Off Confidential: 89.02.17 District Geologist, Victoria ASSESSMENT REPORT 17049 MINING DIVISION: Vancouver Bonanza PROPERTY: 127 06 54 LAT 50 58 06 LONG LOCATION: 09 5647776 632359 UTM 092L14E NTS Bonanza 1-2 CLAIM(S): American Bullion Min. OPERATOR(S): Dawson, G. AUTHOR(S): 1987, 66 Pages REPORT YEAR: COMMODITIES SEARCHED FOR: Lead, Zinc, Copper, Silver, Gold GEOLOGICAL Roof pendant volcanic and sedimentary rocks of unknown age SUMMARY: overlie the Juro-Cretaceous Coast Plutonic Complex. Quartz-sulphide gold mineralization occurs in a 5 metre wide northwest trending shear zone cutting the sedimentary rocks. WORK Geological, Geophysical, Geochemical - DONE: 31.7 km; VLF EMGR Map(s) - 5; Scale(s) - 1:2000GEOL 300.0 ha Map(s) - 2; Scale(s) - 1:100, 1:50031.7 km MAGG Map(s) - 2; Scale(s) - 1:2000109 sample(s) ;ME ROCK 092L 292

MINFILE:

LOG NO: 0223	RD.
AUTION:	
66 pp -	

GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL

ASSESSMENT REPORT

for the

BONANZA 1 AND 2 CLAIMS

Vancouver Mining Division

NTS 92L/14 E Latitude: 50° 58'N Latitude: 127° 07'W

for

AMERICAN BULLION MINERALS LTD. 2100 One Bentall Centre 505 Burrard Street Vancouver, B.C. V7X 1R4

by

December 16, 1987 Vancouver, B.C.

TABLE OF CONTENTS

	<u>Page</u>
LIST OF ILLUSTRATIONS	
SUMMARY	1
1.0 INTRODUCTION 1.1 Location and Acc 1.2 Claim Status 1.3 Exploration Hist	ess 3 ory 7
2.0 REGIONAL GEOLOGY	10/
3.0 PROPERTY GEOLOGY 3.1 Mineralization	0) ۲۲ ۱۱ جد
4.0 GEOCHEMISTRY	13
5.0 GEOPHYSICS 5.1 Magnetometer Sur 5.2 VLF Survey	vey الحر 15 14 14 كل
6.0 CONCLUSIONS	15
Appendix I Cost Statem	ent /

Appendix	I	Cost Statement /
Appendix	II	Geochemistry
Appendix	III	References 🧹
Appendix	IV	Statement of Qualifications 🗸
Appendix	V	Rock Sample Descriptions

LIST OF FIGURES

Figu	re	<u>After Page</u>
1.	BONANZA PROPERTY, LOCATION MAP	4 /
2.	CLAIM MAP	5 /
3.	BONANZA PROPERTY REGIONAL GEOLOGY	8
4.	TRENCH LOCATIONS	In Pocket
5.	TRENCH MAPS WITH SAMPLE LOCATIONS	In Pocket /
6.	CORRECTED MAGNETIC DATA WITH CONTOURS	In Pocket
7.	MAGNETIC CONTOURS	In Pocket
8.	FRASER FILTER CONTOURS	In Pocket /
9.	FRASER FILTER PROFILES a, b, c	In Pocket /

1

SUMMARY

The Bonanza property, comprising 40 units, is located in south western British Columbia 40 km northeast of Port Hardy. Access to the claims is by helicopter or by boat. Terrain is moderate to steep.

The property was first worked in 1947 when it was hand trenched. Further work was done in 1980 and a limited drill program was conducted 1981. It is now thought that the drill holes missed the target zone. In 1987 the property was restaked and acquired by American Bullion Minerals, who contracted United Mineral Services to conduct a geological examination of the property.

The property is located in a roof pendant of volcanics and sediments situated within the Juro-Cretaceous coast plutonic complex. A southeast trending-shear zone within the sediments hosts the quartz-sulphide-gold mineralization. Trenching has exposed the mineralization for 200 m along strike. Samples have returned values as high as 1.16 oz/ton and 1.34 oz/ton across 1.45 m. Several grab samples grading over 1 oz/ton have also been taken.

A combined magnetometer and VLF-EM survey was done in the fall of 1987. This survey delineated a combined magnetic low and VLF-EM conductor that is coincident with the mineralized trenches and has the same strike as the shear zone. The conductor can be traced for 1.7 km and is open to the east and west.

Due to the positive geophysical results and the high gold values returned, further work is warranted.

1.0 INTRODUCTION

In June 1987 American Bullion Minerals Ltd. staked the Bonanza 1 and 2 claims in Southwestern British Columbia. The claims consist of 40 units and were staked to cover the projected strike of a shear hosted quartz-sulfide-gold zone.

American Bullion Minerals Ltd. contracted United Mineral Services Ltd. (UMS) to conduct a geological and geophysical examination of the property. Work included; geological reconnaissance by two UMS geologists from June 19-24, 1987; 31.7 line kilometers of magnetometer and VLF-EM surveying from August 25 to October 6, 1987, more detailed geological work by two UMS geologists from September 29 to October 1, 1987; and an examination by a geological engineer on November 11, 1987.

1.1 Location and Access

The Bonanza claim group is located on the mainland 40 km northeast of Port Hardy, Vancouver Island. British Columbia, on NTS Map Sheet 92L/14 at latitude 50°58'N and longitude 127°07'W (Figure 1).

The property is situated on Mount Bullock, which lies between Actaeon Sound and Lee Lake. Elevations range from sea level to

-3-

624 m. Mountain slopes are steep, becoming more moderate in the area of the gold prospect. The claims are covered by a dense forest of cedar, hemlock and, locally, balsam and douglas fir, except on the northern third of the Bonanza 2 claim, which has been logged. Thick brush has overgrown the cut area.

Access to the claims is by helicopter or float-equipped fixedwing aircraft from Port Hardy or, alternately, by ocean barge. A road, now overgrown and in need of repair, leads from the barge landing site at Creasy Bay to the logged area on the north side of the claims. Numerous barges capable of hauling fuel and heavy equipment ply the coastal waters and are available for charter. The claim area could be accessed from a barge docking site by vehicle by extending the existing logging road or by constructing a new road from the southwestern side of the Bonanza l claim.

1.2 CLAIM STATUS

The Bonanza property consists of two 4 unit by 5 unit claims for a total of 40 units (Figure 2).

Claim <u>Name</u>		Record <u>Number</u>	No. of <u>Units</u>	Mining <u>Division</u>	NTS	Recording Date	Expiry*
Bonanza	1	2142	20	Vancouver	92L/14	06/18/87	06/18/98
Bonanza	2	2143	20	Vancouver	92L/14	06/18/87	06/18/98

* Contingent upon the application of assessment credits contained in this report.

-4-

*

i i i ș

1.3 EXPLORATION HISTORY

The property was first known as the Atkins group when, in 1945, minor hand trenching exposed segments of a shear-hosted quartz vein.

In 1979, Jerry Major restaked the prospect and reopened the old trenches. In 1980, Lloyd Juhala tied four claims onto the west, north and east sides of Major's Bonanza claim. Additional claims were staked in 1980, after the property was optioned by Cominco. In November of 1980, Cominco sampled the trenches and conducted 3.8 km of detailed magnetometer and VLF-EM surveying. The VLF-EM survey located a single, strong, southeasterly-trending conductor extending along the baseline for the full 360 m length of the grid. The conductor lies within an area of subdued magnetic relief. These surveys were followed, in 1981, by the drilling of seven NQ diamond drill holes totalling 494.7 m. The seven holes were drilled from three sites spaced approximately 100 m apart.

Only holes 87-1 and 87-2 intersected minor mineralized sections. However, it is possible that these holes were not drilled deep enough to intersect the mineralized zone.

In 1987, the ground was restaked and the claims acquired by American Bullion Minerals Ltd. A larger 31.7 line kilometre magnetic and VLF-EM survey, encompassing the Cominco grid, was

-7-

undertaken by M.F.H. Explorations under the direction of United Mineral Services Ltd. UMS personnel resampled the mineralized structure exposed in the old trenches.

2.0 REGIONAL GEOLOGY

The Bonanza claims are underlain by a north-westerly trending roof pendant contained within the Jura-Cretaceous coast plutonic complex (Figure 3). The 25 x 3 km roof pendant is comprised of greenstones and argillites of unknown age. The enclosing plutonic rocks are comprised of similarly northwesterly oriented bodies of quartz diorite on the west and a complex of quartz dioritic gniesses to the east.

A southeast trending shear zone runs the length of the roof pendant and hosts the gold mineralization on the Bonanza property. This shear also hosts known gold mineralization 5 km to the northwest and 7 km to the southeast.

3.0 PROPERTY GEOLOGY

Except for the northeast and southwest corners of the claim block, which are underlain by rocks of the Coast Plutonic Complex, the claims are underlain by the stratified rocks of the roof pendant. Massive flows, pillowed greenstones and amphibolites comprise most of the pendant. A chloritic hornblende hornfels has been imposed on the volcanic rock by the plutonic intrusions and resulting deformation. Near the centre of the claims, close to the baseline, a central belt of sediments divides the volcanic assemblage into two parts. The sediments are comprised of phylitic, thinly-

-10-

laminated argillite and graphitic and calcareous argillites containing numerous chert and quartzite laminae. Many of the thinly-laminated and graphitic argillites are highly contorted, whereas the more competent calcareous and siliceous intervals are less deformed. A finely-felted brown biotite hornfels has been pervasively developed in the argillites except for the calcareous units, which are in part altered to calc-silicates. Disseminations and thin laminae of pyrrhotite are irregularly distributed throughout the argillite. Pyrite and chalcopyrite are relatively uncommon except in thin cross-cutting quartz stringers. These stringers are frequently ptygmatically folded and have numerous minor dislocations.

Numerous greenstone and amphibolite sills and dykes occur within the sedimentary sequence.

The central portion of the argillite sequence is cut by the southeast trending shear zone. Intense silica flooding is evidenced by ubiquitous quartz stringers that locally widen into 30-100 cm boudens or veins. No visible offset to the shear is apparent.

3.1 MINERALIZATION

The gold occurs within quartz-sulphide mineralization in the shear

-11-

zone. The sulfides, occurring disseminated to massive, include pyrite, galena, chalcopyrite, sphalerite and bornite. High gold values seem to correlate with the occurrence of galena and sphalerite, although a value of 0.237 oz/ton was returned from a sample showing only trace sulfides. Mineralization also seems to correlate to more intense silica-flooding, although the quartz itself is barren. Trenching has shown the mineralized zone to have at least a length of 200 m and width of 1-3 m (Figures 4 & 5).

At surface, in Trench D where the highest gold values were obtained, the shear zone appears to have a steep northeasterly dip. Cominco's holes 81-1, 81-2 and 81-7 were obviously collared to test the northward downdip extension of this well-mineralized quartz sulfide exposure. Only narrow intersections grading between 0.01 and 0.11 oz/ton gold were obtained, however.

These poor results are probably due to the fact that the holes were not drilled deep enough. If the dip of the zone is taken as 80° N, then both 81-1 and 81-2 would intersect the zone with only 5 meters to spare. Due to the highly deformed nature of the host argillites, it is quite likely that the holes missed the zone entirely. Projection of 81-7 indicates that it would also miss the mineralized zone. (Figure 4).

Samples collected by UMS geologists from the trenches returned

-12-

values as high as 1.195 oz/ton and 2.26 oz/ton. (Figure 5) All geochemical values are contained in index II.

4.0 GEOCHEMISTRY

Rock samples taken were either chips over a defined interval or grabs of selected rock. Chip samples averaged about 1.5 kg of rock, while grab samples averaged about 1.0 kg. Samples were analyzed by Acme Analytical using the 30 element ICP method. Selected samples were assayed for Au, Pb, and/or Zn, depending on initial results. All results can be found in Appendix II.

5.0 GEOPHYSICS

A detailed 31.7 line kilometre combined magnetometer and VLF-EM survey was conducted by M.F.H. Explorations during the period August 25 to October 6, 1987. The baseline for the survey trended at 110° and was 2.4 km long (Figure 2). Line spacing was 50 m in the central portion of the grid and 100 m elsewhere. Station spacing was 5 meters. Lines 18+50 SE to 20+50 SE could not be completed due to difficult terrain.

5.1 MAGNETOMETER SURVEY

A Barringer GM-122 total field proton precision magnetometer was used for this survey. (Figures 6 & 7).

Data was corrected for diurnal variation by hand using the closed loop and base station method, and these results were contoured at 1000 gamma intervals.

A well defined magnetic low can be seen to trend across the property from 11+50 NE 0+00 SE in the west to 9+00 NE 17+00 SE in the east. This low probably reflects the trend of the host argillites, as this rock would tend to have a lower magnetic signature than the surrounding volcanics. As the mineralized shear zone is enclosed in and runs parallel to the argillites, the magnetic low probably reflects the trend and extent of this zone as well. The magnetic low is open to both the east and west of the grid boundaries.

5.2 VLF SURVEY

The instrument used was a Geonics EM-27 utilizing a frequency of 24.8 kHz from the station at Cutler, Main. In phase and quadriture readings were recorded to within \pm 1%. Data was plotted as unfiltered profiles and fraser filtered contours. (Figure 8 & 9).

-14-

Both methods of displaying data show a conductor which coincides remarkably well with the magnetic signature, the mineralized trenches and the projected strike of the shear zone.

There is some question weather the sulfides noted at surface are massive or continuous enough to produce such a strong conductor.

One explanation could be that the sulfides are more continuous at depth, where the rock has not been subject to west-coast weathering effects. Further explanations are that the conductor is reflecting the high graphitic content of the argillites near the shear, or the water content of the shear itself.

Further drilling is needed to determine what explanation is correct. For now it is sufficient to realize that the conductor coincides with known auriferous mineralization and is open along strike to both the east and west.

6.0 CONCLUSIONS

The central sedimentary units within the predominantly volcanic roof pendant contain a VLF-EM conductor that is at least 1.7 km long. This conductor marks the probable trace of a shear zone which hosts auriferous quartz and sulfide mineralization. This conductor is open along strike to both the northwest and southeast.

-15-

Because of the intensity and duration of the structural deformation within the roof pendant, it is possible that there are frequent dip direction reversals within the steeply-dipping sedimentary units. This deformation may be the reason the short Cominco drill holes failed to intersect the strong quartz-sulfide-gold mineralization which is exposed in the trenches at surface.

The following program has been recommended by a mining engineer based on his examination of the property.

A three-stage exploration program, as outlined below, is recommended. Stages I and II are independently warranted; Stage III is contingent upon favourable results in Stagess I and II.

Stage I:

A program budgeted at \$90,000 is proposed.

- 1. Extend the VLF-EM and megnetometer survey to the claim boundaries.
- 2. Explore along the trace of the VLF-EM conductor to locate new vein exposures. Hand-trenching will be necessary.
- 3. Intensively prospect the remainder of the sedimentary interval for other non-conductive fissure veins.

Stage II:

A 2,500 foot diamond drilling program to test the down dip/down plunge projections of the well-mineralized Trench D and Trench I vein exposures is proposed at an estimated cost of \$175,000. Stage III:

Stage III is a provision for additional diamond drilling in the event that the results of Stage I establish more drill targets and/or the results from Stage II are encouraging. This stage is tentatively budgeted at \$280,000. APPENDIX I

Т

COST STATEMENT

COST STATEMENT

G. Dawson, Geologist 2382 W. 45th Avenue Vancouver, B.C.	7 days @ \$250/day	\$ 1,750.00
G. Nicholson, Geologist Aurum Geological Consulting 604-675 W. Hastings Street Vancouver, B.C.	5.5 days @ \$250/day	1,375.00
B. Augsten, Geologist 214-144 W. 4th Avenue North Vancouver, B.C.	3 days @ \$250/day	750.00
D. Forster, Chief Geologist 313-1350 Comox Vancouver, B.C.	10 days @ \$300/day	3,500.00
GEOPHYSICS		
<pre>31.7 line kilometers @ 881.21/ - includes line cutting magnetometer and VLF-EM</pre>	km	27,934.48
ASSAYS AND ANALYSIS		
- 109 rock samples 30 element gold geochem @ \$14.37 each	ICP,	1,566.75
TRANSPORTATION		
 Helicopter 19 hours @ \$557.5 Commercial airlines Freight Vehicle Camp & Equipment Fuel 	0/hour	10,591.00 1,090.50 40.00 286.75 48.20
ROOM & BOARD		966.99
EQUIPMENT RENTAL		774.98
DRAFTING AND PRINTING		2,041.12

ENGINEERS REPORT - M. Rebagliati 3536 W. 15th Avenue Vancouver, B.C.	1,925.00
FIELD SUPPLIES	5,167.97
OFFICE - Insurance, Telephone, Courier	594.51
MISCELLANEOUS	112.50
ASSESSMENT REPORT Greg Dawson United Mineral Services 1020-800 W. Pender Street Vancouver, B.C.	3,100.00
UNITED MINERAL SERVICES MANAGEMENT FEE @ 7.5% (Total does not include Assessment Report fee)	4,598.38
TOTAL	\$68,214.13

I

APPENDIX II

GEOCHEMISTRY

.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. DATE RECEIVED JUNE 24 1987 DATE REPORTS MAILED PH: (604) 253-3158 COMPUTER LINE: 251-1011

CERTIFICATE GEOCHEMICAL/ASSAY

SAMPLE TYPE : ROCK - CRUSHED AND PULVERIZED TO -100 MESH.

Aut - 10 5M, IGNITED, HOT AQUA REGIA LEACHED, MIBK EXTRACTION, AA ANALYSIS. Au** by Fire Assay.

ASSAYER

<u>Llh1</u>_DEAN TOYE , CERTIFIED B.C. ASSAYER

CONTINENTAL GOLD PROJECT 07 FILE# 87-1961

PAGE# 1

SAMPLE	Ац * ррб	Au ** oz/t
BA-601 BA-602 BA-603 BA-604 BA-605	305 52 8100 1050 1120	- .247 .032 .030
BA-205 BA-607 BA-608 BA-609 BA-610	1380 2010 205 400 240	.043 .057 - -
BA-611 BA-612 BA-613 BA-614 BA-615	3 4 11 2 5	- - - -
BA-616 BA-617 BA-618 BA-619 BA-620	1 6 260 188 11	- - -
BA-621 BA-622 BA-623 BA-624 BA-631	102 32 3150 44800 6400	- .091 1.195 .189
BA-632 BA-633 BA-634 BA-635 BA-635	3500 440 192 120 78	.105 - - - -
BA-671 BA-672 BA-673 BA-674 BA-675	53 24 28 8 42	- - -
BA-676	69	-

CONT	INENT	TAL	GOLD

·····

1.1

SAMPLE	Au*	Au **
	oob	oz/t
BA-677	27	
BA-678	1	-
BA-679	1	-
BA-480	1	-
BA-681	2	-
BA-682	1	-
BA-683	66	_
BA-684	1	-
BA-685	1	-
BA-686	1	-
BA-687	1	-
BA-488	4	-
BA-687	15010	.455
BA-690	17550	.517
BA-671	225	-
F.A. (75	14100	4 1 7
BA-672	14800	• +1,
BA-693	61	-
BA-694	94	-
BA-695	520	.016
BA-696	1	
PA_407	1	
BA-677 BA-489	2110	059
DH-070 DA-400	1530	.038
DH-077 RA-700	1000	097
DHT/00 DA 700	070	• \\77
BH-720	1	
BA-721	1	-

1

ſ

t.

£

L

(

GEOCHEMICAL/ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR- ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M6 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE; Pulp

DATE RECEIVED: OCT 5 1987 DATE REPORT MAILED: Oct 10/87 ASSAYER. A. STYLL. DEAN TOYE, CERTIFIED B.C. ASSAYER

CONTINENTAL GOLD PROJECT-07 File # 87-1961 R

SAMPLE	MO	CU	PB PDM	ZN	A5 PPN	NI PPM	CO PPM	MN PPN	FE 1	AS PPM	U PPN	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPH	CA Z	PI	- LA PPN	CR PPM	M6 I	ba PPM	ĩ	D PPN	ĩ	1	Ĩ	PPH	1	ĩ
	rrn	rrn	rra	FT 11	11.6			••••					_			-		00	1 50	100	5	· 32	. 60	13	.08	2	2.41	.15	. 28	2	.40	.25
RA-601	6	84	3452	2180	22.4	23	7	292	3.81	6	5	ND	2	65	22	1	10	197	2 95	108	Ä	48	. 68	18	.09	5	4.08	.14	. 42	1	.01	.06
BA-607	20	46	90	578	3.4	46	5	397	3.18	12	5	ND	2	11		3	2	157	1 79	085	,	48	.61	26	.09	3	2.68	.34	.27	3	.20	.91
RA-603	11	330	1318	8268	8.1	22	5	257	2.58	10	5	1	2	88	108	1	1	114	41	127	- i	44	.41	12	.09	10	.80	.09	.10	1	.07	.15
BA-604	10	102	631	1384	5.3	21	2	164	2.17	3	6	ND	1	24	28	ა ე	2	144	.0.	. 093	2	44	.53	20	.10	2	1.40	.17	.16	1	.02	.11
RA-605	12	94	203	1045	2.6	17	5	199	2.35	11	5	ND	2	20	25	4	4	111	•//		-											
													7		a	,	2	131	.91	.097	7	41	.55	29	.12	6	1.54	. 19	.31	1	.01	.04
BA-606	13	63	64	416	1.7	25	5	205	2.26	17	6		د	01	17	1	5	136	1.79	.081	3	43	.44	17	.09	8	2.28	.29	.25	2	.05	.05
BA-607	8	76	472	451	4.2	22	5	148	1.75	22	ຼັງ	NU	1		1177	75	40	8	.02	.003	2	1	.02	1	.01	2	.12	.01	.01	1	2.99	4.77
BA-623	12	1655	16495	53383	105.4	18	6	431	10.67	16	3	43	1	27	312	33	4	81	.91	.056	2	25	.45	23	.05	2	1.58	.12	.21	1	1.85	1.30
BA-624	8	876	13667	11372	49.7	19	5	251	6.13	18) (21	1	14	172	11	1	49	.34	.019	2	14	.16	8	.02	3	.59	.06	.06	2	•11	.00
BA-631	6	745	6301	6231	17.1	17	6	129	4.1/	10	3	1	•	14	••••		-															21
							,	170	2 28	14	5	2	1	43	48	3	2	96	1.03	.049	2	25	.21	15	.05	4	1.30	.18	.12	1	.13	13
BA-632	4	94	1107	1871	5.5	13	د ۱	137	1 74	,	š	ND	ī	1	29	2	2	3	.01	.001	2	1	.01	1	.01	5	.02	.01	.01		.01	.05
BA-633	1	47	41	1236	1.0	1 70	1	UL 045	7 97	5	5	ND	4	52	9	2	2	104	.58	.074	8	32	.37	21	.12	6	1.09	.10	11.	2	.01	.03
BA-634	12	44	37	46/	1.4	20		347	2.77	24	5	ND	2	178	5	2	2	154	2.63	.104	4	59	. 56	18	.10		3.02	.21		5	5.36	6.15
BA-635	9	67	44	2/3	1.3	71	12	567	17.52	19	9	7	2	9	1340	98	38	16	.11	.008	2	2	.05	'	.01	4	.23			-		
BA-689	12	2360	134/2	38212	121.3	30													_						70		1.52	.15	.08	1	2.70	2.44
		177	15707	22043	AR. 5	33	10	309	11.19	17	7	17	1	41	534	22	36	71	.90	.034	2	10	. 10	17	.03		. 18	.02	.03	1	.01	.01
BA-690	14	12/2	13/1/	22043	.7	4	1	46	.73	6	5	ND	i	3	1	2	2	1	.17	2 .012		0	.VO 14	10	40		1.75	.15	.14	1	1.70	1.27
BH-671		25	14701	11741	43.0	30	6	263	5 6.62	9	- 11	- 4	2	54	286	34	11	106	1.1	1 .0/0) <u>4</u>	: 1 0 	1 00	26	.14		1.18	.12	.36	1	.01	.01
04-672 04-672			1 1/	118		• 28	7	330	2.53	9	5	ND	6	38	3	2	2	61	/ (6 .Vac 5 /11	, 1	1 JV 1 T7	1.00	23	.11		2 1.45	.20	.14	1	.01	.04
84-673 84-494	4	12	7 79	377	.9	23	4	314	2.52	55	5	ND	1	125	. 1	2	2	130	2.4	2 .117		, .,			•••							
ph 0/1	•	•-																	7 1 [.]	10 T	1 2) 8	.11	11	.02	:	5.21	.03	.03	1	.01	.01
RA-495	3	2	1 2	1 102	2.1	1 4	1	63	3.68	5	5	ND	1	2/		4	4		7 11 7 O	τ 00/		, 1	.04	3	.01	;	3.14	.01	.02	1	.01	.01
84-499	1	77	9 8	5 93	5 2.6	3 45	64	134	4 38.37	65	5	NC	4			. 4		, ,	5 .0	2 .00	1 2	2 1	.03	2	.01	:	3.05	.01	.01	1	.01	.01
BA-699	1	77	9 9	7 93	5 4.3	3 29	39	5	8 15.46	2	: 5	ND		. 1		. 1 . 7			3 .0	1 .00	1 2	2 1	.03	1	.01	1	5.04	.01	.01	1	.01	.01
BA-700	1	150	9 2	5 72	2 4.1	1 37	54	8	9 32.61	111	5	NU NU	1 J	1 1 1	1 17	19	2	15	5.5	0.08	3 32	7 58	.87	173	.08	3	2 1.85	.08	.13	13	-	-
STD C	18	3 5	73	5 131	1 6.'	9 67	21	102	3 3.96	40	25		5	1 41	. 1		•															

- ASSAY REQUIRED FOR CORRECT RESULT WPb > 10,000 PPM Zn = 20,000 PPM Ag > 35 PPM ì.

(

(

ſ

1

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH JML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-2 ROCK P3-SOIL AU\$ ANALYSIS BY AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: OCT \$ 1987 DATE REPORT MAILED: OCT 13/87 ASSAYER. J. J. ZDEAN TOYE, CERTIFIED B.C. ASSAYER

UNITED MINERALS FROJECT-06 File # 87-4649 Fage 1

SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	A6 PPM	NI PPM	CO PPM	NN PPM	FE X	AS PPN	U PPN	au PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPN	CA I	· P I	LA PPM	CR PPM	MG 1	BA PPM	TI 1	B PPM	AL 1	na I	K I	N PPM	au i PPB
BA-1667	37	57	13	386	.5	63	5	211	2.33	2	5	ND	2	85	5	2	2	88	3.29	.105	6	14	.20	27	.10	3	2.73	, 33	.12	1	1
BA-3150	12	21	8	67	.1	19	1	233	1.45	15	5	ND	1	7	i	2	3	156	1.27	.040	3	22	. 44	15	.09	2	1.14	.02	.05	1	1
BA-3151	9	60	25	45	1.1	22	5	326	3.50	55	5	ND	1	15	1	2	2	70	.26	.070	2	24	.48	13	.07	2	. 59	.03	.07	1	39
BA-3152	15	41	16	(86	.7	30	4	330	2.69	36	5	ND	1	52	2	2	2	159	1.10	.129	4	44	.58	24	.13	5	1.20	.13	.15	1	4
RA-3153	14	85	16	149	.7	36	3	244	2.68		5	ND	1	86	1	2	- 2	191	.95	.040	2	27	.51	32	.10	2	1.88	.21	. 19	i	6
DH-3133	11		••		••	54	•	214	1.00		5		•		•	•	•	• / •			•	•.			•••	•			•••	•	•
BA-3154	2	290	1985	2280	13.0	12	2	124	2.74	12	5	2	i	46	78	2	7	75	.37	.026	2	21	.15	17	.04	2	.85	.09	.08	1	3800
BA-3155	12	69	26	338	.7	24	3	153	1.73	31	5	ND	2	56	1	2	2	149	.69	.055	2	24	.29	25	.08	2	1.25	.16	.12	1	34
BA-3156	3	139	33	1542	1.0	18	4	190	2.47	58	5	ND	1	28	32	2	2	67	. 88	.123	3	34	.16	11	.12	2	.47	.07	.05	1	16
BA-3157	5	117	699	1027	3.3	12	2	140	1.62	20	5	ND	1	42	21	2	2	86	.40	.031	2	2í	.24	17	.05	2	.79	.08	.08	1	1200
BA-3158	3	340	5	35	1.8	5	3	30	1.43	15	5	NÐ	1	2	1	2	2	91	.02	.003	2	5	.01	8	.02	2	.06	.01	.02	1	56
BA-3159	4	37	10	931	.3	6	1	72	1.37	19	5	ND	i	9	21	3	2	29	.11	.014	2	8	.09	6	.03	2	.24	.03	.02	1	8
BA-3160	5	1544	17857	25050	66.1	17	5	315	6.08	9	5	8	1	17	637	29	28	59	. 38	.032	2	18	. 25	15	.05	2	.87	.05	.07	1	2200
BA-3161	6	979	12084	17264	39.1	17	5	313	5.33	2	5	6	1	33	443	17	23	85	.60	.067	2	25	.36	21	.05	2	1.26	.09	.12	1	8400
BA-3162	4	372	2287	1058	7.2	21	4	195	2.46	26	5	ND	1	42	27	3	2	98	.87	.051	2	73	. 49	25	.08	2	1.76	.09	.23	1	1840
BA-3163	2	134	187	108	1.0	12	2	71	2.12	4	5	ND	1	3	3	3	2	20	.12	.020	2	5	.07	19	.02	2	.25	.01	.05	1	440
BA-3164	9	929	12292	12735	49.7	26	6	292	8.27	2	5	18	1	49	346	27	9	88	.81	.055	2	27	.29	22	.07	2	1.30	.07	.10	2	1940
BA-3165	6	1659	3221	12208	22.6	20	5	332	5.85	2	5	8	1	52	282	9	2	77	.99	.071	2	21	.23	13	.08	2	.82	.11	.09	1	3800
BA-3166	8	720	412	309	6.2	37	58	148	33.14	269	5	3	3	5	4	8	2	7	.06	.005	2	6	,06	3	.01	4	.15	.01	.02	i	520
BA-3167	20	959	25	68	3.6	41	61	104	44.15	107	5	4	2	1	i	18	2	1	.01	.001	2	9	.03	1	.01	9	.01	.01	.01	1	180
BA-3168	2	75	161	95	.5	6	1	46	.79	2	5	ND	1	15	1	4	2	25	.19	.011	2	8	.08	14	.02	2	.38	.03	.07	1	60
BA-3169	7	164	104	332	1.8	26	12	167	5.32	53	5	ND	1	52	8	2	2	105	1.11	.061	2	37	.29	16	.06	2	1.84	.06	.17	1	440
BA-3170	1	52	10	406	.2	6	2	85	1.34	2	5	ND	1	40	9	2	2	35	.18	.012	2	24	. 18	21	.02	2	.53	.04	.09	1	89
BA-3171	14	78	16	760	.7	48	8	335	3.38	11	5	ND	1	108	17	2	2	159	1.73	.077	4	79.	.54	31	.11	2	3.33	.42	. 32	1	22
BA-3172	1	869	11	105	3.6	23	43	108	23.42	6	11	ND	3	. 2	5	2	18	8	.01	.002	2	1	.05	3	.01	2	.12	.01	.03	L	560
BA-3173	12	449	3534	10158	18.6	37	8	340	3.95	5	5	7	1	92	224	9	2	221	1.25	.122	2	68	.71	31	.11	2	2.90	.34	.35	3	7920
BA-3174	1	824	14442	26563	75.2	54	16	326	21.12	383	8	19	1	18	674	49	61	29	.33	.016	2	18	.10	1	.02	2	.59	.05	.05	2 8	4800
BA-3175	7	450	4162	12624	21.4	37	8	304	2.72	2	5	7	1	111	270	14	2	174	1.58	.052	2	47	.62	32	.08	2	3.25	.42	.37	1	6500
BA-3176	1	19	44	92	.2	44	16	525	4.20	2	5	ND	1	34	1	2	2	90	1.32	.035	2	118	1.30	50	.24	5	1.52	.32	. 18	1	118
BA-3177	t	62	32	39	.1	20	13	69	2.10	2	5	ND	1	116	1	2	2	17	5.19	.025	2	12	.14	22	.14	2	7.31	.86	.02	1	37
BA-3178	Ā	112	22	32	.7	3	2	31	.89	2	5	ND	1	1	2	2	2	8	.02	.006	2	3	.02	22	.01	2	.12	.01	.05	1	6
BA-3179	1	189	14	6690	1.0	3	2	52	1.24	2	5	ND	1	1	148	2	2	5	.01	.007	2	2	.02	6	.01	3	.07	.01	.01	4	4
BA-3180	1	RA.	12	2071	2.4	3	ī	43	2.67	3	5	ND	1	1	45	2	2	6	.01	.004	2	1	.01	7	.01	2	.04	.01	.02	2	55
RA-3181	i	71	22	480		Ĭ	-	49	1.25	2	5	ND	i	6	18	3	2	41	.10	.021	2	9	.10	20	.02	2	.34	.02	.09	1	17
RA-1197	,	91	74	1457	Ŕ		;	42	1.16	3	5	ND	i	1	32	2	2	7	.01	.007	2	3	.02	14	.01	2	.09	.01	.04	1	2
BA-3183	2	202	6970	5675	44.5	20	;	298	4.87	2	5	ND	1	68	148	12	44	44	.82	.056	3	19	.27	8	.05	3	1.42	.17	.14	1	118
84.7104	,	105	1010	5077	18 0	20	0	757	5 00		5	ND	1	75	144		9	101	1.40	097		36	.50	16	-08	2	2.29	. 16	. 27	1	225
0H-3184 616 (AIL 9	17	60 103	1000	1033	7 0	27	7	1070	3.07	0 97	21	7	17	01 01	19	15	22	57		085	34	61	. 81	176	.08	30	1.80	.06	.13	13	525
alu L/AU≃K	17	70	41	132	7.0	61	21	1020	1.00	70	21	1	37	47	17	13	~~	11				51		./.		50	1.00				
																			. 1.41		/~1										

- ASSAY REQUIRED FOR CORRECT RESULT - Cu 7 10,000 (P)

	: •								UN	ITED	PROJECT-06				FILE # 87-4649					i								Page 2				
SAMPLE	MO PPM	CU PPM	PB PPM	ZN PPM	AG PPN	NI PPM	CO PPM	MN Pph	FE	AS PPM	U PPN	au Ppm	TH PPM	SR PPM	CD PPM	SB PPM	BI PPH	V PPM	CA 1	P I	LA PPM	CR PPH	M6 I	BA PPM	TI I	B PPM	AL I	NA Z	K I	W PPM	AU I PPB	
BA-3185	1	5	21	14	.2	5	1	27	.50	3	5	NÐ	1	1	1	2	3	5	.01	.001	2	7	.01	1	.01	2	.02	.01	.01	3	65	
BA-3186	8	25	186	1245	4.5	27	6	253	2.33	3	5	ND	1	40	21	2	2	95	1.20	.139	2	36	.43	16	.06	2	1.80	.08	.31	1	360	
BA-3187	3	91	4881	538	29.9	18	4	250	2.41	3	5	ND	2	60	24	8	24	69	.93	.063	5	29	.49	11	.09	2	1.74	.24	.24	1	148	
BA-3188	2	9	24	27	.3	4	1	35	.77	3	5	ND	1	1	2	2	2	23	.02	.008	2	5	.03	4	.01	2	.07	.01	.02	2	169	
BA-3189	3	220	8	86	4.3	57	25	156	7.21	8	5	2	1	109	t	2	2	57	2.14	.041	2	117	.33	11	.13	2	3.56	.44	.17	1	620	
BA-3190	1	157	10	612	1.3	18	16	58	6.18	2	5	ND	1	52	13	2	2	11	1.97	.011	2	10	.07	10	.07	2	3.01	.39	.02	i	1420	
BA-3191	1	41	99	64	.8	23	12	373	3.61	2	5	ND	1	37	1	2	2	128	1.52	.040	2	117	.95	67	.15	2	1.71	.27	.15	1	6	
BA-3192	6	1157	8590	12958	31.4	18	5	290	5.31	4	5	10	2	30	356	13	1	85	.69	.078	2	30	.38	28	.07	6	1.37	.08	.13	2	30100	
BA-3193	1	287	5315	4958	14.0	29	33	82	17.81	16	5	ND	2	2	128	13	13	5	.02	.002	2	1	.03	3	.01	2	.08	.01	.01	1	3230	
STD C/AU-R	18	60	39	131	7.3	68	28	1044	3.91	39	25	7	39	51	17	17	21	59	.44	.088	3B	65	.81	180	.08	33	1.83	.05	.13	12	515	

.

.

.

.

1

1

(

ſ

ſ

(

(

C

			3				ł		UN	ITED	MII	NERA	LS I	PROJ	I IECT:	-06	FI	LE #	87.	-464	9							and the second se			P	age 3	•
SANPLE	MO PPM	CU PPM	P9 PPM	ZN PPM	A6 PPM	NI PPM	CO PPM	MN PPH	FE 1	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPH	SB PPM	BI PPM	V PPM	CA I	P I	LA PPM	CR PPM	M5 Z	8A PPM	11 2	B PPM	AL I	NA Z	K I	¥ PPM	AUX PPB		(
DF-55-001	4	58	338	164	.6	4	1	143	1.74	2	5	ND	2	4	2	2	2	127	.10	.021	4	41	.67	6	.25	7	1.63	.01	.03	1	590	Soil @ Trench	0.
																																I	l.
																																	(

(. (

. .

ACME ANALYTICAL LABORATORIES LTD. 85

GEOCHEMICAL/ASSAY CERTIFICATE

ICP - .500 GRAH SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEC.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Chips A648 + AU88 BY FIRE ASSAY { 1 A/7 }

REBAGLIATI GEOLOGICAL FROJECT-BONANZA File # 87-5654

SAKPLE	MO	CU	PØ	ZN	AG	NI	CO	MN	FE	AS	IJ	AU	TH	SR	63	SØ	BI	٧	EA	2	LA	ER	MS	BA	11	B	AL	NA	K	M	A611	AURE
	PPM	PPM	PPH	PPN	PPN	PPM	PPN	PPĦ	1	PPN	PPN	PPM	PPN	PPH	PPN	PPN	PPN	PPM	1	1	PPN	PFN	I	PPN	I	PPM	I	1	ĩ	PPM	OZ/T	0Z/T
BON-1	5	27	10	115	.3	6	1	67	.65	17	5	ND	1	35	3	2	2	51	. 21	.031	2	13	. 16	15	.02	2	, 38	.04	.06	1	.05	.001
BON-2	22	1926	12499	22244	46.4	30	10	376	8.17	16	5	23	2	37	605	31	8	53	.54	.043	2	25	.21	- 14	.04	2	.80	.05	.06	3	1.34	1.150
BON-3	2	46	43	3	.3	4	1	45	1.00	2	5	ND	1	2	1	2	2	- 14	.09	.010	2	9	.04	9	.01	2	.14	.01	.03	1	.05	.008
BON-4	8	213	273	408	1.7	47	11	434	4.00	24	5	ND	2	105	1	2	3	173	2.85	.104	4	112	. 99	39	.13	3	4.60	.25	.41	3	.05	.004
BON-5	15	726	3620	8107	12.8	17	- 4	250	4.51	4 -	- 5	4	2	30	18?	5	5	79	. 62	.052	2	24	.35	18	.06	2	1.24	.09	.08	1	.44	.186
BON-5	12	498	919	5475	6.8	39	9	255	3.21	9	5	4	2	76	102	2	2	175	1.18	.126	3	56	. 60	27	.09	3	2.28	.28	.31	1	.21	.127
STD C	19	62	37	133	7.3	72	30	1065	4.05	38	21	7	39	52	18	18	24	58	.46	.088	30	61	.86	179	.07	39	1.87	.06	.13	12	-	-

11

ť

ſ

(

GEOCHEMICAL/ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR- ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR M6 BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: Pulp

DATE RECEIVED: OCT 5 1987 DATE REPORT MAILED: Oct 10/87 ASSAYER. W. Juyer. DEAN TOYE, CERTIFIED B.C. ASSAYER

NI C0 MN FE AS TH SR CD S8 BI V CA Р LA CR. MG BA TI SAMPLE NO CU PB ΖN A6 11 AU R AL N۵ K 25 ZN M PPM PPM PPH PPH PPH PPN 7 PPM PPM PPM PPN PPH PPM PPM PPM PPM Z Z PPN PPM z PPM ĩ PPN 1 1 1 PPN 1 PPM PPM 7 1.58 BA-601 6 84 3452 2180 22.4 23 7 292 3.81 -5 ND 2 65 53 7 18 99 .100 5 32 .60 13 .08 2 2.41 .15 .28 2 .40 .25 6 578 397 3.18 12 ND 2 77 9 3 2 182 2.85 .108 4 48 . 68 18 .09 5 4.08 .14 .42 1 .01 .06 20 46 90 3.4 46 5 5 BA-602 .085 157 1.29 48 3 2.68 BA-603 11 330 1318 8268 8.1 22 5 257 2.58 10 5 7 2 88 168 4 2 2 . 61 26 .09 .34 .27 3 .20 . 91 28 44 10 .80 .09 5.3 21 2 164 2.17 3 ND 1 24 3 3 114 .61 .127 4 .41 12 . 09 .10 1 .07 .15 BA-604 10 102 631 1384 6 11 5 ND 2 50 23 144 .77 .093 2 44 .53 20 .10 2 1.40 .17 .16 1 .02 .11 BA-605 12 94 203 1045 2.6 17 5 199 2.35 2 2 BA-606 13 63 64 416 1.7 25 5 205 2.26 17 * ND 3 65 9 2 2 131 .91 .097 7 41 .55 29 .12 6 1.54 .19 .31 1 .01 3 22 5 148 1.75 22 5 ND 1 84 12 4 2 136 1.29 .081 43 .44 17 .09 8 2.28 .29 .25 3.05 .05 BA-607 8 76 472 451 4.2 .02 8A-623 12 1655 16495 53383 105.4 18 6 431 10.67 16 5 43 i 1 1137 75 60 8 .02 .003 2 1 1 .01 2 .12 .01 .01 1 2.99 4.77 2 1.58 251 6.13 18 29 27 312 33 .91 .056 25 .45 23 .05 .12 .21 1 1.83 1.30 BA-624 8 876 13667 11372 49.7 19 5 5 2 4 81 2 129 4.17 16 5 14 172 11 7 49 .34 .019 2 14 .16 .02 3 .59 .06 5 .77 .68 BA-631 6 745 6301 6231 17.1 17 6 2 1 8 .05 139 2.28 BA~632 4 94 1107 1871 3.3 13 3 - 14 5 2 1 43 48 3 2 96 1.03 .049 2 25 .21 15 .05 4 1.30 .18 .12 1 .13 .21 1.36 41 1236 50 2 5 29 2 2 .01 .001 2 1 .01 .01 3 .02 .01 .01 1 .01 .13 BA-633 1 47 1.0 1 1 ND 1 1 3 1 9 .58 .074 32 BA-634 12 44 37 467 1.4 28 4 349 2.93 -5 5 NÐ 4 52 2 2 104 8 .37 21 .12 6 1.09 .10 . 14 1 .01 .05 2 178 5 154 2.63 .104 4 59 .56 4 3.62 .29 . 30 24 ND 2 2 18 .10 2 .01 .03 BA-635 9 69 44 273 1.5 30 6 311 2.77 6 12 2360 15472 58212 121.5 12 562 17.52 19 9 2 9 1340 98 38 16 .11 .008 2 2 .06 7 .01 6 .23 ,03 .03 5 5.36 6.15 BA-689 36 7 2 1.52 BA-690 14 1272 15797 22043 68.5 33 10 309 11.19 17 7 17 1 41 534 33 36 71 .90 .034 2 15 .26 14 .03 .15 .08 1 2.70 2.44 2 .18 .02 1 46 .73 6 ND 3 2 2 14 .12 .012 2 6 .06 8 .01 .03 1 .01 .01 BA-691 1 27 42 12 .2 4 5 1 1 5 1.75 263 6.62 1.19 .070 .15 BA-692 11 955 14303 11241 43.0 30 6 9 11 4 2 54 286 34 11 106 2 40 .34 19 .06 .14 1 1.70 1.27 .4 . 28 7 330 2.53 8 5 NÐ 6 38 3 2 2 61 .76 .058 6 30 1.00 26 .14 3 1.18 .12 .36 1 .01 .01 BA-693 2 44 16 118 9 127 29 377 23 4 314 2.52 55 5 ND 1 125 7 2 2 136 2.42 .117 3 37 . 38 23 .11 2 1.45 .20 .14 1 .01 .04 BA-694 .9 27 2 27 .13 .011 11 .02 5.21 .03 .03 BA-695 3 21 21 102 .1 4 1 83 .68 5 5 ND 1 2 2 2 8 .11 1 .01 .01 85 93 45 64 134 38.37 65 5 ND 4 4 2 2 2 7 .03 .004 2 1 .04 3 .01 3 .14 .01 .02 .01 BA-698 1 779 2.8 1 .01 39 2 5 NÐ 2 2 2 .02 .001 2 .03 2 .01 3 .05 .01 .01 1 779 97 93 4.3 29 58 15.46 1 1 5 1 1 .01 .01 BA-699 37 54 89 32.61 111 5 ND 3 1 2 2 2 3 .01 .001 2 1 .03 1 .01 5 .04 .01 .01 1 .01 .01 BA-700 1 1509 25 72 4.1 25 38 49 17 18 21 55 .50 .083 37 58 .87 173 .08 32 1.85 .08 13 18 57 35 131 6.9 67 26 1023 3.96 40 7 .13 STP C

> - ASSAY REQUIRED FOR CORRECT RESULT WPb > 10,000 PPM Zn > 20,000 PPM Ag > 35 PPM

APPENDIX III

REFERENCES

REFERENCES

- Allen, A.; 1972; Electromagnetic Survey on the QC Group, Seymour Inlet, Q.C. Explorations Ltd. by Allen Geological Engineering Ltd. Assessment Report No. 4252.
- Brownlee, D.J. et.al.; 1980; Geological and Geophysical Report on the Whelakis Property., Frank Beban Logging Ltd. by Nevin Sadlier-Brown Goodbrand Ltd. Assessment Report No. 7991.
- Jackson, I.; 1981; Geophysical Surveys on the Major Bonanza Property, Vancouver M.D., B.C. Cominco Ltd. Assessment Report No. 9237.
- Rebagliati, M.; 1987; Report on the Bonanza Property, for American Bullion Minerals Ltd.

Roddick, J.A.; 1980; Geological Survey of Canada, Open File 722.

Wiley, W.E.; Assessment Report, Diamond Drilling Bonanza Mineral Claim, Vancouver Mining Division, B.C. Cominco Ltd. Assessment Report No. 9303. APPENDIX IV

STATEMENT OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, Greg Dawson of 2392 West 45th Avenue in the City of Vancouver, British Columbia, do hereby certify that:

- 1. I am currently employed as geologist on a contract basis by United Mineral Services Ltd. with offices at 1020-800 West Pender Street, Vancouver, B.C.
- 2. I graduated from the University of British Columbia in Geology, having obtained my Bachelor of Science in 1986.
- 3. I have worked in the field of mineral exploration in B.C., Manitoba and the Northwest Territories since 1976.
- 4. This report is based in part on my personal observations of the property.

Greg Dawson, B.Sc. Contract Geologist United Mineral Services Ltd.

Vancouver, B.C.

APPENDIX V

ROCK SAMPLE DESCRIPTIONS

t,

ROCK SAMPLE DESCRIPTIONS

601	0.5m chip; argillite
602	0 The object miner of the in sumillity
603	0./m chip; minor Q2. verning in argillite
604	0.5m chip; siliceous argillite, TR, GN, PY, PO
605	1.3m chip; argillite, QZ. veining
606	1.0m chip;
607	0.5m chip; Qz. veining in argillite to 5% pyrite,
	pyrrhotite, JR, galena, bornite
608	0.7m chip; Qz. in argillite, 2% pyrite and pyrrhotite
609	1.0m chip Qz. in argillite, TR, PY and PO.
610	0.8m chip argillite, PY, PO on fractures
611	drill core DDH 81-6, 207.5-211' sheared argillite PY, PO
	(TR)
612	DDH 81-6 sheared greenstone, TR PY, PO (211-215')
613	DDH 81-6 215-218m/t greenstone, TR PY
614	DDH-6 218-221.5m/t greenstone, TR PY, PO graphite on
	fractures?
615	DDH 81-6 113-117ft., argillite to 10% PY
616	DDH 81-5 171.5-173' altered greenstone, TR PY
617	DDH 80-5 183-189 sheared greenstone TR PY
618	Grab, semi massive PO, 1% PY, LPY
619	1.2m chip; Qz. vein
620	grab
631	grab, greater than 10% PO, PY, TR, GN, SP
632	1.1m chip, quartz and argillite
633	0.5m
634	0.5m chip; sheared argillite
635	Grab
636	Grab

BA	BU I I I I I I I I I I I I I I I I I I I	BA
SAMPLED BY DATE SAMPLE LOCATION NTS: UTM: ZONE: GRID: CLAIM: PROPERTY NAME <u>TRELE H</u> 8 SAMPLE-CHARACTER ROCK: OLC R/C FLOAT	SAMPLED BY DATE SAMPLE LOCATION NTS: UTM: ZONE: GRID: CLAIM: PROPERTY NAME <u>TRENCH</u> S SAMPLE CHARACTER ROCK:O/C R/C FLOAT	SAMPLED BY DATE SAMPLE LOCATION G/37 UTM: ZONE: GRID: CLAIM: PROPERTY NAME <u>TRENCH S</u> SAMPLE CHARACTER ROCK:O/C R/C FLOAT
SOIL (DESCRIPTION OVER)	SAMPLE METHOD SIL ICEOUS, SHEARED ARG. MINOR PY HEAVEY MOCM SOIL (DESCRIPTION OVER) SILT	GRAB BLEACHED AND CRUMBLING MASSIVE GN & PO GREY QZ MATRIX SOIL (DESCRIPTION OVER)
SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY	SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY	SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY
PROJECT SAMPLER TYPE 0621 ASSAY Au Ag Cu Mo Pb Zn - GEOCHEM Hg Sb As W Ni Co -	PROJECT SAMPLER TYPE 0622 ASSAY Au Ag Cu Mo Pb Zn - GEOCHEM Hg Sb As W Ni Co -	PROJECT SAMPLER TYPE Nº 0623

BONANZA

UNID SAMPLED BY DATE SAMPLE LOCATION 5/87 NTS: UTM: -ZONE: GRID: CLAIM: **PROPERTY NAME** TREKH 5 SAMPLE CHARACTER ROCK: O/C R/C FLOAT SAMPLE METHOD GN, PD, CPY IN SHEARED SILICEOUS ARG MATEIX GNY TOTAL HALSX 2090 CPY 15 MINOR MANY QZ STEINGERS IN DICATE SOIL A VIGNING ELENT AFTER (DESCRIPTION OVER) SHEARINGSILT (DESCRIPTION OVER) SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY **0624** PROJECT SAMPLER TYPE

Au Ag Cu Mo Pb Zn - -

Hg Sb As W Ni Co - -

ASSAY

GEOCHEM

2.21 BN BA BONNOZI CJD DATE SAMPLED BY DATE -SAMPLED BY SAMPLED BY DATE 6/87 SAMPLE LOCATION 8187 SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: ZONE: ZONE: UTM: UTM: UTM: 70NF GRID: GRID: GRID: TREACH. TRENCHZ CLAIM: CLAIM: CLAIM: PROPERTY NAME. PROPERTY NAME PROPERTY NAME TRENSI SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER FLOAT R/C FLOAT ROCK: O/C R/C R/C FLOAT ROCK O/C> SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD QZGZRB 1.5 m QZ VIEN 4CM MALL ROCK WALL ZOCK FRAGS MEGLILITE 12 SN 72. Sz. SILT SOIL SILT SILT SOIL SOIL (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY 0672 ROJECT 0671 ⁻NIº 0673 TYPE SAMPLER TYPE PROJECT SAMPLER SAMPLER PROJECT Au Ag Cu Mo Pb Zn - -ASSAY Au Ag Cu Mo Pb Zn -Au Ag Cu Mo Pb Zn -ASSAY ASSAY TOCHEM Hg Sb As W Ni Co -Hg Sb As W Ni Co --GEOCHEM Hg Sb As W Ni Co --GEOCHEM -

BP RA 12 19 SAMPLED BY DATE SAMPLE LOCATION SAMPLED BY 6101 DATE, SAMPLED BY DATE NTS: SAMPLE LOCATION SAMPLE LOCATION UTM: --ZONE: NTS: NTS: GRID: ZONE: UTM: UTM: ZONE: CLAIM: GRID: GRID: PROPERTY NAME TRENCH Z CLAIM: CLAIM: PROPERTY NAME PROPERTY NAME TREACHZ TREACH 2 SAMPLE CHARACTER ROCK: O/C R/C FLOAT SAMPLE_CHARACTER SAMPLE CHARACTER SAMPLE METHOD ROCK: 07C FLOAT ROCK: O/C R/C R/C FLOAT SAMPLE METHOD VUGGT ANDCRISTALIDE 50 cm QZ'VIEN 30cm CHIP FPBRIC IN QZ @ 118970. ~ZOCM 2Z SOIL SILT (DESCRIPTION OVER) SOIL SILT SOIL SILT (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY 0674 PROJECT SAMPLER TYPE 0676 0675 SAMPLER PROJECT SAMPLER TYPE PROJECT ASSAY Au Ag Cu Mo Pb Zn -Hg Sb As W Ni Co -GEOCHEM . ASSAY Au Ag Cu Mo Pb Zn -Au Ag Cu Mo Pb Zn -ASSAY -Hg Sō As W Ni Coʻ-GEOCHEM Hg Sb As W Ni Co -GEOCHEM -

BA BA DATE SAMPLED BY SAMPLED BY SAMPLED BY SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION -4-27 NTS: NTS: NTS: ZONE: UTM: -UTM: ZONE: UTM: ZONE: GRID: GRID: GRID: CLAIM: CLAIM CLAIM: PROPERTY NAME NOH 81-3 PROPERTY NAME **PROPERTY NAME** DDH 81.5 SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT -ROCK: O/C FLOAT R/C SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD 112-117 GRAS FROM Z30 62H3 ROM BOL 8 To 246 (EOH, P26 E LANDINOVED 167-187 19 PORPY, UP105% CEALS ANO SHEPRED ARG. CALCITE RICH RRG SOIL SOIL SOIL SILT SILT SILT (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION $\mathcal{L}^{\mathcal{N}}$ HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY 0677 ١o 0678 0679 PROJECT TYPE PROJECT SAMPLER TYPE SAMPLER PROJECT SAMPLER TYPE ASSAY Au Ag Cu Mo Pb Zn 🕹 ASSAY Au Ag Cu Mo Pb Zn -ASSAY -• Au Ag Cu Mo Pb Zn --GEOCHEM Hg Sb As W Ni Co -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co -

BR

SAMPLED BY SAMPLE LOCATION NTS: UTM: GRID: CLAIM: PROPERTY NAME $DDH - RI - 4$	SAMPLED BY DATE SAMPLE LOCATION NTS: UTM: ZONE: GRID: CLAIM: PROPERTY NAME	SAMPLED BY DATE SAMPLE LOCATION 6/87 UTM: ZONE: GRID: CLAIM: PROPERTY NAME DDH 44
SAMPLE CHARACTER ROCK: O/C R/C FLOAT SAMPLE METHOD D/- 100 Fe STRINED DND PO RICH (105%) BANDED DRG.	SAMPLE CHARACTER ROCK:O/C R/C FLOAT SAMPLE METHOD GRASTEOM 39.0 - 43 m EARBONNCESUS AND PORICH ARG. POLOCALLY TO 5%	SAMPLE CHARACTER ROCK:O/C R/C FLOAT SAMPLE METHOD 202-204 SILICEOUS BANDED ARG. EUP TO 5-10% PO
SOIL SILT	SOIL SILT ,	SOIL SILT
(DESCRIPTION OVER)	(DESCRIPTION OVER)	(DESCRIPTION OVER)
SAMPLE DESCRIPTION	SAMPLE DESCRIPTION	SAMPLE DESCRIPTION
HOST ROCK TEXTURE & MINERALOGY	HOST ROCK TEXTURE & MINERALOGY	HOST ROCK TEXTURE & MINERALOGY
ASSAY Au Ag Cu Mo Pb Zn	ASSAY Au Ag Cu Mo Pb Zn	ASSAY Au Ag Cu Mo Pb Zn
GEOCHEM Ha Sh As W Ni Co	GEOCHEM Ha Sh As W Ni Co	GEOCHEM Hg Sh As W Ni Co

BA

20

BONNUTA BB 写得 SAMPLED BY DATE DATE SAMPLED BY SAMPLED BY DATE SAMPLE LOCATION 6/87 SAMPLE LOCATION 6/81 SAMPLE LOCATION NTS: NTS: NTS: ZONE: ZONE: ZONE: UTM: UTM: UTM: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: PROPERTY NAME **PROPERTY NAME** DDH 81-Z PROPERTY NAME DDH Q1 -DDH 81-Z SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER FLOAT ROCK 20 FLOAT R/C FLOAT R/C R/C ROCK: O/C ROCK: O/C SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD 195 -215' · GRAB 97-1041 123-124 (NEAT BOX (6) GRAG FROM BOX) BANDED AND STRONGLY ARG. (TURSIDITE ? MISSING) SILICEOUS AND DEFIND ARG (TURB? FRAGMENTED ARG. ~1.5m CARBONATE AND OR WENING ... CALCITE ON LAMINATIONS UP JO 10 % PO (+ 2 cm MASSING VOLC, VOLC, DISS PO, 2000 PY ON FRACT PO) BILT SILT SOIL SOIL SILT SOIL (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) 1.14 SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY 0684 0685 PROJECT 0683 PROJECT SAMPLER SAMPLER SAMPLER TYPE PROJECT Au Ag Cu Mo Pb Zn Au Ag Cu Mo Pb Zn "+ ASSAY Au Ag Cu Mo Pb Zn ASSAY ASSAY Hq Sb As W Ni Co GEOCHEM Hg Sb As W Ni Co GEOCHEM GEOCHEM Hg Số As W Ni Co

BH	Ba	BB
SAMPLED BY DATE SAMPLE LOCATION NTS: UTM: ZONE: GRID: CLAIM: PROPERTY NAME DD-SI-2.	SAMPLED BY DATE SAMPLE LOCATION NTS: UTM: ZONE: GRID: CLAIM: PROPERTY NAME DDH 81-7	SAMPLED BY DATE SAMPLE LOCATION NTS: UTM: ZONE: GRID: CLAIM: PROPERTY NAME DDH 81-7
SAMPLE CHARACTER ROCK: O/C R/C FLOAT SAMPLE METHOD 272-277 G-RAB STRONGLY DEF MD AND CORBONIZED ARG 2-5% PO PYON FRACT MINDE RE UNER. SOIL SILT (DESCRIPTION OVER)	SAMPLE CHARACTER ROCK:O/C SAMPLE METHOD 39-42' ALTERATION (SHEAR?) ZONG IN INT NOLC, TR PY SOIL (DESCRIPTION OVER) SULT	SAMPLE CHARACTER ROCK: O/C R/C FLOAT SAMPLE METHOD 137-14/ FOOTWALL SILICATOUS AND CARBONACEOUS ARG, TO 5% DISS PO, PYON FRCT, SOIL (DESCRIPTION OVER)
SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY PROJECT SAMPLER TYPE Nº 0686 ASSAY Au Ag Cu Mo Pb Zn GEOCHEM Hg Sb As W Ni Co	SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY PROJECT SAMPLER TYPE Nº 0687 ASSAY Au Ag Cu Mo Pb Zn GEOCHEM Hg Sb As W Ni Co	SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY PROJECT SAMPLER TYPE Nº 0688 ASSAY AU AG CU MO Pb Zn GEOCHEM Hg Sb As W Ni Co

BA SAMPLED BY DATE SAMPLED BY DATE DATE SAMPLED BY SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: UTM: ZONE: UTM: -ZONE: UTM: -ZONE: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: PROPERTY NAME PROPERTY NAME PROPERTY NAME TRENCH 5 TRENCH 5 TRENCH 5 SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C R/C ROCK: O/C R/C FLOAT R/C FLOAT FLOAT ROCK: O/C SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD GRAB MASIVE PO, MASSIVE WHITE OZ VIENS GRAB : MASSIVE PO MINDE PY, SOME WALL SP, CPY, SACT HEM., GL? Z QZ ROCK FRAGS AUGENS 1.0m SILT SOIL SILT SOIL SILT SOIL (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY 0690 PROJECT SAMPLER 0689 PROJECT 0 0691 TYPE SAMPLER TYPE TYPE SAMPLER PROJECT ASSAY Au Ag Cu Mo Pb Zn -Au Ag Cu Mo Pb Zn -ASSAY Au Ag Cu Mo Pb Zn - -ASSAY Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co -GEOCHEM Hg Sb As W Ni Co --GEOCHEM

RA

ΒĤ

BH	B()	BA
SAMPLED BY DATE SAMPLE LOCATION NTS: UTM: 70N5	SAMPLED BY DATE SAMPLE LOCATION NTS:	SAMPLED BY SAMPLE LOCATION
GRID: CLAIM: PROPERTY NAME TRENCH 5	UTM: ZONE: GRID: CLAIM: PROPERTY NAME	UTM: ZONE: GRID: CLAIM: TREASCH PROPERTY NAME タ
SAMPLE CHARACTER ROCK: O/C R/C FLOAT SAMPLE METHOD	SAMPLE CHARACTER ROCK: O/C R/C SAMPLE METHOD	SAMPLE CHARACTER FLOAT FOCK: O/C R/C FLOAT SAMPLE METHOD
13 M CHIP	0,5 m CH/D	40cm CHIP
MOSTLY SILICEOUS ARG E & 10% PO, BUT	BLEACHED AND CARBON/ZED VOLCALSIC	
SOME MASSIVE PO, HEM	MINOR PO	
SOIL SILT (DESCRIPTION OVER)	SOIL SILT (DESCRIPTION OVER)	OIL SILT SILT
SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY	SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY	AMPLE DESCRIPTION OST ROCK TEXTURE & MINERALOGY SHEARED AND SILICEOUS ARG? MINOR CACOS TO 5% PO PY ON FRAC
	PROJECT SAMPLER TYPE Nº 0	1693 ROJECT SAMPLER TYPE Nº 0694
ASSAY Au Ag Cu Mo Pb Zn GEOCHEM Hg Sb As W Ni Co	ASSAY Au Ag Cu Mo Pb Zn - GEOCHEM Hg Sb As W Ni Co -	- ASSAY Au Ag Cu Mo Pb Zn - CCOHEM Hg Sb As W Ni Co

BD RA RH CATE SAMPLED BY SAMPLED BY SATE 7 SAMPLED BY SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: ZONE: UTM: ZONE: UTM: UTM: GRID: GRID: GRID: TREACHS TRENCH CLAIM: CLAIM: CLAIM: 10 PROPERTY NAME PROPERTY NAME PROPERTY NAME SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C ROCK: O/C ROCK: O/C R/C FLOAT R/C FLOAT R/C FLOAT SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD 2m CHIP GRAB ROCH CHIPS FROM (VIEN IN OC 5-50 cm CREEK BELLOW TREACH 10 SOIL SILT SOIL SILT SOIL (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY FOLIMIED PROJLITE F.G. RED FE STAINED WHITE BARON APPEARING PY ON FRACT 38 ARG., TR. SX Q2 MINOR SX STAIN DISS PO 0696 TYPE Nº 0695 0697 PROJECT SAMPLER PROJECT PROJECT SAMPLER TYPE SAMPLER TYPE ASSAY Au Ag Cu Mo Pb Zn ASSAY Au Ag Cu Mo Pb Zn -ASSAY Au Ag Cu Mo Pb Zn -Hg Sb As W Ni Co -Hg Sb As W Ni Co GEOCHEM GEOCHEM Hg Sb As W Ni Co - -GEOCHEM

BR BA RA SAMPLED BY SAMPLED BY SAMPLED BY DATE SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: UTM: UTM: ZONE: ZONE: UTM: ZONE: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: TREACHS PROPERTY NAME PROPERTY NAME **PROPERTY NAME** TREACH TREICH5 SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C R/C FLOAT ROCK: O/C R/C ROCK: O/C FLOAT R/C FLOAT SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD GRAB 18 10 cm "FOD" ? SHEARED GREY QZ MAIRIX & 30% PO FROM O/C 2% CPY TR PY SOIL SOIL SOIL SILT SILT SILT (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY . . . MASSIVE PO Z Brew AS 0699 'QZ'EYES 0698 0699 0700 PROJECT SAMPLER PROJECT SAMPLER TYPE PROJECT SAMPLER TYPE TYPE Au Ag Cu Mo Pb Zn - -ASSAY ASSAY Au Ag Cu Mo Pb Zn -ASSAY Au Ag Cu Mo Pb Zn -GEOCHEM Hg Sb As W Ni Co -GEOCHEM Ha Sb As W Ni GEOCHEM Ha Sh As W Ni Co - -Co .

BA B/D SAMPLED BY SAMPLE LOCATION SAMPLED BY DATE SAMPLE LOCATION 5/181 VNTS: ZONE: UTM: UTM: , GRID: 2 CLAIM: GRID: CLAIM: PROPERTY NAME PROPERTY NAME SAMPLE-CHARACTER ROCKO/C SAMPLE METHOD SAMPLE CHARAGTER R/C FLOAT BOEK: O/C SAMPLE METHOD Ŗ/Ċ FLOAT SHENZED 30CM SHEARED AND RUSTY ZONE G. MRG. F SILL. 110 HW rachvics 105/58N 120/70 SOIL ³ SOIL SILT (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY PROJECT SAMPLER TYPE PROJECT SAMPLER TYPE Au Ag Cu Mo Pb Zn⁵⁴⁺ Hg Sb As W Ni⁺/CO ASSAY Au Ag Cu Moor Pb Zn ASSAY Hg Sb, As W Ni GEOCHEM Co GEOCHEM

VOT / BLEA Sinteriky <or>
≤o ~ q. 1/2/1 UH /PE MI Ivench 10 SAMPLEDBY Trench 10 SAMPLED BY DATE DATE SAMPLED BY DATE SAMPLE LOCATION PONAN? F SAMPLE LOCATION PONAN?A SAMPLE LOCATION NTS: NTS: NTS: UTM: -ZONE: UTM: -ZONE: ZONE: UTM: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: PROPERTY NAME TICOCh PROPERTY NAME BON ANZA PROPERTY NAME TIO FLOAT ROCK: O/C SAMPLE CHARACTER SAMPLE CHARACTER R/C ROCK: O/C FLOAT R/C FLOAT R/C ROCK: O/C SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD £ composite SOIL SILT SILT SOIL SILT SOIL (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION Trais PO-PY HOST ROCK TEXTURE & MINERALOGY PO-PY SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY ven maturial in argilite W 1-2.00 gil anomhite of Trpo gtiveins are training - 10% PY in folded gtz Veins Ir p ~ 1-2 cm in width folded - anthe GH 1 mis and Volte (4 Y) (3151 TYPEN 3150 3152 PROJECT PROJECT SAMPLER SAMPLER PROJECT | SAMPLER TYPE Au Ag Cu Mo Pb Zn - -ASSAY ASSAY Au Ag Cu Mo Pb Zn - -Au Ag Cu Mo Pb Zn · · ASSAY GEOCHEM Hg Sb As W Ni Co · · Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM

.

2 a Sapst

DBF

SAMPLED BY Trench A DATE	SAMPLED BY DEF BERA DATE	SAMPLED BY TEACHE DATE
SAMPLE LOCATION	SAMPLE LOCATION	SAMPLE LOCATION
NTS:	NTS:	NTS:
UTM: ZONE:	UTM: ZONE:	UTM: ZONE:
GRID:	GRID:	GRID:
CLAIM:	CLAIM:	CLAIM:
PROPERTY NAME	PROPERTY NAME TYENCE B	PROPERTY NAME
SAMPLE CHARACTER	SAMPLE CHARACTER	SAMPLE-CHARACTER
ROCK: O/C R/C FLOAT	ROC(: O/C) R/C FLOAT	ROCK:O/C R/C FLOAT
SAMPLE METHOD	SAMPLE METHOD	SAMPLE-METHOD
- geb	conals-	grat- Blow-out-from trench
SOIL SILT	SOIL SILT	SOIL SILT
(DESCRIPTION OVER)	(DESCRIPTION OVER)	(DESCRIPTION OVER)
SAMPLE DESCRIPTION	SAMPLE DESCRIPTION	SAMPLE DESCRIPTION
HOST ROCK TEXTURE & MINERALOGY	HOST ROCK TEXTURE & MINERALOGY	HOST ROCK TEXTURE & MINERALOGY
PROJECT SAMPLER (TYPEN 2 3153 ASSAY AU AG CU MO PD Zn -	All vein ~ with Vifor aver pyrite to 40/0 - tr galang. po PROJECT SAMPLER TYPE Nº 3154 ASSAY AU AG CU MO PD Zn -	ASSAY AU AG CU MO PD Zn
GLOCHEM HY SU AS W INI CO	GEOCHEM HIG SD AS W NI CO	GEUCHEM Hg Sb As W Ni Co

West /BUNG BONANZA SAMPLED BY BONANT?A SAMPLED BY DATE DATE **AMPLED BY** DATE SAMPLE LOCATION SAMPLE LOCATION AMPLE LOCATION NTS: NTS: NTS: UTM: UTM: ZONE: ZONE: UTM: -ZONE: GRID: GRID: Trench B GRID: CLAIM: CLAIM: CLAIM: BONANI A ROPERTY NAME PROPERTY NAME ROPERTY NAME Yenc SAMPLE CHARACTER ROCK (Ó/C) SAMPLE METHOD AMPLE-CHARACTER **SAMPLE CHARACTER** FLOAT ROCK: O/C R/C R/C R/C FLOAT **SAMPLE METHOD** AMPLE-METHOD blow -out 2.0 m intrench 35% 65% pyrihe strand agulite SILT SOIL SILT SOIL JIL SILT (DESCRIPTION OVER) **DESCRIPTION OVER) JESCRIPTION OVER)** AMPLE DESCRIPTION SAMPLE DESCRIPTION **3AMPLE DESCRIPTION IOST ROCK TEXTURE & MINERALOGY** HOST ROCK TEXTURE & MINERALOGY malinal pynte gal, py. 10 5% diss py Qh Im Veir -trench 3157 3156 3158 ROJECT PROJECT SAMPLER PROJEC SAMPLER TYPE ASSAY Au Ag Cu Mo Pb Zn -ASSAY Au Ag Cu Mo Pb Zn -ASSAY -Au Ag Cu Mo Pb Zn --GEOCHEM Hg Sb As W Ni Co - -Hg Sb As W Ni Co -GEOCHEM GEOCHEM Hg Sb As W Ni Co - -

BONANZA BONANZA BONANZA. SAMPLED BY DATE SAMPLED BY DATE SAMPLED BY DATE SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: UTM: ZONE: UTM: -ZONE: UTM: -ZONE: GRID: GRID: GRID: CLAIM: CLAIM: RENCH D CLAIM: RENCH PROPERTY NAME 1 RENCH \mathcal{O} PROPERTY NAME PROPERTY NAME SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD over o.8m chip over 1.0m 1.5mSOIL SILT SOIL SILT SOIL SILT (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY 0.Sm wide iem, in in N 3162 PROJECT SAMPL TYPE PROJECT SAMPLER PROJECT ASSAY Au Ag Cu Mo Pb Zn -Au Ag Cu Mo Pb Zn -ASSAY ASSAY -Au Ag Cu Mo Pb Zn - -Hg Sb As W Ni Co - -GEOCHEM GEOCHEM Hg Sb As W Ni Co -GEOCHEM Hg Sb As W Ni -Co --

BONAN SONANZA 2 (-) DATE SAMPLED BY SAMPLED BY DATE SAMPLED BY DATE SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: ZONE: UTM: -UTM: ZONE: UTM: ZONE: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: **PROPERTY NAME** PROPERTY NAME Yen PROPERTY NAME SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER FLOAT ROCK: O/C R/C ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD over 3166 SILT SOIL SOIL SILT SOIL SILT (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY I ven Folded Vein in gtz v. In and 3165 3166 PROJECT SAMPLER 3167 TYPEN TYPE SAMPLER PROJECT PROJECT SAMPLER TYPE Au Ag Cu Mo Pb Zn - -ASSAY ASSAY Au Ag Cu Mo Pb Zn - -ASSAY Au Ag Cu Mo Pb Zn - -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co - -

SAMPLED BY DATE SAMPLEDBY DATE SAMPLED BY DATE SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: UTM: -UTM: -ZONE: ZONE: UTM: -ZONE: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: Ye rer rench F PROPERTY NAME PROPERTY NAME PROPERTY NAME SAMPLE CHARACTER SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT SAMPLE METHOD SAMPLE METHOD SAMPLE METHOD 618,619 0,8 0,5m SOIL SOIL SILT SILT SOIL SILT (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY Marin morane er pyrite y Vein w PO-PI Ven in 3168 3169 TYPE N1 3170 TYPEINE PROJECT PROJECT PROJECT SAMPLER SAMPLER SAMPLER TYPE ASSAY Au Ag Cu Mo Pb Zn - -ASSAY Au Ag Cu Mo Pb Zn - -ASSAY Au Ag Cu Mo Pb Zn - -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co - -

SAMPLED BY DATE	SAMPLED BY BONANZA	SAMPLED BY DBF DATE
SAMPLE LOCATION	SAMPLE LOCATION	SAMPLE LOCATION
NTS:	NTS:	NTS:
UTM: ZONE:	UTM: ZONE:	UTM:BONANZA ZONE:
GRID:	GRID:	GRID:
CLAIM:	CLAIM:	CLAIM:
PROPERTY NAME Trench F	PROPERTY NAME TYEN LF	PROPERTY NAME OCPAR
SAMPLE CHARACTER	SAMPLE CHARACTER	SAMPLE CHARACTER
ROCK: O/C R/C FLOAT	ROCK: O/C P R/C FLOAT	ROCK: O/C R/C FLOAT
SAMPLE METHOD	SAMPLE METHOD	SAMPLE METHOD
@ 618,619	grab	hi grade grab- Zone H-i
SOIL SILT	SOIL SILT	SOIL SILT
(DESCRIPTION OVER)	(DESCRIPTION OVER)	(DESCRIPTION OVER)
SAMPLE DESCRIPTION	SAMPLE DESCRIPTION	SAMPLE DESCRIPTION
HOST ROCK TEXTURE & MINERALOGY	HOST ROCK TEXTURE & MINERALOGY	HOST ROCK TEXTURE & MINERALOGY
2% py-po in gtzvein	in go vernin argulite	massive gal-sph-py in chip over Jum
PROJECT SAMPLER TYPENS 3171	PROJECT SAMPLER TYPENE 3172	PROJECT SAMPLER TYPEN 3173

OCP T OCP OCP T SAMPLED BY SAMPLED BY DATE SAMPLED BY DATE DATE SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: UTM: -UTM: -ZONE: UTM: -ZONE: ZONE: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: BONANZA BON ANZA PROPERTY NAME PROPERTY NAME KON PROPERTY NAME SAMPLE CHARACTER ROCK: O/C SAMPLE METHOD SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C ROCK: O/C R/C FLOAT R/C R/C FLOAT FLOAT SAMPLE METHOD SAMPLE METHOD upover 0.3m . Om chip No too represent SOIL SOIL SOIL SILT SILT SILT (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY HOST ROCK TEXTURE & MINERALOGY PODO W . $|\mathcal{O}_{\mathcal{O}}|$ Ver 3181 3180 PROJEC PROJECT PROJECT SAMPLER SAMP SAMPLER Au Ag Cu Mo Pb Zn -ASSAY ASSAY -ASSAY Au Ag Cu Mo Pb Zn -Au Ag Cu Mo Pb Zn - --GEOCHEM Hg Sb As W Ni Co -GEOCHEM Ha Sb As W Ni Co -GEOCHEM Hg Sb As W Ni Co - -.

SAMPLED BY COP K DATE		SAMPLED BY OCP K DATE	SAMPLED BY DATE
SAMPLE LOCATION		SAMPLE LOCATION	SAMPLE LOCATION
NTS:		NTS:	NTS:
UTM: ZONE:		UTM: ZONE:	UTM: ZONE:
GRID:		GRID:	GRID:
CLAIM:		CLAIM:	CLAIM:
PROPERTY NAME		PROPERTY NAME	PROPERTY NAME
SAMPLE CHARACTER	FLOAT	SAMPLE CHARACTER	SAMPLE CHARACTER
ROCK: O/C R/C		ROCK: O/C R/C FLOAT	ROCK: O/C R/C FLOAT
SAMPLE METHOD		SAMPLE METHOD	SAMPLE METHOD
grab-	·	chip over 1.0m	New trench extension
SOIL SILT		SOIL SILT	SOIL SILT
(DESCRIPTION OVER)		(DESCRIPTION OVER)	(DESCRIPTION OVER)
SAMPLE DESCRIPTION		SAMPLE DESCRIPTION	SAMPLE DESCRIPTION
HOST ROCK TEXTURE & MINERALOGY		HOST ROCK TEXTURE & MINERALOGY	HOST ROCK TEXTURE & MINERALOGY
PROJECT SAMPLER TYPE Nº 3	183	- gal-spl-po-py in siliers agellite and gt Veins PROJECT SAMPLER TYPE Nº 3184	Barrier bothy gts vein PROJECT SAMPLER TYPEN\$ 3185
ASSAY Au Ag Cu Mo Pb Zn		ASSAY Au Ag Cu Mo Pb Zn	ASSAY AU AG CU MO Pb Zn
GEOCHEM Hg Sb As W Ni Co		GEOCHEM Hg Sb As W Ni Co	GEOCHEM Hg Sb As W Ni Co

•

.

DEF/BERA OPELTING nonra OSPECTING SAMPLED BY DATE SAMPLED BY DATE DATE SAMPLED BY SAMPLE LOCAT SAMPLE LOCATION SAMPLE LOCATION NTS: NTS: NTS: UTM: UTM: -UTM: ZONE: ZONE: ZONE: GRID: GRID: GRID: CLAIM: CLAIM: CLAIM: PROPERTY NAME 10+00 NE PROPERTY NAME **PROPERTY NAME** 6+00 SE SAMPLE CHARACTER ROCK: O/C SAMPLE METHOD SAMPLE CHARACTER SAMPLE CHARACTER ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT R/C FLOAT SAMPLE METHOD SAMPLE METHOD Rep greb near 3,77 angillite ocp on 2+00 puse line 10 tOONE +60, 10+60NE 440 NE G+00SE hi onade SOIL SILT SOIL SILT : SILT SOIL (DESCRIPTION OVER) (DESCRIPTION OVER) (DESCRIPTION OVER) hi grade rones 218 SAMPLE DESCRIPTION SAMPLE DESCRIPTION SAMPLE DESCRIPTION HOST ROCK TEXTURE & MINERALOG HOST ROCK TEXTURE & MINERALOGY (c) material HOST ROCK TEXTURE & MINERALOGY ũ vi silicions angithite ---in Silions diss JURITA more anaill. zones like 20ne 3191 3189 3190 PROJECT TYPE PROJECT TYPE SAMPLER SAMPLER PROJECT SAMPLER ASSAY Au Ag Cu Mo Pb Zn -Au Ag Cu Mo Pb Zn - -ASSAY ASSAY Au Ag Cu Mo Pb Zn --GEOCHEM Hg Sb As W Ni Co --GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co - -

NANZA SAMPLED BY DATE SAMPLED BY MPLED BY RUCH DATE DATE SAMPLE LOCATION SAMPLE LOCATION MPLE LOCATION Oct. 1/27. NTS: NTS: NTS: 24700SE UTM: ZONE: UTM: ZONE: UTM: -ZONE: GRID: GRID: GRID: 10+77NE ground use CLAIM: CLAIM: CLAIM: 2PECTIN. PROPERTY NAME PROPERTY NAME maleril OPERTY NAME an SAMPLE CHARACTER SAMPLE CHARACTER MPLE CHARACTER ROCK: O/C R/C FLOAT ROCK: O/C R/C FLOAT CKOC R/C FLOAT SAMPLE METHOD SAMPLE METHOD MPLE METHOD BONE 'ID N GRAR ore 38 METRÉ SOIL SILT SOIL -IL SILT (DESCRIPTION OVER) (DESCRIPTION O SCRIPTION OVER) ODNX SAMPLE DESCRIPTION LOST GOOD SAMPLE DESCRIPTION **MPLE DESCRIPTION** HOST ROCK TEXTURE & MINERALOGY ST ROCK TEXTURE & MINERALOGY ate malerial lamina fed 419. w/ <170 FT-DODI offer upins < 3mm wide. a uler 3192 3193 1667 PROJECT PROJECT SAMPLER DJECT SAMPLER TYPF ASSAY Au Ag Cu Mo Pb Zn - -ASSAY Au Ag Cu Mo Pb Zn - -ASSAY Au Ag Cu Mo Pb Zn - -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co - -GEOCHEM Hg Sb As W Ni Co -

1 TRENCH A TRENCHB CENTERED ON 9+78 NE CENTRED ON: 9175NE 11 + 75 SE 11+63 SE 697 (x) 1% PY IN QZ. VEINS 3157 (2.0) +3156 L 1% PO IN WALL ROCK 3155 696(20)+ + 3152 + 694 (05) ARGILLITE 108 80 + 3150, 3151 LAMINATED 695 (0.5) ARGILLITE + 3153 IN ZONE OF QZ VEINS INTERFINGERING WITH TR. SP., PY., PO, TR. GN. TRENCH H TRENCH G CENTRED ON 9+87 NE CENTRED ON 9+80 NE 10+57 SE 10+83 SE TRENCH F CENTRED ON 9+82 NE, 11+15 5E 1 215 VERY RUSTY ARGILLITE TR - 1% PY -----632(1.0)635 ----- + 3173 SP, GN, PY (0.5) 620 _ ARGILLITE 636-++ 10 110 3170-1-4) 618 3170 + + 698-699 + 700 1-633(0.5) + 634(0.5) ~ FQZ .

020

LOHOOSE

LIFOSE .

L21005E

the first the second of the second second second second second

L34005E L44005E L54005E L54005

	AND
LINCE	FIG6 Figo

the state was a subject to the state of the

-

I with

GEOLOGICAL BRANCH + 10 ASSESSMENT REPORT 17, 049-~

1

.

.

13+00 N.E. 14+00 N.E. 15+00N.E. 16+00 N.E. LINE 8+00 S.E. LINE 8+505.E. and manine LINE 9+00 S.E. LINE 4+50 S.E. LINE 10+00 S.E. LINE 10+50 S.E LINE THOOSE. LINE 11+50S.E. LINE 12+00 S.E. - Martin Martin LINE 12+50 S.E.

1

GEOLOGICAL BRANCH ASSESSMENT REPORT

.

FIG 9C

FIG 9D

UNITED MINERAL SERVICES BONANZA IAND 2 CLAIMS V.L.F. E.M. 17 SURVEY SCALE - 1:20,000 14 UNFILTERED DATA OCT '87

0 100m PRODUCTION. AND DESCRIPTION OF A DE

LINE 22+00 S.E.

LINE 23+00 S.E.

LINE 24+005.E.

16+00N.E.