |                                                                    | ppo                         |
|----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|
| L13+05E<br>L13+05E<br>L13+05E<br>L13+10E<br>L13+10E            | 13+55S<br>13+60S                                                   | 1<br>2<br>5<br>1<br>1       |
| L13+10E<br>L13+10E<br>L13+10E<br>L13+10E<br>L13+10E<br>L13+10E | ST 5+008<br>ST 5+058<br>ST 5+108<br>ST 5+408<br>ST 5+458           | 3<br>1<br>10<br>31<br>96    |
| L13+10E<br>L13+10E<br>L13+10E<br>L13+10E<br>L13+10E            | ST 5+50S<br>ST 5+55S<br>ST 5+60S<br>12+90S<br>12+95S               | 158<br>149<br>108<br>4<br>1 |
| L13+10E<br>L13+10E<br>L13+10E<br>L13+10E<br>L13+10E<br>L13+10E | 13+05S<br>13+10S                                                   | 7<br>4<br>5<br>1<br>4       |
| L13+10E<br>L13+10E<br>L13+10E<br>L13+00E<br>L14+00E<br>L14+00E | 13+50S<br>13+55S<br>13+60S<br>STA 14+00S<br>STA 14+50S             | 1<br>1<br>1<br>1<br>1       |
| L14+00E<br>L14+00E<br>L14+00E<br>L15+00E<br>L15+00E            | STA 15+00S<br>STA 15+50S<br>STA 16+00S<br>STA 13+50S<br>STA 14+00S | 1<br>2<br>1<br>1<br>1       |
|                                                                | 12+955                                                             | 3<br>1<br>1<br>1<br>4       |
| L15+90E                                                        | 13+055                                                             | 1                           |


| AU¥ |  |
|-----|--|
| ppb |  |

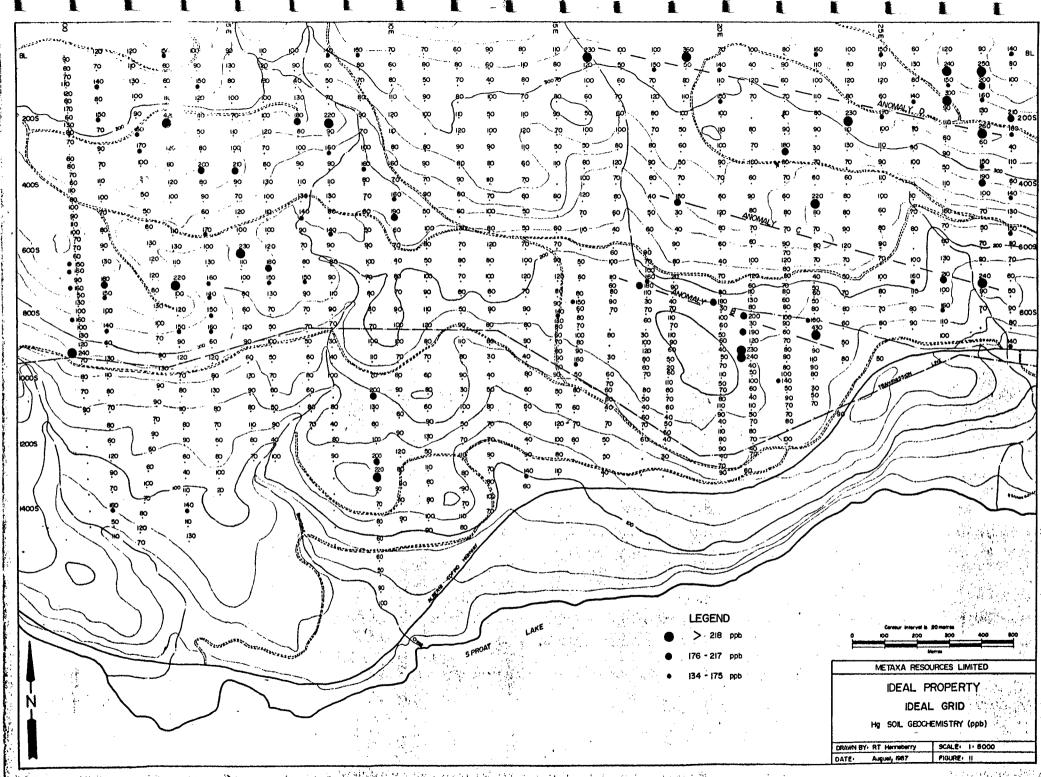
÷

|                                                                |                             | ppb                       |
|----------------------------------------------------------------|-----------------------------|---------------------------|
| L15+90E<br>L15+95E<br>L15+95E<br>L15+95E<br>L15+95E            | 12+905<br>12+955<br>13+005  | 1<br>3<br>1<br>6<br>3     |
| L15+95E<br>L16+00E<br>L16+00E<br>L16+00E<br>L16+00E            | 12+905<br>12+905A<br>12+955 | 4<br>2<br>7<br>2<br>4     |
| L16+00E<br>L16+00E<br>L16+00E<br>L16+00E<br>L16+05E            | 14+50S<br>15+00S<br>15+50S  | 1<br>1<br>1<br>4          |
| L16+05E<br>L16+05E<br>L16+05E<br>L16+10E<br>L16+10E            | 13+05S<br>13+10S >          | 5<br>5<br>3<br>4<br>2     |
| L16+10E<br>L17+00E<br>L17+00E<br>L17+00E<br>L17+00E            | 13+50S<br>14+00S<br>14+50S  | 3<br>9<br>3<br>11<br>4    |
| L17+00E<br>L18+00E<br>L18+00E<br>L18+00E<br>L18+00E            | STA 13+00S<br>STA 13+50S    | 59<br>76<br>6<br>3<br>4   |
| L18+00E<br>L19+00E<br>L19+00E<br>L19+00E<br>L19+00E<br>L19+00E | 13+50S<br>14+00S<br>14+50S  | 4<br>34<br>36<br>98<br>45 |
| L19+50E                                                        | 12+005                      | 2                         |


| SAMPLE#        | AU*<br>ppb |
|----------------|------------|
| L19+50E 12+50S | 2          |
| L19+50E 13+00S | 1          |
| L19+50E 13+50S | 16         |
| L19+50E 14+00S | 51         |
| L19+50E 14+50S | 11         |
| L19+50E 15+00S | 1          |
| L19+50E 15+50S | 1          |
| L20+00E 13+50S | 5          |
| L20+00E 14+00S | 4          |
| L20+00E 14+50S | 1          |
| L20+00E 15+00S | 15         |
| L20+00E 15+50S | 12         |
| L21E 13+50S    | 11         |
| L21E 14+00S    | 2          |
| L21E 14+50S    | 11         |
| L21E 15+00S    | 2          |
| L22E 12+50S    | 9          |
| L22E 13+00S >  | 4          |
| L22E 13+50S    | 3          |

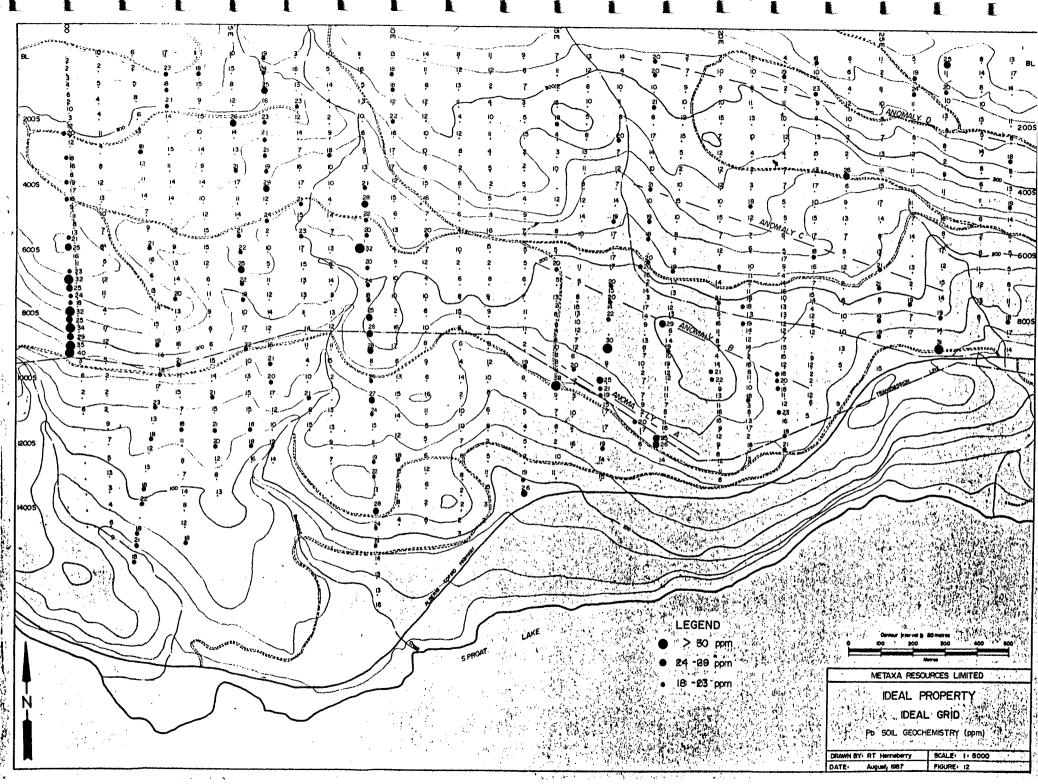
,**•** 

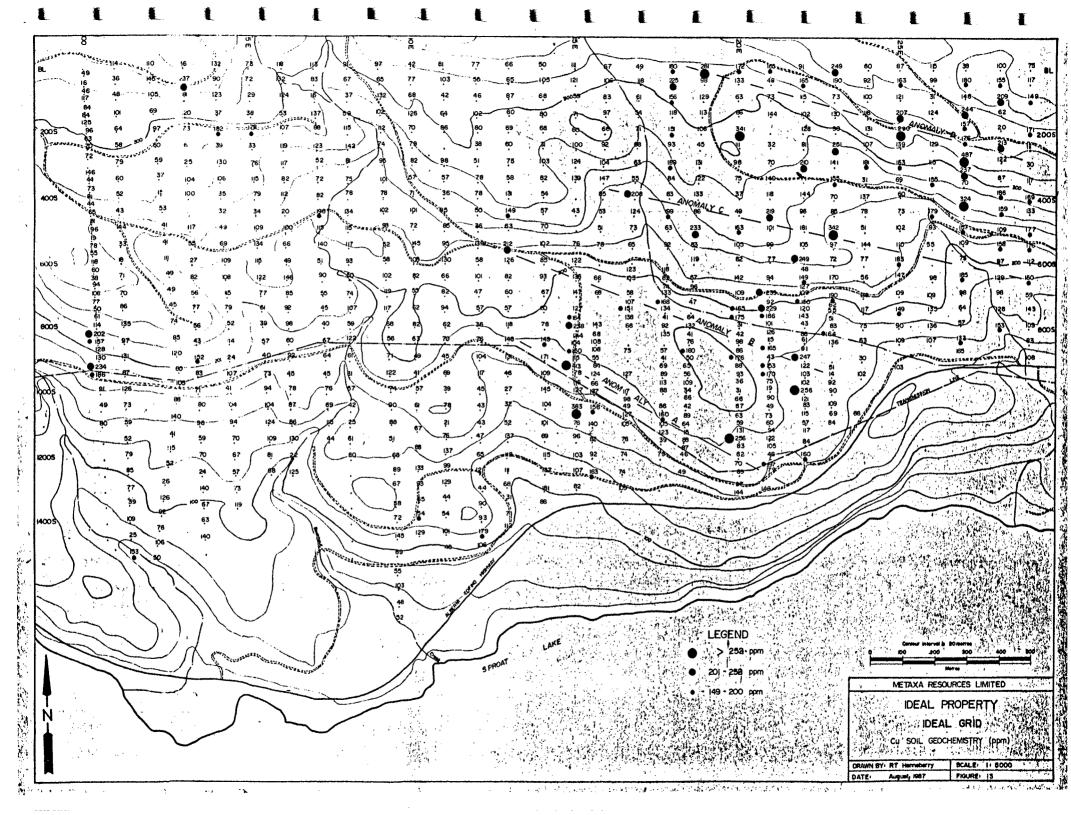


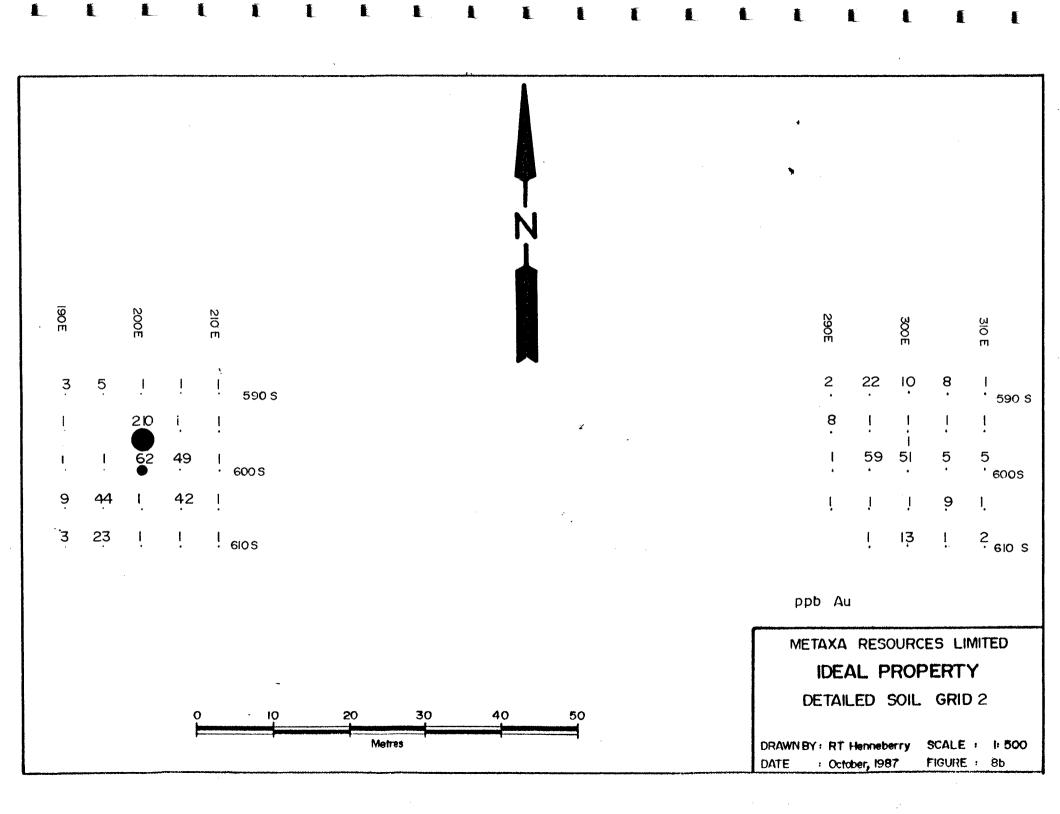

A Residence State for the base where the more state of the second state of the second

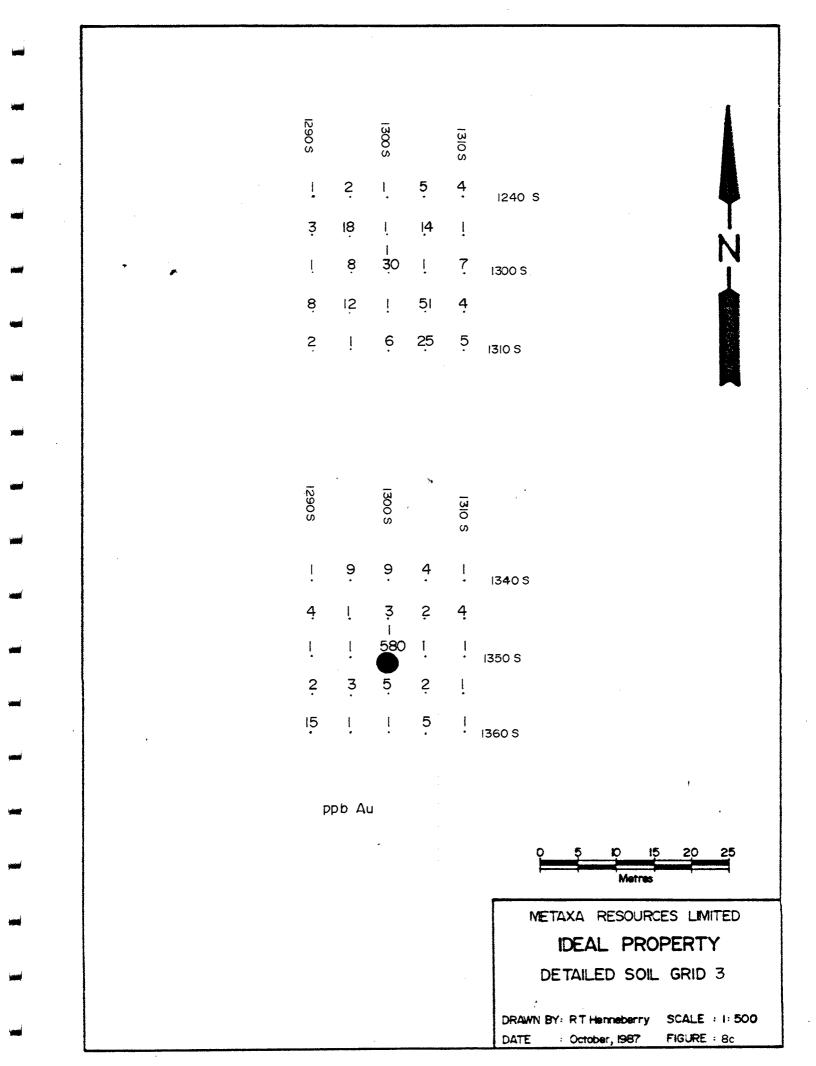
a sur time & attached back to the and

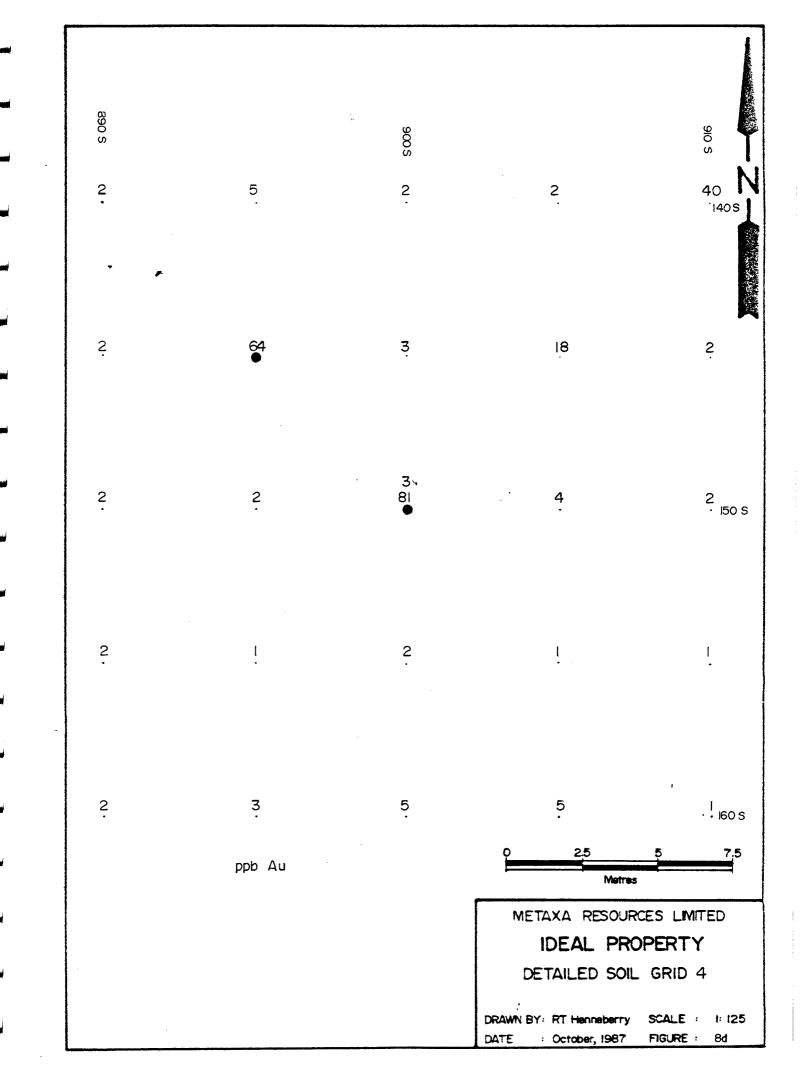



the second states that the second states of the state between the states of the second states and the second states of the second state


and the second second

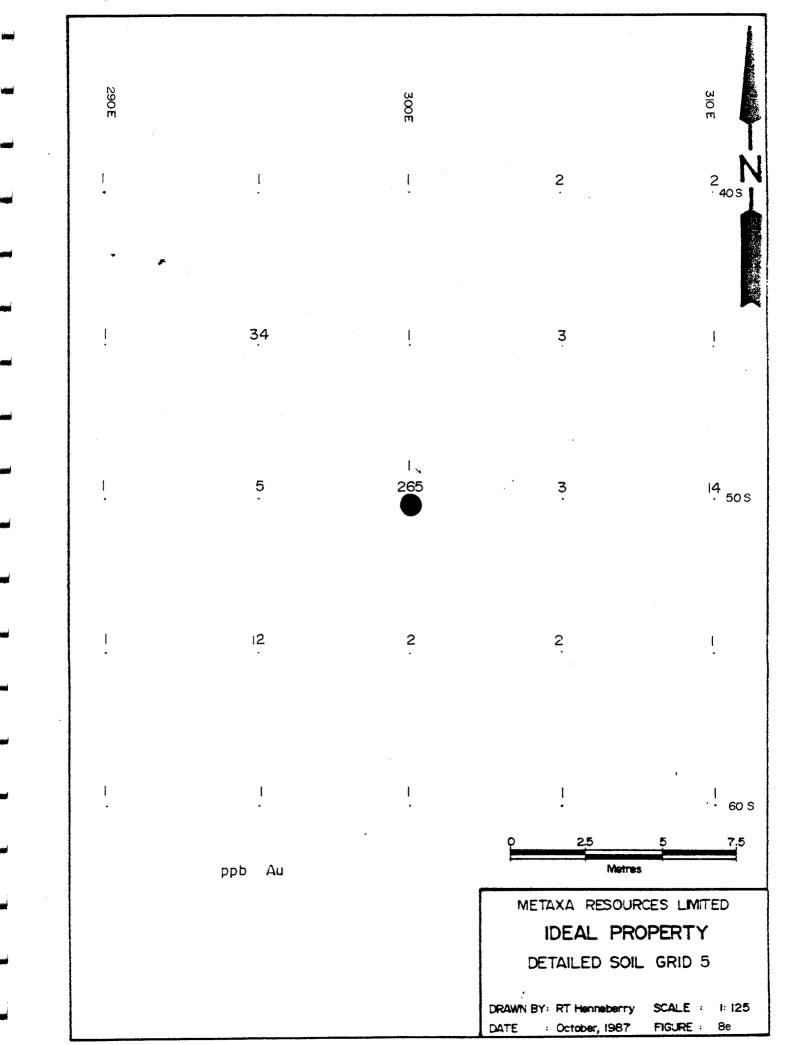




ter strand the data is seen to be a first of a particular and the second second A Degrade at 1 . . Sheer and a second 1010 W the and the set of the set of 

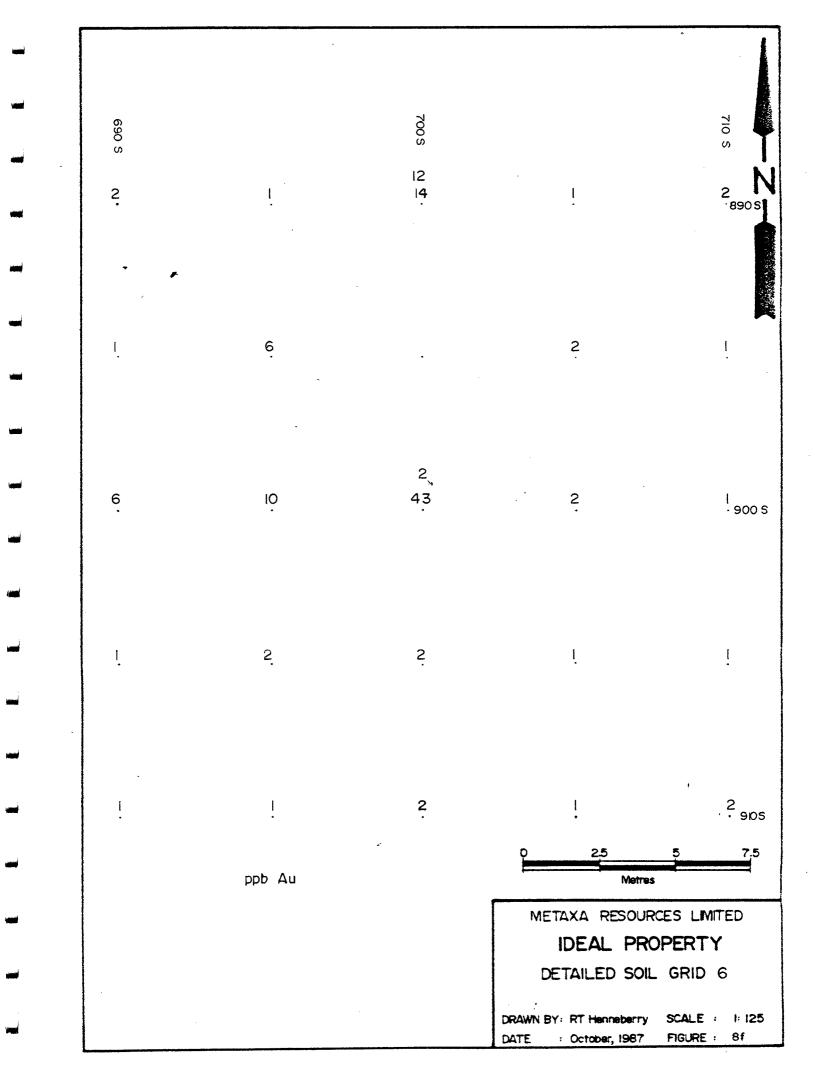

A. S. Salas Sec. 20










ļ

-



.



ACME ANALYTICAL LABORATORIES DATE RECEIVED: APRIL 6,1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: 48/87

# ASSAY CERTIFICATE

- SAMPLE TYPE: Rock Chips

ASSAYER: . ..... DEAN TOYE, CERTIFIED B.C. ASSAYER

STETSON RESOURCES MANAGEMENT PROJECT-IDEAL File # 87-0907A

| SAMPLE# | AG**         | AU** |
|---------|--------------|------|
|         | OZ/T         | OZ/T |
|         |              |      |
| 50530   | .02          | .040 |
| 50531   | .02          | .042 |
| 50532   | .03          | .189 |
| 50533   | .09          | .027 |
| 50534   | .02          | .019 |
|         |              |      |
| 50535   | .01          | .019 |
| 50536   | .01          | .001 |
| 50537   | <b>`.</b> 03 | .039 |
| 50538   | .01          | .009 |
| 50539   | .01          | .001 |
|         |              |      |
| 50540   | .02          | .074 |
| 50541   | .01          | .309 |

ACME ANALYTICAL LABORATORIES

#### 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 FHONE 253-3158

DATA LINE 251-1011

ť

E

€

(

#### GEOCHEMICAL ICP ANALYSIS

#### .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P CR MG BA TI B AL NA K W SI ZR CE SN Y NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips Aut ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: APRIL 6 1987 DATE REPORT MAILED: 4088/87 ASSAYER

STETSON RESOURCES MANAGEMENT PROJECT - IDEAL File # 87-0907

| SAMPLE#    | ND<br>PPM |     | PB<br>PPM | ZN<br>PPM | AG<br>PPM | NI<br>PPM | CO<br>PPN | MN<br>PPH | FE<br>% | AS<br>PPM | U<br>PPM | AU<br>PPM | TH<br>Ppm | SR<br>PPH | CD<br>PPM | SB<br>Ppn | BI<br>PPM | V<br>PPM | CA<br>% | P<br>X | LA<br>PPM | CR<br>PPM | M5<br>% | BA<br>PPM | 11<br>% | B<br>PPM | AL<br>7. | NA<br>7. | K<br>Z | W<br>PPM | au‡<br>PPB |
|------------|-----------|-----|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|---------|----------|----------|----------|--------|----------|------------|
| 50526      | 1         | 81  | 2         | 31        | .1        | 55        | 13        | 608       | 4.00    | 4         | 5        | ND        | 1         | 1         | 1         | 5         | 2         | 117      | .08     | .022   | 2         | 98        | . 49    | 2         | .01     | 3        | 1.59     | .01      | .01    | 1        | 1          |
| 50527      | 1         | 502 | 7         | 93        | .3        | 41        | 23        | 1228      | 6.66    | 26        | 11       | ND        | 3         | 29        | i         | 14        | 2         | 176      | 3.96    | .058   | 5         | 33        | 1.00    | 13        | .01     | 3        | .55      | .03      | .02    | 1        | 4          |
| 50528      | 1         | 221 | 7         | 87        | .1        | 33        | 24        | 1047      | 6.68    | 34        | 8        | ND        | 3         | 38        | 1         | 6         |           |          |         | .040   |           | 28        | 1.12    | 11        | .01     | 2        | 1.10     | .04      | .04    | 2        | 2          |
| 50529      | 1         | 59  | 6         | 65        | .1        | 26        | 18        | 1131      | 6.04    | 11        | 5        | ND        | 5         | 63        | 1         | 15        | 2         |          | 11.78   |        | 4         |           | 2.15    | 7         | .01     | 2        | .44      | .06      | .05    | 3        | 4          |
| 50542      | 1         | 12  | 3         | 86        | .1        | 36        | 18        | 1561      | 6.50    | 8         | 5        | ND        | 5         | 138       | 1         | 2         | 2         |          |         | .016   | 2         |           | 4.90    | 3         | .01     |          | .11      | .04      | .01    | 3        | t          |
| STD C/AU-R | 22        | 58  | 39        | 133       | 7.2       | 70        | 28        | 1009      | 3.96    | 40        | 18       | 7         | 35        | 48        | 18        | 17        | 21        | 64       | .46     | .102   | 36        | 58        | . 88    | 180       | .08     | 35       | 1.72     | .07      | .13    | 14       | 500        |

DATE RECEIVED: ACME ANALYTICAL LABORATORIES 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

# JUNE 29 1987 July 4

## ASSAY CERTIFICATE

- SAMPLE TYPE: Rock Chips AU++ AND AG++ BY FIRE ASSAY. 1 A.T

ASSAYER:

LIM. DEAN TOYE, CERTIFIED B.C. ASSAYER

STETSON RESOURCE PROJECT-IDEAL File # 87-2066

| SAMF'LE#                             | AG**<br>OZ/T             | AU**<br>OZ/T                         |
|--------------------------------------|--------------------------|--------------------------------------|
| 7555<br>7556<br>7557<br>7558<br>7559 | .02<br>.01<br>.01<br>.01 | .003<br>.030<br>.004<br>.001<br>.001 |
| 7560<br>7632<br>7633<br>7634         | .01<br>.01<br>.02<br>.01 | .001<br>.001<br>.001<br>.001         |

۴.

•

' (

, C

(

(

(

(

(

(

(

(

(

C

(

(

¢

(

#### GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HM03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MW FE CA P LA CR NG BA TI O W AND LINITED FOR NA AND K. AU DETECTION LINIT BY ICP IS 3 PPN. - SAMPLE TYPE: SILTS AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE.

|         |           |           |           |           | - 9       | HUR LE    | 11161     | 91L 19    |         | IA MUNE   |               |           |           |           |           |           |           |          | Δ        | Λ    |           |           |         |           |         |          |         |         |        |          |            |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|------|-----------|-----------|---------|-----------|---------|----------|---------|---------|--------|----------|------------|
| DATE RE | CEIV      | ED 1      | JUL       | 29 19     | 187       | DA        | TE        |           |         |           | .ED I<br>ESOL |           | ly<br>PRO | 1         | •         |           |           |          | U<br># 1 | - 1  |           | DEAN      | 1 TO    | YE,       | CERI    | r I F I  | ED I    | 9.C.    | A69    | ЗАҮЕ     | R          |
| SAMPLE  | NO<br>PPN | CU<br>PPM | P8<br>PPN | ZN<br>PPH | A6<br>PPN | NI<br>PPH | CO<br>PPN | NN<br>PPH | FE<br>X | AS<br>PPN | U<br>PPN      | AU<br>Pph | TH<br>PPN | SR<br>PPH | CD<br>PPM | SB<br>PPM | BI<br>PPM | V<br>PPM | CA<br>X  | P    | LA<br>PFN | CR<br>PPN | NG<br>Z | 8A<br>PPN | 11<br>X | B<br>PPN | AL<br>1 | NA<br>Z | K<br>Z | N<br>PPN | AUS<br>PPB |
| CKI     | 1         | 105       | 5         | 64        | .1        | 53        | 19        | 590       | 5.20    | 5         | 7             | ND        | 2         | 17        | t         | 3         | 2         | 168      | .71      | .024 | 4         | n         | 1.78    | 20        | . 38    | 3        | 2.53    | .02     | .01    | 1        | 15         |
| CK2     | 1         | 231       | 13        | 89        | .1        | 61        | 24        | 1148      | 5.86    | 12        | 5             | ND        | 2         | 30        | 1         | 6         | 2         | 173      | .96      | .031 | 7         | - 79      | 1.96    | 43        | . 32    | 4        | 2.95    | . 02    | .02    | 1        | 29         |
| CK3     | 1         | 145       | 11        | 75        | .1        | 90        | 24        | 948       | 5.55    | 14        | 5             | ND        | 2         | 40        | 1         | 7         | 2         | 146      | .78      | .026 | 6         | 90        | 2.20    | 39        | .23     | 2        | 3.45    | .02     | .02    | 1        | 20         |
| CK4     | 1         | 115       | 8         | 86        | .1        | 58        | 24        | 810       | 7.17    | 10        | 8             | ND        | 2.        | 31        | 1         | 6         | 2         | 221      |          | .030 | 4         | 83        | 2.57    | 29        | .35     | 14       | 3.00    | .03     | .03    | 1        | 1          |
| CK5     | 1         | 109       | 8         | 83        | .1        | 54        | 23        | 843       | 6.14    | 7         | 6             | ND        | 2         | 34        | 1         | 4         | 2         | 178      | .93      | .033 | 5         | 68        | 2.37    | 32        | . 32    | 11       | 3.05    | .02     | .02    | 1        | 2          |
| CK6     | 1         | 86        | 3         | 59        | .1        | 56        | 19        | 698       | 5.73    | 5         | 5             | NO        | 2         | 26        | 1         | 5         | 2         | 196      | . 65     | .030 | 5         | 75        | 1.84    | 30        | . 42    | 3        | 2.76    | . 02    | .01    | 1        | 1          |
| CK7     | 1         | 207       | 6         | 91        | .1        | 67        | 26        | 1032      | 6.59    | - 14      | 5             | ND        | 2         | 29        | 1         | 4         | 2         | 185      | .86      | .027 | 6         | 81        | 2.35    | 43        | . 28    | 2        | 3.19    | .01     | .03    | 1        | 395        |
| CKB     | 1         | 221       | 5         | 81        | .1        | 49        | 24        | 1022      | 6.97    | 8         | 5             | ND        | 2         | 32        | 1         | 5         | 2         | 214      | 1.15     | .028 | 7         | 60        | 1.95    | 33        | .34     | 5        | 3.31    | .01     | .02    | 1        | 2          |
| CK9     | 1         | 107       | 9         | 92        | .1        | 39        | 21        | 1070      | 6.60    | 7         | 5             | NÐ        | 2         | 25        | 1         | 5         | 2         | 190      | .57      | .026 | 7         | 48        | 1.52    | 45        | .19     | 2        | 3.27    | .03     | .06    | 1        | 2          |

ACME ANALYTICAL LABORATORIES

CK6

CK7

CK8

CK9

1 86

1

207

1 221

1 107

3 59

A

5 81

9

91

.1 56 19

.1 67

.1 49

92 .1 39

.

698 5.73

26 1032 6.59

24 1022 6.97

21 1070 6.60

5

14

5 ND

5 ND

t

1 395

1 2

1 2

1

(

(

•

(

(

C

#### GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR H5 BA TI D W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IB 3 PPM. -- Sample type: Gilts Aug Analysis by AA FROM 10 GRAM SAMPLE.

ASBAYER. D. Jugg. DEAN TOYE, CERTIFIED B.C. ABBAYER DATE REPORT MAILED, July 4 DATE RECEIVED: JUL 29 1987 STETSON RESOURCE PROJECT-IDEAL File # 87-2065 SAMPLE KO CU PB AG NI CO MN FE AS U AU TH SR CD SB BI V CA P LA CR MG BA 11 AL N AUT ZN 8 PPN PPB I PPN PPN PPN рри рри рри рри рри у у рри рри Z PPH Ż 1 Z PPN PPN PPR PPN PPH PPN PPH PPH PPM 1 CK 1 168 .71 .024 71 1.78 20 . 38 3 2.53 .02 .01 15 53 19 590 5.28 17 2 1 105 .1 -5 2 ٦ 2 173 .96 .031 43 .32 4 2.95 .02 .02 29 CK2 231 24 1148 5.86 12 30 7 79 1.96 1 1 13 89 .1 61 5 ND 2 1 6 CK3 145 11 75 .1 90 24 948 5.55 14 5 ND 2 40 7 2 146 .78 .026 6 90 2.20 39 .23 2 3.45 .02 .02 1 20 1 1 29 .35 1 115 58 24 810 7.17 10 8 ND 2 . 31 2 221 .90 .030 4 83 2.57 14 3.00 .03 .03 1 7 CX4 8 86 .1 1 6 CK5 68 2.37 32 .32 11 3.05 .02 .02 2 1 109 A 83 .1 54 23 843 6.14 1 ND 2 -34 2 178 .93 .033 5 1 6 1 4

1 4

5

2 196

.85 .030

2 185 .86 .027

5

6

7

75 1.84

81 2.35

60 1.95

7 48 1.52 45 .19

30 .42

33 .34

43

.28

3 2.76

2 3.19

.02 .01

.01 .03

5 3.31 .01 .02

2 3.27 .03 .06

8 5 ND 2 32 5 2 214 1.15 .028 1 7 5 ND 2 25 1 5 2 190 .57 .026

7.

2 28

DATE RECEIVED JUL 07 1987 ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. DATE REPORTS MAILED Kuly PH: (604) 253-3158 COMPUTER LINE: 251-1011 GEOCHEMICAL ASSAY CERTIFICATE SAMPLE TYPE : ROCK - CRUSHED AND PULVERIZED TO -100 MESH. Aut - 10 5H, JENITED, HOT AQUA REGIA LEACHED, MIBK EXTRACTION, AA ANALYSIS. <u>PLM</u>\_\_DEAN TOYE , CERTIFIED B.C. ASSAYER ASSAYER STETSON RESOURCES PROJECT IDEAL FILE# 87-2265 PAGE# 1 SAMPLE Au\* ppb 

ACME ANALYTICAL LABORATORIES DATE RECEIVED: JULY 7 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: July 13/87.

A/T)

## ASSAY CERTIFICATE

- SAMPLE TYPE: Rock Chips AU++ AND AG++ BY FIRE ASSAY (1 A.T.)

.\*

| SAMPLE# | AG**<br>OZ/T | AU**<br>OZ/T |
|---------|--------------|--------------|
| 7561    | .01          | .001         |
| 7568    | .03          | .001         |
| 7580    | .02          | .001         |
| 7590    | .3.02        | .001         |
| 7591    | .01          | .022         |
| 7592    | .04          | .005         |
| 7593    | 、.03         | .001         |
| 7594    | .02          | .001         |
| 7596    | .02          | .001         |

ACME ANALYTICAL LABORATORIES DATE RECEIVED: JULY 7 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: July 13/67.

## ASSAY CERTIFICATE

- SAMPLE TYPE: Rock Chips AU\*\* AND A6\*\* BY FIRE ASSAY (1 A T)

ASSAYER: . A. Aufl. DEAN TOYE, CERTIFIED B.C. ASSAYER

STETSON RESOURCES PROJECT - IDEAL File # 87-2265A

A/T)

| SAMPLE#                              | AG★★<br>OZ∕T                    | AU★★<br>OZ∕T                 |
|--------------------------------------|---------------------------------|------------------------------|
| 7561<br>7568<br>7580<br>7590<br>7591 | .01<br>.03<br>.02<br>.02<br>.01 | .001<br>.001<br>.001<br>.001 |
| 7592<br>7593<br>7594<br>7596         | × .04<br>.03<br>.02<br>.02      | .005<br>.001<br>.001<br>.001 |

ACME ANALYTICAL LABORATORIES DATE RECEIVED: AUG 6 1987 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED:

## ASSAY CERTIFICATE

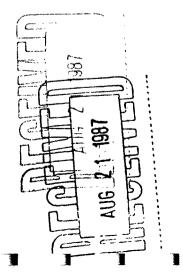
- SANPLE TYPE: ROCK AU\*\* AND AG\*\* BY FIRE ASSAY.

ASSAYER:

DEAN TOYE, CERTIFIED B.C. ASSAYER

STETSON RESOURCES PROJECT-IDEAL File # 87-2996

| SAMPLE#               | AG**  |      |
|-----------------------|-------|------|
|                       | OZ/T  | OZ/T |
| منتب إحدار إحدر علاجه |       | And  |
| 7803                  | .06   | .205 |
| 7804                  | .01   | .029 |
| 7805                  | .04   | .114 |
| 7806                  | .05   | .015 |
| 7807                  | .01   | .001 |
|                       |       |      |
| 7808                  |       | .006 |
| 7809                  | • O 1 | .070 |
| 7812                  | .01   | .011 |
| 7813                  | .01   | .014 |
| 7822                  | × .01 | .006 |
|                       |       |      |
| 7823                  | .07   | .726 |
| 7824                  | .02   | .035 |
| 7827                  | .02   | .001 |
| 7828                  | .01   | .001 |
| 7829                  | .13   | .845 |
|                       |       |      |
| 7830                  | .02   | .065 |
| 7831                  | .01   | .078 |
| 7833                  | 01    | .001 |
| 7834                  | .01   | .001 |
| 7836                  | .01   | .001 |
|                       |       |      |
| 7838                  | .01   | .001 |
| 7839                  | .01   | .001 |
|                       |       |      |


ACME ANALYTICAL LABORATORIES

٤.

#### GEOCHEMICAL ICP ANALYSIS

#### .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA AND K. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-ROCK P2-SILT P3-17 SOIL AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE.

| DATE REC   | CEIV      | ED:       | AU5       | 6 1987    | 1         | DAT       | TE R      | EPO       | RT M    | AIL                   | ED:      | au        | 91        | 14 /8     | 37        | AS        | BAYE      | R. /     | Q.      | kip,     | źD        | EAN       | точ     | E, C      | ERT     | IFIG     | ED B    | .c.     | ASS    | AYEF     | R                  |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|----------|-----------|-----------|---------|-----------|---------|----------|---------|---------|--------|----------|--------------------|
|            |           |           |           |           |           |           | STE       | TSO       | N RE    | SOUF                  | RCES     | FRC       | )<br>JEC  | т–1С      | EAL       | F         | ile       | # 1      | 37-2    | 996      | i         | Page      | ≥ 1     |           |         |          |         |         |        |          |                    |
| SAMPLE#    | NO<br>Pph | CU<br>PPN | PB<br>PPM | ZN<br>PPK | AG<br>PPN | NI<br>PPN | CO<br>PPN | MN<br>PPM | FE<br>X | AS<br>PP <del>N</del> | U<br>PPN | AU<br>PPN | TH<br>PPN | SR<br>PPN | CD<br>PPM | SB<br>PPN | BI<br>PPM | V<br>PPN | CA<br>Z | . P<br>X | LA<br>PPN | CR<br>PPN | HG<br>2 | BA<br>PPN | TI<br>X | B<br>PPM | AL<br>Z | NA<br>Z | K<br>X | N<br>PPN | AU <b>S</b><br>PPB |
| 7579       | 1         | 242       | 84        | 176       | .2        | 18        | 24        | 479       | 4.36    | 34                    | 5        | ND        | 1         | 10        | 1         | 2         | 2         | 89       | .66     | .014     | 2         | 10        | . 83    | 9         | .15     | 2        | 1.38    | .01     | .03    | 1        | 23                 |
| 7801       | 1         | 237       | 268       | 469       | .4        | 40        | 18        | 474       | 5.55    | - 4                   | 5        | ND        | 1         | 14        | 2         | 2         | 2         | 104      | .48     | .023     | 3         | 49        | 1.22    | 10        | .24     | 2        | 2.18    | .02     | .06    | 1        | 490                |
| 7802       | 1         | 457       | 35        | 94        | 3.6       | 20        | 13        | 344       | 6.42    | 17                    | 5        | 15        | 1         | 2         | 1         | 2         | 2         | 87       | .15     | .017     | 2         | 44        | .76     | 4         | .18     | 2        | 1.66    | .01     | .02    | 1        | 3630               |
| 7810       | 1         | 173       | 56        | 90        | .3        | 25        | 13        | 291       | 2.98    | 2                     | 5        | ND        | 1         | . 3       | 1         | 2         | 2         | 48       | .11     | .014     | 2         | 36        | .85     | 9         | .04     | 2        | 1.08    | .01     | .07    | 1        | 220                |
| 7811       | 2         | 322       | 22        | 99        | .1        | 56        | 26        | 574       | 6.19    | 3                     | 5        | ND        | 1         | 18        | 1         | 2         | 2         | Í 155    | .57     | .031     | 4         | 101       | 1.92    | 15        | .34     | 2        | 2.94    | .03     | .07    | 1        | 89                 |
| 7814       | 1         | 989       | 36        | 79        | .4        | 23        | 10        | 91        | 2.97    | 2                     | 5        | ND        | 1         | 2         | 1         | 2         | 2         | 21       | .09     | .016     | 2         | 20        | .17     | 11        | .05     | 7        | .42     | .01     | .10    | i        | 450                |
| 7815       | 1         | 1541      | 14        | 48        | .4        | 35        | 17        | 441       | 4.12    | 3                     | 5        | ND        | 1         | 7         | 1         | 2         | 2         | 95       | .25     | .021     | 3         | 57        | 1.26    | 11        | .13     | - 4      | 1.80    | .01     | .07    | 2        | 76                 |
| 7816       | 1         | 247       | 26        | 47        | .1        | 46        | 19        | 249       | 3.76    | 7                     | 5        | NÐ        | 1         | - 4       | 1         | 2         | 2         | 80       | .30     | .035     | 3         | 59        | .87     | 13        | .19     | 2        | 1.36    | .01     | .10    | 1        | 730                |
| 7817       | 2         | 1112      | 17        | 31        | .6        | 23        | 12        | 249       | 2.96    | 7                     | 5        | ND        | 1         | 4         | 1         | 2         | 2         | 50       | .14     | .006     | 2         | 28        | .67     | 3         | .11     | 2        | 1.00    | .01     | .03    | 1        | 207                |
| 7818       | i         | 192       | 26        | 105       | .1        | 86        | 41        | 1039      | 10.98   | 2                     | 5        | NÐ        | 1         | 33        | 1         | 2         | 2         | 302      | 2.82    | .043     | 7         | 162       | 5.07    | 13        | .50     | 2        | 5.71    | .02     | .03    | 2        | 4                  |
|            |           |           |           |           |           |           |           |           |         |                       |          |           | 7.        |           |           |           |           |          |         |          |           |           |         |           |         |          |         |         |        |          |                    |
| 7819       | 4         | 434       | 18        | 53        | .1        | 33        | 14        | 335       | 3.05    | 11                    | 5        | ND        | 1         | 14        | 1         | 2         | 2         | 63       | .48     | .024     | 3         | 51        | .78     | 7         | .07     | 2        | 1.43    | .01     | .06    | 1        | 570                |
| 7820       | 1         | 769       | 17        | 84        | .1        | 78        | 28        | 878       | 6.38    | 2                     | 5        | NÐ        | 1         | 43        | 1         | 2         | 2         | 171      | 6.87    | .037     | 7         | 163       | 2.53    | 21        | .07     | 2        | 3.55    | .01     | .09    | 2        | 520                |
| 7821       | 1         | 462       | 15        | 47        | .1        | 38        | 14        | 643       | 3.92    | 3                     | 5        | NÐ        | 1         | 31        | 1         | 2         | 2         | 81       | 10.15   | .018     | 3         | 69        | 1.63    | 4         | .01     | 2        | 1.95    | .01     | .04    | 1        | 21                 |
| 7825       | 1         | 145       | 19        | 103       | .1        | 75        | 36        | 889       | 8.13    | 6                     | 5        | ND        | 1         | 6         | 1         | 2         | 2         | 166      | .20     | .041     | 4         | 117       | 2.87    | 17        | .08     | 2        | 3.72    | .01     | .08    | 2        | 115                |
| 7826       | 13        | 53        | 15        | 30        | .2        | 58        | 21        | 233       | 4.71    | 14                    | 5        | ND        | i         | 4         | 1         | 2         | 2         | 61       | .21     | .029     | 2         | 40        | .66     | 9         | .23     | 2        | 1.27    | .01     | .07    | 1        | 67                 |
| 7832       | 1         | 20        | 5         | 41        | .1        | 67        | 24        | 1167      | 5.25    | 2                     | 5        | ND        | 1         | 77        | 1         | 2         | 2         | 60       | 15.08   | .005     | 2         | 31        | 4.44    | 29        | .01     | 2        | .26     | .01     | .01    | 1        | 1                  |
| 7835       | 1         | - 44      | 19        | 76        | .1        | 11        | 19        | 820       | 6.37    | 2                     | 5        | NÐ        | 1         | 27        | 1         | 2         | 2         | 152      | 1.14    | .059     | 7         | 10        | 1.93    | 42        | .17     | 5        | 2.11    | .03     | .09    | 1        | 1                  |
| 7837       | 1         | 112       | 12        | 100       | 1         | 14        | 28        | 866       | 7.32    | 3                     | 5        | ND        | 1         | 11        | 1         | 2         | 2         | 175      | .66     | .072     | 6         | 7         | 2.43    | 26        | .20     | 10       | 2.78    | .05     | .05    | 1        | 1                  |
| STD C/AU-R | 19        | 57        | 41        | 131       | 7.0       | 67        | 28        | 905       | 3.95    | 40                    | 19       | 7         | 38        | 50        | 17        | 17        | 21        | 55       | .47     | .081     | 37        | 58        | .87     | 176       | .08     | 38       | 1.87    | .06     | .13    | 13       | 490                |



€

| SAMPLE               |    |     | PB<br>PPN | ÷., |     |    |    |      | FE<br>L | -  |    |    |    |    |    |    |    |     | CA<br>X |      |    |    |      |     |     |    |      |     |      |    |     |  |
|----------------------|----|-----|-----------|-----|-----|----|----|------|---------|----|----|----|----|----|----|----|----|-----|---------|------|----|----|------|-----|-----|----|------|-----|------|----|-----|--|
| 10                   | 1  | 216 | 12        | 107 | .3  | 42 | 28 | 914  | 9.30    | 10 | 5  | ND | 3  | 20 | 1  | 2  | 2  | 245 | 1.02    | .037 | 6  | 40 | 1.71 | 35  | .53 | 8  | 2.86 | .05 | . 02 | 1  | 66  |  |
| 20                   |    |     |           |     |     |    |    |      |         |    |    |    |    |    |    |    |    |     | .72     |      |    |    |      |     |     |    |      |     |      |    |     |  |
| 7A                   | 1  | 266 | 7         | 155 | .4  | 56 | 28 | 1113 | 7.84    | 14 | 5  | NÐ | 2  | 27 | 1  | 4  | 2  | 175 | .84     | .034 | 6  | 70 | 2.39 | 48  | .25 | 4  | 3.62 | .05 | .05  | 1  | 445 |  |
| SILT#1 BRIN RD6 TUX1 | 1  | 232 | 18        | 96  | .3  | 37 | 26 | 1310 | 8.18    | 15 | 5  | ND | 2  | 23 | 1  | 3  | 2  | 217 | 1.12    | .047 | 6  | 35 | 1.50 | 36  | .57 | 13 | 2.76 | .06 | .02  | 3  | 6   |  |
| STD C                | 19 | 60  | 42        | 136 | 7.9 | 74 | 29 | 1021 | 4.01    | 48 | 14 | 7  | 40 | 52 | 19 | 14 | 24 | 61  | .48     | .093 | 40 | 65 | . 88 | 105 | .08 | 34 | 1.84 | .09 | .15  | 13 | -   |  |

7

Page 2

f.

Page 3

*1.* .

| SAMPLE#               | CU<br>PPM      | PB<br>PPM | AG<br>PPM  | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|-----------------------|----------------|-----------|------------|-----------|-----------|------------|-----------|
| L0+00 9+50S           | 186            | 3         | . 1        | 15        | 7         | 6          | 70        |
| L0+00 10+00S          | 91             | 6         | - 1        | 3         | 3         | 1          | 80        |
| L0+00 10+50S          | 49             | 2         | . 1        | 14        | 2         | 1          | 70        |
| L0+00 11+00S          | 80             | 6         | . 1        | 4         | 2         | 1          | 90        |
| L8+00E 9+00S          | 61             | 11        | . 1        | 2         | 2         | 1          | 30        |
| L8+00E 9+50S          | 31             | 1.5       | .2         | 2         | 2         | 1          | 40        |
| <b>Ľ</b> 8+00E 10+00S | 57             | 2         | . 1        | 17        | 5         | 3          | 100       |
| L8+00E 11+00S         | 42             | 13        | . 1        | 2         | 2         | 1          | 80        |
| L8+00E 11+50S         | 25             | 13        | . 1        | 4         | 2         | 1          | 40        |
| L8+00E 12+00S         | 61             | 9         | . 1        | 5         | 2         | 4          | 80        |
| L8+00E 12+50S         | 80             | 7         | .2         | 5         | 2         | 1          | 90        |
| L11E 9+50S            | . 69           | 8         | . 1        | 3         | 4         | 1          | 70        |
| L11E 10+00S           | 39             | 9         | . 1        | 2         | 2         | 1          | 60        |
| L11E 10+50S           | 78             | 6         | .2         | 6         | З         | 2          | 80        |
| L11E 11+00S           | 21             | 16        | .2         | N         | 2         | 1          | 60        |
| L11E 11+50S           | 76             | 11        | . 1        | 4         | 4         | 1          | 90        |
| L11E 12+00S           | 137            | 5         | . 3        | 4         | 3         | 1          | 130       |
| L11E 12+50S           | <del>9</del> 9 | 5         | × .3       | 4         | 2         | 9.         | 50        |
| L11E 13+00S           | 129            | 6         | .2         | 125       | 2         | 3          | 110       |
| L11E 13+50S           | 44             | 12        | <b>.</b> 1 | 2         | 2         | 6          | 60        |
| L11E 14+00S           | 54             | 6         | . 1        | 3         | 2         | 3          | 80        |
| L11E 14+50S           | 101            | 2         | . 1        | 13        | 8         | 1          | 100       |
| L11E 15+00S           | 48             | 6         | . 1        | 2         | 2         | 1          | 90        |
| L12E 0+00S            | 77             | 8         | .4         | 2         | 2         | 2          | 60        |
| L12E 0+50S            | 55             | 12        | .2         | 3         | 3         | 1          | 80        |
| L12E 1+00S            | ,46            | 13        | .2         | 2         | 2         | 1          | 70        |
| L12E 1+50S            | 102            | 11        | .3         | 4         | 3<br>3    | 1          | 80        |
| L12E 2+00S            | 80             | 4         | .3         | 2         |           | 7          | 110       |
| L12E 2+50S            | 38             | 12        | .2         | 2         | 2         | 2          | 120       |
| L12E 3+00S            | 51             | 8         | . 1        | 5         | 2         | 1          | 90        |
| L12E 3+50S            | 78             | 2         | .2         | 13        | 7         | 7          | 80        |
| L12E 4+00S            | 78             | 6         | . 1        | 2         | 2         | 1          | 90        |
| L12E 4+50S            | 50             | 11        | . 1        | 2         | 3         | 4          | 80        |
| L12E 5+00S            | 36             | 6         | . 1        | 2         | 2         | 1          | 60        |
| L12E 5+50S            | 139            | 4         | .2         | 4         | 3         | 2          | 120 .     |
| L12E 6+00S            | 58             | 10        | . 4        | 2         | 2         | 1          | 70        |
| STD C/AU-S            | 58             | 41        | 7.3        | 37        | 15        | 49         | 1300      |

Page 4

| SAMPLE#     | CU<br>PPM | PB<br>PPM | AG<br>PPM | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|-------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
| L12E 6+50S  | 101       | 2         | .5        | 17        | 2         | 5          | 80        |
| L12E 7+00S  | 47        | 6         | .5        | 2         | 2         | 1          | 70        |
| L12E 7+50S  | 57        | 8         | .6        | 5         | 2         | 1          | 60        |
| L12E 8+00S  | 36        | 15        | .5        | 2         | 2         | 1          | 50        |
| L12E 8+50S  | 76        | 6         | .6        | 2         | 2         | 1          | 90        |
| L12E 9+00S  | 104       | 6         | . 6       | 6         | 2         | 1          | 110       |
| L12E 9+50S  | 117       | 4         | . 7       | 6         | 2         | 1          | 80        |
| L12E 10+00S | 45        | 14        | . 4       | 2         | 2         | 1.         | 90        |
| L12E 10+50S | 43        | 2         | .5        | 2         | 2         | 2          | 30        |
| L12E 11+00S | 43        | 10        | .3        | 5         | 2         | 1          | 100       |
| L12E 11+50S | 47        | 10        | .5        | 2         | 2         | 2          | 50        |
| L12E 12+00S | 65        | 7         | . 6       | 2         | 2         | 2          | 70        |
| L12E 12+50S | 121       | 6         | . 7       | 5         | 2         | 1          | 110       |
| L12E 13+00S | 44        | 8         | .6        | 5         | 2         | 13         | 80        |
| L12E 13+50S | 90        | 2         | . 4       | 17        | 4         | 2          | 90        |
| L12E 14+00S | 93        | 2         | . 4       | 14        | 2         | 5          | 70        |
| L12E 14+50S | 179       | 2         | .7        | 18        | 2         | 4          | 110       |
| L12E 15+00S | 106       | 3         | 1.6       | 14.       | 2         | 3          | 80        |
| L13E 0+00S  | 66        | 11        | .5        | 2         | 2         | 9          | 90        |
| L13E 0+50S  | 65        | 12        | .5        | 2         | 2         | 48         | 60        |
| L13E 1+00S  | 87        | 2         | .2        | 3         | 2         | 12         | 40        |
| L13E 1+50S  | 60        | 4         | . 6       | 3         | 2         | 15         | 100       |
| L13E 2+00S  | 69        | 10        | . 4       | 3         | 2         | 13         | 50        |
| L13E 2+50S  | 60        | 11        | -8        | 2         | 2         | 1          | 100       |
| L13E 3+00S  | 75        | 4         | .8        | 3         | 2         | 1          | 90        |
| L13E 3+50S  | 58        | 5         | . 4       | 6         | 2         | 1          | 80        |
| L13E 4+00S  | 131       | 2         | .3        | 19        | 2         | 1          | 110       |
| L13E 4+50S  | 149       | 5         | .8        | 44        | 2         | 2          | 70        |
| L13E 5+00S  | 63        | 4         | . 6       | 7         | 3         | 35         | 100       |
| L13E 5+50S  | 212       | 16        | .7        | 9         | 2         | 104        | 80        |
| L13E 6+00S  | 126       | 15        | .5        | 7         | 2         | 2          | 120       |
| L13E 6+50S  | 82        | 2         | .3        | 3         | 2         | 1          | 80        |
| L13E 7+00S  | 60        | 8         | .5        | 3         | 2         | 1          | 100       |
| L13E 7+50S  | 57        | 9         | - 6       | 3         | 2         | 2          | 60        |
| L13E 8+00S  | 118       | 9         | .7        | 11        | 2         | 150        | 90        |
|             |           |           |           |           |           |            |           |
| L13E 8+50S  | 148       | 4         | .6        | 8         | 2         | 1          | 80        |

ŗ,

Page 5

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE#                   | CU<br>PPM | PB<br>PPM | AG<br>PPM  | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|-----------|------------|-----------|-----------|------------|-----------|
| L13E9+50S4612.322130L13E10+00S2710.122240L13E11+00S526.452180L13E11+00S526.452180L13E11+50S1378.242270L13E12+00S1122.3133170L13E12+50S1115.362290L13E13+00S6811.432270L13E13+50S3115.3223080L13E14+50S1123.462580100L14E14+50S1123.462580100L14E14+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+50S3115.52210120L14E2+50S3115.52210120L14E2+50S1032.582210L14E2+50S1027.432370L14E2+50S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L13E 9+00S                | 131       | 8         | .3         | 2         | 2         | 6          | 80        |
| L13E10+00S2710.122240L13E10+50S328.322250L13E11+00S526.452180L13E11+50S1378.242270L13E12+00S1122.3133170L13E12+50S1115.362290L13E13+00S6811.432270L13E13+50S3115.3223080L13E14+50S1123.442170L14E0+50S1058.5624110L14E0+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+50S1052210120L14E2+50S1052210120L14E2+50S1052210120L14E2+50S102743825L14E2+50S102743825L14E4+50S754382100L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |           |           |            |           |           |            |           |
| L13E10+50S328.3222250L13E11+00S526.452180L13E11+50S1122.3133170L13E12+50S1115.362290L13E12+50S1115.362270L13E13+0S6811.432270L13E13+0S5115.3223080L13E14+50S1123.442170L14E0+0S509.162180L14E0+50S1058.5624110L14E1+0OS687.162280L14E1+50S803.5192170L14E2+50S3115.52210102L14E2+50S822.2132360L14E2+50S822.2132360L14E2+50S1027.432250L14E5+50S1027.432250L14E5+50S1027.452250L14E5+50S102 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |           |           |            |           |           | _          |           |
| L13E11+00S526.452180L13E11+50S1378.242270L13E12+00S1122.3133170L13E12+50S1115.362290L13E13+00S6811.432270L13E13+50S3115.3223080L13E14+00S763.462580100L13E14+50S1123.442170L14E0+00S509.1624110L14E0+50S1058.5624110L14E1+00S687.162280L14E1+00S685.7322100L14E2+50S1032.5822110L14E3+50S822.2132360L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S1032.5821100L14E5+50S1027.452250L14E5+50S1027<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |           |           |            |           |           |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |           |            |           |           |            |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CIOC II-COO               | منه لب    | Q         | • **       | U         | ain.      | T          | 00        |
| L13E12+50S1115.362290L13E13+00S6811.432270L13E13+50S3115.3223080L13E14+00S763.462580100L13E14+50S1123.442170L14E0+00S509.162180L14E0+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+50S3115.52210120L14E2+50S3115.52210120L14E2+50S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S1027.452250L14E4+50S1027.452250L14E5+50S1027.452170L14E6+50S935.2821170L14E6+50S78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 137       |           | .2         | 4         |           | 2          | 70        |
| L13E13+00S6811.432270L13E13+50S3115.3223080L13E14+00S763.462580100L13E14+50S1123.442170L14E0+00S509.162180L14E0+50S1058.5624110L14E1+50S803.5192170L14E1+50S803.5192170L14E2+50S3115.52210120L14E3+50S822.2132360L14E3+50S822.2132360L14E3+50S822.2132360L14E3+50S822.2132360L14E3+50S1027.452250L14E4+50S709.552250L14E5+50S1027.452250L14E5+50S1027.452250L14E5+50S1027.452250L14E6+50S7811<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L13E 12+00S               | 112       |           | .3         | 13        |           | 1          | 70        |
| L13E13+50S3115.3223080L13E14+00S763.462580100L13E14+50S1123.442170L14E0+00S509.162180L14E0+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+50S3115.52210120L14E2+50S3115.52210120L14E3+50S822.2132360L14E3+50S822.2132360L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S709.552250L14E5+50S1027.452250L14E6+50S7811.392690L14E6+50S7811.392690L14E7+50S109172.4122890L14E6+50S109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L13E 12+50S               | 111       | 5         | .3         | 6         |           | 2          | 90        |
| L13E13+50S3115.3223080L13E14+00S763.462580100L13E14+50S1123.442170L14E0+00S509.162180L14E0+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+50S3115.52210120L14E2+50S3115.52210120L14E3+50S822.2132360L14E3+50S822.2132360L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S709.552250L14E5+50S1027.452250L14E6+50S7811.392690L14E6+50S7811.392690L14E7+50S109172.4122890L14E6+50S109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L13E 13+00S               | 68        | 11        | . 4        | 3         | 2         | 2          | 70        |
| L13E14+50S1123.442170L14E0+00S509.162180L14E0+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+00S685.7322110L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S574.382560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+50S7811.31021100L14E7+50S607.332170L14E8+50S14911.3102160L14E9+50S10919.424231040L14E9+50S1045.2172160L14E9+50S1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L13E 13+508               | 31        | 15        | .3         | 2         | 2         | 20         | 80        |
| L13E14+50S1123.442170L14E0+00S509.162180L14E0+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+00S685.7322110L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S574.382560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+50S7811.31021100L14E7+50S607.332170L14E8+50S14911.3102160L14E9+50S10919.424231040L14E9+50S1045.2172160L14E9+50S1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113E 14+008               | 74        | 7         | А          | ۷.        | 2         | 500        | 100       |
| L14E0+00S509.162180L14E0+50S1058.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+00S685.7322110L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S574.382560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+50S935.2821100L14E7+50S607.332170L14E8+50S14911.3102160L14E9+00S1712.4122890L14E9+00S1458.52633380L14E9+50S1045.2172160L14E9+50S1045 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |           |           |            |           |           |            |           |
| L14E0+50S10S8.5624110L14E1+00S687.162280L14E1+50S803.5192170L14E2+50S3115.52210120L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+60S545.432560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+00S855.4821170L14E6+50S935.2821100L14E7+50S607.332170L14E6+50S14911.3102160L14E8+50S14911.3102160L14E9+00S1712.4122890L14E8+50S10919.424231040L14E9+00S1458.52633380L14E10+00S145 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                          |                           |           |           |            |           |           |            |           |
| L14E1+00S687.162280L14E1+50S803.5192170L14E2+00S685.7322110L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S574.382560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+00S855.4821170L14E6+50S935.2832120L14E7+50S607.332170L14E7+50S10711.3102160L14E8+50S1712.4122890L14E9+50S10919.424231040L14E10+60S1458.52633380L14E10+60S1045.2172160L14E10+60S104 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                    |                           |           |           |            |           |           | -          |           |
| L14E1+50S803.5192170L14E2+00S685.7322110L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S574.382560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+00S855.4821170L14E6+00S6762832120L14E7+00S6762832120L14E7+50S607.332170L14E8+50S1712.4122890L14E9+00S1712.412231040L14E9+50S10919.424231040L14E10+00S1458.52633380L14E10+00S1045.282150L14E10+00S104 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                   |                           |           |           |            |           |           | -          |           |
| L14E2+00S685.7322110L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S574.382560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+00S855.4821170L14E6+00S855.4821170L14E6+50S735.2832120L14E7+50S607.332170L14E7+50S607.332170L14E8+50S14911.3102160L14E9+00S1712.4122890L14E9+50S10919.424231040L14E10+00S1458.52633380L14E10+00S1458.2172160L14E10+00S145 <t< td=""><td>L14E 14008</td><td>00</td><td>/</td><td>- 1</td><td>Ċ)</td><td>2</td><td><i></i></td><td>80</td></t<>                                                                                                                                                                                                                                                                                                                                                                         | L14E 14008                | 00        | /         | - 1        | Ċ)        | 2         | <i></i>    | 80        |
| L14E2+50S3115 $\cdot$ 52210120L14E3+00S1032 $\cdot$ 5822110L14E3+50S822 $\cdot$ 2132360L14E4+00S545 $\cdot$ 432370L14E4+50S574 $\cdot$ 382560L14E5+00S709 $\cdot$ 552250L14E5+50S1027 $\cdot$ 452250L14E6+00S855 $\cdot$ 4821170L14E6+00S855 $\cdot$ 4821170L14E6+50S935 $\cdot$ 2832120L14E7+00S $67$ 67 $\cdot$ 332170L14E7+50S607 $\cdot$ 332170L14E8+00S7811 $\cdot$ 3102160L14E8+00S14711 $\cdot$ 3102160L14E9+00S1712 $\cdot$ 4122890L14E9+00S1458 $5$ 2633380L14E10+00S1458 $5$ 2633380L14E10+00S1458 $5$ 26333 <td< td=""><td>L14E 1+50S</td><td>80</td><td></td><td>.5</td><td>19</td><td>2</td><td>1</td><td>70</td></td<>                                                                                                                                                                                                                                                         | L14E 1+50S                | 80        |           | .5         | 19        | 2         | 1          | 70        |
| L14E2+50S3115.52210120L14E3+00S1032.5822110L14E3+50S822.2132360L14E4+00S545.432370L14E4+50S574.382560L14E5+50S1027.452250L14E5+50S1027.452250L14E6+00S855.4821170L14E6+50S935.2832120L14E7+50S607.332170L14E8+00S7811.3792690L14E8+50S14711.3102160L14E9+00S1712.4122890L14E9+50S10919.424231040L14E10+00S1458.52633380L14E10+00S1458.52633380L14E10+50S1045.2172160L14E11+50S694.342160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L14E 2+00S                | 68        | 5         | .7         | 3         | 2         | 2          | 110       |
| L14E $3+50S$ $82$ $2$ $.2$ $13$ $2$ $3$ $60$ L14E $4+00S$ $54$ $5$ $.4$ $3$ $2$ $3$ $70$ L14E $4+50S$ $57$ $4$ $.3$ $8$ $2$ $5$ $60$ L14E $5+00S$ $70$ $9$ $.5$ $5$ $2$ $2$ $50$ L14E $5+50S$ $102$ $7$ $.4$ $5$ $2$ $2$ $50$ L14E $5+50S$ $102$ $7$ $.4$ $5$ $2$ $2$ $50$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+00S$ $67$ $6$ $2$ $8$ $3$ $2$ $120$ L14E $7+00S$ $67$ $6$ $2$ $8$ $3$ $2$ $120$ L14E $7+50S$ $60$ $7$ $.3$ $3$ $2$ $1$ $70$ L14E $8+00S$ $78$ $11$ $.3$ $10$ $2$ $1$ $60$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E $10+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E<                                                                                                                                     | L14E 2+50S                | 31        | 15        | `.5        | 2.        | 2         | 10         | 120       |
| L14E $3+50S$ $82$ $2$ $.2$ $13$ $2$ $3$ $60$ L14E $4+00S$ $54$ $5$ $.4$ $3$ $2$ $3$ $70$ L14E $4+50S$ $57$ $4$ $.3$ $8$ $2$ $5$ $60$ L14E $5+00S$ $70$ $9$ $.5$ $5$ $2$ $2$ $50$ L14E $5+50S$ $102$ $7$ $.4$ $5$ $2$ $2$ $50$ L14E $5+50S$ $102$ $7$ $.4$ $5$ $2$ $2$ $50$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+00S$ $67$ $6$ $2$ $8$ $3$ $2$ $120$ L14E $7+00S$ $67$ $6$ $2$ $8$ $3$ $2$ $120$ L14E $7+50S$ $60$ $7$ $.3$ $3$ $2$ $1$ $70$ L14E $8+00S$ $78$ $11$ $.3$ $10$ $2$ $1$ $60$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E $10+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E<                                                                                                                                     | L14E 3+00S                | 103       | 2         | .5         | 8         | 2         | 2          | 110       |
| L14E $4+50S$ $57$ $4$ $.3$ $8$ $2$ $5$ $60$ L14E $5+50S$ $102$ $7$ $.4$ $5$ $2$ $2$ $50$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+50S$ $93$ $5$ $.2$ $8$ $2$ $1$ $100$ L14E $7+00S$ $67$ $6$ $.2$ $8$ $3$ $2$ $120$ L14E $7+50S$ $60$ $7$ $.3$ $3$ $2$ $1$ $70$ L14E $8+00S$ $78$ $11$ $.3$ $9$ $2$ $6$ $90$ L14E $8+50S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $10+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E $10+00S$ $104$ $5$ $.2$ $17$ $2$ $1$ $60$ L14E $11+00S$ $101$ $5$ $.2$ $8$ $2$ $1$ $50$ L14E $11+00S$ $101$ $5$ $.2$ $8$ $2$ $1$ $60$ <td>L14E 3+50S</td> <td>82</td> <td>2</td> <td></td> <td>13</td> <td></td> <td></td> <td></td>                                       | L14E 3+50S                | 82        | 2         |            | 13        |           |            |           |
| L14E $4+50S$ $57$ $4$ $.3$ $8$ $2$ $5$ $60$ L14E $5+50S$ $102$ $7$ $.4$ $5$ $2$ $2$ $50$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+50S$ $93$ $5$ $.2$ $8$ $2$ $1$ $100$ L14E $7+00S$ $67$ $6$ $.2$ $8$ $3$ $2$ $120$ L14E $7+50S$ $60$ $7$ $.3$ $3$ $2$ $1$ $70$ L14E $8+00S$ $78$ $11$ $.3$ $9$ $2$ $6$ $90$ L14E $8+50S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $10+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E $10+00S$ $104$ $5$ $.2$ $17$ $2$ $1$ $60$ L14E $11+00S$ $101$ $5$ $.2$ $8$ $2$ $1$ $50$ L14E $11+00S$ $101$ $5$ $.2$ $8$ $2$ $1$ $60$ <td>114F 4+00S</td> <td>54</td> <td>=</td> <td>Д</td> <td>7</td> <td>2</td> <td>-7</td> <td>70</td>                                  | 114F 4+00S                | 54        | =         | Д          | 7         | 2         | -7         | 70        |
| L14E5+00S709.552250L14E5+50S1027.452250L14E6+00S855.4821170L14E6+50S935.2821100L14E7+00S676.2832120L14E7+50S607.332170L14E8+00S7811.392690L14E8+50S14911.3102160L14E9+50S10919.424231040L14E10+00S1458.52633380L14E10+50S1045.2172160L14E11+50S694.342160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |           |           |            |           |           |            |           |
| L14E5+50S1027.4522250L14E $6+00S$ 855.4821170L14E $6+50S$ 935.2821100L14E $7+00S$ $67$ 6.2832120L14E $7+50S$ 607.332170L14E $8+00S$ 7811.392690L14E $8+50S$ 14911.3102160L14E $9+00S$ 1712.4122890L14E $9+00S$ 1712.412231040L14E $9+00S$ 10919.424231040L14E $10+00S$ 1458.52633380L14E $10+00S$ 1045.2172160L14E $11+00S$ 1015.282150L14E $11+50S$ 694.342160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |           |            |           |           |            |           |
| L14E $6+00S$ $85$ $5$ $.4$ $8$ $2$ $11$ $70$ L14E $6+50S$ $93$ $5$ $.2$ $8$ $2$ $1$ $100$ L14E $7+00S$ $67$ $6$ $2$ $8$ $3$ $2$ $120$ L14E $7+50S$ $60$ $7$ $.3$ $3$ $2$ $1$ $70$ L14E $8+00S$ $78$ $11$ $.3$ $9$ $2$ $6$ $90$ L14E $8+50S$ $149$ $11$ $.3$ $10$ $2$ $1$ $60$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E $10+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E $10+50S$ $104$ $5$ $.2$ $17$ $2$ $1$ $60$ L14E $11+00S$ $101$ $5$ $.2$ $8$ $2$ $1$ $50$ L14E $11+50S$ $69$ $4$ $.3$ $4$ $2$ $1$ $60$                                                                                                                                                                                                                                                                           |                           |           |           |            |           |           |            |           |
| L14E $6+50S$ $93$ $5$ $.2$ $8$ $2$ $1$ $100$ L14E $7+00S$ $67$ $6$ $.2$ $8$ $3$ $2$ $120$ L14E $7+50S$ $60$ $7$ $.3$ $3$ $2$ $1$ $70$ L14E $8+00S$ $78$ $11$ $.3$ $9$ $2$ $6$ $90$ L14E $8+50S$ $149$ $11$ $.3$ $10$ $2$ $1$ $60$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+00S$ $171$ $2$ $.4$ $12$ $2$ $8$ $90$ L14E $9+50S$ $109$ $19$ $.4$ $24$ $2$ $310$ $40$ L14E $10+00S$ $145$ $8$ $.5$ $26$ $3$ $33$ $80$ L14E $10+50S$ $104$ $5$ $.2$ $17$ $2$ $1$ $60$ L14E $11+00S$ $101$ $5$ $.2$ $8$ $2$ $1$ $50$                                                                                                                                                                                                                                                                                                                                                                  |                           |           |           |            |           |           |            |           |
| L14E     7+005     67     6     .2     8     3     2     120       L14E     7+505     60     7     .3     3     2     1     70       L14E     8+005     78     11     .3     9     2     6     90       L14E     8+505     149     11     .3     10     2     1     60       L14E     9+005     171     2     .4     12     2     8     90       L14E     9+505     109     19     .4     24     2     310     40       L14E     10+005     145     8     .5     26     3     33     80       L14E     10+005     145     8     .5     26     3     33     80       L14E     10+505     104     5     .2     17     2     1     60       L14E     11+005     101     5     .2     8     2     1     50       L14E     11+505     69     4     .3     4     2     1     60 <td>LI4E 07005</td> <td>80</td> <td>0</td> <td><b>.</b> 4</td> <td>8</td> <td><u></u></td> <td>11</td> <td>70</td> | LI4E 07005                | 80        | 0         | <b>.</b> 4 | 8         | <u></u>   | 11         | 70        |
| L14E     8+00S     78     11     .3     9     2     6     90       L14E     8+50S     149     11     .3     10     2     1     60       L14E     9+00S     171     2     .4     12     2     8     90       L14E     9+50S     109     19     .4     24     2     310     40       L14E     10+00S     145     8     .5     26     3     33     80       L14E     10+50S     104     5     .2     17     2     1     60       L14E     10+50S     104     5     .2     8     2     1     50       L14E     11+00S     101     5     .2     8     2     1     50       L14E     11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                           |                           | 93        | 5         |            | 8         |           | 1          | 100       |
| L14E     8+00S     78     11     .3     9     2     6     90       L14E     8+50S     149     11     .3     10     2     1     60       L14E     9+00S     171     2     .4     12     2     8     90       L14E     9+50S     109     19     .4     24     2     310     40       L14E     10+00S     145     8     .5     26     3     33     80       L14E     10+50S     104     5     .2     17     2     1     60       L14E     10+50S     104     5     .2     8     2     1     50       L14E     11+00S     101     5     .2     8     2     1     50       L14E     11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                           |                           |           | 6         |            |           | 3         |            | 120       |
| L14E     B+50S     149     11     .3     10     2     1     60       L14E     9+00S     171     2     .4     12     2     8     90       L14E     9+50S     109     19     .4     24     2     310     40       L14E     10+00S     145     B     .5     26     3     33     80       L14E     10+50S     104     5     .2     17     2     1     60       L14E     10+50S     104     5     .2     8     2     1     50       L14E     11+00S     101     5     .2     8     2     1     50       L14E     11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                                                                                              | L14E 7+50S                | 60        | 7         |            |           |           | 1          | 70        |
| L14E 9+00S     171     2     .4     12     2     8     90       L14E 9+50S     109     19     .4     24     2     310     40       L14E 10+00S     145     8     .5     26     3     33     80       L14E 10+50S     104     5     .2     17     2     1     60       L14E 11+00S     101     5     .2     8     2     1     50       L14E 11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L14E 8+00S                | 78        | 11        | .3         | 9         | 2         | 6          | 90        |
| L14E 9+50S     109     19     .4     24     2     310     40       L14E 10+00S     145     8     .5     26     3     33     80       L14E 10+50S     104     5     .2     17     2     1     60       L14E 11+00S     101     5     .2     8     2     1     50       L14E 11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L14E 8+50S                | 149       | 11        | . 3        | 10        | 2 -       | 1          | 60        |
| L14E 9+50S     109     19     .4     24     2     310     40       L14E 10+00S     145     8     .5     26     3     33     80       L14E 10+50S     104     5     .2     17     2     1     60       L14E 11+00S     101     5     .2     8     2     1     50       L14E 11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L14E 9+00S                | 171       | 2         | . 4        | 12        | 2         | 8          | 90        |
| L14E     10+00S     145     8     .5     26     3     33     80       L14E     10+50S     104     5     .2     17     2     1     60       L14E     11+00S     101     5     .2     8     2     1     50       L14E     11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |           |           |            |           |           |            |           |
| L14E 10+50S     104     5     .2     17     2     1     60       L14E 11+00S     101     5     .2     8     2     1     50       L14E 11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |           |           |            |           |           |            |           |
| L14E     11+00S     101     5     .2     8     2     1     50       L14E     11+50S     69     4     .3     4     2     1     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |           |           |            |           |           |            | ,         |
| L14E 11+50S 69 4 .3 4 2 1 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |           |           |            |           |           |            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ստեղըները են է չչչչչչչչչ։ | a vera    | <b>)</b>  | سند ه      | L<br>L    | <u>.</u>  | Ŧ          | 00        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L14E 11+50S               | 69        | 4         | .3         | 4         | 2         | 1          | 60        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STD C/AU-S                | 59        | 28        | 7.5        | 38        |           | 47         | 1300      |

;

| SAMPLE#                             | CU<br>PPM | PB<br>PPM | AG<br>PPM   | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB      |
|-------------------------------------|-----------|-----------|-------------|-----------|-----------|------------|----------------|
| L14E 12+00S                         | 115       | 5         | . 1         | 2         | 2         | 6          | 40             |
| L14E 12+50S                         | 137       | 2         | . 1         | 5         | 2         | 4          | 90<br>90       |
|                                     | 181       |           | . 1         |           | 2         |            | 140            |
|                                     |           | 19        |             |           |           | 23         |                |
| L14E 13+50S                         | 86        | 26        | .2          | 4         | 2         | 9          | 60             |
| L15E 0+00S                          | 111       | 7         | .2          | 9         | 2         | 1          | 110            |
| L15E 0+50S                          | 121       | 11        | .2          | 2         | 2         | 4          | 80             |
| L15E 1+00S                          | 59        | 12        | . 1         | 2         | 2         | 1          | 70             |
| L15E 1+50S                          | 71        | 15        | .3          | 4         | 2         | 1          | 80             |
| L15E 2+00S                          | 60        | 18        | .3          | 2         | 2         | 84         | 90             |
| L15E 2+50S                          | 100       | 4         | .2          | 2         |           | 1          | 70             |
| L15E 3+005                          | 124       | 3         | .2          | 12        | 2         | 28         | 50             |
| L15E 3+50S                          | 139       | 10        | . 1         | 2         | 2         | 250        | 110            |
| L15E 4+50S                          | 43        | 12        | . 1         | 2         | 2         | 2          | 80             |
| L15E 5+50S                          | 76        | 8         | . 1         | 9         | 2         | 2          | 60             |
| L15E 6+00S                          | 122       | 5         | . 1         | 12        | 2         | 1          | 70             |
|                                     |           |           | • •         | 4. au-    | ****      | -          | у т <u>и</u> т |
| L15E 6+50S                          | 136       | 20        | . 1         | 4         | 2         | 4          | 90             |
| L15E 7+00S                          | 147       | 5         | . 4         | 3         | 2         | 2          | 120            |
| L15E 7+50S                          | 127       | 13        | <b>`.</b> 3 | 2.        | 2         | 8          | 80             |
| L15E 7+75S                          | 164       | 2         | .2          | 4         | 2         | 14         | 90             |
| L15E 8+00S                          | 238       | 8         | . 1         | 17        | 2         | 62         | 140            |
| L15E 8+25S                          | 144       | 9         | . 1         | 13        | 5         | 5          | 130            |
| L15E 8+50S                          | 104       | 4         | . 1         | 4         | 2         | 5          | 80             |
| L15E 8+75S                          | 150       | 8         | .2          | 8         | 2         | 14         | 60             |
| L15E 9+00S                          | 115       | 10        | . 1         | 2         | 2         | 3          | 70             |
| L15E 9+25S                          | 413       | 8         | .2          | 9         | 2         | 27         | 80             |
| L15E 9+50S                          | 78        | 8         | .2          | 2         | 2         | 6          | 90             |
| L15E 9+75S                          | 116       | 4         | .2          | 2         | 2         | 1          | 110            |
| L15E 10+00S                         | 127       | 38        | .3          | 5         | 2         | 19         | 90             |
| L15E 10+50S                         | 383       |           | .2          | 15        | 2         | 21         | 50             |
| L15E 11+00S                         | 76        | 7         | . 1         | 10        | 2         | 10         | 70             |
| tean de tead hann de de 'ng'ne'tead | ,         | ,         |             | 444 (A.)  |           | 10         |                |
| L15E 11+50S                         | 96        | 6         | . 1         | 8         | 2         | 1          | 120            |
| L15E 12+00S                         | 103       | 2         | . 1         | 10        | 2         | 23         | 100            |
| L15E 12+50S                         | 107       | 10        | .2          | 2         | 2         | 1          | 80             |
| L15E 13+00S                         | 82        | 11        | . 1         | 2         | 2         | 8          | 110'           |
| L16E 0+00S                          | 67        | 13        | . 1         | 4         | 2         | 1          | 230            |
| L16E 0+50S                          | 106       | 12        | .3          | 4         | 2         | 2          | 120            |
| STD C/AU-S                          | 59        | 41        | 7.3         | 39        | 18        | 48         | 1400           |

÷

| SAMPLE#     | CU<br>PPM | PB<br>PPM | AG<br>PPM   | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB  |
|-------------|-----------|-----------|-------------|-----------|-----------|------------|------------|
| L16E 1+00S  | 83        | 8         | .3          | 8         | 2         | 1          | 100        |
| L16E 1+50S  | 97        | 10        | .2          | 5         | 2         | 14         | 60         |
| L16E 2+00S  | 66        | 5         | .2          | 22        | 2         | 1          | 50         |
| L16E 2+50S  | 92        | 8         | . 1         | 6         | 2         | 5          | 100        |
| L16E 3+00S  | 104       | 13        | .3          | 18        | 2         | 1          | 50         |
| L16E 3+50S  | 147       | 11        | . 1         | 8         | 2         | 1          | 80         |
| L16E 4+00S  | 85        | 8         | .2          | 4         | 2         | 4          | 100        |
| L16E 4+50S  | 53        | 12        | .2          | 7         | 13        | 4          | 120        |
| STD C/AU-S  | 62        | 41        | 7.8         | 42        | 18        | 53         | 1300       |
| L16E 5+00S  | 51        | 14        | . 1         | 7         | 2         | 1          | 70         |
| L16E 5+50S  | 78        | 10        | . 1         | 5         | 2         | 1          | 110        |
| L16E 6+50S  | 66        | 11        | . 1         | 2         | 2         | 29         | 50         |
| L16E 7+00S  | 68        | 5         | .2          | 2         | 2         | 3          | 60         |
| L16E 8+00S  | 143       | 8         | .2          | 24        | 2         | 20         | 80         |
| L16E 8+255  | 68        | 15        | .2          | 2         | 2         | 4          | 150        |
| L16E 8+50S  | 108       | 13        | . 1         | 61        | 2         | 3          | 60         |
| L16E 8+75S  | 108       | 10        | . 1         | 18        | 2         | 13         | 80         |
| L16E 9+00S  | 55        | 12        | 1           | 3.        | 4         | 15         | 70         |
| L16E 9+25S  | 84        | 7         | . 1         | 21        | 2         | 9          | 100        |
| L16E 9+50S  | 124       | 12        | - 1         | 30        | 2         | 35         | 80         |
| L16E 9+75S  | 66        | 6         | . 1         | 4         | 2         | 5          | 90         |
| L16E 10+00S | 137       | 20        | . 1         | 10        | 2         | 74         | 110        |
| L16E 10+50S | 156       | 7         | . 1         | 6         | 2         | 8          | 50         |
| L16E 11+00S | 140       | 3         | . 1         | 15        | 2         | 2          | 80         |
| L16E 11+50S | 82        | 10        | . 1         | 31        | 2         | 1          | 60         |
| L16E 12+00S | 92        | 2         | .2          | 24        | 2         | 7          | 70         |
| L16E 12+50S | 163       | 16        | .2          | 8         | 2<br>3    | 230        | 60         |
| L17E 0+00S  | 49        | 14        | . 1         | 11        | 3         | 5          | 100        |
| L17E 0+50S  | 118       | 4         | . 1         | 8         | 2         | 9          | 50         |
| L17E 1+00S  | 61        | 10        | <b>.</b> 1. | 8         | 2         | 2          | 60         |
| L17E 1+50S  | 54        | 11        | .2          | 4         | 2         | 1          | 70         |
| L17E 2+00S  | 71        | 8         | . 1         | 6         | 2         | 2          | 60         |
| L17E 2+50S  | 88        | 20        | .2          | 3         | 2         | 2          | 100        |
| L17E 3+00S  | 63        | 7         | . 1         | 2         | 2         | 1          | <b>8</b> 0 |
| L17E 3+50S  | 55        | 12        | . 1         | 4         | 2         | 2          | 120        |
| L17E 4+00S  | 208       | 7         | . 1         | 13        | 2         | 57         | 70         |
| L17E 4+50S  | 124       | 14        | . 1         | 2         | 2         | 5          | 60         |

996 Page 8

| SAMPLE#                               | CU<br>PPM      | PB<br>PPM    | AG<br>PPM   | AS<br>PPM     | SB<br>PPM | AU*<br>PPB | HG<br>PPB  |
|---------------------------------------|----------------|--------------|-------------|---------------|-----------|------------|------------|
|                                       | £ f 1. f       | FFIT         |             | F F 11        |           | 1112       | 11.0       |
| L17E 5+00S                            | 73             | 19           | • 2         | 5             | 3         | 4          | 60         |
| L17E 5+50S                            | 65             | 17           | <b>.</b> 1  | 9             | 2         | 3          | 40         |
| L17E 6+25S                            | 123            | 17           | .2          | 4             | 3         | 4          | 60         |
| L17E 6+50S                            | 103            | 17           | . 1         | 2             | 2         | 1          | 100        |
| L17E 7+00S                            | 58             | 20           | . 1         | 4             | 2         | 3          | 110        |
| LI/E /+005                            | 00             | مند منه<br>ا | • 1         | -1            | din.      | ·1         | 110        |
| L17E 7+25S                            | 107            | 15           | .2          | 2             | 2         | 12         | 6Ŭ         |
| L17E 7+50S                            | 151            | 20           | .2          | 12            | 2         | 2          | 80         |
| L17E 7+75S                            | 138            | 14           | . 1         | 22            | 2         | 1          | 90         |
| L17E 7+75SA                           | 126            | 25           | . 1         | 4             | 2         | 1          | 80         |
| L17E 8+00S                            |                | 22           | . 1         | 8             | 2         | 1          | 70         |
|                                       | 00             | ساله ساله    | <b>u</b> J. | 0             | din       | +          | 7.0        |
| L17E 8+75S                            | 75             | 30           | .3          | 5             | 2         | 4          | 80         |
| L17E 9+50S                            | 127            | 9            | . 1         | 12            | 2         | 6          | 30         |
| L17E 10+00S                           | 117            | 25           | . 1         | 5             | 2         | 13         | 60         |
| L17E 10+25S                           | <del>9</del> 8 | 21           | .3          | 5             | 2         | 3          | 70         |
| L17E 10+50S                           | 49             | 19           | .2          | 6             | 2         | 2          | 60         |
| tana da 2 kana da 121 Y tan2 121 Yan2 | .,             | 1 /          | •           | 0             | -         |            |            |
| L17E 10+75S                           | 127            | 15           | .2          | 3             | 2         | · 1        | 80         |
| L17E 11+00S                           | 105            | 17           | . 1         | 8             | 2         | 3          | 40         |
| L17E 11+50S                           | 76             | 17           | 1.2         | 2.            | 2         | 1          | 70         |
| L17E 12+00S                           | 74             | 19           | . 1         | 2             | 2         | 2          | 50         |
| L17E 12+505                           | 74             | 14           | .1          | 2             | 2         | 2          | 50         |
| LI/E 12+305                           | /4             | T ++         | • 1         | <i></i> .     | £.        | đ.         | 00         |
| L17E 13+00S                           | 109            | 15           | . 1         | 16            | 2         | 1          | 40         |
| L18E 0+00S                            | 180            | 20           | .4          | 23            | 2         | 8          | 100        |
| L18E 0+50S                            | 225            | 20           | . 1         | 9             | 2         | 2          | 150        |
| L18E 1+00S                            | 156            | 10           | . 4         | 9             | 2         | 6          | 70         |
| L18E 1+50S                            | 118            | 21           | .4          | 8             | 2         | 1          | 120        |
|                                       | * * **         | 4 A          | •           | 0             | ation.    | +          | 44.0       |
| L18E 2+00S                            | 151            | 8            | .3          | 9             | 2         | 5          | 80         |
| L18E 2+50S                            | 93             | 17           | . 4         | 6             | 2         | 1          | 70         |
| L18E 3+00S                            | 189            | 14           | . 1         | 3             | 2         | 1          | 80         |
| L18E 3+50S                            | 84             | 10           | . 1         | 7             | 2         | 3          | <b>9</b> 0 |
| L18E 4+00S                            | 83             | 21           | . 1         | 7             | 2         | 3          | 60         |
|                                       |                |              |             |               |           |            |            |
| L18E 4+50S                            | 199            | 10           | . 1         | 6             | 2         | 1          | 40         |
| L18E 5+00S                            | 63             | 19           | .2          | 8             | 2         | 1          | 50         |
| L18E 5+50S                            | 92             | 18           | . 1         | 5             | 2         | 1          | 60         |
| L18E 6+25S                            | 118            | 20           | .2          | 9             | 2         | 3          | 9ď         |
| STD C/AU-S                            | 59             | 42           | 6.9         | 39            | 17        | 46         | 1300       |
| L18E 6+50S                            | 82             | 16           | .2          | 4             | 2         | 1          | 70         |
|                                       |                |              | .2          | 4             | 2         | 1          | 100        |
| L18E 6+75S                            | 74             | 17           | • 44        | <del>~1</del> |           | T          | 100        |

| SAMPLE#                         | CU<br>PPM       | PB<br>PPM | AG<br>PPM    | AS<br>PPM | SB<br>PPM     | AU*<br>PPB | HG<br>PPB |
|---------------------------------|-----------------|-----------|--------------|-----------|---------------|------------|-----------|
| L18E 7+00S                      | 133             | 2         | . 4          | 5         | 2             | 10         | 160       |
| L18E 7+25S                      | 168             | 14        | .2           | 5         | 2             | 4          | 180       |
|                                 | 134             | 3         | .2           | 4         | 2             | 2          | 110       |
| L18E 7+50S                      |                 |           |              |           | 3             |            |           |
| L18E 7+75S                      | 41              | 17        | . 1          | 2         |               | 2          | 30        |
| L18E 8+00S                      | - 92            | 14        | - 1          | 2         | 2             | 5          | 70        |
| L18E 8+25S                      | 135             | 9         | .2           | 6         | 3             | 1          | 60        |
| 118E 8+75S                      | 57              | 13        | . 1          | 4         | ద             | 1          | 30        |
| L18E 9+00S                      | 41              | 6         | <b>.</b> 1   | 2         | 2             | 8          | 100       |
| L18E 9+25S                      | 69              | 7         | .2           | 4         | 2             | 1          | 120       |
| L18E 9+50S                      | 89              | 10        | . 1          | 3         | 3             | 3          | 80        |
|                                 | ω,              |           | <b>s</b> .1. |           | * <b>_</b> _* | ·          | And the   |
| L18E 9+75S                      | 113             | 2         | . 1          | 16        | 3             | 1          | 60        |
| L18E 10+00S                     | (88             | 7         | . 1          | 2         | 3             | 1          | 70        |
| L18E 10+50S                     | 86              | 7         | . 1          | 5         | 2             | 4          | 80        |
| L18E 10+75S                     | 160             | 9         | .2           | 5         | 2             | 28         | 50        |
| L18E 11+00S                     | 105             | 2         | . 1          | 6         | 2             | 5          | 40        |
| L18E 11+25S                     | 123             | 20        | . 1          | 4         | 2             | 6          | പ         |
| L18E 11+50S                     | 39              | 17        | .2           | 2         | 2             | 3          | 70        |
| L18E 12+00S                     | 79              | - 6       | `.1          | 2.        | 2             | 2          | 60        |
| L19E 0+00S                      | 281             | 2         | 1.0          | 14        | 3             | 4          | 360       |
|                                 | 201<br>98       | ~ 7       |              | 3         | 2             |            | 50        |
| L19E 0+50S                      | 70              | 1         | . 1          |           | <i>4</i> .    | T          | 00        |
| L19E 1+00S                      | 129             | 5         | .3           | 5         | 2             | 3          | 80        |
| L19E 1+50S                      | 113             | 10        | . 1          | 2         | 2             | 1          | 110       |
| L19E 2+00S                      | 106             | 12        | .1           | 2         | 2             | 3          | 100       |
| L19E 2+50S                      | 45              | 15        | . 1          | 2         | 2             | 1          | 50        |
| L19E 3+00S                      | 131             | 5         | . 1          | 6         | 2             | 5          | 60        |
| and all if balls for the factor | 100 - 100 - 100 |           |              |           |               |            |           |
| L19E 3+50S                      | 122             | 2         | . 1          | 17        | 3             | 1          | 50        |
| L19E 4+00S                      | 133             | 1 Ö       | .3           | 16        | 2             | 47         | 70        |
| L19E 4+50S                      | 86              | 15        | .2           | 2         | 2             | 2          | 180       |
| L19E 5+00S                      | 233             | 10        | .2           | 2         | 2             | 1          | 30        |
| L19E 5+50S                      | 83              | 8         | .2           | 5         | 2             | 4          | 40        |
| L19E 6+00S                      | 119             | 2         | . 4          | 8         | 2             | 10         | 90        |
| L19E 6+50S                      | 57              | 19        | . 1          | 2         | 2             | 5          | 80        |
|                                 |                 |           | • 1          | 3         | 2             | 1          | 20        |
| L19E 7+00S                      | 96              | 13        |              |           |               | -          |           |
| L19E 7+25S                      | 47              | 13        | .2           | 2         | 2             | 1          | 90<br>90  |
| L19E 7+75S                      | 64              | 12        | • 3          | 2         | 2             | 1          | 40        |
| L19E 8+00S                      | 132             | 13        | . 1          | 2         | 2             | 70         | 70        |
| STD C/AU-S                      | 58              | 43        | 7.0          | 36        | 14            | 53         | 1300      |

ţ

| SAMPLE#                                      | CU<br>PPM | PB<br>PPM | AG<br>PPM    | AS<br>PPM         | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|----------------------------------------------|-----------|-----------|--------------|-------------------|-----------|------------|-----------|
|                                              | 41        | 20        | .2           | 1.4               | 2         | 4          | 110       |
| L19E 8+258                                   |           | 29        |              | 14                |           | 1          | 110       |
| L19E 8+50S                                   | 76        | 6         | . 1          | 14                | 2         | 1          | 70        |
| L19E 8+75S                                   | 160       | 14        | .2           | 2                 | 2         | 2          | 110       |
| L19E 9+00S                                   | 50        | 19        | - 1          | 10                | 2         | 1          | 90        |
| L19E 9+25S                                   | 65        | 10        | . 1          | 4                 | 2         | 1          | 60        |
| L19E 9+50S                                   | 56        | 19        | . 1          | 10                | 4         | 4          | 50        |
| L19E 9+755                                   | 109       | 12        | . 1          | 14                | 2         | 1          | 20        |
| L19E 10+00S                                  | 34        | 12        | . 1.         | 2                 | 2         | 1          | 60        |
| L19E 10+25S                                  | 66        | 11        | . 1          | 2                 | 2         | 4          | 110       |
| L19E 10+50S                                  | 42        | 11        | . 1.         | 6                 | 2         | 1          | 60        |
| L19E 10+75S                                  | 89        | 7         | . 1          | 4                 | 2         | 6          | 70        |
| L19E 11+00S                                  | 64        | 5         | . 1          | 2                 | 2         | 1          | 60        |
| L19E 11+003                                  | 15        |           | . 1          | 7                 | 3         | 1          | 40        |
|                                              |           | 11        |              |                   |           |            |           |
| L19E 11+50S                                  | 88        | 16        | . 1          | 3                 | 2         | 1          | 50        |
| L19E 11+75S                                  | 87        | 25        | - 1          | 3                 | 2         | 7          | 50        |
| L19E 12+00S                                  | 116       | 26        | . 1          | 11                | 2         | 9          | 40        |
| L19E 12+50S                                  | 49        | 14        | . 1          | 10                | 2         | 14         | 30        |
| L20E 0+00S                                   | 172       | 7         | <b>`_1</b> . | 2.                | 2         | 45         | 70        |
| L20E 0+50S                                   | 133       | 10        | . 1          | 5                 | 2         | 10         | 140       |
| L20E 1+00S                                   | 63        | 9         | .3           | 8                 | 2         | 46         | 110       |
| L20E 1+50S                                   | 86        | 10        | .3           | 3                 | 2         | 6          | 150       |
| L20E 2+00S                                   | 341       | 15        | . 1          | 25                | 2         | 6          | 100       |
| L20E 2+50S                                   | 111       | 7         | . 1          | 2                 | 2         | 1          | 110       |
| L20E 3+00S                                   | 98        | 12        | .1           | ž                 | 2         | 14         | 100       |
| L20E 3+50S                                   | 75        | 12        | .2           | 2                 | 2         | 1          | 100<br>90 |
| CZOC 37008                                   | 1         | * 4       | يته ه        | يئه               | din.      | 1          | 70        |
| L20E 4+00S                                   | 37        | 12        | . 1          | 12                | 2         | 4          | 70        |
| L20E 4+50S                                   | 49        | 10        | . 1          | 2                 | 3         | 39         | 60        |
| L20E 5+00S                                   | 163       | 15        | .2           | 2                 | 2         | 9          | 120       |
| L20E 5+50S                                   | 105       | 7         | .3           | 2                 | 2         | 1          | 80        |
| L20E 6+00S                                   | 62        | 12        | . 1          | 4                 | 3         | 9          | 60        |
| L20E 6+50S                                   | 142       | 8         | .2           | 3                 | 2         | 1          | 40        |
| L20E 7+00S                                   | 109       | 14        | . 2          | 2                 | 2         | 1          | 70        |
| L20E 7+50S                                   | 165       | 21        | . 1          | 2                 | 2         | 1          | 80        |
| L20E 7+75S                                   | 175       | 11        | . 1          | 11                | 2         | 10         | 180       |
| L20E 8+00S                                   | 31        | 5         | •            | 14                | 2         | 10         | 30        |
| ann aine an Chuire - Ann Chuir Ann Ann Ann A | ·' 4      | 7         | a sin        | л. <del>т</del> т | <b>4</b>  | τ          | -512      |
| L20E 8+25S                                   | 42        | 16        | . 1          | 13                | 3         | 14         | 100       |
| STD C/AU-S                                   | 58        | 39        | 7.2          | 40                | 15        | 52         | 1300      |
|                                              |           |           |              |                   |           |            |           |

;

| SAMPLE#                                     | CU<br>PPM | PB<br>PPM | AG<br>PPM  | AS<br>PPM   | SB<br>FPM  | AU¥<br>PPB | HG<br>PPB |
|---------------------------------------------|-----------|-----------|------------|-------------|------------|------------|-----------|
| L20E 8+50S                                  | 98        | 11        | . 1        |             | 2          | 180        | 60        |
| L20E 8+75S                                  | 86        | 8         | • •<br>• • | 2           | 2          | 41         | 50        |
| L20E 9+00S                                  | .176      | 7         | . 1        | 2           | 2          | 15         | 60        |
|                                             |           |           |            |             |            |            |           |
| L20E 9+25S                                  | 88        | 4         | - 1        | 2           | 2          | 39         | 40        |
| L20E 9+50S                                  | 93        | 14        | . 1        | 2           | 2          | 1          | 50        |
| L20E 9+75S                                  | 36        | 21        | . 1        | 3           | 3          | 1          | 70        |
| 120E 10+00S                                 | 31        | 22        | . 1        | 2           | 2          | 3          | 110       |
| L20E 10+25S                                 | 66        |           | .2         | 2           | 2          | 12         | 50        |
| L20E 10+50S                                 | 87        | 13        | . 1        | 2           | 2          | 1          | 70        |
| L20E 10+75S                                 | 63        | 11        | .1         | 13          | 2          | 10         | 80        |
|                                             | <u>с</u>  | 11        | • 1        | 1           | ÷-         | 10         | 00        |
| L20E 11+00S                                 | 59        | 16        | . 1        | 6           | 2          | 1          | 110       |
| L20E 11+25S                                 | 131       | 15        | . 1        | 2           | 2          | 2          | 90        |
| L20E 11+50S                                 | 256       | 9         | .1         | 3           | 2          | 1          | 40        |
| L20E 11+75S                                 | 83        | 12        | .2         | 7           | 2          | 8          | 110       |
| L20E 12+00S                                 | 62        | 9         | . 1        | 2           | 2          | 1          | 80        |
|                                             |           |           |            |             |            |            |           |
| L20E 12+25S                                 | 70        | 8         | . 1        | 8           | 2          | 1          | 90        |
| L20E 12+50S                                 | 89        | 12        | . 1        | 13          | 2          | 25         | 40        |
| L20E 12+75S                                 | 97        | 11        | `.3        | 5.          | 2          | 135        | 70        |
| L20E 13+00S                                 | 144       | 6         | . 1        | 9           | 2          | 137        | 90        |
| L21E 0+00S                                  | 165       | 12        | . 1        | 2           | 2          | 19         | 100       |
|                                             | 4.00      | 10        |            | <b></b>     | <b>C</b> 3 |            | 40        |
| L21E 0+50S                                  | 48        | 10        | . 1        | 5           | 2          | 1          | 40        |
| L21E 1+00S                                  | 73        | 8         | .2         | 2           | 2          | 1          | 120       |
| L21E 1+50S                                  | 144       | 11        | . 1        | 4           | 2          | 5          | 70        |
| L21E 2+50S                                  | 32        | 13        | .2         | 2           | 3          | 1          | 80        |
| L21E 3+00S                                  | 70        | 10        | . 1        | 2           | 2          | 1          | 70        |
| L21E 3+50S                                  | 140       | 4         | . 1        | 4           | 2          | 1          | 100       |
| L21E 4+00S                                  | 118       |           | . 1        | 2           | 2          | 5          | 60        |
| L21E 4+50S                                  | 219       | 2<br>3    | . 1        | 4           |            | 14         | 90        |
| L21E 5+00S                                  | 101       | 18        | . 1        | 2           | 2          | 390        | 80        |
| L21E 5+50S                                  | 99        | 12        | .2         | 8           | 2          | 4          | 70        |
| Beau aluas etc Beaus - Lyaf ' Laad fa' Lead |           | 4. 494    | • •        | <u> </u>    |            | ·          | · ·       |
| L21E 6+00S                                  | 77        | 7         | . 1        | 4           | 2          | 8          | 60        |
| L21E 6+50S                                  | 94        | 6         | .3         | 4           | 2          | 10         | 100       |
| L21E 7+00S                                  | 235       | 10        | . 1        | 7           | 2          | 18         | 120       |
| L21E 7+25S                                  | 92        | 11        | .2         | 2           | 2          | 2          | ക്ക്      |
| L21E 7+50S                                  | 229       | 2         | . 1        | 3           | 2          | 25         | 110       |
| L21E 7+75S                                  | 186       | 11        | . 1        | 2           | 2          | 23         | 130       |
| STD C/AU-S                                  | 57        | 38        | 6.7        | 42          | 16         | 20<br>51   | 1600      |
| 510 C/HU-5                                  | U7        | 40<br>10  | © ∎ /      | ** <b>.</b> | тO         | 01         | 1000      |

;

| SAMPLE#     | CU  | ΡB  | AG  | AS  | SB  | AU× | HG   |
|-------------|-----|-----|-----|-----|-----|-----|------|
|             | PPM | PPM | PPM | PPM | PPM | PPB | PPB  |
| L21E 8+005  | 101 | 16  | .3  | 3   | 2   | 12  | 80   |
| L21E 8+25S  | 126 | 18  | . 1 | 4   | 2   | 15  | 200  |
| L21E 8+50S  | 115 | 13  | . 1 | 13  | 2   | 5   | 30   |
| L21E 8+75S  | 165 | 19  | . 1 | 6   | 2   | 14  | 190  |
| L21E 9+005  | 43  | 14  | .2  | 4   | 2   | 1   | 120  |
| L21E 9+25S  | 153 | 12  | . 1 | 2   | 2   | 15  | 230  |
| L21E 9+50S  | 170 | 14  | .2  | 2   | 2   | 4   | 240  |
| L21E 9+75S  | 75  | 2   | . 1 | 2   | 2   | 1   | 40   |
| L21E 10+00S | 19  | 16  | . 1 | 2   | 2   | 12  | 50   |
| L21E 10+25S | 90  | 8   | . 1 | 3   | 2   | 1   | 100  |
| L21E 10+50S | 49  | 11  | . 1 | 2   | 2   | 8   | 60   |
| L21E 10+75S | 73  | 10  | . 1 | 2   | 2   | 2   | 40   |
| L21E 11+00S | 60  | 18  | . 1 | 2   | 2   | 5   | 110  |
| L21E 11+25S | 94  | 3   | . 1 | 8   | 2   | 9   | 50   |
| L21E 11+50S | 122 | 8   | .2  | 2   | 2   | 20  | 70   |
| L21E 11+75S | 105 | 13  | . 1 | 2   | 2   | 320 | 80   |
| L21E 12+00S | 48  | 17  | . 1 | 2   | 3   | 42  | 70   |
| L21E 12+25S | 197 | 2   | `.1 | 2.  | 2   | 44  | 40   |
| L21E 12+50S | 79  | 16  | . i | 3   | 3   | 2   | 70   |
| L21E 13+00S | 146 | 13  | - 1 | 2   | 2   | 22  | 60   |
| L22E 0+00S  | 91  | 4   | . 1 | 12  | 2   | 3   | 80   |
| L22E 0+50S  | 165 | 19  | . 2 | 4   | 2   | . 1 | 90   |
| L22E 1+00S  | 115 | 2   | . 1 | 2   | 2   | 19  | 60   |
| L22E 1+50S  | 102 | 11  | .2  | 2   | 2   | 6   | 70   |
| L22E 2+00S  | 128 | 10  | .2  | 3   | 2   | 8   | 80   |
| L22E 2+50S  | 81  | 12  | . 1 | 2   | 2   | 3   | 90   |
| L22E 3+00S  | 210 | 4   | . 1 | 13  | 2   | 5   | 180  |
| L22E 3+50S  | 71  | 7   | . 1 | 2   | 2   | 41  | 60   |
| L22E 4+00S  | 144 | 7   | 1   | 2   | 2   | 5   | 70   |
| L22E 4+50S  | 96  | 5   | . 1 | 2   | 2   | 4   | 60   |
| L22E 5+00S  | 181 | 5   | .2  | 6   | 2   | 2   | 80   |
| L22E 5+50S  | 105 | 8   | . 1 | 26  | 2   | 5   | 70   |
| L22E 6+00S  | 249 | 5   | . 1 | 2   | 2   | 27  | 90   |
| L22E 6+25S  | 48  | 17  | . 1 | 2   | 4   | 9   | 70   |
| L22E 6+50S  | 149 | 9   | .2  | 25  | 2   | 31  | 120  |
| L22E 6+75S  | 127 | 4   | . 1 | 2   | 2   | 11  | 80   |
| STD C/AU-S  | 57  | 42  | 7.2 | 39  | 16  | 52  | 1300 |

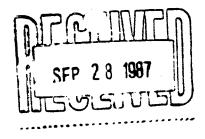
;\*

| SAMF'LE#    | CU<br>PPM | PB<br>PPM | AG<br>PPM | AS<br>PPM | SB<br>PPM | AU∗<br>₽₽₿ | HG<br>PPB |
|-------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
| L22E 7+00S  | 107       | 14        | . 1       | 2         | 2         | i          | 50        |
| L22E 7+25S  | 150       | 16        | .2        | 2         | 5         | 75         | 70        |
| L22E 7+50S  | 120       | 10        | . 1       | 4         | 2         | 6          | 80        |
| L22E 7+75S  | 143       | 13        | .3        | 2         | 2         | 3          | 60        |
| L22E 8+00S  | 43        | 13        | . 1       | 2         | 2         | 3          | 80        |
| L22E 8+25S  | 88        | 12        | .2        | 3         | 2         | 14         | 100       |
| 122E 8+50S  | 61        | 12        | .2        | 2         | 2         | 1          | 90        |
| L22E 8+75S  | 91        | 7         | .2        | 2         | 2         | 1          | 60        |
| L22E 9+00S  | 247       | 15        | . 1       | 13        | 2         | 7          | 70        |
| L22E 9+25S  | 122       | 15        | . 1       | 2         | 2         | 49         | 80        |
| L22E 9+50S  | 103       | 12        | . 1       | 5         | 2         | 1          | 90        |
| L22E 9+75S  | 102       | 18        | . 1       | 2         | 2         | 9          | 80        |
| L22E 10+00S | 256       | 20        | .2        | 44        | 2         | 1          | 100       |
| L22E 10+25S | 121       | 18        | . 1       | 2         | 2         | 1          | 140       |
| L22E 10+50S | 83        | 11        | . 1       | 31        | 2         | 1          | 50        |
| L22E 10+75S | 115       | 12        | . 1       | 18        | 2         | 1          | 90        |
| L22E 11+00S | 57        | 23        | . 1       | 2         | 2         | 2          | 70        |
| L22E 11+25S | 117       | 16        | • L       | 33.       | 2         | 1          | 70        |
| L22E 11+50S | 84        | 18        | . 1       | 2         | 2         | 1          | 80        |
| L22E 12+00S | 160       | 21        | . 1       | 2         | 2         | 2          | 100       |
| L23E 0+00S  | 249       | 18        | . 1       | 19        | 2         | 3          | 160       |
| L23E 0+50S  | 190       | 10        | .2        | 10        | 2         | 10         | 110       |
| L23E 1+00S  | 73        | 23        | . 1       | 2         | 2         | 1          | 100       |
| L23E 1+50S  | 130       | 9         | - 1       | 2         | 2         | 1          | 110       |
| L23E 2+00S  | 90        | 8         | .2        | 2         | 2         | 2          | 80        |
| L23E 2+50S  | 251       | 13        | .3        | 2         | 2         | 5          | 90        |
| L23E 3+00S  | 141       | 15        | . 1       | 4         | 2         | 19         | 30        |
| L23E 3+50S  | 155       | 13        | . 1       | 15        | 2         | 2          | 70        |
| L23E 4+00S  | 70        | 17        | .2        | 4         | 3         | 2          | 60        |
| L23E 4+50S  | 85        | 10        | .2        | 2         | 4         | 5          | 220       |
| L23E 5+00S  | 342       | 15        | .5        | 5         | 2         | 67         | 80        |
| L23E 5+50S  | 97        | 17        | .2        | 2         | 2         | 1          | 70        |
| L23E 6+00S  | 72        | 18        | .2        | 2         | 2         | 2          | 80        |
| L23E 6+50S  | 170       | 1.6       | - 2       | 2         | 2         | 14         | 70        |
| L23E 7+00S  | 190       | 7         | . 1       | 12        | 2         | 9          | 90        |
| L23E 7+25S  | 62        | 15        | . 1       | 2         | 2         | 2          | 50        |
| STD C/AU-S  | 58        | 40        | 7.2       | 39        | 14        | 51         | 1300      |

:

Page 14

| SAMPLE#     | CU<br>PPM | PB<br>PPM | AG<br>PPM  | AS<br>PPM  | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|-------------|-----------|-----------|------------|------------|-----------|------------|-----------|
| L23E 7+50S  | 55        | 14        | . 1        | 2          | 2         | 4          | 60        |
| L23E 7+75S  | 51        | 4         | . 1        | 2          | 2         | 1          | 50        |
| L23E 8+00S  | 83        | 12        | 1.7        | 2          | 2         | 9          | 80        |
| L23E 8+25S  | 164       | 8         | . 2        | 5          | 6         | 1          | 160       |
| L23E 8+50S  | 136       | 12        | .9         | 4          | 2         | 3          | 430       |
| L23E 9+25S  | 51        | 9         | <b>.</b> 1 | 2          | 2         | 12         | 90        |
| 123E 9+50S  | 14        | 12        | .3         | 2          | 2         | 1          | 110       |
| L23E 9+75S  | 92        | 2         | . 1.       | 3          | 3         | 16         | 90        |
| L23E 10+00S | 90        | 2         | - 1        | 2          | 2         | 2          | 80        |
| L23E 10+50S | 109       | 12        | - 1        | 2          | 2         | 2          | 30        |
| L23E 10+75S | 69        | 6         | . 1        | 2          | 2         | 3          | 50        |
| L23E 11+00S | 84        | 5         | . 1        | 2          | 4         | 1          | 70        |
| L24E 0+00S  | 60        | 8         | .2         | 2          | 2         | 5          | 100       |
| L24E 0+50S  | 92        | 6         | . 3        | 2          | 2         | 4          | 80        |
| L24E 1+00S  | 100       | 4         | . 1        | 8          | 4         | 240        | 120       |
| L24E 1+50S  | 116       | 12        | . 1        | 2          | 2         | 12         | 80        |
| L24E 2+00S  | 131       | 10        | . 4        | 2          | 2         | 1          | 230       |
| L24E 2+50S  | 107       | 2         | 2          | 2          | 2         | 1          | 110       |
| L24E 3+00S  | 181       | 2         | .3         | <b>9</b> . | 8         | 6          | 130       |
| L24E 3+50S  | 31        | 26        | . 1        | 2          | 2         | 1          | 70        |
| L24E 4+00S  | 137       | 6         | . 1        | 3          | 5         | 1          | 60        |
| L24E 4+50S  | 78        | 9         | . 1        | 3          | 2         | 11         | 80        |
| L24E 5+00S  | 51        | 13        | . 1        | 2          | 2         | 1          | 80        |
| L24E 5+50S  | 144       | 7         | . 2        | 4          | 2         | 11         | 90        |
| L24E 6+00S  | 77        | 5         | . 1        | 2          | 2         | 2          | 120       |
| L24E 6+50S  | 56        | 12        | .3         | 2          | 2         | 2          | 70        |
| L24E 7+00S  | 139       | 2         | . 1        | 14         | 10        | 2          | 50        |
| L24E 7+50S  | 117       | 6         | .3         | 2          | 2         | 1          | 70        |
| L24E 8+00S  | 75        | 10        | . 1        | 4          | 2         | 58         | 80        |
| L24E 8+50S  | 63        | 10        | . 1        | 2          | 2         | 1          | 60        |
| L24E 9+005  | 30        | 13        | . 1        | 2          | 2         | 4          | 50        |
| L24E 9+50S  | 102       | 5         | . 1        | 5          | 2 ·       | 1          | 80        |
| L24E 11+25S | 66        | 9         | . 1        | 2          | 2         | 1          | 90        |
| L25E 0+00S  | 87        | 11        | - 1        | 2          | 2         | 2          | 150       |
| L25E 0+50S  | 163       | 2         | .2         | 2          | 3         | 5          | 110       |
| L25E 1+00S  | 121       | 8         | . 5        | 2          | 2         | 1          | 120       |
| STD C/AU-S  | 62        | 42        | 7.7        | 38         | 16        | 49         | 1300      |


| SAMPLE#                              | CU<br>PPM  | PB<br>PPM | AG<br>PPM  | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB         |
|--------------------------------------|------------|-----------|------------|-----------|-----------|------------|-------------------|
| L25E 1+50S                           | 207        | 10        | . 1        | 6         | 7         | 3          | 60<br>170         |
| L25E 2+00S                           | 290        | 5<br>7    | .2.<br>.1  | 17<br>2   | 4<br>3    | 28<br>8    | 170<br>100        |
| L25E 2+50S<br>L25E 3+00S             | 139<br>163 | 13        | . 1        | 2         | 2         | 1          | 110               |
| L25E 3+50S                           | 69         | 14        | . 1        | 3         | 2         | 3          | 90                |
| L25E 4+00S                           | 60         | 15        | .2         | 2         | 2         | 4          | 110               |
| €25E 4+50S                           | 73         | 17        | .3         | 4         | 2         | 3          | 100               |
| L25E 5+00S                           | 102        | 14<br>8   | .1<br>.1   | 5<br>5    | 3<br>2    | 2<br>5     | 60<br>80          |
| L25E 5+50S<br>L25E 6+00S             | 110<br>183 | 13        | - 1<br>- 1 | 4         | 4         | с<br>8     | 90                |
| LŹ5E 6+50S                           | 147        | 21        | • 2        | 2         | 2         | 12         | 70                |
| L25E 7+00S                           | 109        | 21        | .3         | 4         | 3         | 1          | 100               |
| L25E 7+50S                           | 149        | 8         | . 1        | 15        | 7         | 3          | 80                |
| L25E 8+00S                           | 90         | 19        | . 1        | 2         | 2         | 2          | 70                |
| L25E 8+50S                           | 109        | 19        | . 1        | 4         | 2         | 3          | 80                |
| L25E 9+50S                           | 103        | 15        | . 1        | 5         | 2         | 10         | 50                |
| L26E 0+00S                           | 115        | 5         | . 1        | 21        | 10        | 2          | 60                |
| L26E 0+50S                           | 99         | 19        | 13         | 5         | . 2       | 1<br>3     | 430<br>80         |
| L26E 1+00S<br>L26E 1+50S             | 31<br>124  | 24<br>11  | .1<br>.2   | 2<br>4    | 2         | 15         | 140               |
| han din tad han - dir 5 Kad Sart Kad |            |           |            |           |           |            |                   |
| L26E 2+50S                           | 129        | 8         | .3         | 5         | 3         | 35         | 70                |
| L26E 3+00S                           | 115        | 13        | .2         | 4         | 4         | 5          | 90<br>100         |
| L26E 3+50S                           | 155        | 11        | .2         | 5<br>8    | 2<br>2    | 3<br>1     | $\frac{100}{110}$ |
| L26E 4+50S<br>L26E 5+00S             | 179<br>93  | 11<br>7   | .2<br>.1   | 2         | ž         | 1          | 70                |
| L26E 5+50S                           | 55         | 14        | . 1        | 2         | 3         | 2          | 80                |
| L26E 6+50S                           |            | 13        | .2         | 3         | 5         | 1          | 100               |
| L26E 7+00S                           | 109        | 2         | . 1        | 29        | 7         | 8          | 160               |
| L26E 7+50S                           | 135        | 19        | .3         | 6         | 5         | 5          | 110               |
| L26E 8+00S                           | 136        | 7         | . 4        | 6         | 7         | 6          | 80                |
| L26E 8+50S                           | 107        | 17        | .2         | 3         | 2         | 1          | 90                |
| L27E 0+00S                           | 38         | 25        | .2         | 2         | 2         | 10         | 120               |
| L27E 0+50S                           | 180        | 11        | .2         | 9<br>3    | 6         | 6<br>5     | 240               |
| L27E 1+00S                           | 146        | 20<br>10  | .2<br>.3   | د<br>16   | 2<br>8    |            | 150<br>300        |
| L27E 1+50S                           | 244        | τO        | • •        |           |           | C          |                   |
| L27E 2+00S                           | 157        | 13        | . 1        |           | 2         | 15         | 90                |
| STD C/AU-S                           | 59         | 43        | 7.3        | 38        | 17        | 47         | 1200              |

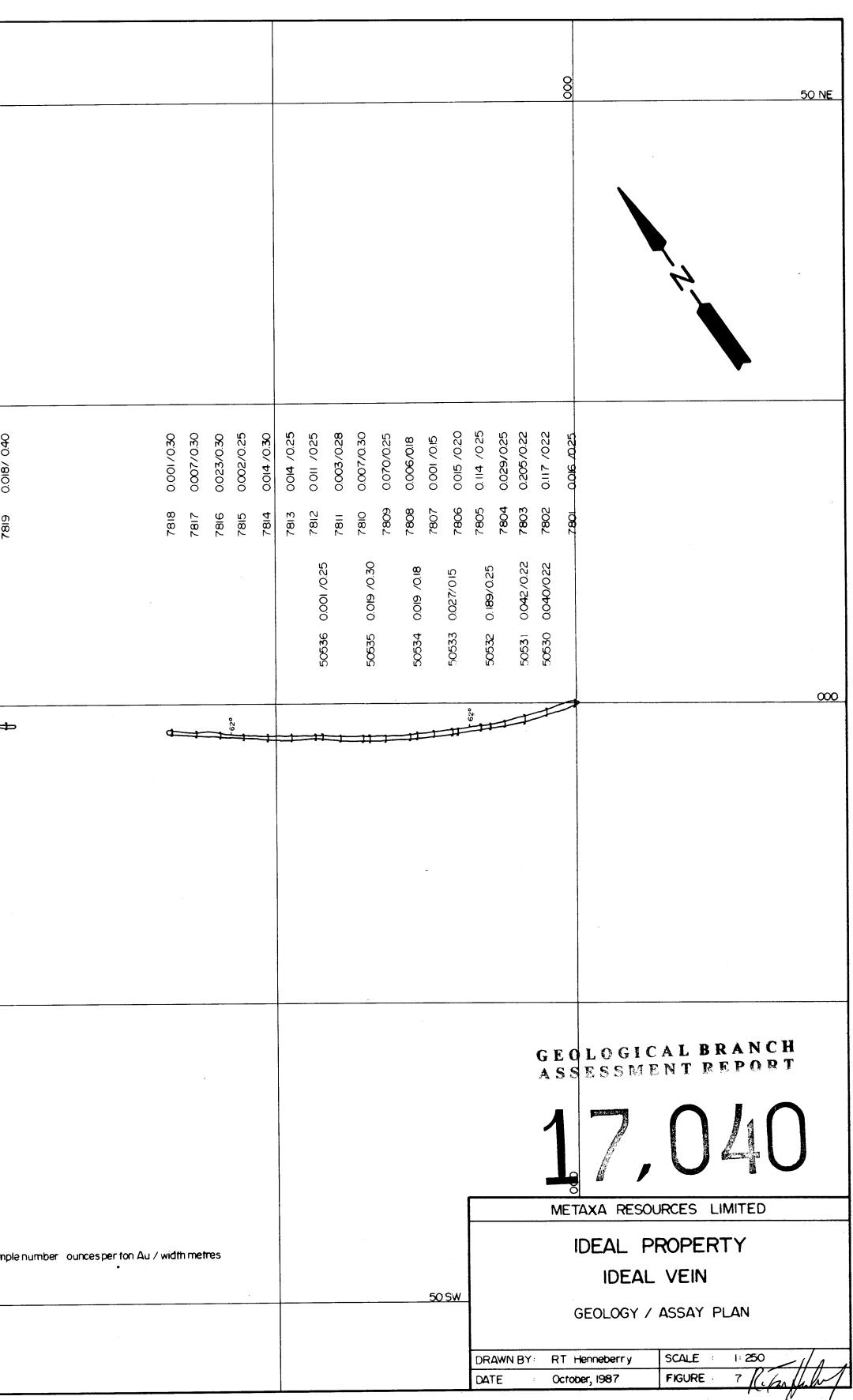
.\*

| SAMPLE#    | CU<br>PPM | PB<br>PPM | AG<br>PPM  | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|
| L27E 2+50S | 176       | 5         | . 1        | 7         | 4         | 5          | 110       |
| L27E 3+00S | 487       | 8         | . 2        | 6         | 6         | 3          | 60        |
| L27E 3+50S | 237       | 2         | .21        | ර         | 3         | 3          | 90        |
| L27E 4+00S | 70        | 9         | . 1        | 2         | 2         | 5          | 50        |
| L27E 4+50S | 324       | 11        | .2         | 4         | 2         | 8          | 110       |
| L27E 5+50S | 157       | 16        | .3         | 2         | 2         | 6          | 160       |
| 127E 6+00S | 109       | 8         | . 1        | 2         | 2         | 9          | 70        |
| L27E 6+50S | 75        | 17        | . 1        | 2         | 2         | 3          | 60        |
| L27E 7+00S | 185       | 12        | .2         | 2         | 2         | 2          | 130       |
| L27E 7+50S | 98        | 15        | . 1        | 2         | 2         | 1.         | 210       |
| L27E 8+005 | 64        | 14        | .2         | 2         | 2         | 2          | 100       |
| L27E 8+50S | 57        | 19        | .3         | 2         | 2         | 2          | 160       |
| L27E 9+00S | 133       | 14        | . 4        | 2         | 2         | 3          | 110       |
| L27E 9+50S | 165       | 31        | .2         | 2         | 2         | 24         | 100       |
| L28E 0+00S | 100       | 8         | .2         | 4         | 3         | 11         | 90        |
| L28E 0+50S | 155       | 14        | .5         | 4         | 2         | 7          | 250       |
| L28E 1+00S | 209       | 8         | . 4        | 7         | 6         | 9          | 200       |
| L28E 1+50S | 62        | 10        | <u>,</u> 7 | 2         | 2         | 2          | 160       |
| L28E 2+00S | 20        | 15        | . 1        | 2         | · 2       | 1          | 130       |
| L28E 2+50S | 213       | 5         | .2         | 12        | 3         | 4          | 260       |
| L28E 3+005 | 122       | 14        | .2         | 2         | - 2       | 4          | 60        |
| L28E 3+50S | 87        | 8         | . 1        | 2         | 2         | 465        | 150       |
| L28E 4+00S | 186       | 6         | . 4        | 9         | 5         | 5          | 190       |
| L28E 4+50S | 159       | 11        | - 1        | 2         | 3         | 4          | 100       |
| L28E 5+00S | 109       | 6         | .2         | 3         | - 3       | 2          | 70        |
| L28E 5+50S | 158       | 2         | . 1        | 12        | 6         | 6          | 50        |
| L28E 6+00S | 97        | 6         | . 4        | 2         | 2         | 9          | 70        |
| L28E 6+50S | 129       | 11        | . 1        | 2         | 2         | 6          | 90        |
| L28E 7+00S | 96        | 12        | • 2        | 3         | 2         | 1          | 240       |
| L28E 7+50S | 126       | 13        | . 1        | 3         | 2         | 6          | 90        |
| L28E 8+005 | 153       | 8         | . 1        | 4         | 3         | 4          | 70        |
| L29E 0+00S | 75        | 13        | .3         | 4         | 2         | 1          | 140       |
| L29E 0+50S | 117       | 17        | . 1        | 2         | 2         | 11         | 80        |
| L29E 1+00S | 149       | 14        | .2         | 2         | 2         | 6          | 100       |
| L29E 2+00S | 171       | 11        | . 4        | 3         | 2         | 2          | 210       |
| L29E 2+50S | 111       | 8         |            | 4         | 5         | 5          | 160       |
| STD C/AU-S | 61        | 43        | 7.4        | 37        | 15        | 51         | 1300      |

ŗ

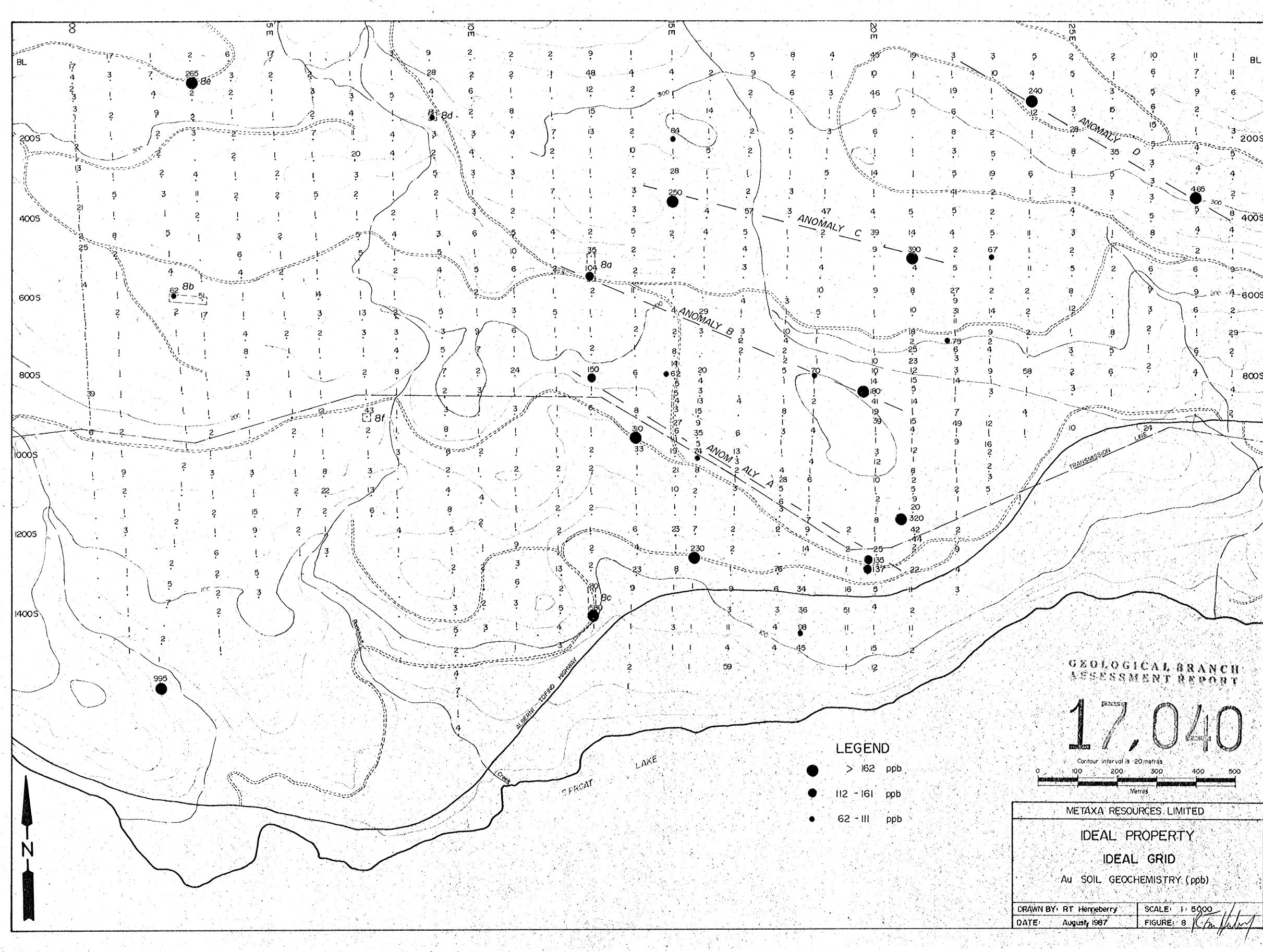
| SAMPLE#    | CU<br>PPM | PB<br>PPM | AG<br>PPM | AS<br>PPM | SB<br>PPM | AU*<br>PPB | HG<br>PPB |
|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
| L29E 3+00S | 30        | 18        | . 1       | 2         | 2         | 4          | 40        |
| L29E 3+50S | 117       | 6         | . 1       | 8         | 2         | 2          | 110       |
| L29E 4+00S | 169       | 13        | . 1       | 20        | 2         | 8          | 60        |
| L29E 4+50S | 133       | 19        | . 1       | 5         | 2         | 4          | 140       |
| L29E 5+00S | 177       | 14        | .2        | చ         | 2         | 1          | 130       |
| L29E 5+50S | 176       | 8         | . 1       | 4         | 2         | 9          | 150       |
| 129E 6+00S | 112       | 5         | . 1       | 6         | 2         | 4          | 110       |
| L29E 6+50S | 160       | 5         | . 1       | 2         | 2         | 2          | 70        |
| L29E 7+00S | 59        | 6         | . 1       | 2         | 2         | 29         | 60        |
| L29E 7+50S | 143       | 11        | .2        | 2         | 2         | 2          | 50        |
| L29E 8+00S | 103       | 18        | . 1       | 4         | 2         | 1          | 90        |
| L29E 8+50S | 83        | 17        | . 4       | 2         | 2         | 4          | 80        |
| L29E 9+00S | 108       | 14        | .2        | 3         | 2         | 2          | 140       |
| STD C/AU-S | 59        | 40        | 7.2       | 37        | 17        | 47         | 1400      |



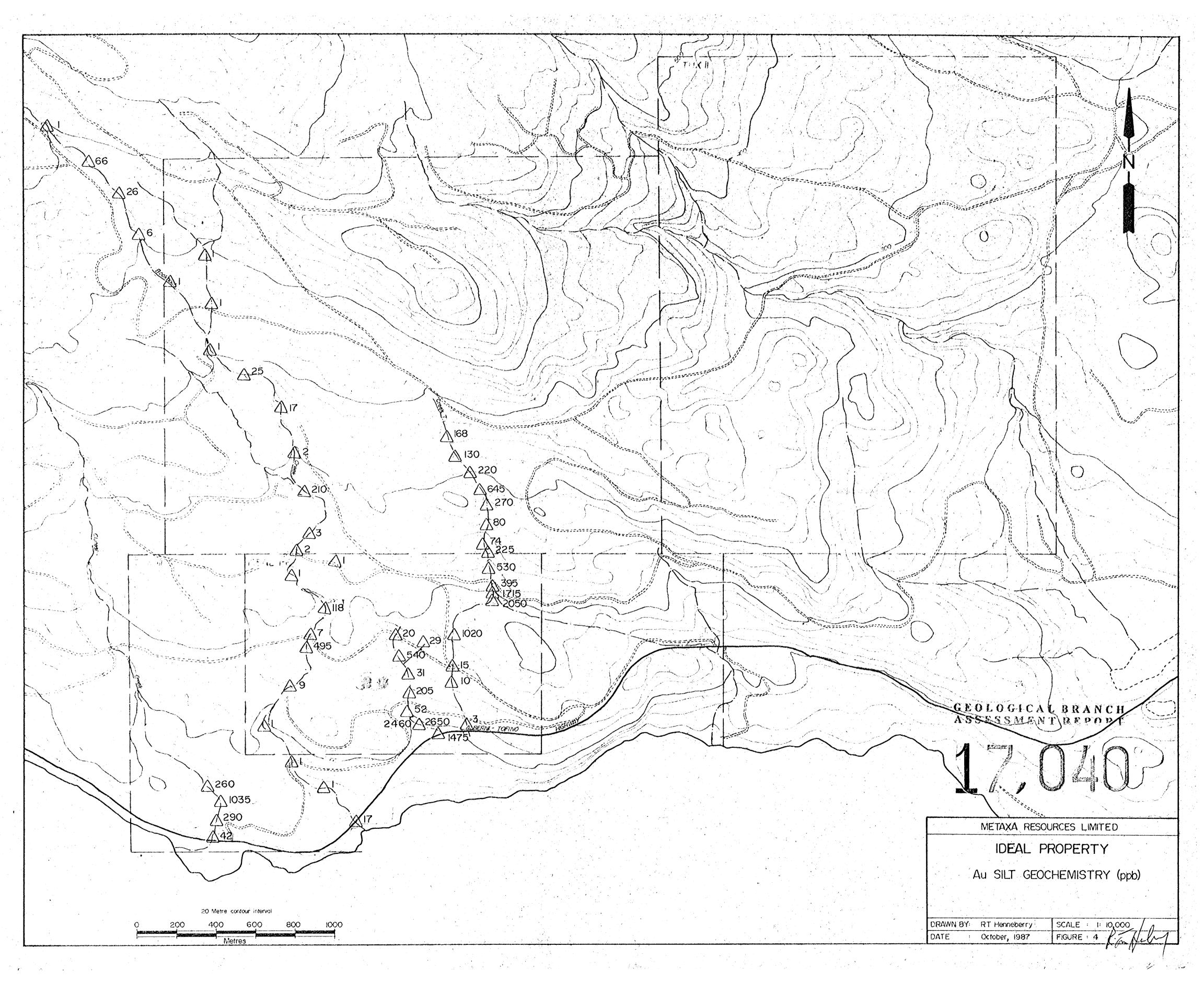

÷

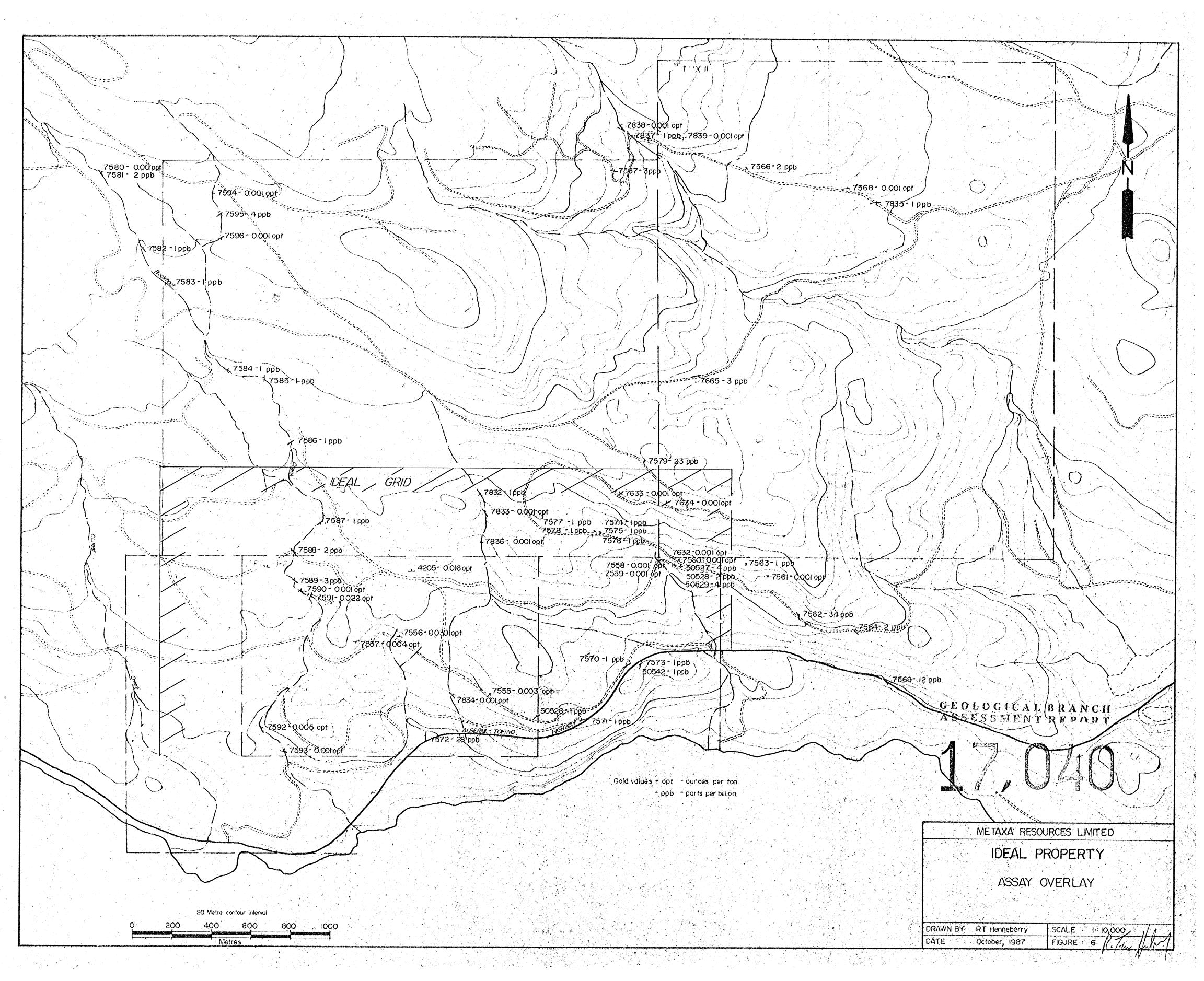
CCCT

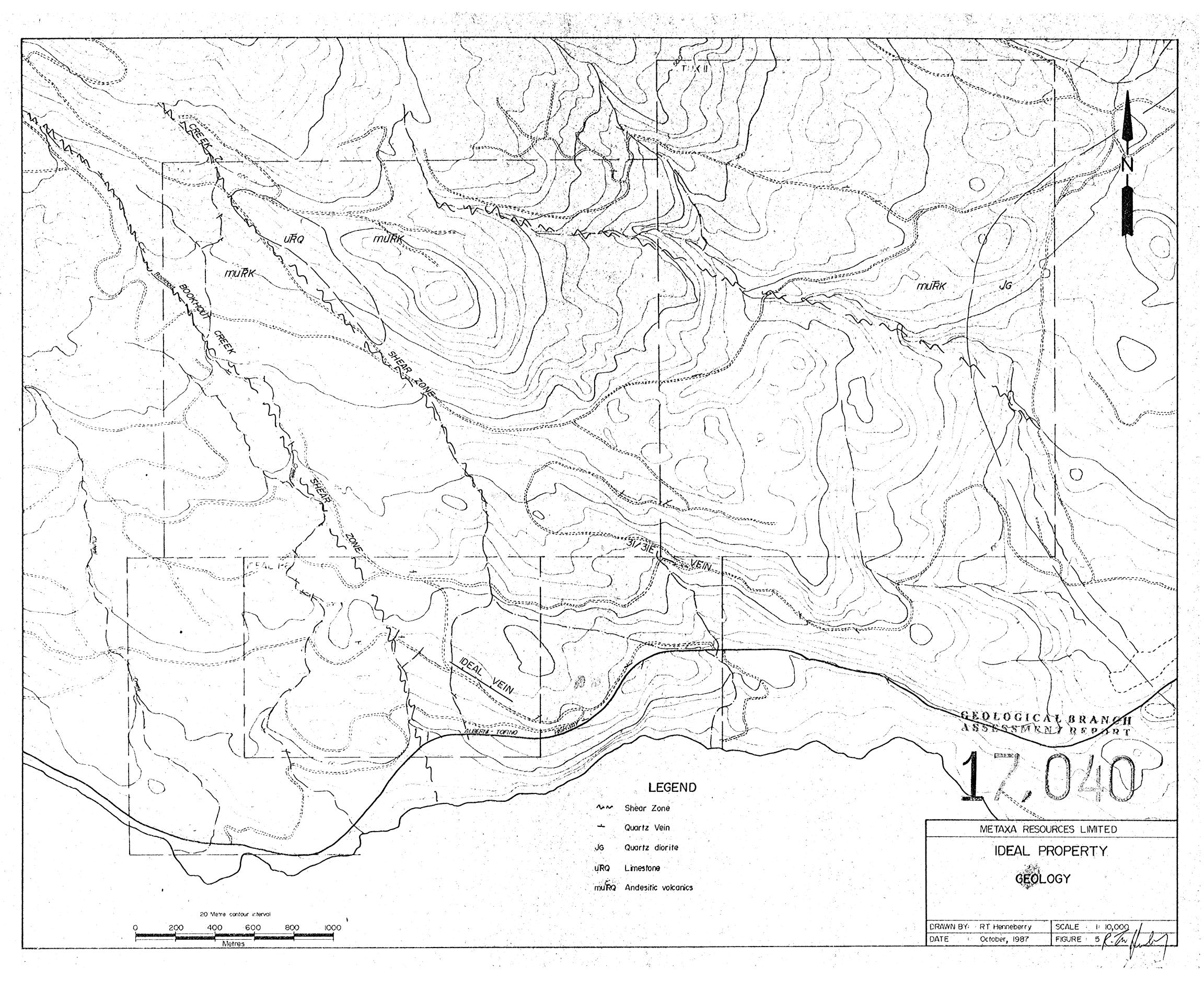
1 4

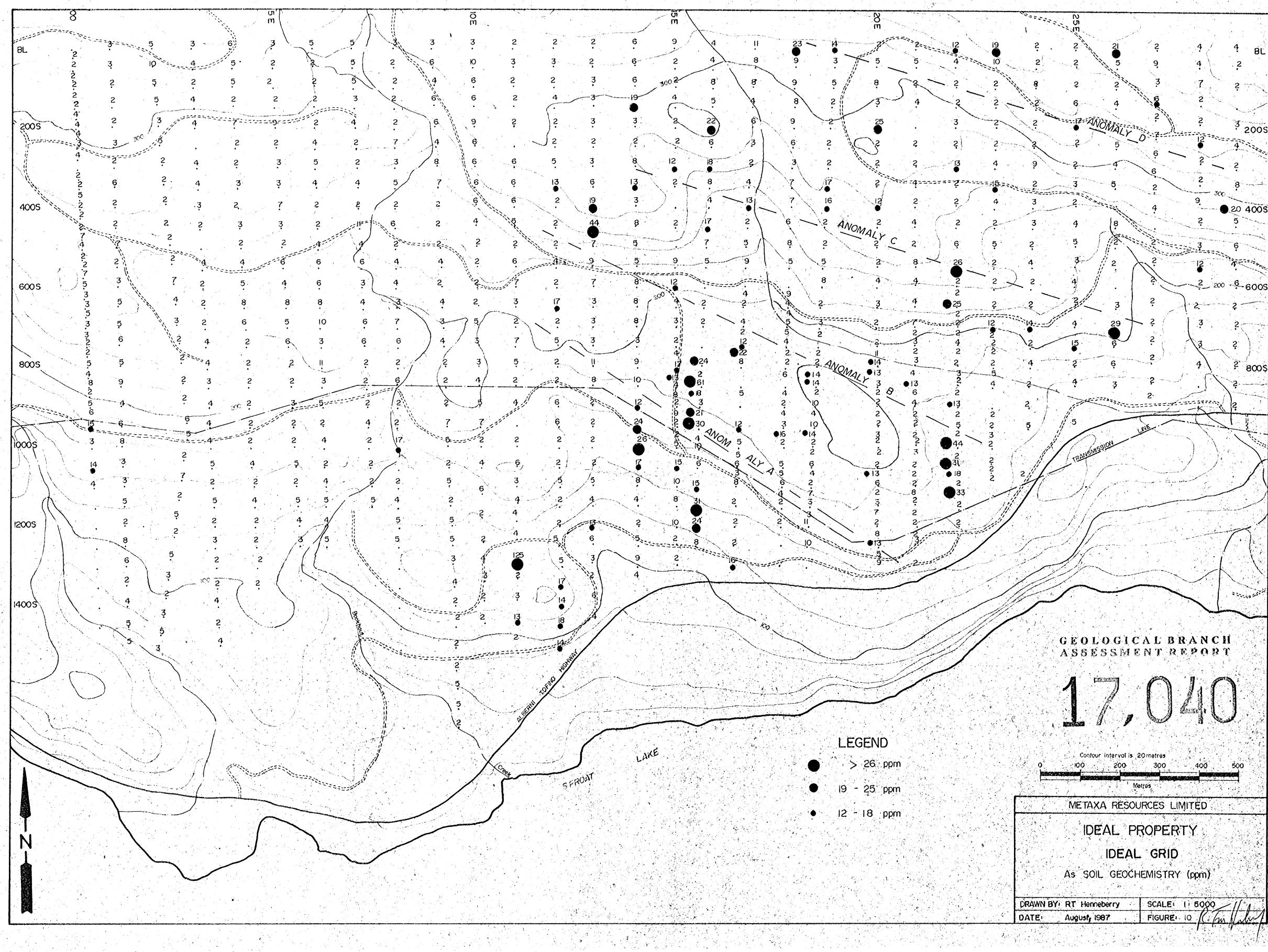

|    | ACME ANALYTICAL LABURATURIES LID. DATE<br>852 E. HASTINGS, VANCOUVER B.C.<br>PH: (604)253-3158 COMPUTER LINE:251-1011 DATE | REPORTS MAILED      |
|----|----------------------------------------------------------------------------------------------------------------------------|---------------------|
|    | ASSAY CERTIFICA                                                                                                            | те / / /            |
|    | SAMPLE TYPE : ROCK -                                                                                                       |                     |
|    | ASSAYER A CALLY DEAN TOYE , CERTIFIED I                                                                                    | B.C. ASSAYER        |
| j. | STETSON RESSOURCES PROJECT EFIC-AIRTREC FI                                                                                 | LE# 87-4126 PAGE# 1 |
|    | SAMPLE Ag                                                                                                                  | Au                  |
| į  | oz/t                                                                                                                       | oz/t                |
|    | E 4205 .01                                                                                                                 | .016                |
| j  | E 4206 .01                                                                                                                 | .009                |

| 50 NE                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | PONM  |                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|------------------|
| -<br>50541 0.309/0.40 | 7831     0.07870.30       7831     0.07870.30       7830     0.06470.40       7830     0.06470.40       7830     0.06470.40       7820     0.84570.40       7823     0.00170.40       50533     0.00170.30       7826     0.00170.30       7828     0.00170.30       7828     0.00170.30       7828     0.00170.30       7828     0.00170.30       7826     0.00270.35       50538     0.00970.38       7825     0.00470.38 | 7824 0.035/040<br>7823 0.726/050 |       | 7819 0.018/ 0.40 |
| 000                   |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |       | đ                |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | ç     | Samt             |
| <u>50 SW</u>          | M<br>N<br>O<br>O                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 50 NW |                  |



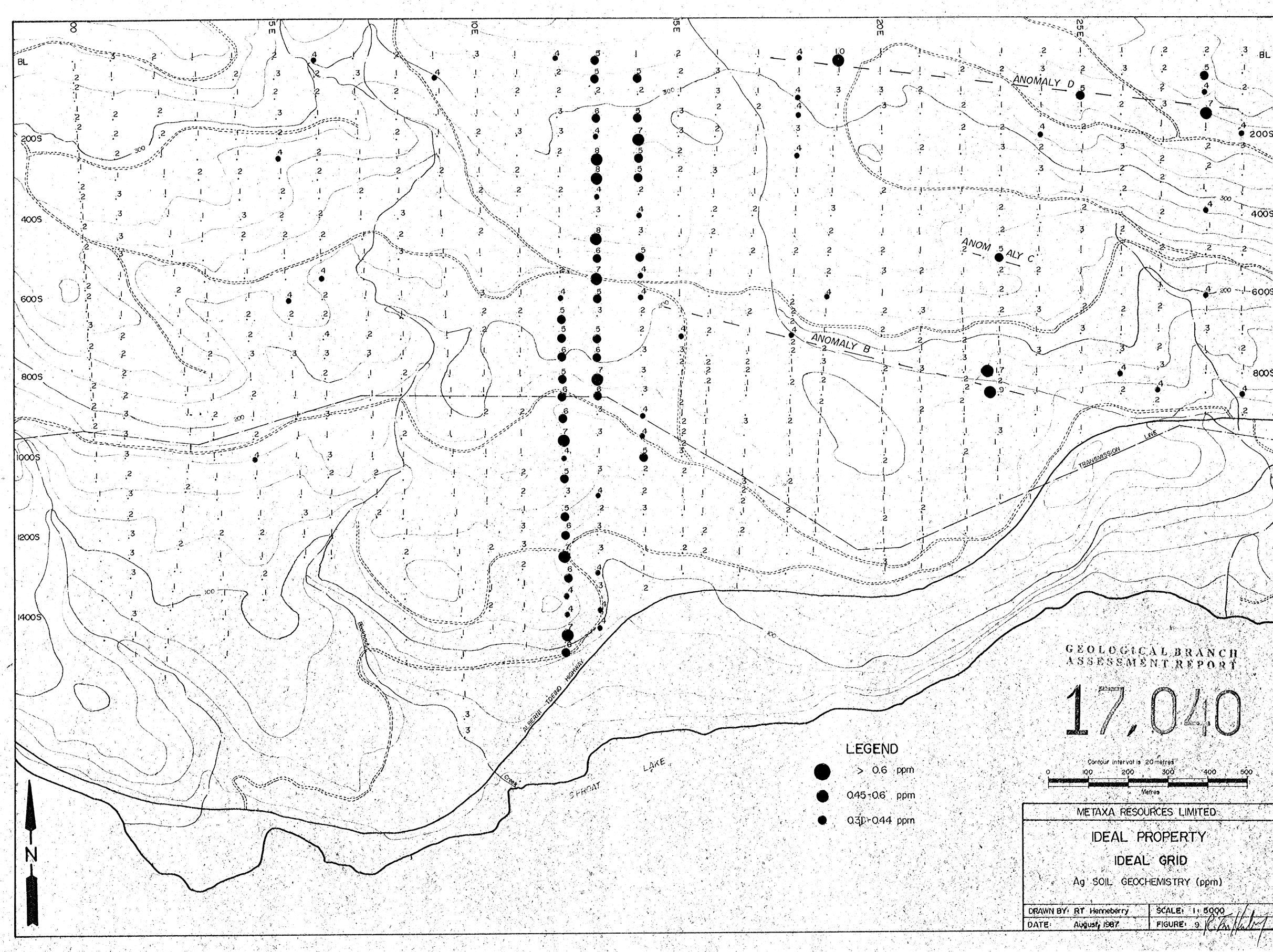


.


**``** 



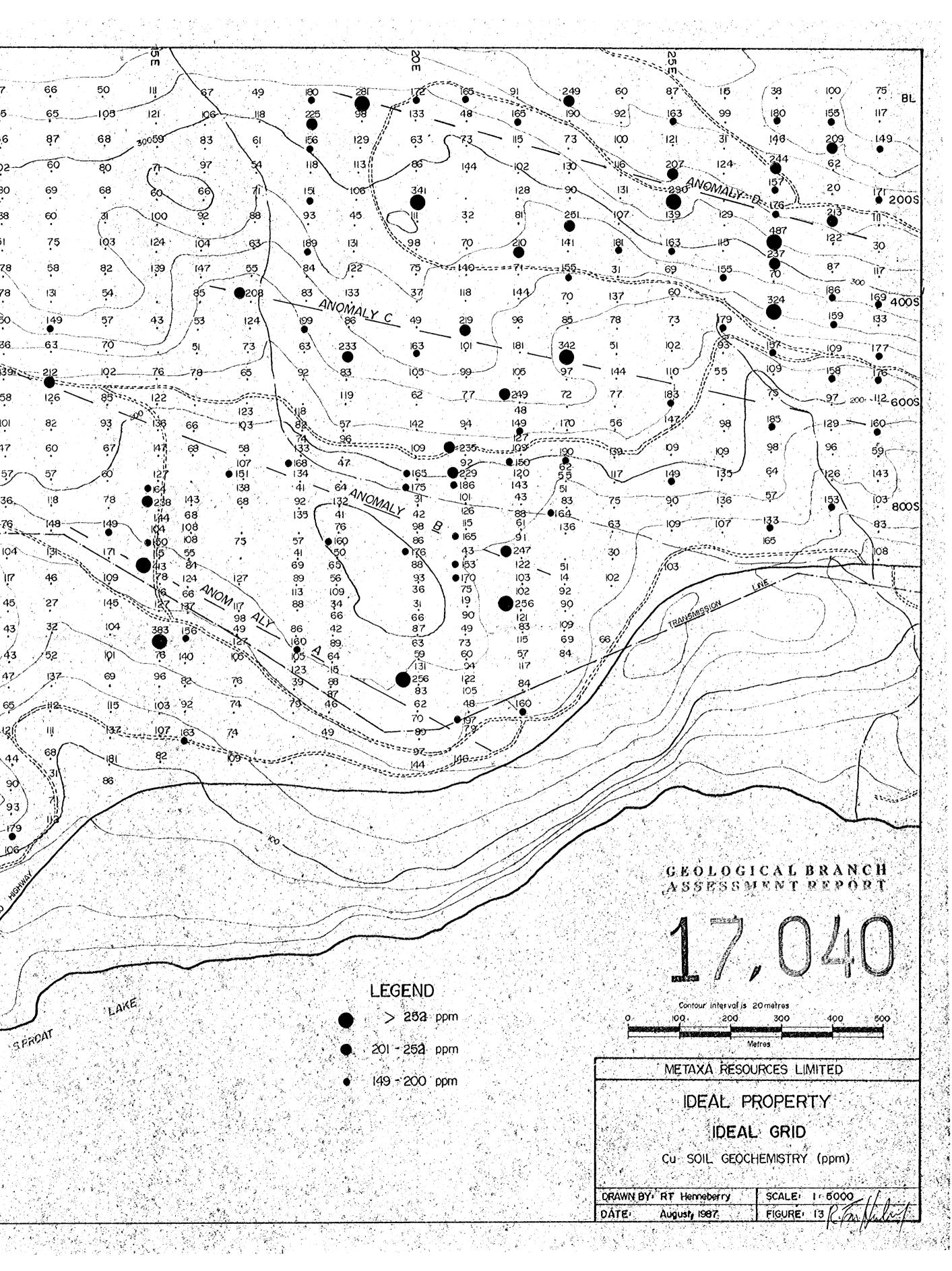




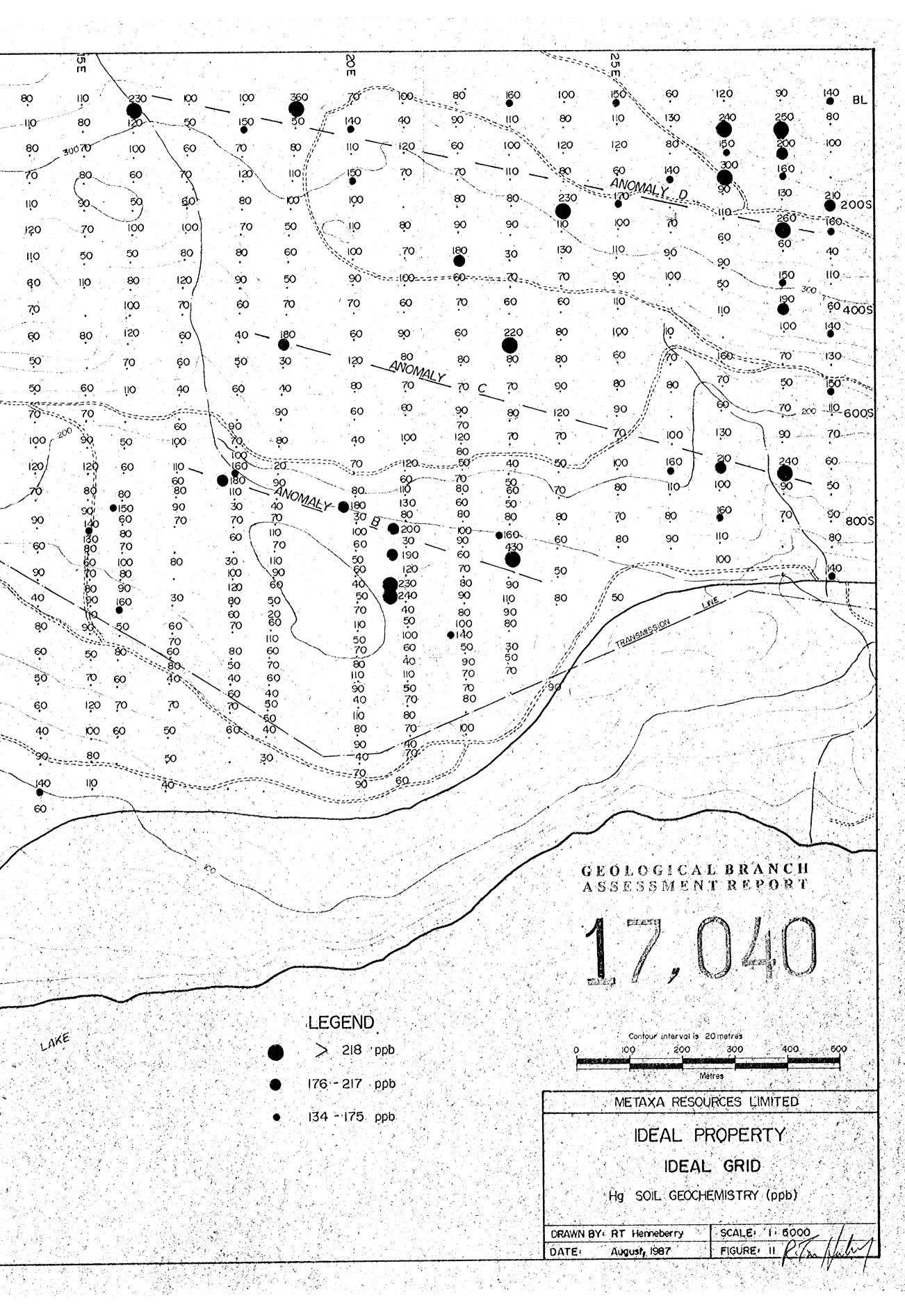



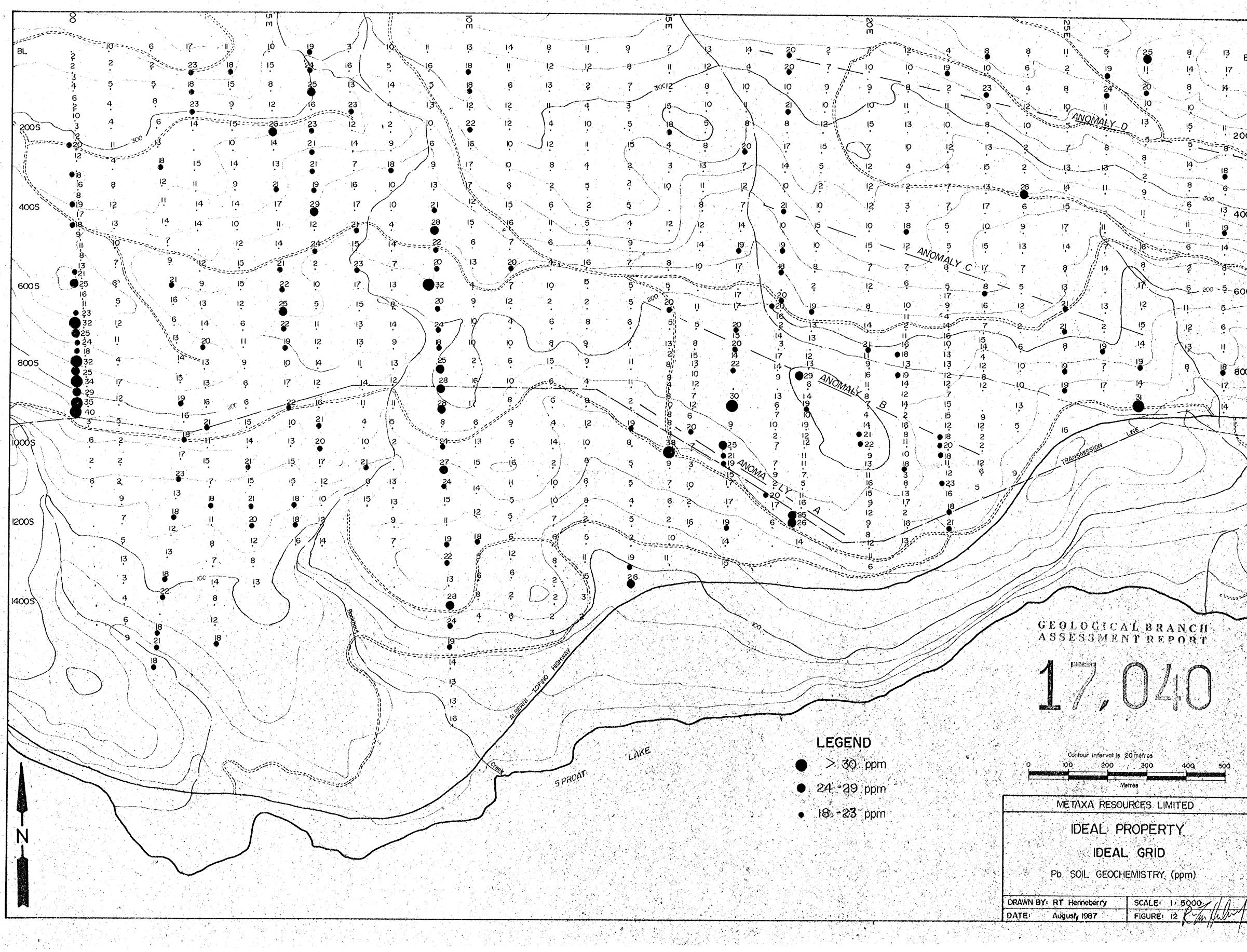






.






Q 7,3 BL **'90** / 73 182 ----- 178 ----- 107 88 96 72 58 72 70 72 .60 -196 -100 ..63 115--== مستعن وسعت وجرجه 600 S 38 94 SQ. .82 -119-74 == 36. ັ້ 56 800S • 157 ====== 92==== -----74---96-81. المرجوب والمحاجة 55 55 SPROAT ייביביב בייבאוייביביבווי N 



**N N** m <u>90</u> (20 НÖ • -100 60 1É0 683===== 90 90, (60) .70 10, :90 80-----60 100 70 70 60 110-----10C `ZQ :80 .40 im i60 -70-• ● 160 50 130 100 60/ 130 == <sup>\*</sup> 120 800S .9Q 80,4 (110 Service States  $20^\circ$ 70-130 80 70----iooos 9Ò 8Ó 7C ,70 70-----·, 80, 1 70 \*\*\*\*======== 60 VOO. 122-22-22-22-2-2-3-22-22-27-SPROAT 1,121 





